1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox Technologies, Ltd 4 */ 5 6 #include <netinet/in.h> 7 #include <sys/queue.h> 8 #include <stdalign.h> 9 #include <stdint.h> 10 #include <string.h> 11 #include <stdbool.h> 12 13 #include <rte_common.h> 14 #include <rte_ether.h> 15 #include <rte_ethdev_driver.h> 16 #include <rte_eal_paging.h> 17 #include <rte_flow.h> 18 #include <rte_cycles.h> 19 #include <rte_flow_driver.h> 20 #include <rte_malloc.h> 21 #include <rte_ip.h> 22 23 #include <mlx5_glue.h> 24 #include <mlx5_devx_cmds.h> 25 #include <mlx5_prm.h> 26 #include <mlx5_malloc.h> 27 28 #include "mlx5_defs.h" 29 #include "mlx5.h" 30 #include "mlx5_flow.h" 31 #include "mlx5_flow_os.h" 32 #include "mlx5_rxtx.h" 33 #include "mlx5_common_os.h" 34 #include "rte_pmd_mlx5.h" 35 36 struct tunnel_default_miss_ctx { 37 uint16_t *queue; 38 __extension__ 39 union { 40 struct rte_flow_action_rss action_rss; 41 struct rte_flow_action_queue miss_queue; 42 struct rte_flow_action_jump miss_jump; 43 uint8_t raw[0]; 44 }; 45 }; 46 47 static int 48 flow_tunnel_add_default_miss(struct rte_eth_dev *dev, 49 struct rte_flow *flow, 50 const struct rte_flow_attr *attr, 51 const struct rte_flow_action *app_actions, 52 uint32_t flow_idx, 53 struct tunnel_default_miss_ctx *ctx, 54 struct rte_flow_error *error); 55 static struct mlx5_flow_tunnel * 56 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id); 57 static void 58 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel); 59 static uint32_t 60 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev, 61 const struct mlx5_flow_tunnel *tunnel, 62 uint32_t group, uint32_t *table, 63 struct rte_flow_error *error); 64 65 static struct mlx5_flow_workspace *mlx5_flow_push_thread_workspace(void); 66 static void mlx5_flow_pop_thread_workspace(void); 67 68 69 /** Device flow drivers. */ 70 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops; 71 72 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops; 73 74 const struct mlx5_flow_driver_ops *flow_drv_ops[] = { 75 [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops, 76 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 77 [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops, 78 #endif 79 [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops, 80 [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops 81 }; 82 83 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */ 84 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \ 85 (const int []){ \ 86 __VA_ARGS__, 0, \ 87 } 88 89 /** Node object of input graph for mlx5_flow_expand_rss(). */ 90 struct mlx5_flow_expand_node { 91 const int *const next; 92 /**< 93 * List of next node indexes. Index 0 is interpreted as a terminator. 94 */ 95 const enum rte_flow_item_type type; 96 /**< Pattern item type of current node. */ 97 uint64_t rss_types; 98 /**< 99 * RSS types bit-field associated with this node 100 * (see ETH_RSS_* definitions). 101 */ 102 }; 103 104 /** Object returned by mlx5_flow_expand_rss(). */ 105 struct mlx5_flow_expand_rss { 106 uint32_t entries; 107 /**< Number of entries @p patterns and @p priorities. */ 108 struct { 109 struct rte_flow_item *pattern; /**< Expanded pattern array. */ 110 uint32_t priority; /**< Priority offset for each expansion. */ 111 } entry[]; 112 }; 113 114 static enum rte_flow_item_type 115 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item) 116 { 117 enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID; 118 uint16_t ether_type = 0; 119 uint16_t ether_type_m; 120 uint8_t ip_next_proto = 0; 121 uint8_t ip_next_proto_m; 122 123 if (item == NULL || item->spec == NULL) 124 return ret; 125 switch (item->type) { 126 case RTE_FLOW_ITEM_TYPE_ETH: 127 if (item->mask) 128 ether_type_m = ((const struct rte_flow_item_eth *) 129 (item->mask))->type; 130 else 131 ether_type_m = rte_flow_item_eth_mask.type; 132 if (ether_type_m != RTE_BE16(0xFFFF)) 133 break; 134 ether_type = ((const struct rte_flow_item_eth *) 135 (item->spec))->type; 136 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4) 137 ret = RTE_FLOW_ITEM_TYPE_IPV4; 138 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6) 139 ret = RTE_FLOW_ITEM_TYPE_IPV6; 140 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN) 141 ret = RTE_FLOW_ITEM_TYPE_VLAN; 142 else 143 ret = RTE_FLOW_ITEM_TYPE_END; 144 break; 145 case RTE_FLOW_ITEM_TYPE_VLAN: 146 if (item->mask) 147 ether_type_m = ((const struct rte_flow_item_vlan *) 148 (item->mask))->inner_type; 149 else 150 ether_type_m = rte_flow_item_vlan_mask.inner_type; 151 if (ether_type_m != RTE_BE16(0xFFFF)) 152 break; 153 ether_type = ((const struct rte_flow_item_vlan *) 154 (item->spec))->inner_type; 155 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4) 156 ret = RTE_FLOW_ITEM_TYPE_IPV4; 157 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6) 158 ret = RTE_FLOW_ITEM_TYPE_IPV6; 159 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN) 160 ret = RTE_FLOW_ITEM_TYPE_VLAN; 161 else 162 ret = RTE_FLOW_ITEM_TYPE_END; 163 break; 164 case RTE_FLOW_ITEM_TYPE_IPV4: 165 if (item->mask) 166 ip_next_proto_m = ((const struct rte_flow_item_ipv4 *) 167 (item->mask))->hdr.next_proto_id; 168 else 169 ip_next_proto_m = 170 rte_flow_item_ipv4_mask.hdr.next_proto_id; 171 if (ip_next_proto_m != 0xFF) 172 break; 173 ip_next_proto = ((const struct rte_flow_item_ipv4 *) 174 (item->spec))->hdr.next_proto_id; 175 if (ip_next_proto == IPPROTO_UDP) 176 ret = RTE_FLOW_ITEM_TYPE_UDP; 177 else if (ip_next_proto == IPPROTO_TCP) 178 ret = RTE_FLOW_ITEM_TYPE_TCP; 179 else if (ip_next_proto == IPPROTO_IP) 180 ret = RTE_FLOW_ITEM_TYPE_IPV4; 181 else if (ip_next_proto == IPPROTO_IPV6) 182 ret = RTE_FLOW_ITEM_TYPE_IPV6; 183 else 184 ret = RTE_FLOW_ITEM_TYPE_END; 185 break; 186 case RTE_FLOW_ITEM_TYPE_IPV6: 187 if (item->mask) 188 ip_next_proto_m = ((const struct rte_flow_item_ipv6 *) 189 (item->mask))->hdr.proto; 190 else 191 ip_next_proto_m = 192 rte_flow_item_ipv6_mask.hdr.proto; 193 if (ip_next_proto_m != 0xFF) 194 break; 195 ip_next_proto = ((const struct rte_flow_item_ipv6 *) 196 (item->spec))->hdr.proto; 197 if (ip_next_proto == IPPROTO_UDP) 198 ret = RTE_FLOW_ITEM_TYPE_UDP; 199 else if (ip_next_proto == IPPROTO_TCP) 200 ret = RTE_FLOW_ITEM_TYPE_TCP; 201 else if (ip_next_proto == IPPROTO_IP) 202 ret = RTE_FLOW_ITEM_TYPE_IPV4; 203 else if (ip_next_proto == IPPROTO_IPV6) 204 ret = RTE_FLOW_ITEM_TYPE_IPV6; 205 else 206 ret = RTE_FLOW_ITEM_TYPE_END; 207 break; 208 default: 209 ret = RTE_FLOW_ITEM_TYPE_VOID; 210 break; 211 } 212 return ret; 213 } 214 215 /** 216 * Expand RSS flows into several possible flows according to the RSS hash 217 * fields requested and the driver capabilities. 218 * 219 * @param[out] buf 220 * Buffer to store the result expansion. 221 * @param[in] size 222 * Buffer size in bytes. If 0, @p buf can be NULL. 223 * @param[in] pattern 224 * User flow pattern. 225 * @param[in] types 226 * RSS types to expand (see ETH_RSS_* definitions). 227 * @param[in] graph 228 * Input graph to expand @p pattern according to @p types. 229 * @param[in] graph_root_index 230 * Index of root node in @p graph, typically 0. 231 * 232 * @return 233 * A positive value representing the size of @p buf in bytes regardless of 234 * @p size on success, a negative errno value otherwise and rte_errno is 235 * set, the following errors are defined: 236 * 237 * -E2BIG: graph-depth @p graph is too deep. 238 */ 239 static int 240 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size, 241 const struct rte_flow_item *pattern, uint64_t types, 242 const struct mlx5_flow_expand_node graph[], 243 int graph_root_index) 244 { 245 const int elt_n = 8; 246 const struct rte_flow_item *item; 247 const struct mlx5_flow_expand_node *node = &graph[graph_root_index]; 248 const int *next_node; 249 const int *stack[elt_n]; 250 int stack_pos = 0; 251 struct rte_flow_item flow_items[elt_n]; 252 unsigned int i; 253 size_t lsize; 254 size_t user_pattern_size = 0; 255 void *addr = NULL; 256 const struct mlx5_flow_expand_node *next = NULL; 257 struct rte_flow_item missed_item; 258 int missed = 0; 259 int elt = 0; 260 const struct rte_flow_item *last_item = NULL; 261 262 memset(&missed_item, 0, sizeof(missed_item)); 263 lsize = offsetof(struct mlx5_flow_expand_rss, entry) + 264 elt_n * sizeof(buf->entry[0]); 265 if (lsize <= size) { 266 buf->entry[0].priority = 0; 267 buf->entry[0].pattern = (void *)&buf->entry[elt_n]; 268 buf->entries = 0; 269 addr = buf->entry[0].pattern; 270 } 271 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 272 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 273 last_item = item; 274 for (i = 0; node->next && node->next[i]; ++i) { 275 next = &graph[node->next[i]]; 276 if (next->type == item->type) 277 break; 278 } 279 if (next) 280 node = next; 281 user_pattern_size += sizeof(*item); 282 } 283 user_pattern_size += sizeof(*item); /* Handle END item. */ 284 lsize += user_pattern_size; 285 /* Copy the user pattern in the first entry of the buffer. */ 286 if (lsize <= size) { 287 rte_memcpy(addr, pattern, user_pattern_size); 288 addr = (void *)(((uintptr_t)addr) + user_pattern_size); 289 buf->entries = 1; 290 } 291 /* Start expanding. */ 292 memset(flow_items, 0, sizeof(flow_items)); 293 user_pattern_size -= sizeof(*item); 294 /* 295 * Check if the last valid item has spec set, need complete pattern, 296 * and the pattern can be used for expansion. 297 */ 298 missed_item.type = mlx5_flow_expand_rss_item_complete(last_item); 299 if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) { 300 /* Item type END indicates expansion is not required. */ 301 return lsize; 302 } 303 if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) { 304 next = NULL; 305 missed = 1; 306 for (i = 0; node->next && node->next[i]; ++i) { 307 next = &graph[node->next[i]]; 308 if (next->type == missed_item.type) { 309 flow_items[0].type = missed_item.type; 310 flow_items[1].type = RTE_FLOW_ITEM_TYPE_END; 311 break; 312 } 313 next = NULL; 314 } 315 } 316 if (next && missed) { 317 elt = 2; /* missed item + item end. */ 318 node = next; 319 lsize += elt * sizeof(*item) + user_pattern_size; 320 if ((node->rss_types & types) && lsize <= size) { 321 buf->entry[buf->entries].priority = 1; 322 buf->entry[buf->entries].pattern = addr; 323 buf->entries++; 324 rte_memcpy(addr, buf->entry[0].pattern, 325 user_pattern_size); 326 addr = (void *)(((uintptr_t)addr) + user_pattern_size); 327 rte_memcpy(addr, flow_items, elt * sizeof(*item)); 328 addr = (void *)(((uintptr_t)addr) + 329 elt * sizeof(*item)); 330 } 331 } 332 memset(flow_items, 0, sizeof(flow_items)); 333 next_node = node->next; 334 stack[stack_pos] = next_node; 335 node = next_node ? &graph[*next_node] : NULL; 336 while (node) { 337 flow_items[stack_pos].type = node->type; 338 if (node->rss_types & types) { 339 /* 340 * compute the number of items to copy from the 341 * expansion and copy it. 342 * When the stack_pos is 0, there are 1 element in it, 343 * plus the addition END item. 344 */ 345 elt = stack_pos + 2; 346 flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END; 347 lsize += elt * sizeof(*item) + user_pattern_size; 348 if (lsize <= size) { 349 size_t n = elt * sizeof(*item); 350 351 buf->entry[buf->entries].priority = 352 stack_pos + 1 + missed; 353 buf->entry[buf->entries].pattern = addr; 354 buf->entries++; 355 rte_memcpy(addr, buf->entry[0].pattern, 356 user_pattern_size); 357 addr = (void *)(((uintptr_t)addr) + 358 user_pattern_size); 359 rte_memcpy(addr, &missed_item, 360 missed * sizeof(*item)); 361 addr = (void *)(((uintptr_t)addr) + 362 missed * sizeof(*item)); 363 rte_memcpy(addr, flow_items, n); 364 addr = (void *)(((uintptr_t)addr) + n); 365 } 366 } 367 /* Go deeper. */ 368 if (node->next) { 369 next_node = node->next; 370 if (stack_pos++ == elt_n) { 371 rte_errno = E2BIG; 372 return -rte_errno; 373 } 374 stack[stack_pos] = next_node; 375 } else if (*(next_node + 1)) { 376 /* Follow up with the next possibility. */ 377 ++next_node; 378 } else { 379 /* Move to the next path. */ 380 if (stack_pos) 381 next_node = stack[--stack_pos]; 382 next_node++; 383 stack[stack_pos] = next_node; 384 } 385 node = *next_node ? &graph[*next_node] : NULL; 386 }; 387 /* no expanded flows but we have missed item, create one rule for it */ 388 if (buf->entries == 1 && missed != 0) { 389 elt = 2; 390 lsize += elt * sizeof(*item) + user_pattern_size; 391 if (lsize <= size) { 392 buf->entry[buf->entries].priority = 1; 393 buf->entry[buf->entries].pattern = addr; 394 buf->entries++; 395 flow_items[0].type = missed_item.type; 396 flow_items[1].type = RTE_FLOW_ITEM_TYPE_END; 397 rte_memcpy(addr, buf->entry[0].pattern, 398 user_pattern_size); 399 addr = (void *)(((uintptr_t)addr) + user_pattern_size); 400 rte_memcpy(addr, flow_items, elt * sizeof(*item)); 401 } 402 } 403 return lsize; 404 } 405 406 enum mlx5_expansion { 407 MLX5_EXPANSION_ROOT, 408 MLX5_EXPANSION_ROOT_OUTER, 409 MLX5_EXPANSION_ROOT_ETH_VLAN, 410 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN, 411 MLX5_EXPANSION_OUTER_ETH, 412 MLX5_EXPANSION_OUTER_ETH_VLAN, 413 MLX5_EXPANSION_OUTER_VLAN, 414 MLX5_EXPANSION_OUTER_IPV4, 415 MLX5_EXPANSION_OUTER_IPV4_UDP, 416 MLX5_EXPANSION_OUTER_IPV4_TCP, 417 MLX5_EXPANSION_OUTER_IPV6, 418 MLX5_EXPANSION_OUTER_IPV6_UDP, 419 MLX5_EXPANSION_OUTER_IPV6_TCP, 420 MLX5_EXPANSION_VXLAN, 421 MLX5_EXPANSION_VXLAN_GPE, 422 MLX5_EXPANSION_GRE, 423 MLX5_EXPANSION_MPLS, 424 MLX5_EXPANSION_ETH, 425 MLX5_EXPANSION_ETH_VLAN, 426 MLX5_EXPANSION_VLAN, 427 MLX5_EXPANSION_IPV4, 428 MLX5_EXPANSION_IPV4_UDP, 429 MLX5_EXPANSION_IPV4_TCP, 430 MLX5_EXPANSION_IPV6, 431 MLX5_EXPANSION_IPV6_UDP, 432 MLX5_EXPANSION_IPV6_TCP, 433 }; 434 435 /** Supported expansion of items. */ 436 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = { 437 [MLX5_EXPANSION_ROOT] = { 438 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 439 MLX5_EXPANSION_IPV4, 440 MLX5_EXPANSION_IPV6), 441 .type = RTE_FLOW_ITEM_TYPE_END, 442 }, 443 [MLX5_EXPANSION_ROOT_OUTER] = { 444 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH, 445 MLX5_EXPANSION_OUTER_IPV4, 446 MLX5_EXPANSION_OUTER_IPV6), 447 .type = RTE_FLOW_ITEM_TYPE_END, 448 }, 449 [MLX5_EXPANSION_ROOT_ETH_VLAN] = { 450 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN), 451 .type = RTE_FLOW_ITEM_TYPE_END, 452 }, 453 [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = { 454 .next = MLX5_FLOW_EXPAND_RSS_NEXT 455 (MLX5_EXPANSION_OUTER_ETH_VLAN), 456 .type = RTE_FLOW_ITEM_TYPE_END, 457 }, 458 [MLX5_EXPANSION_OUTER_ETH] = { 459 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 460 MLX5_EXPANSION_OUTER_IPV6, 461 MLX5_EXPANSION_MPLS), 462 .type = RTE_FLOW_ITEM_TYPE_ETH, 463 .rss_types = 0, 464 }, 465 [MLX5_EXPANSION_OUTER_ETH_VLAN] = { 466 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN), 467 .type = RTE_FLOW_ITEM_TYPE_ETH, 468 .rss_types = 0, 469 }, 470 [MLX5_EXPANSION_OUTER_VLAN] = { 471 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 472 MLX5_EXPANSION_OUTER_IPV6), 473 .type = RTE_FLOW_ITEM_TYPE_VLAN, 474 }, 475 [MLX5_EXPANSION_OUTER_IPV4] = { 476 .next = MLX5_FLOW_EXPAND_RSS_NEXT 477 (MLX5_EXPANSION_OUTER_IPV4_UDP, 478 MLX5_EXPANSION_OUTER_IPV4_TCP, 479 MLX5_EXPANSION_GRE, 480 MLX5_EXPANSION_IPV4, 481 MLX5_EXPANSION_IPV6), 482 .type = RTE_FLOW_ITEM_TYPE_IPV4, 483 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 484 ETH_RSS_NONFRAG_IPV4_OTHER, 485 }, 486 [MLX5_EXPANSION_OUTER_IPV4_UDP] = { 487 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 488 MLX5_EXPANSION_VXLAN_GPE), 489 .type = RTE_FLOW_ITEM_TYPE_UDP, 490 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 491 }, 492 [MLX5_EXPANSION_OUTER_IPV4_TCP] = { 493 .type = RTE_FLOW_ITEM_TYPE_TCP, 494 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 495 }, 496 [MLX5_EXPANSION_OUTER_IPV6] = { 497 .next = MLX5_FLOW_EXPAND_RSS_NEXT 498 (MLX5_EXPANSION_OUTER_IPV6_UDP, 499 MLX5_EXPANSION_OUTER_IPV6_TCP, 500 MLX5_EXPANSION_IPV4, 501 MLX5_EXPANSION_IPV6), 502 .type = RTE_FLOW_ITEM_TYPE_IPV6, 503 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 504 ETH_RSS_NONFRAG_IPV6_OTHER, 505 }, 506 [MLX5_EXPANSION_OUTER_IPV6_UDP] = { 507 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 508 MLX5_EXPANSION_VXLAN_GPE), 509 .type = RTE_FLOW_ITEM_TYPE_UDP, 510 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 511 }, 512 [MLX5_EXPANSION_OUTER_IPV6_TCP] = { 513 .type = RTE_FLOW_ITEM_TYPE_TCP, 514 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 515 }, 516 [MLX5_EXPANSION_VXLAN] = { 517 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 518 MLX5_EXPANSION_IPV4, 519 MLX5_EXPANSION_IPV6), 520 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 521 }, 522 [MLX5_EXPANSION_VXLAN_GPE] = { 523 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 524 MLX5_EXPANSION_IPV4, 525 MLX5_EXPANSION_IPV6), 526 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE, 527 }, 528 [MLX5_EXPANSION_GRE] = { 529 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4), 530 .type = RTE_FLOW_ITEM_TYPE_GRE, 531 }, 532 [MLX5_EXPANSION_MPLS] = { 533 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 534 MLX5_EXPANSION_IPV6), 535 .type = RTE_FLOW_ITEM_TYPE_MPLS, 536 }, 537 [MLX5_EXPANSION_ETH] = { 538 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 539 MLX5_EXPANSION_IPV6), 540 .type = RTE_FLOW_ITEM_TYPE_ETH, 541 }, 542 [MLX5_EXPANSION_ETH_VLAN] = { 543 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN), 544 .type = RTE_FLOW_ITEM_TYPE_ETH, 545 }, 546 [MLX5_EXPANSION_VLAN] = { 547 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 548 MLX5_EXPANSION_IPV6), 549 .type = RTE_FLOW_ITEM_TYPE_VLAN, 550 }, 551 [MLX5_EXPANSION_IPV4] = { 552 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP, 553 MLX5_EXPANSION_IPV4_TCP), 554 .type = RTE_FLOW_ITEM_TYPE_IPV4, 555 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 556 ETH_RSS_NONFRAG_IPV4_OTHER, 557 }, 558 [MLX5_EXPANSION_IPV4_UDP] = { 559 .type = RTE_FLOW_ITEM_TYPE_UDP, 560 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 561 }, 562 [MLX5_EXPANSION_IPV4_TCP] = { 563 .type = RTE_FLOW_ITEM_TYPE_TCP, 564 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 565 }, 566 [MLX5_EXPANSION_IPV6] = { 567 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP, 568 MLX5_EXPANSION_IPV6_TCP), 569 .type = RTE_FLOW_ITEM_TYPE_IPV6, 570 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 571 ETH_RSS_NONFRAG_IPV6_OTHER, 572 }, 573 [MLX5_EXPANSION_IPV6_UDP] = { 574 .type = RTE_FLOW_ITEM_TYPE_UDP, 575 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 576 }, 577 [MLX5_EXPANSION_IPV6_TCP] = { 578 .type = RTE_FLOW_ITEM_TYPE_TCP, 579 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 580 }, 581 }; 582 583 static struct rte_flow_shared_action * 584 mlx5_shared_action_create(struct rte_eth_dev *dev, 585 const struct rte_flow_shared_action_conf *conf, 586 const struct rte_flow_action *action, 587 struct rte_flow_error *error); 588 static int mlx5_shared_action_destroy 589 (struct rte_eth_dev *dev, 590 struct rte_flow_shared_action *shared_action, 591 struct rte_flow_error *error); 592 static int mlx5_shared_action_update 593 (struct rte_eth_dev *dev, 594 struct rte_flow_shared_action *shared_action, 595 const struct rte_flow_action *action, 596 struct rte_flow_error *error); 597 static int mlx5_shared_action_query 598 (struct rte_eth_dev *dev, 599 const struct rte_flow_shared_action *action, 600 void *data, 601 struct rte_flow_error *error); 602 static int 603 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev, 604 struct rte_flow_tunnel *app_tunnel, 605 struct rte_flow_action **actions, 606 uint32_t *num_of_actions, 607 struct rte_flow_error *error); 608 static int 609 mlx5_flow_tunnel_match(struct rte_eth_dev *dev, 610 struct rte_flow_tunnel *app_tunnel, 611 struct rte_flow_item **items, 612 uint32_t *num_of_items, 613 struct rte_flow_error *error); 614 static int 615 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev, 616 struct rte_flow_item *pmd_items, 617 uint32_t num_items, struct rte_flow_error *err); 618 static int 619 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev, 620 struct rte_flow_action *pmd_actions, 621 uint32_t num_actions, 622 struct rte_flow_error *err); 623 static int 624 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev, 625 struct rte_mbuf *m, 626 struct rte_flow_restore_info *info, 627 struct rte_flow_error *err); 628 629 static const struct rte_flow_ops mlx5_flow_ops = { 630 .validate = mlx5_flow_validate, 631 .create = mlx5_flow_create, 632 .destroy = mlx5_flow_destroy, 633 .flush = mlx5_flow_flush, 634 .isolate = mlx5_flow_isolate, 635 .query = mlx5_flow_query, 636 .dev_dump = mlx5_flow_dev_dump, 637 .get_aged_flows = mlx5_flow_get_aged_flows, 638 .shared_action_create = mlx5_shared_action_create, 639 .shared_action_destroy = mlx5_shared_action_destroy, 640 .shared_action_update = mlx5_shared_action_update, 641 .shared_action_query = mlx5_shared_action_query, 642 .tunnel_decap_set = mlx5_flow_tunnel_decap_set, 643 .tunnel_match = mlx5_flow_tunnel_match, 644 .tunnel_action_decap_release = mlx5_flow_tunnel_action_release, 645 .tunnel_item_release = mlx5_flow_tunnel_item_release, 646 .get_restore_info = mlx5_flow_tunnel_get_restore_info, 647 }; 648 649 /* Tunnel information. */ 650 struct mlx5_flow_tunnel_info { 651 uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */ 652 uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */ 653 }; 654 655 static struct mlx5_flow_tunnel_info tunnels_info[] = { 656 { 657 .tunnel = MLX5_FLOW_LAYER_VXLAN, 658 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP, 659 }, 660 { 661 .tunnel = MLX5_FLOW_LAYER_GENEVE, 662 .ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP, 663 }, 664 { 665 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE, 666 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP, 667 }, 668 { 669 .tunnel = MLX5_FLOW_LAYER_GRE, 670 .ptype = RTE_PTYPE_TUNNEL_GRE, 671 }, 672 { 673 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP, 674 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP, 675 }, 676 { 677 .tunnel = MLX5_FLOW_LAYER_MPLS, 678 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE, 679 }, 680 { 681 .tunnel = MLX5_FLOW_LAYER_NVGRE, 682 .ptype = RTE_PTYPE_TUNNEL_NVGRE, 683 }, 684 { 685 .tunnel = MLX5_FLOW_LAYER_IPIP, 686 .ptype = RTE_PTYPE_TUNNEL_IP, 687 }, 688 { 689 .tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP, 690 .ptype = RTE_PTYPE_TUNNEL_IP, 691 }, 692 { 693 .tunnel = MLX5_FLOW_LAYER_GTP, 694 .ptype = RTE_PTYPE_TUNNEL_GTPU, 695 }, 696 }; 697 698 /* Key of thread specific flow workspace data. */ 699 static pthread_key_t key_workspace; 700 701 /* Thread specific flow workspace data once initialization data. */ 702 static pthread_once_t key_workspace_init; 703 704 705 /** 706 * Translate tag ID to register. 707 * 708 * @param[in] dev 709 * Pointer to the Ethernet device structure. 710 * @param[in] feature 711 * The feature that request the register. 712 * @param[in] id 713 * The request register ID. 714 * @param[out] error 715 * Error description in case of any. 716 * 717 * @return 718 * The request register on success, a negative errno 719 * value otherwise and rte_errno is set. 720 */ 721 int 722 mlx5_flow_get_reg_id(struct rte_eth_dev *dev, 723 enum mlx5_feature_name feature, 724 uint32_t id, 725 struct rte_flow_error *error) 726 { 727 struct mlx5_priv *priv = dev->data->dev_private; 728 struct mlx5_dev_config *config = &priv->config; 729 enum modify_reg start_reg; 730 bool skip_mtr_reg = false; 731 732 switch (feature) { 733 case MLX5_HAIRPIN_RX: 734 return REG_B; 735 case MLX5_HAIRPIN_TX: 736 return REG_A; 737 case MLX5_METADATA_RX: 738 switch (config->dv_xmeta_en) { 739 case MLX5_XMETA_MODE_LEGACY: 740 return REG_B; 741 case MLX5_XMETA_MODE_META16: 742 return REG_C_0; 743 case MLX5_XMETA_MODE_META32: 744 return REG_C_1; 745 } 746 break; 747 case MLX5_METADATA_TX: 748 return REG_A; 749 case MLX5_METADATA_FDB: 750 switch (config->dv_xmeta_en) { 751 case MLX5_XMETA_MODE_LEGACY: 752 return REG_NON; 753 case MLX5_XMETA_MODE_META16: 754 return REG_C_0; 755 case MLX5_XMETA_MODE_META32: 756 return REG_C_1; 757 } 758 break; 759 case MLX5_FLOW_MARK: 760 switch (config->dv_xmeta_en) { 761 case MLX5_XMETA_MODE_LEGACY: 762 return REG_NON; 763 case MLX5_XMETA_MODE_META16: 764 return REG_C_1; 765 case MLX5_XMETA_MODE_META32: 766 return REG_C_0; 767 } 768 break; 769 case MLX5_MTR_SFX: 770 /* 771 * If meter color and flow match share one register, flow match 772 * should use the meter color register for match. 773 */ 774 if (priv->mtr_reg_share) 775 return priv->mtr_color_reg; 776 else 777 return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : 778 REG_C_3; 779 case MLX5_MTR_COLOR: 780 MLX5_ASSERT(priv->mtr_color_reg != REG_NON); 781 return priv->mtr_color_reg; 782 case MLX5_COPY_MARK: 783 /* 784 * Metadata COPY_MARK register using is in meter suffix sub 785 * flow while with meter. It's safe to share the same register. 786 */ 787 return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3; 788 case MLX5_APP_TAG: 789 /* 790 * If meter is enable, it will engage the register for color 791 * match and flow match. If meter color match is not using the 792 * REG_C_2, need to skip the REG_C_x be used by meter color 793 * match. 794 * If meter is disable, free to use all available registers. 795 */ 796 start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 : 797 (priv->mtr_reg_share ? REG_C_3 : REG_C_4); 798 skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2); 799 if (id > (REG_C_7 - start_reg)) 800 return rte_flow_error_set(error, EINVAL, 801 RTE_FLOW_ERROR_TYPE_ITEM, 802 NULL, "invalid tag id"); 803 if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON) 804 return rte_flow_error_set(error, ENOTSUP, 805 RTE_FLOW_ERROR_TYPE_ITEM, 806 NULL, "unsupported tag id"); 807 /* 808 * This case means meter is using the REG_C_x great than 2. 809 * Take care not to conflict with meter color REG_C_x. 810 * If the available index REG_C_y >= REG_C_x, skip the 811 * color register. 812 */ 813 if (skip_mtr_reg && config->flow_mreg_c 814 [id + start_reg - REG_C_0] >= priv->mtr_color_reg) { 815 if (id >= (REG_C_7 - start_reg)) 816 return rte_flow_error_set(error, EINVAL, 817 RTE_FLOW_ERROR_TYPE_ITEM, 818 NULL, "invalid tag id"); 819 if (config->flow_mreg_c 820 [id + 1 + start_reg - REG_C_0] != REG_NON) 821 return config->flow_mreg_c 822 [id + 1 + start_reg - REG_C_0]; 823 return rte_flow_error_set(error, ENOTSUP, 824 RTE_FLOW_ERROR_TYPE_ITEM, 825 NULL, "unsupported tag id"); 826 } 827 return config->flow_mreg_c[id + start_reg - REG_C_0]; 828 } 829 MLX5_ASSERT(false); 830 return rte_flow_error_set(error, EINVAL, 831 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 832 NULL, "invalid feature name"); 833 } 834 835 /** 836 * Check extensive flow metadata register support. 837 * 838 * @param dev 839 * Pointer to rte_eth_dev structure. 840 * 841 * @return 842 * True if device supports extensive flow metadata register, otherwise false. 843 */ 844 bool 845 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev) 846 { 847 struct mlx5_priv *priv = dev->data->dev_private; 848 struct mlx5_dev_config *config = &priv->config; 849 850 /* 851 * Having available reg_c can be regarded inclusively as supporting 852 * extensive flow metadata register, which could mean, 853 * - metadata register copy action by modify header. 854 * - 16 modify header actions is supported. 855 * - reg_c's are preserved across different domain (FDB and NIC) on 856 * packet loopback by flow lookup miss. 857 */ 858 return config->flow_mreg_c[2] != REG_NON; 859 } 860 861 /** 862 * Verify the @p item specifications (spec, last, mask) are compatible with the 863 * NIC capabilities. 864 * 865 * @param[in] item 866 * Item specification. 867 * @param[in] mask 868 * @p item->mask or flow default bit-masks. 869 * @param[in] nic_mask 870 * Bit-masks covering supported fields by the NIC to compare with user mask. 871 * @param[in] size 872 * Bit-masks size in bytes. 873 * @param[in] range_accepted 874 * True if range of values is accepted for specific fields, false otherwise. 875 * @param[out] error 876 * Pointer to error structure. 877 * 878 * @return 879 * 0 on success, a negative errno value otherwise and rte_errno is set. 880 */ 881 int 882 mlx5_flow_item_acceptable(const struct rte_flow_item *item, 883 const uint8_t *mask, 884 const uint8_t *nic_mask, 885 unsigned int size, 886 bool range_accepted, 887 struct rte_flow_error *error) 888 { 889 unsigned int i; 890 891 MLX5_ASSERT(nic_mask); 892 for (i = 0; i < size; ++i) 893 if ((nic_mask[i] | mask[i]) != nic_mask[i]) 894 return rte_flow_error_set(error, ENOTSUP, 895 RTE_FLOW_ERROR_TYPE_ITEM, 896 item, 897 "mask enables non supported" 898 " bits"); 899 if (!item->spec && (item->mask || item->last)) 900 return rte_flow_error_set(error, EINVAL, 901 RTE_FLOW_ERROR_TYPE_ITEM, item, 902 "mask/last without a spec is not" 903 " supported"); 904 if (item->spec && item->last && !range_accepted) { 905 uint8_t spec[size]; 906 uint8_t last[size]; 907 unsigned int i; 908 int ret; 909 910 for (i = 0; i < size; ++i) { 911 spec[i] = ((const uint8_t *)item->spec)[i] & mask[i]; 912 last[i] = ((const uint8_t *)item->last)[i] & mask[i]; 913 } 914 ret = memcmp(spec, last, size); 915 if (ret != 0) 916 return rte_flow_error_set(error, EINVAL, 917 RTE_FLOW_ERROR_TYPE_ITEM, 918 item, 919 "range is not valid"); 920 } 921 return 0; 922 } 923 924 /** 925 * Adjust the hash fields according to the @p flow information. 926 * 927 * @param[in] dev_flow. 928 * Pointer to the mlx5_flow. 929 * @param[in] tunnel 930 * 1 when the hash field is for a tunnel item. 931 * @param[in] layer_types 932 * ETH_RSS_* types. 933 * @param[in] hash_fields 934 * Item hash fields. 935 * 936 * @return 937 * The hash fields that should be used. 938 */ 939 uint64_t 940 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc, 941 int tunnel __rte_unused, uint64_t layer_types, 942 uint64_t hash_fields) 943 { 944 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 945 int rss_request_inner = rss_desc->level >= 2; 946 947 /* Check RSS hash level for tunnel. */ 948 if (tunnel && rss_request_inner) 949 hash_fields |= IBV_RX_HASH_INNER; 950 else if (tunnel || rss_request_inner) 951 return 0; 952 #endif 953 /* Check if requested layer matches RSS hash fields. */ 954 if (!(rss_desc->types & layer_types)) 955 return 0; 956 return hash_fields; 957 } 958 959 /** 960 * Lookup and set the ptype in the data Rx part. A single Ptype can be used, 961 * if several tunnel rules are used on this queue, the tunnel ptype will be 962 * cleared. 963 * 964 * @param rxq_ctrl 965 * Rx queue to update. 966 */ 967 static void 968 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl) 969 { 970 unsigned int i; 971 uint32_t tunnel_ptype = 0; 972 973 /* Look up for the ptype to use. */ 974 for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) { 975 if (!rxq_ctrl->flow_tunnels_n[i]) 976 continue; 977 if (!tunnel_ptype) { 978 tunnel_ptype = tunnels_info[i].ptype; 979 } else { 980 tunnel_ptype = 0; 981 break; 982 } 983 } 984 rxq_ctrl->rxq.tunnel = tunnel_ptype; 985 } 986 987 /** 988 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive 989 * flow. 990 * 991 * @param[in] dev 992 * Pointer to the Ethernet device structure. 993 * @param[in] dev_handle 994 * Pointer to device flow handle structure. 995 */ 996 static void 997 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, 998 struct mlx5_flow_handle *dev_handle) 999 { 1000 struct mlx5_priv *priv = dev->data->dev_private; 1001 const int mark = dev_handle->mark; 1002 const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL); 1003 struct mlx5_hrxq *hrxq; 1004 unsigned int i; 1005 1006 if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE) 1007 return; 1008 hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], 1009 dev_handle->rix_hrxq); 1010 if (!hrxq) 1011 return; 1012 for (i = 0; i != hrxq->ind_table->queues_n; ++i) { 1013 int idx = hrxq->ind_table->queues[i]; 1014 struct mlx5_rxq_ctrl *rxq_ctrl = 1015 container_of((*priv->rxqs)[idx], 1016 struct mlx5_rxq_ctrl, rxq); 1017 1018 /* 1019 * To support metadata register copy on Tx loopback, 1020 * this must be always enabled (metadata may arive 1021 * from other port - not from local flows only. 1022 */ 1023 if (priv->config.dv_flow_en && 1024 priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY && 1025 mlx5_flow_ext_mreg_supported(dev)) { 1026 rxq_ctrl->rxq.mark = 1; 1027 rxq_ctrl->flow_mark_n = 1; 1028 } else if (mark) { 1029 rxq_ctrl->rxq.mark = 1; 1030 rxq_ctrl->flow_mark_n++; 1031 } 1032 if (tunnel) { 1033 unsigned int j; 1034 1035 /* Increase the counter matching the flow. */ 1036 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 1037 if ((tunnels_info[j].tunnel & 1038 dev_handle->layers) == 1039 tunnels_info[j].tunnel) { 1040 rxq_ctrl->flow_tunnels_n[j]++; 1041 break; 1042 } 1043 } 1044 flow_rxq_tunnel_ptype_update(rxq_ctrl); 1045 } 1046 } 1047 } 1048 1049 /** 1050 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow 1051 * 1052 * @param[in] dev 1053 * Pointer to the Ethernet device structure. 1054 * @param[in] flow 1055 * Pointer to flow structure. 1056 */ 1057 static void 1058 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow) 1059 { 1060 struct mlx5_priv *priv = dev->data->dev_private; 1061 uint32_t handle_idx; 1062 struct mlx5_flow_handle *dev_handle; 1063 1064 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 1065 handle_idx, dev_handle, next) 1066 flow_drv_rxq_flags_set(dev, dev_handle); 1067 } 1068 1069 /** 1070 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 1071 * device flow if no other flow uses it with the same kind of request. 1072 * 1073 * @param dev 1074 * Pointer to Ethernet device. 1075 * @param[in] dev_handle 1076 * Pointer to the device flow handle structure. 1077 */ 1078 static void 1079 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, 1080 struct mlx5_flow_handle *dev_handle) 1081 { 1082 struct mlx5_priv *priv = dev->data->dev_private; 1083 const int mark = dev_handle->mark; 1084 const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL); 1085 struct mlx5_hrxq *hrxq; 1086 unsigned int i; 1087 1088 if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE) 1089 return; 1090 hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], 1091 dev_handle->rix_hrxq); 1092 if (!hrxq) 1093 return; 1094 MLX5_ASSERT(dev->data->dev_started); 1095 for (i = 0; i != hrxq->ind_table->queues_n; ++i) { 1096 int idx = hrxq->ind_table->queues[i]; 1097 struct mlx5_rxq_ctrl *rxq_ctrl = 1098 container_of((*priv->rxqs)[idx], 1099 struct mlx5_rxq_ctrl, rxq); 1100 1101 if (priv->config.dv_flow_en && 1102 priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY && 1103 mlx5_flow_ext_mreg_supported(dev)) { 1104 rxq_ctrl->rxq.mark = 1; 1105 rxq_ctrl->flow_mark_n = 1; 1106 } else if (mark) { 1107 rxq_ctrl->flow_mark_n--; 1108 rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n; 1109 } 1110 if (tunnel) { 1111 unsigned int j; 1112 1113 /* Decrease the counter matching the flow. */ 1114 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 1115 if ((tunnels_info[j].tunnel & 1116 dev_handle->layers) == 1117 tunnels_info[j].tunnel) { 1118 rxq_ctrl->flow_tunnels_n[j]--; 1119 break; 1120 } 1121 } 1122 flow_rxq_tunnel_ptype_update(rxq_ctrl); 1123 } 1124 } 1125 } 1126 1127 /** 1128 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 1129 * @p flow if no other flow uses it with the same kind of request. 1130 * 1131 * @param dev 1132 * Pointer to Ethernet device. 1133 * @param[in] flow 1134 * Pointer to the flow. 1135 */ 1136 static void 1137 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow) 1138 { 1139 struct mlx5_priv *priv = dev->data->dev_private; 1140 uint32_t handle_idx; 1141 struct mlx5_flow_handle *dev_handle; 1142 1143 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 1144 handle_idx, dev_handle, next) 1145 flow_drv_rxq_flags_trim(dev, dev_handle); 1146 } 1147 1148 /** 1149 * Clear the Mark/Flag and Tunnel ptype information in all Rx queues. 1150 * 1151 * @param dev 1152 * Pointer to Ethernet device. 1153 */ 1154 static void 1155 flow_rxq_flags_clear(struct rte_eth_dev *dev) 1156 { 1157 struct mlx5_priv *priv = dev->data->dev_private; 1158 unsigned int i; 1159 1160 for (i = 0; i != priv->rxqs_n; ++i) { 1161 struct mlx5_rxq_ctrl *rxq_ctrl; 1162 unsigned int j; 1163 1164 if (!(*priv->rxqs)[i]) 1165 continue; 1166 rxq_ctrl = container_of((*priv->rxqs)[i], 1167 struct mlx5_rxq_ctrl, rxq); 1168 rxq_ctrl->flow_mark_n = 0; 1169 rxq_ctrl->rxq.mark = 0; 1170 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) 1171 rxq_ctrl->flow_tunnels_n[j] = 0; 1172 rxq_ctrl->rxq.tunnel = 0; 1173 } 1174 } 1175 1176 /** 1177 * Set the Rx queue dynamic metadata (mask and offset) for a flow 1178 * 1179 * @param[in] dev 1180 * Pointer to the Ethernet device structure. 1181 */ 1182 void 1183 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev) 1184 { 1185 struct mlx5_priv *priv = dev->data->dev_private; 1186 struct mlx5_rxq_data *data; 1187 unsigned int i; 1188 1189 for (i = 0; i != priv->rxqs_n; ++i) { 1190 if (!(*priv->rxqs)[i]) 1191 continue; 1192 data = (*priv->rxqs)[i]; 1193 if (!rte_flow_dynf_metadata_avail()) { 1194 data->dynf_meta = 0; 1195 data->flow_meta_mask = 0; 1196 data->flow_meta_offset = -1; 1197 } else { 1198 data->dynf_meta = 1; 1199 data->flow_meta_mask = rte_flow_dynf_metadata_mask; 1200 data->flow_meta_offset = rte_flow_dynf_metadata_offs; 1201 } 1202 } 1203 } 1204 1205 /* 1206 * return a pointer to the desired action in the list of actions. 1207 * 1208 * @param[in] actions 1209 * The list of actions to search the action in. 1210 * @param[in] action 1211 * The action to find. 1212 * 1213 * @return 1214 * Pointer to the action in the list, if found. NULL otherwise. 1215 */ 1216 const struct rte_flow_action * 1217 mlx5_flow_find_action(const struct rte_flow_action *actions, 1218 enum rte_flow_action_type action) 1219 { 1220 if (actions == NULL) 1221 return NULL; 1222 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) 1223 if (actions->type == action) 1224 return actions; 1225 return NULL; 1226 } 1227 1228 /* 1229 * Validate the flag action. 1230 * 1231 * @param[in] action_flags 1232 * Bit-fields that holds the actions detected until now. 1233 * @param[in] attr 1234 * Attributes of flow that includes this action. 1235 * @param[out] error 1236 * Pointer to error structure. 1237 * 1238 * @return 1239 * 0 on success, a negative errno value otherwise and rte_errno is set. 1240 */ 1241 int 1242 mlx5_flow_validate_action_flag(uint64_t action_flags, 1243 const struct rte_flow_attr *attr, 1244 struct rte_flow_error *error) 1245 { 1246 if (action_flags & MLX5_FLOW_ACTION_MARK) 1247 return rte_flow_error_set(error, EINVAL, 1248 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1249 "can't mark and flag in same flow"); 1250 if (action_flags & MLX5_FLOW_ACTION_FLAG) 1251 return rte_flow_error_set(error, EINVAL, 1252 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1253 "can't have 2 flag" 1254 " actions in same flow"); 1255 if (attr->egress) 1256 return rte_flow_error_set(error, ENOTSUP, 1257 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1258 "flag action not supported for " 1259 "egress"); 1260 return 0; 1261 } 1262 1263 /* 1264 * Validate the mark action. 1265 * 1266 * @param[in] action 1267 * Pointer to the queue action. 1268 * @param[in] action_flags 1269 * Bit-fields that holds the actions detected until now. 1270 * @param[in] attr 1271 * Attributes of flow that includes this action. 1272 * @param[out] error 1273 * Pointer to error structure. 1274 * 1275 * @return 1276 * 0 on success, a negative errno value otherwise and rte_errno is set. 1277 */ 1278 int 1279 mlx5_flow_validate_action_mark(const struct rte_flow_action *action, 1280 uint64_t action_flags, 1281 const struct rte_flow_attr *attr, 1282 struct rte_flow_error *error) 1283 { 1284 const struct rte_flow_action_mark *mark = action->conf; 1285 1286 if (!mark) 1287 return rte_flow_error_set(error, EINVAL, 1288 RTE_FLOW_ERROR_TYPE_ACTION, 1289 action, 1290 "configuration cannot be null"); 1291 if (mark->id >= MLX5_FLOW_MARK_MAX) 1292 return rte_flow_error_set(error, EINVAL, 1293 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1294 &mark->id, 1295 "mark id must in 0 <= id < " 1296 RTE_STR(MLX5_FLOW_MARK_MAX)); 1297 if (action_flags & MLX5_FLOW_ACTION_FLAG) 1298 return rte_flow_error_set(error, EINVAL, 1299 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1300 "can't flag and mark in same flow"); 1301 if (action_flags & MLX5_FLOW_ACTION_MARK) 1302 return rte_flow_error_set(error, EINVAL, 1303 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1304 "can't have 2 mark actions in same" 1305 " flow"); 1306 if (attr->egress) 1307 return rte_flow_error_set(error, ENOTSUP, 1308 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1309 "mark action not supported for " 1310 "egress"); 1311 return 0; 1312 } 1313 1314 /* 1315 * Validate the drop action. 1316 * 1317 * @param[in] action_flags 1318 * Bit-fields that holds the actions detected until now. 1319 * @param[in] attr 1320 * Attributes of flow that includes this action. 1321 * @param[out] error 1322 * Pointer to error structure. 1323 * 1324 * @return 1325 * 0 on success, a negative errno value otherwise and rte_errno is set. 1326 */ 1327 int 1328 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused, 1329 const struct rte_flow_attr *attr, 1330 struct rte_flow_error *error) 1331 { 1332 if (attr->egress) 1333 return rte_flow_error_set(error, ENOTSUP, 1334 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1335 "drop action not supported for " 1336 "egress"); 1337 return 0; 1338 } 1339 1340 /* 1341 * Validate the queue action. 1342 * 1343 * @param[in] action 1344 * Pointer to the queue action. 1345 * @param[in] action_flags 1346 * Bit-fields that holds the actions detected until now. 1347 * @param[in] dev 1348 * Pointer to the Ethernet device structure. 1349 * @param[in] attr 1350 * Attributes of flow that includes this action. 1351 * @param[out] error 1352 * Pointer to error structure. 1353 * 1354 * @return 1355 * 0 on success, a negative errno value otherwise and rte_errno is set. 1356 */ 1357 int 1358 mlx5_flow_validate_action_queue(const struct rte_flow_action *action, 1359 uint64_t action_flags, 1360 struct rte_eth_dev *dev, 1361 const struct rte_flow_attr *attr, 1362 struct rte_flow_error *error) 1363 { 1364 struct mlx5_priv *priv = dev->data->dev_private; 1365 const struct rte_flow_action_queue *queue = action->conf; 1366 1367 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 1368 return rte_flow_error_set(error, EINVAL, 1369 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1370 "can't have 2 fate actions in" 1371 " same flow"); 1372 if (!priv->rxqs_n) 1373 return rte_flow_error_set(error, EINVAL, 1374 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1375 NULL, "No Rx queues configured"); 1376 if (queue->index >= priv->rxqs_n) 1377 return rte_flow_error_set(error, EINVAL, 1378 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1379 &queue->index, 1380 "queue index out of range"); 1381 if (!(*priv->rxqs)[queue->index]) 1382 return rte_flow_error_set(error, EINVAL, 1383 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1384 &queue->index, 1385 "queue is not configured"); 1386 if (attr->egress) 1387 return rte_flow_error_set(error, ENOTSUP, 1388 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1389 "queue action not supported for " 1390 "egress"); 1391 return 0; 1392 } 1393 1394 /* 1395 * Validate the rss action. 1396 * 1397 * @param[in] dev 1398 * Pointer to the Ethernet device structure. 1399 * @param[in] action 1400 * Pointer to the queue action. 1401 * @param[out] error 1402 * Pointer to error structure. 1403 * 1404 * @return 1405 * 0 on success, a negative errno value otherwise and rte_errno is set. 1406 */ 1407 int 1408 mlx5_validate_action_rss(struct rte_eth_dev *dev, 1409 const struct rte_flow_action *action, 1410 struct rte_flow_error *error) 1411 { 1412 struct mlx5_priv *priv = dev->data->dev_private; 1413 const struct rte_flow_action_rss *rss = action->conf; 1414 unsigned int i; 1415 1416 if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT && 1417 rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ) 1418 return rte_flow_error_set(error, ENOTSUP, 1419 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1420 &rss->func, 1421 "RSS hash function not supported"); 1422 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 1423 if (rss->level > 2) 1424 #else 1425 if (rss->level > 1) 1426 #endif 1427 return rte_flow_error_set(error, ENOTSUP, 1428 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1429 &rss->level, 1430 "tunnel RSS is not supported"); 1431 /* allow RSS key_len 0 in case of NULL (default) RSS key. */ 1432 if (rss->key_len == 0 && rss->key != NULL) 1433 return rte_flow_error_set(error, ENOTSUP, 1434 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1435 &rss->key_len, 1436 "RSS hash key length 0"); 1437 if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN) 1438 return rte_flow_error_set(error, ENOTSUP, 1439 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1440 &rss->key_len, 1441 "RSS hash key too small"); 1442 if (rss->key_len > MLX5_RSS_HASH_KEY_LEN) 1443 return rte_flow_error_set(error, ENOTSUP, 1444 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1445 &rss->key_len, 1446 "RSS hash key too large"); 1447 if (rss->queue_num > priv->config.ind_table_max_size) 1448 return rte_flow_error_set(error, ENOTSUP, 1449 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1450 &rss->queue_num, 1451 "number of queues too large"); 1452 if (rss->types & MLX5_RSS_HF_MASK) 1453 return rte_flow_error_set(error, ENOTSUP, 1454 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1455 &rss->types, 1456 "some RSS protocols are not" 1457 " supported"); 1458 if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) && 1459 !(rss->types & ETH_RSS_IP)) 1460 return rte_flow_error_set(error, EINVAL, 1461 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 1462 "L3 partial RSS requested but L3 RSS" 1463 " type not specified"); 1464 if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) && 1465 !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP))) 1466 return rte_flow_error_set(error, EINVAL, 1467 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 1468 "L4 partial RSS requested but L4 RSS" 1469 " type not specified"); 1470 if (!priv->rxqs_n) 1471 return rte_flow_error_set(error, EINVAL, 1472 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1473 NULL, "No Rx queues configured"); 1474 if (!rss->queue_num) 1475 return rte_flow_error_set(error, EINVAL, 1476 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1477 NULL, "No queues configured"); 1478 for (i = 0; i != rss->queue_num; ++i) { 1479 if (rss->queue[i] >= priv->rxqs_n) 1480 return rte_flow_error_set 1481 (error, EINVAL, 1482 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1483 &rss->queue[i], "queue index out of range"); 1484 if (!(*priv->rxqs)[rss->queue[i]]) 1485 return rte_flow_error_set 1486 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1487 &rss->queue[i], "queue is not configured"); 1488 } 1489 return 0; 1490 } 1491 1492 /* 1493 * Validate the rss action. 1494 * 1495 * @param[in] action 1496 * Pointer to the queue action. 1497 * @param[in] action_flags 1498 * Bit-fields that holds the actions detected until now. 1499 * @param[in] dev 1500 * Pointer to the Ethernet device structure. 1501 * @param[in] attr 1502 * Attributes of flow that includes this action. 1503 * @param[in] item_flags 1504 * Items that were detected. 1505 * @param[out] error 1506 * Pointer to error structure. 1507 * 1508 * @return 1509 * 0 on success, a negative errno value otherwise and rte_errno is set. 1510 */ 1511 int 1512 mlx5_flow_validate_action_rss(const struct rte_flow_action *action, 1513 uint64_t action_flags, 1514 struct rte_eth_dev *dev, 1515 const struct rte_flow_attr *attr, 1516 uint64_t item_flags, 1517 struct rte_flow_error *error) 1518 { 1519 const struct rte_flow_action_rss *rss = action->conf; 1520 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1521 int ret; 1522 1523 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 1524 return rte_flow_error_set(error, EINVAL, 1525 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1526 "can't have 2 fate actions" 1527 " in same flow"); 1528 ret = mlx5_validate_action_rss(dev, action, error); 1529 if (ret) 1530 return ret; 1531 if (attr->egress) 1532 return rte_flow_error_set(error, ENOTSUP, 1533 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1534 "rss action not supported for " 1535 "egress"); 1536 if (rss->level > 1 && !tunnel) 1537 return rte_flow_error_set(error, EINVAL, 1538 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 1539 "inner RSS is not supported for " 1540 "non-tunnel flows"); 1541 if ((item_flags & MLX5_FLOW_LAYER_ECPRI) && 1542 !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) { 1543 return rte_flow_error_set(error, EINVAL, 1544 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 1545 "RSS on eCPRI is not supported now"); 1546 } 1547 return 0; 1548 } 1549 1550 /* 1551 * Validate the default miss action. 1552 * 1553 * @param[in] action_flags 1554 * Bit-fields that holds the actions detected until now. 1555 * @param[out] error 1556 * Pointer to error structure. 1557 * 1558 * @return 1559 * 0 on success, a negative errno value otherwise and rte_errno is set. 1560 */ 1561 int 1562 mlx5_flow_validate_action_default_miss(uint64_t action_flags, 1563 const struct rte_flow_attr *attr, 1564 struct rte_flow_error *error) 1565 { 1566 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 1567 return rte_flow_error_set(error, EINVAL, 1568 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1569 "can't have 2 fate actions in" 1570 " same flow"); 1571 if (attr->egress) 1572 return rte_flow_error_set(error, ENOTSUP, 1573 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1574 "default miss action not supported " 1575 "for egress"); 1576 if (attr->group) 1577 return rte_flow_error_set(error, ENOTSUP, 1578 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL, 1579 "only group 0 is supported"); 1580 if (attr->transfer) 1581 return rte_flow_error_set(error, ENOTSUP, 1582 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1583 NULL, "transfer is not supported"); 1584 return 0; 1585 } 1586 1587 /* 1588 * Validate the count action. 1589 * 1590 * @param[in] dev 1591 * Pointer to the Ethernet device structure. 1592 * @param[in] attr 1593 * Attributes of flow that includes this action. 1594 * @param[out] error 1595 * Pointer to error structure. 1596 * 1597 * @return 1598 * 0 on success, a negative errno value otherwise and rte_errno is set. 1599 */ 1600 int 1601 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused, 1602 const struct rte_flow_attr *attr, 1603 struct rte_flow_error *error) 1604 { 1605 if (attr->egress) 1606 return rte_flow_error_set(error, ENOTSUP, 1607 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1608 "count action not supported for " 1609 "egress"); 1610 return 0; 1611 } 1612 1613 /** 1614 * Verify the @p attributes will be correctly understood by the NIC and store 1615 * them in the @p flow if everything is correct. 1616 * 1617 * @param[in] dev 1618 * Pointer to the Ethernet device structure. 1619 * @param[in] attributes 1620 * Pointer to flow attributes 1621 * @param[out] error 1622 * Pointer to error structure. 1623 * 1624 * @return 1625 * 0 on success, a negative errno value otherwise and rte_errno is set. 1626 */ 1627 int 1628 mlx5_flow_validate_attributes(struct rte_eth_dev *dev, 1629 const struct rte_flow_attr *attributes, 1630 struct rte_flow_error *error) 1631 { 1632 struct mlx5_priv *priv = dev->data->dev_private; 1633 uint32_t priority_max = priv->config.flow_prio - 1; 1634 1635 if (attributes->group) 1636 return rte_flow_error_set(error, ENOTSUP, 1637 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 1638 NULL, "groups is not supported"); 1639 if (attributes->priority != MLX5_FLOW_PRIO_RSVD && 1640 attributes->priority >= priority_max) 1641 return rte_flow_error_set(error, ENOTSUP, 1642 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1643 NULL, "priority out of range"); 1644 if (attributes->egress) 1645 return rte_flow_error_set(error, ENOTSUP, 1646 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1647 "egress is not supported"); 1648 if (attributes->transfer && !priv->config.dv_esw_en) 1649 return rte_flow_error_set(error, ENOTSUP, 1650 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1651 NULL, "transfer is not supported"); 1652 if (!attributes->ingress) 1653 return rte_flow_error_set(error, EINVAL, 1654 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 1655 NULL, 1656 "ingress attribute is mandatory"); 1657 return 0; 1658 } 1659 1660 /** 1661 * Validate ICMP6 item. 1662 * 1663 * @param[in] item 1664 * Item specification. 1665 * @param[in] item_flags 1666 * Bit-fields that holds the items detected until now. 1667 * @param[in] ext_vlan_sup 1668 * Whether extended VLAN features are supported or not. 1669 * @param[out] error 1670 * Pointer to error structure. 1671 * 1672 * @return 1673 * 0 on success, a negative errno value otherwise and rte_errno is set. 1674 */ 1675 int 1676 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item, 1677 uint64_t item_flags, 1678 uint8_t target_protocol, 1679 struct rte_flow_error *error) 1680 { 1681 const struct rte_flow_item_icmp6 *mask = item->mask; 1682 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1683 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 : 1684 MLX5_FLOW_LAYER_OUTER_L3_IPV6; 1685 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1686 MLX5_FLOW_LAYER_OUTER_L4; 1687 int ret; 1688 1689 if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6) 1690 return rte_flow_error_set(error, EINVAL, 1691 RTE_FLOW_ERROR_TYPE_ITEM, item, 1692 "protocol filtering not compatible" 1693 " with ICMP6 layer"); 1694 if (!(item_flags & l3m)) 1695 return rte_flow_error_set(error, EINVAL, 1696 RTE_FLOW_ERROR_TYPE_ITEM, item, 1697 "IPv6 is mandatory to filter on" 1698 " ICMP6"); 1699 if (item_flags & l4m) 1700 return rte_flow_error_set(error, EINVAL, 1701 RTE_FLOW_ERROR_TYPE_ITEM, item, 1702 "multiple L4 layers not supported"); 1703 if (!mask) 1704 mask = &rte_flow_item_icmp6_mask; 1705 ret = mlx5_flow_item_acceptable 1706 (item, (const uint8_t *)mask, 1707 (const uint8_t *)&rte_flow_item_icmp6_mask, 1708 sizeof(struct rte_flow_item_icmp6), 1709 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 1710 if (ret < 0) 1711 return ret; 1712 return 0; 1713 } 1714 1715 /** 1716 * Validate ICMP item. 1717 * 1718 * @param[in] item 1719 * Item specification. 1720 * @param[in] item_flags 1721 * Bit-fields that holds the items detected until now. 1722 * @param[out] error 1723 * Pointer to error structure. 1724 * 1725 * @return 1726 * 0 on success, a negative errno value otherwise and rte_errno is set. 1727 */ 1728 int 1729 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item, 1730 uint64_t item_flags, 1731 uint8_t target_protocol, 1732 struct rte_flow_error *error) 1733 { 1734 const struct rte_flow_item_icmp *mask = item->mask; 1735 const struct rte_flow_item_icmp nic_mask = { 1736 .hdr.icmp_type = 0xff, 1737 .hdr.icmp_code = 0xff, 1738 .hdr.icmp_ident = RTE_BE16(0xffff), 1739 .hdr.icmp_seq_nb = RTE_BE16(0xffff), 1740 }; 1741 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1742 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 : 1743 MLX5_FLOW_LAYER_OUTER_L3_IPV4; 1744 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1745 MLX5_FLOW_LAYER_OUTER_L4; 1746 int ret; 1747 1748 if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP) 1749 return rte_flow_error_set(error, EINVAL, 1750 RTE_FLOW_ERROR_TYPE_ITEM, item, 1751 "protocol filtering not compatible" 1752 " with ICMP layer"); 1753 if (!(item_flags & l3m)) 1754 return rte_flow_error_set(error, EINVAL, 1755 RTE_FLOW_ERROR_TYPE_ITEM, item, 1756 "IPv4 is mandatory to filter" 1757 " on ICMP"); 1758 if (item_flags & l4m) 1759 return rte_flow_error_set(error, EINVAL, 1760 RTE_FLOW_ERROR_TYPE_ITEM, item, 1761 "multiple L4 layers not supported"); 1762 if (!mask) 1763 mask = &nic_mask; 1764 ret = mlx5_flow_item_acceptable 1765 (item, (const uint8_t *)mask, 1766 (const uint8_t *)&nic_mask, 1767 sizeof(struct rte_flow_item_icmp), 1768 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 1769 if (ret < 0) 1770 return ret; 1771 return 0; 1772 } 1773 1774 /** 1775 * Validate Ethernet item. 1776 * 1777 * @param[in] item 1778 * Item specification. 1779 * @param[in] item_flags 1780 * Bit-fields that holds the items detected until now. 1781 * @param[out] error 1782 * Pointer to error structure. 1783 * 1784 * @return 1785 * 0 on success, a negative errno value otherwise and rte_errno is set. 1786 */ 1787 int 1788 mlx5_flow_validate_item_eth(const struct rte_flow_item *item, 1789 uint64_t item_flags, bool ext_vlan_sup, 1790 struct rte_flow_error *error) 1791 { 1792 const struct rte_flow_item_eth *mask = item->mask; 1793 const struct rte_flow_item_eth nic_mask = { 1794 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1795 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1796 .type = RTE_BE16(0xffff), 1797 .has_vlan = ext_vlan_sup ? 1 : 0, 1798 }; 1799 int ret; 1800 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1801 const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 : 1802 MLX5_FLOW_LAYER_OUTER_L2; 1803 1804 if (item_flags & ethm) 1805 return rte_flow_error_set(error, ENOTSUP, 1806 RTE_FLOW_ERROR_TYPE_ITEM, item, 1807 "multiple L2 layers not supported"); 1808 if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) || 1809 (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3))) 1810 return rte_flow_error_set(error, EINVAL, 1811 RTE_FLOW_ERROR_TYPE_ITEM, item, 1812 "L2 layer should not follow " 1813 "L3 layers"); 1814 if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) || 1815 (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN))) 1816 return rte_flow_error_set(error, EINVAL, 1817 RTE_FLOW_ERROR_TYPE_ITEM, item, 1818 "L2 layer should not follow VLAN"); 1819 if (!mask) 1820 mask = &rte_flow_item_eth_mask; 1821 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1822 (const uint8_t *)&nic_mask, 1823 sizeof(struct rte_flow_item_eth), 1824 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 1825 return ret; 1826 } 1827 1828 /** 1829 * Validate VLAN item. 1830 * 1831 * @param[in] item 1832 * Item specification. 1833 * @param[in] item_flags 1834 * Bit-fields that holds the items detected until now. 1835 * @param[in] dev 1836 * Ethernet device flow is being created on. 1837 * @param[out] error 1838 * Pointer to error structure. 1839 * 1840 * @return 1841 * 0 on success, a negative errno value otherwise and rte_errno is set. 1842 */ 1843 int 1844 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item, 1845 uint64_t item_flags, 1846 struct rte_eth_dev *dev, 1847 struct rte_flow_error *error) 1848 { 1849 const struct rte_flow_item_vlan *spec = item->spec; 1850 const struct rte_flow_item_vlan *mask = item->mask; 1851 const struct rte_flow_item_vlan nic_mask = { 1852 .tci = RTE_BE16(UINT16_MAX), 1853 .inner_type = RTE_BE16(UINT16_MAX), 1854 }; 1855 uint16_t vlan_tag = 0; 1856 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1857 int ret; 1858 const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 | 1859 MLX5_FLOW_LAYER_INNER_L4) : 1860 (MLX5_FLOW_LAYER_OUTER_L3 | 1861 MLX5_FLOW_LAYER_OUTER_L4); 1862 const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN : 1863 MLX5_FLOW_LAYER_OUTER_VLAN; 1864 1865 if (item_flags & vlanm) 1866 return rte_flow_error_set(error, EINVAL, 1867 RTE_FLOW_ERROR_TYPE_ITEM, item, 1868 "multiple VLAN layers not supported"); 1869 else if ((item_flags & l34m) != 0) 1870 return rte_flow_error_set(error, EINVAL, 1871 RTE_FLOW_ERROR_TYPE_ITEM, item, 1872 "VLAN cannot follow L3/L4 layer"); 1873 if (!mask) 1874 mask = &rte_flow_item_vlan_mask; 1875 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1876 (const uint8_t *)&nic_mask, 1877 sizeof(struct rte_flow_item_vlan), 1878 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 1879 if (ret) 1880 return ret; 1881 if (!tunnel && mask->tci != RTE_BE16(0x0fff)) { 1882 struct mlx5_priv *priv = dev->data->dev_private; 1883 1884 if (priv->vmwa_context) { 1885 /* 1886 * Non-NULL context means we have a virtual machine 1887 * and SR-IOV enabled, we have to create VLAN interface 1888 * to make hypervisor to setup E-Switch vport 1889 * context correctly. We avoid creating the multiple 1890 * VLAN interfaces, so we cannot support VLAN tag mask. 1891 */ 1892 return rte_flow_error_set(error, EINVAL, 1893 RTE_FLOW_ERROR_TYPE_ITEM, 1894 item, 1895 "VLAN tag mask is not" 1896 " supported in virtual" 1897 " environment"); 1898 } 1899 } 1900 if (spec) { 1901 vlan_tag = spec->tci; 1902 vlan_tag &= mask->tci; 1903 } 1904 /* 1905 * From verbs perspective an empty VLAN is equivalent 1906 * to a packet without VLAN layer. 1907 */ 1908 if (!vlan_tag) 1909 return rte_flow_error_set(error, EINVAL, 1910 RTE_FLOW_ERROR_TYPE_ITEM_SPEC, 1911 item->spec, 1912 "VLAN cannot be empty"); 1913 return 0; 1914 } 1915 1916 /** 1917 * Validate IPV4 item. 1918 * 1919 * @param[in] item 1920 * Item specification. 1921 * @param[in] item_flags 1922 * Bit-fields that holds the items detected until now. 1923 * @param[in] last_item 1924 * Previous validated item in the pattern items. 1925 * @param[in] ether_type 1926 * Type in the ethernet layer header (including dot1q). 1927 * @param[in] acc_mask 1928 * Acceptable mask, if NULL default internal default mask 1929 * will be used to check whether item fields are supported. 1930 * @param[in] range_accepted 1931 * True if range of values is accepted for specific fields, false otherwise. 1932 * @param[out] error 1933 * Pointer to error structure. 1934 * 1935 * @return 1936 * 0 on success, a negative errno value otherwise and rte_errno is set. 1937 */ 1938 int 1939 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item, 1940 uint64_t item_flags, 1941 uint64_t last_item, 1942 uint16_t ether_type, 1943 const struct rte_flow_item_ipv4 *acc_mask, 1944 bool range_accepted, 1945 struct rte_flow_error *error) 1946 { 1947 const struct rte_flow_item_ipv4 *mask = item->mask; 1948 const struct rte_flow_item_ipv4 *spec = item->spec; 1949 const struct rte_flow_item_ipv4 nic_mask = { 1950 .hdr = { 1951 .src_addr = RTE_BE32(0xffffffff), 1952 .dst_addr = RTE_BE32(0xffffffff), 1953 .type_of_service = 0xff, 1954 .next_proto_id = 0xff, 1955 }, 1956 }; 1957 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1958 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1959 MLX5_FLOW_LAYER_OUTER_L3; 1960 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1961 MLX5_FLOW_LAYER_OUTER_L4; 1962 int ret; 1963 uint8_t next_proto = 0xFF; 1964 const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 | 1965 MLX5_FLOW_LAYER_OUTER_VLAN | 1966 MLX5_FLOW_LAYER_INNER_VLAN); 1967 1968 if ((last_item & l2_vlan) && ether_type && 1969 ether_type != RTE_ETHER_TYPE_IPV4) 1970 return rte_flow_error_set(error, EINVAL, 1971 RTE_FLOW_ERROR_TYPE_ITEM, item, 1972 "IPv4 cannot follow L2/VLAN layer " 1973 "which ether type is not IPv4"); 1974 if (item_flags & MLX5_FLOW_LAYER_IPIP) { 1975 if (mask && spec) 1976 next_proto = mask->hdr.next_proto_id & 1977 spec->hdr.next_proto_id; 1978 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6) 1979 return rte_flow_error_set(error, EINVAL, 1980 RTE_FLOW_ERROR_TYPE_ITEM, 1981 item, 1982 "multiple tunnel " 1983 "not supported"); 1984 } 1985 if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) 1986 return rte_flow_error_set(error, EINVAL, 1987 RTE_FLOW_ERROR_TYPE_ITEM, item, 1988 "wrong tunnel type - IPv6 specified " 1989 "but IPv4 item provided"); 1990 if (item_flags & l3m) 1991 return rte_flow_error_set(error, ENOTSUP, 1992 RTE_FLOW_ERROR_TYPE_ITEM, item, 1993 "multiple L3 layers not supported"); 1994 else if (item_flags & l4m) 1995 return rte_flow_error_set(error, EINVAL, 1996 RTE_FLOW_ERROR_TYPE_ITEM, item, 1997 "L3 cannot follow an L4 layer."); 1998 else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) && 1999 !(item_flags & MLX5_FLOW_LAYER_INNER_L2)) 2000 return rte_flow_error_set(error, EINVAL, 2001 RTE_FLOW_ERROR_TYPE_ITEM, item, 2002 "L3 cannot follow an NVGRE layer."); 2003 if (!mask) 2004 mask = &rte_flow_item_ipv4_mask; 2005 else if (mask->hdr.next_proto_id != 0 && 2006 mask->hdr.next_proto_id != 0xff) 2007 return rte_flow_error_set(error, EINVAL, 2008 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 2009 "partial mask is not supported" 2010 " for protocol"); 2011 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2012 acc_mask ? (const uint8_t *)acc_mask 2013 : (const uint8_t *)&nic_mask, 2014 sizeof(struct rte_flow_item_ipv4), 2015 range_accepted, error); 2016 if (ret < 0) 2017 return ret; 2018 return 0; 2019 } 2020 2021 /** 2022 * Validate IPV6 item. 2023 * 2024 * @param[in] item 2025 * Item specification. 2026 * @param[in] item_flags 2027 * Bit-fields that holds the items detected until now. 2028 * @param[in] last_item 2029 * Previous validated item in the pattern items. 2030 * @param[in] ether_type 2031 * Type in the ethernet layer header (including dot1q). 2032 * @param[in] acc_mask 2033 * Acceptable mask, if NULL default internal default mask 2034 * will be used to check whether item fields are supported. 2035 * @param[out] error 2036 * Pointer to error structure. 2037 * 2038 * @return 2039 * 0 on success, a negative errno value otherwise and rte_errno is set. 2040 */ 2041 int 2042 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item, 2043 uint64_t item_flags, 2044 uint64_t last_item, 2045 uint16_t ether_type, 2046 const struct rte_flow_item_ipv6 *acc_mask, 2047 struct rte_flow_error *error) 2048 { 2049 const struct rte_flow_item_ipv6 *mask = item->mask; 2050 const struct rte_flow_item_ipv6 *spec = item->spec; 2051 const struct rte_flow_item_ipv6 nic_mask = { 2052 .hdr = { 2053 .src_addr = 2054 "\xff\xff\xff\xff\xff\xff\xff\xff" 2055 "\xff\xff\xff\xff\xff\xff\xff\xff", 2056 .dst_addr = 2057 "\xff\xff\xff\xff\xff\xff\xff\xff" 2058 "\xff\xff\xff\xff\xff\xff\xff\xff", 2059 .vtc_flow = RTE_BE32(0xffffffff), 2060 .proto = 0xff, 2061 }, 2062 }; 2063 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2064 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2065 MLX5_FLOW_LAYER_OUTER_L3; 2066 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2067 MLX5_FLOW_LAYER_OUTER_L4; 2068 int ret; 2069 uint8_t next_proto = 0xFF; 2070 const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 | 2071 MLX5_FLOW_LAYER_OUTER_VLAN | 2072 MLX5_FLOW_LAYER_INNER_VLAN); 2073 2074 if ((last_item & l2_vlan) && ether_type && 2075 ether_type != RTE_ETHER_TYPE_IPV6) 2076 return rte_flow_error_set(error, EINVAL, 2077 RTE_FLOW_ERROR_TYPE_ITEM, item, 2078 "IPv6 cannot follow L2/VLAN layer " 2079 "which ether type is not IPv6"); 2080 if (mask && mask->hdr.proto == UINT8_MAX && spec) 2081 next_proto = spec->hdr.proto; 2082 if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) { 2083 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6) 2084 return rte_flow_error_set(error, EINVAL, 2085 RTE_FLOW_ERROR_TYPE_ITEM, 2086 item, 2087 "multiple tunnel " 2088 "not supported"); 2089 } 2090 if (next_proto == IPPROTO_HOPOPTS || 2091 next_proto == IPPROTO_ROUTING || 2092 next_proto == IPPROTO_FRAGMENT || 2093 next_proto == IPPROTO_ESP || 2094 next_proto == IPPROTO_AH || 2095 next_proto == IPPROTO_DSTOPTS) 2096 return rte_flow_error_set(error, EINVAL, 2097 RTE_FLOW_ERROR_TYPE_ITEM, item, 2098 "IPv6 proto (next header) should " 2099 "not be set as extension header"); 2100 if (item_flags & MLX5_FLOW_LAYER_IPIP) 2101 return rte_flow_error_set(error, EINVAL, 2102 RTE_FLOW_ERROR_TYPE_ITEM, item, 2103 "wrong tunnel type - IPv4 specified " 2104 "but IPv6 item provided"); 2105 if (item_flags & l3m) 2106 return rte_flow_error_set(error, ENOTSUP, 2107 RTE_FLOW_ERROR_TYPE_ITEM, item, 2108 "multiple L3 layers not supported"); 2109 else if (item_flags & l4m) 2110 return rte_flow_error_set(error, EINVAL, 2111 RTE_FLOW_ERROR_TYPE_ITEM, item, 2112 "L3 cannot follow an L4 layer."); 2113 else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) && 2114 !(item_flags & MLX5_FLOW_LAYER_INNER_L2)) 2115 return rte_flow_error_set(error, EINVAL, 2116 RTE_FLOW_ERROR_TYPE_ITEM, item, 2117 "L3 cannot follow an NVGRE layer."); 2118 if (!mask) 2119 mask = &rte_flow_item_ipv6_mask; 2120 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2121 acc_mask ? (const uint8_t *)acc_mask 2122 : (const uint8_t *)&nic_mask, 2123 sizeof(struct rte_flow_item_ipv6), 2124 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2125 if (ret < 0) 2126 return ret; 2127 return 0; 2128 } 2129 2130 /** 2131 * Validate UDP item. 2132 * 2133 * @param[in] item 2134 * Item specification. 2135 * @param[in] item_flags 2136 * Bit-fields that holds the items detected until now. 2137 * @param[in] target_protocol 2138 * The next protocol in the previous item. 2139 * @param[in] flow_mask 2140 * mlx5 flow-specific (DV, verbs, etc.) supported header fields mask. 2141 * @param[out] error 2142 * Pointer to error structure. 2143 * 2144 * @return 2145 * 0 on success, a negative errno value otherwise and rte_errno is set. 2146 */ 2147 int 2148 mlx5_flow_validate_item_udp(const struct rte_flow_item *item, 2149 uint64_t item_flags, 2150 uint8_t target_protocol, 2151 struct rte_flow_error *error) 2152 { 2153 const struct rte_flow_item_udp *mask = item->mask; 2154 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2155 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2156 MLX5_FLOW_LAYER_OUTER_L3; 2157 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2158 MLX5_FLOW_LAYER_OUTER_L4; 2159 int ret; 2160 2161 if (target_protocol != 0xff && target_protocol != IPPROTO_UDP) 2162 return rte_flow_error_set(error, EINVAL, 2163 RTE_FLOW_ERROR_TYPE_ITEM, item, 2164 "protocol filtering not compatible" 2165 " with UDP layer"); 2166 if (!(item_flags & l3m)) 2167 return rte_flow_error_set(error, EINVAL, 2168 RTE_FLOW_ERROR_TYPE_ITEM, item, 2169 "L3 is mandatory to filter on L4"); 2170 if (item_flags & l4m) 2171 return rte_flow_error_set(error, EINVAL, 2172 RTE_FLOW_ERROR_TYPE_ITEM, item, 2173 "multiple L4 layers not supported"); 2174 if (!mask) 2175 mask = &rte_flow_item_udp_mask; 2176 ret = mlx5_flow_item_acceptable 2177 (item, (const uint8_t *)mask, 2178 (const uint8_t *)&rte_flow_item_udp_mask, 2179 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED, 2180 error); 2181 if (ret < 0) 2182 return ret; 2183 return 0; 2184 } 2185 2186 /** 2187 * Validate TCP item. 2188 * 2189 * @param[in] item 2190 * Item specification. 2191 * @param[in] item_flags 2192 * Bit-fields that holds the items detected until now. 2193 * @param[in] target_protocol 2194 * The next protocol in the previous item. 2195 * @param[out] error 2196 * Pointer to error structure. 2197 * 2198 * @return 2199 * 0 on success, a negative errno value otherwise and rte_errno is set. 2200 */ 2201 int 2202 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item, 2203 uint64_t item_flags, 2204 uint8_t target_protocol, 2205 const struct rte_flow_item_tcp *flow_mask, 2206 struct rte_flow_error *error) 2207 { 2208 const struct rte_flow_item_tcp *mask = item->mask; 2209 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2210 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2211 MLX5_FLOW_LAYER_OUTER_L3; 2212 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2213 MLX5_FLOW_LAYER_OUTER_L4; 2214 int ret; 2215 2216 MLX5_ASSERT(flow_mask); 2217 if (target_protocol != 0xff && target_protocol != IPPROTO_TCP) 2218 return rte_flow_error_set(error, EINVAL, 2219 RTE_FLOW_ERROR_TYPE_ITEM, item, 2220 "protocol filtering not compatible" 2221 " with TCP layer"); 2222 if (!(item_flags & l3m)) 2223 return rte_flow_error_set(error, EINVAL, 2224 RTE_FLOW_ERROR_TYPE_ITEM, item, 2225 "L3 is mandatory to filter on L4"); 2226 if (item_flags & l4m) 2227 return rte_flow_error_set(error, EINVAL, 2228 RTE_FLOW_ERROR_TYPE_ITEM, item, 2229 "multiple L4 layers not supported"); 2230 if (!mask) 2231 mask = &rte_flow_item_tcp_mask; 2232 ret = mlx5_flow_item_acceptable 2233 (item, (const uint8_t *)mask, 2234 (const uint8_t *)flow_mask, 2235 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED, 2236 error); 2237 if (ret < 0) 2238 return ret; 2239 return 0; 2240 } 2241 2242 /** 2243 * Validate VXLAN item. 2244 * 2245 * @param[in] item 2246 * Item specification. 2247 * @param[in] item_flags 2248 * Bit-fields that holds the items detected until now. 2249 * @param[in] target_protocol 2250 * The next protocol in the previous item. 2251 * @param[out] error 2252 * Pointer to error structure. 2253 * 2254 * @return 2255 * 0 on success, a negative errno value otherwise and rte_errno is set. 2256 */ 2257 int 2258 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item, 2259 uint64_t item_flags, 2260 struct rte_flow_error *error) 2261 { 2262 const struct rte_flow_item_vxlan *spec = item->spec; 2263 const struct rte_flow_item_vxlan *mask = item->mask; 2264 int ret; 2265 union vni { 2266 uint32_t vlan_id; 2267 uint8_t vni[4]; 2268 } id = { .vlan_id = 0, }; 2269 2270 2271 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2272 return rte_flow_error_set(error, ENOTSUP, 2273 RTE_FLOW_ERROR_TYPE_ITEM, item, 2274 "multiple tunnel layers not" 2275 " supported"); 2276 /* 2277 * Verify only UDPv4 is present as defined in 2278 * https://tools.ietf.org/html/rfc7348 2279 */ 2280 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 2281 return rte_flow_error_set(error, EINVAL, 2282 RTE_FLOW_ERROR_TYPE_ITEM, item, 2283 "no outer UDP layer found"); 2284 if (!mask) 2285 mask = &rte_flow_item_vxlan_mask; 2286 ret = mlx5_flow_item_acceptable 2287 (item, (const uint8_t *)mask, 2288 (const uint8_t *)&rte_flow_item_vxlan_mask, 2289 sizeof(struct rte_flow_item_vxlan), 2290 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2291 if (ret < 0) 2292 return ret; 2293 if (spec) { 2294 memcpy(&id.vni[1], spec->vni, 3); 2295 memcpy(&id.vni[1], mask->vni, 3); 2296 } 2297 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 2298 return rte_flow_error_set(error, ENOTSUP, 2299 RTE_FLOW_ERROR_TYPE_ITEM, item, 2300 "VXLAN tunnel must be fully defined"); 2301 return 0; 2302 } 2303 2304 /** 2305 * Validate VXLAN_GPE item. 2306 * 2307 * @param[in] item 2308 * Item specification. 2309 * @param[in] item_flags 2310 * Bit-fields that holds the items detected until now. 2311 * @param[in] priv 2312 * Pointer to the private data structure. 2313 * @param[in] target_protocol 2314 * The next protocol in the previous item. 2315 * @param[out] error 2316 * Pointer to error structure. 2317 * 2318 * @return 2319 * 0 on success, a negative errno value otherwise and rte_errno is set. 2320 */ 2321 int 2322 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item, 2323 uint64_t item_flags, 2324 struct rte_eth_dev *dev, 2325 struct rte_flow_error *error) 2326 { 2327 struct mlx5_priv *priv = dev->data->dev_private; 2328 const struct rte_flow_item_vxlan_gpe *spec = item->spec; 2329 const struct rte_flow_item_vxlan_gpe *mask = item->mask; 2330 int ret; 2331 union vni { 2332 uint32_t vlan_id; 2333 uint8_t vni[4]; 2334 } id = { .vlan_id = 0, }; 2335 2336 if (!priv->config.l3_vxlan_en) 2337 return rte_flow_error_set(error, ENOTSUP, 2338 RTE_FLOW_ERROR_TYPE_ITEM, item, 2339 "L3 VXLAN is not enabled by device" 2340 " parameter and/or not configured in" 2341 " firmware"); 2342 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2343 return rte_flow_error_set(error, ENOTSUP, 2344 RTE_FLOW_ERROR_TYPE_ITEM, item, 2345 "multiple tunnel layers not" 2346 " supported"); 2347 /* 2348 * Verify only UDPv4 is present as defined in 2349 * https://tools.ietf.org/html/rfc7348 2350 */ 2351 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 2352 return rte_flow_error_set(error, EINVAL, 2353 RTE_FLOW_ERROR_TYPE_ITEM, item, 2354 "no outer UDP layer found"); 2355 if (!mask) 2356 mask = &rte_flow_item_vxlan_gpe_mask; 2357 ret = mlx5_flow_item_acceptable 2358 (item, (const uint8_t *)mask, 2359 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask, 2360 sizeof(struct rte_flow_item_vxlan_gpe), 2361 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2362 if (ret < 0) 2363 return ret; 2364 if (spec) { 2365 if (spec->protocol) 2366 return rte_flow_error_set(error, ENOTSUP, 2367 RTE_FLOW_ERROR_TYPE_ITEM, 2368 item, 2369 "VxLAN-GPE protocol" 2370 " not supported"); 2371 memcpy(&id.vni[1], spec->vni, 3); 2372 memcpy(&id.vni[1], mask->vni, 3); 2373 } 2374 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 2375 return rte_flow_error_set(error, ENOTSUP, 2376 RTE_FLOW_ERROR_TYPE_ITEM, item, 2377 "VXLAN-GPE tunnel must be fully" 2378 " defined"); 2379 return 0; 2380 } 2381 /** 2382 * Validate GRE Key item. 2383 * 2384 * @param[in] item 2385 * Item specification. 2386 * @param[in] item_flags 2387 * Bit flags to mark detected items. 2388 * @param[in] gre_item 2389 * Pointer to gre_item 2390 * @param[out] error 2391 * Pointer to error structure. 2392 * 2393 * @return 2394 * 0 on success, a negative errno value otherwise and rte_errno is set. 2395 */ 2396 int 2397 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item, 2398 uint64_t item_flags, 2399 const struct rte_flow_item *gre_item, 2400 struct rte_flow_error *error) 2401 { 2402 const rte_be32_t *mask = item->mask; 2403 int ret = 0; 2404 rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX); 2405 const struct rte_flow_item_gre *gre_spec; 2406 const struct rte_flow_item_gre *gre_mask; 2407 2408 if (item_flags & MLX5_FLOW_LAYER_GRE_KEY) 2409 return rte_flow_error_set(error, ENOTSUP, 2410 RTE_FLOW_ERROR_TYPE_ITEM, item, 2411 "Multiple GRE key not support"); 2412 if (!(item_flags & MLX5_FLOW_LAYER_GRE)) 2413 return rte_flow_error_set(error, ENOTSUP, 2414 RTE_FLOW_ERROR_TYPE_ITEM, item, 2415 "No preceding GRE header"); 2416 if (item_flags & MLX5_FLOW_LAYER_INNER) 2417 return rte_flow_error_set(error, ENOTSUP, 2418 RTE_FLOW_ERROR_TYPE_ITEM, item, 2419 "GRE key following a wrong item"); 2420 gre_mask = gre_item->mask; 2421 if (!gre_mask) 2422 gre_mask = &rte_flow_item_gre_mask; 2423 gre_spec = gre_item->spec; 2424 if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) && 2425 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000))) 2426 return rte_flow_error_set(error, EINVAL, 2427 RTE_FLOW_ERROR_TYPE_ITEM, item, 2428 "Key bit must be on"); 2429 2430 if (!mask) 2431 mask = &gre_key_default_mask; 2432 ret = mlx5_flow_item_acceptable 2433 (item, (const uint8_t *)mask, 2434 (const uint8_t *)&gre_key_default_mask, 2435 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2436 return ret; 2437 } 2438 2439 /** 2440 * Validate GRE item. 2441 * 2442 * @param[in] item 2443 * Item specification. 2444 * @param[in] item_flags 2445 * Bit flags to mark detected items. 2446 * @param[in] target_protocol 2447 * The next protocol in the previous item. 2448 * @param[out] error 2449 * Pointer to error structure. 2450 * 2451 * @return 2452 * 0 on success, a negative errno value otherwise and rte_errno is set. 2453 */ 2454 int 2455 mlx5_flow_validate_item_gre(const struct rte_flow_item *item, 2456 uint64_t item_flags, 2457 uint8_t target_protocol, 2458 struct rte_flow_error *error) 2459 { 2460 const struct rte_flow_item_gre *spec __rte_unused = item->spec; 2461 const struct rte_flow_item_gre *mask = item->mask; 2462 int ret; 2463 const struct rte_flow_item_gre nic_mask = { 2464 .c_rsvd0_ver = RTE_BE16(0xB000), 2465 .protocol = RTE_BE16(UINT16_MAX), 2466 }; 2467 2468 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 2469 return rte_flow_error_set(error, EINVAL, 2470 RTE_FLOW_ERROR_TYPE_ITEM, item, 2471 "protocol filtering not compatible" 2472 " with this GRE layer"); 2473 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2474 return rte_flow_error_set(error, ENOTSUP, 2475 RTE_FLOW_ERROR_TYPE_ITEM, item, 2476 "multiple tunnel layers not" 2477 " supported"); 2478 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 2479 return rte_flow_error_set(error, ENOTSUP, 2480 RTE_FLOW_ERROR_TYPE_ITEM, item, 2481 "L3 Layer is missing"); 2482 if (!mask) 2483 mask = &rte_flow_item_gre_mask; 2484 ret = mlx5_flow_item_acceptable 2485 (item, (const uint8_t *)mask, 2486 (const uint8_t *)&nic_mask, 2487 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED, 2488 error); 2489 if (ret < 0) 2490 return ret; 2491 #ifndef HAVE_MLX5DV_DR 2492 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT 2493 if (spec && (spec->protocol & mask->protocol)) 2494 return rte_flow_error_set(error, ENOTSUP, 2495 RTE_FLOW_ERROR_TYPE_ITEM, item, 2496 "without MPLS support the" 2497 " specification cannot be used for" 2498 " filtering"); 2499 #endif 2500 #endif 2501 return 0; 2502 } 2503 2504 /** 2505 * Validate Geneve item. 2506 * 2507 * @param[in] item 2508 * Item specification. 2509 * @param[in] itemFlags 2510 * Bit-fields that holds the items detected until now. 2511 * @param[in] enPriv 2512 * Pointer to the private data structure. 2513 * @param[out] error 2514 * Pointer to error structure. 2515 * 2516 * @return 2517 * 0 on success, a negative errno value otherwise and rte_errno is set. 2518 */ 2519 2520 int 2521 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item, 2522 uint64_t item_flags, 2523 struct rte_eth_dev *dev, 2524 struct rte_flow_error *error) 2525 { 2526 struct mlx5_priv *priv = dev->data->dev_private; 2527 const struct rte_flow_item_geneve *spec = item->spec; 2528 const struct rte_flow_item_geneve *mask = item->mask; 2529 int ret; 2530 uint16_t gbhdr; 2531 uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ? 2532 MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0; 2533 const struct rte_flow_item_geneve nic_mask = { 2534 .ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80), 2535 .vni = "\xff\xff\xff", 2536 .protocol = RTE_BE16(UINT16_MAX), 2537 }; 2538 2539 if (!priv->config.hca_attr.tunnel_stateless_geneve_rx) 2540 return rte_flow_error_set(error, ENOTSUP, 2541 RTE_FLOW_ERROR_TYPE_ITEM, item, 2542 "L3 Geneve is not enabled by device" 2543 " parameter and/or not configured in" 2544 " firmware"); 2545 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2546 return rte_flow_error_set(error, ENOTSUP, 2547 RTE_FLOW_ERROR_TYPE_ITEM, item, 2548 "multiple tunnel layers not" 2549 " supported"); 2550 /* 2551 * Verify only UDPv4 is present as defined in 2552 * https://tools.ietf.org/html/rfc7348 2553 */ 2554 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 2555 return rte_flow_error_set(error, EINVAL, 2556 RTE_FLOW_ERROR_TYPE_ITEM, item, 2557 "no outer UDP layer found"); 2558 if (!mask) 2559 mask = &rte_flow_item_geneve_mask; 2560 ret = mlx5_flow_item_acceptable 2561 (item, (const uint8_t *)mask, 2562 (const uint8_t *)&nic_mask, 2563 sizeof(struct rte_flow_item_geneve), 2564 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2565 if (ret) 2566 return ret; 2567 if (spec) { 2568 gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0); 2569 if (MLX5_GENEVE_VER_VAL(gbhdr) || 2570 MLX5_GENEVE_CRITO_VAL(gbhdr) || 2571 MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1) 2572 return rte_flow_error_set(error, ENOTSUP, 2573 RTE_FLOW_ERROR_TYPE_ITEM, 2574 item, 2575 "Geneve protocol unsupported" 2576 " fields are being used"); 2577 if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len) 2578 return rte_flow_error_set 2579 (error, ENOTSUP, 2580 RTE_FLOW_ERROR_TYPE_ITEM, 2581 item, 2582 "Unsupported Geneve options length"); 2583 } 2584 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 2585 return rte_flow_error_set 2586 (error, ENOTSUP, 2587 RTE_FLOW_ERROR_TYPE_ITEM, item, 2588 "Geneve tunnel must be fully defined"); 2589 return 0; 2590 } 2591 2592 /** 2593 * Validate MPLS item. 2594 * 2595 * @param[in] dev 2596 * Pointer to the rte_eth_dev structure. 2597 * @param[in] item 2598 * Item specification. 2599 * @param[in] item_flags 2600 * Bit-fields that holds the items detected until now. 2601 * @param[in] prev_layer 2602 * The protocol layer indicated in previous item. 2603 * @param[out] error 2604 * Pointer to error structure. 2605 * 2606 * @return 2607 * 0 on success, a negative errno value otherwise and rte_errno is set. 2608 */ 2609 int 2610 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused, 2611 const struct rte_flow_item *item __rte_unused, 2612 uint64_t item_flags __rte_unused, 2613 uint64_t prev_layer __rte_unused, 2614 struct rte_flow_error *error) 2615 { 2616 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT 2617 const struct rte_flow_item_mpls *mask = item->mask; 2618 struct mlx5_priv *priv = dev->data->dev_private; 2619 int ret; 2620 2621 if (!priv->config.mpls_en) 2622 return rte_flow_error_set(error, ENOTSUP, 2623 RTE_FLOW_ERROR_TYPE_ITEM, item, 2624 "MPLS not supported or" 2625 " disabled in firmware" 2626 " configuration."); 2627 /* MPLS over IP, UDP, GRE is allowed */ 2628 if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 | 2629 MLX5_FLOW_LAYER_OUTER_L4_UDP | 2630 MLX5_FLOW_LAYER_GRE | 2631 MLX5_FLOW_LAYER_GRE_KEY))) 2632 return rte_flow_error_set(error, EINVAL, 2633 RTE_FLOW_ERROR_TYPE_ITEM, item, 2634 "protocol filtering not compatible" 2635 " with MPLS layer"); 2636 /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */ 2637 if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) && 2638 !(item_flags & MLX5_FLOW_LAYER_GRE)) 2639 return rte_flow_error_set(error, ENOTSUP, 2640 RTE_FLOW_ERROR_TYPE_ITEM, item, 2641 "multiple tunnel layers not" 2642 " supported"); 2643 if (!mask) 2644 mask = &rte_flow_item_mpls_mask; 2645 ret = mlx5_flow_item_acceptable 2646 (item, (const uint8_t *)mask, 2647 (const uint8_t *)&rte_flow_item_mpls_mask, 2648 sizeof(struct rte_flow_item_mpls), 2649 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2650 if (ret < 0) 2651 return ret; 2652 return 0; 2653 #else 2654 return rte_flow_error_set(error, ENOTSUP, 2655 RTE_FLOW_ERROR_TYPE_ITEM, item, 2656 "MPLS is not supported by Verbs, please" 2657 " update."); 2658 #endif 2659 } 2660 2661 /** 2662 * Validate NVGRE item. 2663 * 2664 * @param[in] item 2665 * Item specification. 2666 * @param[in] item_flags 2667 * Bit flags to mark detected items. 2668 * @param[in] target_protocol 2669 * The next protocol in the previous item. 2670 * @param[out] error 2671 * Pointer to error structure. 2672 * 2673 * @return 2674 * 0 on success, a negative errno value otherwise and rte_errno is set. 2675 */ 2676 int 2677 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item, 2678 uint64_t item_flags, 2679 uint8_t target_protocol, 2680 struct rte_flow_error *error) 2681 { 2682 const struct rte_flow_item_nvgre *mask = item->mask; 2683 int ret; 2684 2685 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 2686 return rte_flow_error_set(error, EINVAL, 2687 RTE_FLOW_ERROR_TYPE_ITEM, item, 2688 "protocol filtering not compatible" 2689 " with this GRE layer"); 2690 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2691 return rte_flow_error_set(error, ENOTSUP, 2692 RTE_FLOW_ERROR_TYPE_ITEM, item, 2693 "multiple tunnel layers not" 2694 " supported"); 2695 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 2696 return rte_flow_error_set(error, ENOTSUP, 2697 RTE_FLOW_ERROR_TYPE_ITEM, item, 2698 "L3 Layer is missing"); 2699 if (!mask) 2700 mask = &rte_flow_item_nvgre_mask; 2701 ret = mlx5_flow_item_acceptable 2702 (item, (const uint8_t *)mask, 2703 (const uint8_t *)&rte_flow_item_nvgre_mask, 2704 sizeof(struct rte_flow_item_nvgre), 2705 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2706 if (ret < 0) 2707 return ret; 2708 return 0; 2709 } 2710 2711 /** 2712 * Validate eCPRI item. 2713 * 2714 * @param[in] item 2715 * Item specification. 2716 * @param[in] item_flags 2717 * Bit-fields that holds the items detected until now. 2718 * @param[in] last_item 2719 * Previous validated item in the pattern items. 2720 * @param[in] ether_type 2721 * Type in the ethernet layer header (including dot1q). 2722 * @param[in] acc_mask 2723 * Acceptable mask, if NULL default internal default mask 2724 * will be used to check whether item fields are supported. 2725 * @param[out] error 2726 * Pointer to error structure. 2727 * 2728 * @return 2729 * 0 on success, a negative errno value otherwise and rte_errno is set. 2730 */ 2731 int 2732 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item, 2733 uint64_t item_flags, 2734 uint64_t last_item, 2735 uint16_t ether_type, 2736 const struct rte_flow_item_ecpri *acc_mask, 2737 struct rte_flow_error *error) 2738 { 2739 const struct rte_flow_item_ecpri *mask = item->mask; 2740 const struct rte_flow_item_ecpri nic_mask = { 2741 .hdr = { 2742 .common = { 2743 .u32 = 2744 RTE_BE32(((const struct rte_ecpri_common_hdr) { 2745 .type = 0xFF, 2746 }).u32), 2747 }, 2748 .dummy[0] = 0xFFFFFFFF, 2749 }, 2750 }; 2751 const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 | 2752 MLX5_FLOW_LAYER_OUTER_VLAN); 2753 struct rte_flow_item_ecpri mask_lo; 2754 2755 if (!(last_item & outer_l2_vlan) && 2756 last_item != MLX5_FLOW_LAYER_OUTER_L4_UDP) 2757 return rte_flow_error_set(error, EINVAL, 2758 RTE_FLOW_ERROR_TYPE_ITEM, item, 2759 "eCPRI can only follow L2/VLAN layer or UDP layer"); 2760 if ((last_item & outer_l2_vlan) && ether_type && 2761 ether_type != RTE_ETHER_TYPE_ECPRI) 2762 return rte_flow_error_set(error, EINVAL, 2763 RTE_FLOW_ERROR_TYPE_ITEM, item, 2764 "eCPRI cannot follow L2/VLAN layer which ether type is not 0xAEFE"); 2765 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2766 return rte_flow_error_set(error, EINVAL, 2767 RTE_FLOW_ERROR_TYPE_ITEM, item, 2768 "eCPRI with tunnel is not supported right now"); 2769 if (item_flags & MLX5_FLOW_LAYER_OUTER_L3) 2770 return rte_flow_error_set(error, ENOTSUP, 2771 RTE_FLOW_ERROR_TYPE_ITEM, item, 2772 "multiple L3 layers not supported"); 2773 else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP) 2774 return rte_flow_error_set(error, EINVAL, 2775 RTE_FLOW_ERROR_TYPE_ITEM, item, 2776 "eCPRI cannot coexist with a TCP layer"); 2777 /* In specification, eCPRI could be over UDP layer. */ 2778 else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP) 2779 return rte_flow_error_set(error, EINVAL, 2780 RTE_FLOW_ERROR_TYPE_ITEM, item, 2781 "eCPRI over UDP layer is not yet supported right now"); 2782 /* Mask for type field in common header could be zero. */ 2783 if (!mask) 2784 mask = &rte_flow_item_ecpri_mask; 2785 mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32); 2786 /* Input mask is in big-endian format. */ 2787 if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff) 2788 return rte_flow_error_set(error, EINVAL, 2789 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 2790 "partial mask is not supported for protocol"); 2791 else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0) 2792 return rte_flow_error_set(error, EINVAL, 2793 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 2794 "message header mask must be after a type mask"); 2795 return mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2796 acc_mask ? (const uint8_t *)acc_mask 2797 : (const uint8_t *)&nic_mask, 2798 sizeof(struct rte_flow_item_ecpri), 2799 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2800 } 2801 2802 /** 2803 * Release resource related QUEUE/RSS action split. 2804 * 2805 * @param dev 2806 * Pointer to Ethernet device. 2807 * @param flow 2808 * Flow to release id's from. 2809 */ 2810 static void 2811 flow_mreg_split_qrss_release(struct rte_eth_dev *dev, 2812 struct rte_flow *flow) 2813 { 2814 struct mlx5_priv *priv = dev->data->dev_private; 2815 uint32_t handle_idx; 2816 struct mlx5_flow_handle *dev_handle; 2817 2818 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 2819 handle_idx, dev_handle, next) 2820 if (dev_handle->split_flow_id) 2821 mlx5_ipool_free(priv->sh->ipool 2822 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], 2823 dev_handle->split_flow_id); 2824 } 2825 2826 static int 2827 flow_null_validate(struct rte_eth_dev *dev __rte_unused, 2828 const struct rte_flow_attr *attr __rte_unused, 2829 const struct rte_flow_item items[] __rte_unused, 2830 const struct rte_flow_action actions[] __rte_unused, 2831 bool external __rte_unused, 2832 int hairpin __rte_unused, 2833 struct rte_flow_error *error) 2834 { 2835 return rte_flow_error_set(error, ENOTSUP, 2836 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 2837 } 2838 2839 static struct mlx5_flow * 2840 flow_null_prepare(struct rte_eth_dev *dev __rte_unused, 2841 const struct rte_flow_attr *attr __rte_unused, 2842 const struct rte_flow_item items[] __rte_unused, 2843 const struct rte_flow_action actions[] __rte_unused, 2844 struct rte_flow_error *error) 2845 { 2846 rte_flow_error_set(error, ENOTSUP, 2847 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 2848 return NULL; 2849 } 2850 2851 static int 2852 flow_null_translate(struct rte_eth_dev *dev __rte_unused, 2853 struct mlx5_flow *dev_flow __rte_unused, 2854 const struct rte_flow_attr *attr __rte_unused, 2855 const struct rte_flow_item items[] __rte_unused, 2856 const struct rte_flow_action actions[] __rte_unused, 2857 struct rte_flow_error *error) 2858 { 2859 return rte_flow_error_set(error, ENOTSUP, 2860 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 2861 } 2862 2863 static int 2864 flow_null_apply(struct rte_eth_dev *dev __rte_unused, 2865 struct rte_flow *flow __rte_unused, 2866 struct rte_flow_error *error) 2867 { 2868 return rte_flow_error_set(error, ENOTSUP, 2869 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 2870 } 2871 2872 static void 2873 flow_null_remove(struct rte_eth_dev *dev __rte_unused, 2874 struct rte_flow *flow __rte_unused) 2875 { 2876 } 2877 2878 static void 2879 flow_null_destroy(struct rte_eth_dev *dev __rte_unused, 2880 struct rte_flow *flow __rte_unused) 2881 { 2882 } 2883 2884 static int 2885 flow_null_query(struct rte_eth_dev *dev __rte_unused, 2886 struct rte_flow *flow __rte_unused, 2887 const struct rte_flow_action *actions __rte_unused, 2888 void *data __rte_unused, 2889 struct rte_flow_error *error) 2890 { 2891 return rte_flow_error_set(error, ENOTSUP, 2892 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 2893 } 2894 2895 static int 2896 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused, 2897 uint32_t domains __rte_unused, 2898 uint32_t flags __rte_unused) 2899 { 2900 return 0; 2901 } 2902 2903 /* Void driver to protect from null pointer reference. */ 2904 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = { 2905 .validate = flow_null_validate, 2906 .prepare = flow_null_prepare, 2907 .translate = flow_null_translate, 2908 .apply = flow_null_apply, 2909 .remove = flow_null_remove, 2910 .destroy = flow_null_destroy, 2911 .query = flow_null_query, 2912 .sync_domain = flow_null_sync_domain, 2913 }; 2914 2915 /** 2916 * Select flow driver type according to flow attributes and device 2917 * configuration. 2918 * 2919 * @param[in] dev 2920 * Pointer to the dev structure. 2921 * @param[in] attr 2922 * Pointer to the flow attributes. 2923 * 2924 * @return 2925 * flow driver type, MLX5_FLOW_TYPE_MAX otherwise. 2926 */ 2927 static enum mlx5_flow_drv_type 2928 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr) 2929 { 2930 struct mlx5_priv *priv = dev->data->dev_private; 2931 /* The OS can determine first a specific flow type (DV, VERBS) */ 2932 enum mlx5_flow_drv_type type = mlx5_flow_os_get_type(); 2933 2934 if (type != MLX5_FLOW_TYPE_MAX) 2935 return type; 2936 /* If no OS specific type - continue with DV/VERBS selection */ 2937 if (attr->transfer && priv->config.dv_esw_en) 2938 type = MLX5_FLOW_TYPE_DV; 2939 if (!attr->transfer) 2940 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV : 2941 MLX5_FLOW_TYPE_VERBS; 2942 return type; 2943 } 2944 2945 #define flow_get_drv_ops(type) flow_drv_ops[type] 2946 2947 /** 2948 * Flow driver validation API. This abstracts calling driver specific functions. 2949 * The type of flow driver is determined according to flow attributes. 2950 * 2951 * @param[in] dev 2952 * Pointer to the dev structure. 2953 * @param[in] attr 2954 * Pointer to the flow attributes. 2955 * @param[in] items 2956 * Pointer to the list of items. 2957 * @param[in] actions 2958 * Pointer to the list of actions. 2959 * @param[in] external 2960 * This flow rule is created by request external to PMD. 2961 * @param[in] hairpin 2962 * Number of hairpin TX actions, 0 means classic flow. 2963 * @param[out] error 2964 * Pointer to the error structure. 2965 * 2966 * @return 2967 * 0 on success, a negative errno value otherwise and rte_errno is set. 2968 */ 2969 static inline int 2970 flow_drv_validate(struct rte_eth_dev *dev, 2971 const struct rte_flow_attr *attr, 2972 const struct rte_flow_item items[], 2973 const struct rte_flow_action actions[], 2974 bool external, int hairpin, struct rte_flow_error *error) 2975 { 2976 const struct mlx5_flow_driver_ops *fops; 2977 enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr); 2978 2979 fops = flow_get_drv_ops(type); 2980 return fops->validate(dev, attr, items, actions, external, 2981 hairpin, error); 2982 } 2983 2984 /** 2985 * Flow driver preparation API. This abstracts calling driver specific 2986 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 2987 * calculates the size of memory required for device flow, allocates the memory, 2988 * initializes the device flow and returns the pointer. 2989 * 2990 * @note 2991 * This function initializes device flow structure such as dv or verbs in 2992 * struct mlx5_flow. However, it is caller's responsibility to initialize the 2993 * rest. For example, adding returning device flow to flow->dev_flow list and 2994 * setting backward reference to the flow should be done out of this function. 2995 * layers field is not filled either. 2996 * 2997 * @param[in] dev 2998 * Pointer to the dev structure. 2999 * @param[in] attr 3000 * Pointer to the flow attributes. 3001 * @param[in] items 3002 * Pointer to the list of items. 3003 * @param[in] actions 3004 * Pointer to the list of actions. 3005 * @param[in] flow_idx 3006 * This memory pool index to the flow. 3007 * @param[out] error 3008 * Pointer to the error structure. 3009 * 3010 * @return 3011 * Pointer to device flow on success, otherwise NULL and rte_errno is set. 3012 */ 3013 static inline struct mlx5_flow * 3014 flow_drv_prepare(struct rte_eth_dev *dev, 3015 const struct rte_flow *flow, 3016 const struct rte_flow_attr *attr, 3017 const struct rte_flow_item items[], 3018 const struct rte_flow_action actions[], 3019 uint32_t flow_idx, 3020 struct rte_flow_error *error) 3021 { 3022 const struct mlx5_flow_driver_ops *fops; 3023 enum mlx5_flow_drv_type type = flow->drv_type; 3024 struct mlx5_flow *mlx5_flow = NULL; 3025 3026 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3027 fops = flow_get_drv_ops(type); 3028 mlx5_flow = fops->prepare(dev, attr, items, actions, error); 3029 if (mlx5_flow) 3030 mlx5_flow->flow_idx = flow_idx; 3031 return mlx5_flow; 3032 } 3033 3034 /** 3035 * Flow driver translation API. This abstracts calling driver specific 3036 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 3037 * translates a generic flow into a driver flow. flow_drv_prepare() must 3038 * precede. 3039 * 3040 * @note 3041 * dev_flow->layers could be filled as a result of parsing during translation 3042 * if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled 3043 * if necessary. As a flow can have multiple dev_flows by RSS flow expansion, 3044 * flow->actions could be overwritten even though all the expanded dev_flows 3045 * have the same actions. 3046 * 3047 * @param[in] dev 3048 * Pointer to the rte dev structure. 3049 * @param[in, out] dev_flow 3050 * Pointer to the mlx5 flow. 3051 * @param[in] attr 3052 * Pointer to the flow attributes. 3053 * @param[in] items 3054 * Pointer to the list of items. 3055 * @param[in] actions 3056 * Pointer to the list of actions. 3057 * @param[out] error 3058 * Pointer to the error structure. 3059 * 3060 * @return 3061 * 0 on success, a negative errno value otherwise and rte_errno is set. 3062 */ 3063 static inline int 3064 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow, 3065 const struct rte_flow_attr *attr, 3066 const struct rte_flow_item items[], 3067 const struct rte_flow_action actions[], 3068 struct rte_flow_error *error) 3069 { 3070 const struct mlx5_flow_driver_ops *fops; 3071 enum mlx5_flow_drv_type type = dev_flow->flow->drv_type; 3072 3073 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3074 fops = flow_get_drv_ops(type); 3075 return fops->translate(dev, dev_flow, attr, items, actions, error); 3076 } 3077 3078 /** 3079 * Flow driver apply API. This abstracts calling driver specific functions. 3080 * Parent flow (rte_flow) should have driver type (drv_type). It applies 3081 * translated driver flows on to device. flow_drv_translate() must precede. 3082 * 3083 * @param[in] dev 3084 * Pointer to Ethernet device structure. 3085 * @param[in, out] flow 3086 * Pointer to flow structure. 3087 * @param[out] error 3088 * Pointer to error structure. 3089 * 3090 * @return 3091 * 0 on success, a negative errno value otherwise and rte_errno is set. 3092 */ 3093 static inline int 3094 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow, 3095 struct rte_flow_error *error) 3096 { 3097 const struct mlx5_flow_driver_ops *fops; 3098 enum mlx5_flow_drv_type type = flow->drv_type; 3099 3100 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3101 fops = flow_get_drv_ops(type); 3102 return fops->apply(dev, flow, error); 3103 } 3104 3105 /** 3106 * Flow driver destroy API. This abstracts calling driver specific functions. 3107 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 3108 * on device and releases resources of the flow. 3109 * 3110 * @param[in] dev 3111 * Pointer to Ethernet device. 3112 * @param[in, out] flow 3113 * Pointer to flow structure. 3114 */ 3115 static inline void 3116 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow) 3117 { 3118 const struct mlx5_flow_driver_ops *fops; 3119 enum mlx5_flow_drv_type type = flow->drv_type; 3120 3121 flow_mreg_split_qrss_release(dev, flow); 3122 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3123 fops = flow_get_drv_ops(type); 3124 fops->destroy(dev, flow); 3125 } 3126 3127 /** 3128 * Get RSS action from the action list. 3129 * 3130 * @param[in] actions 3131 * Pointer to the list of actions. 3132 * 3133 * @return 3134 * Pointer to the RSS action if exist, else return NULL. 3135 */ 3136 static const struct rte_flow_action_rss* 3137 flow_get_rss_action(const struct rte_flow_action actions[]) 3138 { 3139 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3140 switch (actions->type) { 3141 case RTE_FLOW_ACTION_TYPE_RSS: 3142 return (const struct rte_flow_action_rss *) 3143 actions->conf; 3144 default: 3145 break; 3146 } 3147 } 3148 return NULL; 3149 } 3150 3151 /** 3152 * Get ASO age action by index. 3153 * 3154 * @param[in] dev 3155 * Pointer to the Ethernet device structure. 3156 * @param[in] age_idx 3157 * Index to the ASO age action. 3158 * 3159 * @return 3160 * The specified ASO age action. 3161 */ 3162 struct mlx5_aso_age_action* 3163 flow_aso_age_get_by_idx(struct rte_eth_dev *dev, uint32_t age_idx) 3164 { 3165 uint16_t pool_idx = age_idx & UINT16_MAX; 3166 uint16_t offset = (age_idx >> 16) & UINT16_MAX; 3167 struct mlx5_priv *priv = dev->data->dev_private; 3168 struct mlx5_aso_age_mng *mng = priv->sh->aso_age_mng; 3169 struct mlx5_aso_age_pool *pool = mng->pools[pool_idx]; 3170 3171 return &pool->actions[offset - 1]; 3172 } 3173 3174 /* maps shared action to translated non shared in some actions array */ 3175 struct mlx5_translated_shared_action { 3176 struct rte_flow_shared_action *action; /**< Shared action */ 3177 int index; /**< Index in related array of rte_flow_action */ 3178 }; 3179 3180 /** 3181 * Translates actions of type RTE_FLOW_ACTION_TYPE_SHARED to related 3182 * non shared action if translation possible. 3183 * This functionality used to run same execution path for both shared & non 3184 * shared actions on flow create. All necessary preparations for shared 3185 * action handling should be preformed on *shared* actions list returned 3186 * from this call. 3187 * 3188 * @param[in] dev 3189 * Pointer to Ethernet device. 3190 * @param[in] actions 3191 * List of actions to translate. 3192 * @param[out] shared 3193 * List to store translated shared actions. 3194 * @param[in, out] shared_n 3195 * Size of *shared* array. On return should be updated with number of shared 3196 * actions retrieved from the *actions* list. 3197 * @param[out] translated_actions 3198 * List of actions where all shared actions were translated to non shared 3199 * if possible. NULL if no translation took place. 3200 * @param[out] error 3201 * Pointer to the error structure. 3202 * 3203 * @return 3204 * 0 on success, a negative errno value otherwise and rte_errno is set. 3205 */ 3206 static int 3207 flow_shared_actions_translate(struct rte_eth_dev *dev, 3208 const struct rte_flow_action actions[], 3209 struct mlx5_translated_shared_action *shared, 3210 int *shared_n, 3211 struct rte_flow_action **translated_actions, 3212 struct rte_flow_error *error) 3213 { 3214 struct mlx5_priv *priv = dev->data->dev_private; 3215 struct rte_flow_action *translated = NULL; 3216 size_t actions_size; 3217 int n; 3218 int copied_n = 0; 3219 struct mlx5_translated_shared_action *shared_end = NULL; 3220 3221 for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) { 3222 if (actions[n].type != RTE_FLOW_ACTION_TYPE_SHARED) 3223 continue; 3224 if (copied_n == *shared_n) { 3225 return rte_flow_error_set 3226 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, 3227 NULL, "too many shared actions"); 3228 } 3229 rte_memcpy(&shared[copied_n].action, &actions[n].conf, 3230 sizeof(actions[n].conf)); 3231 shared[copied_n].index = n; 3232 copied_n++; 3233 } 3234 n++; 3235 *shared_n = copied_n; 3236 if (!copied_n) 3237 return 0; 3238 actions_size = sizeof(struct rte_flow_action) * n; 3239 translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY); 3240 if (!translated) { 3241 rte_errno = ENOMEM; 3242 return -ENOMEM; 3243 } 3244 memcpy(translated, actions, actions_size); 3245 for (shared_end = shared + copied_n; shared < shared_end; shared++) { 3246 struct mlx5_shared_action_rss *shared_rss; 3247 uint32_t act_idx = (uint32_t)(uintptr_t)shared->action; 3248 uint32_t type = act_idx >> MLX5_SHARED_ACTION_TYPE_OFFSET; 3249 uint32_t idx = act_idx & ((1u << MLX5_SHARED_ACTION_TYPE_OFFSET) 3250 - 1); 3251 3252 switch (type) { 3253 case MLX5_SHARED_ACTION_TYPE_RSS: 3254 shared_rss = mlx5_ipool_get 3255 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], idx); 3256 translated[shared->index].type = 3257 RTE_FLOW_ACTION_TYPE_RSS; 3258 translated[shared->index].conf = 3259 &shared_rss->origin; 3260 break; 3261 case MLX5_SHARED_ACTION_TYPE_AGE: 3262 if (priv->sh->flow_hit_aso_en) { 3263 translated[shared->index].type = 3264 (enum rte_flow_action_type) 3265 MLX5_RTE_FLOW_ACTION_TYPE_AGE; 3266 translated[shared->index].conf = 3267 (void *)(uintptr_t)idx; 3268 break; 3269 } 3270 /* Fall-through */ 3271 default: 3272 mlx5_free(translated); 3273 return rte_flow_error_set 3274 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, 3275 NULL, "invalid shared action type"); 3276 } 3277 } 3278 *translated_actions = translated; 3279 return 0; 3280 } 3281 3282 /** 3283 * Get Shared RSS action from the action list. 3284 * 3285 * @param[in] dev 3286 * Pointer to Ethernet device. 3287 * @param[in] shared 3288 * Pointer to the list of actions. 3289 * @param[in] shared_n 3290 * Actions list length. 3291 * 3292 * @return 3293 * The MLX5 RSS action ID if exists, otherwise return 0. 3294 */ 3295 static uint32_t 3296 flow_get_shared_rss_action(struct rte_eth_dev *dev, 3297 struct mlx5_translated_shared_action *shared, 3298 int shared_n) 3299 { 3300 struct mlx5_translated_shared_action *shared_end; 3301 struct mlx5_priv *priv = dev->data->dev_private; 3302 struct mlx5_shared_action_rss *shared_rss; 3303 3304 3305 for (shared_end = shared + shared_n; shared < shared_end; shared++) { 3306 uint32_t act_idx = (uint32_t)(uintptr_t)shared->action; 3307 uint32_t type = act_idx >> MLX5_SHARED_ACTION_TYPE_OFFSET; 3308 uint32_t idx = act_idx & 3309 ((1u << MLX5_SHARED_ACTION_TYPE_OFFSET) - 1); 3310 switch (type) { 3311 case MLX5_SHARED_ACTION_TYPE_RSS: 3312 shared_rss = mlx5_ipool_get 3313 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 3314 idx); 3315 __atomic_add_fetch(&shared_rss->refcnt, 1, 3316 __ATOMIC_RELAXED); 3317 return idx; 3318 default: 3319 break; 3320 } 3321 } 3322 return 0; 3323 } 3324 3325 static unsigned int 3326 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level) 3327 { 3328 const struct rte_flow_item *item; 3329 unsigned int has_vlan = 0; 3330 3331 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 3332 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) { 3333 has_vlan = 1; 3334 break; 3335 } 3336 } 3337 if (has_vlan) 3338 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN : 3339 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN; 3340 return rss_level < 2 ? MLX5_EXPANSION_ROOT : 3341 MLX5_EXPANSION_ROOT_OUTER; 3342 } 3343 3344 /** 3345 * Get layer flags from the prefix flow. 3346 * 3347 * Some flows may be split to several subflows, the prefix subflow gets the 3348 * match items and the suffix sub flow gets the actions. 3349 * Some actions need the user defined match item flags to get the detail for 3350 * the action. 3351 * This function helps the suffix flow to get the item layer flags from prefix 3352 * subflow. 3353 * 3354 * @param[in] dev_flow 3355 * Pointer the created preifx subflow. 3356 * 3357 * @return 3358 * The layers get from prefix subflow. 3359 */ 3360 static inline uint64_t 3361 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow) 3362 { 3363 uint64_t layers = 0; 3364 3365 /* 3366 * Layers bits could be localization, but usually the compiler will 3367 * help to do the optimization work for source code. 3368 * If no decap actions, use the layers directly. 3369 */ 3370 if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP)) 3371 return dev_flow->handle->layers; 3372 /* Convert L3 layers with decap action. */ 3373 if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4) 3374 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4; 3375 else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6) 3376 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6; 3377 /* Convert L4 layers with decap action. */ 3378 if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP) 3379 layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP; 3380 else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP) 3381 layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP; 3382 return layers; 3383 } 3384 3385 /** 3386 * Get metadata split action information. 3387 * 3388 * @param[in] actions 3389 * Pointer to the list of actions. 3390 * @param[out] qrss 3391 * Pointer to the return pointer. 3392 * @param[out] qrss_type 3393 * Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned 3394 * if no QUEUE/RSS is found. 3395 * @param[out] encap_idx 3396 * Pointer to the index of the encap action if exists, otherwise the last 3397 * action index. 3398 * 3399 * @return 3400 * Total number of actions. 3401 */ 3402 static int 3403 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[], 3404 const struct rte_flow_action **qrss, 3405 int *encap_idx) 3406 { 3407 const struct rte_flow_action_raw_encap *raw_encap; 3408 int actions_n = 0; 3409 int raw_decap_idx = -1; 3410 3411 *encap_idx = -1; 3412 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3413 switch (actions->type) { 3414 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 3415 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 3416 *encap_idx = actions_n; 3417 break; 3418 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 3419 raw_decap_idx = actions_n; 3420 break; 3421 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 3422 raw_encap = actions->conf; 3423 if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) 3424 *encap_idx = raw_decap_idx != -1 ? 3425 raw_decap_idx : actions_n; 3426 break; 3427 case RTE_FLOW_ACTION_TYPE_QUEUE: 3428 case RTE_FLOW_ACTION_TYPE_RSS: 3429 *qrss = actions; 3430 break; 3431 default: 3432 break; 3433 } 3434 actions_n++; 3435 } 3436 if (*encap_idx == -1) 3437 *encap_idx = actions_n; 3438 /* Count RTE_FLOW_ACTION_TYPE_END. */ 3439 return actions_n + 1; 3440 } 3441 3442 /** 3443 * Check meter action from the action list. 3444 * 3445 * @param[in] actions 3446 * Pointer to the list of actions. 3447 * @param[out] mtr 3448 * Pointer to the meter exist flag. 3449 * 3450 * @return 3451 * Total number of actions. 3452 */ 3453 static int 3454 flow_check_meter_action(const struct rte_flow_action actions[], uint32_t *mtr) 3455 { 3456 int actions_n = 0; 3457 3458 MLX5_ASSERT(mtr); 3459 *mtr = 0; 3460 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3461 switch (actions->type) { 3462 case RTE_FLOW_ACTION_TYPE_METER: 3463 *mtr = 1; 3464 break; 3465 default: 3466 break; 3467 } 3468 actions_n++; 3469 } 3470 /* Count RTE_FLOW_ACTION_TYPE_END. */ 3471 return actions_n + 1; 3472 } 3473 3474 /** 3475 * Check if the flow should be split due to hairpin. 3476 * The reason for the split is that in current HW we can't 3477 * support encap and push-vlan on Rx, so if a flow contains 3478 * these actions we move it to Tx. 3479 * 3480 * @param dev 3481 * Pointer to Ethernet device. 3482 * @param[in] attr 3483 * Flow rule attributes. 3484 * @param[in] actions 3485 * Associated actions (list terminated by the END action). 3486 * 3487 * @return 3488 * > 0 the number of actions and the flow should be split, 3489 * 0 when no split required. 3490 */ 3491 static int 3492 flow_check_hairpin_split(struct rte_eth_dev *dev, 3493 const struct rte_flow_attr *attr, 3494 const struct rte_flow_action actions[]) 3495 { 3496 int queue_action = 0; 3497 int action_n = 0; 3498 int split = 0; 3499 const struct rte_flow_action_queue *queue; 3500 const struct rte_flow_action_rss *rss; 3501 const struct rte_flow_action_raw_encap *raw_encap; 3502 const struct rte_eth_hairpin_conf *conf; 3503 3504 if (!attr->ingress) 3505 return 0; 3506 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3507 switch (actions->type) { 3508 case RTE_FLOW_ACTION_TYPE_QUEUE: 3509 queue = actions->conf; 3510 if (queue == NULL) 3511 return 0; 3512 conf = mlx5_rxq_get_hairpin_conf(dev, queue->index); 3513 if (conf != NULL && !!conf->tx_explicit) 3514 return 0; 3515 queue_action = 1; 3516 action_n++; 3517 break; 3518 case RTE_FLOW_ACTION_TYPE_RSS: 3519 rss = actions->conf; 3520 if (rss == NULL || rss->queue_num == 0) 3521 return 0; 3522 conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]); 3523 if (conf != NULL && !!conf->tx_explicit) 3524 return 0; 3525 queue_action = 1; 3526 action_n++; 3527 break; 3528 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 3529 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 3530 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 3531 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 3532 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: 3533 split++; 3534 action_n++; 3535 break; 3536 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 3537 raw_encap = actions->conf; 3538 if (raw_encap->size > 3539 (sizeof(struct rte_flow_item_eth) + 3540 sizeof(struct rte_flow_item_ipv4))) 3541 split++; 3542 action_n++; 3543 break; 3544 default: 3545 action_n++; 3546 break; 3547 } 3548 } 3549 if (split && queue_action) 3550 return action_n; 3551 return 0; 3552 } 3553 3554 /* Declare flow create/destroy prototype in advance. */ 3555 static uint32_t 3556 flow_list_create(struct rte_eth_dev *dev, uint32_t *list, 3557 const struct rte_flow_attr *attr, 3558 const struct rte_flow_item items[], 3559 const struct rte_flow_action actions[], 3560 bool external, struct rte_flow_error *error); 3561 3562 static void 3563 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list, 3564 uint32_t flow_idx); 3565 3566 struct mlx5_hlist_entry * 3567 flow_dv_mreg_create_cb(struct mlx5_hlist *list, uint64_t key, 3568 void *cb_ctx) 3569 { 3570 struct rte_eth_dev *dev = list->ctx; 3571 struct mlx5_priv *priv = dev->data->dev_private; 3572 struct mlx5_flow_cb_ctx *ctx = cb_ctx; 3573 struct mlx5_flow_mreg_copy_resource *mcp_res; 3574 struct rte_flow_error *error = ctx->error; 3575 uint32_t idx = 0; 3576 int ret; 3577 uint32_t mark_id = key; 3578 struct rte_flow_attr attr = { 3579 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP, 3580 .ingress = 1, 3581 }; 3582 struct mlx5_rte_flow_item_tag tag_spec = { 3583 .data = mark_id, 3584 }; 3585 struct rte_flow_item items[] = { 3586 [1] = { .type = RTE_FLOW_ITEM_TYPE_END, }, 3587 }; 3588 struct rte_flow_action_mark ftag = { 3589 .id = mark_id, 3590 }; 3591 struct mlx5_flow_action_copy_mreg cp_mreg = { 3592 .dst = REG_B, 3593 .src = REG_NON, 3594 }; 3595 struct rte_flow_action_jump jump = { 3596 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP, 3597 }; 3598 struct rte_flow_action actions[] = { 3599 [3] = { .type = RTE_FLOW_ACTION_TYPE_END, }, 3600 }; 3601 3602 /* Fill the register fileds in the flow. */ 3603 ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error); 3604 if (ret < 0) 3605 return NULL; 3606 tag_spec.id = ret; 3607 ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error); 3608 if (ret < 0) 3609 return NULL; 3610 cp_mreg.src = ret; 3611 /* Provide the full width of FLAG specific value. */ 3612 if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT)) 3613 tag_spec.data = MLX5_FLOW_MARK_DEFAULT; 3614 /* Build a new flow. */ 3615 if (mark_id != MLX5_DEFAULT_COPY_ID) { 3616 items[0] = (struct rte_flow_item){ 3617 .type = (enum rte_flow_item_type) 3618 MLX5_RTE_FLOW_ITEM_TYPE_TAG, 3619 .spec = &tag_spec, 3620 }; 3621 items[1] = (struct rte_flow_item){ 3622 .type = RTE_FLOW_ITEM_TYPE_END, 3623 }; 3624 actions[0] = (struct rte_flow_action){ 3625 .type = (enum rte_flow_action_type) 3626 MLX5_RTE_FLOW_ACTION_TYPE_MARK, 3627 .conf = &ftag, 3628 }; 3629 actions[1] = (struct rte_flow_action){ 3630 .type = (enum rte_flow_action_type) 3631 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 3632 .conf = &cp_mreg, 3633 }; 3634 actions[2] = (struct rte_flow_action){ 3635 .type = RTE_FLOW_ACTION_TYPE_JUMP, 3636 .conf = &jump, 3637 }; 3638 actions[3] = (struct rte_flow_action){ 3639 .type = RTE_FLOW_ACTION_TYPE_END, 3640 }; 3641 } else { 3642 /* Default rule, wildcard match. */ 3643 attr.priority = MLX5_FLOW_PRIO_RSVD; 3644 items[0] = (struct rte_flow_item){ 3645 .type = RTE_FLOW_ITEM_TYPE_END, 3646 }; 3647 actions[0] = (struct rte_flow_action){ 3648 .type = (enum rte_flow_action_type) 3649 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 3650 .conf = &cp_mreg, 3651 }; 3652 actions[1] = (struct rte_flow_action){ 3653 .type = RTE_FLOW_ACTION_TYPE_JUMP, 3654 .conf = &jump, 3655 }; 3656 actions[2] = (struct rte_flow_action){ 3657 .type = RTE_FLOW_ACTION_TYPE_END, 3658 }; 3659 } 3660 /* Build a new entry. */ 3661 mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx); 3662 if (!mcp_res) { 3663 rte_errno = ENOMEM; 3664 return NULL; 3665 } 3666 mcp_res->idx = idx; 3667 /* 3668 * The copy Flows are not included in any list. There 3669 * ones are referenced from other Flows and can not 3670 * be applied, removed, deleted in ardbitrary order 3671 * by list traversing. 3672 */ 3673 mcp_res->rix_flow = flow_list_create(dev, NULL, &attr, items, 3674 actions, false, error); 3675 if (!mcp_res->rix_flow) { 3676 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], idx); 3677 return NULL; 3678 } 3679 return &mcp_res->hlist_ent; 3680 } 3681 3682 /** 3683 * Add a flow of copying flow metadata registers in RX_CP_TBL. 3684 * 3685 * As mark_id is unique, if there's already a registered flow for the mark_id, 3686 * return by increasing the reference counter of the resource. Otherwise, create 3687 * the resource (mcp_res) and flow. 3688 * 3689 * Flow looks like, 3690 * - If ingress port is ANY and reg_c[1] is mark_id, 3691 * flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL. 3692 * 3693 * For default flow (zero mark_id), flow is like, 3694 * - If ingress port is ANY, 3695 * reg_b := reg_c[0] and jump to RX_ACT_TBL. 3696 * 3697 * @param dev 3698 * Pointer to Ethernet device. 3699 * @param mark_id 3700 * ID of MARK action, zero means default flow for META. 3701 * @param[out] error 3702 * Perform verbose error reporting if not NULL. 3703 * 3704 * @return 3705 * Associated resource on success, NULL otherwise and rte_errno is set. 3706 */ 3707 static struct mlx5_flow_mreg_copy_resource * 3708 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id, 3709 struct rte_flow_error *error) 3710 { 3711 struct mlx5_priv *priv = dev->data->dev_private; 3712 struct mlx5_hlist_entry *entry; 3713 struct mlx5_flow_cb_ctx ctx = { 3714 .dev = dev, 3715 .error = error, 3716 }; 3717 3718 /* Check if already registered. */ 3719 MLX5_ASSERT(priv->mreg_cp_tbl); 3720 entry = mlx5_hlist_register(priv->mreg_cp_tbl, mark_id, &ctx); 3721 if (!entry) 3722 return NULL; 3723 return container_of(entry, struct mlx5_flow_mreg_copy_resource, 3724 hlist_ent); 3725 } 3726 3727 void 3728 flow_dv_mreg_remove_cb(struct mlx5_hlist *list, struct mlx5_hlist_entry *entry) 3729 { 3730 struct mlx5_flow_mreg_copy_resource *mcp_res = 3731 container_of(entry, typeof(*mcp_res), hlist_ent); 3732 struct rte_eth_dev *dev = list->ctx; 3733 struct mlx5_priv *priv = dev->data->dev_private; 3734 3735 MLX5_ASSERT(mcp_res->rix_flow); 3736 flow_list_destroy(dev, NULL, mcp_res->rix_flow); 3737 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx); 3738 } 3739 3740 /** 3741 * Release flow in RX_CP_TBL. 3742 * 3743 * @param dev 3744 * Pointer to Ethernet device. 3745 * @flow 3746 * Parent flow for wich copying is provided. 3747 */ 3748 static void 3749 flow_mreg_del_copy_action(struct rte_eth_dev *dev, 3750 struct rte_flow *flow) 3751 { 3752 struct mlx5_flow_mreg_copy_resource *mcp_res; 3753 struct mlx5_priv *priv = dev->data->dev_private; 3754 3755 if (!flow->rix_mreg_copy) 3756 return; 3757 mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP], 3758 flow->rix_mreg_copy); 3759 if (!mcp_res || !priv->mreg_cp_tbl) 3760 return; 3761 MLX5_ASSERT(mcp_res->rix_flow); 3762 mlx5_hlist_unregister(priv->mreg_cp_tbl, &mcp_res->hlist_ent); 3763 flow->rix_mreg_copy = 0; 3764 } 3765 3766 /** 3767 * Remove the default copy action from RX_CP_TBL. 3768 * 3769 * This functions is called in the mlx5_dev_start(). No thread safe 3770 * is guaranteed. 3771 * 3772 * @param dev 3773 * Pointer to Ethernet device. 3774 */ 3775 static void 3776 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev) 3777 { 3778 struct mlx5_hlist_entry *entry; 3779 struct mlx5_priv *priv = dev->data->dev_private; 3780 3781 /* Check if default flow is registered. */ 3782 if (!priv->mreg_cp_tbl) 3783 return; 3784 entry = mlx5_hlist_lookup(priv->mreg_cp_tbl, 3785 MLX5_DEFAULT_COPY_ID, NULL); 3786 if (!entry) 3787 return; 3788 mlx5_hlist_unregister(priv->mreg_cp_tbl, entry); 3789 } 3790 3791 /** 3792 * Add the default copy action in in RX_CP_TBL. 3793 * 3794 * This functions is called in the mlx5_dev_start(). No thread safe 3795 * is guaranteed. 3796 * 3797 * @param dev 3798 * Pointer to Ethernet device. 3799 * @param[out] error 3800 * Perform verbose error reporting if not NULL. 3801 * 3802 * @return 3803 * 0 for success, negative value otherwise and rte_errno is set. 3804 */ 3805 static int 3806 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev, 3807 struct rte_flow_error *error) 3808 { 3809 struct mlx5_priv *priv = dev->data->dev_private; 3810 struct mlx5_flow_mreg_copy_resource *mcp_res; 3811 3812 /* Check whether extensive metadata feature is engaged. */ 3813 if (!priv->config.dv_flow_en || 3814 priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY || 3815 !mlx5_flow_ext_mreg_supported(dev) || 3816 !priv->sh->dv_regc0_mask) 3817 return 0; 3818 /* 3819 * Add default mreg copy flow may be called multiple time, but 3820 * only be called once in stop. Avoid register it twice. 3821 */ 3822 if (mlx5_hlist_lookup(priv->mreg_cp_tbl, MLX5_DEFAULT_COPY_ID, NULL)) 3823 return 0; 3824 mcp_res = flow_mreg_add_copy_action(dev, MLX5_DEFAULT_COPY_ID, error); 3825 if (!mcp_res) 3826 return -rte_errno; 3827 return 0; 3828 } 3829 3830 /** 3831 * Add a flow of copying flow metadata registers in RX_CP_TBL. 3832 * 3833 * All the flow having Q/RSS action should be split by 3834 * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL 3835 * performs the following, 3836 * - CQE->flow_tag := reg_c[1] (MARK) 3837 * - CQE->flow_table_metadata (reg_b) := reg_c[0] (META) 3838 * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1] 3839 * but there should be a flow per each MARK ID set by MARK action. 3840 * 3841 * For the aforementioned reason, if there's a MARK action in flow's action 3842 * list, a corresponding flow should be added to the RX_CP_TBL in order to copy 3843 * the MARK ID to CQE's flow_tag like, 3844 * - If reg_c[1] is mark_id, 3845 * flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL. 3846 * 3847 * For SET_META action which stores value in reg_c[0], as the destination is 3848 * also a flow metadata register (reg_b), adding a default flow is enough. Zero 3849 * MARK ID means the default flow. The default flow looks like, 3850 * - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL. 3851 * 3852 * @param dev 3853 * Pointer to Ethernet device. 3854 * @param flow 3855 * Pointer to flow structure. 3856 * @param[in] actions 3857 * Pointer to the list of actions. 3858 * @param[out] error 3859 * Perform verbose error reporting if not NULL. 3860 * 3861 * @return 3862 * 0 on success, negative value otherwise and rte_errno is set. 3863 */ 3864 static int 3865 flow_mreg_update_copy_table(struct rte_eth_dev *dev, 3866 struct rte_flow *flow, 3867 const struct rte_flow_action *actions, 3868 struct rte_flow_error *error) 3869 { 3870 struct mlx5_priv *priv = dev->data->dev_private; 3871 struct mlx5_dev_config *config = &priv->config; 3872 struct mlx5_flow_mreg_copy_resource *mcp_res; 3873 const struct rte_flow_action_mark *mark; 3874 3875 /* Check whether extensive metadata feature is engaged. */ 3876 if (!config->dv_flow_en || 3877 config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY || 3878 !mlx5_flow_ext_mreg_supported(dev) || 3879 !priv->sh->dv_regc0_mask) 3880 return 0; 3881 /* Find MARK action. */ 3882 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3883 switch (actions->type) { 3884 case RTE_FLOW_ACTION_TYPE_FLAG: 3885 mcp_res = flow_mreg_add_copy_action 3886 (dev, MLX5_FLOW_MARK_DEFAULT, error); 3887 if (!mcp_res) 3888 return -rte_errno; 3889 flow->rix_mreg_copy = mcp_res->idx; 3890 return 0; 3891 case RTE_FLOW_ACTION_TYPE_MARK: 3892 mark = (const struct rte_flow_action_mark *) 3893 actions->conf; 3894 mcp_res = 3895 flow_mreg_add_copy_action(dev, mark->id, error); 3896 if (!mcp_res) 3897 return -rte_errno; 3898 flow->rix_mreg_copy = mcp_res->idx; 3899 return 0; 3900 default: 3901 break; 3902 } 3903 } 3904 return 0; 3905 } 3906 3907 #define MLX5_MAX_SPLIT_ACTIONS 24 3908 #define MLX5_MAX_SPLIT_ITEMS 24 3909 3910 /** 3911 * Split the hairpin flow. 3912 * Since HW can't support encap and push-vlan on Rx, we move these 3913 * actions to Tx. 3914 * If the count action is after the encap then we also 3915 * move the count action. in this case the count will also measure 3916 * the outer bytes. 3917 * 3918 * @param dev 3919 * Pointer to Ethernet device. 3920 * @param[in] actions 3921 * Associated actions (list terminated by the END action). 3922 * @param[out] actions_rx 3923 * Rx flow actions. 3924 * @param[out] actions_tx 3925 * Tx flow actions.. 3926 * @param[out] pattern_tx 3927 * The pattern items for the Tx flow. 3928 * @param[out] flow_id 3929 * The flow ID connected to this flow. 3930 * 3931 * @return 3932 * 0 on success. 3933 */ 3934 static int 3935 flow_hairpin_split(struct rte_eth_dev *dev, 3936 const struct rte_flow_action actions[], 3937 struct rte_flow_action actions_rx[], 3938 struct rte_flow_action actions_tx[], 3939 struct rte_flow_item pattern_tx[], 3940 uint32_t flow_id) 3941 { 3942 const struct rte_flow_action_raw_encap *raw_encap; 3943 const struct rte_flow_action_raw_decap *raw_decap; 3944 struct mlx5_rte_flow_action_set_tag *set_tag; 3945 struct rte_flow_action *tag_action; 3946 struct mlx5_rte_flow_item_tag *tag_item; 3947 struct rte_flow_item *item; 3948 char *addr; 3949 int encap = 0; 3950 3951 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3952 switch (actions->type) { 3953 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 3954 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 3955 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 3956 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 3957 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: 3958 rte_memcpy(actions_tx, actions, 3959 sizeof(struct rte_flow_action)); 3960 actions_tx++; 3961 break; 3962 case RTE_FLOW_ACTION_TYPE_COUNT: 3963 if (encap) { 3964 rte_memcpy(actions_tx, actions, 3965 sizeof(struct rte_flow_action)); 3966 actions_tx++; 3967 } else { 3968 rte_memcpy(actions_rx, actions, 3969 sizeof(struct rte_flow_action)); 3970 actions_rx++; 3971 } 3972 break; 3973 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 3974 raw_encap = actions->conf; 3975 if (raw_encap->size > 3976 (sizeof(struct rte_flow_item_eth) + 3977 sizeof(struct rte_flow_item_ipv4))) { 3978 memcpy(actions_tx, actions, 3979 sizeof(struct rte_flow_action)); 3980 actions_tx++; 3981 encap = 1; 3982 } else { 3983 rte_memcpy(actions_rx, actions, 3984 sizeof(struct rte_flow_action)); 3985 actions_rx++; 3986 } 3987 break; 3988 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 3989 raw_decap = actions->conf; 3990 if (raw_decap->size < 3991 (sizeof(struct rte_flow_item_eth) + 3992 sizeof(struct rte_flow_item_ipv4))) { 3993 memcpy(actions_tx, actions, 3994 sizeof(struct rte_flow_action)); 3995 actions_tx++; 3996 } else { 3997 rte_memcpy(actions_rx, actions, 3998 sizeof(struct rte_flow_action)); 3999 actions_rx++; 4000 } 4001 break; 4002 default: 4003 rte_memcpy(actions_rx, actions, 4004 sizeof(struct rte_flow_action)); 4005 actions_rx++; 4006 break; 4007 } 4008 } 4009 /* Add set meta action and end action for the Rx flow. */ 4010 tag_action = actions_rx; 4011 tag_action->type = (enum rte_flow_action_type) 4012 MLX5_RTE_FLOW_ACTION_TYPE_TAG; 4013 actions_rx++; 4014 rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action)); 4015 actions_rx++; 4016 set_tag = (void *)actions_rx; 4017 set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL); 4018 MLX5_ASSERT(set_tag->id > REG_NON); 4019 set_tag->data = flow_id; 4020 tag_action->conf = set_tag; 4021 /* Create Tx item list. */ 4022 rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action)); 4023 addr = (void *)&pattern_tx[2]; 4024 item = pattern_tx; 4025 item->type = (enum rte_flow_item_type) 4026 MLX5_RTE_FLOW_ITEM_TYPE_TAG; 4027 tag_item = (void *)addr; 4028 tag_item->data = flow_id; 4029 tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL); 4030 MLX5_ASSERT(set_tag->id > REG_NON); 4031 item->spec = tag_item; 4032 addr += sizeof(struct mlx5_rte_flow_item_tag); 4033 tag_item = (void *)addr; 4034 tag_item->data = UINT32_MAX; 4035 tag_item->id = UINT16_MAX; 4036 item->mask = tag_item; 4037 item->last = NULL; 4038 item++; 4039 item->type = RTE_FLOW_ITEM_TYPE_END; 4040 return 0; 4041 } 4042 4043 /** 4044 * The last stage of splitting chain, just creates the subflow 4045 * without any modification. 4046 * 4047 * @param[in] dev 4048 * Pointer to Ethernet device. 4049 * @param[in] flow 4050 * Parent flow structure pointer. 4051 * @param[in, out] sub_flow 4052 * Pointer to return the created subflow, may be NULL. 4053 * @param[in] attr 4054 * Flow rule attributes. 4055 * @param[in] items 4056 * Pattern specification (list terminated by the END pattern item). 4057 * @param[in] actions 4058 * Associated actions (list terminated by the END action). 4059 * @param[in] flow_split_info 4060 * Pointer to flow split info structure. 4061 * @param[out] error 4062 * Perform verbose error reporting if not NULL. 4063 * @return 4064 * 0 on success, negative value otherwise 4065 */ 4066 static int 4067 flow_create_split_inner(struct rte_eth_dev *dev, 4068 struct rte_flow *flow, 4069 struct mlx5_flow **sub_flow, 4070 const struct rte_flow_attr *attr, 4071 const struct rte_flow_item items[], 4072 const struct rte_flow_action actions[], 4073 struct mlx5_flow_split_info *flow_split_info, 4074 struct rte_flow_error *error) 4075 { 4076 struct mlx5_flow *dev_flow; 4077 4078 dev_flow = flow_drv_prepare(dev, flow, attr, items, actions, 4079 flow_split_info->flow_idx, error); 4080 if (!dev_flow) 4081 return -rte_errno; 4082 dev_flow->flow = flow; 4083 dev_flow->external = flow_split_info->external; 4084 dev_flow->skip_scale = flow_split_info->skip_scale; 4085 /* Subflow object was created, we must include one in the list. */ 4086 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx, 4087 dev_flow->handle, next); 4088 /* 4089 * If dev_flow is as one of the suffix flow, some actions in suffix 4090 * flow may need some user defined item layer flags, and pass the 4091 * Metadate rxq mark flag to suffix flow as well. 4092 */ 4093 if (flow_split_info->prefix_layers) 4094 dev_flow->handle->layers = flow_split_info->prefix_layers; 4095 if (flow_split_info->prefix_mark) 4096 dev_flow->handle->mark = 1; 4097 if (sub_flow) 4098 *sub_flow = dev_flow; 4099 return flow_drv_translate(dev, dev_flow, attr, items, actions, error); 4100 } 4101 4102 /** 4103 * Split the meter flow. 4104 * 4105 * As meter flow will split to three sub flow, other than meter 4106 * action, the other actions make sense to only meter accepts 4107 * the packet. If it need to be dropped, no other additional 4108 * actions should be take. 4109 * 4110 * One kind of special action which decapsulates the L3 tunnel 4111 * header will be in the prefix sub flow, as not to take the 4112 * L3 tunnel header into account. 4113 * 4114 * @param dev 4115 * Pointer to Ethernet device. 4116 * @param[in] items 4117 * Pattern specification (list terminated by the END pattern item). 4118 * @param[out] sfx_items 4119 * Suffix flow match items (list terminated by the END pattern item). 4120 * @param[in] actions 4121 * Associated actions (list terminated by the END action). 4122 * @param[out] actions_sfx 4123 * Suffix flow actions. 4124 * @param[out] actions_pre 4125 * Prefix flow actions. 4126 * @param[out] pattern_sfx 4127 * The pattern items for the suffix flow. 4128 * @param[out] tag_sfx 4129 * Pointer to suffix flow tag. 4130 * 4131 * @return 4132 * 0 on success. 4133 */ 4134 static int 4135 flow_meter_split_prep(struct rte_eth_dev *dev, 4136 const struct rte_flow_item items[], 4137 struct rte_flow_item sfx_items[], 4138 const struct rte_flow_action actions[], 4139 struct rte_flow_action actions_sfx[], 4140 struct rte_flow_action actions_pre[]) 4141 { 4142 struct mlx5_priv *priv = dev->data->dev_private; 4143 struct rte_flow_action *tag_action = NULL; 4144 struct rte_flow_item *tag_item; 4145 struct mlx5_rte_flow_action_set_tag *set_tag; 4146 struct rte_flow_error error; 4147 const struct rte_flow_action_raw_encap *raw_encap; 4148 const struct rte_flow_action_raw_decap *raw_decap; 4149 struct mlx5_rte_flow_item_tag *tag_spec; 4150 struct mlx5_rte_flow_item_tag *tag_mask; 4151 uint32_t tag_id = 0; 4152 bool copy_vlan = false; 4153 4154 /* Prepare the actions for prefix and suffix flow. */ 4155 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4156 struct rte_flow_action **action_cur = NULL; 4157 4158 switch (actions->type) { 4159 case RTE_FLOW_ACTION_TYPE_METER: 4160 /* Add the extra tag action first. */ 4161 tag_action = actions_pre; 4162 tag_action->type = (enum rte_flow_action_type) 4163 MLX5_RTE_FLOW_ACTION_TYPE_TAG; 4164 actions_pre++; 4165 action_cur = &actions_pre; 4166 break; 4167 case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP: 4168 case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP: 4169 action_cur = &actions_pre; 4170 break; 4171 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 4172 raw_encap = actions->conf; 4173 if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE) 4174 action_cur = &actions_pre; 4175 break; 4176 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 4177 raw_decap = actions->conf; 4178 if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE) 4179 action_cur = &actions_pre; 4180 break; 4181 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 4182 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 4183 copy_vlan = true; 4184 break; 4185 default: 4186 break; 4187 } 4188 if (!action_cur) 4189 action_cur = &actions_sfx; 4190 memcpy(*action_cur, actions, sizeof(struct rte_flow_action)); 4191 (*action_cur)++; 4192 } 4193 /* Add end action to the actions. */ 4194 actions_sfx->type = RTE_FLOW_ACTION_TYPE_END; 4195 actions_pre->type = RTE_FLOW_ACTION_TYPE_END; 4196 actions_pre++; 4197 /* Set the tag. */ 4198 set_tag = (void *)actions_pre; 4199 set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error); 4200 mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], 4201 &tag_id); 4202 if (tag_id >= (1 << (sizeof(tag_id) * 8 - MLX5_MTR_COLOR_BITS))) { 4203 DRV_LOG(ERR, "Port %u meter flow id exceed max limit.", 4204 dev->data->port_id); 4205 mlx5_ipool_free(priv->sh->ipool 4206 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], tag_id); 4207 return 0; 4208 } else if (!tag_id) { 4209 return 0; 4210 } 4211 set_tag->data = tag_id << MLX5_MTR_COLOR_BITS; 4212 assert(tag_action); 4213 tag_action->conf = set_tag; 4214 /* Prepare the suffix subflow items. */ 4215 tag_item = sfx_items++; 4216 for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) { 4217 int item_type = items->type; 4218 4219 switch (item_type) { 4220 case RTE_FLOW_ITEM_TYPE_PORT_ID: 4221 memcpy(sfx_items, items, sizeof(*sfx_items)); 4222 sfx_items++; 4223 break; 4224 case RTE_FLOW_ITEM_TYPE_VLAN: 4225 if (copy_vlan) { 4226 memcpy(sfx_items, items, sizeof(*sfx_items)); 4227 /* 4228 * Convert to internal match item, it is used 4229 * for vlan push and set vid. 4230 */ 4231 sfx_items->type = (enum rte_flow_item_type) 4232 MLX5_RTE_FLOW_ITEM_TYPE_VLAN; 4233 sfx_items++; 4234 } 4235 break; 4236 default: 4237 break; 4238 } 4239 } 4240 sfx_items->type = RTE_FLOW_ITEM_TYPE_END; 4241 sfx_items++; 4242 tag_spec = (struct mlx5_rte_flow_item_tag *)sfx_items; 4243 tag_spec->data = tag_id << MLX5_MTR_COLOR_BITS; 4244 tag_spec->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error); 4245 tag_mask = tag_spec + 1; 4246 tag_mask->data = 0xffffff00; 4247 tag_item->type = (enum rte_flow_item_type) 4248 MLX5_RTE_FLOW_ITEM_TYPE_TAG; 4249 tag_item->spec = tag_spec; 4250 tag_item->last = NULL; 4251 tag_item->mask = tag_mask; 4252 return tag_id; 4253 } 4254 4255 /** 4256 * Split action list having QUEUE/RSS for metadata register copy. 4257 * 4258 * Once Q/RSS action is detected in user's action list, the flow action 4259 * should be split in order to copy metadata registers, which will happen in 4260 * RX_CP_TBL like, 4261 * - CQE->flow_tag := reg_c[1] (MARK) 4262 * - CQE->flow_table_metadata (reg_b) := reg_c[0] (META) 4263 * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL. 4264 * This is because the last action of each flow must be a terminal action 4265 * (QUEUE, RSS or DROP). 4266 * 4267 * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is 4268 * stored and kept in the mlx5_flow structure per each sub_flow. 4269 * 4270 * The Q/RSS action is replaced with, 4271 * - SET_TAG, setting the allocated flow ID to reg_c[2]. 4272 * And the following JUMP action is added at the end, 4273 * - JUMP, to RX_CP_TBL. 4274 * 4275 * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by 4276 * flow_create_split_metadata() routine. The flow will look like, 4277 * - If flow ID matches (reg_c[2]), perform Q/RSS. 4278 * 4279 * @param dev 4280 * Pointer to Ethernet device. 4281 * @param[out] split_actions 4282 * Pointer to store split actions to jump to CP_TBL. 4283 * @param[in] actions 4284 * Pointer to the list of original flow actions. 4285 * @param[in] qrss 4286 * Pointer to the Q/RSS action. 4287 * @param[in] actions_n 4288 * Number of original actions. 4289 * @param[out] error 4290 * Perform verbose error reporting if not NULL. 4291 * 4292 * @return 4293 * non-zero unique flow_id on success, otherwise 0 and 4294 * error/rte_error are set. 4295 */ 4296 static uint32_t 4297 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev, 4298 struct rte_flow_action *split_actions, 4299 const struct rte_flow_action *actions, 4300 const struct rte_flow_action *qrss, 4301 int actions_n, struct rte_flow_error *error) 4302 { 4303 struct mlx5_priv *priv = dev->data->dev_private; 4304 struct mlx5_rte_flow_action_set_tag *set_tag; 4305 struct rte_flow_action_jump *jump; 4306 const int qrss_idx = qrss - actions; 4307 uint32_t flow_id = 0; 4308 int ret = 0; 4309 4310 /* 4311 * Given actions will be split 4312 * - Replace QUEUE/RSS action with SET_TAG to set flow ID. 4313 * - Add jump to mreg CP_TBL. 4314 * As a result, there will be one more action. 4315 */ 4316 ++actions_n; 4317 memcpy(split_actions, actions, sizeof(*split_actions) * actions_n); 4318 set_tag = (void *)(split_actions + actions_n); 4319 /* 4320 * If tag action is not set to void(it means we are not the meter 4321 * suffix flow), add the tag action. Since meter suffix flow already 4322 * has the tag added. 4323 */ 4324 if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) { 4325 /* 4326 * Allocate the new subflow ID. This one is unique within 4327 * device and not shared with representors. Otherwise, 4328 * we would have to resolve multi-thread access synch 4329 * issue. Each flow on the shared device is appended 4330 * with source vport identifier, so the resulting 4331 * flows will be unique in the shared (by master and 4332 * representors) domain even if they have coinciding 4333 * IDs. 4334 */ 4335 mlx5_ipool_malloc(priv->sh->ipool 4336 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id); 4337 if (!flow_id) 4338 return rte_flow_error_set(error, ENOMEM, 4339 RTE_FLOW_ERROR_TYPE_ACTION, 4340 NULL, "can't allocate id " 4341 "for split Q/RSS subflow"); 4342 /* Internal SET_TAG action to set flow ID. */ 4343 *set_tag = (struct mlx5_rte_flow_action_set_tag){ 4344 .data = flow_id, 4345 }; 4346 ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error); 4347 if (ret < 0) 4348 return ret; 4349 set_tag->id = ret; 4350 /* Construct new actions array. */ 4351 /* Replace QUEUE/RSS action. */ 4352 split_actions[qrss_idx] = (struct rte_flow_action){ 4353 .type = (enum rte_flow_action_type) 4354 MLX5_RTE_FLOW_ACTION_TYPE_TAG, 4355 .conf = set_tag, 4356 }; 4357 } 4358 /* JUMP action to jump to mreg copy table (CP_TBL). */ 4359 jump = (void *)(set_tag + 1); 4360 *jump = (struct rte_flow_action_jump){ 4361 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP, 4362 }; 4363 split_actions[actions_n - 2] = (struct rte_flow_action){ 4364 .type = RTE_FLOW_ACTION_TYPE_JUMP, 4365 .conf = jump, 4366 }; 4367 split_actions[actions_n - 1] = (struct rte_flow_action){ 4368 .type = RTE_FLOW_ACTION_TYPE_END, 4369 }; 4370 return flow_id; 4371 } 4372 4373 /** 4374 * Extend the given action list for Tx metadata copy. 4375 * 4376 * Copy the given action list to the ext_actions and add flow metadata register 4377 * copy action in order to copy reg_a set by WQE to reg_c[0]. 4378 * 4379 * @param[out] ext_actions 4380 * Pointer to the extended action list. 4381 * @param[in] actions 4382 * Pointer to the list of actions. 4383 * @param[in] actions_n 4384 * Number of actions in the list. 4385 * @param[out] error 4386 * Perform verbose error reporting if not NULL. 4387 * @param[in] encap_idx 4388 * The encap action inndex. 4389 * 4390 * @return 4391 * 0 on success, negative value otherwise 4392 */ 4393 static int 4394 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev, 4395 struct rte_flow_action *ext_actions, 4396 const struct rte_flow_action *actions, 4397 int actions_n, struct rte_flow_error *error, 4398 int encap_idx) 4399 { 4400 struct mlx5_flow_action_copy_mreg *cp_mreg = 4401 (struct mlx5_flow_action_copy_mreg *) 4402 (ext_actions + actions_n + 1); 4403 int ret; 4404 4405 ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error); 4406 if (ret < 0) 4407 return ret; 4408 cp_mreg->dst = ret; 4409 ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error); 4410 if (ret < 0) 4411 return ret; 4412 cp_mreg->src = ret; 4413 if (encap_idx != 0) 4414 memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx); 4415 if (encap_idx == actions_n - 1) { 4416 ext_actions[actions_n - 1] = (struct rte_flow_action){ 4417 .type = (enum rte_flow_action_type) 4418 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 4419 .conf = cp_mreg, 4420 }; 4421 ext_actions[actions_n] = (struct rte_flow_action){ 4422 .type = RTE_FLOW_ACTION_TYPE_END, 4423 }; 4424 } else { 4425 ext_actions[encap_idx] = (struct rte_flow_action){ 4426 .type = (enum rte_flow_action_type) 4427 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 4428 .conf = cp_mreg, 4429 }; 4430 memcpy(ext_actions + encap_idx + 1, actions + encap_idx, 4431 sizeof(*ext_actions) * (actions_n - encap_idx)); 4432 } 4433 return 0; 4434 } 4435 4436 /** 4437 * Check the match action from the action list. 4438 * 4439 * @param[in] actions 4440 * Pointer to the list of actions. 4441 * @param[in] attr 4442 * Flow rule attributes. 4443 * @param[in] action 4444 * The action to be check if exist. 4445 * @param[out] match_action_pos 4446 * Pointer to the position of the matched action if exists, otherwise is -1. 4447 * @param[out] qrss_action_pos 4448 * Pointer to the position of the Queue/RSS action if exists, otherwise is -1. 4449 * 4450 * @return 4451 * > 0 the total number of actions. 4452 * 0 if not found match action in action list. 4453 */ 4454 static int 4455 flow_check_match_action(const struct rte_flow_action actions[], 4456 const struct rte_flow_attr *attr, 4457 enum rte_flow_action_type action, 4458 int *match_action_pos, int *qrss_action_pos) 4459 { 4460 const struct rte_flow_action_sample *sample; 4461 int actions_n = 0; 4462 int jump_flag = 0; 4463 uint32_t ratio = 0; 4464 int sub_type = 0; 4465 int flag = 0; 4466 4467 *match_action_pos = -1; 4468 *qrss_action_pos = -1; 4469 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4470 if (actions->type == action) { 4471 flag = 1; 4472 *match_action_pos = actions_n; 4473 } 4474 if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE || 4475 actions->type == RTE_FLOW_ACTION_TYPE_RSS) 4476 *qrss_action_pos = actions_n; 4477 if (actions->type == RTE_FLOW_ACTION_TYPE_JUMP) 4478 jump_flag = 1; 4479 if (actions->type == RTE_FLOW_ACTION_TYPE_SAMPLE) { 4480 sample = actions->conf; 4481 ratio = sample->ratio; 4482 sub_type = ((const struct rte_flow_action *) 4483 (sample->actions))->type; 4484 } 4485 actions_n++; 4486 } 4487 if (flag && action == RTE_FLOW_ACTION_TYPE_SAMPLE && attr->transfer) { 4488 if (ratio == 1) { 4489 /* JUMP Action not support for Mirroring; 4490 * Mirroring support multi-destination; 4491 */ 4492 if (!jump_flag && sub_type != RTE_FLOW_ACTION_TYPE_END) 4493 flag = 0; 4494 } 4495 } 4496 /* Count RTE_FLOW_ACTION_TYPE_END. */ 4497 return flag ? actions_n + 1 : 0; 4498 } 4499 4500 #define SAMPLE_SUFFIX_ITEM 2 4501 4502 /** 4503 * Split the sample flow. 4504 * 4505 * As sample flow will split to two sub flow, sample flow with 4506 * sample action, the other actions will move to new suffix flow. 4507 * 4508 * Also add unique tag id with tag action in the sample flow, 4509 * the same tag id will be as match in the suffix flow. 4510 * 4511 * @param dev 4512 * Pointer to Ethernet device. 4513 * @param[in] fdb_tx 4514 * FDB egress flow flag. 4515 * @param[out] sfx_items 4516 * Suffix flow match items (list terminated by the END pattern item). 4517 * @param[in] actions 4518 * Associated actions (list terminated by the END action). 4519 * @param[out] actions_sfx 4520 * Suffix flow actions. 4521 * @param[out] actions_pre 4522 * Prefix flow actions. 4523 * @param[in] actions_n 4524 * The total number of actions. 4525 * @param[in] sample_action_pos 4526 * The sample action position. 4527 * @param[in] qrss_action_pos 4528 * The Queue/RSS action position. 4529 * @param[out] error 4530 * Perform verbose error reporting if not NULL. 4531 * 4532 * @return 4533 * 0 on success, or unique flow_id, a negative errno value 4534 * otherwise and rte_errno is set. 4535 */ 4536 static int 4537 flow_sample_split_prep(struct rte_eth_dev *dev, 4538 uint32_t fdb_tx, 4539 struct rte_flow_item sfx_items[], 4540 const struct rte_flow_action actions[], 4541 struct rte_flow_action actions_sfx[], 4542 struct rte_flow_action actions_pre[], 4543 int actions_n, 4544 int sample_action_pos, 4545 int qrss_action_pos, 4546 struct rte_flow_error *error) 4547 { 4548 struct mlx5_priv *priv = dev->data->dev_private; 4549 struct mlx5_rte_flow_action_set_tag *set_tag; 4550 struct mlx5_rte_flow_item_tag *tag_spec; 4551 struct mlx5_rte_flow_item_tag *tag_mask; 4552 uint32_t tag_id = 0; 4553 int index; 4554 int ret; 4555 4556 if (sample_action_pos < 0) 4557 return rte_flow_error_set(error, EINVAL, 4558 RTE_FLOW_ERROR_TYPE_ACTION, 4559 NULL, "invalid position of sample " 4560 "action in list"); 4561 if (!fdb_tx) { 4562 /* Prepare the prefix tag action. */ 4563 set_tag = (void *)(actions_pre + actions_n + 1); 4564 ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error); 4565 if (ret < 0) 4566 return ret; 4567 set_tag->id = ret; 4568 mlx5_ipool_malloc(priv->sh->ipool 4569 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id); 4570 set_tag->data = tag_id; 4571 /* Prepare the suffix subflow items. */ 4572 tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM); 4573 tag_spec->data = tag_id; 4574 tag_spec->id = set_tag->id; 4575 tag_mask = tag_spec + 1; 4576 tag_mask->data = UINT32_MAX; 4577 sfx_items[0] = (struct rte_flow_item){ 4578 .type = (enum rte_flow_item_type) 4579 MLX5_RTE_FLOW_ITEM_TYPE_TAG, 4580 .spec = tag_spec, 4581 .last = NULL, 4582 .mask = tag_mask, 4583 }; 4584 sfx_items[1] = (struct rte_flow_item){ 4585 .type = (enum rte_flow_item_type) 4586 RTE_FLOW_ITEM_TYPE_END, 4587 }; 4588 } 4589 /* Prepare the actions for prefix and suffix flow. */ 4590 if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) { 4591 index = qrss_action_pos; 4592 /* Put the preceding the Queue/RSS action into prefix flow. */ 4593 if (index != 0) 4594 memcpy(actions_pre, actions, 4595 sizeof(struct rte_flow_action) * index); 4596 /* Put others preceding the sample action into prefix flow. */ 4597 if (sample_action_pos > index + 1) 4598 memcpy(actions_pre + index, actions + index + 1, 4599 sizeof(struct rte_flow_action) * 4600 (sample_action_pos - index - 1)); 4601 index = sample_action_pos - 1; 4602 /* Put Queue/RSS action into Suffix flow. */ 4603 memcpy(actions_sfx, actions + qrss_action_pos, 4604 sizeof(struct rte_flow_action)); 4605 actions_sfx++; 4606 } else { 4607 index = sample_action_pos; 4608 if (index != 0) 4609 memcpy(actions_pre, actions, 4610 sizeof(struct rte_flow_action) * index); 4611 } 4612 /* Add the extra tag action for NIC-RX and E-Switch ingress. */ 4613 if (!fdb_tx) { 4614 actions_pre[index++] = 4615 (struct rte_flow_action){ 4616 .type = (enum rte_flow_action_type) 4617 MLX5_RTE_FLOW_ACTION_TYPE_TAG, 4618 .conf = set_tag, 4619 }; 4620 } 4621 memcpy(actions_pre + index, actions + sample_action_pos, 4622 sizeof(struct rte_flow_action)); 4623 index += 1; 4624 actions_pre[index] = (struct rte_flow_action){ 4625 .type = (enum rte_flow_action_type) 4626 RTE_FLOW_ACTION_TYPE_END, 4627 }; 4628 /* Put the actions after sample into Suffix flow. */ 4629 memcpy(actions_sfx, actions + sample_action_pos + 1, 4630 sizeof(struct rte_flow_action) * 4631 (actions_n - sample_action_pos - 1)); 4632 return tag_id; 4633 } 4634 4635 /** 4636 * The splitting for metadata feature. 4637 * 4638 * - Q/RSS action on NIC Rx should be split in order to pass by 4639 * the mreg copy table (RX_CP_TBL) and then it jumps to the 4640 * action table (RX_ACT_TBL) which has the split Q/RSS action. 4641 * 4642 * - All the actions on NIC Tx should have a mreg copy action to 4643 * copy reg_a from WQE to reg_c[0]. 4644 * 4645 * @param dev 4646 * Pointer to Ethernet device. 4647 * @param[in] flow 4648 * Parent flow structure pointer. 4649 * @param[in] attr 4650 * Flow rule attributes. 4651 * @param[in] items 4652 * Pattern specification (list terminated by the END pattern item). 4653 * @param[in] actions 4654 * Associated actions (list terminated by the END action). 4655 * @param[in] flow_split_info 4656 * Pointer to flow split info structure. 4657 * @param[out] error 4658 * Perform verbose error reporting if not NULL. 4659 * @return 4660 * 0 on success, negative value otherwise 4661 */ 4662 static int 4663 flow_create_split_metadata(struct rte_eth_dev *dev, 4664 struct rte_flow *flow, 4665 const struct rte_flow_attr *attr, 4666 const struct rte_flow_item items[], 4667 const struct rte_flow_action actions[], 4668 struct mlx5_flow_split_info *flow_split_info, 4669 struct rte_flow_error *error) 4670 { 4671 struct mlx5_priv *priv = dev->data->dev_private; 4672 struct mlx5_dev_config *config = &priv->config; 4673 const struct rte_flow_action *qrss = NULL; 4674 struct rte_flow_action *ext_actions = NULL; 4675 struct mlx5_flow *dev_flow = NULL; 4676 uint32_t qrss_id = 0; 4677 int mtr_sfx = 0; 4678 size_t act_size; 4679 int actions_n; 4680 int encap_idx; 4681 int ret; 4682 4683 /* Check whether extensive metadata feature is engaged. */ 4684 if (!config->dv_flow_en || 4685 config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY || 4686 !mlx5_flow_ext_mreg_supported(dev)) 4687 return flow_create_split_inner(dev, flow, NULL, attr, items, 4688 actions, flow_split_info, error); 4689 actions_n = flow_parse_metadata_split_actions_info(actions, &qrss, 4690 &encap_idx); 4691 if (qrss) { 4692 /* Exclude hairpin flows from splitting. */ 4693 if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) { 4694 const struct rte_flow_action_queue *queue; 4695 4696 queue = qrss->conf; 4697 if (mlx5_rxq_get_type(dev, queue->index) == 4698 MLX5_RXQ_TYPE_HAIRPIN) 4699 qrss = NULL; 4700 } else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) { 4701 const struct rte_flow_action_rss *rss; 4702 4703 rss = qrss->conf; 4704 if (mlx5_rxq_get_type(dev, rss->queue[0]) == 4705 MLX5_RXQ_TYPE_HAIRPIN) 4706 qrss = NULL; 4707 } 4708 } 4709 if (qrss) { 4710 /* Check if it is in meter suffix table. */ 4711 mtr_sfx = attr->group == (attr->transfer ? 4712 (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) : 4713 MLX5_FLOW_TABLE_LEVEL_SUFFIX); 4714 /* 4715 * Q/RSS action on NIC Rx should be split in order to pass by 4716 * the mreg copy table (RX_CP_TBL) and then it jumps to the 4717 * action table (RX_ACT_TBL) which has the split Q/RSS action. 4718 */ 4719 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) + 4720 sizeof(struct rte_flow_action_set_tag) + 4721 sizeof(struct rte_flow_action_jump); 4722 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0, 4723 SOCKET_ID_ANY); 4724 if (!ext_actions) 4725 return rte_flow_error_set(error, ENOMEM, 4726 RTE_FLOW_ERROR_TYPE_ACTION, 4727 NULL, "no memory to split " 4728 "metadata flow"); 4729 /* 4730 * If we are the suffix flow of meter, tag already exist. 4731 * Set the tag action to void. 4732 */ 4733 if (mtr_sfx) 4734 ext_actions[qrss - actions].type = 4735 RTE_FLOW_ACTION_TYPE_VOID; 4736 else 4737 ext_actions[qrss - actions].type = 4738 (enum rte_flow_action_type) 4739 MLX5_RTE_FLOW_ACTION_TYPE_TAG; 4740 /* 4741 * Create the new actions list with removed Q/RSS action 4742 * and appended set tag and jump to register copy table 4743 * (RX_CP_TBL). We should preallocate unique tag ID here 4744 * in advance, because it is needed for set tag action. 4745 */ 4746 qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions, 4747 qrss, actions_n, error); 4748 if (!mtr_sfx && !qrss_id) { 4749 ret = -rte_errno; 4750 goto exit; 4751 } 4752 } else if (attr->egress && !attr->transfer) { 4753 /* 4754 * All the actions on NIC Tx should have a metadata register 4755 * copy action to copy reg_a from WQE to reg_c[meta] 4756 */ 4757 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) + 4758 sizeof(struct mlx5_flow_action_copy_mreg); 4759 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0, 4760 SOCKET_ID_ANY); 4761 if (!ext_actions) 4762 return rte_flow_error_set(error, ENOMEM, 4763 RTE_FLOW_ERROR_TYPE_ACTION, 4764 NULL, "no memory to split " 4765 "metadata flow"); 4766 /* Create the action list appended with copy register. */ 4767 ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions, 4768 actions_n, error, encap_idx); 4769 if (ret < 0) 4770 goto exit; 4771 } 4772 /* Add the unmodified original or prefix subflow. */ 4773 ret = flow_create_split_inner(dev, flow, &dev_flow, attr, 4774 items, ext_actions ? ext_actions : 4775 actions, flow_split_info, error); 4776 if (ret < 0) 4777 goto exit; 4778 MLX5_ASSERT(dev_flow); 4779 if (qrss) { 4780 const struct rte_flow_attr q_attr = { 4781 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP, 4782 .ingress = 1, 4783 }; 4784 /* Internal PMD action to set register. */ 4785 struct mlx5_rte_flow_item_tag q_tag_spec = { 4786 .data = qrss_id, 4787 .id = REG_NON, 4788 }; 4789 struct rte_flow_item q_items[] = { 4790 { 4791 .type = (enum rte_flow_item_type) 4792 MLX5_RTE_FLOW_ITEM_TYPE_TAG, 4793 .spec = &q_tag_spec, 4794 .last = NULL, 4795 .mask = NULL, 4796 }, 4797 { 4798 .type = RTE_FLOW_ITEM_TYPE_END, 4799 }, 4800 }; 4801 struct rte_flow_action q_actions[] = { 4802 { 4803 .type = qrss->type, 4804 .conf = qrss->conf, 4805 }, 4806 { 4807 .type = RTE_FLOW_ACTION_TYPE_END, 4808 }, 4809 }; 4810 uint64_t layers = flow_get_prefix_layer_flags(dev_flow); 4811 4812 /* 4813 * Configure the tag item only if there is no meter subflow. 4814 * Since tag is already marked in the meter suffix subflow 4815 * we can just use the meter suffix items as is. 4816 */ 4817 if (qrss_id) { 4818 /* Not meter subflow. */ 4819 MLX5_ASSERT(!mtr_sfx); 4820 /* 4821 * Put unique id in prefix flow due to it is destroyed 4822 * after suffix flow and id will be freed after there 4823 * is no actual flows with this id and identifier 4824 * reallocation becomes possible (for example, for 4825 * other flows in other threads). 4826 */ 4827 dev_flow->handle->split_flow_id = qrss_id; 4828 ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, 4829 error); 4830 if (ret < 0) 4831 goto exit; 4832 q_tag_spec.id = ret; 4833 } 4834 dev_flow = NULL; 4835 /* Add suffix subflow to execute Q/RSS. */ 4836 flow_split_info->prefix_layers = layers; 4837 flow_split_info->prefix_mark = 0; 4838 ret = flow_create_split_inner(dev, flow, &dev_flow, 4839 &q_attr, mtr_sfx ? items : 4840 q_items, q_actions, 4841 flow_split_info, error); 4842 if (ret < 0) 4843 goto exit; 4844 /* qrss ID should be freed if failed. */ 4845 qrss_id = 0; 4846 MLX5_ASSERT(dev_flow); 4847 } 4848 4849 exit: 4850 /* 4851 * We do not destroy the partially created sub_flows in case of error. 4852 * These ones are included into parent flow list and will be destroyed 4853 * by flow_drv_destroy. 4854 */ 4855 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], 4856 qrss_id); 4857 mlx5_free(ext_actions); 4858 return ret; 4859 } 4860 4861 /** 4862 * The splitting for meter feature. 4863 * 4864 * - The meter flow will be split to two flows as prefix and 4865 * suffix flow. The packets make sense only it pass the prefix 4866 * meter action. 4867 * 4868 * - Reg_C_5 is used for the packet to match betweend prefix and 4869 * suffix flow. 4870 * 4871 * @param dev 4872 * Pointer to Ethernet device. 4873 * @param[in] flow 4874 * Parent flow structure pointer. 4875 * @param[in] attr 4876 * Flow rule attributes. 4877 * @param[in] items 4878 * Pattern specification (list terminated by the END pattern item). 4879 * @param[in] actions 4880 * Associated actions (list terminated by the END action). 4881 * @param[in] flow_split_info 4882 * Pointer to flow split info structure. 4883 * @param[out] error 4884 * Perform verbose error reporting if not NULL. 4885 * @return 4886 * 0 on success, negative value otherwise 4887 */ 4888 static int 4889 flow_create_split_meter(struct rte_eth_dev *dev, 4890 struct rte_flow *flow, 4891 const struct rte_flow_attr *attr, 4892 const struct rte_flow_item items[], 4893 const struct rte_flow_action actions[], 4894 struct mlx5_flow_split_info *flow_split_info, 4895 struct rte_flow_error *error) 4896 { 4897 struct mlx5_priv *priv = dev->data->dev_private; 4898 struct rte_flow_action *sfx_actions = NULL; 4899 struct rte_flow_action *pre_actions = NULL; 4900 struct rte_flow_item *sfx_items = NULL; 4901 struct mlx5_flow *dev_flow = NULL; 4902 struct rte_flow_attr sfx_attr = *attr; 4903 uint32_t mtr = 0; 4904 uint32_t mtr_tag_id = 0; 4905 size_t act_size; 4906 size_t item_size; 4907 int actions_n = 0; 4908 int ret; 4909 4910 if (priv->mtr_en) 4911 actions_n = flow_check_meter_action(actions, &mtr); 4912 if (mtr) { 4913 /* The five prefix actions: meter, decap, encap, tag, end. */ 4914 act_size = sizeof(struct rte_flow_action) * (actions_n + 5) + 4915 sizeof(struct mlx5_rte_flow_action_set_tag); 4916 /* tag, vlan, port id, end. */ 4917 #define METER_SUFFIX_ITEM 4 4918 item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM + 4919 sizeof(struct mlx5_rte_flow_item_tag) * 2; 4920 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size), 4921 0, SOCKET_ID_ANY); 4922 if (!sfx_actions) 4923 return rte_flow_error_set(error, ENOMEM, 4924 RTE_FLOW_ERROR_TYPE_ACTION, 4925 NULL, "no memory to split " 4926 "meter flow"); 4927 sfx_items = (struct rte_flow_item *)((char *)sfx_actions + 4928 act_size); 4929 pre_actions = sfx_actions + actions_n; 4930 mtr_tag_id = flow_meter_split_prep(dev, items, sfx_items, 4931 actions, sfx_actions, 4932 pre_actions); 4933 if (!mtr_tag_id) { 4934 ret = -rte_errno; 4935 goto exit; 4936 } 4937 /* Add the prefix subflow. */ 4938 flow_split_info->prefix_mark = 0; 4939 ret = flow_create_split_inner(dev, flow, &dev_flow, 4940 attr, items, pre_actions, 4941 flow_split_info, error); 4942 if (ret) { 4943 ret = -rte_errno; 4944 goto exit; 4945 } 4946 dev_flow->handle->split_flow_id = mtr_tag_id; 4947 /* Setting the sfx group atrr. */ 4948 sfx_attr.group = sfx_attr.transfer ? 4949 (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) : 4950 MLX5_FLOW_TABLE_LEVEL_SUFFIX; 4951 flow_split_info->prefix_layers = 4952 flow_get_prefix_layer_flags(dev_flow); 4953 flow_split_info->prefix_mark = dev_flow->handle->mark; 4954 } 4955 /* Add the prefix subflow. */ 4956 ret = flow_create_split_metadata(dev, flow, 4957 &sfx_attr, sfx_items ? 4958 sfx_items : items, 4959 sfx_actions ? sfx_actions : actions, 4960 flow_split_info, error); 4961 exit: 4962 if (sfx_actions) 4963 mlx5_free(sfx_actions); 4964 return ret; 4965 } 4966 4967 /** 4968 * The splitting for sample feature. 4969 * 4970 * Once Sample action is detected in the action list, the flow actions should 4971 * be split into prefix sub flow and suffix sub flow. 4972 * 4973 * The original items remain in the prefix sub flow, all actions preceding the 4974 * sample action and the sample action itself will be copied to the prefix 4975 * sub flow, the actions following the sample action will be copied to the 4976 * suffix sub flow, Queue action always be located in the suffix sub flow. 4977 * 4978 * In order to make the packet from prefix sub flow matches with suffix sub 4979 * flow, an extra tag action be added into prefix sub flow, and the suffix sub 4980 * flow uses tag item with the unique flow id. 4981 * 4982 * @param dev 4983 * Pointer to Ethernet device. 4984 * @param[in] flow 4985 * Parent flow structure pointer. 4986 * @param[in] attr 4987 * Flow rule attributes. 4988 * @param[in] items 4989 * Pattern specification (list terminated by the END pattern item). 4990 * @param[in] actions 4991 * Associated actions (list terminated by the END action). 4992 * @param[in] flow_split_info 4993 * Pointer to flow split info structure. 4994 * @param[out] error 4995 * Perform verbose error reporting if not NULL. 4996 * @return 4997 * 0 on success, negative value otherwise 4998 */ 4999 static int 5000 flow_create_split_sample(struct rte_eth_dev *dev, 5001 struct rte_flow *flow, 5002 const struct rte_flow_attr *attr, 5003 const struct rte_flow_item items[], 5004 const struct rte_flow_action actions[], 5005 struct mlx5_flow_split_info *flow_split_info, 5006 struct rte_flow_error *error) 5007 { 5008 struct mlx5_priv *priv = dev->data->dev_private; 5009 struct rte_flow_action *sfx_actions = NULL; 5010 struct rte_flow_action *pre_actions = NULL; 5011 struct rte_flow_item *sfx_items = NULL; 5012 struct mlx5_flow *dev_flow = NULL; 5013 struct rte_flow_attr sfx_attr = *attr; 5014 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 5015 struct mlx5_flow_dv_sample_resource *sample_res; 5016 struct mlx5_flow_tbl_data_entry *sfx_tbl_data; 5017 struct mlx5_flow_tbl_resource *sfx_tbl; 5018 union mlx5_flow_tbl_key sfx_table_key; 5019 #endif 5020 size_t act_size; 5021 size_t item_size; 5022 uint32_t fdb_tx = 0; 5023 int32_t tag_id = 0; 5024 int actions_n = 0; 5025 int sample_action_pos; 5026 int qrss_action_pos; 5027 int ret = 0; 5028 5029 if (priv->sampler_en) 5030 actions_n = flow_check_match_action(actions, attr, 5031 RTE_FLOW_ACTION_TYPE_SAMPLE, 5032 &sample_action_pos, &qrss_action_pos); 5033 if (actions_n) { 5034 /* The prefix actions must includes sample, tag, end. */ 5035 act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1) 5036 + sizeof(struct mlx5_rte_flow_action_set_tag); 5037 item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM + 5038 sizeof(struct mlx5_rte_flow_item_tag) * 2; 5039 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + 5040 item_size), 0, SOCKET_ID_ANY); 5041 if (!sfx_actions) 5042 return rte_flow_error_set(error, ENOMEM, 5043 RTE_FLOW_ERROR_TYPE_ACTION, 5044 NULL, "no memory to split " 5045 "sample flow"); 5046 /* The representor_id is -1 for uplink. */ 5047 fdb_tx = (attr->transfer && priv->representor_id != -1); 5048 if (!fdb_tx) 5049 sfx_items = (struct rte_flow_item *)((char *)sfx_actions 5050 + act_size); 5051 pre_actions = sfx_actions + actions_n; 5052 tag_id = flow_sample_split_prep(dev, fdb_tx, sfx_items, 5053 actions, sfx_actions, 5054 pre_actions, actions_n, 5055 sample_action_pos, 5056 qrss_action_pos, error); 5057 if (tag_id < 0 || (!fdb_tx && !tag_id)) { 5058 ret = -rte_errno; 5059 goto exit; 5060 } 5061 /* Add the prefix subflow. */ 5062 ret = flow_create_split_inner(dev, flow, &dev_flow, attr, 5063 items, pre_actions, 5064 flow_split_info, error); 5065 if (ret) { 5066 ret = -rte_errno; 5067 goto exit; 5068 } 5069 dev_flow->handle->split_flow_id = tag_id; 5070 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 5071 /* Set the sfx group attr. */ 5072 sample_res = (struct mlx5_flow_dv_sample_resource *) 5073 dev_flow->dv.sample_res; 5074 sfx_tbl = (struct mlx5_flow_tbl_resource *) 5075 sample_res->normal_path_tbl; 5076 sfx_tbl_data = container_of(sfx_tbl, 5077 struct mlx5_flow_tbl_data_entry, tbl); 5078 sfx_table_key.v64 = sfx_tbl_data->entry.key; 5079 sfx_attr.group = sfx_attr.transfer ? 5080 (sfx_table_key.table_id - 1) : 5081 sfx_table_key.table_id; 5082 flow_split_info->prefix_layers = 5083 flow_get_prefix_layer_flags(dev_flow); 5084 flow_split_info->prefix_mark = dev_flow->handle->mark; 5085 /* Suffix group level already be scaled with factor, set 5086 * skip_scale to 1 to avoid scale again in translation. 5087 */ 5088 flow_split_info->skip_scale = 1; 5089 #endif 5090 } 5091 /* Add the suffix subflow. */ 5092 ret = flow_create_split_meter(dev, flow, &sfx_attr, 5093 sfx_items ? sfx_items : items, 5094 sfx_actions ? sfx_actions : actions, 5095 flow_split_info, error); 5096 exit: 5097 if (sfx_actions) 5098 mlx5_free(sfx_actions); 5099 return ret; 5100 } 5101 5102 /** 5103 * Split the flow to subflow set. The splitters might be linked 5104 * in the chain, like this: 5105 * flow_create_split_outer() calls: 5106 * flow_create_split_meter() calls: 5107 * flow_create_split_metadata(meter_subflow_0) calls: 5108 * flow_create_split_inner(metadata_subflow_0) 5109 * flow_create_split_inner(metadata_subflow_1) 5110 * flow_create_split_inner(metadata_subflow_2) 5111 * flow_create_split_metadata(meter_subflow_1) calls: 5112 * flow_create_split_inner(metadata_subflow_0) 5113 * flow_create_split_inner(metadata_subflow_1) 5114 * flow_create_split_inner(metadata_subflow_2) 5115 * 5116 * This provide flexible way to add new levels of flow splitting. 5117 * The all of successfully created subflows are included to the 5118 * parent flow dev_flow list. 5119 * 5120 * @param dev 5121 * Pointer to Ethernet device. 5122 * @param[in] flow 5123 * Parent flow structure pointer. 5124 * @param[in] attr 5125 * Flow rule attributes. 5126 * @param[in] items 5127 * Pattern specification (list terminated by the END pattern item). 5128 * @param[in] actions 5129 * Associated actions (list terminated by the END action). 5130 * @param[in] flow_split_info 5131 * Pointer to flow split info structure. 5132 * @param[out] error 5133 * Perform verbose error reporting if not NULL. 5134 * @return 5135 * 0 on success, negative value otherwise 5136 */ 5137 static int 5138 flow_create_split_outer(struct rte_eth_dev *dev, 5139 struct rte_flow *flow, 5140 const struct rte_flow_attr *attr, 5141 const struct rte_flow_item items[], 5142 const struct rte_flow_action actions[], 5143 struct mlx5_flow_split_info *flow_split_info, 5144 struct rte_flow_error *error) 5145 { 5146 int ret; 5147 5148 ret = flow_create_split_sample(dev, flow, attr, items, 5149 actions, flow_split_info, error); 5150 MLX5_ASSERT(ret <= 0); 5151 return ret; 5152 } 5153 5154 static struct mlx5_flow_tunnel * 5155 flow_tunnel_from_rule(struct rte_eth_dev *dev, 5156 const struct rte_flow_attr *attr, 5157 const struct rte_flow_item items[], 5158 const struct rte_flow_action actions[]) 5159 { 5160 struct mlx5_flow_tunnel *tunnel; 5161 5162 #pragma GCC diagnostic push 5163 #pragma GCC diagnostic ignored "-Wcast-qual" 5164 if (is_flow_tunnel_match_rule(dev, attr, items, actions)) 5165 tunnel = (struct mlx5_flow_tunnel *)items[0].spec; 5166 else if (is_flow_tunnel_steer_rule(dev, attr, items, actions)) 5167 tunnel = (struct mlx5_flow_tunnel *)actions[0].conf; 5168 else 5169 tunnel = NULL; 5170 #pragma GCC diagnostic pop 5171 5172 return tunnel; 5173 } 5174 5175 /** 5176 * Adjust flow RSS workspace if needed. 5177 * 5178 * @param wks 5179 * Pointer to thread flow work space. 5180 * @param rss_desc 5181 * Pointer to RSS descriptor. 5182 * @param[in] nrssq_num 5183 * New RSS queue number. 5184 * 5185 * @return 5186 * 0 on success, -1 otherwise and rte_errno is set. 5187 */ 5188 static int 5189 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks, 5190 struct mlx5_flow_rss_desc *rss_desc, 5191 uint32_t nrssq_num) 5192 { 5193 if (likely(nrssq_num <= wks->rssq_num)) 5194 return 0; 5195 rss_desc->queue = realloc(rss_desc->queue, 5196 sizeof(*rss_desc->queue) * RTE_ALIGN(nrssq_num, 2)); 5197 if (!rss_desc->queue) { 5198 rte_errno = ENOMEM; 5199 return -1; 5200 } 5201 wks->rssq_num = RTE_ALIGN(nrssq_num, 2); 5202 return 0; 5203 } 5204 5205 /** 5206 * Create a flow and add it to @p list. 5207 * 5208 * @param dev 5209 * Pointer to Ethernet device. 5210 * @param list 5211 * Pointer to a TAILQ flow list. If this parameter NULL, 5212 * no list insertion occurred, flow is just created, 5213 * this is caller's responsibility to track the 5214 * created flow. 5215 * @param[in] attr 5216 * Flow rule attributes. 5217 * @param[in] items 5218 * Pattern specification (list terminated by the END pattern item). 5219 * @param[in] actions 5220 * Associated actions (list terminated by the END action). 5221 * @param[in] external 5222 * This flow rule is created by request external to PMD. 5223 * @param[out] error 5224 * Perform verbose error reporting if not NULL. 5225 * 5226 * @return 5227 * A flow index on success, 0 otherwise and rte_errno is set. 5228 */ 5229 static uint32_t 5230 flow_list_create(struct rte_eth_dev *dev, uint32_t *list, 5231 const struct rte_flow_attr *attr, 5232 const struct rte_flow_item items[], 5233 const struct rte_flow_action original_actions[], 5234 bool external, struct rte_flow_error *error) 5235 { 5236 struct mlx5_priv *priv = dev->data->dev_private; 5237 struct rte_flow *flow = NULL; 5238 struct mlx5_flow *dev_flow; 5239 const struct rte_flow_action_rss *rss; 5240 struct mlx5_translated_shared_action 5241 shared_actions[MLX5_MAX_SHARED_ACTIONS]; 5242 int shared_actions_n = MLX5_MAX_SHARED_ACTIONS; 5243 union { 5244 struct mlx5_flow_expand_rss buf; 5245 uint8_t buffer[2048]; 5246 } expand_buffer; 5247 union { 5248 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS]; 5249 uint8_t buffer[2048]; 5250 } actions_rx; 5251 union { 5252 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS]; 5253 uint8_t buffer[2048]; 5254 } actions_hairpin_tx; 5255 union { 5256 struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS]; 5257 uint8_t buffer[2048]; 5258 } items_tx; 5259 struct mlx5_flow_expand_rss *buf = &expand_buffer.buf; 5260 struct mlx5_flow_rss_desc *rss_desc; 5261 const struct rte_flow_action *p_actions_rx; 5262 uint32_t i; 5263 uint32_t idx = 0; 5264 int hairpin_flow; 5265 struct rte_flow_attr attr_tx = { .priority = 0 }; 5266 const struct rte_flow_action *actions; 5267 struct rte_flow_action *translated_actions = NULL; 5268 struct mlx5_flow_tunnel *tunnel; 5269 struct tunnel_default_miss_ctx default_miss_ctx = { 0, }; 5270 struct mlx5_flow_workspace *wks = mlx5_flow_push_thread_workspace(); 5271 struct mlx5_flow_split_info flow_split_info = { 5272 .external = !!external, 5273 .skip_scale = 0, 5274 .flow_idx = 0, 5275 .prefix_mark = 0, 5276 .prefix_layers = 0 5277 }; 5278 int ret; 5279 5280 MLX5_ASSERT(wks); 5281 rss_desc = &wks->rss_desc; 5282 ret = flow_shared_actions_translate(dev, original_actions, 5283 shared_actions, 5284 &shared_actions_n, 5285 &translated_actions, error); 5286 if (ret < 0) { 5287 MLX5_ASSERT(translated_actions == NULL); 5288 return 0; 5289 } 5290 actions = translated_actions ? translated_actions : original_actions; 5291 p_actions_rx = actions; 5292 hairpin_flow = flow_check_hairpin_split(dev, attr, actions); 5293 ret = flow_drv_validate(dev, attr, items, p_actions_rx, 5294 external, hairpin_flow, error); 5295 if (ret < 0) 5296 goto error_before_hairpin_split; 5297 flow = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], &idx); 5298 if (!flow) { 5299 rte_errno = ENOMEM; 5300 goto error_before_hairpin_split; 5301 } 5302 if (hairpin_flow > 0) { 5303 if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) { 5304 rte_errno = EINVAL; 5305 goto error_before_hairpin_split; 5306 } 5307 flow_hairpin_split(dev, actions, actions_rx.actions, 5308 actions_hairpin_tx.actions, items_tx.items, 5309 idx); 5310 p_actions_rx = actions_rx.actions; 5311 } 5312 flow_split_info.flow_idx = idx; 5313 flow->drv_type = flow_get_drv_type(dev, attr); 5314 MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN && 5315 flow->drv_type < MLX5_FLOW_TYPE_MAX); 5316 memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue)); 5317 rss = flow_get_rss_action(p_actions_rx); 5318 if (rss) { 5319 if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num)) 5320 return 0; 5321 /* 5322 * The following information is required by 5323 * mlx5_flow_hashfields_adjust() in advance. 5324 */ 5325 rss_desc->level = rss->level; 5326 /* RSS type 0 indicates default RSS type (ETH_RSS_IP). */ 5327 rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types; 5328 } 5329 flow->dev_handles = 0; 5330 if (rss && rss->types) { 5331 unsigned int graph_root; 5332 5333 graph_root = find_graph_root(items, rss->level); 5334 ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer), 5335 items, rss->types, 5336 mlx5_support_expansion, graph_root); 5337 MLX5_ASSERT(ret > 0 && 5338 (unsigned int)ret < sizeof(expand_buffer.buffer)); 5339 } else { 5340 buf->entries = 1; 5341 buf->entry[0].pattern = (void *)(uintptr_t)items; 5342 } 5343 rss_desc->shared_rss = flow_get_shared_rss_action(dev, shared_actions, 5344 shared_actions_n); 5345 for (i = 0; i < buf->entries; ++i) { 5346 /* Initialize flow split data. */ 5347 flow_split_info.prefix_layers = 0; 5348 flow_split_info.prefix_mark = 0; 5349 flow_split_info.skip_scale = 0; 5350 /* 5351 * The splitter may create multiple dev_flows, 5352 * depending on configuration. In the simplest 5353 * case it just creates unmodified original flow. 5354 */ 5355 ret = flow_create_split_outer(dev, flow, attr, 5356 buf->entry[i].pattern, 5357 p_actions_rx, &flow_split_info, 5358 error); 5359 if (ret < 0) 5360 goto error; 5361 if (is_flow_tunnel_steer_rule(dev, attr, 5362 buf->entry[i].pattern, 5363 p_actions_rx)) { 5364 ret = flow_tunnel_add_default_miss(dev, flow, attr, 5365 p_actions_rx, 5366 idx, 5367 &default_miss_ctx, 5368 error); 5369 if (ret < 0) { 5370 mlx5_free(default_miss_ctx.queue); 5371 goto error; 5372 } 5373 } 5374 } 5375 /* Create the tx flow. */ 5376 if (hairpin_flow) { 5377 attr_tx.group = MLX5_HAIRPIN_TX_TABLE; 5378 attr_tx.ingress = 0; 5379 attr_tx.egress = 1; 5380 dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items, 5381 actions_hairpin_tx.actions, 5382 idx, error); 5383 if (!dev_flow) 5384 goto error; 5385 dev_flow->flow = flow; 5386 dev_flow->external = 0; 5387 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx, 5388 dev_flow->handle, next); 5389 ret = flow_drv_translate(dev, dev_flow, &attr_tx, 5390 items_tx.items, 5391 actions_hairpin_tx.actions, error); 5392 if (ret < 0) 5393 goto error; 5394 } 5395 /* 5396 * Update the metadata register copy table. If extensive 5397 * metadata feature is enabled and registers are supported 5398 * we might create the extra rte_flow for each unique 5399 * MARK/FLAG action ID. 5400 * 5401 * The table is updated for ingress Flows only, because 5402 * the egress Flows belong to the different device and 5403 * copy table should be updated in peer NIC Rx domain. 5404 */ 5405 if (attr->ingress && 5406 (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) { 5407 ret = flow_mreg_update_copy_table(dev, flow, actions, error); 5408 if (ret) 5409 goto error; 5410 } 5411 /* 5412 * If the flow is external (from application) OR device is started, 5413 * OR mreg discover, then apply immediately. 5414 */ 5415 if (external || dev->data->dev_started || 5416 (attr->group == MLX5_FLOW_MREG_CP_TABLE_GROUP && 5417 attr->priority == MLX5_FLOW_PRIO_RSVD)) { 5418 ret = flow_drv_apply(dev, flow, error); 5419 if (ret < 0) 5420 goto error; 5421 } 5422 if (list) { 5423 rte_spinlock_lock(&priv->flow_list_lock); 5424 ILIST_INSERT(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, idx, 5425 flow, next); 5426 rte_spinlock_unlock(&priv->flow_list_lock); 5427 } 5428 flow_rxq_flags_set(dev, flow); 5429 rte_free(translated_actions); 5430 tunnel = flow_tunnel_from_rule(dev, attr, items, actions); 5431 if (tunnel) { 5432 flow->tunnel = 1; 5433 flow->tunnel_id = tunnel->tunnel_id; 5434 __atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED); 5435 mlx5_free(default_miss_ctx.queue); 5436 } 5437 mlx5_flow_pop_thread_workspace(); 5438 return idx; 5439 error: 5440 MLX5_ASSERT(flow); 5441 ret = rte_errno; /* Save rte_errno before cleanup. */ 5442 flow_mreg_del_copy_action(dev, flow); 5443 flow_drv_destroy(dev, flow); 5444 if (rss_desc->shared_rss) 5445 __atomic_sub_fetch(&((struct mlx5_shared_action_rss *) 5446 mlx5_ipool_get 5447 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 5448 rss_desc->shared_rss))->refcnt, 1, __ATOMIC_RELAXED); 5449 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], idx); 5450 rte_errno = ret; /* Restore rte_errno. */ 5451 ret = rte_errno; 5452 rte_errno = ret; 5453 mlx5_flow_pop_thread_workspace(); 5454 error_before_hairpin_split: 5455 rte_free(translated_actions); 5456 return 0; 5457 } 5458 5459 /** 5460 * Create a dedicated flow rule on e-switch table 0 (root table), to direct all 5461 * incoming packets to table 1. 5462 * 5463 * Other flow rules, requested for group n, will be created in 5464 * e-switch table n+1. 5465 * Jump action to e-switch group n will be created to group n+1. 5466 * 5467 * Used when working in switchdev mode, to utilise advantages of table 1 5468 * and above. 5469 * 5470 * @param dev 5471 * Pointer to Ethernet device. 5472 * 5473 * @return 5474 * Pointer to flow on success, NULL otherwise and rte_errno is set. 5475 */ 5476 struct rte_flow * 5477 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev) 5478 { 5479 const struct rte_flow_attr attr = { 5480 .group = 0, 5481 .priority = 0, 5482 .ingress = 1, 5483 .egress = 0, 5484 .transfer = 1, 5485 }; 5486 const struct rte_flow_item pattern = { 5487 .type = RTE_FLOW_ITEM_TYPE_END, 5488 }; 5489 struct rte_flow_action_jump jump = { 5490 .group = 1, 5491 }; 5492 const struct rte_flow_action actions[] = { 5493 { 5494 .type = RTE_FLOW_ACTION_TYPE_JUMP, 5495 .conf = &jump, 5496 }, 5497 { 5498 .type = RTE_FLOW_ACTION_TYPE_END, 5499 }, 5500 }; 5501 struct mlx5_priv *priv = dev->data->dev_private; 5502 struct rte_flow_error error; 5503 5504 return (void *)(uintptr_t)flow_list_create(dev, &priv->ctrl_flows, 5505 &attr, &pattern, 5506 actions, false, &error); 5507 } 5508 5509 /** 5510 * Validate a flow supported by the NIC. 5511 * 5512 * @see rte_flow_validate() 5513 * @see rte_flow_ops 5514 */ 5515 int 5516 mlx5_flow_validate(struct rte_eth_dev *dev, 5517 const struct rte_flow_attr *attr, 5518 const struct rte_flow_item items[], 5519 const struct rte_flow_action original_actions[], 5520 struct rte_flow_error *error) 5521 { 5522 int hairpin_flow; 5523 struct mlx5_translated_shared_action 5524 shared_actions[MLX5_MAX_SHARED_ACTIONS]; 5525 int shared_actions_n = MLX5_MAX_SHARED_ACTIONS; 5526 const struct rte_flow_action *actions; 5527 struct rte_flow_action *translated_actions = NULL; 5528 int ret = flow_shared_actions_translate(dev, original_actions, 5529 shared_actions, 5530 &shared_actions_n, 5531 &translated_actions, error); 5532 5533 if (ret) 5534 return ret; 5535 actions = translated_actions ? translated_actions : original_actions; 5536 hairpin_flow = flow_check_hairpin_split(dev, attr, actions); 5537 ret = flow_drv_validate(dev, attr, items, actions, 5538 true, hairpin_flow, error); 5539 rte_free(translated_actions); 5540 return ret; 5541 } 5542 5543 /** 5544 * Create a flow. 5545 * 5546 * @see rte_flow_create() 5547 * @see rte_flow_ops 5548 */ 5549 struct rte_flow * 5550 mlx5_flow_create(struct rte_eth_dev *dev, 5551 const struct rte_flow_attr *attr, 5552 const struct rte_flow_item items[], 5553 const struct rte_flow_action actions[], 5554 struct rte_flow_error *error) 5555 { 5556 struct mlx5_priv *priv = dev->data->dev_private; 5557 5558 /* 5559 * If the device is not started yet, it is not allowed to created a 5560 * flow from application. PMD default flows and traffic control flows 5561 * are not affected. 5562 */ 5563 if (unlikely(!dev->data->dev_started)) { 5564 DRV_LOG(DEBUG, "port %u is not started when " 5565 "inserting a flow", dev->data->port_id); 5566 rte_flow_error_set(error, ENODEV, 5567 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 5568 NULL, 5569 "port not started"); 5570 return NULL; 5571 } 5572 5573 return (void *)(uintptr_t)flow_list_create(dev, &priv->flows, 5574 attr, items, actions, true, error); 5575 } 5576 5577 /** 5578 * Destroy a flow in a list. 5579 * 5580 * @param dev 5581 * Pointer to Ethernet device. 5582 * @param list 5583 * Pointer to the Indexed flow list. If this parameter NULL, 5584 * there is no flow removal from the list. Be noted that as 5585 * flow is add to the indexed list, memory of the indexed 5586 * list points to maybe changed as flow destroyed. 5587 * @param[in] flow_idx 5588 * Index of flow to destroy. 5589 */ 5590 static void 5591 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list, 5592 uint32_t flow_idx) 5593 { 5594 struct mlx5_priv *priv = dev->data->dev_private; 5595 struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool 5596 [MLX5_IPOOL_RTE_FLOW], flow_idx); 5597 5598 if (!flow) 5599 return; 5600 /* 5601 * Update RX queue flags only if port is started, otherwise it is 5602 * already clean. 5603 */ 5604 if (dev->data->dev_started) 5605 flow_rxq_flags_trim(dev, flow); 5606 flow_drv_destroy(dev, flow); 5607 if (list) { 5608 rte_spinlock_lock(&priv->flow_list_lock); 5609 ILIST_REMOVE(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, 5610 flow_idx, flow, next); 5611 rte_spinlock_unlock(&priv->flow_list_lock); 5612 } 5613 if (flow->tunnel) { 5614 struct mlx5_flow_tunnel *tunnel; 5615 5616 rte_spinlock_lock(&mlx5_tunnel_hub(dev)->sl); 5617 tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id); 5618 RTE_VERIFY(tunnel); 5619 LIST_REMOVE(tunnel, chain); 5620 rte_spinlock_unlock(&mlx5_tunnel_hub(dev)->sl); 5621 if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED)) 5622 mlx5_flow_tunnel_free(dev, tunnel); 5623 } 5624 flow_mreg_del_copy_action(dev, flow); 5625 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx); 5626 } 5627 5628 /** 5629 * Destroy all flows. 5630 * 5631 * @param dev 5632 * Pointer to Ethernet device. 5633 * @param list 5634 * Pointer to the Indexed flow list. 5635 * @param active 5636 * If flushing is called avtively. 5637 */ 5638 void 5639 mlx5_flow_list_flush(struct rte_eth_dev *dev, uint32_t *list, bool active) 5640 { 5641 uint32_t num_flushed = 0; 5642 5643 while (*list) { 5644 flow_list_destroy(dev, list, *list); 5645 num_flushed++; 5646 } 5647 if (active) { 5648 DRV_LOG(INFO, "port %u: %u flows flushed before stopping", 5649 dev->data->port_id, num_flushed); 5650 } 5651 } 5652 5653 /** 5654 * Stop all default actions for flows. 5655 * 5656 * @param dev 5657 * Pointer to Ethernet device. 5658 */ 5659 void 5660 mlx5_flow_stop_default(struct rte_eth_dev *dev) 5661 { 5662 flow_mreg_del_default_copy_action(dev); 5663 flow_rxq_flags_clear(dev); 5664 } 5665 5666 /** 5667 * Start all default actions for flows. 5668 * 5669 * @param dev 5670 * Pointer to Ethernet device. 5671 * @return 5672 * 0 on success, a negative errno value otherwise and rte_errno is set. 5673 */ 5674 int 5675 mlx5_flow_start_default(struct rte_eth_dev *dev) 5676 { 5677 struct rte_flow_error error; 5678 5679 /* Make sure default copy action (reg_c[0] -> reg_b) is created. */ 5680 return flow_mreg_add_default_copy_action(dev, &error); 5681 } 5682 5683 /** 5684 * Release key of thread specific flow workspace data. 5685 */ 5686 static void 5687 flow_release_workspace(void *data) 5688 { 5689 struct mlx5_flow_workspace *wks = data; 5690 struct mlx5_flow_workspace *next; 5691 5692 while (wks) { 5693 next = wks->next; 5694 free(wks->rss_desc.queue); 5695 free(wks); 5696 wks = next; 5697 } 5698 } 5699 5700 /** 5701 * Initialize key of thread specific flow workspace data. 5702 */ 5703 static void 5704 flow_alloc_workspace(void) 5705 { 5706 if (pthread_key_create(&key_workspace, flow_release_workspace)) 5707 DRV_LOG(ERR, "Can't create flow workspace data thread key."); 5708 } 5709 5710 /** 5711 * Get thread specific current flow workspace. 5712 * 5713 * @return pointer to thread specific flow workspace data, NULL on error. 5714 */ 5715 struct mlx5_flow_workspace* 5716 mlx5_flow_get_thread_workspace(void) 5717 { 5718 struct mlx5_flow_workspace *data; 5719 5720 data = pthread_getspecific(key_workspace); 5721 MLX5_ASSERT(data && data->inuse); 5722 if (!data || !data->inuse) 5723 DRV_LOG(ERR, "flow workspace not initialized."); 5724 return data; 5725 } 5726 5727 /** 5728 * Allocate and init new flow workspace. 5729 * 5730 * @return pointer to flow workspace data, NULL on error. 5731 */ 5732 static struct mlx5_flow_workspace* 5733 flow_alloc_thread_workspace(void) 5734 { 5735 struct mlx5_flow_workspace *data = calloc(1, sizeof(*data)); 5736 5737 if (!data) { 5738 DRV_LOG(ERR, "Failed to allocate flow workspace " 5739 "memory."); 5740 return NULL; 5741 } 5742 data->rss_desc.queue = calloc(1, 5743 sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM); 5744 if (!data->rss_desc.queue) 5745 goto err; 5746 data->rssq_num = MLX5_RSSQ_DEFAULT_NUM; 5747 return data; 5748 err: 5749 if (data->rss_desc.queue) 5750 free(data->rss_desc.queue); 5751 free(data); 5752 return NULL; 5753 } 5754 5755 /** 5756 * Get new thread specific flow workspace. 5757 * 5758 * If current workspace inuse, create new one and set as current. 5759 * 5760 * @return pointer to thread specific flow workspace data, NULL on error. 5761 */ 5762 static struct mlx5_flow_workspace* 5763 mlx5_flow_push_thread_workspace(void) 5764 { 5765 struct mlx5_flow_workspace *curr; 5766 struct mlx5_flow_workspace *data; 5767 5768 if (pthread_once(&key_workspace_init, flow_alloc_workspace)) { 5769 DRV_LOG(ERR, "Failed to init flow workspace data thread key."); 5770 return NULL; 5771 } 5772 curr = pthread_getspecific(key_workspace); 5773 if (!curr) { 5774 data = flow_alloc_thread_workspace(); 5775 if (!data) 5776 return NULL; 5777 } else if (!curr->inuse) { 5778 data = curr; 5779 } else if (curr->next) { 5780 data = curr->next; 5781 } else { 5782 data = flow_alloc_thread_workspace(); 5783 if (!data) 5784 return NULL; 5785 curr->next = data; 5786 data->prev = curr; 5787 } 5788 data->inuse = 1; 5789 data->flow_idx = 0; 5790 /* Set as current workspace */ 5791 if (pthread_setspecific(key_workspace, data)) 5792 DRV_LOG(ERR, "Failed to set flow workspace to thread."); 5793 return data; 5794 } 5795 5796 /** 5797 * Close current thread specific flow workspace. 5798 * 5799 * If previous workspace available, set it as current. 5800 * 5801 * @return pointer to thread specific flow workspace data, NULL on error. 5802 */ 5803 static void 5804 mlx5_flow_pop_thread_workspace(void) 5805 { 5806 struct mlx5_flow_workspace *data = mlx5_flow_get_thread_workspace(); 5807 5808 if (!data) 5809 return; 5810 if (!data->inuse) { 5811 DRV_LOG(ERR, "Failed to close unused flow workspace."); 5812 return; 5813 } 5814 data->inuse = 0; 5815 if (!data->prev) 5816 return; 5817 if (pthread_setspecific(key_workspace, data->prev)) 5818 DRV_LOG(ERR, "Failed to set flow workspace to thread."); 5819 } 5820 5821 /** 5822 * Verify the flow list is empty 5823 * 5824 * @param dev 5825 * Pointer to Ethernet device. 5826 * 5827 * @return the number of flows not released. 5828 */ 5829 int 5830 mlx5_flow_verify(struct rte_eth_dev *dev) 5831 { 5832 struct mlx5_priv *priv = dev->data->dev_private; 5833 struct rte_flow *flow; 5834 uint32_t idx; 5835 int ret = 0; 5836 5837 ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], priv->flows, idx, 5838 flow, next) { 5839 DRV_LOG(DEBUG, "port %u flow %p still referenced", 5840 dev->data->port_id, (void *)flow); 5841 ++ret; 5842 } 5843 return ret; 5844 } 5845 5846 /** 5847 * Enable default hairpin egress flow. 5848 * 5849 * @param dev 5850 * Pointer to Ethernet device. 5851 * @param queue 5852 * The queue index. 5853 * 5854 * @return 5855 * 0 on success, a negative errno value otherwise and rte_errno is set. 5856 */ 5857 int 5858 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev, 5859 uint32_t queue) 5860 { 5861 struct mlx5_priv *priv = dev->data->dev_private; 5862 const struct rte_flow_attr attr = { 5863 .egress = 1, 5864 .priority = 0, 5865 }; 5866 struct mlx5_rte_flow_item_tx_queue queue_spec = { 5867 .queue = queue, 5868 }; 5869 struct mlx5_rte_flow_item_tx_queue queue_mask = { 5870 .queue = UINT32_MAX, 5871 }; 5872 struct rte_flow_item items[] = { 5873 { 5874 .type = (enum rte_flow_item_type) 5875 MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE, 5876 .spec = &queue_spec, 5877 .last = NULL, 5878 .mask = &queue_mask, 5879 }, 5880 { 5881 .type = RTE_FLOW_ITEM_TYPE_END, 5882 }, 5883 }; 5884 struct rte_flow_action_jump jump = { 5885 .group = MLX5_HAIRPIN_TX_TABLE, 5886 }; 5887 struct rte_flow_action actions[2]; 5888 uint32_t flow_idx; 5889 struct rte_flow_error error; 5890 5891 actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP; 5892 actions[0].conf = &jump; 5893 actions[1].type = RTE_FLOW_ACTION_TYPE_END; 5894 flow_idx = flow_list_create(dev, &priv->ctrl_flows, 5895 &attr, items, actions, false, &error); 5896 if (!flow_idx) { 5897 DRV_LOG(DEBUG, 5898 "Failed to create ctrl flow: rte_errno(%d)," 5899 " type(%d), message(%s)", 5900 rte_errno, error.type, 5901 error.message ? error.message : " (no stated reason)"); 5902 return -rte_errno; 5903 } 5904 return 0; 5905 } 5906 5907 /** 5908 * Enable a control flow configured from the control plane. 5909 * 5910 * @param dev 5911 * Pointer to Ethernet device. 5912 * @param eth_spec 5913 * An Ethernet flow spec to apply. 5914 * @param eth_mask 5915 * An Ethernet flow mask to apply. 5916 * @param vlan_spec 5917 * A VLAN flow spec to apply. 5918 * @param vlan_mask 5919 * A VLAN flow mask to apply. 5920 * 5921 * @return 5922 * 0 on success, a negative errno value otherwise and rte_errno is set. 5923 */ 5924 int 5925 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 5926 struct rte_flow_item_eth *eth_spec, 5927 struct rte_flow_item_eth *eth_mask, 5928 struct rte_flow_item_vlan *vlan_spec, 5929 struct rte_flow_item_vlan *vlan_mask) 5930 { 5931 struct mlx5_priv *priv = dev->data->dev_private; 5932 const struct rte_flow_attr attr = { 5933 .ingress = 1, 5934 .priority = MLX5_FLOW_PRIO_RSVD, 5935 }; 5936 struct rte_flow_item items[] = { 5937 { 5938 .type = RTE_FLOW_ITEM_TYPE_ETH, 5939 .spec = eth_spec, 5940 .last = NULL, 5941 .mask = eth_mask, 5942 }, 5943 { 5944 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 5945 RTE_FLOW_ITEM_TYPE_END, 5946 .spec = vlan_spec, 5947 .last = NULL, 5948 .mask = vlan_mask, 5949 }, 5950 { 5951 .type = RTE_FLOW_ITEM_TYPE_END, 5952 }, 5953 }; 5954 uint16_t queue[priv->reta_idx_n]; 5955 struct rte_flow_action_rss action_rss = { 5956 .func = RTE_ETH_HASH_FUNCTION_DEFAULT, 5957 .level = 0, 5958 .types = priv->rss_conf.rss_hf, 5959 .key_len = priv->rss_conf.rss_key_len, 5960 .queue_num = priv->reta_idx_n, 5961 .key = priv->rss_conf.rss_key, 5962 .queue = queue, 5963 }; 5964 struct rte_flow_action actions[] = { 5965 { 5966 .type = RTE_FLOW_ACTION_TYPE_RSS, 5967 .conf = &action_rss, 5968 }, 5969 { 5970 .type = RTE_FLOW_ACTION_TYPE_END, 5971 }, 5972 }; 5973 uint32_t flow_idx; 5974 struct rte_flow_error error; 5975 unsigned int i; 5976 5977 if (!priv->reta_idx_n || !priv->rxqs_n) { 5978 return 0; 5979 } 5980 if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)) 5981 action_rss.types = 0; 5982 for (i = 0; i != priv->reta_idx_n; ++i) 5983 queue[i] = (*priv->reta_idx)[i]; 5984 flow_idx = flow_list_create(dev, &priv->ctrl_flows, 5985 &attr, items, actions, false, &error); 5986 if (!flow_idx) 5987 return -rte_errno; 5988 return 0; 5989 } 5990 5991 /** 5992 * Enable a flow control configured from the control plane. 5993 * 5994 * @param dev 5995 * Pointer to Ethernet device. 5996 * @param eth_spec 5997 * An Ethernet flow spec to apply. 5998 * @param eth_mask 5999 * An Ethernet flow mask to apply. 6000 * 6001 * @return 6002 * 0 on success, a negative errno value otherwise and rte_errno is set. 6003 */ 6004 int 6005 mlx5_ctrl_flow(struct rte_eth_dev *dev, 6006 struct rte_flow_item_eth *eth_spec, 6007 struct rte_flow_item_eth *eth_mask) 6008 { 6009 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 6010 } 6011 6012 /** 6013 * Create default miss flow rule matching lacp traffic 6014 * 6015 * @param dev 6016 * Pointer to Ethernet device. 6017 * @param eth_spec 6018 * An Ethernet flow spec to apply. 6019 * 6020 * @return 6021 * 0 on success, a negative errno value otherwise and rte_errno is set. 6022 */ 6023 int 6024 mlx5_flow_lacp_miss(struct rte_eth_dev *dev) 6025 { 6026 struct mlx5_priv *priv = dev->data->dev_private; 6027 /* 6028 * The LACP matching is done by only using ether type since using 6029 * a multicast dst mac causes kernel to give low priority to this flow. 6030 */ 6031 static const struct rte_flow_item_eth lacp_spec = { 6032 .type = RTE_BE16(0x8809), 6033 }; 6034 static const struct rte_flow_item_eth lacp_mask = { 6035 .type = 0xffff, 6036 }; 6037 const struct rte_flow_attr attr = { 6038 .ingress = 1, 6039 }; 6040 struct rte_flow_item items[] = { 6041 { 6042 .type = RTE_FLOW_ITEM_TYPE_ETH, 6043 .spec = &lacp_spec, 6044 .mask = &lacp_mask, 6045 }, 6046 { 6047 .type = RTE_FLOW_ITEM_TYPE_END, 6048 }, 6049 }; 6050 struct rte_flow_action actions[] = { 6051 { 6052 .type = (enum rte_flow_action_type) 6053 MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS, 6054 }, 6055 { 6056 .type = RTE_FLOW_ACTION_TYPE_END, 6057 }, 6058 }; 6059 struct rte_flow_error error; 6060 uint32_t flow_idx = flow_list_create(dev, &priv->ctrl_flows, 6061 &attr, items, actions, false, &error); 6062 6063 if (!flow_idx) 6064 return -rte_errno; 6065 return 0; 6066 } 6067 6068 /** 6069 * Destroy a flow. 6070 * 6071 * @see rte_flow_destroy() 6072 * @see rte_flow_ops 6073 */ 6074 int 6075 mlx5_flow_destroy(struct rte_eth_dev *dev, 6076 struct rte_flow *flow, 6077 struct rte_flow_error *error __rte_unused) 6078 { 6079 struct mlx5_priv *priv = dev->data->dev_private; 6080 6081 flow_list_destroy(dev, &priv->flows, (uintptr_t)(void *)flow); 6082 return 0; 6083 } 6084 6085 /** 6086 * Destroy all flows. 6087 * 6088 * @see rte_flow_flush() 6089 * @see rte_flow_ops 6090 */ 6091 int 6092 mlx5_flow_flush(struct rte_eth_dev *dev, 6093 struct rte_flow_error *error __rte_unused) 6094 { 6095 struct mlx5_priv *priv = dev->data->dev_private; 6096 6097 mlx5_flow_list_flush(dev, &priv->flows, false); 6098 return 0; 6099 } 6100 6101 /** 6102 * Isolated mode. 6103 * 6104 * @see rte_flow_isolate() 6105 * @see rte_flow_ops 6106 */ 6107 int 6108 mlx5_flow_isolate(struct rte_eth_dev *dev, 6109 int enable, 6110 struct rte_flow_error *error) 6111 { 6112 struct mlx5_priv *priv = dev->data->dev_private; 6113 6114 if (dev->data->dev_started) { 6115 rte_flow_error_set(error, EBUSY, 6116 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 6117 NULL, 6118 "port must be stopped first"); 6119 return -rte_errno; 6120 } 6121 priv->isolated = !!enable; 6122 if (enable) 6123 dev->dev_ops = &mlx5_os_dev_ops_isolate; 6124 else 6125 dev->dev_ops = &mlx5_os_dev_ops; 6126 6127 dev->rx_descriptor_status = mlx5_rx_descriptor_status; 6128 dev->tx_descriptor_status = mlx5_tx_descriptor_status; 6129 6130 return 0; 6131 } 6132 6133 /** 6134 * Query a flow. 6135 * 6136 * @see rte_flow_query() 6137 * @see rte_flow_ops 6138 */ 6139 static int 6140 flow_drv_query(struct rte_eth_dev *dev, 6141 uint32_t flow_idx, 6142 const struct rte_flow_action *actions, 6143 void *data, 6144 struct rte_flow_error *error) 6145 { 6146 struct mlx5_priv *priv = dev->data->dev_private; 6147 const struct mlx5_flow_driver_ops *fops; 6148 struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool 6149 [MLX5_IPOOL_RTE_FLOW], 6150 flow_idx); 6151 enum mlx5_flow_drv_type ftype; 6152 6153 if (!flow) { 6154 return rte_flow_error_set(error, ENOENT, 6155 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 6156 NULL, 6157 "invalid flow handle"); 6158 } 6159 ftype = flow->drv_type; 6160 MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX); 6161 fops = flow_get_drv_ops(ftype); 6162 6163 return fops->query(dev, flow, actions, data, error); 6164 } 6165 6166 /** 6167 * Query a flow. 6168 * 6169 * @see rte_flow_query() 6170 * @see rte_flow_ops 6171 */ 6172 int 6173 mlx5_flow_query(struct rte_eth_dev *dev, 6174 struct rte_flow *flow, 6175 const struct rte_flow_action *actions, 6176 void *data, 6177 struct rte_flow_error *error) 6178 { 6179 int ret; 6180 6181 ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data, 6182 error); 6183 if (ret < 0) 6184 return ret; 6185 return 0; 6186 } 6187 6188 /** 6189 * Manage filter operations. 6190 * 6191 * @param dev 6192 * Pointer to Ethernet device structure. 6193 * @param filter_type 6194 * Filter type. 6195 * @param filter_op 6196 * Operation to perform. 6197 * @param arg 6198 * Pointer to operation-specific structure. 6199 * 6200 * @return 6201 * 0 on success, a negative errno value otherwise and rte_errno is set. 6202 */ 6203 int 6204 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 6205 enum rte_filter_type filter_type, 6206 enum rte_filter_op filter_op, 6207 void *arg) 6208 { 6209 switch (filter_type) { 6210 case RTE_ETH_FILTER_GENERIC: 6211 if (filter_op != RTE_ETH_FILTER_GET) { 6212 rte_errno = EINVAL; 6213 return -rte_errno; 6214 } 6215 *(const void **)arg = &mlx5_flow_ops; 6216 return 0; 6217 default: 6218 DRV_LOG(ERR, "port %u filter type (%d) not supported", 6219 dev->data->port_id, filter_type); 6220 rte_errno = ENOTSUP; 6221 return -rte_errno; 6222 } 6223 return 0; 6224 } 6225 6226 /** 6227 * Create the needed meter and suffix tables. 6228 * 6229 * @param[in] dev 6230 * Pointer to Ethernet device. 6231 * @param[in] fm 6232 * Pointer to the flow meter. 6233 * 6234 * @return 6235 * Pointer to table set on success, NULL otherwise. 6236 */ 6237 struct mlx5_meter_domains_infos * 6238 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev, 6239 const struct mlx5_flow_meter *fm) 6240 { 6241 const struct mlx5_flow_driver_ops *fops; 6242 6243 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6244 return fops->create_mtr_tbls(dev, fm); 6245 } 6246 6247 /** 6248 * Destroy the meter table set. 6249 * 6250 * @param[in] dev 6251 * Pointer to Ethernet device. 6252 * @param[in] tbl 6253 * Pointer to the meter table set. 6254 * 6255 * @return 6256 * 0 on success. 6257 */ 6258 int 6259 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev, 6260 struct mlx5_meter_domains_infos *tbls) 6261 { 6262 const struct mlx5_flow_driver_ops *fops; 6263 6264 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6265 return fops->destroy_mtr_tbls(dev, tbls); 6266 } 6267 6268 /** 6269 * Create policer rules. 6270 * 6271 * @param[in] dev 6272 * Pointer to Ethernet device. 6273 * @param[in] fm 6274 * Pointer to flow meter structure. 6275 * @param[in] attr 6276 * Pointer to flow attributes. 6277 * 6278 * @return 6279 * 0 on success, -1 otherwise. 6280 */ 6281 int 6282 mlx5_flow_create_policer_rules(struct rte_eth_dev *dev, 6283 struct mlx5_flow_meter *fm, 6284 const struct rte_flow_attr *attr) 6285 { 6286 const struct mlx5_flow_driver_ops *fops; 6287 6288 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6289 return fops->create_policer_rules(dev, fm, attr); 6290 } 6291 6292 /** 6293 * Destroy policer rules. 6294 * 6295 * @param[in] fm 6296 * Pointer to flow meter structure. 6297 * @param[in] attr 6298 * Pointer to flow attributes. 6299 * 6300 * @return 6301 * 0 on success, -1 otherwise. 6302 */ 6303 int 6304 mlx5_flow_destroy_policer_rules(struct rte_eth_dev *dev, 6305 struct mlx5_flow_meter *fm, 6306 const struct rte_flow_attr *attr) 6307 { 6308 const struct mlx5_flow_driver_ops *fops; 6309 6310 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6311 return fops->destroy_policer_rules(dev, fm, attr); 6312 } 6313 6314 /** 6315 * Allocate a counter. 6316 * 6317 * @param[in] dev 6318 * Pointer to Ethernet device structure. 6319 * 6320 * @return 6321 * Index to allocated counter on success, 0 otherwise. 6322 */ 6323 uint32_t 6324 mlx5_counter_alloc(struct rte_eth_dev *dev) 6325 { 6326 const struct mlx5_flow_driver_ops *fops; 6327 struct rte_flow_attr attr = { .transfer = 0 }; 6328 6329 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 6330 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6331 return fops->counter_alloc(dev); 6332 } 6333 DRV_LOG(ERR, 6334 "port %u counter allocate is not supported.", 6335 dev->data->port_id); 6336 return 0; 6337 } 6338 6339 /** 6340 * Free a counter. 6341 * 6342 * @param[in] dev 6343 * Pointer to Ethernet device structure. 6344 * @param[in] cnt 6345 * Index to counter to be free. 6346 */ 6347 void 6348 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt) 6349 { 6350 const struct mlx5_flow_driver_ops *fops; 6351 struct rte_flow_attr attr = { .transfer = 0 }; 6352 6353 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 6354 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6355 fops->counter_free(dev, cnt); 6356 return; 6357 } 6358 DRV_LOG(ERR, 6359 "port %u counter free is not supported.", 6360 dev->data->port_id); 6361 } 6362 6363 /** 6364 * Query counter statistics. 6365 * 6366 * @param[in] dev 6367 * Pointer to Ethernet device structure. 6368 * @param[in] cnt 6369 * Index to counter to query. 6370 * @param[in] clear 6371 * Set to clear counter statistics. 6372 * @param[out] pkts 6373 * The counter hits packets number to save. 6374 * @param[out] bytes 6375 * The counter hits bytes number to save. 6376 * 6377 * @return 6378 * 0 on success, a negative errno value otherwise. 6379 */ 6380 int 6381 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt, 6382 bool clear, uint64_t *pkts, uint64_t *bytes) 6383 { 6384 const struct mlx5_flow_driver_ops *fops; 6385 struct rte_flow_attr attr = { .transfer = 0 }; 6386 6387 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 6388 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6389 return fops->counter_query(dev, cnt, clear, pkts, bytes); 6390 } 6391 DRV_LOG(ERR, 6392 "port %u counter query is not supported.", 6393 dev->data->port_id); 6394 return -ENOTSUP; 6395 } 6396 6397 /** 6398 * Allocate a new memory for the counter values wrapped by all the needed 6399 * management. 6400 * 6401 * @param[in] sh 6402 * Pointer to mlx5_dev_ctx_shared object. 6403 * 6404 * @return 6405 * 0 on success, a negative errno value otherwise. 6406 */ 6407 static int 6408 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh) 6409 { 6410 struct mlx5_devx_mkey_attr mkey_attr; 6411 struct mlx5_counter_stats_mem_mng *mem_mng; 6412 volatile struct flow_counter_stats *raw_data; 6413 int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES; 6414 int size = (sizeof(struct flow_counter_stats) * 6415 MLX5_COUNTERS_PER_POOL + 6416 sizeof(struct mlx5_counter_stats_raw)) * raws_n + 6417 sizeof(struct mlx5_counter_stats_mem_mng); 6418 size_t pgsize = rte_mem_page_size(); 6419 uint8_t *mem; 6420 int i; 6421 6422 if (pgsize == (size_t)-1) { 6423 DRV_LOG(ERR, "Failed to get mem page size"); 6424 rte_errno = ENOMEM; 6425 return -ENOMEM; 6426 } 6427 mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY); 6428 if (!mem) { 6429 rte_errno = ENOMEM; 6430 return -ENOMEM; 6431 } 6432 mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1; 6433 size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n; 6434 mem_mng->umem = mlx5_glue->devx_umem_reg(sh->ctx, mem, size, 6435 IBV_ACCESS_LOCAL_WRITE); 6436 if (!mem_mng->umem) { 6437 rte_errno = errno; 6438 mlx5_free(mem); 6439 return -rte_errno; 6440 } 6441 mkey_attr.addr = (uintptr_t)mem; 6442 mkey_attr.size = size; 6443 mkey_attr.umem_id = mlx5_os_get_umem_id(mem_mng->umem); 6444 mkey_attr.pd = sh->pdn; 6445 mkey_attr.log_entity_size = 0; 6446 mkey_attr.pg_access = 0; 6447 mkey_attr.klm_array = NULL; 6448 mkey_attr.klm_num = 0; 6449 mkey_attr.relaxed_ordering_write = sh->cmng.relaxed_ordering_write; 6450 mkey_attr.relaxed_ordering_read = sh->cmng.relaxed_ordering_read; 6451 mem_mng->dm = mlx5_devx_cmd_mkey_create(sh->ctx, &mkey_attr); 6452 if (!mem_mng->dm) { 6453 mlx5_glue->devx_umem_dereg(mem_mng->umem); 6454 rte_errno = errno; 6455 mlx5_free(mem); 6456 return -rte_errno; 6457 } 6458 mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size); 6459 raw_data = (volatile struct flow_counter_stats *)mem; 6460 for (i = 0; i < raws_n; ++i) { 6461 mem_mng->raws[i].mem_mng = mem_mng; 6462 mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL; 6463 } 6464 for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i) 6465 LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, 6466 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i, 6467 next); 6468 LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next); 6469 sh->cmng.mem_mng = mem_mng; 6470 return 0; 6471 } 6472 6473 /** 6474 * Set the statistic memory to the new counter pool. 6475 * 6476 * @param[in] sh 6477 * Pointer to mlx5_dev_ctx_shared object. 6478 * @param[in] pool 6479 * Pointer to the pool to set the statistic memory. 6480 * 6481 * @return 6482 * 0 on success, a negative errno value otherwise. 6483 */ 6484 static int 6485 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh, 6486 struct mlx5_flow_counter_pool *pool) 6487 { 6488 struct mlx5_flow_counter_mng *cmng = &sh->cmng; 6489 /* Resize statistic memory once used out. */ 6490 if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) && 6491 mlx5_flow_create_counter_stat_mem_mng(sh)) { 6492 DRV_LOG(ERR, "Cannot resize counter stat mem."); 6493 return -1; 6494 } 6495 rte_spinlock_lock(&pool->sl); 6496 pool->raw = cmng->mem_mng->raws + pool->index % 6497 MLX5_CNT_CONTAINER_RESIZE; 6498 rte_spinlock_unlock(&pool->sl); 6499 pool->raw_hw = NULL; 6500 return 0; 6501 } 6502 6503 #define MLX5_POOL_QUERY_FREQ_US 1000000 6504 6505 /** 6506 * Set the periodic procedure for triggering asynchronous batch queries for all 6507 * the counter pools. 6508 * 6509 * @param[in] sh 6510 * Pointer to mlx5_dev_ctx_shared object. 6511 */ 6512 void 6513 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh) 6514 { 6515 uint32_t pools_n, us; 6516 6517 pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED); 6518 us = MLX5_POOL_QUERY_FREQ_US / pools_n; 6519 DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us); 6520 if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) { 6521 sh->cmng.query_thread_on = 0; 6522 DRV_LOG(ERR, "Cannot reinitialize query alarm"); 6523 } else { 6524 sh->cmng.query_thread_on = 1; 6525 } 6526 } 6527 6528 /** 6529 * The periodic procedure for triggering asynchronous batch queries for all the 6530 * counter pools. This function is probably called by the host thread. 6531 * 6532 * @param[in] arg 6533 * The parameter for the alarm process. 6534 */ 6535 void 6536 mlx5_flow_query_alarm(void *arg) 6537 { 6538 struct mlx5_dev_ctx_shared *sh = arg; 6539 int ret; 6540 uint16_t pool_index = sh->cmng.pool_index; 6541 struct mlx5_flow_counter_mng *cmng = &sh->cmng; 6542 struct mlx5_flow_counter_pool *pool; 6543 uint16_t n_valid; 6544 6545 if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES) 6546 goto set_alarm; 6547 rte_spinlock_lock(&cmng->pool_update_sl); 6548 pool = cmng->pools[pool_index]; 6549 n_valid = cmng->n_valid; 6550 rte_spinlock_unlock(&cmng->pool_update_sl); 6551 /* Set the statistic memory to the new created pool. */ 6552 if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool))) 6553 goto set_alarm; 6554 if (pool->raw_hw) 6555 /* There is a pool query in progress. */ 6556 goto set_alarm; 6557 pool->raw_hw = 6558 LIST_FIRST(&sh->cmng.free_stat_raws); 6559 if (!pool->raw_hw) 6560 /* No free counter statistics raw memory. */ 6561 goto set_alarm; 6562 /* 6563 * Identify the counters released between query trigger and query 6564 * handle more efficiently. The counter released in this gap period 6565 * should wait for a new round of query as the new arrived packets 6566 * will not be taken into account. 6567 */ 6568 pool->query_gen++; 6569 ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0, 6570 MLX5_COUNTERS_PER_POOL, 6571 NULL, NULL, 6572 pool->raw_hw->mem_mng->dm->id, 6573 (void *)(uintptr_t) 6574 pool->raw_hw->data, 6575 sh->devx_comp, 6576 (uint64_t)(uintptr_t)pool); 6577 if (ret) { 6578 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID" 6579 " %d", pool->min_dcs->id); 6580 pool->raw_hw = NULL; 6581 goto set_alarm; 6582 } 6583 LIST_REMOVE(pool->raw_hw, next); 6584 sh->cmng.pending_queries++; 6585 pool_index++; 6586 if (pool_index >= n_valid) 6587 pool_index = 0; 6588 set_alarm: 6589 sh->cmng.pool_index = pool_index; 6590 mlx5_set_query_alarm(sh); 6591 } 6592 6593 /** 6594 * Check and callback event for new aged flow in the counter pool 6595 * 6596 * @param[in] sh 6597 * Pointer to mlx5_dev_ctx_shared object. 6598 * @param[in] pool 6599 * Pointer to Current counter pool. 6600 */ 6601 static void 6602 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh, 6603 struct mlx5_flow_counter_pool *pool) 6604 { 6605 struct mlx5_priv *priv; 6606 struct mlx5_flow_counter *cnt; 6607 struct mlx5_age_info *age_info; 6608 struct mlx5_age_param *age_param; 6609 struct mlx5_counter_stats_raw *cur = pool->raw_hw; 6610 struct mlx5_counter_stats_raw *prev = pool->raw; 6611 const uint64_t curr_time = MLX5_CURR_TIME_SEC; 6612 const uint32_t time_delta = curr_time - pool->time_of_last_age_check; 6613 uint16_t expected = AGE_CANDIDATE; 6614 uint32_t i; 6615 6616 pool->time_of_last_age_check = curr_time; 6617 for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) { 6618 cnt = MLX5_POOL_GET_CNT(pool, i); 6619 age_param = MLX5_CNT_TO_AGE(cnt); 6620 if (__atomic_load_n(&age_param->state, 6621 __ATOMIC_RELAXED) != AGE_CANDIDATE) 6622 continue; 6623 if (cur->data[i].hits != prev->data[i].hits) { 6624 __atomic_store_n(&age_param->sec_since_last_hit, 0, 6625 __ATOMIC_RELAXED); 6626 continue; 6627 } 6628 if (__atomic_add_fetch(&age_param->sec_since_last_hit, 6629 time_delta, 6630 __ATOMIC_RELAXED) <= age_param->timeout) 6631 continue; 6632 /** 6633 * Hold the lock first, or if between the 6634 * state AGE_TMOUT and tailq operation the 6635 * release happened, the release procedure 6636 * may delete a non-existent tailq node. 6637 */ 6638 priv = rte_eth_devices[age_param->port_id].data->dev_private; 6639 age_info = GET_PORT_AGE_INFO(priv); 6640 rte_spinlock_lock(&age_info->aged_sl); 6641 if (__atomic_compare_exchange_n(&age_param->state, &expected, 6642 AGE_TMOUT, false, 6643 __ATOMIC_RELAXED, 6644 __ATOMIC_RELAXED)) { 6645 TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next); 6646 MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW); 6647 } 6648 rte_spinlock_unlock(&age_info->aged_sl); 6649 } 6650 mlx5_age_event_prepare(sh); 6651 } 6652 6653 /** 6654 * Handler for the HW respond about ready values from an asynchronous batch 6655 * query. This function is probably called by the host thread. 6656 * 6657 * @param[in] sh 6658 * The pointer to the shared device context. 6659 * @param[in] async_id 6660 * The Devx async ID. 6661 * @param[in] status 6662 * The status of the completion. 6663 */ 6664 void 6665 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh, 6666 uint64_t async_id, int status) 6667 { 6668 struct mlx5_flow_counter_pool *pool = 6669 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id; 6670 struct mlx5_counter_stats_raw *raw_to_free; 6671 uint8_t query_gen = pool->query_gen ^ 1; 6672 struct mlx5_flow_counter_mng *cmng = &sh->cmng; 6673 enum mlx5_counter_type cnt_type = 6674 pool->is_aged ? MLX5_COUNTER_TYPE_AGE : 6675 MLX5_COUNTER_TYPE_ORIGIN; 6676 6677 if (unlikely(status)) { 6678 raw_to_free = pool->raw_hw; 6679 } else { 6680 raw_to_free = pool->raw; 6681 if (pool->is_aged) 6682 mlx5_flow_aging_check(sh, pool); 6683 rte_spinlock_lock(&pool->sl); 6684 pool->raw = pool->raw_hw; 6685 rte_spinlock_unlock(&pool->sl); 6686 /* Be sure the new raw counters data is updated in memory. */ 6687 rte_io_wmb(); 6688 if (!TAILQ_EMPTY(&pool->counters[query_gen])) { 6689 rte_spinlock_lock(&cmng->csl[cnt_type]); 6690 TAILQ_CONCAT(&cmng->counters[cnt_type], 6691 &pool->counters[query_gen], next); 6692 rte_spinlock_unlock(&cmng->csl[cnt_type]); 6693 } 6694 } 6695 LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next); 6696 pool->raw_hw = NULL; 6697 sh->cmng.pending_queries--; 6698 } 6699 6700 static int 6701 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table, 6702 const struct flow_grp_info *grp_info, 6703 struct rte_flow_error *error) 6704 { 6705 if (grp_info->transfer && grp_info->external && 6706 grp_info->fdb_def_rule) { 6707 if (group == UINT32_MAX) 6708 return rte_flow_error_set 6709 (error, EINVAL, 6710 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 6711 NULL, 6712 "group index not supported"); 6713 *table = group + 1; 6714 } else { 6715 *table = group; 6716 } 6717 DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table); 6718 return 0; 6719 } 6720 6721 /** 6722 * Translate the rte_flow group index to HW table value. 6723 * 6724 * If tunnel offload is disabled, all group ids converted to flow table 6725 * id using the standard method. 6726 * If tunnel offload is enabled, group id can be converted using the 6727 * standard or tunnel conversion method. Group conversion method 6728 * selection depends on flags in `grp_info` parameter: 6729 * - Internal (grp_info.external == 0) groups conversion uses the 6730 * standard method. 6731 * - Group ids in JUMP action converted with the tunnel conversion. 6732 * - Group id in rule attribute conversion depends on a rule type and 6733 * group id value: 6734 * ** non zero group attributes converted with the tunnel method 6735 * ** zero group attribute in non-tunnel rule is converted using the 6736 * standard method - there's only one root table 6737 * ** zero group attribute in steer tunnel rule is converted with the 6738 * standard method - single root table 6739 * ** zero group attribute in match tunnel rule is a special OvS 6740 * case: that value is used for portability reasons. That group 6741 * id is converted with the tunnel conversion method. 6742 * 6743 * @param[in] dev 6744 * Port device 6745 * @param[in] tunnel 6746 * PMD tunnel offload object 6747 * @param[in] group 6748 * rte_flow group index value. 6749 * @param[out] table 6750 * HW table value. 6751 * @param[in] grp_info 6752 * flags used for conversion 6753 * @param[out] error 6754 * Pointer to error structure. 6755 * 6756 * @return 6757 * 0 on success, a negative errno value otherwise and rte_errno is set. 6758 */ 6759 int 6760 mlx5_flow_group_to_table(struct rte_eth_dev *dev, 6761 const struct mlx5_flow_tunnel *tunnel, 6762 uint32_t group, uint32_t *table, 6763 const struct flow_grp_info *grp_info, 6764 struct rte_flow_error *error) 6765 { 6766 int ret; 6767 bool standard_translation; 6768 6769 if (!grp_info->skip_scale && grp_info->external && 6770 group < MLX5_MAX_TABLES_EXTERNAL) 6771 group *= MLX5_FLOW_TABLE_FACTOR; 6772 if (is_tunnel_offload_active(dev)) { 6773 standard_translation = !grp_info->external || 6774 grp_info->std_tbl_fix; 6775 } else { 6776 standard_translation = true; 6777 } 6778 DRV_LOG(DEBUG, 6779 "port %u group=%#x transfer=%d external=%d fdb_def_rule=%d translate=%s", 6780 dev->data->port_id, group, grp_info->transfer, 6781 grp_info->external, grp_info->fdb_def_rule, 6782 standard_translation ? "STANDARD" : "TUNNEL"); 6783 if (standard_translation) 6784 ret = flow_group_to_table(dev->data->port_id, group, table, 6785 grp_info, error); 6786 else 6787 ret = tunnel_flow_group_to_flow_table(dev, tunnel, group, 6788 table, error); 6789 6790 return ret; 6791 } 6792 6793 /** 6794 * Discover availability of metadata reg_c's. 6795 * 6796 * Iteratively use test flows to check availability. 6797 * 6798 * @param[in] dev 6799 * Pointer to the Ethernet device structure. 6800 * 6801 * @return 6802 * 0 on success, a negative errno value otherwise and rte_errno is set. 6803 */ 6804 int 6805 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev) 6806 { 6807 struct mlx5_priv *priv = dev->data->dev_private; 6808 struct mlx5_dev_config *config = &priv->config; 6809 enum modify_reg idx; 6810 int n = 0; 6811 6812 /* reg_c[0] and reg_c[1] are reserved. */ 6813 config->flow_mreg_c[n++] = REG_C_0; 6814 config->flow_mreg_c[n++] = REG_C_1; 6815 /* Discover availability of other reg_c's. */ 6816 for (idx = REG_C_2; idx <= REG_C_7; ++idx) { 6817 struct rte_flow_attr attr = { 6818 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP, 6819 .priority = MLX5_FLOW_PRIO_RSVD, 6820 .ingress = 1, 6821 }; 6822 struct rte_flow_item items[] = { 6823 [0] = { 6824 .type = RTE_FLOW_ITEM_TYPE_END, 6825 }, 6826 }; 6827 struct rte_flow_action actions[] = { 6828 [0] = { 6829 .type = (enum rte_flow_action_type) 6830 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 6831 .conf = &(struct mlx5_flow_action_copy_mreg){ 6832 .src = REG_C_1, 6833 .dst = idx, 6834 }, 6835 }, 6836 [1] = { 6837 .type = RTE_FLOW_ACTION_TYPE_JUMP, 6838 .conf = &(struct rte_flow_action_jump){ 6839 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP, 6840 }, 6841 }, 6842 [2] = { 6843 .type = RTE_FLOW_ACTION_TYPE_END, 6844 }, 6845 }; 6846 uint32_t flow_idx; 6847 struct rte_flow *flow; 6848 struct rte_flow_error error; 6849 6850 if (!config->dv_flow_en) 6851 break; 6852 /* Create internal flow, validation skips copy action. */ 6853 flow_idx = flow_list_create(dev, NULL, &attr, items, 6854 actions, false, &error); 6855 flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], 6856 flow_idx); 6857 if (!flow) 6858 continue; 6859 config->flow_mreg_c[n++] = idx; 6860 flow_list_destroy(dev, NULL, flow_idx); 6861 } 6862 for (; n < MLX5_MREG_C_NUM; ++n) 6863 config->flow_mreg_c[n] = REG_NON; 6864 return 0; 6865 } 6866 6867 /** 6868 * Dump flow raw hw data to file 6869 * 6870 * @param[in] dev 6871 * The pointer to Ethernet device. 6872 * @param[in] file 6873 * A pointer to a file for output. 6874 * @param[out] error 6875 * Perform verbose error reporting if not NULL. PMDs initialize this 6876 * structure in case of error only. 6877 * @return 6878 * 0 on success, a nagative value otherwise. 6879 */ 6880 int 6881 mlx5_flow_dev_dump(struct rte_eth_dev *dev, 6882 FILE *file, 6883 struct rte_flow_error *error __rte_unused) 6884 { 6885 struct mlx5_priv *priv = dev->data->dev_private; 6886 struct mlx5_dev_ctx_shared *sh = priv->sh; 6887 6888 if (!priv->config.dv_flow_en) { 6889 if (fputs("device dv flow disabled\n", file) <= 0) 6890 return -errno; 6891 return -ENOTSUP; 6892 } 6893 return mlx5_devx_cmd_flow_dump(sh->fdb_domain, sh->rx_domain, 6894 sh->tx_domain, file); 6895 } 6896 6897 /** 6898 * Get aged-out flows. 6899 * 6900 * @param[in] dev 6901 * Pointer to the Ethernet device structure. 6902 * @param[in] context 6903 * The address of an array of pointers to the aged-out flows contexts. 6904 * @param[in] nb_countexts 6905 * The length of context array pointers. 6906 * @param[out] error 6907 * Perform verbose error reporting if not NULL. Initialized in case of 6908 * error only. 6909 * 6910 * @return 6911 * how many contexts get in success, otherwise negative errno value. 6912 * if nb_contexts is 0, return the amount of all aged contexts. 6913 * if nb_contexts is not 0 , return the amount of aged flows reported 6914 * in the context array. 6915 */ 6916 int 6917 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts, 6918 uint32_t nb_contexts, struct rte_flow_error *error) 6919 { 6920 const struct mlx5_flow_driver_ops *fops; 6921 struct rte_flow_attr attr = { .transfer = 0 }; 6922 6923 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 6924 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6925 return fops->get_aged_flows(dev, contexts, nb_contexts, 6926 error); 6927 } 6928 DRV_LOG(ERR, 6929 "port %u get aged flows is not supported.", 6930 dev->data->port_id); 6931 return -ENOTSUP; 6932 } 6933 6934 /* Wrapper for driver action_validate op callback */ 6935 static int 6936 flow_drv_action_validate(struct rte_eth_dev *dev, 6937 const struct rte_flow_shared_action_conf *conf, 6938 const struct rte_flow_action *action, 6939 const struct mlx5_flow_driver_ops *fops, 6940 struct rte_flow_error *error) 6941 { 6942 static const char err_msg[] = "shared action validation unsupported"; 6943 6944 if (!fops->action_validate) { 6945 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 6946 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 6947 NULL, err_msg); 6948 return -rte_errno; 6949 } 6950 return fops->action_validate(dev, conf, action, error); 6951 } 6952 6953 /** 6954 * Destroys the shared action by handle. 6955 * 6956 * @param dev 6957 * Pointer to Ethernet device structure. 6958 * @param[in] action 6959 * Handle for the shared action to be destroyed. 6960 * @param[out] error 6961 * Perform verbose error reporting if not NULL. PMDs initialize this 6962 * structure in case of error only. 6963 * 6964 * @return 6965 * 0 on success, a negative errno value otherwise and rte_errno is set. 6966 * 6967 * @note: wrapper for driver action_create op callback. 6968 */ 6969 static int 6970 mlx5_shared_action_destroy(struct rte_eth_dev *dev, 6971 struct rte_flow_shared_action *action, 6972 struct rte_flow_error *error) 6973 { 6974 static const char err_msg[] = "shared action destruction unsupported"; 6975 struct rte_flow_attr attr = { .transfer = 0 }; 6976 const struct mlx5_flow_driver_ops *fops = 6977 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 6978 6979 if (!fops->action_destroy) { 6980 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 6981 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 6982 NULL, err_msg); 6983 return -rte_errno; 6984 } 6985 return fops->action_destroy(dev, action, error); 6986 } 6987 6988 /* Wrapper for driver action_destroy op callback */ 6989 static int 6990 flow_drv_action_update(struct rte_eth_dev *dev, 6991 struct rte_flow_shared_action *action, 6992 const void *action_conf, 6993 const struct mlx5_flow_driver_ops *fops, 6994 struct rte_flow_error *error) 6995 { 6996 static const char err_msg[] = "shared action update unsupported"; 6997 6998 if (!fops->action_update) { 6999 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 7000 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 7001 NULL, err_msg); 7002 return -rte_errno; 7003 } 7004 return fops->action_update(dev, action, action_conf, error); 7005 } 7006 7007 /* Wrapper for driver action_destroy op callback */ 7008 static int 7009 flow_drv_action_query(struct rte_eth_dev *dev, 7010 const struct rte_flow_shared_action *action, 7011 void *data, 7012 const struct mlx5_flow_driver_ops *fops, 7013 struct rte_flow_error *error) 7014 { 7015 static const char err_msg[] = "shared action query unsupported"; 7016 7017 if (!fops->action_query) { 7018 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 7019 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 7020 NULL, err_msg); 7021 return -rte_errno; 7022 } 7023 return fops->action_query(dev, action, data, error); 7024 } 7025 7026 /** 7027 * Create shared action for reuse in multiple flow rules. 7028 * 7029 * @param dev 7030 * Pointer to Ethernet device structure. 7031 * @param[in] action 7032 * Action configuration for shared action creation. 7033 * @param[out] error 7034 * Perform verbose error reporting if not NULL. PMDs initialize this 7035 * structure in case of error only. 7036 * @return 7037 * A valid handle in case of success, NULL otherwise and rte_errno is set. 7038 */ 7039 static struct rte_flow_shared_action * 7040 mlx5_shared_action_create(struct rte_eth_dev *dev, 7041 const struct rte_flow_shared_action_conf *conf, 7042 const struct rte_flow_action *action, 7043 struct rte_flow_error *error) 7044 { 7045 static const char err_msg[] = "shared action creation unsupported"; 7046 struct rte_flow_attr attr = { .transfer = 0 }; 7047 const struct mlx5_flow_driver_ops *fops = 7048 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 7049 7050 if (flow_drv_action_validate(dev, conf, action, fops, error)) 7051 return NULL; 7052 if (!fops->action_create) { 7053 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 7054 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 7055 NULL, err_msg); 7056 return NULL; 7057 } 7058 return fops->action_create(dev, conf, action, error); 7059 } 7060 7061 /** 7062 * Updates inplace the shared action configuration pointed by *action* handle 7063 * with the configuration provided as *action* argument. 7064 * The update of the shared action configuration effects all flow rules reusing 7065 * the action via handle. 7066 * 7067 * @param dev 7068 * Pointer to Ethernet device structure. 7069 * @param[in] shared_action 7070 * Handle for the shared action to be updated. 7071 * @param[in] action 7072 * Action specification used to modify the action pointed by handle. 7073 * *action* should be of same type with the action pointed by the *action* 7074 * handle argument, otherwise considered as invalid. 7075 * @param[out] error 7076 * Perform verbose error reporting if not NULL. PMDs initialize this 7077 * structure in case of error only. 7078 * 7079 * @return 7080 * 0 on success, a negative errno value otherwise and rte_errno is set. 7081 */ 7082 static int 7083 mlx5_shared_action_update(struct rte_eth_dev *dev, 7084 struct rte_flow_shared_action *shared_action, 7085 const struct rte_flow_action *action, 7086 struct rte_flow_error *error) 7087 { 7088 struct rte_flow_attr attr = { .transfer = 0 }; 7089 const struct mlx5_flow_driver_ops *fops = 7090 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 7091 int ret; 7092 7093 ret = flow_drv_action_validate(dev, NULL, action, fops, error); 7094 if (ret) 7095 return ret; 7096 return flow_drv_action_update(dev, shared_action, action->conf, fops, 7097 error); 7098 } 7099 7100 /** 7101 * Query the shared action by handle. 7102 * 7103 * This function allows retrieving action-specific data such as counters. 7104 * Data is gathered by special action which may be present/referenced in 7105 * more than one flow rule definition. 7106 * 7107 * \see RTE_FLOW_ACTION_TYPE_COUNT 7108 * 7109 * @param dev 7110 * Pointer to Ethernet device structure. 7111 * @param[in] action 7112 * Handle for the shared action to query. 7113 * @param[in, out] data 7114 * Pointer to storage for the associated query data type. 7115 * @param[out] error 7116 * Perform verbose error reporting if not NULL. PMDs initialize this 7117 * structure in case of error only. 7118 * 7119 * @return 7120 * 0 on success, a negative errno value otherwise and rte_errno is set. 7121 */ 7122 static int 7123 mlx5_shared_action_query(struct rte_eth_dev *dev, 7124 const struct rte_flow_shared_action *action, 7125 void *data, 7126 struct rte_flow_error *error) 7127 { 7128 struct rte_flow_attr attr = { .transfer = 0 }; 7129 const struct mlx5_flow_driver_ops *fops = 7130 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 7131 7132 return flow_drv_action_query(dev, action, data, fops, error); 7133 } 7134 7135 /** 7136 * Destroy all shared actions. 7137 * 7138 * @param dev 7139 * Pointer to Ethernet device. 7140 * 7141 * @return 7142 * 0 on success, a negative errno value otherwise and rte_errno is set. 7143 */ 7144 int 7145 mlx5_shared_action_flush(struct rte_eth_dev *dev) 7146 { 7147 struct rte_flow_error error; 7148 struct mlx5_priv *priv = dev->data->dev_private; 7149 struct mlx5_shared_action_rss *action; 7150 int ret = 0; 7151 uint32_t idx; 7152 7153 ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 7154 priv->rss_shared_actions, idx, action, next) { 7155 ret |= mlx5_shared_action_destroy(dev, 7156 (struct rte_flow_shared_action *)(uintptr_t)idx, &error); 7157 } 7158 return ret; 7159 } 7160 7161 #ifndef HAVE_MLX5DV_DR 7162 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1)) 7163 #else 7164 #define MLX5_DOMAIN_SYNC_FLOW \ 7165 (MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW) 7166 #endif 7167 7168 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains) 7169 { 7170 struct rte_eth_dev *dev = &rte_eth_devices[port_id]; 7171 const struct mlx5_flow_driver_ops *fops; 7172 int ret; 7173 struct rte_flow_attr attr = { .transfer = 0 }; 7174 7175 fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 7176 ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW); 7177 if (ret > 0) 7178 ret = -ret; 7179 return ret; 7180 } 7181 7182 /** 7183 * tunnel offload functionalilty is defined for DV environment only 7184 */ 7185 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 7186 __extension__ 7187 union tunnel_offload_mark { 7188 uint32_t val; 7189 struct { 7190 uint32_t app_reserve:8; 7191 uint32_t table_id:15; 7192 uint32_t transfer:1; 7193 uint32_t _unused_:8; 7194 }; 7195 }; 7196 7197 static int 7198 flow_tunnel_add_default_miss(struct rte_eth_dev *dev, 7199 struct rte_flow *flow, 7200 const struct rte_flow_attr *attr, 7201 const struct rte_flow_action *app_actions, 7202 uint32_t flow_idx, 7203 struct tunnel_default_miss_ctx *ctx, 7204 struct rte_flow_error *error) 7205 { 7206 struct mlx5_priv *priv = dev->data->dev_private; 7207 struct mlx5_flow *dev_flow; 7208 struct rte_flow_attr miss_attr = *attr; 7209 const struct mlx5_flow_tunnel *tunnel = app_actions[0].conf; 7210 const struct rte_flow_item miss_items[2] = { 7211 { 7212 .type = RTE_FLOW_ITEM_TYPE_ETH, 7213 .spec = NULL, 7214 .last = NULL, 7215 .mask = NULL 7216 }, 7217 { 7218 .type = RTE_FLOW_ITEM_TYPE_END, 7219 .spec = NULL, 7220 .last = NULL, 7221 .mask = NULL 7222 } 7223 }; 7224 union tunnel_offload_mark mark_id; 7225 struct rte_flow_action_mark miss_mark; 7226 struct rte_flow_action miss_actions[3] = { 7227 [0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark }, 7228 [2] = { .type = RTE_FLOW_ACTION_TYPE_END, .conf = NULL } 7229 }; 7230 const struct rte_flow_action_jump *jump_data; 7231 uint32_t i, flow_table = 0; /* prevent compilation warning */ 7232 struct flow_grp_info grp_info = { 7233 .external = 1, 7234 .transfer = attr->transfer, 7235 .fdb_def_rule = !!priv->fdb_def_rule, 7236 .std_tbl_fix = 0, 7237 }; 7238 int ret; 7239 7240 if (!attr->transfer) { 7241 uint32_t q_size; 7242 7243 miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS; 7244 q_size = priv->reta_idx_n * sizeof(ctx->queue[0]); 7245 ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size, 7246 0, SOCKET_ID_ANY); 7247 if (!ctx->queue) 7248 return rte_flow_error_set 7249 (error, ENOMEM, 7250 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 7251 NULL, "invalid default miss RSS"); 7252 ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT, 7253 ctx->action_rss.level = 0, 7254 ctx->action_rss.types = priv->rss_conf.rss_hf, 7255 ctx->action_rss.key_len = priv->rss_conf.rss_key_len, 7256 ctx->action_rss.queue_num = priv->reta_idx_n, 7257 ctx->action_rss.key = priv->rss_conf.rss_key, 7258 ctx->action_rss.queue = ctx->queue; 7259 if (!priv->reta_idx_n || !priv->rxqs_n) 7260 return rte_flow_error_set 7261 (error, EINVAL, 7262 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 7263 NULL, "invalid port configuration"); 7264 if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)) 7265 ctx->action_rss.types = 0; 7266 for (i = 0; i != priv->reta_idx_n; ++i) 7267 ctx->queue[i] = (*priv->reta_idx)[i]; 7268 } else { 7269 miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP; 7270 ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP; 7271 } 7272 miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw; 7273 for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++); 7274 jump_data = app_actions->conf; 7275 miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY; 7276 miss_attr.group = jump_data->group; 7277 ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group, 7278 &flow_table, &grp_info, error); 7279 if (ret) 7280 return rte_flow_error_set(error, EINVAL, 7281 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 7282 NULL, "invalid tunnel id"); 7283 mark_id.app_reserve = 0; 7284 mark_id.table_id = tunnel_flow_tbl_to_id(flow_table); 7285 mark_id.transfer = !!attr->transfer; 7286 mark_id._unused_ = 0; 7287 miss_mark.id = mark_id.val; 7288 dev_flow = flow_drv_prepare(dev, flow, &miss_attr, 7289 miss_items, miss_actions, flow_idx, error); 7290 if (!dev_flow) 7291 return -rte_errno; 7292 dev_flow->flow = flow; 7293 dev_flow->external = true; 7294 dev_flow->tunnel = tunnel; 7295 /* Subflow object was created, we must include one in the list. */ 7296 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx, 7297 dev_flow->handle, next); 7298 DRV_LOG(DEBUG, 7299 "port %u tunnel type=%d id=%u miss rule priority=%u group=%u", 7300 dev->data->port_id, tunnel->app_tunnel.type, 7301 tunnel->tunnel_id, miss_attr.priority, miss_attr.group); 7302 ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items, 7303 miss_actions, error); 7304 if (!ret) 7305 ret = flow_mreg_update_copy_table(dev, flow, miss_actions, 7306 error); 7307 7308 return ret; 7309 } 7310 7311 static const struct mlx5_flow_tbl_data_entry * 7312 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark) 7313 { 7314 struct mlx5_priv *priv = dev->data->dev_private; 7315 struct mlx5_dev_ctx_shared *sh = priv->sh; 7316 struct mlx5_hlist_entry *he; 7317 union tunnel_offload_mark mbits = { .val = mark }; 7318 union mlx5_flow_tbl_key table_key = { 7319 { 7320 .table_id = tunnel_id_to_flow_tbl(mbits.table_id), 7321 .dummy = 0, 7322 .domain = !!mbits.transfer, 7323 .direction = 0, 7324 } 7325 }; 7326 he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, NULL); 7327 return he ? 7328 container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL; 7329 } 7330 7331 static void 7332 mlx5_flow_tunnel_grp2tbl_remove_cb(struct mlx5_hlist *list, 7333 struct mlx5_hlist_entry *entry) 7334 { 7335 struct mlx5_dev_ctx_shared *sh = list->ctx; 7336 struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash); 7337 7338 mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID], 7339 tunnel_flow_tbl_to_id(tte->flow_table)); 7340 mlx5_free(tte); 7341 } 7342 7343 static struct mlx5_hlist_entry * 7344 mlx5_flow_tunnel_grp2tbl_create_cb(struct mlx5_hlist *list, 7345 uint64_t key __rte_unused, 7346 void *ctx __rte_unused) 7347 { 7348 struct mlx5_dev_ctx_shared *sh = list->ctx; 7349 struct tunnel_tbl_entry *tte; 7350 7351 tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, 7352 sizeof(*tte), 0, 7353 SOCKET_ID_ANY); 7354 if (!tte) 7355 goto err; 7356 mlx5_ipool_malloc(sh->ipool[MLX5_IPOOL_TNL_TBL_ID], 7357 &tte->flow_table); 7358 if (tte->flow_table >= MLX5_MAX_TABLES) { 7359 DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.", 7360 tte->flow_table); 7361 mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID], 7362 tte->flow_table); 7363 goto err; 7364 } else if (!tte->flow_table) { 7365 goto err; 7366 } 7367 tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table); 7368 return &tte->hash; 7369 err: 7370 if (tte) 7371 mlx5_free(tte); 7372 return NULL; 7373 } 7374 7375 static uint32_t 7376 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev, 7377 const struct mlx5_flow_tunnel *tunnel, 7378 uint32_t group, uint32_t *table, 7379 struct rte_flow_error *error) 7380 { 7381 struct mlx5_hlist_entry *he; 7382 struct tunnel_tbl_entry *tte; 7383 union tunnel_tbl_key key = { 7384 .tunnel_id = tunnel ? tunnel->tunnel_id : 0, 7385 .group = group 7386 }; 7387 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 7388 struct mlx5_hlist *group_hash; 7389 7390 group_hash = tunnel ? tunnel->groups : thub->groups; 7391 he = mlx5_hlist_register(group_hash, key.val, NULL); 7392 if (!he) 7393 return rte_flow_error_set(error, EINVAL, 7394 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 7395 NULL, 7396 "tunnel group index not supported"); 7397 tte = container_of(he, typeof(*tte), hash); 7398 *table = tte->flow_table; 7399 DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x", 7400 dev->data->port_id, key.tunnel_id, group, *table); 7401 return 0; 7402 } 7403 7404 static void 7405 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, 7406 struct mlx5_flow_tunnel *tunnel) 7407 { 7408 struct mlx5_priv *priv = dev->data->dev_private; 7409 struct mlx5_indexed_pool *ipool; 7410 7411 DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x", 7412 dev->data->port_id, tunnel->tunnel_id); 7413 mlx5_hlist_destroy(tunnel->groups); 7414 ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID]; 7415 mlx5_ipool_free(ipool, tunnel->tunnel_id); 7416 } 7417 7418 static struct mlx5_flow_tunnel * 7419 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id) 7420 { 7421 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 7422 struct mlx5_flow_tunnel *tun; 7423 7424 LIST_FOREACH(tun, &thub->tunnels, chain) { 7425 if (tun->tunnel_id == id) 7426 break; 7427 } 7428 7429 return tun; 7430 } 7431 7432 static struct mlx5_flow_tunnel * 7433 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev, 7434 const struct rte_flow_tunnel *app_tunnel) 7435 { 7436 struct mlx5_priv *priv = dev->data->dev_private; 7437 struct mlx5_indexed_pool *ipool; 7438 struct mlx5_flow_tunnel *tunnel; 7439 uint32_t id; 7440 7441 ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID]; 7442 tunnel = mlx5_ipool_zmalloc(ipool, &id); 7443 if (!tunnel) 7444 return NULL; 7445 if (id >= MLX5_MAX_TUNNELS) { 7446 mlx5_ipool_free(ipool, id); 7447 DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id); 7448 return NULL; 7449 } 7450 tunnel->groups = mlx5_hlist_create("tunnel groups", 1024, 0, 0, 7451 mlx5_flow_tunnel_grp2tbl_create_cb, 7452 NULL, 7453 mlx5_flow_tunnel_grp2tbl_remove_cb); 7454 if (!tunnel->groups) { 7455 mlx5_ipool_free(ipool, id); 7456 return NULL; 7457 } 7458 tunnel->groups->ctx = priv->sh; 7459 /* initiate new PMD tunnel */ 7460 memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel)); 7461 tunnel->tunnel_id = id; 7462 tunnel->action.type = (typeof(tunnel->action.type)) 7463 MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET; 7464 tunnel->action.conf = tunnel; 7465 tunnel->item.type = (typeof(tunnel->item.type)) 7466 MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL; 7467 tunnel->item.spec = tunnel; 7468 tunnel->item.last = NULL; 7469 tunnel->item.mask = NULL; 7470 7471 DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x", 7472 dev->data->port_id, tunnel->tunnel_id); 7473 7474 return tunnel; 7475 } 7476 7477 static int 7478 mlx5_get_flow_tunnel(struct rte_eth_dev *dev, 7479 const struct rte_flow_tunnel *app_tunnel, 7480 struct mlx5_flow_tunnel **tunnel) 7481 { 7482 int ret; 7483 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 7484 struct mlx5_flow_tunnel *tun; 7485 7486 rte_spinlock_lock(&thub->sl); 7487 LIST_FOREACH(tun, &thub->tunnels, chain) { 7488 if (!memcmp(app_tunnel, &tun->app_tunnel, 7489 sizeof(*app_tunnel))) { 7490 *tunnel = tun; 7491 ret = 0; 7492 break; 7493 } 7494 } 7495 if (!tun) { 7496 tun = mlx5_flow_tunnel_allocate(dev, app_tunnel); 7497 if (tun) { 7498 LIST_INSERT_HEAD(&thub->tunnels, tun, chain); 7499 *tunnel = tun; 7500 } else { 7501 ret = -ENOMEM; 7502 } 7503 } 7504 rte_spinlock_unlock(&thub->sl); 7505 if (tun) 7506 __atomic_add_fetch(&tun->refctn, 1, __ATOMIC_RELAXED); 7507 7508 return ret; 7509 } 7510 7511 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id) 7512 { 7513 struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub; 7514 7515 if (!thub) 7516 return; 7517 if (!LIST_EMPTY(&thub->tunnels)) 7518 DRV_LOG(WARNING, "port %u tunnels present\n", port_id); 7519 mlx5_hlist_destroy(thub->groups); 7520 mlx5_free(thub); 7521 } 7522 7523 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh) 7524 { 7525 int err; 7526 struct mlx5_flow_tunnel_hub *thub; 7527 7528 thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub), 7529 0, SOCKET_ID_ANY); 7530 if (!thub) 7531 return -ENOMEM; 7532 LIST_INIT(&thub->tunnels); 7533 rte_spinlock_init(&thub->sl); 7534 thub->groups = mlx5_hlist_create("flow groups", MLX5_MAX_TABLES, 0, 7535 0, mlx5_flow_tunnel_grp2tbl_create_cb, 7536 NULL, 7537 mlx5_flow_tunnel_grp2tbl_remove_cb); 7538 if (!thub->groups) { 7539 err = -rte_errno; 7540 goto err; 7541 } 7542 thub->groups->ctx = sh; 7543 sh->tunnel_hub = thub; 7544 7545 return 0; 7546 7547 err: 7548 if (thub->groups) 7549 mlx5_hlist_destroy(thub->groups); 7550 if (thub) 7551 mlx5_free(thub); 7552 return err; 7553 } 7554 7555 static inline bool 7556 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev, 7557 struct rte_flow_tunnel *tunnel, 7558 const char *err_msg) 7559 { 7560 err_msg = NULL; 7561 if (!is_tunnel_offload_active(dev)) { 7562 err_msg = "tunnel offload was not activated"; 7563 goto out; 7564 } else if (!tunnel) { 7565 err_msg = "no application tunnel"; 7566 goto out; 7567 } 7568 7569 switch (tunnel->type) { 7570 default: 7571 err_msg = "unsupported tunnel type"; 7572 goto out; 7573 case RTE_FLOW_ITEM_TYPE_VXLAN: 7574 break; 7575 } 7576 7577 out: 7578 return !err_msg; 7579 } 7580 7581 static int 7582 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev, 7583 struct rte_flow_tunnel *app_tunnel, 7584 struct rte_flow_action **actions, 7585 uint32_t *num_of_actions, 7586 struct rte_flow_error *error) 7587 { 7588 int ret; 7589 struct mlx5_flow_tunnel *tunnel; 7590 const char *err_msg = NULL; 7591 bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg); 7592 7593 if (!verdict) 7594 return rte_flow_error_set(error, EINVAL, 7595 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 7596 err_msg); 7597 ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel); 7598 if (ret < 0) { 7599 return rte_flow_error_set(error, ret, 7600 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 7601 "failed to initialize pmd tunnel"); 7602 } 7603 *actions = &tunnel->action; 7604 *num_of_actions = 1; 7605 return 0; 7606 } 7607 7608 static int 7609 mlx5_flow_tunnel_match(struct rte_eth_dev *dev, 7610 struct rte_flow_tunnel *app_tunnel, 7611 struct rte_flow_item **items, 7612 uint32_t *num_of_items, 7613 struct rte_flow_error *error) 7614 { 7615 int ret; 7616 struct mlx5_flow_tunnel *tunnel; 7617 const char *err_msg = NULL; 7618 bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg); 7619 7620 if (!verdict) 7621 return rte_flow_error_set(error, EINVAL, 7622 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 7623 err_msg); 7624 ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel); 7625 if (ret < 0) { 7626 return rte_flow_error_set(error, ret, 7627 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 7628 "failed to initialize pmd tunnel"); 7629 } 7630 *items = &tunnel->item; 7631 *num_of_items = 1; 7632 return 0; 7633 } 7634 static int 7635 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev, 7636 struct rte_flow_item *pmd_items, 7637 uint32_t num_items, struct rte_flow_error *err) 7638 { 7639 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 7640 struct mlx5_flow_tunnel *tun; 7641 7642 rte_spinlock_lock(&thub->sl); 7643 LIST_FOREACH(tun, &thub->tunnels, chain) { 7644 if (&tun->item == pmd_items) { 7645 LIST_REMOVE(tun, chain); 7646 break; 7647 } 7648 } 7649 rte_spinlock_unlock(&thub->sl); 7650 if (!tun || num_items != 1) 7651 return rte_flow_error_set(err, EINVAL, 7652 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 7653 "invalid argument"); 7654 if (!__atomic_sub_fetch(&tun->refctn, 1, __ATOMIC_RELAXED)) 7655 mlx5_flow_tunnel_free(dev, tun); 7656 return 0; 7657 } 7658 7659 static int 7660 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev, 7661 struct rte_flow_action *pmd_actions, 7662 uint32_t num_actions, 7663 struct rte_flow_error *err) 7664 { 7665 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 7666 struct mlx5_flow_tunnel *tun; 7667 7668 rte_spinlock_lock(&thub->sl); 7669 LIST_FOREACH(tun, &thub->tunnels, chain) { 7670 if (&tun->action == pmd_actions) { 7671 LIST_REMOVE(tun, chain); 7672 break; 7673 } 7674 } 7675 rte_spinlock_unlock(&thub->sl); 7676 if (!tun || num_actions != 1) 7677 return rte_flow_error_set(err, EINVAL, 7678 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 7679 "invalid argument"); 7680 if (!__atomic_sub_fetch(&tun->refctn, 1, __ATOMIC_RELAXED)) 7681 mlx5_flow_tunnel_free(dev, tun); 7682 7683 return 0; 7684 } 7685 7686 static int 7687 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev, 7688 struct rte_mbuf *m, 7689 struct rte_flow_restore_info *info, 7690 struct rte_flow_error *err) 7691 { 7692 uint64_t ol_flags = m->ol_flags; 7693 const struct mlx5_flow_tbl_data_entry *tble; 7694 const uint64_t mask = PKT_RX_FDIR | PKT_RX_FDIR_ID; 7695 7696 if ((ol_flags & mask) != mask) 7697 goto err; 7698 tble = tunnel_mark_decode(dev, m->hash.fdir.hi); 7699 if (!tble) { 7700 DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x", 7701 dev->data->port_id, m->hash.fdir.hi); 7702 goto err; 7703 } 7704 MLX5_ASSERT(tble->tunnel); 7705 memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel)); 7706 info->group_id = tble->group_id; 7707 info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL | 7708 RTE_FLOW_RESTORE_INFO_GROUP_ID | 7709 RTE_FLOW_RESTORE_INFO_ENCAPSULATED; 7710 7711 return 0; 7712 7713 err: 7714 return rte_flow_error_set(err, EINVAL, 7715 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 7716 "failed to get restore info"); 7717 } 7718 7719 #else /* HAVE_IBV_FLOW_DV_SUPPORT */ 7720 static int 7721 mlx5_flow_tunnel_decap_set(__rte_unused struct rte_eth_dev *dev, 7722 __rte_unused struct rte_flow_tunnel *app_tunnel, 7723 __rte_unused struct rte_flow_action **actions, 7724 __rte_unused uint32_t *num_of_actions, 7725 __rte_unused struct rte_flow_error *error) 7726 { 7727 return -ENOTSUP; 7728 } 7729 7730 static int 7731 mlx5_flow_tunnel_match(__rte_unused struct rte_eth_dev *dev, 7732 __rte_unused struct rte_flow_tunnel *app_tunnel, 7733 __rte_unused struct rte_flow_item **items, 7734 __rte_unused uint32_t *num_of_items, 7735 __rte_unused struct rte_flow_error *error) 7736 { 7737 return -ENOTSUP; 7738 } 7739 7740 static int 7741 mlx5_flow_tunnel_item_release(__rte_unused struct rte_eth_dev *dev, 7742 __rte_unused struct rte_flow_item *pmd_items, 7743 __rte_unused uint32_t num_items, 7744 __rte_unused struct rte_flow_error *err) 7745 { 7746 return -ENOTSUP; 7747 } 7748 7749 static int 7750 mlx5_flow_tunnel_action_release(__rte_unused struct rte_eth_dev *dev, 7751 __rte_unused struct rte_flow_action *pmd_action, 7752 __rte_unused uint32_t num_actions, 7753 __rte_unused struct rte_flow_error *err) 7754 { 7755 return -ENOTSUP; 7756 } 7757 7758 static int 7759 mlx5_flow_tunnel_get_restore_info(__rte_unused struct rte_eth_dev *dev, 7760 __rte_unused struct rte_mbuf *m, 7761 __rte_unused struct rte_flow_restore_info *i, 7762 __rte_unused struct rte_flow_error *err) 7763 { 7764 return -ENOTSUP; 7765 } 7766 7767 static int 7768 flow_tunnel_add_default_miss(__rte_unused struct rte_eth_dev *dev, 7769 __rte_unused struct rte_flow *flow, 7770 __rte_unused const struct rte_flow_attr *attr, 7771 __rte_unused const struct rte_flow_action *actions, 7772 __rte_unused uint32_t flow_idx, 7773 __rte_unused struct tunnel_default_miss_ctx *ctx, 7774 __rte_unused struct rte_flow_error *error) 7775 { 7776 return -ENOTSUP; 7777 } 7778 7779 static struct mlx5_flow_tunnel * 7780 mlx5_find_tunnel_id(__rte_unused struct rte_eth_dev *dev, 7781 __rte_unused uint32_t id) 7782 { 7783 return NULL; 7784 } 7785 7786 static void 7787 mlx5_flow_tunnel_free(__rte_unused struct rte_eth_dev *dev, 7788 __rte_unused struct mlx5_flow_tunnel *tunnel) 7789 { 7790 } 7791 7792 static uint32_t 7793 tunnel_flow_group_to_flow_table(__rte_unused struct rte_eth_dev *dev, 7794 __rte_unused const struct mlx5_flow_tunnel *t, 7795 __rte_unused uint32_t group, 7796 __rte_unused uint32_t *table, 7797 struct rte_flow_error *error) 7798 { 7799 return rte_flow_error_set(error, ENOTSUP, 7800 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 7801 "tunnel offload requires DV support"); 7802 } 7803 7804 void 7805 mlx5_release_tunnel_hub(__rte_unused struct mlx5_dev_ctx_shared *sh, 7806 __rte_unused uint16_t port_id) 7807 { 7808 } 7809 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */ 7810 7811