xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 7ab3962d2d2b827a2d0533697161fe7916b276e8)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stdalign.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdbool.h>
10 #include <sys/queue.h>
11 
12 #include <rte_common.h>
13 #include <rte_ether.h>
14 #include <ethdev_driver.h>
15 #include <rte_eal_paging.h>
16 #include <rte_flow.h>
17 #include <rte_cycles.h>
18 #include <rte_flow_driver.h>
19 #include <rte_malloc.h>
20 #include <rte_ip.h>
21 
22 #include <mlx5_glue.h>
23 #include <mlx5_devx_cmds.h>
24 #include <mlx5_prm.h>
25 #include <mlx5_malloc.h>
26 
27 #include "mlx5_defs.h"
28 #include "mlx5.h"
29 #include "mlx5_flow.h"
30 #include "mlx5_flow_os.h"
31 #include "mlx5_rx.h"
32 #include "mlx5_tx.h"
33 #include "mlx5_common_os.h"
34 #include "rte_pmd_mlx5.h"
35 
36 struct tunnel_default_miss_ctx {
37 	uint16_t *queue;
38 	__extension__
39 	union {
40 		struct rte_flow_action_rss action_rss;
41 		struct rte_flow_action_queue miss_queue;
42 		struct rte_flow_action_jump miss_jump;
43 		uint8_t raw[0];
44 	};
45 };
46 
47 static int
48 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
49 			     struct rte_flow *flow,
50 			     const struct rte_flow_attr *attr,
51 			     const struct rte_flow_action *app_actions,
52 			     uint32_t flow_idx,
53 			     const struct mlx5_flow_tunnel *tunnel,
54 			     struct tunnel_default_miss_ctx *ctx,
55 			     struct rte_flow_error *error);
56 static struct mlx5_flow_tunnel *
57 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id);
58 static void
59 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel);
60 static uint32_t
61 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
62 				const struct mlx5_flow_tunnel *tunnel,
63 				uint32_t group, uint32_t *table,
64 				struct rte_flow_error *error);
65 
66 static struct mlx5_flow_workspace *mlx5_flow_push_thread_workspace(void);
67 static void mlx5_flow_pop_thread_workspace(void);
68 
69 
70 /** Device flow drivers. */
71 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
72 
73 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
74 
75 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
76 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
77 #if defined(HAVE_IBV_FLOW_DV_SUPPORT) || !defined(HAVE_INFINIBAND_VERBS_H)
78 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
79 	[MLX5_FLOW_TYPE_HW] = &mlx5_flow_hw_drv_ops,
80 #endif
81 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
82 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
83 };
84 
85 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
86 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
87 	(const int []){ \
88 		__VA_ARGS__, 0, \
89 	}
90 
91 /** Node object of input graph for mlx5_flow_expand_rss(). */
92 struct mlx5_flow_expand_node {
93 	const int *const next;
94 	/**<
95 	 * List of next node indexes. Index 0 is interpreted as a terminator.
96 	 */
97 	const enum rte_flow_item_type type;
98 	/**< Pattern item type of current node. */
99 	uint64_t rss_types;
100 	/**<
101 	 * RSS types bit-field associated with this node
102 	 * (see RTE_ETH_RSS_* definitions).
103 	 */
104 	uint64_t node_flags;
105 	/**<
106 	 *  Bit-fields that define how the node is used in the expansion.
107 	 * (see MLX5_EXPANSION_NODE_* definitions).
108 	 */
109 };
110 
111 /* Optional expand field. The expansion alg will not go deeper. */
112 #define MLX5_EXPANSION_NODE_OPTIONAL (UINT64_C(1) << 0)
113 
114 /* The node is not added implicitly as expansion to the flow pattern.
115  * If the node type does not match the flow pattern item type, the
116  * expansion alg will go deeper to its next items.
117  * In the current implementation, the list of next nodes indexes can
118  * have up to one node with this flag set and it has to be the last
119  * node index (before the list terminator).
120  */
121 #define MLX5_EXPANSION_NODE_EXPLICIT (UINT64_C(1) << 1)
122 
123 /** Object returned by mlx5_flow_expand_rss(). */
124 struct mlx5_flow_expand_rss {
125 	uint32_t entries;
126 	/**< Number of entries @p patterns and @p priorities. */
127 	struct {
128 		struct rte_flow_item *pattern; /**< Expanded pattern array. */
129 		uint32_t priority; /**< Priority offset for each expansion. */
130 	} entry[];
131 };
132 
133 static void
134 mlx5_dbg__print_pattern(const struct rte_flow_item *item);
135 
136 static const struct mlx5_flow_expand_node *
137 mlx5_flow_expand_rss_adjust_node(const struct rte_flow_item *pattern,
138 		unsigned int item_idx,
139 		const struct mlx5_flow_expand_node graph[],
140 		const struct mlx5_flow_expand_node *node);
141 
142 static bool
143 mlx5_flow_is_rss_expandable_item(const struct rte_flow_item *item)
144 {
145 	switch (item->type) {
146 	case RTE_FLOW_ITEM_TYPE_ETH:
147 	case RTE_FLOW_ITEM_TYPE_VLAN:
148 	case RTE_FLOW_ITEM_TYPE_IPV4:
149 	case RTE_FLOW_ITEM_TYPE_IPV6:
150 	case RTE_FLOW_ITEM_TYPE_UDP:
151 	case RTE_FLOW_ITEM_TYPE_TCP:
152 	case RTE_FLOW_ITEM_TYPE_VXLAN:
153 	case RTE_FLOW_ITEM_TYPE_NVGRE:
154 	case RTE_FLOW_ITEM_TYPE_GRE:
155 	case RTE_FLOW_ITEM_TYPE_GENEVE:
156 	case RTE_FLOW_ITEM_TYPE_MPLS:
157 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
158 	case RTE_FLOW_ITEM_TYPE_GRE_KEY:
159 	case RTE_FLOW_ITEM_TYPE_IPV6_FRAG_EXT:
160 	case RTE_FLOW_ITEM_TYPE_GTP:
161 		return true;
162 	default:
163 		break;
164 	}
165 	return false;
166 }
167 
168 /**
169  * Network Service Header (NSH) and its next protocol values
170  * are described in RFC-8393.
171  */
172 static enum rte_flow_item_type
173 mlx5_nsh_proto_to_item_type(uint8_t proto_spec, uint8_t proto_mask)
174 {
175 	enum rte_flow_item_type type;
176 
177 	switch (proto_mask & proto_spec) {
178 	case RTE_VXLAN_GPE_TYPE_IPV4:
179 		type = RTE_FLOW_ITEM_TYPE_IPV4;
180 		break;
181 	case RTE_VXLAN_GPE_TYPE_IPV6:
182 		type = RTE_VXLAN_GPE_TYPE_IPV6;
183 		break;
184 	case RTE_VXLAN_GPE_TYPE_ETH:
185 		type = RTE_FLOW_ITEM_TYPE_ETH;
186 		break;
187 	default:
188 		type = RTE_FLOW_ITEM_TYPE_END;
189 	}
190 	return type;
191 }
192 
193 static enum rte_flow_item_type
194 mlx5_inet_proto_to_item_type(uint8_t proto_spec, uint8_t proto_mask)
195 {
196 	enum rte_flow_item_type type;
197 
198 	switch (proto_mask & proto_spec) {
199 	case IPPROTO_UDP:
200 		type = RTE_FLOW_ITEM_TYPE_UDP;
201 		break;
202 	case IPPROTO_TCP:
203 		type = RTE_FLOW_ITEM_TYPE_TCP;
204 		break;
205 	case IPPROTO_IP:
206 		type = RTE_FLOW_ITEM_TYPE_IPV4;
207 		break;
208 	case IPPROTO_IPV6:
209 		type = RTE_FLOW_ITEM_TYPE_IPV6;
210 		break;
211 	default:
212 		type = RTE_FLOW_ITEM_TYPE_END;
213 	}
214 	return type;
215 }
216 
217 static enum rte_flow_item_type
218 mlx5_ethertype_to_item_type(rte_be16_t type_spec,
219 			    rte_be16_t type_mask, bool is_tunnel)
220 {
221 	enum rte_flow_item_type type;
222 
223 	switch (rte_be_to_cpu_16(type_spec & type_mask)) {
224 	case RTE_ETHER_TYPE_TEB:
225 		type = is_tunnel ?
226 		       RTE_FLOW_ITEM_TYPE_ETH : RTE_FLOW_ITEM_TYPE_END;
227 		break;
228 	case RTE_ETHER_TYPE_VLAN:
229 		type = !is_tunnel ?
230 		       RTE_FLOW_ITEM_TYPE_VLAN : RTE_FLOW_ITEM_TYPE_END;
231 		break;
232 	case RTE_ETHER_TYPE_IPV4:
233 		type = RTE_FLOW_ITEM_TYPE_IPV4;
234 		break;
235 	case RTE_ETHER_TYPE_IPV6:
236 		type = RTE_FLOW_ITEM_TYPE_IPV6;
237 		break;
238 	default:
239 		type = RTE_FLOW_ITEM_TYPE_END;
240 	}
241 	return type;
242 }
243 
244 static enum rte_flow_item_type
245 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
246 {
247 #define MLX5_XSET_ITEM_MASK_SPEC(type, fld)                              \
248 	do {                                                             \
249 		const void *m = item->mask;                              \
250 		const void *s = item->spec;                              \
251 		mask = m ?                                               \
252 			((const struct rte_flow_item_##type *)m)->fld :  \
253 			rte_flow_item_##type##_mask.fld;                 \
254 		spec = ((const struct rte_flow_item_##type *)s)->fld;    \
255 	} while (0)
256 
257 	enum rte_flow_item_type ret;
258 	uint16_t spec, mask;
259 
260 	if (item == NULL || item->spec == NULL)
261 		return RTE_FLOW_ITEM_TYPE_VOID;
262 	switch (item->type) {
263 	case RTE_FLOW_ITEM_TYPE_ETH:
264 		MLX5_XSET_ITEM_MASK_SPEC(eth, type);
265 		if (!mask)
266 			return RTE_FLOW_ITEM_TYPE_VOID;
267 		ret = mlx5_ethertype_to_item_type(spec, mask, false);
268 		break;
269 	case RTE_FLOW_ITEM_TYPE_VLAN:
270 		MLX5_XSET_ITEM_MASK_SPEC(vlan, inner_type);
271 		if (!mask)
272 			return RTE_FLOW_ITEM_TYPE_VOID;
273 		ret = mlx5_ethertype_to_item_type(spec, mask, false);
274 		break;
275 	case RTE_FLOW_ITEM_TYPE_IPV4:
276 		MLX5_XSET_ITEM_MASK_SPEC(ipv4, hdr.next_proto_id);
277 		if (!mask)
278 			return RTE_FLOW_ITEM_TYPE_VOID;
279 		ret = mlx5_inet_proto_to_item_type(spec, mask);
280 		break;
281 	case RTE_FLOW_ITEM_TYPE_IPV6:
282 		MLX5_XSET_ITEM_MASK_SPEC(ipv6, hdr.proto);
283 		if (!mask)
284 			return RTE_FLOW_ITEM_TYPE_VOID;
285 		ret = mlx5_inet_proto_to_item_type(spec, mask);
286 		break;
287 	case RTE_FLOW_ITEM_TYPE_GENEVE:
288 		MLX5_XSET_ITEM_MASK_SPEC(geneve, protocol);
289 		ret = mlx5_ethertype_to_item_type(spec, mask, true);
290 		break;
291 	case RTE_FLOW_ITEM_TYPE_GRE:
292 		MLX5_XSET_ITEM_MASK_SPEC(gre, protocol);
293 		ret = mlx5_ethertype_to_item_type(spec, mask, true);
294 		break;
295 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
296 		MLX5_XSET_ITEM_MASK_SPEC(vxlan_gpe, protocol);
297 		ret = mlx5_nsh_proto_to_item_type(spec, mask);
298 		break;
299 	default:
300 		ret = RTE_FLOW_ITEM_TYPE_VOID;
301 		break;
302 	}
303 	return ret;
304 #undef MLX5_XSET_ITEM_MASK_SPEC
305 }
306 
307 static const int *
308 mlx5_flow_expand_rss_skip_explicit(const struct mlx5_flow_expand_node graph[],
309 		const int *next_node)
310 {
311 	const struct mlx5_flow_expand_node *node = NULL;
312 	const int *next = next_node;
313 
314 	while (next && *next) {
315 		/*
316 		 * Skip the nodes with the MLX5_EXPANSION_NODE_EXPLICIT
317 		 * flag set, because they were not found in the flow pattern.
318 		 */
319 		node = &graph[*next];
320 		if (!(node->node_flags & MLX5_EXPANSION_NODE_EXPLICIT))
321 			break;
322 		next = node->next;
323 	}
324 	return next;
325 }
326 
327 #define MLX5_RSS_EXP_ELT_N 16
328 
329 /**
330  * Expand RSS flows into several possible flows according to the RSS hash
331  * fields requested and the driver capabilities.
332  *
333  * @param[out] buf
334  *   Buffer to store the result expansion.
335  * @param[in] size
336  *   Buffer size in bytes. If 0, @p buf can be NULL.
337  * @param[in] pattern
338  *   User flow pattern.
339  * @param[in] types
340  *   RSS types to expand (see RTE_ETH_RSS_* definitions).
341  * @param[in] graph
342  *   Input graph to expand @p pattern according to @p types.
343  * @param[in] graph_root_index
344  *   Index of root node in @p graph, typically 0.
345  *
346  * @return
347  *   A positive value representing the size of @p buf in bytes regardless of
348  *   @p size on success, a negative errno value otherwise and rte_errno is
349  *   set, the following errors are defined:
350  *
351  *   -E2BIG: graph-depth @p graph is too deep.
352  *   -EINVAL: @p size has not enough space for expanded pattern.
353  */
354 static int
355 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
356 		     const struct rte_flow_item *pattern, uint64_t types,
357 		     const struct mlx5_flow_expand_node graph[],
358 		     int graph_root_index)
359 {
360 	const struct rte_flow_item *item;
361 	const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
362 	const int *next_node;
363 	const int *stack[MLX5_RSS_EXP_ELT_N];
364 	int stack_pos = 0;
365 	struct rte_flow_item flow_items[MLX5_RSS_EXP_ELT_N];
366 	unsigned int i, item_idx, last_expand_item_idx = 0;
367 	size_t lsize;
368 	size_t user_pattern_size = 0;
369 	void *addr = NULL;
370 	const struct mlx5_flow_expand_node *next = NULL;
371 	struct rte_flow_item missed_item;
372 	int missed = 0;
373 	int elt = 0;
374 	const struct rte_flow_item *last_expand_item = NULL;
375 
376 	memset(&missed_item, 0, sizeof(missed_item));
377 	lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
378 		MLX5_RSS_EXP_ELT_N * sizeof(buf->entry[0]);
379 	if (lsize > size)
380 		return -EINVAL;
381 	buf->entry[0].priority = 0;
382 	buf->entry[0].pattern = (void *)&buf->entry[MLX5_RSS_EXP_ELT_N];
383 	buf->entries = 0;
384 	addr = buf->entry[0].pattern;
385 	for (item = pattern, item_idx = 0;
386 			item->type != RTE_FLOW_ITEM_TYPE_END;
387 			item++, item_idx++) {
388 		if (!mlx5_flow_is_rss_expandable_item(item)) {
389 			user_pattern_size += sizeof(*item);
390 			continue;
391 		}
392 		last_expand_item = item;
393 		last_expand_item_idx = item_idx;
394 		i = 0;
395 		while (node->next && node->next[i]) {
396 			next = &graph[node->next[i]];
397 			if (next->type == item->type)
398 				break;
399 			if (next->node_flags & MLX5_EXPANSION_NODE_EXPLICIT) {
400 				node = next;
401 				i = 0;
402 			} else {
403 				++i;
404 			}
405 		}
406 		if (next)
407 			node = next;
408 		user_pattern_size += sizeof(*item);
409 	}
410 	user_pattern_size += sizeof(*item); /* Handle END item. */
411 	lsize += user_pattern_size;
412 	if (lsize > size)
413 		return -EINVAL;
414 	/* Copy the user pattern in the first entry of the buffer. */
415 	rte_memcpy(addr, pattern, user_pattern_size);
416 	addr = (void *)(((uintptr_t)addr) + user_pattern_size);
417 	buf->entries = 1;
418 	/* Start expanding. */
419 	memset(flow_items, 0, sizeof(flow_items));
420 	user_pattern_size -= sizeof(*item);
421 	/*
422 	 * Check if the last valid item has spec set, need complete pattern,
423 	 * and the pattern can be used for expansion.
424 	 */
425 	missed_item.type = mlx5_flow_expand_rss_item_complete(last_expand_item);
426 	if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
427 		/* Item type END indicates expansion is not required. */
428 		return lsize;
429 	}
430 	if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
431 		next = NULL;
432 		missed = 1;
433 		i = 0;
434 		while (node->next && node->next[i]) {
435 			next = &graph[node->next[i]];
436 			if (next->type == missed_item.type) {
437 				flow_items[0].type = missed_item.type;
438 				flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
439 				break;
440 			}
441 			if (next->node_flags & MLX5_EXPANSION_NODE_EXPLICIT) {
442 				node = next;
443 				i = 0;
444 			} else {
445 				++i;
446 			}
447 			next = NULL;
448 		}
449 	}
450 	if (next && missed) {
451 		elt = 2; /* missed item + item end. */
452 		node = next;
453 		lsize += elt * sizeof(*item) + user_pattern_size;
454 		if (lsize > size)
455 			return -EINVAL;
456 		if (node->rss_types & types) {
457 			buf->entry[buf->entries].priority = 1;
458 			buf->entry[buf->entries].pattern = addr;
459 			buf->entries++;
460 			rte_memcpy(addr, buf->entry[0].pattern,
461 				   user_pattern_size);
462 			addr = (void *)(((uintptr_t)addr) + user_pattern_size);
463 			rte_memcpy(addr, flow_items, elt * sizeof(*item));
464 			addr = (void *)(((uintptr_t)addr) +
465 					elt * sizeof(*item));
466 		}
467 	} else if (last_expand_item != NULL) {
468 		node = mlx5_flow_expand_rss_adjust_node(pattern,
469 				last_expand_item_idx, graph, node);
470 	}
471 	memset(flow_items, 0, sizeof(flow_items));
472 	next_node = mlx5_flow_expand_rss_skip_explicit(graph,
473 			node->next);
474 	stack[stack_pos] = next_node;
475 	node = next_node ? &graph[*next_node] : NULL;
476 	while (node) {
477 		flow_items[stack_pos].type = node->type;
478 		if (node->rss_types & types) {
479 			size_t n;
480 			/*
481 			 * compute the number of items to copy from the
482 			 * expansion and copy it.
483 			 * When the stack_pos is 0, there are 1 element in it,
484 			 * plus the addition END item.
485 			 */
486 			elt = stack_pos + 2;
487 			flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
488 			lsize += elt * sizeof(*item) + user_pattern_size;
489 			if (lsize > size)
490 				return -EINVAL;
491 			n = elt * sizeof(*item);
492 			buf->entry[buf->entries].priority =
493 				stack_pos + 1 + missed;
494 			buf->entry[buf->entries].pattern = addr;
495 			buf->entries++;
496 			rte_memcpy(addr, buf->entry[0].pattern,
497 				   user_pattern_size);
498 			addr = (void *)(((uintptr_t)addr) +
499 					user_pattern_size);
500 			rte_memcpy(addr, &missed_item,
501 				   missed * sizeof(*item));
502 			addr = (void *)(((uintptr_t)addr) +
503 				missed * sizeof(*item));
504 			rte_memcpy(addr, flow_items, n);
505 			addr = (void *)(((uintptr_t)addr) + n);
506 		}
507 		/* Go deeper. */
508 		if (!(node->node_flags & MLX5_EXPANSION_NODE_OPTIONAL) &&
509 				node->next) {
510 			next_node = mlx5_flow_expand_rss_skip_explicit(graph,
511 					node->next);
512 			if (stack_pos++ == MLX5_RSS_EXP_ELT_N) {
513 				rte_errno = E2BIG;
514 				return -rte_errno;
515 			}
516 			stack[stack_pos] = next_node;
517 		} else if (*(next_node + 1)) {
518 			/* Follow up with the next possibility. */
519 			next_node = mlx5_flow_expand_rss_skip_explicit(graph,
520 					++next_node);
521 		} else if (!stack_pos) {
522 			/*
523 			 * Completing the traverse over the different paths.
524 			 * The next_node is advanced to the terminator.
525 			 */
526 			++next_node;
527 		} else {
528 			/* Move to the next path. */
529 			while (stack_pos) {
530 				next_node = stack[--stack_pos];
531 				next_node++;
532 				if (*next_node)
533 					break;
534 			}
535 			next_node = mlx5_flow_expand_rss_skip_explicit(graph,
536 					next_node);
537 			stack[stack_pos] = next_node;
538 		}
539 		node = next_node && *next_node ? &graph[*next_node] : NULL;
540 	};
541 	return lsize;
542 }
543 
544 enum mlx5_expansion {
545 	MLX5_EXPANSION_ROOT,
546 	MLX5_EXPANSION_ROOT_OUTER,
547 	MLX5_EXPANSION_OUTER_ETH,
548 	MLX5_EXPANSION_OUTER_VLAN,
549 	MLX5_EXPANSION_OUTER_IPV4,
550 	MLX5_EXPANSION_OUTER_IPV4_UDP,
551 	MLX5_EXPANSION_OUTER_IPV4_TCP,
552 	MLX5_EXPANSION_OUTER_IPV6,
553 	MLX5_EXPANSION_OUTER_IPV6_UDP,
554 	MLX5_EXPANSION_OUTER_IPV6_TCP,
555 	MLX5_EXPANSION_VXLAN,
556 	MLX5_EXPANSION_STD_VXLAN,
557 	MLX5_EXPANSION_L3_VXLAN,
558 	MLX5_EXPANSION_VXLAN_GPE,
559 	MLX5_EXPANSION_GRE,
560 	MLX5_EXPANSION_NVGRE,
561 	MLX5_EXPANSION_GRE_KEY,
562 	MLX5_EXPANSION_MPLS,
563 	MLX5_EXPANSION_ETH,
564 	MLX5_EXPANSION_VLAN,
565 	MLX5_EXPANSION_IPV4,
566 	MLX5_EXPANSION_IPV4_UDP,
567 	MLX5_EXPANSION_IPV4_TCP,
568 	MLX5_EXPANSION_IPV6,
569 	MLX5_EXPANSION_IPV6_UDP,
570 	MLX5_EXPANSION_IPV6_TCP,
571 	MLX5_EXPANSION_IPV6_FRAG_EXT,
572 	MLX5_EXPANSION_GTP,
573 	MLX5_EXPANSION_GENEVE,
574 };
575 
576 /** Supported expansion of items. */
577 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
578 	[MLX5_EXPANSION_ROOT] = {
579 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
580 						  MLX5_EXPANSION_IPV4,
581 						  MLX5_EXPANSION_IPV6),
582 		.type = RTE_FLOW_ITEM_TYPE_END,
583 	},
584 	[MLX5_EXPANSION_ROOT_OUTER] = {
585 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
586 						  MLX5_EXPANSION_OUTER_IPV4,
587 						  MLX5_EXPANSION_OUTER_IPV6),
588 		.type = RTE_FLOW_ITEM_TYPE_END,
589 	},
590 	[MLX5_EXPANSION_OUTER_ETH] = {
591 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
592 		.type = RTE_FLOW_ITEM_TYPE_ETH,
593 		.rss_types = 0,
594 	},
595 	[MLX5_EXPANSION_OUTER_VLAN] = {
596 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
597 						  MLX5_EXPANSION_OUTER_IPV6),
598 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
599 		.node_flags = MLX5_EXPANSION_NODE_EXPLICIT,
600 	},
601 	[MLX5_EXPANSION_OUTER_IPV4] = {
602 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
603 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
604 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
605 			 MLX5_EXPANSION_GRE,
606 			 MLX5_EXPANSION_NVGRE,
607 			 MLX5_EXPANSION_IPV4,
608 			 MLX5_EXPANSION_IPV6),
609 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
610 		.rss_types = RTE_ETH_RSS_IPV4 | RTE_ETH_RSS_FRAG_IPV4 |
611 			RTE_ETH_RSS_NONFRAG_IPV4_OTHER,
612 	},
613 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
614 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
615 						  MLX5_EXPANSION_VXLAN_GPE,
616 						  MLX5_EXPANSION_MPLS,
617 						  MLX5_EXPANSION_GENEVE,
618 						  MLX5_EXPANSION_GTP),
619 		.type = RTE_FLOW_ITEM_TYPE_UDP,
620 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV4_UDP,
621 	},
622 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
623 		.type = RTE_FLOW_ITEM_TYPE_TCP,
624 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV4_TCP,
625 	},
626 	[MLX5_EXPANSION_OUTER_IPV6] = {
627 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
628 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
629 			 MLX5_EXPANSION_OUTER_IPV6_TCP,
630 			 MLX5_EXPANSION_IPV4,
631 			 MLX5_EXPANSION_IPV6,
632 			 MLX5_EXPANSION_GRE,
633 			 MLX5_EXPANSION_NVGRE),
634 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
635 		.rss_types = RTE_ETH_RSS_IPV6 | RTE_ETH_RSS_FRAG_IPV6 |
636 			RTE_ETH_RSS_NONFRAG_IPV6_OTHER,
637 	},
638 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
639 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
640 						  MLX5_EXPANSION_VXLAN_GPE,
641 						  MLX5_EXPANSION_MPLS,
642 						  MLX5_EXPANSION_GENEVE,
643 						  MLX5_EXPANSION_GTP),
644 		.type = RTE_FLOW_ITEM_TYPE_UDP,
645 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV6_UDP,
646 	},
647 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
648 		.type = RTE_FLOW_ITEM_TYPE_TCP,
649 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV6_TCP,
650 	},
651 	[MLX5_EXPANSION_VXLAN] = {
652 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
653 						  MLX5_EXPANSION_IPV4,
654 						  MLX5_EXPANSION_IPV6),
655 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
656 	},
657 	[MLX5_EXPANSION_STD_VXLAN] = {
658 			.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
659 					.type = RTE_FLOW_ITEM_TYPE_VXLAN,
660 	},
661 	[MLX5_EXPANSION_L3_VXLAN] = {
662 			.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
663 					MLX5_EXPANSION_IPV6),
664 					.type = RTE_FLOW_ITEM_TYPE_VXLAN,
665 	},
666 	[MLX5_EXPANSION_VXLAN_GPE] = {
667 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
668 						  MLX5_EXPANSION_IPV4,
669 						  MLX5_EXPANSION_IPV6),
670 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
671 	},
672 	[MLX5_EXPANSION_GRE] = {
673 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
674 						  MLX5_EXPANSION_IPV4,
675 						  MLX5_EXPANSION_IPV6,
676 						  MLX5_EXPANSION_GRE_KEY,
677 						  MLX5_EXPANSION_MPLS),
678 		.type = RTE_FLOW_ITEM_TYPE_GRE,
679 	},
680 	[MLX5_EXPANSION_GRE_KEY] = {
681 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
682 						  MLX5_EXPANSION_IPV6,
683 						  MLX5_EXPANSION_MPLS),
684 		.type = RTE_FLOW_ITEM_TYPE_GRE_KEY,
685 		.node_flags = MLX5_EXPANSION_NODE_OPTIONAL,
686 	},
687 	[MLX5_EXPANSION_NVGRE] = {
688 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
689 		.type = RTE_FLOW_ITEM_TYPE_NVGRE,
690 	},
691 	[MLX5_EXPANSION_MPLS] = {
692 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
693 						  MLX5_EXPANSION_IPV6,
694 						  MLX5_EXPANSION_ETH),
695 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
696 		.node_flags = MLX5_EXPANSION_NODE_OPTIONAL,
697 	},
698 	[MLX5_EXPANSION_ETH] = {
699 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
700 		.type = RTE_FLOW_ITEM_TYPE_ETH,
701 	},
702 	[MLX5_EXPANSION_VLAN] = {
703 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
704 						  MLX5_EXPANSION_IPV6),
705 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
706 		.node_flags = MLX5_EXPANSION_NODE_EXPLICIT,
707 	},
708 	[MLX5_EXPANSION_IPV4] = {
709 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
710 						  MLX5_EXPANSION_IPV4_TCP),
711 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
712 		.rss_types = RTE_ETH_RSS_IPV4 | RTE_ETH_RSS_FRAG_IPV4 |
713 			RTE_ETH_RSS_NONFRAG_IPV4_OTHER,
714 	},
715 	[MLX5_EXPANSION_IPV4_UDP] = {
716 		.type = RTE_FLOW_ITEM_TYPE_UDP,
717 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV4_UDP,
718 	},
719 	[MLX5_EXPANSION_IPV4_TCP] = {
720 		.type = RTE_FLOW_ITEM_TYPE_TCP,
721 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV4_TCP,
722 	},
723 	[MLX5_EXPANSION_IPV6] = {
724 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
725 						  MLX5_EXPANSION_IPV6_TCP,
726 						  MLX5_EXPANSION_IPV6_FRAG_EXT),
727 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
728 		.rss_types = RTE_ETH_RSS_IPV6 | RTE_ETH_RSS_FRAG_IPV6 |
729 			RTE_ETH_RSS_NONFRAG_IPV6_OTHER,
730 	},
731 	[MLX5_EXPANSION_IPV6_UDP] = {
732 		.type = RTE_FLOW_ITEM_TYPE_UDP,
733 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV6_UDP,
734 	},
735 	[MLX5_EXPANSION_IPV6_TCP] = {
736 		.type = RTE_FLOW_ITEM_TYPE_TCP,
737 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV6_TCP,
738 	},
739 	[MLX5_EXPANSION_IPV6_FRAG_EXT] = {
740 		.type = RTE_FLOW_ITEM_TYPE_IPV6_FRAG_EXT,
741 	},
742 	[MLX5_EXPANSION_GTP] = {
743 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
744 						  MLX5_EXPANSION_IPV6),
745 		.type = RTE_FLOW_ITEM_TYPE_GTP,
746 	},
747 	[MLX5_EXPANSION_GENEVE] = {
748 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
749 						  MLX5_EXPANSION_IPV4,
750 						  MLX5_EXPANSION_IPV6),
751 		.type = RTE_FLOW_ITEM_TYPE_GENEVE,
752 	},
753 };
754 
755 static struct rte_flow_action_handle *
756 mlx5_action_handle_create(struct rte_eth_dev *dev,
757 			  const struct rte_flow_indir_action_conf *conf,
758 			  const struct rte_flow_action *action,
759 			  struct rte_flow_error *error);
760 static int mlx5_action_handle_destroy
761 				(struct rte_eth_dev *dev,
762 				 struct rte_flow_action_handle *handle,
763 				 struct rte_flow_error *error);
764 static int mlx5_action_handle_update
765 				(struct rte_eth_dev *dev,
766 				 struct rte_flow_action_handle *handle,
767 				 const void *update,
768 				 struct rte_flow_error *error);
769 static int mlx5_action_handle_query
770 				(struct rte_eth_dev *dev,
771 				 const struct rte_flow_action_handle *handle,
772 				 void *data,
773 				 struct rte_flow_error *error);
774 static int
775 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
776 		    struct rte_flow_tunnel *app_tunnel,
777 		    struct rte_flow_action **actions,
778 		    uint32_t *num_of_actions,
779 		    struct rte_flow_error *error);
780 static int
781 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
782 		       struct rte_flow_tunnel *app_tunnel,
783 		       struct rte_flow_item **items,
784 		       uint32_t *num_of_items,
785 		       struct rte_flow_error *error);
786 static int
787 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
788 			      struct rte_flow_item *pmd_items,
789 			      uint32_t num_items, struct rte_flow_error *err);
790 static int
791 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
792 				struct rte_flow_action *pmd_actions,
793 				uint32_t num_actions,
794 				struct rte_flow_error *err);
795 static int
796 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
797 				  struct rte_mbuf *m,
798 				  struct rte_flow_restore_info *info,
799 				  struct rte_flow_error *err);
800 static struct rte_flow_item_flex_handle *
801 mlx5_flow_flex_item_create(struct rte_eth_dev *dev,
802 			   const struct rte_flow_item_flex_conf *conf,
803 			   struct rte_flow_error *error);
804 static int
805 mlx5_flow_flex_item_release(struct rte_eth_dev *dev,
806 			    const struct rte_flow_item_flex_handle *handle,
807 			    struct rte_flow_error *error);
808 static int
809 mlx5_flow_info_get(struct rte_eth_dev *dev,
810 		   struct rte_flow_port_info *port_info,
811 		   struct rte_flow_queue_info *queue_info,
812 		   struct rte_flow_error *error);
813 static int
814 mlx5_flow_port_configure(struct rte_eth_dev *dev,
815 			 const struct rte_flow_port_attr *port_attr,
816 			 uint16_t nb_queue,
817 			 const struct rte_flow_queue_attr *queue_attr[],
818 			 struct rte_flow_error *err);
819 
820 static struct rte_flow_pattern_template *
821 mlx5_flow_pattern_template_create(struct rte_eth_dev *dev,
822 		const struct rte_flow_pattern_template_attr *attr,
823 		const struct rte_flow_item items[],
824 		struct rte_flow_error *error);
825 
826 static int
827 mlx5_flow_pattern_template_destroy(struct rte_eth_dev *dev,
828 				   struct rte_flow_pattern_template *template,
829 				   struct rte_flow_error *error);
830 static struct rte_flow_actions_template *
831 mlx5_flow_actions_template_create(struct rte_eth_dev *dev,
832 			const struct rte_flow_actions_template_attr *attr,
833 			const struct rte_flow_action actions[],
834 			const struct rte_flow_action masks[],
835 			struct rte_flow_error *error);
836 static int
837 mlx5_flow_actions_template_destroy(struct rte_eth_dev *dev,
838 				   struct rte_flow_actions_template *template,
839 				   struct rte_flow_error *error);
840 
841 static struct rte_flow_template_table *
842 mlx5_flow_table_create(struct rte_eth_dev *dev,
843 		       const struct rte_flow_template_table_attr *attr,
844 		       struct rte_flow_pattern_template *item_templates[],
845 		       uint8_t nb_item_templates,
846 		       struct rte_flow_actions_template *action_templates[],
847 		       uint8_t nb_action_templates,
848 		       struct rte_flow_error *error);
849 static int
850 mlx5_flow_table_destroy(struct rte_eth_dev *dev,
851 			struct rte_flow_template_table *table,
852 			struct rte_flow_error *error);
853 static struct rte_flow *
854 mlx5_flow_async_flow_create(struct rte_eth_dev *dev,
855 			    uint32_t queue,
856 			    const struct rte_flow_op_attr *attr,
857 			    struct rte_flow_template_table *table,
858 			    const struct rte_flow_item items[],
859 			    uint8_t pattern_template_index,
860 			    const struct rte_flow_action actions[],
861 			    uint8_t action_template_index,
862 			    void *user_data,
863 			    struct rte_flow_error *error);
864 static int
865 mlx5_flow_async_flow_destroy(struct rte_eth_dev *dev,
866 			     uint32_t queue,
867 			     const struct rte_flow_op_attr *attr,
868 			     struct rte_flow *flow,
869 			     void *user_data,
870 			     struct rte_flow_error *error);
871 static int
872 mlx5_flow_pull(struct rte_eth_dev *dev,
873 	       uint32_t queue,
874 	       struct rte_flow_op_result res[],
875 	       uint16_t n_res,
876 	       struct rte_flow_error *error);
877 static int
878 mlx5_flow_push(struct rte_eth_dev *dev,
879 	       uint32_t queue,
880 	       struct rte_flow_error *error);
881 
882 static struct rte_flow_action_handle *
883 mlx5_flow_async_action_handle_create(struct rte_eth_dev *dev, uint32_t queue,
884 				 const struct rte_flow_op_attr *attr,
885 				 const struct rte_flow_indir_action_conf *conf,
886 				 const struct rte_flow_action *action,
887 				 void *user_data,
888 				 struct rte_flow_error *error);
889 
890 static int
891 mlx5_flow_async_action_handle_update(struct rte_eth_dev *dev, uint32_t queue,
892 				 const struct rte_flow_op_attr *attr,
893 				 struct rte_flow_action_handle *handle,
894 				 const void *update,
895 				 void *user_data,
896 				 struct rte_flow_error *error);
897 
898 static int
899 mlx5_flow_async_action_handle_destroy(struct rte_eth_dev *dev, uint32_t queue,
900 				  const struct rte_flow_op_attr *attr,
901 				  struct rte_flow_action_handle *handle,
902 				  void *user_data,
903 				  struct rte_flow_error *error);
904 
905 static const struct rte_flow_ops mlx5_flow_ops = {
906 	.validate = mlx5_flow_validate,
907 	.create = mlx5_flow_create,
908 	.destroy = mlx5_flow_destroy,
909 	.flush = mlx5_flow_flush,
910 	.isolate = mlx5_flow_isolate,
911 	.query = mlx5_flow_query,
912 	.dev_dump = mlx5_flow_dev_dump,
913 	.get_aged_flows = mlx5_flow_get_aged_flows,
914 	.action_handle_create = mlx5_action_handle_create,
915 	.action_handle_destroy = mlx5_action_handle_destroy,
916 	.action_handle_update = mlx5_action_handle_update,
917 	.action_handle_query = mlx5_action_handle_query,
918 	.tunnel_decap_set = mlx5_flow_tunnel_decap_set,
919 	.tunnel_match = mlx5_flow_tunnel_match,
920 	.tunnel_action_decap_release = mlx5_flow_tunnel_action_release,
921 	.tunnel_item_release = mlx5_flow_tunnel_item_release,
922 	.get_restore_info = mlx5_flow_tunnel_get_restore_info,
923 	.flex_item_create = mlx5_flow_flex_item_create,
924 	.flex_item_release = mlx5_flow_flex_item_release,
925 	.info_get = mlx5_flow_info_get,
926 	.configure = mlx5_flow_port_configure,
927 	.pattern_template_create = mlx5_flow_pattern_template_create,
928 	.pattern_template_destroy = mlx5_flow_pattern_template_destroy,
929 	.actions_template_create = mlx5_flow_actions_template_create,
930 	.actions_template_destroy = mlx5_flow_actions_template_destroy,
931 	.template_table_create = mlx5_flow_table_create,
932 	.template_table_destroy = mlx5_flow_table_destroy,
933 	.async_create = mlx5_flow_async_flow_create,
934 	.async_destroy = mlx5_flow_async_flow_destroy,
935 	.pull = mlx5_flow_pull,
936 	.push = mlx5_flow_push,
937 	.async_action_handle_create = mlx5_flow_async_action_handle_create,
938 	.async_action_handle_update = mlx5_flow_async_action_handle_update,
939 	.async_action_handle_destroy = mlx5_flow_async_action_handle_destroy,
940 };
941 
942 /* Tunnel information. */
943 struct mlx5_flow_tunnel_info {
944 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
945 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
946 };
947 
948 static struct mlx5_flow_tunnel_info tunnels_info[] = {
949 	{
950 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
951 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
952 	},
953 	{
954 		.tunnel = MLX5_FLOW_LAYER_GENEVE,
955 		.ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
956 	},
957 	{
958 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
959 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
960 	},
961 	{
962 		.tunnel = MLX5_FLOW_LAYER_GRE,
963 		.ptype = RTE_PTYPE_TUNNEL_GRE,
964 	},
965 	{
966 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
967 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
968 	},
969 	{
970 		.tunnel = MLX5_FLOW_LAYER_MPLS,
971 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
972 	},
973 	{
974 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
975 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
976 	},
977 	{
978 		.tunnel = MLX5_FLOW_LAYER_IPIP,
979 		.ptype = RTE_PTYPE_TUNNEL_IP,
980 	},
981 	{
982 		.tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
983 		.ptype = RTE_PTYPE_TUNNEL_IP,
984 	},
985 	{
986 		.tunnel = MLX5_FLOW_LAYER_GTP,
987 		.ptype = RTE_PTYPE_TUNNEL_GTPU,
988 	},
989 };
990 
991 
992 
993 /**
994  * Translate tag ID to register.
995  *
996  * @param[in] dev
997  *   Pointer to the Ethernet device structure.
998  * @param[in] feature
999  *   The feature that request the register.
1000  * @param[in] id
1001  *   The request register ID.
1002  * @param[out] error
1003  *   Error description in case of any.
1004  *
1005  * @return
1006  *   The request register on success, a negative errno
1007  *   value otherwise and rte_errno is set.
1008  */
1009 int
1010 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
1011 		     enum mlx5_feature_name feature,
1012 		     uint32_t id,
1013 		     struct rte_flow_error *error)
1014 {
1015 	struct mlx5_priv *priv = dev->data->dev_private;
1016 	struct mlx5_sh_config *config = &priv->sh->config;
1017 	enum modify_reg start_reg;
1018 	bool skip_mtr_reg = false;
1019 
1020 	switch (feature) {
1021 	case MLX5_HAIRPIN_RX:
1022 		return REG_B;
1023 	case MLX5_HAIRPIN_TX:
1024 		return REG_A;
1025 	case MLX5_METADATA_RX:
1026 		switch (config->dv_xmeta_en) {
1027 		case MLX5_XMETA_MODE_LEGACY:
1028 			return REG_B;
1029 		case MLX5_XMETA_MODE_META16:
1030 			return REG_C_0;
1031 		case MLX5_XMETA_MODE_META32:
1032 			return REG_C_1;
1033 		}
1034 		break;
1035 	case MLX5_METADATA_TX:
1036 		return REG_A;
1037 	case MLX5_METADATA_FDB:
1038 		switch (config->dv_xmeta_en) {
1039 		case MLX5_XMETA_MODE_LEGACY:
1040 			return REG_NON;
1041 		case MLX5_XMETA_MODE_META16:
1042 			return REG_C_0;
1043 		case MLX5_XMETA_MODE_META32:
1044 			return REG_C_1;
1045 		}
1046 		break;
1047 	case MLX5_FLOW_MARK:
1048 		switch (config->dv_xmeta_en) {
1049 		case MLX5_XMETA_MODE_LEGACY:
1050 			return REG_NON;
1051 		case MLX5_XMETA_MODE_META16:
1052 			return REG_C_1;
1053 		case MLX5_XMETA_MODE_META32:
1054 			return REG_C_0;
1055 		}
1056 		break;
1057 	case MLX5_MTR_ID:
1058 		/*
1059 		 * If meter color and meter id share one register, flow match
1060 		 * should use the meter color register for match.
1061 		 */
1062 		if (priv->mtr_reg_share)
1063 			return priv->mtr_color_reg;
1064 		else
1065 			return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
1066 			       REG_C_3;
1067 	case MLX5_MTR_COLOR:
1068 	case MLX5_ASO_FLOW_HIT:
1069 	case MLX5_ASO_CONNTRACK:
1070 	case MLX5_SAMPLE_ID:
1071 		/* All features use the same REG_C. */
1072 		MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
1073 		return priv->mtr_color_reg;
1074 	case MLX5_COPY_MARK:
1075 		/*
1076 		 * Metadata COPY_MARK register using is in meter suffix sub
1077 		 * flow while with meter. It's safe to share the same register.
1078 		 */
1079 		return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
1080 	case MLX5_APP_TAG:
1081 		/*
1082 		 * If meter is enable, it will engage the register for color
1083 		 * match and flow match. If meter color match is not using the
1084 		 * REG_C_2, need to skip the REG_C_x be used by meter color
1085 		 * match.
1086 		 * If meter is disable, free to use all available registers.
1087 		 */
1088 		start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
1089 			    (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
1090 		skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
1091 		if (id > (uint32_t)(REG_C_7 - start_reg))
1092 			return rte_flow_error_set(error, EINVAL,
1093 						  RTE_FLOW_ERROR_TYPE_ITEM,
1094 						  NULL, "invalid tag id");
1095 		if (priv->sh->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
1096 			return rte_flow_error_set(error, ENOTSUP,
1097 						  RTE_FLOW_ERROR_TYPE_ITEM,
1098 						  NULL, "unsupported tag id");
1099 		/*
1100 		 * This case means meter is using the REG_C_x great than 2.
1101 		 * Take care not to conflict with meter color REG_C_x.
1102 		 * If the available index REG_C_y >= REG_C_x, skip the
1103 		 * color register.
1104 		 */
1105 		if (skip_mtr_reg && priv->sh->flow_mreg_c
1106 		    [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
1107 			if (id >= (uint32_t)(REG_C_7 - start_reg))
1108 				return rte_flow_error_set(error, EINVAL,
1109 						       RTE_FLOW_ERROR_TYPE_ITEM,
1110 							NULL, "invalid tag id");
1111 			if (priv->sh->flow_mreg_c
1112 			    [id + 1 + start_reg - REG_C_0] != REG_NON)
1113 				return priv->sh->flow_mreg_c
1114 					       [id + 1 + start_reg - REG_C_0];
1115 			return rte_flow_error_set(error, ENOTSUP,
1116 						  RTE_FLOW_ERROR_TYPE_ITEM,
1117 						  NULL, "unsupported tag id");
1118 		}
1119 		return priv->sh->flow_mreg_c[id + start_reg - REG_C_0];
1120 	}
1121 	MLX5_ASSERT(false);
1122 	return rte_flow_error_set(error, EINVAL,
1123 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
1124 				  NULL, "invalid feature name");
1125 }
1126 
1127 /**
1128  * Check extensive flow metadata register support.
1129  *
1130  * @param dev
1131  *   Pointer to rte_eth_dev structure.
1132  *
1133  * @return
1134  *   True if device supports extensive flow metadata register, otherwise false.
1135  */
1136 bool
1137 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
1138 {
1139 	struct mlx5_priv *priv = dev->data->dev_private;
1140 
1141 	/*
1142 	 * Having available reg_c can be regarded inclusively as supporting
1143 	 * extensive flow metadata register, which could mean,
1144 	 * - metadata register copy action by modify header.
1145 	 * - 16 modify header actions is supported.
1146 	 * - reg_c's are preserved across different domain (FDB and NIC) on
1147 	 *   packet loopback by flow lookup miss.
1148 	 */
1149 	return priv->sh->flow_mreg_c[2] != REG_NON;
1150 }
1151 
1152 /**
1153  * Get the lowest priority.
1154  *
1155  * @param[in] dev
1156  *   Pointer to the Ethernet device structure.
1157  * @param[in] attributes
1158  *   Pointer to device flow rule attributes.
1159  *
1160  * @return
1161  *   The value of lowest priority of flow.
1162  */
1163 uint32_t
1164 mlx5_get_lowest_priority(struct rte_eth_dev *dev,
1165 			  const struct rte_flow_attr *attr)
1166 {
1167 	struct mlx5_priv *priv = dev->data->dev_private;
1168 
1169 	if (!attr->group && !attr->transfer)
1170 		return priv->sh->flow_max_priority - 2;
1171 	return MLX5_NON_ROOT_FLOW_MAX_PRIO - 1;
1172 }
1173 
1174 /**
1175  * Calculate matcher priority of the flow.
1176  *
1177  * @param[in] dev
1178  *   Pointer to the Ethernet device structure.
1179  * @param[in] attr
1180  *   Pointer to device flow rule attributes.
1181  * @param[in] subpriority
1182  *   The priority based on the items.
1183  * @param[in] external
1184  *   Flow is user flow.
1185  * @return
1186  *   The matcher priority of the flow.
1187  */
1188 uint16_t
1189 mlx5_get_matcher_priority(struct rte_eth_dev *dev,
1190 			  const struct rte_flow_attr *attr,
1191 			  uint32_t subpriority, bool external)
1192 {
1193 	uint16_t priority = (uint16_t)attr->priority;
1194 	struct mlx5_priv *priv = dev->data->dev_private;
1195 
1196 	if (!attr->group && !attr->transfer) {
1197 		if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)
1198 			priority = priv->sh->flow_max_priority - 1;
1199 		return mlx5_os_flow_adjust_priority(dev, priority, subpriority);
1200 	} else if (!external && attr->transfer && attr->group == 0 &&
1201 		   attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR) {
1202 		return (priv->sh->flow_max_priority - 1) * 3;
1203 	}
1204 	if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)
1205 		priority = MLX5_NON_ROOT_FLOW_MAX_PRIO;
1206 	return priority * 3 + subpriority;
1207 }
1208 
1209 /**
1210  * Verify the @p item specifications (spec, last, mask) are compatible with the
1211  * NIC capabilities.
1212  *
1213  * @param[in] item
1214  *   Item specification.
1215  * @param[in] mask
1216  *   @p item->mask or flow default bit-masks.
1217  * @param[in] nic_mask
1218  *   Bit-masks covering supported fields by the NIC to compare with user mask.
1219  * @param[in] size
1220  *   Bit-masks size in bytes.
1221  * @param[in] range_accepted
1222  *   True if range of values is accepted for specific fields, false otherwise.
1223  * @param[out] error
1224  *   Pointer to error structure.
1225  *
1226  * @return
1227  *   0 on success, a negative errno value otherwise and rte_errno is set.
1228  */
1229 int
1230 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
1231 			  const uint8_t *mask,
1232 			  const uint8_t *nic_mask,
1233 			  unsigned int size,
1234 			  bool range_accepted,
1235 			  struct rte_flow_error *error)
1236 {
1237 	unsigned int i;
1238 
1239 	MLX5_ASSERT(nic_mask);
1240 	for (i = 0; i < size; ++i)
1241 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
1242 			return rte_flow_error_set(error, ENOTSUP,
1243 						  RTE_FLOW_ERROR_TYPE_ITEM,
1244 						  item,
1245 						  "mask enables non supported"
1246 						  " bits");
1247 	if (!item->spec && (item->mask || item->last))
1248 		return rte_flow_error_set(error, EINVAL,
1249 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1250 					  "mask/last without a spec is not"
1251 					  " supported");
1252 	if (item->spec && item->last && !range_accepted) {
1253 		uint8_t spec[size];
1254 		uint8_t last[size];
1255 		unsigned int i;
1256 		int ret;
1257 
1258 		for (i = 0; i < size; ++i) {
1259 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
1260 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
1261 		}
1262 		ret = memcmp(spec, last, size);
1263 		if (ret != 0)
1264 			return rte_flow_error_set(error, EINVAL,
1265 						  RTE_FLOW_ERROR_TYPE_ITEM,
1266 						  item,
1267 						  "range is not valid");
1268 	}
1269 	return 0;
1270 }
1271 
1272 /**
1273  * Adjust the hash fields according to the @p flow information.
1274  *
1275  * @param[in] dev_flow.
1276  *   Pointer to the mlx5_flow.
1277  * @param[in] tunnel
1278  *   1 when the hash field is for a tunnel item.
1279  * @param[in] layer_types
1280  *   RTE_ETH_RSS_* types.
1281  * @param[in] hash_fields
1282  *   Item hash fields.
1283  *
1284  * @return
1285  *   The hash fields that should be used.
1286  */
1287 uint64_t
1288 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
1289 			    int tunnel __rte_unused, uint64_t layer_types,
1290 			    uint64_t hash_fields)
1291 {
1292 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1293 	int rss_request_inner = rss_desc->level >= 2;
1294 
1295 	/* Check RSS hash level for tunnel. */
1296 	if (tunnel && rss_request_inner)
1297 		hash_fields |= IBV_RX_HASH_INNER;
1298 	else if (tunnel || rss_request_inner)
1299 		return 0;
1300 #endif
1301 	/* Check if requested layer matches RSS hash fields. */
1302 	if (!(rss_desc->types & layer_types))
1303 		return 0;
1304 	return hash_fields;
1305 }
1306 
1307 /**
1308  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
1309  * if several tunnel rules are used on this queue, the tunnel ptype will be
1310  * cleared.
1311  *
1312  * @param rxq_ctrl
1313  *   Rx queue to update.
1314  */
1315 static void
1316 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
1317 {
1318 	unsigned int i;
1319 	uint32_t tunnel_ptype = 0;
1320 
1321 	/* Look up for the ptype to use. */
1322 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
1323 		if (!rxq_ctrl->flow_tunnels_n[i])
1324 			continue;
1325 		if (!tunnel_ptype) {
1326 			tunnel_ptype = tunnels_info[i].ptype;
1327 		} else {
1328 			tunnel_ptype = 0;
1329 			break;
1330 		}
1331 	}
1332 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
1333 }
1334 
1335 /**
1336  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the device
1337  * flow.
1338  *
1339  * @param[in] dev
1340  *   Pointer to the Ethernet device structure.
1341  * @param[in] dev_handle
1342  *   Pointer to device flow handle structure.
1343  */
1344 void
1345 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
1346 		       struct mlx5_flow_handle *dev_handle)
1347 {
1348 	struct mlx5_priv *priv = dev->data->dev_private;
1349 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1350 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1351 	unsigned int i;
1352 
1353 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1354 		struct mlx5_hrxq *hrxq;
1355 
1356 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1357 			      dev_handle->rix_hrxq);
1358 		if (hrxq)
1359 			ind_tbl = hrxq->ind_table;
1360 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1361 		struct mlx5_shared_action_rss *shared_rss;
1362 
1363 		shared_rss = mlx5_ipool_get
1364 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1365 			 dev_handle->rix_srss);
1366 		if (shared_rss)
1367 			ind_tbl = shared_rss->ind_tbl;
1368 	}
1369 	if (!ind_tbl)
1370 		return;
1371 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1372 		int idx = ind_tbl->queues[i];
1373 		struct mlx5_rxq_ctrl *rxq_ctrl = mlx5_rxq_ctrl_get(dev, idx);
1374 
1375 		MLX5_ASSERT(rxq_ctrl != NULL);
1376 		if (rxq_ctrl == NULL)
1377 			continue;
1378 		/*
1379 		 * To support metadata register copy on Tx loopback,
1380 		 * this must be always enabled (metadata may arive
1381 		 * from other port - not from local flows only.
1382 		 */
1383 		if (tunnel) {
1384 			unsigned int j;
1385 
1386 			/* Increase the counter matching the flow. */
1387 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1388 				if ((tunnels_info[j].tunnel &
1389 				     dev_handle->layers) ==
1390 				    tunnels_info[j].tunnel) {
1391 					rxq_ctrl->flow_tunnels_n[j]++;
1392 					break;
1393 				}
1394 			}
1395 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1396 		}
1397 	}
1398 }
1399 
1400 static void
1401 flow_rxq_mark_flag_set(struct rte_eth_dev *dev)
1402 {
1403 	struct mlx5_priv *priv = dev->data->dev_private;
1404 	struct mlx5_rxq_ctrl *rxq_ctrl;
1405 
1406 	if (priv->mark_enabled)
1407 		return;
1408 	LIST_FOREACH(rxq_ctrl, &priv->rxqsctrl, next) {
1409 		rxq_ctrl->rxq.mark = 1;
1410 	}
1411 	priv->mark_enabled = 1;
1412 }
1413 
1414 /**
1415  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
1416  *
1417  * @param[in] dev
1418  *   Pointer to the Ethernet device structure.
1419  * @param[in] flow
1420  *   Pointer to flow structure.
1421  */
1422 static void
1423 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
1424 {
1425 	struct mlx5_priv *priv = dev->data->dev_private;
1426 	uint32_t handle_idx;
1427 	struct mlx5_flow_handle *dev_handle;
1428 	struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace();
1429 
1430 	MLX5_ASSERT(wks);
1431 	if (wks->mark)
1432 		flow_rxq_mark_flag_set(dev);
1433 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1434 		       handle_idx, dev_handle, next)
1435 		flow_drv_rxq_flags_set(dev, dev_handle);
1436 }
1437 
1438 /**
1439  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1440  * device flow if no other flow uses it with the same kind of request.
1441  *
1442  * @param dev
1443  *   Pointer to Ethernet device.
1444  * @param[in] dev_handle
1445  *   Pointer to the device flow handle structure.
1446  */
1447 static void
1448 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1449 			struct mlx5_flow_handle *dev_handle)
1450 {
1451 	struct mlx5_priv *priv = dev->data->dev_private;
1452 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1453 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1454 	unsigned int i;
1455 
1456 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1457 		struct mlx5_hrxq *hrxq;
1458 
1459 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1460 			      dev_handle->rix_hrxq);
1461 		if (hrxq)
1462 			ind_tbl = hrxq->ind_table;
1463 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1464 		struct mlx5_shared_action_rss *shared_rss;
1465 
1466 		shared_rss = mlx5_ipool_get
1467 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1468 			 dev_handle->rix_srss);
1469 		if (shared_rss)
1470 			ind_tbl = shared_rss->ind_tbl;
1471 	}
1472 	if (!ind_tbl)
1473 		return;
1474 	MLX5_ASSERT(dev->data->dev_started);
1475 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1476 		int idx = ind_tbl->queues[i];
1477 		struct mlx5_rxq_ctrl *rxq_ctrl = mlx5_rxq_ctrl_get(dev, idx);
1478 
1479 		MLX5_ASSERT(rxq_ctrl != NULL);
1480 		if (rxq_ctrl == NULL)
1481 			continue;
1482 		if (tunnel) {
1483 			unsigned int j;
1484 
1485 			/* Decrease the counter matching the flow. */
1486 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1487 				if ((tunnels_info[j].tunnel &
1488 				     dev_handle->layers) ==
1489 				    tunnels_info[j].tunnel) {
1490 					rxq_ctrl->flow_tunnels_n[j]--;
1491 					break;
1492 				}
1493 			}
1494 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1495 		}
1496 	}
1497 }
1498 
1499 /**
1500  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1501  * @p flow if no other flow uses it with the same kind of request.
1502  *
1503  * @param dev
1504  *   Pointer to Ethernet device.
1505  * @param[in] flow
1506  *   Pointer to the flow.
1507  */
1508 static void
1509 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1510 {
1511 	struct mlx5_priv *priv = dev->data->dev_private;
1512 	uint32_t handle_idx;
1513 	struct mlx5_flow_handle *dev_handle;
1514 
1515 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1516 		       handle_idx, dev_handle, next)
1517 		flow_drv_rxq_flags_trim(dev, dev_handle);
1518 }
1519 
1520 /**
1521  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1522  *
1523  * @param dev
1524  *   Pointer to Ethernet device.
1525  */
1526 static void
1527 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1528 {
1529 	struct mlx5_priv *priv = dev->data->dev_private;
1530 	unsigned int i;
1531 
1532 	for (i = 0; i != priv->rxqs_n; ++i) {
1533 		struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, i);
1534 		unsigned int j;
1535 
1536 		if (rxq == NULL || rxq->ctrl == NULL)
1537 			continue;
1538 		rxq->ctrl->rxq.mark = 0;
1539 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1540 			rxq->ctrl->flow_tunnels_n[j] = 0;
1541 		rxq->ctrl->rxq.tunnel = 0;
1542 	}
1543 	priv->mark_enabled = 0;
1544 }
1545 
1546 /**
1547  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1548  *
1549  * @param[in] dev
1550  *   Pointer to the Ethernet device structure.
1551  */
1552 void
1553 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1554 {
1555 	struct mlx5_priv *priv = dev->data->dev_private;
1556 	unsigned int i;
1557 
1558 	for (i = 0; i != priv->rxqs_n; ++i) {
1559 		struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, i);
1560 		struct mlx5_rxq_data *data;
1561 
1562 		if (rxq == NULL || rxq->ctrl == NULL)
1563 			continue;
1564 		data = &rxq->ctrl->rxq;
1565 		if (!rte_flow_dynf_metadata_avail()) {
1566 			data->dynf_meta = 0;
1567 			data->flow_meta_mask = 0;
1568 			data->flow_meta_offset = -1;
1569 			data->flow_meta_port_mask = 0;
1570 		} else {
1571 			data->dynf_meta = 1;
1572 			data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1573 			data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1574 			data->flow_meta_port_mask = priv->sh->dv_meta_mask;
1575 		}
1576 	}
1577 }
1578 
1579 /*
1580  * return a pointer to the desired action in the list of actions.
1581  *
1582  * @param[in] actions
1583  *   The list of actions to search the action in.
1584  * @param[in] action
1585  *   The action to find.
1586  *
1587  * @return
1588  *   Pointer to the action in the list, if found. NULL otherwise.
1589  */
1590 const struct rte_flow_action *
1591 mlx5_flow_find_action(const struct rte_flow_action *actions,
1592 		      enum rte_flow_action_type action)
1593 {
1594 	if (actions == NULL)
1595 		return NULL;
1596 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1597 		if (actions->type == action)
1598 			return actions;
1599 	return NULL;
1600 }
1601 
1602 /*
1603  * Validate the flag action.
1604  *
1605  * @param[in] action_flags
1606  *   Bit-fields that holds the actions detected until now.
1607  * @param[in] attr
1608  *   Attributes of flow that includes this action.
1609  * @param[out] error
1610  *   Pointer to error structure.
1611  *
1612  * @return
1613  *   0 on success, a negative errno value otherwise and rte_errno is set.
1614  */
1615 int
1616 mlx5_flow_validate_action_flag(uint64_t action_flags,
1617 			       const struct rte_flow_attr *attr,
1618 			       struct rte_flow_error *error)
1619 {
1620 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1621 		return rte_flow_error_set(error, EINVAL,
1622 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1623 					  "can't mark and flag in same flow");
1624 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1625 		return rte_flow_error_set(error, EINVAL,
1626 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1627 					  "can't have 2 flag"
1628 					  " actions in same flow");
1629 	if (attr->egress)
1630 		return rte_flow_error_set(error, ENOTSUP,
1631 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1632 					  "flag action not supported for "
1633 					  "egress");
1634 	return 0;
1635 }
1636 
1637 /*
1638  * Validate the mark action.
1639  *
1640  * @param[in] action
1641  *   Pointer to the queue action.
1642  * @param[in] action_flags
1643  *   Bit-fields that holds the actions detected until now.
1644  * @param[in] attr
1645  *   Attributes of flow that includes this action.
1646  * @param[out] error
1647  *   Pointer to error structure.
1648  *
1649  * @return
1650  *   0 on success, a negative errno value otherwise and rte_errno is set.
1651  */
1652 int
1653 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1654 			       uint64_t action_flags,
1655 			       const struct rte_flow_attr *attr,
1656 			       struct rte_flow_error *error)
1657 {
1658 	const struct rte_flow_action_mark *mark = action->conf;
1659 
1660 	if (!mark)
1661 		return rte_flow_error_set(error, EINVAL,
1662 					  RTE_FLOW_ERROR_TYPE_ACTION,
1663 					  action,
1664 					  "configuration cannot be null");
1665 	if (mark->id >= MLX5_FLOW_MARK_MAX)
1666 		return rte_flow_error_set(error, EINVAL,
1667 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1668 					  &mark->id,
1669 					  "mark id must in 0 <= id < "
1670 					  RTE_STR(MLX5_FLOW_MARK_MAX));
1671 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1672 		return rte_flow_error_set(error, EINVAL,
1673 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1674 					  "can't flag and mark in same flow");
1675 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1676 		return rte_flow_error_set(error, EINVAL,
1677 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1678 					  "can't have 2 mark actions in same"
1679 					  " flow");
1680 	if (attr->egress)
1681 		return rte_flow_error_set(error, ENOTSUP,
1682 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1683 					  "mark action not supported for "
1684 					  "egress");
1685 	return 0;
1686 }
1687 
1688 /*
1689  * Validate the drop action.
1690  *
1691  * @param[in] action_flags
1692  *   Bit-fields that holds the actions detected until now.
1693  * @param[in] attr
1694  *   Attributes of flow that includes this action.
1695  * @param[out] error
1696  *   Pointer to error structure.
1697  *
1698  * @return
1699  *   0 on success, a negative errno value otherwise and rte_errno is set.
1700  */
1701 int
1702 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1703 			       const struct rte_flow_attr *attr,
1704 			       struct rte_flow_error *error)
1705 {
1706 	if (attr->egress)
1707 		return rte_flow_error_set(error, ENOTSUP,
1708 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1709 					  "drop action not supported for "
1710 					  "egress");
1711 	return 0;
1712 }
1713 
1714 /*
1715  * Validate the queue action.
1716  *
1717  * @param[in] action
1718  *   Pointer to the queue action.
1719  * @param[in] action_flags
1720  *   Bit-fields that holds the actions detected until now.
1721  * @param[in] dev
1722  *   Pointer to the Ethernet device structure.
1723  * @param[in] attr
1724  *   Attributes of flow that includes this action.
1725  * @param[out] error
1726  *   Pointer to error structure.
1727  *
1728  * @return
1729  *   0 on success, a negative errno value otherwise and rte_errno is set.
1730  */
1731 int
1732 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1733 				uint64_t action_flags,
1734 				struct rte_eth_dev *dev,
1735 				const struct rte_flow_attr *attr,
1736 				struct rte_flow_error *error)
1737 {
1738 	struct mlx5_priv *priv = dev->data->dev_private;
1739 	const struct rte_flow_action_queue *queue = action->conf;
1740 
1741 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1742 		return rte_flow_error_set(error, EINVAL,
1743 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1744 					  "can't have 2 fate actions in"
1745 					  " same flow");
1746 	if (!priv->rxqs_n)
1747 		return rte_flow_error_set(error, EINVAL,
1748 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1749 					  NULL, "No Rx queues configured");
1750 	if (queue->index >= priv->rxqs_n)
1751 		return rte_flow_error_set(error, EINVAL,
1752 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1753 					  &queue->index,
1754 					  "queue index out of range");
1755 	if (mlx5_rxq_get(dev, queue->index) == NULL)
1756 		return rte_flow_error_set(error, EINVAL,
1757 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1758 					  &queue->index,
1759 					  "queue is not configured");
1760 	if (attr->egress)
1761 		return rte_flow_error_set(error, ENOTSUP,
1762 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1763 					  "queue action not supported for "
1764 					  "egress");
1765 	return 0;
1766 }
1767 
1768 /**
1769  * Validate queue numbers for device RSS.
1770  *
1771  * @param[in] dev
1772  *   Configured device.
1773  * @param[in] queues
1774  *   Array of queue numbers.
1775  * @param[in] queues_n
1776  *   Size of the @p queues array.
1777  * @param[out] error
1778  *   On error, filled with a textual error description.
1779  * @param[out] queue
1780  *   On error, filled with an offending queue index in @p queues array.
1781  *
1782  * @return
1783  *   0 on success, a negative errno code on error.
1784  */
1785 static int
1786 mlx5_validate_rss_queues(struct rte_eth_dev *dev,
1787 			 const uint16_t *queues, uint32_t queues_n,
1788 			 const char **error, uint32_t *queue_idx)
1789 {
1790 	const struct mlx5_priv *priv = dev->data->dev_private;
1791 	enum mlx5_rxq_type rxq_type = MLX5_RXQ_TYPE_UNDEFINED;
1792 	uint32_t i;
1793 
1794 	for (i = 0; i != queues_n; ++i) {
1795 		struct mlx5_rxq_ctrl *rxq_ctrl = mlx5_rxq_ctrl_get(dev,
1796 								   queues[i]);
1797 
1798 		if (queues[i] >= priv->rxqs_n) {
1799 			*error = "queue index out of range";
1800 			*queue_idx = i;
1801 			return -EINVAL;
1802 		}
1803 		if (rxq_ctrl == NULL) {
1804 			*error =  "queue is not configured";
1805 			*queue_idx = i;
1806 			return -EINVAL;
1807 		}
1808 		if (i == 0)
1809 			rxq_type = rxq_ctrl->type;
1810 		if (rxq_type != rxq_ctrl->type) {
1811 			*error = "combining hairpin and regular RSS queues is not supported";
1812 			*queue_idx = i;
1813 			return -ENOTSUP;
1814 		}
1815 	}
1816 	return 0;
1817 }
1818 
1819 /*
1820  * Validate the rss action.
1821  *
1822  * @param[in] dev
1823  *   Pointer to the Ethernet device structure.
1824  * @param[in] action
1825  *   Pointer to the queue action.
1826  * @param[out] error
1827  *   Pointer to error structure.
1828  *
1829  * @return
1830  *   0 on success, a negative errno value otherwise and rte_errno is set.
1831  */
1832 int
1833 mlx5_validate_action_rss(struct rte_eth_dev *dev,
1834 			 const struct rte_flow_action *action,
1835 			 struct rte_flow_error *error)
1836 {
1837 	struct mlx5_priv *priv = dev->data->dev_private;
1838 	const struct rte_flow_action_rss *rss = action->conf;
1839 	int ret;
1840 	const char *message;
1841 	uint32_t queue_idx;
1842 
1843 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1844 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1845 		return rte_flow_error_set(error, ENOTSUP,
1846 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1847 					  &rss->func,
1848 					  "RSS hash function not supported");
1849 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1850 	if (rss->level > 2)
1851 #else
1852 	if (rss->level > 1)
1853 #endif
1854 		return rte_flow_error_set(error, ENOTSUP,
1855 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1856 					  &rss->level,
1857 					  "tunnel RSS is not supported");
1858 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
1859 	if (rss->key_len == 0 && rss->key != NULL)
1860 		return rte_flow_error_set(error, ENOTSUP,
1861 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1862 					  &rss->key_len,
1863 					  "RSS hash key length 0");
1864 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1865 		return rte_flow_error_set(error, ENOTSUP,
1866 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1867 					  &rss->key_len,
1868 					  "RSS hash key too small");
1869 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1870 		return rte_flow_error_set(error, ENOTSUP,
1871 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1872 					  &rss->key_len,
1873 					  "RSS hash key too large");
1874 	if (rss->queue_num > priv->sh->dev_cap.ind_table_max_size)
1875 		return rte_flow_error_set(error, ENOTSUP,
1876 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1877 					  &rss->queue_num,
1878 					  "number of queues too large");
1879 	if (rss->types & MLX5_RSS_HF_MASK)
1880 		return rte_flow_error_set(error, ENOTSUP,
1881 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1882 					  &rss->types,
1883 					  "some RSS protocols are not"
1884 					  " supported");
1885 	if ((rss->types & (RTE_ETH_RSS_L3_SRC_ONLY | RTE_ETH_RSS_L3_DST_ONLY)) &&
1886 	    !(rss->types & RTE_ETH_RSS_IP))
1887 		return rte_flow_error_set(error, EINVAL,
1888 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1889 					  "L3 partial RSS requested but L3 RSS"
1890 					  " type not specified");
1891 	if ((rss->types & (RTE_ETH_RSS_L4_SRC_ONLY | RTE_ETH_RSS_L4_DST_ONLY)) &&
1892 	    !(rss->types & (RTE_ETH_RSS_UDP | RTE_ETH_RSS_TCP)))
1893 		return rte_flow_error_set(error, EINVAL,
1894 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1895 					  "L4 partial RSS requested but L4 RSS"
1896 					  " type not specified");
1897 	if (!priv->rxqs_n)
1898 		return rte_flow_error_set(error, EINVAL,
1899 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1900 					  NULL, "No Rx queues configured");
1901 	if (!rss->queue_num)
1902 		return rte_flow_error_set(error, EINVAL,
1903 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1904 					  NULL, "No queues configured");
1905 	ret = mlx5_validate_rss_queues(dev, rss->queue, rss->queue_num,
1906 				       &message, &queue_idx);
1907 	if (ret != 0) {
1908 		return rte_flow_error_set(error, -ret,
1909 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1910 					  &rss->queue[queue_idx], message);
1911 	}
1912 	return 0;
1913 }
1914 
1915 /*
1916  * Validate the rss action.
1917  *
1918  * @param[in] action
1919  *   Pointer to the queue action.
1920  * @param[in] action_flags
1921  *   Bit-fields that holds the actions detected until now.
1922  * @param[in] dev
1923  *   Pointer to the Ethernet device structure.
1924  * @param[in] attr
1925  *   Attributes of flow that includes this action.
1926  * @param[in] item_flags
1927  *   Items that were detected.
1928  * @param[out] error
1929  *   Pointer to error structure.
1930  *
1931  * @return
1932  *   0 on success, a negative errno value otherwise and rte_errno is set.
1933  */
1934 int
1935 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1936 			      uint64_t action_flags,
1937 			      struct rte_eth_dev *dev,
1938 			      const struct rte_flow_attr *attr,
1939 			      uint64_t item_flags,
1940 			      struct rte_flow_error *error)
1941 {
1942 	const struct rte_flow_action_rss *rss = action->conf;
1943 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1944 	int ret;
1945 
1946 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1947 		return rte_flow_error_set(error, EINVAL,
1948 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1949 					  "can't have 2 fate actions"
1950 					  " in same flow");
1951 	ret = mlx5_validate_action_rss(dev, action, error);
1952 	if (ret)
1953 		return ret;
1954 	if (attr->egress)
1955 		return rte_flow_error_set(error, ENOTSUP,
1956 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1957 					  "rss action not supported for "
1958 					  "egress");
1959 	if (rss->level > 1 && !tunnel)
1960 		return rte_flow_error_set(error, EINVAL,
1961 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1962 					  "inner RSS is not supported for "
1963 					  "non-tunnel flows");
1964 	if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1965 	    !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1966 		return rte_flow_error_set(error, EINVAL,
1967 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1968 					  "RSS on eCPRI is not supported now");
1969 	}
1970 	if ((item_flags & MLX5_FLOW_LAYER_MPLS) &&
1971 	    !(item_flags &
1972 	      (MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_L3)) &&
1973 	    rss->level > 1)
1974 		return rte_flow_error_set(error, EINVAL,
1975 					  RTE_FLOW_ERROR_TYPE_ITEM, NULL,
1976 					  "MPLS inner RSS needs to specify inner L2/L3 items after MPLS in pattern");
1977 	return 0;
1978 }
1979 
1980 /*
1981  * Validate the default miss action.
1982  *
1983  * @param[in] action_flags
1984  *   Bit-fields that holds the actions detected until now.
1985  * @param[out] error
1986  *   Pointer to error structure.
1987  *
1988  * @return
1989  *   0 on success, a negative errno value otherwise and rte_errno is set.
1990  */
1991 int
1992 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
1993 				const struct rte_flow_attr *attr,
1994 				struct rte_flow_error *error)
1995 {
1996 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1997 		return rte_flow_error_set(error, EINVAL,
1998 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1999 					  "can't have 2 fate actions in"
2000 					  " same flow");
2001 	if (attr->egress)
2002 		return rte_flow_error_set(error, ENOTSUP,
2003 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
2004 					  "default miss action not supported "
2005 					  "for egress");
2006 	if (attr->group)
2007 		return rte_flow_error_set(error, ENOTSUP,
2008 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
2009 					  "only group 0 is supported");
2010 	if (attr->transfer)
2011 		return rte_flow_error_set(error, ENOTSUP,
2012 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
2013 					  NULL, "transfer is not supported");
2014 	return 0;
2015 }
2016 
2017 /*
2018  * Validate the count action.
2019  *
2020  * @param[in] dev
2021  *   Pointer to the Ethernet device structure.
2022  * @param[in] attr
2023  *   Attributes of flow that includes this action.
2024  * @param[out] error
2025  *   Pointer to error structure.
2026  *
2027  * @return
2028  *   0 on success, a negative errno value otherwise and rte_errno is set.
2029  */
2030 int
2031 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
2032 				const struct rte_flow_attr *attr,
2033 				struct rte_flow_error *error)
2034 {
2035 	if (attr->egress)
2036 		return rte_flow_error_set(error, ENOTSUP,
2037 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
2038 					  "count action not supported for "
2039 					  "egress");
2040 	return 0;
2041 }
2042 
2043 /*
2044  * Validate the ASO CT action.
2045  *
2046  * @param[in] dev
2047  *   Pointer to the Ethernet device structure.
2048  * @param[in] conntrack
2049  *   Pointer to the CT action profile.
2050  * @param[out] error
2051  *   Pointer to error structure.
2052  *
2053  * @return
2054  *   0 on success, a negative errno value otherwise and rte_errno is set.
2055  */
2056 int
2057 mlx5_validate_action_ct(struct rte_eth_dev *dev,
2058 			const struct rte_flow_action_conntrack *conntrack,
2059 			struct rte_flow_error *error)
2060 {
2061 	RTE_SET_USED(dev);
2062 
2063 	if (conntrack->state > RTE_FLOW_CONNTRACK_STATE_TIME_WAIT)
2064 		return rte_flow_error_set(error, EINVAL,
2065 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
2066 					  "Invalid CT state");
2067 	if (conntrack->last_index > RTE_FLOW_CONNTRACK_FLAG_RST)
2068 		return rte_flow_error_set(error, EINVAL,
2069 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
2070 					  "Invalid last TCP packet flag");
2071 	return 0;
2072 }
2073 
2074 /**
2075  * Verify the @p attributes will be correctly understood by the NIC and store
2076  * them in the @p flow if everything is correct.
2077  *
2078  * @param[in] dev
2079  *   Pointer to the Ethernet device structure.
2080  * @param[in] attributes
2081  *   Pointer to flow attributes
2082  * @param[out] error
2083  *   Pointer to error structure.
2084  *
2085  * @return
2086  *   0 on success, a negative errno value otherwise and rte_errno is set.
2087  */
2088 int
2089 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
2090 			      const struct rte_flow_attr *attributes,
2091 			      struct rte_flow_error *error)
2092 {
2093 	struct mlx5_priv *priv = dev->data->dev_private;
2094 	uint32_t priority_max = priv->sh->flow_max_priority - 1;
2095 
2096 	if (attributes->group)
2097 		return rte_flow_error_set(error, ENOTSUP,
2098 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
2099 					  NULL, "groups is not supported");
2100 	if (attributes->priority != MLX5_FLOW_LOWEST_PRIO_INDICATOR &&
2101 	    attributes->priority >= priority_max)
2102 		return rte_flow_error_set(error, ENOTSUP,
2103 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
2104 					  NULL, "priority out of range");
2105 	if (attributes->egress)
2106 		return rte_flow_error_set(error, ENOTSUP,
2107 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
2108 					  "egress is not supported");
2109 	if (attributes->transfer && !priv->sh->config.dv_esw_en)
2110 		return rte_flow_error_set(error, ENOTSUP,
2111 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
2112 					  NULL, "transfer is not supported");
2113 	if (!attributes->ingress)
2114 		return rte_flow_error_set(error, EINVAL,
2115 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
2116 					  NULL,
2117 					  "ingress attribute is mandatory");
2118 	return 0;
2119 }
2120 
2121 /**
2122  * Validate ICMP6 item.
2123  *
2124  * @param[in] item
2125  *   Item specification.
2126  * @param[in] item_flags
2127  *   Bit-fields that holds the items detected until now.
2128  * @param[in] ext_vlan_sup
2129  *   Whether extended VLAN features are supported or not.
2130  * @param[out] error
2131  *   Pointer to error structure.
2132  *
2133  * @return
2134  *   0 on success, a negative errno value otherwise and rte_errno is set.
2135  */
2136 int
2137 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
2138 			       uint64_t item_flags,
2139 			       uint8_t target_protocol,
2140 			       struct rte_flow_error *error)
2141 {
2142 	const struct rte_flow_item_icmp6 *mask = item->mask;
2143 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2144 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
2145 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
2146 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2147 				      MLX5_FLOW_LAYER_OUTER_L4;
2148 	int ret;
2149 
2150 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
2151 		return rte_flow_error_set(error, EINVAL,
2152 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2153 					  "protocol filtering not compatible"
2154 					  " with ICMP6 layer");
2155 	if (!(item_flags & l3m))
2156 		return rte_flow_error_set(error, EINVAL,
2157 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2158 					  "IPv6 is mandatory to filter on"
2159 					  " ICMP6");
2160 	if (item_flags & l4m)
2161 		return rte_flow_error_set(error, EINVAL,
2162 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2163 					  "multiple L4 layers not supported");
2164 	if (!mask)
2165 		mask = &rte_flow_item_icmp6_mask;
2166 	ret = mlx5_flow_item_acceptable
2167 		(item, (const uint8_t *)mask,
2168 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
2169 		 sizeof(struct rte_flow_item_icmp6),
2170 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2171 	if (ret < 0)
2172 		return ret;
2173 	return 0;
2174 }
2175 
2176 /**
2177  * Validate ICMP item.
2178  *
2179  * @param[in] item
2180  *   Item specification.
2181  * @param[in] item_flags
2182  *   Bit-fields that holds the items detected until now.
2183  * @param[out] error
2184  *   Pointer to error structure.
2185  *
2186  * @return
2187  *   0 on success, a negative errno value otherwise and rte_errno is set.
2188  */
2189 int
2190 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
2191 			     uint64_t item_flags,
2192 			     uint8_t target_protocol,
2193 			     struct rte_flow_error *error)
2194 {
2195 	const struct rte_flow_item_icmp *mask = item->mask;
2196 	const struct rte_flow_item_icmp nic_mask = {
2197 		.hdr.icmp_type = 0xff,
2198 		.hdr.icmp_code = 0xff,
2199 		.hdr.icmp_ident = RTE_BE16(0xffff),
2200 		.hdr.icmp_seq_nb = RTE_BE16(0xffff),
2201 	};
2202 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2203 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
2204 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
2205 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2206 				      MLX5_FLOW_LAYER_OUTER_L4;
2207 	int ret;
2208 
2209 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
2210 		return rte_flow_error_set(error, EINVAL,
2211 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2212 					  "protocol filtering not compatible"
2213 					  " with ICMP layer");
2214 	if (!(item_flags & l3m))
2215 		return rte_flow_error_set(error, EINVAL,
2216 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2217 					  "IPv4 is mandatory to filter"
2218 					  " on ICMP");
2219 	if (item_flags & l4m)
2220 		return rte_flow_error_set(error, EINVAL,
2221 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2222 					  "multiple L4 layers not supported");
2223 	if (!mask)
2224 		mask = &nic_mask;
2225 	ret = mlx5_flow_item_acceptable
2226 		(item, (const uint8_t *)mask,
2227 		 (const uint8_t *)&nic_mask,
2228 		 sizeof(struct rte_flow_item_icmp),
2229 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2230 	if (ret < 0)
2231 		return ret;
2232 	return 0;
2233 }
2234 
2235 /**
2236  * Validate Ethernet item.
2237  *
2238  * @param[in] item
2239  *   Item specification.
2240  * @param[in] item_flags
2241  *   Bit-fields that holds the items detected until now.
2242  * @param[out] error
2243  *   Pointer to error structure.
2244  *
2245  * @return
2246  *   0 on success, a negative errno value otherwise and rte_errno is set.
2247  */
2248 int
2249 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
2250 			    uint64_t item_flags, bool ext_vlan_sup,
2251 			    struct rte_flow_error *error)
2252 {
2253 	const struct rte_flow_item_eth *mask = item->mask;
2254 	const struct rte_flow_item_eth nic_mask = {
2255 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
2256 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
2257 		.type = RTE_BE16(0xffff),
2258 		.has_vlan = ext_vlan_sup ? 1 : 0,
2259 	};
2260 	int ret;
2261 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2262 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
2263 				       MLX5_FLOW_LAYER_OUTER_L2;
2264 
2265 	if (item_flags & ethm)
2266 		return rte_flow_error_set(error, ENOTSUP,
2267 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2268 					  "multiple L2 layers not supported");
2269 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
2270 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
2271 		return rte_flow_error_set(error, EINVAL,
2272 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2273 					  "L2 layer should not follow "
2274 					  "L3 layers");
2275 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
2276 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
2277 		return rte_flow_error_set(error, EINVAL,
2278 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2279 					  "L2 layer should not follow VLAN");
2280 	if (item_flags & MLX5_FLOW_LAYER_GTP)
2281 		return rte_flow_error_set(error, EINVAL,
2282 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2283 					  "L2 layer should not follow GTP");
2284 	if (!mask)
2285 		mask = &rte_flow_item_eth_mask;
2286 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2287 					(const uint8_t *)&nic_mask,
2288 					sizeof(struct rte_flow_item_eth),
2289 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2290 	return ret;
2291 }
2292 
2293 /**
2294  * Validate VLAN item.
2295  *
2296  * @param[in] item
2297  *   Item specification.
2298  * @param[in] item_flags
2299  *   Bit-fields that holds the items detected until now.
2300  * @param[in] dev
2301  *   Ethernet device flow is being created on.
2302  * @param[out] error
2303  *   Pointer to error structure.
2304  *
2305  * @return
2306  *   0 on success, a negative errno value otherwise and rte_errno is set.
2307  */
2308 int
2309 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
2310 			     uint64_t item_flags,
2311 			     struct rte_eth_dev *dev,
2312 			     struct rte_flow_error *error)
2313 {
2314 	const struct rte_flow_item_vlan *spec = item->spec;
2315 	const struct rte_flow_item_vlan *mask = item->mask;
2316 	const struct rte_flow_item_vlan nic_mask = {
2317 		.tci = RTE_BE16(UINT16_MAX),
2318 		.inner_type = RTE_BE16(UINT16_MAX),
2319 	};
2320 	uint16_t vlan_tag = 0;
2321 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2322 	int ret;
2323 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
2324 					MLX5_FLOW_LAYER_INNER_L4) :
2325 				       (MLX5_FLOW_LAYER_OUTER_L3 |
2326 					MLX5_FLOW_LAYER_OUTER_L4);
2327 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
2328 					MLX5_FLOW_LAYER_OUTER_VLAN;
2329 
2330 	if (item_flags & vlanm)
2331 		return rte_flow_error_set(error, EINVAL,
2332 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2333 					  "multiple VLAN layers not supported");
2334 	else if ((item_flags & l34m) != 0)
2335 		return rte_flow_error_set(error, EINVAL,
2336 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2337 					  "VLAN cannot follow L3/L4 layer");
2338 	if (!mask)
2339 		mask = &rte_flow_item_vlan_mask;
2340 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2341 					(const uint8_t *)&nic_mask,
2342 					sizeof(struct rte_flow_item_vlan),
2343 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2344 	if (ret)
2345 		return ret;
2346 	if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
2347 		struct mlx5_priv *priv = dev->data->dev_private;
2348 
2349 		if (priv->vmwa_context) {
2350 			/*
2351 			 * Non-NULL context means we have a virtual machine
2352 			 * and SR-IOV enabled, we have to create VLAN interface
2353 			 * to make hypervisor to setup E-Switch vport
2354 			 * context correctly. We avoid creating the multiple
2355 			 * VLAN interfaces, so we cannot support VLAN tag mask.
2356 			 */
2357 			return rte_flow_error_set(error, EINVAL,
2358 						  RTE_FLOW_ERROR_TYPE_ITEM,
2359 						  item,
2360 						  "VLAN tag mask is not"
2361 						  " supported in virtual"
2362 						  " environment");
2363 		}
2364 	}
2365 	if (spec) {
2366 		vlan_tag = spec->tci;
2367 		vlan_tag &= mask->tci;
2368 	}
2369 	/*
2370 	 * From verbs perspective an empty VLAN is equivalent
2371 	 * to a packet without VLAN layer.
2372 	 */
2373 	if (!vlan_tag)
2374 		return rte_flow_error_set(error, EINVAL,
2375 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
2376 					  item->spec,
2377 					  "VLAN cannot be empty");
2378 	return 0;
2379 }
2380 
2381 /**
2382  * Validate IPV4 item.
2383  *
2384  * @param[in] item
2385  *   Item specification.
2386  * @param[in] item_flags
2387  *   Bit-fields that holds the items detected until now.
2388  * @param[in] last_item
2389  *   Previous validated item in the pattern items.
2390  * @param[in] ether_type
2391  *   Type in the ethernet layer header (including dot1q).
2392  * @param[in] acc_mask
2393  *   Acceptable mask, if NULL default internal default mask
2394  *   will be used to check whether item fields are supported.
2395  * @param[in] range_accepted
2396  *   True if range of values is accepted for specific fields, false otherwise.
2397  * @param[out] error
2398  *   Pointer to error structure.
2399  *
2400  * @return
2401  *   0 on success, a negative errno value otherwise and rte_errno is set.
2402  */
2403 int
2404 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
2405 			     uint64_t item_flags,
2406 			     uint64_t last_item,
2407 			     uint16_t ether_type,
2408 			     const struct rte_flow_item_ipv4 *acc_mask,
2409 			     bool range_accepted,
2410 			     struct rte_flow_error *error)
2411 {
2412 	const struct rte_flow_item_ipv4 *mask = item->mask;
2413 	const struct rte_flow_item_ipv4 *spec = item->spec;
2414 	const struct rte_flow_item_ipv4 nic_mask = {
2415 		.hdr = {
2416 			.src_addr = RTE_BE32(0xffffffff),
2417 			.dst_addr = RTE_BE32(0xffffffff),
2418 			.type_of_service = 0xff,
2419 			.next_proto_id = 0xff,
2420 		},
2421 	};
2422 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2423 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2424 				      MLX5_FLOW_LAYER_OUTER_L3;
2425 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2426 				      MLX5_FLOW_LAYER_OUTER_L4;
2427 	int ret;
2428 	uint8_t next_proto = 0xFF;
2429 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2430 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2431 				  MLX5_FLOW_LAYER_INNER_VLAN);
2432 
2433 	if ((last_item & l2_vlan) && ether_type &&
2434 	    ether_type != RTE_ETHER_TYPE_IPV4)
2435 		return rte_flow_error_set(error, EINVAL,
2436 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2437 					  "IPv4 cannot follow L2/VLAN layer "
2438 					  "which ether type is not IPv4");
2439 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
2440 		if (mask && spec)
2441 			next_proto = mask->hdr.next_proto_id &
2442 				     spec->hdr.next_proto_id;
2443 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2444 			return rte_flow_error_set(error, EINVAL,
2445 						  RTE_FLOW_ERROR_TYPE_ITEM,
2446 						  item,
2447 						  "multiple tunnel "
2448 						  "not supported");
2449 	}
2450 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
2451 		return rte_flow_error_set(error, EINVAL,
2452 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2453 					  "wrong tunnel type - IPv6 specified "
2454 					  "but IPv4 item provided");
2455 	if (item_flags & l3m)
2456 		return rte_flow_error_set(error, ENOTSUP,
2457 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2458 					  "multiple L3 layers not supported");
2459 	else if (item_flags & l4m)
2460 		return rte_flow_error_set(error, EINVAL,
2461 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2462 					  "L3 cannot follow an L4 layer.");
2463 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2464 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2465 		return rte_flow_error_set(error, EINVAL,
2466 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2467 					  "L3 cannot follow an NVGRE layer.");
2468 	if (!mask)
2469 		mask = &rte_flow_item_ipv4_mask;
2470 	else if (mask->hdr.next_proto_id != 0 &&
2471 		 mask->hdr.next_proto_id != 0xff)
2472 		return rte_flow_error_set(error, EINVAL,
2473 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2474 					  "partial mask is not supported"
2475 					  " for protocol");
2476 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2477 					acc_mask ? (const uint8_t *)acc_mask
2478 						 : (const uint8_t *)&nic_mask,
2479 					sizeof(struct rte_flow_item_ipv4),
2480 					range_accepted, error);
2481 	if (ret < 0)
2482 		return ret;
2483 	return 0;
2484 }
2485 
2486 /**
2487  * Validate IPV6 item.
2488  *
2489  * @param[in] item
2490  *   Item specification.
2491  * @param[in] item_flags
2492  *   Bit-fields that holds the items detected until now.
2493  * @param[in] last_item
2494  *   Previous validated item in the pattern items.
2495  * @param[in] ether_type
2496  *   Type in the ethernet layer header (including dot1q).
2497  * @param[in] acc_mask
2498  *   Acceptable mask, if NULL default internal default mask
2499  *   will be used to check whether item fields are supported.
2500  * @param[out] error
2501  *   Pointer to error structure.
2502  *
2503  * @return
2504  *   0 on success, a negative errno value otherwise and rte_errno is set.
2505  */
2506 int
2507 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
2508 			     uint64_t item_flags,
2509 			     uint64_t last_item,
2510 			     uint16_t ether_type,
2511 			     const struct rte_flow_item_ipv6 *acc_mask,
2512 			     struct rte_flow_error *error)
2513 {
2514 	const struct rte_flow_item_ipv6 *mask = item->mask;
2515 	const struct rte_flow_item_ipv6 *spec = item->spec;
2516 	const struct rte_flow_item_ipv6 nic_mask = {
2517 		.hdr = {
2518 			.src_addr =
2519 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2520 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2521 			.dst_addr =
2522 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2523 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2524 			.vtc_flow = RTE_BE32(0xffffffff),
2525 			.proto = 0xff,
2526 		},
2527 	};
2528 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2529 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2530 				      MLX5_FLOW_LAYER_OUTER_L3;
2531 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2532 				      MLX5_FLOW_LAYER_OUTER_L4;
2533 	int ret;
2534 	uint8_t next_proto = 0xFF;
2535 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2536 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2537 				  MLX5_FLOW_LAYER_INNER_VLAN);
2538 
2539 	if ((last_item & l2_vlan) && ether_type &&
2540 	    ether_type != RTE_ETHER_TYPE_IPV6)
2541 		return rte_flow_error_set(error, EINVAL,
2542 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2543 					  "IPv6 cannot follow L2/VLAN layer "
2544 					  "which ether type is not IPv6");
2545 	if (mask && mask->hdr.proto == UINT8_MAX && spec)
2546 		next_proto = spec->hdr.proto;
2547 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
2548 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2549 			return rte_flow_error_set(error, EINVAL,
2550 						  RTE_FLOW_ERROR_TYPE_ITEM,
2551 						  item,
2552 						  "multiple tunnel "
2553 						  "not supported");
2554 	}
2555 	if (next_proto == IPPROTO_HOPOPTS  ||
2556 	    next_proto == IPPROTO_ROUTING  ||
2557 	    next_proto == IPPROTO_FRAGMENT ||
2558 	    next_proto == IPPROTO_ESP	   ||
2559 	    next_proto == IPPROTO_AH	   ||
2560 	    next_proto == IPPROTO_DSTOPTS)
2561 		return rte_flow_error_set(error, EINVAL,
2562 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2563 					  "IPv6 proto (next header) should "
2564 					  "not be set as extension header");
2565 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
2566 		return rte_flow_error_set(error, EINVAL,
2567 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2568 					  "wrong tunnel type - IPv4 specified "
2569 					  "but IPv6 item provided");
2570 	if (item_flags & l3m)
2571 		return rte_flow_error_set(error, ENOTSUP,
2572 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2573 					  "multiple L3 layers not supported");
2574 	else if (item_flags & l4m)
2575 		return rte_flow_error_set(error, EINVAL,
2576 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2577 					  "L3 cannot follow an L4 layer.");
2578 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2579 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2580 		return rte_flow_error_set(error, EINVAL,
2581 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2582 					  "L3 cannot follow an NVGRE layer.");
2583 	if (!mask)
2584 		mask = &rte_flow_item_ipv6_mask;
2585 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2586 					acc_mask ? (const uint8_t *)acc_mask
2587 						 : (const uint8_t *)&nic_mask,
2588 					sizeof(struct rte_flow_item_ipv6),
2589 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2590 	if (ret < 0)
2591 		return ret;
2592 	return 0;
2593 }
2594 
2595 /**
2596  * Validate UDP item.
2597  *
2598  * @param[in] item
2599  *   Item specification.
2600  * @param[in] item_flags
2601  *   Bit-fields that holds the items detected until now.
2602  * @param[in] target_protocol
2603  *   The next protocol in the previous item.
2604  * @param[in] flow_mask
2605  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2606  * @param[out] error
2607  *   Pointer to error structure.
2608  *
2609  * @return
2610  *   0 on success, a negative errno value otherwise and rte_errno is set.
2611  */
2612 int
2613 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2614 			    uint64_t item_flags,
2615 			    uint8_t target_protocol,
2616 			    struct rte_flow_error *error)
2617 {
2618 	const struct rte_flow_item_udp *mask = item->mask;
2619 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2620 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2621 				      MLX5_FLOW_LAYER_OUTER_L3;
2622 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2623 				      MLX5_FLOW_LAYER_OUTER_L4;
2624 	int ret;
2625 
2626 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2627 		return rte_flow_error_set(error, EINVAL,
2628 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2629 					  "protocol filtering not compatible"
2630 					  " with UDP layer");
2631 	if (!(item_flags & l3m))
2632 		return rte_flow_error_set(error, EINVAL,
2633 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2634 					  "L3 is mandatory to filter on L4");
2635 	if (item_flags & l4m)
2636 		return rte_flow_error_set(error, EINVAL,
2637 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2638 					  "multiple L4 layers not supported");
2639 	if (!mask)
2640 		mask = &rte_flow_item_udp_mask;
2641 	ret = mlx5_flow_item_acceptable
2642 		(item, (const uint8_t *)mask,
2643 		 (const uint8_t *)&rte_flow_item_udp_mask,
2644 		 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2645 		 error);
2646 	if (ret < 0)
2647 		return ret;
2648 	return 0;
2649 }
2650 
2651 /**
2652  * Validate TCP item.
2653  *
2654  * @param[in] item
2655  *   Item specification.
2656  * @param[in] item_flags
2657  *   Bit-fields that holds the items detected until now.
2658  * @param[in] target_protocol
2659  *   The next protocol in the previous item.
2660  * @param[out] error
2661  *   Pointer to error structure.
2662  *
2663  * @return
2664  *   0 on success, a negative errno value otherwise and rte_errno is set.
2665  */
2666 int
2667 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2668 			    uint64_t item_flags,
2669 			    uint8_t target_protocol,
2670 			    const struct rte_flow_item_tcp *flow_mask,
2671 			    struct rte_flow_error *error)
2672 {
2673 	const struct rte_flow_item_tcp *mask = item->mask;
2674 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2675 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2676 				      MLX5_FLOW_LAYER_OUTER_L3;
2677 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2678 				      MLX5_FLOW_LAYER_OUTER_L4;
2679 	int ret;
2680 
2681 	MLX5_ASSERT(flow_mask);
2682 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2683 		return rte_flow_error_set(error, EINVAL,
2684 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2685 					  "protocol filtering not compatible"
2686 					  " with TCP layer");
2687 	if (!(item_flags & l3m))
2688 		return rte_flow_error_set(error, EINVAL,
2689 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2690 					  "L3 is mandatory to filter on L4");
2691 	if (item_flags & l4m)
2692 		return rte_flow_error_set(error, EINVAL,
2693 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2694 					  "multiple L4 layers not supported");
2695 	if (!mask)
2696 		mask = &rte_flow_item_tcp_mask;
2697 	ret = mlx5_flow_item_acceptable
2698 		(item, (const uint8_t *)mask,
2699 		 (const uint8_t *)flow_mask,
2700 		 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2701 		 error);
2702 	if (ret < 0)
2703 		return ret;
2704 	return 0;
2705 }
2706 
2707 /**
2708  * Validate VXLAN item.
2709  *
2710  * @param[in] dev
2711  *   Pointer to the Ethernet device structure.
2712  * @param[in] udp_dport
2713  *   UDP destination port
2714  * @param[in] item
2715  *   Item specification.
2716  * @param[in] item_flags
2717  *   Bit-fields that holds the items detected until now.
2718  * @param[in] attr
2719  *   Flow rule attributes.
2720  * @param[out] error
2721  *   Pointer to error structure.
2722  *
2723  * @return
2724  *   0 on success, a negative errno value otherwise and rte_errno is set.
2725  */
2726 int
2727 mlx5_flow_validate_item_vxlan(struct rte_eth_dev *dev,
2728 			      uint16_t udp_dport,
2729 			      const struct rte_flow_item *item,
2730 			      uint64_t item_flags,
2731 			      const struct rte_flow_attr *attr,
2732 			      struct rte_flow_error *error)
2733 {
2734 	const struct rte_flow_item_vxlan *spec = item->spec;
2735 	const struct rte_flow_item_vxlan *mask = item->mask;
2736 	int ret;
2737 	struct mlx5_priv *priv = dev->data->dev_private;
2738 	union vni {
2739 		uint32_t vlan_id;
2740 		uint8_t vni[4];
2741 	} id = { .vlan_id = 0, };
2742 	const struct rte_flow_item_vxlan nic_mask = {
2743 		.vni = "\xff\xff\xff",
2744 		.rsvd1 = 0xff,
2745 	};
2746 	const struct rte_flow_item_vxlan *valid_mask;
2747 
2748 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2749 		return rte_flow_error_set(error, ENOTSUP,
2750 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2751 					  "multiple tunnel layers not"
2752 					  " supported");
2753 	valid_mask = &rte_flow_item_vxlan_mask;
2754 	/*
2755 	 * Verify only UDPv4 is present as defined in
2756 	 * https://tools.ietf.org/html/rfc7348
2757 	 */
2758 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2759 		return rte_flow_error_set(error, EINVAL,
2760 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2761 					  "no outer UDP layer found");
2762 	if (!mask)
2763 		mask = &rte_flow_item_vxlan_mask;
2764 
2765 	if (priv->sh->steering_format_version !=
2766 	    MLX5_STEERING_LOGIC_FORMAT_CONNECTX_5 ||
2767 	    !udp_dport || udp_dport == MLX5_UDP_PORT_VXLAN) {
2768 		/* FDB domain & NIC domain non-zero group */
2769 		if ((attr->transfer || attr->group) && priv->sh->misc5_cap)
2770 			valid_mask = &nic_mask;
2771 		/* Group zero in NIC domain */
2772 		if (!attr->group && !attr->transfer &&
2773 		    priv->sh->tunnel_header_0_1)
2774 			valid_mask = &nic_mask;
2775 	}
2776 	ret = mlx5_flow_item_acceptable
2777 		(item, (const uint8_t *)mask,
2778 		 (const uint8_t *)valid_mask,
2779 		 sizeof(struct rte_flow_item_vxlan),
2780 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2781 	if (ret < 0)
2782 		return ret;
2783 	if (spec) {
2784 		memcpy(&id.vni[1], spec->vni, 3);
2785 		memcpy(&id.vni[1], mask->vni, 3);
2786 	}
2787 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2788 		return rte_flow_error_set(error, ENOTSUP,
2789 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2790 					  "VXLAN tunnel must be fully defined");
2791 	return 0;
2792 }
2793 
2794 /**
2795  * Validate VXLAN_GPE item.
2796  *
2797  * @param[in] item
2798  *   Item specification.
2799  * @param[in] item_flags
2800  *   Bit-fields that holds the items detected until now.
2801  * @param[in] priv
2802  *   Pointer to the private data structure.
2803  * @param[in] target_protocol
2804  *   The next protocol in the previous item.
2805  * @param[out] error
2806  *   Pointer to error structure.
2807  *
2808  * @return
2809  *   0 on success, a negative errno value otherwise and rte_errno is set.
2810  */
2811 int
2812 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2813 				  uint64_t item_flags,
2814 				  struct rte_eth_dev *dev,
2815 				  struct rte_flow_error *error)
2816 {
2817 	struct mlx5_priv *priv = dev->data->dev_private;
2818 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2819 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2820 	int ret;
2821 	union vni {
2822 		uint32_t vlan_id;
2823 		uint8_t vni[4];
2824 	} id = { .vlan_id = 0, };
2825 
2826 	if (!priv->sh->config.l3_vxlan_en)
2827 		return rte_flow_error_set(error, ENOTSUP,
2828 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2829 					  "L3 VXLAN is not enabled by device"
2830 					  " parameter and/or not configured in"
2831 					  " firmware");
2832 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2833 		return rte_flow_error_set(error, ENOTSUP,
2834 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2835 					  "multiple tunnel layers not"
2836 					  " supported");
2837 	/*
2838 	 * Verify only UDPv4 is present as defined in
2839 	 * https://tools.ietf.org/html/rfc7348
2840 	 */
2841 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2842 		return rte_flow_error_set(error, EINVAL,
2843 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2844 					  "no outer UDP layer found");
2845 	if (!mask)
2846 		mask = &rte_flow_item_vxlan_gpe_mask;
2847 	ret = mlx5_flow_item_acceptable
2848 		(item, (const uint8_t *)mask,
2849 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2850 		 sizeof(struct rte_flow_item_vxlan_gpe),
2851 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2852 	if (ret < 0)
2853 		return ret;
2854 	if (spec) {
2855 		if (spec->protocol)
2856 			return rte_flow_error_set(error, ENOTSUP,
2857 						  RTE_FLOW_ERROR_TYPE_ITEM,
2858 						  item,
2859 						  "VxLAN-GPE protocol"
2860 						  " not supported");
2861 		memcpy(&id.vni[1], spec->vni, 3);
2862 		memcpy(&id.vni[1], mask->vni, 3);
2863 	}
2864 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2865 		return rte_flow_error_set(error, ENOTSUP,
2866 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2867 					  "VXLAN-GPE tunnel must be fully"
2868 					  " defined");
2869 	return 0;
2870 }
2871 /**
2872  * Validate GRE Key item.
2873  *
2874  * @param[in] item
2875  *   Item specification.
2876  * @param[in] item_flags
2877  *   Bit flags to mark detected items.
2878  * @param[in] gre_item
2879  *   Pointer to gre_item
2880  * @param[out] error
2881  *   Pointer to error structure.
2882  *
2883  * @return
2884  *   0 on success, a negative errno value otherwise and rte_errno is set.
2885  */
2886 int
2887 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2888 				uint64_t item_flags,
2889 				const struct rte_flow_item *gre_item,
2890 				struct rte_flow_error *error)
2891 {
2892 	const rte_be32_t *mask = item->mask;
2893 	int ret = 0;
2894 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2895 	const struct rte_flow_item_gre *gre_spec;
2896 	const struct rte_flow_item_gre *gre_mask;
2897 
2898 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2899 		return rte_flow_error_set(error, ENOTSUP,
2900 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2901 					  "Multiple GRE key not support");
2902 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2903 		return rte_flow_error_set(error, ENOTSUP,
2904 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2905 					  "No preceding GRE header");
2906 	if (item_flags & MLX5_FLOW_LAYER_INNER)
2907 		return rte_flow_error_set(error, ENOTSUP,
2908 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2909 					  "GRE key following a wrong item");
2910 	gre_mask = gre_item->mask;
2911 	if (!gre_mask)
2912 		gre_mask = &rte_flow_item_gre_mask;
2913 	gre_spec = gre_item->spec;
2914 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2915 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2916 		return rte_flow_error_set(error, EINVAL,
2917 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2918 					  "Key bit must be on");
2919 
2920 	if (!mask)
2921 		mask = &gre_key_default_mask;
2922 	ret = mlx5_flow_item_acceptable
2923 		(item, (const uint8_t *)mask,
2924 		 (const uint8_t *)&gre_key_default_mask,
2925 		 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2926 	return ret;
2927 }
2928 
2929 /**
2930  * Validate GRE item.
2931  *
2932  * @param[in] item
2933  *   Item specification.
2934  * @param[in] item_flags
2935  *   Bit flags to mark detected items.
2936  * @param[in] target_protocol
2937  *   The next protocol in the previous item.
2938  * @param[out] error
2939  *   Pointer to error structure.
2940  *
2941  * @return
2942  *   0 on success, a negative errno value otherwise and rte_errno is set.
2943  */
2944 int
2945 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
2946 			    uint64_t item_flags,
2947 			    uint8_t target_protocol,
2948 			    struct rte_flow_error *error)
2949 {
2950 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
2951 	const struct rte_flow_item_gre *mask = item->mask;
2952 	int ret;
2953 	const struct rte_flow_item_gre nic_mask = {
2954 		.c_rsvd0_ver = RTE_BE16(0xB000),
2955 		.protocol = RTE_BE16(UINT16_MAX),
2956 	};
2957 
2958 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2959 		return rte_flow_error_set(error, EINVAL,
2960 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2961 					  "protocol filtering not compatible"
2962 					  " with this GRE layer");
2963 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2964 		return rte_flow_error_set(error, ENOTSUP,
2965 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2966 					  "multiple tunnel layers not"
2967 					  " supported");
2968 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2969 		return rte_flow_error_set(error, ENOTSUP,
2970 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2971 					  "L3 Layer is missing");
2972 	if (!mask)
2973 		mask = &rte_flow_item_gre_mask;
2974 	ret = mlx5_flow_item_acceptable
2975 		(item, (const uint8_t *)mask,
2976 		 (const uint8_t *)&nic_mask,
2977 		 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2978 		 error);
2979 	if (ret < 0)
2980 		return ret;
2981 #ifndef HAVE_MLX5DV_DR
2982 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
2983 	if (spec && (spec->protocol & mask->protocol))
2984 		return rte_flow_error_set(error, ENOTSUP,
2985 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2986 					  "without MPLS support the"
2987 					  " specification cannot be used for"
2988 					  " filtering");
2989 #endif
2990 #endif
2991 	return 0;
2992 }
2993 
2994 /**
2995  * Validate Geneve item.
2996  *
2997  * @param[in] item
2998  *   Item specification.
2999  * @param[in] itemFlags
3000  *   Bit-fields that holds the items detected until now.
3001  * @param[in] enPriv
3002  *   Pointer to the private data structure.
3003  * @param[out] error
3004  *   Pointer to error structure.
3005  *
3006  * @return
3007  *   0 on success, a negative errno value otherwise and rte_errno is set.
3008  */
3009 
3010 int
3011 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
3012 			       uint64_t item_flags,
3013 			       struct rte_eth_dev *dev,
3014 			       struct rte_flow_error *error)
3015 {
3016 	struct mlx5_priv *priv = dev->data->dev_private;
3017 	const struct rte_flow_item_geneve *spec = item->spec;
3018 	const struct rte_flow_item_geneve *mask = item->mask;
3019 	int ret;
3020 	uint16_t gbhdr;
3021 	uint8_t opt_len = priv->sh->cdev->config.hca_attr.geneve_max_opt_len ?
3022 			  MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
3023 	const struct rte_flow_item_geneve nic_mask = {
3024 		.ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
3025 		.vni = "\xff\xff\xff",
3026 		.protocol = RTE_BE16(UINT16_MAX),
3027 	};
3028 
3029 	if (!priv->sh->cdev->config.hca_attr.tunnel_stateless_geneve_rx)
3030 		return rte_flow_error_set(error, ENOTSUP,
3031 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3032 					  "L3 Geneve is not enabled by device"
3033 					  " parameter and/or not configured in"
3034 					  " firmware");
3035 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3036 		return rte_flow_error_set(error, ENOTSUP,
3037 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3038 					  "multiple tunnel layers not"
3039 					  " supported");
3040 	/*
3041 	 * Verify only UDPv4 is present as defined in
3042 	 * https://tools.ietf.org/html/rfc7348
3043 	 */
3044 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
3045 		return rte_flow_error_set(error, EINVAL,
3046 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3047 					  "no outer UDP layer found");
3048 	if (!mask)
3049 		mask = &rte_flow_item_geneve_mask;
3050 	ret = mlx5_flow_item_acceptable
3051 				  (item, (const uint8_t *)mask,
3052 				   (const uint8_t *)&nic_mask,
3053 				   sizeof(struct rte_flow_item_geneve),
3054 				   MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3055 	if (ret)
3056 		return ret;
3057 	if (spec) {
3058 		gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
3059 		if (MLX5_GENEVE_VER_VAL(gbhdr) ||
3060 		     MLX5_GENEVE_CRITO_VAL(gbhdr) ||
3061 		     MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
3062 			return rte_flow_error_set(error, ENOTSUP,
3063 						  RTE_FLOW_ERROR_TYPE_ITEM,
3064 						  item,
3065 						  "Geneve protocol unsupported"
3066 						  " fields are being used");
3067 		if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
3068 			return rte_flow_error_set
3069 					(error, ENOTSUP,
3070 					 RTE_FLOW_ERROR_TYPE_ITEM,
3071 					 item,
3072 					 "Unsupported Geneve options length");
3073 	}
3074 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
3075 		return rte_flow_error_set
3076 				    (error, ENOTSUP,
3077 				     RTE_FLOW_ERROR_TYPE_ITEM, item,
3078 				     "Geneve tunnel must be fully defined");
3079 	return 0;
3080 }
3081 
3082 /**
3083  * Validate Geneve TLV option item.
3084  *
3085  * @param[in] item
3086  *   Item specification.
3087  * @param[in] last_item
3088  *   Previous validated item in the pattern items.
3089  * @param[in] geneve_item
3090  *   Previous GENEVE item specification.
3091  * @param[in] dev
3092  *   Pointer to the rte_eth_dev structure.
3093  * @param[out] error
3094  *   Pointer to error structure.
3095  *
3096  * @return
3097  *   0 on success, a negative errno value otherwise and rte_errno is set.
3098  */
3099 int
3100 mlx5_flow_validate_item_geneve_opt(const struct rte_flow_item *item,
3101 				   uint64_t last_item,
3102 				   const struct rte_flow_item *geneve_item,
3103 				   struct rte_eth_dev *dev,
3104 				   struct rte_flow_error *error)
3105 {
3106 	struct mlx5_priv *priv = dev->data->dev_private;
3107 	struct mlx5_dev_ctx_shared *sh = priv->sh;
3108 	struct mlx5_geneve_tlv_option_resource *geneve_opt_resource;
3109 	struct mlx5_hca_attr *hca_attr = &sh->cdev->config.hca_attr;
3110 	uint8_t data_max_supported =
3111 			hca_attr->max_geneve_tlv_option_data_len * 4;
3112 	const struct rte_flow_item_geneve *geneve_spec;
3113 	const struct rte_flow_item_geneve *geneve_mask;
3114 	const struct rte_flow_item_geneve_opt *spec = item->spec;
3115 	const struct rte_flow_item_geneve_opt *mask = item->mask;
3116 	unsigned int i;
3117 	unsigned int data_len;
3118 	uint8_t tlv_option_len;
3119 	uint16_t optlen_m, optlen_v;
3120 	const struct rte_flow_item_geneve_opt full_mask = {
3121 		.option_class = RTE_BE16(0xffff),
3122 		.option_type = 0xff,
3123 		.option_len = 0x1f,
3124 	};
3125 
3126 	if (!mask)
3127 		mask = &rte_flow_item_geneve_opt_mask;
3128 	if (!spec)
3129 		return rte_flow_error_set
3130 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3131 			"Geneve TLV opt class/type/length must be specified");
3132 	if ((uint32_t)spec->option_len > MLX5_GENEVE_OPTLEN_MASK)
3133 		return rte_flow_error_set
3134 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3135 			"Geneve TLV opt length exceeds the limit (31)");
3136 	/* Check if class type and length masks are full. */
3137 	if (full_mask.option_class != mask->option_class ||
3138 	    full_mask.option_type != mask->option_type ||
3139 	    full_mask.option_len != (mask->option_len & full_mask.option_len))
3140 		return rte_flow_error_set
3141 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3142 			"Geneve TLV opt class/type/length masks must be full");
3143 	/* Check if length is supported */
3144 	if ((uint32_t)spec->option_len >
3145 			hca_attr->max_geneve_tlv_option_data_len)
3146 		return rte_flow_error_set
3147 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3148 			"Geneve TLV opt length not supported");
3149 	if (hca_attr->max_geneve_tlv_options > 1)
3150 		DRV_LOG(DEBUG,
3151 			"max_geneve_tlv_options supports more than 1 option");
3152 	/* Check GENEVE item preceding. */
3153 	if (!geneve_item || !(last_item & MLX5_FLOW_LAYER_GENEVE))
3154 		return rte_flow_error_set
3155 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3156 			"Geneve opt item must be preceded with Geneve item");
3157 	geneve_spec = geneve_item->spec;
3158 	geneve_mask = geneve_item->mask ? geneve_item->mask :
3159 					  &rte_flow_item_geneve_mask;
3160 	/* Check if GENEVE TLV option size doesn't exceed option length */
3161 	if (geneve_spec && (geneve_mask->ver_opt_len_o_c_rsvd0 ||
3162 			    geneve_spec->ver_opt_len_o_c_rsvd0)) {
3163 		tlv_option_len = spec->option_len & mask->option_len;
3164 		optlen_v = rte_be_to_cpu_16(geneve_spec->ver_opt_len_o_c_rsvd0);
3165 		optlen_v = MLX5_GENEVE_OPTLEN_VAL(optlen_v);
3166 		optlen_m = rte_be_to_cpu_16(geneve_mask->ver_opt_len_o_c_rsvd0);
3167 		optlen_m = MLX5_GENEVE_OPTLEN_VAL(optlen_m);
3168 		if ((optlen_v & optlen_m) <= tlv_option_len)
3169 			return rte_flow_error_set
3170 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3171 				 "GENEVE TLV option length exceeds optlen");
3172 	}
3173 	/* Check if length is 0 or data is 0. */
3174 	if (spec->data == NULL || spec->option_len == 0)
3175 		return rte_flow_error_set
3176 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3177 			"Geneve TLV opt with zero data/length not supported");
3178 	/* Check not all data & mask are 0. */
3179 	data_len = spec->option_len * 4;
3180 	if (mask->data == NULL) {
3181 		for (i = 0; i < data_len; i++)
3182 			if (spec->data[i])
3183 				break;
3184 		if (i == data_len)
3185 			return rte_flow_error_set(error, ENOTSUP,
3186 				RTE_FLOW_ERROR_TYPE_ITEM, item,
3187 				"Can't match on Geneve option data 0");
3188 	} else {
3189 		for (i = 0; i < data_len; i++)
3190 			if (spec->data[i] & mask->data[i])
3191 				break;
3192 		if (i == data_len)
3193 			return rte_flow_error_set(error, ENOTSUP,
3194 				RTE_FLOW_ERROR_TYPE_ITEM, item,
3195 				"Can't match on Geneve option data and mask 0");
3196 		/* Check data mask supported. */
3197 		for (i = data_max_supported; i < data_len ; i++)
3198 			if (mask->data[i])
3199 				return rte_flow_error_set(error, ENOTSUP,
3200 					RTE_FLOW_ERROR_TYPE_ITEM, item,
3201 					"Data mask is of unsupported size");
3202 	}
3203 	/* Check GENEVE option is supported in NIC. */
3204 	if (!hca_attr->geneve_tlv_opt)
3205 		return rte_flow_error_set
3206 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3207 			"Geneve TLV opt not supported");
3208 	/* Check if we already have geneve option with different type/class. */
3209 	rte_spinlock_lock(&sh->geneve_tlv_opt_sl);
3210 	geneve_opt_resource = sh->geneve_tlv_option_resource;
3211 	if (geneve_opt_resource != NULL)
3212 		if (geneve_opt_resource->option_class != spec->option_class ||
3213 		    geneve_opt_resource->option_type != spec->option_type ||
3214 		    geneve_opt_resource->length != spec->option_len) {
3215 			rte_spinlock_unlock(&sh->geneve_tlv_opt_sl);
3216 			return rte_flow_error_set(error, ENOTSUP,
3217 				RTE_FLOW_ERROR_TYPE_ITEM, item,
3218 				"Only one Geneve TLV option supported");
3219 		}
3220 	rte_spinlock_unlock(&sh->geneve_tlv_opt_sl);
3221 	return 0;
3222 }
3223 
3224 /**
3225  * Validate MPLS item.
3226  *
3227  * @param[in] dev
3228  *   Pointer to the rte_eth_dev structure.
3229  * @param[in] item
3230  *   Item specification.
3231  * @param[in] item_flags
3232  *   Bit-fields that holds the items detected until now.
3233  * @param[in] prev_layer
3234  *   The protocol layer indicated in previous item.
3235  * @param[out] error
3236  *   Pointer to error structure.
3237  *
3238  * @return
3239  *   0 on success, a negative errno value otherwise and rte_errno is set.
3240  */
3241 int
3242 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
3243 			     const struct rte_flow_item *item __rte_unused,
3244 			     uint64_t item_flags __rte_unused,
3245 			     uint64_t prev_layer __rte_unused,
3246 			     struct rte_flow_error *error)
3247 {
3248 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
3249 	const struct rte_flow_item_mpls *mask = item->mask;
3250 	struct mlx5_priv *priv = dev->data->dev_private;
3251 	int ret;
3252 
3253 	if (!priv->sh->dev_cap.mpls_en)
3254 		return rte_flow_error_set(error, ENOTSUP,
3255 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3256 					  "MPLS not supported or"
3257 					  " disabled in firmware"
3258 					  " configuration.");
3259 	/* MPLS over UDP, GRE is allowed */
3260 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L4_UDP |
3261 			    MLX5_FLOW_LAYER_GRE |
3262 			    MLX5_FLOW_LAYER_GRE_KEY)))
3263 		return rte_flow_error_set(error, EINVAL,
3264 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3265 					  "protocol filtering not compatible"
3266 					  " with MPLS layer");
3267 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
3268 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
3269 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
3270 		return rte_flow_error_set(error, ENOTSUP,
3271 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3272 					  "multiple tunnel layers not"
3273 					  " supported");
3274 	if (!mask)
3275 		mask = &rte_flow_item_mpls_mask;
3276 	ret = mlx5_flow_item_acceptable
3277 		(item, (const uint8_t *)mask,
3278 		 (const uint8_t *)&rte_flow_item_mpls_mask,
3279 		 sizeof(struct rte_flow_item_mpls),
3280 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3281 	if (ret < 0)
3282 		return ret;
3283 	return 0;
3284 #else
3285 	return rte_flow_error_set(error, ENOTSUP,
3286 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
3287 				  "MPLS is not supported by Verbs, please"
3288 				  " update.");
3289 #endif
3290 }
3291 
3292 /**
3293  * Validate NVGRE item.
3294  *
3295  * @param[in] item
3296  *   Item specification.
3297  * @param[in] item_flags
3298  *   Bit flags to mark detected items.
3299  * @param[in] target_protocol
3300  *   The next protocol in the previous item.
3301  * @param[out] error
3302  *   Pointer to error structure.
3303  *
3304  * @return
3305  *   0 on success, a negative errno value otherwise and rte_errno is set.
3306  */
3307 int
3308 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
3309 			      uint64_t item_flags,
3310 			      uint8_t target_protocol,
3311 			      struct rte_flow_error *error)
3312 {
3313 	const struct rte_flow_item_nvgre *mask = item->mask;
3314 	int ret;
3315 
3316 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
3317 		return rte_flow_error_set(error, EINVAL,
3318 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3319 					  "protocol filtering not compatible"
3320 					  " with this GRE layer");
3321 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3322 		return rte_flow_error_set(error, ENOTSUP,
3323 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3324 					  "multiple tunnel layers not"
3325 					  " supported");
3326 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
3327 		return rte_flow_error_set(error, ENOTSUP,
3328 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3329 					  "L3 Layer is missing");
3330 	if (!mask)
3331 		mask = &rte_flow_item_nvgre_mask;
3332 	ret = mlx5_flow_item_acceptable
3333 		(item, (const uint8_t *)mask,
3334 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
3335 		 sizeof(struct rte_flow_item_nvgre),
3336 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3337 	if (ret < 0)
3338 		return ret;
3339 	return 0;
3340 }
3341 
3342 /**
3343  * Validate eCPRI item.
3344  *
3345  * @param[in] item
3346  *   Item specification.
3347  * @param[in] item_flags
3348  *   Bit-fields that holds the items detected until now.
3349  * @param[in] last_item
3350  *   Previous validated item in the pattern items.
3351  * @param[in] ether_type
3352  *   Type in the ethernet layer header (including dot1q).
3353  * @param[in] acc_mask
3354  *   Acceptable mask, if NULL default internal default mask
3355  *   will be used to check whether item fields are supported.
3356  * @param[out] error
3357  *   Pointer to error structure.
3358  *
3359  * @return
3360  *   0 on success, a negative errno value otherwise and rte_errno is set.
3361  */
3362 int
3363 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
3364 			      uint64_t item_flags,
3365 			      uint64_t last_item,
3366 			      uint16_t ether_type,
3367 			      const struct rte_flow_item_ecpri *acc_mask,
3368 			      struct rte_flow_error *error)
3369 {
3370 	const struct rte_flow_item_ecpri *mask = item->mask;
3371 	const struct rte_flow_item_ecpri nic_mask = {
3372 		.hdr = {
3373 			.common = {
3374 				.u32 =
3375 				RTE_BE32(((const struct rte_ecpri_common_hdr) {
3376 					.type = 0xFF,
3377 					}).u32),
3378 			},
3379 			.dummy[0] = 0xFFFFFFFF,
3380 		},
3381 	};
3382 	const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
3383 					MLX5_FLOW_LAYER_OUTER_VLAN);
3384 	struct rte_flow_item_ecpri mask_lo;
3385 
3386 	if (!(last_item & outer_l2_vlan) &&
3387 	    last_item != MLX5_FLOW_LAYER_OUTER_L4_UDP)
3388 		return rte_flow_error_set(error, EINVAL,
3389 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3390 					  "eCPRI can only follow L2/VLAN layer or UDP layer");
3391 	if ((last_item & outer_l2_vlan) && ether_type &&
3392 	    ether_type != RTE_ETHER_TYPE_ECPRI)
3393 		return rte_flow_error_set(error, EINVAL,
3394 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3395 					  "eCPRI cannot follow L2/VLAN layer which ether type is not 0xAEFE");
3396 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3397 		return rte_flow_error_set(error, EINVAL,
3398 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3399 					  "eCPRI with tunnel is not supported right now");
3400 	if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
3401 		return rte_flow_error_set(error, ENOTSUP,
3402 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3403 					  "multiple L3 layers not supported");
3404 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
3405 		return rte_flow_error_set(error, EINVAL,
3406 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3407 					  "eCPRI cannot coexist with a TCP layer");
3408 	/* In specification, eCPRI could be over UDP layer. */
3409 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
3410 		return rte_flow_error_set(error, EINVAL,
3411 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3412 					  "eCPRI over UDP layer is not yet supported right now");
3413 	/* Mask for type field in common header could be zero. */
3414 	if (!mask)
3415 		mask = &rte_flow_item_ecpri_mask;
3416 	mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
3417 	/* Input mask is in big-endian format. */
3418 	if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
3419 		return rte_flow_error_set(error, EINVAL,
3420 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
3421 					  "partial mask is not supported for protocol");
3422 	else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
3423 		return rte_flow_error_set(error, EINVAL,
3424 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
3425 					  "message header mask must be after a type mask");
3426 	return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
3427 					 acc_mask ? (const uint8_t *)acc_mask
3428 						  : (const uint8_t *)&nic_mask,
3429 					 sizeof(struct rte_flow_item_ecpri),
3430 					 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3431 }
3432 
3433 static int
3434 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
3435 		   const struct rte_flow_attr *attr __rte_unused,
3436 		   const struct rte_flow_item items[] __rte_unused,
3437 		   const struct rte_flow_action actions[] __rte_unused,
3438 		   bool external __rte_unused,
3439 		   int hairpin __rte_unused,
3440 		   struct rte_flow_error *error)
3441 {
3442 	return rte_flow_error_set(error, ENOTSUP,
3443 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3444 }
3445 
3446 static struct mlx5_flow *
3447 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
3448 		  const struct rte_flow_attr *attr __rte_unused,
3449 		  const struct rte_flow_item items[] __rte_unused,
3450 		  const struct rte_flow_action actions[] __rte_unused,
3451 		  struct rte_flow_error *error)
3452 {
3453 	rte_flow_error_set(error, ENOTSUP,
3454 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3455 	return NULL;
3456 }
3457 
3458 static int
3459 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
3460 		    struct mlx5_flow *dev_flow __rte_unused,
3461 		    const struct rte_flow_attr *attr __rte_unused,
3462 		    const struct rte_flow_item items[] __rte_unused,
3463 		    const struct rte_flow_action actions[] __rte_unused,
3464 		    struct rte_flow_error *error)
3465 {
3466 	return rte_flow_error_set(error, ENOTSUP,
3467 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3468 }
3469 
3470 static int
3471 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
3472 		struct rte_flow *flow __rte_unused,
3473 		struct rte_flow_error *error)
3474 {
3475 	return rte_flow_error_set(error, ENOTSUP,
3476 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3477 }
3478 
3479 static void
3480 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
3481 		 struct rte_flow *flow __rte_unused)
3482 {
3483 }
3484 
3485 static void
3486 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
3487 		  struct rte_flow *flow __rte_unused)
3488 {
3489 }
3490 
3491 static int
3492 flow_null_query(struct rte_eth_dev *dev __rte_unused,
3493 		struct rte_flow *flow __rte_unused,
3494 		const struct rte_flow_action *actions __rte_unused,
3495 		void *data __rte_unused,
3496 		struct rte_flow_error *error)
3497 {
3498 	return rte_flow_error_set(error, ENOTSUP,
3499 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3500 }
3501 
3502 static int
3503 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused,
3504 		      uint32_t domains __rte_unused,
3505 		      uint32_t flags __rte_unused)
3506 {
3507 	return 0;
3508 }
3509 
3510 /* Void driver to protect from null pointer reference. */
3511 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
3512 	.validate = flow_null_validate,
3513 	.prepare = flow_null_prepare,
3514 	.translate = flow_null_translate,
3515 	.apply = flow_null_apply,
3516 	.remove = flow_null_remove,
3517 	.destroy = flow_null_destroy,
3518 	.query = flow_null_query,
3519 	.sync_domain = flow_null_sync_domain,
3520 };
3521 
3522 /**
3523  * Select flow driver type according to flow attributes and device
3524  * configuration.
3525  *
3526  * @param[in] dev
3527  *   Pointer to the dev structure.
3528  * @param[in] attr
3529  *   Pointer to the flow attributes.
3530  *
3531  * @return
3532  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
3533  */
3534 static enum mlx5_flow_drv_type
3535 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
3536 {
3537 	struct mlx5_priv *priv = dev->data->dev_private;
3538 	/* The OS can determine first a specific flow type (DV, VERBS) */
3539 	enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
3540 
3541 	if (type != MLX5_FLOW_TYPE_MAX)
3542 		return type;
3543 	/*
3544 	 * Currently when dv_flow_en == 2, only HW steering engine is
3545 	 * supported. New engines can also be chosen here if ready.
3546 	 */
3547 	if (priv->sh->config.dv_flow_en == 2)
3548 		return MLX5_FLOW_TYPE_HW;
3549 	/* If no OS specific type - continue with DV/VERBS selection */
3550 	if (attr->transfer && priv->sh->config.dv_esw_en)
3551 		type = MLX5_FLOW_TYPE_DV;
3552 	if (!attr->transfer)
3553 		type = priv->sh->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
3554 						     MLX5_FLOW_TYPE_VERBS;
3555 	return type;
3556 }
3557 
3558 #define flow_get_drv_ops(type) flow_drv_ops[type]
3559 
3560 /**
3561  * Flow driver validation API. This abstracts calling driver specific functions.
3562  * The type of flow driver is determined according to flow attributes.
3563  *
3564  * @param[in] dev
3565  *   Pointer to the dev structure.
3566  * @param[in] attr
3567  *   Pointer to the flow attributes.
3568  * @param[in] items
3569  *   Pointer to the list of items.
3570  * @param[in] actions
3571  *   Pointer to the list of actions.
3572  * @param[in] external
3573  *   This flow rule is created by request external to PMD.
3574  * @param[in] hairpin
3575  *   Number of hairpin TX actions, 0 means classic flow.
3576  * @param[out] error
3577  *   Pointer to the error structure.
3578  *
3579  * @return
3580  *   0 on success, a negative errno value otherwise and rte_errno is set.
3581  */
3582 static inline int
3583 flow_drv_validate(struct rte_eth_dev *dev,
3584 		  const struct rte_flow_attr *attr,
3585 		  const struct rte_flow_item items[],
3586 		  const struct rte_flow_action actions[],
3587 		  bool external, int hairpin, struct rte_flow_error *error)
3588 {
3589 	const struct mlx5_flow_driver_ops *fops;
3590 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
3591 
3592 	fops = flow_get_drv_ops(type);
3593 	return fops->validate(dev, attr, items, actions, external,
3594 			      hairpin, error);
3595 }
3596 
3597 /**
3598  * Flow driver preparation API. This abstracts calling driver specific
3599  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3600  * calculates the size of memory required for device flow, allocates the memory,
3601  * initializes the device flow and returns the pointer.
3602  *
3603  * @note
3604  *   This function initializes device flow structure such as dv or verbs in
3605  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
3606  *   rest. For example, adding returning device flow to flow->dev_flow list and
3607  *   setting backward reference to the flow should be done out of this function.
3608  *   layers field is not filled either.
3609  *
3610  * @param[in] dev
3611  *   Pointer to the dev structure.
3612  * @param[in] attr
3613  *   Pointer to the flow attributes.
3614  * @param[in] items
3615  *   Pointer to the list of items.
3616  * @param[in] actions
3617  *   Pointer to the list of actions.
3618  * @param[in] flow_idx
3619  *   This memory pool index to the flow.
3620  * @param[out] error
3621  *   Pointer to the error structure.
3622  *
3623  * @return
3624  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
3625  */
3626 static inline struct mlx5_flow *
3627 flow_drv_prepare(struct rte_eth_dev *dev,
3628 		 const struct rte_flow *flow,
3629 		 const struct rte_flow_attr *attr,
3630 		 const struct rte_flow_item items[],
3631 		 const struct rte_flow_action actions[],
3632 		 uint32_t flow_idx,
3633 		 struct rte_flow_error *error)
3634 {
3635 	const struct mlx5_flow_driver_ops *fops;
3636 	enum mlx5_flow_drv_type type = flow->drv_type;
3637 	struct mlx5_flow *mlx5_flow = NULL;
3638 
3639 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3640 	fops = flow_get_drv_ops(type);
3641 	mlx5_flow = fops->prepare(dev, attr, items, actions, error);
3642 	if (mlx5_flow)
3643 		mlx5_flow->flow_idx = flow_idx;
3644 	return mlx5_flow;
3645 }
3646 
3647 /**
3648  * Flow driver translation API. This abstracts calling driver specific
3649  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3650  * translates a generic flow into a driver flow. flow_drv_prepare() must
3651  * precede.
3652  *
3653  * @note
3654  *   dev_flow->layers could be filled as a result of parsing during translation
3655  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
3656  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
3657  *   flow->actions could be overwritten even though all the expanded dev_flows
3658  *   have the same actions.
3659  *
3660  * @param[in] dev
3661  *   Pointer to the rte dev structure.
3662  * @param[in, out] dev_flow
3663  *   Pointer to the mlx5 flow.
3664  * @param[in] attr
3665  *   Pointer to the flow attributes.
3666  * @param[in] items
3667  *   Pointer to the list of items.
3668  * @param[in] actions
3669  *   Pointer to the list of actions.
3670  * @param[out] error
3671  *   Pointer to the error structure.
3672  *
3673  * @return
3674  *   0 on success, a negative errno value otherwise and rte_errno is set.
3675  */
3676 static inline int
3677 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
3678 		   const struct rte_flow_attr *attr,
3679 		   const struct rte_flow_item items[],
3680 		   const struct rte_flow_action actions[],
3681 		   struct rte_flow_error *error)
3682 {
3683 	const struct mlx5_flow_driver_ops *fops;
3684 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
3685 
3686 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3687 	fops = flow_get_drv_ops(type);
3688 	return fops->translate(dev, dev_flow, attr, items, actions, error);
3689 }
3690 
3691 /**
3692  * Flow driver apply API. This abstracts calling driver specific functions.
3693  * Parent flow (rte_flow) should have driver type (drv_type). It applies
3694  * translated driver flows on to device. flow_drv_translate() must precede.
3695  *
3696  * @param[in] dev
3697  *   Pointer to Ethernet device structure.
3698  * @param[in, out] flow
3699  *   Pointer to flow structure.
3700  * @param[out] error
3701  *   Pointer to error structure.
3702  *
3703  * @return
3704  *   0 on success, a negative errno value otherwise and rte_errno is set.
3705  */
3706 static inline int
3707 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
3708 	       struct rte_flow_error *error)
3709 {
3710 	const struct mlx5_flow_driver_ops *fops;
3711 	enum mlx5_flow_drv_type type = flow->drv_type;
3712 
3713 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3714 	fops = flow_get_drv_ops(type);
3715 	return fops->apply(dev, flow, error);
3716 }
3717 
3718 /**
3719  * Flow driver destroy API. This abstracts calling driver specific functions.
3720  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3721  * on device and releases resources of the flow.
3722  *
3723  * @param[in] dev
3724  *   Pointer to Ethernet device.
3725  * @param[in, out] flow
3726  *   Pointer to flow structure.
3727  */
3728 static inline void
3729 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3730 {
3731 	const struct mlx5_flow_driver_ops *fops;
3732 	enum mlx5_flow_drv_type type = flow->drv_type;
3733 
3734 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3735 	fops = flow_get_drv_ops(type);
3736 	fops->destroy(dev, flow);
3737 }
3738 
3739 /**
3740  * Flow driver find RSS policy tbl API. This abstracts calling driver
3741  * specific functions. Parent flow (rte_flow) should have driver
3742  * type (drv_type). It will find the RSS policy table that has the rss_desc.
3743  *
3744  * @param[in] dev
3745  *   Pointer to Ethernet device.
3746  * @param[in, out] flow
3747  *   Pointer to flow structure.
3748  * @param[in] policy
3749  *   Pointer to meter policy table.
3750  * @param[in] rss_desc
3751  *   Pointer to rss_desc
3752  */
3753 static struct mlx5_flow_meter_sub_policy *
3754 flow_drv_meter_sub_policy_rss_prepare(struct rte_eth_dev *dev,
3755 		struct rte_flow *flow,
3756 		struct mlx5_flow_meter_policy *policy,
3757 		struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS])
3758 {
3759 	const struct mlx5_flow_driver_ops *fops;
3760 	enum mlx5_flow_drv_type type = flow->drv_type;
3761 
3762 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3763 	fops = flow_get_drv_ops(type);
3764 	return fops->meter_sub_policy_rss_prepare(dev, policy, rss_desc);
3765 }
3766 
3767 /**
3768  * Flow driver color tag rule API. This abstracts calling driver
3769  * specific functions. Parent flow (rte_flow) should have driver
3770  * type (drv_type). It will create the color tag rules in hierarchy meter.
3771  *
3772  * @param[in] dev
3773  *   Pointer to Ethernet device.
3774  * @param[in, out] flow
3775  *   Pointer to flow structure.
3776  * @param[in] fm
3777  *   Pointer to flow meter structure.
3778  * @param[in] src_port
3779  *   The src port this extra rule should use.
3780  * @param[in] item
3781  *   The src port id match item.
3782  * @param[out] error
3783  *   Pointer to error structure.
3784  */
3785 static int
3786 flow_drv_mtr_hierarchy_rule_create(struct rte_eth_dev *dev,
3787 		struct rte_flow *flow,
3788 		struct mlx5_flow_meter_info *fm,
3789 		int32_t src_port,
3790 		const struct rte_flow_item *item,
3791 		struct rte_flow_error *error)
3792 {
3793 	const struct mlx5_flow_driver_ops *fops;
3794 	enum mlx5_flow_drv_type type = flow->drv_type;
3795 
3796 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3797 	fops = flow_get_drv_ops(type);
3798 	return fops->meter_hierarchy_rule_create(dev, fm,
3799 						src_port, item, error);
3800 }
3801 
3802 /**
3803  * Get RSS action from the action list.
3804  *
3805  * @param[in] dev
3806  *   Pointer to Ethernet device.
3807  * @param[in] actions
3808  *   Pointer to the list of actions.
3809  * @param[in] flow
3810  *   Parent flow structure pointer.
3811  *
3812  * @return
3813  *   Pointer to the RSS action if exist, else return NULL.
3814  */
3815 static const struct rte_flow_action_rss*
3816 flow_get_rss_action(struct rte_eth_dev *dev,
3817 		    const struct rte_flow_action actions[])
3818 {
3819 	struct mlx5_priv *priv = dev->data->dev_private;
3820 	const struct rte_flow_action_rss *rss = NULL;
3821 	struct mlx5_meter_policy_action_container *acg;
3822 	struct mlx5_meter_policy_action_container *acy;
3823 
3824 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3825 		switch (actions->type) {
3826 		case RTE_FLOW_ACTION_TYPE_RSS:
3827 			rss = actions->conf;
3828 			break;
3829 		case RTE_FLOW_ACTION_TYPE_SAMPLE:
3830 		{
3831 			const struct rte_flow_action_sample *sample =
3832 								actions->conf;
3833 			const struct rte_flow_action *act = sample->actions;
3834 			for (; act->type != RTE_FLOW_ACTION_TYPE_END; act++)
3835 				if (act->type == RTE_FLOW_ACTION_TYPE_RSS)
3836 					rss = act->conf;
3837 			break;
3838 		}
3839 		case RTE_FLOW_ACTION_TYPE_METER:
3840 		{
3841 			uint32_t mtr_idx;
3842 			struct mlx5_flow_meter_info *fm;
3843 			struct mlx5_flow_meter_policy *policy;
3844 			const struct rte_flow_action_meter *mtr = actions->conf;
3845 
3846 			fm = mlx5_flow_meter_find(priv, mtr->mtr_id, &mtr_idx);
3847 			if (fm && !fm->def_policy) {
3848 				policy = mlx5_flow_meter_policy_find(dev,
3849 						fm->policy_id, NULL);
3850 				MLX5_ASSERT(policy);
3851 				if (policy->is_hierarchy) {
3852 					policy =
3853 				mlx5_flow_meter_hierarchy_get_final_policy(dev,
3854 									policy);
3855 					if (!policy)
3856 						return NULL;
3857 				}
3858 				if (policy->is_rss) {
3859 					acg =
3860 					&policy->act_cnt[RTE_COLOR_GREEN];
3861 					acy =
3862 					&policy->act_cnt[RTE_COLOR_YELLOW];
3863 					if (acg->fate_action ==
3864 					    MLX5_FLOW_FATE_SHARED_RSS)
3865 						rss = acg->rss->conf;
3866 					else if (acy->fate_action ==
3867 						 MLX5_FLOW_FATE_SHARED_RSS)
3868 						rss = acy->rss->conf;
3869 				}
3870 			}
3871 			break;
3872 		}
3873 		default:
3874 			break;
3875 		}
3876 	}
3877 	return rss;
3878 }
3879 
3880 /**
3881  * Get ASO age action by index.
3882  *
3883  * @param[in] dev
3884  *   Pointer to the Ethernet device structure.
3885  * @param[in] age_idx
3886  *   Index to the ASO age action.
3887  *
3888  * @return
3889  *   The specified ASO age action.
3890  */
3891 struct mlx5_aso_age_action*
3892 flow_aso_age_get_by_idx(struct rte_eth_dev *dev, uint32_t age_idx)
3893 {
3894 	uint16_t pool_idx = age_idx & UINT16_MAX;
3895 	uint16_t offset = (age_idx >> 16) & UINT16_MAX;
3896 	struct mlx5_priv *priv = dev->data->dev_private;
3897 	struct mlx5_aso_age_mng *mng = priv->sh->aso_age_mng;
3898 	struct mlx5_aso_age_pool *pool;
3899 
3900 	rte_rwlock_read_lock(&mng->resize_rwl);
3901 	pool = mng->pools[pool_idx];
3902 	rte_rwlock_read_unlock(&mng->resize_rwl);
3903 	return &pool->actions[offset - 1];
3904 }
3905 
3906 /* maps indirect action to translated direct in some actions array */
3907 struct mlx5_translated_action_handle {
3908 	struct rte_flow_action_handle *action; /**< Indirect action handle. */
3909 	int index; /**< Index in related array of rte_flow_action. */
3910 };
3911 
3912 /**
3913  * Translates actions of type RTE_FLOW_ACTION_TYPE_INDIRECT to related
3914  * direct action if translation possible.
3915  * This functionality used to run same execution path for both direct and
3916  * indirect actions on flow create. All necessary preparations for indirect
3917  * action handling should be performed on *handle* actions list returned
3918  * from this call.
3919  *
3920  * @param[in] dev
3921  *   Pointer to Ethernet device.
3922  * @param[in] actions
3923  *   List of actions to translate.
3924  * @param[out] handle
3925  *   List to store translated indirect action object handles.
3926  * @param[in, out] indir_n
3927  *   Size of *handle* array. On return should be updated with number of
3928  *   indirect actions retrieved from the *actions* list.
3929  * @param[out] translated_actions
3930  *   List of actions where all indirect actions were translated to direct
3931  *   if possible. NULL if no translation took place.
3932  * @param[out] error
3933  *   Pointer to the error structure.
3934  *
3935  * @return
3936  *   0 on success, a negative errno value otherwise and rte_errno is set.
3937  */
3938 static int
3939 flow_action_handles_translate(struct rte_eth_dev *dev,
3940 			      const struct rte_flow_action actions[],
3941 			      struct mlx5_translated_action_handle *handle,
3942 			      int *indir_n,
3943 			      struct rte_flow_action **translated_actions,
3944 			      struct rte_flow_error *error)
3945 {
3946 	struct mlx5_priv *priv = dev->data->dev_private;
3947 	struct rte_flow_action *translated = NULL;
3948 	size_t actions_size;
3949 	int n;
3950 	int copied_n = 0;
3951 	struct mlx5_translated_action_handle *handle_end = NULL;
3952 
3953 	for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) {
3954 		if (actions[n].type != RTE_FLOW_ACTION_TYPE_INDIRECT)
3955 			continue;
3956 		if (copied_n == *indir_n) {
3957 			return rte_flow_error_set
3958 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM,
3959 				 NULL, "too many shared actions");
3960 		}
3961 		rte_memcpy(&handle[copied_n].action, &actions[n].conf,
3962 			   sizeof(actions[n].conf));
3963 		handle[copied_n].index = n;
3964 		copied_n++;
3965 	}
3966 	n++;
3967 	*indir_n = copied_n;
3968 	if (!copied_n)
3969 		return 0;
3970 	actions_size = sizeof(struct rte_flow_action) * n;
3971 	translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY);
3972 	if (!translated) {
3973 		rte_errno = ENOMEM;
3974 		return -ENOMEM;
3975 	}
3976 	memcpy(translated, actions, actions_size);
3977 	for (handle_end = handle + copied_n; handle < handle_end; handle++) {
3978 		struct mlx5_shared_action_rss *shared_rss;
3979 		uint32_t act_idx = (uint32_t)(uintptr_t)handle->action;
3980 		uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET;
3981 		uint32_t idx = act_idx &
3982 			       ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1);
3983 
3984 		switch (type) {
3985 		case MLX5_INDIRECT_ACTION_TYPE_RSS:
3986 			shared_rss = mlx5_ipool_get
3987 			  (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], idx);
3988 			translated[handle->index].type =
3989 				RTE_FLOW_ACTION_TYPE_RSS;
3990 			translated[handle->index].conf =
3991 				&shared_rss->origin;
3992 			break;
3993 		case MLX5_INDIRECT_ACTION_TYPE_COUNT:
3994 			translated[handle->index].type =
3995 						(enum rte_flow_action_type)
3996 						MLX5_RTE_FLOW_ACTION_TYPE_COUNT;
3997 			translated[handle->index].conf = (void *)(uintptr_t)idx;
3998 			break;
3999 		case MLX5_INDIRECT_ACTION_TYPE_AGE:
4000 			if (priv->sh->flow_hit_aso_en) {
4001 				translated[handle->index].type =
4002 					(enum rte_flow_action_type)
4003 					MLX5_RTE_FLOW_ACTION_TYPE_AGE;
4004 				translated[handle->index].conf =
4005 							 (void *)(uintptr_t)idx;
4006 				break;
4007 			}
4008 			/* Fall-through */
4009 		case MLX5_INDIRECT_ACTION_TYPE_CT:
4010 			if (priv->sh->ct_aso_en) {
4011 				translated[handle->index].type =
4012 					RTE_FLOW_ACTION_TYPE_CONNTRACK;
4013 				translated[handle->index].conf =
4014 							 (void *)(uintptr_t)idx;
4015 				break;
4016 			}
4017 			/* Fall-through */
4018 		default:
4019 			mlx5_free(translated);
4020 			return rte_flow_error_set
4021 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
4022 				 NULL, "invalid indirect action type");
4023 		}
4024 	}
4025 	*translated_actions = translated;
4026 	return 0;
4027 }
4028 
4029 /**
4030  * Get Shared RSS action from the action list.
4031  *
4032  * @param[in] dev
4033  *   Pointer to Ethernet device.
4034  * @param[in] shared
4035  *   Pointer to the list of actions.
4036  * @param[in] shared_n
4037  *   Actions list length.
4038  *
4039  * @return
4040  *   The MLX5 RSS action ID if exists, otherwise return 0.
4041  */
4042 static uint32_t
4043 flow_get_shared_rss_action(struct rte_eth_dev *dev,
4044 			   struct mlx5_translated_action_handle *handle,
4045 			   int shared_n)
4046 {
4047 	struct mlx5_translated_action_handle *handle_end;
4048 	struct mlx5_priv *priv = dev->data->dev_private;
4049 	struct mlx5_shared_action_rss *shared_rss;
4050 
4051 
4052 	for (handle_end = handle + shared_n; handle < handle_end; handle++) {
4053 		uint32_t act_idx = (uint32_t)(uintptr_t)handle->action;
4054 		uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET;
4055 		uint32_t idx = act_idx &
4056 			       ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1);
4057 		switch (type) {
4058 		case MLX5_INDIRECT_ACTION_TYPE_RSS:
4059 			shared_rss = mlx5_ipool_get
4060 				(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
4061 									   idx);
4062 			__atomic_add_fetch(&shared_rss->refcnt, 1,
4063 					   __ATOMIC_RELAXED);
4064 			return idx;
4065 		default:
4066 			break;
4067 		}
4068 	}
4069 	return 0;
4070 }
4071 
4072 static unsigned int
4073 find_graph_root(uint32_t rss_level)
4074 {
4075 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
4076 			       MLX5_EXPANSION_ROOT_OUTER;
4077 }
4078 
4079 /**
4080  *  Get layer flags from the prefix flow.
4081  *
4082  *  Some flows may be split to several subflows, the prefix subflow gets the
4083  *  match items and the suffix sub flow gets the actions.
4084  *  Some actions need the user defined match item flags to get the detail for
4085  *  the action.
4086  *  This function helps the suffix flow to get the item layer flags from prefix
4087  *  subflow.
4088  *
4089  * @param[in] dev_flow
4090  *   Pointer the created prefix subflow.
4091  *
4092  * @return
4093  *   The layers get from prefix subflow.
4094  */
4095 static inline uint64_t
4096 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
4097 {
4098 	uint64_t layers = 0;
4099 
4100 	/*
4101 	 * Layers bits could be localization, but usually the compiler will
4102 	 * help to do the optimization work for source code.
4103 	 * If no decap actions, use the layers directly.
4104 	 */
4105 	if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
4106 		return dev_flow->handle->layers;
4107 	/* Convert L3 layers with decap action. */
4108 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
4109 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
4110 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
4111 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
4112 	/* Convert L4 layers with decap action.  */
4113 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
4114 		layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
4115 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
4116 		layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
4117 	return layers;
4118 }
4119 
4120 /**
4121  * Get metadata split action information.
4122  *
4123  * @param[in] actions
4124  *   Pointer to the list of actions.
4125  * @param[out] qrss
4126  *   Pointer to the return pointer.
4127  * @param[out] qrss_type
4128  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
4129  *   if no QUEUE/RSS is found.
4130  * @param[out] encap_idx
4131  *   Pointer to the index of the encap action if exists, otherwise the last
4132  *   action index.
4133  *
4134  * @return
4135  *   Total number of actions.
4136  */
4137 static int
4138 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
4139 				       const struct rte_flow_action **qrss,
4140 				       int *encap_idx)
4141 {
4142 	const struct rte_flow_action_raw_encap *raw_encap;
4143 	int actions_n = 0;
4144 	int raw_decap_idx = -1;
4145 
4146 	*encap_idx = -1;
4147 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4148 		switch (actions->type) {
4149 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4150 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4151 			*encap_idx = actions_n;
4152 			break;
4153 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4154 			raw_decap_idx = actions_n;
4155 			break;
4156 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4157 			raw_encap = actions->conf;
4158 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4159 				*encap_idx = raw_decap_idx != -1 ?
4160 						      raw_decap_idx : actions_n;
4161 			break;
4162 		case RTE_FLOW_ACTION_TYPE_QUEUE:
4163 		case RTE_FLOW_ACTION_TYPE_RSS:
4164 			*qrss = actions;
4165 			break;
4166 		default:
4167 			break;
4168 		}
4169 		actions_n++;
4170 	}
4171 	if (*encap_idx == -1)
4172 		*encap_idx = actions_n;
4173 	/* Count RTE_FLOW_ACTION_TYPE_END. */
4174 	return actions_n + 1;
4175 }
4176 
4177 /**
4178  * Check if the action will change packet.
4179  *
4180  * @param dev
4181  *   Pointer to Ethernet device.
4182  * @param[in] type
4183  *   action type.
4184  *
4185  * @return
4186  *   true if action will change packet, false otherwise.
4187  */
4188 static bool flow_check_modify_action_type(struct rte_eth_dev *dev,
4189 					  enum rte_flow_action_type type)
4190 {
4191 	struct mlx5_priv *priv = dev->data->dev_private;
4192 
4193 	switch (type) {
4194 	case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
4195 	case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
4196 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
4197 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
4198 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
4199 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
4200 	case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
4201 	case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
4202 	case RTE_FLOW_ACTION_TYPE_DEC_TTL:
4203 	case RTE_FLOW_ACTION_TYPE_SET_TTL:
4204 	case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ:
4205 	case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ:
4206 	case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK:
4207 	case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK:
4208 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP:
4209 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP:
4210 	case RTE_FLOW_ACTION_TYPE_SET_META:
4211 	case RTE_FLOW_ACTION_TYPE_SET_TAG:
4212 	case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
4213 	case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4214 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4215 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4216 	case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4217 	case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
4218 	case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4219 	case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
4220 	case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4221 	case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4222 	case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD:
4223 		return true;
4224 	case RTE_FLOW_ACTION_TYPE_FLAG:
4225 	case RTE_FLOW_ACTION_TYPE_MARK:
4226 		if (priv->sh->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY)
4227 			return true;
4228 		else
4229 			return false;
4230 	default:
4231 		return false;
4232 	}
4233 }
4234 
4235 /**
4236  * Check meter action from the action list.
4237  *
4238  * @param dev
4239  *   Pointer to Ethernet device.
4240  * @param[in] actions
4241  *   Pointer to the list of actions.
4242  * @param[out] has_mtr
4243  *   Pointer to the meter exist flag.
4244  * @param[out] has_modify
4245  *   Pointer to the flag showing there's packet change action.
4246  * @param[out] meter_id
4247  *   Pointer to the meter id.
4248  *
4249  * @return
4250  *   Total number of actions.
4251  */
4252 static int
4253 flow_check_meter_action(struct rte_eth_dev *dev,
4254 			const struct rte_flow_action actions[],
4255 			bool *has_mtr, bool *has_modify, uint32_t *meter_id)
4256 {
4257 	const struct rte_flow_action_meter *mtr = NULL;
4258 	int actions_n = 0;
4259 
4260 	MLX5_ASSERT(has_mtr);
4261 	*has_mtr = false;
4262 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4263 		switch (actions->type) {
4264 		case RTE_FLOW_ACTION_TYPE_METER:
4265 			mtr = actions->conf;
4266 			*meter_id = mtr->mtr_id;
4267 			*has_mtr = true;
4268 			break;
4269 		default:
4270 			break;
4271 		}
4272 		if (!*has_mtr)
4273 			*has_modify |= flow_check_modify_action_type(dev,
4274 								actions->type);
4275 		actions_n++;
4276 	}
4277 	/* Count RTE_FLOW_ACTION_TYPE_END. */
4278 	return actions_n + 1;
4279 }
4280 
4281 /**
4282  * Check if the flow should be split due to hairpin.
4283  * The reason for the split is that in current HW we can't
4284  * support encap and push-vlan on Rx, so if a flow contains
4285  * these actions we move it to Tx.
4286  *
4287  * @param dev
4288  *   Pointer to Ethernet device.
4289  * @param[in] attr
4290  *   Flow rule attributes.
4291  * @param[in] actions
4292  *   Associated actions (list terminated by the END action).
4293  *
4294  * @return
4295  *   > 0 the number of actions and the flow should be split,
4296  *   0 when no split required.
4297  */
4298 static int
4299 flow_check_hairpin_split(struct rte_eth_dev *dev,
4300 			 const struct rte_flow_attr *attr,
4301 			 const struct rte_flow_action actions[])
4302 {
4303 	int queue_action = 0;
4304 	int action_n = 0;
4305 	int split = 0;
4306 	const struct rte_flow_action_queue *queue;
4307 	const struct rte_flow_action_rss *rss;
4308 	const struct rte_flow_action_raw_encap *raw_encap;
4309 	const struct rte_eth_hairpin_conf *conf;
4310 
4311 	if (!attr->ingress)
4312 		return 0;
4313 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4314 		switch (actions->type) {
4315 		case RTE_FLOW_ACTION_TYPE_QUEUE:
4316 			queue = actions->conf;
4317 			if (queue == NULL)
4318 				return 0;
4319 			conf = mlx5_rxq_get_hairpin_conf(dev, queue->index);
4320 			if (conf == NULL || conf->tx_explicit != 0)
4321 				return 0;
4322 			queue_action = 1;
4323 			action_n++;
4324 			break;
4325 		case RTE_FLOW_ACTION_TYPE_RSS:
4326 			rss = actions->conf;
4327 			if (rss == NULL || rss->queue_num == 0)
4328 				return 0;
4329 			conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]);
4330 			if (conf == NULL || conf->tx_explicit != 0)
4331 				return 0;
4332 			queue_action = 1;
4333 			action_n++;
4334 			break;
4335 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4336 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4337 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4338 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4339 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4340 			split++;
4341 			action_n++;
4342 			break;
4343 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4344 			raw_encap = actions->conf;
4345 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4346 				split++;
4347 			action_n++;
4348 			break;
4349 		default:
4350 			action_n++;
4351 			break;
4352 		}
4353 	}
4354 	if (split && queue_action)
4355 		return action_n;
4356 	return 0;
4357 }
4358 
4359 /* Declare flow create/destroy prototype in advance. */
4360 static uint32_t
4361 flow_list_create(struct rte_eth_dev *dev, enum mlx5_flow_type type,
4362 		 const struct rte_flow_attr *attr,
4363 		 const struct rte_flow_item items[],
4364 		 const struct rte_flow_action actions[],
4365 		 bool external, struct rte_flow_error *error);
4366 
4367 static void
4368 flow_list_destroy(struct rte_eth_dev *dev, enum mlx5_flow_type type,
4369 		  uint32_t flow_idx);
4370 
4371 int
4372 flow_dv_mreg_match_cb(void *tool_ctx __rte_unused,
4373 		      struct mlx5_list_entry *entry, void *cb_ctx)
4374 {
4375 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
4376 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4377 			       container_of(entry, typeof(*mcp_res), hlist_ent);
4378 
4379 	return mcp_res->mark_id != *(uint32_t *)(ctx->data);
4380 }
4381 
4382 struct mlx5_list_entry *
4383 flow_dv_mreg_create_cb(void *tool_ctx, void *cb_ctx)
4384 {
4385 	struct rte_eth_dev *dev = tool_ctx;
4386 	struct mlx5_priv *priv = dev->data->dev_private;
4387 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
4388 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4389 	struct rte_flow_error *error = ctx->error;
4390 	uint32_t idx = 0;
4391 	int ret;
4392 	uint32_t mark_id = *(uint32_t *)(ctx->data);
4393 	struct rte_flow_attr attr = {
4394 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4395 		.ingress = 1,
4396 	};
4397 	struct mlx5_rte_flow_item_tag tag_spec = {
4398 		.data = mark_id,
4399 	};
4400 	struct rte_flow_item items[] = {
4401 		[1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
4402 	};
4403 	struct rte_flow_action_mark ftag = {
4404 		.id = mark_id,
4405 	};
4406 	struct mlx5_flow_action_copy_mreg cp_mreg = {
4407 		.dst = REG_B,
4408 		.src = REG_NON,
4409 	};
4410 	struct rte_flow_action_jump jump = {
4411 		.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4412 	};
4413 	struct rte_flow_action actions[] = {
4414 		[3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
4415 	};
4416 
4417 	/* Fill the register fields in the flow. */
4418 	ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
4419 	if (ret < 0)
4420 		return NULL;
4421 	tag_spec.id = ret;
4422 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4423 	if (ret < 0)
4424 		return NULL;
4425 	cp_mreg.src = ret;
4426 	/* Provide the full width of FLAG specific value. */
4427 	if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
4428 		tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
4429 	/* Build a new flow. */
4430 	if (mark_id != MLX5_DEFAULT_COPY_ID) {
4431 		items[0] = (struct rte_flow_item){
4432 			.type = (enum rte_flow_item_type)
4433 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4434 			.spec = &tag_spec,
4435 		};
4436 		items[1] = (struct rte_flow_item){
4437 			.type = RTE_FLOW_ITEM_TYPE_END,
4438 		};
4439 		actions[0] = (struct rte_flow_action){
4440 			.type = (enum rte_flow_action_type)
4441 				MLX5_RTE_FLOW_ACTION_TYPE_MARK,
4442 			.conf = &ftag,
4443 		};
4444 		actions[1] = (struct rte_flow_action){
4445 			.type = (enum rte_flow_action_type)
4446 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4447 			.conf = &cp_mreg,
4448 		};
4449 		actions[2] = (struct rte_flow_action){
4450 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
4451 			.conf = &jump,
4452 		};
4453 		actions[3] = (struct rte_flow_action){
4454 			.type = RTE_FLOW_ACTION_TYPE_END,
4455 		};
4456 	} else {
4457 		/* Default rule, wildcard match. */
4458 		attr.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR;
4459 		items[0] = (struct rte_flow_item){
4460 			.type = RTE_FLOW_ITEM_TYPE_END,
4461 		};
4462 		actions[0] = (struct rte_flow_action){
4463 			.type = (enum rte_flow_action_type)
4464 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4465 			.conf = &cp_mreg,
4466 		};
4467 		actions[1] = (struct rte_flow_action){
4468 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
4469 			.conf = &jump,
4470 		};
4471 		actions[2] = (struct rte_flow_action){
4472 			.type = RTE_FLOW_ACTION_TYPE_END,
4473 		};
4474 	}
4475 	/* Build a new entry. */
4476 	mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
4477 	if (!mcp_res) {
4478 		rte_errno = ENOMEM;
4479 		return NULL;
4480 	}
4481 	mcp_res->idx = idx;
4482 	mcp_res->mark_id = mark_id;
4483 	/*
4484 	 * The copy Flows are not included in any list. There
4485 	 * ones are referenced from other Flows and can not
4486 	 * be applied, removed, deleted in arbitrary order
4487 	 * by list traversing.
4488 	 */
4489 	mcp_res->rix_flow = flow_list_create(dev, MLX5_FLOW_TYPE_MCP,
4490 					&attr, items, actions, false, error);
4491 	if (!mcp_res->rix_flow) {
4492 		mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], idx);
4493 		return NULL;
4494 	}
4495 	return &mcp_res->hlist_ent;
4496 }
4497 
4498 struct mlx5_list_entry *
4499 flow_dv_mreg_clone_cb(void *tool_ctx, struct mlx5_list_entry *oentry,
4500 		      void *cb_ctx __rte_unused)
4501 {
4502 	struct rte_eth_dev *dev = tool_ctx;
4503 	struct mlx5_priv *priv = dev->data->dev_private;
4504 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4505 	uint32_t idx = 0;
4506 
4507 	mcp_res = mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
4508 	if (!mcp_res) {
4509 		rte_errno = ENOMEM;
4510 		return NULL;
4511 	}
4512 	memcpy(mcp_res, oentry, sizeof(*mcp_res));
4513 	mcp_res->idx = idx;
4514 	return &mcp_res->hlist_ent;
4515 }
4516 
4517 void
4518 flow_dv_mreg_clone_free_cb(void *tool_ctx, struct mlx5_list_entry *entry)
4519 {
4520 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4521 			       container_of(entry, typeof(*mcp_res), hlist_ent);
4522 	struct rte_eth_dev *dev = tool_ctx;
4523 	struct mlx5_priv *priv = dev->data->dev_private;
4524 
4525 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
4526 }
4527 
4528 /**
4529  * Add a flow of copying flow metadata registers in RX_CP_TBL.
4530  *
4531  * As mark_id is unique, if there's already a registered flow for the mark_id,
4532  * return by increasing the reference counter of the resource. Otherwise, create
4533  * the resource (mcp_res) and flow.
4534  *
4535  * Flow looks like,
4536  *   - If ingress port is ANY and reg_c[1] is mark_id,
4537  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4538  *
4539  * For default flow (zero mark_id), flow is like,
4540  *   - If ingress port is ANY,
4541  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
4542  *
4543  * @param dev
4544  *   Pointer to Ethernet device.
4545  * @param mark_id
4546  *   ID of MARK action, zero means default flow for META.
4547  * @param[out] error
4548  *   Perform verbose error reporting if not NULL.
4549  *
4550  * @return
4551  *   Associated resource on success, NULL otherwise and rte_errno is set.
4552  */
4553 static struct mlx5_flow_mreg_copy_resource *
4554 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
4555 			  struct rte_flow_error *error)
4556 {
4557 	struct mlx5_priv *priv = dev->data->dev_private;
4558 	struct mlx5_list_entry *entry;
4559 	struct mlx5_flow_cb_ctx ctx = {
4560 		.dev = dev,
4561 		.error = error,
4562 		.data = &mark_id,
4563 	};
4564 
4565 	/* Check if already registered. */
4566 	MLX5_ASSERT(priv->mreg_cp_tbl);
4567 	entry = mlx5_hlist_register(priv->mreg_cp_tbl, mark_id, &ctx);
4568 	if (!entry)
4569 		return NULL;
4570 	return container_of(entry, struct mlx5_flow_mreg_copy_resource,
4571 			    hlist_ent);
4572 }
4573 
4574 void
4575 flow_dv_mreg_remove_cb(void *tool_ctx, struct mlx5_list_entry *entry)
4576 {
4577 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4578 			       container_of(entry, typeof(*mcp_res), hlist_ent);
4579 	struct rte_eth_dev *dev = tool_ctx;
4580 	struct mlx5_priv *priv = dev->data->dev_private;
4581 
4582 	MLX5_ASSERT(mcp_res->rix_flow);
4583 	flow_list_destroy(dev, MLX5_FLOW_TYPE_MCP, mcp_res->rix_flow);
4584 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
4585 }
4586 
4587 /**
4588  * Release flow in RX_CP_TBL.
4589  *
4590  * @param dev
4591  *   Pointer to Ethernet device.
4592  * @flow
4593  *   Parent flow for wich copying is provided.
4594  */
4595 static void
4596 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
4597 			  struct rte_flow *flow)
4598 {
4599 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4600 	struct mlx5_priv *priv = dev->data->dev_private;
4601 
4602 	if (!flow->rix_mreg_copy)
4603 		return;
4604 	mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
4605 				 flow->rix_mreg_copy);
4606 	if (!mcp_res || !priv->mreg_cp_tbl)
4607 		return;
4608 	MLX5_ASSERT(mcp_res->rix_flow);
4609 	mlx5_hlist_unregister(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
4610 	flow->rix_mreg_copy = 0;
4611 }
4612 
4613 /**
4614  * Remove the default copy action from RX_CP_TBL.
4615  *
4616  * This functions is called in the mlx5_dev_start(). No thread safe
4617  * is guaranteed.
4618  *
4619  * @param dev
4620  *   Pointer to Ethernet device.
4621  */
4622 static void
4623 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
4624 {
4625 	struct mlx5_list_entry *entry;
4626 	struct mlx5_priv *priv = dev->data->dev_private;
4627 	struct mlx5_flow_cb_ctx ctx;
4628 	uint32_t mark_id;
4629 
4630 	/* Check if default flow is registered. */
4631 	if (!priv->mreg_cp_tbl)
4632 		return;
4633 	mark_id = MLX5_DEFAULT_COPY_ID;
4634 	ctx.data = &mark_id;
4635 	entry = mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id, &ctx);
4636 	if (!entry)
4637 		return;
4638 	mlx5_hlist_unregister(priv->mreg_cp_tbl, entry);
4639 }
4640 
4641 /**
4642  * Add the default copy action in in RX_CP_TBL.
4643  *
4644  * This functions is called in the mlx5_dev_start(). No thread safe
4645  * is guaranteed.
4646  *
4647  * @param dev
4648  *   Pointer to Ethernet device.
4649  * @param[out] error
4650  *   Perform verbose error reporting if not NULL.
4651  *
4652  * @return
4653  *   0 for success, negative value otherwise and rte_errno is set.
4654  */
4655 static int
4656 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
4657 				  struct rte_flow_error *error)
4658 {
4659 	struct mlx5_priv *priv = dev->data->dev_private;
4660 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4661 	struct mlx5_flow_cb_ctx ctx;
4662 	uint32_t mark_id;
4663 
4664 	/* Check whether extensive metadata feature is engaged. */
4665 	if (!priv->sh->config.dv_flow_en ||
4666 	    priv->sh->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4667 	    !mlx5_flow_ext_mreg_supported(dev) ||
4668 	    !priv->sh->dv_regc0_mask)
4669 		return 0;
4670 	/*
4671 	 * Add default mreg copy flow may be called multiple time, but
4672 	 * only be called once in stop. Avoid register it twice.
4673 	 */
4674 	mark_id = MLX5_DEFAULT_COPY_ID;
4675 	ctx.data = &mark_id;
4676 	if (mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id, &ctx))
4677 		return 0;
4678 	mcp_res = flow_mreg_add_copy_action(dev, mark_id, error);
4679 	if (!mcp_res)
4680 		return -rte_errno;
4681 	return 0;
4682 }
4683 
4684 /**
4685  * Add a flow of copying flow metadata registers in RX_CP_TBL.
4686  *
4687  * All the flow having Q/RSS action should be split by
4688  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
4689  * performs the following,
4690  *   - CQE->flow_tag := reg_c[1] (MARK)
4691  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4692  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
4693  * but there should be a flow per each MARK ID set by MARK action.
4694  *
4695  * For the aforementioned reason, if there's a MARK action in flow's action
4696  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
4697  * the MARK ID to CQE's flow_tag like,
4698  *   - If reg_c[1] is mark_id,
4699  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4700  *
4701  * For SET_META action which stores value in reg_c[0], as the destination is
4702  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
4703  * MARK ID means the default flow. The default flow looks like,
4704  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4705  *
4706  * @param dev
4707  *   Pointer to Ethernet device.
4708  * @param flow
4709  *   Pointer to flow structure.
4710  * @param[in] actions
4711  *   Pointer to the list of actions.
4712  * @param[out] error
4713  *   Perform verbose error reporting if not NULL.
4714  *
4715  * @return
4716  *   0 on success, negative value otherwise and rte_errno is set.
4717  */
4718 static int
4719 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
4720 			    struct rte_flow *flow,
4721 			    const struct rte_flow_action *actions,
4722 			    struct rte_flow_error *error)
4723 {
4724 	struct mlx5_priv *priv = dev->data->dev_private;
4725 	struct mlx5_sh_config *config = &priv->sh->config;
4726 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4727 	const struct rte_flow_action_mark *mark;
4728 
4729 	/* Check whether extensive metadata feature is engaged. */
4730 	if (!config->dv_flow_en ||
4731 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4732 	    !mlx5_flow_ext_mreg_supported(dev) ||
4733 	    !priv->sh->dv_regc0_mask)
4734 		return 0;
4735 	/* Find MARK action. */
4736 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4737 		switch (actions->type) {
4738 		case RTE_FLOW_ACTION_TYPE_FLAG:
4739 			mcp_res = flow_mreg_add_copy_action
4740 				(dev, MLX5_FLOW_MARK_DEFAULT, error);
4741 			if (!mcp_res)
4742 				return -rte_errno;
4743 			flow->rix_mreg_copy = mcp_res->idx;
4744 			return 0;
4745 		case RTE_FLOW_ACTION_TYPE_MARK:
4746 			mark = (const struct rte_flow_action_mark *)
4747 				actions->conf;
4748 			mcp_res =
4749 				flow_mreg_add_copy_action(dev, mark->id, error);
4750 			if (!mcp_res)
4751 				return -rte_errno;
4752 			flow->rix_mreg_copy = mcp_res->idx;
4753 			return 0;
4754 		default:
4755 			break;
4756 		}
4757 	}
4758 	return 0;
4759 }
4760 
4761 #define MLX5_MAX_SPLIT_ACTIONS 24
4762 #define MLX5_MAX_SPLIT_ITEMS 24
4763 
4764 /**
4765  * Split the hairpin flow.
4766  * Since HW can't support encap and push-vlan on Rx, we move these
4767  * actions to Tx.
4768  * If the count action is after the encap then we also
4769  * move the count action. in this case the count will also measure
4770  * the outer bytes.
4771  *
4772  * @param dev
4773  *   Pointer to Ethernet device.
4774  * @param[in] actions
4775  *   Associated actions (list terminated by the END action).
4776  * @param[out] actions_rx
4777  *   Rx flow actions.
4778  * @param[out] actions_tx
4779  *   Tx flow actions..
4780  * @param[out] pattern_tx
4781  *   The pattern items for the Tx flow.
4782  * @param[out] flow_id
4783  *   The flow ID connected to this flow.
4784  *
4785  * @return
4786  *   0 on success.
4787  */
4788 static int
4789 flow_hairpin_split(struct rte_eth_dev *dev,
4790 		   const struct rte_flow_action actions[],
4791 		   struct rte_flow_action actions_rx[],
4792 		   struct rte_flow_action actions_tx[],
4793 		   struct rte_flow_item pattern_tx[],
4794 		   uint32_t flow_id)
4795 {
4796 	const struct rte_flow_action_raw_encap *raw_encap;
4797 	const struct rte_flow_action_raw_decap *raw_decap;
4798 	struct mlx5_rte_flow_action_set_tag *set_tag;
4799 	struct rte_flow_action *tag_action;
4800 	struct mlx5_rte_flow_item_tag *tag_item;
4801 	struct rte_flow_item *item;
4802 	char *addr;
4803 	int encap = 0;
4804 
4805 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4806 		switch (actions->type) {
4807 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4808 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4809 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4810 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4811 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4812 			rte_memcpy(actions_tx, actions,
4813 			       sizeof(struct rte_flow_action));
4814 			actions_tx++;
4815 			break;
4816 		case RTE_FLOW_ACTION_TYPE_COUNT:
4817 			if (encap) {
4818 				rte_memcpy(actions_tx, actions,
4819 					   sizeof(struct rte_flow_action));
4820 				actions_tx++;
4821 			} else {
4822 				rte_memcpy(actions_rx, actions,
4823 					   sizeof(struct rte_flow_action));
4824 				actions_rx++;
4825 			}
4826 			break;
4827 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4828 			raw_encap = actions->conf;
4829 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) {
4830 				memcpy(actions_tx, actions,
4831 				       sizeof(struct rte_flow_action));
4832 				actions_tx++;
4833 				encap = 1;
4834 			} else {
4835 				rte_memcpy(actions_rx, actions,
4836 					   sizeof(struct rte_flow_action));
4837 				actions_rx++;
4838 			}
4839 			break;
4840 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4841 			raw_decap = actions->conf;
4842 			if (raw_decap->size < MLX5_ENCAPSULATION_DECISION_SIZE) {
4843 				memcpy(actions_tx, actions,
4844 				       sizeof(struct rte_flow_action));
4845 				actions_tx++;
4846 			} else {
4847 				rte_memcpy(actions_rx, actions,
4848 					   sizeof(struct rte_flow_action));
4849 				actions_rx++;
4850 			}
4851 			break;
4852 		default:
4853 			rte_memcpy(actions_rx, actions,
4854 				   sizeof(struct rte_flow_action));
4855 			actions_rx++;
4856 			break;
4857 		}
4858 	}
4859 	/* Add set meta action and end action for the Rx flow. */
4860 	tag_action = actions_rx;
4861 	tag_action->type = (enum rte_flow_action_type)
4862 			   MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4863 	actions_rx++;
4864 	rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
4865 	actions_rx++;
4866 	set_tag = (void *)actions_rx;
4867 	*set_tag = (struct mlx5_rte_flow_action_set_tag) {
4868 		.id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL),
4869 		.data = flow_id,
4870 	};
4871 	MLX5_ASSERT(set_tag->id > REG_NON);
4872 	tag_action->conf = set_tag;
4873 	/* Create Tx item list. */
4874 	rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
4875 	addr = (void *)&pattern_tx[2];
4876 	item = pattern_tx;
4877 	item->type = (enum rte_flow_item_type)
4878 		     MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4879 	tag_item = (void *)addr;
4880 	tag_item->data = flow_id;
4881 	tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
4882 	MLX5_ASSERT(set_tag->id > REG_NON);
4883 	item->spec = tag_item;
4884 	addr += sizeof(struct mlx5_rte_flow_item_tag);
4885 	tag_item = (void *)addr;
4886 	tag_item->data = UINT32_MAX;
4887 	tag_item->id = UINT16_MAX;
4888 	item->mask = tag_item;
4889 	item->last = NULL;
4890 	item++;
4891 	item->type = RTE_FLOW_ITEM_TYPE_END;
4892 	return 0;
4893 }
4894 
4895 /**
4896  * The last stage of splitting chain, just creates the subflow
4897  * without any modification.
4898  *
4899  * @param[in] dev
4900  *   Pointer to Ethernet device.
4901  * @param[in] flow
4902  *   Parent flow structure pointer.
4903  * @param[in, out] sub_flow
4904  *   Pointer to return the created subflow, may be NULL.
4905  * @param[in] attr
4906  *   Flow rule attributes.
4907  * @param[in] items
4908  *   Pattern specification (list terminated by the END pattern item).
4909  * @param[in] actions
4910  *   Associated actions (list terminated by the END action).
4911  * @param[in] flow_split_info
4912  *   Pointer to flow split info structure.
4913  * @param[out] error
4914  *   Perform verbose error reporting if not NULL.
4915  * @return
4916  *   0 on success, negative value otherwise
4917  */
4918 static int
4919 flow_create_split_inner(struct rte_eth_dev *dev,
4920 			struct rte_flow *flow,
4921 			struct mlx5_flow **sub_flow,
4922 			const struct rte_flow_attr *attr,
4923 			const struct rte_flow_item items[],
4924 			const struct rte_flow_action actions[],
4925 			struct mlx5_flow_split_info *flow_split_info,
4926 			struct rte_flow_error *error)
4927 {
4928 	struct mlx5_flow *dev_flow;
4929 	struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace();
4930 
4931 	dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
4932 				    flow_split_info->flow_idx, error);
4933 	if (!dev_flow)
4934 		return -rte_errno;
4935 	dev_flow->flow = flow;
4936 	dev_flow->external = flow_split_info->external;
4937 	dev_flow->skip_scale = flow_split_info->skip_scale;
4938 	/* Subflow object was created, we must include one in the list. */
4939 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
4940 		      dev_flow->handle, next);
4941 	/*
4942 	 * If dev_flow is as one of the suffix flow, some actions in suffix
4943 	 * flow may need some user defined item layer flags, and pass the
4944 	 * Metadata rxq mark flag to suffix flow as well.
4945 	 */
4946 	if (flow_split_info->prefix_layers)
4947 		dev_flow->handle->layers = flow_split_info->prefix_layers;
4948 	if (flow_split_info->prefix_mark) {
4949 		MLX5_ASSERT(wks);
4950 		wks->mark = 1;
4951 	}
4952 	if (sub_flow)
4953 		*sub_flow = dev_flow;
4954 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4955 	dev_flow->dv.table_id = flow_split_info->table_id;
4956 #endif
4957 	return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
4958 }
4959 
4960 /**
4961  * Get the sub policy of a meter.
4962  *
4963  * @param[in] dev
4964  *   Pointer to Ethernet device.
4965  * @param[in] flow
4966  *   Parent flow structure pointer.
4967  * @param wks
4968  *   Pointer to thread flow work space.
4969  * @param[in] attr
4970  *   Flow rule attributes.
4971  * @param[in] items
4972  *   Pattern specification (list terminated by the END pattern item).
4973  * @param[out] error
4974  *   Perform verbose error reporting if not NULL.
4975  *
4976  * @return
4977  *   Pointer to the meter sub policy, NULL otherwise and rte_errno is set.
4978  */
4979 static struct mlx5_flow_meter_sub_policy *
4980 get_meter_sub_policy(struct rte_eth_dev *dev,
4981 		     struct rte_flow *flow,
4982 		     struct mlx5_flow_workspace *wks,
4983 		     const struct rte_flow_attr *attr,
4984 		     const struct rte_flow_item items[],
4985 		     struct rte_flow_error *error)
4986 {
4987 	struct mlx5_flow_meter_policy *policy;
4988 	struct mlx5_flow_meter_policy *final_policy;
4989 	struct mlx5_flow_meter_sub_policy *sub_policy = NULL;
4990 
4991 	policy = wks->policy;
4992 	final_policy = policy->is_hierarchy ? wks->final_policy : policy;
4993 	if (final_policy->is_rss || final_policy->is_queue) {
4994 		struct mlx5_flow_rss_desc rss_desc_v[MLX5_MTR_RTE_COLORS];
4995 		struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS] = {0};
4996 		uint32_t i;
4997 
4998 		/*
4999 		 * This is a tmp dev_flow,
5000 		 * no need to register any matcher for it in translate.
5001 		 */
5002 		wks->skip_matcher_reg = 1;
5003 		for (i = 0; i < MLX5_MTR_RTE_COLORS; i++) {
5004 			struct mlx5_flow dev_flow = {0};
5005 			struct mlx5_flow_handle dev_handle = { {0} };
5006 			uint8_t fate = final_policy->act_cnt[i].fate_action;
5007 
5008 			if (fate == MLX5_FLOW_FATE_SHARED_RSS) {
5009 				const struct rte_flow_action_rss *rss_act =
5010 					final_policy->act_cnt[i].rss->conf;
5011 				struct rte_flow_action rss_actions[2] = {
5012 					[0] = {
5013 					.type = RTE_FLOW_ACTION_TYPE_RSS,
5014 					.conf = rss_act,
5015 					},
5016 					[1] = {
5017 					.type = RTE_FLOW_ACTION_TYPE_END,
5018 					.conf = NULL,
5019 					}
5020 				};
5021 
5022 				dev_flow.handle = &dev_handle;
5023 				dev_flow.ingress = attr->ingress;
5024 				dev_flow.flow = flow;
5025 				dev_flow.external = 0;
5026 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5027 				dev_flow.dv.transfer = attr->transfer;
5028 #endif
5029 				/**
5030 				 * Translate RSS action to get rss hash fields.
5031 				 */
5032 				if (flow_drv_translate(dev, &dev_flow, attr,
5033 						items, rss_actions, error))
5034 					goto exit;
5035 				rss_desc_v[i] = wks->rss_desc;
5036 				rss_desc_v[i].key_len = MLX5_RSS_HASH_KEY_LEN;
5037 				rss_desc_v[i].hash_fields =
5038 						dev_flow.hash_fields;
5039 				rss_desc_v[i].queue_num =
5040 						rss_desc_v[i].hash_fields ?
5041 						rss_desc_v[i].queue_num : 1;
5042 				rss_desc_v[i].tunnel =
5043 						!!(dev_flow.handle->layers &
5044 						   MLX5_FLOW_LAYER_TUNNEL);
5045 				/* Use the RSS queues in the containers. */
5046 				rss_desc_v[i].queue =
5047 					(uint16_t *)(uintptr_t)rss_act->queue;
5048 				rss_desc[i] = &rss_desc_v[i];
5049 			} else if (fate == MLX5_FLOW_FATE_QUEUE) {
5050 				/* This is queue action. */
5051 				rss_desc_v[i] = wks->rss_desc;
5052 				rss_desc_v[i].key_len = 0;
5053 				rss_desc_v[i].hash_fields = 0;
5054 				rss_desc_v[i].queue =
5055 					&final_policy->act_cnt[i].queue;
5056 				rss_desc_v[i].queue_num = 1;
5057 				rss_desc[i] = &rss_desc_v[i];
5058 			} else {
5059 				rss_desc[i] = NULL;
5060 			}
5061 		}
5062 		sub_policy = flow_drv_meter_sub_policy_rss_prepare(dev,
5063 						flow, policy, rss_desc);
5064 	} else {
5065 		enum mlx5_meter_domain mtr_domain =
5066 			attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER :
5067 				(attr->egress ? MLX5_MTR_DOMAIN_EGRESS :
5068 						MLX5_MTR_DOMAIN_INGRESS);
5069 		sub_policy = policy->sub_policys[mtr_domain][0];
5070 	}
5071 	if (!sub_policy)
5072 		rte_flow_error_set(error, EINVAL,
5073 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
5074 				   "Failed to get meter sub-policy.");
5075 exit:
5076 	return sub_policy;
5077 }
5078 
5079 /**
5080  * Split the meter flow.
5081  *
5082  * As meter flow will split to three sub flow, other than meter
5083  * action, the other actions make sense to only meter accepts
5084  * the packet. If it need to be dropped, no other additional
5085  * actions should be take.
5086  *
5087  * One kind of special action which decapsulates the L3 tunnel
5088  * header will be in the prefix sub flow, as not to take the
5089  * L3 tunnel header into account.
5090  *
5091  * @param[in] dev
5092  *   Pointer to Ethernet device.
5093  * @param[in] flow
5094  *   Parent flow structure pointer.
5095  * @param wks
5096  *   Pointer to thread flow work space.
5097  * @param[in] attr
5098  *   Flow rule attributes.
5099  * @param[in] items
5100  *   Pattern specification (list terminated by the END pattern item).
5101  * @param[out] sfx_items
5102  *   Suffix flow match items (list terminated by the END pattern item).
5103  * @param[in] actions
5104  *   Associated actions (list terminated by the END action).
5105  * @param[out] actions_sfx
5106  *   Suffix flow actions.
5107  * @param[out] actions_pre
5108  *   Prefix flow actions.
5109  * @param[out] mtr_flow_id
5110  *   Pointer to meter flow id.
5111  * @param[out] error
5112  *   Perform verbose error reporting if not NULL.
5113  *
5114  * @return
5115  *   0 on success, a negative errno value otherwise and rte_errno is set.
5116  */
5117 static int
5118 flow_meter_split_prep(struct rte_eth_dev *dev,
5119 		      struct rte_flow *flow,
5120 		      struct mlx5_flow_workspace *wks,
5121 		      const struct rte_flow_attr *attr,
5122 		      const struct rte_flow_item items[],
5123 		      struct rte_flow_item sfx_items[],
5124 		      const struct rte_flow_action actions[],
5125 		      struct rte_flow_action actions_sfx[],
5126 		      struct rte_flow_action actions_pre[],
5127 		      uint32_t *mtr_flow_id,
5128 		      struct rte_flow_error *error)
5129 {
5130 	struct mlx5_priv *priv = dev->data->dev_private;
5131 	struct mlx5_flow_meter_info *fm = wks->fm;
5132 	struct rte_flow_action *tag_action = NULL;
5133 	struct rte_flow_item *tag_item;
5134 	struct mlx5_rte_flow_action_set_tag *set_tag;
5135 	const struct rte_flow_action_raw_encap *raw_encap;
5136 	const struct rte_flow_action_raw_decap *raw_decap;
5137 	struct mlx5_rte_flow_item_tag *tag_item_spec;
5138 	struct mlx5_rte_flow_item_tag *tag_item_mask;
5139 	uint32_t tag_id = 0;
5140 	struct rte_flow_item *vlan_item_dst = NULL;
5141 	const struct rte_flow_item *vlan_item_src = NULL;
5142 	const struct rte_flow_item *orig_items = items;
5143 	struct rte_flow_action *hw_mtr_action;
5144 	struct rte_flow_action *action_pre_head = NULL;
5145 	int32_t flow_src_port = priv->representor_id;
5146 	bool mtr_first;
5147 	uint8_t mtr_id_offset = priv->mtr_reg_share ? MLX5_MTR_COLOR_BITS : 0;
5148 	uint8_t mtr_reg_bits = priv->mtr_reg_share ?
5149 				MLX5_MTR_IDLE_BITS_IN_COLOR_REG : MLX5_REG_BITS;
5150 	uint32_t flow_id = 0;
5151 	uint32_t flow_id_reversed = 0;
5152 	uint8_t flow_id_bits = 0;
5153 	int shift;
5154 
5155 	/* Prepare the suffix subflow items. */
5156 	tag_item = sfx_items++;
5157 	for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
5158 		struct mlx5_priv *port_priv;
5159 		const struct rte_flow_item_port_id *pid_v;
5160 		int item_type = items->type;
5161 
5162 		switch (item_type) {
5163 		case RTE_FLOW_ITEM_TYPE_PORT_ID:
5164 			pid_v = items->spec;
5165 			MLX5_ASSERT(pid_v);
5166 			port_priv = mlx5_port_to_eswitch_info(pid_v->id, false);
5167 			if (!port_priv)
5168 				return rte_flow_error_set(error,
5169 						rte_errno,
5170 						RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
5171 						pid_v,
5172 						"Failed to get port info.");
5173 			flow_src_port = port_priv->representor_id;
5174 			if (!fm->def_policy && wks->policy->is_hierarchy &&
5175 			    flow_src_port != priv->representor_id) {
5176 				if (flow_drv_mtr_hierarchy_rule_create(dev,
5177 								flow, fm,
5178 								flow_src_port,
5179 								items,
5180 								error))
5181 					return -rte_errno;
5182 			}
5183 			memcpy(sfx_items, items, sizeof(*sfx_items));
5184 			sfx_items++;
5185 			break;
5186 		case RTE_FLOW_ITEM_TYPE_VLAN:
5187 			/* Determine if copy vlan item below. */
5188 			vlan_item_src = items;
5189 			vlan_item_dst = sfx_items++;
5190 			vlan_item_dst->type = RTE_FLOW_ITEM_TYPE_VOID;
5191 			break;
5192 		default:
5193 			break;
5194 		}
5195 	}
5196 	sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
5197 	sfx_items++;
5198 	mtr_first = priv->sh->meter_aso_en &&
5199 		(attr->egress || (attr->transfer && flow_src_port != UINT16_MAX));
5200 	/* For ASO meter, meter must be before tag in TX direction. */
5201 	if (mtr_first) {
5202 		action_pre_head = actions_pre++;
5203 		/* Leave space for tag action. */
5204 		tag_action = actions_pre++;
5205 	}
5206 	/* Prepare the actions for prefix and suffix flow. */
5207 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
5208 		struct rte_flow_action *action_cur = NULL;
5209 
5210 		switch (actions->type) {
5211 		case RTE_FLOW_ACTION_TYPE_METER:
5212 			if (mtr_first) {
5213 				action_cur = action_pre_head;
5214 			} else {
5215 				/* Leave space for tag action. */
5216 				tag_action = actions_pre++;
5217 				action_cur = actions_pre++;
5218 			}
5219 			break;
5220 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
5221 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
5222 			action_cur = actions_pre++;
5223 			break;
5224 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
5225 			raw_encap = actions->conf;
5226 			if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
5227 				action_cur = actions_pre++;
5228 			break;
5229 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
5230 			raw_decap = actions->conf;
5231 			if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
5232 				action_cur = actions_pre++;
5233 			break;
5234 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
5235 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
5236 			if (vlan_item_dst && vlan_item_src) {
5237 				memcpy(vlan_item_dst, vlan_item_src,
5238 					sizeof(*vlan_item_dst));
5239 				/*
5240 				 * Convert to internal match item, it is used
5241 				 * for vlan push and set vid.
5242 				 */
5243 				vlan_item_dst->type = (enum rte_flow_item_type)
5244 						MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
5245 			}
5246 			break;
5247 		default:
5248 			break;
5249 		}
5250 		if (!action_cur)
5251 			action_cur = (fm->def_policy) ?
5252 					actions_sfx++ : actions_pre++;
5253 		memcpy(action_cur, actions, sizeof(struct rte_flow_action));
5254 	}
5255 	/* Add end action to the actions. */
5256 	actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
5257 	if (priv->sh->meter_aso_en) {
5258 		/**
5259 		 * For ASO meter, need to add an extra jump action explicitly,
5260 		 * to jump from meter to policer table.
5261 		 */
5262 		struct mlx5_flow_meter_sub_policy *sub_policy;
5263 		struct mlx5_flow_tbl_data_entry *tbl_data;
5264 
5265 		if (!fm->def_policy) {
5266 			sub_policy = get_meter_sub_policy(dev, flow, wks,
5267 							  attr, orig_items,
5268 							  error);
5269 			if (!sub_policy)
5270 				return -rte_errno;
5271 		} else {
5272 			enum mlx5_meter_domain mtr_domain =
5273 			attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER :
5274 				(attr->egress ? MLX5_MTR_DOMAIN_EGRESS :
5275 						MLX5_MTR_DOMAIN_INGRESS);
5276 
5277 			sub_policy =
5278 			&priv->sh->mtrmng->def_policy[mtr_domain]->sub_policy;
5279 		}
5280 		tbl_data = container_of(sub_policy->tbl_rsc,
5281 					struct mlx5_flow_tbl_data_entry, tbl);
5282 		hw_mtr_action = actions_pre++;
5283 		hw_mtr_action->type = (enum rte_flow_action_type)
5284 				      MLX5_RTE_FLOW_ACTION_TYPE_JUMP;
5285 		hw_mtr_action->conf = tbl_data->jump.action;
5286 	}
5287 	actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
5288 	actions_pre++;
5289 	if (!tag_action)
5290 		return rte_flow_error_set(error, ENOMEM,
5291 					  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5292 					  NULL, "No tag action space.");
5293 	if (!mtr_flow_id) {
5294 		tag_action->type = RTE_FLOW_ACTION_TYPE_VOID;
5295 		goto exit;
5296 	}
5297 	/* Only default-policy Meter creates mtr flow id. */
5298 	if (fm->def_policy) {
5299 		mlx5_ipool_malloc(fm->flow_ipool, &tag_id);
5300 		if (!tag_id)
5301 			return rte_flow_error_set(error, ENOMEM,
5302 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
5303 					"Failed to allocate meter flow id.");
5304 		flow_id = tag_id - 1;
5305 		flow_id_bits = (!flow_id) ? 1 :
5306 				(MLX5_REG_BITS - __builtin_clz(flow_id));
5307 		if ((flow_id_bits + priv->sh->mtrmng->max_mtr_bits) >
5308 		    mtr_reg_bits) {
5309 			mlx5_ipool_free(fm->flow_ipool, tag_id);
5310 			return rte_flow_error_set(error, EINVAL,
5311 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
5312 					"Meter flow id exceeds max limit.");
5313 		}
5314 		if (flow_id_bits > priv->sh->mtrmng->max_mtr_flow_bits)
5315 			priv->sh->mtrmng->max_mtr_flow_bits = flow_id_bits;
5316 	}
5317 	/* Build tag actions and items for meter_id/meter flow_id. */
5318 	set_tag = (struct mlx5_rte_flow_action_set_tag *)actions_pre;
5319 	tag_item_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
5320 	tag_item_mask = tag_item_spec + 1;
5321 	/* Both flow_id and meter_id share the same register. */
5322 	*set_tag = (struct mlx5_rte_flow_action_set_tag) {
5323 		.id = (enum modify_reg)mlx5_flow_get_reg_id(dev, MLX5_MTR_ID,
5324 							    0, error),
5325 		.offset = mtr_id_offset,
5326 		.length = mtr_reg_bits,
5327 		.data = flow->meter,
5328 	};
5329 	/*
5330 	 * The color Reg bits used by flow_id are growing from
5331 	 * msb to lsb, so must do bit reverse for flow_id val in RegC.
5332 	 */
5333 	for (shift = 0; shift < flow_id_bits; shift++)
5334 		flow_id_reversed = (flow_id_reversed << 1) |
5335 				((flow_id >> shift) & 0x1);
5336 	set_tag->data |=
5337 		flow_id_reversed << (mtr_reg_bits - flow_id_bits);
5338 	tag_item_spec->id = set_tag->id;
5339 	tag_item_spec->data = set_tag->data << mtr_id_offset;
5340 	tag_item_mask->data = UINT32_MAX << mtr_id_offset;
5341 	tag_action->type = (enum rte_flow_action_type)
5342 				MLX5_RTE_FLOW_ACTION_TYPE_TAG;
5343 	tag_action->conf = set_tag;
5344 	tag_item->type = (enum rte_flow_item_type)
5345 				MLX5_RTE_FLOW_ITEM_TYPE_TAG;
5346 	tag_item->spec = tag_item_spec;
5347 	tag_item->last = NULL;
5348 	tag_item->mask = tag_item_mask;
5349 exit:
5350 	if (mtr_flow_id)
5351 		*mtr_flow_id = tag_id;
5352 	return 0;
5353 }
5354 
5355 /**
5356  * Split action list having QUEUE/RSS for metadata register copy.
5357  *
5358  * Once Q/RSS action is detected in user's action list, the flow action
5359  * should be split in order to copy metadata registers, which will happen in
5360  * RX_CP_TBL like,
5361  *   - CQE->flow_tag := reg_c[1] (MARK)
5362  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
5363  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
5364  * This is because the last action of each flow must be a terminal action
5365  * (QUEUE, RSS or DROP).
5366  *
5367  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
5368  * stored and kept in the mlx5_flow structure per each sub_flow.
5369  *
5370  * The Q/RSS action is replaced with,
5371  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
5372  * And the following JUMP action is added at the end,
5373  *   - JUMP, to RX_CP_TBL.
5374  *
5375  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
5376  * flow_create_split_metadata() routine. The flow will look like,
5377  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
5378  *
5379  * @param dev
5380  *   Pointer to Ethernet device.
5381  * @param[out] split_actions
5382  *   Pointer to store split actions to jump to CP_TBL.
5383  * @param[in] actions
5384  *   Pointer to the list of original flow actions.
5385  * @param[in] qrss
5386  *   Pointer to the Q/RSS action.
5387  * @param[in] actions_n
5388  *   Number of original actions.
5389  * @param[in] mtr_sfx
5390  *   Check if it is in meter suffix table.
5391  * @param[out] error
5392  *   Perform verbose error reporting if not NULL.
5393  *
5394  * @return
5395  *   non-zero unique flow_id on success, otherwise 0 and
5396  *   error/rte_error are set.
5397  */
5398 static uint32_t
5399 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
5400 			  struct rte_flow_action *split_actions,
5401 			  const struct rte_flow_action *actions,
5402 			  const struct rte_flow_action *qrss,
5403 			  int actions_n, int mtr_sfx,
5404 			  struct rte_flow_error *error)
5405 {
5406 	struct mlx5_priv *priv = dev->data->dev_private;
5407 	struct mlx5_rte_flow_action_set_tag *set_tag;
5408 	struct rte_flow_action_jump *jump;
5409 	const int qrss_idx = qrss - actions;
5410 	uint32_t flow_id = 0;
5411 	int ret = 0;
5412 
5413 	/*
5414 	 * Given actions will be split
5415 	 * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
5416 	 * - Add jump to mreg CP_TBL.
5417 	 * As a result, there will be one more action.
5418 	 */
5419 	memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
5420 	/* Count MLX5_RTE_FLOW_ACTION_TYPE_TAG. */
5421 	++actions_n;
5422 	set_tag = (void *)(split_actions + actions_n);
5423 	/*
5424 	 * If we are not the meter suffix flow, add the tag action.
5425 	 * Since meter suffix flow already has the tag added.
5426 	 */
5427 	if (!mtr_sfx) {
5428 		/*
5429 		 * Allocate the new subflow ID. This one is unique within
5430 		 * device and not shared with representors. Otherwise,
5431 		 * we would have to resolve multi-thread access synch
5432 		 * issue. Each flow on the shared device is appended
5433 		 * with source vport identifier, so the resulting
5434 		 * flows will be unique in the shared (by master and
5435 		 * representors) domain even if they have coinciding
5436 		 * IDs.
5437 		 */
5438 		mlx5_ipool_malloc(priv->sh->ipool
5439 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id);
5440 		if (!flow_id)
5441 			return rte_flow_error_set(error, ENOMEM,
5442 						  RTE_FLOW_ERROR_TYPE_ACTION,
5443 						  NULL, "can't allocate id "
5444 						  "for split Q/RSS subflow");
5445 		/* Internal SET_TAG action to set flow ID. */
5446 		*set_tag = (struct mlx5_rte_flow_action_set_tag){
5447 			.data = flow_id,
5448 		};
5449 		ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
5450 		if (ret < 0)
5451 			return ret;
5452 		set_tag->id = ret;
5453 		/* Construct new actions array. */
5454 		/* Replace QUEUE/RSS action. */
5455 		split_actions[qrss_idx] = (struct rte_flow_action){
5456 			.type = (enum rte_flow_action_type)
5457 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
5458 			.conf = set_tag,
5459 		};
5460 	} else {
5461 		/*
5462 		 * If we are the suffix flow of meter, tag already exist.
5463 		 * Set the QUEUE/RSS action to void.
5464 		 */
5465 		split_actions[qrss_idx].type = RTE_FLOW_ACTION_TYPE_VOID;
5466 	}
5467 	/* JUMP action to jump to mreg copy table (CP_TBL). */
5468 	jump = (void *)(set_tag + 1);
5469 	*jump = (struct rte_flow_action_jump){
5470 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
5471 	};
5472 	split_actions[actions_n - 2] = (struct rte_flow_action){
5473 		.type = RTE_FLOW_ACTION_TYPE_JUMP,
5474 		.conf = jump,
5475 	};
5476 	split_actions[actions_n - 1] = (struct rte_flow_action){
5477 		.type = RTE_FLOW_ACTION_TYPE_END,
5478 	};
5479 	return flow_id;
5480 }
5481 
5482 /**
5483  * Extend the given action list for Tx metadata copy.
5484  *
5485  * Copy the given action list to the ext_actions and add flow metadata register
5486  * copy action in order to copy reg_a set by WQE to reg_c[0].
5487  *
5488  * @param[out] ext_actions
5489  *   Pointer to the extended action list.
5490  * @param[in] actions
5491  *   Pointer to the list of actions.
5492  * @param[in] actions_n
5493  *   Number of actions in the list.
5494  * @param[out] error
5495  *   Perform verbose error reporting if not NULL.
5496  * @param[in] encap_idx
5497  *   The encap action index.
5498  *
5499  * @return
5500  *   0 on success, negative value otherwise
5501  */
5502 static int
5503 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
5504 		       struct rte_flow_action *ext_actions,
5505 		       const struct rte_flow_action *actions,
5506 		       int actions_n, struct rte_flow_error *error,
5507 		       int encap_idx)
5508 {
5509 	struct mlx5_flow_action_copy_mreg *cp_mreg =
5510 		(struct mlx5_flow_action_copy_mreg *)
5511 			(ext_actions + actions_n + 1);
5512 	int ret;
5513 
5514 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
5515 	if (ret < 0)
5516 		return ret;
5517 	cp_mreg->dst = ret;
5518 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
5519 	if (ret < 0)
5520 		return ret;
5521 	cp_mreg->src = ret;
5522 	if (encap_idx != 0)
5523 		memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
5524 	if (encap_idx == actions_n - 1) {
5525 		ext_actions[actions_n - 1] = (struct rte_flow_action){
5526 			.type = (enum rte_flow_action_type)
5527 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
5528 			.conf = cp_mreg,
5529 		};
5530 		ext_actions[actions_n] = (struct rte_flow_action){
5531 			.type = RTE_FLOW_ACTION_TYPE_END,
5532 		};
5533 	} else {
5534 		ext_actions[encap_idx] = (struct rte_flow_action){
5535 			.type = (enum rte_flow_action_type)
5536 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
5537 			.conf = cp_mreg,
5538 		};
5539 		memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
5540 				sizeof(*ext_actions) * (actions_n - encap_idx));
5541 	}
5542 	return 0;
5543 }
5544 
5545 /**
5546  * Check the match action from the action list.
5547  *
5548  * @param[in] actions
5549  *   Pointer to the list of actions.
5550  * @param[in] attr
5551  *   Flow rule attributes.
5552  * @param[in] action
5553  *   The action to be check if exist.
5554  * @param[out] match_action_pos
5555  *   Pointer to the position of the matched action if exists, otherwise is -1.
5556  * @param[out] qrss_action_pos
5557  *   Pointer to the position of the Queue/RSS action if exists, otherwise is -1.
5558  * @param[out] modify_after_mirror
5559  *   Pointer to the flag of modify action after FDB mirroring.
5560  *
5561  * @return
5562  *   > 0 the total number of actions.
5563  *   0 if not found match action in action list.
5564  */
5565 static int
5566 flow_check_match_action(const struct rte_flow_action actions[],
5567 			const struct rte_flow_attr *attr,
5568 			enum rte_flow_action_type action,
5569 			int *match_action_pos, int *qrss_action_pos,
5570 			int *modify_after_mirror)
5571 {
5572 	const struct rte_flow_action_sample *sample;
5573 	const struct rte_flow_action_raw_decap *decap;
5574 	int actions_n = 0;
5575 	uint32_t ratio = 0;
5576 	int sub_type = 0;
5577 	int flag = 0;
5578 	int fdb_mirror = 0;
5579 
5580 	*match_action_pos = -1;
5581 	*qrss_action_pos = -1;
5582 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
5583 		if (actions->type == action) {
5584 			flag = 1;
5585 			*match_action_pos = actions_n;
5586 		}
5587 		switch (actions->type) {
5588 		case RTE_FLOW_ACTION_TYPE_QUEUE:
5589 		case RTE_FLOW_ACTION_TYPE_RSS:
5590 			*qrss_action_pos = actions_n;
5591 			break;
5592 		case RTE_FLOW_ACTION_TYPE_SAMPLE:
5593 			sample = actions->conf;
5594 			ratio = sample->ratio;
5595 			sub_type = ((const struct rte_flow_action *)
5596 					(sample->actions))->type;
5597 			if (ratio == 1 && attr->transfer)
5598 				fdb_mirror = 1;
5599 			break;
5600 		case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
5601 		case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
5602 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
5603 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
5604 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
5605 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
5606 		case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
5607 		case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
5608 		case RTE_FLOW_ACTION_TYPE_DEC_TTL:
5609 		case RTE_FLOW_ACTION_TYPE_SET_TTL:
5610 		case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ:
5611 		case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ:
5612 		case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK:
5613 		case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK:
5614 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP:
5615 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP:
5616 		case RTE_FLOW_ACTION_TYPE_FLAG:
5617 		case RTE_FLOW_ACTION_TYPE_MARK:
5618 		case RTE_FLOW_ACTION_TYPE_SET_META:
5619 		case RTE_FLOW_ACTION_TYPE_SET_TAG:
5620 		case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
5621 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
5622 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
5623 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
5624 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
5625 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
5626 		case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD:
5627 		case RTE_FLOW_ACTION_TYPE_METER:
5628 			if (fdb_mirror)
5629 				*modify_after_mirror = 1;
5630 			break;
5631 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
5632 			decap = actions->conf;
5633 			while ((++actions)->type == RTE_FLOW_ACTION_TYPE_VOID)
5634 				;
5635 			actions_n++;
5636 			if (actions->type == RTE_FLOW_ACTION_TYPE_RAW_ENCAP) {
5637 				const struct rte_flow_action_raw_encap *encap =
5638 								actions->conf;
5639 				if (decap->size <=
5640 					MLX5_ENCAPSULATION_DECISION_SIZE &&
5641 				    encap->size >
5642 					MLX5_ENCAPSULATION_DECISION_SIZE)
5643 					/* L3 encap. */
5644 					break;
5645 			}
5646 			if (fdb_mirror)
5647 				*modify_after_mirror = 1;
5648 			break;
5649 		default:
5650 			break;
5651 		}
5652 		actions_n++;
5653 	}
5654 	if (flag && fdb_mirror && !*modify_after_mirror) {
5655 		/* FDB mirroring uses the destination array to implement
5656 		 * instead of FLOW_SAMPLER object.
5657 		 */
5658 		if (sub_type != RTE_FLOW_ACTION_TYPE_END)
5659 			flag = 0;
5660 	}
5661 	/* Count RTE_FLOW_ACTION_TYPE_END. */
5662 	return flag ? actions_n + 1 : 0;
5663 }
5664 
5665 #define SAMPLE_SUFFIX_ITEM 2
5666 
5667 /**
5668  * Split the sample flow.
5669  *
5670  * As sample flow will split to two sub flow, sample flow with
5671  * sample action, the other actions will move to new suffix flow.
5672  *
5673  * Also add unique tag id with tag action in the sample flow,
5674  * the same tag id will be as match in the suffix flow.
5675  *
5676  * @param dev
5677  *   Pointer to Ethernet device.
5678  * @param[in] add_tag
5679  *   Add extra tag action flag.
5680  * @param[out] sfx_items
5681  *   Suffix flow match items (list terminated by the END pattern item).
5682  * @param[in] actions
5683  *   Associated actions (list terminated by the END action).
5684  * @param[out] actions_sfx
5685  *   Suffix flow actions.
5686  * @param[out] actions_pre
5687  *   Prefix flow actions.
5688  * @param[in] actions_n
5689  *  The total number of actions.
5690  * @param[in] sample_action_pos
5691  *   The sample action position.
5692  * @param[in] qrss_action_pos
5693  *   The Queue/RSS action position.
5694  * @param[in] jump_table
5695  *   Add extra jump action flag.
5696  * @param[out] error
5697  *   Perform verbose error reporting if not NULL.
5698  *
5699  * @return
5700  *   0 on success, or unique flow_id, a negative errno value
5701  *   otherwise and rte_errno is set.
5702  */
5703 static int
5704 flow_sample_split_prep(struct rte_eth_dev *dev,
5705 		       int add_tag,
5706 		       struct rte_flow_item sfx_items[],
5707 		       const struct rte_flow_action actions[],
5708 		       struct rte_flow_action actions_sfx[],
5709 		       struct rte_flow_action actions_pre[],
5710 		       int actions_n,
5711 		       int sample_action_pos,
5712 		       int qrss_action_pos,
5713 		       int jump_table,
5714 		       struct rte_flow_error *error)
5715 {
5716 	struct mlx5_priv *priv = dev->data->dev_private;
5717 	struct mlx5_rte_flow_action_set_tag *set_tag;
5718 	struct mlx5_rte_flow_item_tag *tag_spec;
5719 	struct mlx5_rte_flow_item_tag *tag_mask;
5720 	struct rte_flow_action_jump *jump_action;
5721 	uint32_t tag_id = 0;
5722 	int index;
5723 	int append_index = 0;
5724 	int ret;
5725 
5726 	if (sample_action_pos < 0)
5727 		return rte_flow_error_set(error, EINVAL,
5728 					  RTE_FLOW_ERROR_TYPE_ACTION,
5729 					  NULL, "invalid position of sample "
5730 					  "action in list");
5731 	/* Prepare the actions for prefix and suffix flow. */
5732 	if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) {
5733 		index = qrss_action_pos;
5734 		/* Put the preceding the Queue/RSS action into prefix flow. */
5735 		if (index != 0)
5736 			memcpy(actions_pre, actions,
5737 			       sizeof(struct rte_flow_action) * index);
5738 		/* Put others preceding the sample action into prefix flow. */
5739 		if (sample_action_pos > index + 1)
5740 			memcpy(actions_pre + index, actions + index + 1,
5741 			       sizeof(struct rte_flow_action) *
5742 			       (sample_action_pos - index - 1));
5743 		index = sample_action_pos - 1;
5744 		/* Put Queue/RSS action into Suffix flow. */
5745 		memcpy(actions_sfx, actions + qrss_action_pos,
5746 		       sizeof(struct rte_flow_action));
5747 		actions_sfx++;
5748 	} else {
5749 		index = sample_action_pos;
5750 		if (index != 0)
5751 			memcpy(actions_pre, actions,
5752 			       sizeof(struct rte_flow_action) * index);
5753 	}
5754 	/* For CX5, add an extra tag action for NIC-RX and E-Switch ingress.
5755 	 * For CX6DX and above, metadata registers Cx preserve their value,
5756 	 * add an extra tag action for NIC-RX and E-Switch Domain.
5757 	 */
5758 	if (add_tag) {
5759 		/* Prepare the prefix tag action. */
5760 		append_index++;
5761 		set_tag = (void *)(actions_pre + actions_n + append_index);
5762 		ret = mlx5_flow_get_reg_id(dev, MLX5_SAMPLE_ID, 0, error);
5763 		if (ret < 0)
5764 			return ret;
5765 		mlx5_ipool_malloc(priv->sh->ipool
5766 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id);
5767 		*set_tag = (struct mlx5_rte_flow_action_set_tag) {
5768 			.id = ret,
5769 			.data = tag_id,
5770 		};
5771 		/* Prepare the suffix subflow items. */
5772 		tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM);
5773 		tag_spec->data = tag_id;
5774 		tag_spec->id = set_tag->id;
5775 		tag_mask = tag_spec + 1;
5776 		tag_mask->data = UINT32_MAX;
5777 		sfx_items[0] = (struct rte_flow_item){
5778 			.type = (enum rte_flow_item_type)
5779 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
5780 			.spec = tag_spec,
5781 			.last = NULL,
5782 			.mask = tag_mask,
5783 		};
5784 		sfx_items[1] = (struct rte_flow_item){
5785 			.type = (enum rte_flow_item_type)
5786 				RTE_FLOW_ITEM_TYPE_END,
5787 		};
5788 		/* Prepare the tag action in prefix subflow. */
5789 		actions_pre[index++] =
5790 			(struct rte_flow_action){
5791 			.type = (enum rte_flow_action_type)
5792 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
5793 			.conf = set_tag,
5794 		};
5795 	}
5796 	memcpy(actions_pre + index, actions + sample_action_pos,
5797 	       sizeof(struct rte_flow_action));
5798 	index += 1;
5799 	/* For the modify action after the sample action in E-Switch mirroring,
5800 	 * Add the extra jump action in prefix subflow and jump into the next
5801 	 * table, then do the modify action in the new table.
5802 	 */
5803 	if (jump_table) {
5804 		/* Prepare the prefix jump action. */
5805 		append_index++;
5806 		jump_action = (void *)(actions_pre + actions_n + append_index);
5807 		jump_action->group = jump_table;
5808 		actions_pre[index++] =
5809 			(struct rte_flow_action){
5810 			.type = (enum rte_flow_action_type)
5811 				RTE_FLOW_ACTION_TYPE_JUMP,
5812 			.conf = jump_action,
5813 		};
5814 	}
5815 	actions_pre[index] = (struct rte_flow_action){
5816 		.type = (enum rte_flow_action_type)
5817 			RTE_FLOW_ACTION_TYPE_END,
5818 	};
5819 	/* Put the actions after sample into Suffix flow. */
5820 	memcpy(actions_sfx, actions + sample_action_pos + 1,
5821 	       sizeof(struct rte_flow_action) *
5822 	       (actions_n - sample_action_pos - 1));
5823 	return tag_id;
5824 }
5825 
5826 /**
5827  * The splitting for metadata feature.
5828  *
5829  * - Q/RSS action on NIC Rx should be split in order to pass by
5830  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
5831  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
5832  *
5833  * - All the actions on NIC Tx should have a mreg copy action to
5834  *   copy reg_a from WQE to reg_c[0].
5835  *
5836  * @param dev
5837  *   Pointer to Ethernet device.
5838  * @param[in] flow
5839  *   Parent flow structure pointer.
5840  * @param[in] attr
5841  *   Flow rule attributes.
5842  * @param[in] items
5843  *   Pattern specification (list terminated by the END pattern item).
5844  * @param[in] actions
5845  *   Associated actions (list terminated by the END action).
5846  * @param[in] flow_split_info
5847  *   Pointer to flow split info structure.
5848  * @param[out] error
5849  *   Perform verbose error reporting if not NULL.
5850  * @return
5851  *   0 on success, negative value otherwise
5852  */
5853 static int
5854 flow_create_split_metadata(struct rte_eth_dev *dev,
5855 			   struct rte_flow *flow,
5856 			   const struct rte_flow_attr *attr,
5857 			   const struct rte_flow_item items[],
5858 			   const struct rte_flow_action actions[],
5859 			   struct mlx5_flow_split_info *flow_split_info,
5860 			   struct rte_flow_error *error)
5861 {
5862 	struct mlx5_priv *priv = dev->data->dev_private;
5863 	struct mlx5_sh_config *config = &priv->sh->config;
5864 	const struct rte_flow_action *qrss = NULL;
5865 	struct rte_flow_action *ext_actions = NULL;
5866 	struct mlx5_flow *dev_flow = NULL;
5867 	uint32_t qrss_id = 0;
5868 	int mtr_sfx = 0;
5869 	size_t act_size;
5870 	int actions_n;
5871 	int encap_idx;
5872 	int ret;
5873 
5874 	/* Check whether extensive metadata feature is engaged. */
5875 	if (!config->dv_flow_en ||
5876 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
5877 	    !mlx5_flow_ext_mreg_supported(dev))
5878 		return flow_create_split_inner(dev, flow, NULL, attr, items,
5879 					       actions, flow_split_info, error);
5880 	actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
5881 							   &encap_idx);
5882 	if (qrss) {
5883 		/* Exclude hairpin flows from splitting. */
5884 		if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
5885 			const struct rte_flow_action_queue *queue;
5886 
5887 			queue = qrss->conf;
5888 			if (mlx5_rxq_get_type(dev, queue->index) ==
5889 			    MLX5_RXQ_TYPE_HAIRPIN)
5890 				qrss = NULL;
5891 		} else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
5892 			const struct rte_flow_action_rss *rss;
5893 
5894 			rss = qrss->conf;
5895 			if (mlx5_rxq_get_type(dev, rss->queue[0]) ==
5896 			    MLX5_RXQ_TYPE_HAIRPIN)
5897 				qrss = NULL;
5898 		}
5899 	}
5900 	if (qrss) {
5901 		/* Check if it is in meter suffix table. */
5902 		mtr_sfx = attr->group == (attr->transfer ?
5903 			  (MLX5_FLOW_TABLE_LEVEL_METER - 1) :
5904 			  MLX5_FLOW_TABLE_LEVEL_METER);
5905 		/*
5906 		 * Q/RSS action on NIC Rx should be split in order to pass by
5907 		 * the mreg copy table (RX_CP_TBL) and then it jumps to the
5908 		 * action table (RX_ACT_TBL) which has the split Q/RSS action.
5909 		 */
5910 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
5911 			   sizeof(struct rte_flow_action_set_tag) +
5912 			   sizeof(struct rte_flow_action_jump);
5913 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
5914 					  SOCKET_ID_ANY);
5915 		if (!ext_actions)
5916 			return rte_flow_error_set(error, ENOMEM,
5917 						  RTE_FLOW_ERROR_TYPE_ACTION,
5918 						  NULL, "no memory to split "
5919 						  "metadata flow");
5920 		/*
5921 		 * Create the new actions list with removed Q/RSS action
5922 		 * and appended set tag and jump to register copy table
5923 		 * (RX_CP_TBL). We should preallocate unique tag ID here
5924 		 * in advance, because it is needed for set tag action.
5925 		 */
5926 		qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
5927 						    qrss, actions_n,
5928 						    mtr_sfx, error);
5929 		if (!mtr_sfx && !qrss_id) {
5930 			ret = -rte_errno;
5931 			goto exit;
5932 		}
5933 	} else if (attr->egress && !attr->transfer) {
5934 		/*
5935 		 * All the actions on NIC Tx should have a metadata register
5936 		 * copy action to copy reg_a from WQE to reg_c[meta]
5937 		 */
5938 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
5939 			   sizeof(struct mlx5_flow_action_copy_mreg);
5940 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
5941 					  SOCKET_ID_ANY);
5942 		if (!ext_actions)
5943 			return rte_flow_error_set(error, ENOMEM,
5944 						  RTE_FLOW_ERROR_TYPE_ACTION,
5945 						  NULL, "no memory to split "
5946 						  "metadata flow");
5947 		/* Create the action list appended with copy register. */
5948 		ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
5949 					     actions_n, error, encap_idx);
5950 		if (ret < 0)
5951 			goto exit;
5952 	}
5953 	/* Add the unmodified original or prefix subflow. */
5954 	ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
5955 				      items, ext_actions ? ext_actions :
5956 				      actions, flow_split_info, error);
5957 	if (ret < 0)
5958 		goto exit;
5959 	MLX5_ASSERT(dev_flow);
5960 	if (qrss) {
5961 		const struct rte_flow_attr q_attr = {
5962 			.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
5963 			.ingress = 1,
5964 		};
5965 		/* Internal PMD action to set register. */
5966 		struct mlx5_rte_flow_item_tag q_tag_spec = {
5967 			.data = qrss_id,
5968 			.id = REG_NON,
5969 		};
5970 		struct rte_flow_item q_items[] = {
5971 			{
5972 				.type = (enum rte_flow_item_type)
5973 					MLX5_RTE_FLOW_ITEM_TYPE_TAG,
5974 				.spec = &q_tag_spec,
5975 				.last = NULL,
5976 				.mask = NULL,
5977 			},
5978 			{
5979 				.type = RTE_FLOW_ITEM_TYPE_END,
5980 			},
5981 		};
5982 		struct rte_flow_action q_actions[] = {
5983 			{
5984 				.type = qrss->type,
5985 				.conf = qrss->conf,
5986 			},
5987 			{
5988 				.type = RTE_FLOW_ACTION_TYPE_END,
5989 			},
5990 		};
5991 		uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
5992 
5993 		/*
5994 		 * Configure the tag item only if there is no meter subflow.
5995 		 * Since tag is already marked in the meter suffix subflow
5996 		 * we can just use the meter suffix items as is.
5997 		 */
5998 		if (qrss_id) {
5999 			/* Not meter subflow. */
6000 			MLX5_ASSERT(!mtr_sfx);
6001 			/*
6002 			 * Put unique id in prefix flow due to it is destroyed
6003 			 * after suffix flow and id will be freed after there
6004 			 * is no actual flows with this id and identifier
6005 			 * reallocation becomes possible (for example, for
6006 			 * other flows in other threads).
6007 			 */
6008 			dev_flow->handle->split_flow_id = qrss_id;
6009 			ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
6010 						   error);
6011 			if (ret < 0)
6012 				goto exit;
6013 			q_tag_spec.id = ret;
6014 		}
6015 		dev_flow = NULL;
6016 		/* Add suffix subflow to execute Q/RSS. */
6017 		flow_split_info->prefix_layers = layers;
6018 		flow_split_info->prefix_mark = 0;
6019 		flow_split_info->table_id = 0;
6020 		ret = flow_create_split_inner(dev, flow, &dev_flow,
6021 					      &q_attr, mtr_sfx ? items :
6022 					      q_items, q_actions,
6023 					      flow_split_info, error);
6024 		if (ret < 0)
6025 			goto exit;
6026 		/* qrss ID should be freed if failed. */
6027 		qrss_id = 0;
6028 		MLX5_ASSERT(dev_flow);
6029 	}
6030 
6031 exit:
6032 	/*
6033 	 * We do not destroy the partially created sub_flows in case of error.
6034 	 * These ones are included into parent flow list and will be destroyed
6035 	 * by flow_drv_destroy.
6036 	 */
6037 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
6038 			qrss_id);
6039 	mlx5_free(ext_actions);
6040 	return ret;
6041 }
6042 
6043 /**
6044  * Create meter internal drop flow with the original pattern.
6045  *
6046  * @param dev
6047  *   Pointer to Ethernet device.
6048  * @param[in] flow
6049  *   Parent flow structure pointer.
6050  * @param[in] attr
6051  *   Flow rule attributes.
6052  * @param[in] items
6053  *   Pattern specification (list terminated by the END pattern item).
6054  * @param[in] flow_split_info
6055  *   Pointer to flow split info structure.
6056  * @param[in] fm
6057  *   Pointer to flow meter structure.
6058  * @param[out] error
6059  *   Perform verbose error reporting if not NULL.
6060  * @return
6061  *   0 on success, negative value otherwise
6062  */
6063 static uint32_t
6064 flow_meter_create_drop_flow_with_org_pattern(struct rte_eth_dev *dev,
6065 			struct rte_flow *flow,
6066 			const struct rte_flow_attr *attr,
6067 			const struct rte_flow_item items[],
6068 			struct mlx5_flow_split_info *flow_split_info,
6069 			struct mlx5_flow_meter_info *fm,
6070 			struct rte_flow_error *error)
6071 {
6072 	struct mlx5_flow *dev_flow = NULL;
6073 	struct rte_flow_attr drop_attr = *attr;
6074 	struct rte_flow_action drop_actions[3];
6075 	struct mlx5_flow_split_info drop_split_info = *flow_split_info;
6076 
6077 	MLX5_ASSERT(fm->drop_cnt);
6078 	drop_actions[0].type =
6079 		(enum rte_flow_action_type)MLX5_RTE_FLOW_ACTION_TYPE_COUNT;
6080 	drop_actions[0].conf = (void *)(uintptr_t)fm->drop_cnt;
6081 	drop_actions[1].type = RTE_FLOW_ACTION_TYPE_DROP;
6082 	drop_actions[1].conf = NULL;
6083 	drop_actions[2].type = RTE_FLOW_ACTION_TYPE_END;
6084 	drop_actions[2].conf = NULL;
6085 	drop_split_info.external = false;
6086 	drop_split_info.skip_scale |= 1 << MLX5_SCALE_FLOW_GROUP_BIT;
6087 	drop_split_info.table_id = MLX5_MTR_TABLE_ID_DROP;
6088 	drop_attr.group = MLX5_FLOW_TABLE_LEVEL_METER;
6089 	return flow_create_split_inner(dev, flow, &dev_flow,
6090 				&drop_attr, items, drop_actions,
6091 				&drop_split_info, error);
6092 }
6093 
6094 /**
6095  * The splitting for meter feature.
6096  *
6097  * - The meter flow will be split to two flows as prefix and
6098  *   suffix flow. The packets make sense only it pass the prefix
6099  *   meter action.
6100  *
6101  * - Reg_C_5 is used for the packet to match betweend prefix and
6102  *   suffix flow.
6103  *
6104  * @param dev
6105  *   Pointer to Ethernet device.
6106  * @param[in] flow
6107  *   Parent flow structure pointer.
6108  * @param[in] attr
6109  *   Flow rule attributes.
6110  * @param[in] items
6111  *   Pattern specification (list terminated by the END pattern item).
6112  * @param[in] actions
6113  *   Associated actions (list terminated by the END action).
6114  * @param[in] flow_split_info
6115  *   Pointer to flow split info structure.
6116  * @param[out] error
6117  *   Perform verbose error reporting if not NULL.
6118  * @return
6119  *   0 on success, negative value otherwise
6120  */
6121 static int
6122 flow_create_split_meter(struct rte_eth_dev *dev,
6123 			struct rte_flow *flow,
6124 			const struct rte_flow_attr *attr,
6125 			const struct rte_flow_item items[],
6126 			const struct rte_flow_action actions[],
6127 			struct mlx5_flow_split_info *flow_split_info,
6128 			struct rte_flow_error *error)
6129 {
6130 	struct mlx5_priv *priv = dev->data->dev_private;
6131 	struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace();
6132 	struct rte_flow_action *sfx_actions = NULL;
6133 	struct rte_flow_action *pre_actions = NULL;
6134 	struct rte_flow_item *sfx_items = NULL;
6135 	struct mlx5_flow *dev_flow = NULL;
6136 	struct rte_flow_attr sfx_attr = *attr;
6137 	struct mlx5_flow_meter_info *fm = NULL;
6138 	uint8_t skip_scale_restore;
6139 	bool has_mtr = false;
6140 	bool has_modify = false;
6141 	bool set_mtr_reg = true;
6142 	bool is_mtr_hierarchy = false;
6143 	uint32_t meter_id = 0;
6144 	uint32_t mtr_idx = 0;
6145 	uint32_t mtr_flow_id = 0;
6146 	size_t act_size;
6147 	size_t item_size;
6148 	int actions_n = 0;
6149 	int ret = 0;
6150 
6151 	if (priv->mtr_en)
6152 		actions_n = flow_check_meter_action(dev, actions, &has_mtr,
6153 						    &has_modify, &meter_id);
6154 	if (has_mtr) {
6155 		if (flow->meter) {
6156 			fm = flow_dv_meter_find_by_idx(priv, flow->meter);
6157 			if (!fm)
6158 				return rte_flow_error_set(error, EINVAL,
6159 						RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6160 						NULL, "Meter not found.");
6161 		} else {
6162 			fm = mlx5_flow_meter_find(priv, meter_id, &mtr_idx);
6163 			if (!fm)
6164 				return rte_flow_error_set(error, EINVAL,
6165 						RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6166 						NULL, "Meter not found.");
6167 			ret = mlx5_flow_meter_attach(priv, fm,
6168 						     &sfx_attr, error);
6169 			if (ret)
6170 				return -rte_errno;
6171 			flow->meter = mtr_idx;
6172 		}
6173 		MLX5_ASSERT(wks);
6174 		wks->fm = fm;
6175 		if (!fm->def_policy) {
6176 			wks->policy = mlx5_flow_meter_policy_find(dev,
6177 								  fm->policy_id,
6178 								  NULL);
6179 			MLX5_ASSERT(wks->policy);
6180 			if (wks->policy->is_hierarchy) {
6181 				wks->final_policy =
6182 				mlx5_flow_meter_hierarchy_get_final_policy(dev,
6183 								wks->policy);
6184 				if (!wks->final_policy)
6185 					return rte_flow_error_set(error,
6186 					EINVAL,
6187 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
6188 				"Failed to find terminal policy of hierarchy.");
6189 				is_mtr_hierarchy = true;
6190 			}
6191 		}
6192 		/*
6193 		 * If it isn't default-policy Meter, and
6194 		 * 1. There's no action in flow to change
6195 		 *    packet (modify/encap/decap etc.), OR
6196 		 * 2. No drop count needed for this meter.
6197 		 * 3. It's not meter hierarchy.
6198 		 * Then no need to use regC to save meter id anymore.
6199 		 */
6200 		if (!fm->def_policy && !is_mtr_hierarchy &&
6201 		    (!has_modify || !fm->drop_cnt))
6202 			set_mtr_reg = false;
6203 		/* Prefix actions: meter, decap, encap, tag, jump, end. */
6204 		act_size = sizeof(struct rte_flow_action) * (actions_n + 6) +
6205 			   sizeof(struct mlx5_rte_flow_action_set_tag);
6206 		/* Suffix items: tag, vlan, port id, end. */
6207 #define METER_SUFFIX_ITEM 4
6208 		item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
6209 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
6210 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
6211 					  0, SOCKET_ID_ANY);
6212 		if (!sfx_actions)
6213 			return rte_flow_error_set(error, ENOMEM,
6214 						  RTE_FLOW_ERROR_TYPE_ACTION,
6215 						  NULL, "no memory to split "
6216 						  "meter flow");
6217 		sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
6218 			     act_size);
6219 		/* There's no suffix flow for meter of non-default policy. */
6220 		if (!fm->def_policy)
6221 			pre_actions = sfx_actions + 1;
6222 		else
6223 			pre_actions = sfx_actions + actions_n;
6224 		ret = flow_meter_split_prep(dev, flow, wks, &sfx_attr,
6225 					    items, sfx_items, actions,
6226 					    sfx_actions, pre_actions,
6227 					    (set_mtr_reg ? &mtr_flow_id : NULL),
6228 					    error);
6229 		if (ret) {
6230 			ret = -rte_errno;
6231 			goto exit;
6232 		}
6233 		/* Add the prefix subflow. */
6234 		skip_scale_restore = flow_split_info->skip_scale;
6235 		flow_split_info->skip_scale |=
6236 			1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT;
6237 		ret = flow_create_split_inner(dev, flow, &dev_flow,
6238 					      attr, items, pre_actions,
6239 					      flow_split_info, error);
6240 		flow_split_info->skip_scale = skip_scale_restore;
6241 		if (ret) {
6242 			if (mtr_flow_id)
6243 				mlx5_ipool_free(fm->flow_ipool, mtr_flow_id);
6244 			ret = -rte_errno;
6245 			goto exit;
6246 		}
6247 		if (mtr_flow_id) {
6248 			dev_flow->handle->split_flow_id = mtr_flow_id;
6249 			dev_flow->handle->is_meter_flow_id = 1;
6250 		}
6251 		if (!fm->def_policy) {
6252 			if (!set_mtr_reg && fm->drop_cnt)
6253 				ret =
6254 			flow_meter_create_drop_flow_with_org_pattern(dev, flow,
6255 							&sfx_attr, items,
6256 							flow_split_info,
6257 							fm, error);
6258 			goto exit;
6259 		}
6260 		/* Setting the sfx group atrr. */
6261 		sfx_attr.group = sfx_attr.transfer ?
6262 				(MLX5_FLOW_TABLE_LEVEL_METER - 1) :
6263 				 MLX5_FLOW_TABLE_LEVEL_METER;
6264 		flow_split_info->prefix_layers =
6265 				flow_get_prefix_layer_flags(dev_flow);
6266 		flow_split_info->prefix_mark |= wks->mark;
6267 		flow_split_info->table_id = MLX5_MTR_TABLE_ID_SUFFIX;
6268 	}
6269 	/* Add the prefix subflow. */
6270 	ret = flow_create_split_metadata(dev, flow,
6271 					 &sfx_attr, sfx_items ?
6272 					 sfx_items : items,
6273 					 sfx_actions ? sfx_actions : actions,
6274 					 flow_split_info, error);
6275 exit:
6276 	if (sfx_actions)
6277 		mlx5_free(sfx_actions);
6278 	return ret;
6279 }
6280 
6281 /**
6282  * The splitting for sample feature.
6283  *
6284  * Once Sample action is detected in the action list, the flow actions should
6285  * be split into prefix sub flow and suffix sub flow.
6286  *
6287  * The original items remain in the prefix sub flow, all actions preceding the
6288  * sample action and the sample action itself will be copied to the prefix
6289  * sub flow, the actions following the sample action will be copied to the
6290  * suffix sub flow, Queue action always be located in the suffix sub flow.
6291  *
6292  * In order to make the packet from prefix sub flow matches with suffix sub
6293  * flow, an extra tag action be added into prefix sub flow, and the suffix sub
6294  * flow uses tag item with the unique flow id.
6295  *
6296  * @param dev
6297  *   Pointer to Ethernet device.
6298  * @param[in] flow
6299  *   Parent flow structure pointer.
6300  * @param[in] attr
6301  *   Flow rule attributes.
6302  * @param[in] items
6303  *   Pattern specification (list terminated by the END pattern item).
6304  * @param[in] actions
6305  *   Associated actions (list terminated by the END action).
6306  * @param[in] flow_split_info
6307  *   Pointer to flow split info structure.
6308  * @param[out] error
6309  *   Perform verbose error reporting if not NULL.
6310  * @return
6311  *   0 on success, negative value otherwise
6312  */
6313 static int
6314 flow_create_split_sample(struct rte_eth_dev *dev,
6315 			 struct rte_flow *flow,
6316 			 const struct rte_flow_attr *attr,
6317 			 const struct rte_flow_item items[],
6318 			 const struct rte_flow_action actions[],
6319 			 struct mlx5_flow_split_info *flow_split_info,
6320 			 struct rte_flow_error *error)
6321 {
6322 	struct mlx5_priv *priv = dev->data->dev_private;
6323 	struct rte_flow_action *sfx_actions = NULL;
6324 	struct rte_flow_action *pre_actions = NULL;
6325 	struct rte_flow_item *sfx_items = NULL;
6326 	struct mlx5_flow *dev_flow = NULL;
6327 	struct rte_flow_attr sfx_attr = *attr;
6328 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
6329 	struct mlx5_flow_dv_sample_resource *sample_res;
6330 	struct mlx5_flow_tbl_data_entry *sfx_tbl_data;
6331 	struct mlx5_flow_tbl_resource *sfx_tbl;
6332 	struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace();
6333 #endif
6334 	size_t act_size;
6335 	size_t item_size;
6336 	uint32_t fdb_tx = 0;
6337 	int32_t tag_id = 0;
6338 	int actions_n = 0;
6339 	int sample_action_pos;
6340 	int qrss_action_pos;
6341 	int add_tag = 0;
6342 	int modify_after_mirror = 0;
6343 	uint16_t jump_table = 0;
6344 	const uint32_t next_ft_step = 1;
6345 	int ret = 0;
6346 
6347 	if (priv->sampler_en)
6348 		actions_n = flow_check_match_action(actions, attr,
6349 					RTE_FLOW_ACTION_TYPE_SAMPLE,
6350 					&sample_action_pos, &qrss_action_pos,
6351 					&modify_after_mirror);
6352 	if (actions_n) {
6353 		/* The prefix actions must includes sample, tag, end. */
6354 		act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1)
6355 			   + sizeof(struct mlx5_rte_flow_action_set_tag);
6356 		item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM +
6357 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
6358 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size +
6359 					  item_size), 0, SOCKET_ID_ANY);
6360 		if (!sfx_actions)
6361 			return rte_flow_error_set(error, ENOMEM,
6362 						  RTE_FLOW_ERROR_TYPE_ACTION,
6363 						  NULL, "no memory to split "
6364 						  "sample flow");
6365 		/* The representor_id is UINT16_MAX for uplink. */
6366 		fdb_tx = (attr->transfer && priv->representor_id != UINT16_MAX);
6367 		/*
6368 		 * When reg_c_preserve is set, metadata registers Cx preserve
6369 		 * their value even through packet duplication.
6370 		 */
6371 		add_tag = (!fdb_tx ||
6372 			   priv->sh->cdev->config.hca_attr.reg_c_preserve);
6373 		if (add_tag)
6374 			sfx_items = (struct rte_flow_item *)((char *)sfx_actions
6375 					+ act_size);
6376 		if (modify_after_mirror)
6377 			jump_table = attr->group * MLX5_FLOW_TABLE_FACTOR +
6378 				     next_ft_step;
6379 		pre_actions = sfx_actions + actions_n;
6380 		tag_id = flow_sample_split_prep(dev, add_tag, sfx_items,
6381 						actions, sfx_actions,
6382 						pre_actions, actions_n,
6383 						sample_action_pos,
6384 						qrss_action_pos, jump_table,
6385 						error);
6386 		if (tag_id < 0 || (add_tag && !tag_id)) {
6387 			ret = -rte_errno;
6388 			goto exit;
6389 		}
6390 		if (modify_after_mirror)
6391 			flow_split_info->skip_scale =
6392 					1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT;
6393 		/* Add the prefix subflow. */
6394 		ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
6395 					      items, pre_actions,
6396 					      flow_split_info, error);
6397 		if (ret) {
6398 			ret = -rte_errno;
6399 			goto exit;
6400 		}
6401 		dev_flow->handle->split_flow_id = tag_id;
6402 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
6403 		if (!modify_after_mirror) {
6404 			/* Set the sfx group attr. */
6405 			sample_res = (struct mlx5_flow_dv_sample_resource *)
6406 						dev_flow->dv.sample_res;
6407 			sfx_tbl = (struct mlx5_flow_tbl_resource *)
6408 						sample_res->normal_path_tbl;
6409 			sfx_tbl_data = container_of(sfx_tbl,
6410 						struct mlx5_flow_tbl_data_entry,
6411 						tbl);
6412 			sfx_attr.group = sfx_attr.transfer ?
6413 			(sfx_tbl_data->level - 1) : sfx_tbl_data->level;
6414 		} else {
6415 			MLX5_ASSERT(attr->transfer);
6416 			sfx_attr.group = jump_table;
6417 		}
6418 		flow_split_info->prefix_layers =
6419 				flow_get_prefix_layer_flags(dev_flow);
6420 		MLX5_ASSERT(wks);
6421 		flow_split_info->prefix_mark |= wks->mark;
6422 		/* Suffix group level already be scaled with factor, set
6423 		 * MLX5_SCALE_FLOW_GROUP_BIT of skip_scale to 1 to avoid scale
6424 		 * again in translation.
6425 		 */
6426 		flow_split_info->skip_scale = 1 << MLX5_SCALE_FLOW_GROUP_BIT;
6427 #endif
6428 	}
6429 	/* Add the suffix subflow. */
6430 	ret = flow_create_split_meter(dev, flow, &sfx_attr,
6431 				      sfx_items ? sfx_items : items,
6432 				      sfx_actions ? sfx_actions : actions,
6433 				      flow_split_info, error);
6434 exit:
6435 	if (sfx_actions)
6436 		mlx5_free(sfx_actions);
6437 	return ret;
6438 }
6439 
6440 /**
6441  * Split the flow to subflow set. The splitters might be linked
6442  * in the chain, like this:
6443  * flow_create_split_outer() calls:
6444  *   flow_create_split_meter() calls:
6445  *     flow_create_split_metadata(meter_subflow_0) calls:
6446  *       flow_create_split_inner(metadata_subflow_0)
6447  *       flow_create_split_inner(metadata_subflow_1)
6448  *       flow_create_split_inner(metadata_subflow_2)
6449  *     flow_create_split_metadata(meter_subflow_1) calls:
6450  *       flow_create_split_inner(metadata_subflow_0)
6451  *       flow_create_split_inner(metadata_subflow_1)
6452  *       flow_create_split_inner(metadata_subflow_2)
6453  *
6454  * This provide flexible way to add new levels of flow splitting.
6455  * The all of successfully created subflows are included to the
6456  * parent flow dev_flow list.
6457  *
6458  * @param dev
6459  *   Pointer to Ethernet device.
6460  * @param[in] flow
6461  *   Parent flow structure pointer.
6462  * @param[in] attr
6463  *   Flow rule attributes.
6464  * @param[in] items
6465  *   Pattern specification (list terminated by the END pattern item).
6466  * @param[in] actions
6467  *   Associated actions (list terminated by the END action).
6468  * @param[in] flow_split_info
6469  *   Pointer to flow split info structure.
6470  * @param[out] error
6471  *   Perform verbose error reporting if not NULL.
6472  * @return
6473  *   0 on success, negative value otherwise
6474  */
6475 static int
6476 flow_create_split_outer(struct rte_eth_dev *dev,
6477 			struct rte_flow *flow,
6478 			const struct rte_flow_attr *attr,
6479 			const struct rte_flow_item items[],
6480 			const struct rte_flow_action actions[],
6481 			struct mlx5_flow_split_info *flow_split_info,
6482 			struct rte_flow_error *error)
6483 {
6484 	int ret;
6485 
6486 	ret = flow_create_split_sample(dev, flow, attr, items,
6487 				       actions, flow_split_info, error);
6488 	MLX5_ASSERT(ret <= 0);
6489 	return ret;
6490 }
6491 
6492 static inline struct mlx5_flow_tunnel *
6493 flow_tunnel_from_rule(const struct mlx5_flow *flow)
6494 {
6495 	struct mlx5_flow_tunnel *tunnel;
6496 
6497 #pragma GCC diagnostic push
6498 #pragma GCC diagnostic ignored "-Wcast-qual"
6499 	tunnel = (typeof(tunnel))flow->tunnel;
6500 #pragma GCC diagnostic pop
6501 
6502 	return tunnel;
6503 }
6504 
6505 /**
6506  * Adjust flow RSS workspace if needed.
6507  *
6508  * @param wks
6509  *   Pointer to thread flow work space.
6510  * @param rss_desc
6511  *   Pointer to RSS descriptor.
6512  * @param[in] nrssq_num
6513  *   New RSS queue number.
6514  *
6515  * @return
6516  *   0 on success, -1 otherwise and rte_errno is set.
6517  */
6518 static int
6519 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks,
6520 			  struct mlx5_flow_rss_desc *rss_desc,
6521 			  uint32_t nrssq_num)
6522 {
6523 	if (likely(nrssq_num <= wks->rssq_num))
6524 		return 0;
6525 	rss_desc->queue = realloc(rss_desc->queue,
6526 			  sizeof(*rss_desc->queue) * RTE_ALIGN(nrssq_num, 2));
6527 	if (!rss_desc->queue) {
6528 		rte_errno = ENOMEM;
6529 		return -1;
6530 	}
6531 	wks->rssq_num = RTE_ALIGN(nrssq_num, 2);
6532 	return 0;
6533 }
6534 
6535 /**
6536  * Create a flow and add it to @p list.
6537  *
6538  * @param dev
6539  *   Pointer to Ethernet device.
6540  * @param list
6541  *   Pointer to a TAILQ flow list. If this parameter NULL,
6542  *   no list insertion occurred, flow is just created,
6543  *   this is caller's responsibility to track the
6544  *   created flow.
6545  * @param[in] attr
6546  *   Flow rule attributes.
6547  * @param[in] items
6548  *   Pattern specification (list terminated by the END pattern item).
6549  * @param[in] actions
6550  *   Associated actions (list terminated by the END action).
6551  * @param[in] external
6552  *   This flow rule is created by request external to PMD.
6553  * @param[out] error
6554  *   Perform verbose error reporting if not NULL.
6555  *
6556  * @return
6557  *   A flow index on success, 0 otherwise and rte_errno is set.
6558  */
6559 static uint32_t
6560 flow_list_create(struct rte_eth_dev *dev, enum mlx5_flow_type type,
6561 		 const struct rte_flow_attr *attr,
6562 		 const struct rte_flow_item items[],
6563 		 const struct rte_flow_action original_actions[],
6564 		 bool external, struct rte_flow_error *error)
6565 {
6566 	struct mlx5_priv *priv = dev->data->dev_private;
6567 	struct rte_flow *flow = NULL;
6568 	struct mlx5_flow *dev_flow;
6569 	const struct rte_flow_action_rss *rss = NULL;
6570 	struct mlx5_translated_action_handle
6571 		indir_actions[MLX5_MAX_INDIRECT_ACTIONS];
6572 	int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS;
6573 	union {
6574 		struct mlx5_flow_expand_rss buf;
6575 		uint8_t buffer[4096];
6576 	} expand_buffer;
6577 	union {
6578 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
6579 		uint8_t buffer[2048];
6580 	} actions_rx;
6581 	union {
6582 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
6583 		uint8_t buffer[2048];
6584 	} actions_hairpin_tx;
6585 	union {
6586 		struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
6587 		uint8_t buffer[2048];
6588 	} items_tx;
6589 	struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
6590 	struct mlx5_flow_rss_desc *rss_desc;
6591 	const struct rte_flow_action *p_actions_rx;
6592 	uint32_t i;
6593 	uint32_t idx = 0;
6594 	int hairpin_flow;
6595 	struct rte_flow_attr attr_tx = { .priority = 0 };
6596 	const struct rte_flow_action *actions;
6597 	struct rte_flow_action *translated_actions = NULL;
6598 	struct mlx5_flow_tunnel *tunnel;
6599 	struct tunnel_default_miss_ctx default_miss_ctx = { 0, };
6600 	struct mlx5_flow_workspace *wks = mlx5_flow_push_thread_workspace();
6601 	struct mlx5_flow_split_info flow_split_info = {
6602 		.external = !!external,
6603 		.skip_scale = 0,
6604 		.flow_idx = 0,
6605 		.prefix_mark = 0,
6606 		.prefix_layers = 0,
6607 		.table_id = 0
6608 	};
6609 	int ret;
6610 
6611 	MLX5_ASSERT(wks);
6612 	rss_desc = &wks->rss_desc;
6613 	ret = flow_action_handles_translate(dev, original_actions,
6614 					    indir_actions,
6615 					    &indir_actions_n,
6616 					    &translated_actions, error);
6617 	if (ret < 0) {
6618 		MLX5_ASSERT(translated_actions == NULL);
6619 		return 0;
6620 	}
6621 	actions = translated_actions ? translated_actions : original_actions;
6622 	p_actions_rx = actions;
6623 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
6624 	ret = flow_drv_validate(dev, attr, items, p_actions_rx,
6625 				external, hairpin_flow, error);
6626 	if (ret < 0)
6627 		goto error_before_hairpin_split;
6628 	flow = mlx5_ipool_zmalloc(priv->flows[type], &idx);
6629 	if (!flow) {
6630 		rte_errno = ENOMEM;
6631 		goto error_before_hairpin_split;
6632 	}
6633 	if (hairpin_flow > 0) {
6634 		if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
6635 			rte_errno = EINVAL;
6636 			goto error_before_hairpin_split;
6637 		}
6638 		flow_hairpin_split(dev, actions, actions_rx.actions,
6639 				   actions_hairpin_tx.actions, items_tx.items,
6640 				   idx);
6641 		p_actions_rx = actions_rx.actions;
6642 	}
6643 	flow_split_info.flow_idx = idx;
6644 	flow->drv_type = flow_get_drv_type(dev, attr);
6645 	MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
6646 		    flow->drv_type < MLX5_FLOW_TYPE_MAX);
6647 	memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue));
6648 	/* RSS Action only works on NIC RX domain */
6649 	if (attr->ingress && !attr->transfer)
6650 		rss = flow_get_rss_action(dev, p_actions_rx);
6651 	if (rss) {
6652 		if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num))
6653 			return 0;
6654 		/*
6655 		 * The following information is required by
6656 		 * mlx5_flow_hashfields_adjust() in advance.
6657 		 */
6658 		rss_desc->level = rss->level;
6659 		/* RSS type 0 indicates default RSS type (RTE_ETH_RSS_IP). */
6660 		rss_desc->types = !rss->types ? RTE_ETH_RSS_IP : rss->types;
6661 	}
6662 	flow->dev_handles = 0;
6663 	if (rss && rss->types) {
6664 		unsigned int graph_root;
6665 
6666 		graph_root = find_graph_root(rss->level);
6667 		ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
6668 					   items, rss->types,
6669 					   mlx5_support_expansion, graph_root);
6670 		MLX5_ASSERT(ret > 0 &&
6671 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
6672 		if (rte_log_can_log(mlx5_logtype, RTE_LOG_DEBUG)) {
6673 			for (i = 0; i < buf->entries; ++i)
6674 				mlx5_dbg__print_pattern(buf->entry[i].pattern);
6675 		}
6676 	} else {
6677 		buf->entries = 1;
6678 		buf->entry[0].pattern = (void *)(uintptr_t)items;
6679 	}
6680 	rss_desc->shared_rss = flow_get_shared_rss_action(dev, indir_actions,
6681 						      indir_actions_n);
6682 	for (i = 0; i < buf->entries; ++i) {
6683 		/* Initialize flow split data. */
6684 		flow_split_info.prefix_layers = 0;
6685 		flow_split_info.prefix_mark = 0;
6686 		flow_split_info.skip_scale = 0;
6687 		/*
6688 		 * The splitter may create multiple dev_flows,
6689 		 * depending on configuration. In the simplest
6690 		 * case it just creates unmodified original flow.
6691 		 */
6692 		ret = flow_create_split_outer(dev, flow, attr,
6693 					      buf->entry[i].pattern,
6694 					      p_actions_rx, &flow_split_info,
6695 					      error);
6696 		if (ret < 0)
6697 			goto error;
6698 		if (is_flow_tunnel_steer_rule(wks->flows[0].tof_type)) {
6699 			ret = flow_tunnel_add_default_miss(dev, flow, attr,
6700 							   p_actions_rx,
6701 							   idx,
6702 							   wks->flows[0].tunnel,
6703 							   &default_miss_ctx,
6704 							   error);
6705 			if (ret < 0) {
6706 				mlx5_free(default_miss_ctx.queue);
6707 				goto error;
6708 			}
6709 		}
6710 	}
6711 	/* Create the tx flow. */
6712 	if (hairpin_flow) {
6713 		attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
6714 		attr_tx.ingress = 0;
6715 		attr_tx.egress = 1;
6716 		dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
6717 					 actions_hairpin_tx.actions,
6718 					 idx, error);
6719 		if (!dev_flow)
6720 			goto error;
6721 		dev_flow->flow = flow;
6722 		dev_flow->external = 0;
6723 		SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
6724 			      dev_flow->handle, next);
6725 		ret = flow_drv_translate(dev, dev_flow, &attr_tx,
6726 					 items_tx.items,
6727 					 actions_hairpin_tx.actions, error);
6728 		if (ret < 0)
6729 			goto error;
6730 	}
6731 	/*
6732 	 * Update the metadata register copy table. If extensive
6733 	 * metadata feature is enabled and registers are supported
6734 	 * we might create the extra rte_flow for each unique
6735 	 * MARK/FLAG action ID.
6736 	 *
6737 	 * The table is updated for ingress Flows only, because
6738 	 * the egress Flows belong to the different device and
6739 	 * copy table should be updated in peer NIC Rx domain.
6740 	 */
6741 	if (attr->ingress &&
6742 	    (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
6743 		ret = flow_mreg_update_copy_table(dev, flow, actions, error);
6744 		if (ret)
6745 			goto error;
6746 	}
6747 	/*
6748 	 * If the flow is external (from application) OR device is started,
6749 	 * OR mreg discover, then apply immediately.
6750 	 */
6751 	if (external || dev->data->dev_started ||
6752 	    (attr->group == MLX5_FLOW_MREG_CP_TABLE_GROUP &&
6753 	     attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)) {
6754 		ret = flow_drv_apply(dev, flow, error);
6755 		if (ret < 0)
6756 			goto error;
6757 	}
6758 	flow->type = type;
6759 	flow_rxq_flags_set(dev, flow);
6760 	rte_free(translated_actions);
6761 	tunnel = flow_tunnel_from_rule(wks->flows);
6762 	if (tunnel) {
6763 		flow->tunnel = 1;
6764 		flow->tunnel_id = tunnel->tunnel_id;
6765 		__atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED);
6766 		mlx5_free(default_miss_ctx.queue);
6767 	}
6768 	mlx5_flow_pop_thread_workspace();
6769 	return idx;
6770 error:
6771 	MLX5_ASSERT(flow);
6772 	ret = rte_errno; /* Save rte_errno before cleanup. */
6773 	flow_mreg_del_copy_action(dev, flow);
6774 	flow_drv_destroy(dev, flow);
6775 	if (rss_desc->shared_rss)
6776 		__atomic_sub_fetch(&((struct mlx5_shared_action_rss *)
6777 			mlx5_ipool_get
6778 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
6779 			rss_desc->shared_rss))->refcnt, 1, __ATOMIC_RELAXED);
6780 	mlx5_ipool_free(priv->flows[type], idx);
6781 	rte_errno = ret; /* Restore rte_errno. */
6782 	ret = rte_errno;
6783 	rte_errno = ret;
6784 	mlx5_flow_pop_thread_workspace();
6785 error_before_hairpin_split:
6786 	rte_free(translated_actions);
6787 	return 0;
6788 }
6789 
6790 /**
6791  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
6792  * incoming packets to table 1.
6793  *
6794  * Other flow rules, requested for group n, will be created in
6795  * e-switch table n+1.
6796  * Jump action to e-switch group n will be created to group n+1.
6797  *
6798  * Used when working in switchdev mode, to utilise advantages of table 1
6799  * and above.
6800  *
6801  * @param dev
6802  *   Pointer to Ethernet device.
6803  *
6804  * @return
6805  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
6806  */
6807 struct rte_flow *
6808 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
6809 {
6810 	const struct rte_flow_attr attr = {
6811 		.group = 0,
6812 		.priority = 0,
6813 		.ingress = 1,
6814 		.egress = 0,
6815 		.transfer = 1,
6816 	};
6817 	const struct rte_flow_item pattern = {
6818 		.type = RTE_FLOW_ITEM_TYPE_END,
6819 	};
6820 	struct rte_flow_action_jump jump = {
6821 		.group = 1,
6822 	};
6823 	const struct rte_flow_action actions[] = {
6824 		{
6825 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
6826 			.conf = &jump,
6827 		},
6828 		{
6829 			.type = RTE_FLOW_ACTION_TYPE_END,
6830 		},
6831 	};
6832 	struct rte_flow_error error;
6833 
6834 	return (void *)(uintptr_t)flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
6835 						   &attr, &pattern,
6836 						   actions, false, &error);
6837 }
6838 
6839 /**
6840  * Create a dedicated flow rule on e-switch table 1, matches ESW manager
6841  * and sq number, directs all packets to peer vport.
6842  *
6843  * @param dev
6844  *   Pointer to Ethernet device.
6845  * @param txq
6846  *   Txq index.
6847  *
6848  * @return
6849  *   Flow ID on success, 0 otherwise and rte_errno is set.
6850  */
6851 uint32_t
6852 mlx5_flow_create_devx_sq_miss_flow(struct rte_eth_dev *dev, uint32_t txq)
6853 {
6854 	struct rte_flow_attr attr = {
6855 		.group = 0,
6856 		.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
6857 		.ingress = 1,
6858 		.egress = 0,
6859 		.transfer = 1,
6860 	};
6861 	struct rte_flow_item_port_id port_spec = {
6862 		.id = MLX5_PORT_ESW_MGR,
6863 	};
6864 	struct mlx5_rte_flow_item_tx_queue txq_spec = {
6865 		.queue = txq,
6866 	};
6867 	struct rte_flow_item pattern[] = {
6868 		{
6869 			.type = RTE_FLOW_ITEM_TYPE_PORT_ID,
6870 			.spec = &port_spec,
6871 		},
6872 		{
6873 			.type = (enum rte_flow_item_type)
6874 				MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
6875 			.spec = &txq_spec,
6876 		},
6877 		{
6878 			.type = RTE_FLOW_ITEM_TYPE_END,
6879 		},
6880 	};
6881 	struct rte_flow_action_jump jump = {
6882 		.group = 1,
6883 	};
6884 	struct rte_flow_action_port_id port = {
6885 		.id = dev->data->port_id,
6886 	};
6887 	struct rte_flow_action actions[] = {
6888 		{
6889 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
6890 			.conf = &jump,
6891 		},
6892 		{
6893 			.type = RTE_FLOW_ACTION_TYPE_END,
6894 		},
6895 	};
6896 	struct rte_flow_error error;
6897 
6898 	/*
6899 	 * Creates group 0, highest priority jump flow.
6900 	 * Matches txq to bypass kernel packets.
6901 	 */
6902 	if (flow_list_create(dev, MLX5_FLOW_TYPE_CTL, &attr, pattern, actions,
6903 			     false, &error) == 0)
6904 		return 0;
6905 	/* Create group 1, lowest priority redirect flow for txq. */
6906 	attr.group = 1;
6907 	actions[0].conf = &port;
6908 	actions[0].type = RTE_FLOW_ACTION_TYPE_PORT_ID;
6909 	return flow_list_create(dev, MLX5_FLOW_TYPE_CTL, &attr, pattern,
6910 				actions, false, &error);
6911 }
6912 
6913 /**
6914  * Validate a flow supported by the NIC.
6915  *
6916  * @see rte_flow_validate()
6917  * @see rte_flow_ops
6918  */
6919 int
6920 mlx5_flow_validate(struct rte_eth_dev *dev,
6921 		   const struct rte_flow_attr *attr,
6922 		   const struct rte_flow_item items[],
6923 		   const struct rte_flow_action original_actions[],
6924 		   struct rte_flow_error *error)
6925 {
6926 	int hairpin_flow;
6927 	struct mlx5_translated_action_handle
6928 		indir_actions[MLX5_MAX_INDIRECT_ACTIONS];
6929 	int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS;
6930 	const struct rte_flow_action *actions;
6931 	struct rte_flow_action *translated_actions = NULL;
6932 	int ret = flow_action_handles_translate(dev, original_actions,
6933 						indir_actions,
6934 						&indir_actions_n,
6935 						&translated_actions, error);
6936 
6937 	if (ret)
6938 		return ret;
6939 	actions = translated_actions ? translated_actions : original_actions;
6940 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
6941 	ret = flow_drv_validate(dev, attr, items, actions,
6942 				true, hairpin_flow, error);
6943 	rte_free(translated_actions);
6944 	return ret;
6945 }
6946 
6947 /**
6948  * Create a flow.
6949  *
6950  * @see rte_flow_create()
6951  * @see rte_flow_ops
6952  */
6953 struct rte_flow *
6954 mlx5_flow_create(struct rte_eth_dev *dev,
6955 		 const struct rte_flow_attr *attr,
6956 		 const struct rte_flow_item items[],
6957 		 const struct rte_flow_action actions[],
6958 		 struct rte_flow_error *error)
6959 {
6960 	struct mlx5_priv *priv = dev->data->dev_private;
6961 
6962 	if (priv->sh->config.dv_flow_en == 2) {
6963 		rte_flow_error_set(error, ENOTSUP,
6964 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6965 			  NULL,
6966 			  "Flow non-Q creation not supported");
6967 		return NULL;
6968 	}
6969 	/*
6970 	 * If the device is not started yet, it is not allowed to created a
6971 	 * flow from application. PMD default flows and traffic control flows
6972 	 * are not affected.
6973 	 */
6974 	if (unlikely(!dev->data->dev_started)) {
6975 		DRV_LOG(DEBUG, "port %u is not started when "
6976 			"inserting a flow", dev->data->port_id);
6977 		rte_flow_error_set(error, ENODEV,
6978 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6979 				   NULL,
6980 				   "port not started");
6981 		return NULL;
6982 	}
6983 
6984 	return (void *)(uintptr_t)flow_list_create(dev, MLX5_FLOW_TYPE_GEN,
6985 						   attr, items, actions,
6986 						   true, error);
6987 }
6988 
6989 /**
6990  * Destroy a flow in a list.
6991  *
6992  * @param dev
6993  *   Pointer to Ethernet device.
6994  * @param[in] flow_idx
6995  *   Index of flow to destroy.
6996  */
6997 static void
6998 flow_list_destroy(struct rte_eth_dev *dev, enum mlx5_flow_type type,
6999 		  uint32_t flow_idx)
7000 {
7001 	struct mlx5_priv *priv = dev->data->dev_private;
7002 	struct rte_flow *flow = mlx5_ipool_get(priv->flows[type], flow_idx);
7003 
7004 	if (!flow)
7005 		return;
7006 	MLX5_ASSERT(flow->type == type);
7007 	/*
7008 	 * Update RX queue flags only if port is started, otherwise it is
7009 	 * already clean.
7010 	 */
7011 	if (dev->data->dev_started)
7012 		flow_rxq_flags_trim(dev, flow);
7013 	flow_drv_destroy(dev, flow);
7014 	if (flow->tunnel) {
7015 		struct mlx5_flow_tunnel *tunnel;
7016 
7017 		tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id);
7018 		RTE_VERIFY(tunnel);
7019 		if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
7020 			mlx5_flow_tunnel_free(dev, tunnel);
7021 	}
7022 	flow_mreg_del_copy_action(dev, flow);
7023 	mlx5_ipool_free(priv->flows[type], flow_idx);
7024 }
7025 
7026 /**
7027  * Destroy all flows.
7028  *
7029  * @param dev
7030  *   Pointer to Ethernet device.
7031  * @param type
7032  *   Flow type to be flushed.
7033  * @param active
7034  *   If flushing is called actively.
7035  */
7036 void
7037 mlx5_flow_list_flush(struct rte_eth_dev *dev, enum mlx5_flow_type type,
7038 		     bool active)
7039 {
7040 	struct mlx5_priv *priv = dev->data->dev_private;
7041 	uint32_t num_flushed = 0, fidx = 1;
7042 	struct rte_flow *flow;
7043 
7044 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
7045 	if (priv->sh->config.dv_flow_en == 2 &&
7046 	    type == MLX5_FLOW_TYPE_GEN) {
7047 		flow_hw_q_flow_flush(dev, NULL);
7048 		return;
7049 	}
7050 #endif
7051 
7052 	MLX5_IPOOL_FOREACH(priv->flows[type], fidx, flow) {
7053 		flow_list_destroy(dev, type, fidx);
7054 		num_flushed++;
7055 	}
7056 	if (active) {
7057 		DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
7058 			dev->data->port_id, num_flushed);
7059 	}
7060 }
7061 
7062 /**
7063  * Stop all default actions for flows.
7064  *
7065  * @param dev
7066  *   Pointer to Ethernet device.
7067  */
7068 void
7069 mlx5_flow_stop_default(struct rte_eth_dev *dev)
7070 {
7071 	flow_mreg_del_default_copy_action(dev);
7072 	flow_rxq_flags_clear(dev);
7073 }
7074 
7075 /**
7076  * Start all default actions for flows.
7077  *
7078  * @param dev
7079  *   Pointer to Ethernet device.
7080  * @return
7081  *   0 on success, a negative errno value otherwise and rte_errno is set.
7082  */
7083 int
7084 mlx5_flow_start_default(struct rte_eth_dev *dev)
7085 {
7086 	struct rte_flow_error error;
7087 
7088 	/* Make sure default copy action (reg_c[0] -> reg_b) is created. */
7089 	return flow_mreg_add_default_copy_action(dev, &error);
7090 }
7091 
7092 /**
7093  * Release key of thread specific flow workspace data.
7094  */
7095 void
7096 flow_release_workspace(void *data)
7097 {
7098 	struct mlx5_flow_workspace *wks = data;
7099 	struct mlx5_flow_workspace *next;
7100 
7101 	while (wks) {
7102 		next = wks->next;
7103 		free(wks->rss_desc.queue);
7104 		free(wks);
7105 		wks = next;
7106 	}
7107 }
7108 
7109 /**
7110  * Get thread specific current flow workspace.
7111  *
7112  * @return pointer to thread specific flow workspace data, NULL on error.
7113  */
7114 struct mlx5_flow_workspace*
7115 mlx5_flow_get_thread_workspace(void)
7116 {
7117 	struct mlx5_flow_workspace *data;
7118 
7119 	data = mlx5_flow_os_get_specific_workspace();
7120 	MLX5_ASSERT(data && data->inuse);
7121 	if (!data || !data->inuse)
7122 		DRV_LOG(ERR, "flow workspace not initialized.");
7123 	return data;
7124 }
7125 
7126 /**
7127  * Allocate and init new flow workspace.
7128  *
7129  * @return pointer to flow workspace data, NULL on error.
7130  */
7131 static struct mlx5_flow_workspace*
7132 flow_alloc_thread_workspace(void)
7133 {
7134 	struct mlx5_flow_workspace *data = calloc(1, sizeof(*data));
7135 
7136 	if (!data) {
7137 		DRV_LOG(ERR, "Failed to allocate flow workspace "
7138 			"memory.");
7139 		return NULL;
7140 	}
7141 	data->rss_desc.queue = calloc(1,
7142 			sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM);
7143 	if (!data->rss_desc.queue)
7144 		goto err;
7145 	data->rssq_num = MLX5_RSSQ_DEFAULT_NUM;
7146 	return data;
7147 err:
7148 	free(data->rss_desc.queue);
7149 	free(data);
7150 	return NULL;
7151 }
7152 
7153 /**
7154  * Get new thread specific flow workspace.
7155  *
7156  * If current workspace inuse, create new one and set as current.
7157  *
7158  * @return pointer to thread specific flow workspace data, NULL on error.
7159  */
7160 static struct mlx5_flow_workspace*
7161 mlx5_flow_push_thread_workspace(void)
7162 {
7163 	struct mlx5_flow_workspace *curr;
7164 	struct mlx5_flow_workspace *data;
7165 
7166 	curr = mlx5_flow_os_get_specific_workspace();
7167 	if (!curr) {
7168 		data = flow_alloc_thread_workspace();
7169 		if (!data)
7170 			return NULL;
7171 	} else if (!curr->inuse) {
7172 		data = curr;
7173 	} else if (curr->next) {
7174 		data = curr->next;
7175 	} else {
7176 		data = flow_alloc_thread_workspace();
7177 		if (!data)
7178 			return NULL;
7179 		curr->next = data;
7180 		data->prev = curr;
7181 	}
7182 	data->inuse = 1;
7183 	data->flow_idx = 0;
7184 	/* Set as current workspace */
7185 	if (mlx5_flow_os_set_specific_workspace(data))
7186 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
7187 	return data;
7188 }
7189 
7190 /**
7191  * Close current thread specific flow workspace.
7192  *
7193  * If previous workspace available, set it as current.
7194  *
7195  * @return pointer to thread specific flow workspace data, NULL on error.
7196  */
7197 static void
7198 mlx5_flow_pop_thread_workspace(void)
7199 {
7200 	struct mlx5_flow_workspace *data = mlx5_flow_get_thread_workspace();
7201 
7202 	if (!data)
7203 		return;
7204 	if (!data->inuse) {
7205 		DRV_LOG(ERR, "Failed to close unused flow workspace.");
7206 		return;
7207 	}
7208 	data->inuse = 0;
7209 	if (!data->prev)
7210 		return;
7211 	if (mlx5_flow_os_set_specific_workspace(data->prev))
7212 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
7213 }
7214 
7215 /**
7216  * Verify the flow list is empty
7217  *
7218  * @param dev
7219  *  Pointer to Ethernet device.
7220  *
7221  * @return the number of flows not released.
7222  */
7223 int
7224 mlx5_flow_verify(struct rte_eth_dev *dev __rte_unused)
7225 {
7226 	struct mlx5_priv *priv = dev->data->dev_private;
7227 	struct rte_flow *flow;
7228 	uint32_t idx = 0;
7229 	int ret = 0, i;
7230 
7231 	for (i = 0; i < MLX5_FLOW_TYPE_MAXI; i++) {
7232 		MLX5_IPOOL_FOREACH(priv->flows[i], idx, flow) {
7233 			DRV_LOG(DEBUG, "port %u flow %p still referenced",
7234 				dev->data->port_id, (void *)flow);
7235 			ret++;
7236 		}
7237 	}
7238 	return ret;
7239 }
7240 
7241 /**
7242  * Enable default hairpin egress flow.
7243  *
7244  * @param dev
7245  *   Pointer to Ethernet device.
7246  * @param queue
7247  *   The queue index.
7248  *
7249  * @return
7250  *   0 on success, a negative errno value otherwise and rte_errno is set.
7251  */
7252 int
7253 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
7254 			    uint32_t queue)
7255 {
7256 	const struct rte_flow_attr attr = {
7257 		.egress = 1,
7258 		.priority = 0,
7259 	};
7260 	struct mlx5_rte_flow_item_tx_queue queue_spec = {
7261 		.queue = queue,
7262 	};
7263 	struct mlx5_rte_flow_item_tx_queue queue_mask = {
7264 		.queue = UINT32_MAX,
7265 	};
7266 	struct rte_flow_item items[] = {
7267 		{
7268 			.type = (enum rte_flow_item_type)
7269 				MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
7270 			.spec = &queue_spec,
7271 			.last = NULL,
7272 			.mask = &queue_mask,
7273 		},
7274 		{
7275 			.type = RTE_FLOW_ITEM_TYPE_END,
7276 		},
7277 	};
7278 	struct rte_flow_action_jump jump = {
7279 		.group = MLX5_HAIRPIN_TX_TABLE,
7280 	};
7281 	struct rte_flow_action actions[2];
7282 	uint32_t flow_idx;
7283 	struct rte_flow_error error;
7284 
7285 	actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
7286 	actions[0].conf = &jump;
7287 	actions[1].type = RTE_FLOW_ACTION_TYPE_END;
7288 	flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
7289 				    &attr, items, actions, false, &error);
7290 	if (!flow_idx) {
7291 		DRV_LOG(DEBUG,
7292 			"Failed to create ctrl flow: rte_errno(%d),"
7293 			" type(%d), message(%s)",
7294 			rte_errno, error.type,
7295 			error.message ? error.message : " (no stated reason)");
7296 		return -rte_errno;
7297 	}
7298 	return 0;
7299 }
7300 
7301 /**
7302  * Enable a control flow configured from the control plane.
7303  *
7304  * @param dev
7305  *   Pointer to Ethernet device.
7306  * @param eth_spec
7307  *   An Ethernet flow spec to apply.
7308  * @param eth_mask
7309  *   An Ethernet flow mask to apply.
7310  * @param vlan_spec
7311  *   A VLAN flow spec to apply.
7312  * @param vlan_mask
7313  *   A VLAN flow mask to apply.
7314  *
7315  * @return
7316  *   0 on success, a negative errno value otherwise and rte_errno is set.
7317  */
7318 int
7319 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
7320 		    struct rte_flow_item_eth *eth_spec,
7321 		    struct rte_flow_item_eth *eth_mask,
7322 		    struct rte_flow_item_vlan *vlan_spec,
7323 		    struct rte_flow_item_vlan *vlan_mask)
7324 {
7325 	struct mlx5_priv *priv = dev->data->dev_private;
7326 	const struct rte_flow_attr attr = {
7327 		.ingress = 1,
7328 		.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
7329 	};
7330 	struct rte_flow_item items[] = {
7331 		{
7332 			.type = RTE_FLOW_ITEM_TYPE_ETH,
7333 			.spec = eth_spec,
7334 			.last = NULL,
7335 			.mask = eth_mask,
7336 		},
7337 		{
7338 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
7339 					      RTE_FLOW_ITEM_TYPE_END,
7340 			.spec = vlan_spec,
7341 			.last = NULL,
7342 			.mask = vlan_mask,
7343 		},
7344 		{
7345 			.type = RTE_FLOW_ITEM_TYPE_END,
7346 		},
7347 	};
7348 	uint16_t queue[priv->reta_idx_n];
7349 	struct rte_flow_action_rss action_rss = {
7350 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
7351 		.level = 0,
7352 		.types = priv->rss_conf.rss_hf,
7353 		.key_len = priv->rss_conf.rss_key_len,
7354 		.queue_num = priv->reta_idx_n,
7355 		.key = priv->rss_conf.rss_key,
7356 		.queue = queue,
7357 	};
7358 	struct rte_flow_action actions[] = {
7359 		{
7360 			.type = RTE_FLOW_ACTION_TYPE_RSS,
7361 			.conf = &action_rss,
7362 		},
7363 		{
7364 			.type = RTE_FLOW_ACTION_TYPE_END,
7365 		},
7366 	};
7367 	uint32_t flow_idx;
7368 	struct rte_flow_error error;
7369 	unsigned int i;
7370 
7371 	if (!priv->reta_idx_n || !priv->rxqs_n) {
7372 		return 0;
7373 	}
7374 	if (!(dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG))
7375 		action_rss.types = 0;
7376 	for (i = 0; i != priv->reta_idx_n; ++i)
7377 		queue[i] = (*priv->reta_idx)[i];
7378 	flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
7379 				    &attr, items, actions, false, &error);
7380 	if (!flow_idx)
7381 		return -rte_errno;
7382 	return 0;
7383 }
7384 
7385 /**
7386  * Enable a flow control configured from the control plane.
7387  *
7388  * @param dev
7389  *   Pointer to Ethernet device.
7390  * @param eth_spec
7391  *   An Ethernet flow spec to apply.
7392  * @param eth_mask
7393  *   An Ethernet flow mask to apply.
7394  *
7395  * @return
7396  *   0 on success, a negative errno value otherwise and rte_errno is set.
7397  */
7398 int
7399 mlx5_ctrl_flow(struct rte_eth_dev *dev,
7400 	       struct rte_flow_item_eth *eth_spec,
7401 	       struct rte_flow_item_eth *eth_mask)
7402 {
7403 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
7404 }
7405 
7406 /**
7407  * Create default miss flow rule matching lacp traffic
7408  *
7409  * @param dev
7410  *   Pointer to Ethernet device.
7411  * @param eth_spec
7412  *   An Ethernet flow spec to apply.
7413  *
7414  * @return
7415  *   0 on success, a negative errno value otherwise and rte_errno is set.
7416  */
7417 int
7418 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
7419 {
7420 	/*
7421 	 * The LACP matching is done by only using ether type since using
7422 	 * a multicast dst mac causes kernel to give low priority to this flow.
7423 	 */
7424 	static const struct rte_flow_item_eth lacp_spec = {
7425 		.type = RTE_BE16(0x8809),
7426 	};
7427 	static const struct rte_flow_item_eth lacp_mask = {
7428 		.type = 0xffff,
7429 	};
7430 	const struct rte_flow_attr attr = {
7431 		.ingress = 1,
7432 	};
7433 	struct rte_flow_item items[] = {
7434 		{
7435 			.type = RTE_FLOW_ITEM_TYPE_ETH,
7436 			.spec = &lacp_spec,
7437 			.mask = &lacp_mask,
7438 		},
7439 		{
7440 			.type = RTE_FLOW_ITEM_TYPE_END,
7441 		},
7442 	};
7443 	struct rte_flow_action actions[] = {
7444 		{
7445 			.type = (enum rte_flow_action_type)
7446 				MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
7447 		},
7448 		{
7449 			.type = RTE_FLOW_ACTION_TYPE_END,
7450 		},
7451 	};
7452 	struct rte_flow_error error;
7453 	uint32_t flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
7454 					&attr, items, actions,
7455 					false, &error);
7456 
7457 	if (!flow_idx)
7458 		return -rte_errno;
7459 	return 0;
7460 }
7461 
7462 /**
7463  * Destroy a flow.
7464  *
7465  * @see rte_flow_destroy()
7466  * @see rte_flow_ops
7467  */
7468 int
7469 mlx5_flow_destroy(struct rte_eth_dev *dev,
7470 		  struct rte_flow *flow,
7471 		  struct rte_flow_error *error __rte_unused)
7472 {
7473 	struct mlx5_priv *priv = dev->data->dev_private;
7474 
7475 	if (priv->sh->config.dv_flow_en == 2)
7476 		return rte_flow_error_set(error, ENOTSUP,
7477 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7478 			  NULL,
7479 			  "Flow non-Q destruction not supported");
7480 	flow_list_destroy(dev, MLX5_FLOW_TYPE_GEN,
7481 				(uintptr_t)(void *)flow);
7482 	return 0;
7483 }
7484 
7485 /**
7486  * Destroy all flows.
7487  *
7488  * @see rte_flow_flush()
7489  * @see rte_flow_ops
7490  */
7491 int
7492 mlx5_flow_flush(struct rte_eth_dev *dev,
7493 		struct rte_flow_error *error __rte_unused)
7494 {
7495 	mlx5_flow_list_flush(dev, MLX5_FLOW_TYPE_GEN, false);
7496 	return 0;
7497 }
7498 
7499 /**
7500  * Isolated mode.
7501  *
7502  * @see rte_flow_isolate()
7503  * @see rte_flow_ops
7504  */
7505 int
7506 mlx5_flow_isolate(struct rte_eth_dev *dev,
7507 		  int enable,
7508 		  struct rte_flow_error *error)
7509 {
7510 	struct mlx5_priv *priv = dev->data->dev_private;
7511 
7512 	if (dev->data->dev_started) {
7513 		rte_flow_error_set(error, EBUSY,
7514 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7515 				   NULL,
7516 				   "port must be stopped first");
7517 		return -rte_errno;
7518 	}
7519 	priv->isolated = !!enable;
7520 	if (enable)
7521 		dev->dev_ops = &mlx5_dev_ops_isolate;
7522 	else
7523 		dev->dev_ops = &mlx5_dev_ops;
7524 
7525 	dev->rx_descriptor_status = mlx5_rx_descriptor_status;
7526 	dev->tx_descriptor_status = mlx5_tx_descriptor_status;
7527 
7528 	return 0;
7529 }
7530 
7531 /**
7532  * Query a flow.
7533  *
7534  * @see rte_flow_query()
7535  * @see rte_flow_ops
7536  */
7537 static int
7538 flow_drv_query(struct rte_eth_dev *dev,
7539 	       uint32_t flow_idx,
7540 	       const struct rte_flow_action *actions,
7541 	       void *data,
7542 	       struct rte_flow_error *error)
7543 {
7544 	struct mlx5_priv *priv = dev->data->dev_private;
7545 	const struct mlx5_flow_driver_ops *fops;
7546 	struct rte_flow *flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN],
7547 					       flow_idx);
7548 	enum mlx5_flow_drv_type ftype;
7549 
7550 	if (!flow) {
7551 		return rte_flow_error_set(error, ENOENT,
7552 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7553 			  NULL,
7554 			  "invalid flow handle");
7555 	}
7556 	ftype = flow->drv_type;
7557 	MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
7558 	fops = flow_get_drv_ops(ftype);
7559 
7560 	return fops->query(dev, flow, actions, data, error);
7561 }
7562 
7563 /**
7564  * Query a flow.
7565  *
7566  * @see rte_flow_query()
7567  * @see rte_flow_ops
7568  */
7569 int
7570 mlx5_flow_query(struct rte_eth_dev *dev,
7571 		struct rte_flow *flow,
7572 		const struct rte_flow_action *actions,
7573 		void *data,
7574 		struct rte_flow_error *error)
7575 {
7576 	int ret;
7577 	struct mlx5_priv *priv = dev->data->dev_private;
7578 
7579 	if (priv->sh->config.dv_flow_en == 2)
7580 		return rte_flow_error_set(error, ENOTSUP,
7581 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7582 			  NULL,
7583 			  "Flow non-Q query not supported");
7584 	ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
7585 			     error);
7586 	if (ret < 0)
7587 		return ret;
7588 	return 0;
7589 }
7590 
7591 /**
7592  * Get rte_flow callbacks.
7593  *
7594  * @param dev
7595  *   Pointer to Ethernet device structure.
7596  * @param ops
7597  *   Pointer to operation-specific structure.
7598  *
7599  * @return 0
7600  */
7601 int
7602 mlx5_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
7603 		  const struct rte_flow_ops **ops)
7604 {
7605 	*ops = &mlx5_flow_ops;
7606 	return 0;
7607 }
7608 
7609 /**
7610  * Validate meter policy actions.
7611  * Dispatcher for action type specific validation.
7612  *
7613  * @param[in] dev
7614  *   Pointer to the Ethernet device structure.
7615  * @param[in] action
7616  *   The meter policy action object to validate.
7617  * @param[in] attr
7618  *   Attributes of flow to determine steering domain.
7619  * @param[out] is_rss
7620  *   Is RSS or not.
7621  * @param[out] domain_bitmap
7622  *   Domain bitmap.
7623  * @param[out] is_def_policy
7624  *   Is default policy or not.
7625  * @param[out] error
7626  *   Perform verbose error reporting if not NULL. Initialized in case of
7627  *   error only.
7628  *
7629  * @return
7630  *   0 on success, otherwise negative errno value.
7631  */
7632 int
7633 mlx5_flow_validate_mtr_acts(struct rte_eth_dev *dev,
7634 			const struct rte_flow_action *actions[RTE_COLORS],
7635 			struct rte_flow_attr *attr,
7636 			bool *is_rss,
7637 			uint8_t *domain_bitmap,
7638 			uint8_t *policy_mode,
7639 			struct rte_mtr_error *error)
7640 {
7641 	const struct mlx5_flow_driver_ops *fops;
7642 
7643 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7644 	return fops->validate_mtr_acts(dev, actions, attr, is_rss,
7645 				       domain_bitmap, policy_mode, error);
7646 }
7647 
7648 /**
7649  * Destroy the meter table set.
7650  *
7651  * @param[in] dev
7652  *   Pointer to Ethernet device.
7653  * @param[in] mtr_policy
7654  *   Meter policy struct.
7655  */
7656 void
7657 mlx5_flow_destroy_mtr_acts(struct rte_eth_dev *dev,
7658 		      struct mlx5_flow_meter_policy *mtr_policy)
7659 {
7660 	const struct mlx5_flow_driver_ops *fops;
7661 
7662 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7663 	fops->destroy_mtr_acts(dev, mtr_policy);
7664 }
7665 
7666 /**
7667  * Create policy action, lock free,
7668  * (mutex should be acquired by caller).
7669  * Dispatcher for action type specific call.
7670  *
7671  * @param[in] dev
7672  *   Pointer to the Ethernet device structure.
7673  * @param[in] mtr_policy
7674  *   Meter policy struct.
7675  * @param[in] action
7676  *   Action specification used to create meter actions.
7677  * @param[out] error
7678  *   Perform verbose error reporting if not NULL. Initialized in case of
7679  *   error only.
7680  *
7681  * @return
7682  *   0 on success, otherwise negative errno value.
7683  */
7684 int
7685 mlx5_flow_create_mtr_acts(struct rte_eth_dev *dev,
7686 		      struct mlx5_flow_meter_policy *mtr_policy,
7687 		      const struct rte_flow_action *actions[RTE_COLORS],
7688 		      struct rte_mtr_error *error)
7689 {
7690 	const struct mlx5_flow_driver_ops *fops;
7691 
7692 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7693 	return fops->create_mtr_acts(dev, mtr_policy, actions, error);
7694 }
7695 
7696 /**
7697  * Create policy rules, lock free,
7698  * (mutex should be acquired by caller).
7699  * Dispatcher for action type specific call.
7700  *
7701  * @param[in] dev
7702  *   Pointer to the Ethernet device structure.
7703  * @param[in] mtr_policy
7704  *   Meter policy struct.
7705  *
7706  * @return
7707  *   0 on success, -1 otherwise.
7708  */
7709 int
7710 mlx5_flow_create_policy_rules(struct rte_eth_dev *dev,
7711 			     struct mlx5_flow_meter_policy *mtr_policy)
7712 {
7713 	const struct mlx5_flow_driver_ops *fops;
7714 
7715 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7716 	return fops->create_policy_rules(dev, mtr_policy);
7717 }
7718 
7719 /**
7720  * Destroy policy rules, lock free,
7721  * (mutex should be acquired by caller).
7722  * Dispatcher for action type specific call.
7723  *
7724  * @param[in] dev
7725  *   Pointer to the Ethernet device structure.
7726  * @param[in] mtr_policy
7727  *   Meter policy struct.
7728  */
7729 void
7730 mlx5_flow_destroy_policy_rules(struct rte_eth_dev *dev,
7731 			     struct mlx5_flow_meter_policy *mtr_policy)
7732 {
7733 	const struct mlx5_flow_driver_ops *fops;
7734 
7735 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7736 	fops->destroy_policy_rules(dev, mtr_policy);
7737 }
7738 
7739 /**
7740  * Destroy the default policy table set.
7741  *
7742  * @param[in] dev
7743  *   Pointer to Ethernet device.
7744  */
7745 void
7746 mlx5_flow_destroy_def_policy(struct rte_eth_dev *dev)
7747 {
7748 	const struct mlx5_flow_driver_ops *fops;
7749 
7750 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7751 	fops->destroy_def_policy(dev);
7752 }
7753 
7754 /**
7755  * Destroy the default policy table set.
7756  *
7757  * @param[in] dev
7758  *   Pointer to Ethernet device.
7759  *
7760  * @return
7761  *   0 on success, -1 otherwise.
7762  */
7763 int
7764 mlx5_flow_create_def_policy(struct rte_eth_dev *dev)
7765 {
7766 	const struct mlx5_flow_driver_ops *fops;
7767 
7768 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7769 	return fops->create_def_policy(dev);
7770 }
7771 
7772 /**
7773  * Create the needed meter and suffix tables.
7774  *
7775  * @param[in] dev
7776  *   Pointer to Ethernet device.
7777  *
7778  * @return
7779  *   0 on success, -1 otherwise.
7780  */
7781 int
7782 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
7783 			struct mlx5_flow_meter_info *fm,
7784 			uint32_t mtr_idx,
7785 			uint8_t domain_bitmap)
7786 {
7787 	const struct mlx5_flow_driver_ops *fops;
7788 
7789 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7790 	return fops->create_mtr_tbls(dev, fm, mtr_idx, domain_bitmap);
7791 }
7792 
7793 /**
7794  * Destroy the meter table set.
7795  *
7796  * @param[in] dev
7797  *   Pointer to Ethernet device.
7798  * @param[in] tbl
7799  *   Pointer to the meter table set.
7800  */
7801 void
7802 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
7803 			   struct mlx5_flow_meter_info *fm)
7804 {
7805 	const struct mlx5_flow_driver_ops *fops;
7806 
7807 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7808 	fops->destroy_mtr_tbls(dev, fm);
7809 }
7810 
7811 /**
7812  * Destroy the global meter drop table.
7813  *
7814  * @param[in] dev
7815  *   Pointer to Ethernet device.
7816  */
7817 void
7818 mlx5_flow_destroy_mtr_drop_tbls(struct rte_eth_dev *dev)
7819 {
7820 	const struct mlx5_flow_driver_ops *fops;
7821 
7822 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7823 	fops->destroy_mtr_drop_tbls(dev);
7824 }
7825 
7826 /**
7827  * Destroy the sub policy table with RX queue.
7828  *
7829  * @param[in] dev
7830  *   Pointer to Ethernet device.
7831  * @param[in] mtr_policy
7832  *   Pointer to meter policy table.
7833  */
7834 void
7835 mlx5_flow_destroy_sub_policy_with_rxq(struct rte_eth_dev *dev,
7836 		struct mlx5_flow_meter_policy *mtr_policy)
7837 {
7838 	const struct mlx5_flow_driver_ops *fops;
7839 
7840 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7841 	fops->destroy_sub_policy_with_rxq(dev, mtr_policy);
7842 }
7843 
7844 /**
7845  * Allocate the needed aso flow meter id.
7846  *
7847  * @param[in] dev
7848  *   Pointer to Ethernet device.
7849  *
7850  * @return
7851  *   Index to aso flow meter on success, NULL otherwise.
7852  */
7853 uint32_t
7854 mlx5_flow_mtr_alloc(struct rte_eth_dev *dev)
7855 {
7856 	const struct mlx5_flow_driver_ops *fops;
7857 
7858 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7859 	return fops->create_meter(dev);
7860 }
7861 
7862 /**
7863  * Free the aso flow meter id.
7864  *
7865  * @param[in] dev
7866  *   Pointer to Ethernet device.
7867  * @param[in] mtr_idx
7868  *  Index to aso flow meter to be free.
7869  *
7870  * @return
7871  *   0 on success.
7872  */
7873 void
7874 mlx5_flow_mtr_free(struct rte_eth_dev *dev, uint32_t mtr_idx)
7875 {
7876 	const struct mlx5_flow_driver_ops *fops;
7877 
7878 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7879 	fops->free_meter(dev, mtr_idx);
7880 }
7881 
7882 /**
7883  * Allocate a counter.
7884  *
7885  * @param[in] dev
7886  *   Pointer to Ethernet device structure.
7887  *
7888  * @return
7889  *   Index to allocated counter  on success, 0 otherwise.
7890  */
7891 uint32_t
7892 mlx5_counter_alloc(struct rte_eth_dev *dev)
7893 {
7894 	const struct mlx5_flow_driver_ops *fops;
7895 	struct rte_flow_attr attr = { .transfer = 0 };
7896 
7897 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7898 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7899 		return fops->counter_alloc(dev);
7900 	}
7901 	DRV_LOG(ERR,
7902 		"port %u counter allocate is not supported.",
7903 		 dev->data->port_id);
7904 	return 0;
7905 }
7906 
7907 /**
7908  * Free a counter.
7909  *
7910  * @param[in] dev
7911  *   Pointer to Ethernet device structure.
7912  * @param[in] cnt
7913  *   Index to counter to be free.
7914  */
7915 void
7916 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
7917 {
7918 	const struct mlx5_flow_driver_ops *fops;
7919 	struct rte_flow_attr attr = { .transfer = 0 };
7920 
7921 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7922 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7923 		fops->counter_free(dev, cnt);
7924 		return;
7925 	}
7926 	DRV_LOG(ERR,
7927 		"port %u counter free is not supported.",
7928 		 dev->data->port_id);
7929 }
7930 
7931 /**
7932  * Query counter statistics.
7933  *
7934  * @param[in] dev
7935  *   Pointer to Ethernet device structure.
7936  * @param[in] cnt
7937  *   Index to counter to query.
7938  * @param[in] clear
7939  *   Set to clear counter statistics.
7940  * @param[out] pkts
7941  *   The counter hits packets number to save.
7942  * @param[out] bytes
7943  *   The counter hits bytes number to save.
7944  *
7945  * @return
7946  *   0 on success, a negative errno value otherwise.
7947  */
7948 int
7949 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
7950 		   bool clear, uint64_t *pkts, uint64_t *bytes, void **action)
7951 {
7952 	const struct mlx5_flow_driver_ops *fops;
7953 	struct rte_flow_attr attr = { .transfer = 0 };
7954 
7955 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7956 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7957 		return fops->counter_query(dev, cnt, clear, pkts,
7958 					bytes, action);
7959 	}
7960 	DRV_LOG(ERR,
7961 		"port %u counter query is not supported.",
7962 		 dev->data->port_id);
7963 	return -ENOTSUP;
7964 }
7965 
7966 /**
7967  * Get information about HWS pre-configurable resources.
7968  *
7969  * @param[in] dev
7970  *   Pointer to the rte_eth_dev structure.
7971  * @param[out] port_info
7972  *   Pointer to port information.
7973  * @param[out] queue_info
7974  *   Pointer to queue information.
7975  * @param[out] error
7976  *   Pointer to error structure.
7977  *
7978  * @return
7979  *   0 on success, a negative errno value otherwise and rte_errno is set.
7980  */
7981 static int
7982 mlx5_flow_info_get(struct rte_eth_dev *dev,
7983 		   struct rte_flow_port_info *port_info,
7984 		   struct rte_flow_queue_info *queue_info,
7985 		   struct rte_flow_error *error)
7986 {
7987 	const struct mlx5_flow_driver_ops *fops;
7988 
7989 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
7990 		return rte_flow_error_set(error, ENOTSUP,
7991 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7992 				NULL,
7993 				"info get with incorrect steering mode");
7994 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
7995 	return fops->info_get(dev, port_info, queue_info, error);
7996 }
7997 
7998 /**
7999  * Configure port HWS resources.
8000  *
8001  * @param[in] dev
8002  *   Pointer to the rte_eth_dev structure.
8003  * @param[in] port_attr
8004  *   Port configuration attributes.
8005  * @param[in] nb_queue
8006  *   Number of queue.
8007  * @param[in] queue_attr
8008  *   Array that holds attributes for each flow queue.
8009  * @param[out] error
8010  *   Pointer to error structure.
8011  *
8012  * @return
8013  *   0 on success, a negative errno value otherwise and rte_errno is set.
8014  */
8015 static int
8016 mlx5_flow_port_configure(struct rte_eth_dev *dev,
8017 			 const struct rte_flow_port_attr *port_attr,
8018 			 uint16_t nb_queue,
8019 			 const struct rte_flow_queue_attr *queue_attr[],
8020 			 struct rte_flow_error *error)
8021 {
8022 	const struct mlx5_flow_driver_ops *fops;
8023 
8024 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8025 		return rte_flow_error_set(error, ENOTSUP,
8026 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8027 				NULL,
8028 				"port configure with incorrect steering mode");
8029 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8030 	return fops->configure(dev, port_attr, nb_queue, queue_attr, error);
8031 }
8032 
8033 /**
8034  * Create flow item template.
8035  *
8036  * @param[in] dev
8037  *   Pointer to the rte_eth_dev structure.
8038  * @param[in] attr
8039  *   Pointer to the item template attributes.
8040  * @param[in] items
8041  *   The template item pattern.
8042  * @param[out] error
8043  *   Pointer to error structure.
8044  *
8045  * @return
8046  *   0 on success, a negative errno value otherwise and rte_errno is set.
8047  */
8048 static struct rte_flow_pattern_template *
8049 mlx5_flow_pattern_template_create(struct rte_eth_dev *dev,
8050 		const struct rte_flow_pattern_template_attr *attr,
8051 		const struct rte_flow_item items[],
8052 		struct rte_flow_error *error)
8053 {
8054 	const struct mlx5_flow_driver_ops *fops;
8055 
8056 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW) {
8057 		rte_flow_error_set(error, ENOTSUP,
8058 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8059 				NULL,
8060 				"pattern create with incorrect steering mode");
8061 		return NULL;
8062 	}
8063 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8064 	return fops->pattern_template_create(dev, attr, items, error);
8065 }
8066 
8067 /**
8068  * Destroy flow item template.
8069  *
8070  * @param[in] dev
8071  *   Pointer to the rte_eth_dev structure.
8072  * @param[in] template
8073  *   Pointer to the item template to be destroyed.
8074  * @param[out] error
8075  *   Pointer to error structure.
8076  *
8077  * @return
8078  *   0 on success, a negative errno value otherwise and rte_errno is set.
8079  */
8080 static int
8081 mlx5_flow_pattern_template_destroy(struct rte_eth_dev *dev,
8082 				   struct rte_flow_pattern_template *template,
8083 				   struct rte_flow_error *error)
8084 {
8085 	const struct mlx5_flow_driver_ops *fops;
8086 
8087 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8088 		return rte_flow_error_set(error, ENOTSUP,
8089 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8090 				NULL,
8091 				"pattern destroy with incorrect steering mode");
8092 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8093 	return fops->pattern_template_destroy(dev, template, error);
8094 }
8095 
8096 /**
8097  * Create flow item template.
8098  *
8099  * @param[in] dev
8100  *   Pointer to the rte_eth_dev structure.
8101  * @param[in] attr
8102  *   Pointer to the action template attributes.
8103  * @param[in] actions
8104  *   Associated actions (list terminated by the END action).
8105  * @param[in] masks
8106  *   List of actions that marks which of the action's member is constant.
8107  * @param[out] error
8108  *   Pointer to error structure.
8109  *
8110  * @return
8111  *   0 on success, a negative errno value otherwise and rte_errno is set.
8112  */
8113 static struct rte_flow_actions_template *
8114 mlx5_flow_actions_template_create(struct rte_eth_dev *dev,
8115 			const struct rte_flow_actions_template_attr *attr,
8116 			const struct rte_flow_action actions[],
8117 			const struct rte_flow_action masks[],
8118 			struct rte_flow_error *error)
8119 {
8120 	const struct mlx5_flow_driver_ops *fops;
8121 
8122 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW) {
8123 		rte_flow_error_set(error, ENOTSUP,
8124 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8125 				NULL,
8126 				"action create with incorrect steering mode");
8127 		return NULL;
8128 	}
8129 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8130 	return fops->actions_template_create(dev, attr, actions, masks, error);
8131 }
8132 
8133 /**
8134  * Destroy flow action template.
8135  *
8136  * @param[in] dev
8137  *   Pointer to the rte_eth_dev structure.
8138  * @param[in] template
8139  *   Pointer to the action template to be destroyed.
8140  * @param[out] error
8141  *   Pointer to error structure.
8142  *
8143  * @return
8144  *   0 on success, a negative errno value otherwise and rte_errno is set.
8145  */
8146 static int
8147 mlx5_flow_actions_template_destroy(struct rte_eth_dev *dev,
8148 				   struct rte_flow_actions_template *template,
8149 				   struct rte_flow_error *error)
8150 {
8151 	const struct mlx5_flow_driver_ops *fops;
8152 
8153 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8154 		return rte_flow_error_set(error, ENOTSUP,
8155 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8156 				NULL,
8157 				"action destroy with incorrect steering mode");
8158 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8159 	return fops->actions_template_destroy(dev, template, error);
8160 }
8161 
8162 /**
8163  * Create flow table.
8164  *
8165  * @param[in] dev
8166  *   Pointer to the rte_eth_dev structure.
8167  * @param[in] attr
8168  *   Pointer to the table attributes.
8169  * @param[in] item_templates
8170  *   Item template array to be binded to the table.
8171  * @param[in] nb_item_templates
8172  *   Number of item template.
8173  * @param[in] action_templates
8174  *   Action template array to be binded to the table.
8175  * @param[in] nb_action_templates
8176  *   Number of action template.
8177  * @param[out] error
8178  *   Pointer to error structure.
8179  *
8180  * @return
8181  *    Table on success, NULL otherwise and rte_errno is set.
8182  */
8183 static struct rte_flow_template_table *
8184 mlx5_flow_table_create(struct rte_eth_dev *dev,
8185 		       const struct rte_flow_template_table_attr *attr,
8186 		       struct rte_flow_pattern_template *item_templates[],
8187 		       uint8_t nb_item_templates,
8188 		       struct rte_flow_actions_template *action_templates[],
8189 		       uint8_t nb_action_templates,
8190 		       struct rte_flow_error *error)
8191 {
8192 	const struct mlx5_flow_driver_ops *fops;
8193 
8194 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW) {
8195 		rte_flow_error_set(error, ENOTSUP,
8196 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8197 				NULL,
8198 				"table create with incorrect steering mode");
8199 		return NULL;
8200 	}
8201 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8202 	return fops->template_table_create(dev,
8203 					   attr,
8204 					   item_templates,
8205 					   nb_item_templates,
8206 					   action_templates,
8207 					   nb_action_templates,
8208 					   error);
8209 }
8210 
8211 /**
8212  * PMD destroy flow table.
8213  *
8214  * @param[in] dev
8215  *   Pointer to the rte_eth_dev structure.
8216  * @param[in] table
8217  *   Pointer to the table to be destroyed.
8218  * @param[out] error
8219  *   Pointer to error structure.
8220  *
8221  * @return
8222  *   0 on success, a negative errno value otherwise and rte_errno is set.
8223  */
8224 static int
8225 mlx5_flow_table_destroy(struct rte_eth_dev *dev,
8226 			struct rte_flow_template_table *table,
8227 			struct rte_flow_error *error)
8228 {
8229 	const struct mlx5_flow_driver_ops *fops;
8230 
8231 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8232 		return rte_flow_error_set(error, ENOTSUP,
8233 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8234 				NULL,
8235 				"table destroy with incorrect steering mode");
8236 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8237 	return fops->template_table_destroy(dev, table, error);
8238 }
8239 
8240 /**
8241  * Enqueue flow creation.
8242  *
8243  * @param[in] dev
8244  *   Pointer to the rte_eth_dev structure.
8245  * @param[in] queue_id
8246  *   The queue to create the flow.
8247  * @param[in] attr
8248  *   Pointer to the flow operation attributes.
8249  * @param[in] items
8250  *   Items with flow spec value.
8251  * @param[in] pattern_template_index
8252  *   The item pattern flow follows from the table.
8253  * @param[in] actions
8254  *   Action with flow spec value.
8255  * @param[in] action_template_index
8256  *   The action pattern flow follows from the table.
8257  * @param[in] user_data
8258  *   Pointer to the user_data.
8259  * @param[out] error
8260  *   Pointer to error structure.
8261  *
8262  * @return
8263  *    Flow pointer on success, NULL otherwise and rte_errno is set.
8264  */
8265 static struct rte_flow *
8266 mlx5_flow_async_flow_create(struct rte_eth_dev *dev,
8267 			    uint32_t queue_id,
8268 			    const struct rte_flow_op_attr *attr,
8269 			    struct rte_flow_template_table *table,
8270 			    const struct rte_flow_item items[],
8271 			    uint8_t pattern_template_index,
8272 			    const struct rte_flow_action actions[],
8273 			    uint8_t action_template_index,
8274 			    void *user_data,
8275 			    struct rte_flow_error *error)
8276 {
8277 	const struct mlx5_flow_driver_ops *fops;
8278 
8279 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW) {
8280 		rte_flow_error_set(error, ENOTSUP,
8281 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8282 				NULL,
8283 				"flow_q create with incorrect steering mode");
8284 		return NULL;
8285 	}
8286 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8287 	return fops->async_flow_create(dev, queue_id, attr, table,
8288 				       items, pattern_template_index,
8289 				       actions, action_template_index,
8290 				       user_data, error);
8291 }
8292 
8293 /**
8294  * Enqueue flow destruction.
8295  *
8296  * @param[in] dev
8297  *   Pointer to the rte_eth_dev structure.
8298  * @param[in] queue
8299  *   The queue to destroy the flow.
8300  * @param[in] attr
8301  *   Pointer to the flow operation attributes.
8302  * @param[in] flow
8303  *   Pointer to the flow to be destroyed.
8304  * @param[in] user_data
8305  *   Pointer to the user_data.
8306  * @param[out] error
8307  *   Pointer to error structure.
8308  *
8309  * @return
8310  *    0 on success, negative value otherwise and rte_errno is set.
8311  */
8312 static int
8313 mlx5_flow_async_flow_destroy(struct rte_eth_dev *dev,
8314 			     uint32_t queue,
8315 			     const struct rte_flow_op_attr *attr,
8316 			     struct rte_flow *flow,
8317 			     void *user_data,
8318 			     struct rte_flow_error *error)
8319 {
8320 	const struct mlx5_flow_driver_ops *fops;
8321 
8322 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8323 		return rte_flow_error_set(error, ENOTSUP,
8324 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8325 				NULL,
8326 				"flow_q destroy with incorrect steering mode");
8327 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8328 	return fops->async_flow_destroy(dev, queue, attr, flow,
8329 					user_data, error);
8330 }
8331 
8332 /**
8333  * Pull the enqueued flows.
8334  *
8335  * @param[in] dev
8336  *   Pointer to the rte_eth_dev structure.
8337  * @param[in] queue
8338  *   The queue to pull the result.
8339  * @param[in/out] res
8340  *   Array to save the results.
8341  * @param[in] n_res
8342  *   Available result with the array.
8343  * @param[out] error
8344  *   Pointer to error structure.
8345  *
8346  * @return
8347  *    Result number on success, negative value otherwise and rte_errno is set.
8348  */
8349 static int
8350 mlx5_flow_pull(struct rte_eth_dev *dev,
8351 	       uint32_t queue,
8352 	       struct rte_flow_op_result res[],
8353 	       uint16_t n_res,
8354 	       struct rte_flow_error *error)
8355 {
8356 	const struct mlx5_flow_driver_ops *fops;
8357 
8358 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8359 		return rte_flow_error_set(error, ENOTSUP,
8360 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8361 				NULL,
8362 				"flow_q pull with incorrect steering mode");
8363 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8364 	return fops->pull(dev, queue, res, n_res, error);
8365 }
8366 
8367 /**
8368  * Push the enqueued flows.
8369  *
8370  * @param[in] dev
8371  *   Pointer to the rte_eth_dev structure.
8372  * @param[in] queue
8373  *   The queue to push the flows.
8374  * @param[out] error
8375  *   Pointer to error structure.
8376  *
8377  * @return
8378  *    0 on success, negative value otherwise and rte_errno is set.
8379  */
8380 static int
8381 mlx5_flow_push(struct rte_eth_dev *dev,
8382 	       uint32_t queue,
8383 	       struct rte_flow_error *error)
8384 {
8385 	const struct mlx5_flow_driver_ops *fops;
8386 
8387 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8388 		return rte_flow_error_set(error, ENOTSUP,
8389 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8390 				NULL,
8391 				"flow_q push with incorrect steering mode");
8392 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8393 	return fops->push(dev, queue, error);
8394 }
8395 
8396 /**
8397  * Create shared action.
8398  *
8399  * @param[in] dev
8400  *   Pointer to the rte_eth_dev structure.
8401  * @param[in] queue
8402  *   Which queue to be used..
8403  * @param[in] attr
8404  *   Operation attribute.
8405  * @param[in] conf
8406  *   Indirect action configuration.
8407  * @param[in] action
8408  *   rte_flow action detail.
8409  * @param[in] user_data
8410  *   Pointer to the user_data.
8411  * @param[out] error
8412  *   Pointer to error structure.
8413  *
8414  * @return
8415  *   Action handle on success, NULL otherwise and rte_errno is set.
8416  */
8417 static struct rte_flow_action_handle *
8418 mlx5_flow_async_action_handle_create(struct rte_eth_dev *dev, uint32_t queue,
8419 				 const struct rte_flow_op_attr *attr,
8420 				 const struct rte_flow_indir_action_conf *conf,
8421 				 const struct rte_flow_action *action,
8422 				 void *user_data,
8423 				 struct rte_flow_error *error)
8424 {
8425 	const struct mlx5_flow_driver_ops *fops =
8426 			flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8427 
8428 	return fops->async_action_create(dev, queue, attr, conf, action,
8429 					 user_data, error);
8430 }
8431 
8432 /**
8433  * Update shared action.
8434  *
8435  * @param[in] dev
8436  *   Pointer to the rte_eth_dev structure.
8437  * @param[in] queue
8438  *   Which queue to be used..
8439  * @param[in] attr
8440  *   Operation attribute.
8441  * @param[in] handle
8442  *   Action handle to be updated.
8443  * @param[in] update
8444  *   Update value.
8445  * @param[in] user_data
8446  *   Pointer to the user_data.
8447  * @param[out] error
8448  *   Pointer to error structure.
8449  *
8450  * @return
8451  *   0 on success, negative value otherwise and rte_errno is set.
8452  */
8453 static int
8454 mlx5_flow_async_action_handle_update(struct rte_eth_dev *dev, uint32_t queue,
8455 				     const struct rte_flow_op_attr *attr,
8456 				     struct rte_flow_action_handle *handle,
8457 				     const void *update,
8458 				     void *user_data,
8459 				     struct rte_flow_error *error)
8460 {
8461 	const struct mlx5_flow_driver_ops *fops =
8462 			flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8463 
8464 	return fops->async_action_update(dev, queue, attr, handle,
8465 					 update, user_data, error);
8466 }
8467 
8468 /**
8469  * Destroy shared action.
8470  *
8471  * @param[in] dev
8472  *   Pointer to the rte_eth_dev structure.
8473  * @param[in] queue
8474  *   Which queue to be used..
8475  * @param[in] attr
8476  *   Operation attribute.
8477  * @param[in] handle
8478  *   Action handle to be destroyed.
8479  * @param[in] user_data
8480  *   Pointer to the user_data.
8481  * @param[out] error
8482  *   Pointer to error structure.
8483  *
8484  * @return
8485  *   0 on success, negative value otherwise and rte_errno is set.
8486  */
8487 static int
8488 mlx5_flow_async_action_handle_destroy(struct rte_eth_dev *dev, uint32_t queue,
8489 				      const struct rte_flow_op_attr *attr,
8490 				      struct rte_flow_action_handle *handle,
8491 				      void *user_data,
8492 				      struct rte_flow_error *error)
8493 {
8494 	const struct mlx5_flow_driver_ops *fops =
8495 			flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8496 
8497 	return fops->async_action_destroy(dev, queue, attr, handle,
8498 					  user_data, error);
8499 }
8500 
8501 /**
8502  * Allocate a new memory for the counter values wrapped by all the needed
8503  * management.
8504  *
8505  * @param[in] sh
8506  *   Pointer to mlx5_dev_ctx_shared object.
8507  *
8508  * @return
8509  *   0 on success, a negative errno value otherwise.
8510  */
8511 static int
8512 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh)
8513 {
8514 	struct mlx5_counter_stats_mem_mng *mem_mng;
8515 	volatile struct flow_counter_stats *raw_data;
8516 	int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES;
8517 	int size = (sizeof(struct flow_counter_stats) *
8518 			MLX5_COUNTERS_PER_POOL +
8519 			sizeof(struct mlx5_counter_stats_raw)) * raws_n +
8520 			sizeof(struct mlx5_counter_stats_mem_mng);
8521 	size_t pgsize = rte_mem_page_size();
8522 	uint8_t *mem;
8523 	int ret;
8524 	int i;
8525 
8526 	if (pgsize == (size_t)-1) {
8527 		DRV_LOG(ERR, "Failed to get mem page size");
8528 		rte_errno = ENOMEM;
8529 		return -ENOMEM;
8530 	}
8531 	mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY);
8532 	if (!mem) {
8533 		rte_errno = ENOMEM;
8534 		return -ENOMEM;
8535 	}
8536 	mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1;
8537 	size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n;
8538 	ret = mlx5_os_wrapped_mkey_create(sh->cdev->ctx, sh->cdev->pd,
8539 					  sh->cdev->pdn, mem, size,
8540 					  &mem_mng->wm);
8541 	if (ret) {
8542 		rte_errno = errno;
8543 		mlx5_free(mem);
8544 		return -rte_errno;
8545 	}
8546 	mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size);
8547 	raw_data = (volatile struct flow_counter_stats *)mem;
8548 	for (i = 0; i < raws_n; ++i) {
8549 		mem_mng->raws[i].mem_mng = mem_mng;
8550 		mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL;
8551 	}
8552 	for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i)
8553 		LIST_INSERT_HEAD(&sh->cmng.free_stat_raws,
8554 				 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i,
8555 				 next);
8556 	LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next);
8557 	sh->cmng.mem_mng = mem_mng;
8558 	return 0;
8559 }
8560 
8561 /**
8562  * Set the statistic memory to the new counter pool.
8563  *
8564  * @param[in] sh
8565  *   Pointer to mlx5_dev_ctx_shared object.
8566  * @param[in] pool
8567  *   Pointer to the pool to set the statistic memory.
8568  *
8569  * @return
8570  *   0 on success, a negative errno value otherwise.
8571  */
8572 static int
8573 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh,
8574 			       struct mlx5_flow_counter_pool *pool)
8575 {
8576 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
8577 	/* Resize statistic memory once used out. */
8578 	if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) &&
8579 	    mlx5_flow_create_counter_stat_mem_mng(sh)) {
8580 		DRV_LOG(ERR, "Cannot resize counter stat mem.");
8581 		return -1;
8582 	}
8583 	rte_spinlock_lock(&pool->sl);
8584 	pool->raw = cmng->mem_mng->raws + pool->index %
8585 		    MLX5_CNT_CONTAINER_RESIZE;
8586 	rte_spinlock_unlock(&pool->sl);
8587 	pool->raw_hw = NULL;
8588 	return 0;
8589 }
8590 
8591 #define MLX5_POOL_QUERY_FREQ_US 1000000
8592 
8593 /**
8594  * Set the periodic procedure for triggering asynchronous batch queries for all
8595  * the counter pools.
8596  *
8597  * @param[in] sh
8598  *   Pointer to mlx5_dev_ctx_shared object.
8599  */
8600 void
8601 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
8602 {
8603 	uint32_t pools_n, us;
8604 
8605 	pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED);
8606 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
8607 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
8608 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
8609 		sh->cmng.query_thread_on = 0;
8610 		DRV_LOG(ERR, "Cannot reinitialize query alarm");
8611 	} else {
8612 		sh->cmng.query_thread_on = 1;
8613 	}
8614 }
8615 
8616 /**
8617  * The periodic procedure for triggering asynchronous batch queries for all the
8618  * counter pools. This function is probably called by the host thread.
8619  *
8620  * @param[in] arg
8621  *   The parameter for the alarm process.
8622  */
8623 void
8624 mlx5_flow_query_alarm(void *arg)
8625 {
8626 	struct mlx5_dev_ctx_shared *sh = arg;
8627 	int ret;
8628 	uint16_t pool_index = sh->cmng.pool_index;
8629 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
8630 	struct mlx5_flow_counter_pool *pool;
8631 	uint16_t n_valid;
8632 
8633 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
8634 		goto set_alarm;
8635 	rte_spinlock_lock(&cmng->pool_update_sl);
8636 	pool = cmng->pools[pool_index];
8637 	n_valid = cmng->n_valid;
8638 	rte_spinlock_unlock(&cmng->pool_update_sl);
8639 	/* Set the statistic memory to the new created pool. */
8640 	if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool)))
8641 		goto set_alarm;
8642 	if (pool->raw_hw)
8643 		/* There is a pool query in progress. */
8644 		goto set_alarm;
8645 	pool->raw_hw =
8646 		LIST_FIRST(&sh->cmng.free_stat_raws);
8647 	if (!pool->raw_hw)
8648 		/* No free counter statistics raw memory. */
8649 		goto set_alarm;
8650 	/*
8651 	 * Identify the counters released between query trigger and query
8652 	 * handle more efficiently. The counter released in this gap period
8653 	 * should wait for a new round of query as the new arrived packets
8654 	 * will not be taken into account.
8655 	 */
8656 	pool->query_gen++;
8657 	ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0,
8658 					       MLX5_COUNTERS_PER_POOL,
8659 					       NULL, NULL,
8660 					       pool->raw_hw->mem_mng->wm.lkey,
8661 					       (void *)(uintptr_t)
8662 					       pool->raw_hw->data,
8663 					       sh->devx_comp,
8664 					       (uint64_t)(uintptr_t)pool);
8665 	if (ret) {
8666 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
8667 			" %d", pool->min_dcs->id);
8668 		pool->raw_hw = NULL;
8669 		goto set_alarm;
8670 	}
8671 	LIST_REMOVE(pool->raw_hw, next);
8672 	sh->cmng.pending_queries++;
8673 	pool_index++;
8674 	if (pool_index >= n_valid)
8675 		pool_index = 0;
8676 set_alarm:
8677 	sh->cmng.pool_index = pool_index;
8678 	mlx5_set_query_alarm(sh);
8679 }
8680 
8681 /**
8682  * Check and callback event for new aged flow in the counter pool
8683  *
8684  * @param[in] sh
8685  *   Pointer to mlx5_dev_ctx_shared object.
8686  * @param[in] pool
8687  *   Pointer to Current counter pool.
8688  */
8689 static void
8690 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
8691 		   struct mlx5_flow_counter_pool *pool)
8692 {
8693 	struct mlx5_priv *priv;
8694 	struct mlx5_flow_counter *cnt;
8695 	struct mlx5_age_info *age_info;
8696 	struct mlx5_age_param *age_param;
8697 	struct mlx5_counter_stats_raw *cur = pool->raw_hw;
8698 	struct mlx5_counter_stats_raw *prev = pool->raw;
8699 	const uint64_t curr_time = MLX5_CURR_TIME_SEC;
8700 	const uint32_t time_delta = curr_time - pool->time_of_last_age_check;
8701 	uint16_t expected = AGE_CANDIDATE;
8702 	uint32_t i;
8703 
8704 	pool->time_of_last_age_check = curr_time;
8705 	for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
8706 		cnt = MLX5_POOL_GET_CNT(pool, i);
8707 		age_param = MLX5_CNT_TO_AGE(cnt);
8708 		if (__atomic_load_n(&age_param->state,
8709 				    __ATOMIC_RELAXED) != AGE_CANDIDATE)
8710 			continue;
8711 		if (cur->data[i].hits != prev->data[i].hits) {
8712 			__atomic_store_n(&age_param->sec_since_last_hit, 0,
8713 					 __ATOMIC_RELAXED);
8714 			continue;
8715 		}
8716 		if (__atomic_add_fetch(&age_param->sec_since_last_hit,
8717 				       time_delta,
8718 				       __ATOMIC_RELAXED) <= age_param->timeout)
8719 			continue;
8720 		/**
8721 		 * Hold the lock first, or if between the
8722 		 * state AGE_TMOUT and tailq operation the
8723 		 * release happened, the release procedure
8724 		 * may delete a non-existent tailq node.
8725 		 */
8726 		priv = rte_eth_devices[age_param->port_id].data->dev_private;
8727 		age_info = GET_PORT_AGE_INFO(priv);
8728 		rte_spinlock_lock(&age_info->aged_sl);
8729 		if (__atomic_compare_exchange_n(&age_param->state, &expected,
8730 						AGE_TMOUT, false,
8731 						__ATOMIC_RELAXED,
8732 						__ATOMIC_RELAXED)) {
8733 			TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
8734 			MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
8735 		}
8736 		rte_spinlock_unlock(&age_info->aged_sl);
8737 	}
8738 	mlx5_age_event_prepare(sh);
8739 }
8740 
8741 /**
8742  * Handler for the HW respond about ready values from an asynchronous batch
8743  * query. This function is probably called by the host thread.
8744  *
8745  * @param[in] sh
8746  *   The pointer to the shared device context.
8747  * @param[in] async_id
8748  *   The Devx async ID.
8749  * @param[in] status
8750  *   The status of the completion.
8751  */
8752 void
8753 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
8754 				  uint64_t async_id, int status)
8755 {
8756 	struct mlx5_flow_counter_pool *pool =
8757 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
8758 	struct mlx5_counter_stats_raw *raw_to_free;
8759 	uint8_t query_gen = pool->query_gen ^ 1;
8760 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
8761 	enum mlx5_counter_type cnt_type =
8762 		pool->is_aged ? MLX5_COUNTER_TYPE_AGE :
8763 				MLX5_COUNTER_TYPE_ORIGIN;
8764 
8765 	if (unlikely(status)) {
8766 		raw_to_free = pool->raw_hw;
8767 	} else {
8768 		raw_to_free = pool->raw;
8769 		if (pool->is_aged)
8770 			mlx5_flow_aging_check(sh, pool);
8771 		rte_spinlock_lock(&pool->sl);
8772 		pool->raw = pool->raw_hw;
8773 		rte_spinlock_unlock(&pool->sl);
8774 		/* Be sure the new raw counters data is updated in memory. */
8775 		rte_io_wmb();
8776 		if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
8777 			rte_spinlock_lock(&cmng->csl[cnt_type]);
8778 			TAILQ_CONCAT(&cmng->counters[cnt_type],
8779 				     &pool->counters[query_gen], next);
8780 			rte_spinlock_unlock(&cmng->csl[cnt_type]);
8781 		}
8782 	}
8783 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
8784 	pool->raw_hw = NULL;
8785 	sh->cmng.pending_queries--;
8786 }
8787 
8788 static int
8789 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table,
8790 		    const struct flow_grp_info *grp_info,
8791 		    struct rte_flow_error *error)
8792 {
8793 	if (grp_info->transfer && grp_info->external &&
8794 	    grp_info->fdb_def_rule) {
8795 		if (group == UINT32_MAX)
8796 			return rte_flow_error_set
8797 						(error, EINVAL,
8798 						 RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
8799 						 NULL,
8800 						 "group index not supported");
8801 		*table = group + 1;
8802 	} else {
8803 		*table = group;
8804 	}
8805 	DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table);
8806 	return 0;
8807 }
8808 
8809 /**
8810  * Translate the rte_flow group index to HW table value.
8811  *
8812  * If tunnel offload is disabled, all group ids converted to flow table
8813  * id using the standard method.
8814  * If tunnel offload is enabled, group id can be converted using the
8815  * standard or tunnel conversion method. Group conversion method
8816  * selection depends on flags in `grp_info` parameter:
8817  * - Internal (grp_info.external == 0) groups conversion uses the
8818  *   standard method.
8819  * - Group ids in JUMP action converted with the tunnel conversion.
8820  * - Group id in rule attribute conversion depends on a rule type and
8821  *   group id value:
8822  *   ** non zero group attributes converted with the tunnel method
8823  *   ** zero group attribute in non-tunnel rule is converted using the
8824  *      standard method - there's only one root table
8825  *   ** zero group attribute in steer tunnel rule is converted with the
8826  *      standard method - single root table
8827  *   ** zero group attribute in match tunnel rule is a special OvS
8828  *      case: that value is used for portability reasons. That group
8829  *      id is converted with the tunnel conversion method.
8830  *
8831  * @param[in] dev
8832  *   Port device
8833  * @param[in] tunnel
8834  *   PMD tunnel offload object
8835  * @param[in] group
8836  *   rte_flow group index value.
8837  * @param[out] table
8838  *   HW table value.
8839  * @param[in] grp_info
8840  *   flags used for conversion
8841  * @param[out] error
8842  *   Pointer to error structure.
8843  *
8844  * @return
8845  *   0 on success, a negative errno value otherwise and rte_errno is set.
8846  */
8847 int
8848 mlx5_flow_group_to_table(struct rte_eth_dev *dev,
8849 			 const struct mlx5_flow_tunnel *tunnel,
8850 			 uint32_t group, uint32_t *table,
8851 			 const struct flow_grp_info *grp_info,
8852 			 struct rte_flow_error *error)
8853 {
8854 	int ret;
8855 	bool standard_translation;
8856 
8857 	if (!grp_info->skip_scale && grp_info->external &&
8858 	    group < MLX5_MAX_TABLES_EXTERNAL)
8859 		group *= MLX5_FLOW_TABLE_FACTOR;
8860 	if (is_tunnel_offload_active(dev)) {
8861 		standard_translation = !grp_info->external ||
8862 					grp_info->std_tbl_fix;
8863 	} else {
8864 		standard_translation = true;
8865 	}
8866 	DRV_LOG(DEBUG,
8867 		"port %u group=%u transfer=%d external=%d fdb_def_rule=%d translate=%s",
8868 		dev->data->port_id, group, grp_info->transfer,
8869 		grp_info->external, grp_info->fdb_def_rule,
8870 		standard_translation ? "STANDARD" : "TUNNEL");
8871 	if (standard_translation)
8872 		ret = flow_group_to_table(dev->data->port_id, group, table,
8873 					  grp_info, error);
8874 	else
8875 		ret = tunnel_flow_group_to_flow_table(dev, tunnel, group,
8876 						      table, error);
8877 
8878 	return ret;
8879 }
8880 
8881 /**
8882  * Discover availability of metadata reg_c's.
8883  *
8884  * Iteratively use test flows to check availability.
8885  *
8886  * @param[in] dev
8887  *   Pointer to the Ethernet device structure.
8888  *
8889  * @return
8890  *   0 on success, a negative errno value otherwise and rte_errno is set.
8891  */
8892 int
8893 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
8894 {
8895 	struct mlx5_priv *priv = dev->data->dev_private;
8896 	enum modify_reg idx;
8897 	int n = 0;
8898 
8899 	/* reg_c[0] and reg_c[1] are reserved. */
8900 	priv->sh->flow_mreg_c[n++] = REG_C_0;
8901 	priv->sh->flow_mreg_c[n++] = REG_C_1;
8902 	/* Discover availability of other reg_c's. */
8903 	for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
8904 		struct rte_flow_attr attr = {
8905 			.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
8906 			.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
8907 			.ingress = 1,
8908 		};
8909 		struct rte_flow_item items[] = {
8910 			[0] = {
8911 				.type = RTE_FLOW_ITEM_TYPE_END,
8912 			},
8913 		};
8914 		struct rte_flow_action actions[] = {
8915 			[0] = {
8916 				.type = (enum rte_flow_action_type)
8917 					MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
8918 				.conf = &(struct mlx5_flow_action_copy_mreg){
8919 					.src = REG_C_1,
8920 					.dst = idx,
8921 				},
8922 			},
8923 			[1] = {
8924 				.type = RTE_FLOW_ACTION_TYPE_JUMP,
8925 				.conf = &(struct rte_flow_action_jump){
8926 					.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
8927 				},
8928 			},
8929 			[2] = {
8930 				.type = RTE_FLOW_ACTION_TYPE_END,
8931 			},
8932 		};
8933 		uint32_t flow_idx;
8934 		struct rte_flow *flow;
8935 		struct rte_flow_error error;
8936 
8937 		if (!priv->sh->config.dv_flow_en)
8938 			break;
8939 		/* Create internal flow, validation skips copy action. */
8940 		flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_GEN, &attr,
8941 					items, actions, false, &error);
8942 		flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN],
8943 				      flow_idx);
8944 		if (!flow)
8945 			continue;
8946 		priv->sh->flow_mreg_c[n++] = idx;
8947 		flow_list_destroy(dev, MLX5_FLOW_TYPE_GEN, flow_idx);
8948 	}
8949 	for (; n < MLX5_MREG_C_NUM; ++n)
8950 		priv->sh->flow_mreg_c[n] = REG_NON;
8951 	priv->sh->metadata_regc_check_flag = 1;
8952 	return 0;
8953 }
8954 
8955 int
8956 save_dump_file(const uint8_t *data, uint32_t size,
8957 	uint32_t type, uint64_t id, void *arg, FILE *file)
8958 {
8959 	char line[BUF_SIZE];
8960 	uint32_t out = 0;
8961 	uint32_t k;
8962 	uint32_t actions_num;
8963 	struct rte_flow_query_count *count;
8964 
8965 	memset(line, 0, BUF_SIZE);
8966 	switch (type) {
8967 	case DR_DUMP_REC_TYPE_PMD_MODIFY_HDR:
8968 		actions_num = *(uint32_t *)(arg);
8969 		out += snprintf(line + out, BUF_SIZE - out, "%d,0x%" PRIx64 ",%d,",
8970 				type, id, actions_num);
8971 		break;
8972 	case DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT:
8973 		out += snprintf(line + out, BUF_SIZE - out, "%d,0x%" PRIx64 ",",
8974 				type, id);
8975 		break;
8976 	case DR_DUMP_REC_TYPE_PMD_COUNTER:
8977 		count = (struct rte_flow_query_count *)arg;
8978 		fprintf(file,
8979 			"%d,0x%" PRIx64 ",%" PRIu64 ",%" PRIu64 "\n",
8980 			type, id, count->hits, count->bytes);
8981 		return 0;
8982 	default:
8983 		return -1;
8984 	}
8985 
8986 	for (k = 0; k < size; k++) {
8987 		/* Make sure we do not overrun the line buffer length. */
8988 		if (out >= BUF_SIZE - 4) {
8989 			line[out] = '\0';
8990 			break;
8991 		}
8992 		out += snprintf(line + out, BUF_SIZE - out, "%02x",
8993 				(data[k]) & 0xff);
8994 	}
8995 	fprintf(file, "%s\n", line);
8996 	return 0;
8997 }
8998 
8999 int
9000 mlx5_flow_query_counter(struct rte_eth_dev *dev, struct rte_flow *flow,
9001 	struct rte_flow_query_count *count, struct rte_flow_error *error)
9002 {
9003 	struct rte_flow_action action[2];
9004 	enum mlx5_flow_drv_type ftype;
9005 	const struct mlx5_flow_driver_ops *fops;
9006 
9007 	if (!flow) {
9008 		return rte_flow_error_set(error, ENOENT,
9009 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
9010 				NULL,
9011 				"invalid flow handle");
9012 	}
9013 	action[0].type = RTE_FLOW_ACTION_TYPE_COUNT;
9014 	action[1].type = RTE_FLOW_ACTION_TYPE_END;
9015 	if (flow->counter) {
9016 		memset(count, 0, sizeof(struct rte_flow_query_count));
9017 		ftype = (enum mlx5_flow_drv_type)(flow->drv_type);
9018 		MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN &&
9019 						ftype < MLX5_FLOW_TYPE_MAX);
9020 		fops = flow_get_drv_ops(ftype);
9021 		return fops->query(dev, flow, action, count, error);
9022 	}
9023 	return -1;
9024 }
9025 
9026 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
9027 /**
9028  * Dump flow ipool data to file
9029  *
9030  * @param[in] dev
9031  *   The pointer to Ethernet device.
9032  * @param[in] file
9033  *   A pointer to a file for output.
9034  * @param[out] error
9035  *   Perform verbose error reporting if not NULL. PMDs initialize this
9036  *   structure in case of error only.
9037  * @return
9038  *   0 on success, a negative value otherwise.
9039  */
9040 int
9041 mlx5_flow_dev_dump_ipool(struct rte_eth_dev *dev,
9042 	struct rte_flow *flow, FILE *file,
9043 	struct rte_flow_error *error)
9044 {
9045 	struct mlx5_priv *priv = dev->data->dev_private;
9046 	struct mlx5_flow_dv_modify_hdr_resource  *modify_hdr;
9047 	struct mlx5_flow_dv_encap_decap_resource *encap_decap;
9048 	uint32_t handle_idx;
9049 	struct mlx5_flow_handle *dh;
9050 	struct rte_flow_query_count count;
9051 	uint32_t actions_num;
9052 	const uint8_t *data;
9053 	size_t size;
9054 	uint64_t id;
9055 	uint32_t type;
9056 	void *action = NULL;
9057 
9058 	if (!flow) {
9059 		return rte_flow_error_set(error, ENOENT,
9060 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
9061 				NULL,
9062 				"invalid flow handle");
9063 	}
9064 	handle_idx = flow->dev_handles;
9065 	/* query counter */
9066 	if (flow->counter &&
9067 	(!mlx5_counter_query(dev, flow->counter, false,
9068 	&count.hits, &count.bytes, &action)) && action) {
9069 		id = (uint64_t)(uintptr_t)action;
9070 		type = DR_DUMP_REC_TYPE_PMD_COUNTER;
9071 		save_dump_file(NULL, 0, type,
9072 			id, (void *)&count, file);
9073 	}
9074 
9075 	while (handle_idx) {
9076 		dh = mlx5_ipool_get(priv->sh->ipool
9077 				[MLX5_IPOOL_MLX5_FLOW], handle_idx);
9078 		if (!dh)
9079 			continue;
9080 		handle_idx = dh->next.next;
9081 
9082 		/* Get modify_hdr and encap_decap buf from ipools. */
9083 		encap_decap = NULL;
9084 		modify_hdr = dh->dvh.modify_hdr;
9085 
9086 		if (dh->dvh.rix_encap_decap) {
9087 			encap_decap = mlx5_ipool_get(priv->sh->ipool
9088 						[MLX5_IPOOL_DECAP_ENCAP],
9089 						dh->dvh.rix_encap_decap);
9090 		}
9091 		if (modify_hdr) {
9092 			data = (const uint8_t *)modify_hdr->actions;
9093 			size = (size_t)(modify_hdr->actions_num) * 8;
9094 			id = (uint64_t)(uintptr_t)modify_hdr->action;
9095 			actions_num = modify_hdr->actions_num;
9096 			type = DR_DUMP_REC_TYPE_PMD_MODIFY_HDR;
9097 			save_dump_file(data, size, type, id,
9098 						(void *)(&actions_num), file);
9099 		}
9100 		if (encap_decap) {
9101 			data = encap_decap->buf;
9102 			size = encap_decap->size;
9103 			id = (uint64_t)(uintptr_t)encap_decap->action;
9104 			type = DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT;
9105 			save_dump_file(data, size, type,
9106 						id, NULL, file);
9107 		}
9108 	}
9109 	return 0;
9110 }
9111 
9112 /**
9113  * Dump all flow's encap_decap/modify_hdr/counter data to file
9114  *
9115  * @param[in] dev
9116  *   The pointer to Ethernet device.
9117  * @param[in] file
9118  *   A pointer to a file for output.
9119  * @param[out] error
9120  *   Perform verbose error reporting if not NULL. PMDs initialize this
9121  *   structure in case of error only.
9122  * @return
9123  *   0 on success, a negative value otherwise.
9124  */
9125 static int
9126 mlx5_flow_dev_dump_sh_all(struct rte_eth_dev *dev,
9127 	FILE *file, struct rte_flow_error *error __rte_unused)
9128 {
9129 	struct mlx5_priv *priv = dev->data->dev_private;
9130 	struct mlx5_dev_ctx_shared *sh = priv->sh;
9131 	struct mlx5_hlist *h;
9132 	struct mlx5_flow_dv_modify_hdr_resource  *modify_hdr;
9133 	struct mlx5_flow_dv_encap_decap_resource *encap_decap;
9134 	struct rte_flow_query_count count;
9135 	uint32_t actions_num;
9136 	const uint8_t *data;
9137 	size_t size;
9138 	uint64_t id;
9139 	uint32_t type;
9140 	uint32_t i;
9141 	uint32_t j;
9142 	struct mlx5_list_inconst *l_inconst;
9143 	struct mlx5_list_entry *e;
9144 	int lcore_index;
9145 	struct mlx5_flow_counter_mng *cmng = &priv->sh->cmng;
9146 	uint32_t max;
9147 	void *action;
9148 
9149 	/* encap_decap hlist is lcore_share, get global core cache. */
9150 	i = MLX5_LIST_GLOBAL;
9151 	h = sh->encaps_decaps;
9152 	if (h) {
9153 		for (j = 0; j <= h->mask; j++) {
9154 			l_inconst = &h->buckets[j].l;
9155 			if (!l_inconst || !l_inconst->cache[i])
9156 				continue;
9157 
9158 			e = LIST_FIRST(&l_inconst->cache[i]->h);
9159 			while (e) {
9160 				encap_decap =
9161 				(struct mlx5_flow_dv_encap_decap_resource *)e;
9162 				data = encap_decap->buf;
9163 				size = encap_decap->size;
9164 				id = (uint64_t)(uintptr_t)encap_decap->action;
9165 				type = DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT;
9166 				save_dump_file(data, size, type,
9167 					id, NULL, file);
9168 				e = LIST_NEXT(e, next);
9169 			}
9170 		}
9171 	}
9172 
9173 	/* get modify_hdr */
9174 	h = sh->modify_cmds;
9175 	if (h) {
9176 		lcore_index = rte_lcore_index(rte_lcore_id());
9177 		if (unlikely(lcore_index == -1)) {
9178 			lcore_index = MLX5_LIST_NLCORE;
9179 			rte_spinlock_lock(&h->l_const.lcore_lock);
9180 		}
9181 		i = lcore_index;
9182 
9183 		for (j = 0; j <= h->mask; j++) {
9184 			l_inconst = &h->buckets[j].l;
9185 			if (!l_inconst || !l_inconst->cache[i])
9186 				continue;
9187 
9188 			e = LIST_FIRST(&l_inconst->cache[i]->h);
9189 			while (e) {
9190 				modify_hdr =
9191 				(struct mlx5_flow_dv_modify_hdr_resource *)e;
9192 				data = (const uint8_t *)modify_hdr->actions;
9193 				size = (size_t)(modify_hdr->actions_num) * 8;
9194 				actions_num = modify_hdr->actions_num;
9195 				id = (uint64_t)(uintptr_t)modify_hdr->action;
9196 				type = DR_DUMP_REC_TYPE_PMD_MODIFY_HDR;
9197 				save_dump_file(data, size, type, id,
9198 						(void *)(&actions_num), file);
9199 				e = LIST_NEXT(e, next);
9200 			}
9201 		}
9202 
9203 		if (unlikely(lcore_index == MLX5_LIST_NLCORE))
9204 			rte_spinlock_unlock(&h->l_const.lcore_lock);
9205 	}
9206 
9207 	/* get counter */
9208 	MLX5_ASSERT(cmng->n_valid <= cmng->n);
9209 	max = MLX5_COUNTERS_PER_POOL * cmng->n_valid;
9210 	for (j = 1; j <= max; j++) {
9211 		action = NULL;
9212 		if ((!mlx5_counter_query(dev, j, false, &count.hits,
9213 		&count.bytes, &action)) && action) {
9214 			id = (uint64_t)(uintptr_t)action;
9215 			type = DR_DUMP_REC_TYPE_PMD_COUNTER;
9216 			save_dump_file(NULL, 0, type,
9217 					id, (void *)&count, file);
9218 		}
9219 	}
9220 	return 0;
9221 }
9222 #endif
9223 
9224 /**
9225  * Dump flow raw hw data to file
9226  *
9227  * @param[in] dev
9228  *    The pointer to Ethernet device.
9229  * @param[in] file
9230  *   A pointer to a file for output.
9231  * @param[out] error
9232  *   Perform verbose error reporting if not NULL. PMDs initialize this
9233  *   structure in case of error only.
9234  * @return
9235  *   0 on success, a negative value otherwise.
9236  */
9237 int
9238 mlx5_flow_dev_dump(struct rte_eth_dev *dev, struct rte_flow *flow_idx,
9239 		   FILE *file,
9240 		   struct rte_flow_error *error __rte_unused)
9241 {
9242 	struct mlx5_priv *priv = dev->data->dev_private;
9243 	struct mlx5_dev_ctx_shared *sh = priv->sh;
9244 	uint32_t handle_idx;
9245 	int ret;
9246 	struct mlx5_flow_handle *dh;
9247 	struct rte_flow *flow;
9248 
9249 	if (!sh->config.dv_flow_en) {
9250 		if (fputs("device dv flow disabled\n", file) <= 0)
9251 			return -errno;
9252 		return -ENOTSUP;
9253 	}
9254 
9255 	/* dump all */
9256 	if (!flow_idx) {
9257 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
9258 		if (mlx5_flow_dev_dump_sh_all(dev, file, error))
9259 			return -EINVAL;
9260 #endif
9261 		return mlx5_devx_cmd_flow_dump(sh->fdb_domain,
9262 					sh->rx_domain,
9263 					sh->tx_domain, file);
9264 	}
9265 	/* dump one */
9266 	flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN],
9267 			(uintptr_t)(void *)flow_idx);
9268 	if (!flow)
9269 		return -EINVAL;
9270 
9271 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
9272 	mlx5_flow_dev_dump_ipool(dev, flow, file, error);
9273 #endif
9274 	handle_idx = flow->dev_handles;
9275 	while (handle_idx) {
9276 		dh = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW],
9277 				handle_idx);
9278 		if (!dh)
9279 			return -ENOENT;
9280 		if (dh->drv_flow) {
9281 			ret = mlx5_devx_cmd_flow_single_dump(dh->drv_flow,
9282 					file);
9283 			if (ret)
9284 				return -ENOENT;
9285 		}
9286 		handle_idx = dh->next.next;
9287 	}
9288 	return 0;
9289 }
9290 
9291 /**
9292  * Get aged-out flows.
9293  *
9294  * @param[in] dev
9295  *   Pointer to the Ethernet device structure.
9296  * @param[in] context
9297  *   The address of an array of pointers to the aged-out flows contexts.
9298  * @param[in] nb_countexts
9299  *   The length of context array pointers.
9300  * @param[out] error
9301  *   Perform verbose error reporting if not NULL. Initialized in case of
9302  *   error only.
9303  *
9304  * @return
9305  *   how many contexts get in success, otherwise negative errno value.
9306  *   if nb_contexts is 0, return the amount of all aged contexts.
9307  *   if nb_contexts is not 0 , return the amount of aged flows reported
9308  *   in the context array.
9309  */
9310 int
9311 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
9312 			uint32_t nb_contexts, struct rte_flow_error *error)
9313 {
9314 	const struct mlx5_flow_driver_ops *fops;
9315 	struct rte_flow_attr attr = { .transfer = 0 };
9316 
9317 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
9318 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
9319 		return fops->get_aged_flows(dev, contexts, nb_contexts,
9320 						    error);
9321 	}
9322 	DRV_LOG(ERR,
9323 		"port %u get aged flows is not supported.",
9324 		 dev->data->port_id);
9325 	return -ENOTSUP;
9326 }
9327 
9328 /* Wrapper for driver action_validate op callback */
9329 static int
9330 flow_drv_action_validate(struct rte_eth_dev *dev,
9331 			 const struct rte_flow_indir_action_conf *conf,
9332 			 const struct rte_flow_action *action,
9333 			 const struct mlx5_flow_driver_ops *fops,
9334 			 struct rte_flow_error *error)
9335 {
9336 	static const char err_msg[] = "indirect action validation unsupported";
9337 
9338 	if (!fops->action_validate) {
9339 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
9340 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
9341 				   NULL, err_msg);
9342 		return -rte_errno;
9343 	}
9344 	return fops->action_validate(dev, conf, action, error);
9345 }
9346 
9347 /**
9348  * Destroys the shared action by handle.
9349  *
9350  * @param dev
9351  *   Pointer to Ethernet device structure.
9352  * @param[in] handle
9353  *   Handle for the indirect action object to be destroyed.
9354  * @param[out] error
9355  *   Perform verbose error reporting if not NULL. PMDs initialize this
9356  *   structure in case of error only.
9357  *
9358  * @return
9359  *   0 on success, a negative errno value otherwise and rte_errno is set.
9360  *
9361  * @note: wrapper for driver action_create op callback.
9362  */
9363 static int
9364 mlx5_action_handle_destroy(struct rte_eth_dev *dev,
9365 			   struct rte_flow_action_handle *handle,
9366 			   struct rte_flow_error *error)
9367 {
9368 	static const char err_msg[] = "indirect action destruction unsupported";
9369 	struct rte_flow_attr attr = { .transfer = 0 };
9370 	const struct mlx5_flow_driver_ops *fops =
9371 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
9372 
9373 	if (!fops->action_destroy) {
9374 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
9375 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
9376 				   NULL, err_msg);
9377 		return -rte_errno;
9378 	}
9379 	return fops->action_destroy(dev, handle, error);
9380 }
9381 
9382 /* Wrapper for driver action_destroy op callback */
9383 static int
9384 flow_drv_action_update(struct rte_eth_dev *dev,
9385 		       struct rte_flow_action_handle *handle,
9386 		       const void *update,
9387 		       const struct mlx5_flow_driver_ops *fops,
9388 		       struct rte_flow_error *error)
9389 {
9390 	static const char err_msg[] = "indirect action update unsupported";
9391 
9392 	if (!fops->action_update) {
9393 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
9394 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
9395 				   NULL, err_msg);
9396 		return -rte_errno;
9397 	}
9398 	return fops->action_update(dev, handle, update, error);
9399 }
9400 
9401 /* Wrapper for driver action_destroy op callback */
9402 static int
9403 flow_drv_action_query(struct rte_eth_dev *dev,
9404 		      const struct rte_flow_action_handle *handle,
9405 		      void *data,
9406 		      const struct mlx5_flow_driver_ops *fops,
9407 		      struct rte_flow_error *error)
9408 {
9409 	static const char err_msg[] = "indirect action query unsupported";
9410 
9411 	if (!fops->action_query) {
9412 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
9413 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
9414 				   NULL, err_msg);
9415 		return -rte_errno;
9416 	}
9417 	return fops->action_query(dev, handle, data, error);
9418 }
9419 
9420 /**
9421  * Create indirect action for reuse in multiple flow rules.
9422  *
9423  * @param dev
9424  *   Pointer to Ethernet device structure.
9425  * @param conf
9426  *   Pointer to indirect action object configuration.
9427  * @param[in] action
9428  *   Action configuration for indirect action object creation.
9429  * @param[out] error
9430  *   Perform verbose error reporting if not NULL. PMDs initialize this
9431  *   structure in case of error only.
9432  * @return
9433  *   A valid handle in case of success, NULL otherwise and rte_errno is set.
9434  */
9435 static struct rte_flow_action_handle *
9436 mlx5_action_handle_create(struct rte_eth_dev *dev,
9437 			  const struct rte_flow_indir_action_conf *conf,
9438 			  const struct rte_flow_action *action,
9439 			  struct rte_flow_error *error)
9440 {
9441 	static const char err_msg[] = "indirect action creation unsupported";
9442 	struct rte_flow_attr attr = { .transfer = 0 };
9443 	const struct mlx5_flow_driver_ops *fops =
9444 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
9445 
9446 	if (flow_drv_action_validate(dev, conf, action, fops, error))
9447 		return NULL;
9448 	if (!fops->action_create) {
9449 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
9450 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
9451 				   NULL, err_msg);
9452 		return NULL;
9453 	}
9454 	return fops->action_create(dev, conf, action, error);
9455 }
9456 
9457 /**
9458  * Updates inplace the indirect action configuration pointed by *handle*
9459  * with the configuration provided as *update* argument.
9460  * The update of the indirect action configuration effects all flow rules
9461  * reusing the action via handle.
9462  *
9463  * @param dev
9464  *   Pointer to Ethernet device structure.
9465  * @param[in] handle
9466  *   Handle for the indirect action to be updated.
9467  * @param[in] update
9468  *   Action specification used to modify the action pointed by handle.
9469  *   *update* could be of same type with the action pointed by the *handle*
9470  *   handle argument, or some other structures like a wrapper, depending on
9471  *   the indirect action type.
9472  * @param[out] error
9473  *   Perform verbose error reporting if not NULL. PMDs initialize this
9474  *   structure in case of error only.
9475  *
9476  * @return
9477  *   0 on success, a negative errno value otherwise and rte_errno is set.
9478  */
9479 static int
9480 mlx5_action_handle_update(struct rte_eth_dev *dev,
9481 		struct rte_flow_action_handle *handle,
9482 		const void *update,
9483 		struct rte_flow_error *error)
9484 {
9485 	struct rte_flow_attr attr = { .transfer = 0 };
9486 	const struct mlx5_flow_driver_ops *fops =
9487 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
9488 	int ret;
9489 
9490 	ret = flow_drv_action_validate(dev, NULL,
9491 			(const struct rte_flow_action *)update, fops, error);
9492 	if (ret)
9493 		return ret;
9494 	return flow_drv_action_update(dev, handle, update, fops,
9495 				      error);
9496 }
9497 
9498 /**
9499  * Query the indirect action by handle.
9500  *
9501  * This function allows retrieving action-specific data such as counters.
9502  * Data is gathered by special action which may be present/referenced in
9503  * more than one flow rule definition.
9504  *
9505  * see @RTE_FLOW_ACTION_TYPE_COUNT
9506  *
9507  * @param dev
9508  *   Pointer to Ethernet device structure.
9509  * @param[in] handle
9510  *   Handle for the indirect action to query.
9511  * @param[in, out] data
9512  *   Pointer to storage for the associated query data type.
9513  * @param[out] error
9514  *   Perform verbose error reporting if not NULL. PMDs initialize this
9515  *   structure in case of error only.
9516  *
9517  * @return
9518  *   0 on success, a negative errno value otherwise and rte_errno is set.
9519  */
9520 static int
9521 mlx5_action_handle_query(struct rte_eth_dev *dev,
9522 			 const struct rte_flow_action_handle *handle,
9523 			 void *data,
9524 			 struct rte_flow_error *error)
9525 {
9526 	struct rte_flow_attr attr = { .transfer = 0 };
9527 	const struct mlx5_flow_driver_ops *fops =
9528 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
9529 
9530 	return flow_drv_action_query(dev, handle, data, fops, error);
9531 }
9532 
9533 /**
9534  * Destroy all indirect actions (shared RSS).
9535  *
9536  * @param dev
9537  *   Pointer to Ethernet device.
9538  *
9539  * @return
9540  *   0 on success, a negative errno value otherwise and rte_errno is set.
9541  */
9542 int
9543 mlx5_action_handle_flush(struct rte_eth_dev *dev)
9544 {
9545 	struct rte_flow_error error;
9546 	struct mlx5_priv *priv = dev->data->dev_private;
9547 	struct mlx5_shared_action_rss *shared_rss;
9548 	int ret = 0;
9549 	uint32_t idx;
9550 
9551 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
9552 		      priv->rss_shared_actions, idx, shared_rss, next) {
9553 		ret |= mlx5_action_handle_destroy(dev,
9554 		       (struct rte_flow_action_handle *)(uintptr_t)idx, &error);
9555 	}
9556 	return ret;
9557 }
9558 
9559 /**
9560  * Validate existing indirect actions against current device configuration
9561  * and attach them to device resources.
9562  *
9563  * @param dev
9564  *   Pointer to Ethernet device.
9565  *
9566  * @return
9567  *   0 on success, a negative errno value otherwise and rte_errno is set.
9568  */
9569 int
9570 mlx5_action_handle_attach(struct rte_eth_dev *dev)
9571 {
9572 	struct mlx5_priv *priv = dev->data->dev_private;
9573 	int ret = 0;
9574 	struct mlx5_ind_table_obj *ind_tbl, *ind_tbl_last;
9575 
9576 	LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) {
9577 		const char *message;
9578 		uint32_t queue_idx;
9579 
9580 		ret = mlx5_validate_rss_queues(dev, ind_tbl->queues,
9581 					       ind_tbl->queues_n,
9582 					       &message, &queue_idx);
9583 		if (ret != 0) {
9584 			DRV_LOG(ERR, "Port %u cannot use queue %u in RSS: %s",
9585 				dev->data->port_id, ind_tbl->queues[queue_idx],
9586 				message);
9587 			break;
9588 		}
9589 	}
9590 	if (ret != 0)
9591 		return ret;
9592 	LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) {
9593 		ret = mlx5_ind_table_obj_attach(dev, ind_tbl);
9594 		if (ret != 0) {
9595 			DRV_LOG(ERR, "Port %u could not attach "
9596 				"indirection table obj %p",
9597 				dev->data->port_id, (void *)ind_tbl);
9598 			goto error;
9599 		}
9600 	}
9601 
9602 	return 0;
9603 error:
9604 	ind_tbl_last = ind_tbl;
9605 	LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) {
9606 		if (ind_tbl == ind_tbl_last)
9607 			break;
9608 		if (mlx5_ind_table_obj_detach(dev, ind_tbl) != 0)
9609 			DRV_LOG(CRIT, "Port %u could not detach "
9610 				"indirection table obj %p on rollback",
9611 				dev->data->port_id, (void *)ind_tbl);
9612 	}
9613 	return ret;
9614 }
9615 
9616 /**
9617  * Detach indirect actions of the device from its resources.
9618  *
9619  * @param dev
9620  *   Pointer to Ethernet device.
9621  *
9622  * @return
9623  *   0 on success, a negative errno value otherwise and rte_errno is set.
9624  */
9625 int
9626 mlx5_action_handle_detach(struct rte_eth_dev *dev)
9627 {
9628 	struct mlx5_priv *priv = dev->data->dev_private;
9629 	int ret = 0;
9630 	struct mlx5_ind_table_obj *ind_tbl, *ind_tbl_last;
9631 
9632 	LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) {
9633 		ret = mlx5_ind_table_obj_detach(dev, ind_tbl);
9634 		if (ret != 0) {
9635 			DRV_LOG(ERR, "Port %u could not detach "
9636 				"indirection table obj %p",
9637 				dev->data->port_id, (void *)ind_tbl);
9638 			goto error;
9639 		}
9640 	}
9641 	return 0;
9642 error:
9643 	ind_tbl_last = ind_tbl;
9644 	LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) {
9645 		if (ind_tbl == ind_tbl_last)
9646 			break;
9647 		if (mlx5_ind_table_obj_attach(dev, ind_tbl) != 0)
9648 			DRV_LOG(CRIT, "Port %u could not attach "
9649 				"indirection table obj %p on rollback",
9650 				dev->data->port_id, (void *)ind_tbl);
9651 	}
9652 	return ret;
9653 }
9654 
9655 #ifndef HAVE_MLX5DV_DR
9656 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1))
9657 #else
9658 #define MLX5_DOMAIN_SYNC_FLOW \
9659 	(MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW)
9660 #endif
9661 
9662 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains)
9663 {
9664 	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
9665 	const struct mlx5_flow_driver_ops *fops;
9666 	int ret;
9667 	struct rte_flow_attr attr = { .transfer = 0 };
9668 
9669 	fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr));
9670 	ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW);
9671 	if (ret > 0)
9672 		ret = -ret;
9673 	return ret;
9674 }
9675 
9676 const struct mlx5_flow_tunnel *
9677 mlx5_get_tof(const struct rte_flow_item *item,
9678 	     const struct rte_flow_action *action,
9679 	     enum mlx5_tof_rule_type *rule_type)
9680 {
9681 	for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
9682 		if (item->type == (typeof(item->type))
9683 				  MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL) {
9684 			*rule_type = MLX5_TUNNEL_OFFLOAD_MATCH_RULE;
9685 			return flow_items_to_tunnel(item);
9686 		}
9687 	}
9688 	for (; action->conf != RTE_FLOW_ACTION_TYPE_END; action++) {
9689 		if (action->type == (typeof(action->type))
9690 				    MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET) {
9691 			*rule_type = MLX5_TUNNEL_OFFLOAD_SET_RULE;
9692 			return flow_actions_to_tunnel(action);
9693 		}
9694 	}
9695 	return NULL;
9696 }
9697 
9698 /**
9699  * tunnel offload functionality is defined for DV environment only
9700  */
9701 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
9702 __extension__
9703 union tunnel_offload_mark {
9704 	uint32_t val;
9705 	struct {
9706 		uint32_t app_reserve:8;
9707 		uint32_t table_id:15;
9708 		uint32_t transfer:1;
9709 		uint32_t _unused_:8;
9710 	};
9711 };
9712 
9713 static bool
9714 mlx5_access_tunnel_offload_db
9715 	(struct rte_eth_dev *dev,
9716 	 bool (*match)(struct rte_eth_dev *,
9717 		       struct mlx5_flow_tunnel *, const void *),
9718 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
9719 	 void (*miss)(struct rte_eth_dev *, void *),
9720 	 void *ctx, bool lock_op);
9721 
9722 static int
9723 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
9724 			     struct rte_flow *flow,
9725 			     const struct rte_flow_attr *attr,
9726 			     const struct rte_flow_action *app_actions,
9727 			     uint32_t flow_idx,
9728 			     const struct mlx5_flow_tunnel *tunnel,
9729 			     struct tunnel_default_miss_ctx *ctx,
9730 			     struct rte_flow_error *error)
9731 {
9732 	struct mlx5_priv *priv = dev->data->dev_private;
9733 	struct mlx5_flow *dev_flow;
9734 	struct rte_flow_attr miss_attr = *attr;
9735 	const struct rte_flow_item miss_items[2] = {
9736 		{
9737 			.type = RTE_FLOW_ITEM_TYPE_ETH,
9738 			.spec = NULL,
9739 			.last = NULL,
9740 			.mask = NULL
9741 		},
9742 		{
9743 			.type = RTE_FLOW_ITEM_TYPE_END,
9744 			.spec = NULL,
9745 			.last = NULL,
9746 			.mask = NULL
9747 		}
9748 	};
9749 	union tunnel_offload_mark mark_id;
9750 	struct rte_flow_action_mark miss_mark;
9751 	struct rte_flow_action miss_actions[3] = {
9752 		[0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark },
9753 		[2] = { .type = RTE_FLOW_ACTION_TYPE_END,  .conf = NULL }
9754 	};
9755 	const struct rte_flow_action_jump *jump_data;
9756 	uint32_t i, flow_table = 0; /* prevent compilation warning */
9757 	struct flow_grp_info grp_info = {
9758 		.external = 1,
9759 		.transfer = attr->transfer,
9760 		.fdb_def_rule = !!priv->fdb_def_rule,
9761 		.std_tbl_fix = 0,
9762 	};
9763 	int ret;
9764 
9765 	if (!attr->transfer) {
9766 		uint32_t q_size;
9767 
9768 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS;
9769 		q_size = priv->reta_idx_n * sizeof(ctx->queue[0]);
9770 		ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size,
9771 					 0, SOCKET_ID_ANY);
9772 		if (!ctx->queue)
9773 			return rte_flow_error_set
9774 				(error, ENOMEM,
9775 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
9776 				NULL, "invalid default miss RSS");
9777 		ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
9778 		ctx->action_rss.level = 0,
9779 		ctx->action_rss.types = priv->rss_conf.rss_hf,
9780 		ctx->action_rss.key_len = priv->rss_conf.rss_key_len,
9781 		ctx->action_rss.queue_num = priv->reta_idx_n,
9782 		ctx->action_rss.key = priv->rss_conf.rss_key,
9783 		ctx->action_rss.queue = ctx->queue;
9784 		if (!priv->reta_idx_n || !priv->rxqs_n)
9785 			return rte_flow_error_set
9786 				(error, EINVAL,
9787 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
9788 				NULL, "invalid port configuration");
9789 		if (!(dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG))
9790 			ctx->action_rss.types = 0;
9791 		for (i = 0; i != priv->reta_idx_n; ++i)
9792 			ctx->queue[i] = (*priv->reta_idx)[i];
9793 	} else {
9794 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP;
9795 		ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP;
9796 	}
9797 	miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw;
9798 	for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++);
9799 	jump_data = app_actions->conf;
9800 	miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY;
9801 	miss_attr.group = jump_data->group;
9802 	ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group,
9803 				       &flow_table, &grp_info, error);
9804 	if (ret)
9805 		return rte_flow_error_set(error, EINVAL,
9806 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
9807 					  NULL, "invalid tunnel id");
9808 	mark_id.app_reserve = 0;
9809 	mark_id.table_id = tunnel_flow_tbl_to_id(flow_table);
9810 	mark_id.transfer = !!attr->transfer;
9811 	mark_id._unused_ = 0;
9812 	miss_mark.id = mark_id.val;
9813 	dev_flow = flow_drv_prepare(dev, flow, &miss_attr,
9814 				    miss_items, miss_actions, flow_idx, error);
9815 	if (!dev_flow)
9816 		return -rte_errno;
9817 	dev_flow->flow = flow;
9818 	dev_flow->external = true;
9819 	dev_flow->tunnel = tunnel;
9820 	dev_flow->tof_type = MLX5_TUNNEL_OFFLOAD_MISS_RULE;
9821 	/* Subflow object was created, we must include one in the list. */
9822 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
9823 		      dev_flow->handle, next);
9824 	DRV_LOG(DEBUG,
9825 		"port %u tunnel type=%d id=%u miss rule priority=%u group=%u",
9826 		dev->data->port_id, tunnel->app_tunnel.type,
9827 		tunnel->tunnel_id, miss_attr.priority, miss_attr.group);
9828 	ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items,
9829 				  miss_actions, error);
9830 	if (!ret)
9831 		ret = flow_mreg_update_copy_table(dev, flow, miss_actions,
9832 						  error);
9833 
9834 	return ret;
9835 }
9836 
9837 static const struct mlx5_flow_tbl_data_entry  *
9838 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark)
9839 {
9840 	struct mlx5_priv *priv = dev->data->dev_private;
9841 	struct mlx5_dev_ctx_shared *sh = priv->sh;
9842 	struct mlx5_list_entry *he;
9843 	union tunnel_offload_mark mbits = { .val = mark };
9844 	union mlx5_flow_tbl_key table_key = {
9845 		{
9846 			.level = tunnel_id_to_flow_tbl(mbits.table_id),
9847 			.id = 0,
9848 			.reserved = 0,
9849 			.dummy = 0,
9850 			.is_fdb = !!mbits.transfer,
9851 			.is_egress = 0,
9852 		}
9853 	};
9854 	struct mlx5_flow_cb_ctx ctx = {
9855 		.data = &table_key.v64,
9856 	};
9857 
9858 	he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, &ctx);
9859 	return he ?
9860 	       container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL;
9861 }
9862 
9863 static void
9864 mlx5_flow_tunnel_grp2tbl_remove_cb(void *tool_ctx,
9865 				   struct mlx5_list_entry *entry)
9866 {
9867 	struct mlx5_dev_ctx_shared *sh = tool_ctx;
9868 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
9869 
9870 	mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
9871 			tunnel_flow_tbl_to_id(tte->flow_table));
9872 	mlx5_free(tte);
9873 }
9874 
9875 static int
9876 mlx5_flow_tunnel_grp2tbl_match_cb(void *tool_ctx __rte_unused,
9877 				  struct mlx5_list_entry *entry, void *cb_ctx)
9878 {
9879 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
9880 	union tunnel_tbl_key tbl = {
9881 		.val = *(uint64_t *)(ctx->data),
9882 	};
9883 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
9884 
9885 	return tbl.tunnel_id != tte->tunnel_id || tbl.group != tte->group;
9886 }
9887 
9888 static struct mlx5_list_entry *
9889 mlx5_flow_tunnel_grp2tbl_create_cb(void *tool_ctx, void *cb_ctx)
9890 {
9891 	struct mlx5_dev_ctx_shared *sh = tool_ctx;
9892 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
9893 	struct tunnel_tbl_entry *tte;
9894 	union tunnel_tbl_key tbl = {
9895 		.val = *(uint64_t *)(ctx->data),
9896 	};
9897 
9898 	tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO,
9899 			  sizeof(*tte), 0,
9900 			  SOCKET_ID_ANY);
9901 	if (!tte)
9902 		goto err;
9903 	mlx5_ipool_malloc(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
9904 			  &tte->flow_table);
9905 	if (tte->flow_table >= MLX5_MAX_TABLES) {
9906 		DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.",
9907 			tte->flow_table);
9908 		mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
9909 				tte->flow_table);
9910 		goto err;
9911 	} else if (!tte->flow_table) {
9912 		goto err;
9913 	}
9914 	tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table);
9915 	tte->tunnel_id = tbl.tunnel_id;
9916 	tte->group = tbl.group;
9917 	return &tte->hash;
9918 err:
9919 	if (tte)
9920 		mlx5_free(tte);
9921 	return NULL;
9922 }
9923 
9924 static struct mlx5_list_entry *
9925 mlx5_flow_tunnel_grp2tbl_clone_cb(void *tool_ctx __rte_unused,
9926 				  struct mlx5_list_entry *oentry,
9927 				  void *cb_ctx __rte_unused)
9928 {
9929 	struct tunnel_tbl_entry *tte = mlx5_malloc(MLX5_MEM_SYS, sizeof(*tte),
9930 						   0, SOCKET_ID_ANY);
9931 
9932 	if (!tte)
9933 		return NULL;
9934 	memcpy(tte, oentry, sizeof(*tte));
9935 	return &tte->hash;
9936 }
9937 
9938 static void
9939 mlx5_flow_tunnel_grp2tbl_clone_free_cb(void *tool_ctx __rte_unused,
9940 				       struct mlx5_list_entry *entry)
9941 {
9942 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
9943 
9944 	mlx5_free(tte);
9945 }
9946 
9947 static uint32_t
9948 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
9949 				const struct mlx5_flow_tunnel *tunnel,
9950 				uint32_t group, uint32_t *table,
9951 				struct rte_flow_error *error)
9952 {
9953 	struct mlx5_list_entry *he;
9954 	struct tunnel_tbl_entry *tte;
9955 	union tunnel_tbl_key key = {
9956 		.tunnel_id = tunnel ? tunnel->tunnel_id : 0,
9957 		.group = group
9958 	};
9959 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
9960 	struct mlx5_hlist *group_hash;
9961 	struct mlx5_flow_cb_ctx ctx = {
9962 		.data = &key.val,
9963 	};
9964 
9965 	group_hash = tunnel ? tunnel->groups : thub->groups;
9966 	he = mlx5_hlist_register(group_hash, key.val, &ctx);
9967 	if (!he)
9968 		return rte_flow_error_set(error, EINVAL,
9969 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
9970 					  NULL,
9971 					  "tunnel group index not supported");
9972 	tte = container_of(he, typeof(*tte), hash);
9973 	*table = tte->flow_table;
9974 	DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x",
9975 		dev->data->port_id, key.tunnel_id, group, *table);
9976 	return 0;
9977 }
9978 
9979 static void
9980 mlx5_flow_tunnel_free(struct rte_eth_dev *dev,
9981 		      struct mlx5_flow_tunnel *tunnel)
9982 {
9983 	struct mlx5_priv *priv = dev->data->dev_private;
9984 	struct mlx5_indexed_pool *ipool;
9985 
9986 	DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x",
9987 		dev->data->port_id, tunnel->tunnel_id);
9988 	LIST_REMOVE(tunnel, chain);
9989 	mlx5_hlist_destroy(tunnel->groups);
9990 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
9991 	mlx5_ipool_free(ipool, tunnel->tunnel_id);
9992 }
9993 
9994 static bool
9995 mlx5_access_tunnel_offload_db
9996 	(struct rte_eth_dev *dev,
9997 	 bool (*match)(struct rte_eth_dev *,
9998 		       struct mlx5_flow_tunnel *, const void *),
9999 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
10000 	 void (*miss)(struct rte_eth_dev *, void *),
10001 	 void *ctx, bool lock_op)
10002 {
10003 	bool verdict = false;
10004 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
10005 	struct mlx5_flow_tunnel *tunnel;
10006 
10007 	rte_spinlock_lock(&thub->sl);
10008 	LIST_FOREACH(tunnel, &thub->tunnels, chain) {
10009 		verdict = match(dev, tunnel, (const void *)ctx);
10010 		if (verdict)
10011 			break;
10012 	}
10013 	if (!lock_op)
10014 		rte_spinlock_unlock(&thub->sl);
10015 	if (verdict && hit)
10016 		hit(dev, tunnel, ctx);
10017 	if (!verdict && miss)
10018 		miss(dev, ctx);
10019 	if (lock_op)
10020 		rte_spinlock_unlock(&thub->sl);
10021 
10022 	return verdict;
10023 }
10024 
10025 struct tunnel_db_find_tunnel_id_ctx {
10026 	uint32_t tunnel_id;
10027 	struct mlx5_flow_tunnel *tunnel;
10028 };
10029 
10030 static bool
10031 find_tunnel_id_match(struct rte_eth_dev *dev,
10032 		     struct mlx5_flow_tunnel *tunnel, const void *x)
10033 {
10034 	const struct tunnel_db_find_tunnel_id_ctx *ctx = x;
10035 
10036 	RTE_SET_USED(dev);
10037 	return tunnel->tunnel_id == ctx->tunnel_id;
10038 }
10039 
10040 static void
10041 find_tunnel_id_hit(struct rte_eth_dev *dev,
10042 		   struct mlx5_flow_tunnel *tunnel, void *x)
10043 {
10044 	struct tunnel_db_find_tunnel_id_ctx *ctx = x;
10045 	RTE_SET_USED(dev);
10046 	ctx->tunnel = tunnel;
10047 }
10048 
10049 static struct mlx5_flow_tunnel *
10050 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id)
10051 {
10052 	struct tunnel_db_find_tunnel_id_ctx ctx = {
10053 		.tunnel_id = id,
10054 	};
10055 
10056 	mlx5_access_tunnel_offload_db(dev, find_tunnel_id_match,
10057 				      find_tunnel_id_hit, NULL, &ctx, true);
10058 
10059 	return ctx.tunnel;
10060 }
10061 
10062 static struct mlx5_flow_tunnel *
10063 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev,
10064 			  const struct rte_flow_tunnel *app_tunnel)
10065 {
10066 	struct mlx5_priv *priv = dev->data->dev_private;
10067 	struct mlx5_indexed_pool *ipool;
10068 	struct mlx5_flow_tunnel *tunnel;
10069 	uint32_t id;
10070 
10071 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
10072 	tunnel = mlx5_ipool_zmalloc(ipool, &id);
10073 	if (!tunnel)
10074 		return NULL;
10075 	if (id >= MLX5_MAX_TUNNELS) {
10076 		mlx5_ipool_free(ipool, id);
10077 		DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id);
10078 		return NULL;
10079 	}
10080 	tunnel->groups = mlx5_hlist_create("tunnel groups", 64, false, true,
10081 					   priv->sh,
10082 					   mlx5_flow_tunnel_grp2tbl_create_cb,
10083 					   mlx5_flow_tunnel_grp2tbl_match_cb,
10084 					   mlx5_flow_tunnel_grp2tbl_remove_cb,
10085 					   mlx5_flow_tunnel_grp2tbl_clone_cb,
10086 					mlx5_flow_tunnel_grp2tbl_clone_free_cb);
10087 	if (!tunnel->groups) {
10088 		mlx5_ipool_free(ipool, id);
10089 		return NULL;
10090 	}
10091 	/* initiate new PMD tunnel */
10092 	memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel));
10093 	tunnel->tunnel_id = id;
10094 	tunnel->action.type = (typeof(tunnel->action.type))
10095 			      MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET;
10096 	tunnel->action.conf = tunnel;
10097 	tunnel->item.type = (typeof(tunnel->item.type))
10098 			    MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL;
10099 	tunnel->item.spec = tunnel;
10100 	tunnel->item.last = NULL;
10101 	tunnel->item.mask = NULL;
10102 
10103 	DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x",
10104 		dev->data->port_id, tunnel->tunnel_id);
10105 
10106 	return tunnel;
10107 }
10108 
10109 struct tunnel_db_get_tunnel_ctx {
10110 	const struct rte_flow_tunnel *app_tunnel;
10111 	struct mlx5_flow_tunnel *tunnel;
10112 };
10113 
10114 static bool get_tunnel_match(struct rte_eth_dev *dev,
10115 			     struct mlx5_flow_tunnel *tunnel, const void *x)
10116 {
10117 	const struct tunnel_db_get_tunnel_ctx *ctx = x;
10118 
10119 	RTE_SET_USED(dev);
10120 	return !memcmp(ctx->app_tunnel, &tunnel->app_tunnel,
10121 		       sizeof(*ctx->app_tunnel));
10122 }
10123 
10124 static void get_tunnel_hit(struct rte_eth_dev *dev,
10125 			   struct mlx5_flow_tunnel *tunnel, void *x)
10126 {
10127 	/* called under tunnel spinlock protection */
10128 	struct tunnel_db_get_tunnel_ctx *ctx = x;
10129 
10130 	RTE_SET_USED(dev);
10131 	tunnel->refctn++;
10132 	ctx->tunnel = tunnel;
10133 }
10134 
10135 static void get_tunnel_miss(struct rte_eth_dev *dev, void *x)
10136 {
10137 	/* called under tunnel spinlock protection */
10138 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
10139 	struct tunnel_db_get_tunnel_ctx *ctx = x;
10140 
10141 	rte_spinlock_unlock(&thub->sl);
10142 	ctx->tunnel = mlx5_flow_tunnel_allocate(dev, ctx->app_tunnel);
10143 	rte_spinlock_lock(&thub->sl);
10144 	if (ctx->tunnel) {
10145 		ctx->tunnel->refctn = 1;
10146 		LIST_INSERT_HEAD(&thub->tunnels, ctx->tunnel, chain);
10147 	}
10148 }
10149 
10150 
10151 static int
10152 mlx5_get_flow_tunnel(struct rte_eth_dev *dev,
10153 		     const struct rte_flow_tunnel *app_tunnel,
10154 		     struct mlx5_flow_tunnel **tunnel)
10155 {
10156 	struct tunnel_db_get_tunnel_ctx ctx = {
10157 		.app_tunnel = app_tunnel,
10158 	};
10159 
10160 	mlx5_access_tunnel_offload_db(dev, get_tunnel_match, get_tunnel_hit,
10161 				      get_tunnel_miss, &ctx, true);
10162 	*tunnel = ctx.tunnel;
10163 	return ctx.tunnel ? 0 : -ENOMEM;
10164 }
10165 
10166 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id)
10167 {
10168 	struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub;
10169 
10170 	if (!thub)
10171 		return;
10172 	if (!LIST_EMPTY(&thub->tunnels))
10173 		DRV_LOG(WARNING, "port %u tunnels present", port_id);
10174 	mlx5_hlist_destroy(thub->groups);
10175 	mlx5_free(thub);
10176 }
10177 
10178 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh)
10179 {
10180 	int err;
10181 	struct mlx5_flow_tunnel_hub *thub;
10182 
10183 	thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub),
10184 			   0, SOCKET_ID_ANY);
10185 	if (!thub)
10186 		return -ENOMEM;
10187 	LIST_INIT(&thub->tunnels);
10188 	rte_spinlock_init(&thub->sl);
10189 	thub->groups = mlx5_hlist_create("flow groups", 64,
10190 					 false, true, sh,
10191 					 mlx5_flow_tunnel_grp2tbl_create_cb,
10192 					 mlx5_flow_tunnel_grp2tbl_match_cb,
10193 					 mlx5_flow_tunnel_grp2tbl_remove_cb,
10194 					 mlx5_flow_tunnel_grp2tbl_clone_cb,
10195 					mlx5_flow_tunnel_grp2tbl_clone_free_cb);
10196 	if (!thub->groups) {
10197 		err = -rte_errno;
10198 		goto err;
10199 	}
10200 	sh->tunnel_hub = thub;
10201 
10202 	return 0;
10203 
10204 err:
10205 	if (thub->groups)
10206 		mlx5_hlist_destroy(thub->groups);
10207 	if (thub)
10208 		mlx5_free(thub);
10209 	return err;
10210 }
10211 
10212 static inline int
10213 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev,
10214 			  struct rte_flow_tunnel *tunnel,
10215 			  struct rte_flow_error *error)
10216 {
10217 	struct mlx5_priv *priv = dev->data->dev_private;
10218 
10219 	if (!priv->sh->config.dv_flow_en)
10220 		return rte_flow_error_set(error, ENOTSUP,
10221 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
10222 					  "flow DV interface is off");
10223 	if (!is_tunnel_offload_active(dev))
10224 		return rte_flow_error_set(error, ENOTSUP,
10225 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
10226 					  "tunnel offload was not activated");
10227 	if (!tunnel)
10228 		return rte_flow_error_set(error, EINVAL,
10229 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
10230 					  "no application tunnel");
10231 	switch (tunnel->type) {
10232 	default:
10233 		return rte_flow_error_set(error, EINVAL,
10234 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
10235 					  "unsupported tunnel type");
10236 	case RTE_FLOW_ITEM_TYPE_VXLAN:
10237 	case RTE_FLOW_ITEM_TYPE_GRE:
10238 	case RTE_FLOW_ITEM_TYPE_NVGRE:
10239 	case RTE_FLOW_ITEM_TYPE_GENEVE:
10240 		break;
10241 	}
10242 	return 0;
10243 }
10244 
10245 static int
10246 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
10247 		    struct rte_flow_tunnel *app_tunnel,
10248 		    struct rte_flow_action **actions,
10249 		    uint32_t *num_of_actions,
10250 		    struct rte_flow_error *error)
10251 {
10252 	struct mlx5_flow_tunnel *tunnel;
10253 	int ret = mlx5_flow_tunnel_validate(dev, app_tunnel, error);
10254 
10255 	if (ret)
10256 		return ret;
10257 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
10258 	if (ret < 0) {
10259 		return rte_flow_error_set(error, ret,
10260 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
10261 					  "failed to initialize pmd tunnel");
10262 	}
10263 	*actions = &tunnel->action;
10264 	*num_of_actions = 1;
10265 	return 0;
10266 }
10267 
10268 static int
10269 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
10270 		       struct rte_flow_tunnel *app_tunnel,
10271 		       struct rte_flow_item **items,
10272 		       uint32_t *num_of_items,
10273 		       struct rte_flow_error *error)
10274 {
10275 	struct mlx5_flow_tunnel *tunnel;
10276 	int ret = mlx5_flow_tunnel_validate(dev, app_tunnel, error);
10277 
10278 	if (ret)
10279 		return ret;
10280 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
10281 	if (ret < 0) {
10282 		return rte_flow_error_set(error, ret,
10283 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
10284 					  "failed to initialize pmd tunnel");
10285 	}
10286 	*items = &tunnel->item;
10287 	*num_of_items = 1;
10288 	return 0;
10289 }
10290 
10291 struct tunnel_db_element_release_ctx {
10292 	struct rte_flow_item *items;
10293 	struct rte_flow_action *actions;
10294 	uint32_t num_elements;
10295 	struct rte_flow_error *error;
10296 	int ret;
10297 };
10298 
10299 static bool
10300 tunnel_element_release_match(struct rte_eth_dev *dev,
10301 			     struct mlx5_flow_tunnel *tunnel, const void *x)
10302 {
10303 	const struct tunnel_db_element_release_ctx *ctx = x;
10304 
10305 	RTE_SET_USED(dev);
10306 	if (ctx->num_elements != 1)
10307 		return false;
10308 	else if (ctx->items)
10309 		return ctx->items == &tunnel->item;
10310 	else if (ctx->actions)
10311 		return ctx->actions == &tunnel->action;
10312 
10313 	return false;
10314 }
10315 
10316 static void
10317 tunnel_element_release_hit(struct rte_eth_dev *dev,
10318 			   struct mlx5_flow_tunnel *tunnel, void *x)
10319 {
10320 	struct tunnel_db_element_release_ctx *ctx = x;
10321 	ctx->ret = 0;
10322 	if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
10323 		mlx5_flow_tunnel_free(dev, tunnel);
10324 }
10325 
10326 static void
10327 tunnel_element_release_miss(struct rte_eth_dev *dev, void *x)
10328 {
10329 	struct tunnel_db_element_release_ctx *ctx = x;
10330 	RTE_SET_USED(dev);
10331 	ctx->ret = rte_flow_error_set(ctx->error, EINVAL,
10332 				      RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
10333 				      "invalid argument");
10334 }
10335 
10336 static int
10337 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
10338 		       struct rte_flow_item *pmd_items,
10339 		       uint32_t num_items, struct rte_flow_error *err)
10340 {
10341 	struct tunnel_db_element_release_ctx ctx = {
10342 		.items = pmd_items,
10343 		.actions = NULL,
10344 		.num_elements = num_items,
10345 		.error = err,
10346 	};
10347 
10348 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
10349 				      tunnel_element_release_hit,
10350 				      tunnel_element_release_miss, &ctx, false);
10351 
10352 	return ctx.ret;
10353 }
10354 
10355 static int
10356 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
10357 			 struct rte_flow_action *pmd_actions,
10358 			 uint32_t num_actions, struct rte_flow_error *err)
10359 {
10360 	struct tunnel_db_element_release_ctx ctx = {
10361 		.items = NULL,
10362 		.actions = pmd_actions,
10363 		.num_elements = num_actions,
10364 		.error = err,
10365 	};
10366 
10367 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
10368 				      tunnel_element_release_hit,
10369 				      tunnel_element_release_miss, &ctx, false);
10370 
10371 	return ctx.ret;
10372 }
10373 
10374 static int
10375 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
10376 				  struct rte_mbuf *m,
10377 				  struct rte_flow_restore_info *info,
10378 				  struct rte_flow_error *err)
10379 {
10380 	uint64_t ol_flags = m->ol_flags;
10381 	const struct mlx5_flow_tbl_data_entry *tble;
10382 	const uint64_t mask = RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
10383 
10384 	if (!is_tunnel_offload_active(dev)) {
10385 		info->flags = 0;
10386 		return 0;
10387 	}
10388 
10389 	if ((ol_flags & mask) != mask)
10390 		goto err;
10391 	tble = tunnel_mark_decode(dev, m->hash.fdir.hi);
10392 	if (!tble) {
10393 		DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x",
10394 			dev->data->port_id, m->hash.fdir.hi);
10395 		goto err;
10396 	}
10397 	MLX5_ASSERT(tble->tunnel);
10398 	memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel));
10399 	info->group_id = tble->group_id;
10400 	info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL |
10401 		      RTE_FLOW_RESTORE_INFO_GROUP_ID |
10402 		      RTE_FLOW_RESTORE_INFO_ENCAPSULATED;
10403 
10404 	return 0;
10405 
10406 err:
10407 	return rte_flow_error_set(err, EINVAL,
10408 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
10409 				  "failed to get restore info");
10410 }
10411 
10412 #else /* HAVE_IBV_FLOW_DV_SUPPORT */
10413 static int
10414 mlx5_flow_tunnel_decap_set(__rte_unused struct rte_eth_dev *dev,
10415 			   __rte_unused struct rte_flow_tunnel *app_tunnel,
10416 			   __rte_unused struct rte_flow_action **actions,
10417 			   __rte_unused uint32_t *num_of_actions,
10418 			   __rte_unused struct rte_flow_error *error)
10419 {
10420 	return -ENOTSUP;
10421 }
10422 
10423 static int
10424 mlx5_flow_tunnel_match(__rte_unused struct rte_eth_dev *dev,
10425 		       __rte_unused struct rte_flow_tunnel *app_tunnel,
10426 		       __rte_unused struct rte_flow_item **items,
10427 		       __rte_unused uint32_t *num_of_items,
10428 		       __rte_unused struct rte_flow_error *error)
10429 {
10430 	return -ENOTSUP;
10431 }
10432 
10433 static int
10434 mlx5_flow_tunnel_item_release(__rte_unused struct rte_eth_dev *dev,
10435 			      __rte_unused struct rte_flow_item *pmd_items,
10436 			      __rte_unused uint32_t num_items,
10437 			      __rte_unused struct rte_flow_error *err)
10438 {
10439 	return -ENOTSUP;
10440 }
10441 
10442 static int
10443 mlx5_flow_tunnel_action_release(__rte_unused struct rte_eth_dev *dev,
10444 				__rte_unused struct rte_flow_action *pmd_action,
10445 				__rte_unused uint32_t num_actions,
10446 				__rte_unused struct rte_flow_error *err)
10447 {
10448 	return -ENOTSUP;
10449 }
10450 
10451 static int
10452 mlx5_flow_tunnel_get_restore_info(__rte_unused struct rte_eth_dev *dev,
10453 				  __rte_unused struct rte_mbuf *m,
10454 				  __rte_unused struct rte_flow_restore_info *i,
10455 				  __rte_unused struct rte_flow_error *err)
10456 {
10457 	return -ENOTSUP;
10458 }
10459 
10460 static int
10461 flow_tunnel_add_default_miss(__rte_unused struct rte_eth_dev *dev,
10462 			     __rte_unused struct rte_flow *flow,
10463 			     __rte_unused const struct rte_flow_attr *attr,
10464 			     __rte_unused const struct rte_flow_action *actions,
10465 			     __rte_unused uint32_t flow_idx,
10466 			     __rte_unused const struct mlx5_flow_tunnel *tunnel,
10467 			     __rte_unused struct tunnel_default_miss_ctx *ctx,
10468 			     __rte_unused struct rte_flow_error *error)
10469 {
10470 	return -ENOTSUP;
10471 }
10472 
10473 static struct mlx5_flow_tunnel *
10474 mlx5_find_tunnel_id(__rte_unused struct rte_eth_dev *dev,
10475 		    __rte_unused uint32_t id)
10476 {
10477 	return NULL;
10478 }
10479 
10480 static void
10481 mlx5_flow_tunnel_free(__rte_unused struct rte_eth_dev *dev,
10482 		      __rte_unused struct mlx5_flow_tunnel *tunnel)
10483 {
10484 }
10485 
10486 static uint32_t
10487 tunnel_flow_group_to_flow_table(__rte_unused struct rte_eth_dev *dev,
10488 				__rte_unused const struct mlx5_flow_tunnel *t,
10489 				__rte_unused uint32_t group,
10490 				__rte_unused uint32_t *table,
10491 				struct rte_flow_error *error)
10492 {
10493 	return rte_flow_error_set(error, ENOTSUP,
10494 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
10495 				  "tunnel offload requires DV support");
10496 }
10497 
10498 void
10499 mlx5_release_tunnel_hub(__rte_unused struct mlx5_dev_ctx_shared *sh,
10500 			__rte_unused  uint16_t port_id)
10501 {
10502 }
10503 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */
10504 
10505 /* Flex flow item API */
10506 static struct rte_flow_item_flex_handle *
10507 mlx5_flow_flex_item_create(struct rte_eth_dev *dev,
10508 			   const struct rte_flow_item_flex_conf *conf,
10509 			   struct rte_flow_error *error)
10510 {
10511 	static const char err_msg[] = "flex item creation unsupported";
10512 	struct rte_flow_attr attr = { .transfer = 0 };
10513 	const struct mlx5_flow_driver_ops *fops =
10514 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
10515 
10516 	if (!fops->item_create) {
10517 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
10518 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
10519 				   NULL, err_msg);
10520 		return NULL;
10521 	}
10522 	return fops->item_create(dev, conf, error);
10523 }
10524 
10525 static int
10526 mlx5_flow_flex_item_release(struct rte_eth_dev *dev,
10527 			    const struct rte_flow_item_flex_handle *handle,
10528 			    struct rte_flow_error *error)
10529 {
10530 	static const char err_msg[] = "flex item release unsupported";
10531 	struct rte_flow_attr attr = { .transfer = 0 };
10532 	const struct mlx5_flow_driver_ops *fops =
10533 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
10534 
10535 	if (!fops->item_release) {
10536 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
10537 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
10538 				   NULL, err_msg);
10539 		return -rte_errno;
10540 	}
10541 	return fops->item_release(dev, handle, error);
10542 }
10543 
10544 static void
10545 mlx5_dbg__print_pattern(const struct rte_flow_item *item)
10546 {
10547 	int ret;
10548 	struct rte_flow_error error;
10549 
10550 	for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
10551 		char *item_name;
10552 		ret = rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR, &item_name,
10553 				    sizeof(item_name),
10554 				    (void *)(uintptr_t)item->type, &error);
10555 		if (ret > 0)
10556 			printf("%s ", item_name);
10557 		else
10558 			printf("%d\n", (int)item->type);
10559 	}
10560 	printf("END\n");
10561 }
10562 
10563 static int
10564 mlx5_flow_is_std_vxlan_port(const struct rte_flow_item *udp_item)
10565 {
10566 	const struct rte_flow_item_udp *spec = udp_item->spec;
10567 	const struct rte_flow_item_udp *mask = udp_item->mask;
10568 	uint16_t udp_dport = 0;
10569 
10570 	if (spec != NULL) {
10571 		if (!mask)
10572 			mask = &rte_flow_item_udp_mask;
10573 		udp_dport = rte_be_to_cpu_16(spec->hdr.dst_port &
10574 				mask->hdr.dst_port);
10575 	}
10576 	return (!udp_dport || udp_dport == MLX5_UDP_PORT_VXLAN);
10577 }
10578 
10579 static const struct mlx5_flow_expand_node *
10580 mlx5_flow_expand_rss_adjust_node(const struct rte_flow_item *pattern,
10581 		unsigned int item_idx,
10582 		const struct mlx5_flow_expand_node graph[],
10583 		const struct mlx5_flow_expand_node *node)
10584 {
10585 	const struct rte_flow_item *item = pattern + item_idx, *prev_item;
10586 
10587 	if (item->type == RTE_FLOW_ITEM_TYPE_VXLAN &&
10588 			node != NULL &&
10589 			node->type == RTE_FLOW_ITEM_TYPE_VXLAN) {
10590 		/*
10591 		 * The expansion node is VXLAN and it is also the last
10592 		 * expandable item in the pattern, so need to continue
10593 		 * expansion of the inner tunnel.
10594 		 */
10595 		MLX5_ASSERT(item_idx > 0);
10596 		prev_item = pattern + item_idx - 1;
10597 		MLX5_ASSERT(prev_item->type == RTE_FLOW_ITEM_TYPE_UDP);
10598 		if (mlx5_flow_is_std_vxlan_port(prev_item))
10599 			return &graph[MLX5_EXPANSION_STD_VXLAN];
10600 		return &graph[MLX5_EXPANSION_L3_VXLAN];
10601 	}
10602 	return node;
10603 }
10604 
10605 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
10606 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
10607 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
10608 };
10609 
10610 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
10611 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
10612 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
10613 	{ 9, 10, 11 }, { 12, 13, 14 },
10614 };
10615 
10616 /**
10617  * Discover the number of available flow priorities.
10618  *
10619  * @param dev
10620  *   Ethernet device.
10621  *
10622  * @return
10623  *   On success, number of available flow priorities.
10624  *   On failure, a negative errno-style code and rte_errno is set.
10625  */
10626 int
10627 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
10628 {
10629 	static const uint16_t vprio[] = {8, 16};
10630 	const struct mlx5_priv *priv = dev->data->dev_private;
10631 	const struct mlx5_flow_driver_ops *fops;
10632 	enum mlx5_flow_drv_type type;
10633 	int ret;
10634 
10635 	type = mlx5_flow_os_get_type();
10636 	if (type == MLX5_FLOW_TYPE_MAX) {
10637 		type = MLX5_FLOW_TYPE_VERBS;
10638 		if (priv->sh->cdev->config.devx && priv->sh->config.dv_flow_en)
10639 			type = MLX5_FLOW_TYPE_DV;
10640 	}
10641 	fops = flow_get_drv_ops(type);
10642 	if (fops->discover_priorities == NULL) {
10643 		DRV_LOG(ERR, "Priority discovery not supported");
10644 		rte_errno = ENOTSUP;
10645 		return -rte_errno;
10646 	}
10647 	ret = fops->discover_priorities(dev, vprio, RTE_DIM(vprio));
10648 	if (ret < 0)
10649 		return ret;
10650 	switch (ret) {
10651 	case 8:
10652 		ret = RTE_DIM(priority_map_3);
10653 		break;
10654 	case 16:
10655 		ret = RTE_DIM(priority_map_5);
10656 		break;
10657 	default:
10658 		rte_errno = ENOTSUP;
10659 		DRV_LOG(ERR,
10660 			"port %u maximum priority: %d expected 8/16",
10661 			dev->data->port_id, ret);
10662 		return -rte_errno;
10663 	}
10664 	DRV_LOG(INFO, "port %u supported flow priorities:"
10665 		" 0-%d for ingress or egress root table,"
10666 		" 0-%d for non-root table or transfer root table.",
10667 		dev->data->port_id, ret - 2,
10668 		MLX5_NON_ROOT_FLOW_MAX_PRIO - 1);
10669 	return ret;
10670 }
10671 
10672 /**
10673  * Adjust flow priority based on the highest layer and the request priority.
10674  *
10675  * @param[in] dev
10676  *   Pointer to the Ethernet device structure.
10677  * @param[in] priority
10678  *   The rule base priority.
10679  * @param[in] subpriority
10680  *   The priority based on the items.
10681  *
10682  * @return
10683  *   The new priority.
10684  */
10685 uint32_t
10686 mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
10687 			  uint32_t subpriority)
10688 {
10689 	uint32_t res = 0;
10690 	struct mlx5_priv *priv = dev->data->dev_private;
10691 
10692 	switch (priv->sh->flow_max_priority) {
10693 	case RTE_DIM(priority_map_3):
10694 		res = priority_map_3[priority][subpriority];
10695 		break;
10696 	case RTE_DIM(priority_map_5):
10697 		res = priority_map_5[priority][subpriority];
10698 		break;
10699 	}
10700 	return  res;
10701 }
10702