1 /*- 2 * BSD LICENSE 3 * 4 * Copyright 2016 6WIND S.A. 5 * Copyright 2016 Mellanox. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of 6WIND S.A. nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/queue.h> 35 #include <string.h> 36 37 /* Verbs header. */ 38 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ 39 #ifdef PEDANTIC 40 #pragma GCC diagnostic ignored "-Wpedantic" 41 #endif 42 #include <infiniband/verbs.h> 43 #ifdef PEDANTIC 44 #pragma GCC diagnostic error "-Wpedantic" 45 #endif 46 47 #include <rte_ethdev_driver.h> 48 #include <rte_flow.h> 49 #include <rte_flow_driver.h> 50 #include <rte_malloc.h> 51 #include <rte_ip.h> 52 53 #include "mlx5.h" 54 #include "mlx5_defs.h" 55 #include "mlx5_prm.h" 56 57 /* Define minimal priority for control plane flows. */ 58 #define MLX5_CTRL_FLOW_PRIORITY 4 59 60 /* Internet Protocol versions. */ 61 #define MLX5_IPV4 4 62 #define MLX5_IPV6 6 63 64 #ifndef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 65 struct ibv_counter_set_init_attr { 66 int dummy; 67 }; 68 struct ibv_flow_spec_counter_action { 69 int dummy; 70 }; 71 struct ibv_counter_set { 72 int dummy; 73 }; 74 75 static inline int 76 ibv_destroy_counter_set(struct ibv_counter_set *cs) 77 { 78 (void)cs; 79 return -ENOTSUP; 80 } 81 #endif 82 83 /* Dev ops structure defined in mlx5.c */ 84 extern const struct eth_dev_ops mlx5_dev_ops; 85 extern const struct eth_dev_ops mlx5_dev_ops_isolate; 86 87 static int 88 mlx5_flow_create_eth(const struct rte_flow_item *item, 89 const void *default_mask, 90 void *data); 91 92 static int 93 mlx5_flow_create_vlan(const struct rte_flow_item *item, 94 const void *default_mask, 95 void *data); 96 97 static int 98 mlx5_flow_create_ipv4(const struct rte_flow_item *item, 99 const void *default_mask, 100 void *data); 101 102 static int 103 mlx5_flow_create_ipv6(const struct rte_flow_item *item, 104 const void *default_mask, 105 void *data); 106 107 static int 108 mlx5_flow_create_udp(const struct rte_flow_item *item, 109 const void *default_mask, 110 void *data); 111 112 static int 113 mlx5_flow_create_tcp(const struct rte_flow_item *item, 114 const void *default_mask, 115 void *data); 116 117 static int 118 mlx5_flow_create_vxlan(const struct rte_flow_item *item, 119 const void *default_mask, 120 void *data); 121 122 struct mlx5_flow_parse; 123 124 static void 125 mlx5_flow_create_copy(struct mlx5_flow_parse *parser, void *src, 126 unsigned int size); 127 128 static int 129 mlx5_flow_create_flag_mark(struct mlx5_flow_parse *parser, uint32_t mark_id); 130 131 static int 132 mlx5_flow_create_count(struct priv *priv, struct mlx5_flow_parse *parser); 133 134 /* Hash RX queue types. */ 135 enum hash_rxq_type { 136 HASH_RXQ_TCPV4, 137 HASH_RXQ_UDPV4, 138 HASH_RXQ_IPV4, 139 HASH_RXQ_TCPV6, 140 HASH_RXQ_UDPV6, 141 HASH_RXQ_IPV6, 142 HASH_RXQ_ETH, 143 }; 144 145 /* Initialization data for hash RX queue. */ 146 struct hash_rxq_init { 147 uint64_t hash_fields; /* Fields that participate in the hash. */ 148 uint64_t dpdk_rss_hf; /* Matching DPDK RSS hash fields. */ 149 unsigned int flow_priority; /* Flow priority to use. */ 150 unsigned int ip_version; /* Internet protocol. */ 151 }; 152 153 /* Initialization data for hash RX queues. */ 154 const struct hash_rxq_init hash_rxq_init[] = { 155 [HASH_RXQ_TCPV4] = { 156 .hash_fields = (IBV_RX_HASH_SRC_IPV4 | 157 IBV_RX_HASH_DST_IPV4 | 158 IBV_RX_HASH_SRC_PORT_TCP | 159 IBV_RX_HASH_DST_PORT_TCP), 160 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV4_TCP, 161 .flow_priority = 0, 162 .ip_version = MLX5_IPV4, 163 }, 164 [HASH_RXQ_UDPV4] = { 165 .hash_fields = (IBV_RX_HASH_SRC_IPV4 | 166 IBV_RX_HASH_DST_IPV4 | 167 IBV_RX_HASH_SRC_PORT_UDP | 168 IBV_RX_HASH_DST_PORT_UDP), 169 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV4_UDP, 170 .flow_priority = 0, 171 .ip_version = MLX5_IPV4, 172 }, 173 [HASH_RXQ_IPV4] = { 174 .hash_fields = (IBV_RX_HASH_SRC_IPV4 | 175 IBV_RX_HASH_DST_IPV4), 176 .dpdk_rss_hf = (ETH_RSS_IPV4 | 177 ETH_RSS_FRAG_IPV4), 178 .flow_priority = 1, 179 .ip_version = MLX5_IPV4, 180 }, 181 [HASH_RXQ_TCPV6] = { 182 .hash_fields = (IBV_RX_HASH_SRC_IPV6 | 183 IBV_RX_HASH_DST_IPV6 | 184 IBV_RX_HASH_SRC_PORT_TCP | 185 IBV_RX_HASH_DST_PORT_TCP), 186 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV6_TCP, 187 .flow_priority = 0, 188 .ip_version = MLX5_IPV6, 189 }, 190 [HASH_RXQ_UDPV6] = { 191 .hash_fields = (IBV_RX_HASH_SRC_IPV6 | 192 IBV_RX_HASH_DST_IPV6 | 193 IBV_RX_HASH_SRC_PORT_UDP | 194 IBV_RX_HASH_DST_PORT_UDP), 195 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV6_UDP, 196 .flow_priority = 0, 197 .ip_version = MLX5_IPV6, 198 }, 199 [HASH_RXQ_IPV6] = { 200 .hash_fields = (IBV_RX_HASH_SRC_IPV6 | 201 IBV_RX_HASH_DST_IPV6), 202 .dpdk_rss_hf = (ETH_RSS_IPV6 | 203 ETH_RSS_FRAG_IPV6), 204 .flow_priority = 1, 205 .ip_version = MLX5_IPV6, 206 }, 207 [HASH_RXQ_ETH] = { 208 .hash_fields = 0, 209 .dpdk_rss_hf = 0, 210 .flow_priority = 2, 211 }, 212 }; 213 214 /* Number of entries in hash_rxq_init[]. */ 215 const unsigned int hash_rxq_init_n = RTE_DIM(hash_rxq_init); 216 217 /** Structure for holding counter stats. */ 218 struct mlx5_flow_counter_stats { 219 uint64_t hits; /**< Number of packets matched by the rule. */ 220 uint64_t bytes; /**< Number of bytes matched by the rule. */ 221 }; 222 223 /** Structure for Drop queue. */ 224 struct mlx5_hrxq_drop { 225 struct ibv_rwq_ind_table *ind_table; /**< Indirection table. */ 226 struct ibv_qp *qp; /**< Verbs queue pair. */ 227 struct ibv_wq *wq; /**< Verbs work queue. */ 228 struct ibv_cq *cq; /**< Verbs completion queue. */ 229 }; 230 231 /* Flows structures. */ 232 struct mlx5_flow { 233 uint64_t hash_fields; /**< Fields that participate in the hash. */ 234 struct ibv_flow_attr *ibv_attr; /**< Pointer to Verbs attributes. */ 235 struct ibv_flow *ibv_flow; /**< Verbs flow. */ 236 struct mlx5_hrxq *hrxq; /**< Hash Rx queues. */ 237 }; 238 239 /* Drop flows structures. */ 240 struct mlx5_flow_drop { 241 struct ibv_flow_attr *ibv_attr; /**< Pointer to Verbs attributes. */ 242 struct ibv_flow *ibv_flow; /**< Verbs flow. */ 243 }; 244 245 struct rte_flow { 246 TAILQ_ENTRY(rte_flow) next; /**< Pointer to the next flow structure. */ 247 uint32_t mark:1; /**< Set if the flow is marked. */ 248 uint32_t drop:1; /**< Drop queue. */ 249 uint16_t queues_n; /**< Number of entries in queue[]. */ 250 uint16_t (*queues)[]; /**< Queues indexes to use. */ 251 struct rte_eth_rss_conf rss_conf; /**< RSS configuration */ 252 uint8_t rss_key[40]; /**< copy of the RSS key. */ 253 struct ibv_counter_set *cs; /**< Holds the counters for the rule. */ 254 struct mlx5_flow_counter_stats counter_stats;/**<The counter stats. */ 255 struct mlx5_flow frxq[RTE_DIM(hash_rxq_init)]; 256 /**< Flow with Rx queue. */ 257 }; 258 259 /** Static initializer for items. */ 260 #define ITEMS(...) \ 261 (const enum rte_flow_item_type []){ \ 262 __VA_ARGS__, RTE_FLOW_ITEM_TYPE_END, \ 263 } 264 265 /** Structure to generate a simple graph of layers supported by the NIC. */ 266 struct mlx5_flow_items { 267 /** List of possible actions for these items. */ 268 const enum rte_flow_action_type *const actions; 269 /** Bit-masks corresponding to the possibilities for the item. */ 270 const void *mask; 271 /** 272 * Default bit-masks to use when item->mask is not provided. When 273 * \default_mask is also NULL, the full supported bit-mask (\mask) is 274 * used instead. 275 */ 276 const void *default_mask; 277 /** Bit-masks size in bytes. */ 278 const unsigned int mask_sz; 279 /** 280 * Conversion function from rte_flow to NIC specific flow. 281 * 282 * @param item 283 * rte_flow item to convert. 284 * @param default_mask 285 * Default bit-masks to use when item->mask is not provided. 286 * @param data 287 * Internal structure to store the conversion. 288 * 289 * @return 290 * 0 on success, negative value otherwise. 291 */ 292 int (*convert)(const struct rte_flow_item *item, 293 const void *default_mask, 294 void *data); 295 /** Size in bytes of the destination structure. */ 296 const unsigned int dst_sz; 297 /** List of possible following items. */ 298 const enum rte_flow_item_type *const items; 299 }; 300 301 /** Valid action for this PMD. */ 302 static const enum rte_flow_action_type valid_actions[] = { 303 RTE_FLOW_ACTION_TYPE_DROP, 304 RTE_FLOW_ACTION_TYPE_QUEUE, 305 RTE_FLOW_ACTION_TYPE_MARK, 306 RTE_FLOW_ACTION_TYPE_FLAG, 307 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 308 RTE_FLOW_ACTION_TYPE_COUNT, 309 #endif 310 RTE_FLOW_ACTION_TYPE_END, 311 }; 312 313 /** Graph of supported items and associated actions. */ 314 static const struct mlx5_flow_items mlx5_flow_items[] = { 315 [RTE_FLOW_ITEM_TYPE_END] = { 316 .items = ITEMS(RTE_FLOW_ITEM_TYPE_ETH, 317 RTE_FLOW_ITEM_TYPE_VXLAN), 318 }, 319 [RTE_FLOW_ITEM_TYPE_ETH] = { 320 .items = ITEMS(RTE_FLOW_ITEM_TYPE_VLAN, 321 RTE_FLOW_ITEM_TYPE_IPV4, 322 RTE_FLOW_ITEM_TYPE_IPV6), 323 .actions = valid_actions, 324 .mask = &(const struct rte_flow_item_eth){ 325 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 326 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 327 .type = -1, 328 }, 329 .default_mask = &rte_flow_item_eth_mask, 330 .mask_sz = sizeof(struct rte_flow_item_eth), 331 .convert = mlx5_flow_create_eth, 332 .dst_sz = sizeof(struct ibv_flow_spec_eth), 333 }, 334 [RTE_FLOW_ITEM_TYPE_VLAN] = { 335 .items = ITEMS(RTE_FLOW_ITEM_TYPE_IPV4, 336 RTE_FLOW_ITEM_TYPE_IPV6), 337 .actions = valid_actions, 338 .mask = &(const struct rte_flow_item_vlan){ 339 .tci = -1, 340 }, 341 .default_mask = &rte_flow_item_vlan_mask, 342 .mask_sz = sizeof(struct rte_flow_item_vlan), 343 .convert = mlx5_flow_create_vlan, 344 .dst_sz = 0, 345 }, 346 [RTE_FLOW_ITEM_TYPE_IPV4] = { 347 .items = ITEMS(RTE_FLOW_ITEM_TYPE_UDP, 348 RTE_FLOW_ITEM_TYPE_TCP), 349 .actions = valid_actions, 350 .mask = &(const struct rte_flow_item_ipv4){ 351 .hdr = { 352 .src_addr = -1, 353 .dst_addr = -1, 354 .type_of_service = -1, 355 .next_proto_id = -1, 356 .time_to_live = -1, 357 }, 358 }, 359 .default_mask = &rte_flow_item_ipv4_mask, 360 .mask_sz = sizeof(struct rte_flow_item_ipv4), 361 .convert = mlx5_flow_create_ipv4, 362 .dst_sz = sizeof(struct ibv_flow_spec_ipv4_ext), 363 }, 364 [RTE_FLOW_ITEM_TYPE_IPV6] = { 365 .items = ITEMS(RTE_FLOW_ITEM_TYPE_UDP, 366 RTE_FLOW_ITEM_TYPE_TCP), 367 .actions = valid_actions, 368 .mask = &(const struct rte_flow_item_ipv6){ 369 .hdr = { 370 .src_addr = { 371 0xff, 0xff, 0xff, 0xff, 372 0xff, 0xff, 0xff, 0xff, 373 0xff, 0xff, 0xff, 0xff, 374 0xff, 0xff, 0xff, 0xff, 375 }, 376 .dst_addr = { 377 0xff, 0xff, 0xff, 0xff, 378 0xff, 0xff, 0xff, 0xff, 379 0xff, 0xff, 0xff, 0xff, 380 0xff, 0xff, 0xff, 0xff, 381 }, 382 .vtc_flow = -1, 383 .proto = -1, 384 .hop_limits = -1, 385 }, 386 }, 387 .default_mask = &rte_flow_item_ipv6_mask, 388 .mask_sz = sizeof(struct rte_flow_item_ipv6), 389 .convert = mlx5_flow_create_ipv6, 390 .dst_sz = sizeof(struct ibv_flow_spec_ipv6), 391 }, 392 [RTE_FLOW_ITEM_TYPE_UDP] = { 393 .items = ITEMS(RTE_FLOW_ITEM_TYPE_VXLAN), 394 .actions = valid_actions, 395 .mask = &(const struct rte_flow_item_udp){ 396 .hdr = { 397 .src_port = -1, 398 .dst_port = -1, 399 }, 400 }, 401 .default_mask = &rte_flow_item_udp_mask, 402 .mask_sz = sizeof(struct rte_flow_item_udp), 403 .convert = mlx5_flow_create_udp, 404 .dst_sz = sizeof(struct ibv_flow_spec_tcp_udp), 405 }, 406 [RTE_FLOW_ITEM_TYPE_TCP] = { 407 .actions = valid_actions, 408 .mask = &(const struct rte_flow_item_tcp){ 409 .hdr = { 410 .src_port = -1, 411 .dst_port = -1, 412 }, 413 }, 414 .default_mask = &rte_flow_item_tcp_mask, 415 .mask_sz = sizeof(struct rte_flow_item_tcp), 416 .convert = mlx5_flow_create_tcp, 417 .dst_sz = sizeof(struct ibv_flow_spec_tcp_udp), 418 }, 419 [RTE_FLOW_ITEM_TYPE_VXLAN] = { 420 .items = ITEMS(RTE_FLOW_ITEM_TYPE_ETH), 421 .actions = valid_actions, 422 .mask = &(const struct rte_flow_item_vxlan){ 423 .vni = "\xff\xff\xff", 424 }, 425 .default_mask = &rte_flow_item_vxlan_mask, 426 .mask_sz = sizeof(struct rte_flow_item_vxlan), 427 .convert = mlx5_flow_create_vxlan, 428 .dst_sz = sizeof(struct ibv_flow_spec_tunnel), 429 }, 430 }; 431 432 /** Structure to pass to the conversion function. */ 433 struct mlx5_flow_parse { 434 uint32_t inner; /**< Set once VXLAN is encountered. */ 435 uint32_t allmulti:1; /**< Set once allmulti dst MAC is encountered. */ 436 uint32_t create:1; 437 /**< Whether resources should remain after a validate. */ 438 uint32_t drop:1; /**< Target is a drop queue. */ 439 uint32_t mark:1; /**< Mark is present in the flow. */ 440 uint32_t count:1; /**< Count is present in the flow. */ 441 uint32_t mark_id; /**< Mark identifier. */ 442 uint16_t queues[RTE_MAX_QUEUES_PER_PORT]; /**< Queues indexes to use. */ 443 uint16_t queues_n; /**< Number of entries in queue[]. */ 444 struct rte_eth_rss_conf rss_conf; /**< RSS configuration */ 445 uint8_t rss_key[40]; /**< copy of the RSS key. */ 446 enum hash_rxq_type layer; /**< Last pattern layer detected. */ 447 struct ibv_counter_set *cs; /**< Holds the counter set for the rule */ 448 struct { 449 struct ibv_flow_attr *ibv_attr; 450 /**< Pointer to Verbs attributes. */ 451 unsigned int offset; 452 /**< Current position or total size of the attribute. */ 453 } queue[RTE_DIM(hash_rxq_init)]; 454 }; 455 456 static const struct rte_flow_ops mlx5_flow_ops = { 457 .validate = mlx5_flow_validate, 458 .create = mlx5_flow_create, 459 .destroy = mlx5_flow_destroy, 460 .flush = mlx5_flow_flush, 461 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 462 .query = mlx5_flow_query, 463 #else 464 .query = NULL, 465 #endif 466 .isolate = mlx5_flow_isolate, 467 }; 468 469 /* Convert FDIR request to Generic flow. */ 470 struct mlx5_fdir { 471 struct rte_flow_attr attr; 472 struct rte_flow_action actions[2]; 473 struct rte_flow_item items[4]; 474 struct rte_flow_item_eth l2; 475 struct rte_flow_item_eth l2_mask; 476 union { 477 struct rte_flow_item_ipv4 ipv4; 478 struct rte_flow_item_ipv6 ipv6; 479 } l3; 480 union { 481 struct rte_flow_item_udp udp; 482 struct rte_flow_item_tcp tcp; 483 } l4; 484 struct rte_flow_action_queue queue; 485 }; 486 487 /* Verbs specification header. */ 488 struct ibv_spec_header { 489 enum ibv_flow_spec_type type; 490 uint16_t size; 491 }; 492 493 /** 494 * Check support for a given item. 495 * 496 * @param item[in] 497 * Item specification. 498 * @param mask[in] 499 * Bit-masks covering supported fields to compare with spec, last and mask in 500 * \item. 501 * @param size 502 * Bit-Mask size in bytes. 503 * 504 * @return 505 * 0 on success. 506 */ 507 static int 508 mlx5_flow_item_validate(const struct rte_flow_item *item, 509 const uint8_t *mask, unsigned int size) 510 { 511 int ret = 0; 512 513 if (!item->spec && (item->mask || item->last)) 514 return -1; 515 if (item->spec && !item->mask) { 516 unsigned int i; 517 const uint8_t *spec = item->spec; 518 519 for (i = 0; i < size; ++i) 520 if ((spec[i] | mask[i]) != mask[i]) 521 return -1; 522 } 523 if (item->last && !item->mask) { 524 unsigned int i; 525 const uint8_t *spec = item->last; 526 527 for (i = 0; i < size; ++i) 528 if ((spec[i] | mask[i]) != mask[i]) 529 return -1; 530 } 531 if (item->mask) { 532 unsigned int i; 533 const uint8_t *spec = item->spec; 534 535 for (i = 0; i < size; ++i) 536 if ((spec[i] | mask[i]) != mask[i]) 537 return -1; 538 } 539 if (item->spec && item->last) { 540 uint8_t spec[size]; 541 uint8_t last[size]; 542 const uint8_t *apply = mask; 543 unsigned int i; 544 545 if (item->mask) 546 apply = item->mask; 547 for (i = 0; i < size; ++i) { 548 spec[i] = ((const uint8_t *)item->spec)[i] & apply[i]; 549 last[i] = ((const uint8_t *)item->last)[i] & apply[i]; 550 } 551 ret = memcmp(spec, last, size); 552 } 553 return ret; 554 } 555 556 /** 557 * Copy the RSS configuration from the user ones. 558 * 559 * @param priv 560 * Pointer to private structure. 561 * @param parser 562 * Internal parser structure. 563 * @param rss_conf 564 * User RSS configuration to save. 565 * 566 * @return 567 * 0 on success, errno value on failure. 568 */ 569 static int 570 priv_flow_convert_rss_conf(struct priv *priv, 571 struct mlx5_flow_parse *parser, 572 const struct rte_eth_rss_conf *rss_conf) 573 { 574 const struct rte_eth_rss_conf *rss; 575 576 if (rss_conf) { 577 if (rss_conf->rss_hf & MLX5_RSS_HF_MASK) 578 return EINVAL; 579 rss = rss_conf; 580 } else { 581 rss = &priv->rss_conf; 582 } 583 if (rss->rss_key_len > 40) 584 return EINVAL; 585 parser->rss_conf.rss_key_len = rss->rss_key_len; 586 parser->rss_conf.rss_hf = rss->rss_hf; 587 memcpy(parser->rss_key, rss->rss_key, rss->rss_key_len); 588 parser->rss_conf.rss_key = parser->rss_key; 589 return 0; 590 } 591 592 /** 593 * Extract attribute to the parser. 594 * 595 * @param priv 596 * Pointer to private structure. 597 * @param[in] attr 598 * Flow rule attributes. 599 * @param[out] error 600 * Perform verbose error reporting if not NULL. 601 * @param[in, out] parser 602 * Internal parser structure. 603 * 604 * @return 605 * 0 on success, a negative errno value otherwise and rte_errno is set. 606 */ 607 static int 608 priv_flow_convert_attributes(struct priv *priv, 609 const struct rte_flow_attr *attr, 610 struct rte_flow_error *error, 611 struct mlx5_flow_parse *parser) 612 { 613 (void)priv; 614 (void)parser; 615 if (attr->group) { 616 rte_flow_error_set(error, ENOTSUP, 617 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 618 NULL, 619 "groups are not supported"); 620 return -rte_errno; 621 } 622 if (attr->priority && attr->priority != MLX5_CTRL_FLOW_PRIORITY) { 623 rte_flow_error_set(error, ENOTSUP, 624 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 625 NULL, 626 "priorities are not supported"); 627 return -rte_errno; 628 } 629 if (attr->egress) { 630 rte_flow_error_set(error, ENOTSUP, 631 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, 632 NULL, 633 "egress is not supported"); 634 return -rte_errno; 635 } 636 if (!attr->ingress) { 637 rte_flow_error_set(error, ENOTSUP, 638 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 639 NULL, 640 "only ingress is supported"); 641 return -rte_errno; 642 } 643 return 0; 644 } 645 646 /** 647 * Extract actions request to the parser. 648 * 649 * @param priv 650 * Pointer to private structure. 651 * @param[in] actions 652 * Associated actions (list terminated by the END action). 653 * @param[out] error 654 * Perform verbose error reporting if not NULL. 655 * @param[in, out] parser 656 * Internal parser structure. 657 * 658 * @return 659 * 0 on success, a negative errno value otherwise and rte_errno is set. 660 */ 661 static int 662 priv_flow_convert_actions(struct priv *priv, 663 const struct rte_flow_action actions[], 664 struct rte_flow_error *error, 665 struct mlx5_flow_parse *parser) 666 { 667 /* 668 * Add default RSS configuration necessary for Verbs to create QP even 669 * if no RSS is necessary. 670 */ 671 priv_flow_convert_rss_conf(priv, parser, 672 (const struct rte_eth_rss_conf *) 673 &priv->rss_conf); 674 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; ++actions) { 675 if (actions->type == RTE_FLOW_ACTION_TYPE_VOID) { 676 continue; 677 } else if (actions->type == RTE_FLOW_ACTION_TYPE_DROP) { 678 parser->drop = 1; 679 } else if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE) { 680 const struct rte_flow_action_queue *queue = 681 (const struct rte_flow_action_queue *) 682 actions->conf; 683 uint16_t n; 684 uint16_t found = 0; 685 686 if (!queue || (queue->index > (priv->rxqs_n - 1))) 687 goto exit_action_not_supported; 688 for (n = 0; n < parser->queues_n; ++n) { 689 if (parser->queues[n] == queue->index) { 690 found = 1; 691 break; 692 } 693 } 694 if (parser->queues_n > 1 && !found) { 695 rte_flow_error_set(error, ENOTSUP, 696 RTE_FLOW_ERROR_TYPE_ACTION, 697 actions, 698 "queue action not in RSS queues"); 699 return -rte_errno; 700 } 701 if (!found) { 702 parser->queues_n = 1; 703 parser->queues[0] = queue->index; 704 } 705 } else if (actions->type == RTE_FLOW_ACTION_TYPE_RSS) { 706 const struct rte_flow_action_rss *rss = 707 (const struct rte_flow_action_rss *) 708 actions->conf; 709 uint16_t n; 710 711 if (!rss || !rss->num) { 712 rte_flow_error_set(error, EINVAL, 713 RTE_FLOW_ERROR_TYPE_ACTION, 714 actions, 715 "no valid queues"); 716 return -rte_errno; 717 } 718 if (parser->queues_n == 1) { 719 uint16_t found = 0; 720 721 assert(parser->queues_n); 722 for (n = 0; n < rss->num; ++n) { 723 if (parser->queues[0] == 724 rss->queue[n]) { 725 found = 1; 726 break; 727 } 728 } 729 if (!found) { 730 rte_flow_error_set(error, ENOTSUP, 731 RTE_FLOW_ERROR_TYPE_ACTION, 732 actions, 733 "queue action not in RSS" 734 " queues"); 735 return -rte_errno; 736 } 737 } 738 for (n = 0; n < rss->num; ++n) { 739 if (rss->queue[n] >= priv->rxqs_n) { 740 rte_flow_error_set(error, EINVAL, 741 RTE_FLOW_ERROR_TYPE_ACTION, 742 actions, 743 "queue id > number of" 744 " queues"); 745 return -rte_errno; 746 } 747 } 748 for (n = 0; n < rss->num; ++n) 749 parser->queues[n] = rss->queue[n]; 750 parser->queues_n = rss->num; 751 if (priv_flow_convert_rss_conf(priv, parser, 752 rss->rss_conf)) { 753 rte_flow_error_set(error, EINVAL, 754 RTE_FLOW_ERROR_TYPE_ACTION, 755 actions, 756 "wrong RSS configuration"); 757 return -rte_errno; 758 } 759 } else if (actions->type == RTE_FLOW_ACTION_TYPE_MARK) { 760 const struct rte_flow_action_mark *mark = 761 (const struct rte_flow_action_mark *) 762 actions->conf; 763 764 if (!mark) { 765 rte_flow_error_set(error, EINVAL, 766 RTE_FLOW_ERROR_TYPE_ACTION, 767 actions, 768 "mark must be defined"); 769 return -rte_errno; 770 } else if (mark->id >= MLX5_FLOW_MARK_MAX) { 771 rte_flow_error_set(error, ENOTSUP, 772 RTE_FLOW_ERROR_TYPE_ACTION, 773 actions, 774 "mark must be between 0" 775 " and 16777199"); 776 return -rte_errno; 777 } 778 parser->mark = 1; 779 parser->mark_id = mark->id; 780 } else if (actions->type == RTE_FLOW_ACTION_TYPE_FLAG) { 781 parser->mark = 1; 782 } else if (actions->type == RTE_FLOW_ACTION_TYPE_COUNT && 783 priv->config.flow_counter_en) { 784 parser->count = 1; 785 } else { 786 goto exit_action_not_supported; 787 } 788 } 789 if (parser->drop && parser->mark) 790 parser->mark = 0; 791 if (!parser->queues_n && !parser->drop) { 792 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE, 793 NULL, "no valid action"); 794 return -rte_errno; 795 } 796 return 0; 797 exit_action_not_supported: 798 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 799 actions, "action not supported"); 800 return -rte_errno; 801 } 802 803 /** 804 * Validate items. 805 * 806 * @param priv 807 * Pointer to private structure. 808 * @param[in] items 809 * Pattern specification (list terminated by the END pattern item). 810 * @param[out] error 811 * Perform verbose error reporting if not NULL. 812 * @param[in, out] parser 813 * Internal parser structure. 814 * 815 * @return 816 * 0 on success, a negative errno value otherwise and rte_errno is set. 817 */ 818 static int 819 priv_flow_convert_items_validate(struct priv *priv, 820 const struct rte_flow_item items[], 821 struct rte_flow_error *error, 822 struct mlx5_flow_parse *parser) 823 { 824 const struct mlx5_flow_items *cur_item = mlx5_flow_items; 825 unsigned int i; 826 827 (void)priv; 828 /* Initialise the offsets to start after verbs attribute. */ 829 for (i = 0; i != hash_rxq_init_n; ++i) 830 parser->queue[i].offset = sizeof(struct ibv_flow_attr); 831 for (; items->type != RTE_FLOW_ITEM_TYPE_END; ++items) { 832 const struct mlx5_flow_items *token = NULL; 833 unsigned int n; 834 int err; 835 836 if (items->type == RTE_FLOW_ITEM_TYPE_VOID) 837 continue; 838 for (i = 0; 839 cur_item->items && 840 cur_item->items[i] != RTE_FLOW_ITEM_TYPE_END; 841 ++i) { 842 if (cur_item->items[i] == items->type) { 843 token = &mlx5_flow_items[items->type]; 844 break; 845 } 846 } 847 if (!token) 848 goto exit_item_not_supported; 849 cur_item = token; 850 err = mlx5_flow_item_validate(items, 851 (const uint8_t *)cur_item->mask, 852 cur_item->mask_sz); 853 if (err) 854 goto exit_item_not_supported; 855 if (items->type == RTE_FLOW_ITEM_TYPE_VXLAN) { 856 if (parser->inner) { 857 rte_flow_error_set(error, ENOTSUP, 858 RTE_FLOW_ERROR_TYPE_ITEM, 859 items, 860 "cannot recognize multiple" 861 " VXLAN encapsulations"); 862 return -rte_errno; 863 } 864 parser->inner = IBV_FLOW_SPEC_INNER; 865 } 866 if (parser->drop || parser->queues_n == 1) { 867 parser->queue[HASH_RXQ_ETH].offset += cur_item->dst_sz; 868 } else { 869 for (n = 0; n != hash_rxq_init_n; ++n) 870 parser->queue[n].offset += cur_item->dst_sz; 871 } 872 } 873 if (parser->drop) { 874 parser->queue[HASH_RXQ_ETH].offset += 875 sizeof(struct ibv_flow_spec_action_drop); 876 } 877 if (parser->mark) { 878 for (i = 0; i != hash_rxq_init_n; ++i) 879 parser->queue[i].offset += 880 sizeof(struct ibv_flow_spec_action_tag); 881 } 882 if (parser->count) { 883 unsigned int size = sizeof(struct ibv_flow_spec_counter_action); 884 885 for (i = 0; i != hash_rxq_init_n; ++i) 886 parser->queue[i].offset += size; 887 } 888 return 0; 889 exit_item_not_supported: 890 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, 891 items, "item not supported"); 892 return -rte_errno; 893 } 894 895 /** 896 * Allocate memory space to store verbs flow attributes. 897 * 898 * @param priv 899 * Pointer to private structure. 900 * @param[in] priority 901 * Flow priority. 902 * @param[in] size 903 * Amount of byte to allocate. 904 * @param[out] error 905 * Perform verbose error reporting if not NULL. 906 * 907 * @return 908 * A verbs flow attribute on success, NULL otherwise. 909 */ 910 static struct ibv_flow_attr* 911 priv_flow_convert_allocate(struct priv *priv, 912 unsigned int priority, 913 unsigned int size, 914 struct rte_flow_error *error) 915 { 916 struct ibv_flow_attr *ibv_attr; 917 918 (void)priv; 919 ibv_attr = rte_calloc(__func__, 1, size, 0); 920 if (!ibv_attr) { 921 rte_flow_error_set(error, ENOMEM, 922 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 923 NULL, 924 "cannot allocate verbs spec attributes."); 925 return NULL; 926 } 927 ibv_attr->priority = priority; 928 return ibv_attr; 929 } 930 931 /** 932 * Finalise verbs flow attributes. 933 * 934 * @param priv 935 * Pointer to private structure. 936 * @param[in, out] parser 937 * Internal parser structure. 938 */ 939 static void 940 priv_flow_convert_finalise(struct priv *priv, struct mlx5_flow_parse *parser) 941 { 942 const unsigned int ipv4 = 943 hash_rxq_init[parser->layer].ip_version == MLX5_IPV4; 944 const enum hash_rxq_type hmin = ipv4 ? HASH_RXQ_TCPV4 : HASH_RXQ_TCPV6; 945 const enum hash_rxq_type hmax = ipv4 ? HASH_RXQ_IPV4 : HASH_RXQ_IPV6; 946 const enum hash_rxq_type ohmin = ipv4 ? HASH_RXQ_TCPV6 : HASH_RXQ_TCPV4; 947 const enum hash_rxq_type ohmax = ipv4 ? HASH_RXQ_IPV6 : HASH_RXQ_IPV4; 948 const enum hash_rxq_type ip = ipv4 ? HASH_RXQ_IPV4 : HASH_RXQ_IPV6; 949 unsigned int i; 950 951 (void)priv; 952 if (parser->layer == HASH_RXQ_ETH) { 953 goto fill; 954 } else { 955 /* 956 * This layer becomes useless as the pattern define under 957 * layers. 958 */ 959 rte_free(parser->queue[HASH_RXQ_ETH].ibv_attr); 960 parser->queue[HASH_RXQ_ETH].ibv_attr = NULL; 961 } 962 /* Remove opposite kind of layer e.g. IPv6 if the pattern is IPv4. */ 963 for (i = ohmin; i != (ohmax + 1); ++i) { 964 if (!parser->queue[i].ibv_attr) 965 continue; 966 rte_free(parser->queue[i].ibv_attr); 967 parser->queue[i].ibv_attr = NULL; 968 } 969 /* Remove impossible flow according to the RSS configuration. */ 970 if (hash_rxq_init[parser->layer].dpdk_rss_hf & 971 parser->rss_conf.rss_hf) { 972 /* Remove any other flow. */ 973 for (i = hmin; i != (hmax + 1); ++i) { 974 if ((i == parser->layer) || 975 (!parser->queue[i].ibv_attr)) 976 continue; 977 rte_free(parser->queue[i].ibv_attr); 978 parser->queue[i].ibv_attr = NULL; 979 } 980 } else if (!parser->queue[ip].ibv_attr) { 981 /* no RSS possible with the current configuration. */ 982 parser->queues_n = 1; 983 return; 984 } 985 fill: 986 /* 987 * Fill missing layers in verbs specifications, or compute the correct 988 * offset to allocate the memory space for the attributes and 989 * specifications. 990 */ 991 for (i = 0; i != hash_rxq_init_n - 1; ++i) { 992 union { 993 struct ibv_flow_spec_ipv4_ext ipv4; 994 struct ibv_flow_spec_ipv6 ipv6; 995 struct ibv_flow_spec_tcp_udp udp_tcp; 996 } specs; 997 void *dst; 998 uint16_t size; 999 1000 if (i == parser->layer) 1001 continue; 1002 if (parser->layer == HASH_RXQ_ETH) { 1003 if (hash_rxq_init[i].ip_version == MLX5_IPV4) { 1004 size = sizeof(struct ibv_flow_spec_ipv4_ext); 1005 specs.ipv4 = (struct ibv_flow_spec_ipv4_ext){ 1006 .type = IBV_FLOW_SPEC_IPV4_EXT, 1007 .size = size, 1008 }; 1009 } else { 1010 size = sizeof(struct ibv_flow_spec_ipv6); 1011 specs.ipv6 = (struct ibv_flow_spec_ipv6){ 1012 .type = IBV_FLOW_SPEC_IPV6, 1013 .size = size, 1014 }; 1015 } 1016 if (parser->queue[i].ibv_attr) { 1017 dst = (void *)((uintptr_t) 1018 parser->queue[i].ibv_attr + 1019 parser->queue[i].offset); 1020 memcpy(dst, &specs, size); 1021 ++parser->queue[i].ibv_attr->num_of_specs; 1022 } 1023 parser->queue[i].offset += size; 1024 } 1025 if ((i == HASH_RXQ_UDPV4) || (i == HASH_RXQ_TCPV4) || 1026 (i == HASH_RXQ_UDPV6) || (i == HASH_RXQ_TCPV6)) { 1027 size = sizeof(struct ibv_flow_spec_tcp_udp); 1028 specs.udp_tcp = (struct ibv_flow_spec_tcp_udp) { 1029 .type = ((i == HASH_RXQ_UDPV4 || 1030 i == HASH_RXQ_UDPV6) ? 1031 IBV_FLOW_SPEC_UDP : 1032 IBV_FLOW_SPEC_TCP), 1033 .size = size, 1034 }; 1035 if (parser->queue[i].ibv_attr) { 1036 dst = (void *)((uintptr_t) 1037 parser->queue[i].ibv_attr + 1038 parser->queue[i].offset); 1039 memcpy(dst, &specs, size); 1040 ++parser->queue[i].ibv_attr->num_of_specs; 1041 } 1042 parser->queue[i].offset += size; 1043 } 1044 } 1045 } 1046 1047 /** 1048 * Validate and convert a flow supported by the NIC. 1049 * 1050 * @param priv 1051 * Pointer to private structure. 1052 * @param[in] attr 1053 * Flow rule attributes. 1054 * @param[in] pattern 1055 * Pattern specification (list terminated by the END pattern item). 1056 * @param[in] actions 1057 * Associated actions (list terminated by the END action). 1058 * @param[out] error 1059 * Perform verbose error reporting if not NULL. 1060 * @param[in, out] parser 1061 * Internal parser structure. 1062 * 1063 * @return 1064 * 0 on success, a negative errno value otherwise and rte_errno is set. 1065 */ 1066 static int 1067 priv_flow_convert(struct priv *priv, 1068 const struct rte_flow_attr *attr, 1069 const struct rte_flow_item items[], 1070 const struct rte_flow_action actions[], 1071 struct rte_flow_error *error, 1072 struct mlx5_flow_parse *parser) 1073 { 1074 const struct mlx5_flow_items *cur_item = mlx5_flow_items; 1075 unsigned int i; 1076 int ret; 1077 1078 /* First step. Validate the attributes, items and actions. */ 1079 *parser = (struct mlx5_flow_parse){ 1080 .create = parser->create, 1081 .layer = HASH_RXQ_ETH, 1082 .mark_id = MLX5_FLOW_MARK_DEFAULT, 1083 }; 1084 ret = priv_flow_convert_attributes(priv, attr, error, parser); 1085 if (ret) 1086 return ret; 1087 ret = priv_flow_convert_actions(priv, actions, error, parser); 1088 if (ret) 1089 return ret; 1090 ret = priv_flow_convert_items_validate(priv, items, error, parser); 1091 if (ret) 1092 return ret; 1093 priv_flow_convert_finalise(priv, parser); 1094 /* 1095 * Second step. 1096 * Allocate the memory space to store verbs specifications. 1097 */ 1098 if (parser->drop || parser->queues_n == 1) { 1099 unsigned int priority = 1100 attr->priority + 1101 hash_rxq_init[HASH_RXQ_ETH].flow_priority; 1102 unsigned int offset = parser->queue[HASH_RXQ_ETH].offset; 1103 1104 parser->queue[HASH_RXQ_ETH].ibv_attr = 1105 priv_flow_convert_allocate(priv, priority, 1106 offset, error); 1107 if (!parser->queue[HASH_RXQ_ETH].ibv_attr) 1108 return ENOMEM; 1109 parser->queue[HASH_RXQ_ETH].offset = 1110 sizeof(struct ibv_flow_attr); 1111 } else { 1112 for (i = 0; i != hash_rxq_init_n; ++i) { 1113 unsigned int priority = 1114 attr->priority + 1115 hash_rxq_init[i].flow_priority; 1116 unsigned int offset; 1117 1118 if (!(parser->rss_conf.rss_hf & 1119 hash_rxq_init[i].dpdk_rss_hf) && 1120 (i != HASH_RXQ_ETH)) 1121 continue; 1122 offset = parser->queue[i].offset; 1123 parser->queue[i].ibv_attr = 1124 priv_flow_convert_allocate(priv, priority, 1125 offset, error); 1126 if (!parser->queue[i].ibv_attr) 1127 goto exit_enomem; 1128 parser->queue[i].offset = sizeof(struct ibv_flow_attr); 1129 } 1130 } 1131 /* Third step. Conversion parse, fill the specifications. */ 1132 parser->inner = 0; 1133 for (; items->type != RTE_FLOW_ITEM_TYPE_END; ++items) { 1134 if (items->type == RTE_FLOW_ITEM_TYPE_VOID) 1135 continue; 1136 cur_item = &mlx5_flow_items[items->type]; 1137 ret = cur_item->convert(items, 1138 (cur_item->default_mask ? 1139 cur_item->default_mask : 1140 cur_item->mask), 1141 parser); 1142 if (ret) { 1143 rte_flow_error_set(error, ret, 1144 RTE_FLOW_ERROR_TYPE_ITEM, 1145 items, "item not supported"); 1146 goto exit_free; 1147 } 1148 } 1149 if (parser->mark) 1150 mlx5_flow_create_flag_mark(parser, parser->mark_id); 1151 if (parser->count && parser->create) { 1152 mlx5_flow_create_count(priv, parser); 1153 if (!parser->cs) 1154 goto exit_count_error; 1155 } 1156 /* 1157 * Last step. Complete missing specification to reach the RSS 1158 * configuration. 1159 */ 1160 if (parser->queues_n > 1) { 1161 priv_flow_convert_finalise(priv, parser); 1162 } else { 1163 /* 1164 * Action queue have their priority overridden with 1165 * Ethernet priority, this priority needs to be adjusted to 1166 * their most specific layer priority. 1167 */ 1168 parser->queue[HASH_RXQ_ETH].ibv_attr->priority = 1169 attr->priority + 1170 hash_rxq_init[parser->layer].flow_priority; 1171 } 1172 if (parser->allmulti && 1173 parser->layer == HASH_RXQ_ETH) { 1174 for (i = 0; i != hash_rxq_init_n; ++i) { 1175 if (!parser->queue[i].ibv_attr) 1176 continue; 1177 if (parser->queue[i].ibv_attr->num_of_specs != 1) 1178 break; 1179 parser->queue[i].ibv_attr->type = 1180 IBV_FLOW_ATTR_MC_DEFAULT; 1181 } 1182 } 1183 exit_free: 1184 /* Only verification is expected, all resources should be released. */ 1185 if (!parser->create) { 1186 for (i = 0; i != hash_rxq_init_n; ++i) { 1187 if (parser->queue[i].ibv_attr) { 1188 rte_free(parser->queue[i].ibv_attr); 1189 parser->queue[i].ibv_attr = NULL; 1190 } 1191 } 1192 } 1193 return ret; 1194 exit_enomem: 1195 for (i = 0; i != hash_rxq_init_n; ++i) { 1196 if (parser->queue[i].ibv_attr) { 1197 rte_free(parser->queue[i].ibv_attr); 1198 parser->queue[i].ibv_attr = NULL; 1199 } 1200 } 1201 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1202 NULL, "cannot allocate verbs spec attributes."); 1203 return ret; 1204 exit_count_error: 1205 rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1206 NULL, "cannot create counter."); 1207 return rte_errno; 1208 } 1209 1210 /** 1211 * Copy the specification created into the flow. 1212 * 1213 * @param parser 1214 * Internal parser structure. 1215 * @param src 1216 * Create specification. 1217 * @param size 1218 * Size in bytes of the specification to copy. 1219 */ 1220 static void 1221 mlx5_flow_create_copy(struct mlx5_flow_parse *parser, void *src, 1222 unsigned int size) 1223 { 1224 unsigned int i; 1225 void *dst; 1226 1227 for (i = 0; i != hash_rxq_init_n; ++i) { 1228 if (!parser->queue[i].ibv_attr) 1229 continue; 1230 /* Specification must be the same l3 type or none. */ 1231 if (parser->layer == HASH_RXQ_ETH || 1232 (hash_rxq_init[parser->layer].ip_version == 1233 hash_rxq_init[i].ip_version) || 1234 (hash_rxq_init[i].ip_version == 0)) { 1235 dst = (void *)((uintptr_t)parser->queue[i].ibv_attr + 1236 parser->queue[i].offset); 1237 memcpy(dst, src, size); 1238 ++parser->queue[i].ibv_attr->num_of_specs; 1239 parser->queue[i].offset += size; 1240 } 1241 } 1242 } 1243 1244 /** 1245 * Convert Ethernet item to Verbs specification. 1246 * 1247 * @param item[in] 1248 * Item specification. 1249 * @param default_mask[in] 1250 * Default bit-masks to use when item->mask is not provided. 1251 * @param data[in, out] 1252 * User structure. 1253 */ 1254 static int 1255 mlx5_flow_create_eth(const struct rte_flow_item *item, 1256 const void *default_mask, 1257 void *data) 1258 { 1259 const struct rte_flow_item_eth *spec = item->spec; 1260 const struct rte_flow_item_eth *mask = item->mask; 1261 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1262 const unsigned int eth_size = sizeof(struct ibv_flow_spec_eth); 1263 struct ibv_flow_spec_eth eth = { 1264 .type = parser->inner | IBV_FLOW_SPEC_ETH, 1265 .size = eth_size, 1266 }; 1267 1268 /* Don't update layer for the inner pattern. */ 1269 if (!parser->inner) 1270 parser->layer = HASH_RXQ_ETH; 1271 if (spec) { 1272 unsigned int i; 1273 1274 if (!mask) 1275 mask = default_mask; 1276 memcpy(ð.val.dst_mac, spec->dst.addr_bytes, ETHER_ADDR_LEN); 1277 memcpy(ð.val.src_mac, spec->src.addr_bytes, ETHER_ADDR_LEN); 1278 eth.val.ether_type = spec->type; 1279 memcpy(ð.mask.dst_mac, mask->dst.addr_bytes, ETHER_ADDR_LEN); 1280 memcpy(ð.mask.src_mac, mask->src.addr_bytes, ETHER_ADDR_LEN); 1281 eth.mask.ether_type = mask->type; 1282 /* Remove unwanted bits from values. */ 1283 for (i = 0; i < ETHER_ADDR_LEN; ++i) { 1284 eth.val.dst_mac[i] &= eth.mask.dst_mac[i]; 1285 eth.val.src_mac[i] &= eth.mask.src_mac[i]; 1286 } 1287 eth.val.ether_type &= eth.mask.ether_type; 1288 } 1289 mlx5_flow_create_copy(parser, ð, eth_size); 1290 parser->allmulti = eth.val.dst_mac[0] & 1; 1291 return 0; 1292 } 1293 1294 /** 1295 * Convert VLAN item to Verbs specification. 1296 * 1297 * @param item[in] 1298 * Item specification. 1299 * @param default_mask[in] 1300 * Default bit-masks to use when item->mask is not provided. 1301 * @param data[in, out] 1302 * User structure. 1303 */ 1304 static int 1305 mlx5_flow_create_vlan(const struct rte_flow_item *item, 1306 const void *default_mask, 1307 void *data) 1308 { 1309 const struct rte_flow_item_vlan *spec = item->spec; 1310 const struct rte_flow_item_vlan *mask = item->mask; 1311 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1312 struct ibv_flow_spec_eth *eth; 1313 const unsigned int eth_size = sizeof(struct ibv_flow_spec_eth); 1314 1315 if (spec) { 1316 unsigned int i; 1317 if (!mask) 1318 mask = default_mask; 1319 1320 for (i = 0; i != hash_rxq_init_n; ++i) { 1321 if (!parser->queue[i].ibv_attr) 1322 continue; 1323 1324 eth = (void *)((uintptr_t)parser->queue[i].ibv_attr + 1325 parser->queue[i].offset - eth_size); 1326 eth->val.vlan_tag = spec->tci; 1327 eth->mask.vlan_tag = mask->tci; 1328 eth->val.vlan_tag &= eth->mask.vlan_tag; 1329 } 1330 } 1331 return 0; 1332 } 1333 1334 /** 1335 * Convert IPv4 item to Verbs specification. 1336 * 1337 * @param item[in] 1338 * Item specification. 1339 * @param default_mask[in] 1340 * Default bit-masks to use when item->mask is not provided. 1341 * @param data[in, out] 1342 * User structure. 1343 */ 1344 static int 1345 mlx5_flow_create_ipv4(const struct rte_flow_item *item, 1346 const void *default_mask, 1347 void *data) 1348 { 1349 const struct rte_flow_item_ipv4 *spec = item->spec; 1350 const struct rte_flow_item_ipv4 *mask = item->mask; 1351 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1352 unsigned int ipv4_size = sizeof(struct ibv_flow_spec_ipv4_ext); 1353 struct ibv_flow_spec_ipv4_ext ipv4 = { 1354 .type = parser->inner | IBV_FLOW_SPEC_IPV4_EXT, 1355 .size = ipv4_size, 1356 }; 1357 1358 /* Don't update layer for the inner pattern. */ 1359 if (!parser->inner) 1360 parser->layer = HASH_RXQ_IPV4; 1361 if (spec) { 1362 if (!mask) 1363 mask = default_mask; 1364 ipv4.val = (struct ibv_flow_ipv4_ext_filter){ 1365 .src_ip = spec->hdr.src_addr, 1366 .dst_ip = spec->hdr.dst_addr, 1367 .proto = spec->hdr.next_proto_id, 1368 .tos = spec->hdr.type_of_service, 1369 }; 1370 ipv4.mask = (struct ibv_flow_ipv4_ext_filter){ 1371 .src_ip = mask->hdr.src_addr, 1372 .dst_ip = mask->hdr.dst_addr, 1373 .proto = mask->hdr.next_proto_id, 1374 .tos = mask->hdr.type_of_service, 1375 }; 1376 /* Remove unwanted bits from values. */ 1377 ipv4.val.src_ip &= ipv4.mask.src_ip; 1378 ipv4.val.dst_ip &= ipv4.mask.dst_ip; 1379 ipv4.val.proto &= ipv4.mask.proto; 1380 ipv4.val.tos &= ipv4.mask.tos; 1381 } 1382 mlx5_flow_create_copy(parser, &ipv4, ipv4_size); 1383 return 0; 1384 } 1385 1386 /** 1387 * Convert IPv6 item to Verbs specification. 1388 * 1389 * @param item[in] 1390 * Item specification. 1391 * @param default_mask[in] 1392 * Default bit-masks to use when item->mask is not provided. 1393 * @param data[in, out] 1394 * User structure. 1395 */ 1396 static int 1397 mlx5_flow_create_ipv6(const struct rte_flow_item *item, 1398 const void *default_mask, 1399 void *data) 1400 { 1401 const struct rte_flow_item_ipv6 *spec = item->spec; 1402 const struct rte_flow_item_ipv6 *mask = item->mask; 1403 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1404 unsigned int ipv6_size = sizeof(struct ibv_flow_spec_ipv6); 1405 struct ibv_flow_spec_ipv6 ipv6 = { 1406 .type = parser->inner | IBV_FLOW_SPEC_IPV6, 1407 .size = ipv6_size, 1408 }; 1409 1410 /* Don't update layer for the inner pattern. */ 1411 if (!parser->inner) 1412 parser->layer = HASH_RXQ_IPV6; 1413 if (spec) { 1414 unsigned int i; 1415 uint32_t vtc_flow_val; 1416 uint32_t vtc_flow_mask; 1417 1418 if (!mask) 1419 mask = default_mask; 1420 memcpy(&ipv6.val.src_ip, spec->hdr.src_addr, 1421 RTE_DIM(ipv6.val.src_ip)); 1422 memcpy(&ipv6.val.dst_ip, spec->hdr.dst_addr, 1423 RTE_DIM(ipv6.val.dst_ip)); 1424 memcpy(&ipv6.mask.src_ip, mask->hdr.src_addr, 1425 RTE_DIM(ipv6.mask.src_ip)); 1426 memcpy(&ipv6.mask.dst_ip, mask->hdr.dst_addr, 1427 RTE_DIM(ipv6.mask.dst_ip)); 1428 vtc_flow_val = rte_be_to_cpu_32(spec->hdr.vtc_flow); 1429 vtc_flow_mask = rte_be_to_cpu_32(mask->hdr.vtc_flow); 1430 ipv6.val.flow_label = 1431 rte_cpu_to_be_32((vtc_flow_val & IPV6_HDR_FL_MASK) >> 1432 IPV6_HDR_FL_SHIFT); 1433 ipv6.val.traffic_class = (vtc_flow_val & IPV6_HDR_TC_MASK) >> 1434 IPV6_HDR_TC_SHIFT; 1435 ipv6.val.next_hdr = spec->hdr.proto; 1436 ipv6.val.hop_limit = spec->hdr.hop_limits; 1437 ipv6.mask.flow_label = 1438 rte_cpu_to_be_32((vtc_flow_mask & IPV6_HDR_FL_MASK) >> 1439 IPV6_HDR_FL_SHIFT); 1440 ipv6.mask.traffic_class = (vtc_flow_mask & IPV6_HDR_TC_MASK) >> 1441 IPV6_HDR_TC_SHIFT; 1442 ipv6.mask.next_hdr = mask->hdr.proto; 1443 ipv6.mask.hop_limit = mask->hdr.hop_limits; 1444 /* Remove unwanted bits from values. */ 1445 for (i = 0; i < RTE_DIM(ipv6.val.src_ip); ++i) { 1446 ipv6.val.src_ip[i] &= ipv6.mask.src_ip[i]; 1447 ipv6.val.dst_ip[i] &= ipv6.mask.dst_ip[i]; 1448 } 1449 ipv6.val.flow_label &= ipv6.mask.flow_label; 1450 ipv6.val.traffic_class &= ipv6.mask.traffic_class; 1451 ipv6.val.next_hdr &= ipv6.mask.next_hdr; 1452 ipv6.val.hop_limit &= ipv6.mask.hop_limit; 1453 } 1454 mlx5_flow_create_copy(parser, &ipv6, ipv6_size); 1455 return 0; 1456 } 1457 1458 /** 1459 * Convert UDP item to Verbs specification. 1460 * 1461 * @param item[in] 1462 * Item specification. 1463 * @param default_mask[in] 1464 * Default bit-masks to use when item->mask is not provided. 1465 * @param data[in, out] 1466 * User structure. 1467 */ 1468 static int 1469 mlx5_flow_create_udp(const struct rte_flow_item *item, 1470 const void *default_mask, 1471 void *data) 1472 { 1473 const struct rte_flow_item_udp *spec = item->spec; 1474 const struct rte_flow_item_udp *mask = item->mask; 1475 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1476 unsigned int udp_size = sizeof(struct ibv_flow_spec_tcp_udp); 1477 struct ibv_flow_spec_tcp_udp udp = { 1478 .type = parser->inner | IBV_FLOW_SPEC_UDP, 1479 .size = udp_size, 1480 }; 1481 1482 /* Don't update layer for the inner pattern. */ 1483 if (!parser->inner) { 1484 if (parser->layer == HASH_RXQ_IPV4) 1485 parser->layer = HASH_RXQ_UDPV4; 1486 else 1487 parser->layer = HASH_RXQ_UDPV6; 1488 } 1489 if (spec) { 1490 if (!mask) 1491 mask = default_mask; 1492 udp.val.dst_port = spec->hdr.dst_port; 1493 udp.val.src_port = spec->hdr.src_port; 1494 udp.mask.dst_port = mask->hdr.dst_port; 1495 udp.mask.src_port = mask->hdr.src_port; 1496 /* Remove unwanted bits from values. */ 1497 udp.val.src_port &= udp.mask.src_port; 1498 udp.val.dst_port &= udp.mask.dst_port; 1499 } 1500 mlx5_flow_create_copy(parser, &udp, udp_size); 1501 return 0; 1502 } 1503 1504 /** 1505 * Convert TCP item to Verbs specification. 1506 * 1507 * @param item[in] 1508 * Item specification. 1509 * @param default_mask[in] 1510 * Default bit-masks to use when item->mask is not provided. 1511 * @param data[in, out] 1512 * User structure. 1513 */ 1514 static int 1515 mlx5_flow_create_tcp(const struct rte_flow_item *item, 1516 const void *default_mask, 1517 void *data) 1518 { 1519 const struct rte_flow_item_tcp *spec = item->spec; 1520 const struct rte_flow_item_tcp *mask = item->mask; 1521 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1522 unsigned int tcp_size = sizeof(struct ibv_flow_spec_tcp_udp); 1523 struct ibv_flow_spec_tcp_udp tcp = { 1524 .type = parser->inner | IBV_FLOW_SPEC_TCP, 1525 .size = tcp_size, 1526 }; 1527 1528 /* Don't update layer for the inner pattern. */ 1529 if (!parser->inner) { 1530 if (parser->layer == HASH_RXQ_IPV4) 1531 parser->layer = HASH_RXQ_TCPV4; 1532 else 1533 parser->layer = HASH_RXQ_TCPV6; 1534 } 1535 if (spec) { 1536 if (!mask) 1537 mask = default_mask; 1538 tcp.val.dst_port = spec->hdr.dst_port; 1539 tcp.val.src_port = spec->hdr.src_port; 1540 tcp.mask.dst_port = mask->hdr.dst_port; 1541 tcp.mask.src_port = mask->hdr.src_port; 1542 /* Remove unwanted bits from values. */ 1543 tcp.val.src_port &= tcp.mask.src_port; 1544 tcp.val.dst_port &= tcp.mask.dst_port; 1545 } 1546 mlx5_flow_create_copy(parser, &tcp, tcp_size); 1547 return 0; 1548 } 1549 1550 /** 1551 * Convert VXLAN item to Verbs specification. 1552 * 1553 * @param item[in] 1554 * Item specification. 1555 * @param default_mask[in] 1556 * Default bit-masks to use when item->mask is not provided. 1557 * @param data[in, out] 1558 * User structure. 1559 */ 1560 static int 1561 mlx5_flow_create_vxlan(const struct rte_flow_item *item, 1562 const void *default_mask, 1563 void *data) 1564 { 1565 const struct rte_flow_item_vxlan *spec = item->spec; 1566 const struct rte_flow_item_vxlan *mask = item->mask; 1567 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1568 unsigned int size = sizeof(struct ibv_flow_spec_tunnel); 1569 struct ibv_flow_spec_tunnel vxlan = { 1570 .type = parser->inner | IBV_FLOW_SPEC_VXLAN_TUNNEL, 1571 .size = size, 1572 }; 1573 union vni { 1574 uint32_t vlan_id; 1575 uint8_t vni[4]; 1576 } id; 1577 1578 id.vni[0] = 0; 1579 parser->inner = IBV_FLOW_SPEC_INNER; 1580 if (spec) { 1581 if (!mask) 1582 mask = default_mask; 1583 memcpy(&id.vni[1], spec->vni, 3); 1584 vxlan.val.tunnel_id = id.vlan_id; 1585 memcpy(&id.vni[1], mask->vni, 3); 1586 vxlan.mask.tunnel_id = id.vlan_id; 1587 /* Remove unwanted bits from values. */ 1588 vxlan.val.tunnel_id &= vxlan.mask.tunnel_id; 1589 } 1590 /* 1591 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this 1592 * layer is defined in the Verbs specification it is interpreted as 1593 * wildcard and all packets will match this rule, if it follows a full 1594 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers 1595 * before will also match this rule. 1596 * To avoid such situation, VNI 0 is currently refused. 1597 */ 1598 if (!vxlan.val.tunnel_id) 1599 return EINVAL; 1600 mlx5_flow_create_copy(parser, &vxlan, size); 1601 return 0; 1602 } 1603 1604 /** 1605 * Convert mark/flag action to Verbs specification. 1606 * 1607 * @param parser 1608 * Internal parser structure. 1609 * @param mark_id 1610 * Mark identifier. 1611 */ 1612 static int 1613 mlx5_flow_create_flag_mark(struct mlx5_flow_parse *parser, uint32_t mark_id) 1614 { 1615 unsigned int size = sizeof(struct ibv_flow_spec_action_tag); 1616 struct ibv_flow_spec_action_tag tag = { 1617 .type = IBV_FLOW_SPEC_ACTION_TAG, 1618 .size = size, 1619 .tag_id = mlx5_flow_mark_set(mark_id), 1620 }; 1621 1622 assert(parser->mark); 1623 mlx5_flow_create_copy(parser, &tag, size); 1624 return 0; 1625 } 1626 1627 /** 1628 * Convert count action to Verbs specification. 1629 * 1630 * @param priv 1631 * Pointer to private structure. 1632 * @param parser 1633 * Pointer to MLX5 flow parser structure. 1634 * 1635 * @return 1636 * 0 on success, errno value on failure. 1637 */ 1638 static int 1639 mlx5_flow_create_count(struct priv *priv __rte_unused, 1640 struct mlx5_flow_parse *parser __rte_unused) 1641 { 1642 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 1643 unsigned int size = sizeof(struct ibv_flow_spec_counter_action); 1644 struct ibv_counter_set_init_attr init_attr = {0}; 1645 struct ibv_flow_spec_counter_action counter = { 1646 .type = IBV_FLOW_SPEC_ACTION_COUNT, 1647 .size = size, 1648 .counter_set_handle = 0, 1649 }; 1650 1651 init_attr.counter_set_id = 0; 1652 parser->cs = ibv_create_counter_set(priv->ctx, &init_attr); 1653 if (!parser->cs) 1654 return EINVAL; 1655 counter.counter_set_handle = parser->cs->handle; 1656 mlx5_flow_create_copy(parser, &counter, size); 1657 #endif 1658 return 0; 1659 } 1660 1661 /** 1662 * Complete flow rule creation with a drop queue. 1663 * 1664 * @param priv 1665 * Pointer to private structure. 1666 * @param parser 1667 * Internal parser structure. 1668 * @param flow 1669 * Pointer to the rte_flow. 1670 * @param[out] error 1671 * Perform verbose error reporting if not NULL. 1672 * 1673 * @return 1674 * 0 on success, errno value on failure. 1675 */ 1676 static int 1677 priv_flow_create_action_queue_drop(struct priv *priv, 1678 struct mlx5_flow_parse *parser, 1679 struct rte_flow *flow, 1680 struct rte_flow_error *error) 1681 { 1682 struct ibv_flow_spec_action_drop *drop; 1683 unsigned int size = sizeof(struct ibv_flow_spec_action_drop); 1684 int err = 0; 1685 1686 assert(priv->pd); 1687 assert(priv->ctx); 1688 flow->drop = 1; 1689 drop = (void *)((uintptr_t)parser->queue[HASH_RXQ_ETH].ibv_attr + 1690 parser->queue[HASH_RXQ_ETH].offset); 1691 *drop = (struct ibv_flow_spec_action_drop){ 1692 .type = IBV_FLOW_SPEC_ACTION_DROP, 1693 .size = size, 1694 }; 1695 ++parser->queue[HASH_RXQ_ETH].ibv_attr->num_of_specs; 1696 parser->queue[HASH_RXQ_ETH].offset += size; 1697 flow->frxq[HASH_RXQ_ETH].ibv_attr = 1698 parser->queue[HASH_RXQ_ETH].ibv_attr; 1699 if (parser->count) 1700 flow->cs = parser->cs; 1701 if (!priv->dev->data->dev_started) 1702 return 0; 1703 parser->queue[HASH_RXQ_ETH].ibv_attr = NULL; 1704 flow->frxq[HASH_RXQ_ETH].ibv_flow = 1705 ibv_create_flow(priv->flow_drop_queue->qp, 1706 flow->frxq[HASH_RXQ_ETH].ibv_attr); 1707 if (!flow->frxq[HASH_RXQ_ETH].ibv_flow) { 1708 rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, 1709 NULL, "flow rule creation failure"); 1710 err = ENOMEM; 1711 goto error; 1712 } 1713 return 0; 1714 error: 1715 assert(flow); 1716 if (flow->frxq[HASH_RXQ_ETH].ibv_flow) { 1717 claim_zero(ibv_destroy_flow(flow->frxq[HASH_RXQ_ETH].ibv_flow)); 1718 flow->frxq[HASH_RXQ_ETH].ibv_flow = NULL; 1719 } 1720 if (flow->frxq[HASH_RXQ_ETH].ibv_attr) { 1721 rte_free(flow->frxq[HASH_RXQ_ETH].ibv_attr); 1722 flow->frxq[HASH_RXQ_ETH].ibv_attr = NULL; 1723 } 1724 if (flow->cs) { 1725 claim_zero(ibv_destroy_counter_set(flow->cs)); 1726 flow->cs = NULL; 1727 parser->cs = NULL; 1728 } 1729 return err; 1730 } 1731 1732 /** 1733 * Create hash Rx queues when RSS is enabled. 1734 * 1735 * @param priv 1736 * Pointer to private structure. 1737 * @param parser 1738 * Internal parser structure. 1739 * @param flow 1740 * Pointer to the rte_flow. 1741 * @param[out] error 1742 * Perform verbose error reporting if not NULL. 1743 * 1744 * @return 1745 * 0 on success, a errno value otherwise and rte_errno is set. 1746 */ 1747 static int 1748 priv_flow_create_action_queue_rss(struct priv *priv, 1749 struct mlx5_flow_parse *parser, 1750 struct rte_flow *flow, 1751 struct rte_flow_error *error) 1752 { 1753 unsigned int i; 1754 1755 for (i = 0; i != hash_rxq_init_n; ++i) { 1756 uint64_t hash_fields; 1757 1758 if (!parser->queue[i].ibv_attr) 1759 continue; 1760 flow->frxq[i].ibv_attr = parser->queue[i].ibv_attr; 1761 parser->queue[i].ibv_attr = NULL; 1762 hash_fields = hash_rxq_init[i].hash_fields; 1763 if (!priv->dev->data->dev_started) 1764 continue; 1765 flow->frxq[i].hrxq = 1766 mlx5_priv_hrxq_get(priv, 1767 parser->rss_conf.rss_key, 1768 parser->rss_conf.rss_key_len, 1769 hash_fields, 1770 parser->queues, 1771 parser->queues_n); 1772 if (flow->frxq[i].hrxq) 1773 continue; 1774 flow->frxq[i].hrxq = 1775 mlx5_priv_hrxq_new(priv, 1776 parser->rss_conf.rss_key, 1777 parser->rss_conf.rss_key_len, 1778 hash_fields, 1779 parser->queues, 1780 parser->queues_n); 1781 if (!flow->frxq[i].hrxq) { 1782 rte_flow_error_set(error, ENOMEM, 1783 RTE_FLOW_ERROR_TYPE_HANDLE, 1784 NULL, "cannot create hash rxq"); 1785 return ENOMEM; 1786 } 1787 } 1788 return 0; 1789 } 1790 1791 /** 1792 * Complete flow rule creation. 1793 * 1794 * @param priv 1795 * Pointer to private structure. 1796 * @param parser 1797 * Internal parser structure. 1798 * @param flow 1799 * Pointer to the rte_flow. 1800 * @param[out] error 1801 * Perform verbose error reporting if not NULL. 1802 * 1803 * @return 1804 * 0 on success, a errno value otherwise and rte_errno is set. 1805 */ 1806 static int 1807 priv_flow_create_action_queue(struct priv *priv, 1808 struct mlx5_flow_parse *parser, 1809 struct rte_flow *flow, 1810 struct rte_flow_error *error) 1811 { 1812 int err = 0; 1813 unsigned int i; 1814 1815 assert(priv->pd); 1816 assert(priv->ctx); 1817 assert(!parser->drop); 1818 err = priv_flow_create_action_queue_rss(priv, parser, flow, error); 1819 if (err) 1820 goto error; 1821 if (parser->count) 1822 flow->cs = parser->cs; 1823 if (!priv->dev->data->dev_started) 1824 return 0; 1825 for (i = 0; i != hash_rxq_init_n; ++i) { 1826 if (!flow->frxq[i].hrxq) 1827 continue; 1828 flow->frxq[i].ibv_flow = 1829 ibv_create_flow(flow->frxq[i].hrxq->qp, 1830 flow->frxq[i].ibv_attr); 1831 if (!flow->frxq[i].ibv_flow) { 1832 rte_flow_error_set(error, ENOMEM, 1833 RTE_FLOW_ERROR_TYPE_HANDLE, 1834 NULL, "flow rule creation failure"); 1835 err = ENOMEM; 1836 goto error; 1837 } 1838 DEBUG("%p type %d QP %p ibv_flow %p", 1839 (void *)flow, i, 1840 (void *)flow->frxq[i].hrxq, 1841 (void *)flow->frxq[i].ibv_flow); 1842 } 1843 for (i = 0; i != parser->queues_n; ++i) { 1844 struct mlx5_rxq_data *q = 1845 (*priv->rxqs)[parser->queues[i]]; 1846 1847 q->mark |= parser->mark; 1848 } 1849 return 0; 1850 error: 1851 assert(flow); 1852 for (i = 0; i != hash_rxq_init_n; ++i) { 1853 if (flow->frxq[i].ibv_flow) { 1854 struct ibv_flow *ibv_flow = flow->frxq[i].ibv_flow; 1855 1856 claim_zero(ibv_destroy_flow(ibv_flow)); 1857 } 1858 if (flow->frxq[i].hrxq) 1859 mlx5_priv_hrxq_release(priv, flow->frxq[i].hrxq); 1860 if (flow->frxq[i].ibv_attr) 1861 rte_free(flow->frxq[i].ibv_attr); 1862 } 1863 if (flow->cs) { 1864 claim_zero(ibv_destroy_counter_set(flow->cs)); 1865 flow->cs = NULL; 1866 parser->cs = NULL; 1867 } 1868 return err; 1869 } 1870 1871 /** 1872 * Convert a flow. 1873 * 1874 * @param priv 1875 * Pointer to private structure. 1876 * @param list 1877 * Pointer to a TAILQ flow list. 1878 * @param[in] attr 1879 * Flow rule attributes. 1880 * @param[in] pattern 1881 * Pattern specification (list terminated by the END pattern item). 1882 * @param[in] actions 1883 * Associated actions (list terminated by the END action). 1884 * @param[out] error 1885 * Perform verbose error reporting if not NULL. 1886 * 1887 * @return 1888 * A flow on success, NULL otherwise. 1889 */ 1890 static struct rte_flow * 1891 priv_flow_create(struct priv *priv, 1892 struct mlx5_flows *list, 1893 const struct rte_flow_attr *attr, 1894 const struct rte_flow_item items[], 1895 const struct rte_flow_action actions[], 1896 struct rte_flow_error *error) 1897 { 1898 struct mlx5_flow_parse parser = { .create = 1, }; 1899 struct rte_flow *flow = NULL; 1900 unsigned int i; 1901 int err; 1902 1903 err = priv_flow_convert(priv, attr, items, actions, error, &parser); 1904 if (err) 1905 goto exit; 1906 flow = rte_calloc(__func__, 1, 1907 sizeof(*flow) + parser.queues_n * sizeof(uint16_t), 1908 0); 1909 if (!flow) { 1910 rte_flow_error_set(error, ENOMEM, 1911 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1912 NULL, 1913 "cannot allocate flow memory"); 1914 return NULL; 1915 } 1916 /* Copy queues configuration. */ 1917 flow->queues = (uint16_t (*)[])(flow + 1); 1918 memcpy(flow->queues, parser.queues, parser.queues_n * sizeof(uint16_t)); 1919 flow->queues_n = parser.queues_n; 1920 flow->mark = parser.mark; 1921 /* Copy RSS configuration. */ 1922 flow->rss_conf = parser.rss_conf; 1923 flow->rss_conf.rss_key = flow->rss_key; 1924 memcpy(flow->rss_key, parser.rss_key, parser.rss_conf.rss_key_len); 1925 /* finalise the flow. */ 1926 if (parser.drop) 1927 err = priv_flow_create_action_queue_drop(priv, &parser, flow, 1928 error); 1929 else 1930 err = priv_flow_create_action_queue(priv, &parser, flow, error); 1931 if (err) 1932 goto exit; 1933 TAILQ_INSERT_TAIL(list, flow, next); 1934 DEBUG("Flow created %p", (void *)flow); 1935 return flow; 1936 exit: 1937 for (i = 0; i != hash_rxq_init_n; ++i) { 1938 if (parser.queue[i].ibv_attr) 1939 rte_free(parser.queue[i].ibv_attr); 1940 } 1941 rte_free(flow); 1942 return NULL; 1943 } 1944 1945 /** 1946 * Validate a flow supported by the NIC. 1947 * 1948 * @see rte_flow_validate() 1949 * @see rte_flow_ops 1950 */ 1951 int 1952 mlx5_flow_validate(struct rte_eth_dev *dev, 1953 const struct rte_flow_attr *attr, 1954 const struct rte_flow_item items[], 1955 const struct rte_flow_action actions[], 1956 struct rte_flow_error *error) 1957 { 1958 struct priv *priv = dev->data->dev_private; 1959 int ret; 1960 struct mlx5_flow_parse parser = { .create = 0, }; 1961 1962 priv_lock(priv); 1963 ret = priv_flow_convert(priv, attr, items, actions, error, &parser); 1964 priv_unlock(priv); 1965 return ret; 1966 } 1967 1968 /** 1969 * Create a flow. 1970 * 1971 * @see rte_flow_create() 1972 * @see rte_flow_ops 1973 */ 1974 struct rte_flow * 1975 mlx5_flow_create(struct rte_eth_dev *dev, 1976 const struct rte_flow_attr *attr, 1977 const struct rte_flow_item items[], 1978 const struct rte_flow_action actions[], 1979 struct rte_flow_error *error) 1980 { 1981 struct priv *priv = dev->data->dev_private; 1982 struct rte_flow *flow; 1983 1984 priv_lock(priv); 1985 flow = priv_flow_create(priv, &priv->flows, attr, items, actions, 1986 error); 1987 priv_unlock(priv); 1988 return flow; 1989 } 1990 1991 /** 1992 * Destroy a flow. 1993 * 1994 * @param priv 1995 * Pointer to private structure. 1996 * @param list 1997 * Pointer to a TAILQ flow list. 1998 * @param[in] flow 1999 * Flow to destroy. 2000 */ 2001 static void 2002 priv_flow_destroy(struct priv *priv, 2003 struct mlx5_flows *list, 2004 struct rte_flow *flow) 2005 { 2006 unsigned int i; 2007 2008 if (flow->drop || !flow->mark) 2009 goto free; 2010 for (i = 0; i != flow->queues_n; ++i) { 2011 struct rte_flow *tmp; 2012 int mark = 0; 2013 2014 /* 2015 * To remove the mark from the queue, the queue must not be 2016 * present in any other marked flow (RSS or not). 2017 */ 2018 TAILQ_FOREACH(tmp, list, next) { 2019 unsigned int j; 2020 uint16_t *tqs = NULL; 2021 uint16_t tq_n = 0; 2022 2023 if (!tmp->mark) 2024 continue; 2025 for (j = 0; j != hash_rxq_init_n; ++j) { 2026 if (!tmp->frxq[j].hrxq) 2027 continue; 2028 tqs = tmp->frxq[j].hrxq->ind_table->queues; 2029 tq_n = tmp->frxq[j].hrxq->ind_table->queues_n; 2030 } 2031 if (!tq_n) 2032 continue; 2033 for (j = 0; (j != tq_n) && !mark; j++) 2034 if (tqs[j] == (*flow->queues)[i]) 2035 mark = 1; 2036 } 2037 (*priv->rxqs)[(*flow->queues)[i]]->mark = mark; 2038 } 2039 free: 2040 if (flow->drop) { 2041 if (flow->frxq[HASH_RXQ_ETH].ibv_flow) 2042 claim_zero(ibv_destroy_flow 2043 (flow->frxq[HASH_RXQ_ETH].ibv_flow)); 2044 rte_free(flow->frxq[HASH_RXQ_ETH].ibv_attr); 2045 } else { 2046 for (i = 0; i != hash_rxq_init_n; ++i) { 2047 struct mlx5_flow *frxq = &flow->frxq[i]; 2048 2049 if (frxq->ibv_flow) 2050 claim_zero(ibv_destroy_flow(frxq->ibv_flow)); 2051 if (frxq->hrxq) 2052 mlx5_priv_hrxq_release(priv, frxq->hrxq); 2053 if (frxq->ibv_attr) 2054 rte_free(frxq->ibv_attr); 2055 } 2056 } 2057 if (flow->cs) { 2058 claim_zero(ibv_destroy_counter_set(flow->cs)); 2059 flow->cs = NULL; 2060 } 2061 TAILQ_REMOVE(list, flow, next); 2062 DEBUG("Flow destroyed %p", (void *)flow); 2063 rte_free(flow); 2064 } 2065 2066 /** 2067 * Destroy all flows. 2068 * 2069 * @param priv 2070 * Pointer to private structure. 2071 * @param list 2072 * Pointer to a TAILQ flow list. 2073 */ 2074 void 2075 priv_flow_flush(struct priv *priv, struct mlx5_flows *list) 2076 { 2077 while (!TAILQ_EMPTY(list)) { 2078 struct rte_flow *flow; 2079 2080 flow = TAILQ_FIRST(list); 2081 priv_flow_destroy(priv, list, flow); 2082 } 2083 } 2084 2085 /** 2086 * Create drop queue. 2087 * 2088 * @param priv 2089 * Pointer to private structure. 2090 * 2091 * @return 2092 * 0 on success. 2093 */ 2094 int 2095 priv_flow_create_drop_queue(struct priv *priv) 2096 { 2097 struct mlx5_hrxq_drop *fdq = NULL; 2098 2099 assert(priv->pd); 2100 assert(priv->ctx); 2101 fdq = rte_calloc(__func__, 1, sizeof(*fdq), 0); 2102 if (!fdq) { 2103 WARN("cannot allocate memory for drop queue"); 2104 goto error; 2105 } 2106 fdq->cq = ibv_create_cq(priv->ctx, 1, NULL, NULL, 0); 2107 if (!fdq->cq) { 2108 WARN("cannot allocate CQ for drop queue"); 2109 goto error; 2110 } 2111 fdq->wq = ibv_create_wq(priv->ctx, 2112 &(struct ibv_wq_init_attr){ 2113 .wq_type = IBV_WQT_RQ, 2114 .max_wr = 1, 2115 .max_sge = 1, 2116 .pd = priv->pd, 2117 .cq = fdq->cq, 2118 }); 2119 if (!fdq->wq) { 2120 WARN("cannot allocate WQ for drop queue"); 2121 goto error; 2122 } 2123 fdq->ind_table = ibv_create_rwq_ind_table(priv->ctx, 2124 &(struct ibv_rwq_ind_table_init_attr){ 2125 .log_ind_tbl_size = 0, 2126 .ind_tbl = &fdq->wq, 2127 .comp_mask = 0, 2128 }); 2129 if (!fdq->ind_table) { 2130 WARN("cannot allocate indirection table for drop queue"); 2131 goto error; 2132 } 2133 fdq->qp = ibv_create_qp_ex(priv->ctx, 2134 &(struct ibv_qp_init_attr_ex){ 2135 .qp_type = IBV_QPT_RAW_PACKET, 2136 .comp_mask = 2137 IBV_QP_INIT_ATTR_PD | 2138 IBV_QP_INIT_ATTR_IND_TABLE | 2139 IBV_QP_INIT_ATTR_RX_HASH, 2140 .rx_hash_conf = (struct ibv_rx_hash_conf){ 2141 .rx_hash_function = 2142 IBV_RX_HASH_FUNC_TOEPLITZ, 2143 .rx_hash_key_len = rss_hash_default_key_len, 2144 .rx_hash_key = rss_hash_default_key, 2145 .rx_hash_fields_mask = 0, 2146 }, 2147 .rwq_ind_tbl = fdq->ind_table, 2148 .pd = priv->pd 2149 }); 2150 if (!fdq->qp) { 2151 WARN("cannot allocate QP for drop queue"); 2152 goto error; 2153 } 2154 priv->flow_drop_queue = fdq; 2155 return 0; 2156 error: 2157 if (fdq->qp) 2158 claim_zero(ibv_destroy_qp(fdq->qp)); 2159 if (fdq->ind_table) 2160 claim_zero(ibv_destroy_rwq_ind_table(fdq->ind_table)); 2161 if (fdq->wq) 2162 claim_zero(ibv_destroy_wq(fdq->wq)); 2163 if (fdq->cq) 2164 claim_zero(ibv_destroy_cq(fdq->cq)); 2165 if (fdq) 2166 rte_free(fdq); 2167 priv->flow_drop_queue = NULL; 2168 return -1; 2169 } 2170 2171 /** 2172 * Delete drop queue. 2173 * 2174 * @param priv 2175 * Pointer to private structure. 2176 */ 2177 void 2178 priv_flow_delete_drop_queue(struct priv *priv) 2179 { 2180 struct mlx5_hrxq_drop *fdq = priv->flow_drop_queue; 2181 2182 if (!fdq) 2183 return; 2184 if (fdq->qp) 2185 claim_zero(ibv_destroy_qp(fdq->qp)); 2186 if (fdq->ind_table) 2187 claim_zero(ibv_destroy_rwq_ind_table(fdq->ind_table)); 2188 if (fdq->wq) 2189 claim_zero(ibv_destroy_wq(fdq->wq)); 2190 if (fdq->cq) 2191 claim_zero(ibv_destroy_cq(fdq->cq)); 2192 rte_free(fdq); 2193 priv->flow_drop_queue = NULL; 2194 } 2195 2196 /** 2197 * Remove all flows. 2198 * 2199 * @param priv 2200 * Pointer to private structure. 2201 * @param list 2202 * Pointer to a TAILQ flow list. 2203 */ 2204 void 2205 priv_flow_stop(struct priv *priv, struct mlx5_flows *list) 2206 { 2207 struct rte_flow *flow; 2208 2209 TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next) { 2210 unsigned int i; 2211 2212 if (flow->drop) { 2213 if (!flow->frxq[HASH_RXQ_ETH].ibv_flow) 2214 continue; 2215 claim_zero(ibv_destroy_flow 2216 (flow->frxq[HASH_RXQ_ETH].ibv_flow)); 2217 flow->frxq[HASH_RXQ_ETH].ibv_flow = NULL; 2218 /* Next flow. */ 2219 continue; 2220 } 2221 if (flow->mark) { 2222 struct mlx5_ind_table_ibv *ind_tbl = NULL; 2223 2224 for (i = 0; i != hash_rxq_init_n; ++i) { 2225 if (!flow->frxq[i].hrxq) 2226 continue; 2227 ind_tbl = flow->frxq[i].hrxq->ind_table; 2228 } 2229 assert(ind_tbl); 2230 for (i = 0; i != ind_tbl->queues_n; ++i) 2231 (*priv->rxqs)[ind_tbl->queues[i]]->mark = 0; 2232 } 2233 for (i = 0; i != hash_rxq_init_n; ++i) { 2234 if (!flow->frxq[i].ibv_flow) 2235 continue; 2236 claim_zero(ibv_destroy_flow(flow->frxq[i].ibv_flow)); 2237 flow->frxq[i].ibv_flow = NULL; 2238 mlx5_priv_hrxq_release(priv, flow->frxq[i].hrxq); 2239 flow->frxq[i].hrxq = NULL; 2240 } 2241 DEBUG("Flow %p removed", (void *)flow); 2242 } 2243 } 2244 2245 /** 2246 * Add all flows. 2247 * 2248 * @param priv 2249 * Pointer to private structure. 2250 * @param list 2251 * Pointer to a TAILQ flow list. 2252 * 2253 * @return 2254 * 0 on success, a errno value otherwise and rte_errno is set. 2255 */ 2256 int 2257 priv_flow_start(struct priv *priv, struct mlx5_flows *list) 2258 { 2259 struct rte_flow *flow; 2260 2261 TAILQ_FOREACH(flow, list, next) { 2262 unsigned int i; 2263 2264 if (flow->drop) { 2265 flow->frxq[HASH_RXQ_ETH].ibv_flow = 2266 ibv_create_flow 2267 (priv->flow_drop_queue->qp, 2268 flow->frxq[HASH_RXQ_ETH].ibv_attr); 2269 if (!flow->frxq[HASH_RXQ_ETH].ibv_flow) { 2270 DEBUG("Flow %p cannot be applied", 2271 (void *)flow); 2272 rte_errno = EINVAL; 2273 return rte_errno; 2274 } 2275 DEBUG("Flow %p applied", (void *)flow); 2276 /* Next flow. */ 2277 continue; 2278 } 2279 for (i = 0; i != hash_rxq_init_n; ++i) { 2280 if (!flow->frxq[i].ibv_attr) 2281 continue; 2282 flow->frxq[i].hrxq = 2283 mlx5_priv_hrxq_get(priv, flow->rss_conf.rss_key, 2284 flow->rss_conf.rss_key_len, 2285 hash_rxq_init[i].hash_fields, 2286 (*flow->queues), 2287 flow->queues_n); 2288 if (flow->frxq[i].hrxq) 2289 goto flow_create; 2290 flow->frxq[i].hrxq = 2291 mlx5_priv_hrxq_new(priv, flow->rss_conf.rss_key, 2292 flow->rss_conf.rss_key_len, 2293 hash_rxq_init[i].hash_fields, 2294 (*flow->queues), 2295 flow->queues_n); 2296 if (!flow->frxq[i].hrxq) { 2297 DEBUG("Flow %p cannot be applied", 2298 (void *)flow); 2299 rte_errno = EINVAL; 2300 return rte_errno; 2301 } 2302 flow_create: 2303 flow->frxq[i].ibv_flow = 2304 ibv_create_flow(flow->frxq[i].hrxq->qp, 2305 flow->frxq[i].ibv_attr); 2306 if (!flow->frxq[i].ibv_flow) { 2307 DEBUG("Flow %p cannot be applied", 2308 (void *)flow); 2309 rte_errno = EINVAL; 2310 return rte_errno; 2311 } 2312 DEBUG("Flow %p applied", (void *)flow); 2313 } 2314 if (!flow->mark) 2315 continue; 2316 for (i = 0; i != flow->queues_n; ++i) 2317 (*priv->rxqs)[(*flow->queues)[i]]->mark = 1; 2318 } 2319 return 0; 2320 } 2321 2322 /** 2323 * Verify the flow list is empty 2324 * 2325 * @param priv 2326 * Pointer to private structure. 2327 * 2328 * @return the number of flows not released. 2329 */ 2330 int 2331 priv_flow_verify(struct priv *priv) 2332 { 2333 struct rte_flow *flow; 2334 int ret = 0; 2335 2336 TAILQ_FOREACH(flow, &priv->flows, next) { 2337 DEBUG("%p: flow %p still referenced", (void *)priv, 2338 (void *)flow); 2339 ++ret; 2340 } 2341 return ret; 2342 } 2343 2344 /** 2345 * Enable a control flow configured from the control plane. 2346 * 2347 * @param dev 2348 * Pointer to Ethernet device. 2349 * @param eth_spec 2350 * An Ethernet flow spec to apply. 2351 * @param eth_mask 2352 * An Ethernet flow mask to apply. 2353 * @param vlan_spec 2354 * A VLAN flow spec to apply. 2355 * @param vlan_mask 2356 * A VLAN flow mask to apply. 2357 * 2358 * @return 2359 * 0 on success. 2360 */ 2361 int 2362 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 2363 struct rte_flow_item_eth *eth_spec, 2364 struct rte_flow_item_eth *eth_mask, 2365 struct rte_flow_item_vlan *vlan_spec, 2366 struct rte_flow_item_vlan *vlan_mask) 2367 { 2368 struct priv *priv = dev->data->dev_private; 2369 const struct rte_flow_attr attr = { 2370 .ingress = 1, 2371 .priority = MLX5_CTRL_FLOW_PRIORITY, 2372 }; 2373 struct rte_flow_item items[] = { 2374 { 2375 .type = RTE_FLOW_ITEM_TYPE_ETH, 2376 .spec = eth_spec, 2377 .last = NULL, 2378 .mask = eth_mask, 2379 }, 2380 { 2381 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 2382 RTE_FLOW_ITEM_TYPE_END, 2383 .spec = vlan_spec, 2384 .last = NULL, 2385 .mask = vlan_mask, 2386 }, 2387 { 2388 .type = RTE_FLOW_ITEM_TYPE_END, 2389 }, 2390 }; 2391 struct rte_flow_action actions[] = { 2392 { 2393 .type = RTE_FLOW_ACTION_TYPE_RSS, 2394 }, 2395 { 2396 .type = RTE_FLOW_ACTION_TYPE_END, 2397 }, 2398 }; 2399 struct rte_flow *flow; 2400 struct rte_flow_error error; 2401 unsigned int i; 2402 union { 2403 struct rte_flow_action_rss rss; 2404 struct { 2405 const struct rte_eth_rss_conf *rss_conf; 2406 uint16_t num; 2407 uint16_t queue[RTE_MAX_QUEUES_PER_PORT]; 2408 } local; 2409 } action_rss; 2410 2411 if (!priv->reta_idx_n) 2412 return EINVAL; 2413 for (i = 0; i != priv->reta_idx_n; ++i) 2414 action_rss.local.queue[i] = (*priv->reta_idx)[i]; 2415 action_rss.local.rss_conf = &priv->rss_conf; 2416 action_rss.local.num = priv->reta_idx_n; 2417 actions[0].conf = (const void *)&action_rss.rss; 2418 flow = priv_flow_create(priv, &priv->ctrl_flows, &attr, items, actions, 2419 &error); 2420 if (!flow) 2421 return rte_errno; 2422 return 0; 2423 } 2424 2425 /** 2426 * Enable a flow control configured from the control plane. 2427 * 2428 * @param dev 2429 * Pointer to Ethernet device. 2430 * @param eth_spec 2431 * An Ethernet flow spec to apply. 2432 * @param eth_mask 2433 * An Ethernet flow mask to apply. 2434 * 2435 * @return 2436 * 0 on success. 2437 */ 2438 int 2439 mlx5_ctrl_flow(struct rte_eth_dev *dev, 2440 struct rte_flow_item_eth *eth_spec, 2441 struct rte_flow_item_eth *eth_mask) 2442 { 2443 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 2444 } 2445 2446 /** 2447 * Destroy a flow. 2448 * 2449 * @see rte_flow_destroy() 2450 * @see rte_flow_ops 2451 */ 2452 int 2453 mlx5_flow_destroy(struct rte_eth_dev *dev, 2454 struct rte_flow *flow, 2455 struct rte_flow_error *error) 2456 { 2457 struct priv *priv = dev->data->dev_private; 2458 2459 (void)error; 2460 priv_lock(priv); 2461 priv_flow_destroy(priv, &priv->flows, flow); 2462 priv_unlock(priv); 2463 return 0; 2464 } 2465 2466 /** 2467 * Destroy all flows. 2468 * 2469 * @see rte_flow_flush() 2470 * @see rte_flow_ops 2471 */ 2472 int 2473 mlx5_flow_flush(struct rte_eth_dev *dev, 2474 struct rte_flow_error *error) 2475 { 2476 struct priv *priv = dev->data->dev_private; 2477 2478 (void)error; 2479 priv_lock(priv); 2480 priv_flow_flush(priv, &priv->flows); 2481 priv_unlock(priv); 2482 return 0; 2483 } 2484 2485 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 2486 /** 2487 * Query flow counter. 2488 * 2489 * @param cs 2490 * the counter set. 2491 * @param counter_value 2492 * returned data from the counter. 2493 * 2494 * @return 2495 * 0 on success, a errno value otherwise and rte_errno is set. 2496 */ 2497 static int 2498 priv_flow_query_count(struct ibv_counter_set *cs, 2499 struct mlx5_flow_counter_stats *counter_stats, 2500 struct rte_flow_query_count *query_count, 2501 struct rte_flow_error *error) 2502 { 2503 uint64_t counters[2]; 2504 struct ibv_query_counter_set_attr query_cs_attr = { 2505 .cs = cs, 2506 .query_flags = IBV_COUNTER_SET_FORCE_UPDATE, 2507 }; 2508 struct ibv_counter_set_data query_out = { 2509 .out = counters, 2510 .outlen = 2 * sizeof(uint64_t), 2511 }; 2512 int res = ibv_query_counter_set(&query_cs_attr, &query_out); 2513 2514 if (res) { 2515 rte_flow_error_set(error, -res, 2516 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2517 NULL, 2518 "cannot read counter"); 2519 return -res; 2520 } 2521 query_count->hits_set = 1; 2522 query_count->bytes_set = 1; 2523 query_count->hits = counters[0] - counter_stats->hits; 2524 query_count->bytes = counters[1] - counter_stats->bytes; 2525 if (query_count->reset) { 2526 counter_stats->hits = counters[0]; 2527 counter_stats->bytes = counters[1]; 2528 } 2529 return 0; 2530 } 2531 2532 /** 2533 * Query a flows. 2534 * 2535 * @see rte_flow_query() 2536 * @see rte_flow_ops 2537 */ 2538 int 2539 mlx5_flow_query(struct rte_eth_dev *dev, 2540 struct rte_flow *flow, 2541 enum rte_flow_action_type action __rte_unused, 2542 void *data, 2543 struct rte_flow_error *error) 2544 { 2545 struct priv *priv = dev->data->dev_private; 2546 int res = EINVAL; 2547 2548 priv_lock(priv); 2549 if (flow->cs) { 2550 res = priv_flow_query_count(flow->cs, 2551 &flow->counter_stats, 2552 (struct rte_flow_query_count *)data, 2553 error); 2554 } else { 2555 rte_flow_error_set(error, res, 2556 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2557 NULL, 2558 "no counter found for flow"); 2559 } 2560 priv_unlock(priv); 2561 return -res; 2562 } 2563 #endif 2564 2565 /** 2566 * Isolated mode. 2567 * 2568 * @see rte_flow_isolate() 2569 * @see rte_flow_ops 2570 */ 2571 int 2572 mlx5_flow_isolate(struct rte_eth_dev *dev, 2573 int enable, 2574 struct rte_flow_error *error) 2575 { 2576 struct priv *priv = dev->data->dev_private; 2577 2578 priv_lock(priv); 2579 if (dev->data->dev_started) { 2580 rte_flow_error_set(error, EBUSY, 2581 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2582 NULL, 2583 "port must be stopped first"); 2584 priv_unlock(priv); 2585 return -rte_errno; 2586 } 2587 priv->isolated = !!enable; 2588 if (enable) 2589 priv->dev->dev_ops = &mlx5_dev_ops_isolate; 2590 else 2591 priv->dev->dev_ops = &mlx5_dev_ops; 2592 priv_unlock(priv); 2593 return 0; 2594 } 2595 2596 /** 2597 * Convert a flow director filter to a generic flow. 2598 * 2599 * @param priv 2600 * Private structure. 2601 * @param fdir_filter 2602 * Flow director filter to add. 2603 * @param attributes 2604 * Generic flow parameters structure. 2605 * 2606 * @return 2607 * 0 on success, errno value on error. 2608 */ 2609 static int 2610 priv_fdir_filter_convert(struct priv *priv, 2611 const struct rte_eth_fdir_filter *fdir_filter, 2612 struct mlx5_fdir *attributes) 2613 { 2614 const struct rte_eth_fdir_input *input = &fdir_filter->input; 2615 2616 /* Validate queue number. */ 2617 if (fdir_filter->action.rx_queue >= priv->rxqs_n) { 2618 ERROR("invalid queue number %d", fdir_filter->action.rx_queue); 2619 return EINVAL; 2620 } 2621 attributes->attr.ingress = 1; 2622 attributes->items[0] = (struct rte_flow_item) { 2623 .type = RTE_FLOW_ITEM_TYPE_ETH, 2624 .spec = &attributes->l2, 2625 .mask = &attributes->l2_mask, 2626 }; 2627 switch (fdir_filter->action.behavior) { 2628 case RTE_ETH_FDIR_ACCEPT: 2629 attributes->actions[0] = (struct rte_flow_action){ 2630 .type = RTE_FLOW_ACTION_TYPE_QUEUE, 2631 .conf = &attributes->queue, 2632 }; 2633 break; 2634 case RTE_ETH_FDIR_REJECT: 2635 attributes->actions[0] = (struct rte_flow_action){ 2636 .type = RTE_FLOW_ACTION_TYPE_DROP, 2637 }; 2638 break; 2639 default: 2640 ERROR("invalid behavior %d", fdir_filter->action.behavior); 2641 return ENOTSUP; 2642 } 2643 attributes->queue.index = fdir_filter->action.rx_queue; 2644 switch (fdir_filter->input.flow_type) { 2645 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2646 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2647 .src_addr = input->flow.udp4_flow.ip.src_ip, 2648 .dst_addr = input->flow.udp4_flow.ip.dst_ip, 2649 .time_to_live = input->flow.udp4_flow.ip.ttl, 2650 .type_of_service = input->flow.udp4_flow.ip.tos, 2651 .next_proto_id = input->flow.udp4_flow.ip.proto, 2652 }; 2653 attributes->l4.udp.hdr = (struct udp_hdr){ 2654 .src_port = input->flow.udp4_flow.src_port, 2655 .dst_port = input->flow.udp4_flow.dst_port, 2656 }; 2657 attributes->items[1] = (struct rte_flow_item){ 2658 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2659 .spec = &attributes->l3, 2660 .mask = &attributes->l3, 2661 }; 2662 attributes->items[2] = (struct rte_flow_item){ 2663 .type = RTE_FLOW_ITEM_TYPE_UDP, 2664 .spec = &attributes->l4, 2665 .mask = &attributes->l4, 2666 }; 2667 break; 2668 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2669 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2670 .src_addr = input->flow.tcp4_flow.ip.src_ip, 2671 .dst_addr = input->flow.tcp4_flow.ip.dst_ip, 2672 .time_to_live = input->flow.tcp4_flow.ip.ttl, 2673 .type_of_service = input->flow.tcp4_flow.ip.tos, 2674 .next_proto_id = input->flow.tcp4_flow.ip.proto, 2675 }; 2676 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2677 .src_port = input->flow.tcp4_flow.src_port, 2678 .dst_port = input->flow.tcp4_flow.dst_port, 2679 }; 2680 attributes->items[1] = (struct rte_flow_item){ 2681 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2682 .spec = &attributes->l3, 2683 .mask = &attributes->l3, 2684 }; 2685 attributes->items[2] = (struct rte_flow_item){ 2686 .type = RTE_FLOW_ITEM_TYPE_TCP, 2687 .spec = &attributes->l4, 2688 .mask = &attributes->l4, 2689 }; 2690 break; 2691 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2692 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2693 .src_addr = input->flow.ip4_flow.src_ip, 2694 .dst_addr = input->flow.ip4_flow.dst_ip, 2695 .time_to_live = input->flow.ip4_flow.ttl, 2696 .type_of_service = input->flow.ip4_flow.tos, 2697 .next_proto_id = input->flow.ip4_flow.proto, 2698 }; 2699 attributes->items[1] = (struct rte_flow_item){ 2700 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2701 .spec = &attributes->l3, 2702 .mask = &attributes->l3, 2703 }; 2704 break; 2705 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2706 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2707 .hop_limits = input->flow.udp6_flow.ip.hop_limits, 2708 .proto = input->flow.udp6_flow.ip.proto, 2709 }; 2710 memcpy(attributes->l3.ipv6.hdr.src_addr, 2711 input->flow.udp6_flow.ip.src_ip, 2712 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2713 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2714 input->flow.udp6_flow.ip.dst_ip, 2715 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2716 attributes->l4.udp.hdr = (struct udp_hdr){ 2717 .src_port = input->flow.udp6_flow.src_port, 2718 .dst_port = input->flow.udp6_flow.dst_port, 2719 }; 2720 attributes->items[1] = (struct rte_flow_item){ 2721 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2722 .spec = &attributes->l3, 2723 .mask = &attributes->l3, 2724 }; 2725 attributes->items[2] = (struct rte_flow_item){ 2726 .type = RTE_FLOW_ITEM_TYPE_UDP, 2727 .spec = &attributes->l4, 2728 .mask = &attributes->l4, 2729 }; 2730 break; 2731 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2732 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2733 .hop_limits = input->flow.tcp6_flow.ip.hop_limits, 2734 .proto = input->flow.tcp6_flow.ip.proto, 2735 }; 2736 memcpy(attributes->l3.ipv6.hdr.src_addr, 2737 input->flow.tcp6_flow.ip.src_ip, 2738 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2739 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2740 input->flow.tcp6_flow.ip.dst_ip, 2741 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2742 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2743 .src_port = input->flow.tcp6_flow.src_port, 2744 .dst_port = input->flow.tcp6_flow.dst_port, 2745 }; 2746 attributes->items[1] = (struct rte_flow_item){ 2747 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2748 .spec = &attributes->l3, 2749 .mask = &attributes->l3, 2750 }; 2751 attributes->items[2] = (struct rte_flow_item){ 2752 .type = RTE_FLOW_ITEM_TYPE_TCP, 2753 .spec = &attributes->l4, 2754 .mask = &attributes->l4, 2755 }; 2756 break; 2757 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2758 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2759 .hop_limits = input->flow.ipv6_flow.hop_limits, 2760 .proto = input->flow.ipv6_flow.proto, 2761 }; 2762 memcpy(attributes->l3.ipv6.hdr.src_addr, 2763 input->flow.ipv6_flow.src_ip, 2764 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2765 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2766 input->flow.ipv6_flow.dst_ip, 2767 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2768 attributes->items[1] = (struct rte_flow_item){ 2769 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2770 .spec = &attributes->l3, 2771 .mask = &attributes->l3, 2772 }; 2773 break; 2774 default: 2775 ERROR("invalid flow type%d", 2776 fdir_filter->input.flow_type); 2777 return ENOTSUP; 2778 } 2779 return 0; 2780 } 2781 2782 /** 2783 * Add new flow director filter and store it in list. 2784 * 2785 * @param priv 2786 * Private structure. 2787 * @param fdir_filter 2788 * Flow director filter to add. 2789 * 2790 * @return 2791 * 0 on success, errno value on failure. 2792 */ 2793 static int 2794 priv_fdir_filter_add(struct priv *priv, 2795 const struct rte_eth_fdir_filter *fdir_filter) 2796 { 2797 struct mlx5_fdir attributes = { 2798 .attr.group = 0, 2799 .l2_mask = { 2800 .dst.addr_bytes = "\x00\x00\x00\x00\x00\x00", 2801 .src.addr_bytes = "\x00\x00\x00\x00\x00\x00", 2802 .type = 0, 2803 }, 2804 }; 2805 struct mlx5_flow_parse parser = { 2806 .layer = HASH_RXQ_ETH, 2807 }; 2808 struct rte_flow_error error; 2809 struct rte_flow *flow; 2810 int ret; 2811 2812 ret = priv_fdir_filter_convert(priv, fdir_filter, &attributes); 2813 if (ret) 2814 return -ret; 2815 ret = priv_flow_convert(priv, &attributes.attr, attributes.items, 2816 attributes.actions, &error, &parser); 2817 if (ret) 2818 return -ret; 2819 flow = priv_flow_create(priv, 2820 &priv->flows, 2821 &attributes.attr, 2822 attributes.items, 2823 attributes.actions, 2824 &error); 2825 if (flow) { 2826 DEBUG("FDIR created %p", (void *)flow); 2827 return 0; 2828 } 2829 return ENOTSUP; 2830 } 2831 2832 /** 2833 * Delete specific filter. 2834 * 2835 * @param priv 2836 * Private structure. 2837 * @param fdir_filter 2838 * Filter to be deleted. 2839 * 2840 * @return 2841 * 0 on success, errno value on failure. 2842 */ 2843 static int 2844 priv_fdir_filter_delete(struct priv *priv, 2845 const struct rte_eth_fdir_filter *fdir_filter) 2846 { 2847 struct mlx5_fdir attributes = { 2848 .attr.group = 0, 2849 }; 2850 struct mlx5_flow_parse parser = { 2851 .create = 1, 2852 .layer = HASH_RXQ_ETH, 2853 }; 2854 struct rte_flow_error error; 2855 struct rte_flow *flow; 2856 unsigned int i; 2857 int ret; 2858 2859 ret = priv_fdir_filter_convert(priv, fdir_filter, &attributes); 2860 if (ret) 2861 return -ret; 2862 ret = priv_flow_convert(priv, &attributes.attr, attributes.items, 2863 attributes.actions, &error, &parser); 2864 if (ret) 2865 goto exit; 2866 /* 2867 * Special case for drop action which is only set in the 2868 * specifications when the flow is created. In this situation the 2869 * drop specification is missing. 2870 */ 2871 if (parser.drop) { 2872 struct ibv_flow_spec_action_drop *drop; 2873 2874 drop = (void *)((uintptr_t)parser.queue[HASH_RXQ_ETH].ibv_attr + 2875 parser.queue[HASH_RXQ_ETH].offset); 2876 *drop = (struct ibv_flow_spec_action_drop){ 2877 .type = IBV_FLOW_SPEC_ACTION_DROP, 2878 .size = sizeof(struct ibv_flow_spec_action_drop), 2879 }; 2880 parser.queue[HASH_RXQ_ETH].ibv_attr->num_of_specs++; 2881 } 2882 TAILQ_FOREACH(flow, &priv->flows, next) { 2883 struct ibv_flow_attr *attr; 2884 struct ibv_spec_header *attr_h; 2885 void *spec; 2886 struct ibv_flow_attr *flow_attr; 2887 struct ibv_spec_header *flow_h; 2888 void *flow_spec; 2889 unsigned int specs_n; 2890 2891 attr = parser.queue[HASH_RXQ_ETH].ibv_attr; 2892 flow_attr = flow->frxq[HASH_RXQ_ETH].ibv_attr; 2893 /* Compare first the attributes. */ 2894 if (memcmp(attr, flow_attr, sizeof(struct ibv_flow_attr))) 2895 continue; 2896 if (attr->num_of_specs == 0) 2897 continue; 2898 spec = (void *)((uintptr_t)attr + 2899 sizeof(struct ibv_flow_attr)); 2900 flow_spec = (void *)((uintptr_t)flow_attr + 2901 sizeof(struct ibv_flow_attr)); 2902 specs_n = RTE_MIN(attr->num_of_specs, flow_attr->num_of_specs); 2903 for (i = 0; i != specs_n; ++i) { 2904 attr_h = spec; 2905 flow_h = flow_spec; 2906 if (memcmp(spec, flow_spec, 2907 RTE_MIN(attr_h->size, flow_h->size))) 2908 goto wrong_flow; 2909 spec = (void *)((uintptr_t)spec + attr_h->size); 2910 flow_spec = (void *)((uintptr_t)flow_spec + 2911 flow_h->size); 2912 } 2913 /* At this point, the flow match. */ 2914 break; 2915 wrong_flow: 2916 /* The flow does not match. */ 2917 continue; 2918 } 2919 if (flow) 2920 priv_flow_destroy(priv, &priv->flows, flow); 2921 exit: 2922 for (i = 0; i != hash_rxq_init_n; ++i) { 2923 if (parser.queue[i].ibv_attr) 2924 rte_free(parser.queue[i].ibv_attr); 2925 } 2926 return -ret; 2927 } 2928 2929 /** 2930 * Update queue for specific filter. 2931 * 2932 * @param priv 2933 * Private structure. 2934 * @param fdir_filter 2935 * Filter to be updated. 2936 * 2937 * @return 2938 * 0 on success, errno value on failure. 2939 */ 2940 static int 2941 priv_fdir_filter_update(struct priv *priv, 2942 const struct rte_eth_fdir_filter *fdir_filter) 2943 { 2944 int ret; 2945 2946 ret = priv_fdir_filter_delete(priv, fdir_filter); 2947 if (ret) 2948 return ret; 2949 ret = priv_fdir_filter_add(priv, fdir_filter); 2950 return ret; 2951 } 2952 2953 /** 2954 * Flush all filters. 2955 * 2956 * @param priv 2957 * Private structure. 2958 */ 2959 static void 2960 priv_fdir_filter_flush(struct priv *priv) 2961 { 2962 priv_flow_flush(priv, &priv->flows); 2963 } 2964 2965 /** 2966 * Get flow director information. 2967 * 2968 * @param priv 2969 * Private structure. 2970 * @param[out] fdir_info 2971 * Resulting flow director information. 2972 */ 2973 static void 2974 priv_fdir_info_get(struct priv *priv, struct rte_eth_fdir_info *fdir_info) 2975 { 2976 struct rte_eth_fdir_masks *mask = 2977 &priv->dev->data->dev_conf.fdir_conf.mask; 2978 2979 fdir_info->mode = priv->dev->data->dev_conf.fdir_conf.mode; 2980 fdir_info->guarant_spc = 0; 2981 rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask)); 2982 fdir_info->max_flexpayload = 0; 2983 fdir_info->flow_types_mask[0] = 0; 2984 fdir_info->flex_payload_unit = 0; 2985 fdir_info->max_flex_payload_segment_num = 0; 2986 fdir_info->flex_payload_limit = 0; 2987 memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf)); 2988 } 2989 2990 /** 2991 * Deal with flow director operations. 2992 * 2993 * @param priv 2994 * Pointer to private structure. 2995 * @param filter_op 2996 * Operation to perform. 2997 * @param arg 2998 * Pointer to operation-specific structure. 2999 * 3000 * @return 3001 * 0 on success, errno value on failure. 3002 */ 3003 static int 3004 priv_fdir_ctrl_func(struct priv *priv, enum rte_filter_op filter_op, void *arg) 3005 { 3006 enum rte_fdir_mode fdir_mode = 3007 priv->dev->data->dev_conf.fdir_conf.mode; 3008 int ret = 0; 3009 3010 if (filter_op == RTE_ETH_FILTER_NOP) 3011 return 0; 3012 if (fdir_mode != RTE_FDIR_MODE_PERFECT && 3013 fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 3014 ERROR("%p: flow director mode %d not supported", 3015 (void *)priv, fdir_mode); 3016 return EINVAL; 3017 } 3018 switch (filter_op) { 3019 case RTE_ETH_FILTER_ADD: 3020 ret = priv_fdir_filter_add(priv, arg); 3021 break; 3022 case RTE_ETH_FILTER_UPDATE: 3023 ret = priv_fdir_filter_update(priv, arg); 3024 break; 3025 case RTE_ETH_FILTER_DELETE: 3026 ret = priv_fdir_filter_delete(priv, arg); 3027 break; 3028 case RTE_ETH_FILTER_FLUSH: 3029 priv_fdir_filter_flush(priv); 3030 break; 3031 case RTE_ETH_FILTER_INFO: 3032 priv_fdir_info_get(priv, arg); 3033 break; 3034 default: 3035 DEBUG("%p: unknown operation %u", (void *)priv, 3036 filter_op); 3037 ret = EINVAL; 3038 break; 3039 } 3040 return ret; 3041 } 3042 3043 /** 3044 * Manage filter operations. 3045 * 3046 * @param dev 3047 * Pointer to Ethernet device structure. 3048 * @param filter_type 3049 * Filter type. 3050 * @param filter_op 3051 * Operation to perform. 3052 * @param arg 3053 * Pointer to operation-specific structure. 3054 * 3055 * @return 3056 * 0 on success, negative errno value on failure. 3057 */ 3058 int 3059 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 3060 enum rte_filter_type filter_type, 3061 enum rte_filter_op filter_op, 3062 void *arg) 3063 { 3064 int ret = EINVAL; 3065 struct priv *priv = dev->data->dev_private; 3066 3067 switch (filter_type) { 3068 case RTE_ETH_FILTER_GENERIC: 3069 if (filter_op != RTE_ETH_FILTER_GET) 3070 return -EINVAL; 3071 *(const void **)arg = &mlx5_flow_ops; 3072 return 0; 3073 case RTE_ETH_FILTER_FDIR: 3074 priv_lock(priv); 3075 ret = priv_fdir_ctrl_func(priv, filter_op, arg); 3076 priv_unlock(priv); 3077 break; 3078 default: 3079 ERROR("%p: filter type (%d) not supported", 3080 (void *)dev, filter_type); 3081 break; 3082 } 3083 return -ret; 3084 } 3085