xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 90197eb0945b50c9cd6e11f310cfc5078b28f75e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29 
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46 
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48 
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57 
58 enum mlx5_expansion {
59 	MLX5_EXPANSION_ROOT,
60 	MLX5_EXPANSION_ROOT_OUTER,
61 	MLX5_EXPANSION_ROOT_ETH_VLAN,
62 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63 	MLX5_EXPANSION_OUTER_ETH,
64 	MLX5_EXPANSION_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_VLAN,
66 	MLX5_EXPANSION_OUTER_IPV4,
67 	MLX5_EXPANSION_OUTER_IPV4_UDP,
68 	MLX5_EXPANSION_OUTER_IPV4_TCP,
69 	MLX5_EXPANSION_OUTER_IPV6,
70 	MLX5_EXPANSION_OUTER_IPV6_UDP,
71 	MLX5_EXPANSION_OUTER_IPV6_TCP,
72 	MLX5_EXPANSION_VXLAN,
73 	MLX5_EXPANSION_VXLAN_GPE,
74 	MLX5_EXPANSION_GRE,
75 	MLX5_EXPANSION_MPLS,
76 	MLX5_EXPANSION_ETH,
77 	MLX5_EXPANSION_ETH_VLAN,
78 	MLX5_EXPANSION_VLAN,
79 	MLX5_EXPANSION_IPV4,
80 	MLX5_EXPANSION_IPV4_UDP,
81 	MLX5_EXPANSION_IPV4_TCP,
82 	MLX5_EXPANSION_IPV6,
83 	MLX5_EXPANSION_IPV6_UDP,
84 	MLX5_EXPANSION_IPV6_TCP,
85 };
86 
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89 	[MLX5_EXPANSION_ROOT] = {
90 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91 						 MLX5_EXPANSION_IPV4,
92 						 MLX5_EXPANSION_IPV6),
93 		.type = RTE_FLOW_ITEM_TYPE_END,
94 	},
95 	[MLX5_EXPANSION_ROOT_OUTER] = {
96 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97 						 MLX5_EXPANSION_OUTER_IPV4,
98 						 MLX5_EXPANSION_OUTER_IPV6),
99 		.type = RTE_FLOW_ITEM_TYPE_END,
100 	},
101 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103 		.type = RTE_FLOW_ITEM_TYPE_END,
104 	},
105 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107 		.type = RTE_FLOW_ITEM_TYPE_END,
108 	},
109 	[MLX5_EXPANSION_OUTER_ETH] = {
110 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111 						 MLX5_EXPANSION_OUTER_IPV6,
112 						 MLX5_EXPANSION_MPLS),
113 		.type = RTE_FLOW_ITEM_TYPE_ETH,
114 		.rss_types = 0,
115 	},
116 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118 		.type = RTE_FLOW_ITEM_TYPE_ETH,
119 		.rss_types = 0,
120 	},
121 	[MLX5_EXPANSION_OUTER_VLAN] = {
122 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123 						 MLX5_EXPANSION_OUTER_IPV6),
124 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
125 	},
126 	[MLX5_EXPANSION_OUTER_IPV4] = {
127 		.next = RTE_FLOW_EXPAND_RSS_NEXT
128 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
129 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
130 			 MLX5_EXPANSION_GRE),
131 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
132 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
133 			ETH_RSS_NONFRAG_IPV4_OTHER,
134 	},
135 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
136 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
137 						 MLX5_EXPANSION_VXLAN_GPE),
138 		.type = RTE_FLOW_ITEM_TYPE_UDP,
139 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
140 	},
141 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
142 		.type = RTE_FLOW_ITEM_TYPE_TCP,
143 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
144 	},
145 	[MLX5_EXPANSION_OUTER_IPV6] = {
146 		.next = RTE_FLOW_EXPAND_RSS_NEXT
147 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
148 			 MLX5_EXPANSION_OUTER_IPV6_TCP),
149 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
150 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
151 			ETH_RSS_NONFRAG_IPV6_OTHER,
152 	},
153 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
154 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
155 						 MLX5_EXPANSION_VXLAN_GPE),
156 		.type = RTE_FLOW_ITEM_TYPE_UDP,
157 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
158 	},
159 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
160 		.type = RTE_FLOW_ITEM_TYPE_TCP,
161 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
162 	},
163 	[MLX5_EXPANSION_VXLAN] = {
164 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
165 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
166 	},
167 	[MLX5_EXPANSION_VXLAN_GPE] = {
168 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
169 						 MLX5_EXPANSION_IPV4,
170 						 MLX5_EXPANSION_IPV6),
171 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
172 	},
173 	[MLX5_EXPANSION_GRE] = {
174 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
175 		.type = RTE_FLOW_ITEM_TYPE_GRE,
176 	},
177 	[MLX5_EXPANSION_MPLS] = {
178 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
179 						 MLX5_EXPANSION_IPV6),
180 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
181 	},
182 	[MLX5_EXPANSION_ETH] = {
183 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
184 						 MLX5_EXPANSION_IPV6),
185 		.type = RTE_FLOW_ITEM_TYPE_ETH,
186 	},
187 	[MLX5_EXPANSION_ETH_VLAN] = {
188 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
189 		.type = RTE_FLOW_ITEM_TYPE_ETH,
190 	},
191 	[MLX5_EXPANSION_VLAN] = {
192 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
193 						 MLX5_EXPANSION_IPV6),
194 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
195 	},
196 	[MLX5_EXPANSION_IPV4] = {
197 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
198 						 MLX5_EXPANSION_IPV4_TCP),
199 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
200 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
201 			ETH_RSS_NONFRAG_IPV4_OTHER,
202 	},
203 	[MLX5_EXPANSION_IPV4_UDP] = {
204 		.type = RTE_FLOW_ITEM_TYPE_UDP,
205 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
206 	},
207 	[MLX5_EXPANSION_IPV4_TCP] = {
208 		.type = RTE_FLOW_ITEM_TYPE_TCP,
209 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
210 	},
211 	[MLX5_EXPANSION_IPV6] = {
212 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
213 						 MLX5_EXPANSION_IPV6_TCP),
214 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
215 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
216 			ETH_RSS_NONFRAG_IPV6_OTHER,
217 	},
218 	[MLX5_EXPANSION_IPV6_UDP] = {
219 		.type = RTE_FLOW_ITEM_TYPE_UDP,
220 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
221 	},
222 	[MLX5_EXPANSION_IPV6_TCP] = {
223 		.type = RTE_FLOW_ITEM_TYPE_TCP,
224 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
225 	},
226 };
227 
228 static const struct rte_flow_ops mlx5_flow_ops = {
229 	.validate = mlx5_flow_validate,
230 	.create = mlx5_flow_create,
231 	.destroy = mlx5_flow_destroy,
232 	.flush = mlx5_flow_flush,
233 	.isolate = mlx5_flow_isolate,
234 	.query = mlx5_flow_query,
235 };
236 
237 /* Convert FDIR request to Generic flow. */
238 struct mlx5_fdir {
239 	struct rte_flow_attr attr;
240 	struct rte_flow_item items[4];
241 	struct rte_flow_item_eth l2;
242 	struct rte_flow_item_eth l2_mask;
243 	union {
244 		struct rte_flow_item_ipv4 ipv4;
245 		struct rte_flow_item_ipv6 ipv6;
246 	} l3;
247 	union {
248 		struct rte_flow_item_ipv4 ipv4;
249 		struct rte_flow_item_ipv6 ipv6;
250 	} l3_mask;
251 	union {
252 		struct rte_flow_item_udp udp;
253 		struct rte_flow_item_tcp tcp;
254 	} l4;
255 	union {
256 		struct rte_flow_item_udp udp;
257 		struct rte_flow_item_tcp tcp;
258 	} l4_mask;
259 	struct rte_flow_action actions[2];
260 	struct rte_flow_action_queue queue;
261 };
262 
263 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
264 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
265 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
266 };
267 
268 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
269 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
270 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
271 	{ 9, 10, 11 }, { 12, 13, 14 },
272 };
273 
274 /* Tunnel information. */
275 struct mlx5_flow_tunnel_info {
276 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
277 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
278 };
279 
280 static struct mlx5_flow_tunnel_info tunnels_info[] = {
281 	{
282 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
283 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
284 	},
285 	{
286 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
287 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
288 	},
289 	{
290 		.tunnel = MLX5_FLOW_LAYER_GRE,
291 		.ptype = RTE_PTYPE_TUNNEL_GRE,
292 	},
293 	{
294 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
295 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
296 	},
297 	{
298 		.tunnel = MLX5_FLOW_LAYER_MPLS,
299 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
300 	},
301 };
302 
303 /**
304  * Discover the maximum number of priority available.
305  *
306  * @param[in] dev
307  *   Pointer to the Ethernet device structure.
308  *
309  * @return
310  *   number of supported flow priority on success, a negative errno
311  *   value otherwise and rte_errno is set.
312  */
313 int
314 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
315 {
316 	struct mlx5_priv *priv = dev->data->dev_private;
317 	struct {
318 		struct ibv_flow_attr attr;
319 		struct ibv_flow_spec_eth eth;
320 		struct ibv_flow_spec_action_drop drop;
321 	} flow_attr = {
322 		.attr = {
323 			.num_of_specs = 2,
324 			.port = (uint8_t)priv->ibv_port,
325 		},
326 		.eth = {
327 			.type = IBV_FLOW_SPEC_ETH,
328 			.size = sizeof(struct ibv_flow_spec_eth),
329 		},
330 		.drop = {
331 			.size = sizeof(struct ibv_flow_spec_action_drop),
332 			.type = IBV_FLOW_SPEC_ACTION_DROP,
333 		},
334 	};
335 	struct ibv_flow *flow;
336 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337 	uint16_t vprio[] = { 8, 16 };
338 	int i;
339 	int priority = 0;
340 
341 	if (!drop) {
342 		rte_errno = ENOTSUP;
343 		return -rte_errno;
344 	}
345 	for (i = 0; i != RTE_DIM(vprio); i++) {
346 		flow_attr.attr.priority = vprio[i] - 1;
347 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348 		if (!flow)
349 			break;
350 		claim_zero(mlx5_glue->destroy_flow(flow));
351 		priority = vprio[i];
352 	}
353 	mlx5_hrxq_drop_release(dev);
354 	switch (priority) {
355 	case 8:
356 		priority = RTE_DIM(priority_map_3);
357 		break;
358 	case 16:
359 		priority = RTE_DIM(priority_map_5);
360 		break;
361 	default:
362 		rte_errno = ENOTSUP;
363 		DRV_LOG(ERR,
364 			"port %u verbs maximum priority: %d expected 8/16",
365 			dev->data->port_id, priority);
366 		return -rte_errno;
367 	}
368 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
369 		dev->data->port_id, priority);
370 	return priority;
371 }
372 
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387 				   uint32_t subpriority)
388 {
389 	uint32_t res = 0;
390 	struct mlx5_priv *priv = dev->data->dev_private;
391 
392 	switch (priv->config.flow_prio) {
393 	case RTE_DIM(priority_map_3):
394 		res = priority_map_3[priority][subpriority];
395 		break;
396 	case RTE_DIM(priority_map_5):
397 		res = priority_map_5[priority][subpriority];
398 		break;
399 	}
400 	return  res;
401 }
402 
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423 			  const uint8_t *mask,
424 			  const uint8_t *nic_mask,
425 			  unsigned int size,
426 			  struct rte_flow_error *error)
427 {
428 	unsigned int i;
429 
430 	assert(nic_mask);
431 	for (i = 0; i < size; ++i)
432 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
433 			return rte_flow_error_set(error, ENOTSUP,
434 						  RTE_FLOW_ERROR_TYPE_ITEM,
435 						  item,
436 						  "mask enables non supported"
437 						  " bits");
438 	if (!item->spec && (item->mask || item->last))
439 		return rte_flow_error_set(error, EINVAL,
440 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
441 					  "mask/last without a spec is not"
442 					  " supported");
443 	if (item->spec && item->last) {
444 		uint8_t spec[size];
445 		uint8_t last[size];
446 		unsigned int i;
447 		int ret;
448 
449 		for (i = 0; i < size; ++i) {
450 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452 		}
453 		ret = memcmp(spec, last, size);
454 		if (ret != 0)
455 			return rte_flow_error_set(error, EINVAL,
456 						  RTE_FLOW_ERROR_TYPE_ITEM,
457 						  item,
458 						  "range is not valid");
459 	}
460 	return 0;
461 }
462 
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480 			    int tunnel __rte_unused, uint64_t layer_types,
481 			    uint64_t hash_fields)
482 {
483 	struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485 	int rss_request_inner = flow->rss.level >= 2;
486 
487 	/* Check RSS hash level for tunnel. */
488 	if (tunnel && rss_request_inner)
489 		hash_fields |= IBV_RX_HASH_INNER;
490 	else if (tunnel || rss_request_inner)
491 		return 0;
492 #endif
493 	/* Check if requested layer matches RSS hash fields. */
494 	if (!(flow->rss.types & layer_types))
495 		return 0;
496 	return hash_fields;
497 }
498 
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510 	unsigned int i;
511 	uint32_t tunnel_ptype = 0;
512 
513 	/* Look up for the ptype to use. */
514 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515 		if (!rxq_ctrl->flow_tunnels_n[i])
516 			continue;
517 		if (!tunnel_ptype) {
518 			tunnel_ptype = tunnels_info[i].ptype;
519 		} else {
520 			tunnel_ptype = 0;
521 			break;
522 		}
523 	}
524 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526 
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539 	struct mlx5_priv *priv = dev->data->dev_private;
540 	struct rte_flow *flow = dev_flow->flow;
541 	const int mark = !!(flow->actions &
542 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544 	unsigned int i;
545 
546 	for (i = 0; i != flow->rss.queue_num; ++i) {
547 		int idx = (*flow->queue)[i];
548 		struct mlx5_rxq_ctrl *rxq_ctrl =
549 			container_of((*priv->rxqs)[idx],
550 				     struct mlx5_rxq_ctrl, rxq);
551 
552 		if (mark) {
553 			rxq_ctrl->rxq.mark = 1;
554 			rxq_ctrl->flow_mark_n++;
555 		}
556 		if (tunnel) {
557 			unsigned int j;
558 
559 			/* Increase the counter matching the flow. */
560 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561 				if ((tunnels_info[j].tunnel &
562 				     dev_flow->layers) ==
563 				    tunnels_info[j].tunnel) {
564 					rxq_ctrl->flow_tunnels_n[j]++;
565 					break;
566 				}
567 			}
568 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
569 		}
570 	}
571 }
572 
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584 	struct mlx5_flow *dev_flow;
585 
586 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587 		flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589 
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602 	struct mlx5_priv *priv = dev->data->dev_private;
603 	struct rte_flow *flow = dev_flow->flow;
604 	const int mark = !!(flow->actions &
605 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607 	unsigned int i;
608 
609 	assert(dev->data->dev_started);
610 	for (i = 0; i != flow->rss.queue_num; ++i) {
611 		int idx = (*flow->queue)[i];
612 		struct mlx5_rxq_ctrl *rxq_ctrl =
613 			container_of((*priv->rxqs)[idx],
614 				     struct mlx5_rxq_ctrl, rxq);
615 
616 		if (mark) {
617 			rxq_ctrl->flow_mark_n--;
618 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619 		}
620 		if (tunnel) {
621 			unsigned int j;
622 
623 			/* Decrease the counter matching the flow. */
624 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625 				if ((tunnels_info[j].tunnel &
626 				     dev_flow->layers) ==
627 				    tunnels_info[j].tunnel) {
628 					rxq_ctrl->flow_tunnels_n[j]--;
629 					break;
630 				}
631 			}
632 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
633 		}
634 	}
635 }
636 
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649 	struct mlx5_flow *dev_flow;
650 
651 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652 		flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654 
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664 	struct mlx5_priv *priv = dev->data->dev_private;
665 	unsigned int i;
666 
667 	for (i = 0; i != priv->rxqs_n; ++i) {
668 		struct mlx5_rxq_ctrl *rxq_ctrl;
669 		unsigned int j;
670 
671 		if (!(*priv->rxqs)[i])
672 			continue;
673 		rxq_ctrl = container_of((*priv->rxqs)[i],
674 					struct mlx5_rxq_ctrl, rxq);
675 		rxq_ctrl->flow_mark_n = 0;
676 		rxq_ctrl->rxq.mark = 0;
677 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678 			rxq_ctrl->flow_tunnels_n[j] = 0;
679 		rxq_ctrl->rxq.tunnel = 0;
680 	}
681 }
682 
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698 			       const struct rte_flow_attr *attr,
699 			       struct rte_flow_error *error)
700 {
701 
702 	if (action_flags & MLX5_FLOW_ACTION_DROP)
703 		return rte_flow_error_set(error, EINVAL,
704 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705 					  "can't drop and flag in same flow");
706 	if (action_flags & MLX5_FLOW_ACTION_MARK)
707 		return rte_flow_error_set(error, EINVAL,
708 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709 					  "can't mark and flag in same flow");
710 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
711 		return rte_flow_error_set(error, EINVAL,
712 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713 					  "can't have 2 flag"
714 					  " actions in same flow");
715 	if (attr->egress)
716 		return rte_flow_error_set(error, ENOTSUP,
717 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718 					  "flag action not supported for "
719 					  "egress");
720 	return 0;
721 }
722 
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740 			       uint64_t action_flags,
741 			       const struct rte_flow_attr *attr,
742 			       struct rte_flow_error *error)
743 {
744 	const struct rte_flow_action_mark *mark = action->conf;
745 
746 	if (!mark)
747 		return rte_flow_error_set(error, EINVAL,
748 					  RTE_FLOW_ERROR_TYPE_ACTION,
749 					  action,
750 					  "configuration cannot be null");
751 	if (mark->id >= MLX5_FLOW_MARK_MAX)
752 		return rte_flow_error_set(error, EINVAL,
753 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754 					  &mark->id,
755 					  "mark id must in 0 <= id < "
756 					  RTE_STR(MLX5_FLOW_MARK_MAX));
757 	if (action_flags & MLX5_FLOW_ACTION_DROP)
758 		return rte_flow_error_set(error, EINVAL,
759 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760 					  "can't drop and mark in same flow");
761 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
762 		return rte_flow_error_set(error, EINVAL,
763 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764 					  "can't flag and mark in same flow");
765 	if (action_flags & MLX5_FLOW_ACTION_MARK)
766 		return rte_flow_error_set(error, EINVAL,
767 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768 					  "can't have 2 mark actions in same"
769 					  " flow");
770 	if (attr->egress)
771 		return rte_flow_error_set(error, ENOTSUP,
772 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773 					  "mark action not supported for "
774 					  "egress");
775 	return 0;
776 }
777 
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_errno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793 			       const struct rte_flow_attr *attr,
794 			       struct rte_flow_error *error)
795 {
796 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
797 		return rte_flow_error_set(error, EINVAL,
798 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799 					  "can't drop and flag in same flow");
800 	if (action_flags & MLX5_FLOW_ACTION_MARK)
801 		return rte_flow_error_set(error, EINVAL,
802 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803 					  "can't drop and mark in same flow");
804 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805 		return rte_flow_error_set(error, EINVAL,
806 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807 					  "can't have 2 fate actions in"
808 					  " same flow");
809 	if (attr->egress)
810 		return rte_flow_error_set(error, ENOTSUP,
811 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812 					  "drop action not supported for "
813 					  "egress");
814 	return 0;
815 }
816 
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_errno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836 				uint64_t action_flags,
837 				struct rte_eth_dev *dev,
838 				const struct rte_flow_attr *attr,
839 				struct rte_flow_error *error)
840 {
841 	struct mlx5_priv *priv = dev->data->dev_private;
842 	const struct rte_flow_action_queue *queue = action->conf;
843 
844 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845 		return rte_flow_error_set(error, EINVAL,
846 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847 					  "can't have 2 fate actions in"
848 					  " same flow");
849 	if (!priv->rxqs_n)
850 		return rte_flow_error_set(error, EINVAL,
851 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852 					  NULL, "No Rx queues configured");
853 	if (queue->index >= priv->rxqs_n)
854 		return rte_flow_error_set(error, EINVAL,
855 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
856 					  &queue->index,
857 					  "queue index out of range");
858 	if (!(*priv->rxqs)[queue->index])
859 		return rte_flow_error_set(error, EINVAL,
860 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
861 					  &queue->index,
862 					  "queue is not configured");
863 	if (attr->egress)
864 		return rte_flow_error_set(error, ENOTSUP,
865 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
866 					  "queue action not supported for "
867 					  "egress");
868 	return 0;
869 }
870 
871 /*
872  * Validate the rss action.
873  *
874  * @param[in] action
875  *   Pointer to the queue action.
876  * @param[in] action_flags
877  *   Bit-fields that holds the actions detected until now.
878  * @param[in] dev
879  *   Pointer to the Ethernet device structure.
880  * @param[in] attr
881  *   Attributes of flow that includes this action.
882  * @param[in] item_flags
883  *   Items that were detected.
884  * @param[out] error
885  *   Pointer to error structure.
886  *
887  * @return
888  *   0 on success, a negative errno value otherwise and rte_errno is set.
889  */
890 int
891 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
892 			      uint64_t action_flags,
893 			      struct rte_eth_dev *dev,
894 			      const struct rte_flow_attr *attr,
895 			      uint64_t item_flags,
896 			      struct rte_flow_error *error)
897 {
898 	struct mlx5_priv *priv = dev->data->dev_private;
899 	const struct rte_flow_action_rss *rss = action->conf;
900 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
901 	unsigned int i;
902 
903 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
904 		return rte_flow_error_set(error, EINVAL,
905 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
906 					  "can't have 2 fate actions"
907 					  " in same flow");
908 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
909 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
910 		return rte_flow_error_set(error, ENOTSUP,
911 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
912 					  &rss->func,
913 					  "RSS hash function not supported");
914 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
915 	if (rss->level > 2)
916 #else
917 	if (rss->level > 1)
918 #endif
919 		return rte_flow_error_set(error, ENOTSUP,
920 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
921 					  &rss->level,
922 					  "tunnel RSS is not supported");
923 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
924 	if (rss->key_len == 0 && rss->key != NULL)
925 		return rte_flow_error_set(error, ENOTSUP,
926 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
927 					  &rss->key_len,
928 					  "RSS hash key length 0");
929 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
930 		return rte_flow_error_set(error, ENOTSUP,
931 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
932 					  &rss->key_len,
933 					  "RSS hash key too small");
934 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
935 		return rte_flow_error_set(error, ENOTSUP,
936 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
937 					  &rss->key_len,
938 					  "RSS hash key too large");
939 	if (rss->queue_num > priv->config.ind_table_max_size)
940 		return rte_flow_error_set(error, ENOTSUP,
941 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
942 					  &rss->queue_num,
943 					  "number of queues too large");
944 	if (rss->types & MLX5_RSS_HF_MASK)
945 		return rte_flow_error_set(error, ENOTSUP,
946 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
947 					  &rss->types,
948 					  "some RSS protocols are not"
949 					  " supported");
950 	if (!priv->rxqs_n)
951 		return rte_flow_error_set(error, EINVAL,
952 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
953 					  NULL, "No Rx queues configured");
954 	if (!rss->queue_num)
955 		return rte_flow_error_set(error, EINVAL,
956 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
957 					  NULL, "No queues configured");
958 	for (i = 0; i != rss->queue_num; ++i) {
959 		if (!(*priv->rxqs)[rss->queue[i]])
960 			return rte_flow_error_set
961 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
962 				 &rss->queue[i], "queue is not configured");
963 	}
964 	if (attr->egress)
965 		return rte_flow_error_set(error, ENOTSUP,
966 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
967 					  "rss action not supported for "
968 					  "egress");
969 	if (rss->level > 1 &&  !tunnel)
970 		return rte_flow_error_set(error, EINVAL,
971 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
972 					  "inner RSS is not supported for "
973 					  "non-tunnel flows");
974 	return 0;
975 }
976 
977 /*
978  * Validate the count action.
979  *
980  * @param[in] dev
981  *   Pointer to the Ethernet device structure.
982  * @param[in] attr
983  *   Attributes of flow that includes this action.
984  * @param[out] error
985  *   Pointer to error structure.
986  *
987  * @return
988  *   0 on success, a negative errno value otherwise and rte_errno is set.
989  */
990 int
991 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
992 				const struct rte_flow_attr *attr,
993 				struct rte_flow_error *error)
994 {
995 	if (attr->egress)
996 		return rte_flow_error_set(error, ENOTSUP,
997 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
998 					  "count action not supported for "
999 					  "egress");
1000 	return 0;
1001 }
1002 
1003 /**
1004  * Verify the @p attributes will be correctly understood by the NIC and store
1005  * them in the @p flow if everything is correct.
1006  *
1007  * @param[in] dev
1008  *   Pointer to the Ethernet device structure.
1009  * @param[in] attributes
1010  *   Pointer to flow attributes
1011  * @param[out] error
1012  *   Pointer to error structure.
1013  *
1014  * @return
1015  *   0 on success, a negative errno value otherwise and rte_errno is set.
1016  */
1017 int
1018 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1019 			      const struct rte_flow_attr *attributes,
1020 			      struct rte_flow_error *error)
1021 {
1022 	struct mlx5_priv *priv = dev->data->dev_private;
1023 	uint32_t priority_max = priv->config.flow_prio - 1;
1024 
1025 	if (attributes->group)
1026 		return rte_flow_error_set(error, ENOTSUP,
1027 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1028 					  NULL, "groups is not supported");
1029 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1030 	    attributes->priority >= priority_max)
1031 		return rte_flow_error_set(error, ENOTSUP,
1032 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1033 					  NULL, "priority out of range");
1034 	if (attributes->egress)
1035 		return rte_flow_error_set(error, ENOTSUP,
1036 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1037 					  "egress is not supported");
1038 	if (attributes->transfer && !priv->config.dv_esw_en)
1039 		return rte_flow_error_set(error, ENOTSUP,
1040 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1041 					  NULL, "transfer is not supported");
1042 	if (!attributes->ingress)
1043 		return rte_flow_error_set(error, EINVAL,
1044 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1045 					  NULL,
1046 					  "ingress attribute is mandatory");
1047 	return 0;
1048 }
1049 
1050 /**
1051  * Validate Ethernet item.
1052  *
1053  * @param[in] item
1054  *   Item specification.
1055  * @param[in] item_flags
1056  *   Bit-fields that holds the items detected until now.
1057  * @param[out] error
1058  *   Pointer to error structure.
1059  *
1060  * @return
1061  *   0 on success, a negative errno value otherwise and rte_errno is set.
1062  */
1063 int
1064 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1065 			    uint64_t item_flags,
1066 			    struct rte_flow_error *error)
1067 {
1068 	const struct rte_flow_item_eth *mask = item->mask;
1069 	const struct rte_flow_item_eth nic_mask = {
1070 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1071 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1072 		.type = RTE_BE16(0xffff),
1073 	};
1074 	int ret;
1075 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1076 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1077 				       MLX5_FLOW_LAYER_OUTER_L2;
1078 
1079 	if (item_flags & ethm)
1080 		return rte_flow_error_set(error, ENOTSUP,
1081 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1082 					  "multiple L2 layers not supported");
1083 	if (!mask)
1084 		mask = &rte_flow_item_eth_mask;
1085 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1086 					(const uint8_t *)&nic_mask,
1087 					sizeof(struct rte_flow_item_eth),
1088 					error);
1089 	return ret;
1090 }
1091 
1092 /**
1093  * Validate VLAN item.
1094  *
1095  * @param[in] item
1096  *   Item specification.
1097  * @param[in] item_flags
1098  *   Bit-fields that holds the items detected until now.
1099  * @param[out] error
1100  *   Pointer to error structure.
1101  *
1102  * @return
1103  *   0 on success, a negative errno value otherwise and rte_errno is set.
1104  */
1105 int
1106 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1107 			     uint64_t item_flags,
1108 			     struct rte_flow_error *error)
1109 {
1110 	const struct rte_flow_item_vlan *spec = item->spec;
1111 	const struct rte_flow_item_vlan *mask = item->mask;
1112 	const struct rte_flow_item_vlan nic_mask = {
1113 		.tci = RTE_BE16(0x0fff),
1114 		.inner_type = RTE_BE16(0xffff),
1115 	};
1116 	uint16_t vlan_tag = 0;
1117 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1118 	int ret;
1119 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1120 					MLX5_FLOW_LAYER_INNER_L4) :
1121 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1122 					MLX5_FLOW_LAYER_OUTER_L4);
1123 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1124 					MLX5_FLOW_LAYER_OUTER_VLAN;
1125 
1126 	if (item_flags & vlanm)
1127 		return rte_flow_error_set(error, EINVAL,
1128 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1129 					  "multiple VLAN layers not supported");
1130 	else if ((item_flags & l34m) != 0)
1131 		return rte_flow_error_set(error, EINVAL,
1132 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1133 					  "L2 layer cannot follow L3/L4 layer");
1134 	if (!mask)
1135 		mask = &rte_flow_item_vlan_mask;
1136 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1137 					(const uint8_t *)&nic_mask,
1138 					sizeof(struct rte_flow_item_vlan),
1139 					error);
1140 	if (ret)
1141 		return ret;
1142 	if (spec) {
1143 		vlan_tag = spec->tci;
1144 		vlan_tag &= mask->tci;
1145 	}
1146 	/*
1147 	 * From verbs perspective an empty VLAN is equivalent
1148 	 * to a packet without VLAN layer.
1149 	 */
1150 	if (!vlan_tag)
1151 		return rte_flow_error_set(error, EINVAL,
1152 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1153 					  item->spec,
1154 					  "VLAN cannot be empty");
1155 	return 0;
1156 }
1157 
1158 /**
1159  * Validate IPV4 item.
1160  *
1161  * @param[in] item
1162  *   Item specification.
1163  * @param[in] item_flags
1164  *   Bit-fields that holds the items detected until now.
1165  * @param[in] acc_mask
1166  *   Acceptable mask, if NULL default internal default mask
1167  *   will be used to check whether item fields are supported.
1168  * @param[out] error
1169  *   Pointer to error structure.
1170  *
1171  * @return
1172  *   0 on success, a negative errno value otherwise and rte_errno is set.
1173  */
1174 int
1175 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1176 			     uint64_t item_flags,
1177 			     const struct rte_flow_item_ipv4 *acc_mask,
1178 			     struct rte_flow_error *error)
1179 {
1180 	const struct rte_flow_item_ipv4 *mask = item->mask;
1181 	const struct rte_flow_item_ipv4 nic_mask = {
1182 		.hdr = {
1183 			.src_addr = RTE_BE32(0xffffffff),
1184 			.dst_addr = RTE_BE32(0xffffffff),
1185 			.type_of_service = 0xff,
1186 			.next_proto_id = 0xff,
1187 		},
1188 	};
1189 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1190 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1191 				      MLX5_FLOW_LAYER_OUTER_L3;
1192 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1193 				      MLX5_FLOW_LAYER_OUTER_L4;
1194 	int ret;
1195 
1196 	if (item_flags & l3m)
1197 		return rte_flow_error_set(error, ENOTSUP,
1198 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1199 					  "multiple L3 layers not supported");
1200 	else if (item_flags & l4m)
1201 		return rte_flow_error_set(error, EINVAL,
1202 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1203 					  "L3 cannot follow an L4 layer.");
1204 	if (!mask)
1205 		mask = &rte_flow_item_ipv4_mask;
1206 	else if (mask->hdr.next_proto_id != 0 &&
1207 		 mask->hdr.next_proto_id != 0xff)
1208 		return rte_flow_error_set(error, EINVAL,
1209 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1210 					  "partial mask is not supported"
1211 					  " for protocol");
1212 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1213 					acc_mask ? (const uint8_t *)acc_mask
1214 						 : (const uint8_t *)&nic_mask,
1215 					sizeof(struct rte_flow_item_ipv4),
1216 					error);
1217 	if (ret < 0)
1218 		return ret;
1219 	return 0;
1220 }
1221 
1222 /**
1223  * Validate IPV6 item.
1224  *
1225  * @param[in] item
1226  *   Item specification.
1227  * @param[in] item_flags
1228  *   Bit-fields that holds the items detected until now.
1229  * @param[in] acc_mask
1230  *   Acceptable mask, if NULL default internal default mask
1231  *   will be used to check whether item fields are supported.
1232  * @param[out] error
1233  *   Pointer to error structure.
1234  *
1235  * @return
1236  *   0 on success, a negative errno value otherwise and rte_errno is set.
1237  */
1238 int
1239 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1240 			     uint64_t item_flags,
1241 			     const struct rte_flow_item_ipv6 *acc_mask,
1242 			     struct rte_flow_error *error)
1243 {
1244 	const struct rte_flow_item_ipv6 *mask = item->mask;
1245 	const struct rte_flow_item_ipv6 nic_mask = {
1246 		.hdr = {
1247 			.src_addr =
1248 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1249 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1250 			.dst_addr =
1251 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1252 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1253 			.vtc_flow = RTE_BE32(0xffffffff),
1254 			.proto = 0xff,
1255 			.hop_limits = 0xff,
1256 		},
1257 	};
1258 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1259 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1260 				      MLX5_FLOW_LAYER_OUTER_L3;
1261 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1262 				      MLX5_FLOW_LAYER_OUTER_L4;
1263 	int ret;
1264 
1265 	if (item_flags & l3m)
1266 		return rte_flow_error_set(error, ENOTSUP,
1267 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1268 					  "multiple L3 layers not supported");
1269 	else if (item_flags & l4m)
1270 		return rte_flow_error_set(error, EINVAL,
1271 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1272 					  "L3 cannot follow an L4 layer.");
1273 	if (!mask)
1274 		mask = &rte_flow_item_ipv6_mask;
1275 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1276 					acc_mask ? (const uint8_t *)acc_mask
1277 						 : (const uint8_t *)&nic_mask,
1278 					sizeof(struct rte_flow_item_ipv6),
1279 					error);
1280 	if (ret < 0)
1281 		return ret;
1282 	return 0;
1283 }
1284 
1285 /**
1286  * Validate UDP item.
1287  *
1288  * @param[in] item
1289  *   Item specification.
1290  * @param[in] item_flags
1291  *   Bit-fields that holds the items detected until now.
1292  * @param[in] target_protocol
1293  *   The next protocol in the previous item.
1294  * @param[in] flow_mask
1295  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1296  * @param[out] error
1297  *   Pointer to error structure.
1298  *
1299  * @return
1300  *   0 on success, a negative errno value otherwise and rte_errno is set.
1301  */
1302 int
1303 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1304 			    uint64_t item_flags,
1305 			    uint8_t target_protocol,
1306 			    struct rte_flow_error *error)
1307 {
1308 	const struct rte_flow_item_udp *mask = item->mask;
1309 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1310 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1311 				      MLX5_FLOW_LAYER_OUTER_L3;
1312 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1313 				      MLX5_FLOW_LAYER_OUTER_L4;
1314 	int ret;
1315 
1316 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1317 		return rte_flow_error_set(error, EINVAL,
1318 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1319 					  "protocol filtering not compatible"
1320 					  " with UDP layer");
1321 	if (!(item_flags & l3m))
1322 		return rte_flow_error_set(error, EINVAL,
1323 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1324 					  "L3 is mandatory to filter on L4");
1325 	if (item_flags & l4m)
1326 		return rte_flow_error_set(error, EINVAL,
1327 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1328 					  "multiple L4 layers not supported");
1329 	if (!mask)
1330 		mask = &rte_flow_item_udp_mask;
1331 	ret = mlx5_flow_item_acceptable
1332 		(item, (const uint8_t *)mask,
1333 		 (const uint8_t *)&rte_flow_item_udp_mask,
1334 		 sizeof(struct rte_flow_item_udp), error);
1335 	if (ret < 0)
1336 		return ret;
1337 	return 0;
1338 }
1339 
1340 /**
1341  * Validate TCP item.
1342  *
1343  * @param[in] item
1344  *   Item specification.
1345  * @param[in] item_flags
1346  *   Bit-fields that holds the items detected until now.
1347  * @param[in] target_protocol
1348  *   The next protocol in the previous item.
1349  * @param[out] error
1350  *   Pointer to error structure.
1351  *
1352  * @return
1353  *   0 on success, a negative errno value otherwise and rte_errno is set.
1354  */
1355 int
1356 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1357 			    uint64_t item_flags,
1358 			    uint8_t target_protocol,
1359 			    const struct rte_flow_item_tcp *flow_mask,
1360 			    struct rte_flow_error *error)
1361 {
1362 	const struct rte_flow_item_tcp *mask = item->mask;
1363 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1364 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1365 				      MLX5_FLOW_LAYER_OUTER_L3;
1366 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1367 				      MLX5_FLOW_LAYER_OUTER_L4;
1368 	int ret;
1369 
1370 	assert(flow_mask);
1371 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1372 		return rte_flow_error_set(error, EINVAL,
1373 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1374 					  "protocol filtering not compatible"
1375 					  " with TCP layer");
1376 	if (!(item_flags & l3m))
1377 		return rte_flow_error_set(error, EINVAL,
1378 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1379 					  "L3 is mandatory to filter on L4");
1380 	if (item_flags & l4m)
1381 		return rte_flow_error_set(error, EINVAL,
1382 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1383 					  "multiple L4 layers not supported");
1384 	if (!mask)
1385 		mask = &rte_flow_item_tcp_mask;
1386 	ret = mlx5_flow_item_acceptable
1387 		(item, (const uint8_t *)mask,
1388 		 (const uint8_t *)flow_mask,
1389 		 sizeof(struct rte_flow_item_tcp), error);
1390 	if (ret < 0)
1391 		return ret;
1392 	return 0;
1393 }
1394 
1395 /**
1396  * Validate VXLAN item.
1397  *
1398  * @param[in] item
1399  *   Item specification.
1400  * @param[in] item_flags
1401  *   Bit-fields that holds the items detected until now.
1402  * @param[in] target_protocol
1403  *   The next protocol in the previous item.
1404  * @param[out] error
1405  *   Pointer to error structure.
1406  *
1407  * @return
1408  *   0 on success, a negative errno value otherwise and rte_errno is set.
1409  */
1410 int
1411 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1412 			      uint64_t item_flags,
1413 			      struct rte_flow_error *error)
1414 {
1415 	const struct rte_flow_item_vxlan *spec = item->spec;
1416 	const struct rte_flow_item_vxlan *mask = item->mask;
1417 	int ret;
1418 	union vni {
1419 		uint32_t vlan_id;
1420 		uint8_t vni[4];
1421 	} id = { .vlan_id = 0, };
1422 	uint32_t vlan_id = 0;
1423 
1424 
1425 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1426 		return rte_flow_error_set(error, ENOTSUP,
1427 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1428 					  "multiple tunnel layers not"
1429 					  " supported");
1430 	/*
1431 	 * Verify only UDPv4 is present as defined in
1432 	 * https://tools.ietf.org/html/rfc7348
1433 	 */
1434 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1435 		return rte_flow_error_set(error, EINVAL,
1436 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1437 					  "no outer UDP layer found");
1438 	if (!mask)
1439 		mask = &rte_flow_item_vxlan_mask;
1440 	ret = mlx5_flow_item_acceptable
1441 		(item, (const uint8_t *)mask,
1442 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1443 		 sizeof(struct rte_flow_item_vxlan),
1444 		 error);
1445 	if (ret < 0)
1446 		return ret;
1447 	if (spec) {
1448 		memcpy(&id.vni[1], spec->vni, 3);
1449 		vlan_id = id.vlan_id;
1450 		memcpy(&id.vni[1], mask->vni, 3);
1451 		vlan_id &= id.vlan_id;
1452 	}
1453 	/*
1454 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1455 	 * only this layer is defined in the Verbs specification it is
1456 	 * interpreted as wildcard and all packets will match this
1457 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1458 	 * udp), all packets matching the layers before will also
1459 	 * match this rule.  To avoid such situation, VNI 0 is
1460 	 * currently refused.
1461 	 */
1462 	if (!vlan_id)
1463 		return rte_flow_error_set(error, ENOTSUP,
1464 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1465 					  "VXLAN vni cannot be 0");
1466 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1467 		return rte_flow_error_set(error, ENOTSUP,
1468 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1469 					  "VXLAN tunnel must be fully defined");
1470 	return 0;
1471 }
1472 
1473 /**
1474  * Validate VXLAN_GPE item.
1475  *
1476  * @param[in] item
1477  *   Item specification.
1478  * @param[in] item_flags
1479  *   Bit-fields that holds the items detected until now.
1480  * @param[in] priv
1481  *   Pointer to the private data structure.
1482  * @param[in] target_protocol
1483  *   The next protocol in the previous item.
1484  * @param[out] error
1485  *   Pointer to error structure.
1486  *
1487  * @return
1488  *   0 on success, a negative errno value otherwise and rte_errno is set.
1489  */
1490 int
1491 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1492 				  uint64_t item_flags,
1493 				  struct rte_eth_dev *dev,
1494 				  struct rte_flow_error *error)
1495 {
1496 	struct mlx5_priv *priv = dev->data->dev_private;
1497 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1498 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1499 	int ret;
1500 	union vni {
1501 		uint32_t vlan_id;
1502 		uint8_t vni[4];
1503 	} id = { .vlan_id = 0, };
1504 	uint32_t vlan_id = 0;
1505 
1506 	if (!priv->config.l3_vxlan_en)
1507 		return rte_flow_error_set(error, ENOTSUP,
1508 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1509 					  "L3 VXLAN is not enabled by device"
1510 					  " parameter and/or not configured in"
1511 					  " firmware");
1512 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1513 		return rte_flow_error_set(error, ENOTSUP,
1514 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1515 					  "multiple tunnel layers not"
1516 					  " supported");
1517 	/*
1518 	 * Verify only UDPv4 is present as defined in
1519 	 * https://tools.ietf.org/html/rfc7348
1520 	 */
1521 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1522 		return rte_flow_error_set(error, EINVAL,
1523 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1524 					  "no outer UDP layer found");
1525 	if (!mask)
1526 		mask = &rte_flow_item_vxlan_gpe_mask;
1527 	ret = mlx5_flow_item_acceptable
1528 		(item, (const uint8_t *)mask,
1529 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1530 		 sizeof(struct rte_flow_item_vxlan_gpe),
1531 		 error);
1532 	if (ret < 0)
1533 		return ret;
1534 	if (spec) {
1535 		if (spec->protocol)
1536 			return rte_flow_error_set(error, ENOTSUP,
1537 						  RTE_FLOW_ERROR_TYPE_ITEM,
1538 						  item,
1539 						  "VxLAN-GPE protocol"
1540 						  " not supported");
1541 		memcpy(&id.vni[1], spec->vni, 3);
1542 		vlan_id = id.vlan_id;
1543 		memcpy(&id.vni[1], mask->vni, 3);
1544 		vlan_id &= id.vlan_id;
1545 	}
1546 	/*
1547 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1548 	 * layer is defined in the Verbs specification it is interpreted as
1549 	 * wildcard and all packets will match this rule, if it follows a full
1550 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1551 	 * before will also match this rule.  To avoid such situation, VNI 0
1552 	 * is currently refused.
1553 	 */
1554 	if (!vlan_id)
1555 		return rte_flow_error_set(error, ENOTSUP,
1556 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1557 					  "VXLAN-GPE vni cannot be 0");
1558 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1559 		return rte_flow_error_set(error, ENOTSUP,
1560 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1561 					  "VXLAN-GPE tunnel must be fully"
1562 					  " defined");
1563 	return 0;
1564 }
1565 
1566 /**
1567  * Validate GRE item.
1568  *
1569  * @param[in] item
1570  *   Item specification.
1571  * @param[in] item_flags
1572  *   Bit flags to mark detected items.
1573  * @param[in] target_protocol
1574  *   The next protocol in the previous item.
1575  * @param[out] error
1576  *   Pointer to error structure.
1577  *
1578  * @return
1579  *   0 on success, a negative errno value otherwise and rte_errno is set.
1580  */
1581 int
1582 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1583 			    uint64_t item_flags,
1584 			    uint8_t target_protocol,
1585 			    struct rte_flow_error *error)
1586 {
1587 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1588 	const struct rte_flow_item_gre *mask = item->mask;
1589 	int ret;
1590 
1591 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1592 		return rte_flow_error_set(error, EINVAL,
1593 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1594 					  "protocol filtering not compatible"
1595 					  " with this GRE layer");
1596 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1597 		return rte_flow_error_set(error, ENOTSUP,
1598 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1599 					  "multiple tunnel layers not"
1600 					  " supported");
1601 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1602 		return rte_flow_error_set(error, ENOTSUP,
1603 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1604 					  "L3 Layer is missing");
1605 	if (!mask)
1606 		mask = &rte_flow_item_gre_mask;
1607 	ret = mlx5_flow_item_acceptable
1608 		(item, (const uint8_t *)mask,
1609 		 (const uint8_t *)&rte_flow_item_gre_mask,
1610 		 sizeof(struct rte_flow_item_gre), error);
1611 	if (ret < 0)
1612 		return ret;
1613 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1614 	if (spec && (spec->protocol & mask->protocol))
1615 		return rte_flow_error_set(error, ENOTSUP,
1616 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1617 					  "without MPLS support the"
1618 					  " specification cannot be used for"
1619 					  " filtering");
1620 #endif
1621 	return 0;
1622 }
1623 
1624 /**
1625  * Validate MPLS item.
1626  *
1627  * @param[in] dev
1628  *   Pointer to the rte_eth_dev structure.
1629  * @param[in] item
1630  *   Item specification.
1631  * @param[in] item_flags
1632  *   Bit-fields that holds the items detected until now.
1633  * @param[in] prev_layer
1634  *   The protocol layer indicated in previous item.
1635  * @param[out] error
1636  *   Pointer to error structure.
1637  *
1638  * @return
1639  *   0 on success, a negative errno value otherwise and rte_errno is set.
1640  */
1641 int
1642 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1643 			     const struct rte_flow_item *item __rte_unused,
1644 			     uint64_t item_flags __rte_unused,
1645 			     uint64_t prev_layer __rte_unused,
1646 			     struct rte_flow_error *error)
1647 {
1648 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1649 	const struct rte_flow_item_mpls *mask = item->mask;
1650 	struct mlx5_priv *priv = dev->data->dev_private;
1651 	int ret;
1652 
1653 	if (!priv->config.mpls_en)
1654 		return rte_flow_error_set(error, ENOTSUP,
1655 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1656 					  "MPLS not supported or"
1657 					  " disabled in firmware"
1658 					  " configuration.");
1659 	/* MPLS over IP, UDP, GRE is allowed */
1660 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1661 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
1662 			    MLX5_FLOW_LAYER_GRE)))
1663 		return rte_flow_error_set(error, EINVAL,
1664 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1665 					  "protocol filtering not compatible"
1666 					  " with MPLS layer");
1667 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1668 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1669 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
1670 		return rte_flow_error_set(error, ENOTSUP,
1671 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1672 					  "multiple tunnel layers not"
1673 					  " supported");
1674 	if (!mask)
1675 		mask = &rte_flow_item_mpls_mask;
1676 	ret = mlx5_flow_item_acceptable
1677 		(item, (const uint8_t *)mask,
1678 		 (const uint8_t *)&rte_flow_item_mpls_mask,
1679 		 sizeof(struct rte_flow_item_mpls), error);
1680 	if (ret < 0)
1681 		return ret;
1682 	return 0;
1683 #endif
1684 	return rte_flow_error_set(error, ENOTSUP,
1685 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
1686 				  "MPLS is not supported by Verbs, please"
1687 				  " update.");
1688 }
1689 
1690 static int
1691 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1692 		   const struct rte_flow_attr *attr __rte_unused,
1693 		   const struct rte_flow_item items[] __rte_unused,
1694 		   const struct rte_flow_action actions[] __rte_unused,
1695 		   struct rte_flow_error *error)
1696 {
1697 	return rte_flow_error_set(error, ENOTSUP,
1698 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1699 }
1700 
1701 static struct mlx5_flow *
1702 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1703 		  const struct rte_flow_item items[] __rte_unused,
1704 		  const struct rte_flow_action actions[] __rte_unused,
1705 		  struct rte_flow_error *error)
1706 {
1707 	rte_flow_error_set(error, ENOTSUP,
1708 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1709 	return NULL;
1710 }
1711 
1712 static int
1713 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1714 		    struct mlx5_flow *dev_flow __rte_unused,
1715 		    const struct rte_flow_attr *attr __rte_unused,
1716 		    const struct rte_flow_item items[] __rte_unused,
1717 		    const struct rte_flow_action actions[] __rte_unused,
1718 		    struct rte_flow_error *error)
1719 {
1720 	return rte_flow_error_set(error, ENOTSUP,
1721 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1722 }
1723 
1724 static int
1725 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1726 		struct rte_flow *flow __rte_unused,
1727 		struct rte_flow_error *error)
1728 {
1729 	return rte_flow_error_set(error, ENOTSUP,
1730 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1731 }
1732 
1733 static void
1734 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1735 		 struct rte_flow *flow __rte_unused)
1736 {
1737 }
1738 
1739 static void
1740 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1741 		  struct rte_flow *flow __rte_unused)
1742 {
1743 }
1744 
1745 static int
1746 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1747 		struct rte_flow *flow __rte_unused,
1748 		const struct rte_flow_action *actions __rte_unused,
1749 		void *data __rte_unused,
1750 		struct rte_flow_error *error)
1751 {
1752 	return rte_flow_error_set(error, ENOTSUP,
1753 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1754 }
1755 
1756 /* Void driver to protect from null pointer reference. */
1757 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1758 	.validate = flow_null_validate,
1759 	.prepare = flow_null_prepare,
1760 	.translate = flow_null_translate,
1761 	.apply = flow_null_apply,
1762 	.remove = flow_null_remove,
1763 	.destroy = flow_null_destroy,
1764 	.query = flow_null_query,
1765 };
1766 
1767 /**
1768  * Select flow driver type according to flow attributes and device
1769  * configuration.
1770  *
1771  * @param[in] dev
1772  *   Pointer to the dev structure.
1773  * @param[in] attr
1774  *   Pointer to the flow attributes.
1775  *
1776  * @return
1777  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1778  */
1779 static enum mlx5_flow_drv_type
1780 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1781 {
1782 	struct mlx5_priv *priv = dev->data->dev_private;
1783 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1784 
1785 	if (attr->transfer && priv->config.dv_esw_en)
1786 		type = MLX5_FLOW_TYPE_DV;
1787 	if (!attr->transfer)
1788 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1789 						 MLX5_FLOW_TYPE_VERBS;
1790 	return type;
1791 }
1792 
1793 #define flow_get_drv_ops(type) flow_drv_ops[type]
1794 
1795 /**
1796  * Flow driver validation API. This abstracts calling driver specific functions.
1797  * The type of flow driver is determined according to flow attributes.
1798  *
1799  * @param[in] dev
1800  *   Pointer to the dev structure.
1801  * @param[in] attr
1802  *   Pointer to the flow attributes.
1803  * @param[in] items
1804  *   Pointer to the list of items.
1805  * @param[in] actions
1806  *   Pointer to the list of actions.
1807  * @param[out] error
1808  *   Pointer to the error structure.
1809  *
1810  * @return
1811  *   0 on success, a negative errno value otherwise and rte_errno is set.
1812  */
1813 static inline int
1814 flow_drv_validate(struct rte_eth_dev *dev,
1815 		  const struct rte_flow_attr *attr,
1816 		  const struct rte_flow_item items[],
1817 		  const struct rte_flow_action actions[],
1818 		  struct rte_flow_error *error)
1819 {
1820 	const struct mlx5_flow_driver_ops *fops;
1821 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1822 
1823 	fops = flow_get_drv_ops(type);
1824 	return fops->validate(dev, attr, items, actions, error);
1825 }
1826 
1827 /**
1828  * Flow driver preparation API. This abstracts calling driver specific
1829  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1830  * calculates the size of memory required for device flow, allocates the memory,
1831  * initializes the device flow and returns the pointer.
1832  *
1833  * @note
1834  *   This function initializes device flow structure such as dv or verbs in
1835  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1836  *   rest. For example, adding returning device flow to flow->dev_flow list and
1837  *   setting backward reference to the flow should be done out of this function.
1838  *   layers field is not filled either.
1839  *
1840  * @param[in] attr
1841  *   Pointer to the flow attributes.
1842  * @param[in] items
1843  *   Pointer to the list of items.
1844  * @param[in] actions
1845  *   Pointer to the list of actions.
1846  * @param[out] error
1847  *   Pointer to the error structure.
1848  *
1849  * @return
1850  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
1851  */
1852 static inline struct mlx5_flow *
1853 flow_drv_prepare(const struct rte_flow *flow,
1854 		 const struct rte_flow_attr *attr,
1855 		 const struct rte_flow_item items[],
1856 		 const struct rte_flow_action actions[],
1857 		 struct rte_flow_error *error)
1858 {
1859 	const struct mlx5_flow_driver_ops *fops;
1860 	enum mlx5_flow_drv_type type = flow->drv_type;
1861 
1862 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1863 	fops = flow_get_drv_ops(type);
1864 	return fops->prepare(attr, items, actions, error);
1865 }
1866 
1867 /**
1868  * Flow driver translation API. This abstracts calling driver specific
1869  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1870  * translates a generic flow into a driver flow. flow_drv_prepare() must
1871  * precede.
1872  *
1873  * @note
1874  *   dev_flow->layers could be filled as a result of parsing during translation
1875  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1876  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1877  *   flow->actions could be overwritten even though all the expanded dev_flows
1878  *   have the same actions.
1879  *
1880  * @param[in] dev
1881  *   Pointer to the rte dev structure.
1882  * @param[in, out] dev_flow
1883  *   Pointer to the mlx5 flow.
1884  * @param[in] attr
1885  *   Pointer to the flow attributes.
1886  * @param[in] items
1887  *   Pointer to the list of items.
1888  * @param[in] actions
1889  *   Pointer to the list of actions.
1890  * @param[out] error
1891  *   Pointer to the error structure.
1892  *
1893  * @return
1894  *   0 on success, a negative errno value otherwise and rte_errno is set.
1895  */
1896 static inline int
1897 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1898 		   const struct rte_flow_attr *attr,
1899 		   const struct rte_flow_item items[],
1900 		   const struct rte_flow_action actions[],
1901 		   struct rte_flow_error *error)
1902 {
1903 	const struct mlx5_flow_driver_ops *fops;
1904 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1905 
1906 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1907 	fops = flow_get_drv_ops(type);
1908 	return fops->translate(dev, dev_flow, attr, items, actions, error);
1909 }
1910 
1911 /**
1912  * Flow driver apply API. This abstracts calling driver specific functions.
1913  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1914  * translated driver flows on to device. flow_drv_translate() must precede.
1915  *
1916  * @param[in] dev
1917  *   Pointer to Ethernet device structure.
1918  * @param[in, out] flow
1919  *   Pointer to flow structure.
1920  * @param[out] error
1921  *   Pointer to error structure.
1922  *
1923  * @return
1924  *   0 on success, a negative errno value otherwise and rte_errno is set.
1925  */
1926 static inline int
1927 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1928 	       struct rte_flow_error *error)
1929 {
1930 	const struct mlx5_flow_driver_ops *fops;
1931 	enum mlx5_flow_drv_type type = flow->drv_type;
1932 
1933 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1934 	fops = flow_get_drv_ops(type);
1935 	return fops->apply(dev, flow, error);
1936 }
1937 
1938 /**
1939  * Flow driver remove API. This abstracts calling driver specific functions.
1940  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1941  * on device. All the resources of the flow should be freed by calling
1942  * flow_drv_destroy().
1943  *
1944  * @param[in] dev
1945  *   Pointer to Ethernet device.
1946  * @param[in, out] flow
1947  *   Pointer to flow structure.
1948  */
1949 static inline void
1950 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1951 {
1952 	const struct mlx5_flow_driver_ops *fops;
1953 	enum mlx5_flow_drv_type type = flow->drv_type;
1954 
1955 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1956 	fops = flow_get_drv_ops(type);
1957 	fops->remove(dev, flow);
1958 }
1959 
1960 /**
1961  * Flow driver destroy API. This abstracts calling driver specific functions.
1962  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1963  * on device and releases resources of the flow.
1964  *
1965  * @param[in] dev
1966  *   Pointer to Ethernet device.
1967  * @param[in, out] flow
1968  *   Pointer to flow structure.
1969  */
1970 static inline void
1971 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1972 {
1973 	const struct mlx5_flow_driver_ops *fops;
1974 	enum mlx5_flow_drv_type type = flow->drv_type;
1975 
1976 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1977 	fops = flow_get_drv_ops(type);
1978 	fops->destroy(dev, flow);
1979 }
1980 
1981 /**
1982  * Validate a flow supported by the NIC.
1983  *
1984  * @see rte_flow_validate()
1985  * @see rte_flow_ops
1986  */
1987 int
1988 mlx5_flow_validate(struct rte_eth_dev *dev,
1989 		   const struct rte_flow_attr *attr,
1990 		   const struct rte_flow_item items[],
1991 		   const struct rte_flow_action actions[],
1992 		   struct rte_flow_error *error)
1993 {
1994 	int ret;
1995 
1996 	ret = flow_drv_validate(dev, attr, items, actions, error);
1997 	if (ret < 0)
1998 		return ret;
1999 	return 0;
2000 }
2001 
2002 /**
2003  * Get RSS action from the action list.
2004  *
2005  * @param[in] actions
2006  *   Pointer to the list of actions.
2007  *
2008  * @return
2009  *   Pointer to the RSS action if exist, else return NULL.
2010  */
2011 static const struct rte_flow_action_rss*
2012 flow_get_rss_action(const struct rte_flow_action actions[])
2013 {
2014 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2015 		switch (actions->type) {
2016 		case RTE_FLOW_ACTION_TYPE_RSS:
2017 			return (const struct rte_flow_action_rss *)
2018 			       actions->conf;
2019 		default:
2020 			break;
2021 		}
2022 	}
2023 	return NULL;
2024 }
2025 
2026 static unsigned int
2027 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2028 {
2029 	const struct rte_flow_item *item;
2030 	unsigned int has_vlan = 0;
2031 
2032 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2033 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2034 			has_vlan = 1;
2035 			break;
2036 		}
2037 	}
2038 	if (has_vlan)
2039 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2040 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2041 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2042 			       MLX5_EXPANSION_ROOT_OUTER;
2043 }
2044 
2045 /**
2046  * Create a flow and add it to @p list.
2047  *
2048  * @param dev
2049  *   Pointer to Ethernet device.
2050  * @param list
2051  *   Pointer to a TAILQ flow list.
2052  * @param[in] attr
2053  *   Flow rule attributes.
2054  * @param[in] items
2055  *   Pattern specification (list terminated by the END pattern item).
2056  * @param[in] actions
2057  *   Associated actions (list terminated by the END action).
2058  * @param[out] error
2059  *   Perform verbose error reporting if not NULL.
2060  *
2061  * @return
2062  *   A flow on success, NULL otherwise and rte_errno is set.
2063  */
2064 static struct rte_flow *
2065 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2066 		 const struct rte_flow_attr *attr,
2067 		 const struct rte_flow_item items[],
2068 		 const struct rte_flow_action actions[],
2069 		 struct rte_flow_error *error)
2070 {
2071 	struct rte_flow *flow = NULL;
2072 	struct mlx5_flow *dev_flow;
2073 	const struct rte_flow_action_rss *rss;
2074 	union {
2075 		struct rte_flow_expand_rss buf;
2076 		uint8_t buffer[2048];
2077 	} expand_buffer;
2078 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2079 	int ret;
2080 	uint32_t i;
2081 	uint32_t flow_size;
2082 
2083 	ret = flow_drv_validate(dev, attr, items, actions, error);
2084 	if (ret < 0)
2085 		return NULL;
2086 	flow_size = sizeof(struct rte_flow);
2087 	rss = flow_get_rss_action(actions);
2088 	if (rss)
2089 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2090 					    sizeof(void *));
2091 	else
2092 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2093 	flow = rte_calloc(__func__, 1, flow_size, 0);
2094 	if (!flow) {
2095 		rte_errno = ENOMEM;
2096 		return NULL;
2097 	}
2098 	flow->drv_type = flow_get_drv_type(dev, attr);
2099 	flow->ingress = attr->ingress;
2100 	flow->transfer = attr->transfer;
2101 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2102 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2103 	flow->queue = (void *)(flow + 1);
2104 	LIST_INIT(&flow->dev_flows);
2105 	if (rss && rss->types) {
2106 		unsigned int graph_root;
2107 
2108 		graph_root = find_graph_root(items, rss->level);
2109 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2110 					  items, rss->types,
2111 					  mlx5_support_expansion,
2112 					  graph_root);
2113 		assert(ret > 0 &&
2114 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2115 	} else {
2116 		buf->entries = 1;
2117 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2118 	}
2119 	for (i = 0; i < buf->entries; ++i) {
2120 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2121 					    actions, error);
2122 		if (!dev_flow)
2123 			goto error;
2124 		dev_flow->flow = flow;
2125 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2126 		ret = flow_drv_translate(dev, dev_flow, attr,
2127 					 buf->entry[i].pattern,
2128 					 actions, error);
2129 		if (ret < 0)
2130 			goto error;
2131 	}
2132 	if (dev->data->dev_started) {
2133 		ret = flow_drv_apply(dev, flow, error);
2134 		if (ret < 0)
2135 			goto error;
2136 	}
2137 	TAILQ_INSERT_TAIL(list, flow, next);
2138 	flow_rxq_flags_set(dev, flow);
2139 	return flow;
2140 error:
2141 	ret = rte_errno; /* Save rte_errno before cleanup. */
2142 	assert(flow);
2143 	flow_drv_destroy(dev, flow);
2144 	rte_free(flow);
2145 	rte_errno = ret; /* Restore rte_errno. */
2146 	return NULL;
2147 }
2148 
2149 /**
2150  * Create a flow.
2151  *
2152  * @see rte_flow_create()
2153  * @see rte_flow_ops
2154  */
2155 struct rte_flow *
2156 mlx5_flow_create(struct rte_eth_dev *dev,
2157 		 const struct rte_flow_attr *attr,
2158 		 const struct rte_flow_item items[],
2159 		 const struct rte_flow_action actions[],
2160 		 struct rte_flow_error *error)
2161 {
2162 	struct mlx5_priv *priv = dev->data->dev_private;
2163 
2164 	return flow_list_create(dev, &priv->flows,
2165 				attr, items, actions, error);
2166 }
2167 
2168 /**
2169  * Destroy a flow in a list.
2170  *
2171  * @param dev
2172  *   Pointer to Ethernet device.
2173  * @param list
2174  *   Pointer to a TAILQ flow list.
2175  * @param[in] flow
2176  *   Flow to destroy.
2177  */
2178 static void
2179 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2180 		  struct rte_flow *flow)
2181 {
2182 	/*
2183 	 * Update RX queue flags only if port is started, otherwise it is
2184 	 * already clean.
2185 	 */
2186 	if (dev->data->dev_started)
2187 		flow_rxq_flags_trim(dev, flow);
2188 	flow_drv_destroy(dev, flow);
2189 	TAILQ_REMOVE(list, flow, next);
2190 	rte_free(flow->fdir);
2191 	rte_free(flow);
2192 }
2193 
2194 /**
2195  * Destroy all flows.
2196  *
2197  * @param dev
2198  *   Pointer to Ethernet device.
2199  * @param list
2200  *   Pointer to a TAILQ flow list.
2201  */
2202 void
2203 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2204 {
2205 	while (!TAILQ_EMPTY(list)) {
2206 		struct rte_flow *flow;
2207 
2208 		flow = TAILQ_FIRST(list);
2209 		flow_list_destroy(dev, list, flow);
2210 	}
2211 }
2212 
2213 /**
2214  * Remove all flows.
2215  *
2216  * @param dev
2217  *   Pointer to Ethernet device.
2218  * @param list
2219  *   Pointer to a TAILQ flow list.
2220  */
2221 void
2222 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2223 {
2224 	struct rte_flow *flow;
2225 
2226 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2227 		flow_drv_remove(dev, flow);
2228 	flow_rxq_flags_clear(dev);
2229 }
2230 
2231 /**
2232  * Add all flows.
2233  *
2234  * @param dev
2235  *   Pointer to Ethernet device.
2236  * @param list
2237  *   Pointer to a TAILQ flow list.
2238  *
2239  * @return
2240  *   0 on success, a negative errno value otherwise and rte_errno is set.
2241  */
2242 int
2243 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2244 {
2245 	struct rte_flow *flow;
2246 	struct rte_flow_error error;
2247 	int ret = 0;
2248 
2249 	TAILQ_FOREACH(flow, list, next) {
2250 		ret = flow_drv_apply(dev, flow, &error);
2251 		if (ret < 0)
2252 			goto error;
2253 		flow_rxq_flags_set(dev, flow);
2254 	}
2255 	return 0;
2256 error:
2257 	ret = rte_errno; /* Save rte_errno before cleanup. */
2258 	mlx5_flow_stop(dev, list);
2259 	rte_errno = ret; /* Restore rte_errno. */
2260 	return -rte_errno;
2261 }
2262 
2263 /**
2264  * Verify the flow list is empty
2265  *
2266  * @param dev
2267  *  Pointer to Ethernet device.
2268  *
2269  * @return the number of flows not released.
2270  */
2271 int
2272 mlx5_flow_verify(struct rte_eth_dev *dev)
2273 {
2274 	struct mlx5_priv *priv = dev->data->dev_private;
2275 	struct rte_flow *flow;
2276 	int ret = 0;
2277 
2278 	TAILQ_FOREACH(flow, &priv->flows, next) {
2279 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
2280 			dev->data->port_id, (void *)flow);
2281 		++ret;
2282 	}
2283 	return ret;
2284 }
2285 
2286 /**
2287  * Enable a control flow configured from the control plane.
2288  *
2289  * @param dev
2290  *   Pointer to Ethernet device.
2291  * @param eth_spec
2292  *   An Ethernet flow spec to apply.
2293  * @param eth_mask
2294  *   An Ethernet flow mask to apply.
2295  * @param vlan_spec
2296  *   A VLAN flow spec to apply.
2297  * @param vlan_mask
2298  *   A VLAN flow mask to apply.
2299  *
2300  * @return
2301  *   0 on success, a negative errno value otherwise and rte_errno is set.
2302  */
2303 int
2304 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2305 		    struct rte_flow_item_eth *eth_spec,
2306 		    struct rte_flow_item_eth *eth_mask,
2307 		    struct rte_flow_item_vlan *vlan_spec,
2308 		    struct rte_flow_item_vlan *vlan_mask)
2309 {
2310 	struct mlx5_priv *priv = dev->data->dev_private;
2311 	const struct rte_flow_attr attr = {
2312 		.ingress = 1,
2313 		.priority = MLX5_FLOW_PRIO_RSVD,
2314 	};
2315 	struct rte_flow_item items[] = {
2316 		{
2317 			.type = RTE_FLOW_ITEM_TYPE_ETH,
2318 			.spec = eth_spec,
2319 			.last = NULL,
2320 			.mask = eth_mask,
2321 		},
2322 		{
2323 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2324 					      RTE_FLOW_ITEM_TYPE_END,
2325 			.spec = vlan_spec,
2326 			.last = NULL,
2327 			.mask = vlan_mask,
2328 		},
2329 		{
2330 			.type = RTE_FLOW_ITEM_TYPE_END,
2331 		},
2332 	};
2333 	uint16_t queue[priv->reta_idx_n];
2334 	struct rte_flow_action_rss action_rss = {
2335 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2336 		.level = 0,
2337 		.types = priv->rss_conf.rss_hf,
2338 		.key_len = priv->rss_conf.rss_key_len,
2339 		.queue_num = priv->reta_idx_n,
2340 		.key = priv->rss_conf.rss_key,
2341 		.queue = queue,
2342 	};
2343 	struct rte_flow_action actions[] = {
2344 		{
2345 			.type = RTE_FLOW_ACTION_TYPE_RSS,
2346 			.conf = &action_rss,
2347 		},
2348 		{
2349 			.type = RTE_FLOW_ACTION_TYPE_END,
2350 		},
2351 	};
2352 	struct rte_flow *flow;
2353 	struct rte_flow_error error;
2354 	unsigned int i;
2355 
2356 	if (!priv->reta_idx_n || !priv->rxqs_n) {
2357 		return 0;
2358 	}
2359 	for (i = 0; i != priv->reta_idx_n; ++i)
2360 		queue[i] = (*priv->reta_idx)[i];
2361 	flow = flow_list_create(dev, &priv->ctrl_flows,
2362 				&attr, items, actions, &error);
2363 	if (!flow)
2364 		return -rte_errno;
2365 	return 0;
2366 }
2367 
2368 /**
2369  * Enable a flow control configured from the control plane.
2370  *
2371  * @param dev
2372  *   Pointer to Ethernet device.
2373  * @param eth_spec
2374  *   An Ethernet flow spec to apply.
2375  * @param eth_mask
2376  *   An Ethernet flow mask to apply.
2377  *
2378  * @return
2379  *   0 on success, a negative errno value otherwise and rte_errno is set.
2380  */
2381 int
2382 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2383 	       struct rte_flow_item_eth *eth_spec,
2384 	       struct rte_flow_item_eth *eth_mask)
2385 {
2386 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2387 }
2388 
2389 /**
2390  * Destroy a flow.
2391  *
2392  * @see rte_flow_destroy()
2393  * @see rte_flow_ops
2394  */
2395 int
2396 mlx5_flow_destroy(struct rte_eth_dev *dev,
2397 		  struct rte_flow *flow,
2398 		  struct rte_flow_error *error __rte_unused)
2399 {
2400 	struct mlx5_priv *priv = dev->data->dev_private;
2401 
2402 	flow_list_destroy(dev, &priv->flows, flow);
2403 	return 0;
2404 }
2405 
2406 /**
2407  * Destroy all flows.
2408  *
2409  * @see rte_flow_flush()
2410  * @see rte_flow_ops
2411  */
2412 int
2413 mlx5_flow_flush(struct rte_eth_dev *dev,
2414 		struct rte_flow_error *error __rte_unused)
2415 {
2416 	struct mlx5_priv *priv = dev->data->dev_private;
2417 
2418 	mlx5_flow_list_flush(dev, &priv->flows);
2419 	return 0;
2420 }
2421 
2422 /**
2423  * Isolated mode.
2424  *
2425  * @see rte_flow_isolate()
2426  * @see rte_flow_ops
2427  */
2428 int
2429 mlx5_flow_isolate(struct rte_eth_dev *dev,
2430 		  int enable,
2431 		  struct rte_flow_error *error)
2432 {
2433 	struct mlx5_priv *priv = dev->data->dev_private;
2434 
2435 	if (dev->data->dev_started) {
2436 		rte_flow_error_set(error, EBUSY,
2437 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2438 				   NULL,
2439 				   "port must be stopped first");
2440 		return -rte_errno;
2441 	}
2442 	priv->isolated = !!enable;
2443 	if (enable)
2444 		dev->dev_ops = &mlx5_dev_ops_isolate;
2445 	else
2446 		dev->dev_ops = &mlx5_dev_ops;
2447 	return 0;
2448 }
2449 
2450 /**
2451  * Query a flow.
2452  *
2453  * @see rte_flow_query()
2454  * @see rte_flow_ops
2455  */
2456 static int
2457 flow_drv_query(struct rte_eth_dev *dev,
2458 	       struct rte_flow *flow,
2459 	       const struct rte_flow_action *actions,
2460 	       void *data,
2461 	       struct rte_flow_error *error)
2462 {
2463 	const struct mlx5_flow_driver_ops *fops;
2464 	enum mlx5_flow_drv_type ftype = flow->drv_type;
2465 
2466 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2467 	fops = flow_get_drv_ops(ftype);
2468 
2469 	return fops->query(dev, flow, actions, data, error);
2470 }
2471 
2472 /**
2473  * Query a flow.
2474  *
2475  * @see rte_flow_query()
2476  * @see rte_flow_ops
2477  */
2478 int
2479 mlx5_flow_query(struct rte_eth_dev *dev,
2480 		struct rte_flow *flow,
2481 		const struct rte_flow_action *actions,
2482 		void *data,
2483 		struct rte_flow_error *error)
2484 {
2485 	int ret;
2486 
2487 	ret = flow_drv_query(dev, flow, actions, data, error);
2488 	if (ret < 0)
2489 		return ret;
2490 	return 0;
2491 }
2492 
2493 /**
2494  * Convert a flow director filter to a generic flow.
2495  *
2496  * @param dev
2497  *   Pointer to Ethernet device.
2498  * @param fdir_filter
2499  *   Flow director filter to add.
2500  * @param attributes
2501  *   Generic flow parameters structure.
2502  *
2503  * @return
2504  *   0 on success, a negative errno value otherwise and rte_errno is set.
2505  */
2506 static int
2507 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2508 			 const struct rte_eth_fdir_filter *fdir_filter,
2509 			 struct mlx5_fdir *attributes)
2510 {
2511 	struct mlx5_priv *priv = dev->data->dev_private;
2512 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
2513 	const struct rte_eth_fdir_masks *mask =
2514 		&dev->data->dev_conf.fdir_conf.mask;
2515 
2516 	/* Validate queue number. */
2517 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2518 		DRV_LOG(ERR, "port %u invalid queue number %d",
2519 			dev->data->port_id, fdir_filter->action.rx_queue);
2520 		rte_errno = EINVAL;
2521 		return -rte_errno;
2522 	}
2523 	attributes->attr.ingress = 1;
2524 	attributes->items[0] = (struct rte_flow_item) {
2525 		.type = RTE_FLOW_ITEM_TYPE_ETH,
2526 		.spec = &attributes->l2,
2527 		.mask = &attributes->l2_mask,
2528 	};
2529 	switch (fdir_filter->action.behavior) {
2530 	case RTE_ETH_FDIR_ACCEPT:
2531 		attributes->actions[0] = (struct rte_flow_action){
2532 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
2533 			.conf = &attributes->queue,
2534 		};
2535 		break;
2536 	case RTE_ETH_FDIR_REJECT:
2537 		attributes->actions[0] = (struct rte_flow_action){
2538 			.type = RTE_FLOW_ACTION_TYPE_DROP,
2539 		};
2540 		break;
2541 	default:
2542 		DRV_LOG(ERR, "port %u invalid behavior %d",
2543 			dev->data->port_id,
2544 			fdir_filter->action.behavior);
2545 		rte_errno = ENOTSUP;
2546 		return -rte_errno;
2547 	}
2548 	attributes->queue.index = fdir_filter->action.rx_queue;
2549 	/* Handle L3. */
2550 	switch (fdir_filter->input.flow_type) {
2551 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2552 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2553 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2554 		attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
2555 			.src_addr = input->flow.ip4_flow.src_ip,
2556 			.dst_addr = input->flow.ip4_flow.dst_ip,
2557 			.time_to_live = input->flow.ip4_flow.ttl,
2558 			.type_of_service = input->flow.ip4_flow.tos,
2559 		};
2560 		attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
2561 			.src_addr = mask->ipv4_mask.src_ip,
2562 			.dst_addr = mask->ipv4_mask.dst_ip,
2563 			.time_to_live = mask->ipv4_mask.ttl,
2564 			.type_of_service = mask->ipv4_mask.tos,
2565 			.next_proto_id = mask->ipv4_mask.proto,
2566 		};
2567 		attributes->items[1] = (struct rte_flow_item){
2568 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
2569 			.spec = &attributes->l3,
2570 			.mask = &attributes->l3_mask,
2571 		};
2572 		break;
2573 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2574 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2575 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2576 		attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
2577 			.hop_limits = input->flow.ipv6_flow.hop_limits,
2578 			.proto = input->flow.ipv6_flow.proto,
2579 		};
2580 
2581 		memcpy(attributes->l3.ipv6.hdr.src_addr,
2582 		       input->flow.ipv6_flow.src_ip,
2583 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2584 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
2585 		       input->flow.ipv6_flow.dst_ip,
2586 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2587 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2588 		       mask->ipv6_mask.src_ip,
2589 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2590 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2591 		       mask->ipv6_mask.dst_ip,
2592 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2593 		attributes->items[1] = (struct rte_flow_item){
2594 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
2595 			.spec = &attributes->l3,
2596 			.mask = &attributes->l3_mask,
2597 		};
2598 		break;
2599 	default:
2600 		DRV_LOG(ERR, "port %u invalid flow type%d",
2601 			dev->data->port_id, fdir_filter->input.flow_type);
2602 		rte_errno = ENOTSUP;
2603 		return -rte_errno;
2604 	}
2605 	/* Handle L4. */
2606 	switch (fdir_filter->input.flow_type) {
2607 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2608 		attributes->l4.udp.hdr = (struct rte_udp_hdr){
2609 			.src_port = input->flow.udp4_flow.src_port,
2610 			.dst_port = input->flow.udp4_flow.dst_port,
2611 		};
2612 		attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2613 			.src_port = mask->src_port_mask,
2614 			.dst_port = mask->dst_port_mask,
2615 		};
2616 		attributes->items[2] = (struct rte_flow_item){
2617 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2618 			.spec = &attributes->l4,
2619 			.mask = &attributes->l4_mask,
2620 		};
2621 		break;
2622 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2623 		attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2624 			.src_port = input->flow.tcp4_flow.src_port,
2625 			.dst_port = input->flow.tcp4_flow.dst_port,
2626 		};
2627 		attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2628 			.src_port = mask->src_port_mask,
2629 			.dst_port = mask->dst_port_mask,
2630 		};
2631 		attributes->items[2] = (struct rte_flow_item){
2632 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2633 			.spec = &attributes->l4,
2634 			.mask = &attributes->l4_mask,
2635 		};
2636 		break;
2637 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2638 		attributes->l4.udp.hdr = (struct rte_udp_hdr){
2639 			.src_port = input->flow.udp6_flow.src_port,
2640 			.dst_port = input->flow.udp6_flow.dst_port,
2641 		};
2642 		attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2643 			.src_port = mask->src_port_mask,
2644 			.dst_port = mask->dst_port_mask,
2645 		};
2646 		attributes->items[2] = (struct rte_flow_item){
2647 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2648 			.spec = &attributes->l4,
2649 			.mask = &attributes->l4_mask,
2650 		};
2651 		break;
2652 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2653 		attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2654 			.src_port = input->flow.tcp6_flow.src_port,
2655 			.dst_port = input->flow.tcp6_flow.dst_port,
2656 		};
2657 		attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2658 			.src_port = mask->src_port_mask,
2659 			.dst_port = mask->dst_port_mask,
2660 		};
2661 		attributes->items[2] = (struct rte_flow_item){
2662 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2663 			.spec = &attributes->l4,
2664 			.mask = &attributes->l4_mask,
2665 		};
2666 		break;
2667 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2668 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2669 		break;
2670 	default:
2671 		DRV_LOG(ERR, "port %u invalid flow type%d",
2672 			dev->data->port_id, fdir_filter->input.flow_type);
2673 		rte_errno = ENOTSUP;
2674 		return -rte_errno;
2675 	}
2676 	return 0;
2677 }
2678 
2679 #define FLOW_FDIR_CMP(f1, f2, fld) \
2680 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2681 
2682 /**
2683  * Compare two FDIR flows. If items and actions are identical, the two flows are
2684  * regarded as same.
2685  *
2686  * @param dev
2687  *   Pointer to Ethernet device.
2688  * @param f1
2689  *   FDIR flow to compare.
2690  * @param f2
2691  *   FDIR flow to compare.
2692  *
2693  * @return
2694  *   Zero on match, 1 otherwise.
2695  */
2696 static int
2697 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2698 {
2699 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
2700 	    FLOW_FDIR_CMP(f1, f2, l2) ||
2701 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2702 	    FLOW_FDIR_CMP(f1, f2, l3) ||
2703 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2704 	    FLOW_FDIR_CMP(f1, f2, l4) ||
2705 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2706 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
2707 		return 1;
2708 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2709 	    FLOW_FDIR_CMP(f1, f2, queue))
2710 		return 1;
2711 	return 0;
2712 }
2713 
2714 /**
2715  * Search device flow list to find out a matched FDIR flow.
2716  *
2717  * @param dev
2718  *   Pointer to Ethernet device.
2719  * @param fdir_flow
2720  *   FDIR flow to lookup.
2721  *
2722  * @return
2723  *   Pointer of flow if found, NULL otherwise.
2724  */
2725 static struct rte_flow *
2726 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2727 {
2728 	struct mlx5_priv *priv = dev->data->dev_private;
2729 	struct rte_flow *flow = NULL;
2730 
2731 	assert(fdir_flow);
2732 	TAILQ_FOREACH(flow, &priv->flows, next) {
2733 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2734 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2735 				dev->data->port_id, (void *)flow);
2736 			break;
2737 		}
2738 	}
2739 	return flow;
2740 }
2741 
2742 /**
2743  * Add new flow director filter and store it in list.
2744  *
2745  * @param dev
2746  *   Pointer to Ethernet device.
2747  * @param fdir_filter
2748  *   Flow director filter to add.
2749  *
2750  * @return
2751  *   0 on success, a negative errno value otherwise and rte_errno is set.
2752  */
2753 static int
2754 flow_fdir_filter_add(struct rte_eth_dev *dev,
2755 		     const struct rte_eth_fdir_filter *fdir_filter)
2756 {
2757 	struct mlx5_priv *priv = dev->data->dev_private;
2758 	struct mlx5_fdir *fdir_flow;
2759 	struct rte_flow *flow;
2760 	int ret;
2761 
2762 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2763 	if (!fdir_flow) {
2764 		rte_errno = ENOMEM;
2765 		return -rte_errno;
2766 	}
2767 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2768 	if (ret)
2769 		goto error;
2770 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
2771 	if (flow) {
2772 		rte_errno = EEXIST;
2773 		goto error;
2774 	}
2775 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2776 				fdir_flow->items, fdir_flow->actions, NULL);
2777 	if (!flow)
2778 		goto error;
2779 	assert(!flow->fdir);
2780 	flow->fdir = fdir_flow;
2781 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2782 		dev->data->port_id, (void *)flow);
2783 	return 0;
2784 error:
2785 	rte_free(fdir_flow);
2786 	return -rte_errno;
2787 }
2788 
2789 /**
2790  * Delete specific filter.
2791  *
2792  * @param dev
2793  *   Pointer to Ethernet device.
2794  * @param fdir_filter
2795  *   Filter to be deleted.
2796  *
2797  * @return
2798  *   0 on success, a negative errno value otherwise and rte_errno is set.
2799  */
2800 static int
2801 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2802 			const struct rte_eth_fdir_filter *fdir_filter)
2803 {
2804 	struct mlx5_priv *priv = dev->data->dev_private;
2805 	struct rte_flow *flow;
2806 	struct mlx5_fdir fdir_flow = {
2807 		.attr.group = 0,
2808 	};
2809 	int ret;
2810 
2811 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2812 	if (ret)
2813 		return -rte_errno;
2814 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2815 	if (!flow) {
2816 		rte_errno = ENOENT;
2817 		return -rte_errno;
2818 	}
2819 	flow_list_destroy(dev, &priv->flows, flow);
2820 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2821 		dev->data->port_id, (void *)flow);
2822 	return 0;
2823 }
2824 
2825 /**
2826  * Update queue for specific filter.
2827  *
2828  * @param dev
2829  *   Pointer to Ethernet device.
2830  * @param fdir_filter
2831  *   Filter to be updated.
2832  *
2833  * @return
2834  *   0 on success, a negative errno value otherwise and rte_errno is set.
2835  */
2836 static int
2837 flow_fdir_filter_update(struct rte_eth_dev *dev,
2838 			const struct rte_eth_fdir_filter *fdir_filter)
2839 {
2840 	int ret;
2841 
2842 	ret = flow_fdir_filter_delete(dev, fdir_filter);
2843 	if (ret)
2844 		return ret;
2845 	return flow_fdir_filter_add(dev, fdir_filter);
2846 }
2847 
2848 /**
2849  * Flush all filters.
2850  *
2851  * @param dev
2852  *   Pointer to Ethernet device.
2853  */
2854 static void
2855 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2856 {
2857 	struct mlx5_priv *priv = dev->data->dev_private;
2858 
2859 	mlx5_flow_list_flush(dev, &priv->flows);
2860 }
2861 
2862 /**
2863  * Get flow director information.
2864  *
2865  * @param dev
2866  *   Pointer to Ethernet device.
2867  * @param[out] fdir_info
2868  *   Resulting flow director information.
2869  */
2870 static void
2871 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2872 {
2873 	struct rte_eth_fdir_masks *mask =
2874 		&dev->data->dev_conf.fdir_conf.mask;
2875 
2876 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2877 	fdir_info->guarant_spc = 0;
2878 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2879 	fdir_info->max_flexpayload = 0;
2880 	fdir_info->flow_types_mask[0] = 0;
2881 	fdir_info->flex_payload_unit = 0;
2882 	fdir_info->max_flex_payload_segment_num = 0;
2883 	fdir_info->flex_payload_limit = 0;
2884 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2885 }
2886 
2887 /**
2888  * Deal with flow director operations.
2889  *
2890  * @param dev
2891  *   Pointer to Ethernet device.
2892  * @param filter_op
2893  *   Operation to perform.
2894  * @param arg
2895  *   Pointer to operation-specific structure.
2896  *
2897  * @return
2898  *   0 on success, a negative errno value otherwise and rte_errno is set.
2899  */
2900 static int
2901 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2902 		    void *arg)
2903 {
2904 	enum rte_fdir_mode fdir_mode =
2905 		dev->data->dev_conf.fdir_conf.mode;
2906 
2907 	if (filter_op == RTE_ETH_FILTER_NOP)
2908 		return 0;
2909 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2910 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2911 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
2912 			dev->data->port_id, fdir_mode);
2913 		rte_errno = EINVAL;
2914 		return -rte_errno;
2915 	}
2916 	switch (filter_op) {
2917 	case RTE_ETH_FILTER_ADD:
2918 		return flow_fdir_filter_add(dev, arg);
2919 	case RTE_ETH_FILTER_UPDATE:
2920 		return flow_fdir_filter_update(dev, arg);
2921 	case RTE_ETH_FILTER_DELETE:
2922 		return flow_fdir_filter_delete(dev, arg);
2923 	case RTE_ETH_FILTER_FLUSH:
2924 		flow_fdir_filter_flush(dev);
2925 		break;
2926 	case RTE_ETH_FILTER_INFO:
2927 		flow_fdir_info_get(dev, arg);
2928 		break;
2929 	default:
2930 		DRV_LOG(DEBUG, "port %u unknown operation %u",
2931 			dev->data->port_id, filter_op);
2932 		rte_errno = EINVAL;
2933 		return -rte_errno;
2934 	}
2935 	return 0;
2936 }
2937 
2938 /**
2939  * Manage filter operations.
2940  *
2941  * @param dev
2942  *   Pointer to Ethernet device structure.
2943  * @param filter_type
2944  *   Filter type.
2945  * @param filter_op
2946  *   Operation to perform.
2947  * @param arg
2948  *   Pointer to operation-specific structure.
2949  *
2950  * @return
2951  *   0 on success, a negative errno value otherwise and rte_errno is set.
2952  */
2953 int
2954 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2955 		     enum rte_filter_type filter_type,
2956 		     enum rte_filter_op filter_op,
2957 		     void *arg)
2958 {
2959 	switch (filter_type) {
2960 	case RTE_ETH_FILTER_GENERIC:
2961 		if (filter_op != RTE_ETH_FILTER_GET) {
2962 			rte_errno = EINVAL;
2963 			return -rte_errno;
2964 		}
2965 		*(const void **)arg = &mlx5_flow_ops;
2966 		return 0;
2967 	case RTE_ETH_FILTER_FDIR:
2968 		return flow_fdir_ctrl_func(dev, filter_op, arg);
2969 	default:
2970 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
2971 			dev->data->port_id, filter_type);
2972 		rte_errno = ENOTSUP;
2973 		return -rte_errno;
2974 	}
2975 	return 0;
2976 }
2977