xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 5ecb687a5698d2d8ec1f3b3b5a7a16bceca3e29c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_eth_ctrl.h>
25 #include <rte_ethdev_driver.h>
26 #include <rte_flow.h>
27 #include <rte_flow_driver.h>
28 #include <rte_malloc.h>
29 #include <rte_ip.h>
30 
31 #include "mlx5.h"
32 #include "mlx5_defs.h"
33 #include "mlx5_flow.h"
34 #include "mlx5_glue.h"
35 #include "mlx5_prm.h"
36 #include "mlx5_rxtx.h"
37 
38 /* Dev ops structure defined in mlx5.c */
39 extern const struct eth_dev_ops mlx5_dev_ops;
40 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
41 
42 /** Device flow drivers. */
43 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
44 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
45 #endif
46 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
47 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
48 
49 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
50 
51 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
52 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
53 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
54 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
55 #endif
56 	[MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
57 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
58 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
59 };
60 
61 enum mlx5_expansion {
62 	MLX5_EXPANSION_ROOT,
63 	MLX5_EXPANSION_ROOT_OUTER,
64 	MLX5_EXPANSION_ROOT_ETH_VLAN,
65 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
66 	MLX5_EXPANSION_OUTER_ETH,
67 	MLX5_EXPANSION_OUTER_ETH_VLAN,
68 	MLX5_EXPANSION_OUTER_VLAN,
69 	MLX5_EXPANSION_OUTER_IPV4,
70 	MLX5_EXPANSION_OUTER_IPV4_UDP,
71 	MLX5_EXPANSION_OUTER_IPV4_TCP,
72 	MLX5_EXPANSION_OUTER_IPV6,
73 	MLX5_EXPANSION_OUTER_IPV6_UDP,
74 	MLX5_EXPANSION_OUTER_IPV6_TCP,
75 	MLX5_EXPANSION_VXLAN,
76 	MLX5_EXPANSION_VXLAN_GPE,
77 	MLX5_EXPANSION_GRE,
78 	MLX5_EXPANSION_MPLS,
79 	MLX5_EXPANSION_ETH,
80 	MLX5_EXPANSION_ETH_VLAN,
81 	MLX5_EXPANSION_VLAN,
82 	MLX5_EXPANSION_IPV4,
83 	MLX5_EXPANSION_IPV4_UDP,
84 	MLX5_EXPANSION_IPV4_TCP,
85 	MLX5_EXPANSION_IPV6,
86 	MLX5_EXPANSION_IPV6_UDP,
87 	MLX5_EXPANSION_IPV6_TCP,
88 };
89 
90 /** Supported expansion of items. */
91 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
92 	[MLX5_EXPANSION_ROOT] = {
93 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
94 						 MLX5_EXPANSION_IPV4,
95 						 MLX5_EXPANSION_IPV6),
96 		.type = RTE_FLOW_ITEM_TYPE_END,
97 	},
98 	[MLX5_EXPANSION_ROOT_OUTER] = {
99 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
100 						 MLX5_EXPANSION_OUTER_IPV4,
101 						 MLX5_EXPANSION_OUTER_IPV6),
102 		.type = RTE_FLOW_ITEM_TYPE_END,
103 	},
104 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
105 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
106 		.type = RTE_FLOW_ITEM_TYPE_END,
107 	},
108 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
109 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
110 		.type = RTE_FLOW_ITEM_TYPE_END,
111 	},
112 	[MLX5_EXPANSION_OUTER_ETH] = {
113 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
114 						 MLX5_EXPANSION_OUTER_IPV6,
115 						 MLX5_EXPANSION_MPLS),
116 		.type = RTE_FLOW_ITEM_TYPE_ETH,
117 		.rss_types = 0,
118 	},
119 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
120 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
121 		.type = RTE_FLOW_ITEM_TYPE_ETH,
122 		.rss_types = 0,
123 	},
124 	[MLX5_EXPANSION_OUTER_VLAN] = {
125 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
126 						 MLX5_EXPANSION_OUTER_IPV6),
127 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
128 	},
129 	[MLX5_EXPANSION_OUTER_IPV4] = {
130 		.next = RTE_FLOW_EXPAND_RSS_NEXT
131 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
132 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
133 			 MLX5_EXPANSION_GRE),
134 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
135 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
136 			ETH_RSS_NONFRAG_IPV4_OTHER,
137 	},
138 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
139 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
140 						 MLX5_EXPANSION_VXLAN_GPE),
141 		.type = RTE_FLOW_ITEM_TYPE_UDP,
142 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
143 	},
144 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
145 		.type = RTE_FLOW_ITEM_TYPE_TCP,
146 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
147 	},
148 	[MLX5_EXPANSION_OUTER_IPV6] = {
149 		.next = RTE_FLOW_EXPAND_RSS_NEXT
150 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
151 			 MLX5_EXPANSION_OUTER_IPV6_TCP),
152 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
153 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
154 			ETH_RSS_NONFRAG_IPV6_OTHER,
155 	},
156 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
157 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
158 						 MLX5_EXPANSION_VXLAN_GPE),
159 		.type = RTE_FLOW_ITEM_TYPE_UDP,
160 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
161 	},
162 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
163 		.type = RTE_FLOW_ITEM_TYPE_TCP,
164 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
165 	},
166 	[MLX5_EXPANSION_VXLAN] = {
167 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
168 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
169 	},
170 	[MLX5_EXPANSION_VXLAN_GPE] = {
171 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
172 						 MLX5_EXPANSION_IPV4,
173 						 MLX5_EXPANSION_IPV6),
174 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
175 	},
176 	[MLX5_EXPANSION_GRE] = {
177 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
178 		.type = RTE_FLOW_ITEM_TYPE_GRE,
179 	},
180 	[MLX5_EXPANSION_MPLS] = {
181 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
182 						 MLX5_EXPANSION_IPV6),
183 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
184 	},
185 	[MLX5_EXPANSION_ETH] = {
186 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
187 						 MLX5_EXPANSION_IPV6),
188 		.type = RTE_FLOW_ITEM_TYPE_ETH,
189 	},
190 	[MLX5_EXPANSION_ETH_VLAN] = {
191 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
192 		.type = RTE_FLOW_ITEM_TYPE_ETH,
193 	},
194 	[MLX5_EXPANSION_VLAN] = {
195 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
196 						 MLX5_EXPANSION_IPV6),
197 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
198 	},
199 	[MLX5_EXPANSION_IPV4] = {
200 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
201 						 MLX5_EXPANSION_IPV4_TCP),
202 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
203 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
204 			ETH_RSS_NONFRAG_IPV4_OTHER,
205 	},
206 	[MLX5_EXPANSION_IPV4_UDP] = {
207 		.type = RTE_FLOW_ITEM_TYPE_UDP,
208 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
209 	},
210 	[MLX5_EXPANSION_IPV4_TCP] = {
211 		.type = RTE_FLOW_ITEM_TYPE_TCP,
212 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
213 	},
214 	[MLX5_EXPANSION_IPV6] = {
215 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
216 						 MLX5_EXPANSION_IPV6_TCP),
217 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
218 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
219 			ETH_RSS_NONFRAG_IPV6_OTHER,
220 	},
221 	[MLX5_EXPANSION_IPV6_UDP] = {
222 		.type = RTE_FLOW_ITEM_TYPE_UDP,
223 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
224 	},
225 	[MLX5_EXPANSION_IPV6_TCP] = {
226 		.type = RTE_FLOW_ITEM_TYPE_TCP,
227 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
228 	},
229 };
230 
231 static const struct rte_flow_ops mlx5_flow_ops = {
232 	.validate = mlx5_flow_validate,
233 	.create = mlx5_flow_create,
234 	.destroy = mlx5_flow_destroy,
235 	.flush = mlx5_flow_flush,
236 	.isolate = mlx5_flow_isolate,
237 	.query = mlx5_flow_query,
238 };
239 
240 /* Convert FDIR request to Generic flow. */
241 struct mlx5_fdir {
242 	struct rte_flow_attr attr;
243 	struct rte_flow_item items[4];
244 	struct rte_flow_item_eth l2;
245 	struct rte_flow_item_eth l2_mask;
246 	union {
247 		struct rte_flow_item_ipv4 ipv4;
248 		struct rte_flow_item_ipv6 ipv6;
249 	} l3;
250 	union {
251 		struct rte_flow_item_ipv4 ipv4;
252 		struct rte_flow_item_ipv6 ipv6;
253 	} l3_mask;
254 	union {
255 		struct rte_flow_item_udp udp;
256 		struct rte_flow_item_tcp tcp;
257 	} l4;
258 	union {
259 		struct rte_flow_item_udp udp;
260 		struct rte_flow_item_tcp tcp;
261 	} l4_mask;
262 	struct rte_flow_action actions[2];
263 	struct rte_flow_action_queue queue;
264 };
265 
266 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
267 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
268 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
269 };
270 
271 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
272 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
273 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
274 	{ 9, 10, 11 }, { 12, 13, 14 },
275 };
276 
277 /* Tunnel information. */
278 struct mlx5_flow_tunnel_info {
279 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
280 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
281 };
282 
283 static struct mlx5_flow_tunnel_info tunnels_info[] = {
284 	{
285 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
286 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
287 	},
288 	{
289 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
290 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
291 	},
292 	{
293 		.tunnel = MLX5_FLOW_LAYER_GRE,
294 		.ptype = RTE_PTYPE_TUNNEL_GRE,
295 	},
296 	{
297 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
298 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
299 	},
300 	{
301 		.tunnel = MLX5_FLOW_LAYER_MPLS,
302 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
303 	},
304 };
305 
306 /**
307  * Discover the maximum number of priority available.
308  *
309  * @param[in] dev
310  *   Pointer to the Ethernet device structure.
311  *
312  * @return
313  *   number of supported flow priority on success, a negative errno
314  *   value otherwise and rte_errno is set.
315  */
316 int
317 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
318 {
319 	struct mlx5_priv *priv = dev->data->dev_private;
320 	struct {
321 		struct ibv_flow_attr attr;
322 		struct ibv_flow_spec_eth eth;
323 		struct ibv_flow_spec_action_drop drop;
324 	} flow_attr = {
325 		.attr = {
326 			.num_of_specs = 2,
327 			.port = (uint8_t)priv->ibv_port,
328 		},
329 		.eth = {
330 			.type = IBV_FLOW_SPEC_ETH,
331 			.size = sizeof(struct ibv_flow_spec_eth),
332 		},
333 		.drop = {
334 			.size = sizeof(struct ibv_flow_spec_action_drop),
335 			.type = IBV_FLOW_SPEC_ACTION_DROP,
336 		},
337 	};
338 	struct ibv_flow *flow;
339 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
340 	uint16_t vprio[] = { 8, 16 };
341 	int i;
342 	int priority = 0;
343 
344 	if (!drop) {
345 		rte_errno = ENOTSUP;
346 		return -rte_errno;
347 	}
348 	for (i = 0; i != RTE_DIM(vprio); i++) {
349 		flow_attr.attr.priority = vprio[i] - 1;
350 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
351 		if (!flow)
352 			break;
353 		claim_zero(mlx5_glue->destroy_flow(flow));
354 		priority = vprio[i];
355 	}
356 	mlx5_hrxq_drop_release(dev);
357 	switch (priority) {
358 	case 8:
359 		priority = RTE_DIM(priority_map_3);
360 		break;
361 	case 16:
362 		priority = RTE_DIM(priority_map_5);
363 		break;
364 	default:
365 		rte_errno = ENOTSUP;
366 		DRV_LOG(ERR,
367 			"port %u verbs maximum priority: %d expected 8/16",
368 			dev->data->port_id, priority);
369 		return -rte_errno;
370 	}
371 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
372 		dev->data->port_id, priority);
373 	return priority;
374 }
375 
376 /**
377  * Adjust flow priority based on the highest layer and the request priority.
378  *
379  * @param[in] dev
380  *   Pointer to the Ethernet device structure.
381  * @param[in] priority
382  *   The rule base priority.
383  * @param[in] subpriority
384  *   The priority based on the items.
385  *
386  * @return
387  *   The new priority.
388  */
389 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
390 				   uint32_t subpriority)
391 {
392 	uint32_t res = 0;
393 	struct mlx5_priv *priv = dev->data->dev_private;
394 
395 	switch (priv->config.flow_prio) {
396 	case RTE_DIM(priority_map_3):
397 		res = priority_map_3[priority][subpriority];
398 		break;
399 	case RTE_DIM(priority_map_5):
400 		res = priority_map_5[priority][subpriority];
401 		break;
402 	}
403 	return  res;
404 }
405 
406 /**
407  * Verify the @p item specifications (spec, last, mask) are compatible with the
408  * NIC capabilities.
409  *
410  * @param[in] item
411  *   Item specification.
412  * @param[in] mask
413  *   @p item->mask or flow default bit-masks.
414  * @param[in] nic_mask
415  *   Bit-masks covering supported fields by the NIC to compare with user mask.
416  * @param[in] size
417  *   Bit-masks size in bytes.
418  * @param[out] error
419  *   Pointer to error structure.
420  *
421  * @return
422  *   0 on success, a negative errno value otherwise and rte_errno is set.
423  */
424 int
425 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
426 			  const uint8_t *mask,
427 			  const uint8_t *nic_mask,
428 			  unsigned int size,
429 			  struct rte_flow_error *error)
430 {
431 	unsigned int i;
432 
433 	assert(nic_mask);
434 	for (i = 0; i < size; ++i)
435 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
436 			return rte_flow_error_set(error, ENOTSUP,
437 						  RTE_FLOW_ERROR_TYPE_ITEM,
438 						  item,
439 						  "mask enables non supported"
440 						  " bits");
441 	if (!item->spec && (item->mask || item->last))
442 		return rte_flow_error_set(error, EINVAL,
443 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
444 					  "mask/last without a spec is not"
445 					  " supported");
446 	if (item->spec && item->last) {
447 		uint8_t spec[size];
448 		uint8_t last[size];
449 		unsigned int i;
450 		int ret;
451 
452 		for (i = 0; i < size; ++i) {
453 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
454 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
455 		}
456 		ret = memcmp(spec, last, size);
457 		if (ret != 0)
458 			return rte_flow_error_set(error, EINVAL,
459 						  RTE_FLOW_ERROR_TYPE_ITEM,
460 						  item,
461 						  "range is not valid");
462 	}
463 	return 0;
464 }
465 
466 /**
467  * Adjust the hash fields according to the @p flow information.
468  *
469  * @param[in] dev_flow.
470  *   Pointer to the mlx5_flow.
471  * @param[in] tunnel
472  *   1 when the hash field is for a tunnel item.
473  * @param[in] layer_types
474  *   ETH_RSS_* types.
475  * @param[in] hash_fields
476  *   Item hash fields.
477  *
478  * @return
479  *   The hash fileds that should be used.
480  */
481 uint64_t
482 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
483 			    int tunnel __rte_unused, uint64_t layer_types,
484 			    uint64_t hash_fields)
485 {
486 	struct rte_flow *flow = dev_flow->flow;
487 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
488 	int rss_request_inner = flow->rss.level >= 2;
489 
490 	/* Check RSS hash level for tunnel. */
491 	if (tunnel && rss_request_inner)
492 		hash_fields |= IBV_RX_HASH_INNER;
493 	else if (tunnel || rss_request_inner)
494 		return 0;
495 #endif
496 	/* Check if requested layer matches RSS hash fields. */
497 	if (!(flow->rss.types & layer_types))
498 		return 0;
499 	return hash_fields;
500 }
501 
502 /**
503  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
504  * if several tunnel rules are used on this queue, the tunnel ptype will be
505  * cleared.
506  *
507  * @param rxq_ctrl
508  *   Rx queue to update.
509  */
510 static void
511 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
512 {
513 	unsigned int i;
514 	uint32_t tunnel_ptype = 0;
515 
516 	/* Look up for the ptype to use. */
517 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
518 		if (!rxq_ctrl->flow_tunnels_n[i])
519 			continue;
520 		if (!tunnel_ptype) {
521 			tunnel_ptype = tunnels_info[i].ptype;
522 		} else {
523 			tunnel_ptype = 0;
524 			break;
525 		}
526 	}
527 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
528 }
529 
530 /**
531  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
532  * flow.
533  *
534  * @param[in] dev
535  *   Pointer to the Ethernet device structure.
536  * @param[in] dev_flow
537  *   Pointer to device flow structure.
538  */
539 static void
540 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
541 {
542 	struct mlx5_priv *priv = dev->data->dev_private;
543 	struct rte_flow *flow = dev_flow->flow;
544 	const int mark = !!(flow->actions &
545 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
546 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
547 	unsigned int i;
548 
549 	for (i = 0; i != flow->rss.queue_num; ++i) {
550 		int idx = (*flow->queue)[i];
551 		struct mlx5_rxq_ctrl *rxq_ctrl =
552 			container_of((*priv->rxqs)[idx],
553 				     struct mlx5_rxq_ctrl, rxq);
554 
555 		if (mark) {
556 			rxq_ctrl->rxq.mark = 1;
557 			rxq_ctrl->flow_mark_n++;
558 		}
559 		if (tunnel) {
560 			unsigned int j;
561 
562 			/* Increase the counter matching the flow. */
563 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
564 				if ((tunnels_info[j].tunnel &
565 				     dev_flow->layers) ==
566 				    tunnels_info[j].tunnel) {
567 					rxq_ctrl->flow_tunnels_n[j]++;
568 					break;
569 				}
570 			}
571 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
572 		}
573 	}
574 }
575 
576 /**
577  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
578  *
579  * @param[in] dev
580  *   Pointer to the Ethernet device structure.
581  * @param[in] flow
582  *   Pointer to flow structure.
583  */
584 static void
585 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
586 {
587 	struct mlx5_flow *dev_flow;
588 
589 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
590 		flow_drv_rxq_flags_set(dev, dev_flow);
591 }
592 
593 /**
594  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
595  * device flow if no other flow uses it with the same kind of request.
596  *
597  * @param dev
598  *   Pointer to Ethernet device.
599  * @param[in] dev_flow
600  *   Pointer to the device flow.
601  */
602 static void
603 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
604 {
605 	struct mlx5_priv *priv = dev->data->dev_private;
606 	struct rte_flow *flow = dev_flow->flow;
607 	const int mark = !!(flow->actions &
608 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
609 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
610 	unsigned int i;
611 
612 	assert(dev->data->dev_started);
613 	for (i = 0; i != flow->rss.queue_num; ++i) {
614 		int idx = (*flow->queue)[i];
615 		struct mlx5_rxq_ctrl *rxq_ctrl =
616 			container_of((*priv->rxqs)[idx],
617 				     struct mlx5_rxq_ctrl, rxq);
618 
619 		if (mark) {
620 			rxq_ctrl->flow_mark_n--;
621 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
622 		}
623 		if (tunnel) {
624 			unsigned int j;
625 
626 			/* Decrease the counter matching the flow. */
627 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
628 				if ((tunnels_info[j].tunnel &
629 				     dev_flow->layers) ==
630 				    tunnels_info[j].tunnel) {
631 					rxq_ctrl->flow_tunnels_n[j]--;
632 					break;
633 				}
634 			}
635 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
636 		}
637 	}
638 }
639 
640 /**
641  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
642  * @p flow if no other flow uses it with the same kind of request.
643  *
644  * @param dev
645  *   Pointer to Ethernet device.
646  * @param[in] flow
647  *   Pointer to the flow.
648  */
649 static void
650 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
651 {
652 	struct mlx5_flow *dev_flow;
653 
654 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
655 		flow_drv_rxq_flags_trim(dev, dev_flow);
656 }
657 
658 /**
659  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
660  *
661  * @param dev
662  *   Pointer to Ethernet device.
663  */
664 static void
665 flow_rxq_flags_clear(struct rte_eth_dev *dev)
666 {
667 	struct mlx5_priv *priv = dev->data->dev_private;
668 	unsigned int i;
669 
670 	for (i = 0; i != priv->rxqs_n; ++i) {
671 		struct mlx5_rxq_ctrl *rxq_ctrl;
672 		unsigned int j;
673 
674 		if (!(*priv->rxqs)[i])
675 			continue;
676 		rxq_ctrl = container_of((*priv->rxqs)[i],
677 					struct mlx5_rxq_ctrl, rxq);
678 		rxq_ctrl->flow_mark_n = 0;
679 		rxq_ctrl->rxq.mark = 0;
680 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
681 			rxq_ctrl->flow_tunnels_n[j] = 0;
682 		rxq_ctrl->rxq.tunnel = 0;
683 	}
684 }
685 
686 /*
687  * Validate the flag action.
688  *
689  * @param[in] action_flags
690  *   Bit-fields that holds the actions detected until now.
691  * @param[in] attr
692  *   Attributes of flow that includes this action.
693  * @param[out] error
694  *   Pointer to error structure.
695  *
696  * @return
697  *   0 on success, a negative errno value otherwise and rte_errno is set.
698  */
699 int
700 mlx5_flow_validate_action_flag(uint64_t action_flags,
701 			       const struct rte_flow_attr *attr,
702 			       struct rte_flow_error *error)
703 {
704 
705 	if (action_flags & MLX5_FLOW_ACTION_DROP)
706 		return rte_flow_error_set(error, EINVAL,
707 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
708 					  "can't drop and flag in same flow");
709 	if (action_flags & MLX5_FLOW_ACTION_MARK)
710 		return rte_flow_error_set(error, EINVAL,
711 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
712 					  "can't mark and flag in same flow");
713 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
714 		return rte_flow_error_set(error, EINVAL,
715 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
716 					  "can't have 2 flag"
717 					  " actions in same flow");
718 	if (attr->egress)
719 		return rte_flow_error_set(error, ENOTSUP,
720 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
721 					  "flag action not supported for "
722 					  "egress");
723 	return 0;
724 }
725 
726 /*
727  * Validate the mark action.
728  *
729  * @param[in] action
730  *   Pointer to the queue action.
731  * @param[in] action_flags
732  *   Bit-fields that holds the actions detected until now.
733  * @param[in] attr
734  *   Attributes of flow that includes this action.
735  * @param[out] error
736  *   Pointer to error structure.
737  *
738  * @return
739  *   0 on success, a negative errno value otherwise and rte_errno is set.
740  */
741 int
742 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
743 			       uint64_t action_flags,
744 			       const struct rte_flow_attr *attr,
745 			       struct rte_flow_error *error)
746 {
747 	const struct rte_flow_action_mark *mark = action->conf;
748 
749 	if (!mark)
750 		return rte_flow_error_set(error, EINVAL,
751 					  RTE_FLOW_ERROR_TYPE_ACTION,
752 					  action,
753 					  "configuration cannot be null");
754 	if (mark->id >= MLX5_FLOW_MARK_MAX)
755 		return rte_flow_error_set(error, EINVAL,
756 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
757 					  &mark->id,
758 					  "mark id must in 0 <= id < "
759 					  RTE_STR(MLX5_FLOW_MARK_MAX));
760 	if (action_flags & MLX5_FLOW_ACTION_DROP)
761 		return rte_flow_error_set(error, EINVAL,
762 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
763 					  "can't drop and mark in same flow");
764 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
765 		return rte_flow_error_set(error, EINVAL,
766 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
767 					  "can't flag and mark in same flow");
768 	if (action_flags & MLX5_FLOW_ACTION_MARK)
769 		return rte_flow_error_set(error, EINVAL,
770 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
771 					  "can't have 2 mark actions in same"
772 					  " flow");
773 	if (attr->egress)
774 		return rte_flow_error_set(error, ENOTSUP,
775 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
776 					  "mark action not supported for "
777 					  "egress");
778 	return 0;
779 }
780 
781 /*
782  * Validate the drop action.
783  *
784  * @param[in] action_flags
785  *   Bit-fields that holds the actions detected until now.
786  * @param[in] attr
787  *   Attributes of flow that includes this action.
788  * @param[out] error
789  *   Pointer to error structure.
790  *
791  * @return
792  *   0 on success, a negative errno value otherwise and rte_errno is set.
793  */
794 int
795 mlx5_flow_validate_action_drop(uint64_t action_flags,
796 			       const struct rte_flow_attr *attr,
797 			       struct rte_flow_error *error)
798 {
799 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
800 		return rte_flow_error_set(error, EINVAL,
801 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
802 					  "can't drop and flag in same flow");
803 	if (action_flags & MLX5_FLOW_ACTION_MARK)
804 		return rte_flow_error_set(error, EINVAL,
805 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
806 					  "can't drop and mark in same flow");
807 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
808 		return rte_flow_error_set(error, EINVAL,
809 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
810 					  "can't have 2 fate actions in"
811 					  " same flow");
812 	if (attr->egress)
813 		return rte_flow_error_set(error, ENOTSUP,
814 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
815 					  "drop action not supported for "
816 					  "egress");
817 	return 0;
818 }
819 
820 /*
821  * Validate the queue action.
822  *
823  * @param[in] action
824  *   Pointer to the queue action.
825  * @param[in] action_flags
826  *   Bit-fields that holds the actions detected until now.
827  * @param[in] dev
828  *   Pointer to the Ethernet device structure.
829  * @param[in] attr
830  *   Attributes of flow that includes this action.
831  * @param[out] error
832  *   Pointer to error structure.
833  *
834  * @return
835  *   0 on success, a negative errno value otherwise and rte_errno is set.
836  */
837 int
838 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
839 				uint64_t action_flags,
840 				struct rte_eth_dev *dev,
841 				const struct rte_flow_attr *attr,
842 				struct rte_flow_error *error)
843 {
844 	struct mlx5_priv *priv = dev->data->dev_private;
845 	const struct rte_flow_action_queue *queue = action->conf;
846 
847 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
848 		return rte_flow_error_set(error, EINVAL,
849 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
850 					  "can't have 2 fate actions in"
851 					  " same flow");
852 	if (!priv->rxqs_n)
853 		return rte_flow_error_set(error, EINVAL,
854 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
855 					  NULL, "No Rx queues configured");
856 	if (queue->index >= priv->rxqs_n)
857 		return rte_flow_error_set(error, EINVAL,
858 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
859 					  &queue->index,
860 					  "queue index out of range");
861 	if (!(*priv->rxqs)[queue->index])
862 		return rte_flow_error_set(error, EINVAL,
863 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
864 					  &queue->index,
865 					  "queue is not configured");
866 	if (attr->egress)
867 		return rte_flow_error_set(error, ENOTSUP,
868 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
869 					  "queue action not supported for "
870 					  "egress");
871 	return 0;
872 }
873 
874 /*
875  * Validate the rss action.
876  *
877  * @param[in] action
878  *   Pointer to the queue action.
879  * @param[in] action_flags
880  *   Bit-fields that holds the actions detected until now.
881  * @param[in] dev
882  *   Pointer to the Ethernet device structure.
883  * @param[in] attr
884  *   Attributes of flow that includes this action.
885  * @param[out] error
886  *   Pointer to error structure.
887  *
888  * @return
889  *   0 on success, a negative errno value otherwise and rte_errno is set.
890  */
891 int
892 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
893 			      uint64_t action_flags,
894 			      struct rte_eth_dev *dev,
895 			      const struct rte_flow_attr *attr,
896 			      struct rte_flow_error *error)
897 {
898 	struct mlx5_priv *priv = dev->data->dev_private;
899 	const struct rte_flow_action_rss *rss = action->conf;
900 	unsigned int i;
901 
902 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
903 		return rte_flow_error_set(error, EINVAL,
904 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
905 					  "can't have 2 fate actions"
906 					  " in same flow");
907 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
908 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
909 		return rte_flow_error_set(error, ENOTSUP,
910 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
911 					  &rss->func,
912 					  "RSS hash function not supported");
913 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
914 	if (rss->level > 2)
915 #else
916 	if (rss->level > 1)
917 #endif
918 		return rte_flow_error_set(error, ENOTSUP,
919 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
920 					  &rss->level,
921 					  "tunnel RSS is not supported");
922 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
923 	if (rss->key_len == 0 && rss->key != NULL)
924 		return rte_flow_error_set(error, ENOTSUP,
925 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
926 					  &rss->key_len,
927 					  "RSS hash key length 0");
928 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
929 		return rte_flow_error_set(error, ENOTSUP,
930 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
931 					  &rss->key_len,
932 					  "RSS hash key too small");
933 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
934 		return rte_flow_error_set(error, ENOTSUP,
935 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
936 					  &rss->key_len,
937 					  "RSS hash key too large");
938 	if (rss->queue_num > priv->config.ind_table_max_size)
939 		return rte_flow_error_set(error, ENOTSUP,
940 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
941 					  &rss->queue_num,
942 					  "number of queues too large");
943 	if (rss->types & MLX5_RSS_HF_MASK)
944 		return rte_flow_error_set(error, ENOTSUP,
945 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
946 					  &rss->types,
947 					  "some RSS protocols are not"
948 					  " supported");
949 	if (!priv->rxqs_n)
950 		return rte_flow_error_set(error, EINVAL,
951 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
952 					  NULL, "No Rx queues configured");
953 	if (!rss->queue_num)
954 		return rte_flow_error_set(error, EINVAL,
955 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
956 					  NULL, "No queues configured");
957 	for (i = 0; i != rss->queue_num; ++i) {
958 		if (!(*priv->rxqs)[rss->queue[i]])
959 			return rte_flow_error_set
960 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
961 				 &rss->queue[i], "queue is not configured");
962 	}
963 	if (attr->egress)
964 		return rte_flow_error_set(error, ENOTSUP,
965 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
966 					  "rss action not supported for "
967 					  "egress");
968 	return 0;
969 }
970 
971 /*
972  * Validate the count action.
973  *
974  * @param[in] dev
975  *   Pointer to the Ethernet device structure.
976  * @param[in] attr
977  *   Attributes of flow that includes this action.
978  * @param[out] error
979  *   Pointer to error structure.
980  *
981  * @return
982  *   0 on success, a negative errno value otherwise and rte_errno is set.
983  */
984 int
985 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
986 				const struct rte_flow_attr *attr,
987 				struct rte_flow_error *error)
988 {
989 	if (attr->egress)
990 		return rte_flow_error_set(error, ENOTSUP,
991 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
992 					  "count action not supported for "
993 					  "egress");
994 	return 0;
995 }
996 
997 /**
998  * Verify the @p attributes will be correctly understood by the NIC and store
999  * them in the @p flow if everything is correct.
1000  *
1001  * @param[in] dev
1002  *   Pointer to the Ethernet device structure.
1003  * @param[in] attributes
1004  *   Pointer to flow attributes
1005  * @param[out] error
1006  *   Pointer to error structure.
1007  *
1008  * @return
1009  *   0 on success, a negative errno value otherwise and rte_errno is set.
1010  */
1011 int
1012 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1013 			      const struct rte_flow_attr *attributes,
1014 			      struct rte_flow_error *error)
1015 {
1016 	struct mlx5_priv *priv = dev->data->dev_private;
1017 	uint32_t priority_max = priv->config.flow_prio - 1;
1018 
1019 	if (attributes->group)
1020 		return rte_flow_error_set(error, ENOTSUP,
1021 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1022 					  NULL, "groups is not supported");
1023 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1024 	    attributes->priority >= priority_max)
1025 		return rte_flow_error_set(error, ENOTSUP,
1026 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1027 					  NULL, "priority out of range");
1028 	if (attributes->egress)
1029 		return rte_flow_error_set(error, ENOTSUP,
1030 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1031 					  "egress is not supported");
1032 	if (attributes->transfer)
1033 		return rte_flow_error_set(error, ENOTSUP,
1034 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1035 					  NULL, "transfer is not supported");
1036 	if (!attributes->ingress)
1037 		return rte_flow_error_set(error, EINVAL,
1038 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1039 					  NULL,
1040 					  "ingress attribute is mandatory");
1041 	return 0;
1042 }
1043 
1044 /**
1045  * Validate Ethernet item.
1046  *
1047  * @param[in] item
1048  *   Item specification.
1049  * @param[in] item_flags
1050  *   Bit-fields that holds the items detected until now.
1051  * @param[out] error
1052  *   Pointer to error structure.
1053  *
1054  * @return
1055  *   0 on success, a negative errno value otherwise and rte_errno is set.
1056  */
1057 int
1058 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1059 			    uint64_t item_flags,
1060 			    struct rte_flow_error *error)
1061 {
1062 	const struct rte_flow_item_eth *mask = item->mask;
1063 	const struct rte_flow_item_eth nic_mask = {
1064 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1065 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1066 		.type = RTE_BE16(0xffff),
1067 	};
1068 	int ret;
1069 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1070 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1071 				       MLX5_FLOW_LAYER_OUTER_L2;
1072 
1073 	if (item_flags & ethm)
1074 		return rte_flow_error_set(error, ENOTSUP,
1075 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1076 					  "multiple L2 layers not supported");
1077 	if (!mask)
1078 		mask = &rte_flow_item_eth_mask;
1079 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1080 					(const uint8_t *)&nic_mask,
1081 					sizeof(struct rte_flow_item_eth),
1082 					error);
1083 	return ret;
1084 }
1085 
1086 /**
1087  * Validate VLAN item.
1088  *
1089  * @param[in] item
1090  *   Item specification.
1091  * @param[in] item_flags
1092  *   Bit-fields that holds the items detected until now.
1093  * @param[out] error
1094  *   Pointer to error structure.
1095  *
1096  * @return
1097  *   0 on success, a negative errno value otherwise and rte_errno is set.
1098  */
1099 int
1100 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1101 			     uint64_t item_flags,
1102 			     struct rte_flow_error *error)
1103 {
1104 	const struct rte_flow_item_vlan *spec = item->spec;
1105 	const struct rte_flow_item_vlan *mask = item->mask;
1106 	const struct rte_flow_item_vlan nic_mask = {
1107 		.tci = RTE_BE16(0x0fff),
1108 		.inner_type = RTE_BE16(0xffff),
1109 	};
1110 	uint16_t vlan_tag = 0;
1111 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1112 	int ret;
1113 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1114 					MLX5_FLOW_LAYER_INNER_L4) :
1115 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1116 					MLX5_FLOW_LAYER_OUTER_L4);
1117 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1118 					MLX5_FLOW_LAYER_OUTER_VLAN;
1119 
1120 	if (item_flags & vlanm)
1121 		return rte_flow_error_set(error, EINVAL,
1122 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1123 					  "multiple VLAN layers not supported");
1124 	else if ((item_flags & l34m) != 0)
1125 		return rte_flow_error_set(error, EINVAL,
1126 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1127 					  "L2 layer cannot follow L3/L4 layer");
1128 	if (!mask)
1129 		mask = &rte_flow_item_vlan_mask;
1130 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1131 					(const uint8_t *)&nic_mask,
1132 					sizeof(struct rte_flow_item_vlan),
1133 					error);
1134 	if (ret)
1135 		return ret;
1136 	if (spec) {
1137 		vlan_tag = spec->tci;
1138 		vlan_tag &= mask->tci;
1139 	}
1140 	/*
1141 	 * From verbs perspective an empty VLAN is equivalent
1142 	 * to a packet without VLAN layer.
1143 	 */
1144 	if (!vlan_tag)
1145 		return rte_flow_error_set(error, EINVAL,
1146 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1147 					  item->spec,
1148 					  "VLAN cannot be empty");
1149 	return 0;
1150 }
1151 
1152 /**
1153  * Validate IPV4 item.
1154  *
1155  * @param[in] item
1156  *   Item specification.
1157  * @param[in] item_flags
1158  *   Bit-fields that holds the items detected until now.
1159  * @param[in] acc_mask
1160  *   Acceptable mask, if NULL default internal default mask
1161  *   will be used to check whether item fields are supported.
1162  * @param[out] error
1163  *   Pointer to error structure.
1164  *
1165  * @return
1166  *   0 on success, a negative errno value otherwise and rte_errno is set.
1167  */
1168 int
1169 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1170 			     uint64_t item_flags,
1171 			     const struct rte_flow_item_ipv4 *acc_mask,
1172 			     struct rte_flow_error *error)
1173 {
1174 	const struct rte_flow_item_ipv4 *mask = item->mask;
1175 	const struct rte_flow_item_ipv4 nic_mask = {
1176 		.hdr = {
1177 			.src_addr = RTE_BE32(0xffffffff),
1178 			.dst_addr = RTE_BE32(0xffffffff),
1179 			.type_of_service = 0xff,
1180 			.next_proto_id = 0xff,
1181 		},
1182 	};
1183 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1184 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1185 				      MLX5_FLOW_LAYER_OUTER_L3;
1186 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1187 				      MLX5_FLOW_LAYER_OUTER_L4;
1188 	int ret;
1189 
1190 	if (item_flags & l3m)
1191 		return rte_flow_error_set(error, ENOTSUP,
1192 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1193 					  "multiple L3 layers not supported");
1194 	else if (item_flags & l4m)
1195 		return rte_flow_error_set(error, EINVAL,
1196 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1197 					  "L3 cannot follow an L4 layer.");
1198 	if (!mask)
1199 		mask = &rte_flow_item_ipv4_mask;
1200 	else if (mask->hdr.next_proto_id != 0 &&
1201 		 mask->hdr.next_proto_id != 0xff)
1202 		return rte_flow_error_set(error, EINVAL,
1203 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1204 					  "partial mask is not supported"
1205 					  " for protocol");
1206 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1207 					acc_mask ? (const uint8_t *)acc_mask
1208 						 : (const uint8_t *)&nic_mask,
1209 					sizeof(struct rte_flow_item_ipv4),
1210 					error);
1211 	if (ret < 0)
1212 		return ret;
1213 	return 0;
1214 }
1215 
1216 /**
1217  * Validate IPV6 item.
1218  *
1219  * @param[in] item
1220  *   Item specification.
1221  * @param[in] item_flags
1222  *   Bit-fields that holds the items detected until now.
1223  * @param[in] acc_mask
1224  *   Acceptable mask, if NULL default internal default mask
1225  *   will be used to check whether item fields are supported.
1226  * @param[out] error
1227  *   Pointer to error structure.
1228  *
1229  * @return
1230  *   0 on success, a negative errno value otherwise and rte_errno is set.
1231  */
1232 int
1233 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1234 			     uint64_t item_flags,
1235 			     const struct rte_flow_item_ipv6 *acc_mask,
1236 			     struct rte_flow_error *error)
1237 {
1238 	const struct rte_flow_item_ipv6 *mask = item->mask;
1239 	const struct rte_flow_item_ipv6 nic_mask = {
1240 		.hdr = {
1241 			.src_addr =
1242 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1243 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1244 			.dst_addr =
1245 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1246 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1247 			.vtc_flow = RTE_BE32(0xffffffff),
1248 			.proto = 0xff,
1249 			.hop_limits = 0xff,
1250 		},
1251 	};
1252 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1253 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1254 				      MLX5_FLOW_LAYER_OUTER_L3;
1255 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1256 				      MLX5_FLOW_LAYER_OUTER_L4;
1257 	int ret;
1258 
1259 	if (item_flags & l3m)
1260 		return rte_flow_error_set(error, ENOTSUP,
1261 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1262 					  "multiple L3 layers not supported");
1263 	else if (item_flags & l4m)
1264 		return rte_flow_error_set(error, EINVAL,
1265 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1266 					  "L3 cannot follow an L4 layer.");
1267 	if (!mask)
1268 		mask = &rte_flow_item_ipv6_mask;
1269 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1270 					acc_mask ? (const uint8_t *)acc_mask
1271 						 : (const uint8_t *)&nic_mask,
1272 					sizeof(struct rte_flow_item_ipv6),
1273 					error);
1274 	if (ret < 0)
1275 		return ret;
1276 	return 0;
1277 }
1278 
1279 /**
1280  * Validate UDP item.
1281  *
1282  * @param[in] item
1283  *   Item specification.
1284  * @param[in] item_flags
1285  *   Bit-fields that holds the items detected until now.
1286  * @param[in] target_protocol
1287  *   The next protocol in the previous item.
1288  * @param[in] flow_mask
1289  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1290  * @param[out] error
1291  *   Pointer to error structure.
1292  *
1293  * @return
1294  *   0 on success, a negative errno value otherwise and rte_errno is set.
1295  */
1296 int
1297 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1298 			    uint64_t item_flags,
1299 			    uint8_t target_protocol,
1300 			    struct rte_flow_error *error)
1301 {
1302 	const struct rte_flow_item_udp *mask = item->mask;
1303 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1304 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1305 				      MLX5_FLOW_LAYER_OUTER_L3;
1306 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1307 				      MLX5_FLOW_LAYER_OUTER_L4;
1308 	int ret;
1309 
1310 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1311 		return rte_flow_error_set(error, EINVAL,
1312 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1313 					  "protocol filtering not compatible"
1314 					  " with UDP layer");
1315 	if (!(item_flags & l3m))
1316 		return rte_flow_error_set(error, EINVAL,
1317 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1318 					  "L3 is mandatory to filter on L4");
1319 	if (item_flags & l4m)
1320 		return rte_flow_error_set(error, EINVAL,
1321 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1322 					  "multiple L4 layers not supported");
1323 	if (!mask)
1324 		mask = &rte_flow_item_udp_mask;
1325 	ret = mlx5_flow_item_acceptable
1326 		(item, (const uint8_t *)mask,
1327 		 (const uint8_t *)&rte_flow_item_udp_mask,
1328 		 sizeof(struct rte_flow_item_udp), error);
1329 	if (ret < 0)
1330 		return ret;
1331 	return 0;
1332 }
1333 
1334 /**
1335  * Validate TCP item.
1336  *
1337  * @param[in] item
1338  *   Item specification.
1339  * @param[in] item_flags
1340  *   Bit-fields that holds the items detected until now.
1341  * @param[in] target_protocol
1342  *   The next protocol in the previous item.
1343  * @param[out] error
1344  *   Pointer to error structure.
1345  *
1346  * @return
1347  *   0 on success, a negative errno value otherwise and rte_errno is set.
1348  */
1349 int
1350 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1351 			    uint64_t item_flags,
1352 			    uint8_t target_protocol,
1353 			    const struct rte_flow_item_tcp *flow_mask,
1354 			    struct rte_flow_error *error)
1355 {
1356 	const struct rte_flow_item_tcp *mask = item->mask;
1357 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1358 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1359 				      MLX5_FLOW_LAYER_OUTER_L3;
1360 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1361 				      MLX5_FLOW_LAYER_OUTER_L4;
1362 	int ret;
1363 
1364 	assert(flow_mask);
1365 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1366 		return rte_flow_error_set(error, EINVAL,
1367 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1368 					  "protocol filtering not compatible"
1369 					  " with TCP layer");
1370 	if (!(item_flags & l3m))
1371 		return rte_flow_error_set(error, EINVAL,
1372 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1373 					  "L3 is mandatory to filter on L4");
1374 	if (item_flags & l4m)
1375 		return rte_flow_error_set(error, EINVAL,
1376 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1377 					  "multiple L4 layers not supported");
1378 	if (!mask)
1379 		mask = &rte_flow_item_tcp_mask;
1380 	ret = mlx5_flow_item_acceptable
1381 		(item, (const uint8_t *)mask,
1382 		 (const uint8_t *)flow_mask,
1383 		 sizeof(struct rte_flow_item_tcp), error);
1384 	if (ret < 0)
1385 		return ret;
1386 	return 0;
1387 }
1388 
1389 /**
1390  * Validate VXLAN item.
1391  *
1392  * @param[in] item
1393  *   Item specification.
1394  * @param[in] item_flags
1395  *   Bit-fields that holds the items detected until now.
1396  * @param[in] target_protocol
1397  *   The next protocol in the previous item.
1398  * @param[out] error
1399  *   Pointer to error structure.
1400  *
1401  * @return
1402  *   0 on success, a negative errno value otherwise and rte_errno is set.
1403  */
1404 int
1405 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1406 			      uint64_t item_flags,
1407 			      struct rte_flow_error *error)
1408 {
1409 	const struct rte_flow_item_vxlan *spec = item->spec;
1410 	const struct rte_flow_item_vxlan *mask = item->mask;
1411 	int ret;
1412 	union vni {
1413 		uint32_t vlan_id;
1414 		uint8_t vni[4];
1415 	} id = { .vlan_id = 0, };
1416 	uint32_t vlan_id = 0;
1417 
1418 
1419 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1420 		return rte_flow_error_set(error, ENOTSUP,
1421 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1422 					  "multiple tunnel layers not"
1423 					  " supported");
1424 	/*
1425 	 * Verify only UDPv4 is present as defined in
1426 	 * https://tools.ietf.org/html/rfc7348
1427 	 */
1428 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1429 		return rte_flow_error_set(error, EINVAL,
1430 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1431 					  "no outer UDP layer found");
1432 	if (!mask)
1433 		mask = &rte_flow_item_vxlan_mask;
1434 	ret = mlx5_flow_item_acceptable
1435 		(item, (const uint8_t *)mask,
1436 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1437 		 sizeof(struct rte_flow_item_vxlan),
1438 		 error);
1439 	if (ret < 0)
1440 		return ret;
1441 	if (spec) {
1442 		memcpy(&id.vni[1], spec->vni, 3);
1443 		vlan_id = id.vlan_id;
1444 		memcpy(&id.vni[1], mask->vni, 3);
1445 		vlan_id &= id.vlan_id;
1446 	}
1447 	/*
1448 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1449 	 * only this layer is defined in the Verbs specification it is
1450 	 * interpreted as wildcard and all packets will match this
1451 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1452 	 * udp), all packets matching the layers before will also
1453 	 * match this rule.  To avoid such situation, VNI 0 is
1454 	 * currently refused.
1455 	 */
1456 	if (!vlan_id)
1457 		return rte_flow_error_set(error, ENOTSUP,
1458 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1459 					  "VXLAN vni cannot be 0");
1460 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1461 		return rte_flow_error_set(error, ENOTSUP,
1462 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1463 					  "VXLAN tunnel must be fully defined");
1464 	return 0;
1465 }
1466 
1467 /**
1468  * Validate VXLAN_GPE item.
1469  *
1470  * @param[in] item
1471  *   Item specification.
1472  * @param[in] item_flags
1473  *   Bit-fields that holds the items detected until now.
1474  * @param[in] priv
1475  *   Pointer to the private data structure.
1476  * @param[in] target_protocol
1477  *   The next protocol in the previous item.
1478  * @param[out] error
1479  *   Pointer to error structure.
1480  *
1481  * @return
1482  *   0 on success, a negative errno value otherwise and rte_errno is set.
1483  */
1484 int
1485 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1486 				  uint64_t item_flags,
1487 				  struct rte_eth_dev *dev,
1488 				  struct rte_flow_error *error)
1489 {
1490 	struct mlx5_priv *priv = dev->data->dev_private;
1491 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1492 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1493 	int ret;
1494 	union vni {
1495 		uint32_t vlan_id;
1496 		uint8_t vni[4];
1497 	} id = { .vlan_id = 0, };
1498 	uint32_t vlan_id = 0;
1499 
1500 	if (!priv->config.l3_vxlan_en)
1501 		return rte_flow_error_set(error, ENOTSUP,
1502 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1503 					  "L3 VXLAN is not enabled by device"
1504 					  " parameter and/or not configured in"
1505 					  " firmware");
1506 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1507 		return rte_flow_error_set(error, ENOTSUP,
1508 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1509 					  "multiple tunnel layers not"
1510 					  " supported");
1511 	/*
1512 	 * Verify only UDPv4 is present as defined in
1513 	 * https://tools.ietf.org/html/rfc7348
1514 	 */
1515 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1516 		return rte_flow_error_set(error, EINVAL,
1517 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1518 					  "no outer UDP layer found");
1519 	if (!mask)
1520 		mask = &rte_flow_item_vxlan_gpe_mask;
1521 	ret = mlx5_flow_item_acceptable
1522 		(item, (const uint8_t *)mask,
1523 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1524 		 sizeof(struct rte_flow_item_vxlan_gpe),
1525 		 error);
1526 	if (ret < 0)
1527 		return ret;
1528 	if (spec) {
1529 		if (spec->protocol)
1530 			return rte_flow_error_set(error, ENOTSUP,
1531 						  RTE_FLOW_ERROR_TYPE_ITEM,
1532 						  item,
1533 						  "VxLAN-GPE protocol"
1534 						  " not supported");
1535 		memcpy(&id.vni[1], spec->vni, 3);
1536 		vlan_id = id.vlan_id;
1537 		memcpy(&id.vni[1], mask->vni, 3);
1538 		vlan_id &= id.vlan_id;
1539 	}
1540 	/*
1541 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1542 	 * layer is defined in the Verbs specification it is interpreted as
1543 	 * wildcard and all packets will match this rule, if it follows a full
1544 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1545 	 * before will also match this rule.  To avoid such situation, VNI 0
1546 	 * is currently refused.
1547 	 */
1548 	if (!vlan_id)
1549 		return rte_flow_error_set(error, ENOTSUP,
1550 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1551 					  "VXLAN-GPE vni cannot be 0");
1552 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1553 		return rte_flow_error_set(error, ENOTSUP,
1554 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1555 					  "VXLAN-GPE tunnel must be fully"
1556 					  " defined");
1557 	return 0;
1558 }
1559 
1560 /**
1561  * Validate GRE item.
1562  *
1563  * @param[in] item
1564  *   Item specification.
1565  * @param[in] item_flags
1566  *   Bit flags to mark detected items.
1567  * @param[in] target_protocol
1568  *   The next protocol in the previous item.
1569  * @param[out] error
1570  *   Pointer to error structure.
1571  *
1572  * @return
1573  *   0 on success, a negative errno value otherwise and rte_errno is set.
1574  */
1575 int
1576 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1577 			    uint64_t item_flags,
1578 			    uint8_t target_protocol,
1579 			    struct rte_flow_error *error)
1580 {
1581 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1582 	const struct rte_flow_item_gre *mask = item->mask;
1583 	int ret;
1584 
1585 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1586 		return rte_flow_error_set(error, EINVAL,
1587 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1588 					  "protocol filtering not compatible"
1589 					  " with this GRE layer");
1590 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1591 		return rte_flow_error_set(error, ENOTSUP,
1592 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1593 					  "multiple tunnel layers not"
1594 					  " supported");
1595 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1596 		return rte_flow_error_set(error, ENOTSUP,
1597 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1598 					  "L3 Layer is missing");
1599 	if (!mask)
1600 		mask = &rte_flow_item_gre_mask;
1601 	ret = mlx5_flow_item_acceptable
1602 		(item, (const uint8_t *)mask,
1603 		 (const uint8_t *)&rte_flow_item_gre_mask,
1604 		 sizeof(struct rte_flow_item_gre), error);
1605 	if (ret < 0)
1606 		return ret;
1607 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1608 	if (spec && (spec->protocol & mask->protocol))
1609 		return rte_flow_error_set(error, ENOTSUP,
1610 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1611 					  "without MPLS support the"
1612 					  " specification cannot be used for"
1613 					  " filtering");
1614 #endif
1615 	return 0;
1616 }
1617 
1618 /**
1619  * Validate MPLS item.
1620  *
1621  * @param[in] dev
1622  *   Pointer to the rte_eth_dev structure.
1623  * @param[in] item
1624  *   Item specification.
1625  * @param[in] item_flags
1626  *   Bit-fields that holds the items detected until now.
1627  * @param[in] prev_layer
1628  *   The protocol layer indicated in previous item.
1629  * @param[out] error
1630  *   Pointer to error structure.
1631  *
1632  * @return
1633  *   0 on success, a negative errno value otherwise and rte_errno is set.
1634  */
1635 int
1636 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1637 			     const struct rte_flow_item *item __rte_unused,
1638 			     uint64_t item_flags __rte_unused,
1639 			     uint64_t prev_layer __rte_unused,
1640 			     struct rte_flow_error *error)
1641 {
1642 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1643 	const struct rte_flow_item_mpls *mask = item->mask;
1644 	struct mlx5_priv *priv = dev->data->dev_private;
1645 	int ret;
1646 
1647 	if (!priv->config.mpls_en)
1648 		return rte_flow_error_set(error, ENOTSUP,
1649 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1650 					  "MPLS not supported or"
1651 					  " disabled in firmware"
1652 					  " configuration.");
1653 	/* MPLS over IP, UDP, GRE is allowed */
1654 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1655 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
1656 			    MLX5_FLOW_LAYER_GRE)))
1657 		return rte_flow_error_set(error, EINVAL,
1658 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1659 					  "protocol filtering not compatible"
1660 					  " with MPLS layer");
1661 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1662 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1663 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
1664 		return rte_flow_error_set(error, ENOTSUP,
1665 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1666 					  "multiple tunnel layers not"
1667 					  " supported");
1668 	if (!mask)
1669 		mask = &rte_flow_item_mpls_mask;
1670 	ret = mlx5_flow_item_acceptable
1671 		(item, (const uint8_t *)mask,
1672 		 (const uint8_t *)&rte_flow_item_mpls_mask,
1673 		 sizeof(struct rte_flow_item_mpls), error);
1674 	if (ret < 0)
1675 		return ret;
1676 	return 0;
1677 #endif
1678 	return rte_flow_error_set(error, ENOTSUP,
1679 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
1680 				  "MPLS is not supported by Verbs, please"
1681 				  " update.");
1682 }
1683 
1684 static int
1685 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1686 		   const struct rte_flow_attr *attr __rte_unused,
1687 		   const struct rte_flow_item items[] __rte_unused,
1688 		   const struct rte_flow_action actions[] __rte_unused,
1689 		   struct rte_flow_error *error __rte_unused)
1690 {
1691 	rte_errno = ENOTSUP;
1692 	return -rte_errno;
1693 }
1694 
1695 static struct mlx5_flow *
1696 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1697 		  const struct rte_flow_item items[] __rte_unused,
1698 		  const struct rte_flow_action actions[] __rte_unused,
1699 		  struct rte_flow_error *error __rte_unused)
1700 {
1701 	rte_errno = ENOTSUP;
1702 	return NULL;
1703 }
1704 
1705 static int
1706 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1707 		    struct mlx5_flow *dev_flow __rte_unused,
1708 		    const struct rte_flow_attr *attr __rte_unused,
1709 		    const struct rte_flow_item items[] __rte_unused,
1710 		    const struct rte_flow_action actions[] __rte_unused,
1711 		    struct rte_flow_error *error __rte_unused)
1712 {
1713 	rte_errno = ENOTSUP;
1714 	return -rte_errno;
1715 }
1716 
1717 static int
1718 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1719 		struct rte_flow *flow __rte_unused,
1720 		struct rte_flow_error *error __rte_unused)
1721 {
1722 	rte_errno = ENOTSUP;
1723 	return -rte_errno;
1724 }
1725 
1726 static void
1727 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1728 		 struct rte_flow *flow __rte_unused)
1729 {
1730 }
1731 
1732 static void
1733 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1734 		  struct rte_flow *flow __rte_unused)
1735 {
1736 }
1737 
1738 static int
1739 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1740 		struct rte_flow *flow __rte_unused,
1741 		const struct rte_flow_action *actions __rte_unused,
1742 		void *data __rte_unused,
1743 		struct rte_flow_error *error __rte_unused)
1744 {
1745 	rte_errno = ENOTSUP;
1746 	return -rte_errno;
1747 }
1748 
1749 /* Void driver to protect from null pointer reference. */
1750 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1751 	.validate = flow_null_validate,
1752 	.prepare = flow_null_prepare,
1753 	.translate = flow_null_translate,
1754 	.apply = flow_null_apply,
1755 	.remove = flow_null_remove,
1756 	.destroy = flow_null_destroy,
1757 	.query = flow_null_query,
1758 };
1759 
1760 /**
1761  * Select flow driver type according to flow attributes and device
1762  * configuration.
1763  *
1764  * @param[in] dev
1765  *   Pointer to the dev structure.
1766  * @param[in] attr
1767  *   Pointer to the flow attributes.
1768  *
1769  * @return
1770  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1771  */
1772 static enum mlx5_flow_drv_type
1773 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1774 {
1775 	struct mlx5_priv *priv = dev->data->dev_private;
1776 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1777 
1778 	if (attr->transfer)
1779 		type = MLX5_FLOW_TYPE_TCF;
1780 	else
1781 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1782 						 MLX5_FLOW_TYPE_VERBS;
1783 	return type;
1784 }
1785 
1786 #define flow_get_drv_ops(type) flow_drv_ops[type]
1787 
1788 /**
1789  * Flow driver validation API. This abstracts calling driver specific functions.
1790  * The type of flow driver is determined according to flow attributes.
1791  *
1792  * @param[in] dev
1793  *   Pointer to the dev structure.
1794  * @param[in] attr
1795  *   Pointer to the flow attributes.
1796  * @param[in] items
1797  *   Pointer to the list of items.
1798  * @param[in] actions
1799  *   Pointer to the list of actions.
1800  * @param[out] error
1801  *   Pointer to the error structure.
1802  *
1803  * @return
1804  *   0 on success, a negative errno value otherwise and rte_errno is set.
1805  */
1806 static inline int
1807 flow_drv_validate(struct rte_eth_dev *dev,
1808 		  const struct rte_flow_attr *attr,
1809 		  const struct rte_flow_item items[],
1810 		  const struct rte_flow_action actions[],
1811 		  struct rte_flow_error *error)
1812 {
1813 	const struct mlx5_flow_driver_ops *fops;
1814 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1815 
1816 	fops = flow_get_drv_ops(type);
1817 	return fops->validate(dev, attr, items, actions, error);
1818 }
1819 
1820 /**
1821  * Flow driver preparation API. This abstracts calling driver specific
1822  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1823  * calculates the size of memory required for device flow, allocates the memory,
1824  * initializes the device flow and returns the pointer.
1825  *
1826  * @note
1827  *   This function initializes device flow structure such as dv, tcf or verbs in
1828  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1829  *   rest. For example, adding returning device flow to flow->dev_flow list and
1830  *   setting backward reference to the flow should be done out of this function.
1831  *   layers field is not filled either.
1832  *
1833  * @param[in] attr
1834  *   Pointer to the flow attributes.
1835  * @param[in] items
1836  *   Pointer to the list of items.
1837  * @param[in] actions
1838  *   Pointer to the list of actions.
1839  * @param[out] error
1840  *   Pointer to the error structure.
1841  *
1842  * @return
1843  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
1844  */
1845 static inline struct mlx5_flow *
1846 flow_drv_prepare(const struct rte_flow *flow,
1847 		 const struct rte_flow_attr *attr,
1848 		 const struct rte_flow_item items[],
1849 		 const struct rte_flow_action actions[],
1850 		 struct rte_flow_error *error)
1851 {
1852 	const struct mlx5_flow_driver_ops *fops;
1853 	enum mlx5_flow_drv_type type = flow->drv_type;
1854 
1855 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1856 	fops = flow_get_drv_ops(type);
1857 	return fops->prepare(attr, items, actions, error);
1858 }
1859 
1860 /**
1861  * Flow driver translation API. This abstracts calling driver specific
1862  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1863  * translates a generic flow into a driver flow. flow_drv_prepare() must
1864  * precede.
1865  *
1866  * @note
1867  *   dev_flow->layers could be filled as a result of parsing during translation
1868  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1869  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1870  *   flow->actions could be overwritten even though all the expanded dev_flows
1871  *   have the same actions.
1872  *
1873  * @param[in] dev
1874  *   Pointer to the rte dev structure.
1875  * @param[in, out] dev_flow
1876  *   Pointer to the mlx5 flow.
1877  * @param[in] attr
1878  *   Pointer to the flow attributes.
1879  * @param[in] items
1880  *   Pointer to the list of items.
1881  * @param[in] actions
1882  *   Pointer to the list of actions.
1883  * @param[out] error
1884  *   Pointer to the error structure.
1885  *
1886  * @return
1887  *   0 on success, a negative errno value otherwise and rte_errno is set.
1888  */
1889 static inline int
1890 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1891 		   const struct rte_flow_attr *attr,
1892 		   const struct rte_flow_item items[],
1893 		   const struct rte_flow_action actions[],
1894 		   struct rte_flow_error *error)
1895 {
1896 	const struct mlx5_flow_driver_ops *fops;
1897 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1898 
1899 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1900 	fops = flow_get_drv_ops(type);
1901 	return fops->translate(dev, dev_flow, attr, items, actions, error);
1902 }
1903 
1904 /**
1905  * Flow driver apply API. This abstracts calling driver specific functions.
1906  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1907  * translated driver flows on to device. flow_drv_translate() must precede.
1908  *
1909  * @param[in] dev
1910  *   Pointer to Ethernet device structure.
1911  * @param[in, out] flow
1912  *   Pointer to flow structure.
1913  * @param[out] error
1914  *   Pointer to error structure.
1915  *
1916  * @return
1917  *   0 on success, a negative errno value otherwise and rte_errno is set.
1918  */
1919 static inline int
1920 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1921 	       struct rte_flow_error *error)
1922 {
1923 	const struct mlx5_flow_driver_ops *fops;
1924 	enum mlx5_flow_drv_type type = flow->drv_type;
1925 
1926 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1927 	fops = flow_get_drv_ops(type);
1928 	return fops->apply(dev, flow, error);
1929 }
1930 
1931 /**
1932  * Flow driver remove API. This abstracts calling driver specific functions.
1933  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1934  * on device. All the resources of the flow should be freed by calling
1935  * flow_drv_destroy().
1936  *
1937  * @param[in] dev
1938  *   Pointer to Ethernet device.
1939  * @param[in, out] flow
1940  *   Pointer to flow structure.
1941  */
1942 static inline void
1943 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1944 {
1945 	const struct mlx5_flow_driver_ops *fops;
1946 	enum mlx5_flow_drv_type type = flow->drv_type;
1947 
1948 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1949 	fops = flow_get_drv_ops(type);
1950 	fops->remove(dev, flow);
1951 }
1952 
1953 /**
1954  * Flow driver destroy API. This abstracts calling driver specific functions.
1955  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1956  * on device and releases resources of the flow.
1957  *
1958  * @param[in] dev
1959  *   Pointer to Ethernet device.
1960  * @param[in, out] flow
1961  *   Pointer to flow structure.
1962  */
1963 static inline void
1964 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1965 {
1966 	const struct mlx5_flow_driver_ops *fops;
1967 	enum mlx5_flow_drv_type type = flow->drv_type;
1968 
1969 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1970 	fops = flow_get_drv_ops(type);
1971 	fops->destroy(dev, flow);
1972 }
1973 
1974 /**
1975  * Validate a flow supported by the NIC.
1976  *
1977  * @see rte_flow_validate()
1978  * @see rte_flow_ops
1979  */
1980 int
1981 mlx5_flow_validate(struct rte_eth_dev *dev,
1982 		   const struct rte_flow_attr *attr,
1983 		   const struct rte_flow_item items[],
1984 		   const struct rte_flow_action actions[],
1985 		   struct rte_flow_error *error)
1986 {
1987 	int ret;
1988 
1989 	ret = flow_drv_validate(dev, attr, items, actions, error);
1990 	if (ret < 0)
1991 		return ret;
1992 	return 0;
1993 }
1994 
1995 /**
1996  * Get RSS action from the action list.
1997  *
1998  * @param[in] actions
1999  *   Pointer to the list of actions.
2000  *
2001  * @return
2002  *   Pointer to the RSS action if exist, else return NULL.
2003  */
2004 static const struct rte_flow_action_rss*
2005 flow_get_rss_action(const struct rte_flow_action actions[])
2006 {
2007 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2008 		switch (actions->type) {
2009 		case RTE_FLOW_ACTION_TYPE_RSS:
2010 			return (const struct rte_flow_action_rss *)
2011 			       actions->conf;
2012 		default:
2013 			break;
2014 		}
2015 	}
2016 	return NULL;
2017 }
2018 
2019 static unsigned int
2020 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2021 {
2022 	const struct rte_flow_item *item;
2023 	unsigned int has_vlan = 0;
2024 
2025 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2026 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2027 			has_vlan = 1;
2028 			break;
2029 		}
2030 	}
2031 	if (has_vlan)
2032 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2033 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2034 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2035 			       MLX5_EXPANSION_ROOT_OUTER;
2036 }
2037 
2038 /**
2039  * Create a flow and add it to @p list.
2040  *
2041  * @param dev
2042  *   Pointer to Ethernet device.
2043  * @param list
2044  *   Pointer to a TAILQ flow list.
2045  * @param[in] attr
2046  *   Flow rule attributes.
2047  * @param[in] items
2048  *   Pattern specification (list terminated by the END pattern item).
2049  * @param[in] actions
2050  *   Associated actions (list terminated by the END action).
2051  * @param[out] error
2052  *   Perform verbose error reporting if not NULL.
2053  *
2054  * @return
2055  *   A flow on success, NULL otherwise and rte_errno is set.
2056  */
2057 static struct rte_flow *
2058 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2059 		 const struct rte_flow_attr *attr,
2060 		 const struct rte_flow_item items[],
2061 		 const struct rte_flow_action actions[],
2062 		 struct rte_flow_error *error)
2063 {
2064 	struct rte_flow *flow = NULL;
2065 	struct mlx5_flow *dev_flow;
2066 	const struct rte_flow_action_rss *rss;
2067 	union {
2068 		struct rte_flow_expand_rss buf;
2069 		uint8_t buffer[2048];
2070 	} expand_buffer;
2071 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2072 	int ret;
2073 	uint32_t i;
2074 	uint32_t flow_size;
2075 
2076 	ret = flow_drv_validate(dev, attr, items, actions, error);
2077 	if (ret < 0)
2078 		return NULL;
2079 	flow_size = sizeof(struct rte_flow);
2080 	rss = flow_get_rss_action(actions);
2081 	if (rss)
2082 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2083 					    sizeof(void *));
2084 	else
2085 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2086 	flow = rte_calloc(__func__, 1, flow_size, 0);
2087 	flow->drv_type = flow_get_drv_type(dev, attr);
2088 	flow->ingress = attr->ingress;
2089 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2090 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2091 	flow->queue = (void *)(flow + 1);
2092 	LIST_INIT(&flow->dev_flows);
2093 	if (rss && rss->types) {
2094 		unsigned int graph_root;
2095 
2096 		graph_root = find_graph_root(items, rss->level);
2097 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2098 					  items, rss->types,
2099 					  mlx5_support_expansion,
2100 					  graph_root);
2101 		assert(ret > 0 &&
2102 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2103 	} else {
2104 		buf->entries = 1;
2105 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2106 	}
2107 	for (i = 0; i < buf->entries; ++i) {
2108 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2109 					    actions, error);
2110 		if (!dev_flow)
2111 			goto error;
2112 		dev_flow->flow = flow;
2113 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2114 		ret = flow_drv_translate(dev, dev_flow, attr,
2115 					 buf->entry[i].pattern,
2116 					 actions, error);
2117 		if (ret < 0)
2118 			goto error;
2119 	}
2120 	if (dev->data->dev_started) {
2121 		ret = flow_drv_apply(dev, flow, error);
2122 		if (ret < 0)
2123 			goto error;
2124 	}
2125 	TAILQ_INSERT_TAIL(list, flow, next);
2126 	flow_rxq_flags_set(dev, flow);
2127 	return flow;
2128 error:
2129 	ret = rte_errno; /* Save rte_errno before cleanup. */
2130 	assert(flow);
2131 	flow_drv_destroy(dev, flow);
2132 	rte_free(flow);
2133 	rte_errno = ret; /* Restore rte_errno. */
2134 	return NULL;
2135 }
2136 
2137 /**
2138  * Create a flow.
2139  *
2140  * @see rte_flow_create()
2141  * @see rte_flow_ops
2142  */
2143 struct rte_flow *
2144 mlx5_flow_create(struct rte_eth_dev *dev,
2145 		 const struct rte_flow_attr *attr,
2146 		 const struct rte_flow_item items[],
2147 		 const struct rte_flow_action actions[],
2148 		 struct rte_flow_error *error)
2149 {
2150 	struct mlx5_priv *priv = (struct mlx5_priv *)dev->data->dev_private;
2151 
2152 	return flow_list_create(dev, &priv->flows,
2153 				attr, items, actions, error);
2154 }
2155 
2156 /**
2157  * Destroy a flow in a list.
2158  *
2159  * @param dev
2160  *   Pointer to Ethernet device.
2161  * @param list
2162  *   Pointer to a TAILQ flow list.
2163  * @param[in] flow
2164  *   Flow to destroy.
2165  */
2166 static void
2167 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2168 		  struct rte_flow *flow)
2169 {
2170 	/*
2171 	 * Update RX queue flags only if port is started, otherwise it is
2172 	 * already clean.
2173 	 */
2174 	if (dev->data->dev_started)
2175 		flow_rxq_flags_trim(dev, flow);
2176 	flow_drv_destroy(dev, flow);
2177 	TAILQ_REMOVE(list, flow, next);
2178 	rte_free(flow->fdir);
2179 	rte_free(flow);
2180 }
2181 
2182 /**
2183  * Destroy all flows.
2184  *
2185  * @param dev
2186  *   Pointer to Ethernet device.
2187  * @param list
2188  *   Pointer to a TAILQ flow list.
2189  */
2190 void
2191 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2192 {
2193 	while (!TAILQ_EMPTY(list)) {
2194 		struct rte_flow *flow;
2195 
2196 		flow = TAILQ_FIRST(list);
2197 		flow_list_destroy(dev, list, flow);
2198 	}
2199 }
2200 
2201 /**
2202  * Remove all flows.
2203  *
2204  * @param dev
2205  *   Pointer to Ethernet device.
2206  * @param list
2207  *   Pointer to a TAILQ flow list.
2208  */
2209 void
2210 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2211 {
2212 	struct rte_flow *flow;
2213 
2214 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2215 		flow_drv_remove(dev, flow);
2216 	flow_rxq_flags_clear(dev);
2217 }
2218 
2219 /**
2220  * Add all flows.
2221  *
2222  * @param dev
2223  *   Pointer to Ethernet device.
2224  * @param list
2225  *   Pointer to a TAILQ flow list.
2226  *
2227  * @return
2228  *   0 on success, a negative errno value otherwise and rte_errno is set.
2229  */
2230 int
2231 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2232 {
2233 	struct rte_flow *flow;
2234 	struct rte_flow_error error;
2235 	int ret = 0;
2236 
2237 	TAILQ_FOREACH(flow, list, next) {
2238 		ret = flow_drv_apply(dev, flow, &error);
2239 		if (ret < 0)
2240 			goto error;
2241 		flow_rxq_flags_set(dev, flow);
2242 	}
2243 	return 0;
2244 error:
2245 	ret = rte_errno; /* Save rte_errno before cleanup. */
2246 	mlx5_flow_stop(dev, list);
2247 	rte_errno = ret; /* Restore rte_errno. */
2248 	return -rte_errno;
2249 }
2250 
2251 /**
2252  * Verify the flow list is empty
2253  *
2254  * @param dev
2255  *  Pointer to Ethernet device.
2256  *
2257  * @return the number of flows not released.
2258  */
2259 int
2260 mlx5_flow_verify(struct rte_eth_dev *dev)
2261 {
2262 	struct mlx5_priv *priv = dev->data->dev_private;
2263 	struct rte_flow *flow;
2264 	int ret = 0;
2265 
2266 	TAILQ_FOREACH(flow, &priv->flows, next) {
2267 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
2268 			dev->data->port_id, (void *)flow);
2269 		++ret;
2270 	}
2271 	return ret;
2272 }
2273 
2274 /**
2275  * Enable a control flow configured from the control plane.
2276  *
2277  * @param dev
2278  *   Pointer to Ethernet device.
2279  * @param eth_spec
2280  *   An Ethernet flow spec to apply.
2281  * @param eth_mask
2282  *   An Ethernet flow mask to apply.
2283  * @param vlan_spec
2284  *   A VLAN flow spec to apply.
2285  * @param vlan_mask
2286  *   A VLAN flow mask to apply.
2287  *
2288  * @return
2289  *   0 on success, a negative errno value otherwise and rte_errno is set.
2290  */
2291 int
2292 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2293 		    struct rte_flow_item_eth *eth_spec,
2294 		    struct rte_flow_item_eth *eth_mask,
2295 		    struct rte_flow_item_vlan *vlan_spec,
2296 		    struct rte_flow_item_vlan *vlan_mask)
2297 {
2298 	struct mlx5_priv *priv = dev->data->dev_private;
2299 	const struct rte_flow_attr attr = {
2300 		.ingress = 1,
2301 		.priority = MLX5_FLOW_PRIO_RSVD,
2302 	};
2303 	struct rte_flow_item items[] = {
2304 		{
2305 			.type = RTE_FLOW_ITEM_TYPE_ETH,
2306 			.spec = eth_spec,
2307 			.last = NULL,
2308 			.mask = eth_mask,
2309 		},
2310 		{
2311 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2312 					      RTE_FLOW_ITEM_TYPE_END,
2313 			.spec = vlan_spec,
2314 			.last = NULL,
2315 			.mask = vlan_mask,
2316 		},
2317 		{
2318 			.type = RTE_FLOW_ITEM_TYPE_END,
2319 		},
2320 	};
2321 	uint16_t queue[priv->reta_idx_n];
2322 	struct rte_flow_action_rss action_rss = {
2323 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2324 		.level = 0,
2325 		.types = priv->rss_conf.rss_hf,
2326 		.key_len = priv->rss_conf.rss_key_len,
2327 		.queue_num = priv->reta_idx_n,
2328 		.key = priv->rss_conf.rss_key,
2329 		.queue = queue,
2330 	};
2331 	struct rte_flow_action actions[] = {
2332 		{
2333 			.type = RTE_FLOW_ACTION_TYPE_RSS,
2334 			.conf = &action_rss,
2335 		},
2336 		{
2337 			.type = RTE_FLOW_ACTION_TYPE_END,
2338 		},
2339 	};
2340 	struct rte_flow *flow;
2341 	struct rte_flow_error error;
2342 	unsigned int i;
2343 
2344 	if (!priv->reta_idx_n || !priv->rxqs_n) {
2345 		return 0;
2346 	}
2347 	for (i = 0; i != priv->reta_idx_n; ++i)
2348 		queue[i] = (*priv->reta_idx)[i];
2349 	flow = flow_list_create(dev, &priv->ctrl_flows,
2350 				&attr, items, actions, &error);
2351 	if (!flow)
2352 		return -rte_errno;
2353 	return 0;
2354 }
2355 
2356 /**
2357  * Enable a flow control configured from the control plane.
2358  *
2359  * @param dev
2360  *   Pointer to Ethernet device.
2361  * @param eth_spec
2362  *   An Ethernet flow spec to apply.
2363  * @param eth_mask
2364  *   An Ethernet flow mask to apply.
2365  *
2366  * @return
2367  *   0 on success, a negative errno value otherwise and rte_errno is set.
2368  */
2369 int
2370 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2371 	       struct rte_flow_item_eth *eth_spec,
2372 	       struct rte_flow_item_eth *eth_mask)
2373 {
2374 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2375 }
2376 
2377 /**
2378  * Destroy a flow.
2379  *
2380  * @see rte_flow_destroy()
2381  * @see rte_flow_ops
2382  */
2383 int
2384 mlx5_flow_destroy(struct rte_eth_dev *dev,
2385 		  struct rte_flow *flow,
2386 		  struct rte_flow_error *error __rte_unused)
2387 {
2388 	struct mlx5_priv *priv = dev->data->dev_private;
2389 
2390 	flow_list_destroy(dev, &priv->flows, flow);
2391 	return 0;
2392 }
2393 
2394 /**
2395  * Destroy all flows.
2396  *
2397  * @see rte_flow_flush()
2398  * @see rte_flow_ops
2399  */
2400 int
2401 mlx5_flow_flush(struct rte_eth_dev *dev,
2402 		struct rte_flow_error *error __rte_unused)
2403 {
2404 	struct mlx5_priv *priv = dev->data->dev_private;
2405 
2406 	mlx5_flow_list_flush(dev, &priv->flows);
2407 	return 0;
2408 }
2409 
2410 /**
2411  * Isolated mode.
2412  *
2413  * @see rte_flow_isolate()
2414  * @see rte_flow_ops
2415  */
2416 int
2417 mlx5_flow_isolate(struct rte_eth_dev *dev,
2418 		  int enable,
2419 		  struct rte_flow_error *error)
2420 {
2421 	struct mlx5_priv *priv = dev->data->dev_private;
2422 
2423 	if (dev->data->dev_started) {
2424 		rte_flow_error_set(error, EBUSY,
2425 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2426 				   NULL,
2427 				   "port must be stopped first");
2428 		return -rte_errno;
2429 	}
2430 	priv->isolated = !!enable;
2431 	if (enable)
2432 		dev->dev_ops = &mlx5_dev_ops_isolate;
2433 	else
2434 		dev->dev_ops = &mlx5_dev_ops;
2435 	return 0;
2436 }
2437 
2438 /**
2439  * Query a flow.
2440  *
2441  * @see rte_flow_query()
2442  * @see rte_flow_ops
2443  */
2444 static int
2445 flow_drv_query(struct rte_eth_dev *dev,
2446 	       struct rte_flow *flow,
2447 	       const struct rte_flow_action *actions,
2448 	       void *data,
2449 	       struct rte_flow_error *error)
2450 {
2451 	const struct mlx5_flow_driver_ops *fops;
2452 	enum mlx5_flow_drv_type ftype = flow->drv_type;
2453 
2454 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2455 	fops = flow_get_drv_ops(ftype);
2456 
2457 	return fops->query(dev, flow, actions, data, error);
2458 }
2459 
2460 /**
2461  * Query a flow.
2462  *
2463  * @see rte_flow_query()
2464  * @see rte_flow_ops
2465  */
2466 int
2467 mlx5_flow_query(struct rte_eth_dev *dev,
2468 		struct rte_flow *flow,
2469 		const struct rte_flow_action *actions,
2470 		void *data,
2471 		struct rte_flow_error *error)
2472 {
2473 	int ret;
2474 
2475 	ret = flow_drv_query(dev, flow, actions, data, error);
2476 	if (ret < 0)
2477 		return ret;
2478 	return 0;
2479 }
2480 
2481 /**
2482  * Convert a flow director filter to a generic flow.
2483  *
2484  * @param dev
2485  *   Pointer to Ethernet device.
2486  * @param fdir_filter
2487  *   Flow director filter to add.
2488  * @param attributes
2489  *   Generic flow parameters structure.
2490  *
2491  * @return
2492  *   0 on success, a negative errno value otherwise and rte_errno is set.
2493  */
2494 static int
2495 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2496 			 const struct rte_eth_fdir_filter *fdir_filter,
2497 			 struct mlx5_fdir *attributes)
2498 {
2499 	struct mlx5_priv *priv = dev->data->dev_private;
2500 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
2501 	const struct rte_eth_fdir_masks *mask =
2502 		&dev->data->dev_conf.fdir_conf.mask;
2503 
2504 	/* Validate queue number. */
2505 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2506 		DRV_LOG(ERR, "port %u invalid queue number %d",
2507 			dev->data->port_id, fdir_filter->action.rx_queue);
2508 		rte_errno = EINVAL;
2509 		return -rte_errno;
2510 	}
2511 	attributes->attr.ingress = 1;
2512 	attributes->items[0] = (struct rte_flow_item) {
2513 		.type = RTE_FLOW_ITEM_TYPE_ETH,
2514 		.spec = &attributes->l2,
2515 		.mask = &attributes->l2_mask,
2516 	};
2517 	switch (fdir_filter->action.behavior) {
2518 	case RTE_ETH_FDIR_ACCEPT:
2519 		attributes->actions[0] = (struct rte_flow_action){
2520 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
2521 			.conf = &attributes->queue,
2522 		};
2523 		break;
2524 	case RTE_ETH_FDIR_REJECT:
2525 		attributes->actions[0] = (struct rte_flow_action){
2526 			.type = RTE_FLOW_ACTION_TYPE_DROP,
2527 		};
2528 		break;
2529 	default:
2530 		DRV_LOG(ERR, "port %u invalid behavior %d",
2531 			dev->data->port_id,
2532 			fdir_filter->action.behavior);
2533 		rte_errno = ENOTSUP;
2534 		return -rte_errno;
2535 	}
2536 	attributes->queue.index = fdir_filter->action.rx_queue;
2537 	/* Handle L3. */
2538 	switch (fdir_filter->input.flow_type) {
2539 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2540 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2541 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2542 		attributes->l3.ipv4.hdr = (struct ipv4_hdr){
2543 			.src_addr = input->flow.ip4_flow.src_ip,
2544 			.dst_addr = input->flow.ip4_flow.dst_ip,
2545 			.time_to_live = input->flow.ip4_flow.ttl,
2546 			.type_of_service = input->flow.ip4_flow.tos,
2547 		};
2548 		attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
2549 			.src_addr = mask->ipv4_mask.src_ip,
2550 			.dst_addr = mask->ipv4_mask.dst_ip,
2551 			.time_to_live = mask->ipv4_mask.ttl,
2552 			.type_of_service = mask->ipv4_mask.tos,
2553 			.next_proto_id = mask->ipv4_mask.proto,
2554 		};
2555 		attributes->items[1] = (struct rte_flow_item){
2556 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
2557 			.spec = &attributes->l3,
2558 			.mask = &attributes->l3_mask,
2559 		};
2560 		break;
2561 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2562 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2563 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2564 		attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2565 			.hop_limits = input->flow.ipv6_flow.hop_limits,
2566 			.proto = input->flow.ipv6_flow.proto,
2567 		};
2568 
2569 		memcpy(attributes->l3.ipv6.hdr.src_addr,
2570 		       input->flow.ipv6_flow.src_ip,
2571 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2572 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
2573 		       input->flow.ipv6_flow.dst_ip,
2574 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2575 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2576 		       mask->ipv6_mask.src_ip,
2577 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2578 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2579 		       mask->ipv6_mask.dst_ip,
2580 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2581 		attributes->items[1] = (struct rte_flow_item){
2582 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
2583 			.spec = &attributes->l3,
2584 			.mask = &attributes->l3_mask,
2585 		};
2586 		break;
2587 	default:
2588 		DRV_LOG(ERR, "port %u invalid flow type%d",
2589 			dev->data->port_id, fdir_filter->input.flow_type);
2590 		rte_errno = ENOTSUP;
2591 		return -rte_errno;
2592 	}
2593 	/* Handle L4. */
2594 	switch (fdir_filter->input.flow_type) {
2595 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2596 		attributes->l4.udp.hdr = (struct udp_hdr){
2597 			.src_port = input->flow.udp4_flow.src_port,
2598 			.dst_port = input->flow.udp4_flow.dst_port,
2599 		};
2600 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2601 			.src_port = mask->src_port_mask,
2602 			.dst_port = mask->dst_port_mask,
2603 		};
2604 		attributes->items[2] = (struct rte_flow_item){
2605 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2606 			.spec = &attributes->l4,
2607 			.mask = &attributes->l4_mask,
2608 		};
2609 		break;
2610 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2611 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2612 			.src_port = input->flow.tcp4_flow.src_port,
2613 			.dst_port = input->flow.tcp4_flow.dst_port,
2614 		};
2615 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2616 			.src_port = mask->src_port_mask,
2617 			.dst_port = mask->dst_port_mask,
2618 		};
2619 		attributes->items[2] = (struct rte_flow_item){
2620 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2621 			.spec = &attributes->l4,
2622 			.mask = &attributes->l4_mask,
2623 		};
2624 		break;
2625 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2626 		attributes->l4.udp.hdr = (struct udp_hdr){
2627 			.src_port = input->flow.udp6_flow.src_port,
2628 			.dst_port = input->flow.udp6_flow.dst_port,
2629 		};
2630 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2631 			.src_port = mask->src_port_mask,
2632 			.dst_port = mask->dst_port_mask,
2633 		};
2634 		attributes->items[2] = (struct rte_flow_item){
2635 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2636 			.spec = &attributes->l4,
2637 			.mask = &attributes->l4_mask,
2638 		};
2639 		break;
2640 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2641 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2642 			.src_port = input->flow.tcp6_flow.src_port,
2643 			.dst_port = input->flow.tcp6_flow.dst_port,
2644 		};
2645 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2646 			.src_port = mask->src_port_mask,
2647 			.dst_port = mask->dst_port_mask,
2648 		};
2649 		attributes->items[2] = (struct rte_flow_item){
2650 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2651 			.spec = &attributes->l4,
2652 			.mask = &attributes->l4_mask,
2653 		};
2654 		break;
2655 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2656 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2657 		break;
2658 	default:
2659 		DRV_LOG(ERR, "port %u invalid flow type%d",
2660 			dev->data->port_id, fdir_filter->input.flow_type);
2661 		rte_errno = ENOTSUP;
2662 		return -rte_errno;
2663 	}
2664 	return 0;
2665 }
2666 
2667 #define FLOW_FDIR_CMP(f1, f2, fld) \
2668 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2669 
2670 /**
2671  * Compare two FDIR flows. If items and actions are identical, the two flows are
2672  * regarded as same.
2673  *
2674  * @param dev
2675  *   Pointer to Ethernet device.
2676  * @param f1
2677  *   FDIR flow to compare.
2678  * @param f2
2679  *   FDIR flow to compare.
2680  *
2681  * @return
2682  *   Zero on match, 1 otherwise.
2683  */
2684 static int
2685 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2686 {
2687 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
2688 	    FLOW_FDIR_CMP(f1, f2, l2) ||
2689 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2690 	    FLOW_FDIR_CMP(f1, f2, l3) ||
2691 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2692 	    FLOW_FDIR_CMP(f1, f2, l4) ||
2693 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2694 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
2695 		return 1;
2696 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2697 	    FLOW_FDIR_CMP(f1, f2, queue))
2698 		return 1;
2699 	return 0;
2700 }
2701 
2702 /**
2703  * Search device flow list to find out a matched FDIR flow.
2704  *
2705  * @param dev
2706  *   Pointer to Ethernet device.
2707  * @param fdir_flow
2708  *   FDIR flow to lookup.
2709  *
2710  * @return
2711  *   Pointer of flow if found, NULL otherwise.
2712  */
2713 static struct rte_flow *
2714 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2715 {
2716 	struct mlx5_priv *priv = dev->data->dev_private;
2717 	struct rte_flow *flow = NULL;
2718 
2719 	assert(fdir_flow);
2720 	TAILQ_FOREACH(flow, &priv->flows, next) {
2721 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2722 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2723 				dev->data->port_id, (void *)flow);
2724 			break;
2725 		}
2726 	}
2727 	return flow;
2728 }
2729 
2730 /**
2731  * Add new flow director filter and store it in list.
2732  *
2733  * @param dev
2734  *   Pointer to Ethernet device.
2735  * @param fdir_filter
2736  *   Flow director filter to add.
2737  *
2738  * @return
2739  *   0 on success, a negative errno value otherwise and rte_errno is set.
2740  */
2741 static int
2742 flow_fdir_filter_add(struct rte_eth_dev *dev,
2743 		     const struct rte_eth_fdir_filter *fdir_filter)
2744 {
2745 	struct mlx5_priv *priv = dev->data->dev_private;
2746 	struct mlx5_fdir *fdir_flow;
2747 	struct rte_flow *flow;
2748 	int ret;
2749 
2750 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2751 	if (!fdir_flow) {
2752 		rte_errno = ENOMEM;
2753 		return -rte_errno;
2754 	}
2755 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2756 	if (ret)
2757 		goto error;
2758 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
2759 	if (flow) {
2760 		rte_errno = EEXIST;
2761 		goto error;
2762 	}
2763 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2764 				fdir_flow->items, fdir_flow->actions, NULL);
2765 	if (!flow)
2766 		goto error;
2767 	assert(!flow->fdir);
2768 	flow->fdir = fdir_flow;
2769 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2770 		dev->data->port_id, (void *)flow);
2771 	return 0;
2772 error:
2773 	rte_free(fdir_flow);
2774 	return -rte_errno;
2775 }
2776 
2777 /**
2778  * Delete specific filter.
2779  *
2780  * @param dev
2781  *   Pointer to Ethernet device.
2782  * @param fdir_filter
2783  *   Filter to be deleted.
2784  *
2785  * @return
2786  *   0 on success, a negative errno value otherwise and rte_errno is set.
2787  */
2788 static int
2789 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2790 			const struct rte_eth_fdir_filter *fdir_filter)
2791 {
2792 	struct mlx5_priv *priv = dev->data->dev_private;
2793 	struct rte_flow *flow;
2794 	struct mlx5_fdir fdir_flow = {
2795 		.attr.group = 0,
2796 	};
2797 	int ret;
2798 
2799 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2800 	if (ret)
2801 		return -rte_errno;
2802 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2803 	if (!flow) {
2804 		rte_errno = ENOENT;
2805 		return -rte_errno;
2806 	}
2807 	flow_list_destroy(dev, &priv->flows, flow);
2808 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2809 		dev->data->port_id, (void *)flow);
2810 	return 0;
2811 }
2812 
2813 /**
2814  * Update queue for specific filter.
2815  *
2816  * @param dev
2817  *   Pointer to Ethernet device.
2818  * @param fdir_filter
2819  *   Filter to be updated.
2820  *
2821  * @return
2822  *   0 on success, a negative errno value otherwise and rte_errno is set.
2823  */
2824 static int
2825 flow_fdir_filter_update(struct rte_eth_dev *dev,
2826 			const struct rte_eth_fdir_filter *fdir_filter)
2827 {
2828 	int ret;
2829 
2830 	ret = flow_fdir_filter_delete(dev, fdir_filter);
2831 	if (ret)
2832 		return ret;
2833 	return flow_fdir_filter_add(dev, fdir_filter);
2834 }
2835 
2836 /**
2837  * Flush all filters.
2838  *
2839  * @param dev
2840  *   Pointer to Ethernet device.
2841  */
2842 static void
2843 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2844 {
2845 	struct mlx5_priv *priv = dev->data->dev_private;
2846 
2847 	mlx5_flow_list_flush(dev, &priv->flows);
2848 }
2849 
2850 /**
2851  * Get flow director information.
2852  *
2853  * @param dev
2854  *   Pointer to Ethernet device.
2855  * @param[out] fdir_info
2856  *   Resulting flow director information.
2857  */
2858 static void
2859 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2860 {
2861 	struct rte_eth_fdir_masks *mask =
2862 		&dev->data->dev_conf.fdir_conf.mask;
2863 
2864 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2865 	fdir_info->guarant_spc = 0;
2866 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2867 	fdir_info->max_flexpayload = 0;
2868 	fdir_info->flow_types_mask[0] = 0;
2869 	fdir_info->flex_payload_unit = 0;
2870 	fdir_info->max_flex_payload_segment_num = 0;
2871 	fdir_info->flex_payload_limit = 0;
2872 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2873 }
2874 
2875 /**
2876  * Deal with flow director operations.
2877  *
2878  * @param dev
2879  *   Pointer to Ethernet device.
2880  * @param filter_op
2881  *   Operation to perform.
2882  * @param arg
2883  *   Pointer to operation-specific structure.
2884  *
2885  * @return
2886  *   0 on success, a negative errno value otherwise and rte_errno is set.
2887  */
2888 static int
2889 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2890 		    void *arg)
2891 {
2892 	enum rte_fdir_mode fdir_mode =
2893 		dev->data->dev_conf.fdir_conf.mode;
2894 
2895 	if (filter_op == RTE_ETH_FILTER_NOP)
2896 		return 0;
2897 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2898 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2899 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
2900 			dev->data->port_id, fdir_mode);
2901 		rte_errno = EINVAL;
2902 		return -rte_errno;
2903 	}
2904 	switch (filter_op) {
2905 	case RTE_ETH_FILTER_ADD:
2906 		return flow_fdir_filter_add(dev, arg);
2907 	case RTE_ETH_FILTER_UPDATE:
2908 		return flow_fdir_filter_update(dev, arg);
2909 	case RTE_ETH_FILTER_DELETE:
2910 		return flow_fdir_filter_delete(dev, arg);
2911 	case RTE_ETH_FILTER_FLUSH:
2912 		flow_fdir_filter_flush(dev);
2913 		break;
2914 	case RTE_ETH_FILTER_INFO:
2915 		flow_fdir_info_get(dev, arg);
2916 		break;
2917 	default:
2918 		DRV_LOG(DEBUG, "port %u unknown operation %u",
2919 			dev->data->port_id, filter_op);
2920 		rte_errno = EINVAL;
2921 		return -rte_errno;
2922 	}
2923 	return 0;
2924 }
2925 
2926 /**
2927  * Manage filter operations.
2928  *
2929  * @param dev
2930  *   Pointer to Ethernet device structure.
2931  * @param filter_type
2932  *   Filter type.
2933  * @param filter_op
2934  *   Operation to perform.
2935  * @param arg
2936  *   Pointer to operation-specific structure.
2937  *
2938  * @return
2939  *   0 on success, a negative errno value otherwise and rte_errno is set.
2940  */
2941 int
2942 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2943 		     enum rte_filter_type filter_type,
2944 		     enum rte_filter_op filter_op,
2945 		     void *arg)
2946 {
2947 	switch (filter_type) {
2948 	case RTE_ETH_FILTER_GENERIC:
2949 		if (filter_op != RTE_ETH_FILTER_GET) {
2950 			rte_errno = EINVAL;
2951 			return -rte_errno;
2952 		}
2953 		*(const void **)arg = &mlx5_flow_ops;
2954 		return 0;
2955 	case RTE_ETH_FILTER_FDIR:
2956 		return flow_fdir_ctrl_func(dev, filter_op, arg);
2957 	default:
2958 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
2959 			dev->data->port_id, filter_type);
2960 		rte_errno = ENOTSUP;
2961 		return -rte_errno;
2962 	}
2963 	return 0;
2964 }
2965