xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 6ae5c238371aeb86359c5a6c1eb1330e1cc25fca)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stdalign.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdbool.h>
10 #include <sys/queue.h>
11 
12 #include <rte_common.h>
13 #include <rte_ether.h>
14 #include <ethdev_driver.h>
15 #include <rte_eal_paging.h>
16 #include <rte_flow.h>
17 #include <rte_cycles.h>
18 #include <rte_flow_driver.h>
19 #include <rte_malloc.h>
20 #include <rte_ip.h>
21 
22 #include <mlx5_glue.h>
23 #include <mlx5_devx_cmds.h>
24 #include <mlx5_prm.h>
25 #include <mlx5_malloc.h>
26 
27 #include "mlx5_defs.h"
28 #include "mlx5.h"
29 #include "mlx5_flow.h"
30 #include "mlx5_flow_os.h"
31 #include "mlx5_rx.h"
32 #include "mlx5_tx.h"
33 #include "mlx5_common_os.h"
34 #include "rte_pmd_mlx5.h"
35 
36 struct tunnel_default_miss_ctx {
37 	uint16_t *queue;
38 	__extension__
39 	union {
40 		struct rte_flow_action_rss action_rss;
41 		struct rte_flow_action_queue miss_queue;
42 		struct rte_flow_action_jump miss_jump;
43 		uint8_t raw[0];
44 	};
45 };
46 
47 static int
48 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
49 			     struct rte_flow *flow,
50 			     const struct rte_flow_attr *attr,
51 			     const struct rte_flow_action *app_actions,
52 			     uint32_t flow_idx,
53 			     const struct mlx5_flow_tunnel *tunnel,
54 			     struct tunnel_default_miss_ctx *ctx,
55 			     struct rte_flow_error *error);
56 static struct mlx5_flow_tunnel *
57 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id);
58 static void
59 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel);
60 static uint32_t
61 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
62 				const struct mlx5_flow_tunnel *tunnel,
63 				uint32_t group, uint32_t *table,
64 				struct rte_flow_error *error);
65 
66 static struct mlx5_flow_workspace *mlx5_flow_push_thread_workspace(void);
67 static void mlx5_flow_pop_thread_workspace(void);
68 
69 
70 /** Device flow drivers. */
71 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
72 
73 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
74 
75 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
76 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
77 #if defined(HAVE_IBV_FLOW_DV_SUPPORT) || !defined(HAVE_INFINIBAND_VERBS_H)
78 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
79 	[MLX5_FLOW_TYPE_HW] = &mlx5_flow_hw_drv_ops,
80 #endif
81 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
82 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
83 };
84 
85 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
86 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
87 	(const int []){ \
88 		__VA_ARGS__, 0, \
89 	}
90 
91 /** Node object of input graph for mlx5_flow_expand_rss(). */
92 struct mlx5_flow_expand_node {
93 	const int *const next;
94 	/**<
95 	 * List of next node indexes. Index 0 is interpreted as a terminator.
96 	 */
97 	const enum rte_flow_item_type type;
98 	/**< Pattern item type of current node. */
99 	uint64_t rss_types;
100 	/**<
101 	 * RSS types bit-field associated with this node
102 	 * (see RTE_ETH_RSS_* definitions).
103 	 */
104 	uint64_t node_flags;
105 	/**<
106 	 *  Bit-fields that define how the node is used in the expansion.
107 	 * (see MLX5_EXPANSION_NODE_* definitions).
108 	 */
109 };
110 
111 /* Optional expand field. The expansion alg will not go deeper. */
112 #define MLX5_EXPANSION_NODE_OPTIONAL (UINT64_C(1) << 0)
113 
114 /* The node is not added implicitly as expansion to the flow pattern.
115  * If the node type does not match the flow pattern item type, the
116  * expansion alg will go deeper to its next items.
117  * In the current implementation, the list of next nodes indexes can
118  * have up to one node with this flag set and it has to be the last
119  * node index (before the list terminator).
120  */
121 #define MLX5_EXPANSION_NODE_EXPLICIT (UINT64_C(1) << 1)
122 
123 /** Object returned by mlx5_flow_expand_rss(). */
124 struct mlx5_flow_expand_rss {
125 	uint32_t entries;
126 	/**< Number of entries @p patterns and @p priorities. */
127 	struct {
128 		struct rte_flow_item *pattern; /**< Expanded pattern array. */
129 		uint32_t priority; /**< Priority offset for each expansion. */
130 	} entry[];
131 };
132 
133 static void
134 mlx5_dbg__print_pattern(const struct rte_flow_item *item);
135 
136 static const struct mlx5_flow_expand_node *
137 mlx5_flow_expand_rss_adjust_node(const struct rte_flow_item *pattern,
138 		unsigned int item_idx,
139 		const struct mlx5_flow_expand_node graph[],
140 		const struct mlx5_flow_expand_node *node);
141 
142 static bool
143 mlx5_flow_is_rss_expandable_item(const struct rte_flow_item *item)
144 {
145 	switch (item->type) {
146 	case RTE_FLOW_ITEM_TYPE_ETH:
147 	case RTE_FLOW_ITEM_TYPE_VLAN:
148 	case RTE_FLOW_ITEM_TYPE_IPV4:
149 	case RTE_FLOW_ITEM_TYPE_IPV6:
150 	case RTE_FLOW_ITEM_TYPE_UDP:
151 	case RTE_FLOW_ITEM_TYPE_TCP:
152 	case RTE_FLOW_ITEM_TYPE_VXLAN:
153 	case RTE_FLOW_ITEM_TYPE_NVGRE:
154 	case RTE_FLOW_ITEM_TYPE_GRE:
155 	case RTE_FLOW_ITEM_TYPE_GENEVE:
156 	case RTE_FLOW_ITEM_TYPE_MPLS:
157 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
158 	case RTE_FLOW_ITEM_TYPE_GRE_KEY:
159 	case RTE_FLOW_ITEM_TYPE_IPV6_FRAG_EXT:
160 	case RTE_FLOW_ITEM_TYPE_GTP:
161 		return true;
162 	default:
163 		break;
164 	}
165 	return false;
166 }
167 
168 /**
169  * Network Service Header (NSH) and its next protocol values
170  * are described in RFC-8393.
171  */
172 static enum rte_flow_item_type
173 mlx5_nsh_proto_to_item_type(uint8_t proto_spec, uint8_t proto_mask)
174 {
175 	enum rte_flow_item_type type;
176 
177 	switch (proto_mask & proto_spec) {
178 	case 0:
179 		type = RTE_FLOW_ITEM_TYPE_VOID;
180 		break;
181 	case RTE_VXLAN_GPE_TYPE_IPV4:
182 		type = RTE_FLOW_ITEM_TYPE_IPV4;
183 		break;
184 	case RTE_VXLAN_GPE_TYPE_IPV6:
185 		type = RTE_VXLAN_GPE_TYPE_IPV6;
186 		break;
187 	case RTE_VXLAN_GPE_TYPE_ETH:
188 		type = RTE_FLOW_ITEM_TYPE_ETH;
189 		break;
190 	default:
191 		type = RTE_FLOW_ITEM_TYPE_END;
192 	}
193 	return type;
194 }
195 
196 static enum rte_flow_item_type
197 mlx5_inet_proto_to_item_type(uint8_t proto_spec, uint8_t proto_mask)
198 {
199 	enum rte_flow_item_type type;
200 
201 	switch (proto_mask & proto_spec) {
202 	case 0:
203 		type = RTE_FLOW_ITEM_TYPE_VOID;
204 		break;
205 	case IPPROTO_UDP:
206 		type = RTE_FLOW_ITEM_TYPE_UDP;
207 		break;
208 	case IPPROTO_TCP:
209 		type = RTE_FLOW_ITEM_TYPE_TCP;
210 		break;
211 	case IPPROTO_IPIP:
212 		type = RTE_FLOW_ITEM_TYPE_IPV4;
213 		break;
214 	case IPPROTO_IPV6:
215 		type = RTE_FLOW_ITEM_TYPE_IPV6;
216 		break;
217 	default:
218 		type = RTE_FLOW_ITEM_TYPE_END;
219 	}
220 	return type;
221 }
222 
223 static enum rte_flow_item_type
224 mlx5_ethertype_to_item_type(rte_be16_t type_spec,
225 			    rte_be16_t type_mask, bool is_tunnel)
226 {
227 	enum rte_flow_item_type type;
228 
229 	switch (rte_be_to_cpu_16(type_spec & type_mask)) {
230 	case 0:
231 		type = RTE_FLOW_ITEM_TYPE_VOID;
232 		break;
233 	case RTE_ETHER_TYPE_TEB:
234 		type = is_tunnel ?
235 		       RTE_FLOW_ITEM_TYPE_ETH : RTE_FLOW_ITEM_TYPE_END;
236 		break;
237 	case RTE_ETHER_TYPE_VLAN:
238 		type = !is_tunnel ?
239 		       RTE_FLOW_ITEM_TYPE_VLAN : RTE_FLOW_ITEM_TYPE_END;
240 		break;
241 	case RTE_ETHER_TYPE_IPV4:
242 		type = RTE_FLOW_ITEM_TYPE_IPV4;
243 		break;
244 	case RTE_ETHER_TYPE_IPV6:
245 		type = RTE_FLOW_ITEM_TYPE_IPV6;
246 		break;
247 	default:
248 		type = RTE_FLOW_ITEM_TYPE_END;
249 	}
250 	return type;
251 }
252 
253 static enum rte_flow_item_type
254 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
255 {
256 #define MLX5_XSET_ITEM_MASK_SPEC(type, fld)                              \
257 	do {                                                             \
258 		const void *m = item->mask;                              \
259 		const void *s = item->spec;                              \
260 		mask = m ?                                               \
261 			((const struct rte_flow_item_##type *)m)->fld :  \
262 			rte_flow_item_##type##_mask.fld;                 \
263 		spec = ((const struct rte_flow_item_##type *)s)->fld;    \
264 	} while (0)
265 
266 	enum rte_flow_item_type ret;
267 	uint16_t spec, mask;
268 
269 	if (item == NULL || item->spec == NULL)
270 		return RTE_FLOW_ITEM_TYPE_VOID;
271 	switch (item->type) {
272 	case RTE_FLOW_ITEM_TYPE_ETH:
273 		MLX5_XSET_ITEM_MASK_SPEC(eth, type);
274 		if (!mask)
275 			return RTE_FLOW_ITEM_TYPE_VOID;
276 		ret = mlx5_ethertype_to_item_type(spec, mask, false);
277 		break;
278 	case RTE_FLOW_ITEM_TYPE_VLAN:
279 		MLX5_XSET_ITEM_MASK_SPEC(vlan, inner_type);
280 		if (!mask)
281 			return RTE_FLOW_ITEM_TYPE_VOID;
282 		ret = mlx5_ethertype_to_item_type(spec, mask, false);
283 		break;
284 	case RTE_FLOW_ITEM_TYPE_IPV4:
285 		MLX5_XSET_ITEM_MASK_SPEC(ipv4, hdr.next_proto_id);
286 		if (!mask)
287 			return RTE_FLOW_ITEM_TYPE_VOID;
288 		ret = mlx5_inet_proto_to_item_type(spec, mask);
289 		break;
290 	case RTE_FLOW_ITEM_TYPE_IPV6:
291 		MLX5_XSET_ITEM_MASK_SPEC(ipv6, hdr.proto);
292 		if (!mask)
293 			return RTE_FLOW_ITEM_TYPE_VOID;
294 		ret = mlx5_inet_proto_to_item_type(spec, mask);
295 		break;
296 	case RTE_FLOW_ITEM_TYPE_GENEVE:
297 		MLX5_XSET_ITEM_MASK_SPEC(geneve, protocol);
298 		ret = mlx5_ethertype_to_item_type(spec, mask, true);
299 		break;
300 	case RTE_FLOW_ITEM_TYPE_GRE:
301 		MLX5_XSET_ITEM_MASK_SPEC(gre, protocol);
302 		ret = mlx5_ethertype_to_item_type(spec, mask, true);
303 		break;
304 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
305 		MLX5_XSET_ITEM_MASK_SPEC(vxlan_gpe, protocol);
306 		ret = mlx5_nsh_proto_to_item_type(spec, mask);
307 		break;
308 	default:
309 		ret = RTE_FLOW_ITEM_TYPE_VOID;
310 		break;
311 	}
312 	return ret;
313 #undef MLX5_XSET_ITEM_MASK_SPEC
314 }
315 
316 static const int *
317 mlx5_flow_expand_rss_skip_explicit(const struct mlx5_flow_expand_node graph[],
318 		const int *next_node)
319 {
320 	const struct mlx5_flow_expand_node *node = NULL;
321 	const int *next = next_node;
322 
323 	while (next && *next) {
324 		/*
325 		 * Skip the nodes with the MLX5_EXPANSION_NODE_EXPLICIT
326 		 * flag set, because they were not found in the flow pattern.
327 		 */
328 		node = &graph[*next];
329 		if (!(node->node_flags & MLX5_EXPANSION_NODE_EXPLICIT))
330 			break;
331 		next = node->next;
332 	}
333 	return next;
334 }
335 
336 #define MLX5_RSS_EXP_ELT_N 16
337 
338 /**
339  * Expand RSS flows into several possible flows according to the RSS hash
340  * fields requested and the driver capabilities.
341  *
342  * @param[out] buf
343  *   Buffer to store the result expansion.
344  * @param[in] size
345  *   Buffer size in bytes. If 0, @p buf can be NULL.
346  * @param[in] pattern
347  *   User flow pattern.
348  * @param[in] types
349  *   RSS types to expand (see RTE_ETH_RSS_* definitions).
350  * @param[in] graph
351  *   Input graph to expand @p pattern according to @p types.
352  * @param[in] graph_root_index
353  *   Index of root node in @p graph, typically 0.
354  *
355  * @return
356  *   A positive value representing the size of @p buf in bytes regardless of
357  *   @p size on success, a negative errno value otherwise and rte_errno is
358  *   set, the following errors are defined:
359  *
360  *   -E2BIG: graph-depth @p graph is too deep.
361  *   -EINVAL: @p size has not enough space for expanded pattern.
362  */
363 static int
364 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
365 		     const struct rte_flow_item *pattern, uint64_t types,
366 		     const struct mlx5_flow_expand_node graph[],
367 		     int graph_root_index)
368 {
369 	const struct rte_flow_item *item;
370 	const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
371 	const int *next_node;
372 	const int *stack[MLX5_RSS_EXP_ELT_N];
373 	int stack_pos = 0;
374 	struct rte_flow_item flow_items[MLX5_RSS_EXP_ELT_N];
375 	unsigned int i, item_idx, last_expand_item_idx = 0;
376 	size_t lsize;
377 	size_t user_pattern_size = 0;
378 	void *addr = NULL;
379 	const struct mlx5_flow_expand_node *next = NULL;
380 	struct rte_flow_item missed_item;
381 	int missed = 0;
382 	int elt = 0;
383 	const struct rte_flow_item *last_expand_item = NULL;
384 
385 	memset(&missed_item, 0, sizeof(missed_item));
386 	lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
387 		MLX5_RSS_EXP_ELT_N * sizeof(buf->entry[0]);
388 	if (lsize > size)
389 		return -EINVAL;
390 	buf->entry[0].priority = 0;
391 	buf->entry[0].pattern = (void *)&buf->entry[MLX5_RSS_EXP_ELT_N];
392 	buf->entries = 0;
393 	addr = buf->entry[0].pattern;
394 	for (item = pattern, item_idx = 0;
395 			item->type != RTE_FLOW_ITEM_TYPE_END;
396 			item++, item_idx++) {
397 		if (!mlx5_flow_is_rss_expandable_item(item)) {
398 			user_pattern_size += sizeof(*item);
399 			continue;
400 		}
401 		last_expand_item = item;
402 		last_expand_item_idx = item_idx;
403 		i = 0;
404 		while (node->next && node->next[i]) {
405 			next = &graph[node->next[i]];
406 			if (next->type == item->type)
407 				break;
408 			if (next->node_flags & MLX5_EXPANSION_NODE_EXPLICIT) {
409 				node = next;
410 				i = 0;
411 			} else {
412 				++i;
413 			}
414 		}
415 		if (next)
416 			node = next;
417 		user_pattern_size += sizeof(*item);
418 	}
419 	user_pattern_size += sizeof(*item); /* Handle END item. */
420 	lsize += user_pattern_size;
421 	if (lsize > size)
422 		return -EINVAL;
423 	/* Copy the user pattern in the first entry of the buffer. */
424 	rte_memcpy(addr, pattern, user_pattern_size);
425 	addr = (void *)(((uintptr_t)addr) + user_pattern_size);
426 	buf->entries = 1;
427 	/* Start expanding. */
428 	memset(flow_items, 0, sizeof(flow_items));
429 	user_pattern_size -= sizeof(*item);
430 	/*
431 	 * Check if the last valid item has spec set, need complete pattern,
432 	 * and the pattern can be used for expansion.
433 	 */
434 	missed_item.type = mlx5_flow_expand_rss_item_complete(last_expand_item);
435 	if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
436 		/* Item type END indicates expansion is not required. */
437 		return lsize;
438 	}
439 	if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
440 		next = NULL;
441 		missed = 1;
442 		i = 0;
443 		while (node->next && node->next[i]) {
444 			next = &graph[node->next[i]];
445 			if (next->type == missed_item.type) {
446 				flow_items[0].type = missed_item.type;
447 				flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
448 				break;
449 			}
450 			if (next->node_flags & MLX5_EXPANSION_NODE_EXPLICIT) {
451 				node = next;
452 				i = 0;
453 			} else {
454 				++i;
455 			}
456 			next = NULL;
457 		}
458 	}
459 	if (next && missed) {
460 		elt = 2; /* missed item + item end. */
461 		node = next;
462 		lsize += elt * sizeof(*item) + user_pattern_size;
463 		if (lsize > size)
464 			return -EINVAL;
465 		if (node->rss_types & types) {
466 			buf->entry[buf->entries].priority = 1;
467 			buf->entry[buf->entries].pattern = addr;
468 			buf->entries++;
469 			rte_memcpy(addr, buf->entry[0].pattern,
470 				   user_pattern_size);
471 			addr = (void *)(((uintptr_t)addr) + user_pattern_size);
472 			rte_memcpy(addr, flow_items, elt * sizeof(*item));
473 			addr = (void *)(((uintptr_t)addr) +
474 					elt * sizeof(*item));
475 		}
476 	} else if (last_expand_item != NULL) {
477 		node = mlx5_flow_expand_rss_adjust_node(pattern,
478 				last_expand_item_idx, graph, node);
479 	}
480 	memset(flow_items, 0, sizeof(flow_items));
481 	next_node = mlx5_flow_expand_rss_skip_explicit(graph,
482 			node->next);
483 	stack[stack_pos] = next_node;
484 	node = next_node ? &graph[*next_node] : NULL;
485 	while (node) {
486 		flow_items[stack_pos].type = node->type;
487 		if (node->rss_types & types) {
488 			size_t n;
489 			/*
490 			 * compute the number of items to copy from the
491 			 * expansion and copy it.
492 			 * When the stack_pos is 0, there are 1 element in it,
493 			 * plus the addition END item.
494 			 */
495 			elt = stack_pos + 2;
496 			flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
497 			lsize += elt * sizeof(*item) + user_pattern_size;
498 			if (lsize > size)
499 				return -EINVAL;
500 			n = elt * sizeof(*item);
501 			buf->entry[buf->entries].priority =
502 				stack_pos + 1 + missed;
503 			buf->entry[buf->entries].pattern = addr;
504 			buf->entries++;
505 			rte_memcpy(addr, buf->entry[0].pattern,
506 				   user_pattern_size);
507 			addr = (void *)(((uintptr_t)addr) +
508 					user_pattern_size);
509 			rte_memcpy(addr, &missed_item,
510 				   missed * sizeof(*item));
511 			addr = (void *)(((uintptr_t)addr) +
512 				missed * sizeof(*item));
513 			rte_memcpy(addr, flow_items, n);
514 			addr = (void *)(((uintptr_t)addr) + n);
515 		}
516 		/* Go deeper. */
517 		if (!(node->node_flags & MLX5_EXPANSION_NODE_OPTIONAL) &&
518 				node->next) {
519 			next_node = mlx5_flow_expand_rss_skip_explicit(graph,
520 					node->next);
521 			if (stack_pos++ == MLX5_RSS_EXP_ELT_N) {
522 				rte_errno = E2BIG;
523 				return -rte_errno;
524 			}
525 			stack[stack_pos] = next_node;
526 		} else if (*(next_node + 1)) {
527 			/* Follow up with the next possibility. */
528 			next_node = mlx5_flow_expand_rss_skip_explicit(graph,
529 					++next_node);
530 		} else if (!stack_pos) {
531 			/*
532 			 * Completing the traverse over the different paths.
533 			 * The next_node is advanced to the terminator.
534 			 */
535 			++next_node;
536 		} else {
537 			/* Move to the next path. */
538 			while (stack_pos) {
539 				next_node = stack[--stack_pos];
540 				next_node++;
541 				if (*next_node)
542 					break;
543 			}
544 			next_node = mlx5_flow_expand_rss_skip_explicit(graph,
545 					next_node);
546 			stack[stack_pos] = next_node;
547 		}
548 		node = next_node && *next_node ? &graph[*next_node] : NULL;
549 	};
550 	return lsize;
551 }
552 
553 enum mlx5_expansion {
554 	MLX5_EXPANSION_ROOT,
555 	MLX5_EXPANSION_ROOT_OUTER,
556 	MLX5_EXPANSION_OUTER_ETH,
557 	MLX5_EXPANSION_OUTER_VLAN,
558 	MLX5_EXPANSION_OUTER_IPV4,
559 	MLX5_EXPANSION_OUTER_IPV4_UDP,
560 	MLX5_EXPANSION_OUTER_IPV4_TCP,
561 	MLX5_EXPANSION_OUTER_IPV6,
562 	MLX5_EXPANSION_OUTER_IPV6_UDP,
563 	MLX5_EXPANSION_OUTER_IPV6_TCP,
564 	MLX5_EXPANSION_VXLAN,
565 	MLX5_EXPANSION_STD_VXLAN,
566 	MLX5_EXPANSION_L3_VXLAN,
567 	MLX5_EXPANSION_VXLAN_GPE,
568 	MLX5_EXPANSION_GRE,
569 	MLX5_EXPANSION_NVGRE,
570 	MLX5_EXPANSION_GRE_KEY,
571 	MLX5_EXPANSION_MPLS,
572 	MLX5_EXPANSION_ETH,
573 	MLX5_EXPANSION_VLAN,
574 	MLX5_EXPANSION_IPV4,
575 	MLX5_EXPANSION_IPV4_UDP,
576 	MLX5_EXPANSION_IPV4_TCP,
577 	MLX5_EXPANSION_IPV6,
578 	MLX5_EXPANSION_IPV6_UDP,
579 	MLX5_EXPANSION_IPV6_TCP,
580 	MLX5_EXPANSION_IPV6_FRAG_EXT,
581 	MLX5_EXPANSION_GTP,
582 	MLX5_EXPANSION_GENEVE,
583 };
584 
585 /** Supported expansion of items. */
586 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
587 	[MLX5_EXPANSION_ROOT] = {
588 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
589 						  MLX5_EXPANSION_IPV4,
590 						  MLX5_EXPANSION_IPV6),
591 		.type = RTE_FLOW_ITEM_TYPE_END,
592 	},
593 	[MLX5_EXPANSION_ROOT_OUTER] = {
594 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
595 						  MLX5_EXPANSION_OUTER_IPV4,
596 						  MLX5_EXPANSION_OUTER_IPV6),
597 		.type = RTE_FLOW_ITEM_TYPE_END,
598 	},
599 	[MLX5_EXPANSION_OUTER_ETH] = {
600 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
601 		.type = RTE_FLOW_ITEM_TYPE_ETH,
602 		.rss_types = 0,
603 	},
604 	[MLX5_EXPANSION_OUTER_VLAN] = {
605 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
606 						  MLX5_EXPANSION_OUTER_IPV6),
607 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
608 		.node_flags = MLX5_EXPANSION_NODE_EXPLICIT,
609 	},
610 	[MLX5_EXPANSION_OUTER_IPV4] = {
611 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
612 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
613 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
614 			 MLX5_EXPANSION_GRE,
615 			 MLX5_EXPANSION_NVGRE,
616 			 MLX5_EXPANSION_IPV4,
617 			 MLX5_EXPANSION_IPV6),
618 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
619 		.rss_types = RTE_ETH_RSS_IPV4 | RTE_ETH_RSS_FRAG_IPV4 |
620 			RTE_ETH_RSS_NONFRAG_IPV4_OTHER,
621 	},
622 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
623 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
624 						  MLX5_EXPANSION_VXLAN_GPE,
625 						  MLX5_EXPANSION_MPLS,
626 						  MLX5_EXPANSION_GENEVE,
627 						  MLX5_EXPANSION_GTP),
628 		.type = RTE_FLOW_ITEM_TYPE_UDP,
629 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV4_UDP,
630 	},
631 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
632 		.type = RTE_FLOW_ITEM_TYPE_TCP,
633 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV4_TCP,
634 	},
635 	[MLX5_EXPANSION_OUTER_IPV6] = {
636 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
637 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
638 			 MLX5_EXPANSION_OUTER_IPV6_TCP,
639 			 MLX5_EXPANSION_IPV4,
640 			 MLX5_EXPANSION_IPV6,
641 			 MLX5_EXPANSION_GRE,
642 			 MLX5_EXPANSION_NVGRE),
643 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
644 		.rss_types = RTE_ETH_RSS_IPV6 | RTE_ETH_RSS_FRAG_IPV6 |
645 			RTE_ETH_RSS_NONFRAG_IPV6_OTHER,
646 	},
647 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
648 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
649 						  MLX5_EXPANSION_VXLAN_GPE,
650 						  MLX5_EXPANSION_MPLS,
651 						  MLX5_EXPANSION_GENEVE,
652 						  MLX5_EXPANSION_GTP),
653 		.type = RTE_FLOW_ITEM_TYPE_UDP,
654 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV6_UDP,
655 	},
656 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
657 		.type = RTE_FLOW_ITEM_TYPE_TCP,
658 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV6_TCP,
659 	},
660 	[MLX5_EXPANSION_VXLAN] = {
661 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
662 						  MLX5_EXPANSION_IPV4,
663 						  MLX5_EXPANSION_IPV6),
664 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
665 	},
666 	[MLX5_EXPANSION_STD_VXLAN] = {
667 			.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
668 					.type = RTE_FLOW_ITEM_TYPE_VXLAN,
669 	},
670 	[MLX5_EXPANSION_L3_VXLAN] = {
671 			.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
672 					MLX5_EXPANSION_IPV6),
673 					.type = RTE_FLOW_ITEM_TYPE_VXLAN,
674 	},
675 	[MLX5_EXPANSION_VXLAN_GPE] = {
676 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
677 						  MLX5_EXPANSION_IPV4,
678 						  MLX5_EXPANSION_IPV6),
679 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
680 	},
681 	[MLX5_EXPANSION_GRE] = {
682 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
683 						  MLX5_EXPANSION_IPV4,
684 						  MLX5_EXPANSION_IPV6,
685 						  MLX5_EXPANSION_GRE_KEY,
686 						  MLX5_EXPANSION_MPLS),
687 		.type = RTE_FLOW_ITEM_TYPE_GRE,
688 	},
689 	[MLX5_EXPANSION_GRE_KEY] = {
690 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
691 						  MLX5_EXPANSION_IPV6,
692 						  MLX5_EXPANSION_MPLS),
693 		.type = RTE_FLOW_ITEM_TYPE_GRE_KEY,
694 		.node_flags = MLX5_EXPANSION_NODE_OPTIONAL,
695 	},
696 	[MLX5_EXPANSION_NVGRE] = {
697 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
698 		.type = RTE_FLOW_ITEM_TYPE_NVGRE,
699 	},
700 	[MLX5_EXPANSION_MPLS] = {
701 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
702 						  MLX5_EXPANSION_IPV6,
703 						  MLX5_EXPANSION_ETH),
704 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
705 		.node_flags = MLX5_EXPANSION_NODE_OPTIONAL,
706 	},
707 	[MLX5_EXPANSION_ETH] = {
708 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
709 		.type = RTE_FLOW_ITEM_TYPE_ETH,
710 	},
711 	[MLX5_EXPANSION_VLAN] = {
712 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
713 						  MLX5_EXPANSION_IPV6),
714 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
715 		.node_flags = MLX5_EXPANSION_NODE_EXPLICIT,
716 	},
717 	[MLX5_EXPANSION_IPV4] = {
718 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
719 						  MLX5_EXPANSION_IPV4_TCP),
720 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
721 		.rss_types = RTE_ETH_RSS_IPV4 | RTE_ETH_RSS_FRAG_IPV4 |
722 			RTE_ETH_RSS_NONFRAG_IPV4_OTHER,
723 	},
724 	[MLX5_EXPANSION_IPV4_UDP] = {
725 		.type = RTE_FLOW_ITEM_TYPE_UDP,
726 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV4_UDP,
727 	},
728 	[MLX5_EXPANSION_IPV4_TCP] = {
729 		.type = RTE_FLOW_ITEM_TYPE_TCP,
730 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV4_TCP,
731 	},
732 	[MLX5_EXPANSION_IPV6] = {
733 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
734 						  MLX5_EXPANSION_IPV6_TCP,
735 						  MLX5_EXPANSION_IPV6_FRAG_EXT),
736 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
737 		.rss_types = RTE_ETH_RSS_IPV6 | RTE_ETH_RSS_FRAG_IPV6 |
738 			RTE_ETH_RSS_NONFRAG_IPV6_OTHER,
739 	},
740 	[MLX5_EXPANSION_IPV6_UDP] = {
741 		.type = RTE_FLOW_ITEM_TYPE_UDP,
742 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV6_UDP,
743 	},
744 	[MLX5_EXPANSION_IPV6_TCP] = {
745 		.type = RTE_FLOW_ITEM_TYPE_TCP,
746 		.rss_types = RTE_ETH_RSS_NONFRAG_IPV6_TCP,
747 	},
748 	[MLX5_EXPANSION_IPV6_FRAG_EXT] = {
749 		.type = RTE_FLOW_ITEM_TYPE_IPV6_FRAG_EXT,
750 	},
751 	[MLX5_EXPANSION_GTP] = {
752 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
753 						  MLX5_EXPANSION_IPV6),
754 		.type = RTE_FLOW_ITEM_TYPE_GTP,
755 	},
756 	[MLX5_EXPANSION_GENEVE] = {
757 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
758 						  MLX5_EXPANSION_IPV4,
759 						  MLX5_EXPANSION_IPV6),
760 		.type = RTE_FLOW_ITEM_TYPE_GENEVE,
761 	},
762 };
763 
764 static struct rte_flow_action_handle *
765 mlx5_action_handle_create(struct rte_eth_dev *dev,
766 			  const struct rte_flow_indir_action_conf *conf,
767 			  const struct rte_flow_action *action,
768 			  struct rte_flow_error *error);
769 static int mlx5_action_handle_destroy
770 				(struct rte_eth_dev *dev,
771 				 struct rte_flow_action_handle *handle,
772 				 struct rte_flow_error *error);
773 static int mlx5_action_handle_update
774 				(struct rte_eth_dev *dev,
775 				 struct rte_flow_action_handle *handle,
776 				 const void *update,
777 				 struct rte_flow_error *error);
778 static int mlx5_action_handle_query
779 				(struct rte_eth_dev *dev,
780 				 const struct rte_flow_action_handle *handle,
781 				 void *data,
782 				 struct rte_flow_error *error);
783 static int
784 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
785 		    struct rte_flow_tunnel *app_tunnel,
786 		    struct rte_flow_action **actions,
787 		    uint32_t *num_of_actions,
788 		    struct rte_flow_error *error);
789 static int
790 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
791 		       struct rte_flow_tunnel *app_tunnel,
792 		       struct rte_flow_item **items,
793 		       uint32_t *num_of_items,
794 		       struct rte_flow_error *error);
795 static int
796 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
797 			      struct rte_flow_item *pmd_items,
798 			      uint32_t num_items, struct rte_flow_error *err);
799 static int
800 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
801 				struct rte_flow_action *pmd_actions,
802 				uint32_t num_actions,
803 				struct rte_flow_error *err);
804 static int
805 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
806 				  struct rte_mbuf *m,
807 				  struct rte_flow_restore_info *info,
808 				  struct rte_flow_error *err);
809 static struct rte_flow_item_flex_handle *
810 mlx5_flow_flex_item_create(struct rte_eth_dev *dev,
811 			   const struct rte_flow_item_flex_conf *conf,
812 			   struct rte_flow_error *error);
813 static int
814 mlx5_flow_flex_item_release(struct rte_eth_dev *dev,
815 			    const struct rte_flow_item_flex_handle *handle,
816 			    struct rte_flow_error *error);
817 static int
818 mlx5_flow_info_get(struct rte_eth_dev *dev,
819 		   struct rte_flow_port_info *port_info,
820 		   struct rte_flow_queue_info *queue_info,
821 		   struct rte_flow_error *error);
822 static int
823 mlx5_flow_port_configure(struct rte_eth_dev *dev,
824 			 const struct rte_flow_port_attr *port_attr,
825 			 uint16_t nb_queue,
826 			 const struct rte_flow_queue_attr *queue_attr[],
827 			 struct rte_flow_error *err);
828 
829 static struct rte_flow_pattern_template *
830 mlx5_flow_pattern_template_create(struct rte_eth_dev *dev,
831 		const struct rte_flow_pattern_template_attr *attr,
832 		const struct rte_flow_item items[],
833 		struct rte_flow_error *error);
834 
835 static int
836 mlx5_flow_pattern_template_destroy(struct rte_eth_dev *dev,
837 				   struct rte_flow_pattern_template *template,
838 				   struct rte_flow_error *error);
839 static struct rte_flow_actions_template *
840 mlx5_flow_actions_template_create(struct rte_eth_dev *dev,
841 			const struct rte_flow_actions_template_attr *attr,
842 			const struct rte_flow_action actions[],
843 			const struct rte_flow_action masks[],
844 			struct rte_flow_error *error);
845 static int
846 mlx5_flow_actions_template_destroy(struct rte_eth_dev *dev,
847 				   struct rte_flow_actions_template *template,
848 				   struct rte_flow_error *error);
849 
850 static struct rte_flow_template_table *
851 mlx5_flow_table_create(struct rte_eth_dev *dev,
852 		       const struct rte_flow_template_table_attr *attr,
853 		       struct rte_flow_pattern_template *item_templates[],
854 		       uint8_t nb_item_templates,
855 		       struct rte_flow_actions_template *action_templates[],
856 		       uint8_t nb_action_templates,
857 		       struct rte_flow_error *error);
858 static int
859 mlx5_flow_table_destroy(struct rte_eth_dev *dev,
860 			struct rte_flow_template_table *table,
861 			struct rte_flow_error *error);
862 static struct rte_flow *
863 mlx5_flow_async_flow_create(struct rte_eth_dev *dev,
864 			    uint32_t queue,
865 			    const struct rte_flow_op_attr *attr,
866 			    struct rte_flow_template_table *table,
867 			    const struct rte_flow_item items[],
868 			    uint8_t pattern_template_index,
869 			    const struct rte_flow_action actions[],
870 			    uint8_t action_template_index,
871 			    void *user_data,
872 			    struct rte_flow_error *error);
873 static int
874 mlx5_flow_async_flow_destroy(struct rte_eth_dev *dev,
875 			     uint32_t queue,
876 			     const struct rte_flow_op_attr *attr,
877 			     struct rte_flow *flow,
878 			     void *user_data,
879 			     struct rte_flow_error *error);
880 static int
881 mlx5_flow_pull(struct rte_eth_dev *dev,
882 	       uint32_t queue,
883 	       struct rte_flow_op_result res[],
884 	       uint16_t n_res,
885 	       struct rte_flow_error *error);
886 static int
887 mlx5_flow_push(struct rte_eth_dev *dev,
888 	       uint32_t queue,
889 	       struct rte_flow_error *error);
890 
891 static struct rte_flow_action_handle *
892 mlx5_flow_async_action_handle_create(struct rte_eth_dev *dev, uint32_t queue,
893 				 const struct rte_flow_op_attr *attr,
894 				 const struct rte_flow_indir_action_conf *conf,
895 				 const struct rte_flow_action *action,
896 				 void *user_data,
897 				 struct rte_flow_error *error);
898 
899 static int
900 mlx5_flow_async_action_handle_update(struct rte_eth_dev *dev, uint32_t queue,
901 				 const struct rte_flow_op_attr *attr,
902 				 struct rte_flow_action_handle *handle,
903 				 const void *update,
904 				 void *user_data,
905 				 struct rte_flow_error *error);
906 
907 static int
908 mlx5_flow_async_action_handle_destroy(struct rte_eth_dev *dev, uint32_t queue,
909 				  const struct rte_flow_op_attr *attr,
910 				  struct rte_flow_action_handle *handle,
911 				  void *user_data,
912 				  struct rte_flow_error *error);
913 
914 static const struct rte_flow_ops mlx5_flow_ops = {
915 	.validate = mlx5_flow_validate,
916 	.create = mlx5_flow_create,
917 	.destroy = mlx5_flow_destroy,
918 	.flush = mlx5_flow_flush,
919 	.isolate = mlx5_flow_isolate,
920 	.query = mlx5_flow_query,
921 	.dev_dump = mlx5_flow_dev_dump,
922 	.get_aged_flows = mlx5_flow_get_aged_flows,
923 	.action_handle_create = mlx5_action_handle_create,
924 	.action_handle_destroy = mlx5_action_handle_destroy,
925 	.action_handle_update = mlx5_action_handle_update,
926 	.action_handle_query = mlx5_action_handle_query,
927 	.tunnel_decap_set = mlx5_flow_tunnel_decap_set,
928 	.tunnel_match = mlx5_flow_tunnel_match,
929 	.tunnel_action_decap_release = mlx5_flow_tunnel_action_release,
930 	.tunnel_item_release = mlx5_flow_tunnel_item_release,
931 	.get_restore_info = mlx5_flow_tunnel_get_restore_info,
932 	.flex_item_create = mlx5_flow_flex_item_create,
933 	.flex_item_release = mlx5_flow_flex_item_release,
934 	.info_get = mlx5_flow_info_get,
935 	.configure = mlx5_flow_port_configure,
936 	.pattern_template_create = mlx5_flow_pattern_template_create,
937 	.pattern_template_destroy = mlx5_flow_pattern_template_destroy,
938 	.actions_template_create = mlx5_flow_actions_template_create,
939 	.actions_template_destroy = mlx5_flow_actions_template_destroy,
940 	.template_table_create = mlx5_flow_table_create,
941 	.template_table_destroy = mlx5_flow_table_destroy,
942 	.async_create = mlx5_flow_async_flow_create,
943 	.async_destroy = mlx5_flow_async_flow_destroy,
944 	.pull = mlx5_flow_pull,
945 	.push = mlx5_flow_push,
946 	.async_action_handle_create = mlx5_flow_async_action_handle_create,
947 	.async_action_handle_update = mlx5_flow_async_action_handle_update,
948 	.async_action_handle_destroy = mlx5_flow_async_action_handle_destroy,
949 };
950 
951 /* Tunnel information. */
952 struct mlx5_flow_tunnel_info {
953 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
954 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
955 };
956 
957 static struct mlx5_flow_tunnel_info tunnels_info[] = {
958 	{
959 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
960 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
961 	},
962 	{
963 		.tunnel = MLX5_FLOW_LAYER_GENEVE,
964 		.ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
965 	},
966 	{
967 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
968 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
969 	},
970 	{
971 		.tunnel = MLX5_FLOW_LAYER_GRE,
972 		.ptype = RTE_PTYPE_TUNNEL_GRE,
973 	},
974 	{
975 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
976 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
977 	},
978 	{
979 		.tunnel = MLX5_FLOW_LAYER_MPLS,
980 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
981 	},
982 	{
983 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
984 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
985 	},
986 	{
987 		.tunnel = MLX5_FLOW_LAYER_IPIP,
988 		.ptype = RTE_PTYPE_TUNNEL_IP,
989 	},
990 	{
991 		.tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
992 		.ptype = RTE_PTYPE_TUNNEL_IP,
993 	},
994 	{
995 		.tunnel = MLX5_FLOW_LAYER_GTP,
996 		.ptype = RTE_PTYPE_TUNNEL_GTPU,
997 	},
998 };
999 
1000 
1001 
1002 /**
1003  * Translate tag ID to register.
1004  *
1005  * @param[in] dev
1006  *   Pointer to the Ethernet device structure.
1007  * @param[in] feature
1008  *   The feature that request the register.
1009  * @param[in] id
1010  *   The request register ID.
1011  * @param[out] error
1012  *   Error description in case of any.
1013  *
1014  * @return
1015  *   The request register on success, a negative errno
1016  *   value otherwise and rte_errno is set.
1017  */
1018 int
1019 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
1020 		     enum mlx5_feature_name feature,
1021 		     uint32_t id,
1022 		     struct rte_flow_error *error)
1023 {
1024 	struct mlx5_priv *priv = dev->data->dev_private;
1025 	struct mlx5_sh_config *config = &priv->sh->config;
1026 	enum modify_reg start_reg;
1027 	bool skip_mtr_reg = false;
1028 
1029 	switch (feature) {
1030 	case MLX5_HAIRPIN_RX:
1031 		return REG_B;
1032 	case MLX5_HAIRPIN_TX:
1033 		return REG_A;
1034 	case MLX5_METADATA_RX:
1035 		switch (config->dv_xmeta_en) {
1036 		case MLX5_XMETA_MODE_LEGACY:
1037 			return REG_B;
1038 		case MLX5_XMETA_MODE_META16:
1039 			return REG_C_0;
1040 		case MLX5_XMETA_MODE_META32:
1041 			return REG_C_1;
1042 		}
1043 		break;
1044 	case MLX5_METADATA_TX:
1045 		return REG_A;
1046 	case MLX5_METADATA_FDB:
1047 		switch (config->dv_xmeta_en) {
1048 		case MLX5_XMETA_MODE_LEGACY:
1049 			return REG_NON;
1050 		case MLX5_XMETA_MODE_META16:
1051 			return REG_C_0;
1052 		case MLX5_XMETA_MODE_META32:
1053 			return REG_C_1;
1054 		}
1055 		break;
1056 	case MLX5_FLOW_MARK:
1057 		switch (config->dv_xmeta_en) {
1058 		case MLX5_XMETA_MODE_LEGACY:
1059 			return REG_NON;
1060 		case MLX5_XMETA_MODE_META16:
1061 			return REG_C_1;
1062 		case MLX5_XMETA_MODE_META32:
1063 			return REG_C_0;
1064 		}
1065 		break;
1066 	case MLX5_MTR_ID:
1067 		/*
1068 		 * If meter color and meter id share one register, flow match
1069 		 * should use the meter color register for match.
1070 		 */
1071 		if (priv->mtr_reg_share)
1072 			return priv->mtr_color_reg;
1073 		else
1074 			return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
1075 			       REG_C_3;
1076 	case MLX5_MTR_COLOR:
1077 	case MLX5_ASO_FLOW_HIT:
1078 	case MLX5_ASO_CONNTRACK:
1079 	case MLX5_SAMPLE_ID:
1080 		/* All features use the same REG_C. */
1081 		MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
1082 		return priv->mtr_color_reg;
1083 	case MLX5_COPY_MARK:
1084 		/*
1085 		 * Metadata COPY_MARK register using is in meter suffix sub
1086 		 * flow while with meter. It's safe to share the same register.
1087 		 */
1088 		return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
1089 	case MLX5_APP_TAG:
1090 		/*
1091 		 * If meter is enable, it will engage the register for color
1092 		 * match and flow match. If meter color match is not using the
1093 		 * REG_C_2, need to skip the REG_C_x be used by meter color
1094 		 * match.
1095 		 * If meter is disable, free to use all available registers.
1096 		 */
1097 		start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
1098 			    (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
1099 		skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
1100 		if (id > (uint32_t)(REG_C_7 - start_reg))
1101 			return rte_flow_error_set(error, EINVAL,
1102 						  RTE_FLOW_ERROR_TYPE_ITEM,
1103 						  NULL, "invalid tag id");
1104 		if (priv->sh->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
1105 			return rte_flow_error_set(error, ENOTSUP,
1106 						  RTE_FLOW_ERROR_TYPE_ITEM,
1107 						  NULL, "unsupported tag id");
1108 		/*
1109 		 * This case means meter is using the REG_C_x great than 2.
1110 		 * Take care not to conflict with meter color REG_C_x.
1111 		 * If the available index REG_C_y >= REG_C_x, skip the
1112 		 * color register.
1113 		 */
1114 		if (skip_mtr_reg && priv->sh->flow_mreg_c
1115 		    [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
1116 			if (id >= (uint32_t)(REG_C_7 - start_reg))
1117 				return rte_flow_error_set(error, EINVAL,
1118 						       RTE_FLOW_ERROR_TYPE_ITEM,
1119 							NULL, "invalid tag id");
1120 			if (priv->sh->flow_mreg_c
1121 			    [id + 1 + start_reg - REG_C_0] != REG_NON)
1122 				return priv->sh->flow_mreg_c
1123 					       [id + 1 + start_reg - REG_C_0];
1124 			return rte_flow_error_set(error, ENOTSUP,
1125 						  RTE_FLOW_ERROR_TYPE_ITEM,
1126 						  NULL, "unsupported tag id");
1127 		}
1128 		return priv->sh->flow_mreg_c[id + start_reg - REG_C_0];
1129 	}
1130 	MLX5_ASSERT(false);
1131 	return rte_flow_error_set(error, EINVAL,
1132 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
1133 				  NULL, "invalid feature name");
1134 }
1135 
1136 /**
1137  * Check extensive flow metadata register support.
1138  *
1139  * @param dev
1140  *   Pointer to rte_eth_dev structure.
1141  *
1142  * @return
1143  *   True if device supports extensive flow metadata register, otherwise false.
1144  */
1145 bool
1146 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
1147 {
1148 	struct mlx5_priv *priv = dev->data->dev_private;
1149 
1150 	/*
1151 	 * Having available reg_c can be regarded inclusively as supporting
1152 	 * extensive flow metadata register, which could mean,
1153 	 * - metadata register copy action by modify header.
1154 	 * - 16 modify header actions is supported.
1155 	 * - reg_c's are preserved across different domain (FDB and NIC) on
1156 	 *   packet loopback by flow lookup miss.
1157 	 */
1158 	return priv->sh->flow_mreg_c[2] != REG_NON;
1159 }
1160 
1161 /**
1162  * Get the lowest priority.
1163  *
1164  * @param[in] dev
1165  *   Pointer to the Ethernet device structure.
1166  * @param[in] attributes
1167  *   Pointer to device flow rule attributes.
1168  *
1169  * @return
1170  *   The value of lowest priority of flow.
1171  */
1172 uint32_t
1173 mlx5_get_lowest_priority(struct rte_eth_dev *dev,
1174 			  const struct rte_flow_attr *attr)
1175 {
1176 	struct mlx5_priv *priv = dev->data->dev_private;
1177 
1178 	if (!attr->group && !attr->transfer)
1179 		return priv->sh->flow_max_priority - 2;
1180 	return MLX5_NON_ROOT_FLOW_MAX_PRIO - 1;
1181 }
1182 
1183 /**
1184  * Calculate matcher priority of the flow.
1185  *
1186  * @param[in] dev
1187  *   Pointer to the Ethernet device structure.
1188  * @param[in] attr
1189  *   Pointer to device flow rule attributes.
1190  * @param[in] subpriority
1191  *   The priority based on the items.
1192  * @param[in] external
1193  *   Flow is user flow.
1194  * @return
1195  *   The matcher priority of the flow.
1196  */
1197 uint16_t
1198 mlx5_get_matcher_priority(struct rte_eth_dev *dev,
1199 			  const struct rte_flow_attr *attr,
1200 			  uint32_t subpriority, bool external)
1201 {
1202 	uint16_t priority = (uint16_t)attr->priority;
1203 	struct mlx5_priv *priv = dev->data->dev_private;
1204 
1205 	if (!attr->group && !attr->transfer) {
1206 		if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)
1207 			priority = priv->sh->flow_max_priority - 1;
1208 		return mlx5_os_flow_adjust_priority(dev, priority, subpriority);
1209 	} else if (!external && attr->transfer && attr->group == 0 &&
1210 		   attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR) {
1211 		return (priv->sh->flow_max_priority - 1) * 3;
1212 	}
1213 	if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)
1214 		priority = MLX5_NON_ROOT_FLOW_MAX_PRIO;
1215 	return priority * 3 + subpriority;
1216 }
1217 
1218 /**
1219  * Verify the @p item specifications (spec, last, mask) are compatible with the
1220  * NIC capabilities.
1221  *
1222  * @param[in] item
1223  *   Item specification.
1224  * @param[in] mask
1225  *   @p item->mask or flow default bit-masks.
1226  * @param[in] nic_mask
1227  *   Bit-masks covering supported fields by the NIC to compare with user mask.
1228  * @param[in] size
1229  *   Bit-masks size in bytes.
1230  * @param[in] range_accepted
1231  *   True if range of values is accepted for specific fields, false otherwise.
1232  * @param[out] error
1233  *   Pointer to error structure.
1234  *
1235  * @return
1236  *   0 on success, a negative errno value otherwise and rte_errno is set.
1237  */
1238 int
1239 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
1240 			  const uint8_t *mask,
1241 			  const uint8_t *nic_mask,
1242 			  unsigned int size,
1243 			  bool range_accepted,
1244 			  struct rte_flow_error *error)
1245 {
1246 	unsigned int i;
1247 
1248 	MLX5_ASSERT(nic_mask);
1249 	for (i = 0; i < size; ++i)
1250 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
1251 			return rte_flow_error_set(error, ENOTSUP,
1252 						  RTE_FLOW_ERROR_TYPE_ITEM,
1253 						  item,
1254 						  "mask enables non supported"
1255 						  " bits");
1256 	if (!item->spec && (item->mask || item->last))
1257 		return rte_flow_error_set(error, EINVAL,
1258 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1259 					  "mask/last without a spec is not"
1260 					  " supported");
1261 	if (item->spec && item->last && !range_accepted) {
1262 		uint8_t spec[size];
1263 		uint8_t last[size];
1264 		unsigned int i;
1265 		int ret;
1266 
1267 		for (i = 0; i < size; ++i) {
1268 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
1269 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
1270 		}
1271 		ret = memcmp(spec, last, size);
1272 		if (ret != 0)
1273 			return rte_flow_error_set(error, EINVAL,
1274 						  RTE_FLOW_ERROR_TYPE_ITEM,
1275 						  item,
1276 						  "range is not valid");
1277 	}
1278 	return 0;
1279 }
1280 
1281 /**
1282  * Adjust the hash fields according to the @p flow information.
1283  *
1284  * @param[in] dev_flow.
1285  *   Pointer to the mlx5_flow.
1286  * @param[in] tunnel
1287  *   1 when the hash field is for a tunnel item.
1288  * @param[in] layer_types
1289  *   RTE_ETH_RSS_* types.
1290  * @param[in] hash_fields
1291  *   Item hash fields.
1292  *
1293  * @return
1294  *   The hash fields that should be used.
1295  */
1296 uint64_t
1297 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
1298 			    int tunnel __rte_unused, uint64_t layer_types,
1299 			    uint64_t hash_fields)
1300 {
1301 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1302 	int rss_request_inner = rss_desc->level >= 2;
1303 
1304 	/* Check RSS hash level for tunnel. */
1305 	if (tunnel && rss_request_inner)
1306 		hash_fields |= IBV_RX_HASH_INNER;
1307 	else if (tunnel || rss_request_inner)
1308 		return 0;
1309 #endif
1310 	/* Check if requested layer matches RSS hash fields. */
1311 	if (!(rss_desc->types & layer_types))
1312 		return 0;
1313 	return hash_fields;
1314 }
1315 
1316 /**
1317  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
1318  * if several tunnel rules are used on this queue, the tunnel ptype will be
1319  * cleared.
1320  *
1321  * @param rxq_ctrl
1322  *   Rx queue to update.
1323  */
1324 static void
1325 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
1326 {
1327 	unsigned int i;
1328 	uint32_t tunnel_ptype = 0;
1329 
1330 	/* Look up for the ptype to use. */
1331 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
1332 		if (!rxq_ctrl->flow_tunnels_n[i])
1333 			continue;
1334 		if (!tunnel_ptype) {
1335 			tunnel_ptype = tunnels_info[i].ptype;
1336 		} else {
1337 			tunnel_ptype = 0;
1338 			break;
1339 		}
1340 	}
1341 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
1342 }
1343 
1344 /**
1345  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the device
1346  * flow.
1347  *
1348  * @param[in] dev
1349  *   Pointer to the Ethernet device structure.
1350  * @param[in] dev_handle
1351  *   Pointer to device flow handle structure.
1352  */
1353 void
1354 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
1355 		       struct mlx5_flow_handle *dev_handle)
1356 {
1357 	struct mlx5_priv *priv = dev->data->dev_private;
1358 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1359 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1360 	unsigned int i;
1361 
1362 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1363 		struct mlx5_hrxq *hrxq;
1364 
1365 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1366 			      dev_handle->rix_hrxq);
1367 		if (hrxq)
1368 			ind_tbl = hrxq->ind_table;
1369 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1370 		struct mlx5_shared_action_rss *shared_rss;
1371 
1372 		shared_rss = mlx5_ipool_get
1373 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1374 			 dev_handle->rix_srss);
1375 		if (shared_rss)
1376 			ind_tbl = shared_rss->ind_tbl;
1377 	}
1378 	if (!ind_tbl)
1379 		return;
1380 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1381 		int idx = ind_tbl->queues[i];
1382 		struct mlx5_rxq_ctrl *rxq_ctrl = mlx5_rxq_ctrl_get(dev, idx);
1383 
1384 		MLX5_ASSERT(rxq_ctrl != NULL);
1385 		if (rxq_ctrl == NULL)
1386 			continue;
1387 		/*
1388 		 * To support metadata register copy on Tx loopback,
1389 		 * this must be always enabled (metadata may arive
1390 		 * from other port - not from local flows only.
1391 		 */
1392 		if (tunnel) {
1393 			unsigned int j;
1394 
1395 			/* Increase the counter matching the flow. */
1396 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1397 				if ((tunnels_info[j].tunnel &
1398 				     dev_handle->layers) ==
1399 				    tunnels_info[j].tunnel) {
1400 					rxq_ctrl->flow_tunnels_n[j]++;
1401 					break;
1402 				}
1403 			}
1404 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1405 		}
1406 	}
1407 }
1408 
1409 static void
1410 flow_rxq_mark_flag_set(struct rte_eth_dev *dev)
1411 {
1412 	struct mlx5_priv *priv = dev->data->dev_private;
1413 	struct mlx5_rxq_ctrl *rxq_ctrl;
1414 
1415 	if (priv->mark_enabled)
1416 		return;
1417 	LIST_FOREACH(rxq_ctrl, &priv->rxqsctrl, next) {
1418 		rxq_ctrl->rxq.mark = 1;
1419 	}
1420 	priv->mark_enabled = 1;
1421 }
1422 
1423 /**
1424  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
1425  *
1426  * @param[in] dev
1427  *   Pointer to the Ethernet device structure.
1428  * @param[in] flow
1429  *   Pointer to flow structure.
1430  */
1431 static void
1432 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
1433 {
1434 	struct mlx5_priv *priv = dev->data->dev_private;
1435 	uint32_t handle_idx;
1436 	struct mlx5_flow_handle *dev_handle;
1437 	struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace();
1438 
1439 	MLX5_ASSERT(wks);
1440 	if (wks->mark)
1441 		flow_rxq_mark_flag_set(dev);
1442 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1443 		       handle_idx, dev_handle, next)
1444 		flow_drv_rxq_flags_set(dev, dev_handle);
1445 }
1446 
1447 /**
1448  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1449  * device flow if no other flow uses it with the same kind of request.
1450  *
1451  * @param dev
1452  *   Pointer to Ethernet device.
1453  * @param[in] dev_handle
1454  *   Pointer to the device flow handle structure.
1455  */
1456 static void
1457 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1458 			struct mlx5_flow_handle *dev_handle)
1459 {
1460 	struct mlx5_priv *priv = dev->data->dev_private;
1461 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1462 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1463 	unsigned int i;
1464 
1465 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1466 		struct mlx5_hrxq *hrxq;
1467 
1468 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1469 			      dev_handle->rix_hrxq);
1470 		if (hrxq)
1471 			ind_tbl = hrxq->ind_table;
1472 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1473 		struct mlx5_shared_action_rss *shared_rss;
1474 
1475 		shared_rss = mlx5_ipool_get
1476 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1477 			 dev_handle->rix_srss);
1478 		if (shared_rss)
1479 			ind_tbl = shared_rss->ind_tbl;
1480 	}
1481 	if (!ind_tbl)
1482 		return;
1483 	MLX5_ASSERT(dev->data->dev_started);
1484 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1485 		int idx = ind_tbl->queues[i];
1486 		struct mlx5_rxq_ctrl *rxq_ctrl = mlx5_rxq_ctrl_get(dev, idx);
1487 
1488 		MLX5_ASSERT(rxq_ctrl != NULL);
1489 		if (rxq_ctrl == NULL)
1490 			continue;
1491 		if (tunnel) {
1492 			unsigned int j;
1493 
1494 			/* Decrease the counter matching the flow. */
1495 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1496 				if ((tunnels_info[j].tunnel &
1497 				     dev_handle->layers) ==
1498 				    tunnels_info[j].tunnel) {
1499 					rxq_ctrl->flow_tunnels_n[j]--;
1500 					break;
1501 				}
1502 			}
1503 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1504 		}
1505 	}
1506 }
1507 
1508 /**
1509  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1510  * @p flow if no other flow uses it with the same kind of request.
1511  *
1512  * @param dev
1513  *   Pointer to Ethernet device.
1514  * @param[in] flow
1515  *   Pointer to the flow.
1516  */
1517 static void
1518 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1519 {
1520 	struct mlx5_priv *priv = dev->data->dev_private;
1521 	uint32_t handle_idx;
1522 	struct mlx5_flow_handle *dev_handle;
1523 
1524 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1525 		       handle_idx, dev_handle, next)
1526 		flow_drv_rxq_flags_trim(dev, dev_handle);
1527 }
1528 
1529 /**
1530  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1531  *
1532  * @param dev
1533  *   Pointer to Ethernet device.
1534  */
1535 static void
1536 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1537 {
1538 	struct mlx5_priv *priv = dev->data->dev_private;
1539 	unsigned int i;
1540 
1541 	for (i = 0; i != priv->rxqs_n; ++i) {
1542 		struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, i);
1543 		unsigned int j;
1544 
1545 		if (rxq == NULL || rxq->ctrl == NULL)
1546 			continue;
1547 		rxq->ctrl->rxq.mark = 0;
1548 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1549 			rxq->ctrl->flow_tunnels_n[j] = 0;
1550 		rxq->ctrl->rxq.tunnel = 0;
1551 	}
1552 	priv->mark_enabled = 0;
1553 }
1554 
1555 /**
1556  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1557  *
1558  * @param[in] dev
1559  *   Pointer to the Ethernet device structure.
1560  */
1561 void
1562 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1563 {
1564 	struct mlx5_priv *priv = dev->data->dev_private;
1565 	unsigned int i;
1566 
1567 	for (i = 0; i != priv->rxqs_n; ++i) {
1568 		struct mlx5_rxq_priv *rxq = mlx5_rxq_get(dev, i);
1569 		struct mlx5_rxq_data *data;
1570 
1571 		if (rxq == NULL || rxq->ctrl == NULL)
1572 			continue;
1573 		data = &rxq->ctrl->rxq;
1574 		if (!rte_flow_dynf_metadata_avail()) {
1575 			data->dynf_meta = 0;
1576 			data->flow_meta_mask = 0;
1577 			data->flow_meta_offset = -1;
1578 			data->flow_meta_port_mask = 0;
1579 		} else {
1580 			data->dynf_meta = 1;
1581 			data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1582 			data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1583 			data->flow_meta_port_mask = priv->sh->dv_meta_mask;
1584 		}
1585 	}
1586 }
1587 
1588 /*
1589  * return a pointer to the desired action in the list of actions.
1590  *
1591  * @param[in] actions
1592  *   The list of actions to search the action in.
1593  * @param[in] action
1594  *   The action to find.
1595  *
1596  * @return
1597  *   Pointer to the action in the list, if found. NULL otherwise.
1598  */
1599 const struct rte_flow_action *
1600 mlx5_flow_find_action(const struct rte_flow_action *actions,
1601 		      enum rte_flow_action_type action)
1602 {
1603 	if (actions == NULL)
1604 		return NULL;
1605 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1606 		if (actions->type == action)
1607 			return actions;
1608 	return NULL;
1609 }
1610 
1611 /*
1612  * Validate the flag action.
1613  *
1614  * @param[in] action_flags
1615  *   Bit-fields that holds the actions detected until now.
1616  * @param[in] attr
1617  *   Attributes of flow that includes this action.
1618  * @param[out] error
1619  *   Pointer to error structure.
1620  *
1621  * @return
1622  *   0 on success, a negative errno value otherwise and rte_errno is set.
1623  */
1624 int
1625 mlx5_flow_validate_action_flag(uint64_t action_flags,
1626 			       const struct rte_flow_attr *attr,
1627 			       struct rte_flow_error *error)
1628 {
1629 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1630 		return rte_flow_error_set(error, EINVAL,
1631 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1632 					  "can't mark and flag in same flow");
1633 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1634 		return rte_flow_error_set(error, EINVAL,
1635 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1636 					  "can't have 2 flag"
1637 					  " actions in same flow");
1638 	if (attr->egress)
1639 		return rte_flow_error_set(error, ENOTSUP,
1640 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1641 					  "flag action not supported for "
1642 					  "egress");
1643 	return 0;
1644 }
1645 
1646 /*
1647  * Validate the mark action.
1648  *
1649  * @param[in] action
1650  *   Pointer to the queue action.
1651  * @param[in] action_flags
1652  *   Bit-fields that holds the actions detected until now.
1653  * @param[in] attr
1654  *   Attributes of flow that includes this action.
1655  * @param[out] error
1656  *   Pointer to error structure.
1657  *
1658  * @return
1659  *   0 on success, a negative errno value otherwise and rte_errno is set.
1660  */
1661 int
1662 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1663 			       uint64_t action_flags,
1664 			       const struct rte_flow_attr *attr,
1665 			       struct rte_flow_error *error)
1666 {
1667 	const struct rte_flow_action_mark *mark = action->conf;
1668 
1669 	if (!mark)
1670 		return rte_flow_error_set(error, EINVAL,
1671 					  RTE_FLOW_ERROR_TYPE_ACTION,
1672 					  action,
1673 					  "configuration cannot be null");
1674 	if (mark->id >= MLX5_FLOW_MARK_MAX)
1675 		return rte_flow_error_set(error, EINVAL,
1676 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1677 					  &mark->id,
1678 					  "mark id must in 0 <= id < "
1679 					  RTE_STR(MLX5_FLOW_MARK_MAX));
1680 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1681 		return rte_flow_error_set(error, EINVAL,
1682 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1683 					  "can't flag and mark in same flow");
1684 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1685 		return rte_flow_error_set(error, EINVAL,
1686 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1687 					  "can't have 2 mark actions in same"
1688 					  " flow");
1689 	if (attr->egress)
1690 		return rte_flow_error_set(error, ENOTSUP,
1691 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1692 					  "mark action not supported for "
1693 					  "egress");
1694 	return 0;
1695 }
1696 
1697 /*
1698  * Validate the drop action.
1699  *
1700  * @param[in] action_flags
1701  *   Bit-fields that holds the actions detected until now.
1702  * @param[in] attr
1703  *   Attributes of flow that includes this action.
1704  * @param[out] error
1705  *   Pointer to error structure.
1706  *
1707  * @return
1708  *   0 on success, a negative errno value otherwise and rte_errno is set.
1709  */
1710 int
1711 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1712 			       const struct rte_flow_attr *attr,
1713 			       struct rte_flow_error *error)
1714 {
1715 	if (attr->egress)
1716 		return rte_flow_error_set(error, ENOTSUP,
1717 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1718 					  "drop action not supported for "
1719 					  "egress");
1720 	return 0;
1721 }
1722 
1723 /*
1724  * Validate the queue action.
1725  *
1726  * @param[in] action
1727  *   Pointer to the queue action.
1728  * @param[in] action_flags
1729  *   Bit-fields that holds the actions detected until now.
1730  * @param[in] dev
1731  *   Pointer to the Ethernet device structure.
1732  * @param[in] attr
1733  *   Attributes of flow that includes this action.
1734  * @param[out] error
1735  *   Pointer to error structure.
1736  *
1737  * @return
1738  *   0 on success, a negative errno value otherwise and rte_errno is set.
1739  */
1740 int
1741 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1742 				uint64_t action_flags,
1743 				struct rte_eth_dev *dev,
1744 				const struct rte_flow_attr *attr,
1745 				struct rte_flow_error *error)
1746 {
1747 	struct mlx5_priv *priv = dev->data->dev_private;
1748 	const struct rte_flow_action_queue *queue = action->conf;
1749 
1750 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1751 		return rte_flow_error_set(error, EINVAL,
1752 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1753 					  "can't have 2 fate actions in"
1754 					  " same flow");
1755 	if (attr->egress)
1756 		return rte_flow_error_set(error, ENOTSUP,
1757 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1758 					  "queue action not supported for egress.");
1759 	if (mlx5_is_external_rxq(dev, queue->index))
1760 		return 0;
1761 	if (!priv->rxqs_n)
1762 		return rte_flow_error_set(error, EINVAL,
1763 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1764 					  NULL, "No Rx queues configured");
1765 	if (queue->index >= priv->rxqs_n)
1766 		return rte_flow_error_set(error, EINVAL,
1767 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1768 					  &queue->index,
1769 					  "queue index out of range");
1770 	if (mlx5_rxq_get(dev, queue->index) == NULL)
1771 		return rte_flow_error_set(error, EINVAL,
1772 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1773 					  &queue->index,
1774 					  "queue is not configured");
1775 	return 0;
1776 }
1777 
1778 /**
1779  * Validate queue numbers for device RSS.
1780  *
1781  * @param[in] dev
1782  *   Configured device.
1783  * @param[in] queues
1784  *   Array of queue numbers.
1785  * @param[in] queues_n
1786  *   Size of the @p queues array.
1787  * @param[out] error
1788  *   On error, filled with a textual error description.
1789  * @param[out] queue_idx
1790  *   On error, filled with an offending queue index in @p queues array.
1791  *
1792  * @return
1793  *   0 on success, a negative errno code on error.
1794  */
1795 static int
1796 mlx5_validate_rss_queues(struct rte_eth_dev *dev,
1797 			 const uint16_t *queues, uint32_t queues_n,
1798 			 const char **error, uint32_t *queue_idx)
1799 {
1800 	const struct mlx5_priv *priv = dev->data->dev_private;
1801 	bool is_hairpin = false;
1802 	bool is_ext_rss = false;
1803 	uint32_t i;
1804 
1805 	for (i = 0; i != queues_n; ++i) {
1806 		struct mlx5_rxq_ctrl *rxq_ctrl;
1807 
1808 		if (mlx5_is_external_rxq(dev, queues[0])) {
1809 			is_ext_rss = true;
1810 			continue;
1811 		}
1812 		if (is_ext_rss) {
1813 			*error = "Combining external and regular RSS queues is not supported";
1814 			*queue_idx = i;
1815 			return -ENOTSUP;
1816 		}
1817 		if (queues[i] >= priv->rxqs_n) {
1818 			*error = "queue index out of range";
1819 			*queue_idx = i;
1820 			return -EINVAL;
1821 		}
1822 		rxq_ctrl = mlx5_rxq_ctrl_get(dev, queues[i]);
1823 		if (rxq_ctrl == NULL) {
1824 			*error =  "queue is not configured";
1825 			*queue_idx = i;
1826 			return -EINVAL;
1827 		}
1828 		if (i == 0 && rxq_ctrl->is_hairpin)
1829 			is_hairpin = true;
1830 		if (is_hairpin != rxq_ctrl->is_hairpin) {
1831 			*error = "combining hairpin and regular RSS queues is not supported";
1832 			*queue_idx = i;
1833 			return -ENOTSUP;
1834 		}
1835 	}
1836 	return 0;
1837 }
1838 
1839 /*
1840  * Validate the rss action.
1841  *
1842  * @param[in] dev
1843  *   Pointer to the Ethernet device structure.
1844  * @param[in] action
1845  *   Pointer to the queue action.
1846  * @param[out] error
1847  *   Pointer to error structure.
1848  *
1849  * @return
1850  *   0 on success, a negative errno value otherwise and rte_errno is set.
1851  */
1852 int
1853 mlx5_validate_action_rss(struct rte_eth_dev *dev,
1854 			 const struct rte_flow_action *action,
1855 			 struct rte_flow_error *error)
1856 {
1857 	struct mlx5_priv *priv = dev->data->dev_private;
1858 	const struct rte_flow_action_rss *rss = action->conf;
1859 	int ret;
1860 	const char *message;
1861 	uint32_t queue_idx;
1862 
1863 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1864 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1865 		return rte_flow_error_set(error, ENOTSUP,
1866 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1867 					  &rss->func,
1868 					  "RSS hash function not supported");
1869 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1870 	if (rss->level > 2)
1871 #else
1872 	if (rss->level > 1)
1873 #endif
1874 		return rte_flow_error_set(error, ENOTSUP,
1875 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1876 					  &rss->level,
1877 					  "tunnel RSS is not supported");
1878 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
1879 	if (rss->key_len == 0 && rss->key != NULL)
1880 		return rte_flow_error_set(error, ENOTSUP,
1881 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1882 					  &rss->key_len,
1883 					  "RSS hash key length 0");
1884 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1885 		return rte_flow_error_set(error, ENOTSUP,
1886 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1887 					  &rss->key_len,
1888 					  "RSS hash key too small");
1889 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1890 		return rte_flow_error_set(error, ENOTSUP,
1891 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1892 					  &rss->key_len,
1893 					  "RSS hash key too large");
1894 	if (rss->queue_num > priv->sh->dev_cap.ind_table_max_size)
1895 		return rte_flow_error_set(error, ENOTSUP,
1896 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1897 					  &rss->queue_num,
1898 					  "number of queues too large");
1899 	if (rss->types & MLX5_RSS_HF_MASK)
1900 		return rte_flow_error_set(error, ENOTSUP,
1901 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1902 					  &rss->types,
1903 					  "some RSS protocols are not"
1904 					  " supported");
1905 	if ((rss->types & (RTE_ETH_RSS_L3_SRC_ONLY | RTE_ETH_RSS_L3_DST_ONLY)) &&
1906 	    !(rss->types & RTE_ETH_RSS_IP))
1907 		return rte_flow_error_set(error, EINVAL,
1908 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1909 					  "L3 partial RSS requested but L3 RSS"
1910 					  " type not specified");
1911 	if ((rss->types & (RTE_ETH_RSS_L4_SRC_ONLY | RTE_ETH_RSS_L4_DST_ONLY)) &&
1912 	    !(rss->types & (RTE_ETH_RSS_UDP | RTE_ETH_RSS_TCP)))
1913 		return rte_flow_error_set(error, EINVAL,
1914 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1915 					  "L4 partial RSS requested but L4 RSS"
1916 					  " type not specified");
1917 	if (!priv->rxqs_n && priv->ext_rxqs == NULL)
1918 		return rte_flow_error_set(error, EINVAL,
1919 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1920 					  NULL, "No Rx queues configured");
1921 	if (!rss->queue_num)
1922 		return rte_flow_error_set(error, EINVAL,
1923 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1924 					  NULL, "No queues configured");
1925 	ret = mlx5_validate_rss_queues(dev, rss->queue, rss->queue_num,
1926 				       &message, &queue_idx);
1927 	if (ret != 0) {
1928 		return rte_flow_error_set(error, -ret,
1929 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1930 					  &rss->queue[queue_idx], message);
1931 	}
1932 	return 0;
1933 }
1934 
1935 /*
1936  * Validate the rss action.
1937  *
1938  * @param[in] action
1939  *   Pointer to the queue action.
1940  * @param[in] action_flags
1941  *   Bit-fields that holds the actions detected until now.
1942  * @param[in] dev
1943  *   Pointer to the Ethernet device structure.
1944  * @param[in] attr
1945  *   Attributes of flow that includes this action.
1946  * @param[in] item_flags
1947  *   Items that were detected.
1948  * @param[out] error
1949  *   Pointer to error structure.
1950  *
1951  * @return
1952  *   0 on success, a negative errno value otherwise and rte_errno is set.
1953  */
1954 int
1955 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1956 			      uint64_t action_flags,
1957 			      struct rte_eth_dev *dev,
1958 			      const struct rte_flow_attr *attr,
1959 			      uint64_t item_flags,
1960 			      struct rte_flow_error *error)
1961 {
1962 	const struct rte_flow_action_rss *rss = action->conf;
1963 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1964 	int ret;
1965 
1966 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1967 		return rte_flow_error_set(error, EINVAL,
1968 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1969 					  "can't have 2 fate actions"
1970 					  " in same flow");
1971 	ret = mlx5_validate_action_rss(dev, action, error);
1972 	if (ret)
1973 		return ret;
1974 	if (attr->egress)
1975 		return rte_flow_error_set(error, ENOTSUP,
1976 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1977 					  "rss action not supported for "
1978 					  "egress");
1979 	if (rss->level > 1 && !tunnel)
1980 		return rte_flow_error_set(error, EINVAL,
1981 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1982 					  "inner RSS is not supported for "
1983 					  "non-tunnel flows");
1984 	if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1985 	    !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1986 		return rte_flow_error_set(error, EINVAL,
1987 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1988 					  "RSS on eCPRI is not supported now");
1989 	}
1990 	if ((item_flags & MLX5_FLOW_LAYER_MPLS) &&
1991 	    !(item_flags &
1992 	      (MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_L3)) &&
1993 	    rss->level > 1)
1994 		return rte_flow_error_set(error, EINVAL,
1995 					  RTE_FLOW_ERROR_TYPE_ITEM, NULL,
1996 					  "MPLS inner RSS needs to specify inner L2/L3 items after MPLS in pattern");
1997 	return 0;
1998 }
1999 
2000 /*
2001  * Validate the default miss action.
2002  *
2003  * @param[in] action_flags
2004  *   Bit-fields that holds the actions detected until now.
2005  * @param[out] error
2006  *   Pointer to error structure.
2007  *
2008  * @return
2009  *   0 on success, a negative errno value otherwise and rte_errno is set.
2010  */
2011 int
2012 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
2013 				const struct rte_flow_attr *attr,
2014 				struct rte_flow_error *error)
2015 {
2016 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
2017 		return rte_flow_error_set(error, EINVAL,
2018 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
2019 					  "can't have 2 fate actions in"
2020 					  " same flow");
2021 	if (attr->egress)
2022 		return rte_flow_error_set(error, ENOTSUP,
2023 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
2024 					  "default miss action not supported "
2025 					  "for egress");
2026 	if (attr->group)
2027 		return rte_flow_error_set(error, ENOTSUP,
2028 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
2029 					  "only group 0 is supported");
2030 	if (attr->transfer)
2031 		return rte_flow_error_set(error, ENOTSUP,
2032 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
2033 					  NULL, "transfer is not supported");
2034 	return 0;
2035 }
2036 
2037 /*
2038  * Validate the count action.
2039  *
2040  * @param[in] dev
2041  *   Pointer to the Ethernet device structure.
2042  * @param[in] attr
2043  *   Attributes of flow that includes this action.
2044  * @param[out] error
2045  *   Pointer to error structure.
2046  *
2047  * @return
2048  *   0 on success, a negative errno value otherwise and rte_errno is set.
2049  */
2050 int
2051 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
2052 				const struct rte_flow_attr *attr,
2053 				struct rte_flow_error *error)
2054 {
2055 	if (attr->egress)
2056 		return rte_flow_error_set(error, ENOTSUP,
2057 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
2058 					  "count action not supported for "
2059 					  "egress");
2060 	return 0;
2061 }
2062 
2063 /*
2064  * Validate the ASO CT action.
2065  *
2066  * @param[in] dev
2067  *   Pointer to the Ethernet device structure.
2068  * @param[in] conntrack
2069  *   Pointer to the CT action profile.
2070  * @param[out] error
2071  *   Pointer to error structure.
2072  *
2073  * @return
2074  *   0 on success, a negative errno value otherwise and rte_errno is set.
2075  */
2076 int
2077 mlx5_validate_action_ct(struct rte_eth_dev *dev,
2078 			const struct rte_flow_action_conntrack *conntrack,
2079 			struct rte_flow_error *error)
2080 {
2081 	RTE_SET_USED(dev);
2082 
2083 	if (conntrack->state > RTE_FLOW_CONNTRACK_STATE_TIME_WAIT)
2084 		return rte_flow_error_set(error, EINVAL,
2085 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
2086 					  "Invalid CT state");
2087 	if (conntrack->last_index > RTE_FLOW_CONNTRACK_FLAG_RST)
2088 		return rte_flow_error_set(error, EINVAL,
2089 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
2090 					  "Invalid last TCP packet flag");
2091 	return 0;
2092 }
2093 
2094 /**
2095  * Verify the @p attributes will be correctly understood by the NIC and store
2096  * them in the @p flow if everything is correct.
2097  *
2098  * @param[in] dev
2099  *   Pointer to the Ethernet device structure.
2100  * @param[in] attributes
2101  *   Pointer to flow attributes
2102  * @param[out] error
2103  *   Pointer to error structure.
2104  *
2105  * @return
2106  *   0 on success, a negative errno value otherwise and rte_errno is set.
2107  */
2108 int
2109 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
2110 			      const struct rte_flow_attr *attributes,
2111 			      struct rte_flow_error *error)
2112 {
2113 	struct mlx5_priv *priv = dev->data->dev_private;
2114 	uint32_t priority_max = priv->sh->flow_max_priority - 1;
2115 
2116 	if (attributes->group)
2117 		return rte_flow_error_set(error, ENOTSUP,
2118 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
2119 					  NULL, "groups is not supported");
2120 	if (attributes->priority != MLX5_FLOW_LOWEST_PRIO_INDICATOR &&
2121 	    attributes->priority >= priority_max)
2122 		return rte_flow_error_set(error, ENOTSUP,
2123 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
2124 					  NULL, "priority out of range");
2125 	if (attributes->egress)
2126 		return rte_flow_error_set(error, ENOTSUP,
2127 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
2128 					  "egress is not supported");
2129 	if (attributes->transfer && !priv->sh->config.dv_esw_en)
2130 		return rte_flow_error_set(error, ENOTSUP,
2131 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
2132 					  NULL, "transfer is not supported");
2133 	if (!attributes->ingress)
2134 		return rte_flow_error_set(error, EINVAL,
2135 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
2136 					  NULL,
2137 					  "ingress attribute is mandatory");
2138 	return 0;
2139 }
2140 
2141 /**
2142  * Validate ICMP6 item.
2143  *
2144  * @param[in] item
2145  *   Item specification.
2146  * @param[in] item_flags
2147  *   Bit-fields that holds the items detected until now.
2148  * @param[in] ext_vlan_sup
2149  *   Whether extended VLAN features are supported or not.
2150  * @param[out] error
2151  *   Pointer to error structure.
2152  *
2153  * @return
2154  *   0 on success, a negative errno value otherwise and rte_errno is set.
2155  */
2156 int
2157 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
2158 			       uint64_t item_flags,
2159 			       uint8_t target_protocol,
2160 			       struct rte_flow_error *error)
2161 {
2162 	const struct rte_flow_item_icmp6 *mask = item->mask;
2163 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2164 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
2165 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
2166 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2167 				      MLX5_FLOW_LAYER_OUTER_L4;
2168 	int ret;
2169 
2170 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
2171 		return rte_flow_error_set(error, EINVAL,
2172 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2173 					  "protocol filtering not compatible"
2174 					  " with ICMP6 layer");
2175 	if (!(item_flags & l3m))
2176 		return rte_flow_error_set(error, EINVAL,
2177 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2178 					  "IPv6 is mandatory to filter on"
2179 					  " ICMP6");
2180 	if (item_flags & l4m)
2181 		return rte_flow_error_set(error, EINVAL,
2182 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2183 					  "multiple L4 layers not supported");
2184 	if (!mask)
2185 		mask = &rte_flow_item_icmp6_mask;
2186 	ret = mlx5_flow_item_acceptable
2187 		(item, (const uint8_t *)mask,
2188 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
2189 		 sizeof(struct rte_flow_item_icmp6),
2190 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2191 	if (ret < 0)
2192 		return ret;
2193 	return 0;
2194 }
2195 
2196 /**
2197  * Validate ICMP item.
2198  *
2199  * @param[in] item
2200  *   Item specification.
2201  * @param[in] item_flags
2202  *   Bit-fields that holds the items detected until now.
2203  * @param[out] error
2204  *   Pointer to error structure.
2205  *
2206  * @return
2207  *   0 on success, a negative errno value otherwise and rte_errno is set.
2208  */
2209 int
2210 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
2211 			     uint64_t item_flags,
2212 			     uint8_t target_protocol,
2213 			     struct rte_flow_error *error)
2214 {
2215 	const struct rte_flow_item_icmp *mask = item->mask;
2216 	const struct rte_flow_item_icmp nic_mask = {
2217 		.hdr.icmp_type = 0xff,
2218 		.hdr.icmp_code = 0xff,
2219 		.hdr.icmp_ident = RTE_BE16(0xffff),
2220 		.hdr.icmp_seq_nb = RTE_BE16(0xffff),
2221 	};
2222 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2223 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
2224 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
2225 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2226 				      MLX5_FLOW_LAYER_OUTER_L4;
2227 	int ret;
2228 
2229 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
2230 		return rte_flow_error_set(error, EINVAL,
2231 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2232 					  "protocol filtering not compatible"
2233 					  " with ICMP layer");
2234 	if (!(item_flags & l3m))
2235 		return rte_flow_error_set(error, EINVAL,
2236 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2237 					  "IPv4 is mandatory to filter"
2238 					  " on ICMP");
2239 	if (item_flags & l4m)
2240 		return rte_flow_error_set(error, EINVAL,
2241 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2242 					  "multiple L4 layers not supported");
2243 	if (!mask)
2244 		mask = &nic_mask;
2245 	ret = mlx5_flow_item_acceptable
2246 		(item, (const uint8_t *)mask,
2247 		 (const uint8_t *)&nic_mask,
2248 		 sizeof(struct rte_flow_item_icmp),
2249 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2250 	if (ret < 0)
2251 		return ret;
2252 	return 0;
2253 }
2254 
2255 /**
2256  * Validate Ethernet item.
2257  *
2258  * @param[in] item
2259  *   Item specification.
2260  * @param[in] item_flags
2261  *   Bit-fields that holds the items detected until now.
2262  * @param[out] error
2263  *   Pointer to error structure.
2264  *
2265  * @return
2266  *   0 on success, a negative errno value otherwise and rte_errno is set.
2267  */
2268 int
2269 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
2270 			    uint64_t item_flags, bool ext_vlan_sup,
2271 			    struct rte_flow_error *error)
2272 {
2273 	const struct rte_flow_item_eth *mask = item->mask;
2274 	const struct rte_flow_item_eth nic_mask = {
2275 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
2276 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
2277 		.type = RTE_BE16(0xffff),
2278 		.has_vlan = ext_vlan_sup ? 1 : 0,
2279 	};
2280 	int ret;
2281 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2282 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
2283 				       MLX5_FLOW_LAYER_OUTER_L2;
2284 
2285 	if (item_flags & ethm)
2286 		return rte_flow_error_set(error, ENOTSUP,
2287 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2288 					  "multiple L2 layers not supported");
2289 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
2290 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
2291 		return rte_flow_error_set(error, EINVAL,
2292 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2293 					  "L2 layer should not follow "
2294 					  "L3 layers");
2295 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
2296 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
2297 		return rte_flow_error_set(error, EINVAL,
2298 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2299 					  "L2 layer should not follow VLAN");
2300 	if (item_flags & MLX5_FLOW_LAYER_GTP)
2301 		return rte_flow_error_set(error, EINVAL,
2302 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2303 					  "L2 layer should not follow GTP");
2304 	if (!mask)
2305 		mask = &rte_flow_item_eth_mask;
2306 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2307 					(const uint8_t *)&nic_mask,
2308 					sizeof(struct rte_flow_item_eth),
2309 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2310 	return ret;
2311 }
2312 
2313 /**
2314  * Validate VLAN item.
2315  *
2316  * @param[in] item
2317  *   Item specification.
2318  * @param[in] item_flags
2319  *   Bit-fields that holds the items detected until now.
2320  * @param[in] dev
2321  *   Ethernet device flow is being created on.
2322  * @param[out] error
2323  *   Pointer to error structure.
2324  *
2325  * @return
2326  *   0 on success, a negative errno value otherwise and rte_errno is set.
2327  */
2328 int
2329 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
2330 			     uint64_t item_flags,
2331 			     struct rte_eth_dev *dev,
2332 			     struct rte_flow_error *error)
2333 {
2334 	const struct rte_flow_item_vlan *spec = item->spec;
2335 	const struct rte_flow_item_vlan *mask = item->mask;
2336 	const struct rte_flow_item_vlan nic_mask = {
2337 		.tci = RTE_BE16(UINT16_MAX),
2338 		.inner_type = RTE_BE16(UINT16_MAX),
2339 	};
2340 	uint16_t vlan_tag = 0;
2341 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2342 	int ret;
2343 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
2344 					MLX5_FLOW_LAYER_INNER_L4) :
2345 				       (MLX5_FLOW_LAYER_OUTER_L3 |
2346 					MLX5_FLOW_LAYER_OUTER_L4);
2347 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
2348 					MLX5_FLOW_LAYER_OUTER_VLAN;
2349 
2350 	if (item_flags & vlanm)
2351 		return rte_flow_error_set(error, EINVAL,
2352 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2353 					  "multiple VLAN layers not supported");
2354 	else if ((item_flags & l34m) != 0)
2355 		return rte_flow_error_set(error, EINVAL,
2356 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2357 					  "VLAN cannot follow L3/L4 layer");
2358 	if (!mask)
2359 		mask = &rte_flow_item_vlan_mask;
2360 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2361 					(const uint8_t *)&nic_mask,
2362 					sizeof(struct rte_flow_item_vlan),
2363 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2364 	if (ret)
2365 		return ret;
2366 	if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
2367 		struct mlx5_priv *priv = dev->data->dev_private;
2368 
2369 		if (priv->vmwa_context) {
2370 			/*
2371 			 * Non-NULL context means we have a virtual machine
2372 			 * and SR-IOV enabled, we have to create VLAN interface
2373 			 * to make hypervisor to setup E-Switch vport
2374 			 * context correctly. We avoid creating the multiple
2375 			 * VLAN interfaces, so we cannot support VLAN tag mask.
2376 			 */
2377 			return rte_flow_error_set(error, EINVAL,
2378 						  RTE_FLOW_ERROR_TYPE_ITEM,
2379 						  item,
2380 						  "VLAN tag mask is not"
2381 						  " supported in virtual"
2382 						  " environment");
2383 		}
2384 	}
2385 	if (spec) {
2386 		vlan_tag = spec->tci;
2387 		vlan_tag &= mask->tci;
2388 	}
2389 	/*
2390 	 * From verbs perspective an empty VLAN is equivalent
2391 	 * to a packet without VLAN layer.
2392 	 */
2393 	if (!vlan_tag)
2394 		return rte_flow_error_set(error, EINVAL,
2395 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
2396 					  item->spec,
2397 					  "VLAN cannot be empty");
2398 	return 0;
2399 }
2400 
2401 /**
2402  * Validate IPV4 item.
2403  *
2404  * @param[in] item
2405  *   Item specification.
2406  * @param[in] item_flags
2407  *   Bit-fields that holds the items detected until now.
2408  * @param[in] last_item
2409  *   Previous validated item in the pattern items.
2410  * @param[in] ether_type
2411  *   Type in the ethernet layer header (including dot1q).
2412  * @param[in] acc_mask
2413  *   Acceptable mask, if NULL default internal default mask
2414  *   will be used to check whether item fields are supported.
2415  * @param[in] range_accepted
2416  *   True if range of values is accepted for specific fields, false otherwise.
2417  * @param[out] error
2418  *   Pointer to error structure.
2419  *
2420  * @return
2421  *   0 on success, a negative errno value otherwise and rte_errno is set.
2422  */
2423 int
2424 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
2425 			     uint64_t item_flags,
2426 			     uint64_t last_item,
2427 			     uint16_t ether_type,
2428 			     const struct rte_flow_item_ipv4 *acc_mask,
2429 			     bool range_accepted,
2430 			     struct rte_flow_error *error)
2431 {
2432 	const struct rte_flow_item_ipv4 *mask = item->mask;
2433 	const struct rte_flow_item_ipv4 *spec = item->spec;
2434 	const struct rte_flow_item_ipv4 nic_mask = {
2435 		.hdr = {
2436 			.src_addr = RTE_BE32(0xffffffff),
2437 			.dst_addr = RTE_BE32(0xffffffff),
2438 			.type_of_service = 0xff,
2439 			.next_proto_id = 0xff,
2440 		},
2441 	};
2442 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2443 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2444 				      MLX5_FLOW_LAYER_OUTER_L3;
2445 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2446 				      MLX5_FLOW_LAYER_OUTER_L4;
2447 	int ret;
2448 	uint8_t next_proto = 0xFF;
2449 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2450 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2451 				  MLX5_FLOW_LAYER_INNER_VLAN);
2452 
2453 	if ((last_item & l2_vlan) && ether_type &&
2454 	    ether_type != RTE_ETHER_TYPE_IPV4)
2455 		return rte_flow_error_set(error, EINVAL,
2456 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2457 					  "IPv4 cannot follow L2/VLAN layer "
2458 					  "which ether type is not IPv4");
2459 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
2460 		if (mask && spec)
2461 			next_proto = mask->hdr.next_proto_id &
2462 				     spec->hdr.next_proto_id;
2463 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2464 			return rte_flow_error_set(error, EINVAL,
2465 						  RTE_FLOW_ERROR_TYPE_ITEM,
2466 						  item,
2467 						  "multiple tunnel "
2468 						  "not supported");
2469 	}
2470 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
2471 		return rte_flow_error_set(error, EINVAL,
2472 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2473 					  "wrong tunnel type - IPv6 specified "
2474 					  "but IPv4 item provided");
2475 	if (item_flags & l3m)
2476 		return rte_flow_error_set(error, ENOTSUP,
2477 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2478 					  "multiple L3 layers not supported");
2479 	else if (item_flags & l4m)
2480 		return rte_flow_error_set(error, EINVAL,
2481 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2482 					  "L3 cannot follow an L4 layer.");
2483 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2484 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2485 		return rte_flow_error_set(error, EINVAL,
2486 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2487 					  "L3 cannot follow an NVGRE layer.");
2488 	if (!mask)
2489 		mask = &rte_flow_item_ipv4_mask;
2490 	else if (mask->hdr.next_proto_id != 0 &&
2491 		 mask->hdr.next_proto_id != 0xff)
2492 		return rte_flow_error_set(error, EINVAL,
2493 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2494 					  "partial mask is not supported"
2495 					  " for protocol");
2496 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2497 					acc_mask ? (const uint8_t *)acc_mask
2498 						 : (const uint8_t *)&nic_mask,
2499 					sizeof(struct rte_flow_item_ipv4),
2500 					range_accepted, error);
2501 	if (ret < 0)
2502 		return ret;
2503 	return 0;
2504 }
2505 
2506 /**
2507  * Validate IPV6 item.
2508  *
2509  * @param[in] item
2510  *   Item specification.
2511  * @param[in] item_flags
2512  *   Bit-fields that holds the items detected until now.
2513  * @param[in] last_item
2514  *   Previous validated item in the pattern items.
2515  * @param[in] ether_type
2516  *   Type in the ethernet layer header (including dot1q).
2517  * @param[in] acc_mask
2518  *   Acceptable mask, if NULL default internal default mask
2519  *   will be used to check whether item fields are supported.
2520  * @param[out] error
2521  *   Pointer to error structure.
2522  *
2523  * @return
2524  *   0 on success, a negative errno value otherwise and rte_errno is set.
2525  */
2526 int
2527 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
2528 			     uint64_t item_flags,
2529 			     uint64_t last_item,
2530 			     uint16_t ether_type,
2531 			     const struct rte_flow_item_ipv6 *acc_mask,
2532 			     struct rte_flow_error *error)
2533 {
2534 	const struct rte_flow_item_ipv6 *mask = item->mask;
2535 	const struct rte_flow_item_ipv6 *spec = item->spec;
2536 	const struct rte_flow_item_ipv6 nic_mask = {
2537 		.hdr = {
2538 			.src_addr =
2539 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2540 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2541 			.dst_addr =
2542 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2543 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2544 			.vtc_flow = RTE_BE32(0xffffffff),
2545 			.proto = 0xff,
2546 		},
2547 	};
2548 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2549 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2550 				      MLX5_FLOW_LAYER_OUTER_L3;
2551 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2552 				      MLX5_FLOW_LAYER_OUTER_L4;
2553 	int ret;
2554 	uint8_t next_proto = 0xFF;
2555 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2556 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2557 				  MLX5_FLOW_LAYER_INNER_VLAN);
2558 
2559 	if ((last_item & l2_vlan) && ether_type &&
2560 	    ether_type != RTE_ETHER_TYPE_IPV6)
2561 		return rte_flow_error_set(error, EINVAL,
2562 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2563 					  "IPv6 cannot follow L2/VLAN layer "
2564 					  "which ether type is not IPv6");
2565 	if (mask && mask->hdr.proto == UINT8_MAX && spec)
2566 		next_proto = spec->hdr.proto;
2567 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
2568 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2569 			return rte_flow_error_set(error, EINVAL,
2570 						  RTE_FLOW_ERROR_TYPE_ITEM,
2571 						  item,
2572 						  "multiple tunnel "
2573 						  "not supported");
2574 	}
2575 	if (next_proto == IPPROTO_HOPOPTS  ||
2576 	    next_proto == IPPROTO_ROUTING  ||
2577 	    next_proto == IPPROTO_FRAGMENT ||
2578 	    next_proto == IPPROTO_ESP	   ||
2579 	    next_proto == IPPROTO_AH	   ||
2580 	    next_proto == IPPROTO_DSTOPTS)
2581 		return rte_flow_error_set(error, EINVAL,
2582 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2583 					  "IPv6 proto (next header) should "
2584 					  "not be set as extension header");
2585 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
2586 		return rte_flow_error_set(error, EINVAL,
2587 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2588 					  "wrong tunnel type - IPv4 specified "
2589 					  "but IPv6 item provided");
2590 	if (item_flags & l3m)
2591 		return rte_flow_error_set(error, ENOTSUP,
2592 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2593 					  "multiple L3 layers not supported");
2594 	else if (item_flags & l4m)
2595 		return rte_flow_error_set(error, EINVAL,
2596 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2597 					  "L3 cannot follow an L4 layer.");
2598 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2599 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2600 		return rte_flow_error_set(error, EINVAL,
2601 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2602 					  "L3 cannot follow an NVGRE layer.");
2603 	if (!mask)
2604 		mask = &rte_flow_item_ipv6_mask;
2605 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2606 					acc_mask ? (const uint8_t *)acc_mask
2607 						 : (const uint8_t *)&nic_mask,
2608 					sizeof(struct rte_flow_item_ipv6),
2609 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2610 	if (ret < 0)
2611 		return ret;
2612 	return 0;
2613 }
2614 
2615 /**
2616  * Validate UDP item.
2617  *
2618  * @param[in] item
2619  *   Item specification.
2620  * @param[in] item_flags
2621  *   Bit-fields that holds the items detected until now.
2622  * @param[in] target_protocol
2623  *   The next protocol in the previous item.
2624  * @param[in] flow_mask
2625  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2626  * @param[out] error
2627  *   Pointer to error structure.
2628  *
2629  * @return
2630  *   0 on success, a negative errno value otherwise and rte_errno is set.
2631  */
2632 int
2633 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2634 			    uint64_t item_flags,
2635 			    uint8_t target_protocol,
2636 			    struct rte_flow_error *error)
2637 {
2638 	const struct rte_flow_item_udp *mask = item->mask;
2639 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2640 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2641 				      MLX5_FLOW_LAYER_OUTER_L3;
2642 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2643 				      MLX5_FLOW_LAYER_OUTER_L4;
2644 	int ret;
2645 
2646 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2647 		return rte_flow_error_set(error, EINVAL,
2648 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2649 					  "protocol filtering not compatible"
2650 					  " with UDP layer");
2651 	if (!(item_flags & l3m))
2652 		return rte_flow_error_set(error, EINVAL,
2653 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2654 					  "L3 is mandatory to filter on L4");
2655 	if (item_flags & l4m)
2656 		return rte_flow_error_set(error, EINVAL,
2657 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2658 					  "multiple L4 layers not supported");
2659 	if (!mask)
2660 		mask = &rte_flow_item_udp_mask;
2661 	ret = mlx5_flow_item_acceptable
2662 		(item, (const uint8_t *)mask,
2663 		 (const uint8_t *)&rte_flow_item_udp_mask,
2664 		 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2665 		 error);
2666 	if (ret < 0)
2667 		return ret;
2668 	return 0;
2669 }
2670 
2671 /**
2672  * Validate TCP item.
2673  *
2674  * @param[in] item
2675  *   Item specification.
2676  * @param[in] item_flags
2677  *   Bit-fields that holds the items detected until now.
2678  * @param[in] target_protocol
2679  *   The next protocol in the previous item.
2680  * @param[out] error
2681  *   Pointer to error structure.
2682  *
2683  * @return
2684  *   0 on success, a negative errno value otherwise and rte_errno is set.
2685  */
2686 int
2687 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2688 			    uint64_t item_flags,
2689 			    uint8_t target_protocol,
2690 			    const struct rte_flow_item_tcp *flow_mask,
2691 			    struct rte_flow_error *error)
2692 {
2693 	const struct rte_flow_item_tcp *mask = item->mask;
2694 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2695 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2696 				      MLX5_FLOW_LAYER_OUTER_L3;
2697 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2698 				      MLX5_FLOW_LAYER_OUTER_L4;
2699 	int ret;
2700 
2701 	MLX5_ASSERT(flow_mask);
2702 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2703 		return rte_flow_error_set(error, EINVAL,
2704 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2705 					  "protocol filtering not compatible"
2706 					  " with TCP layer");
2707 	if (!(item_flags & l3m))
2708 		return rte_flow_error_set(error, EINVAL,
2709 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2710 					  "L3 is mandatory to filter on L4");
2711 	if (item_flags & l4m)
2712 		return rte_flow_error_set(error, EINVAL,
2713 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2714 					  "multiple L4 layers not supported");
2715 	if (!mask)
2716 		mask = &rte_flow_item_tcp_mask;
2717 	ret = mlx5_flow_item_acceptable
2718 		(item, (const uint8_t *)mask,
2719 		 (const uint8_t *)flow_mask,
2720 		 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2721 		 error);
2722 	if (ret < 0)
2723 		return ret;
2724 	return 0;
2725 }
2726 
2727 /**
2728  * Validate VXLAN item.
2729  *
2730  * @param[in] dev
2731  *   Pointer to the Ethernet device structure.
2732  * @param[in] udp_dport
2733  *   UDP destination port
2734  * @param[in] item
2735  *   Item specification.
2736  * @param[in] item_flags
2737  *   Bit-fields that holds the items detected until now.
2738  * @param[in] attr
2739  *   Flow rule attributes.
2740  * @param[out] error
2741  *   Pointer to error structure.
2742  *
2743  * @return
2744  *   0 on success, a negative errno value otherwise and rte_errno is set.
2745  */
2746 int
2747 mlx5_flow_validate_item_vxlan(struct rte_eth_dev *dev,
2748 			      uint16_t udp_dport,
2749 			      const struct rte_flow_item *item,
2750 			      uint64_t item_flags,
2751 			      const struct rte_flow_attr *attr,
2752 			      struct rte_flow_error *error)
2753 {
2754 	const struct rte_flow_item_vxlan *spec = item->spec;
2755 	const struct rte_flow_item_vxlan *mask = item->mask;
2756 	int ret;
2757 	struct mlx5_priv *priv = dev->data->dev_private;
2758 	union vni {
2759 		uint32_t vlan_id;
2760 		uint8_t vni[4];
2761 	} id = { .vlan_id = 0, };
2762 	const struct rte_flow_item_vxlan nic_mask = {
2763 		.vni = "\xff\xff\xff",
2764 		.rsvd1 = 0xff,
2765 	};
2766 	const struct rte_flow_item_vxlan *valid_mask;
2767 
2768 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2769 		return rte_flow_error_set(error, ENOTSUP,
2770 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2771 					  "multiple tunnel layers not"
2772 					  " supported");
2773 	valid_mask = &rte_flow_item_vxlan_mask;
2774 	/*
2775 	 * Verify only UDPv4 is present as defined in
2776 	 * https://tools.ietf.org/html/rfc7348
2777 	 */
2778 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2779 		return rte_flow_error_set(error, EINVAL,
2780 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2781 					  "no outer UDP layer found");
2782 	if (!mask)
2783 		mask = &rte_flow_item_vxlan_mask;
2784 
2785 	if (priv->sh->steering_format_version !=
2786 	    MLX5_STEERING_LOGIC_FORMAT_CONNECTX_5 ||
2787 	    !udp_dport || udp_dport == MLX5_UDP_PORT_VXLAN) {
2788 		/* FDB domain & NIC domain non-zero group */
2789 		if ((attr->transfer || attr->group) && priv->sh->misc5_cap)
2790 			valid_mask = &nic_mask;
2791 		/* Group zero in NIC domain */
2792 		if (!attr->group && !attr->transfer &&
2793 		    priv->sh->tunnel_header_0_1)
2794 			valid_mask = &nic_mask;
2795 	}
2796 	ret = mlx5_flow_item_acceptable
2797 		(item, (const uint8_t *)mask,
2798 		 (const uint8_t *)valid_mask,
2799 		 sizeof(struct rte_flow_item_vxlan),
2800 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2801 	if (ret < 0)
2802 		return ret;
2803 	if (spec) {
2804 		memcpy(&id.vni[1], spec->vni, 3);
2805 		memcpy(&id.vni[1], mask->vni, 3);
2806 	}
2807 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2808 		return rte_flow_error_set(error, ENOTSUP,
2809 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2810 					  "VXLAN tunnel must be fully defined");
2811 	return 0;
2812 }
2813 
2814 /**
2815  * Validate VXLAN_GPE item.
2816  *
2817  * @param[in] item
2818  *   Item specification.
2819  * @param[in] item_flags
2820  *   Bit-fields that holds the items detected until now.
2821  * @param[in] priv
2822  *   Pointer to the private data structure.
2823  * @param[in] target_protocol
2824  *   The next protocol in the previous item.
2825  * @param[out] error
2826  *   Pointer to error structure.
2827  *
2828  * @return
2829  *   0 on success, a negative errno value otherwise and rte_errno is set.
2830  */
2831 int
2832 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2833 				  uint64_t item_flags,
2834 				  struct rte_eth_dev *dev,
2835 				  struct rte_flow_error *error)
2836 {
2837 	struct mlx5_priv *priv = dev->data->dev_private;
2838 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2839 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2840 	int ret;
2841 	union vni {
2842 		uint32_t vlan_id;
2843 		uint8_t vni[4];
2844 	} id = { .vlan_id = 0, };
2845 
2846 	if (!priv->sh->config.l3_vxlan_en)
2847 		return rte_flow_error_set(error, ENOTSUP,
2848 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2849 					  "L3 VXLAN is not enabled by device"
2850 					  " parameter and/or not configured in"
2851 					  " firmware");
2852 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2853 		return rte_flow_error_set(error, ENOTSUP,
2854 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2855 					  "multiple tunnel layers not"
2856 					  " supported");
2857 	/*
2858 	 * Verify only UDPv4 is present as defined in
2859 	 * https://tools.ietf.org/html/rfc7348
2860 	 */
2861 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2862 		return rte_flow_error_set(error, EINVAL,
2863 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2864 					  "no outer UDP layer found");
2865 	if (!mask)
2866 		mask = &rte_flow_item_vxlan_gpe_mask;
2867 	ret = mlx5_flow_item_acceptable
2868 		(item, (const uint8_t *)mask,
2869 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2870 		 sizeof(struct rte_flow_item_vxlan_gpe),
2871 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2872 	if (ret < 0)
2873 		return ret;
2874 	if (spec) {
2875 		if (spec->protocol)
2876 			return rte_flow_error_set(error, ENOTSUP,
2877 						  RTE_FLOW_ERROR_TYPE_ITEM,
2878 						  item,
2879 						  "VxLAN-GPE protocol"
2880 						  " not supported");
2881 		memcpy(&id.vni[1], spec->vni, 3);
2882 		memcpy(&id.vni[1], mask->vni, 3);
2883 	}
2884 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2885 		return rte_flow_error_set(error, ENOTSUP,
2886 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2887 					  "VXLAN-GPE tunnel must be fully"
2888 					  " defined");
2889 	return 0;
2890 }
2891 /**
2892  * Validate GRE Key item.
2893  *
2894  * @param[in] item
2895  *   Item specification.
2896  * @param[in] item_flags
2897  *   Bit flags to mark detected items.
2898  * @param[in] gre_item
2899  *   Pointer to gre_item
2900  * @param[out] error
2901  *   Pointer to error structure.
2902  *
2903  * @return
2904  *   0 on success, a negative errno value otherwise and rte_errno is set.
2905  */
2906 int
2907 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2908 				uint64_t item_flags,
2909 				const struct rte_flow_item *gre_item,
2910 				struct rte_flow_error *error)
2911 {
2912 	const rte_be32_t *mask = item->mask;
2913 	int ret = 0;
2914 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2915 	const struct rte_flow_item_gre *gre_spec;
2916 	const struct rte_flow_item_gre *gre_mask;
2917 
2918 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2919 		return rte_flow_error_set(error, ENOTSUP,
2920 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2921 					  "Multiple GRE key not support");
2922 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2923 		return rte_flow_error_set(error, ENOTSUP,
2924 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2925 					  "No preceding GRE header");
2926 	if (item_flags & MLX5_FLOW_LAYER_INNER)
2927 		return rte_flow_error_set(error, ENOTSUP,
2928 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2929 					  "GRE key following a wrong item");
2930 	gre_mask = gre_item->mask;
2931 	if (!gre_mask)
2932 		gre_mask = &rte_flow_item_gre_mask;
2933 	gre_spec = gre_item->spec;
2934 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2935 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2936 		return rte_flow_error_set(error, EINVAL,
2937 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2938 					  "Key bit must be on");
2939 
2940 	if (!mask)
2941 		mask = &gre_key_default_mask;
2942 	ret = mlx5_flow_item_acceptable
2943 		(item, (const uint8_t *)mask,
2944 		 (const uint8_t *)&gre_key_default_mask,
2945 		 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2946 	return ret;
2947 }
2948 
2949 /**
2950  * Validate GRE optional item.
2951  *
2952  * @param[in] dev
2953  *   Pointer to the Ethernet device structure.
2954  * @param[in] item
2955  *   Item specification.
2956  * @param[in] item_flags
2957  *   Bit flags to mark detected items.
2958  * @param[in] attr
2959  *   Flow rule attributes.
2960  * @param[in] gre_item
2961  *   Pointer to gre_item
2962  * @param[out] error
2963  *   Pointer to error structure.
2964  *
2965  * @return
2966  *   0 on success, a negative errno value otherwise and rte_errno is set.
2967  */
2968 int
2969 mlx5_flow_validate_item_gre_option(struct rte_eth_dev *dev,
2970 				   const struct rte_flow_item *item,
2971 				   uint64_t item_flags,
2972 				   const struct rte_flow_attr *attr,
2973 				   const struct rte_flow_item *gre_item,
2974 				   struct rte_flow_error *error)
2975 {
2976 	const struct rte_flow_item_gre *gre_spec = gre_item->spec;
2977 	const struct rte_flow_item_gre *gre_mask = gre_item->mask;
2978 	const struct rte_flow_item_gre_opt *spec = item->spec;
2979 	const struct rte_flow_item_gre_opt *mask = item->mask;
2980 	struct mlx5_priv *priv = dev->data->dev_private;
2981 	int ret = 0;
2982 	struct rte_flow_item_gre_opt nic_mask = {
2983 		.checksum_rsvd = {
2984 			.checksum = RTE_BE16(UINT16_MAX),
2985 			.reserved1 = 0x0,
2986 		},
2987 		.key = {
2988 			.key = RTE_BE32(UINT32_MAX),
2989 		},
2990 		.sequence = {
2991 			.sequence = RTE_BE32(UINT32_MAX),
2992 		},
2993 	};
2994 
2995 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2996 		return rte_flow_error_set(error, ENOTSUP,
2997 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2998 					  "No preceding GRE header");
2999 	if (item_flags & MLX5_FLOW_LAYER_INNER)
3000 		return rte_flow_error_set(error, ENOTSUP,
3001 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3002 					  "GRE option following a wrong item");
3003 	if (!spec || !mask)
3004 		return rte_flow_error_set(error, EINVAL,
3005 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3006 					  "At least one field gre_option(checksum/key/sequence) must be specified");
3007 	if (!gre_mask)
3008 		gre_mask = &rte_flow_item_gre_mask;
3009 	if (mask->checksum_rsvd.checksum)
3010 		if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x8000)) &&
3011 				 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x8000)))
3012 			return rte_flow_error_set(error, EINVAL,
3013 						  RTE_FLOW_ERROR_TYPE_ITEM,
3014 						  item,
3015 						  "Checksum bit must be on");
3016 	if (mask->key.key)
3017 		if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
3018 				 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
3019 			return rte_flow_error_set(error, EINVAL,
3020 						  RTE_FLOW_ERROR_TYPE_ITEM,
3021 						  item, "Key bit must be on");
3022 	if (mask->sequence.sequence)
3023 		if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x1000)) &&
3024 				 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x1000)))
3025 			return rte_flow_error_set(error, EINVAL,
3026 						  RTE_FLOW_ERROR_TYPE_ITEM,
3027 						  item,
3028 						  "Sequence bit must be on");
3029 	if (mask->checksum_rsvd.checksum || mask->sequence.sequence) {
3030 		if (priv->sh->steering_format_version ==
3031 		    MLX5_STEERING_LOGIC_FORMAT_CONNECTX_5 ||
3032 		    ((attr->group || attr->transfer) &&
3033 		     !priv->sh->misc5_cap) ||
3034 		    (!(priv->sh->tunnel_header_0_1 &&
3035 		       priv->sh->tunnel_header_2_3) &&
3036 		    !attr->group && !attr->transfer))
3037 			return rte_flow_error_set(error, EINVAL,
3038 						  RTE_FLOW_ERROR_TYPE_ITEM,
3039 						  item,
3040 						  "Checksum/Sequence not supported");
3041 	}
3042 	ret = mlx5_flow_item_acceptable
3043 		(item, (const uint8_t *)mask,
3044 		 (const uint8_t *)&nic_mask,
3045 		 sizeof(struct rte_flow_item_gre_opt),
3046 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3047 	return ret;
3048 }
3049 
3050 /**
3051  * Validate GRE item.
3052  *
3053  * @param[in] item
3054  *   Item specification.
3055  * @param[in] item_flags
3056  *   Bit flags to mark detected items.
3057  * @param[in] target_protocol
3058  *   The next protocol in the previous item.
3059  * @param[out] error
3060  *   Pointer to error structure.
3061  *
3062  * @return
3063  *   0 on success, a negative errno value otherwise and rte_errno is set.
3064  */
3065 int
3066 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
3067 			    uint64_t item_flags,
3068 			    uint8_t target_protocol,
3069 			    struct rte_flow_error *error)
3070 {
3071 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
3072 	const struct rte_flow_item_gre *mask = item->mask;
3073 	int ret;
3074 	const struct rte_flow_item_gre nic_mask = {
3075 		.c_rsvd0_ver = RTE_BE16(0xB000),
3076 		.protocol = RTE_BE16(UINT16_MAX),
3077 	};
3078 
3079 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
3080 		return rte_flow_error_set(error, EINVAL,
3081 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3082 					  "protocol filtering not compatible"
3083 					  " with this GRE layer");
3084 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3085 		return rte_flow_error_set(error, ENOTSUP,
3086 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3087 					  "multiple tunnel layers not"
3088 					  " supported");
3089 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
3090 		return rte_flow_error_set(error, ENOTSUP,
3091 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3092 					  "L3 Layer is missing");
3093 	if (!mask)
3094 		mask = &rte_flow_item_gre_mask;
3095 	ret = mlx5_flow_item_acceptable
3096 		(item, (const uint8_t *)mask,
3097 		 (const uint8_t *)&nic_mask,
3098 		 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED,
3099 		 error);
3100 	if (ret < 0)
3101 		return ret;
3102 #ifndef HAVE_MLX5DV_DR
3103 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
3104 	if (spec && (spec->protocol & mask->protocol))
3105 		return rte_flow_error_set(error, ENOTSUP,
3106 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3107 					  "without MPLS support the"
3108 					  " specification cannot be used for"
3109 					  " filtering");
3110 #endif
3111 #endif
3112 	return 0;
3113 }
3114 
3115 /**
3116  * Validate Geneve item.
3117  *
3118  * @param[in] item
3119  *   Item specification.
3120  * @param[in] itemFlags
3121  *   Bit-fields that holds the items detected until now.
3122  * @param[in] enPriv
3123  *   Pointer to the private data structure.
3124  * @param[out] error
3125  *   Pointer to error structure.
3126  *
3127  * @return
3128  *   0 on success, a negative errno value otherwise and rte_errno is set.
3129  */
3130 
3131 int
3132 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
3133 			       uint64_t item_flags,
3134 			       struct rte_eth_dev *dev,
3135 			       struct rte_flow_error *error)
3136 {
3137 	struct mlx5_priv *priv = dev->data->dev_private;
3138 	const struct rte_flow_item_geneve *spec = item->spec;
3139 	const struct rte_flow_item_geneve *mask = item->mask;
3140 	int ret;
3141 	uint16_t gbhdr;
3142 	uint8_t opt_len = priv->sh->cdev->config.hca_attr.geneve_max_opt_len ?
3143 			  MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
3144 	const struct rte_flow_item_geneve nic_mask = {
3145 		.ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
3146 		.vni = "\xff\xff\xff",
3147 		.protocol = RTE_BE16(UINT16_MAX),
3148 	};
3149 
3150 	if (!priv->sh->cdev->config.hca_attr.tunnel_stateless_geneve_rx)
3151 		return rte_flow_error_set(error, ENOTSUP,
3152 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3153 					  "L3 Geneve is not enabled by device"
3154 					  " parameter and/or not configured in"
3155 					  " firmware");
3156 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3157 		return rte_flow_error_set(error, ENOTSUP,
3158 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3159 					  "multiple tunnel layers not"
3160 					  " supported");
3161 	/*
3162 	 * Verify only UDPv4 is present as defined in
3163 	 * https://tools.ietf.org/html/rfc7348
3164 	 */
3165 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
3166 		return rte_flow_error_set(error, EINVAL,
3167 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3168 					  "no outer UDP layer found");
3169 	if (!mask)
3170 		mask = &rte_flow_item_geneve_mask;
3171 	ret = mlx5_flow_item_acceptable
3172 				  (item, (const uint8_t *)mask,
3173 				   (const uint8_t *)&nic_mask,
3174 				   sizeof(struct rte_flow_item_geneve),
3175 				   MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3176 	if (ret)
3177 		return ret;
3178 	if (spec) {
3179 		gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
3180 		if (MLX5_GENEVE_VER_VAL(gbhdr) ||
3181 		     MLX5_GENEVE_CRITO_VAL(gbhdr) ||
3182 		     MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
3183 			return rte_flow_error_set(error, ENOTSUP,
3184 						  RTE_FLOW_ERROR_TYPE_ITEM,
3185 						  item,
3186 						  "Geneve protocol unsupported"
3187 						  " fields are being used");
3188 		if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
3189 			return rte_flow_error_set
3190 					(error, ENOTSUP,
3191 					 RTE_FLOW_ERROR_TYPE_ITEM,
3192 					 item,
3193 					 "Unsupported Geneve options length");
3194 	}
3195 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
3196 		return rte_flow_error_set
3197 				    (error, ENOTSUP,
3198 				     RTE_FLOW_ERROR_TYPE_ITEM, item,
3199 				     "Geneve tunnel must be fully defined");
3200 	return 0;
3201 }
3202 
3203 /**
3204  * Validate Geneve TLV option item.
3205  *
3206  * @param[in] item
3207  *   Item specification.
3208  * @param[in] last_item
3209  *   Previous validated item in the pattern items.
3210  * @param[in] geneve_item
3211  *   Previous GENEVE item specification.
3212  * @param[in] dev
3213  *   Pointer to the rte_eth_dev structure.
3214  * @param[out] error
3215  *   Pointer to error structure.
3216  *
3217  * @return
3218  *   0 on success, a negative errno value otherwise and rte_errno is set.
3219  */
3220 int
3221 mlx5_flow_validate_item_geneve_opt(const struct rte_flow_item *item,
3222 				   uint64_t last_item,
3223 				   const struct rte_flow_item *geneve_item,
3224 				   struct rte_eth_dev *dev,
3225 				   struct rte_flow_error *error)
3226 {
3227 	struct mlx5_priv *priv = dev->data->dev_private;
3228 	struct mlx5_dev_ctx_shared *sh = priv->sh;
3229 	struct mlx5_geneve_tlv_option_resource *geneve_opt_resource;
3230 	struct mlx5_hca_attr *hca_attr = &sh->cdev->config.hca_attr;
3231 	uint8_t data_max_supported =
3232 			hca_attr->max_geneve_tlv_option_data_len * 4;
3233 	const struct rte_flow_item_geneve *geneve_spec;
3234 	const struct rte_flow_item_geneve *geneve_mask;
3235 	const struct rte_flow_item_geneve_opt *spec = item->spec;
3236 	const struct rte_flow_item_geneve_opt *mask = item->mask;
3237 	unsigned int i;
3238 	unsigned int data_len;
3239 	uint8_t tlv_option_len;
3240 	uint16_t optlen_m, optlen_v;
3241 	const struct rte_flow_item_geneve_opt full_mask = {
3242 		.option_class = RTE_BE16(0xffff),
3243 		.option_type = 0xff,
3244 		.option_len = 0x1f,
3245 	};
3246 
3247 	if (!mask)
3248 		mask = &rte_flow_item_geneve_opt_mask;
3249 	if (!spec)
3250 		return rte_flow_error_set
3251 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3252 			"Geneve TLV opt class/type/length must be specified");
3253 	if ((uint32_t)spec->option_len > MLX5_GENEVE_OPTLEN_MASK)
3254 		return rte_flow_error_set
3255 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3256 			"Geneve TLV opt length exceeds the limit (31)");
3257 	/* Check if class type and length masks are full. */
3258 	if (full_mask.option_class != mask->option_class ||
3259 	    full_mask.option_type != mask->option_type ||
3260 	    full_mask.option_len != (mask->option_len & full_mask.option_len))
3261 		return rte_flow_error_set
3262 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3263 			"Geneve TLV opt class/type/length masks must be full");
3264 	/* Check if length is supported */
3265 	if ((uint32_t)spec->option_len >
3266 			hca_attr->max_geneve_tlv_option_data_len)
3267 		return rte_flow_error_set
3268 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3269 			"Geneve TLV opt length not supported");
3270 	if (hca_attr->max_geneve_tlv_options > 1)
3271 		DRV_LOG(DEBUG,
3272 			"max_geneve_tlv_options supports more than 1 option");
3273 	/* Check GENEVE item preceding. */
3274 	if (!geneve_item || !(last_item & MLX5_FLOW_LAYER_GENEVE))
3275 		return rte_flow_error_set
3276 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3277 			"Geneve opt item must be preceded with Geneve item");
3278 	geneve_spec = geneve_item->spec;
3279 	geneve_mask = geneve_item->mask ? geneve_item->mask :
3280 					  &rte_flow_item_geneve_mask;
3281 	/* Check if GENEVE TLV option size doesn't exceed option length */
3282 	if (geneve_spec && (geneve_mask->ver_opt_len_o_c_rsvd0 ||
3283 			    geneve_spec->ver_opt_len_o_c_rsvd0)) {
3284 		tlv_option_len = spec->option_len & mask->option_len;
3285 		optlen_v = rte_be_to_cpu_16(geneve_spec->ver_opt_len_o_c_rsvd0);
3286 		optlen_v = MLX5_GENEVE_OPTLEN_VAL(optlen_v);
3287 		optlen_m = rte_be_to_cpu_16(geneve_mask->ver_opt_len_o_c_rsvd0);
3288 		optlen_m = MLX5_GENEVE_OPTLEN_VAL(optlen_m);
3289 		if ((optlen_v & optlen_m) <= tlv_option_len)
3290 			return rte_flow_error_set
3291 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3292 				 "GENEVE TLV option length exceeds optlen");
3293 	}
3294 	/* Check if length is 0 or data is 0. */
3295 	if (spec->data == NULL || spec->option_len == 0)
3296 		return rte_flow_error_set
3297 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3298 			"Geneve TLV opt with zero data/length not supported");
3299 	/* Check not all data & mask are 0. */
3300 	data_len = spec->option_len * 4;
3301 	if (mask->data == NULL) {
3302 		for (i = 0; i < data_len; i++)
3303 			if (spec->data[i])
3304 				break;
3305 		if (i == data_len)
3306 			return rte_flow_error_set(error, ENOTSUP,
3307 				RTE_FLOW_ERROR_TYPE_ITEM, item,
3308 				"Can't match on Geneve option data 0");
3309 	} else {
3310 		for (i = 0; i < data_len; i++)
3311 			if (spec->data[i] & mask->data[i])
3312 				break;
3313 		if (i == data_len)
3314 			return rte_flow_error_set(error, ENOTSUP,
3315 				RTE_FLOW_ERROR_TYPE_ITEM, item,
3316 				"Can't match on Geneve option data and mask 0");
3317 		/* Check data mask supported. */
3318 		for (i = data_max_supported; i < data_len ; i++)
3319 			if (mask->data[i])
3320 				return rte_flow_error_set(error, ENOTSUP,
3321 					RTE_FLOW_ERROR_TYPE_ITEM, item,
3322 					"Data mask is of unsupported size");
3323 	}
3324 	/* Check GENEVE option is supported in NIC. */
3325 	if (!hca_attr->geneve_tlv_opt)
3326 		return rte_flow_error_set
3327 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
3328 			"Geneve TLV opt not supported");
3329 	/* Check if we already have geneve option with different type/class. */
3330 	rte_spinlock_lock(&sh->geneve_tlv_opt_sl);
3331 	geneve_opt_resource = sh->geneve_tlv_option_resource;
3332 	if (geneve_opt_resource != NULL)
3333 		if (geneve_opt_resource->option_class != spec->option_class ||
3334 		    geneve_opt_resource->option_type != spec->option_type ||
3335 		    geneve_opt_resource->length != spec->option_len) {
3336 			rte_spinlock_unlock(&sh->geneve_tlv_opt_sl);
3337 			return rte_flow_error_set(error, ENOTSUP,
3338 				RTE_FLOW_ERROR_TYPE_ITEM, item,
3339 				"Only one Geneve TLV option supported");
3340 		}
3341 	rte_spinlock_unlock(&sh->geneve_tlv_opt_sl);
3342 	return 0;
3343 }
3344 
3345 /**
3346  * Validate MPLS item.
3347  *
3348  * @param[in] dev
3349  *   Pointer to the rte_eth_dev structure.
3350  * @param[in] item
3351  *   Item specification.
3352  * @param[in] item_flags
3353  *   Bit-fields that holds the items detected until now.
3354  * @param[in] prev_layer
3355  *   The protocol layer indicated in previous item.
3356  * @param[out] error
3357  *   Pointer to error structure.
3358  *
3359  * @return
3360  *   0 on success, a negative errno value otherwise and rte_errno is set.
3361  */
3362 int
3363 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
3364 			     const struct rte_flow_item *item __rte_unused,
3365 			     uint64_t item_flags __rte_unused,
3366 			     uint64_t prev_layer __rte_unused,
3367 			     struct rte_flow_error *error)
3368 {
3369 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
3370 	const struct rte_flow_item_mpls *mask = item->mask;
3371 	struct mlx5_priv *priv = dev->data->dev_private;
3372 	int ret;
3373 
3374 	if (!priv->sh->dev_cap.mpls_en)
3375 		return rte_flow_error_set(error, ENOTSUP,
3376 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3377 					  "MPLS not supported or"
3378 					  " disabled in firmware"
3379 					  " configuration.");
3380 	/* MPLS over UDP, GRE is allowed */
3381 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L4_UDP |
3382 			    MLX5_FLOW_LAYER_GRE |
3383 			    MLX5_FLOW_LAYER_GRE_KEY)))
3384 		return rte_flow_error_set(error, EINVAL,
3385 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3386 					  "protocol filtering not compatible"
3387 					  " with MPLS layer");
3388 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
3389 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
3390 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
3391 		return rte_flow_error_set(error, ENOTSUP,
3392 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3393 					  "multiple tunnel layers not"
3394 					  " supported");
3395 	if (!mask)
3396 		mask = &rte_flow_item_mpls_mask;
3397 	ret = mlx5_flow_item_acceptable
3398 		(item, (const uint8_t *)mask,
3399 		 (const uint8_t *)&rte_flow_item_mpls_mask,
3400 		 sizeof(struct rte_flow_item_mpls),
3401 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3402 	if (ret < 0)
3403 		return ret;
3404 	return 0;
3405 #else
3406 	return rte_flow_error_set(error, ENOTSUP,
3407 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
3408 				  "MPLS is not supported by Verbs, please"
3409 				  " update.");
3410 #endif
3411 }
3412 
3413 /**
3414  * Validate NVGRE item.
3415  *
3416  * @param[in] item
3417  *   Item specification.
3418  * @param[in] item_flags
3419  *   Bit flags to mark detected items.
3420  * @param[in] target_protocol
3421  *   The next protocol in the previous item.
3422  * @param[out] error
3423  *   Pointer to error structure.
3424  *
3425  * @return
3426  *   0 on success, a negative errno value otherwise and rte_errno is set.
3427  */
3428 int
3429 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
3430 			      uint64_t item_flags,
3431 			      uint8_t target_protocol,
3432 			      struct rte_flow_error *error)
3433 {
3434 	const struct rte_flow_item_nvgre *mask = item->mask;
3435 	int ret;
3436 
3437 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
3438 		return rte_flow_error_set(error, EINVAL,
3439 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3440 					  "protocol filtering not compatible"
3441 					  " with this GRE layer");
3442 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3443 		return rte_flow_error_set(error, ENOTSUP,
3444 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3445 					  "multiple tunnel layers not"
3446 					  " supported");
3447 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
3448 		return rte_flow_error_set(error, ENOTSUP,
3449 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3450 					  "L3 Layer is missing");
3451 	if (!mask)
3452 		mask = &rte_flow_item_nvgre_mask;
3453 	ret = mlx5_flow_item_acceptable
3454 		(item, (const uint8_t *)mask,
3455 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
3456 		 sizeof(struct rte_flow_item_nvgre),
3457 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3458 	if (ret < 0)
3459 		return ret;
3460 	return 0;
3461 }
3462 
3463 /**
3464  * Validate eCPRI item.
3465  *
3466  * @param[in] item
3467  *   Item specification.
3468  * @param[in] item_flags
3469  *   Bit-fields that holds the items detected until now.
3470  * @param[in] last_item
3471  *   Previous validated item in the pattern items.
3472  * @param[in] ether_type
3473  *   Type in the ethernet layer header (including dot1q).
3474  * @param[in] acc_mask
3475  *   Acceptable mask, if NULL default internal default mask
3476  *   will be used to check whether item fields are supported.
3477  * @param[out] error
3478  *   Pointer to error structure.
3479  *
3480  * @return
3481  *   0 on success, a negative errno value otherwise and rte_errno is set.
3482  */
3483 int
3484 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
3485 			      uint64_t item_flags,
3486 			      uint64_t last_item,
3487 			      uint16_t ether_type,
3488 			      const struct rte_flow_item_ecpri *acc_mask,
3489 			      struct rte_flow_error *error)
3490 {
3491 	const struct rte_flow_item_ecpri *mask = item->mask;
3492 	const struct rte_flow_item_ecpri nic_mask = {
3493 		.hdr = {
3494 			.common = {
3495 				.u32 =
3496 				RTE_BE32(((const struct rte_ecpri_common_hdr) {
3497 					.type = 0xFF,
3498 					}).u32),
3499 			},
3500 			.dummy[0] = 0xFFFFFFFF,
3501 		},
3502 	};
3503 	const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
3504 					MLX5_FLOW_LAYER_OUTER_VLAN);
3505 	struct rte_flow_item_ecpri mask_lo;
3506 
3507 	if (!(last_item & outer_l2_vlan) &&
3508 	    last_item != MLX5_FLOW_LAYER_OUTER_L4_UDP)
3509 		return rte_flow_error_set(error, EINVAL,
3510 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3511 					  "eCPRI can only follow L2/VLAN layer or UDP layer");
3512 	if ((last_item & outer_l2_vlan) && ether_type &&
3513 	    ether_type != RTE_ETHER_TYPE_ECPRI)
3514 		return rte_flow_error_set(error, EINVAL,
3515 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3516 					  "eCPRI cannot follow L2/VLAN layer which ether type is not 0xAEFE");
3517 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3518 		return rte_flow_error_set(error, EINVAL,
3519 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3520 					  "eCPRI with tunnel is not supported right now");
3521 	if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
3522 		return rte_flow_error_set(error, ENOTSUP,
3523 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3524 					  "multiple L3 layers not supported");
3525 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
3526 		return rte_flow_error_set(error, EINVAL,
3527 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3528 					  "eCPRI cannot coexist with a TCP layer");
3529 	/* In specification, eCPRI could be over UDP layer. */
3530 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
3531 		return rte_flow_error_set(error, EINVAL,
3532 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3533 					  "eCPRI over UDP layer is not yet supported right now");
3534 	/* Mask for type field in common header could be zero. */
3535 	if (!mask)
3536 		mask = &rte_flow_item_ecpri_mask;
3537 	mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
3538 	/* Input mask is in big-endian format. */
3539 	if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
3540 		return rte_flow_error_set(error, EINVAL,
3541 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
3542 					  "partial mask is not supported for protocol");
3543 	else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
3544 		return rte_flow_error_set(error, EINVAL,
3545 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
3546 					  "message header mask must be after a type mask");
3547 	return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
3548 					 acc_mask ? (const uint8_t *)acc_mask
3549 						  : (const uint8_t *)&nic_mask,
3550 					 sizeof(struct rte_flow_item_ecpri),
3551 					 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3552 }
3553 
3554 static int
3555 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
3556 		   const struct rte_flow_attr *attr __rte_unused,
3557 		   const struct rte_flow_item items[] __rte_unused,
3558 		   const struct rte_flow_action actions[] __rte_unused,
3559 		   bool external __rte_unused,
3560 		   int hairpin __rte_unused,
3561 		   struct rte_flow_error *error)
3562 {
3563 	return rte_flow_error_set(error, ENOTSUP,
3564 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3565 }
3566 
3567 static struct mlx5_flow *
3568 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
3569 		  const struct rte_flow_attr *attr __rte_unused,
3570 		  const struct rte_flow_item items[] __rte_unused,
3571 		  const struct rte_flow_action actions[] __rte_unused,
3572 		  struct rte_flow_error *error)
3573 {
3574 	rte_flow_error_set(error, ENOTSUP,
3575 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3576 	return NULL;
3577 }
3578 
3579 static int
3580 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
3581 		    struct mlx5_flow *dev_flow __rte_unused,
3582 		    const struct rte_flow_attr *attr __rte_unused,
3583 		    const struct rte_flow_item items[] __rte_unused,
3584 		    const struct rte_flow_action actions[] __rte_unused,
3585 		    struct rte_flow_error *error)
3586 {
3587 	return rte_flow_error_set(error, ENOTSUP,
3588 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3589 }
3590 
3591 static int
3592 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
3593 		struct rte_flow *flow __rte_unused,
3594 		struct rte_flow_error *error)
3595 {
3596 	return rte_flow_error_set(error, ENOTSUP,
3597 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3598 }
3599 
3600 static void
3601 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
3602 		 struct rte_flow *flow __rte_unused)
3603 {
3604 }
3605 
3606 static void
3607 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
3608 		  struct rte_flow *flow __rte_unused)
3609 {
3610 }
3611 
3612 static int
3613 flow_null_query(struct rte_eth_dev *dev __rte_unused,
3614 		struct rte_flow *flow __rte_unused,
3615 		const struct rte_flow_action *actions __rte_unused,
3616 		void *data __rte_unused,
3617 		struct rte_flow_error *error)
3618 {
3619 	return rte_flow_error_set(error, ENOTSUP,
3620 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3621 }
3622 
3623 static int
3624 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused,
3625 		      uint32_t domains __rte_unused,
3626 		      uint32_t flags __rte_unused)
3627 {
3628 	return 0;
3629 }
3630 
3631 /* Void driver to protect from null pointer reference. */
3632 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
3633 	.validate = flow_null_validate,
3634 	.prepare = flow_null_prepare,
3635 	.translate = flow_null_translate,
3636 	.apply = flow_null_apply,
3637 	.remove = flow_null_remove,
3638 	.destroy = flow_null_destroy,
3639 	.query = flow_null_query,
3640 	.sync_domain = flow_null_sync_domain,
3641 };
3642 
3643 /**
3644  * Select flow driver type according to flow attributes and device
3645  * configuration.
3646  *
3647  * @param[in] dev
3648  *   Pointer to the dev structure.
3649  * @param[in] attr
3650  *   Pointer to the flow attributes.
3651  *
3652  * @return
3653  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
3654  */
3655 static enum mlx5_flow_drv_type
3656 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
3657 {
3658 	struct mlx5_priv *priv = dev->data->dev_private;
3659 	/* The OS can determine first a specific flow type (DV, VERBS) */
3660 	enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
3661 
3662 	if (type != MLX5_FLOW_TYPE_MAX)
3663 		return type;
3664 	/*
3665 	 * Currently when dv_flow_en == 2, only HW steering engine is
3666 	 * supported. New engines can also be chosen here if ready.
3667 	 */
3668 	if (priv->sh->config.dv_flow_en == 2)
3669 		return MLX5_FLOW_TYPE_HW;
3670 	/* If no OS specific type - continue with DV/VERBS selection */
3671 	if (attr->transfer && priv->sh->config.dv_esw_en)
3672 		type = MLX5_FLOW_TYPE_DV;
3673 	if (!attr->transfer)
3674 		type = priv->sh->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
3675 						     MLX5_FLOW_TYPE_VERBS;
3676 	return type;
3677 }
3678 
3679 #define flow_get_drv_ops(type) flow_drv_ops[type]
3680 
3681 /**
3682  * Flow driver validation API. This abstracts calling driver specific functions.
3683  * The type of flow driver is determined according to flow attributes.
3684  *
3685  * @param[in] dev
3686  *   Pointer to the dev structure.
3687  * @param[in] attr
3688  *   Pointer to the flow attributes.
3689  * @param[in] items
3690  *   Pointer to the list of items.
3691  * @param[in] actions
3692  *   Pointer to the list of actions.
3693  * @param[in] external
3694  *   This flow rule is created by request external to PMD.
3695  * @param[in] hairpin
3696  *   Number of hairpin TX actions, 0 means classic flow.
3697  * @param[out] error
3698  *   Pointer to the error structure.
3699  *
3700  * @return
3701  *   0 on success, a negative errno value otherwise and rte_errno is set.
3702  */
3703 static inline int
3704 flow_drv_validate(struct rte_eth_dev *dev,
3705 		  const struct rte_flow_attr *attr,
3706 		  const struct rte_flow_item items[],
3707 		  const struct rte_flow_action actions[],
3708 		  bool external, int hairpin, struct rte_flow_error *error)
3709 {
3710 	const struct mlx5_flow_driver_ops *fops;
3711 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
3712 
3713 	fops = flow_get_drv_ops(type);
3714 	return fops->validate(dev, attr, items, actions, external,
3715 			      hairpin, error);
3716 }
3717 
3718 /**
3719  * Flow driver preparation API. This abstracts calling driver specific
3720  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3721  * calculates the size of memory required for device flow, allocates the memory,
3722  * initializes the device flow and returns the pointer.
3723  *
3724  * @note
3725  *   This function initializes device flow structure such as dv or verbs in
3726  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
3727  *   rest. For example, adding returning device flow to flow->dev_flow list and
3728  *   setting backward reference to the flow should be done out of this function.
3729  *   layers field is not filled either.
3730  *
3731  * @param[in] dev
3732  *   Pointer to the dev structure.
3733  * @param[in] attr
3734  *   Pointer to the flow attributes.
3735  * @param[in] items
3736  *   Pointer to the list of items.
3737  * @param[in] actions
3738  *   Pointer to the list of actions.
3739  * @param[in] flow_idx
3740  *   This memory pool index to the flow.
3741  * @param[out] error
3742  *   Pointer to the error structure.
3743  *
3744  * @return
3745  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
3746  */
3747 static inline struct mlx5_flow *
3748 flow_drv_prepare(struct rte_eth_dev *dev,
3749 		 const struct rte_flow *flow,
3750 		 const struct rte_flow_attr *attr,
3751 		 const struct rte_flow_item items[],
3752 		 const struct rte_flow_action actions[],
3753 		 uint32_t flow_idx,
3754 		 struct rte_flow_error *error)
3755 {
3756 	const struct mlx5_flow_driver_ops *fops;
3757 	enum mlx5_flow_drv_type type = flow->drv_type;
3758 	struct mlx5_flow *mlx5_flow = NULL;
3759 
3760 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3761 	fops = flow_get_drv_ops(type);
3762 	mlx5_flow = fops->prepare(dev, attr, items, actions, error);
3763 	if (mlx5_flow)
3764 		mlx5_flow->flow_idx = flow_idx;
3765 	return mlx5_flow;
3766 }
3767 
3768 /**
3769  * Flow driver translation API. This abstracts calling driver specific
3770  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3771  * translates a generic flow into a driver flow. flow_drv_prepare() must
3772  * precede.
3773  *
3774  * @note
3775  *   dev_flow->layers could be filled as a result of parsing during translation
3776  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
3777  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
3778  *   flow->actions could be overwritten even though all the expanded dev_flows
3779  *   have the same actions.
3780  *
3781  * @param[in] dev
3782  *   Pointer to the rte dev structure.
3783  * @param[in, out] dev_flow
3784  *   Pointer to the mlx5 flow.
3785  * @param[in] attr
3786  *   Pointer to the flow attributes.
3787  * @param[in] items
3788  *   Pointer to the list of items.
3789  * @param[in] actions
3790  *   Pointer to the list of actions.
3791  * @param[out] error
3792  *   Pointer to the error structure.
3793  *
3794  * @return
3795  *   0 on success, a negative errno value otherwise and rte_errno is set.
3796  */
3797 static inline int
3798 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
3799 		   const struct rte_flow_attr *attr,
3800 		   const struct rte_flow_item items[],
3801 		   const struct rte_flow_action actions[],
3802 		   struct rte_flow_error *error)
3803 {
3804 	const struct mlx5_flow_driver_ops *fops;
3805 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
3806 
3807 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3808 	fops = flow_get_drv_ops(type);
3809 	return fops->translate(dev, dev_flow, attr, items, actions, error);
3810 }
3811 
3812 /**
3813  * Flow driver apply API. This abstracts calling driver specific functions.
3814  * Parent flow (rte_flow) should have driver type (drv_type). It applies
3815  * translated driver flows on to device. flow_drv_translate() must precede.
3816  *
3817  * @param[in] dev
3818  *   Pointer to Ethernet device structure.
3819  * @param[in, out] flow
3820  *   Pointer to flow structure.
3821  * @param[out] error
3822  *   Pointer to error structure.
3823  *
3824  * @return
3825  *   0 on success, a negative errno value otherwise and rte_errno is set.
3826  */
3827 static inline int
3828 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
3829 	       struct rte_flow_error *error)
3830 {
3831 	const struct mlx5_flow_driver_ops *fops;
3832 	enum mlx5_flow_drv_type type = flow->drv_type;
3833 
3834 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3835 	fops = flow_get_drv_ops(type);
3836 	return fops->apply(dev, flow, error);
3837 }
3838 
3839 /**
3840  * Flow driver destroy API. This abstracts calling driver specific functions.
3841  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3842  * on device and releases resources of the flow.
3843  *
3844  * @param[in] dev
3845  *   Pointer to Ethernet device.
3846  * @param[in, out] flow
3847  *   Pointer to flow structure.
3848  */
3849 static inline void
3850 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3851 {
3852 	const struct mlx5_flow_driver_ops *fops;
3853 	enum mlx5_flow_drv_type type = flow->drv_type;
3854 
3855 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3856 	fops = flow_get_drv_ops(type);
3857 	fops->destroy(dev, flow);
3858 }
3859 
3860 /**
3861  * Flow driver find RSS policy tbl API. This abstracts calling driver
3862  * specific functions. Parent flow (rte_flow) should have driver
3863  * type (drv_type). It will find the RSS policy table that has the rss_desc.
3864  *
3865  * @param[in] dev
3866  *   Pointer to Ethernet device.
3867  * @param[in, out] flow
3868  *   Pointer to flow structure.
3869  * @param[in] policy
3870  *   Pointer to meter policy table.
3871  * @param[in] rss_desc
3872  *   Pointer to rss_desc
3873  */
3874 static struct mlx5_flow_meter_sub_policy *
3875 flow_drv_meter_sub_policy_rss_prepare(struct rte_eth_dev *dev,
3876 		struct rte_flow *flow,
3877 		struct mlx5_flow_meter_policy *policy,
3878 		struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS])
3879 {
3880 	const struct mlx5_flow_driver_ops *fops;
3881 	enum mlx5_flow_drv_type type = flow->drv_type;
3882 
3883 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3884 	fops = flow_get_drv_ops(type);
3885 	return fops->meter_sub_policy_rss_prepare(dev, policy, rss_desc);
3886 }
3887 
3888 /**
3889  * Flow driver color tag rule API. This abstracts calling driver
3890  * specific functions. Parent flow (rte_flow) should have driver
3891  * type (drv_type). It will create the color tag rules in hierarchy meter.
3892  *
3893  * @param[in] dev
3894  *   Pointer to Ethernet device.
3895  * @param[in, out] flow
3896  *   Pointer to flow structure.
3897  * @param[in] fm
3898  *   Pointer to flow meter structure.
3899  * @param[in] src_port
3900  *   The src port this extra rule should use.
3901  * @param[in] item
3902  *   The src port id match item.
3903  * @param[out] error
3904  *   Pointer to error structure.
3905  */
3906 static int
3907 flow_drv_mtr_hierarchy_rule_create(struct rte_eth_dev *dev,
3908 		struct rte_flow *flow,
3909 		struct mlx5_flow_meter_info *fm,
3910 		int32_t src_port,
3911 		const struct rte_flow_item *item,
3912 		struct rte_flow_error *error)
3913 {
3914 	const struct mlx5_flow_driver_ops *fops;
3915 	enum mlx5_flow_drv_type type = flow->drv_type;
3916 
3917 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3918 	fops = flow_get_drv_ops(type);
3919 	return fops->meter_hierarchy_rule_create(dev, fm,
3920 						src_port, item, error);
3921 }
3922 
3923 /**
3924  * Get RSS action from the action list.
3925  *
3926  * @param[in] dev
3927  *   Pointer to Ethernet device.
3928  * @param[in] actions
3929  *   Pointer to the list of actions.
3930  * @param[in] flow
3931  *   Parent flow structure pointer.
3932  *
3933  * @return
3934  *   Pointer to the RSS action if exist, else return NULL.
3935  */
3936 static const struct rte_flow_action_rss*
3937 flow_get_rss_action(struct rte_eth_dev *dev,
3938 		    const struct rte_flow_action actions[])
3939 {
3940 	struct mlx5_priv *priv = dev->data->dev_private;
3941 	const struct rte_flow_action_rss *rss = NULL;
3942 	struct mlx5_meter_policy_action_container *acg;
3943 	struct mlx5_meter_policy_action_container *acy;
3944 
3945 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3946 		switch (actions->type) {
3947 		case RTE_FLOW_ACTION_TYPE_RSS:
3948 			rss = actions->conf;
3949 			break;
3950 		case RTE_FLOW_ACTION_TYPE_SAMPLE:
3951 		{
3952 			const struct rte_flow_action_sample *sample =
3953 								actions->conf;
3954 			const struct rte_flow_action *act = sample->actions;
3955 			for (; act->type != RTE_FLOW_ACTION_TYPE_END; act++)
3956 				if (act->type == RTE_FLOW_ACTION_TYPE_RSS)
3957 					rss = act->conf;
3958 			break;
3959 		}
3960 		case RTE_FLOW_ACTION_TYPE_METER:
3961 		{
3962 			uint32_t mtr_idx;
3963 			struct mlx5_flow_meter_info *fm;
3964 			struct mlx5_flow_meter_policy *policy;
3965 			const struct rte_flow_action_meter *mtr = actions->conf;
3966 
3967 			fm = mlx5_flow_meter_find(priv, mtr->mtr_id, &mtr_idx);
3968 			if (fm && !fm->def_policy) {
3969 				policy = mlx5_flow_meter_policy_find(dev,
3970 						fm->policy_id, NULL);
3971 				MLX5_ASSERT(policy);
3972 				if (policy->is_hierarchy) {
3973 					policy =
3974 				mlx5_flow_meter_hierarchy_get_final_policy(dev,
3975 									policy);
3976 					if (!policy)
3977 						return NULL;
3978 				}
3979 				if (policy->is_rss) {
3980 					acg =
3981 					&policy->act_cnt[RTE_COLOR_GREEN];
3982 					acy =
3983 					&policy->act_cnt[RTE_COLOR_YELLOW];
3984 					if (acg->fate_action ==
3985 					    MLX5_FLOW_FATE_SHARED_RSS)
3986 						rss = acg->rss->conf;
3987 					else if (acy->fate_action ==
3988 						 MLX5_FLOW_FATE_SHARED_RSS)
3989 						rss = acy->rss->conf;
3990 				}
3991 			}
3992 			break;
3993 		}
3994 		default:
3995 			break;
3996 		}
3997 	}
3998 	return rss;
3999 }
4000 
4001 /**
4002  * Get ASO age action by index.
4003  *
4004  * @param[in] dev
4005  *   Pointer to the Ethernet device structure.
4006  * @param[in] age_idx
4007  *   Index to the ASO age action.
4008  *
4009  * @return
4010  *   The specified ASO age action.
4011  */
4012 struct mlx5_aso_age_action*
4013 flow_aso_age_get_by_idx(struct rte_eth_dev *dev, uint32_t age_idx)
4014 {
4015 	uint16_t pool_idx = age_idx & UINT16_MAX;
4016 	uint16_t offset = (age_idx >> 16) & UINT16_MAX;
4017 	struct mlx5_priv *priv = dev->data->dev_private;
4018 	struct mlx5_aso_age_mng *mng = priv->sh->aso_age_mng;
4019 	struct mlx5_aso_age_pool *pool;
4020 
4021 	rte_rwlock_read_lock(&mng->resize_rwl);
4022 	pool = mng->pools[pool_idx];
4023 	rte_rwlock_read_unlock(&mng->resize_rwl);
4024 	return &pool->actions[offset - 1];
4025 }
4026 
4027 /* maps indirect action to translated direct in some actions array */
4028 struct mlx5_translated_action_handle {
4029 	struct rte_flow_action_handle *action; /**< Indirect action handle. */
4030 	int index; /**< Index in related array of rte_flow_action. */
4031 };
4032 
4033 /**
4034  * Translates actions of type RTE_FLOW_ACTION_TYPE_INDIRECT to related
4035  * direct action if translation possible.
4036  * This functionality used to run same execution path for both direct and
4037  * indirect actions on flow create. All necessary preparations for indirect
4038  * action handling should be performed on *handle* actions list returned
4039  * from this call.
4040  *
4041  * @param[in] dev
4042  *   Pointer to Ethernet device.
4043  * @param[in] actions
4044  *   List of actions to translate.
4045  * @param[out] handle
4046  *   List to store translated indirect action object handles.
4047  * @param[in, out] indir_n
4048  *   Size of *handle* array. On return should be updated with number of
4049  *   indirect actions retrieved from the *actions* list.
4050  * @param[out] translated_actions
4051  *   List of actions where all indirect actions were translated to direct
4052  *   if possible. NULL if no translation took place.
4053  * @param[out] error
4054  *   Pointer to the error structure.
4055  *
4056  * @return
4057  *   0 on success, a negative errno value otherwise and rte_errno is set.
4058  */
4059 static int
4060 flow_action_handles_translate(struct rte_eth_dev *dev,
4061 			      const struct rte_flow_action actions[],
4062 			      struct mlx5_translated_action_handle *handle,
4063 			      int *indir_n,
4064 			      struct rte_flow_action **translated_actions,
4065 			      struct rte_flow_error *error)
4066 {
4067 	struct mlx5_priv *priv = dev->data->dev_private;
4068 	struct rte_flow_action *translated = NULL;
4069 	size_t actions_size;
4070 	int n;
4071 	int copied_n = 0;
4072 	struct mlx5_translated_action_handle *handle_end = NULL;
4073 
4074 	for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) {
4075 		if (actions[n].type != RTE_FLOW_ACTION_TYPE_INDIRECT)
4076 			continue;
4077 		if (copied_n == *indir_n) {
4078 			return rte_flow_error_set
4079 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM,
4080 				 NULL, "too many shared actions");
4081 		}
4082 		rte_memcpy(&handle[copied_n].action, &actions[n].conf,
4083 			   sizeof(actions[n].conf));
4084 		handle[copied_n].index = n;
4085 		copied_n++;
4086 	}
4087 	n++;
4088 	*indir_n = copied_n;
4089 	if (!copied_n)
4090 		return 0;
4091 	actions_size = sizeof(struct rte_flow_action) * n;
4092 	translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY);
4093 	if (!translated) {
4094 		rte_errno = ENOMEM;
4095 		return -ENOMEM;
4096 	}
4097 	memcpy(translated, actions, actions_size);
4098 	for (handle_end = handle + copied_n; handle < handle_end; handle++) {
4099 		struct mlx5_shared_action_rss *shared_rss;
4100 		uint32_t act_idx = (uint32_t)(uintptr_t)handle->action;
4101 		uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET;
4102 		uint32_t idx = act_idx &
4103 			       ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1);
4104 
4105 		switch (type) {
4106 		case MLX5_INDIRECT_ACTION_TYPE_RSS:
4107 			shared_rss = mlx5_ipool_get
4108 			  (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], idx);
4109 			translated[handle->index].type =
4110 				RTE_FLOW_ACTION_TYPE_RSS;
4111 			translated[handle->index].conf =
4112 				&shared_rss->origin;
4113 			break;
4114 		case MLX5_INDIRECT_ACTION_TYPE_COUNT:
4115 			translated[handle->index].type =
4116 						(enum rte_flow_action_type)
4117 						MLX5_RTE_FLOW_ACTION_TYPE_COUNT;
4118 			translated[handle->index].conf = (void *)(uintptr_t)idx;
4119 			break;
4120 		case MLX5_INDIRECT_ACTION_TYPE_AGE:
4121 			if (priv->sh->flow_hit_aso_en) {
4122 				translated[handle->index].type =
4123 					(enum rte_flow_action_type)
4124 					MLX5_RTE_FLOW_ACTION_TYPE_AGE;
4125 				translated[handle->index].conf =
4126 							 (void *)(uintptr_t)idx;
4127 				break;
4128 			}
4129 			/* Fall-through */
4130 		case MLX5_INDIRECT_ACTION_TYPE_CT:
4131 			if (priv->sh->ct_aso_en) {
4132 				translated[handle->index].type =
4133 					RTE_FLOW_ACTION_TYPE_CONNTRACK;
4134 				translated[handle->index].conf =
4135 							 (void *)(uintptr_t)idx;
4136 				break;
4137 			}
4138 			/* Fall-through */
4139 		default:
4140 			mlx5_free(translated);
4141 			return rte_flow_error_set
4142 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
4143 				 NULL, "invalid indirect action type");
4144 		}
4145 	}
4146 	*translated_actions = translated;
4147 	return 0;
4148 }
4149 
4150 /**
4151  * Get Shared RSS action from the action list.
4152  *
4153  * @param[in] dev
4154  *   Pointer to Ethernet device.
4155  * @param[in] shared
4156  *   Pointer to the list of actions.
4157  * @param[in] shared_n
4158  *   Actions list length.
4159  *
4160  * @return
4161  *   The MLX5 RSS action ID if exists, otherwise return 0.
4162  */
4163 static uint32_t
4164 flow_get_shared_rss_action(struct rte_eth_dev *dev,
4165 			   struct mlx5_translated_action_handle *handle,
4166 			   int shared_n)
4167 {
4168 	struct mlx5_translated_action_handle *handle_end;
4169 	struct mlx5_priv *priv = dev->data->dev_private;
4170 	struct mlx5_shared_action_rss *shared_rss;
4171 
4172 
4173 	for (handle_end = handle + shared_n; handle < handle_end; handle++) {
4174 		uint32_t act_idx = (uint32_t)(uintptr_t)handle->action;
4175 		uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET;
4176 		uint32_t idx = act_idx &
4177 			       ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1);
4178 		switch (type) {
4179 		case MLX5_INDIRECT_ACTION_TYPE_RSS:
4180 			shared_rss = mlx5_ipool_get
4181 				(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
4182 									   idx);
4183 			__atomic_add_fetch(&shared_rss->refcnt, 1,
4184 					   __ATOMIC_RELAXED);
4185 			return idx;
4186 		default:
4187 			break;
4188 		}
4189 	}
4190 	return 0;
4191 }
4192 
4193 static unsigned int
4194 find_graph_root(uint32_t rss_level)
4195 {
4196 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
4197 			       MLX5_EXPANSION_ROOT_OUTER;
4198 }
4199 
4200 /**
4201  *  Get layer flags from the prefix flow.
4202  *
4203  *  Some flows may be split to several subflows, the prefix subflow gets the
4204  *  match items and the suffix sub flow gets the actions.
4205  *  Some actions need the user defined match item flags to get the detail for
4206  *  the action.
4207  *  This function helps the suffix flow to get the item layer flags from prefix
4208  *  subflow.
4209  *
4210  * @param[in] dev_flow
4211  *   Pointer the created prefix subflow.
4212  *
4213  * @return
4214  *   The layers get from prefix subflow.
4215  */
4216 static inline uint64_t
4217 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
4218 {
4219 	uint64_t layers = 0;
4220 
4221 	/*
4222 	 * Layers bits could be localization, but usually the compiler will
4223 	 * help to do the optimization work for source code.
4224 	 * If no decap actions, use the layers directly.
4225 	 */
4226 	if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
4227 		return dev_flow->handle->layers;
4228 	/* Convert L3 layers with decap action. */
4229 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
4230 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
4231 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
4232 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
4233 	/* Convert L4 layers with decap action.  */
4234 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
4235 		layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
4236 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
4237 		layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
4238 	return layers;
4239 }
4240 
4241 /**
4242  * Get metadata split action information.
4243  *
4244  * @param[in] actions
4245  *   Pointer to the list of actions.
4246  * @param[out] qrss
4247  *   Pointer to the return pointer.
4248  * @param[out] qrss_type
4249  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
4250  *   if no QUEUE/RSS is found.
4251  * @param[out] encap_idx
4252  *   Pointer to the index of the encap action if exists, otherwise the last
4253  *   action index.
4254  *
4255  * @return
4256  *   Total number of actions.
4257  */
4258 static int
4259 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
4260 				       const struct rte_flow_action **qrss,
4261 				       int *encap_idx)
4262 {
4263 	const struct rte_flow_action_raw_encap *raw_encap;
4264 	int actions_n = 0;
4265 	int raw_decap_idx = -1;
4266 
4267 	*encap_idx = -1;
4268 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4269 		switch (actions->type) {
4270 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4271 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4272 			*encap_idx = actions_n;
4273 			break;
4274 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4275 			raw_decap_idx = actions_n;
4276 			break;
4277 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4278 			raw_encap = actions->conf;
4279 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4280 				*encap_idx = raw_decap_idx != -1 ?
4281 						      raw_decap_idx : actions_n;
4282 			break;
4283 		case RTE_FLOW_ACTION_TYPE_QUEUE:
4284 		case RTE_FLOW_ACTION_TYPE_RSS:
4285 			*qrss = actions;
4286 			break;
4287 		default:
4288 			break;
4289 		}
4290 		actions_n++;
4291 	}
4292 	if (*encap_idx == -1)
4293 		*encap_idx = actions_n;
4294 	/* Count RTE_FLOW_ACTION_TYPE_END. */
4295 	return actions_n + 1;
4296 }
4297 
4298 /**
4299  * Check if the action will change packet.
4300  *
4301  * @param dev
4302  *   Pointer to Ethernet device.
4303  * @param[in] type
4304  *   action type.
4305  *
4306  * @return
4307  *   true if action will change packet, false otherwise.
4308  */
4309 static bool flow_check_modify_action_type(struct rte_eth_dev *dev,
4310 					  enum rte_flow_action_type type)
4311 {
4312 	struct mlx5_priv *priv = dev->data->dev_private;
4313 
4314 	switch (type) {
4315 	case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
4316 	case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
4317 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
4318 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
4319 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
4320 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
4321 	case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
4322 	case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
4323 	case RTE_FLOW_ACTION_TYPE_DEC_TTL:
4324 	case RTE_FLOW_ACTION_TYPE_SET_TTL:
4325 	case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ:
4326 	case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ:
4327 	case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK:
4328 	case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK:
4329 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP:
4330 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP:
4331 	case RTE_FLOW_ACTION_TYPE_SET_META:
4332 	case RTE_FLOW_ACTION_TYPE_SET_TAG:
4333 	case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
4334 	case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4335 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4336 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4337 	case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4338 	case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
4339 	case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4340 	case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
4341 	case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4342 	case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4343 	case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD:
4344 		return true;
4345 	case RTE_FLOW_ACTION_TYPE_FLAG:
4346 	case RTE_FLOW_ACTION_TYPE_MARK:
4347 		if (priv->sh->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY)
4348 			return true;
4349 		else
4350 			return false;
4351 	default:
4352 		return false;
4353 	}
4354 }
4355 
4356 /**
4357  * Check meter action from the action list.
4358  *
4359  * @param dev
4360  *   Pointer to Ethernet device.
4361  * @param[in] actions
4362  *   Pointer to the list of actions.
4363  * @param[out] has_mtr
4364  *   Pointer to the meter exist flag.
4365  * @param[out] has_modify
4366  *   Pointer to the flag showing there's packet change action.
4367  * @param[out] meter_id
4368  *   Pointer to the meter id.
4369  *
4370  * @return
4371  *   Total number of actions.
4372  */
4373 static int
4374 flow_check_meter_action(struct rte_eth_dev *dev,
4375 			const struct rte_flow_action actions[],
4376 			bool *has_mtr, bool *has_modify, uint32_t *meter_id)
4377 {
4378 	const struct rte_flow_action_meter *mtr = NULL;
4379 	int actions_n = 0;
4380 
4381 	MLX5_ASSERT(has_mtr);
4382 	*has_mtr = false;
4383 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4384 		switch (actions->type) {
4385 		case RTE_FLOW_ACTION_TYPE_METER:
4386 			mtr = actions->conf;
4387 			*meter_id = mtr->mtr_id;
4388 			*has_mtr = true;
4389 			break;
4390 		default:
4391 			break;
4392 		}
4393 		if (!*has_mtr)
4394 			*has_modify |= flow_check_modify_action_type(dev,
4395 								actions->type);
4396 		actions_n++;
4397 	}
4398 	/* Count RTE_FLOW_ACTION_TYPE_END. */
4399 	return actions_n + 1;
4400 }
4401 
4402 /**
4403  * Check if the flow should be split due to hairpin.
4404  * The reason for the split is that in current HW we can't
4405  * support encap and push-vlan on Rx, so if a flow contains
4406  * these actions we move it to Tx.
4407  *
4408  * @param dev
4409  *   Pointer to Ethernet device.
4410  * @param[in] attr
4411  *   Flow rule attributes.
4412  * @param[in] actions
4413  *   Associated actions (list terminated by the END action).
4414  *
4415  * @return
4416  *   > 0 the number of actions and the flow should be split,
4417  *   0 when no split required.
4418  */
4419 static int
4420 flow_check_hairpin_split(struct rte_eth_dev *dev,
4421 			 const struct rte_flow_attr *attr,
4422 			 const struct rte_flow_action actions[])
4423 {
4424 	int queue_action = 0;
4425 	int action_n = 0;
4426 	int split = 0;
4427 	const struct rte_flow_action_queue *queue;
4428 	const struct rte_flow_action_rss *rss;
4429 	const struct rte_flow_action_raw_encap *raw_encap;
4430 	const struct rte_eth_hairpin_conf *conf;
4431 
4432 	if (!attr->ingress)
4433 		return 0;
4434 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4435 		switch (actions->type) {
4436 		case RTE_FLOW_ACTION_TYPE_QUEUE:
4437 			queue = actions->conf;
4438 			if (queue == NULL)
4439 				return 0;
4440 			conf = mlx5_rxq_get_hairpin_conf(dev, queue->index);
4441 			if (conf == NULL || conf->tx_explicit != 0)
4442 				return 0;
4443 			queue_action = 1;
4444 			action_n++;
4445 			break;
4446 		case RTE_FLOW_ACTION_TYPE_RSS:
4447 			rss = actions->conf;
4448 			if (rss == NULL || rss->queue_num == 0)
4449 				return 0;
4450 			conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]);
4451 			if (conf == NULL || conf->tx_explicit != 0)
4452 				return 0;
4453 			queue_action = 1;
4454 			action_n++;
4455 			break;
4456 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4457 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4458 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4459 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4460 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4461 			split++;
4462 			action_n++;
4463 			break;
4464 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4465 			raw_encap = actions->conf;
4466 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4467 				split++;
4468 			action_n++;
4469 			break;
4470 		default:
4471 			action_n++;
4472 			break;
4473 		}
4474 	}
4475 	if (split && queue_action)
4476 		return action_n;
4477 	return 0;
4478 }
4479 
4480 /* Declare flow create/destroy prototype in advance. */
4481 static uint32_t
4482 flow_list_create(struct rte_eth_dev *dev, enum mlx5_flow_type type,
4483 		 const struct rte_flow_attr *attr,
4484 		 const struct rte_flow_item items[],
4485 		 const struct rte_flow_action actions[],
4486 		 bool external, struct rte_flow_error *error);
4487 
4488 static void
4489 flow_list_destroy(struct rte_eth_dev *dev, enum mlx5_flow_type type,
4490 		  uint32_t flow_idx);
4491 
4492 int
4493 flow_dv_mreg_match_cb(void *tool_ctx __rte_unused,
4494 		      struct mlx5_list_entry *entry, void *cb_ctx)
4495 {
4496 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
4497 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4498 			       container_of(entry, typeof(*mcp_res), hlist_ent);
4499 
4500 	return mcp_res->mark_id != *(uint32_t *)(ctx->data);
4501 }
4502 
4503 struct mlx5_list_entry *
4504 flow_dv_mreg_create_cb(void *tool_ctx, void *cb_ctx)
4505 {
4506 	struct rte_eth_dev *dev = tool_ctx;
4507 	struct mlx5_priv *priv = dev->data->dev_private;
4508 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
4509 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4510 	struct rte_flow_error *error = ctx->error;
4511 	uint32_t idx = 0;
4512 	int ret;
4513 	uint32_t mark_id = *(uint32_t *)(ctx->data);
4514 	struct rte_flow_attr attr = {
4515 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4516 		.ingress = 1,
4517 	};
4518 	struct mlx5_rte_flow_item_tag tag_spec = {
4519 		.data = mark_id,
4520 	};
4521 	struct rte_flow_item items[] = {
4522 		[1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
4523 	};
4524 	struct rte_flow_action_mark ftag = {
4525 		.id = mark_id,
4526 	};
4527 	struct mlx5_flow_action_copy_mreg cp_mreg = {
4528 		.dst = REG_B,
4529 		.src = REG_NON,
4530 	};
4531 	struct rte_flow_action_jump jump = {
4532 		.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4533 	};
4534 	struct rte_flow_action actions[] = {
4535 		[3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
4536 	};
4537 
4538 	/* Fill the register fields in the flow. */
4539 	ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
4540 	if (ret < 0)
4541 		return NULL;
4542 	tag_spec.id = ret;
4543 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4544 	if (ret < 0)
4545 		return NULL;
4546 	cp_mreg.src = ret;
4547 	/* Provide the full width of FLAG specific value. */
4548 	if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
4549 		tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
4550 	/* Build a new flow. */
4551 	if (mark_id != MLX5_DEFAULT_COPY_ID) {
4552 		items[0] = (struct rte_flow_item){
4553 			.type = (enum rte_flow_item_type)
4554 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4555 			.spec = &tag_spec,
4556 		};
4557 		items[1] = (struct rte_flow_item){
4558 			.type = RTE_FLOW_ITEM_TYPE_END,
4559 		};
4560 		actions[0] = (struct rte_flow_action){
4561 			.type = (enum rte_flow_action_type)
4562 				MLX5_RTE_FLOW_ACTION_TYPE_MARK,
4563 			.conf = &ftag,
4564 		};
4565 		actions[1] = (struct rte_flow_action){
4566 			.type = (enum rte_flow_action_type)
4567 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4568 			.conf = &cp_mreg,
4569 		};
4570 		actions[2] = (struct rte_flow_action){
4571 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
4572 			.conf = &jump,
4573 		};
4574 		actions[3] = (struct rte_flow_action){
4575 			.type = RTE_FLOW_ACTION_TYPE_END,
4576 		};
4577 	} else {
4578 		/* Default rule, wildcard match. */
4579 		attr.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR;
4580 		items[0] = (struct rte_flow_item){
4581 			.type = RTE_FLOW_ITEM_TYPE_END,
4582 		};
4583 		actions[0] = (struct rte_flow_action){
4584 			.type = (enum rte_flow_action_type)
4585 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4586 			.conf = &cp_mreg,
4587 		};
4588 		actions[1] = (struct rte_flow_action){
4589 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
4590 			.conf = &jump,
4591 		};
4592 		actions[2] = (struct rte_flow_action){
4593 			.type = RTE_FLOW_ACTION_TYPE_END,
4594 		};
4595 	}
4596 	/* Build a new entry. */
4597 	mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
4598 	if (!mcp_res) {
4599 		rte_errno = ENOMEM;
4600 		return NULL;
4601 	}
4602 	mcp_res->idx = idx;
4603 	mcp_res->mark_id = mark_id;
4604 	/*
4605 	 * The copy Flows are not included in any list. There
4606 	 * ones are referenced from other Flows and can not
4607 	 * be applied, removed, deleted in arbitrary order
4608 	 * by list traversing.
4609 	 */
4610 	mcp_res->rix_flow = flow_list_create(dev, MLX5_FLOW_TYPE_MCP,
4611 					&attr, items, actions, false, error);
4612 	if (!mcp_res->rix_flow) {
4613 		mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], idx);
4614 		return NULL;
4615 	}
4616 	return &mcp_res->hlist_ent;
4617 }
4618 
4619 struct mlx5_list_entry *
4620 flow_dv_mreg_clone_cb(void *tool_ctx, struct mlx5_list_entry *oentry,
4621 		      void *cb_ctx __rte_unused)
4622 {
4623 	struct rte_eth_dev *dev = tool_ctx;
4624 	struct mlx5_priv *priv = dev->data->dev_private;
4625 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4626 	uint32_t idx = 0;
4627 
4628 	mcp_res = mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
4629 	if (!mcp_res) {
4630 		rte_errno = ENOMEM;
4631 		return NULL;
4632 	}
4633 	memcpy(mcp_res, oentry, sizeof(*mcp_res));
4634 	mcp_res->idx = idx;
4635 	return &mcp_res->hlist_ent;
4636 }
4637 
4638 void
4639 flow_dv_mreg_clone_free_cb(void *tool_ctx, struct mlx5_list_entry *entry)
4640 {
4641 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4642 			       container_of(entry, typeof(*mcp_res), hlist_ent);
4643 	struct rte_eth_dev *dev = tool_ctx;
4644 	struct mlx5_priv *priv = dev->data->dev_private;
4645 
4646 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
4647 }
4648 
4649 /**
4650  * Add a flow of copying flow metadata registers in RX_CP_TBL.
4651  *
4652  * As mark_id is unique, if there's already a registered flow for the mark_id,
4653  * return by increasing the reference counter of the resource. Otherwise, create
4654  * the resource (mcp_res) and flow.
4655  *
4656  * Flow looks like,
4657  *   - If ingress port is ANY and reg_c[1] is mark_id,
4658  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4659  *
4660  * For default flow (zero mark_id), flow is like,
4661  *   - If ingress port is ANY,
4662  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
4663  *
4664  * @param dev
4665  *   Pointer to Ethernet device.
4666  * @param mark_id
4667  *   ID of MARK action, zero means default flow for META.
4668  * @param[out] error
4669  *   Perform verbose error reporting if not NULL.
4670  *
4671  * @return
4672  *   Associated resource on success, NULL otherwise and rte_errno is set.
4673  */
4674 static struct mlx5_flow_mreg_copy_resource *
4675 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
4676 			  struct rte_flow_error *error)
4677 {
4678 	struct mlx5_priv *priv = dev->data->dev_private;
4679 	struct mlx5_list_entry *entry;
4680 	struct mlx5_flow_cb_ctx ctx = {
4681 		.dev = dev,
4682 		.error = error,
4683 		.data = &mark_id,
4684 	};
4685 
4686 	/* Check if already registered. */
4687 	MLX5_ASSERT(priv->mreg_cp_tbl);
4688 	entry = mlx5_hlist_register(priv->mreg_cp_tbl, mark_id, &ctx);
4689 	if (!entry)
4690 		return NULL;
4691 	return container_of(entry, struct mlx5_flow_mreg_copy_resource,
4692 			    hlist_ent);
4693 }
4694 
4695 void
4696 flow_dv_mreg_remove_cb(void *tool_ctx, struct mlx5_list_entry *entry)
4697 {
4698 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4699 			       container_of(entry, typeof(*mcp_res), hlist_ent);
4700 	struct rte_eth_dev *dev = tool_ctx;
4701 	struct mlx5_priv *priv = dev->data->dev_private;
4702 
4703 	MLX5_ASSERT(mcp_res->rix_flow);
4704 	flow_list_destroy(dev, MLX5_FLOW_TYPE_MCP, mcp_res->rix_flow);
4705 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
4706 }
4707 
4708 /**
4709  * Release flow in RX_CP_TBL.
4710  *
4711  * @param dev
4712  *   Pointer to Ethernet device.
4713  * @flow
4714  *   Parent flow for wich copying is provided.
4715  */
4716 static void
4717 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
4718 			  struct rte_flow *flow)
4719 {
4720 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4721 	struct mlx5_priv *priv = dev->data->dev_private;
4722 
4723 	if (!flow->rix_mreg_copy)
4724 		return;
4725 	mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
4726 				 flow->rix_mreg_copy);
4727 	if (!mcp_res || !priv->mreg_cp_tbl)
4728 		return;
4729 	MLX5_ASSERT(mcp_res->rix_flow);
4730 	mlx5_hlist_unregister(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
4731 	flow->rix_mreg_copy = 0;
4732 }
4733 
4734 /**
4735  * Remove the default copy action from RX_CP_TBL.
4736  *
4737  * This functions is called in the mlx5_dev_start(). No thread safe
4738  * is guaranteed.
4739  *
4740  * @param dev
4741  *   Pointer to Ethernet device.
4742  */
4743 static void
4744 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
4745 {
4746 	struct mlx5_list_entry *entry;
4747 	struct mlx5_priv *priv = dev->data->dev_private;
4748 	struct mlx5_flow_cb_ctx ctx;
4749 	uint32_t mark_id;
4750 
4751 	/* Check if default flow is registered. */
4752 	if (!priv->mreg_cp_tbl)
4753 		return;
4754 	mark_id = MLX5_DEFAULT_COPY_ID;
4755 	ctx.data = &mark_id;
4756 	entry = mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id, &ctx);
4757 	if (!entry)
4758 		return;
4759 	mlx5_hlist_unregister(priv->mreg_cp_tbl, entry);
4760 }
4761 
4762 /**
4763  * Add the default copy action in in RX_CP_TBL.
4764  *
4765  * This functions is called in the mlx5_dev_start(). No thread safe
4766  * is guaranteed.
4767  *
4768  * @param dev
4769  *   Pointer to Ethernet device.
4770  * @param[out] error
4771  *   Perform verbose error reporting if not NULL.
4772  *
4773  * @return
4774  *   0 for success, negative value otherwise and rte_errno is set.
4775  */
4776 static int
4777 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
4778 				  struct rte_flow_error *error)
4779 {
4780 	struct mlx5_priv *priv = dev->data->dev_private;
4781 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4782 	struct mlx5_flow_cb_ctx ctx;
4783 	uint32_t mark_id;
4784 
4785 	/* Check whether extensive metadata feature is engaged. */
4786 	if (!priv->sh->config.dv_flow_en ||
4787 	    priv->sh->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4788 	    !mlx5_flow_ext_mreg_supported(dev) ||
4789 	    !priv->sh->dv_regc0_mask)
4790 		return 0;
4791 	/*
4792 	 * Add default mreg copy flow may be called multiple time, but
4793 	 * only be called once in stop. Avoid register it twice.
4794 	 */
4795 	mark_id = MLX5_DEFAULT_COPY_ID;
4796 	ctx.data = &mark_id;
4797 	if (mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id, &ctx))
4798 		return 0;
4799 	mcp_res = flow_mreg_add_copy_action(dev, mark_id, error);
4800 	if (!mcp_res)
4801 		return -rte_errno;
4802 	return 0;
4803 }
4804 
4805 /**
4806  * Add a flow of copying flow metadata registers in RX_CP_TBL.
4807  *
4808  * All the flow having Q/RSS action should be split by
4809  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
4810  * performs the following,
4811  *   - CQE->flow_tag := reg_c[1] (MARK)
4812  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4813  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
4814  * but there should be a flow per each MARK ID set by MARK action.
4815  *
4816  * For the aforementioned reason, if there's a MARK action in flow's action
4817  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
4818  * the MARK ID to CQE's flow_tag like,
4819  *   - If reg_c[1] is mark_id,
4820  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4821  *
4822  * For SET_META action which stores value in reg_c[0], as the destination is
4823  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
4824  * MARK ID means the default flow. The default flow looks like,
4825  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4826  *
4827  * @param dev
4828  *   Pointer to Ethernet device.
4829  * @param flow
4830  *   Pointer to flow structure.
4831  * @param[in] actions
4832  *   Pointer to the list of actions.
4833  * @param[out] error
4834  *   Perform verbose error reporting if not NULL.
4835  *
4836  * @return
4837  *   0 on success, negative value otherwise and rte_errno is set.
4838  */
4839 static int
4840 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
4841 			    struct rte_flow *flow,
4842 			    const struct rte_flow_action *actions,
4843 			    struct rte_flow_error *error)
4844 {
4845 	struct mlx5_priv *priv = dev->data->dev_private;
4846 	struct mlx5_sh_config *config = &priv->sh->config;
4847 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4848 	const struct rte_flow_action_mark *mark;
4849 
4850 	/* Check whether extensive metadata feature is engaged. */
4851 	if (!config->dv_flow_en ||
4852 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4853 	    !mlx5_flow_ext_mreg_supported(dev) ||
4854 	    !priv->sh->dv_regc0_mask)
4855 		return 0;
4856 	/* Find MARK action. */
4857 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4858 		switch (actions->type) {
4859 		case RTE_FLOW_ACTION_TYPE_FLAG:
4860 			mcp_res = flow_mreg_add_copy_action
4861 				(dev, MLX5_FLOW_MARK_DEFAULT, error);
4862 			if (!mcp_res)
4863 				return -rte_errno;
4864 			flow->rix_mreg_copy = mcp_res->idx;
4865 			return 0;
4866 		case RTE_FLOW_ACTION_TYPE_MARK:
4867 			mark = (const struct rte_flow_action_mark *)
4868 				actions->conf;
4869 			mcp_res =
4870 				flow_mreg_add_copy_action(dev, mark->id, error);
4871 			if (!mcp_res)
4872 				return -rte_errno;
4873 			flow->rix_mreg_copy = mcp_res->idx;
4874 			return 0;
4875 		default:
4876 			break;
4877 		}
4878 	}
4879 	return 0;
4880 }
4881 
4882 #define MLX5_MAX_SPLIT_ACTIONS 24
4883 #define MLX5_MAX_SPLIT_ITEMS 24
4884 
4885 /**
4886  * Split the hairpin flow.
4887  * Since HW can't support encap and push-vlan on Rx, we move these
4888  * actions to Tx.
4889  * If the count action is after the encap then we also
4890  * move the count action. in this case the count will also measure
4891  * the outer bytes.
4892  *
4893  * @param dev
4894  *   Pointer to Ethernet device.
4895  * @param[in] actions
4896  *   Associated actions (list terminated by the END action).
4897  * @param[out] actions_rx
4898  *   Rx flow actions.
4899  * @param[out] actions_tx
4900  *   Tx flow actions..
4901  * @param[out] pattern_tx
4902  *   The pattern items for the Tx flow.
4903  * @param[out] flow_id
4904  *   The flow ID connected to this flow.
4905  *
4906  * @return
4907  *   0 on success.
4908  */
4909 static int
4910 flow_hairpin_split(struct rte_eth_dev *dev,
4911 		   const struct rte_flow_action actions[],
4912 		   struct rte_flow_action actions_rx[],
4913 		   struct rte_flow_action actions_tx[],
4914 		   struct rte_flow_item pattern_tx[],
4915 		   uint32_t flow_id)
4916 {
4917 	const struct rte_flow_action_raw_encap *raw_encap;
4918 	const struct rte_flow_action_raw_decap *raw_decap;
4919 	struct mlx5_rte_flow_action_set_tag *set_tag;
4920 	struct rte_flow_action *tag_action;
4921 	struct mlx5_rte_flow_item_tag *tag_item;
4922 	struct rte_flow_item *item;
4923 	char *addr;
4924 	int encap = 0;
4925 
4926 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4927 		switch (actions->type) {
4928 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4929 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4930 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4931 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4932 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4933 			rte_memcpy(actions_tx, actions,
4934 			       sizeof(struct rte_flow_action));
4935 			actions_tx++;
4936 			break;
4937 		case RTE_FLOW_ACTION_TYPE_COUNT:
4938 			if (encap) {
4939 				rte_memcpy(actions_tx, actions,
4940 					   sizeof(struct rte_flow_action));
4941 				actions_tx++;
4942 			} else {
4943 				rte_memcpy(actions_rx, actions,
4944 					   sizeof(struct rte_flow_action));
4945 				actions_rx++;
4946 			}
4947 			break;
4948 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4949 			raw_encap = actions->conf;
4950 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) {
4951 				memcpy(actions_tx, actions,
4952 				       sizeof(struct rte_flow_action));
4953 				actions_tx++;
4954 				encap = 1;
4955 			} else {
4956 				rte_memcpy(actions_rx, actions,
4957 					   sizeof(struct rte_flow_action));
4958 				actions_rx++;
4959 			}
4960 			break;
4961 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4962 			raw_decap = actions->conf;
4963 			if (raw_decap->size < MLX5_ENCAPSULATION_DECISION_SIZE) {
4964 				memcpy(actions_tx, actions,
4965 				       sizeof(struct rte_flow_action));
4966 				actions_tx++;
4967 			} else {
4968 				rte_memcpy(actions_rx, actions,
4969 					   sizeof(struct rte_flow_action));
4970 				actions_rx++;
4971 			}
4972 			break;
4973 		default:
4974 			rte_memcpy(actions_rx, actions,
4975 				   sizeof(struct rte_flow_action));
4976 			actions_rx++;
4977 			break;
4978 		}
4979 	}
4980 	/* Add set meta action and end action for the Rx flow. */
4981 	tag_action = actions_rx;
4982 	tag_action->type = (enum rte_flow_action_type)
4983 			   MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4984 	actions_rx++;
4985 	rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
4986 	actions_rx++;
4987 	set_tag = (void *)actions_rx;
4988 	*set_tag = (struct mlx5_rte_flow_action_set_tag) {
4989 		.id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL),
4990 		.data = flow_id,
4991 	};
4992 	MLX5_ASSERT(set_tag->id > REG_NON);
4993 	tag_action->conf = set_tag;
4994 	/* Create Tx item list. */
4995 	rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
4996 	addr = (void *)&pattern_tx[2];
4997 	item = pattern_tx;
4998 	item->type = (enum rte_flow_item_type)
4999 		     MLX5_RTE_FLOW_ITEM_TYPE_TAG;
5000 	tag_item = (void *)addr;
5001 	tag_item->data = flow_id;
5002 	tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
5003 	MLX5_ASSERT(set_tag->id > REG_NON);
5004 	item->spec = tag_item;
5005 	addr += sizeof(struct mlx5_rte_flow_item_tag);
5006 	tag_item = (void *)addr;
5007 	tag_item->data = UINT32_MAX;
5008 	tag_item->id = UINT16_MAX;
5009 	item->mask = tag_item;
5010 	item->last = NULL;
5011 	item++;
5012 	item->type = RTE_FLOW_ITEM_TYPE_END;
5013 	return 0;
5014 }
5015 
5016 /**
5017  * The last stage of splitting chain, just creates the subflow
5018  * without any modification.
5019  *
5020  * @param[in] dev
5021  *   Pointer to Ethernet device.
5022  * @param[in] flow
5023  *   Parent flow structure pointer.
5024  * @param[in, out] sub_flow
5025  *   Pointer to return the created subflow, may be NULL.
5026  * @param[in] attr
5027  *   Flow rule attributes.
5028  * @param[in] items
5029  *   Pattern specification (list terminated by the END pattern item).
5030  * @param[in] actions
5031  *   Associated actions (list terminated by the END action).
5032  * @param[in] flow_split_info
5033  *   Pointer to flow split info structure.
5034  * @param[out] error
5035  *   Perform verbose error reporting if not NULL.
5036  * @return
5037  *   0 on success, negative value otherwise
5038  */
5039 static int
5040 flow_create_split_inner(struct rte_eth_dev *dev,
5041 			struct rte_flow *flow,
5042 			struct mlx5_flow **sub_flow,
5043 			const struct rte_flow_attr *attr,
5044 			const struct rte_flow_item items[],
5045 			const struct rte_flow_action actions[],
5046 			struct mlx5_flow_split_info *flow_split_info,
5047 			struct rte_flow_error *error)
5048 {
5049 	struct mlx5_flow *dev_flow;
5050 	struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace();
5051 
5052 	dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
5053 				    flow_split_info->flow_idx, error);
5054 	if (!dev_flow)
5055 		return -rte_errno;
5056 	dev_flow->flow = flow;
5057 	dev_flow->external = flow_split_info->external;
5058 	dev_flow->skip_scale = flow_split_info->skip_scale;
5059 	/* Subflow object was created, we must include one in the list. */
5060 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
5061 		      dev_flow->handle, next);
5062 	/*
5063 	 * If dev_flow is as one of the suffix flow, some actions in suffix
5064 	 * flow may need some user defined item layer flags, and pass the
5065 	 * Metadata rxq mark flag to suffix flow as well.
5066 	 */
5067 	if (flow_split_info->prefix_layers)
5068 		dev_flow->handle->layers = flow_split_info->prefix_layers;
5069 	if (flow_split_info->prefix_mark) {
5070 		MLX5_ASSERT(wks);
5071 		wks->mark = 1;
5072 	}
5073 	if (sub_flow)
5074 		*sub_flow = dev_flow;
5075 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5076 	dev_flow->dv.table_id = flow_split_info->table_id;
5077 #endif
5078 	return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
5079 }
5080 
5081 /**
5082  * Get the sub policy of a meter.
5083  *
5084  * @param[in] dev
5085  *   Pointer to Ethernet device.
5086  * @param[in] flow
5087  *   Parent flow structure pointer.
5088  * @param wks
5089  *   Pointer to thread flow work space.
5090  * @param[in] attr
5091  *   Flow rule attributes.
5092  * @param[in] items
5093  *   Pattern specification (list terminated by the END pattern item).
5094  * @param[out] error
5095  *   Perform verbose error reporting if not NULL.
5096  *
5097  * @return
5098  *   Pointer to the meter sub policy, NULL otherwise and rte_errno is set.
5099  */
5100 static struct mlx5_flow_meter_sub_policy *
5101 get_meter_sub_policy(struct rte_eth_dev *dev,
5102 		     struct rte_flow *flow,
5103 		     struct mlx5_flow_workspace *wks,
5104 		     const struct rte_flow_attr *attr,
5105 		     const struct rte_flow_item items[],
5106 		     struct rte_flow_error *error)
5107 {
5108 	struct mlx5_flow_meter_policy *policy;
5109 	struct mlx5_flow_meter_policy *final_policy;
5110 	struct mlx5_flow_meter_sub_policy *sub_policy = NULL;
5111 
5112 	policy = wks->policy;
5113 	final_policy = policy->is_hierarchy ? wks->final_policy : policy;
5114 	if (final_policy->is_rss || final_policy->is_queue) {
5115 		struct mlx5_flow_rss_desc rss_desc_v[MLX5_MTR_RTE_COLORS];
5116 		struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS] = {0};
5117 		uint32_t i;
5118 
5119 		/*
5120 		 * This is a tmp dev_flow,
5121 		 * no need to register any matcher for it in translate.
5122 		 */
5123 		wks->skip_matcher_reg = 1;
5124 		for (i = 0; i < MLX5_MTR_RTE_COLORS; i++) {
5125 			struct mlx5_flow dev_flow = {0};
5126 			struct mlx5_flow_handle dev_handle = { {0} };
5127 			uint8_t fate = final_policy->act_cnt[i].fate_action;
5128 
5129 			if (fate == MLX5_FLOW_FATE_SHARED_RSS) {
5130 				const struct rte_flow_action_rss *rss_act =
5131 					final_policy->act_cnt[i].rss->conf;
5132 				struct rte_flow_action rss_actions[2] = {
5133 					[0] = {
5134 					.type = RTE_FLOW_ACTION_TYPE_RSS,
5135 					.conf = rss_act,
5136 					},
5137 					[1] = {
5138 					.type = RTE_FLOW_ACTION_TYPE_END,
5139 					.conf = NULL,
5140 					}
5141 				};
5142 
5143 				dev_flow.handle = &dev_handle;
5144 				dev_flow.ingress = attr->ingress;
5145 				dev_flow.flow = flow;
5146 				dev_flow.external = 0;
5147 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5148 				dev_flow.dv.transfer = attr->transfer;
5149 #endif
5150 				/**
5151 				 * Translate RSS action to get rss hash fields.
5152 				 */
5153 				if (flow_drv_translate(dev, &dev_flow, attr,
5154 						items, rss_actions, error))
5155 					goto exit;
5156 				rss_desc_v[i] = wks->rss_desc;
5157 				rss_desc_v[i].key_len = MLX5_RSS_HASH_KEY_LEN;
5158 				rss_desc_v[i].hash_fields =
5159 						dev_flow.hash_fields;
5160 				rss_desc_v[i].queue_num =
5161 						rss_desc_v[i].hash_fields ?
5162 						rss_desc_v[i].queue_num : 1;
5163 				rss_desc_v[i].tunnel =
5164 						!!(dev_flow.handle->layers &
5165 						   MLX5_FLOW_LAYER_TUNNEL);
5166 				/* Use the RSS queues in the containers. */
5167 				rss_desc_v[i].queue =
5168 					(uint16_t *)(uintptr_t)rss_act->queue;
5169 				rss_desc[i] = &rss_desc_v[i];
5170 			} else if (fate == MLX5_FLOW_FATE_QUEUE) {
5171 				/* This is queue action. */
5172 				rss_desc_v[i] = wks->rss_desc;
5173 				rss_desc_v[i].key_len = 0;
5174 				rss_desc_v[i].hash_fields = 0;
5175 				rss_desc_v[i].queue =
5176 					&final_policy->act_cnt[i].queue;
5177 				rss_desc_v[i].queue_num = 1;
5178 				rss_desc[i] = &rss_desc_v[i];
5179 			} else {
5180 				rss_desc[i] = NULL;
5181 			}
5182 		}
5183 		sub_policy = flow_drv_meter_sub_policy_rss_prepare(dev,
5184 						flow, policy, rss_desc);
5185 	} else {
5186 		enum mlx5_meter_domain mtr_domain =
5187 			attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER :
5188 				(attr->egress ? MLX5_MTR_DOMAIN_EGRESS :
5189 						MLX5_MTR_DOMAIN_INGRESS);
5190 		sub_policy = policy->sub_policys[mtr_domain][0];
5191 	}
5192 	if (!sub_policy)
5193 		rte_flow_error_set(error, EINVAL,
5194 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
5195 				   "Failed to get meter sub-policy.");
5196 exit:
5197 	return sub_policy;
5198 }
5199 
5200 /**
5201  * Split the meter flow.
5202  *
5203  * As meter flow will split to three sub flow, other than meter
5204  * action, the other actions make sense to only meter accepts
5205  * the packet. If it need to be dropped, no other additional
5206  * actions should be take.
5207  *
5208  * One kind of special action which decapsulates the L3 tunnel
5209  * header will be in the prefix sub flow, as not to take the
5210  * L3 tunnel header into account.
5211  *
5212  * @param[in] dev
5213  *   Pointer to Ethernet device.
5214  * @param[in] flow
5215  *   Parent flow structure pointer.
5216  * @param wks
5217  *   Pointer to thread flow work space.
5218  * @param[in] attr
5219  *   Flow rule attributes.
5220  * @param[in] items
5221  *   Pattern specification (list terminated by the END pattern item).
5222  * @param[out] sfx_items
5223  *   Suffix flow match items (list terminated by the END pattern item).
5224  * @param[in] actions
5225  *   Associated actions (list terminated by the END action).
5226  * @param[out] actions_sfx
5227  *   Suffix flow actions.
5228  * @param[out] actions_pre
5229  *   Prefix flow actions.
5230  * @param[out] mtr_flow_id
5231  *   Pointer to meter flow id.
5232  * @param[out] error
5233  *   Perform verbose error reporting if not NULL.
5234  *
5235  * @return
5236  *   0 on success, a negative errno value otherwise and rte_errno is set.
5237  */
5238 static int
5239 flow_meter_split_prep(struct rte_eth_dev *dev,
5240 		      struct rte_flow *flow,
5241 		      struct mlx5_flow_workspace *wks,
5242 		      const struct rte_flow_attr *attr,
5243 		      const struct rte_flow_item items[],
5244 		      struct rte_flow_item sfx_items[],
5245 		      const struct rte_flow_action actions[],
5246 		      struct rte_flow_action actions_sfx[],
5247 		      struct rte_flow_action actions_pre[],
5248 		      uint32_t *mtr_flow_id,
5249 		      struct rte_flow_error *error)
5250 {
5251 	struct mlx5_priv *priv = dev->data->dev_private;
5252 	struct mlx5_flow_meter_info *fm = wks->fm;
5253 	struct rte_flow_action *tag_action = NULL;
5254 	struct rte_flow_item *tag_item;
5255 	struct mlx5_rte_flow_action_set_tag *set_tag;
5256 	const struct rte_flow_action_raw_encap *raw_encap;
5257 	const struct rte_flow_action_raw_decap *raw_decap;
5258 	struct mlx5_rte_flow_item_tag *tag_item_spec;
5259 	struct mlx5_rte_flow_item_tag *tag_item_mask;
5260 	uint32_t tag_id = 0;
5261 	struct rte_flow_item *vlan_item_dst = NULL;
5262 	const struct rte_flow_item *vlan_item_src = NULL;
5263 	const struct rte_flow_item *orig_items = items;
5264 	struct rte_flow_action *hw_mtr_action;
5265 	struct rte_flow_action *action_pre_head = NULL;
5266 	int32_t flow_src_port = priv->representor_id;
5267 	bool mtr_first;
5268 	uint8_t mtr_id_offset = priv->mtr_reg_share ? MLX5_MTR_COLOR_BITS : 0;
5269 	uint8_t mtr_reg_bits = priv->mtr_reg_share ?
5270 				MLX5_MTR_IDLE_BITS_IN_COLOR_REG : MLX5_REG_BITS;
5271 	uint32_t flow_id = 0;
5272 	uint32_t flow_id_reversed = 0;
5273 	uint8_t flow_id_bits = 0;
5274 	int shift;
5275 
5276 	/* Prepare the suffix subflow items. */
5277 	tag_item = sfx_items++;
5278 	for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
5279 		struct mlx5_priv *port_priv;
5280 		const struct rte_flow_item_port_id *pid_v;
5281 		int item_type = items->type;
5282 
5283 		switch (item_type) {
5284 		case RTE_FLOW_ITEM_TYPE_PORT_ID:
5285 			pid_v = items->spec;
5286 			MLX5_ASSERT(pid_v);
5287 			port_priv = mlx5_port_to_eswitch_info(pid_v->id, false);
5288 			if (!port_priv)
5289 				return rte_flow_error_set(error,
5290 						rte_errno,
5291 						RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
5292 						pid_v,
5293 						"Failed to get port info.");
5294 			flow_src_port = port_priv->representor_id;
5295 			if (!fm->def_policy && wks->policy->is_hierarchy &&
5296 			    flow_src_port != priv->representor_id) {
5297 				if (flow_drv_mtr_hierarchy_rule_create(dev,
5298 								flow, fm,
5299 								flow_src_port,
5300 								items,
5301 								error))
5302 					return -rte_errno;
5303 			}
5304 			memcpy(sfx_items, items, sizeof(*sfx_items));
5305 			sfx_items++;
5306 			break;
5307 		case RTE_FLOW_ITEM_TYPE_VLAN:
5308 			/* Determine if copy vlan item below. */
5309 			vlan_item_src = items;
5310 			vlan_item_dst = sfx_items++;
5311 			vlan_item_dst->type = RTE_FLOW_ITEM_TYPE_VOID;
5312 			break;
5313 		default:
5314 			break;
5315 		}
5316 	}
5317 	sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
5318 	sfx_items++;
5319 	mtr_first = priv->sh->meter_aso_en &&
5320 		(attr->egress || (attr->transfer && flow_src_port != UINT16_MAX));
5321 	/* For ASO meter, meter must be before tag in TX direction. */
5322 	if (mtr_first) {
5323 		action_pre_head = actions_pre++;
5324 		/* Leave space for tag action. */
5325 		tag_action = actions_pre++;
5326 	}
5327 	/* Prepare the actions for prefix and suffix flow. */
5328 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
5329 		struct rte_flow_action *action_cur = NULL;
5330 
5331 		switch (actions->type) {
5332 		case RTE_FLOW_ACTION_TYPE_METER:
5333 			if (mtr_first) {
5334 				action_cur = action_pre_head;
5335 			} else {
5336 				/* Leave space for tag action. */
5337 				tag_action = actions_pre++;
5338 				action_cur = actions_pre++;
5339 			}
5340 			break;
5341 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
5342 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
5343 			action_cur = actions_pre++;
5344 			break;
5345 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
5346 			raw_encap = actions->conf;
5347 			if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
5348 				action_cur = actions_pre++;
5349 			break;
5350 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
5351 			raw_decap = actions->conf;
5352 			if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
5353 				action_cur = actions_pre++;
5354 			break;
5355 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
5356 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
5357 			if (vlan_item_dst && vlan_item_src) {
5358 				memcpy(vlan_item_dst, vlan_item_src,
5359 					sizeof(*vlan_item_dst));
5360 				/*
5361 				 * Convert to internal match item, it is used
5362 				 * for vlan push and set vid.
5363 				 */
5364 				vlan_item_dst->type = (enum rte_flow_item_type)
5365 						MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
5366 			}
5367 			break;
5368 		default:
5369 			break;
5370 		}
5371 		if (!action_cur)
5372 			action_cur = (fm->def_policy) ?
5373 					actions_sfx++ : actions_pre++;
5374 		memcpy(action_cur, actions, sizeof(struct rte_flow_action));
5375 	}
5376 	/* Add end action to the actions. */
5377 	actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
5378 	if (priv->sh->meter_aso_en) {
5379 		/**
5380 		 * For ASO meter, need to add an extra jump action explicitly,
5381 		 * to jump from meter to policer table.
5382 		 */
5383 		struct mlx5_flow_meter_sub_policy *sub_policy;
5384 		struct mlx5_flow_tbl_data_entry *tbl_data;
5385 
5386 		if (!fm->def_policy) {
5387 			sub_policy = get_meter_sub_policy(dev, flow, wks,
5388 							  attr, orig_items,
5389 							  error);
5390 			if (!sub_policy)
5391 				return -rte_errno;
5392 		} else {
5393 			enum mlx5_meter_domain mtr_domain =
5394 			attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER :
5395 				(attr->egress ? MLX5_MTR_DOMAIN_EGRESS :
5396 						MLX5_MTR_DOMAIN_INGRESS);
5397 
5398 			sub_policy =
5399 			&priv->sh->mtrmng->def_policy[mtr_domain]->sub_policy;
5400 		}
5401 		tbl_data = container_of(sub_policy->tbl_rsc,
5402 					struct mlx5_flow_tbl_data_entry, tbl);
5403 		hw_mtr_action = actions_pre++;
5404 		hw_mtr_action->type = (enum rte_flow_action_type)
5405 				      MLX5_RTE_FLOW_ACTION_TYPE_JUMP;
5406 		hw_mtr_action->conf = tbl_data->jump.action;
5407 	}
5408 	actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
5409 	actions_pre++;
5410 	if (!tag_action)
5411 		return rte_flow_error_set(error, ENOMEM,
5412 					  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5413 					  NULL, "No tag action space.");
5414 	if (!mtr_flow_id) {
5415 		tag_action->type = RTE_FLOW_ACTION_TYPE_VOID;
5416 		goto exit;
5417 	}
5418 	/* Only default-policy Meter creates mtr flow id. */
5419 	if (fm->def_policy) {
5420 		mlx5_ipool_malloc(fm->flow_ipool, &tag_id);
5421 		if (!tag_id)
5422 			return rte_flow_error_set(error, ENOMEM,
5423 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
5424 					"Failed to allocate meter flow id.");
5425 		flow_id = tag_id - 1;
5426 		flow_id_bits = (!flow_id) ? 1 :
5427 				(MLX5_REG_BITS - __builtin_clz(flow_id));
5428 		if ((flow_id_bits + priv->sh->mtrmng->max_mtr_bits) >
5429 		    mtr_reg_bits) {
5430 			mlx5_ipool_free(fm->flow_ipool, tag_id);
5431 			return rte_flow_error_set(error, EINVAL,
5432 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
5433 					"Meter flow id exceeds max limit.");
5434 		}
5435 		if (flow_id_bits > priv->sh->mtrmng->max_mtr_flow_bits)
5436 			priv->sh->mtrmng->max_mtr_flow_bits = flow_id_bits;
5437 	}
5438 	/* Build tag actions and items for meter_id/meter flow_id. */
5439 	set_tag = (struct mlx5_rte_flow_action_set_tag *)actions_pre;
5440 	tag_item_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
5441 	tag_item_mask = tag_item_spec + 1;
5442 	/* Both flow_id and meter_id share the same register. */
5443 	*set_tag = (struct mlx5_rte_flow_action_set_tag) {
5444 		.id = (enum modify_reg)mlx5_flow_get_reg_id(dev, MLX5_MTR_ID,
5445 							    0, error),
5446 		.offset = mtr_id_offset,
5447 		.length = mtr_reg_bits,
5448 		.data = flow->meter,
5449 	};
5450 	/*
5451 	 * The color Reg bits used by flow_id are growing from
5452 	 * msb to lsb, so must do bit reverse for flow_id val in RegC.
5453 	 */
5454 	for (shift = 0; shift < flow_id_bits; shift++)
5455 		flow_id_reversed = (flow_id_reversed << 1) |
5456 				((flow_id >> shift) & 0x1);
5457 	set_tag->data |=
5458 		flow_id_reversed << (mtr_reg_bits - flow_id_bits);
5459 	tag_item_spec->id = set_tag->id;
5460 	tag_item_spec->data = set_tag->data << mtr_id_offset;
5461 	tag_item_mask->data = UINT32_MAX << mtr_id_offset;
5462 	tag_action->type = (enum rte_flow_action_type)
5463 				MLX5_RTE_FLOW_ACTION_TYPE_TAG;
5464 	tag_action->conf = set_tag;
5465 	tag_item->type = (enum rte_flow_item_type)
5466 				MLX5_RTE_FLOW_ITEM_TYPE_TAG;
5467 	tag_item->spec = tag_item_spec;
5468 	tag_item->last = NULL;
5469 	tag_item->mask = tag_item_mask;
5470 exit:
5471 	if (mtr_flow_id)
5472 		*mtr_flow_id = tag_id;
5473 	return 0;
5474 }
5475 
5476 /**
5477  * Split action list having QUEUE/RSS for metadata register copy.
5478  *
5479  * Once Q/RSS action is detected in user's action list, the flow action
5480  * should be split in order to copy metadata registers, which will happen in
5481  * RX_CP_TBL like,
5482  *   - CQE->flow_tag := reg_c[1] (MARK)
5483  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
5484  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
5485  * This is because the last action of each flow must be a terminal action
5486  * (QUEUE, RSS or DROP).
5487  *
5488  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
5489  * stored and kept in the mlx5_flow structure per each sub_flow.
5490  *
5491  * The Q/RSS action is replaced with,
5492  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
5493  * And the following JUMP action is added at the end,
5494  *   - JUMP, to RX_CP_TBL.
5495  *
5496  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
5497  * flow_create_split_metadata() routine. The flow will look like,
5498  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
5499  *
5500  * @param dev
5501  *   Pointer to Ethernet device.
5502  * @param[out] split_actions
5503  *   Pointer to store split actions to jump to CP_TBL.
5504  * @param[in] actions
5505  *   Pointer to the list of original flow actions.
5506  * @param[in] qrss
5507  *   Pointer to the Q/RSS action.
5508  * @param[in] actions_n
5509  *   Number of original actions.
5510  * @param[in] mtr_sfx
5511  *   Check if it is in meter suffix table.
5512  * @param[out] error
5513  *   Perform verbose error reporting if not NULL.
5514  *
5515  * @return
5516  *   non-zero unique flow_id on success, otherwise 0 and
5517  *   error/rte_error are set.
5518  */
5519 static uint32_t
5520 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
5521 			  struct rte_flow_action *split_actions,
5522 			  const struct rte_flow_action *actions,
5523 			  const struct rte_flow_action *qrss,
5524 			  int actions_n, int mtr_sfx,
5525 			  struct rte_flow_error *error)
5526 {
5527 	struct mlx5_priv *priv = dev->data->dev_private;
5528 	struct mlx5_rte_flow_action_set_tag *set_tag;
5529 	struct rte_flow_action_jump *jump;
5530 	const int qrss_idx = qrss - actions;
5531 	uint32_t flow_id = 0;
5532 	int ret = 0;
5533 
5534 	/*
5535 	 * Given actions will be split
5536 	 * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
5537 	 * - Add jump to mreg CP_TBL.
5538 	 * As a result, there will be one more action.
5539 	 */
5540 	memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
5541 	/* Count MLX5_RTE_FLOW_ACTION_TYPE_TAG. */
5542 	++actions_n;
5543 	set_tag = (void *)(split_actions + actions_n);
5544 	/*
5545 	 * If we are not the meter suffix flow, add the tag action.
5546 	 * Since meter suffix flow already has the tag added.
5547 	 */
5548 	if (!mtr_sfx) {
5549 		/*
5550 		 * Allocate the new subflow ID. This one is unique within
5551 		 * device and not shared with representors. Otherwise,
5552 		 * we would have to resolve multi-thread access synch
5553 		 * issue. Each flow on the shared device is appended
5554 		 * with source vport identifier, so the resulting
5555 		 * flows will be unique in the shared (by master and
5556 		 * representors) domain even if they have coinciding
5557 		 * IDs.
5558 		 */
5559 		mlx5_ipool_malloc(priv->sh->ipool
5560 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id);
5561 		if (!flow_id)
5562 			return rte_flow_error_set(error, ENOMEM,
5563 						  RTE_FLOW_ERROR_TYPE_ACTION,
5564 						  NULL, "can't allocate id "
5565 						  "for split Q/RSS subflow");
5566 		/* Internal SET_TAG action to set flow ID. */
5567 		*set_tag = (struct mlx5_rte_flow_action_set_tag){
5568 			.data = flow_id,
5569 		};
5570 		ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
5571 		if (ret < 0)
5572 			return ret;
5573 		set_tag->id = ret;
5574 		/* Construct new actions array. */
5575 		/* Replace QUEUE/RSS action. */
5576 		split_actions[qrss_idx] = (struct rte_flow_action){
5577 			.type = (enum rte_flow_action_type)
5578 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
5579 			.conf = set_tag,
5580 		};
5581 	} else {
5582 		/*
5583 		 * If we are the suffix flow of meter, tag already exist.
5584 		 * Set the QUEUE/RSS action to void.
5585 		 */
5586 		split_actions[qrss_idx].type = RTE_FLOW_ACTION_TYPE_VOID;
5587 	}
5588 	/* JUMP action to jump to mreg copy table (CP_TBL). */
5589 	jump = (void *)(set_tag + 1);
5590 	*jump = (struct rte_flow_action_jump){
5591 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
5592 	};
5593 	split_actions[actions_n - 2] = (struct rte_flow_action){
5594 		.type = RTE_FLOW_ACTION_TYPE_JUMP,
5595 		.conf = jump,
5596 	};
5597 	split_actions[actions_n - 1] = (struct rte_flow_action){
5598 		.type = RTE_FLOW_ACTION_TYPE_END,
5599 	};
5600 	return flow_id;
5601 }
5602 
5603 /**
5604  * Extend the given action list for Tx metadata copy.
5605  *
5606  * Copy the given action list to the ext_actions and add flow metadata register
5607  * copy action in order to copy reg_a set by WQE to reg_c[0].
5608  *
5609  * @param[out] ext_actions
5610  *   Pointer to the extended action list.
5611  * @param[in] actions
5612  *   Pointer to the list of actions.
5613  * @param[in] actions_n
5614  *   Number of actions in the list.
5615  * @param[out] error
5616  *   Perform verbose error reporting if not NULL.
5617  * @param[in] encap_idx
5618  *   The encap action index.
5619  *
5620  * @return
5621  *   0 on success, negative value otherwise
5622  */
5623 static int
5624 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
5625 		       struct rte_flow_action *ext_actions,
5626 		       const struct rte_flow_action *actions,
5627 		       int actions_n, struct rte_flow_error *error,
5628 		       int encap_idx)
5629 {
5630 	struct mlx5_flow_action_copy_mreg *cp_mreg =
5631 		(struct mlx5_flow_action_copy_mreg *)
5632 			(ext_actions + actions_n + 1);
5633 	int ret;
5634 
5635 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
5636 	if (ret < 0)
5637 		return ret;
5638 	cp_mreg->dst = ret;
5639 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
5640 	if (ret < 0)
5641 		return ret;
5642 	cp_mreg->src = ret;
5643 	if (encap_idx != 0)
5644 		memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
5645 	if (encap_idx == actions_n - 1) {
5646 		ext_actions[actions_n - 1] = (struct rte_flow_action){
5647 			.type = (enum rte_flow_action_type)
5648 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
5649 			.conf = cp_mreg,
5650 		};
5651 		ext_actions[actions_n] = (struct rte_flow_action){
5652 			.type = RTE_FLOW_ACTION_TYPE_END,
5653 		};
5654 	} else {
5655 		ext_actions[encap_idx] = (struct rte_flow_action){
5656 			.type = (enum rte_flow_action_type)
5657 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
5658 			.conf = cp_mreg,
5659 		};
5660 		memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
5661 				sizeof(*ext_actions) * (actions_n - encap_idx));
5662 	}
5663 	return 0;
5664 }
5665 
5666 /**
5667  * Check the match action from the action list.
5668  *
5669  * @param[in] actions
5670  *   Pointer to the list of actions.
5671  * @param[in] attr
5672  *   Flow rule attributes.
5673  * @param[in] action
5674  *   The action to be check if exist.
5675  * @param[out] match_action_pos
5676  *   Pointer to the position of the matched action if exists, otherwise is -1.
5677  * @param[out] qrss_action_pos
5678  *   Pointer to the position of the Queue/RSS action if exists, otherwise is -1.
5679  * @param[out] modify_after_mirror
5680  *   Pointer to the flag of modify action after FDB mirroring.
5681  *
5682  * @return
5683  *   > 0 the total number of actions.
5684  *   0 if not found match action in action list.
5685  */
5686 static int
5687 flow_check_match_action(const struct rte_flow_action actions[],
5688 			const struct rte_flow_attr *attr,
5689 			enum rte_flow_action_type action,
5690 			int *match_action_pos, int *qrss_action_pos,
5691 			int *modify_after_mirror)
5692 {
5693 	const struct rte_flow_action_sample *sample;
5694 	const struct rte_flow_action_raw_decap *decap;
5695 	int actions_n = 0;
5696 	uint32_t ratio = 0;
5697 	int sub_type = 0;
5698 	int flag = 0;
5699 	int fdb_mirror = 0;
5700 
5701 	*match_action_pos = -1;
5702 	*qrss_action_pos = -1;
5703 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
5704 		if (actions->type == action) {
5705 			flag = 1;
5706 			*match_action_pos = actions_n;
5707 		}
5708 		switch (actions->type) {
5709 		case RTE_FLOW_ACTION_TYPE_QUEUE:
5710 		case RTE_FLOW_ACTION_TYPE_RSS:
5711 			*qrss_action_pos = actions_n;
5712 			break;
5713 		case RTE_FLOW_ACTION_TYPE_SAMPLE:
5714 			sample = actions->conf;
5715 			ratio = sample->ratio;
5716 			sub_type = ((const struct rte_flow_action *)
5717 					(sample->actions))->type;
5718 			if (ratio == 1 && attr->transfer)
5719 				fdb_mirror = 1;
5720 			break;
5721 		case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
5722 		case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
5723 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
5724 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
5725 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
5726 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
5727 		case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
5728 		case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
5729 		case RTE_FLOW_ACTION_TYPE_DEC_TTL:
5730 		case RTE_FLOW_ACTION_TYPE_SET_TTL:
5731 		case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ:
5732 		case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ:
5733 		case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK:
5734 		case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK:
5735 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP:
5736 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP:
5737 		case RTE_FLOW_ACTION_TYPE_FLAG:
5738 		case RTE_FLOW_ACTION_TYPE_MARK:
5739 		case RTE_FLOW_ACTION_TYPE_SET_META:
5740 		case RTE_FLOW_ACTION_TYPE_SET_TAG:
5741 		case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
5742 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
5743 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
5744 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
5745 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
5746 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
5747 		case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD:
5748 		case RTE_FLOW_ACTION_TYPE_METER:
5749 			if (fdb_mirror)
5750 				*modify_after_mirror = 1;
5751 			break;
5752 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
5753 			decap = actions->conf;
5754 			while ((++actions)->type == RTE_FLOW_ACTION_TYPE_VOID)
5755 				;
5756 			actions_n++;
5757 			if (actions->type == RTE_FLOW_ACTION_TYPE_RAW_ENCAP) {
5758 				const struct rte_flow_action_raw_encap *encap =
5759 								actions->conf;
5760 				if (decap->size <=
5761 					MLX5_ENCAPSULATION_DECISION_SIZE &&
5762 				    encap->size >
5763 					MLX5_ENCAPSULATION_DECISION_SIZE)
5764 					/* L3 encap. */
5765 					break;
5766 			}
5767 			if (fdb_mirror)
5768 				*modify_after_mirror = 1;
5769 			break;
5770 		default:
5771 			break;
5772 		}
5773 		actions_n++;
5774 	}
5775 	if (flag && fdb_mirror && !*modify_after_mirror) {
5776 		/* FDB mirroring uses the destination array to implement
5777 		 * instead of FLOW_SAMPLER object.
5778 		 */
5779 		if (sub_type != RTE_FLOW_ACTION_TYPE_END)
5780 			flag = 0;
5781 	}
5782 	/* Count RTE_FLOW_ACTION_TYPE_END. */
5783 	return flag ? actions_n + 1 : 0;
5784 }
5785 
5786 #define SAMPLE_SUFFIX_ITEM 2
5787 
5788 /**
5789  * Split the sample flow.
5790  *
5791  * As sample flow will split to two sub flow, sample flow with
5792  * sample action, the other actions will move to new suffix flow.
5793  *
5794  * Also add unique tag id with tag action in the sample flow,
5795  * the same tag id will be as match in the suffix flow.
5796  *
5797  * @param dev
5798  *   Pointer to Ethernet device.
5799  * @param[in] add_tag
5800  *   Add extra tag action flag.
5801  * @param[out] sfx_items
5802  *   Suffix flow match items (list terminated by the END pattern item).
5803  * @param[in] actions
5804  *   Associated actions (list terminated by the END action).
5805  * @param[out] actions_sfx
5806  *   Suffix flow actions.
5807  * @param[out] actions_pre
5808  *   Prefix flow actions.
5809  * @param[in] actions_n
5810  *  The total number of actions.
5811  * @param[in] sample_action_pos
5812  *   The sample action position.
5813  * @param[in] qrss_action_pos
5814  *   The Queue/RSS action position.
5815  * @param[in] jump_table
5816  *   Add extra jump action flag.
5817  * @param[out] error
5818  *   Perform verbose error reporting if not NULL.
5819  *
5820  * @return
5821  *   0 on success, or unique flow_id, a negative errno value
5822  *   otherwise and rte_errno is set.
5823  */
5824 static int
5825 flow_sample_split_prep(struct rte_eth_dev *dev,
5826 		       int add_tag,
5827 		       struct rte_flow_item sfx_items[],
5828 		       const struct rte_flow_action actions[],
5829 		       struct rte_flow_action actions_sfx[],
5830 		       struct rte_flow_action actions_pre[],
5831 		       int actions_n,
5832 		       int sample_action_pos,
5833 		       int qrss_action_pos,
5834 		       int jump_table,
5835 		       struct rte_flow_error *error)
5836 {
5837 	struct mlx5_priv *priv = dev->data->dev_private;
5838 	struct mlx5_rte_flow_action_set_tag *set_tag;
5839 	struct mlx5_rte_flow_item_tag *tag_spec;
5840 	struct mlx5_rte_flow_item_tag *tag_mask;
5841 	struct rte_flow_action_jump *jump_action;
5842 	uint32_t tag_id = 0;
5843 	int index;
5844 	int append_index = 0;
5845 	int ret;
5846 
5847 	if (sample_action_pos < 0)
5848 		return rte_flow_error_set(error, EINVAL,
5849 					  RTE_FLOW_ERROR_TYPE_ACTION,
5850 					  NULL, "invalid position of sample "
5851 					  "action in list");
5852 	/* Prepare the actions for prefix and suffix flow. */
5853 	if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) {
5854 		index = qrss_action_pos;
5855 		/* Put the preceding the Queue/RSS action into prefix flow. */
5856 		if (index != 0)
5857 			memcpy(actions_pre, actions,
5858 			       sizeof(struct rte_flow_action) * index);
5859 		/* Put others preceding the sample action into prefix flow. */
5860 		if (sample_action_pos > index + 1)
5861 			memcpy(actions_pre + index, actions + index + 1,
5862 			       sizeof(struct rte_flow_action) *
5863 			       (sample_action_pos - index - 1));
5864 		index = sample_action_pos - 1;
5865 		/* Put Queue/RSS action into Suffix flow. */
5866 		memcpy(actions_sfx, actions + qrss_action_pos,
5867 		       sizeof(struct rte_flow_action));
5868 		actions_sfx++;
5869 	} else {
5870 		index = sample_action_pos;
5871 		if (index != 0)
5872 			memcpy(actions_pre, actions,
5873 			       sizeof(struct rte_flow_action) * index);
5874 	}
5875 	/* For CX5, add an extra tag action for NIC-RX and E-Switch ingress.
5876 	 * For CX6DX and above, metadata registers Cx preserve their value,
5877 	 * add an extra tag action for NIC-RX and E-Switch Domain.
5878 	 */
5879 	if (add_tag) {
5880 		/* Prepare the prefix tag action. */
5881 		append_index++;
5882 		set_tag = (void *)(actions_pre + actions_n + append_index);
5883 		ret = mlx5_flow_get_reg_id(dev, MLX5_SAMPLE_ID, 0, error);
5884 		if (ret < 0)
5885 			return ret;
5886 		mlx5_ipool_malloc(priv->sh->ipool
5887 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id);
5888 		*set_tag = (struct mlx5_rte_flow_action_set_tag) {
5889 			.id = ret,
5890 			.data = tag_id,
5891 		};
5892 		/* Prepare the suffix subflow items. */
5893 		tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM);
5894 		tag_spec->data = tag_id;
5895 		tag_spec->id = set_tag->id;
5896 		tag_mask = tag_spec + 1;
5897 		tag_mask->data = UINT32_MAX;
5898 		sfx_items[0] = (struct rte_flow_item){
5899 			.type = (enum rte_flow_item_type)
5900 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
5901 			.spec = tag_spec,
5902 			.last = NULL,
5903 			.mask = tag_mask,
5904 		};
5905 		sfx_items[1] = (struct rte_flow_item){
5906 			.type = (enum rte_flow_item_type)
5907 				RTE_FLOW_ITEM_TYPE_END,
5908 		};
5909 		/* Prepare the tag action in prefix subflow. */
5910 		actions_pre[index++] =
5911 			(struct rte_flow_action){
5912 			.type = (enum rte_flow_action_type)
5913 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
5914 			.conf = set_tag,
5915 		};
5916 	}
5917 	memcpy(actions_pre + index, actions + sample_action_pos,
5918 	       sizeof(struct rte_flow_action));
5919 	index += 1;
5920 	/* For the modify action after the sample action in E-Switch mirroring,
5921 	 * Add the extra jump action in prefix subflow and jump into the next
5922 	 * table, then do the modify action in the new table.
5923 	 */
5924 	if (jump_table) {
5925 		/* Prepare the prefix jump action. */
5926 		append_index++;
5927 		jump_action = (void *)(actions_pre + actions_n + append_index);
5928 		jump_action->group = jump_table;
5929 		actions_pre[index++] =
5930 			(struct rte_flow_action){
5931 			.type = (enum rte_flow_action_type)
5932 				RTE_FLOW_ACTION_TYPE_JUMP,
5933 			.conf = jump_action,
5934 		};
5935 	}
5936 	actions_pre[index] = (struct rte_flow_action){
5937 		.type = (enum rte_flow_action_type)
5938 			RTE_FLOW_ACTION_TYPE_END,
5939 	};
5940 	/* Put the actions after sample into Suffix flow. */
5941 	memcpy(actions_sfx, actions + sample_action_pos + 1,
5942 	       sizeof(struct rte_flow_action) *
5943 	       (actions_n - sample_action_pos - 1));
5944 	return tag_id;
5945 }
5946 
5947 /**
5948  * The splitting for metadata feature.
5949  *
5950  * - Q/RSS action on NIC Rx should be split in order to pass by
5951  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
5952  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
5953  *
5954  * - All the actions on NIC Tx should have a mreg copy action to
5955  *   copy reg_a from WQE to reg_c[0].
5956  *
5957  * @param dev
5958  *   Pointer to Ethernet device.
5959  * @param[in] flow
5960  *   Parent flow structure pointer.
5961  * @param[in] attr
5962  *   Flow rule attributes.
5963  * @param[in] items
5964  *   Pattern specification (list terminated by the END pattern item).
5965  * @param[in] actions
5966  *   Associated actions (list terminated by the END action).
5967  * @param[in] flow_split_info
5968  *   Pointer to flow split info structure.
5969  * @param[out] error
5970  *   Perform verbose error reporting if not NULL.
5971  * @return
5972  *   0 on success, negative value otherwise
5973  */
5974 static int
5975 flow_create_split_metadata(struct rte_eth_dev *dev,
5976 			   struct rte_flow *flow,
5977 			   const struct rte_flow_attr *attr,
5978 			   const struct rte_flow_item items[],
5979 			   const struct rte_flow_action actions[],
5980 			   struct mlx5_flow_split_info *flow_split_info,
5981 			   struct rte_flow_error *error)
5982 {
5983 	struct mlx5_priv *priv = dev->data->dev_private;
5984 	struct mlx5_sh_config *config = &priv->sh->config;
5985 	const struct rte_flow_action *qrss = NULL;
5986 	struct rte_flow_action *ext_actions = NULL;
5987 	struct mlx5_flow *dev_flow = NULL;
5988 	uint32_t qrss_id = 0;
5989 	int mtr_sfx = 0;
5990 	size_t act_size;
5991 	int actions_n;
5992 	int encap_idx;
5993 	int ret;
5994 
5995 	/* Check whether extensive metadata feature is engaged. */
5996 	if (!config->dv_flow_en ||
5997 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
5998 	    !mlx5_flow_ext_mreg_supported(dev))
5999 		return flow_create_split_inner(dev, flow, NULL, attr, items,
6000 					       actions, flow_split_info, error);
6001 	actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
6002 							   &encap_idx);
6003 	if (qrss) {
6004 		/* Exclude hairpin flows from splitting. */
6005 		if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
6006 			const struct rte_flow_action_queue *queue;
6007 
6008 			queue = qrss->conf;
6009 			if (mlx5_rxq_is_hairpin(dev, queue->index))
6010 				qrss = NULL;
6011 		} else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
6012 			const struct rte_flow_action_rss *rss;
6013 
6014 			rss = qrss->conf;
6015 			if (mlx5_rxq_is_hairpin(dev, rss->queue[0]))
6016 				qrss = NULL;
6017 		}
6018 	}
6019 	if (qrss) {
6020 		/* Check if it is in meter suffix table. */
6021 		mtr_sfx = attr->group == (attr->transfer ?
6022 			  (MLX5_FLOW_TABLE_LEVEL_METER - 1) :
6023 			  MLX5_FLOW_TABLE_LEVEL_METER);
6024 		/*
6025 		 * Q/RSS action on NIC Rx should be split in order to pass by
6026 		 * the mreg copy table (RX_CP_TBL) and then it jumps to the
6027 		 * action table (RX_ACT_TBL) which has the split Q/RSS action.
6028 		 */
6029 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
6030 			   sizeof(struct rte_flow_action_set_tag) +
6031 			   sizeof(struct rte_flow_action_jump);
6032 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
6033 					  SOCKET_ID_ANY);
6034 		if (!ext_actions)
6035 			return rte_flow_error_set(error, ENOMEM,
6036 						  RTE_FLOW_ERROR_TYPE_ACTION,
6037 						  NULL, "no memory to split "
6038 						  "metadata flow");
6039 		/*
6040 		 * Create the new actions list with removed Q/RSS action
6041 		 * and appended set tag and jump to register copy table
6042 		 * (RX_CP_TBL). We should preallocate unique tag ID here
6043 		 * in advance, because it is needed for set tag action.
6044 		 */
6045 		qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
6046 						    qrss, actions_n,
6047 						    mtr_sfx, error);
6048 		if (!mtr_sfx && !qrss_id) {
6049 			ret = -rte_errno;
6050 			goto exit;
6051 		}
6052 	} else if (attr->egress && !attr->transfer) {
6053 		/*
6054 		 * All the actions on NIC Tx should have a metadata register
6055 		 * copy action to copy reg_a from WQE to reg_c[meta]
6056 		 */
6057 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
6058 			   sizeof(struct mlx5_flow_action_copy_mreg);
6059 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
6060 					  SOCKET_ID_ANY);
6061 		if (!ext_actions)
6062 			return rte_flow_error_set(error, ENOMEM,
6063 						  RTE_FLOW_ERROR_TYPE_ACTION,
6064 						  NULL, "no memory to split "
6065 						  "metadata flow");
6066 		/* Create the action list appended with copy register. */
6067 		ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
6068 					     actions_n, error, encap_idx);
6069 		if (ret < 0)
6070 			goto exit;
6071 	}
6072 	/* Add the unmodified original or prefix subflow. */
6073 	ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
6074 				      items, ext_actions ? ext_actions :
6075 				      actions, flow_split_info, error);
6076 	if (ret < 0)
6077 		goto exit;
6078 	MLX5_ASSERT(dev_flow);
6079 	if (qrss) {
6080 		const struct rte_flow_attr q_attr = {
6081 			.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
6082 			.ingress = 1,
6083 		};
6084 		/* Internal PMD action to set register. */
6085 		struct mlx5_rte_flow_item_tag q_tag_spec = {
6086 			.data = qrss_id,
6087 			.id = REG_NON,
6088 		};
6089 		struct rte_flow_item q_items[] = {
6090 			{
6091 				.type = (enum rte_flow_item_type)
6092 					MLX5_RTE_FLOW_ITEM_TYPE_TAG,
6093 				.spec = &q_tag_spec,
6094 				.last = NULL,
6095 				.mask = NULL,
6096 			},
6097 			{
6098 				.type = RTE_FLOW_ITEM_TYPE_END,
6099 			},
6100 		};
6101 		struct rte_flow_action q_actions[] = {
6102 			{
6103 				.type = qrss->type,
6104 				.conf = qrss->conf,
6105 			},
6106 			{
6107 				.type = RTE_FLOW_ACTION_TYPE_END,
6108 			},
6109 		};
6110 		uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
6111 
6112 		/*
6113 		 * Configure the tag item only if there is no meter subflow.
6114 		 * Since tag is already marked in the meter suffix subflow
6115 		 * we can just use the meter suffix items as is.
6116 		 */
6117 		if (qrss_id) {
6118 			/* Not meter subflow. */
6119 			MLX5_ASSERT(!mtr_sfx);
6120 			/*
6121 			 * Put unique id in prefix flow due to it is destroyed
6122 			 * after suffix flow and id will be freed after there
6123 			 * is no actual flows with this id and identifier
6124 			 * reallocation becomes possible (for example, for
6125 			 * other flows in other threads).
6126 			 */
6127 			dev_flow->handle->split_flow_id = qrss_id;
6128 			ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
6129 						   error);
6130 			if (ret < 0)
6131 				goto exit;
6132 			q_tag_spec.id = ret;
6133 		}
6134 		dev_flow = NULL;
6135 		/* Add suffix subflow to execute Q/RSS. */
6136 		flow_split_info->prefix_layers = layers;
6137 		flow_split_info->prefix_mark = 0;
6138 		flow_split_info->table_id = 0;
6139 		ret = flow_create_split_inner(dev, flow, &dev_flow,
6140 					      &q_attr, mtr_sfx ? items :
6141 					      q_items, q_actions,
6142 					      flow_split_info, error);
6143 		if (ret < 0)
6144 			goto exit;
6145 		/* qrss ID should be freed if failed. */
6146 		qrss_id = 0;
6147 		MLX5_ASSERT(dev_flow);
6148 	}
6149 
6150 exit:
6151 	/*
6152 	 * We do not destroy the partially created sub_flows in case of error.
6153 	 * These ones are included into parent flow list and will be destroyed
6154 	 * by flow_drv_destroy.
6155 	 */
6156 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
6157 			qrss_id);
6158 	mlx5_free(ext_actions);
6159 	return ret;
6160 }
6161 
6162 /**
6163  * Create meter internal drop flow with the original pattern.
6164  *
6165  * @param dev
6166  *   Pointer to Ethernet device.
6167  * @param[in] flow
6168  *   Parent flow structure pointer.
6169  * @param[in] attr
6170  *   Flow rule attributes.
6171  * @param[in] items
6172  *   Pattern specification (list terminated by the END pattern item).
6173  * @param[in] flow_split_info
6174  *   Pointer to flow split info structure.
6175  * @param[in] fm
6176  *   Pointer to flow meter structure.
6177  * @param[out] error
6178  *   Perform verbose error reporting if not NULL.
6179  * @return
6180  *   0 on success, negative value otherwise
6181  */
6182 static uint32_t
6183 flow_meter_create_drop_flow_with_org_pattern(struct rte_eth_dev *dev,
6184 			struct rte_flow *flow,
6185 			const struct rte_flow_attr *attr,
6186 			const struct rte_flow_item items[],
6187 			struct mlx5_flow_split_info *flow_split_info,
6188 			struct mlx5_flow_meter_info *fm,
6189 			struct rte_flow_error *error)
6190 {
6191 	struct mlx5_flow *dev_flow = NULL;
6192 	struct rte_flow_attr drop_attr = *attr;
6193 	struct rte_flow_action drop_actions[3];
6194 	struct mlx5_flow_split_info drop_split_info = *flow_split_info;
6195 
6196 	MLX5_ASSERT(fm->drop_cnt);
6197 	drop_actions[0].type =
6198 		(enum rte_flow_action_type)MLX5_RTE_FLOW_ACTION_TYPE_COUNT;
6199 	drop_actions[0].conf = (void *)(uintptr_t)fm->drop_cnt;
6200 	drop_actions[1].type = RTE_FLOW_ACTION_TYPE_DROP;
6201 	drop_actions[1].conf = NULL;
6202 	drop_actions[2].type = RTE_FLOW_ACTION_TYPE_END;
6203 	drop_actions[2].conf = NULL;
6204 	drop_split_info.external = false;
6205 	drop_split_info.skip_scale |= 1 << MLX5_SCALE_FLOW_GROUP_BIT;
6206 	drop_split_info.table_id = MLX5_MTR_TABLE_ID_DROP;
6207 	drop_attr.group = MLX5_FLOW_TABLE_LEVEL_METER;
6208 	return flow_create_split_inner(dev, flow, &dev_flow,
6209 				&drop_attr, items, drop_actions,
6210 				&drop_split_info, error);
6211 }
6212 
6213 /**
6214  * The splitting for meter feature.
6215  *
6216  * - The meter flow will be split to two flows as prefix and
6217  *   suffix flow. The packets make sense only it pass the prefix
6218  *   meter action.
6219  *
6220  * - Reg_C_5 is used for the packet to match betweend prefix and
6221  *   suffix flow.
6222  *
6223  * @param dev
6224  *   Pointer to Ethernet device.
6225  * @param[in] flow
6226  *   Parent flow structure pointer.
6227  * @param[in] attr
6228  *   Flow rule attributes.
6229  * @param[in] items
6230  *   Pattern specification (list terminated by the END pattern item).
6231  * @param[in] actions
6232  *   Associated actions (list terminated by the END action).
6233  * @param[in] flow_split_info
6234  *   Pointer to flow split info structure.
6235  * @param[out] error
6236  *   Perform verbose error reporting if not NULL.
6237  * @return
6238  *   0 on success, negative value otherwise
6239  */
6240 static int
6241 flow_create_split_meter(struct rte_eth_dev *dev,
6242 			struct rte_flow *flow,
6243 			const struct rte_flow_attr *attr,
6244 			const struct rte_flow_item items[],
6245 			const struct rte_flow_action actions[],
6246 			struct mlx5_flow_split_info *flow_split_info,
6247 			struct rte_flow_error *error)
6248 {
6249 	struct mlx5_priv *priv = dev->data->dev_private;
6250 	struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace();
6251 	struct rte_flow_action *sfx_actions = NULL;
6252 	struct rte_flow_action *pre_actions = NULL;
6253 	struct rte_flow_item *sfx_items = NULL;
6254 	struct mlx5_flow *dev_flow = NULL;
6255 	struct rte_flow_attr sfx_attr = *attr;
6256 	struct mlx5_flow_meter_info *fm = NULL;
6257 	uint8_t skip_scale_restore;
6258 	bool has_mtr = false;
6259 	bool has_modify = false;
6260 	bool set_mtr_reg = true;
6261 	bool is_mtr_hierarchy = false;
6262 	uint32_t meter_id = 0;
6263 	uint32_t mtr_idx = 0;
6264 	uint32_t mtr_flow_id = 0;
6265 	size_t act_size;
6266 	size_t item_size;
6267 	int actions_n = 0;
6268 	int ret = 0;
6269 
6270 	if (priv->mtr_en)
6271 		actions_n = flow_check_meter_action(dev, actions, &has_mtr,
6272 						    &has_modify, &meter_id);
6273 	if (has_mtr) {
6274 		if (flow->meter) {
6275 			fm = flow_dv_meter_find_by_idx(priv, flow->meter);
6276 			if (!fm)
6277 				return rte_flow_error_set(error, EINVAL,
6278 						RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6279 						NULL, "Meter not found.");
6280 		} else {
6281 			fm = mlx5_flow_meter_find(priv, meter_id, &mtr_idx);
6282 			if (!fm)
6283 				return rte_flow_error_set(error, EINVAL,
6284 						RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6285 						NULL, "Meter not found.");
6286 			ret = mlx5_flow_meter_attach(priv, fm,
6287 						     &sfx_attr, error);
6288 			if (ret)
6289 				return -rte_errno;
6290 			flow->meter = mtr_idx;
6291 		}
6292 		MLX5_ASSERT(wks);
6293 		wks->fm = fm;
6294 		if (!fm->def_policy) {
6295 			wks->policy = mlx5_flow_meter_policy_find(dev,
6296 								  fm->policy_id,
6297 								  NULL);
6298 			MLX5_ASSERT(wks->policy);
6299 			if (wks->policy->is_hierarchy) {
6300 				wks->final_policy =
6301 				mlx5_flow_meter_hierarchy_get_final_policy(dev,
6302 								wks->policy);
6303 				if (!wks->final_policy)
6304 					return rte_flow_error_set(error,
6305 					EINVAL,
6306 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
6307 				"Failed to find terminal policy of hierarchy.");
6308 				is_mtr_hierarchy = true;
6309 			}
6310 		}
6311 		/*
6312 		 * If it isn't default-policy Meter, and
6313 		 * 1. There's no action in flow to change
6314 		 *    packet (modify/encap/decap etc.), OR
6315 		 * 2. No drop count needed for this meter.
6316 		 * 3. It's not meter hierarchy.
6317 		 * Then no need to use regC to save meter id anymore.
6318 		 */
6319 		if (!fm->def_policy && !is_mtr_hierarchy &&
6320 		    (!has_modify || !fm->drop_cnt))
6321 			set_mtr_reg = false;
6322 		/* Prefix actions: meter, decap, encap, tag, jump, end. */
6323 		act_size = sizeof(struct rte_flow_action) * (actions_n + 6) +
6324 			   sizeof(struct mlx5_rte_flow_action_set_tag);
6325 		/* Suffix items: tag, vlan, port id, end. */
6326 #define METER_SUFFIX_ITEM 4
6327 		item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
6328 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
6329 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
6330 					  0, SOCKET_ID_ANY);
6331 		if (!sfx_actions)
6332 			return rte_flow_error_set(error, ENOMEM,
6333 						  RTE_FLOW_ERROR_TYPE_ACTION,
6334 						  NULL, "no memory to split "
6335 						  "meter flow");
6336 		sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
6337 			     act_size);
6338 		/* There's no suffix flow for meter of non-default policy. */
6339 		if (!fm->def_policy)
6340 			pre_actions = sfx_actions + 1;
6341 		else
6342 			pre_actions = sfx_actions + actions_n;
6343 		ret = flow_meter_split_prep(dev, flow, wks, &sfx_attr,
6344 					    items, sfx_items, actions,
6345 					    sfx_actions, pre_actions,
6346 					    (set_mtr_reg ? &mtr_flow_id : NULL),
6347 					    error);
6348 		if (ret) {
6349 			ret = -rte_errno;
6350 			goto exit;
6351 		}
6352 		/* Add the prefix subflow. */
6353 		skip_scale_restore = flow_split_info->skip_scale;
6354 		flow_split_info->skip_scale |=
6355 			1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT;
6356 		ret = flow_create_split_inner(dev, flow, &dev_flow,
6357 					      attr, items, pre_actions,
6358 					      flow_split_info, error);
6359 		flow_split_info->skip_scale = skip_scale_restore;
6360 		if (ret) {
6361 			if (mtr_flow_id)
6362 				mlx5_ipool_free(fm->flow_ipool, mtr_flow_id);
6363 			ret = -rte_errno;
6364 			goto exit;
6365 		}
6366 		if (mtr_flow_id) {
6367 			dev_flow->handle->split_flow_id = mtr_flow_id;
6368 			dev_flow->handle->is_meter_flow_id = 1;
6369 		}
6370 		if (!fm->def_policy) {
6371 			if (!set_mtr_reg && fm->drop_cnt)
6372 				ret =
6373 			flow_meter_create_drop_flow_with_org_pattern(dev, flow,
6374 							&sfx_attr, items,
6375 							flow_split_info,
6376 							fm, error);
6377 			goto exit;
6378 		}
6379 		/* Setting the sfx group atrr. */
6380 		sfx_attr.group = sfx_attr.transfer ?
6381 				(MLX5_FLOW_TABLE_LEVEL_METER - 1) :
6382 				 MLX5_FLOW_TABLE_LEVEL_METER;
6383 		flow_split_info->prefix_layers =
6384 				flow_get_prefix_layer_flags(dev_flow);
6385 		flow_split_info->prefix_mark |= wks->mark;
6386 		flow_split_info->table_id = MLX5_MTR_TABLE_ID_SUFFIX;
6387 	}
6388 	/* Add the prefix subflow. */
6389 	ret = flow_create_split_metadata(dev, flow,
6390 					 &sfx_attr, sfx_items ?
6391 					 sfx_items : items,
6392 					 sfx_actions ? sfx_actions : actions,
6393 					 flow_split_info, error);
6394 exit:
6395 	if (sfx_actions)
6396 		mlx5_free(sfx_actions);
6397 	return ret;
6398 }
6399 
6400 /**
6401  * The splitting for sample feature.
6402  *
6403  * Once Sample action is detected in the action list, the flow actions should
6404  * be split into prefix sub flow and suffix sub flow.
6405  *
6406  * The original items remain in the prefix sub flow, all actions preceding the
6407  * sample action and the sample action itself will be copied to the prefix
6408  * sub flow, the actions following the sample action will be copied to the
6409  * suffix sub flow, Queue action always be located in the suffix sub flow.
6410  *
6411  * In order to make the packet from prefix sub flow matches with suffix sub
6412  * flow, an extra tag action be added into prefix sub flow, and the suffix sub
6413  * flow uses tag item with the unique flow id.
6414  *
6415  * @param dev
6416  *   Pointer to Ethernet device.
6417  * @param[in] flow
6418  *   Parent flow structure pointer.
6419  * @param[in] attr
6420  *   Flow rule attributes.
6421  * @param[in] items
6422  *   Pattern specification (list terminated by the END pattern item).
6423  * @param[in] actions
6424  *   Associated actions (list terminated by the END action).
6425  * @param[in] flow_split_info
6426  *   Pointer to flow split info structure.
6427  * @param[out] error
6428  *   Perform verbose error reporting if not NULL.
6429  * @return
6430  *   0 on success, negative value otherwise
6431  */
6432 static int
6433 flow_create_split_sample(struct rte_eth_dev *dev,
6434 			 struct rte_flow *flow,
6435 			 const struct rte_flow_attr *attr,
6436 			 const struct rte_flow_item items[],
6437 			 const struct rte_flow_action actions[],
6438 			 struct mlx5_flow_split_info *flow_split_info,
6439 			 struct rte_flow_error *error)
6440 {
6441 	struct mlx5_priv *priv = dev->data->dev_private;
6442 	struct rte_flow_action *sfx_actions = NULL;
6443 	struct rte_flow_action *pre_actions = NULL;
6444 	struct rte_flow_item *sfx_items = NULL;
6445 	struct mlx5_flow *dev_flow = NULL;
6446 	struct rte_flow_attr sfx_attr = *attr;
6447 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
6448 	struct mlx5_flow_dv_sample_resource *sample_res;
6449 	struct mlx5_flow_tbl_data_entry *sfx_tbl_data;
6450 	struct mlx5_flow_tbl_resource *sfx_tbl;
6451 	struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace();
6452 #endif
6453 	size_t act_size;
6454 	size_t item_size;
6455 	uint32_t fdb_tx = 0;
6456 	int32_t tag_id = 0;
6457 	int actions_n = 0;
6458 	int sample_action_pos;
6459 	int qrss_action_pos;
6460 	int add_tag = 0;
6461 	int modify_after_mirror = 0;
6462 	uint16_t jump_table = 0;
6463 	const uint32_t next_ft_step = 1;
6464 	int ret = 0;
6465 
6466 	if (priv->sampler_en)
6467 		actions_n = flow_check_match_action(actions, attr,
6468 					RTE_FLOW_ACTION_TYPE_SAMPLE,
6469 					&sample_action_pos, &qrss_action_pos,
6470 					&modify_after_mirror);
6471 	if (actions_n) {
6472 		/* The prefix actions must includes sample, tag, end. */
6473 		act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1)
6474 			   + sizeof(struct mlx5_rte_flow_action_set_tag);
6475 		item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM +
6476 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
6477 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size +
6478 					  item_size), 0, SOCKET_ID_ANY);
6479 		if (!sfx_actions)
6480 			return rte_flow_error_set(error, ENOMEM,
6481 						  RTE_FLOW_ERROR_TYPE_ACTION,
6482 						  NULL, "no memory to split "
6483 						  "sample flow");
6484 		/* The representor_id is UINT16_MAX for uplink. */
6485 		fdb_tx = (attr->transfer && priv->representor_id != UINT16_MAX);
6486 		/*
6487 		 * When reg_c_preserve is set, metadata registers Cx preserve
6488 		 * their value even through packet duplication.
6489 		 */
6490 		add_tag = (!fdb_tx ||
6491 			   priv->sh->cdev->config.hca_attr.reg_c_preserve);
6492 		if (add_tag)
6493 			sfx_items = (struct rte_flow_item *)((char *)sfx_actions
6494 					+ act_size);
6495 		if (modify_after_mirror)
6496 			jump_table = attr->group * MLX5_FLOW_TABLE_FACTOR +
6497 				     next_ft_step;
6498 		pre_actions = sfx_actions + actions_n;
6499 		tag_id = flow_sample_split_prep(dev, add_tag, sfx_items,
6500 						actions, sfx_actions,
6501 						pre_actions, actions_n,
6502 						sample_action_pos,
6503 						qrss_action_pos, jump_table,
6504 						error);
6505 		if (tag_id < 0 || (add_tag && !tag_id)) {
6506 			ret = -rte_errno;
6507 			goto exit;
6508 		}
6509 		if (modify_after_mirror)
6510 			flow_split_info->skip_scale =
6511 					1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT;
6512 		/* Add the prefix subflow. */
6513 		ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
6514 					      items, pre_actions,
6515 					      flow_split_info, error);
6516 		if (ret) {
6517 			ret = -rte_errno;
6518 			goto exit;
6519 		}
6520 		dev_flow->handle->split_flow_id = tag_id;
6521 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
6522 		if (!modify_after_mirror) {
6523 			/* Set the sfx group attr. */
6524 			sample_res = (struct mlx5_flow_dv_sample_resource *)
6525 						dev_flow->dv.sample_res;
6526 			sfx_tbl = (struct mlx5_flow_tbl_resource *)
6527 						sample_res->normal_path_tbl;
6528 			sfx_tbl_data = container_of(sfx_tbl,
6529 						struct mlx5_flow_tbl_data_entry,
6530 						tbl);
6531 			sfx_attr.group = sfx_attr.transfer ?
6532 			(sfx_tbl_data->level - 1) : sfx_tbl_data->level;
6533 		} else {
6534 			MLX5_ASSERT(attr->transfer);
6535 			sfx_attr.group = jump_table;
6536 		}
6537 		flow_split_info->prefix_layers =
6538 				flow_get_prefix_layer_flags(dev_flow);
6539 		MLX5_ASSERT(wks);
6540 		flow_split_info->prefix_mark |= wks->mark;
6541 		/* Suffix group level already be scaled with factor, set
6542 		 * MLX5_SCALE_FLOW_GROUP_BIT of skip_scale to 1 to avoid scale
6543 		 * again in translation.
6544 		 */
6545 		flow_split_info->skip_scale = 1 << MLX5_SCALE_FLOW_GROUP_BIT;
6546 #endif
6547 	}
6548 	/* Add the suffix subflow. */
6549 	ret = flow_create_split_meter(dev, flow, &sfx_attr,
6550 				      sfx_items ? sfx_items : items,
6551 				      sfx_actions ? sfx_actions : actions,
6552 				      flow_split_info, error);
6553 exit:
6554 	if (sfx_actions)
6555 		mlx5_free(sfx_actions);
6556 	return ret;
6557 }
6558 
6559 /**
6560  * Split the flow to subflow set. The splitters might be linked
6561  * in the chain, like this:
6562  * flow_create_split_outer() calls:
6563  *   flow_create_split_meter() calls:
6564  *     flow_create_split_metadata(meter_subflow_0) calls:
6565  *       flow_create_split_inner(metadata_subflow_0)
6566  *       flow_create_split_inner(metadata_subflow_1)
6567  *       flow_create_split_inner(metadata_subflow_2)
6568  *     flow_create_split_metadata(meter_subflow_1) calls:
6569  *       flow_create_split_inner(metadata_subflow_0)
6570  *       flow_create_split_inner(metadata_subflow_1)
6571  *       flow_create_split_inner(metadata_subflow_2)
6572  *
6573  * This provide flexible way to add new levels of flow splitting.
6574  * The all of successfully created subflows are included to the
6575  * parent flow dev_flow list.
6576  *
6577  * @param dev
6578  *   Pointer to Ethernet device.
6579  * @param[in] flow
6580  *   Parent flow structure pointer.
6581  * @param[in] attr
6582  *   Flow rule attributes.
6583  * @param[in] items
6584  *   Pattern specification (list terminated by the END pattern item).
6585  * @param[in] actions
6586  *   Associated actions (list terminated by the END action).
6587  * @param[in] flow_split_info
6588  *   Pointer to flow split info structure.
6589  * @param[out] error
6590  *   Perform verbose error reporting if not NULL.
6591  * @return
6592  *   0 on success, negative value otherwise
6593  */
6594 static int
6595 flow_create_split_outer(struct rte_eth_dev *dev,
6596 			struct rte_flow *flow,
6597 			const struct rte_flow_attr *attr,
6598 			const struct rte_flow_item items[],
6599 			const struct rte_flow_action actions[],
6600 			struct mlx5_flow_split_info *flow_split_info,
6601 			struct rte_flow_error *error)
6602 {
6603 	int ret;
6604 
6605 	ret = flow_create_split_sample(dev, flow, attr, items,
6606 				       actions, flow_split_info, error);
6607 	MLX5_ASSERT(ret <= 0);
6608 	return ret;
6609 }
6610 
6611 static inline struct mlx5_flow_tunnel *
6612 flow_tunnel_from_rule(const struct mlx5_flow *flow)
6613 {
6614 	struct mlx5_flow_tunnel *tunnel;
6615 
6616 #pragma GCC diagnostic push
6617 #pragma GCC diagnostic ignored "-Wcast-qual"
6618 	tunnel = (typeof(tunnel))flow->tunnel;
6619 #pragma GCC diagnostic pop
6620 
6621 	return tunnel;
6622 }
6623 
6624 /**
6625  * Adjust flow RSS workspace if needed.
6626  *
6627  * @param wks
6628  *   Pointer to thread flow work space.
6629  * @param rss_desc
6630  *   Pointer to RSS descriptor.
6631  * @param[in] nrssq_num
6632  *   New RSS queue number.
6633  *
6634  * @return
6635  *   0 on success, -1 otherwise and rte_errno is set.
6636  */
6637 static int
6638 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks,
6639 			  struct mlx5_flow_rss_desc *rss_desc,
6640 			  uint32_t nrssq_num)
6641 {
6642 	if (likely(nrssq_num <= wks->rssq_num))
6643 		return 0;
6644 	rss_desc->queue = realloc(rss_desc->queue,
6645 			  sizeof(*rss_desc->queue) * RTE_ALIGN(nrssq_num, 2));
6646 	if (!rss_desc->queue) {
6647 		rte_errno = ENOMEM;
6648 		return -1;
6649 	}
6650 	wks->rssq_num = RTE_ALIGN(nrssq_num, 2);
6651 	return 0;
6652 }
6653 
6654 /**
6655  * Create a flow and add it to @p list.
6656  *
6657  * @param dev
6658  *   Pointer to Ethernet device.
6659  * @param list
6660  *   Pointer to a TAILQ flow list. If this parameter NULL,
6661  *   no list insertion occurred, flow is just created,
6662  *   this is caller's responsibility to track the
6663  *   created flow.
6664  * @param[in] attr
6665  *   Flow rule attributes.
6666  * @param[in] items
6667  *   Pattern specification (list terminated by the END pattern item).
6668  * @param[in] actions
6669  *   Associated actions (list terminated by the END action).
6670  * @param[in] external
6671  *   This flow rule is created by request external to PMD.
6672  * @param[out] error
6673  *   Perform verbose error reporting if not NULL.
6674  *
6675  * @return
6676  *   A flow index on success, 0 otherwise and rte_errno is set.
6677  */
6678 static uint32_t
6679 flow_list_create(struct rte_eth_dev *dev, enum mlx5_flow_type type,
6680 		 const struct rte_flow_attr *attr,
6681 		 const struct rte_flow_item items[],
6682 		 const struct rte_flow_action original_actions[],
6683 		 bool external, struct rte_flow_error *error)
6684 {
6685 	struct mlx5_priv *priv = dev->data->dev_private;
6686 	struct rte_flow *flow = NULL;
6687 	struct mlx5_flow *dev_flow;
6688 	const struct rte_flow_action_rss *rss = NULL;
6689 	struct mlx5_translated_action_handle
6690 		indir_actions[MLX5_MAX_INDIRECT_ACTIONS];
6691 	int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS;
6692 	union {
6693 		struct mlx5_flow_expand_rss buf;
6694 		uint8_t buffer[4096];
6695 	} expand_buffer;
6696 	union {
6697 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
6698 		uint8_t buffer[2048];
6699 	} actions_rx;
6700 	union {
6701 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
6702 		uint8_t buffer[2048];
6703 	} actions_hairpin_tx;
6704 	union {
6705 		struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
6706 		uint8_t buffer[2048];
6707 	} items_tx;
6708 	struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
6709 	struct mlx5_flow_rss_desc *rss_desc;
6710 	const struct rte_flow_action *p_actions_rx;
6711 	uint32_t i;
6712 	uint32_t idx = 0;
6713 	int hairpin_flow;
6714 	struct rte_flow_attr attr_tx = { .priority = 0 };
6715 	const struct rte_flow_action *actions;
6716 	struct rte_flow_action *translated_actions = NULL;
6717 	struct mlx5_flow_tunnel *tunnel;
6718 	struct tunnel_default_miss_ctx default_miss_ctx = { 0, };
6719 	struct mlx5_flow_workspace *wks = mlx5_flow_push_thread_workspace();
6720 	struct mlx5_flow_split_info flow_split_info = {
6721 		.external = !!external,
6722 		.skip_scale = 0,
6723 		.flow_idx = 0,
6724 		.prefix_mark = 0,
6725 		.prefix_layers = 0,
6726 		.table_id = 0
6727 	};
6728 	int ret;
6729 
6730 	MLX5_ASSERT(wks);
6731 	rss_desc = &wks->rss_desc;
6732 	ret = flow_action_handles_translate(dev, original_actions,
6733 					    indir_actions,
6734 					    &indir_actions_n,
6735 					    &translated_actions, error);
6736 	if (ret < 0) {
6737 		MLX5_ASSERT(translated_actions == NULL);
6738 		return 0;
6739 	}
6740 	actions = translated_actions ? translated_actions : original_actions;
6741 	p_actions_rx = actions;
6742 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
6743 	ret = flow_drv_validate(dev, attr, items, p_actions_rx,
6744 				external, hairpin_flow, error);
6745 	if (ret < 0)
6746 		goto error_before_hairpin_split;
6747 	flow = mlx5_ipool_zmalloc(priv->flows[type], &idx);
6748 	if (!flow) {
6749 		rte_errno = ENOMEM;
6750 		goto error_before_hairpin_split;
6751 	}
6752 	if (hairpin_flow > 0) {
6753 		if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
6754 			rte_errno = EINVAL;
6755 			goto error_before_hairpin_split;
6756 		}
6757 		flow_hairpin_split(dev, actions, actions_rx.actions,
6758 				   actions_hairpin_tx.actions, items_tx.items,
6759 				   idx);
6760 		p_actions_rx = actions_rx.actions;
6761 	}
6762 	flow_split_info.flow_idx = idx;
6763 	flow->drv_type = flow_get_drv_type(dev, attr);
6764 	MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
6765 		    flow->drv_type < MLX5_FLOW_TYPE_MAX);
6766 	memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue));
6767 	/* RSS Action only works on NIC RX domain */
6768 	if (attr->ingress && !attr->transfer)
6769 		rss = flow_get_rss_action(dev, p_actions_rx);
6770 	if (rss) {
6771 		if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num))
6772 			return 0;
6773 		/*
6774 		 * The following information is required by
6775 		 * mlx5_flow_hashfields_adjust() in advance.
6776 		 */
6777 		rss_desc->level = rss->level;
6778 		/* RSS type 0 indicates default RSS type (RTE_ETH_RSS_IP). */
6779 		rss_desc->types = !rss->types ? RTE_ETH_RSS_IP : rss->types;
6780 	}
6781 	flow->dev_handles = 0;
6782 	if (rss && rss->types) {
6783 		unsigned int graph_root;
6784 
6785 		graph_root = find_graph_root(rss->level);
6786 		ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
6787 					   items, rss->types,
6788 					   mlx5_support_expansion, graph_root);
6789 		MLX5_ASSERT(ret > 0 &&
6790 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
6791 		if (rte_log_can_log(mlx5_logtype, RTE_LOG_DEBUG)) {
6792 			for (i = 0; i < buf->entries; ++i)
6793 				mlx5_dbg__print_pattern(buf->entry[i].pattern);
6794 		}
6795 	} else {
6796 		buf->entries = 1;
6797 		buf->entry[0].pattern = (void *)(uintptr_t)items;
6798 	}
6799 	rss_desc->shared_rss = flow_get_shared_rss_action(dev, indir_actions,
6800 						      indir_actions_n);
6801 	for (i = 0; i < buf->entries; ++i) {
6802 		/* Initialize flow split data. */
6803 		flow_split_info.prefix_layers = 0;
6804 		flow_split_info.prefix_mark = 0;
6805 		flow_split_info.skip_scale = 0;
6806 		/*
6807 		 * The splitter may create multiple dev_flows,
6808 		 * depending on configuration. In the simplest
6809 		 * case it just creates unmodified original flow.
6810 		 */
6811 		ret = flow_create_split_outer(dev, flow, attr,
6812 					      buf->entry[i].pattern,
6813 					      p_actions_rx, &flow_split_info,
6814 					      error);
6815 		if (ret < 0)
6816 			goto error;
6817 		if (is_flow_tunnel_steer_rule(wks->flows[0].tof_type)) {
6818 			ret = flow_tunnel_add_default_miss(dev, flow, attr,
6819 							   p_actions_rx,
6820 							   idx,
6821 							   wks->flows[0].tunnel,
6822 							   &default_miss_ctx,
6823 							   error);
6824 			if (ret < 0) {
6825 				mlx5_free(default_miss_ctx.queue);
6826 				goto error;
6827 			}
6828 		}
6829 	}
6830 	/* Create the tx flow. */
6831 	if (hairpin_flow) {
6832 		attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
6833 		attr_tx.ingress = 0;
6834 		attr_tx.egress = 1;
6835 		dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
6836 					 actions_hairpin_tx.actions,
6837 					 idx, error);
6838 		if (!dev_flow)
6839 			goto error;
6840 		dev_flow->flow = flow;
6841 		dev_flow->external = 0;
6842 		SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
6843 			      dev_flow->handle, next);
6844 		ret = flow_drv_translate(dev, dev_flow, &attr_tx,
6845 					 items_tx.items,
6846 					 actions_hairpin_tx.actions, error);
6847 		if (ret < 0)
6848 			goto error;
6849 	}
6850 	/*
6851 	 * Update the metadata register copy table. If extensive
6852 	 * metadata feature is enabled and registers are supported
6853 	 * we might create the extra rte_flow for each unique
6854 	 * MARK/FLAG action ID.
6855 	 *
6856 	 * The table is updated for ingress Flows only, because
6857 	 * the egress Flows belong to the different device and
6858 	 * copy table should be updated in peer NIC Rx domain.
6859 	 */
6860 	if (attr->ingress &&
6861 	    (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
6862 		ret = flow_mreg_update_copy_table(dev, flow, actions, error);
6863 		if (ret)
6864 			goto error;
6865 	}
6866 	/*
6867 	 * If the flow is external (from application) OR device is started,
6868 	 * OR mreg discover, then apply immediately.
6869 	 */
6870 	if (external || dev->data->dev_started ||
6871 	    (attr->group == MLX5_FLOW_MREG_CP_TABLE_GROUP &&
6872 	     attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)) {
6873 		ret = flow_drv_apply(dev, flow, error);
6874 		if (ret < 0)
6875 			goto error;
6876 	}
6877 	flow->type = type;
6878 	flow_rxq_flags_set(dev, flow);
6879 	rte_free(translated_actions);
6880 	tunnel = flow_tunnel_from_rule(wks->flows);
6881 	if (tunnel) {
6882 		flow->tunnel = 1;
6883 		flow->tunnel_id = tunnel->tunnel_id;
6884 		__atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED);
6885 		mlx5_free(default_miss_ctx.queue);
6886 	}
6887 	mlx5_flow_pop_thread_workspace();
6888 	return idx;
6889 error:
6890 	MLX5_ASSERT(flow);
6891 	ret = rte_errno; /* Save rte_errno before cleanup. */
6892 	flow_mreg_del_copy_action(dev, flow);
6893 	flow_drv_destroy(dev, flow);
6894 	if (rss_desc->shared_rss)
6895 		__atomic_sub_fetch(&((struct mlx5_shared_action_rss *)
6896 			mlx5_ipool_get
6897 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
6898 			rss_desc->shared_rss))->refcnt, 1, __ATOMIC_RELAXED);
6899 	mlx5_ipool_free(priv->flows[type], idx);
6900 	rte_errno = ret; /* Restore rte_errno. */
6901 	ret = rte_errno;
6902 	rte_errno = ret;
6903 	mlx5_flow_pop_thread_workspace();
6904 error_before_hairpin_split:
6905 	rte_free(translated_actions);
6906 	return 0;
6907 }
6908 
6909 /**
6910  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
6911  * incoming packets to table 1.
6912  *
6913  * Other flow rules, requested for group n, will be created in
6914  * e-switch table n+1.
6915  * Jump action to e-switch group n will be created to group n+1.
6916  *
6917  * Used when working in switchdev mode, to utilise advantages of table 1
6918  * and above.
6919  *
6920  * @param dev
6921  *   Pointer to Ethernet device.
6922  *
6923  * @return
6924  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
6925  */
6926 struct rte_flow *
6927 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
6928 {
6929 	const struct rte_flow_attr attr = {
6930 		.group = 0,
6931 		.priority = 0,
6932 		.ingress = 1,
6933 		.egress = 0,
6934 		.transfer = 1,
6935 	};
6936 	const struct rte_flow_item pattern = {
6937 		.type = RTE_FLOW_ITEM_TYPE_END,
6938 	};
6939 	struct rte_flow_action_jump jump = {
6940 		.group = 1,
6941 	};
6942 	const struct rte_flow_action actions[] = {
6943 		{
6944 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
6945 			.conf = &jump,
6946 		},
6947 		{
6948 			.type = RTE_FLOW_ACTION_TYPE_END,
6949 		},
6950 	};
6951 	struct rte_flow_error error;
6952 
6953 	return (void *)(uintptr_t)flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
6954 						   &attr, &pattern,
6955 						   actions, false, &error);
6956 }
6957 
6958 /**
6959  * Create a dedicated flow rule on e-switch table 1, matches ESW manager
6960  * and sq number, directs all packets to peer vport.
6961  *
6962  * @param dev
6963  *   Pointer to Ethernet device.
6964  * @param txq
6965  *   Txq index.
6966  *
6967  * @return
6968  *   Flow ID on success, 0 otherwise and rte_errno is set.
6969  */
6970 uint32_t
6971 mlx5_flow_create_devx_sq_miss_flow(struct rte_eth_dev *dev, uint32_t txq)
6972 {
6973 	struct rte_flow_attr attr = {
6974 		.group = 0,
6975 		.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
6976 		.ingress = 1,
6977 		.egress = 0,
6978 		.transfer = 1,
6979 	};
6980 	struct rte_flow_item_port_id port_spec = {
6981 		.id = MLX5_PORT_ESW_MGR,
6982 	};
6983 	struct mlx5_rte_flow_item_tx_queue txq_spec = {
6984 		.queue = txq,
6985 	};
6986 	struct rte_flow_item pattern[] = {
6987 		{
6988 			.type = RTE_FLOW_ITEM_TYPE_PORT_ID,
6989 			.spec = &port_spec,
6990 		},
6991 		{
6992 			.type = (enum rte_flow_item_type)
6993 				MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
6994 			.spec = &txq_spec,
6995 		},
6996 		{
6997 			.type = RTE_FLOW_ITEM_TYPE_END,
6998 		},
6999 	};
7000 	struct rte_flow_action_jump jump = {
7001 		.group = 1,
7002 	};
7003 	struct rte_flow_action_port_id port = {
7004 		.id = dev->data->port_id,
7005 	};
7006 	struct rte_flow_action actions[] = {
7007 		{
7008 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
7009 			.conf = &jump,
7010 		},
7011 		{
7012 			.type = RTE_FLOW_ACTION_TYPE_END,
7013 		},
7014 	};
7015 	struct rte_flow_error error;
7016 
7017 	/*
7018 	 * Creates group 0, highest priority jump flow.
7019 	 * Matches txq to bypass kernel packets.
7020 	 */
7021 	if (flow_list_create(dev, MLX5_FLOW_TYPE_CTL, &attr, pattern, actions,
7022 			     false, &error) == 0)
7023 		return 0;
7024 	/* Create group 1, lowest priority redirect flow for txq. */
7025 	attr.group = 1;
7026 	actions[0].conf = &port;
7027 	actions[0].type = RTE_FLOW_ACTION_TYPE_PORT_ID;
7028 	return flow_list_create(dev, MLX5_FLOW_TYPE_CTL, &attr, pattern,
7029 				actions, false, &error);
7030 }
7031 
7032 /**
7033  * Validate a flow supported by the NIC.
7034  *
7035  * @see rte_flow_validate()
7036  * @see rte_flow_ops
7037  */
7038 int
7039 mlx5_flow_validate(struct rte_eth_dev *dev,
7040 		   const struct rte_flow_attr *attr,
7041 		   const struct rte_flow_item items[],
7042 		   const struct rte_flow_action original_actions[],
7043 		   struct rte_flow_error *error)
7044 {
7045 	int hairpin_flow;
7046 	struct mlx5_translated_action_handle
7047 		indir_actions[MLX5_MAX_INDIRECT_ACTIONS];
7048 	int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS;
7049 	const struct rte_flow_action *actions;
7050 	struct rte_flow_action *translated_actions = NULL;
7051 	int ret = flow_action_handles_translate(dev, original_actions,
7052 						indir_actions,
7053 						&indir_actions_n,
7054 						&translated_actions, error);
7055 
7056 	if (ret)
7057 		return ret;
7058 	actions = translated_actions ? translated_actions : original_actions;
7059 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
7060 	ret = flow_drv_validate(dev, attr, items, actions,
7061 				true, hairpin_flow, error);
7062 	rte_free(translated_actions);
7063 	return ret;
7064 }
7065 
7066 /**
7067  * Create a flow.
7068  *
7069  * @see rte_flow_create()
7070  * @see rte_flow_ops
7071  */
7072 struct rte_flow *
7073 mlx5_flow_create(struct rte_eth_dev *dev,
7074 		 const struct rte_flow_attr *attr,
7075 		 const struct rte_flow_item items[],
7076 		 const struct rte_flow_action actions[],
7077 		 struct rte_flow_error *error)
7078 {
7079 	struct mlx5_priv *priv = dev->data->dev_private;
7080 
7081 	if (priv->sh->config.dv_flow_en == 2) {
7082 		rte_flow_error_set(error, ENOTSUP,
7083 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7084 			  NULL,
7085 			  "Flow non-Q creation not supported");
7086 		return NULL;
7087 	}
7088 	/*
7089 	 * If the device is not started yet, it is not allowed to created a
7090 	 * flow from application. PMD default flows and traffic control flows
7091 	 * are not affected.
7092 	 */
7093 	if (unlikely(!dev->data->dev_started)) {
7094 		DRV_LOG(DEBUG, "port %u is not started when "
7095 			"inserting a flow", dev->data->port_id);
7096 		rte_flow_error_set(error, ENODEV,
7097 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7098 				   NULL,
7099 				   "port not started");
7100 		return NULL;
7101 	}
7102 
7103 	return (void *)(uintptr_t)flow_list_create(dev, MLX5_FLOW_TYPE_GEN,
7104 						   attr, items, actions,
7105 						   true, error);
7106 }
7107 
7108 /**
7109  * Destroy a flow in a list.
7110  *
7111  * @param dev
7112  *   Pointer to Ethernet device.
7113  * @param[in] flow_idx
7114  *   Index of flow to destroy.
7115  */
7116 static void
7117 flow_list_destroy(struct rte_eth_dev *dev, enum mlx5_flow_type type,
7118 		  uint32_t flow_idx)
7119 {
7120 	struct mlx5_priv *priv = dev->data->dev_private;
7121 	struct rte_flow *flow = mlx5_ipool_get(priv->flows[type], flow_idx);
7122 
7123 	if (!flow)
7124 		return;
7125 	MLX5_ASSERT(flow->type == type);
7126 	/*
7127 	 * Update RX queue flags only if port is started, otherwise it is
7128 	 * already clean.
7129 	 */
7130 	if (dev->data->dev_started)
7131 		flow_rxq_flags_trim(dev, flow);
7132 	flow_drv_destroy(dev, flow);
7133 	if (flow->tunnel) {
7134 		struct mlx5_flow_tunnel *tunnel;
7135 
7136 		tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id);
7137 		RTE_VERIFY(tunnel);
7138 		if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
7139 			mlx5_flow_tunnel_free(dev, tunnel);
7140 	}
7141 	flow_mreg_del_copy_action(dev, flow);
7142 	mlx5_ipool_free(priv->flows[type], flow_idx);
7143 }
7144 
7145 /**
7146  * Destroy all flows.
7147  *
7148  * @param dev
7149  *   Pointer to Ethernet device.
7150  * @param type
7151  *   Flow type to be flushed.
7152  * @param active
7153  *   If flushing is called actively.
7154  */
7155 void
7156 mlx5_flow_list_flush(struct rte_eth_dev *dev, enum mlx5_flow_type type,
7157 		     bool active)
7158 {
7159 	struct mlx5_priv *priv = dev->data->dev_private;
7160 	uint32_t num_flushed = 0, fidx = 1;
7161 	struct rte_flow *flow;
7162 
7163 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
7164 	if (priv->sh->config.dv_flow_en == 2 &&
7165 	    type == MLX5_FLOW_TYPE_GEN) {
7166 		flow_hw_q_flow_flush(dev, NULL);
7167 		return;
7168 	}
7169 #endif
7170 
7171 	MLX5_IPOOL_FOREACH(priv->flows[type], fidx, flow) {
7172 		flow_list_destroy(dev, type, fidx);
7173 		num_flushed++;
7174 	}
7175 	if (active) {
7176 		DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
7177 			dev->data->port_id, num_flushed);
7178 	}
7179 }
7180 
7181 /**
7182  * Stop all default actions for flows.
7183  *
7184  * @param dev
7185  *   Pointer to Ethernet device.
7186  */
7187 void
7188 mlx5_flow_stop_default(struct rte_eth_dev *dev)
7189 {
7190 	flow_mreg_del_default_copy_action(dev);
7191 	flow_rxq_flags_clear(dev);
7192 }
7193 
7194 /**
7195  * Start all default actions for flows.
7196  *
7197  * @param dev
7198  *   Pointer to Ethernet device.
7199  * @return
7200  *   0 on success, a negative errno value otherwise and rte_errno is set.
7201  */
7202 int
7203 mlx5_flow_start_default(struct rte_eth_dev *dev)
7204 {
7205 	struct rte_flow_error error;
7206 
7207 	/* Make sure default copy action (reg_c[0] -> reg_b) is created. */
7208 	return flow_mreg_add_default_copy_action(dev, &error);
7209 }
7210 
7211 /**
7212  * Release key of thread specific flow workspace data.
7213  */
7214 void
7215 flow_release_workspace(void *data)
7216 {
7217 	struct mlx5_flow_workspace *wks = data;
7218 	struct mlx5_flow_workspace *next;
7219 
7220 	while (wks) {
7221 		next = wks->next;
7222 		free(wks->rss_desc.queue);
7223 		free(wks);
7224 		wks = next;
7225 	}
7226 }
7227 
7228 /**
7229  * Get thread specific current flow workspace.
7230  *
7231  * @return pointer to thread specific flow workspace data, NULL on error.
7232  */
7233 struct mlx5_flow_workspace*
7234 mlx5_flow_get_thread_workspace(void)
7235 {
7236 	struct mlx5_flow_workspace *data;
7237 
7238 	data = mlx5_flow_os_get_specific_workspace();
7239 	MLX5_ASSERT(data && data->inuse);
7240 	if (!data || !data->inuse)
7241 		DRV_LOG(ERR, "flow workspace not initialized.");
7242 	return data;
7243 }
7244 
7245 /**
7246  * Allocate and init new flow workspace.
7247  *
7248  * @return pointer to flow workspace data, NULL on error.
7249  */
7250 static struct mlx5_flow_workspace*
7251 flow_alloc_thread_workspace(void)
7252 {
7253 	struct mlx5_flow_workspace *data = calloc(1, sizeof(*data));
7254 
7255 	if (!data) {
7256 		DRV_LOG(ERR, "Failed to allocate flow workspace "
7257 			"memory.");
7258 		return NULL;
7259 	}
7260 	data->rss_desc.queue = calloc(1,
7261 			sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM);
7262 	if (!data->rss_desc.queue)
7263 		goto err;
7264 	data->rssq_num = MLX5_RSSQ_DEFAULT_NUM;
7265 	return data;
7266 err:
7267 	free(data->rss_desc.queue);
7268 	free(data);
7269 	return NULL;
7270 }
7271 
7272 /**
7273  * Get new thread specific flow workspace.
7274  *
7275  * If current workspace inuse, create new one and set as current.
7276  *
7277  * @return pointer to thread specific flow workspace data, NULL on error.
7278  */
7279 static struct mlx5_flow_workspace*
7280 mlx5_flow_push_thread_workspace(void)
7281 {
7282 	struct mlx5_flow_workspace *curr;
7283 	struct mlx5_flow_workspace *data;
7284 
7285 	curr = mlx5_flow_os_get_specific_workspace();
7286 	if (!curr) {
7287 		data = flow_alloc_thread_workspace();
7288 		if (!data)
7289 			return NULL;
7290 	} else if (!curr->inuse) {
7291 		data = curr;
7292 	} else if (curr->next) {
7293 		data = curr->next;
7294 	} else {
7295 		data = flow_alloc_thread_workspace();
7296 		if (!data)
7297 			return NULL;
7298 		curr->next = data;
7299 		data->prev = curr;
7300 	}
7301 	data->inuse = 1;
7302 	data->flow_idx = 0;
7303 	/* Set as current workspace */
7304 	if (mlx5_flow_os_set_specific_workspace(data))
7305 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
7306 	return data;
7307 }
7308 
7309 /**
7310  * Close current thread specific flow workspace.
7311  *
7312  * If previous workspace available, set it as current.
7313  *
7314  * @return pointer to thread specific flow workspace data, NULL on error.
7315  */
7316 static void
7317 mlx5_flow_pop_thread_workspace(void)
7318 {
7319 	struct mlx5_flow_workspace *data = mlx5_flow_get_thread_workspace();
7320 
7321 	if (!data)
7322 		return;
7323 	if (!data->inuse) {
7324 		DRV_LOG(ERR, "Failed to close unused flow workspace.");
7325 		return;
7326 	}
7327 	data->inuse = 0;
7328 	if (!data->prev)
7329 		return;
7330 	if (mlx5_flow_os_set_specific_workspace(data->prev))
7331 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
7332 }
7333 
7334 /**
7335  * Verify the flow list is empty
7336  *
7337  * @param dev
7338  *  Pointer to Ethernet device.
7339  *
7340  * @return the number of flows not released.
7341  */
7342 int
7343 mlx5_flow_verify(struct rte_eth_dev *dev __rte_unused)
7344 {
7345 	struct mlx5_priv *priv = dev->data->dev_private;
7346 	struct rte_flow *flow;
7347 	uint32_t idx = 0;
7348 	int ret = 0, i;
7349 
7350 	for (i = 0; i < MLX5_FLOW_TYPE_MAXI; i++) {
7351 		MLX5_IPOOL_FOREACH(priv->flows[i], idx, flow) {
7352 			DRV_LOG(DEBUG, "port %u flow %p still referenced",
7353 				dev->data->port_id, (void *)flow);
7354 			ret++;
7355 		}
7356 	}
7357 	return ret;
7358 }
7359 
7360 /**
7361  * Enable default hairpin egress flow.
7362  *
7363  * @param dev
7364  *   Pointer to Ethernet device.
7365  * @param queue
7366  *   The queue index.
7367  *
7368  * @return
7369  *   0 on success, a negative errno value otherwise and rte_errno is set.
7370  */
7371 int
7372 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
7373 			    uint32_t queue)
7374 {
7375 	const struct rte_flow_attr attr = {
7376 		.egress = 1,
7377 		.priority = 0,
7378 	};
7379 	struct mlx5_rte_flow_item_tx_queue queue_spec = {
7380 		.queue = queue,
7381 	};
7382 	struct mlx5_rte_flow_item_tx_queue queue_mask = {
7383 		.queue = UINT32_MAX,
7384 	};
7385 	struct rte_flow_item items[] = {
7386 		{
7387 			.type = (enum rte_flow_item_type)
7388 				MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
7389 			.spec = &queue_spec,
7390 			.last = NULL,
7391 			.mask = &queue_mask,
7392 		},
7393 		{
7394 			.type = RTE_FLOW_ITEM_TYPE_END,
7395 		},
7396 	};
7397 	struct rte_flow_action_jump jump = {
7398 		.group = MLX5_HAIRPIN_TX_TABLE,
7399 	};
7400 	struct rte_flow_action actions[2];
7401 	uint32_t flow_idx;
7402 	struct rte_flow_error error;
7403 
7404 	actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
7405 	actions[0].conf = &jump;
7406 	actions[1].type = RTE_FLOW_ACTION_TYPE_END;
7407 	flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
7408 				    &attr, items, actions, false, &error);
7409 	if (!flow_idx) {
7410 		DRV_LOG(DEBUG,
7411 			"Failed to create ctrl flow: rte_errno(%d),"
7412 			" type(%d), message(%s)",
7413 			rte_errno, error.type,
7414 			error.message ? error.message : " (no stated reason)");
7415 		return -rte_errno;
7416 	}
7417 	return 0;
7418 }
7419 
7420 /**
7421  * Enable a control flow configured from the control plane.
7422  *
7423  * @param dev
7424  *   Pointer to Ethernet device.
7425  * @param eth_spec
7426  *   An Ethernet flow spec to apply.
7427  * @param eth_mask
7428  *   An Ethernet flow mask to apply.
7429  * @param vlan_spec
7430  *   A VLAN flow spec to apply.
7431  * @param vlan_mask
7432  *   A VLAN flow mask to apply.
7433  *
7434  * @return
7435  *   0 on success, a negative errno value otherwise and rte_errno is set.
7436  */
7437 int
7438 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
7439 		    struct rte_flow_item_eth *eth_spec,
7440 		    struct rte_flow_item_eth *eth_mask,
7441 		    struct rte_flow_item_vlan *vlan_spec,
7442 		    struct rte_flow_item_vlan *vlan_mask)
7443 {
7444 	struct mlx5_priv *priv = dev->data->dev_private;
7445 	const struct rte_flow_attr attr = {
7446 		.ingress = 1,
7447 		.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
7448 	};
7449 	struct rte_flow_item items[] = {
7450 		{
7451 			.type = RTE_FLOW_ITEM_TYPE_ETH,
7452 			.spec = eth_spec,
7453 			.last = NULL,
7454 			.mask = eth_mask,
7455 		},
7456 		{
7457 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
7458 					      RTE_FLOW_ITEM_TYPE_END,
7459 			.spec = vlan_spec,
7460 			.last = NULL,
7461 			.mask = vlan_mask,
7462 		},
7463 		{
7464 			.type = RTE_FLOW_ITEM_TYPE_END,
7465 		},
7466 	};
7467 	uint16_t queue[priv->reta_idx_n];
7468 	struct rte_flow_action_rss action_rss = {
7469 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
7470 		.level = 0,
7471 		.types = priv->rss_conf.rss_hf,
7472 		.key_len = priv->rss_conf.rss_key_len,
7473 		.queue_num = priv->reta_idx_n,
7474 		.key = priv->rss_conf.rss_key,
7475 		.queue = queue,
7476 	};
7477 	struct rte_flow_action actions[] = {
7478 		{
7479 			.type = RTE_FLOW_ACTION_TYPE_RSS,
7480 			.conf = &action_rss,
7481 		},
7482 		{
7483 			.type = RTE_FLOW_ACTION_TYPE_END,
7484 		},
7485 	};
7486 	uint32_t flow_idx;
7487 	struct rte_flow_error error;
7488 	unsigned int i;
7489 
7490 	if (!priv->reta_idx_n || !priv->rxqs_n) {
7491 		return 0;
7492 	}
7493 	if (!(dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG))
7494 		action_rss.types = 0;
7495 	for (i = 0; i != priv->reta_idx_n; ++i)
7496 		queue[i] = (*priv->reta_idx)[i];
7497 	flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
7498 				    &attr, items, actions, false, &error);
7499 	if (!flow_idx)
7500 		return -rte_errno;
7501 	return 0;
7502 }
7503 
7504 /**
7505  * Enable a flow control configured from the control plane.
7506  *
7507  * @param dev
7508  *   Pointer to Ethernet device.
7509  * @param eth_spec
7510  *   An Ethernet flow spec to apply.
7511  * @param eth_mask
7512  *   An Ethernet flow mask to apply.
7513  *
7514  * @return
7515  *   0 on success, a negative errno value otherwise and rte_errno is set.
7516  */
7517 int
7518 mlx5_ctrl_flow(struct rte_eth_dev *dev,
7519 	       struct rte_flow_item_eth *eth_spec,
7520 	       struct rte_flow_item_eth *eth_mask)
7521 {
7522 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
7523 }
7524 
7525 /**
7526  * Create default miss flow rule matching lacp traffic
7527  *
7528  * @param dev
7529  *   Pointer to Ethernet device.
7530  * @param eth_spec
7531  *   An Ethernet flow spec to apply.
7532  *
7533  * @return
7534  *   0 on success, a negative errno value otherwise and rte_errno is set.
7535  */
7536 int
7537 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
7538 {
7539 	/*
7540 	 * The LACP matching is done by only using ether type since using
7541 	 * a multicast dst mac causes kernel to give low priority to this flow.
7542 	 */
7543 	static const struct rte_flow_item_eth lacp_spec = {
7544 		.type = RTE_BE16(0x8809),
7545 	};
7546 	static const struct rte_flow_item_eth lacp_mask = {
7547 		.type = 0xffff,
7548 	};
7549 	const struct rte_flow_attr attr = {
7550 		.ingress = 1,
7551 	};
7552 	struct rte_flow_item items[] = {
7553 		{
7554 			.type = RTE_FLOW_ITEM_TYPE_ETH,
7555 			.spec = &lacp_spec,
7556 			.mask = &lacp_mask,
7557 		},
7558 		{
7559 			.type = RTE_FLOW_ITEM_TYPE_END,
7560 		},
7561 	};
7562 	struct rte_flow_action actions[] = {
7563 		{
7564 			.type = (enum rte_flow_action_type)
7565 				MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
7566 		},
7567 		{
7568 			.type = RTE_FLOW_ACTION_TYPE_END,
7569 		},
7570 	};
7571 	struct rte_flow_error error;
7572 	uint32_t flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
7573 					&attr, items, actions,
7574 					false, &error);
7575 
7576 	if (!flow_idx)
7577 		return -rte_errno;
7578 	return 0;
7579 }
7580 
7581 /**
7582  * Destroy a flow.
7583  *
7584  * @see rte_flow_destroy()
7585  * @see rte_flow_ops
7586  */
7587 int
7588 mlx5_flow_destroy(struct rte_eth_dev *dev,
7589 		  struct rte_flow *flow,
7590 		  struct rte_flow_error *error __rte_unused)
7591 {
7592 	struct mlx5_priv *priv = dev->data->dev_private;
7593 
7594 	if (priv->sh->config.dv_flow_en == 2)
7595 		return rte_flow_error_set(error, ENOTSUP,
7596 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7597 			  NULL,
7598 			  "Flow non-Q destruction not supported");
7599 	flow_list_destroy(dev, MLX5_FLOW_TYPE_GEN,
7600 				(uintptr_t)(void *)flow);
7601 	return 0;
7602 }
7603 
7604 /**
7605  * Destroy all flows.
7606  *
7607  * @see rte_flow_flush()
7608  * @see rte_flow_ops
7609  */
7610 int
7611 mlx5_flow_flush(struct rte_eth_dev *dev,
7612 		struct rte_flow_error *error __rte_unused)
7613 {
7614 	mlx5_flow_list_flush(dev, MLX5_FLOW_TYPE_GEN, false);
7615 	return 0;
7616 }
7617 
7618 /**
7619  * Isolated mode.
7620  *
7621  * @see rte_flow_isolate()
7622  * @see rte_flow_ops
7623  */
7624 int
7625 mlx5_flow_isolate(struct rte_eth_dev *dev,
7626 		  int enable,
7627 		  struct rte_flow_error *error)
7628 {
7629 	struct mlx5_priv *priv = dev->data->dev_private;
7630 
7631 	if (dev->data->dev_started) {
7632 		rte_flow_error_set(error, EBUSY,
7633 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7634 				   NULL,
7635 				   "port must be stopped first");
7636 		return -rte_errno;
7637 	}
7638 	priv->isolated = !!enable;
7639 	if (enable)
7640 		dev->dev_ops = &mlx5_dev_ops_isolate;
7641 	else
7642 		dev->dev_ops = &mlx5_dev_ops;
7643 
7644 	dev->rx_descriptor_status = mlx5_rx_descriptor_status;
7645 	dev->tx_descriptor_status = mlx5_tx_descriptor_status;
7646 
7647 	return 0;
7648 }
7649 
7650 /**
7651  * Query a flow.
7652  *
7653  * @see rte_flow_query()
7654  * @see rte_flow_ops
7655  */
7656 static int
7657 flow_drv_query(struct rte_eth_dev *dev,
7658 	       uint32_t flow_idx,
7659 	       const struct rte_flow_action *actions,
7660 	       void *data,
7661 	       struct rte_flow_error *error)
7662 {
7663 	struct mlx5_priv *priv = dev->data->dev_private;
7664 	const struct mlx5_flow_driver_ops *fops;
7665 	struct rte_flow *flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN],
7666 					       flow_idx);
7667 	enum mlx5_flow_drv_type ftype;
7668 
7669 	if (!flow) {
7670 		return rte_flow_error_set(error, ENOENT,
7671 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7672 			  NULL,
7673 			  "invalid flow handle");
7674 	}
7675 	ftype = flow->drv_type;
7676 	MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
7677 	fops = flow_get_drv_ops(ftype);
7678 
7679 	return fops->query(dev, flow, actions, data, error);
7680 }
7681 
7682 /**
7683  * Query a flow.
7684  *
7685  * @see rte_flow_query()
7686  * @see rte_flow_ops
7687  */
7688 int
7689 mlx5_flow_query(struct rte_eth_dev *dev,
7690 		struct rte_flow *flow,
7691 		const struct rte_flow_action *actions,
7692 		void *data,
7693 		struct rte_flow_error *error)
7694 {
7695 	int ret;
7696 	struct mlx5_priv *priv = dev->data->dev_private;
7697 
7698 	if (priv->sh->config.dv_flow_en == 2)
7699 		return rte_flow_error_set(error, ENOTSUP,
7700 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7701 			  NULL,
7702 			  "Flow non-Q query not supported");
7703 	ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
7704 			     error);
7705 	if (ret < 0)
7706 		return ret;
7707 	return 0;
7708 }
7709 
7710 /**
7711  * Get rte_flow callbacks.
7712  *
7713  * @param dev
7714  *   Pointer to Ethernet device structure.
7715  * @param ops
7716  *   Pointer to operation-specific structure.
7717  *
7718  * @return 0
7719  */
7720 int
7721 mlx5_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
7722 		  const struct rte_flow_ops **ops)
7723 {
7724 	*ops = &mlx5_flow_ops;
7725 	return 0;
7726 }
7727 
7728 /**
7729  * Validate meter policy actions.
7730  * Dispatcher for action type specific validation.
7731  *
7732  * @param[in] dev
7733  *   Pointer to the Ethernet device structure.
7734  * @param[in] action
7735  *   The meter policy action object to validate.
7736  * @param[in] attr
7737  *   Attributes of flow to determine steering domain.
7738  * @param[out] is_rss
7739  *   Is RSS or not.
7740  * @param[out] domain_bitmap
7741  *   Domain bitmap.
7742  * @param[out] is_def_policy
7743  *   Is default policy or not.
7744  * @param[out] error
7745  *   Perform verbose error reporting if not NULL. Initialized in case of
7746  *   error only.
7747  *
7748  * @return
7749  *   0 on success, otherwise negative errno value.
7750  */
7751 int
7752 mlx5_flow_validate_mtr_acts(struct rte_eth_dev *dev,
7753 			const struct rte_flow_action *actions[RTE_COLORS],
7754 			struct rte_flow_attr *attr,
7755 			bool *is_rss,
7756 			uint8_t *domain_bitmap,
7757 			uint8_t *policy_mode,
7758 			struct rte_mtr_error *error)
7759 {
7760 	const struct mlx5_flow_driver_ops *fops;
7761 
7762 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7763 	return fops->validate_mtr_acts(dev, actions, attr, is_rss,
7764 				       domain_bitmap, policy_mode, error);
7765 }
7766 
7767 /**
7768  * Destroy the meter table set.
7769  *
7770  * @param[in] dev
7771  *   Pointer to Ethernet device.
7772  * @param[in] mtr_policy
7773  *   Meter policy struct.
7774  */
7775 void
7776 mlx5_flow_destroy_mtr_acts(struct rte_eth_dev *dev,
7777 		      struct mlx5_flow_meter_policy *mtr_policy)
7778 {
7779 	const struct mlx5_flow_driver_ops *fops;
7780 
7781 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7782 	fops->destroy_mtr_acts(dev, mtr_policy);
7783 }
7784 
7785 /**
7786  * Create policy action, lock free,
7787  * (mutex should be acquired by caller).
7788  * Dispatcher for action type specific call.
7789  *
7790  * @param[in] dev
7791  *   Pointer to the Ethernet device structure.
7792  * @param[in] mtr_policy
7793  *   Meter policy struct.
7794  * @param[in] action
7795  *   Action specification used to create meter actions.
7796  * @param[out] error
7797  *   Perform verbose error reporting if not NULL. Initialized in case of
7798  *   error only.
7799  *
7800  * @return
7801  *   0 on success, otherwise negative errno value.
7802  */
7803 int
7804 mlx5_flow_create_mtr_acts(struct rte_eth_dev *dev,
7805 		      struct mlx5_flow_meter_policy *mtr_policy,
7806 		      const struct rte_flow_action *actions[RTE_COLORS],
7807 		      struct rte_mtr_error *error)
7808 {
7809 	const struct mlx5_flow_driver_ops *fops;
7810 
7811 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7812 	return fops->create_mtr_acts(dev, mtr_policy, actions, error);
7813 }
7814 
7815 /**
7816  * Create policy rules, lock free,
7817  * (mutex should be acquired by caller).
7818  * Dispatcher for action type specific call.
7819  *
7820  * @param[in] dev
7821  *   Pointer to the Ethernet device structure.
7822  * @param[in] mtr_policy
7823  *   Meter policy struct.
7824  *
7825  * @return
7826  *   0 on success, -1 otherwise.
7827  */
7828 int
7829 mlx5_flow_create_policy_rules(struct rte_eth_dev *dev,
7830 			     struct mlx5_flow_meter_policy *mtr_policy)
7831 {
7832 	const struct mlx5_flow_driver_ops *fops;
7833 
7834 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7835 	return fops->create_policy_rules(dev, mtr_policy);
7836 }
7837 
7838 /**
7839  * Destroy policy rules, lock free,
7840  * (mutex should be acquired by caller).
7841  * Dispatcher for action type specific call.
7842  *
7843  * @param[in] dev
7844  *   Pointer to the Ethernet device structure.
7845  * @param[in] mtr_policy
7846  *   Meter policy struct.
7847  */
7848 void
7849 mlx5_flow_destroy_policy_rules(struct rte_eth_dev *dev,
7850 			     struct mlx5_flow_meter_policy *mtr_policy)
7851 {
7852 	const struct mlx5_flow_driver_ops *fops;
7853 
7854 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7855 	fops->destroy_policy_rules(dev, mtr_policy);
7856 }
7857 
7858 /**
7859  * Destroy the default policy table set.
7860  *
7861  * @param[in] dev
7862  *   Pointer to Ethernet device.
7863  */
7864 void
7865 mlx5_flow_destroy_def_policy(struct rte_eth_dev *dev)
7866 {
7867 	const struct mlx5_flow_driver_ops *fops;
7868 
7869 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7870 	fops->destroy_def_policy(dev);
7871 }
7872 
7873 /**
7874  * Destroy the default policy table set.
7875  *
7876  * @param[in] dev
7877  *   Pointer to Ethernet device.
7878  *
7879  * @return
7880  *   0 on success, -1 otherwise.
7881  */
7882 int
7883 mlx5_flow_create_def_policy(struct rte_eth_dev *dev)
7884 {
7885 	const struct mlx5_flow_driver_ops *fops;
7886 
7887 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7888 	return fops->create_def_policy(dev);
7889 }
7890 
7891 /**
7892  * Create the needed meter and suffix tables.
7893  *
7894  * @param[in] dev
7895  *   Pointer to Ethernet device.
7896  *
7897  * @return
7898  *   0 on success, -1 otherwise.
7899  */
7900 int
7901 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
7902 			struct mlx5_flow_meter_info *fm,
7903 			uint32_t mtr_idx,
7904 			uint8_t domain_bitmap)
7905 {
7906 	const struct mlx5_flow_driver_ops *fops;
7907 
7908 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7909 	return fops->create_mtr_tbls(dev, fm, mtr_idx, domain_bitmap);
7910 }
7911 
7912 /**
7913  * Destroy the meter table set.
7914  *
7915  * @param[in] dev
7916  *   Pointer to Ethernet device.
7917  * @param[in] tbl
7918  *   Pointer to the meter table set.
7919  */
7920 void
7921 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
7922 			   struct mlx5_flow_meter_info *fm)
7923 {
7924 	const struct mlx5_flow_driver_ops *fops;
7925 
7926 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7927 	fops->destroy_mtr_tbls(dev, fm);
7928 }
7929 
7930 /**
7931  * Destroy the global meter drop table.
7932  *
7933  * @param[in] dev
7934  *   Pointer to Ethernet device.
7935  */
7936 void
7937 mlx5_flow_destroy_mtr_drop_tbls(struct rte_eth_dev *dev)
7938 {
7939 	const struct mlx5_flow_driver_ops *fops;
7940 
7941 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7942 	fops->destroy_mtr_drop_tbls(dev);
7943 }
7944 
7945 /**
7946  * Destroy the sub policy table with RX queue.
7947  *
7948  * @param[in] dev
7949  *   Pointer to Ethernet device.
7950  * @param[in] mtr_policy
7951  *   Pointer to meter policy table.
7952  */
7953 void
7954 mlx5_flow_destroy_sub_policy_with_rxq(struct rte_eth_dev *dev,
7955 		struct mlx5_flow_meter_policy *mtr_policy)
7956 {
7957 	const struct mlx5_flow_driver_ops *fops;
7958 
7959 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7960 	fops->destroy_sub_policy_with_rxq(dev, mtr_policy);
7961 }
7962 
7963 /**
7964  * Allocate the needed aso flow meter id.
7965  *
7966  * @param[in] dev
7967  *   Pointer to Ethernet device.
7968  *
7969  * @return
7970  *   Index to aso flow meter on success, NULL otherwise.
7971  */
7972 uint32_t
7973 mlx5_flow_mtr_alloc(struct rte_eth_dev *dev)
7974 {
7975 	const struct mlx5_flow_driver_ops *fops;
7976 
7977 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7978 	return fops->create_meter(dev);
7979 }
7980 
7981 /**
7982  * Free the aso flow meter id.
7983  *
7984  * @param[in] dev
7985  *   Pointer to Ethernet device.
7986  * @param[in] mtr_idx
7987  *  Index to aso flow meter to be free.
7988  *
7989  * @return
7990  *   0 on success.
7991  */
7992 void
7993 mlx5_flow_mtr_free(struct rte_eth_dev *dev, uint32_t mtr_idx)
7994 {
7995 	const struct mlx5_flow_driver_ops *fops;
7996 
7997 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7998 	fops->free_meter(dev, mtr_idx);
7999 }
8000 
8001 /**
8002  * Allocate a counter.
8003  *
8004  * @param[in] dev
8005  *   Pointer to Ethernet device structure.
8006  *
8007  * @return
8008  *   Index to allocated counter  on success, 0 otherwise.
8009  */
8010 uint32_t
8011 mlx5_counter_alloc(struct rte_eth_dev *dev)
8012 {
8013 	const struct mlx5_flow_driver_ops *fops;
8014 	struct rte_flow_attr attr = { .transfer = 0 };
8015 
8016 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
8017 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
8018 		return fops->counter_alloc(dev);
8019 	}
8020 	DRV_LOG(ERR,
8021 		"port %u counter allocate is not supported.",
8022 		 dev->data->port_id);
8023 	return 0;
8024 }
8025 
8026 /**
8027  * Free a counter.
8028  *
8029  * @param[in] dev
8030  *   Pointer to Ethernet device structure.
8031  * @param[in] cnt
8032  *   Index to counter to be free.
8033  */
8034 void
8035 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
8036 {
8037 	const struct mlx5_flow_driver_ops *fops;
8038 	struct rte_flow_attr attr = { .transfer = 0 };
8039 
8040 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
8041 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
8042 		fops->counter_free(dev, cnt);
8043 		return;
8044 	}
8045 	DRV_LOG(ERR,
8046 		"port %u counter free is not supported.",
8047 		 dev->data->port_id);
8048 }
8049 
8050 /**
8051  * Query counter statistics.
8052  *
8053  * @param[in] dev
8054  *   Pointer to Ethernet device structure.
8055  * @param[in] cnt
8056  *   Index to counter to query.
8057  * @param[in] clear
8058  *   Set to clear counter statistics.
8059  * @param[out] pkts
8060  *   The counter hits packets number to save.
8061  * @param[out] bytes
8062  *   The counter hits bytes number to save.
8063  *
8064  * @return
8065  *   0 on success, a negative errno value otherwise.
8066  */
8067 int
8068 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
8069 		   bool clear, uint64_t *pkts, uint64_t *bytes, void **action)
8070 {
8071 	const struct mlx5_flow_driver_ops *fops;
8072 	struct rte_flow_attr attr = { .transfer = 0 };
8073 
8074 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
8075 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
8076 		return fops->counter_query(dev, cnt, clear, pkts,
8077 					bytes, action);
8078 	}
8079 	DRV_LOG(ERR,
8080 		"port %u counter query is not supported.",
8081 		 dev->data->port_id);
8082 	return -ENOTSUP;
8083 }
8084 
8085 /**
8086  * Get information about HWS pre-configurable resources.
8087  *
8088  * @param[in] dev
8089  *   Pointer to the rte_eth_dev structure.
8090  * @param[out] port_info
8091  *   Pointer to port information.
8092  * @param[out] queue_info
8093  *   Pointer to queue information.
8094  * @param[out] error
8095  *   Pointer to error structure.
8096  *
8097  * @return
8098  *   0 on success, a negative errno value otherwise and rte_errno is set.
8099  */
8100 static int
8101 mlx5_flow_info_get(struct rte_eth_dev *dev,
8102 		   struct rte_flow_port_info *port_info,
8103 		   struct rte_flow_queue_info *queue_info,
8104 		   struct rte_flow_error *error)
8105 {
8106 	const struct mlx5_flow_driver_ops *fops;
8107 
8108 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8109 		return rte_flow_error_set(error, ENOTSUP,
8110 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8111 				NULL,
8112 				"info get with incorrect steering mode");
8113 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8114 	return fops->info_get(dev, port_info, queue_info, error);
8115 }
8116 
8117 /**
8118  * Configure port HWS resources.
8119  *
8120  * @param[in] dev
8121  *   Pointer to the rte_eth_dev structure.
8122  * @param[in] port_attr
8123  *   Port configuration attributes.
8124  * @param[in] nb_queue
8125  *   Number of queue.
8126  * @param[in] queue_attr
8127  *   Array that holds attributes for each flow queue.
8128  * @param[out] error
8129  *   Pointer to error structure.
8130  *
8131  * @return
8132  *   0 on success, a negative errno value otherwise and rte_errno is set.
8133  */
8134 static int
8135 mlx5_flow_port_configure(struct rte_eth_dev *dev,
8136 			 const struct rte_flow_port_attr *port_attr,
8137 			 uint16_t nb_queue,
8138 			 const struct rte_flow_queue_attr *queue_attr[],
8139 			 struct rte_flow_error *error)
8140 {
8141 	const struct mlx5_flow_driver_ops *fops;
8142 
8143 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8144 		return rte_flow_error_set(error, ENOTSUP,
8145 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8146 				NULL,
8147 				"port configure with incorrect steering mode");
8148 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8149 	return fops->configure(dev, port_attr, nb_queue, queue_attr, error);
8150 }
8151 
8152 /**
8153  * Create flow item template.
8154  *
8155  * @param[in] dev
8156  *   Pointer to the rte_eth_dev structure.
8157  * @param[in] attr
8158  *   Pointer to the item template attributes.
8159  * @param[in] items
8160  *   The template item pattern.
8161  * @param[out] error
8162  *   Pointer to error structure.
8163  *
8164  * @return
8165  *   0 on success, a negative errno value otherwise and rte_errno is set.
8166  */
8167 static struct rte_flow_pattern_template *
8168 mlx5_flow_pattern_template_create(struct rte_eth_dev *dev,
8169 		const struct rte_flow_pattern_template_attr *attr,
8170 		const struct rte_flow_item items[],
8171 		struct rte_flow_error *error)
8172 {
8173 	const struct mlx5_flow_driver_ops *fops;
8174 
8175 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW) {
8176 		rte_flow_error_set(error, ENOTSUP,
8177 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8178 				NULL,
8179 				"pattern create with incorrect steering mode");
8180 		return NULL;
8181 	}
8182 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8183 	return fops->pattern_template_create(dev, attr, items, error);
8184 }
8185 
8186 /**
8187  * Destroy flow item template.
8188  *
8189  * @param[in] dev
8190  *   Pointer to the rte_eth_dev structure.
8191  * @param[in] template
8192  *   Pointer to the item template to be destroyed.
8193  * @param[out] error
8194  *   Pointer to error structure.
8195  *
8196  * @return
8197  *   0 on success, a negative errno value otherwise and rte_errno is set.
8198  */
8199 static int
8200 mlx5_flow_pattern_template_destroy(struct rte_eth_dev *dev,
8201 				   struct rte_flow_pattern_template *template,
8202 				   struct rte_flow_error *error)
8203 {
8204 	const struct mlx5_flow_driver_ops *fops;
8205 
8206 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8207 		return rte_flow_error_set(error, ENOTSUP,
8208 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8209 				NULL,
8210 				"pattern destroy with incorrect steering mode");
8211 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8212 	return fops->pattern_template_destroy(dev, template, error);
8213 }
8214 
8215 /**
8216  * Create flow item template.
8217  *
8218  * @param[in] dev
8219  *   Pointer to the rte_eth_dev structure.
8220  * @param[in] attr
8221  *   Pointer to the action template attributes.
8222  * @param[in] actions
8223  *   Associated actions (list terminated by the END action).
8224  * @param[in] masks
8225  *   List of actions that marks which of the action's member is constant.
8226  * @param[out] error
8227  *   Pointer to error structure.
8228  *
8229  * @return
8230  *   0 on success, a negative errno value otherwise and rte_errno is set.
8231  */
8232 static struct rte_flow_actions_template *
8233 mlx5_flow_actions_template_create(struct rte_eth_dev *dev,
8234 			const struct rte_flow_actions_template_attr *attr,
8235 			const struct rte_flow_action actions[],
8236 			const struct rte_flow_action masks[],
8237 			struct rte_flow_error *error)
8238 {
8239 	const struct mlx5_flow_driver_ops *fops;
8240 
8241 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW) {
8242 		rte_flow_error_set(error, ENOTSUP,
8243 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8244 				NULL,
8245 				"action create with incorrect steering mode");
8246 		return NULL;
8247 	}
8248 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8249 	return fops->actions_template_create(dev, attr, actions, masks, error);
8250 }
8251 
8252 /**
8253  * Destroy flow action template.
8254  *
8255  * @param[in] dev
8256  *   Pointer to the rte_eth_dev structure.
8257  * @param[in] template
8258  *   Pointer to the action template to be destroyed.
8259  * @param[out] error
8260  *   Pointer to error structure.
8261  *
8262  * @return
8263  *   0 on success, a negative errno value otherwise and rte_errno is set.
8264  */
8265 static int
8266 mlx5_flow_actions_template_destroy(struct rte_eth_dev *dev,
8267 				   struct rte_flow_actions_template *template,
8268 				   struct rte_flow_error *error)
8269 {
8270 	const struct mlx5_flow_driver_ops *fops;
8271 
8272 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8273 		return rte_flow_error_set(error, ENOTSUP,
8274 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8275 				NULL,
8276 				"action destroy with incorrect steering mode");
8277 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8278 	return fops->actions_template_destroy(dev, template, error);
8279 }
8280 
8281 /**
8282  * Create flow table.
8283  *
8284  * @param[in] dev
8285  *   Pointer to the rte_eth_dev structure.
8286  * @param[in] attr
8287  *   Pointer to the table attributes.
8288  * @param[in] item_templates
8289  *   Item template array to be binded to the table.
8290  * @param[in] nb_item_templates
8291  *   Number of item template.
8292  * @param[in] action_templates
8293  *   Action template array to be binded to the table.
8294  * @param[in] nb_action_templates
8295  *   Number of action template.
8296  * @param[out] error
8297  *   Pointer to error structure.
8298  *
8299  * @return
8300  *    Table on success, NULL otherwise and rte_errno is set.
8301  */
8302 static struct rte_flow_template_table *
8303 mlx5_flow_table_create(struct rte_eth_dev *dev,
8304 		       const struct rte_flow_template_table_attr *attr,
8305 		       struct rte_flow_pattern_template *item_templates[],
8306 		       uint8_t nb_item_templates,
8307 		       struct rte_flow_actions_template *action_templates[],
8308 		       uint8_t nb_action_templates,
8309 		       struct rte_flow_error *error)
8310 {
8311 	const struct mlx5_flow_driver_ops *fops;
8312 
8313 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW) {
8314 		rte_flow_error_set(error, ENOTSUP,
8315 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8316 				NULL,
8317 				"table create with incorrect steering mode");
8318 		return NULL;
8319 	}
8320 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8321 	return fops->template_table_create(dev,
8322 					   attr,
8323 					   item_templates,
8324 					   nb_item_templates,
8325 					   action_templates,
8326 					   nb_action_templates,
8327 					   error);
8328 }
8329 
8330 /**
8331  * PMD destroy flow table.
8332  *
8333  * @param[in] dev
8334  *   Pointer to the rte_eth_dev structure.
8335  * @param[in] table
8336  *   Pointer to the table to be destroyed.
8337  * @param[out] error
8338  *   Pointer to error structure.
8339  *
8340  * @return
8341  *   0 on success, a negative errno value otherwise and rte_errno is set.
8342  */
8343 static int
8344 mlx5_flow_table_destroy(struct rte_eth_dev *dev,
8345 			struct rte_flow_template_table *table,
8346 			struct rte_flow_error *error)
8347 {
8348 	const struct mlx5_flow_driver_ops *fops;
8349 
8350 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8351 		return rte_flow_error_set(error, ENOTSUP,
8352 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8353 				NULL,
8354 				"table destroy with incorrect steering mode");
8355 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8356 	return fops->template_table_destroy(dev, table, error);
8357 }
8358 
8359 /**
8360  * Enqueue flow creation.
8361  *
8362  * @param[in] dev
8363  *   Pointer to the rte_eth_dev structure.
8364  * @param[in] queue_id
8365  *   The queue to create the flow.
8366  * @param[in] attr
8367  *   Pointer to the flow operation attributes.
8368  * @param[in] items
8369  *   Items with flow spec value.
8370  * @param[in] pattern_template_index
8371  *   The item pattern flow follows from the table.
8372  * @param[in] actions
8373  *   Action with flow spec value.
8374  * @param[in] action_template_index
8375  *   The action pattern flow follows from the table.
8376  * @param[in] user_data
8377  *   Pointer to the user_data.
8378  * @param[out] error
8379  *   Pointer to error structure.
8380  *
8381  * @return
8382  *    Flow pointer on success, NULL otherwise and rte_errno is set.
8383  */
8384 static struct rte_flow *
8385 mlx5_flow_async_flow_create(struct rte_eth_dev *dev,
8386 			    uint32_t queue_id,
8387 			    const struct rte_flow_op_attr *attr,
8388 			    struct rte_flow_template_table *table,
8389 			    const struct rte_flow_item items[],
8390 			    uint8_t pattern_template_index,
8391 			    const struct rte_flow_action actions[],
8392 			    uint8_t action_template_index,
8393 			    void *user_data,
8394 			    struct rte_flow_error *error)
8395 {
8396 	const struct mlx5_flow_driver_ops *fops;
8397 
8398 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW) {
8399 		rte_flow_error_set(error, ENOTSUP,
8400 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8401 				NULL,
8402 				"flow_q create with incorrect steering mode");
8403 		return NULL;
8404 	}
8405 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8406 	return fops->async_flow_create(dev, queue_id, attr, table,
8407 				       items, pattern_template_index,
8408 				       actions, action_template_index,
8409 				       user_data, error);
8410 }
8411 
8412 /**
8413  * Enqueue flow destruction.
8414  *
8415  * @param[in] dev
8416  *   Pointer to the rte_eth_dev structure.
8417  * @param[in] queue
8418  *   The queue to destroy the flow.
8419  * @param[in] attr
8420  *   Pointer to the flow operation attributes.
8421  * @param[in] flow
8422  *   Pointer to the flow to be destroyed.
8423  * @param[in] user_data
8424  *   Pointer to the user_data.
8425  * @param[out] error
8426  *   Pointer to error structure.
8427  *
8428  * @return
8429  *    0 on success, negative value otherwise and rte_errno is set.
8430  */
8431 static int
8432 mlx5_flow_async_flow_destroy(struct rte_eth_dev *dev,
8433 			     uint32_t queue,
8434 			     const struct rte_flow_op_attr *attr,
8435 			     struct rte_flow *flow,
8436 			     void *user_data,
8437 			     struct rte_flow_error *error)
8438 {
8439 	const struct mlx5_flow_driver_ops *fops;
8440 
8441 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8442 		return rte_flow_error_set(error, ENOTSUP,
8443 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8444 				NULL,
8445 				"flow_q destroy with incorrect steering mode");
8446 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8447 	return fops->async_flow_destroy(dev, queue, attr, flow,
8448 					user_data, error);
8449 }
8450 
8451 /**
8452  * Pull the enqueued flows.
8453  *
8454  * @param[in] dev
8455  *   Pointer to the rte_eth_dev structure.
8456  * @param[in] queue
8457  *   The queue to pull the result.
8458  * @param[in/out] res
8459  *   Array to save the results.
8460  * @param[in] n_res
8461  *   Available result with the array.
8462  * @param[out] error
8463  *   Pointer to error structure.
8464  *
8465  * @return
8466  *    Result number on success, negative value otherwise and rte_errno is set.
8467  */
8468 static int
8469 mlx5_flow_pull(struct rte_eth_dev *dev,
8470 	       uint32_t queue,
8471 	       struct rte_flow_op_result res[],
8472 	       uint16_t n_res,
8473 	       struct rte_flow_error *error)
8474 {
8475 	const struct mlx5_flow_driver_ops *fops;
8476 
8477 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8478 		return rte_flow_error_set(error, ENOTSUP,
8479 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8480 				NULL,
8481 				"flow_q pull with incorrect steering mode");
8482 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8483 	return fops->pull(dev, queue, res, n_res, error);
8484 }
8485 
8486 /**
8487  * Push the enqueued flows.
8488  *
8489  * @param[in] dev
8490  *   Pointer to the rte_eth_dev structure.
8491  * @param[in] queue
8492  *   The queue to push the flows.
8493  * @param[out] error
8494  *   Pointer to error structure.
8495  *
8496  * @return
8497  *    0 on success, negative value otherwise and rte_errno is set.
8498  */
8499 static int
8500 mlx5_flow_push(struct rte_eth_dev *dev,
8501 	       uint32_t queue,
8502 	       struct rte_flow_error *error)
8503 {
8504 	const struct mlx5_flow_driver_ops *fops;
8505 
8506 	if (flow_get_drv_type(dev, NULL) != MLX5_FLOW_TYPE_HW)
8507 		return rte_flow_error_set(error, ENOTSUP,
8508 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8509 				NULL,
8510 				"flow_q push with incorrect steering mode");
8511 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8512 	return fops->push(dev, queue, error);
8513 }
8514 
8515 /**
8516  * Create shared action.
8517  *
8518  * @param[in] dev
8519  *   Pointer to the rte_eth_dev structure.
8520  * @param[in] queue
8521  *   Which queue to be used..
8522  * @param[in] attr
8523  *   Operation attribute.
8524  * @param[in] conf
8525  *   Indirect action configuration.
8526  * @param[in] action
8527  *   rte_flow action detail.
8528  * @param[in] user_data
8529  *   Pointer to the user_data.
8530  * @param[out] error
8531  *   Pointer to error structure.
8532  *
8533  * @return
8534  *   Action handle on success, NULL otherwise and rte_errno is set.
8535  */
8536 static struct rte_flow_action_handle *
8537 mlx5_flow_async_action_handle_create(struct rte_eth_dev *dev, uint32_t queue,
8538 				 const struct rte_flow_op_attr *attr,
8539 				 const struct rte_flow_indir_action_conf *conf,
8540 				 const struct rte_flow_action *action,
8541 				 void *user_data,
8542 				 struct rte_flow_error *error)
8543 {
8544 	const struct mlx5_flow_driver_ops *fops =
8545 			flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8546 
8547 	return fops->async_action_create(dev, queue, attr, conf, action,
8548 					 user_data, error);
8549 }
8550 
8551 /**
8552  * Update shared action.
8553  *
8554  * @param[in] dev
8555  *   Pointer to the rte_eth_dev structure.
8556  * @param[in] queue
8557  *   Which queue to be used..
8558  * @param[in] attr
8559  *   Operation attribute.
8560  * @param[in] handle
8561  *   Action handle to be updated.
8562  * @param[in] update
8563  *   Update value.
8564  * @param[in] user_data
8565  *   Pointer to the user_data.
8566  * @param[out] error
8567  *   Pointer to error structure.
8568  *
8569  * @return
8570  *   0 on success, negative value otherwise and rte_errno is set.
8571  */
8572 static int
8573 mlx5_flow_async_action_handle_update(struct rte_eth_dev *dev, uint32_t queue,
8574 				     const struct rte_flow_op_attr *attr,
8575 				     struct rte_flow_action_handle *handle,
8576 				     const void *update,
8577 				     void *user_data,
8578 				     struct rte_flow_error *error)
8579 {
8580 	const struct mlx5_flow_driver_ops *fops =
8581 			flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8582 
8583 	return fops->async_action_update(dev, queue, attr, handle,
8584 					 update, user_data, error);
8585 }
8586 
8587 /**
8588  * Destroy shared action.
8589  *
8590  * @param[in] dev
8591  *   Pointer to the rte_eth_dev structure.
8592  * @param[in] queue
8593  *   Which queue to be used..
8594  * @param[in] attr
8595  *   Operation attribute.
8596  * @param[in] handle
8597  *   Action handle to be destroyed.
8598  * @param[in] user_data
8599  *   Pointer to the user_data.
8600  * @param[out] error
8601  *   Pointer to error structure.
8602  *
8603  * @return
8604  *   0 on success, negative value otherwise and rte_errno is set.
8605  */
8606 static int
8607 mlx5_flow_async_action_handle_destroy(struct rte_eth_dev *dev, uint32_t queue,
8608 				      const struct rte_flow_op_attr *attr,
8609 				      struct rte_flow_action_handle *handle,
8610 				      void *user_data,
8611 				      struct rte_flow_error *error)
8612 {
8613 	const struct mlx5_flow_driver_ops *fops =
8614 			flow_get_drv_ops(MLX5_FLOW_TYPE_HW);
8615 
8616 	return fops->async_action_destroy(dev, queue, attr, handle,
8617 					  user_data, error);
8618 }
8619 
8620 /**
8621  * Allocate a new memory for the counter values wrapped by all the needed
8622  * management.
8623  *
8624  * @param[in] sh
8625  *   Pointer to mlx5_dev_ctx_shared object.
8626  *
8627  * @return
8628  *   0 on success, a negative errno value otherwise.
8629  */
8630 static int
8631 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh)
8632 {
8633 	struct mlx5_counter_stats_mem_mng *mem_mng;
8634 	volatile struct flow_counter_stats *raw_data;
8635 	int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES;
8636 	int size = (sizeof(struct flow_counter_stats) *
8637 			MLX5_COUNTERS_PER_POOL +
8638 			sizeof(struct mlx5_counter_stats_raw)) * raws_n +
8639 			sizeof(struct mlx5_counter_stats_mem_mng);
8640 	size_t pgsize = rte_mem_page_size();
8641 	uint8_t *mem;
8642 	int ret;
8643 	int i;
8644 
8645 	if (pgsize == (size_t)-1) {
8646 		DRV_LOG(ERR, "Failed to get mem page size");
8647 		rte_errno = ENOMEM;
8648 		return -ENOMEM;
8649 	}
8650 	mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY);
8651 	if (!mem) {
8652 		rte_errno = ENOMEM;
8653 		return -ENOMEM;
8654 	}
8655 	mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1;
8656 	size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n;
8657 	ret = mlx5_os_wrapped_mkey_create(sh->cdev->ctx, sh->cdev->pd,
8658 					  sh->cdev->pdn, mem, size,
8659 					  &mem_mng->wm);
8660 	if (ret) {
8661 		rte_errno = errno;
8662 		mlx5_free(mem);
8663 		return -rte_errno;
8664 	}
8665 	mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size);
8666 	raw_data = (volatile struct flow_counter_stats *)mem;
8667 	for (i = 0; i < raws_n; ++i) {
8668 		mem_mng->raws[i].mem_mng = mem_mng;
8669 		mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL;
8670 	}
8671 	for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i)
8672 		LIST_INSERT_HEAD(&sh->cmng.free_stat_raws,
8673 				 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i,
8674 				 next);
8675 	LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next);
8676 	sh->cmng.mem_mng = mem_mng;
8677 	return 0;
8678 }
8679 
8680 /**
8681  * Set the statistic memory to the new counter pool.
8682  *
8683  * @param[in] sh
8684  *   Pointer to mlx5_dev_ctx_shared object.
8685  * @param[in] pool
8686  *   Pointer to the pool to set the statistic memory.
8687  *
8688  * @return
8689  *   0 on success, a negative errno value otherwise.
8690  */
8691 static int
8692 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh,
8693 			       struct mlx5_flow_counter_pool *pool)
8694 {
8695 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
8696 	/* Resize statistic memory once used out. */
8697 	if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) &&
8698 	    mlx5_flow_create_counter_stat_mem_mng(sh)) {
8699 		DRV_LOG(ERR, "Cannot resize counter stat mem.");
8700 		return -1;
8701 	}
8702 	rte_spinlock_lock(&pool->sl);
8703 	pool->raw = cmng->mem_mng->raws + pool->index %
8704 		    MLX5_CNT_CONTAINER_RESIZE;
8705 	rte_spinlock_unlock(&pool->sl);
8706 	pool->raw_hw = NULL;
8707 	return 0;
8708 }
8709 
8710 #define MLX5_POOL_QUERY_FREQ_US 1000000
8711 
8712 /**
8713  * Set the periodic procedure for triggering asynchronous batch queries for all
8714  * the counter pools.
8715  *
8716  * @param[in] sh
8717  *   Pointer to mlx5_dev_ctx_shared object.
8718  */
8719 void
8720 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
8721 {
8722 	uint32_t pools_n, us;
8723 
8724 	pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED);
8725 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
8726 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
8727 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
8728 		sh->cmng.query_thread_on = 0;
8729 		DRV_LOG(ERR, "Cannot reinitialize query alarm");
8730 	} else {
8731 		sh->cmng.query_thread_on = 1;
8732 	}
8733 }
8734 
8735 /**
8736  * The periodic procedure for triggering asynchronous batch queries for all the
8737  * counter pools. This function is probably called by the host thread.
8738  *
8739  * @param[in] arg
8740  *   The parameter for the alarm process.
8741  */
8742 void
8743 mlx5_flow_query_alarm(void *arg)
8744 {
8745 	struct mlx5_dev_ctx_shared *sh = arg;
8746 	int ret;
8747 	uint16_t pool_index = sh->cmng.pool_index;
8748 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
8749 	struct mlx5_flow_counter_pool *pool;
8750 	uint16_t n_valid;
8751 
8752 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
8753 		goto set_alarm;
8754 	rte_spinlock_lock(&cmng->pool_update_sl);
8755 	pool = cmng->pools[pool_index];
8756 	n_valid = cmng->n_valid;
8757 	rte_spinlock_unlock(&cmng->pool_update_sl);
8758 	/* Set the statistic memory to the new created pool. */
8759 	if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool)))
8760 		goto set_alarm;
8761 	if (pool->raw_hw)
8762 		/* There is a pool query in progress. */
8763 		goto set_alarm;
8764 	pool->raw_hw =
8765 		LIST_FIRST(&sh->cmng.free_stat_raws);
8766 	if (!pool->raw_hw)
8767 		/* No free counter statistics raw memory. */
8768 		goto set_alarm;
8769 	/*
8770 	 * Identify the counters released between query trigger and query
8771 	 * handle more efficiently. The counter released in this gap period
8772 	 * should wait for a new round of query as the new arrived packets
8773 	 * will not be taken into account.
8774 	 */
8775 	pool->query_gen++;
8776 	ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0,
8777 					       MLX5_COUNTERS_PER_POOL,
8778 					       NULL, NULL,
8779 					       pool->raw_hw->mem_mng->wm.lkey,
8780 					       (void *)(uintptr_t)
8781 					       pool->raw_hw->data,
8782 					       sh->devx_comp,
8783 					       (uint64_t)(uintptr_t)pool);
8784 	if (ret) {
8785 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
8786 			" %d", pool->min_dcs->id);
8787 		pool->raw_hw = NULL;
8788 		goto set_alarm;
8789 	}
8790 	LIST_REMOVE(pool->raw_hw, next);
8791 	sh->cmng.pending_queries++;
8792 	pool_index++;
8793 	if (pool_index >= n_valid)
8794 		pool_index = 0;
8795 set_alarm:
8796 	sh->cmng.pool_index = pool_index;
8797 	mlx5_set_query_alarm(sh);
8798 }
8799 
8800 /**
8801  * Check and callback event for new aged flow in the counter pool
8802  *
8803  * @param[in] sh
8804  *   Pointer to mlx5_dev_ctx_shared object.
8805  * @param[in] pool
8806  *   Pointer to Current counter pool.
8807  */
8808 static void
8809 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
8810 		   struct mlx5_flow_counter_pool *pool)
8811 {
8812 	struct mlx5_priv *priv;
8813 	struct mlx5_flow_counter *cnt;
8814 	struct mlx5_age_info *age_info;
8815 	struct mlx5_age_param *age_param;
8816 	struct mlx5_counter_stats_raw *cur = pool->raw_hw;
8817 	struct mlx5_counter_stats_raw *prev = pool->raw;
8818 	const uint64_t curr_time = MLX5_CURR_TIME_SEC;
8819 	const uint32_t time_delta = curr_time - pool->time_of_last_age_check;
8820 	uint16_t expected = AGE_CANDIDATE;
8821 	uint32_t i;
8822 
8823 	pool->time_of_last_age_check = curr_time;
8824 	for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
8825 		cnt = MLX5_POOL_GET_CNT(pool, i);
8826 		age_param = MLX5_CNT_TO_AGE(cnt);
8827 		if (__atomic_load_n(&age_param->state,
8828 				    __ATOMIC_RELAXED) != AGE_CANDIDATE)
8829 			continue;
8830 		if (cur->data[i].hits != prev->data[i].hits) {
8831 			__atomic_store_n(&age_param->sec_since_last_hit, 0,
8832 					 __ATOMIC_RELAXED);
8833 			continue;
8834 		}
8835 		if (__atomic_add_fetch(&age_param->sec_since_last_hit,
8836 				       time_delta,
8837 				       __ATOMIC_RELAXED) <= age_param->timeout)
8838 			continue;
8839 		/**
8840 		 * Hold the lock first, or if between the
8841 		 * state AGE_TMOUT and tailq operation the
8842 		 * release happened, the release procedure
8843 		 * may delete a non-existent tailq node.
8844 		 */
8845 		priv = rte_eth_devices[age_param->port_id].data->dev_private;
8846 		age_info = GET_PORT_AGE_INFO(priv);
8847 		rte_spinlock_lock(&age_info->aged_sl);
8848 		if (__atomic_compare_exchange_n(&age_param->state, &expected,
8849 						AGE_TMOUT, false,
8850 						__ATOMIC_RELAXED,
8851 						__ATOMIC_RELAXED)) {
8852 			TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
8853 			MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
8854 		}
8855 		rte_spinlock_unlock(&age_info->aged_sl);
8856 	}
8857 	mlx5_age_event_prepare(sh);
8858 }
8859 
8860 /**
8861  * Handler for the HW respond about ready values from an asynchronous batch
8862  * query. This function is probably called by the host thread.
8863  *
8864  * @param[in] sh
8865  *   The pointer to the shared device context.
8866  * @param[in] async_id
8867  *   The Devx async ID.
8868  * @param[in] status
8869  *   The status of the completion.
8870  */
8871 void
8872 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
8873 				  uint64_t async_id, int status)
8874 {
8875 	struct mlx5_flow_counter_pool *pool =
8876 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
8877 	struct mlx5_counter_stats_raw *raw_to_free;
8878 	uint8_t query_gen = pool->query_gen ^ 1;
8879 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
8880 	enum mlx5_counter_type cnt_type =
8881 		pool->is_aged ? MLX5_COUNTER_TYPE_AGE :
8882 				MLX5_COUNTER_TYPE_ORIGIN;
8883 
8884 	if (unlikely(status)) {
8885 		raw_to_free = pool->raw_hw;
8886 	} else {
8887 		raw_to_free = pool->raw;
8888 		if (pool->is_aged)
8889 			mlx5_flow_aging_check(sh, pool);
8890 		rte_spinlock_lock(&pool->sl);
8891 		pool->raw = pool->raw_hw;
8892 		rte_spinlock_unlock(&pool->sl);
8893 		/* Be sure the new raw counters data is updated in memory. */
8894 		rte_io_wmb();
8895 		if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
8896 			rte_spinlock_lock(&cmng->csl[cnt_type]);
8897 			TAILQ_CONCAT(&cmng->counters[cnt_type],
8898 				     &pool->counters[query_gen], next);
8899 			rte_spinlock_unlock(&cmng->csl[cnt_type]);
8900 		}
8901 	}
8902 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
8903 	pool->raw_hw = NULL;
8904 	sh->cmng.pending_queries--;
8905 }
8906 
8907 static int
8908 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table,
8909 		    const struct flow_grp_info *grp_info,
8910 		    struct rte_flow_error *error)
8911 {
8912 	if (grp_info->transfer && grp_info->external &&
8913 	    grp_info->fdb_def_rule) {
8914 		if (group == UINT32_MAX)
8915 			return rte_flow_error_set
8916 						(error, EINVAL,
8917 						 RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
8918 						 NULL,
8919 						 "group index not supported");
8920 		*table = group + 1;
8921 	} else {
8922 		*table = group;
8923 	}
8924 	DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table);
8925 	return 0;
8926 }
8927 
8928 /**
8929  * Translate the rte_flow group index to HW table value.
8930  *
8931  * If tunnel offload is disabled, all group ids converted to flow table
8932  * id using the standard method.
8933  * If tunnel offload is enabled, group id can be converted using the
8934  * standard or tunnel conversion method. Group conversion method
8935  * selection depends on flags in `grp_info` parameter:
8936  * - Internal (grp_info.external == 0) groups conversion uses the
8937  *   standard method.
8938  * - Group ids in JUMP action converted with the tunnel conversion.
8939  * - Group id in rule attribute conversion depends on a rule type and
8940  *   group id value:
8941  *   ** non zero group attributes converted with the tunnel method
8942  *   ** zero group attribute in non-tunnel rule is converted using the
8943  *      standard method - there's only one root table
8944  *   ** zero group attribute in steer tunnel rule is converted with the
8945  *      standard method - single root table
8946  *   ** zero group attribute in match tunnel rule is a special OvS
8947  *      case: that value is used for portability reasons. That group
8948  *      id is converted with the tunnel conversion method.
8949  *
8950  * @param[in] dev
8951  *   Port device
8952  * @param[in] tunnel
8953  *   PMD tunnel offload object
8954  * @param[in] group
8955  *   rte_flow group index value.
8956  * @param[out] table
8957  *   HW table value.
8958  * @param[in] grp_info
8959  *   flags used for conversion
8960  * @param[out] error
8961  *   Pointer to error structure.
8962  *
8963  * @return
8964  *   0 on success, a negative errno value otherwise and rte_errno is set.
8965  */
8966 int
8967 mlx5_flow_group_to_table(struct rte_eth_dev *dev,
8968 			 const struct mlx5_flow_tunnel *tunnel,
8969 			 uint32_t group, uint32_t *table,
8970 			 const struct flow_grp_info *grp_info,
8971 			 struct rte_flow_error *error)
8972 {
8973 	int ret;
8974 	bool standard_translation;
8975 
8976 	if (!grp_info->skip_scale && grp_info->external &&
8977 	    group < MLX5_MAX_TABLES_EXTERNAL)
8978 		group *= MLX5_FLOW_TABLE_FACTOR;
8979 	if (is_tunnel_offload_active(dev)) {
8980 		standard_translation = !grp_info->external ||
8981 					grp_info->std_tbl_fix;
8982 	} else {
8983 		standard_translation = true;
8984 	}
8985 	DRV_LOG(DEBUG,
8986 		"port %u group=%u transfer=%d external=%d fdb_def_rule=%d translate=%s",
8987 		dev->data->port_id, group, grp_info->transfer,
8988 		grp_info->external, grp_info->fdb_def_rule,
8989 		standard_translation ? "STANDARD" : "TUNNEL");
8990 	if (standard_translation)
8991 		ret = flow_group_to_table(dev->data->port_id, group, table,
8992 					  grp_info, error);
8993 	else
8994 		ret = tunnel_flow_group_to_flow_table(dev, tunnel, group,
8995 						      table, error);
8996 
8997 	return ret;
8998 }
8999 
9000 /**
9001  * Discover availability of metadata reg_c's.
9002  *
9003  * Iteratively use test flows to check availability.
9004  *
9005  * @param[in] dev
9006  *   Pointer to the Ethernet device structure.
9007  *
9008  * @return
9009  *   0 on success, a negative errno value otherwise and rte_errno is set.
9010  */
9011 int
9012 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
9013 {
9014 	struct mlx5_priv *priv = dev->data->dev_private;
9015 	enum modify_reg idx;
9016 	int n = 0;
9017 
9018 	/* reg_c[0] and reg_c[1] are reserved. */
9019 	priv->sh->flow_mreg_c[n++] = REG_C_0;
9020 	priv->sh->flow_mreg_c[n++] = REG_C_1;
9021 	/* Discover availability of other reg_c's. */
9022 	for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
9023 		struct rte_flow_attr attr = {
9024 			.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
9025 			.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
9026 			.ingress = 1,
9027 		};
9028 		struct rte_flow_item items[] = {
9029 			[0] = {
9030 				.type = RTE_FLOW_ITEM_TYPE_END,
9031 			},
9032 		};
9033 		struct rte_flow_action actions[] = {
9034 			[0] = {
9035 				.type = (enum rte_flow_action_type)
9036 					MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
9037 				.conf = &(struct mlx5_flow_action_copy_mreg){
9038 					.src = REG_C_1,
9039 					.dst = idx,
9040 				},
9041 			},
9042 			[1] = {
9043 				.type = RTE_FLOW_ACTION_TYPE_JUMP,
9044 				.conf = &(struct rte_flow_action_jump){
9045 					.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
9046 				},
9047 			},
9048 			[2] = {
9049 				.type = RTE_FLOW_ACTION_TYPE_END,
9050 			},
9051 		};
9052 		uint32_t flow_idx;
9053 		struct rte_flow *flow;
9054 		struct rte_flow_error error;
9055 
9056 		if (!priv->sh->config.dv_flow_en)
9057 			break;
9058 		/* Create internal flow, validation skips copy action. */
9059 		flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_GEN, &attr,
9060 					items, actions, false, &error);
9061 		flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN],
9062 				      flow_idx);
9063 		if (!flow)
9064 			continue;
9065 		priv->sh->flow_mreg_c[n++] = idx;
9066 		flow_list_destroy(dev, MLX5_FLOW_TYPE_GEN, flow_idx);
9067 	}
9068 	for (; n < MLX5_MREG_C_NUM; ++n)
9069 		priv->sh->flow_mreg_c[n] = REG_NON;
9070 	priv->sh->metadata_regc_check_flag = 1;
9071 	return 0;
9072 }
9073 
9074 int
9075 save_dump_file(const uint8_t *data, uint32_t size,
9076 	uint32_t type, uint64_t id, void *arg, FILE *file)
9077 {
9078 	char line[BUF_SIZE];
9079 	uint32_t out = 0;
9080 	uint32_t k;
9081 	uint32_t actions_num;
9082 	struct rte_flow_query_count *count;
9083 
9084 	memset(line, 0, BUF_SIZE);
9085 	switch (type) {
9086 	case DR_DUMP_REC_TYPE_PMD_MODIFY_HDR:
9087 		actions_num = *(uint32_t *)(arg);
9088 		out += snprintf(line + out, BUF_SIZE - out, "%d,0x%" PRIx64 ",%d,",
9089 				type, id, actions_num);
9090 		break;
9091 	case DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT:
9092 		out += snprintf(line + out, BUF_SIZE - out, "%d,0x%" PRIx64 ",",
9093 				type, id);
9094 		break;
9095 	case DR_DUMP_REC_TYPE_PMD_COUNTER:
9096 		count = (struct rte_flow_query_count *)arg;
9097 		fprintf(file,
9098 			"%d,0x%" PRIx64 ",%" PRIu64 ",%" PRIu64 "\n",
9099 			type, id, count->hits, count->bytes);
9100 		return 0;
9101 	default:
9102 		return -1;
9103 	}
9104 
9105 	for (k = 0; k < size; k++) {
9106 		/* Make sure we do not overrun the line buffer length. */
9107 		if (out >= BUF_SIZE - 4) {
9108 			line[out] = '\0';
9109 			break;
9110 		}
9111 		out += snprintf(line + out, BUF_SIZE - out, "%02x",
9112 				(data[k]) & 0xff);
9113 	}
9114 	fprintf(file, "%s\n", line);
9115 	return 0;
9116 }
9117 
9118 int
9119 mlx5_flow_query_counter(struct rte_eth_dev *dev, struct rte_flow *flow,
9120 	struct rte_flow_query_count *count, struct rte_flow_error *error)
9121 {
9122 	struct rte_flow_action action[2];
9123 	enum mlx5_flow_drv_type ftype;
9124 	const struct mlx5_flow_driver_ops *fops;
9125 
9126 	if (!flow) {
9127 		return rte_flow_error_set(error, ENOENT,
9128 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
9129 				NULL,
9130 				"invalid flow handle");
9131 	}
9132 	action[0].type = RTE_FLOW_ACTION_TYPE_COUNT;
9133 	action[1].type = RTE_FLOW_ACTION_TYPE_END;
9134 	if (flow->counter) {
9135 		memset(count, 0, sizeof(struct rte_flow_query_count));
9136 		ftype = (enum mlx5_flow_drv_type)(flow->drv_type);
9137 		MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN &&
9138 						ftype < MLX5_FLOW_TYPE_MAX);
9139 		fops = flow_get_drv_ops(ftype);
9140 		return fops->query(dev, flow, action, count, error);
9141 	}
9142 	return -1;
9143 }
9144 
9145 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
9146 /**
9147  * Dump flow ipool data to file
9148  *
9149  * @param[in] dev
9150  *   The pointer to Ethernet device.
9151  * @param[in] file
9152  *   A pointer to a file for output.
9153  * @param[out] error
9154  *   Perform verbose error reporting if not NULL. PMDs initialize this
9155  *   structure in case of error only.
9156  * @return
9157  *   0 on success, a negative value otherwise.
9158  */
9159 int
9160 mlx5_flow_dev_dump_ipool(struct rte_eth_dev *dev,
9161 	struct rte_flow *flow, FILE *file,
9162 	struct rte_flow_error *error)
9163 {
9164 	struct mlx5_priv *priv = dev->data->dev_private;
9165 	struct mlx5_flow_dv_modify_hdr_resource  *modify_hdr;
9166 	struct mlx5_flow_dv_encap_decap_resource *encap_decap;
9167 	uint32_t handle_idx;
9168 	struct mlx5_flow_handle *dh;
9169 	struct rte_flow_query_count count;
9170 	uint32_t actions_num;
9171 	const uint8_t *data;
9172 	size_t size;
9173 	uint64_t id;
9174 	uint32_t type;
9175 	void *action = NULL;
9176 
9177 	if (!flow) {
9178 		return rte_flow_error_set(error, ENOENT,
9179 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
9180 				NULL,
9181 				"invalid flow handle");
9182 	}
9183 	handle_idx = flow->dev_handles;
9184 	/* query counter */
9185 	if (flow->counter &&
9186 	(!mlx5_counter_query(dev, flow->counter, false,
9187 	&count.hits, &count.bytes, &action)) && action) {
9188 		id = (uint64_t)(uintptr_t)action;
9189 		type = DR_DUMP_REC_TYPE_PMD_COUNTER;
9190 		save_dump_file(NULL, 0, type,
9191 			id, (void *)&count, file);
9192 	}
9193 
9194 	while (handle_idx) {
9195 		dh = mlx5_ipool_get(priv->sh->ipool
9196 				[MLX5_IPOOL_MLX5_FLOW], handle_idx);
9197 		if (!dh)
9198 			continue;
9199 		handle_idx = dh->next.next;
9200 
9201 		/* Get modify_hdr and encap_decap buf from ipools. */
9202 		encap_decap = NULL;
9203 		modify_hdr = dh->dvh.modify_hdr;
9204 
9205 		if (dh->dvh.rix_encap_decap) {
9206 			encap_decap = mlx5_ipool_get(priv->sh->ipool
9207 						[MLX5_IPOOL_DECAP_ENCAP],
9208 						dh->dvh.rix_encap_decap);
9209 		}
9210 		if (modify_hdr) {
9211 			data = (const uint8_t *)modify_hdr->actions;
9212 			size = (size_t)(modify_hdr->actions_num) * 8;
9213 			id = (uint64_t)(uintptr_t)modify_hdr->action;
9214 			actions_num = modify_hdr->actions_num;
9215 			type = DR_DUMP_REC_TYPE_PMD_MODIFY_HDR;
9216 			save_dump_file(data, size, type, id,
9217 						(void *)(&actions_num), file);
9218 		}
9219 		if (encap_decap) {
9220 			data = encap_decap->buf;
9221 			size = encap_decap->size;
9222 			id = (uint64_t)(uintptr_t)encap_decap->action;
9223 			type = DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT;
9224 			save_dump_file(data, size, type,
9225 						id, NULL, file);
9226 		}
9227 	}
9228 	return 0;
9229 }
9230 
9231 /**
9232  * Dump all flow's encap_decap/modify_hdr/counter data to file
9233  *
9234  * @param[in] dev
9235  *   The pointer to Ethernet device.
9236  * @param[in] file
9237  *   A pointer to a file for output.
9238  * @param[out] error
9239  *   Perform verbose error reporting if not NULL. PMDs initialize this
9240  *   structure in case of error only.
9241  * @return
9242  *   0 on success, a negative value otherwise.
9243  */
9244 static int
9245 mlx5_flow_dev_dump_sh_all(struct rte_eth_dev *dev,
9246 	FILE *file, struct rte_flow_error *error __rte_unused)
9247 {
9248 	struct mlx5_priv *priv = dev->data->dev_private;
9249 	struct mlx5_dev_ctx_shared *sh = priv->sh;
9250 	struct mlx5_hlist *h;
9251 	struct mlx5_flow_dv_modify_hdr_resource  *modify_hdr;
9252 	struct mlx5_flow_dv_encap_decap_resource *encap_decap;
9253 	struct rte_flow_query_count count;
9254 	uint32_t actions_num;
9255 	const uint8_t *data;
9256 	size_t size;
9257 	uint64_t id;
9258 	uint32_t type;
9259 	uint32_t i;
9260 	uint32_t j;
9261 	struct mlx5_list_inconst *l_inconst;
9262 	struct mlx5_list_entry *e;
9263 	int lcore_index;
9264 	struct mlx5_flow_counter_mng *cmng = &priv->sh->cmng;
9265 	uint32_t max;
9266 	void *action;
9267 
9268 	/* encap_decap hlist is lcore_share, get global core cache. */
9269 	i = MLX5_LIST_GLOBAL;
9270 	h = sh->encaps_decaps;
9271 	if (h) {
9272 		for (j = 0; j <= h->mask; j++) {
9273 			l_inconst = &h->buckets[j].l;
9274 			if (!l_inconst || !l_inconst->cache[i])
9275 				continue;
9276 
9277 			e = LIST_FIRST(&l_inconst->cache[i]->h);
9278 			while (e) {
9279 				encap_decap =
9280 				(struct mlx5_flow_dv_encap_decap_resource *)e;
9281 				data = encap_decap->buf;
9282 				size = encap_decap->size;
9283 				id = (uint64_t)(uintptr_t)encap_decap->action;
9284 				type = DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT;
9285 				save_dump_file(data, size, type,
9286 					id, NULL, file);
9287 				e = LIST_NEXT(e, next);
9288 			}
9289 		}
9290 	}
9291 
9292 	/* get modify_hdr */
9293 	h = sh->modify_cmds;
9294 	if (h) {
9295 		lcore_index = rte_lcore_index(rte_lcore_id());
9296 		if (unlikely(lcore_index == -1)) {
9297 			lcore_index = MLX5_LIST_NLCORE;
9298 			rte_spinlock_lock(&h->l_const.lcore_lock);
9299 		}
9300 		i = lcore_index;
9301 
9302 		for (j = 0; j <= h->mask; j++) {
9303 			l_inconst = &h->buckets[j].l;
9304 			if (!l_inconst || !l_inconst->cache[i])
9305 				continue;
9306 
9307 			e = LIST_FIRST(&l_inconst->cache[i]->h);
9308 			while (e) {
9309 				modify_hdr =
9310 				(struct mlx5_flow_dv_modify_hdr_resource *)e;
9311 				data = (const uint8_t *)modify_hdr->actions;
9312 				size = (size_t)(modify_hdr->actions_num) * 8;
9313 				actions_num = modify_hdr->actions_num;
9314 				id = (uint64_t)(uintptr_t)modify_hdr->action;
9315 				type = DR_DUMP_REC_TYPE_PMD_MODIFY_HDR;
9316 				save_dump_file(data, size, type, id,
9317 						(void *)(&actions_num), file);
9318 				e = LIST_NEXT(e, next);
9319 			}
9320 		}
9321 
9322 		if (unlikely(lcore_index == MLX5_LIST_NLCORE))
9323 			rte_spinlock_unlock(&h->l_const.lcore_lock);
9324 	}
9325 
9326 	/* get counter */
9327 	MLX5_ASSERT(cmng->n_valid <= cmng->n);
9328 	max = MLX5_COUNTERS_PER_POOL * cmng->n_valid;
9329 	for (j = 1; j <= max; j++) {
9330 		action = NULL;
9331 		if ((!mlx5_counter_query(dev, j, false, &count.hits,
9332 		&count.bytes, &action)) && action) {
9333 			id = (uint64_t)(uintptr_t)action;
9334 			type = DR_DUMP_REC_TYPE_PMD_COUNTER;
9335 			save_dump_file(NULL, 0, type,
9336 					id, (void *)&count, file);
9337 		}
9338 	}
9339 	return 0;
9340 }
9341 #endif
9342 
9343 /**
9344  * Dump flow raw hw data to file
9345  *
9346  * @param[in] dev
9347  *    The pointer to Ethernet device.
9348  * @param[in] file
9349  *   A pointer to a file for output.
9350  * @param[out] error
9351  *   Perform verbose error reporting if not NULL. PMDs initialize this
9352  *   structure in case of error only.
9353  * @return
9354  *   0 on success, a negative value otherwise.
9355  */
9356 int
9357 mlx5_flow_dev_dump(struct rte_eth_dev *dev, struct rte_flow *flow_idx,
9358 		   FILE *file,
9359 		   struct rte_flow_error *error __rte_unused)
9360 {
9361 	struct mlx5_priv *priv = dev->data->dev_private;
9362 	struct mlx5_dev_ctx_shared *sh = priv->sh;
9363 	uint32_t handle_idx;
9364 	int ret;
9365 	struct mlx5_flow_handle *dh;
9366 	struct rte_flow *flow;
9367 
9368 	if (!sh->config.dv_flow_en) {
9369 		if (fputs("device dv flow disabled\n", file) <= 0)
9370 			return -errno;
9371 		return -ENOTSUP;
9372 	}
9373 
9374 	/* dump all */
9375 	if (!flow_idx) {
9376 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
9377 		if (mlx5_flow_dev_dump_sh_all(dev, file, error))
9378 			return -EINVAL;
9379 #endif
9380 		return mlx5_devx_cmd_flow_dump(sh->fdb_domain,
9381 					sh->rx_domain,
9382 					sh->tx_domain, file);
9383 	}
9384 	/* dump one */
9385 	flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN],
9386 			(uintptr_t)(void *)flow_idx);
9387 	if (!flow)
9388 		return -EINVAL;
9389 
9390 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
9391 	mlx5_flow_dev_dump_ipool(dev, flow, file, error);
9392 #endif
9393 	handle_idx = flow->dev_handles;
9394 	while (handle_idx) {
9395 		dh = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW],
9396 				handle_idx);
9397 		if (!dh)
9398 			return -ENOENT;
9399 		if (dh->drv_flow) {
9400 			ret = mlx5_devx_cmd_flow_single_dump(dh->drv_flow,
9401 					file);
9402 			if (ret)
9403 				return -ENOENT;
9404 		}
9405 		handle_idx = dh->next.next;
9406 	}
9407 	return 0;
9408 }
9409 
9410 /**
9411  * Get aged-out flows.
9412  *
9413  * @param[in] dev
9414  *   Pointer to the Ethernet device structure.
9415  * @param[in] context
9416  *   The address of an array of pointers to the aged-out flows contexts.
9417  * @param[in] nb_countexts
9418  *   The length of context array pointers.
9419  * @param[out] error
9420  *   Perform verbose error reporting if not NULL. Initialized in case of
9421  *   error only.
9422  *
9423  * @return
9424  *   how many contexts get in success, otherwise negative errno value.
9425  *   if nb_contexts is 0, return the amount of all aged contexts.
9426  *   if nb_contexts is not 0 , return the amount of aged flows reported
9427  *   in the context array.
9428  */
9429 int
9430 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
9431 			uint32_t nb_contexts, struct rte_flow_error *error)
9432 {
9433 	const struct mlx5_flow_driver_ops *fops;
9434 	struct rte_flow_attr attr = { .transfer = 0 };
9435 
9436 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
9437 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
9438 		return fops->get_aged_flows(dev, contexts, nb_contexts,
9439 						    error);
9440 	}
9441 	DRV_LOG(ERR,
9442 		"port %u get aged flows is not supported.",
9443 		 dev->data->port_id);
9444 	return -ENOTSUP;
9445 }
9446 
9447 /* Wrapper for driver action_validate op callback */
9448 static int
9449 flow_drv_action_validate(struct rte_eth_dev *dev,
9450 			 const struct rte_flow_indir_action_conf *conf,
9451 			 const struct rte_flow_action *action,
9452 			 const struct mlx5_flow_driver_ops *fops,
9453 			 struct rte_flow_error *error)
9454 {
9455 	static const char err_msg[] = "indirect action validation unsupported";
9456 
9457 	if (!fops->action_validate) {
9458 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
9459 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
9460 				   NULL, err_msg);
9461 		return -rte_errno;
9462 	}
9463 	return fops->action_validate(dev, conf, action, error);
9464 }
9465 
9466 /**
9467  * Destroys the shared action by handle.
9468  *
9469  * @param dev
9470  *   Pointer to Ethernet device structure.
9471  * @param[in] handle
9472  *   Handle for the indirect action object to be destroyed.
9473  * @param[out] error
9474  *   Perform verbose error reporting if not NULL. PMDs initialize this
9475  *   structure in case of error only.
9476  *
9477  * @return
9478  *   0 on success, a negative errno value otherwise and rte_errno is set.
9479  *
9480  * @note: wrapper for driver action_create op callback.
9481  */
9482 static int
9483 mlx5_action_handle_destroy(struct rte_eth_dev *dev,
9484 			   struct rte_flow_action_handle *handle,
9485 			   struct rte_flow_error *error)
9486 {
9487 	static const char err_msg[] = "indirect action destruction unsupported";
9488 	struct rte_flow_attr attr = { .transfer = 0 };
9489 	const struct mlx5_flow_driver_ops *fops =
9490 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
9491 
9492 	if (!fops->action_destroy) {
9493 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
9494 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
9495 				   NULL, err_msg);
9496 		return -rte_errno;
9497 	}
9498 	return fops->action_destroy(dev, handle, error);
9499 }
9500 
9501 /* Wrapper for driver action_destroy op callback */
9502 static int
9503 flow_drv_action_update(struct rte_eth_dev *dev,
9504 		       struct rte_flow_action_handle *handle,
9505 		       const void *update,
9506 		       const struct mlx5_flow_driver_ops *fops,
9507 		       struct rte_flow_error *error)
9508 {
9509 	static const char err_msg[] = "indirect action update unsupported";
9510 
9511 	if (!fops->action_update) {
9512 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
9513 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
9514 				   NULL, err_msg);
9515 		return -rte_errno;
9516 	}
9517 	return fops->action_update(dev, handle, update, error);
9518 }
9519 
9520 /* Wrapper for driver action_destroy op callback */
9521 static int
9522 flow_drv_action_query(struct rte_eth_dev *dev,
9523 		      const struct rte_flow_action_handle *handle,
9524 		      void *data,
9525 		      const struct mlx5_flow_driver_ops *fops,
9526 		      struct rte_flow_error *error)
9527 {
9528 	static const char err_msg[] = "indirect action query unsupported";
9529 
9530 	if (!fops->action_query) {
9531 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
9532 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
9533 				   NULL, err_msg);
9534 		return -rte_errno;
9535 	}
9536 	return fops->action_query(dev, handle, data, error);
9537 }
9538 
9539 /**
9540  * Create indirect action for reuse in multiple flow rules.
9541  *
9542  * @param dev
9543  *   Pointer to Ethernet device structure.
9544  * @param conf
9545  *   Pointer to indirect action object configuration.
9546  * @param[in] action
9547  *   Action configuration for indirect action object creation.
9548  * @param[out] error
9549  *   Perform verbose error reporting if not NULL. PMDs initialize this
9550  *   structure in case of error only.
9551  * @return
9552  *   A valid handle in case of success, NULL otherwise and rte_errno is set.
9553  */
9554 static struct rte_flow_action_handle *
9555 mlx5_action_handle_create(struct rte_eth_dev *dev,
9556 			  const struct rte_flow_indir_action_conf *conf,
9557 			  const struct rte_flow_action *action,
9558 			  struct rte_flow_error *error)
9559 {
9560 	static const char err_msg[] = "indirect action creation unsupported";
9561 	struct rte_flow_attr attr = { .transfer = 0 };
9562 	const struct mlx5_flow_driver_ops *fops =
9563 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
9564 
9565 	if (flow_drv_action_validate(dev, conf, action, fops, error))
9566 		return NULL;
9567 	if (!fops->action_create) {
9568 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
9569 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
9570 				   NULL, err_msg);
9571 		return NULL;
9572 	}
9573 	return fops->action_create(dev, conf, action, error);
9574 }
9575 
9576 /**
9577  * Updates inplace the indirect action configuration pointed by *handle*
9578  * with the configuration provided as *update* argument.
9579  * The update of the indirect action configuration effects all flow rules
9580  * reusing the action via handle.
9581  *
9582  * @param dev
9583  *   Pointer to Ethernet device structure.
9584  * @param[in] handle
9585  *   Handle for the indirect action to be updated.
9586  * @param[in] update
9587  *   Action specification used to modify the action pointed by handle.
9588  *   *update* could be of same type with the action pointed by the *handle*
9589  *   handle argument, or some other structures like a wrapper, depending on
9590  *   the indirect action type.
9591  * @param[out] error
9592  *   Perform verbose error reporting if not NULL. PMDs initialize this
9593  *   structure in case of error only.
9594  *
9595  * @return
9596  *   0 on success, a negative errno value otherwise and rte_errno is set.
9597  */
9598 static int
9599 mlx5_action_handle_update(struct rte_eth_dev *dev,
9600 		struct rte_flow_action_handle *handle,
9601 		const void *update,
9602 		struct rte_flow_error *error)
9603 {
9604 	struct rte_flow_attr attr = { .transfer = 0 };
9605 	const struct mlx5_flow_driver_ops *fops =
9606 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
9607 	int ret;
9608 
9609 	ret = flow_drv_action_validate(dev, NULL,
9610 			(const struct rte_flow_action *)update, fops, error);
9611 	if (ret)
9612 		return ret;
9613 	return flow_drv_action_update(dev, handle, update, fops,
9614 				      error);
9615 }
9616 
9617 /**
9618  * Query the indirect action by handle.
9619  *
9620  * This function allows retrieving action-specific data such as counters.
9621  * Data is gathered by special action which may be present/referenced in
9622  * more than one flow rule definition.
9623  *
9624  * see @RTE_FLOW_ACTION_TYPE_COUNT
9625  *
9626  * @param dev
9627  *   Pointer to Ethernet device structure.
9628  * @param[in] handle
9629  *   Handle for the indirect action to query.
9630  * @param[in, out] data
9631  *   Pointer to storage for the associated query data type.
9632  * @param[out] error
9633  *   Perform verbose error reporting if not NULL. PMDs initialize this
9634  *   structure in case of error only.
9635  *
9636  * @return
9637  *   0 on success, a negative errno value otherwise and rte_errno is set.
9638  */
9639 static int
9640 mlx5_action_handle_query(struct rte_eth_dev *dev,
9641 			 const struct rte_flow_action_handle *handle,
9642 			 void *data,
9643 			 struct rte_flow_error *error)
9644 {
9645 	struct rte_flow_attr attr = { .transfer = 0 };
9646 	const struct mlx5_flow_driver_ops *fops =
9647 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
9648 
9649 	return flow_drv_action_query(dev, handle, data, fops, error);
9650 }
9651 
9652 /**
9653  * Destroy all indirect actions (shared RSS).
9654  *
9655  * @param dev
9656  *   Pointer to Ethernet device.
9657  *
9658  * @return
9659  *   0 on success, a negative errno value otherwise and rte_errno is set.
9660  */
9661 int
9662 mlx5_action_handle_flush(struct rte_eth_dev *dev)
9663 {
9664 	struct rte_flow_error error;
9665 	struct mlx5_priv *priv = dev->data->dev_private;
9666 	struct mlx5_shared_action_rss *shared_rss;
9667 	int ret = 0;
9668 	uint32_t idx;
9669 
9670 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
9671 		      priv->rss_shared_actions, idx, shared_rss, next) {
9672 		ret |= mlx5_action_handle_destroy(dev,
9673 		       (struct rte_flow_action_handle *)(uintptr_t)idx, &error);
9674 	}
9675 	return ret;
9676 }
9677 
9678 /**
9679  * Validate existing indirect actions against current device configuration
9680  * and attach them to device resources.
9681  *
9682  * @param dev
9683  *   Pointer to Ethernet device.
9684  *
9685  * @return
9686  *   0 on success, a negative errno value otherwise and rte_errno is set.
9687  */
9688 int
9689 mlx5_action_handle_attach(struct rte_eth_dev *dev)
9690 {
9691 	struct mlx5_priv *priv = dev->data->dev_private;
9692 	int ret = 0;
9693 	struct mlx5_ind_table_obj *ind_tbl, *ind_tbl_last;
9694 
9695 	LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) {
9696 		const char *message;
9697 		uint32_t queue_idx;
9698 
9699 		ret = mlx5_validate_rss_queues(dev, ind_tbl->queues,
9700 					       ind_tbl->queues_n,
9701 					       &message, &queue_idx);
9702 		if (ret != 0) {
9703 			DRV_LOG(ERR, "Port %u cannot use queue %u in RSS: %s",
9704 				dev->data->port_id, ind_tbl->queues[queue_idx],
9705 				message);
9706 			break;
9707 		}
9708 	}
9709 	if (ret != 0)
9710 		return ret;
9711 	LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) {
9712 		ret = mlx5_ind_table_obj_attach(dev, ind_tbl);
9713 		if (ret != 0) {
9714 			DRV_LOG(ERR, "Port %u could not attach "
9715 				"indirection table obj %p",
9716 				dev->data->port_id, (void *)ind_tbl);
9717 			goto error;
9718 		}
9719 	}
9720 
9721 	return 0;
9722 error:
9723 	ind_tbl_last = ind_tbl;
9724 	LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) {
9725 		if (ind_tbl == ind_tbl_last)
9726 			break;
9727 		if (mlx5_ind_table_obj_detach(dev, ind_tbl) != 0)
9728 			DRV_LOG(CRIT, "Port %u could not detach "
9729 				"indirection table obj %p on rollback",
9730 				dev->data->port_id, (void *)ind_tbl);
9731 	}
9732 	return ret;
9733 }
9734 
9735 /**
9736  * Detach indirect actions of the device from its resources.
9737  *
9738  * @param dev
9739  *   Pointer to Ethernet device.
9740  *
9741  * @return
9742  *   0 on success, a negative errno value otherwise and rte_errno is set.
9743  */
9744 int
9745 mlx5_action_handle_detach(struct rte_eth_dev *dev)
9746 {
9747 	struct mlx5_priv *priv = dev->data->dev_private;
9748 	int ret = 0;
9749 	struct mlx5_ind_table_obj *ind_tbl, *ind_tbl_last;
9750 
9751 	LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) {
9752 		ret = mlx5_ind_table_obj_detach(dev, ind_tbl);
9753 		if (ret != 0) {
9754 			DRV_LOG(ERR, "Port %u could not detach "
9755 				"indirection table obj %p",
9756 				dev->data->port_id, (void *)ind_tbl);
9757 			goto error;
9758 		}
9759 	}
9760 	return 0;
9761 error:
9762 	ind_tbl_last = ind_tbl;
9763 	LIST_FOREACH(ind_tbl, &priv->standalone_ind_tbls, next) {
9764 		if (ind_tbl == ind_tbl_last)
9765 			break;
9766 		if (mlx5_ind_table_obj_attach(dev, ind_tbl) != 0)
9767 			DRV_LOG(CRIT, "Port %u could not attach "
9768 				"indirection table obj %p on rollback",
9769 				dev->data->port_id, (void *)ind_tbl);
9770 	}
9771 	return ret;
9772 }
9773 
9774 #ifndef HAVE_MLX5DV_DR
9775 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1))
9776 #else
9777 #define MLX5_DOMAIN_SYNC_FLOW \
9778 	(MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW)
9779 #endif
9780 
9781 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains)
9782 {
9783 	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
9784 	const struct mlx5_flow_driver_ops *fops;
9785 	int ret;
9786 	struct rte_flow_attr attr = { .transfer = 0 };
9787 
9788 	fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr));
9789 	ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW);
9790 	if (ret > 0)
9791 		ret = -ret;
9792 	return ret;
9793 }
9794 
9795 const struct mlx5_flow_tunnel *
9796 mlx5_get_tof(const struct rte_flow_item *item,
9797 	     const struct rte_flow_action *action,
9798 	     enum mlx5_tof_rule_type *rule_type)
9799 {
9800 	for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
9801 		if (item->type == (typeof(item->type))
9802 				  MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL) {
9803 			*rule_type = MLX5_TUNNEL_OFFLOAD_MATCH_RULE;
9804 			return flow_items_to_tunnel(item);
9805 		}
9806 	}
9807 	for (; action->conf != RTE_FLOW_ACTION_TYPE_END; action++) {
9808 		if (action->type == (typeof(action->type))
9809 				    MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET) {
9810 			*rule_type = MLX5_TUNNEL_OFFLOAD_SET_RULE;
9811 			return flow_actions_to_tunnel(action);
9812 		}
9813 	}
9814 	return NULL;
9815 }
9816 
9817 /**
9818  * tunnel offload functionality is defined for DV environment only
9819  */
9820 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
9821 __extension__
9822 union tunnel_offload_mark {
9823 	uint32_t val;
9824 	struct {
9825 		uint32_t app_reserve:8;
9826 		uint32_t table_id:15;
9827 		uint32_t transfer:1;
9828 		uint32_t _unused_:8;
9829 	};
9830 };
9831 
9832 static bool
9833 mlx5_access_tunnel_offload_db
9834 	(struct rte_eth_dev *dev,
9835 	 bool (*match)(struct rte_eth_dev *,
9836 		       struct mlx5_flow_tunnel *, const void *),
9837 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
9838 	 void (*miss)(struct rte_eth_dev *, void *),
9839 	 void *ctx, bool lock_op);
9840 
9841 static int
9842 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
9843 			     struct rte_flow *flow,
9844 			     const struct rte_flow_attr *attr,
9845 			     const struct rte_flow_action *app_actions,
9846 			     uint32_t flow_idx,
9847 			     const struct mlx5_flow_tunnel *tunnel,
9848 			     struct tunnel_default_miss_ctx *ctx,
9849 			     struct rte_flow_error *error)
9850 {
9851 	struct mlx5_priv *priv = dev->data->dev_private;
9852 	struct mlx5_flow *dev_flow;
9853 	struct rte_flow_attr miss_attr = *attr;
9854 	const struct rte_flow_item miss_items[2] = {
9855 		{
9856 			.type = RTE_FLOW_ITEM_TYPE_ETH,
9857 			.spec = NULL,
9858 			.last = NULL,
9859 			.mask = NULL
9860 		},
9861 		{
9862 			.type = RTE_FLOW_ITEM_TYPE_END,
9863 			.spec = NULL,
9864 			.last = NULL,
9865 			.mask = NULL
9866 		}
9867 	};
9868 	union tunnel_offload_mark mark_id;
9869 	struct rte_flow_action_mark miss_mark;
9870 	struct rte_flow_action miss_actions[3] = {
9871 		[0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark },
9872 		[2] = { .type = RTE_FLOW_ACTION_TYPE_END,  .conf = NULL }
9873 	};
9874 	const struct rte_flow_action_jump *jump_data;
9875 	uint32_t i, flow_table = 0; /* prevent compilation warning */
9876 	struct flow_grp_info grp_info = {
9877 		.external = 1,
9878 		.transfer = attr->transfer,
9879 		.fdb_def_rule = !!priv->fdb_def_rule,
9880 		.std_tbl_fix = 0,
9881 	};
9882 	int ret;
9883 
9884 	if (!attr->transfer) {
9885 		uint32_t q_size;
9886 
9887 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS;
9888 		q_size = priv->reta_idx_n * sizeof(ctx->queue[0]);
9889 		ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size,
9890 					 0, SOCKET_ID_ANY);
9891 		if (!ctx->queue)
9892 			return rte_flow_error_set
9893 				(error, ENOMEM,
9894 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
9895 				NULL, "invalid default miss RSS");
9896 		ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
9897 		ctx->action_rss.level = 0,
9898 		ctx->action_rss.types = priv->rss_conf.rss_hf,
9899 		ctx->action_rss.key_len = priv->rss_conf.rss_key_len,
9900 		ctx->action_rss.queue_num = priv->reta_idx_n,
9901 		ctx->action_rss.key = priv->rss_conf.rss_key,
9902 		ctx->action_rss.queue = ctx->queue;
9903 		if (!priv->reta_idx_n || !priv->rxqs_n)
9904 			return rte_flow_error_set
9905 				(error, EINVAL,
9906 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
9907 				NULL, "invalid port configuration");
9908 		if (!(dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG))
9909 			ctx->action_rss.types = 0;
9910 		for (i = 0; i != priv->reta_idx_n; ++i)
9911 			ctx->queue[i] = (*priv->reta_idx)[i];
9912 	} else {
9913 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP;
9914 		ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP;
9915 	}
9916 	miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw;
9917 	for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++);
9918 	jump_data = app_actions->conf;
9919 	miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY;
9920 	miss_attr.group = jump_data->group;
9921 	ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group,
9922 				       &flow_table, &grp_info, error);
9923 	if (ret)
9924 		return rte_flow_error_set(error, EINVAL,
9925 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
9926 					  NULL, "invalid tunnel id");
9927 	mark_id.app_reserve = 0;
9928 	mark_id.table_id = tunnel_flow_tbl_to_id(flow_table);
9929 	mark_id.transfer = !!attr->transfer;
9930 	mark_id._unused_ = 0;
9931 	miss_mark.id = mark_id.val;
9932 	dev_flow = flow_drv_prepare(dev, flow, &miss_attr,
9933 				    miss_items, miss_actions, flow_idx, error);
9934 	if (!dev_flow)
9935 		return -rte_errno;
9936 	dev_flow->flow = flow;
9937 	dev_flow->external = true;
9938 	dev_flow->tunnel = tunnel;
9939 	dev_flow->tof_type = MLX5_TUNNEL_OFFLOAD_MISS_RULE;
9940 	/* Subflow object was created, we must include one in the list. */
9941 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
9942 		      dev_flow->handle, next);
9943 	DRV_LOG(DEBUG,
9944 		"port %u tunnel type=%d id=%u miss rule priority=%u group=%u",
9945 		dev->data->port_id, tunnel->app_tunnel.type,
9946 		tunnel->tunnel_id, miss_attr.priority, miss_attr.group);
9947 	ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items,
9948 				  miss_actions, error);
9949 	if (!ret)
9950 		ret = flow_mreg_update_copy_table(dev, flow, miss_actions,
9951 						  error);
9952 
9953 	return ret;
9954 }
9955 
9956 static const struct mlx5_flow_tbl_data_entry  *
9957 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark)
9958 {
9959 	struct mlx5_priv *priv = dev->data->dev_private;
9960 	struct mlx5_dev_ctx_shared *sh = priv->sh;
9961 	struct mlx5_list_entry *he;
9962 	union tunnel_offload_mark mbits = { .val = mark };
9963 	union mlx5_flow_tbl_key table_key = {
9964 		{
9965 			.level = tunnel_id_to_flow_tbl(mbits.table_id),
9966 			.id = 0,
9967 			.reserved = 0,
9968 			.dummy = 0,
9969 			.is_fdb = !!mbits.transfer,
9970 			.is_egress = 0,
9971 		}
9972 	};
9973 	struct mlx5_flow_cb_ctx ctx = {
9974 		.data = &table_key.v64,
9975 	};
9976 
9977 	he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, &ctx);
9978 	return he ?
9979 	       container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL;
9980 }
9981 
9982 static void
9983 mlx5_flow_tunnel_grp2tbl_remove_cb(void *tool_ctx,
9984 				   struct mlx5_list_entry *entry)
9985 {
9986 	struct mlx5_dev_ctx_shared *sh = tool_ctx;
9987 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
9988 
9989 	mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
9990 			tunnel_flow_tbl_to_id(tte->flow_table));
9991 	mlx5_free(tte);
9992 }
9993 
9994 static int
9995 mlx5_flow_tunnel_grp2tbl_match_cb(void *tool_ctx __rte_unused,
9996 				  struct mlx5_list_entry *entry, void *cb_ctx)
9997 {
9998 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
9999 	union tunnel_tbl_key tbl = {
10000 		.val = *(uint64_t *)(ctx->data),
10001 	};
10002 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
10003 
10004 	return tbl.tunnel_id != tte->tunnel_id || tbl.group != tte->group;
10005 }
10006 
10007 static struct mlx5_list_entry *
10008 mlx5_flow_tunnel_grp2tbl_create_cb(void *tool_ctx, void *cb_ctx)
10009 {
10010 	struct mlx5_dev_ctx_shared *sh = tool_ctx;
10011 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
10012 	struct tunnel_tbl_entry *tte;
10013 	union tunnel_tbl_key tbl = {
10014 		.val = *(uint64_t *)(ctx->data),
10015 	};
10016 
10017 	tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO,
10018 			  sizeof(*tte), 0,
10019 			  SOCKET_ID_ANY);
10020 	if (!tte)
10021 		goto err;
10022 	mlx5_ipool_malloc(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
10023 			  &tte->flow_table);
10024 	if (tte->flow_table >= MLX5_MAX_TABLES) {
10025 		DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.",
10026 			tte->flow_table);
10027 		mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
10028 				tte->flow_table);
10029 		goto err;
10030 	} else if (!tte->flow_table) {
10031 		goto err;
10032 	}
10033 	tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table);
10034 	tte->tunnel_id = tbl.tunnel_id;
10035 	tte->group = tbl.group;
10036 	return &tte->hash;
10037 err:
10038 	if (tte)
10039 		mlx5_free(tte);
10040 	return NULL;
10041 }
10042 
10043 static struct mlx5_list_entry *
10044 mlx5_flow_tunnel_grp2tbl_clone_cb(void *tool_ctx __rte_unused,
10045 				  struct mlx5_list_entry *oentry,
10046 				  void *cb_ctx __rte_unused)
10047 {
10048 	struct tunnel_tbl_entry *tte = mlx5_malloc(MLX5_MEM_SYS, sizeof(*tte),
10049 						   0, SOCKET_ID_ANY);
10050 
10051 	if (!tte)
10052 		return NULL;
10053 	memcpy(tte, oentry, sizeof(*tte));
10054 	return &tte->hash;
10055 }
10056 
10057 static void
10058 mlx5_flow_tunnel_grp2tbl_clone_free_cb(void *tool_ctx __rte_unused,
10059 				       struct mlx5_list_entry *entry)
10060 {
10061 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
10062 
10063 	mlx5_free(tte);
10064 }
10065 
10066 static uint32_t
10067 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
10068 				const struct mlx5_flow_tunnel *tunnel,
10069 				uint32_t group, uint32_t *table,
10070 				struct rte_flow_error *error)
10071 {
10072 	struct mlx5_list_entry *he;
10073 	struct tunnel_tbl_entry *tte;
10074 	union tunnel_tbl_key key = {
10075 		.tunnel_id = tunnel ? tunnel->tunnel_id : 0,
10076 		.group = group
10077 	};
10078 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
10079 	struct mlx5_hlist *group_hash;
10080 	struct mlx5_flow_cb_ctx ctx = {
10081 		.data = &key.val,
10082 	};
10083 
10084 	group_hash = tunnel ? tunnel->groups : thub->groups;
10085 	he = mlx5_hlist_register(group_hash, key.val, &ctx);
10086 	if (!he)
10087 		return rte_flow_error_set(error, EINVAL,
10088 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
10089 					  NULL,
10090 					  "tunnel group index not supported");
10091 	tte = container_of(he, typeof(*tte), hash);
10092 	*table = tte->flow_table;
10093 	DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x",
10094 		dev->data->port_id, key.tunnel_id, group, *table);
10095 	return 0;
10096 }
10097 
10098 static void
10099 mlx5_flow_tunnel_free(struct rte_eth_dev *dev,
10100 		      struct mlx5_flow_tunnel *tunnel)
10101 {
10102 	struct mlx5_priv *priv = dev->data->dev_private;
10103 	struct mlx5_indexed_pool *ipool;
10104 
10105 	DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x",
10106 		dev->data->port_id, tunnel->tunnel_id);
10107 	LIST_REMOVE(tunnel, chain);
10108 	mlx5_hlist_destroy(tunnel->groups);
10109 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
10110 	mlx5_ipool_free(ipool, tunnel->tunnel_id);
10111 }
10112 
10113 static bool
10114 mlx5_access_tunnel_offload_db
10115 	(struct rte_eth_dev *dev,
10116 	 bool (*match)(struct rte_eth_dev *,
10117 		       struct mlx5_flow_tunnel *, const void *),
10118 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
10119 	 void (*miss)(struct rte_eth_dev *, void *),
10120 	 void *ctx, bool lock_op)
10121 {
10122 	bool verdict = false;
10123 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
10124 	struct mlx5_flow_tunnel *tunnel;
10125 
10126 	rte_spinlock_lock(&thub->sl);
10127 	LIST_FOREACH(tunnel, &thub->tunnels, chain) {
10128 		verdict = match(dev, tunnel, (const void *)ctx);
10129 		if (verdict)
10130 			break;
10131 	}
10132 	if (!lock_op)
10133 		rte_spinlock_unlock(&thub->sl);
10134 	if (verdict && hit)
10135 		hit(dev, tunnel, ctx);
10136 	if (!verdict && miss)
10137 		miss(dev, ctx);
10138 	if (lock_op)
10139 		rte_spinlock_unlock(&thub->sl);
10140 
10141 	return verdict;
10142 }
10143 
10144 struct tunnel_db_find_tunnel_id_ctx {
10145 	uint32_t tunnel_id;
10146 	struct mlx5_flow_tunnel *tunnel;
10147 };
10148 
10149 static bool
10150 find_tunnel_id_match(struct rte_eth_dev *dev,
10151 		     struct mlx5_flow_tunnel *tunnel, const void *x)
10152 {
10153 	const struct tunnel_db_find_tunnel_id_ctx *ctx = x;
10154 
10155 	RTE_SET_USED(dev);
10156 	return tunnel->tunnel_id == ctx->tunnel_id;
10157 }
10158 
10159 static void
10160 find_tunnel_id_hit(struct rte_eth_dev *dev,
10161 		   struct mlx5_flow_tunnel *tunnel, void *x)
10162 {
10163 	struct tunnel_db_find_tunnel_id_ctx *ctx = x;
10164 	RTE_SET_USED(dev);
10165 	ctx->tunnel = tunnel;
10166 }
10167 
10168 static struct mlx5_flow_tunnel *
10169 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id)
10170 {
10171 	struct tunnel_db_find_tunnel_id_ctx ctx = {
10172 		.tunnel_id = id,
10173 	};
10174 
10175 	mlx5_access_tunnel_offload_db(dev, find_tunnel_id_match,
10176 				      find_tunnel_id_hit, NULL, &ctx, true);
10177 
10178 	return ctx.tunnel;
10179 }
10180 
10181 static struct mlx5_flow_tunnel *
10182 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev,
10183 			  const struct rte_flow_tunnel *app_tunnel)
10184 {
10185 	struct mlx5_priv *priv = dev->data->dev_private;
10186 	struct mlx5_indexed_pool *ipool;
10187 	struct mlx5_flow_tunnel *tunnel;
10188 	uint32_t id;
10189 
10190 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
10191 	tunnel = mlx5_ipool_zmalloc(ipool, &id);
10192 	if (!tunnel)
10193 		return NULL;
10194 	if (id >= MLX5_MAX_TUNNELS) {
10195 		mlx5_ipool_free(ipool, id);
10196 		DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id);
10197 		return NULL;
10198 	}
10199 	tunnel->groups = mlx5_hlist_create("tunnel groups", 64, false, true,
10200 					   priv->sh,
10201 					   mlx5_flow_tunnel_grp2tbl_create_cb,
10202 					   mlx5_flow_tunnel_grp2tbl_match_cb,
10203 					   mlx5_flow_tunnel_grp2tbl_remove_cb,
10204 					   mlx5_flow_tunnel_grp2tbl_clone_cb,
10205 					mlx5_flow_tunnel_grp2tbl_clone_free_cb);
10206 	if (!tunnel->groups) {
10207 		mlx5_ipool_free(ipool, id);
10208 		return NULL;
10209 	}
10210 	/* initiate new PMD tunnel */
10211 	memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel));
10212 	tunnel->tunnel_id = id;
10213 	tunnel->action.type = (typeof(tunnel->action.type))
10214 			      MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET;
10215 	tunnel->action.conf = tunnel;
10216 	tunnel->item.type = (typeof(tunnel->item.type))
10217 			    MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL;
10218 	tunnel->item.spec = tunnel;
10219 	tunnel->item.last = NULL;
10220 	tunnel->item.mask = NULL;
10221 
10222 	DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x",
10223 		dev->data->port_id, tunnel->tunnel_id);
10224 
10225 	return tunnel;
10226 }
10227 
10228 struct tunnel_db_get_tunnel_ctx {
10229 	const struct rte_flow_tunnel *app_tunnel;
10230 	struct mlx5_flow_tunnel *tunnel;
10231 };
10232 
10233 static bool get_tunnel_match(struct rte_eth_dev *dev,
10234 			     struct mlx5_flow_tunnel *tunnel, const void *x)
10235 {
10236 	const struct tunnel_db_get_tunnel_ctx *ctx = x;
10237 
10238 	RTE_SET_USED(dev);
10239 	return !memcmp(ctx->app_tunnel, &tunnel->app_tunnel,
10240 		       sizeof(*ctx->app_tunnel));
10241 }
10242 
10243 static void get_tunnel_hit(struct rte_eth_dev *dev,
10244 			   struct mlx5_flow_tunnel *tunnel, void *x)
10245 {
10246 	/* called under tunnel spinlock protection */
10247 	struct tunnel_db_get_tunnel_ctx *ctx = x;
10248 
10249 	RTE_SET_USED(dev);
10250 	tunnel->refctn++;
10251 	ctx->tunnel = tunnel;
10252 }
10253 
10254 static void get_tunnel_miss(struct rte_eth_dev *dev, void *x)
10255 {
10256 	/* called under tunnel spinlock protection */
10257 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
10258 	struct tunnel_db_get_tunnel_ctx *ctx = x;
10259 
10260 	rte_spinlock_unlock(&thub->sl);
10261 	ctx->tunnel = mlx5_flow_tunnel_allocate(dev, ctx->app_tunnel);
10262 	rte_spinlock_lock(&thub->sl);
10263 	if (ctx->tunnel) {
10264 		ctx->tunnel->refctn = 1;
10265 		LIST_INSERT_HEAD(&thub->tunnels, ctx->tunnel, chain);
10266 	}
10267 }
10268 
10269 
10270 static int
10271 mlx5_get_flow_tunnel(struct rte_eth_dev *dev,
10272 		     const struct rte_flow_tunnel *app_tunnel,
10273 		     struct mlx5_flow_tunnel **tunnel)
10274 {
10275 	struct tunnel_db_get_tunnel_ctx ctx = {
10276 		.app_tunnel = app_tunnel,
10277 	};
10278 
10279 	mlx5_access_tunnel_offload_db(dev, get_tunnel_match, get_tunnel_hit,
10280 				      get_tunnel_miss, &ctx, true);
10281 	*tunnel = ctx.tunnel;
10282 	return ctx.tunnel ? 0 : -ENOMEM;
10283 }
10284 
10285 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id)
10286 {
10287 	struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub;
10288 
10289 	if (!thub)
10290 		return;
10291 	if (!LIST_EMPTY(&thub->tunnels))
10292 		DRV_LOG(WARNING, "port %u tunnels present", port_id);
10293 	mlx5_hlist_destroy(thub->groups);
10294 	mlx5_free(thub);
10295 }
10296 
10297 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh)
10298 {
10299 	int err;
10300 	struct mlx5_flow_tunnel_hub *thub;
10301 
10302 	thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub),
10303 			   0, SOCKET_ID_ANY);
10304 	if (!thub)
10305 		return -ENOMEM;
10306 	LIST_INIT(&thub->tunnels);
10307 	rte_spinlock_init(&thub->sl);
10308 	thub->groups = mlx5_hlist_create("flow groups", 64,
10309 					 false, true, sh,
10310 					 mlx5_flow_tunnel_grp2tbl_create_cb,
10311 					 mlx5_flow_tunnel_grp2tbl_match_cb,
10312 					 mlx5_flow_tunnel_grp2tbl_remove_cb,
10313 					 mlx5_flow_tunnel_grp2tbl_clone_cb,
10314 					mlx5_flow_tunnel_grp2tbl_clone_free_cb);
10315 	if (!thub->groups) {
10316 		err = -rte_errno;
10317 		goto err;
10318 	}
10319 	sh->tunnel_hub = thub;
10320 
10321 	return 0;
10322 
10323 err:
10324 	if (thub->groups)
10325 		mlx5_hlist_destroy(thub->groups);
10326 	if (thub)
10327 		mlx5_free(thub);
10328 	return err;
10329 }
10330 
10331 static inline int
10332 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev,
10333 			  struct rte_flow_tunnel *tunnel,
10334 			  struct rte_flow_error *error)
10335 {
10336 	struct mlx5_priv *priv = dev->data->dev_private;
10337 
10338 	if (!priv->sh->config.dv_flow_en)
10339 		return rte_flow_error_set(error, ENOTSUP,
10340 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
10341 					  "flow DV interface is off");
10342 	if (!is_tunnel_offload_active(dev))
10343 		return rte_flow_error_set(error, ENOTSUP,
10344 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
10345 					  "tunnel offload was not activated");
10346 	if (!tunnel)
10347 		return rte_flow_error_set(error, EINVAL,
10348 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
10349 					  "no application tunnel");
10350 	switch (tunnel->type) {
10351 	default:
10352 		return rte_flow_error_set(error, EINVAL,
10353 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
10354 					  "unsupported tunnel type");
10355 	case RTE_FLOW_ITEM_TYPE_VXLAN:
10356 	case RTE_FLOW_ITEM_TYPE_GRE:
10357 	case RTE_FLOW_ITEM_TYPE_NVGRE:
10358 	case RTE_FLOW_ITEM_TYPE_GENEVE:
10359 		break;
10360 	}
10361 	return 0;
10362 }
10363 
10364 static int
10365 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
10366 		    struct rte_flow_tunnel *app_tunnel,
10367 		    struct rte_flow_action **actions,
10368 		    uint32_t *num_of_actions,
10369 		    struct rte_flow_error *error)
10370 {
10371 	struct mlx5_flow_tunnel *tunnel;
10372 	int ret = mlx5_flow_tunnel_validate(dev, app_tunnel, error);
10373 
10374 	if (ret)
10375 		return ret;
10376 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
10377 	if (ret < 0) {
10378 		return rte_flow_error_set(error, ret,
10379 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
10380 					  "failed to initialize pmd tunnel");
10381 	}
10382 	*actions = &tunnel->action;
10383 	*num_of_actions = 1;
10384 	return 0;
10385 }
10386 
10387 static int
10388 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
10389 		       struct rte_flow_tunnel *app_tunnel,
10390 		       struct rte_flow_item **items,
10391 		       uint32_t *num_of_items,
10392 		       struct rte_flow_error *error)
10393 {
10394 	struct mlx5_flow_tunnel *tunnel;
10395 	int ret = mlx5_flow_tunnel_validate(dev, app_tunnel, error);
10396 
10397 	if (ret)
10398 		return ret;
10399 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
10400 	if (ret < 0) {
10401 		return rte_flow_error_set(error, ret,
10402 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
10403 					  "failed to initialize pmd tunnel");
10404 	}
10405 	*items = &tunnel->item;
10406 	*num_of_items = 1;
10407 	return 0;
10408 }
10409 
10410 struct tunnel_db_element_release_ctx {
10411 	struct rte_flow_item *items;
10412 	struct rte_flow_action *actions;
10413 	uint32_t num_elements;
10414 	struct rte_flow_error *error;
10415 	int ret;
10416 };
10417 
10418 static bool
10419 tunnel_element_release_match(struct rte_eth_dev *dev,
10420 			     struct mlx5_flow_tunnel *tunnel, const void *x)
10421 {
10422 	const struct tunnel_db_element_release_ctx *ctx = x;
10423 
10424 	RTE_SET_USED(dev);
10425 	if (ctx->num_elements != 1)
10426 		return false;
10427 	else if (ctx->items)
10428 		return ctx->items == &tunnel->item;
10429 	else if (ctx->actions)
10430 		return ctx->actions == &tunnel->action;
10431 
10432 	return false;
10433 }
10434 
10435 static void
10436 tunnel_element_release_hit(struct rte_eth_dev *dev,
10437 			   struct mlx5_flow_tunnel *tunnel, void *x)
10438 {
10439 	struct tunnel_db_element_release_ctx *ctx = x;
10440 	ctx->ret = 0;
10441 	if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
10442 		mlx5_flow_tunnel_free(dev, tunnel);
10443 }
10444 
10445 static void
10446 tunnel_element_release_miss(struct rte_eth_dev *dev, void *x)
10447 {
10448 	struct tunnel_db_element_release_ctx *ctx = x;
10449 	RTE_SET_USED(dev);
10450 	ctx->ret = rte_flow_error_set(ctx->error, EINVAL,
10451 				      RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
10452 				      "invalid argument");
10453 }
10454 
10455 static int
10456 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
10457 		       struct rte_flow_item *pmd_items,
10458 		       uint32_t num_items, struct rte_flow_error *err)
10459 {
10460 	struct tunnel_db_element_release_ctx ctx = {
10461 		.items = pmd_items,
10462 		.actions = NULL,
10463 		.num_elements = num_items,
10464 		.error = err,
10465 	};
10466 
10467 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
10468 				      tunnel_element_release_hit,
10469 				      tunnel_element_release_miss, &ctx, false);
10470 
10471 	return ctx.ret;
10472 }
10473 
10474 static int
10475 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
10476 			 struct rte_flow_action *pmd_actions,
10477 			 uint32_t num_actions, struct rte_flow_error *err)
10478 {
10479 	struct tunnel_db_element_release_ctx ctx = {
10480 		.items = NULL,
10481 		.actions = pmd_actions,
10482 		.num_elements = num_actions,
10483 		.error = err,
10484 	};
10485 
10486 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
10487 				      tunnel_element_release_hit,
10488 				      tunnel_element_release_miss, &ctx, false);
10489 
10490 	return ctx.ret;
10491 }
10492 
10493 static int
10494 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
10495 				  struct rte_mbuf *m,
10496 				  struct rte_flow_restore_info *info,
10497 				  struct rte_flow_error *err)
10498 {
10499 	uint64_t ol_flags = m->ol_flags;
10500 	const struct mlx5_flow_tbl_data_entry *tble;
10501 	const uint64_t mask = RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
10502 
10503 	if (!is_tunnel_offload_active(dev)) {
10504 		info->flags = 0;
10505 		return 0;
10506 	}
10507 
10508 	if ((ol_flags & mask) != mask)
10509 		goto err;
10510 	tble = tunnel_mark_decode(dev, m->hash.fdir.hi);
10511 	if (!tble) {
10512 		DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x",
10513 			dev->data->port_id, m->hash.fdir.hi);
10514 		goto err;
10515 	}
10516 	MLX5_ASSERT(tble->tunnel);
10517 	memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel));
10518 	info->group_id = tble->group_id;
10519 	info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL |
10520 		      RTE_FLOW_RESTORE_INFO_GROUP_ID |
10521 		      RTE_FLOW_RESTORE_INFO_ENCAPSULATED;
10522 
10523 	return 0;
10524 
10525 err:
10526 	return rte_flow_error_set(err, EINVAL,
10527 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
10528 				  "failed to get restore info");
10529 }
10530 
10531 #else /* HAVE_IBV_FLOW_DV_SUPPORT */
10532 static int
10533 mlx5_flow_tunnel_decap_set(__rte_unused struct rte_eth_dev *dev,
10534 			   __rte_unused struct rte_flow_tunnel *app_tunnel,
10535 			   __rte_unused struct rte_flow_action **actions,
10536 			   __rte_unused uint32_t *num_of_actions,
10537 			   __rte_unused struct rte_flow_error *error)
10538 {
10539 	return -ENOTSUP;
10540 }
10541 
10542 static int
10543 mlx5_flow_tunnel_match(__rte_unused struct rte_eth_dev *dev,
10544 		       __rte_unused struct rte_flow_tunnel *app_tunnel,
10545 		       __rte_unused struct rte_flow_item **items,
10546 		       __rte_unused uint32_t *num_of_items,
10547 		       __rte_unused struct rte_flow_error *error)
10548 {
10549 	return -ENOTSUP;
10550 }
10551 
10552 static int
10553 mlx5_flow_tunnel_item_release(__rte_unused struct rte_eth_dev *dev,
10554 			      __rte_unused struct rte_flow_item *pmd_items,
10555 			      __rte_unused uint32_t num_items,
10556 			      __rte_unused struct rte_flow_error *err)
10557 {
10558 	return -ENOTSUP;
10559 }
10560 
10561 static int
10562 mlx5_flow_tunnel_action_release(__rte_unused struct rte_eth_dev *dev,
10563 				__rte_unused struct rte_flow_action *pmd_action,
10564 				__rte_unused uint32_t num_actions,
10565 				__rte_unused struct rte_flow_error *err)
10566 {
10567 	return -ENOTSUP;
10568 }
10569 
10570 static int
10571 mlx5_flow_tunnel_get_restore_info(__rte_unused struct rte_eth_dev *dev,
10572 				  __rte_unused struct rte_mbuf *m,
10573 				  __rte_unused struct rte_flow_restore_info *i,
10574 				  __rte_unused struct rte_flow_error *err)
10575 {
10576 	return -ENOTSUP;
10577 }
10578 
10579 static int
10580 flow_tunnel_add_default_miss(__rte_unused struct rte_eth_dev *dev,
10581 			     __rte_unused struct rte_flow *flow,
10582 			     __rte_unused const struct rte_flow_attr *attr,
10583 			     __rte_unused const struct rte_flow_action *actions,
10584 			     __rte_unused uint32_t flow_idx,
10585 			     __rte_unused const struct mlx5_flow_tunnel *tunnel,
10586 			     __rte_unused struct tunnel_default_miss_ctx *ctx,
10587 			     __rte_unused struct rte_flow_error *error)
10588 {
10589 	return -ENOTSUP;
10590 }
10591 
10592 static struct mlx5_flow_tunnel *
10593 mlx5_find_tunnel_id(__rte_unused struct rte_eth_dev *dev,
10594 		    __rte_unused uint32_t id)
10595 {
10596 	return NULL;
10597 }
10598 
10599 static void
10600 mlx5_flow_tunnel_free(__rte_unused struct rte_eth_dev *dev,
10601 		      __rte_unused struct mlx5_flow_tunnel *tunnel)
10602 {
10603 }
10604 
10605 static uint32_t
10606 tunnel_flow_group_to_flow_table(__rte_unused struct rte_eth_dev *dev,
10607 				__rte_unused const struct mlx5_flow_tunnel *t,
10608 				__rte_unused uint32_t group,
10609 				__rte_unused uint32_t *table,
10610 				struct rte_flow_error *error)
10611 {
10612 	return rte_flow_error_set(error, ENOTSUP,
10613 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
10614 				  "tunnel offload requires DV support");
10615 }
10616 
10617 void
10618 mlx5_release_tunnel_hub(__rte_unused struct mlx5_dev_ctx_shared *sh,
10619 			__rte_unused  uint16_t port_id)
10620 {
10621 }
10622 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */
10623 
10624 /* Flex flow item API */
10625 static struct rte_flow_item_flex_handle *
10626 mlx5_flow_flex_item_create(struct rte_eth_dev *dev,
10627 			   const struct rte_flow_item_flex_conf *conf,
10628 			   struct rte_flow_error *error)
10629 {
10630 	static const char err_msg[] = "flex item creation unsupported";
10631 	struct rte_flow_attr attr = { .transfer = 0 };
10632 	const struct mlx5_flow_driver_ops *fops =
10633 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
10634 
10635 	if (!fops->item_create) {
10636 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
10637 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
10638 				   NULL, err_msg);
10639 		return NULL;
10640 	}
10641 	return fops->item_create(dev, conf, error);
10642 }
10643 
10644 static int
10645 mlx5_flow_flex_item_release(struct rte_eth_dev *dev,
10646 			    const struct rte_flow_item_flex_handle *handle,
10647 			    struct rte_flow_error *error)
10648 {
10649 	static const char err_msg[] = "flex item release unsupported";
10650 	struct rte_flow_attr attr = { .transfer = 0 };
10651 	const struct mlx5_flow_driver_ops *fops =
10652 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
10653 
10654 	if (!fops->item_release) {
10655 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
10656 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
10657 				   NULL, err_msg);
10658 		return -rte_errno;
10659 	}
10660 	return fops->item_release(dev, handle, error);
10661 }
10662 
10663 static void
10664 mlx5_dbg__print_pattern(const struct rte_flow_item *item)
10665 {
10666 	int ret;
10667 	struct rte_flow_error error;
10668 
10669 	for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
10670 		char *item_name;
10671 		ret = rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR, &item_name,
10672 				    sizeof(item_name),
10673 				    (void *)(uintptr_t)item->type, &error);
10674 		if (ret > 0)
10675 			printf("%s ", item_name);
10676 		else
10677 			printf("%d\n", (int)item->type);
10678 	}
10679 	printf("END\n");
10680 }
10681 
10682 static int
10683 mlx5_flow_is_std_vxlan_port(const struct rte_flow_item *udp_item)
10684 {
10685 	const struct rte_flow_item_udp *spec = udp_item->spec;
10686 	const struct rte_flow_item_udp *mask = udp_item->mask;
10687 	uint16_t udp_dport = 0;
10688 
10689 	if (spec != NULL) {
10690 		if (!mask)
10691 			mask = &rte_flow_item_udp_mask;
10692 		udp_dport = rte_be_to_cpu_16(spec->hdr.dst_port &
10693 				mask->hdr.dst_port);
10694 	}
10695 	return (!udp_dport || udp_dport == MLX5_UDP_PORT_VXLAN);
10696 }
10697 
10698 static const struct mlx5_flow_expand_node *
10699 mlx5_flow_expand_rss_adjust_node(const struct rte_flow_item *pattern,
10700 		unsigned int item_idx,
10701 		const struct mlx5_flow_expand_node graph[],
10702 		const struct mlx5_flow_expand_node *node)
10703 {
10704 	const struct rte_flow_item *item = pattern + item_idx, *prev_item;
10705 
10706 	if (item->type == RTE_FLOW_ITEM_TYPE_VXLAN &&
10707 			node != NULL &&
10708 			node->type == RTE_FLOW_ITEM_TYPE_VXLAN) {
10709 		/*
10710 		 * The expansion node is VXLAN and it is also the last
10711 		 * expandable item in the pattern, so need to continue
10712 		 * expansion of the inner tunnel.
10713 		 */
10714 		MLX5_ASSERT(item_idx > 0);
10715 		prev_item = pattern + item_idx - 1;
10716 		MLX5_ASSERT(prev_item->type == RTE_FLOW_ITEM_TYPE_UDP);
10717 		if (mlx5_flow_is_std_vxlan_port(prev_item))
10718 			return &graph[MLX5_EXPANSION_STD_VXLAN];
10719 		return &graph[MLX5_EXPANSION_L3_VXLAN];
10720 	}
10721 	return node;
10722 }
10723 
10724 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
10725 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
10726 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
10727 };
10728 
10729 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
10730 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
10731 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
10732 	{ 9, 10, 11 }, { 12, 13, 14 },
10733 };
10734 
10735 /**
10736  * Discover the number of available flow priorities.
10737  *
10738  * @param dev
10739  *   Ethernet device.
10740  *
10741  * @return
10742  *   On success, number of available flow priorities.
10743  *   On failure, a negative errno-style code and rte_errno is set.
10744  */
10745 int
10746 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
10747 {
10748 	static const uint16_t vprio[] = {8, 16};
10749 	const struct mlx5_priv *priv = dev->data->dev_private;
10750 	const struct mlx5_flow_driver_ops *fops;
10751 	enum mlx5_flow_drv_type type;
10752 	int ret;
10753 
10754 	type = mlx5_flow_os_get_type();
10755 	if (type == MLX5_FLOW_TYPE_MAX) {
10756 		type = MLX5_FLOW_TYPE_VERBS;
10757 		if (priv->sh->cdev->config.devx && priv->sh->config.dv_flow_en)
10758 			type = MLX5_FLOW_TYPE_DV;
10759 	}
10760 	fops = flow_get_drv_ops(type);
10761 	if (fops->discover_priorities == NULL) {
10762 		DRV_LOG(ERR, "Priority discovery not supported");
10763 		rte_errno = ENOTSUP;
10764 		return -rte_errno;
10765 	}
10766 	ret = fops->discover_priorities(dev, vprio, RTE_DIM(vprio));
10767 	if (ret < 0)
10768 		return ret;
10769 	switch (ret) {
10770 	case 8:
10771 		ret = RTE_DIM(priority_map_3);
10772 		break;
10773 	case 16:
10774 		ret = RTE_DIM(priority_map_5);
10775 		break;
10776 	default:
10777 		rte_errno = ENOTSUP;
10778 		DRV_LOG(ERR,
10779 			"port %u maximum priority: %d expected 8/16",
10780 			dev->data->port_id, ret);
10781 		return -rte_errno;
10782 	}
10783 	DRV_LOG(INFO, "port %u supported flow priorities:"
10784 		" 0-%d for ingress or egress root table,"
10785 		" 0-%d for non-root table or transfer root table.",
10786 		dev->data->port_id, ret - 2,
10787 		MLX5_NON_ROOT_FLOW_MAX_PRIO - 1);
10788 	return ret;
10789 }
10790 
10791 /**
10792  * Adjust flow priority based on the highest layer and the request priority.
10793  *
10794  * @param[in] dev
10795  *   Pointer to the Ethernet device structure.
10796  * @param[in] priority
10797  *   The rule base priority.
10798  * @param[in] subpriority
10799  *   The priority based on the items.
10800  *
10801  * @return
10802  *   The new priority.
10803  */
10804 uint32_t
10805 mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
10806 			  uint32_t subpriority)
10807 {
10808 	uint32_t res = 0;
10809 	struct mlx5_priv *priv = dev->data->dev_private;
10810 
10811 	switch (priv->sh->flow_max_priority) {
10812 	case RTE_DIM(priority_map_3):
10813 		res = priority_map_3[priority][subpriority];
10814 		break;
10815 	case RTE_DIM(priority_map_5):
10816 		res = priority_map_5[priority][subpriority];
10817 		break;
10818 	}
10819 	return  res;
10820 }
10821