xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 5d55a494f4e62f29d945cf6c9ec1d0980a72642f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdbool.h>
12 
13 #include <rte_common.h>
14 #include <rte_ether.h>
15 #include <rte_ethdev_driver.h>
16 #include <rte_eal_paging.h>
17 #include <rte_flow.h>
18 #include <rte_cycles.h>
19 #include <rte_flow_driver.h>
20 #include <rte_malloc.h>
21 #include <rte_ip.h>
22 
23 #include <mlx5_glue.h>
24 #include <mlx5_devx_cmds.h>
25 #include <mlx5_prm.h>
26 #include <mlx5_malloc.h>
27 
28 #include "mlx5_defs.h"
29 #include "mlx5.h"
30 #include "mlx5_flow.h"
31 #include "mlx5_flow_os.h"
32 #include "mlx5_rxtx.h"
33 #include "mlx5_common_os.h"
34 #include "rte_pmd_mlx5.h"
35 
36 struct tunnel_default_miss_ctx {
37 	uint16_t *queue;
38 	__extension__
39 	union {
40 		struct rte_flow_action_rss action_rss;
41 		struct rte_flow_action_queue miss_queue;
42 		struct rte_flow_action_jump miss_jump;
43 		uint8_t raw[0];
44 	};
45 };
46 
47 static int
48 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
49 			     struct rte_flow *flow,
50 			     const struct rte_flow_attr *attr,
51 			     const struct rte_flow_action *app_actions,
52 			     uint32_t flow_idx,
53 			     struct tunnel_default_miss_ctx *ctx,
54 			     struct rte_flow_error *error);
55 static struct mlx5_flow_tunnel *
56 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id);
57 static void
58 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel);
59 static uint32_t
60 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
61 				const struct mlx5_flow_tunnel *tunnel,
62 				uint32_t group, uint32_t *table,
63 				struct rte_flow_error *error);
64 
65 static struct mlx5_flow_workspace *mlx5_flow_push_thread_workspace(void);
66 static void mlx5_flow_pop_thread_workspace(void);
67 
68 
69 /** Device flow drivers. */
70 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
71 
72 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
73 
74 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
75 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
76 #if defined(HAVE_IBV_FLOW_DV_SUPPORT) || !defined(HAVE_INFINIBAND_VERBS_H)
77 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
78 #endif
79 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
80 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
81 };
82 
83 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
84 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
85 	(const int []){ \
86 		__VA_ARGS__, 0, \
87 	}
88 
89 /** Node object of input graph for mlx5_flow_expand_rss(). */
90 struct mlx5_flow_expand_node {
91 	const int *const next;
92 	/**<
93 	 * List of next node indexes. Index 0 is interpreted as a terminator.
94 	 */
95 	const enum rte_flow_item_type type;
96 	/**< Pattern item type of current node. */
97 	uint64_t rss_types;
98 	/**<
99 	 * RSS types bit-field associated with this node
100 	 * (see ETH_RSS_* definitions).
101 	 */
102 };
103 
104 /** Object returned by mlx5_flow_expand_rss(). */
105 struct mlx5_flow_expand_rss {
106 	uint32_t entries;
107 	/**< Number of entries @p patterns and @p priorities. */
108 	struct {
109 		struct rte_flow_item *pattern; /**< Expanded pattern array. */
110 		uint32_t priority; /**< Priority offset for each expansion. */
111 	} entry[];
112 };
113 
114 static enum rte_flow_item_type
115 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
116 {
117 	enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
118 	uint16_t ether_type = 0;
119 	uint16_t ether_type_m;
120 	uint8_t ip_next_proto = 0;
121 	uint8_t ip_next_proto_m;
122 
123 	if (item == NULL || item->spec == NULL)
124 		return ret;
125 	switch (item->type) {
126 	case RTE_FLOW_ITEM_TYPE_ETH:
127 		if (item->mask)
128 			ether_type_m = ((const struct rte_flow_item_eth *)
129 						(item->mask))->type;
130 		else
131 			ether_type_m = rte_flow_item_eth_mask.type;
132 		if (ether_type_m != RTE_BE16(0xFFFF))
133 			break;
134 		ether_type = ((const struct rte_flow_item_eth *)
135 				(item->spec))->type;
136 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
137 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
138 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
139 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
140 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
141 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
142 		else
143 			ret = RTE_FLOW_ITEM_TYPE_END;
144 		break;
145 	case RTE_FLOW_ITEM_TYPE_VLAN:
146 		if (item->mask)
147 			ether_type_m = ((const struct rte_flow_item_vlan *)
148 						(item->mask))->inner_type;
149 		else
150 			ether_type_m = rte_flow_item_vlan_mask.inner_type;
151 		if (ether_type_m != RTE_BE16(0xFFFF))
152 			break;
153 		ether_type = ((const struct rte_flow_item_vlan *)
154 				(item->spec))->inner_type;
155 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
156 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
157 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
158 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
159 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
160 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
161 		else
162 			ret = RTE_FLOW_ITEM_TYPE_END;
163 		break;
164 	case RTE_FLOW_ITEM_TYPE_IPV4:
165 		if (item->mask)
166 			ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
167 					(item->mask))->hdr.next_proto_id;
168 		else
169 			ip_next_proto_m =
170 				rte_flow_item_ipv4_mask.hdr.next_proto_id;
171 		if (ip_next_proto_m != 0xFF)
172 			break;
173 		ip_next_proto = ((const struct rte_flow_item_ipv4 *)
174 				(item->spec))->hdr.next_proto_id;
175 		if (ip_next_proto == IPPROTO_UDP)
176 			ret = RTE_FLOW_ITEM_TYPE_UDP;
177 		else if (ip_next_proto == IPPROTO_TCP)
178 			ret = RTE_FLOW_ITEM_TYPE_TCP;
179 		else if (ip_next_proto == IPPROTO_IP)
180 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
181 		else if (ip_next_proto == IPPROTO_IPV6)
182 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
183 		else
184 			ret = RTE_FLOW_ITEM_TYPE_END;
185 		break;
186 	case RTE_FLOW_ITEM_TYPE_IPV6:
187 		if (item->mask)
188 			ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
189 						(item->mask))->hdr.proto;
190 		else
191 			ip_next_proto_m =
192 				rte_flow_item_ipv6_mask.hdr.proto;
193 		if (ip_next_proto_m != 0xFF)
194 			break;
195 		ip_next_proto = ((const struct rte_flow_item_ipv6 *)
196 				(item->spec))->hdr.proto;
197 		if (ip_next_proto == IPPROTO_UDP)
198 			ret = RTE_FLOW_ITEM_TYPE_UDP;
199 		else if (ip_next_proto == IPPROTO_TCP)
200 			ret = RTE_FLOW_ITEM_TYPE_TCP;
201 		else if (ip_next_proto == IPPROTO_IP)
202 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
203 		else if (ip_next_proto == IPPROTO_IPV6)
204 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
205 		else
206 			ret = RTE_FLOW_ITEM_TYPE_END;
207 		break;
208 	default:
209 		ret = RTE_FLOW_ITEM_TYPE_VOID;
210 		break;
211 	}
212 	return ret;
213 }
214 
215 #define MLX5_RSS_EXP_ELT_N 8
216 
217 /**
218  * Expand RSS flows into several possible flows according to the RSS hash
219  * fields requested and the driver capabilities.
220  *
221  * @param[out] buf
222  *   Buffer to store the result expansion.
223  * @param[in] size
224  *   Buffer size in bytes. If 0, @p buf can be NULL.
225  * @param[in] pattern
226  *   User flow pattern.
227  * @param[in] types
228  *   RSS types to expand (see ETH_RSS_* definitions).
229  * @param[in] graph
230  *   Input graph to expand @p pattern according to @p types.
231  * @param[in] graph_root_index
232  *   Index of root node in @p graph, typically 0.
233  *
234  * @return
235  *   A positive value representing the size of @p buf in bytes regardless of
236  *   @p size on success, a negative errno value otherwise and rte_errno is
237  *   set, the following errors are defined:
238  *
239  *   -E2BIG: graph-depth @p graph is too deep.
240  */
241 static int
242 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
243 		     const struct rte_flow_item *pattern, uint64_t types,
244 		     const struct mlx5_flow_expand_node graph[],
245 		     int graph_root_index)
246 {
247 	const struct rte_flow_item *item;
248 	const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
249 	const int *next_node;
250 	const int *stack[MLX5_RSS_EXP_ELT_N];
251 	int stack_pos = 0;
252 	struct rte_flow_item flow_items[MLX5_RSS_EXP_ELT_N];
253 	unsigned int i;
254 	size_t lsize;
255 	size_t user_pattern_size = 0;
256 	void *addr = NULL;
257 	const struct mlx5_flow_expand_node *next = NULL;
258 	struct rte_flow_item missed_item;
259 	int missed = 0;
260 	int elt = 0;
261 	const struct rte_flow_item *last_item = NULL;
262 
263 	memset(&missed_item, 0, sizeof(missed_item));
264 	lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
265 		MLX5_RSS_EXP_ELT_N * sizeof(buf->entry[0]);
266 	if (lsize <= size) {
267 		buf->entry[0].priority = 0;
268 		buf->entry[0].pattern = (void *)&buf->entry[MLX5_RSS_EXP_ELT_N];
269 		buf->entries = 0;
270 		addr = buf->entry[0].pattern;
271 	}
272 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
273 		if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
274 			last_item = item;
275 		for (i = 0; node->next && node->next[i]; ++i) {
276 			next = &graph[node->next[i]];
277 			if (next->type == item->type)
278 				break;
279 		}
280 		if (next)
281 			node = next;
282 		user_pattern_size += sizeof(*item);
283 	}
284 	user_pattern_size += sizeof(*item); /* Handle END item. */
285 	lsize += user_pattern_size;
286 	/* Copy the user pattern in the first entry of the buffer. */
287 	if (lsize <= size) {
288 		rte_memcpy(addr, pattern, user_pattern_size);
289 		addr = (void *)(((uintptr_t)addr) + user_pattern_size);
290 		buf->entries = 1;
291 	}
292 	/* Start expanding. */
293 	memset(flow_items, 0, sizeof(flow_items));
294 	user_pattern_size -= sizeof(*item);
295 	/*
296 	 * Check if the last valid item has spec set, need complete pattern,
297 	 * and the pattern can be used for expansion.
298 	 */
299 	missed_item.type = mlx5_flow_expand_rss_item_complete(last_item);
300 	if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
301 		/* Item type END indicates expansion is not required. */
302 		return lsize;
303 	}
304 	if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
305 		next = NULL;
306 		missed = 1;
307 		for (i = 0; node->next && node->next[i]; ++i) {
308 			next = &graph[node->next[i]];
309 			if (next->type == missed_item.type) {
310 				flow_items[0].type = missed_item.type;
311 				flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
312 				break;
313 			}
314 			next = NULL;
315 		}
316 	}
317 	if (next && missed) {
318 		elt = 2; /* missed item + item end. */
319 		node = next;
320 		lsize += elt * sizeof(*item) + user_pattern_size;
321 		if ((node->rss_types & types) && lsize <= size) {
322 			buf->entry[buf->entries].priority = 1;
323 			buf->entry[buf->entries].pattern = addr;
324 			buf->entries++;
325 			rte_memcpy(addr, buf->entry[0].pattern,
326 				   user_pattern_size);
327 			addr = (void *)(((uintptr_t)addr) + user_pattern_size);
328 			rte_memcpy(addr, flow_items, elt * sizeof(*item));
329 			addr = (void *)(((uintptr_t)addr) +
330 					elt * sizeof(*item));
331 		}
332 	}
333 	memset(flow_items, 0, sizeof(flow_items));
334 	next_node = node->next;
335 	stack[stack_pos] = next_node;
336 	node = next_node ? &graph[*next_node] : NULL;
337 	while (node) {
338 		flow_items[stack_pos].type = node->type;
339 		if (node->rss_types & types) {
340 			/*
341 			 * compute the number of items to copy from the
342 			 * expansion and copy it.
343 			 * When the stack_pos is 0, there are 1 element in it,
344 			 * plus the addition END item.
345 			 */
346 			elt = stack_pos + 2;
347 			flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
348 			lsize += elt * sizeof(*item) + user_pattern_size;
349 			if (lsize <= size) {
350 				size_t n = elt * sizeof(*item);
351 
352 				buf->entry[buf->entries].priority =
353 					stack_pos + 1 + missed;
354 				buf->entry[buf->entries].pattern = addr;
355 				buf->entries++;
356 				rte_memcpy(addr, buf->entry[0].pattern,
357 					   user_pattern_size);
358 				addr = (void *)(((uintptr_t)addr) +
359 						user_pattern_size);
360 				rte_memcpy(addr, &missed_item,
361 					   missed * sizeof(*item));
362 				addr = (void *)(((uintptr_t)addr) +
363 					missed * sizeof(*item));
364 				rte_memcpy(addr, flow_items, n);
365 				addr = (void *)(((uintptr_t)addr) + n);
366 			}
367 		}
368 		/* Go deeper. */
369 		if (node->next) {
370 			next_node = node->next;
371 			if (stack_pos++ == MLX5_RSS_EXP_ELT_N) {
372 				rte_errno = E2BIG;
373 				return -rte_errno;
374 			}
375 			stack[stack_pos] = next_node;
376 		} else if (*(next_node + 1)) {
377 			/* Follow up with the next possibility. */
378 			++next_node;
379 		} else {
380 			/* Move to the next path. */
381 			if (stack_pos)
382 				next_node = stack[--stack_pos];
383 			next_node++;
384 			stack[stack_pos] = next_node;
385 		}
386 		node = *next_node ? &graph[*next_node] : NULL;
387 	};
388 	/* no expanded flows but we have missed item, create one rule for it */
389 	if (buf->entries == 1 && missed != 0) {
390 		elt = 2;
391 		lsize += elt * sizeof(*item) + user_pattern_size;
392 		if (lsize <= size) {
393 			buf->entry[buf->entries].priority = 1;
394 			buf->entry[buf->entries].pattern = addr;
395 			buf->entries++;
396 			flow_items[0].type = missed_item.type;
397 			flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
398 			rte_memcpy(addr, buf->entry[0].pattern,
399 				   user_pattern_size);
400 			addr = (void *)(((uintptr_t)addr) + user_pattern_size);
401 			rte_memcpy(addr, flow_items, elt * sizeof(*item));
402 		}
403 	}
404 	return lsize;
405 }
406 
407 enum mlx5_expansion {
408 	MLX5_EXPANSION_ROOT,
409 	MLX5_EXPANSION_ROOT_OUTER,
410 	MLX5_EXPANSION_ROOT_ETH_VLAN,
411 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
412 	MLX5_EXPANSION_OUTER_ETH,
413 	MLX5_EXPANSION_OUTER_ETH_VLAN,
414 	MLX5_EXPANSION_OUTER_VLAN,
415 	MLX5_EXPANSION_OUTER_IPV4,
416 	MLX5_EXPANSION_OUTER_IPV4_UDP,
417 	MLX5_EXPANSION_OUTER_IPV4_TCP,
418 	MLX5_EXPANSION_OUTER_IPV6,
419 	MLX5_EXPANSION_OUTER_IPV6_UDP,
420 	MLX5_EXPANSION_OUTER_IPV6_TCP,
421 	MLX5_EXPANSION_VXLAN,
422 	MLX5_EXPANSION_VXLAN_GPE,
423 	MLX5_EXPANSION_GRE,
424 	MLX5_EXPANSION_MPLS,
425 	MLX5_EXPANSION_ETH,
426 	MLX5_EXPANSION_ETH_VLAN,
427 	MLX5_EXPANSION_VLAN,
428 	MLX5_EXPANSION_IPV4,
429 	MLX5_EXPANSION_IPV4_UDP,
430 	MLX5_EXPANSION_IPV4_TCP,
431 	MLX5_EXPANSION_IPV6,
432 	MLX5_EXPANSION_IPV6_UDP,
433 	MLX5_EXPANSION_IPV6_TCP,
434 };
435 
436 /** Supported expansion of items. */
437 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
438 	[MLX5_EXPANSION_ROOT] = {
439 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
440 						  MLX5_EXPANSION_IPV4,
441 						  MLX5_EXPANSION_IPV6),
442 		.type = RTE_FLOW_ITEM_TYPE_END,
443 	},
444 	[MLX5_EXPANSION_ROOT_OUTER] = {
445 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
446 						  MLX5_EXPANSION_OUTER_IPV4,
447 						  MLX5_EXPANSION_OUTER_IPV6),
448 		.type = RTE_FLOW_ITEM_TYPE_END,
449 	},
450 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
451 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
452 		.type = RTE_FLOW_ITEM_TYPE_END,
453 	},
454 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
455 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
456 						(MLX5_EXPANSION_OUTER_ETH_VLAN),
457 		.type = RTE_FLOW_ITEM_TYPE_END,
458 	},
459 	[MLX5_EXPANSION_OUTER_ETH] = {
460 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
461 						  MLX5_EXPANSION_OUTER_IPV6,
462 						  MLX5_EXPANSION_MPLS),
463 		.type = RTE_FLOW_ITEM_TYPE_ETH,
464 		.rss_types = 0,
465 	},
466 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
467 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
468 		.type = RTE_FLOW_ITEM_TYPE_ETH,
469 		.rss_types = 0,
470 	},
471 	[MLX5_EXPANSION_OUTER_VLAN] = {
472 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
473 						  MLX5_EXPANSION_OUTER_IPV6),
474 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
475 	},
476 	[MLX5_EXPANSION_OUTER_IPV4] = {
477 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
478 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
479 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
480 			 MLX5_EXPANSION_GRE,
481 			 MLX5_EXPANSION_IPV4,
482 			 MLX5_EXPANSION_IPV6),
483 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
484 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
485 			ETH_RSS_NONFRAG_IPV4_OTHER,
486 	},
487 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
488 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
489 						  MLX5_EXPANSION_VXLAN_GPE),
490 		.type = RTE_FLOW_ITEM_TYPE_UDP,
491 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
492 	},
493 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
494 		.type = RTE_FLOW_ITEM_TYPE_TCP,
495 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
496 	},
497 	[MLX5_EXPANSION_OUTER_IPV6] = {
498 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
499 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
500 			 MLX5_EXPANSION_OUTER_IPV6_TCP,
501 			 MLX5_EXPANSION_IPV4,
502 			 MLX5_EXPANSION_IPV6),
503 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
504 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
505 			ETH_RSS_NONFRAG_IPV6_OTHER,
506 	},
507 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
508 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
509 						  MLX5_EXPANSION_VXLAN_GPE),
510 		.type = RTE_FLOW_ITEM_TYPE_UDP,
511 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
512 	},
513 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
514 		.type = RTE_FLOW_ITEM_TYPE_TCP,
515 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
516 	},
517 	[MLX5_EXPANSION_VXLAN] = {
518 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
519 						  MLX5_EXPANSION_IPV4,
520 						  MLX5_EXPANSION_IPV6),
521 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
522 	},
523 	[MLX5_EXPANSION_VXLAN_GPE] = {
524 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
525 						  MLX5_EXPANSION_IPV4,
526 						  MLX5_EXPANSION_IPV6),
527 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
528 	},
529 	[MLX5_EXPANSION_GRE] = {
530 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
531 		.type = RTE_FLOW_ITEM_TYPE_GRE,
532 	},
533 	[MLX5_EXPANSION_MPLS] = {
534 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
535 						  MLX5_EXPANSION_IPV6),
536 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
537 	},
538 	[MLX5_EXPANSION_ETH] = {
539 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
540 						  MLX5_EXPANSION_IPV6),
541 		.type = RTE_FLOW_ITEM_TYPE_ETH,
542 	},
543 	[MLX5_EXPANSION_ETH_VLAN] = {
544 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
545 		.type = RTE_FLOW_ITEM_TYPE_ETH,
546 	},
547 	[MLX5_EXPANSION_VLAN] = {
548 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
549 						  MLX5_EXPANSION_IPV6),
550 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
551 	},
552 	[MLX5_EXPANSION_IPV4] = {
553 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
554 						  MLX5_EXPANSION_IPV4_TCP),
555 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
556 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
557 			ETH_RSS_NONFRAG_IPV4_OTHER,
558 	},
559 	[MLX5_EXPANSION_IPV4_UDP] = {
560 		.type = RTE_FLOW_ITEM_TYPE_UDP,
561 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
562 	},
563 	[MLX5_EXPANSION_IPV4_TCP] = {
564 		.type = RTE_FLOW_ITEM_TYPE_TCP,
565 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
566 	},
567 	[MLX5_EXPANSION_IPV6] = {
568 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
569 						  MLX5_EXPANSION_IPV6_TCP),
570 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
571 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
572 			ETH_RSS_NONFRAG_IPV6_OTHER,
573 	},
574 	[MLX5_EXPANSION_IPV6_UDP] = {
575 		.type = RTE_FLOW_ITEM_TYPE_UDP,
576 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
577 	},
578 	[MLX5_EXPANSION_IPV6_TCP] = {
579 		.type = RTE_FLOW_ITEM_TYPE_TCP,
580 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
581 	},
582 };
583 
584 static struct rte_flow_shared_action *
585 mlx5_shared_action_create(struct rte_eth_dev *dev,
586 			  const struct rte_flow_shared_action_conf *conf,
587 			  const struct rte_flow_action *action,
588 			  struct rte_flow_error *error);
589 static int mlx5_shared_action_destroy
590 				(struct rte_eth_dev *dev,
591 				 struct rte_flow_shared_action *shared_action,
592 				 struct rte_flow_error *error);
593 static int mlx5_shared_action_update
594 				(struct rte_eth_dev *dev,
595 				 struct rte_flow_shared_action *shared_action,
596 				 const struct rte_flow_action *action,
597 				 struct rte_flow_error *error);
598 static int mlx5_shared_action_query
599 				(struct rte_eth_dev *dev,
600 				 const struct rte_flow_shared_action *action,
601 				 void *data,
602 				 struct rte_flow_error *error);
603 static int
604 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
605 		    struct rte_flow_tunnel *app_tunnel,
606 		    struct rte_flow_action **actions,
607 		    uint32_t *num_of_actions,
608 		    struct rte_flow_error *error);
609 static int
610 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
611 		       struct rte_flow_tunnel *app_tunnel,
612 		       struct rte_flow_item **items,
613 		       uint32_t *num_of_items,
614 		       struct rte_flow_error *error);
615 static int
616 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
617 			      struct rte_flow_item *pmd_items,
618 			      uint32_t num_items, struct rte_flow_error *err);
619 static int
620 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
621 				struct rte_flow_action *pmd_actions,
622 				uint32_t num_actions,
623 				struct rte_flow_error *err);
624 static int
625 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
626 				  struct rte_mbuf *m,
627 				  struct rte_flow_restore_info *info,
628 				  struct rte_flow_error *err);
629 
630 static const struct rte_flow_ops mlx5_flow_ops = {
631 	.validate = mlx5_flow_validate,
632 	.create = mlx5_flow_create,
633 	.destroy = mlx5_flow_destroy,
634 	.flush = mlx5_flow_flush,
635 	.isolate = mlx5_flow_isolate,
636 	.query = mlx5_flow_query,
637 	.dev_dump = mlx5_flow_dev_dump,
638 	.get_aged_flows = mlx5_flow_get_aged_flows,
639 	.shared_action_create = mlx5_shared_action_create,
640 	.shared_action_destroy = mlx5_shared_action_destroy,
641 	.shared_action_update = mlx5_shared_action_update,
642 	.shared_action_query = mlx5_shared_action_query,
643 	.tunnel_decap_set = mlx5_flow_tunnel_decap_set,
644 	.tunnel_match = mlx5_flow_tunnel_match,
645 	.tunnel_action_decap_release = mlx5_flow_tunnel_action_release,
646 	.tunnel_item_release = mlx5_flow_tunnel_item_release,
647 	.get_restore_info = mlx5_flow_tunnel_get_restore_info,
648 };
649 
650 /* Tunnel information. */
651 struct mlx5_flow_tunnel_info {
652 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
653 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
654 };
655 
656 static struct mlx5_flow_tunnel_info tunnels_info[] = {
657 	{
658 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
659 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
660 	},
661 	{
662 		.tunnel = MLX5_FLOW_LAYER_GENEVE,
663 		.ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
664 	},
665 	{
666 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
667 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
668 	},
669 	{
670 		.tunnel = MLX5_FLOW_LAYER_GRE,
671 		.ptype = RTE_PTYPE_TUNNEL_GRE,
672 	},
673 	{
674 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
675 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
676 	},
677 	{
678 		.tunnel = MLX5_FLOW_LAYER_MPLS,
679 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
680 	},
681 	{
682 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
683 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
684 	},
685 	{
686 		.tunnel = MLX5_FLOW_LAYER_IPIP,
687 		.ptype = RTE_PTYPE_TUNNEL_IP,
688 	},
689 	{
690 		.tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
691 		.ptype = RTE_PTYPE_TUNNEL_IP,
692 	},
693 	{
694 		.tunnel = MLX5_FLOW_LAYER_GTP,
695 		.ptype = RTE_PTYPE_TUNNEL_GTPU,
696 	},
697 };
698 
699 
700 
701 /**
702  * Translate tag ID to register.
703  *
704  * @param[in] dev
705  *   Pointer to the Ethernet device structure.
706  * @param[in] feature
707  *   The feature that request the register.
708  * @param[in] id
709  *   The request register ID.
710  * @param[out] error
711  *   Error description in case of any.
712  *
713  * @return
714  *   The request register on success, a negative errno
715  *   value otherwise and rte_errno is set.
716  */
717 int
718 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
719 		     enum mlx5_feature_name feature,
720 		     uint32_t id,
721 		     struct rte_flow_error *error)
722 {
723 	struct mlx5_priv *priv = dev->data->dev_private;
724 	struct mlx5_dev_config *config = &priv->config;
725 	enum modify_reg start_reg;
726 	bool skip_mtr_reg = false;
727 
728 	switch (feature) {
729 	case MLX5_HAIRPIN_RX:
730 		return REG_B;
731 	case MLX5_HAIRPIN_TX:
732 		return REG_A;
733 	case MLX5_METADATA_RX:
734 		switch (config->dv_xmeta_en) {
735 		case MLX5_XMETA_MODE_LEGACY:
736 			return REG_B;
737 		case MLX5_XMETA_MODE_META16:
738 			return REG_C_0;
739 		case MLX5_XMETA_MODE_META32:
740 			return REG_C_1;
741 		}
742 		break;
743 	case MLX5_METADATA_TX:
744 		return REG_A;
745 	case MLX5_METADATA_FDB:
746 		switch (config->dv_xmeta_en) {
747 		case MLX5_XMETA_MODE_LEGACY:
748 			return REG_NON;
749 		case MLX5_XMETA_MODE_META16:
750 			return REG_C_0;
751 		case MLX5_XMETA_MODE_META32:
752 			return REG_C_1;
753 		}
754 		break;
755 	case MLX5_FLOW_MARK:
756 		switch (config->dv_xmeta_en) {
757 		case MLX5_XMETA_MODE_LEGACY:
758 			return REG_NON;
759 		case MLX5_XMETA_MODE_META16:
760 			return REG_C_1;
761 		case MLX5_XMETA_MODE_META32:
762 			return REG_C_0;
763 		}
764 		break;
765 	case MLX5_MTR_SFX:
766 		/*
767 		 * If meter color and flow match share one register, flow match
768 		 * should use the meter color register for match.
769 		 */
770 		if (priv->mtr_reg_share)
771 			return priv->mtr_color_reg;
772 		else
773 			return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
774 			       REG_C_3;
775 	case MLX5_MTR_COLOR:
776 	case MLX5_ASO_FLOW_HIT: /* Both features use the same REG_C. */
777 		MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
778 		return priv->mtr_color_reg;
779 	case MLX5_COPY_MARK:
780 		/*
781 		 * Metadata COPY_MARK register using is in meter suffix sub
782 		 * flow while with meter. It's safe to share the same register.
783 		 */
784 		return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
785 	case MLX5_APP_TAG:
786 		/*
787 		 * If meter is enable, it will engage the register for color
788 		 * match and flow match. If meter color match is not using the
789 		 * REG_C_2, need to skip the REG_C_x be used by meter color
790 		 * match.
791 		 * If meter is disable, free to use all available registers.
792 		 */
793 		start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
794 			    (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
795 		skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
796 		if (id > (uint32_t)(REG_C_7 - start_reg))
797 			return rte_flow_error_set(error, EINVAL,
798 						  RTE_FLOW_ERROR_TYPE_ITEM,
799 						  NULL, "invalid tag id");
800 		if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
801 			return rte_flow_error_set(error, ENOTSUP,
802 						  RTE_FLOW_ERROR_TYPE_ITEM,
803 						  NULL, "unsupported tag id");
804 		/*
805 		 * This case means meter is using the REG_C_x great than 2.
806 		 * Take care not to conflict with meter color REG_C_x.
807 		 * If the available index REG_C_y >= REG_C_x, skip the
808 		 * color register.
809 		 */
810 		if (skip_mtr_reg && config->flow_mreg_c
811 		    [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
812 			if (id >= (uint32_t)(REG_C_7 - start_reg))
813 				return rte_flow_error_set(error, EINVAL,
814 						       RTE_FLOW_ERROR_TYPE_ITEM,
815 							NULL, "invalid tag id");
816 			if (config->flow_mreg_c
817 			    [id + 1 + start_reg - REG_C_0] != REG_NON)
818 				return config->flow_mreg_c
819 					       [id + 1 + start_reg - REG_C_0];
820 			return rte_flow_error_set(error, ENOTSUP,
821 						  RTE_FLOW_ERROR_TYPE_ITEM,
822 						  NULL, "unsupported tag id");
823 		}
824 		return config->flow_mreg_c[id + start_reg - REG_C_0];
825 	}
826 	MLX5_ASSERT(false);
827 	return rte_flow_error_set(error, EINVAL,
828 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
829 				  NULL, "invalid feature name");
830 }
831 
832 /**
833  * Check extensive flow metadata register support.
834  *
835  * @param dev
836  *   Pointer to rte_eth_dev structure.
837  *
838  * @return
839  *   True if device supports extensive flow metadata register, otherwise false.
840  */
841 bool
842 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
843 {
844 	struct mlx5_priv *priv = dev->data->dev_private;
845 	struct mlx5_dev_config *config = &priv->config;
846 
847 	/*
848 	 * Having available reg_c can be regarded inclusively as supporting
849 	 * extensive flow metadata register, which could mean,
850 	 * - metadata register copy action by modify header.
851 	 * - 16 modify header actions is supported.
852 	 * - reg_c's are preserved across different domain (FDB and NIC) on
853 	 *   packet loopback by flow lookup miss.
854 	 */
855 	return config->flow_mreg_c[2] != REG_NON;
856 }
857 
858 /**
859  * Verify the @p item specifications (spec, last, mask) are compatible with the
860  * NIC capabilities.
861  *
862  * @param[in] item
863  *   Item specification.
864  * @param[in] mask
865  *   @p item->mask or flow default bit-masks.
866  * @param[in] nic_mask
867  *   Bit-masks covering supported fields by the NIC to compare with user mask.
868  * @param[in] size
869  *   Bit-masks size in bytes.
870  * @param[in] range_accepted
871  *   True if range of values is accepted for specific fields, false otherwise.
872  * @param[out] error
873  *   Pointer to error structure.
874  *
875  * @return
876  *   0 on success, a negative errno value otherwise and rte_errno is set.
877  */
878 int
879 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
880 			  const uint8_t *mask,
881 			  const uint8_t *nic_mask,
882 			  unsigned int size,
883 			  bool range_accepted,
884 			  struct rte_flow_error *error)
885 {
886 	unsigned int i;
887 
888 	MLX5_ASSERT(nic_mask);
889 	for (i = 0; i < size; ++i)
890 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
891 			return rte_flow_error_set(error, ENOTSUP,
892 						  RTE_FLOW_ERROR_TYPE_ITEM,
893 						  item,
894 						  "mask enables non supported"
895 						  " bits");
896 	if (!item->spec && (item->mask || item->last))
897 		return rte_flow_error_set(error, EINVAL,
898 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
899 					  "mask/last without a spec is not"
900 					  " supported");
901 	if (item->spec && item->last && !range_accepted) {
902 		uint8_t spec[size];
903 		uint8_t last[size];
904 		unsigned int i;
905 		int ret;
906 
907 		for (i = 0; i < size; ++i) {
908 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
909 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
910 		}
911 		ret = memcmp(spec, last, size);
912 		if (ret != 0)
913 			return rte_flow_error_set(error, EINVAL,
914 						  RTE_FLOW_ERROR_TYPE_ITEM,
915 						  item,
916 						  "range is not valid");
917 	}
918 	return 0;
919 }
920 
921 /**
922  * Adjust the hash fields according to the @p flow information.
923  *
924  * @param[in] dev_flow.
925  *   Pointer to the mlx5_flow.
926  * @param[in] tunnel
927  *   1 when the hash field is for a tunnel item.
928  * @param[in] layer_types
929  *   ETH_RSS_* types.
930  * @param[in] hash_fields
931  *   Item hash fields.
932  *
933  * @return
934  *   The hash fields that should be used.
935  */
936 uint64_t
937 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
938 			    int tunnel __rte_unused, uint64_t layer_types,
939 			    uint64_t hash_fields)
940 {
941 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
942 	int rss_request_inner = rss_desc->level >= 2;
943 
944 	/* Check RSS hash level for tunnel. */
945 	if (tunnel && rss_request_inner)
946 		hash_fields |= IBV_RX_HASH_INNER;
947 	else if (tunnel || rss_request_inner)
948 		return 0;
949 #endif
950 	/* Check if requested layer matches RSS hash fields. */
951 	if (!(rss_desc->types & layer_types))
952 		return 0;
953 	return hash_fields;
954 }
955 
956 /**
957  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
958  * if several tunnel rules are used on this queue, the tunnel ptype will be
959  * cleared.
960  *
961  * @param rxq_ctrl
962  *   Rx queue to update.
963  */
964 static void
965 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
966 {
967 	unsigned int i;
968 	uint32_t tunnel_ptype = 0;
969 
970 	/* Look up for the ptype to use. */
971 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
972 		if (!rxq_ctrl->flow_tunnels_n[i])
973 			continue;
974 		if (!tunnel_ptype) {
975 			tunnel_ptype = tunnels_info[i].ptype;
976 		} else {
977 			tunnel_ptype = 0;
978 			break;
979 		}
980 	}
981 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
982 }
983 
984 /**
985  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
986  * flow.
987  *
988  * @param[in] dev
989  *   Pointer to the Ethernet device structure.
990  * @param[in] dev_handle
991  *   Pointer to device flow handle structure.
992  */
993 static void
994 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
995 		       struct mlx5_flow_handle *dev_handle)
996 {
997 	struct mlx5_priv *priv = dev->data->dev_private;
998 	const int mark = dev_handle->mark;
999 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1000 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1001 	unsigned int i;
1002 
1003 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1004 		struct mlx5_hrxq *hrxq;
1005 
1006 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1007 			      dev_handle->rix_hrxq);
1008 		if (hrxq)
1009 			ind_tbl = hrxq->ind_table;
1010 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1011 		struct mlx5_shared_action_rss *shared_rss;
1012 
1013 		shared_rss = mlx5_ipool_get
1014 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1015 			 dev_handle->rix_srss);
1016 		if (shared_rss)
1017 			ind_tbl = shared_rss->ind_tbl;
1018 	}
1019 	if (!ind_tbl)
1020 		return;
1021 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1022 		int idx = ind_tbl->queues[i];
1023 		struct mlx5_rxq_ctrl *rxq_ctrl =
1024 			container_of((*priv->rxqs)[idx],
1025 				     struct mlx5_rxq_ctrl, rxq);
1026 
1027 		/*
1028 		 * To support metadata register copy on Tx loopback,
1029 		 * this must be always enabled (metadata may arive
1030 		 * from other port - not from local flows only.
1031 		 */
1032 		if (priv->config.dv_flow_en &&
1033 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1034 		    mlx5_flow_ext_mreg_supported(dev)) {
1035 			rxq_ctrl->rxq.mark = 1;
1036 			rxq_ctrl->flow_mark_n = 1;
1037 		} else if (mark) {
1038 			rxq_ctrl->rxq.mark = 1;
1039 			rxq_ctrl->flow_mark_n++;
1040 		}
1041 		if (tunnel) {
1042 			unsigned int j;
1043 
1044 			/* Increase the counter matching the flow. */
1045 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1046 				if ((tunnels_info[j].tunnel &
1047 				     dev_handle->layers) ==
1048 				    tunnels_info[j].tunnel) {
1049 					rxq_ctrl->flow_tunnels_n[j]++;
1050 					break;
1051 				}
1052 			}
1053 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1054 		}
1055 	}
1056 }
1057 
1058 /**
1059  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
1060  *
1061  * @param[in] dev
1062  *   Pointer to the Ethernet device structure.
1063  * @param[in] flow
1064  *   Pointer to flow structure.
1065  */
1066 static void
1067 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
1068 {
1069 	struct mlx5_priv *priv = dev->data->dev_private;
1070 	uint32_t handle_idx;
1071 	struct mlx5_flow_handle *dev_handle;
1072 
1073 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1074 		       handle_idx, dev_handle, next)
1075 		flow_drv_rxq_flags_set(dev, dev_handle);
1076 }
1077 
1078 /**
1079  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1080  * device flow if no other flow uses it with the same kind of request.
1081  *
1082  * @param dev
1083  *   Pointer to Ethernet device.
1084  * @param[in] dev_handle
1085  *   Pointer to the device flow handle structure.
1086  */
1087 static void
1088 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1089 			struct mlx5_flow_handle *dev_handle)
1090 {
1091 	struct mlx5_priv *priv = dev->data->dev_private;
1092 	const int mark = dev_handle->mark;
1093 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1094 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1095 	unsigned int i;
1096 
1097 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1098 		struct mlx5_hrxq *hrxq;
1099 
1100 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1101 			      dev_handle->rix_hrxq);
1102 		if (hrxq)
1103 			ind_tbl = hrxq->ind_table;
1104 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1105 		struct mlx5_shared_action_rss *shared_rss;
1106 
1107 		shared_rss = mlx5_ipool_get
1108 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1109 			 dev_handle->rix_srss);
1110 		if (shared_rss)
1111 			ind_tbl = shared_rss->ind_tbl;
1112 	}
1113 	if (!ind_tbl)
1114 		return;
1115 	MLX5_ASSERT(dev->data->dev_started);
1116 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1117 		int idx = ind_tbl->queues[i];
1118 		struct mlx5_rxq_ctrl *rxq_ctrl =
1119 			container_of((*priv->rxqs)[idx],
1120 				     struct mlx5_rxq_ctrl, rxq);
1121 
1122 		if (priv->config.dv_flow_en &&
1123 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1124 		    mlx5_flow_ext_mreg_supported(dev)) {
1125 			rxq_ctrl->rxq.mark = 1;
1126 			rxq_ctrl->flow_mark_n = 1;
1127 		} else if (mark) {
1128 			rxq_ctrl->flow_mark_n--;
1129 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
1130 		}
1131 		if (tunnel) {
1132 			unsigned int j;
1133 
1134 			/* Decrease the counter matching the flow. */
1135 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1136 				if ((tunnels_info[j].tunnel &
1137 				     dev_handle->layers) ==
1138 				    tunnels_info[j].tunnel) {
1139 					rxq_ctrl->flow_tunnels_n[j]--;
1140 					break;
1141 				}
1142 			}
1143 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1144 		}
1145 	}
1146 }
1147 
1148 /**
1149  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1150  * @p flow if no other flow uses it with the same kind of request.
1151  *
1152  * @param dev
1153  *   Pointer to Ethernet device.
1154  * @param[in] flow
1155  *   Pointer to the flow.
1156  */
1157 static void
1158 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1159 {
1160 	struct mlx5_priv *priv = dev->data->dev_private;
1161 	uint32_t handle_idx;
1162 	struct mlx5_flow_handle *dev_handle;
1163 
1164 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1165 		       handle_idx, dev_handle, next)
1166 		flow_drv_rxq_flags_trim(dev, dev_handle);
1167 }
1168 
1169 /**
1170  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1171  *
1172  * @param dev
1173  *   Pointer to Ethernet device.
1174  */
1175 static void
1176 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1177 {
1178 	struct mlx5_priv *priv = dev->data->dev_private;
1179 	unsigned int i;
1180 
1181 	for (i = 0; i != priv->rxqs_n; ++i) {
1182 		struct mlx5_rxq_ctrl *rxq_ctrl;
1183 		unsigned int j;
1184 
1185 		if (!(*priv->rxqs)[i])
1186 			continue;
1187 		rxq_ctrl = container_of((*priv->rxqs)[i],
1188 					struct mlx5_rxq_ctrl, rxq);
1189 		rxq_ctrl->flow_mark_n = 0;
1190 		rxq_ctrl->rxq.mark = 0;
1191 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1192 			rxq_ctrl->flow_tunnels_n[j] = 0;
1193 		rxq_ctrl->rxq.tunnel = 0;
1194 	}
1195 }
1196 
1197 /**
1198  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1199  *
1200  * @param[in] dev
1201  *   Pointer to the Ethernet device structure.
1202  */
1203 void
1204 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1205 {
1206 	struct mlx5_priv *priv = dev->data->dev_private;
1207 	struct mlx5_rxq_data *data;
1208 	unsigned int i;
1209 
1210 	for (i = 0; i != priv->rxqs_n; ++i) {
1211 		if (!(*priv->rxqs)[i])
1212 			continue;
1213 		data = (*priv->rxqs)[i];
1214 		if (!rte_flow_dynf_metadata_avail()) {
1215 			data->dynf_meta = 0;
1216 			data->flow_meta_mask = 0;
1217 			data->flow_meta_offset = -1;
1218 		} else {
1219 			data->dynf_meta = 1;
1220 			data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1221 			data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1222 		}
1223 	}
1224 }
1225 
1226 /*
1227  * return a pointer to the desired action in the list of actions.
1228  *
1229  * @param[in] actions
1230  *   The list of actions to search the action in.
1231  * @param[in] action
1232  *   The action to find.
1233  *
1234  * @return
1235  *   Pointer to the action in the list, if found. NULL otherwise.
1236  */
1237 const struct rte_flow_action *
1238 mlx5_flow_find_action(const struct rte_flow_action *actions,
1239 		      enum rte_flow_action_type action)
1240 {
1241 	if (actions == NULL)
1242 		return NULL;
1243 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1244 		if (actions->type == action)
1245 			return actions;
1246 	return NULL;
1247 }
1248 
1249 /*
1250  * Validate the flag action.
1251  *
1252  * @param[in] action_flags
1253  *   Bit-fields that holds the actions detected until now.
1254  * @param[in] attr
1255  *   Attributes of flow that includes this action.
1256  * @param[out] error
1257  *   Pointer to error structure.
1258  *
1259  * @return
1260  *   0 on success, a negative errno value otherwise and rte_errno is set.
1261  */
1262 int
1263 mlx5_flow_validate_action_flag(uint64_t action_flags,
1264 			       const struct rte_flow_attr *attr,
1265 			       struct rte_flow_error *error)
1266 {
1267 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1268 		return rte_flow_error_set(error, EINVAL,
1269 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1270 					  "can't mark and flag in same flow");
1271 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1272 		return rte_flow_error_set(error, EINVAL,
1273 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1274 					  "can't have 2 flag"
1275 					  " actions in same flow");
1276 	if (attr->egress)
1277 		return rte_flow_error_set(error, ENOTSUP,
1278 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1279 					  "flag action not supported for "
1280 					  "egress");
1281 	return 0;
1282 }
1283 
1284 /*
1285  * Validate the mark action.
1286  *
1287  * @param[in] action
1288  *   Pointer to the queue action.
1289  * @param[in] action_flags
1290  *   Bit-fields that holds the actions detected until now.
1291  * @param[in] attr
1292  *   Attributes of flow that includes this action.
1293  * @param[out] error
1294  *   Pointer to error structure.
1295  *
1296  * @return
1297  *   0 on success, a negative errno value otherwise and rte_errno is set.
1298  */
1299 int
1300 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1301 			       uint64_t action_flags,
1302 			       const struct rte_flow_attr *attr,
1303 			       struct rte_flow_error *error)
1304 {
1305 	const struct rte_flow_action_mark *mark = action->conf;
1306 
1307 	if (!mark)
1308 		return rte_flow_error_set(error, EINVAL,
1309 					  RTE_FLOW_ERROR_TYPE_ACTION,
1310 					  action,
1311 					  "configuration cannot be null");
1312 	if (mark->id >= MLX5_FLOW_MARK_MAX)
1313 		return rte_flow_error_set(error, EINVAL,
1314 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1315 					  &mark->id,
1316 					  "mark id must in 0 <= id < "
1317 					  RTE_STR(MLX5_FLOW_MARK_MAX));
1318 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1319 		return rte_flow_error_set(error, EINVAL,
1320 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1321 					  "can't flag and mark in same flow");
1322 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1323 		return rte_flow_error_set(error, EINVAL,
1324 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1325 					  "can't have 2 mark actions in same"
1326 					  " flow");
1327 	if (attr->egress)
1328 		return rte_flow_error_set(error, ENOTSUP,
1329 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1330 					  "mark action not supported for "
1331 					  "egress");
1332 	return 0;
1333 }
1334 
1335 /*
1336  * Validate the drop action.
1337  *
1338  * @param[in] action_flags
1339  *   Bit-fields that holds the actions detected until now.
1340  * @param[in] attr
1341  *   Attributes of flow that includes this action.
1342  * @param[out] error
1343  *   Pointer to error structure.
1344  *
1345  * @return
1346  *   0 on success, a negative errno value otherwise and rte_errno is set.
1347  */
1348 int
1349 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1350 			       const struct rte_flow_attr *attr,
1351 			       struct rte_flow_error *error)
1352 {
1353 	if (attr->egress)
1354 		return rte_flow_error_set(error, ENOTSUP,
1355 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1356 					  "drop action not supported for "
1357 					  "egress");
1358 	return 0;
1359 }
1360 
1361 /*
1362  * Validate the queue action.
1363  *
1364  * @param[in] action
1365  *   Pointer to the queue action.
1366  * @param[in] action_flags
1367  *   Bit-fields that holds the actions detected until now.
1368  * @param[in] dev
1369  *   Pointer to the Ethernet device structure.
1370  * @param[in] attr
1371  *   Attributes of flow that includes this action.
1372  * @param[out] error
1373  *   Pointer to error structure.
1374  *
1375  * @return
1376  *   0 on success, a negative errno value otherwise and rte_errno is set.
1377  */
1378 int
1379 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1380 				uint64_t action_flags,
1381 				struct rte_eth_dev *dev,
1382 				const struct rte_flow_attr *attr,
1383 				struct rte_flow_error *error)
1384 {
1385 	struct mlx5_priv *priv = dev->data->dev_private;
1386 	const struct rte_flow_action_queue *queue = action->conf;
1387 
1388 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1389 		return rte_flow_error_set(error, EINVAL,
1390 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1391 					  "can't have 2 fate actions in"
1392 					  " same flow");
1393 	if (!priv->rxqs_n)
1394 		return rte_flow_error_set(error, EINVAL,
1395 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1396 					  NULL, "No Rx queues configured");
1397 	if (queue->index >= priv->rxqs_n)
1398 		return rte_flow_error_set(error, EINVAL,
1399 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1400 					  &queue->index,
1401 					  "queue index out of range");
1402 	if (!(*priv->rxqs)[queue->index])
1403 		return rte_flow_error_set(error, EINVAL,
1404 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1405 					  &queue->index,
1406 					  "queue is not configured");
1407 	if (attr->egress)
1408 		return rte_flow_error_set(error, ENOTSUP,
1409 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1410 					  "queue action not supported for "
1411 					  "egress");
1412 	return 0;
1413 }
1414 
1415 /*
1416  * Validate the rss action.
1417  *
1418  * @param[in] dev
1419  *   Pointer to the Ethernet device structure.
1420  * @param[in] action
1421  *   Pointer to the queue action.
1422  * @param[out] error
1423  *   Pointer to error structure.
1424  *
1425  * @return
1426  *   0 on success, a negative errno value otherwise and rte_errno is set.
1427  */
1428 int
1429 mlx5_validate_action_rss(struct rte_eth_dev *dev,
1430 			 const struct rte_flow_action *action,
1431 			 struct rte_flow_error *error)
1432 {
1433 	struct mlx5_priv *priv = dev->data->dev_private;
1434 	const struct rte_flow_action_rss *rss = action->conf;
1435 	enum mlx5_rxq_type rxq_type = MLX5_RXQ_TYPE_UNDEFINED;
1436 	unsigned int i;
1437 
1438 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1439 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1440 		return rte_flow_error_set(error, ENOTSUP,
1441 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1442 					  &rss->func,
1443 					  "RSS hash function not supported");
1444 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1445 	if (rss->level > 2)
1446 #else
1447 	if (rss->level > 1)
1448 #endif
1449 		return rte_flow_error_set(error, ENOTSUP,
1450 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1451 					  &rss->level,
1452 					  "tunnel RSS is not supported");
1453 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
1454 	if (rss->key_len == 0 && rss->key != NULL)
1455 		return rte_flow_error_set(error, ENOTSUP,
1456 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1457 					  &rss->key_len,
1458 					  "RSS hash key length 0");
1459 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1460 		return rte_flow_error_set(error, ENOTSUP,
1461 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1462 					  &rss->key_len,
1463 					  "RSS hash key too small");
1464 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1465 		return rte_flow_error_set(error, ENOTSUP,
1466 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1467 					  &rss->key_len,
1468 					  "RSS hash key too large");
1469 	if (rss->queue_num > priv->config.ind_table_max_size)
1470 		return rte_flow_error_set(error, ENOTSUP,
1471 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1472 					  &rss->queue_num,
1473 					  "number of queues too large");
1474 	if (rss->types & MLX5_RSS_HF_MASK)
1475 		return rte_flow_error_set(error, ENOTSUP,
1476 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1477 					  &rss->types,
1478 					  "some RSS protocols are not"
1479 					  " supported");
1480 	if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) &&
1481 	    !(rss->types & ETH_RSS_IP))
1482 		return rte_flow_error_set(error, EINVAL,
1483 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1484 					  "L3 partial RSS requested but L3 RSS"
1485 					  " type not specified");
1486 	if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) &&
1487 	    !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP)))
1488 		return rte_flow_error_set(error, EINVAL,
1489 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1490 					  "L4 partial RSS requested but L4 RSS"
1491 					  " type not specified");
1492 	if (!priv->rxqs_n)
1493 		return rte_flow_error_set(error, EINVAL,
1494 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1495 					  NULL, "No Rx queues configured");
1496 	if (!rss->queue_num)
1497 		return rte_flow_error_set(error, EINVAL,
1498 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1499 					  NULL, "No queues configured");
1500 	for (i = 0; i != rss->queue_num; ++i) {
1501 		struct mlx5_rxq_ctrl *rxq_ctrl;
1502 
1503 		if (rss->queue[i] >= priv->rxqs_n)
1504 			return rte_flow_error_set
1505 				(error, EINVAL,
1506 				 RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1507 				 &rss->queue[i], "queue index out of range");
1508 		if (!(*priv->rxqs)[rss->queue[i]])
1509 			return rte_flow_error_set
1510 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1511 				 &rss->queue[i], "queue is not configured");
1512 		rxq_ctrl = container_of((*priv->rxqs)[rss->queue[i]],
1513 					struct mlx5_rxq_ctrl, rxq);
1514 		if (i == 0)
1515 			rxq_type = rxq_ctrl->type;
1516 		if (rxq_type != rxq_ctrl->type)
1517 			return rte_flow_error_set
1518 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1519 				 &rss->queue[i],
1520 				 "combining hairpin and regular RSS queues is not supported");
1521 	}
1522 	return 0;
1523 }
1524 
1525 /*
1526  * Validate the rss action.
1527  *
1528  * @param[in] action
1529  *   Pointer to the queue action.
1530  * @param[in] action_flags
1531  *   Bit-fields that holds the actions detected until now.
1532  * @param[in] dev
1533  *   Pointer to the Ethernet device structure.
1534  * @param[in] attr
1535  *   Attributes of flow that includes this action.
1536  * @param[in] item_flags
1537  *   Items that were detected.
1538  * @param[out] error
1539  *   Pointer to error structure.
1540  *
1541  * @return
1542  *   0 on success, a negative errno value otherwise and rte_errno is set.
1543  */
1544 int
1545 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1546 			      uint64_t action_flags,
1547 			      struct rte_eth_dev *dev,
1548 			      const struct rte_flow_attr *attr,
1549 			      uint64_t item_flags,
1550 			      struct rte_flow_error *error)
1551 {
1552 	const struct rte_flow_action_rss *rss = action->conf;
1553 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1554 	int ret;
1555 
1556 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1557 		return rte_flow_error_set(error, EINVAL,
1558 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1559 					  "can't have 2 fate actions"
1560 					  " in same flow");
1561 	ret = mlx5_validate_action_rss(dev, action, error);
1562 	if (ret)
1563 		return ret;
1564 	if (attr->egress)
1565 		return rte_flow_error_set(error, ENOTSUP,
1566 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1567 					  "rss action not supported for "
1568 					  "egress");
1569 	if (rss->level > 1 && !tunnel)
1570 		return rte_flow_error_set(error, EINVAL,
1571 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1572 					  "inner RSS is not supported for "
1573 					  "non-tunnel flows");
1574 	if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1575 	    !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1576 		return rte_flow_error_set(error, EINVAL,
1577 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1578 					  "RSS on eCPRI is not supported now");
1579 	}
1580 	return 0;
1581 }
1582 
1583 /*
1584  * Validate the default miss action.
1585  *
1586  * @param[in] action_flags
1587  *   Bit-fields that holds the actions detected until now.
1588  * @param[out] error
1589  *   Pointer to error structure.
1590  *
1591  * @return
1592  *   0 on success, a negative errno value otherwise and rte_errno is set.
1593  */
1594 int
1595 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
1596 				const struct rte_flow_attr *attr,
1597 				struct rte_flow_error *error)
1598 {
1599 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1600 		return rte_flow_error_set(error, EINVAL,
1601 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1602 					  "can't have 2 fate actions in"
1603 					  " same flow");
1604 	if (attr->egress)
1605 		return rte_flow_error_set(error, ENOTSUP,
1606 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1607 					  "default miss action not supported "
1608 					  "for egress");
1609 	if (attr->group)
1610 		return rte_flow_error_set(error, ENOTSUP,
1611 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
1612 					  "only group 0 is supported");
1613 	if (attr->transfer)
1614 		return rte_flow_error_set(error, ENOTSUP,
1615 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1616 					  NULL, "transfer is not supported");
1617 	return 0;
1618 }
1619 
1620 /*
1621  * Validate the count action.
1622  *
1623  * @param[in] dev
1624  *   Pointer to the Ethernet device structure.
1625  * @param[in] attr
1626  *   Attributes of flow that includes this action.
1627  * @param[out] error
1628  *   Pointer to error structure.
1629  *
1630  * @return
1631  *   0 on success, a negative errno value otherwise and rte_errno is set.
1632  */
1633 int
1634 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1635 				const struct rte_flow_attr *attr,
1636 				struct rte_flow_error *error)
1637 {
1638 	if (attr->egress)
1639 		return rte_flow_error_set(error, ENOTSUP,
1640 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1641 					  "count action not supported for "
1642 					  "egress");
1643 	return 0;
1644 }
1645 
1646 /**
1647  * Verify the @p attributes will be correctly understood by the NIC and store
1648  * them in the @p flow if everything is correct.
1649  *
1650  * @param[in] dev
1651  *   Pointer to the Ethernet device structure.
1652  * @param[in] attributes
1653  *   Pointer to flow attributes
1654  * @param[out] error
1655  *   Pointer to error structure.
1656  *
1657  * @return
1658  *   0 on success, a negative errno value otherwise and rte_errno is set.
1659  */
1660 int
1661 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1662 			      const struct rte_flow_attr *attributes,
1663 			      struct rte_flow_error *error)
1664 {
1665 	struct mlx5_priv *priv = dev->data->dev_private;
1666 	uint32_t priority_max = priv->config.flow_prio - 1;
1667 
1668 	if (attributes->group)
1669 		return rte_flow_error_set(error, ENOTSUP,
1670 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1671 					  NULL, "groups is not supported");
1672 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1673 	    attributes->priority >= priority_max)
1674 		return rte_flow_error_set(error, ENOTSUP,
1675 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1676 					  NULL, "priority out of range");
1677 	if (attributes->egress)
1678 		return rte_flow_error_set(error, ENOTSUP,
1679 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1680 					  "egress is not supported");
1681 	if (attributes->transfer && !priv->config.dv_esw_en)
1682 		return rte_flow_error_set(error, ENOTSUP,
1683 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1684 					  NULL, "transfer is not supported");
1685 	if (!attributes->ingress)
1686 		return rte_flow_error_set(error, EINVAL,
1687 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1688 					  NULL,
1689 					  "ingress attribute is mandatory");
1690 	return 0;
1691 }
1692 
1693 /**
1694  * Validate ICMP6 item.
1695  *
1696  * @param[in] item
1697  *   Item specification.
1698  * @param[in] item_flags
1699  *   Bit-fields that holds the items detected until now.
1700  * @param[in] ext_vlan_sup
1701  *   Whether extended VLAN features are supported or not.
1702  * @param[out] error
1703  *   Pointer to error structure.
1704  *
1705  * @return
1706  *   0 on success, a negative errno value otherwise and rte_errno is set.
1707  */
1708 int
1709 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1710 			       uint64_t item_flags,
1711 			       uint8_t target_protocol,
1712 			       struct rte_flow_error *error)
1713 {
1714 	const struct rte_flow_item_icmp6 *mask = item->mask;
1715 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1716 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1717 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1718 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1719 				      MLX5_FLOW_LAYER_OUTER_L4;
1720 	int ret;
1721 
1722 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1723 		return rte_flow_error_set(error, EINVAL,
1724 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1725 					  "protocol filtering not compatible"
1726 					  " with ICMP6 layer");
1727 	if (!(item_flags & l3m))
1728 		return rte_flow_error_set(error, EINVAL,
1729 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1730 					  "IPv6 is mandatory to filter on"
1731 					  " ICMP6");
1732 	if (item_flags & l4m)
1733 		return rte_flow_error_set(error, EINVAL,
1734 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1735 					  "multiple L4 layers not supported");
1736 	if (!mask)
1737 		mask = &rte_flow_item_icmp6_mask;
1738 	ret = mlx5_flow_item_acceptable
1739 		(item, (const uint8_t *)mask,
1740 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
1741 		 sizeof(struct rte_flow_item_icmp6),
1742 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1743 	if (ret < 0)
1744 		return ret;
1745 	return 0;
1746 }
1747 
1748 /**
1749  * Validate ICMP item.
1750  *
1751  * @param[in] item
1752  *   Item specification.
1753  * @param[in] item_flags
1754  *   Bit-fields that holds the items detected until now.
1755  * @param[out] error
1756  *   Pointer to error structure.
1757  *
1758  * @return
1759  *   0 on success, a negative errno value otherwise and rte_errno is set.
1760  */
1761 int
1762 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1763 			     uint64_t item_flags,
1764 			     uint8_t target_protocol,
1765 			     struct rte_flow_error *error)
1766 {
1767 	const struct rte_flow_item_icmp *mask = item->mask;
1768 	const struct rte_flow_item_icmp nic_mask = {
1769 		.hdr.icmp_type = 0xff,
1770 		.hdr.icmp_code = 0xff,
1771 		.hdr.icmp_ident = RTE_BE16(0xffff),
1772 		.hdr.icmp_seq_nb = RTE_BE16(0xffff),
1773 	};
1774 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1775 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1776 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1777 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1778 				      MLX5_FLOW_LAYER_OUTER_L4;
1779 	int ret;
1780 
1781 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1782 		return rte_flow_error_set(error, EINVAL,
1783 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1784 					  "protocol filtering not compatible"
1785 					  " with ICMP layer");
1786 	if (!(item_flags & l3m))
1787 		return rte_flow_error_set(error, EINVAL,
1788 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1789 					  "IPv4 is mandatory to filter"
1790 					  " on ICMP");
1791 	if (item_flags & l4m)
1792 		return rte_flow_error_set(error, EINVAL,
1793 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1794 					  "multiple L4 layers not supported");
1795 	if (!mask)
1796 		mask = &nic_mask;
1797 	ret = mlx5_flow_item_acceptable
1798 		(item, (const uint8_t *)mask,
1799 		 (const uint8_t *)&nic_mask,
1800 		 sizeof(struct rte_flow_item_icmp),
1801 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1802 	if (ret < 0)
1803 		return ret;
1804 	return 0;
1805 }
1806 
1807 /**
1808  * Validate Ethernet item.
1809  *
1810  * @param[in] item
1811  *   Item specification.
1812  * @param[in] item_flags
1813  *   Bit-fields that holds the items detected until now.
1814  * @param[out] error
1815  *   Pointer to error structure.
1816  *
1817  * @return
1818  *   0 on success, a negative errno value otherwise and rte_errno is set.
1819  */
1820 int
1821 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1822 			    uint64_t item_flags, bool ext_vlan_sup,
1823 			    struct rte_flow_error *error)
1824 {
1825 	const struct rte_flow_item_eth *mask = item->mask;
1826 	const struct rte_flow_item_eth nic_mask = {
1827 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1828 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1829 		.type = RTE_BE16(0xffff),
1830 		.has_vlan = ext_vlan_sup ? 1 : 0,
1831 	};
1832 	int ret;
1833 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1834 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1835 				       MLX5_FLOW_LAYER_OUTER_L2;
1836 
1837 	if (item_flags & ethm)
1838 		return rte_flow_error_set(error, ENOTSUP,
1839 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1840 					  "multiple L2 layers not supported");
1841 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
1842 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
1843 		return rte_flow_error_set(error, EINVAL,
1844 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1845 					  "L2 layer should not follow "
1846 					  "L3 layers");
1847 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
1848 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
1849 		return rte_flow_error_set(error, EINVAL,
1850 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1851 					  "L2 layer should not follow VLAN");
1852 	if (!mask)
1853 		mask = &rte_flow_item_eth_mask;
1854 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1855 					(const uint8_t *)&nic_mask,
1856 					sizeof(struct rte_flow_item_eth),
1857 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1858 	return ret;
1859 }
1860 
1861 /**
1862  * Validate VLAN item.
1863  *
1864  * @param[in] item
1865  *   Item specification.
1866  * @param[in] item_flags
1867  *   Bit-fields that holds the items detected until now.
1868  * @param[in] dev
1869  *   Ethernet device flow is being created on.
1870  * @param[out] error
1871  *   Pointer to error structure.
1872  *
1873  * @return
1874  *   0 on success, a negative errno value otherwise and rte_errno is set.
1875  */
1876 int
1877 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1878 			     uint64_t item_flags,
1879 			     struct rte_eth_dev *dev,
1880 			     struct rte_flow_error *error)
1881 {
1882 	const struct rte_flow_item_vlan *spec = item->spec;
1883 	const struct rte_flow_item_vlan *mask = item->mask;
1884 	const struct rte_flow_item_vlan nic_mask = {
1885 		.tci = RTE_BE16(UINT16_MAX),
1886 		.inner_type = RTE_BE16(UINT16_MAX),
1887 	};
1888 	uint16_t vlan_tag = 0;
1889 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1890 	int ret;
1891 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1892 					MLX5_FLOW_LAYER_INNER_L4) :
1893 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1894 					MLX5_FLOW_LAYER_OUTER_L4);
1895 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1896 					MLX5_FLOW_LAYER_OUTER_VLAN;
1897 
1898 	if (item_flags & vlanm)
1899 		return rte_flow_error_set(error, EINVAL,
1900 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1901 					  "multiple VLAN layers not supported");
1902 	else if ((item_flags & l34m) != 0)
1903 		return rte_flow_error_set(error, EINVAL,
1904 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1905 					  "VLAN cannot follow L3/L4 layer");
1906 	if (!mask)
1907 		mask = &rte_flow_item_vlan_mask;
1908 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1909 					(const uint8_t *)&nic_mask,
1910 					sizeof(struct rte_flow_item_vlan),
1911 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1912 	if (ret)
1913 		return ret;
1914 	if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1915 		struct mlx5_priv *priv = dev->data->dev_private;
1916 
1917 		if (priv->vmwa_context) {
1918 			/*
1919 			 * Non-NULL context means we have a virtual machine
1920 			 * and SR-IOV enabled, we have to create VLAN interface
1921 			 * to make hypervisor to setup E-Switch vport
1922 			 * context correctly. We avoid creating the multiple
1923 			 * VLAN interfaces, so we cannot support VLAN tag mask.
1924 			 */
1925 			return rte_flow_error_set(error, EINVAL,
1926 						  RTE_FLOW_ERROR_TYPE_ITEM,
1927 						  item,
1928 						  "VLAN tag mask is not"
1929 						  " supported in virtual"
1930 						  " environment");
1931 		}
1932 	}
1933 	if (spec) {
1934 		vlan_tag = spec->tci;
1935 		vlan_tag &= mask->tci;
1936 	}
1937 	/*
1938 	 * From verbs perspective an empty VLAN is equivalent
1939 	 * to a packet without VLAN layer.
1940 	 */
1941 	if (!vlan_tag)
1942 		return rte_flow_error_set(error, EINVAL,
1943 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1944 					  item->spec,
1945 					  "VLAN cannot be empty");
1946 	return 0;
1947 }
1948 
1949 /**
1950  * Validate IPV4 item.
1951  *
1952  * @param[in] item
1953  *   Item specification.
1954  * @param[in] item_flags
1955  *   Bit-fields that holds the items detected until now.
1956  * @param[in] last_item
1957  *   Previous validated item in the pattern items.
1958  * @param[in] ether_type
1959  *   Type in the ethernet layer header (including dot1q).
1960  * @param[in] acc_mask
1961  *   Acceptable mask, if NULL default internal default mask
1962  *   will be used to check whether item fields are supported.
1963  * @param[in] range_accepted
1964  *   True if range of values is accepted for specific fields, false otherwise.
1965  * @param[out] error
1966  *   Pointer to error structure.
1967  *
1968  * @return
1969  *   0 on success, a negative errno value otherwise and rte_errno is set.
1970  */
1971 int
1972 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1973 			     uint64_t item_flags,
1974 			     uint64_t last_item,
1975 			     uint16_t ether_type,
1976 			     const struct rte_flow_item_ipv4 *acc_mask,
1977 			     bool range_accepted,
1978 			     struct rte_flow_error *error)
1979 {
1980 	const struct rte_flow_item_ipv4 *mask = item->mask;
1981 	const struct rte_flow_item_ipv4 *spec = item->spec;
1982 	const struct rte_flow_item_ipv4 nic_mask = {
1983 		.hdr = {
1984 			.src_addr = RTE_BE32(0xffffffff),
1985 			.dst_addr = RTE_BE32(0xffffffff),
1986 			.type_of_service = 0xff,
1987 			.next_proto_id = 0xff,
1988 		},
1989 	};
1990 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1991 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1992 				      MLX5_FLOW_LAYER_OUTER_L3;
1993 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1994 				      MLX5_FLOW_LAYER_OUTER_L4;
1995 	int ret;
1996 	uint8_t next_proto = 0xFF;
1997 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1998 				  MLX5_FLOW_LAYER_OUTER_VLAN |
1999 				  MLX5_FLOW_LAYER_INNER_VLAN);
2000 
2001 	if ((last_item & l2_vlan) && ether_type &&
2002 	    ether_type != RTE_ETHER_TYPE_IPV4)
2003 		return rte_flow_error_set(error, EINVAL,
2004 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2005 					  "IPv4 cannot follow L2/VLAN layer "
2006 					  "which ether type is not IPv4");
2007 	if (item_flags & MLX5_FLOW_LAYER_IPIP) {
2008 		if (mask && spec)
2009 			next_proto = mask->hdr.next_proto_id &
2010 				     spec->hdr.next_proto_id;
2011 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2012 			return rte_flow_error_set(error, EINVAL,
2013 						  RTE_FLOW_ERROR_TYPE_ITEM,
2014 						  item,
2015 						  "multiple tunnel "
2016 						  "not supported");
2017 	}
2018 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
2019 		return rte_flow_error_set(error, EINVAL,
2020 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2021 					  "wrong tunnel type - IPv6 specified "
2022 					  "but IPv4 item provided");
2023 	if (item_flags & l3m)
2024 		return rte_flow_error_set(error, ENOTSUP,
2025 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2026 					  "multiple L3 layers not supported");
2027 	else if (item_flags & l4m)
2028 		return rte_flow_error_set(error, EINVAL,
2029 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2030 					  "L3 cannot follow an L4 layer.");
2031 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2032 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2033 		return rte_flow_error_set(error, EINVAL,
2034 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2035 					  "L3 cannot follow an NVGRE layer.");
2036 	if (!mask)
2037 		mask = &rte_flow_item_ipv4_mask;
2038 	else if (mask->hdr.next_proto_id != 0 &&
2039 		 mask->hdr.next_proto_id != 0xff)
2040 		return rte_flow_error_set(error, EINVAL,
2041 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2042 					  "partial mask is not supported"
2043 					  " for protocol");
2044 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2045 					acc_mask ? (const uint8_t *)acc_mask
2046 						 : (const uint8_t *)&nic_mask,
2047 					sizeof(struct rte_flow_item_ipv4),
2048 					range_accepted, error);
2049 	if (ret < 0)
2050 		return ret;
2051 	return 0;
2052 }
2053 
2054 /**
2055  * Validate IPV6 item.
2056  *
2057  * @param[in] item
2058  *   Item specification.
2059  * @param[in] item_flags
2060  *   Bit-fields that holds the items detected until now.
2061  * @param[in] last_item
2062  *   Previous validated item in the pattern items.
2063  * @param[in] ether_type
2064  *   Type in the ethernet layer header (including dot1q).
2065  * @param[in] acc_mask
2066  *   Acceptable mask, if NULL default internal default mask
2067  *   will be used to check whether item fields are supported.
2068  * @param[out] error
2069  *   Pointer to error structure.
2070  *
2071  * @return
2072  *   0 on success, a negative errno value otherwise and rte_errno is set.
2073  */
2074 int
2075 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
2076 			     uint64_t item_flags,
2077 			     uint64_t last_item,
2078 			     uint16_t ether_type,
2079 			     const struct rte_flow_item_ipv6 *acc_mask,
2080 			     struct rte_flow_error *error)
2081 {
2082 	const struct rte_flow_item_ipv6 *mask = item->mask;
2083 	const struct rte_flow_item_ipv6 *spec = item->spec;
2084 	const struct rte_flow_item_ipv6 nic_mask = {
2085 		.hdr = {
2086 			.src_addr =
2087 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2088 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2089 			.dst_addr =
2090 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2091 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2092 			.vtc_flow = RTE_BE32(0xffffffff),
2093 			.proto = 0xff,
2094 		},
2095 	};
2096 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2097 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2098 				      MLX5_FLOW_LAYER_OUTER_L3;
2099 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2100 				      MLX5_FLOW_LAYER_OUTER_L4;
2101 	int ret;
2102 	uint8_t next_proto = 0xFF;
2103 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2104 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2105 				  MLX5_FLOW_LAYER_INNER_VLAN);
2106 
2107 	if ((last_item & l2_vlan) && ether_type &&
2108 	    ether_type != RTE_ETHER_TYPE_IPV6)
2109 		return rte_flow_error_set(error, EINVAL,
2110 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2111 					  "IPv6 cannot follow L2/VLAN layer "
2112 					  "which ether type is not IPv6");
2113 	if (mask && mask->hdr.proto == UINT8_MAX && spec)
2114 		next_proto = spec->hdr.proto;
2115 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
2116 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2117 			return rte_flow_error_set(error, EINVAL,
2118 						  RTE_FLOW_ERROR_TYPE_ITEM,
2119 						  item,
2120 						  "multiple tunnel "
2121 						  "not supported");
2122 	}
2123 	if (next_proto == IPPROTO_HOPOPTS  ||
2124 	    next_proto == IPPROTO_ROUTING  ||
2125 	    next_proto == IPPROTO_FRAGMENT ||
2126 	    next_proto == IPPROTO_ESP	   ||
2127 	    next_proto == IPPROTO_AH	   ||
2128 	    next_proto == IPPROTO_DSTOPTS)
2129 		return rte_flow_error_set(error, EINVAL,
2130 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2131 					  "IPv6 proto (next header) should "
2132 					  "not be set as extension header");
2133 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
2134 		return rte_flow_error_set(error, EINVAL,
2135 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2136 					  "wrong tunnel type - IPv4 specified "
2137 					  "but IPv6 item provided");
2138 	if (item_flags & l3m)
2139 		return rte_flow_error_set(error, ENOTSUP,
2140 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2141 					  "multiple L3 layers not supported");
2142 	else if (item_flags & l4m)
2143 		return rte_flow_error_set(error, EINVAL,
2144 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2145 					  "L3 cannot follow an L4 layer.");
2146 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2147 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2148 		return rte_flow_error_set(error, EINVAL,
2149 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2150 					  "L3 cannot follow an NVGRE layer.");
2151 	if (!mask)
2152 		mask = &rte_flow_item_ipv6_mask;
2153 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2154 					acc_mask ? (const uint8_t *)acc_mask
2155 						 : (const uint8_t *)&nic_mask,
2156 					sizeof(struct rte_flow_item_ipv6),
2157 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2158 	if (ret < 0)
2159 		return ret;
2160 	return 0;
2161 }
2162 
2163 /**
2164  * Validate UDP item.
2165  *
2166  * @param[in] item
2167  *   Item specification.
2168  * @param[in] item_flags
2169  *   Bit-fields that holds the items detected until now.
2170  * @param[in] target_protocol
2171  *   The next protocol in the previous item.
2172  * @param[in] flow_mask
2173  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2174  * @param[out] error
2175  *   Pointer to error structure.
2176  *
2177  * @return
2178  *   0 on success, a negative errno value otherwise and rte_errno is set.
2179  */
2180 int
2181 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2182 			    uint64_t item_flags,
2183 			    uint8_t target_protocol,
2184 			    struct rte_flow_error *error)
2185 {
2186 	const struct rte_flow_item_udp *mask = item->mask;
2187 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2188 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2189 				      MLX5_FLOW_LAYER_OUTER_L3;
2190 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2191 				      MLX5_FLOW_LAYER_OUTER_L4;
2192 	int ret;
2193 
2194 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2195 		return rte_flow_error_set(error, EINVAL,
2196 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2197 					  "protocol filtering not compatible"
2198 					  " with UDP layer");
2199 	if (!(item_flags & l3m))
2200 		return rte_flow_error_set(error, EINVAL,
2201 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2202 					  "L3 is mandatory to filter on L4");
2203 	if (item_flags & l4m)
2204 		return rte_flow_error_set(error, EINVAL,
2205 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2206 					  "multiple L4 layers not supported");
2207 	if (!mask)
2208 		mask = &rte_flow_item_udp_mask;
2209 	ret = mlx5_flow_item_acceptable
2210 		(item, (const uint8_t *)mask,
2211 		 (const uint8_t *)&rte_flow_item_udp_mask,
2212 		 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2213 		 error);
2214 	if (ret < 0)
2215 		return ret;
2216 	return 0;
2217 }
2218 
2219 /**
2220  * Validate TCP item.
2221  *
2222  * @param[in] item
2223  *   Item specification.
2224  * @param[in] item_flags
2225  *   Bit-fields that holds the items detected until now.
2226  * @param[in] target_protocol
2227  *   The next protocol in the previous item.
2228  * @param[out] error
2229  *   Pointer to error structure.
2230  *
2231  * @return
2232  *   0 on success, a negative errno value otherwise and rte_errno is set.
2233  */
2234 int
2235 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2236 			    uint64_t item_flags,
2237 			    uint8_t target_protocol,
2238 			    const struct rte_flow_item_tcp *flow_mask,
2239 			    struct rte_flow_error *error)
2240 {
2241 	const struct rte_flow_item_tcp *mask = item->mask;
2242 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2243 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2244 				      MLX5_FLOW_LAYER_OUTER_L3;
2245 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2246 				      MLX5_FLOW_LAYER_OUTER_L4;
2247 	int ret;
2248 
2249 	MLX5_ASSERT(flow_mask);
2250 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2251 		return rte_flow_error_set(error, EINVAL,
2252 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2253 					  "protocol filtering not compatible"
2254 					  " with TCP layer");
2255 	if (!(item_flags & l3m))
2256 		return rte_flow_error_set(error, EINVAL,
2257 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2258 					  "L3 is mandatory to filter on L4");
2259 	if (item_flags & l4m)
2260 		return rte_flow_error_set(error, EINVAL,
2261 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2262 					  "multiple L4 layers not supported");
2263 	if (!mask)
2264 		mask = &rte_flow_item_tcp_mask;
2265 	ret = mlx5_flow_item_acceptable
2266 		(item, (const uint8_t *)mask,
2267 		 (const uint8_t *)flow_mask,
2268 		 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2269 		 error);
2270 	if (ret < 0)
2271 		return ret;
2272 	return 0;
2273 }
2274 
2275 /**
2276  * Validate VXLAN item.
2277  *
2278  * @param[in] item
2279  *   Item specification.
2280  * @param[in] item_flags
2281  *   Bit-fields that holds the items detected until now.
2282  * @param[in] target_protocol
2283  *   The next protocol in the previous item.
2284  * @param[out] error
2285  *   Pointer to error structure.
2286  *
2287  * @return
2288  *   0 on success, a negative errno value otherwise and rte_errno is set.
2289  */
2290 int
2291 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
2292 			      uint64_t item_flags,
2293 			      struct rte_flow_error *error)
2294 {
2295 	const struct rte_flow_item_vxlan *spec = item->spec;
2296 	const struct rte_flow_item_vxlan *mask = item->mask;
2297 	int ret;
2298 	union vni {
2299 		uint32_t vlan_id;
2300 		uint8_t vni[4];
2301 	} id = { .vlan_id = 0, };
2302 
2303 
2304 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2305 		return rte_flow_error_set(error, ENOTSUP,
2306 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2307 					  "multiple tunnel layers not"
2308 					  " supported");
2309 	/*
2310 	 * Verify only UDPv4 is present as defined in
2311 	 * https://tools.ietf.org/html/rfc7348
2312 	 */
2313 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2314 		return rte_flow_error_set(error, EINVAL,
2315 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2316 					  "no outer UDP layer found");
2317 	if (!mask)
2318 		mask = &rte_flow_item_vxlan_mask;
2319 	ret = mlx5_flow_item_acceptable
2320 		(item, (const uint8_t *)mask,
2321 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
2322 		 sizeof(struct rte_flow_item_vxlan),
2323 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2324 	if (ret < 0)
2325 		return ret;
2326 	if (spec) {
2327 		memcpy(&id.vni[1], spec->vni, 3);
2328 		memcpy(&id.vni[1], mask->vni, 3);
2329 	}
2330 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2331 		return rte_flow_error_set(error, ENOTSUP,
2332 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2333 					  "VXLAN tunnel must be fully defined");
2334 	return 0;
2335 }
2336 
2337 /**
2338  * Validate VXLAN_GPE item.
2339  *
2340  * @param[in] item
2341  *   Item specification.
2342  * @param[in] item_flags
2343  *   Bit-fields that holds the items detected until now.
2344  * @param[in] priv
2345  *   Pointer to the private data structure.
2346  * @param[in] target_protocol
2347  *   The next protocol in the previous item.
2348  * @param[out] error
2349  *   Pointer to error structure.
2350  *
2351  * @return
2352  *   0 on success, a negative errno value otherwise and rte_errno is set.
2353  */
2354 int
2355 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2356 				  uint64_t item_flags,
2357 				  struct rte_eth_dev *dev,
2358 				  struct rte_flow_error *error)
2359 {
2360 	struct mlx5_priv *priv = dev->data->dev_private;
2361 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2362 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2363 	int ret;
2364 	union vni {
2365 		uint32_t vlan_id;
2366 		uint8_t vni[4];
2367 	} id = { .vlan_id = 0, };
2368 
2369 	if (!priv->config.l3_vxlan_en)
2370 		return rte_flow_error_set(error, ENOTSUP,
2371 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2372 					  "L3 VXLAN is not enabled by device"
2373 					  " parameter and/or not configured in"
2374 					  " firmware");
2375 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2376 		return rte_flow_error_set(error, ENOTSUP,
2377 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2378 					  "multiple tunnel layers not"
2379 					  " supported");
2380 	/*
2381 	 * Verify only UDPv4 is present as defined in
2382 	 * https://tools.ietf.org/html/rfc7348
2383 	 */
2384 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2385 		return rte_flow_error_set(error, EINVAL,
2386 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2387 					  "no outer UDP layer found");
2388 	if (!mask)
2389 		mask = &rte_flow_item_vxlan_gpe_mask;
2390 	ret = mlx5_flow_item_acceptable
2391 		(item, (const uint8_t *)mask,
2392 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2393 		 sizeof(struct rte_flow_item_vxlan_gpe),
2394 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2395 	if (ret < 0)
2396 		return ret;
2397 	if (spec) {
2398 		if (spec->protocol)
2399 			return rte_flow_error_set(error, ENOTSUP,
2400 						  RTE_FLOW_ERROR_TYPE_ITEM,
2401 						  item,
2402 						  "VxLAN-GPE protocol"
2403 						  " not supported");
2404 		memcpy(&id.vni[1], spec->vni, 3);
2405 		memcpy(&id.vni[1], mask->vni, 3);
2406 	}
2407 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2408 		return rte_flow_error_set(error, ENOTSUP,
2409 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2410 					  "VXLAN-GPE tunnel must be fully"
2411 					  " defined");
2412 	return 0;
2413 }
2414 /**
2415  * Validate GRE Key item.
2416  *
2417  * @param[in] item
2418  *   Item specification.
2419  * @param[in] item_flags
2420  *   Bit flags to mark detected items.
2421  * @param[in] gre_item
2422  *   Pointer to gre_item
2423  * @param[out] error
2424  *   Pointer to error structure.
2425  *
2426  * @return
2427  *   0 on success, a negative errno value otherwise and rte_errno is set.
2428  */
2429 int
2430 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2431 				uint64_t item_flags,
2432 				const struct rte_flow_item *gre_item,
2433 				struct rte_flow_error *error)
2434 {
2435 	const rte_be32_t *mask = item->mask;
2436 	int ret = 0;
2437 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2438 	const struct rte_flow_item_gre *gre_spec;
2439 	const struct rte_flow_item_gre *gre_mask;
2440 
2441 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2442 		return rte_flow_error_set(error, ENOTSUP,
2443 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2444 					  "Multiple GRE key not support");
2445 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2446 		return rte_flow_error_set(error, ENOTSUP,
2447 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2448 					  "No preceding GRE header");
2449 	if (item_flags & MLX5_FLOW_LAYER_INNER)
2450 		return rte_flow_error_set(error, ENOTSUP,
2451 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2452 					  "GRE key following a wrong item");
2453 	gre_mask = gre_item->mask;
2454 	if (!gre_mask)
2455 		gre_mask = &rte_flow_item_gre_mask;
2456 	gre_spec = gre_item->spec;
2457 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2458 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2459 		return rte_flow_error_set(error, EINVAL,
2460 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2461 					  "Key bit must be on");
2462 
2463 	if (!mask)
2464 		mask = &gre_key_default_mask;
2465 	ret = mlx5_flow_item_acceptable
2466 		(item, (const uint8_t *)mask,
2467 		 (const uint8_t *)&gre_key_default_mask,
2468 		 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2469 	return ret;
2470 }
2471 
2472 /**
2473  * Validate GRE item.
2474  *
2475  * @param[in] item
2476  *   Item specification.
2477  * @param[in] item_flags
2478  *   Bit flags to mark detected items.
2479  * @param[in] target_protocol
2480  *   The next protocol in the previous item.
2481  * @param[out] error
2482  *   Pointer to error structure.
2483  *
2484  * @return
2485  *   0 on success, a negative errno value otherwise and rte_errno is set.
2486  */
2487 int
2488 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
2489 			    uint64_t item_flags,
2490 			    uint8_t target_protocol,
2491 			    struct rte_flow_error *error)
2492 {
2493 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
2494 	const struct rte_flow_item_gre *mask = item->mask;
2495 	int ret;
2496 	const struct rte_flow_item_gre nic_mask = {
2497 		.c_rsvd0_ver = RTE_BE16(0xB000),
2498 		.protocol = RTE_BE16(UINT16_MAX),
2499 	};
2500 
2501 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2502 		return rte_flow_error_set(error, EINVAL,
2503 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2504 					  "protocol filtering not compatible"
2505 					  " with this GRE layer");
2506 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2507 		return rte_flow_error_set(error, ENOTSUP,
2508 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2509 					  "multiple tunnel layers not"
2510 					  " supported");
2511 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2512 		return rte_flow_error_set(error, ENOTSUP,
2513 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2514 					  "L3 Layer is missing");
2515 	if (!mask)
2516 		mask = &rte_flow_item_gre_mask;
2517 	ret = mlx5_flow_item_acceptable
2518 		(item, (const uint8_t *)mask,
2519 		 (const uint8_t *)&nic_mask,
2520 		 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2521 		 error);
2522 	if (ret < 0)
2523 		return ret;
2524 #ifndef HAVE_MLX5DV_DR
2525 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
2526 	if (spec && (spec->protocol & mask->protocol))
2527 		return rte_flow_error_set(error, ENOTSUP,
2528 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2529 					  "without MPLS support the"
2530 					  " specification cannot be used for"
2531 					  " filtering");
2532 #endif
2533 #endif
2534 	return 0;
2535 }
2536 
2537 /**
2538  * Validate Geneve item.
2539  *
2540  * @param[in] item
2541  *   Item specification.
2542  * @param[in] itemFlags
2543  *   Bit-fields that holds the items detected until now.
2544  * @param[in] enPriv
2545  *   Pointer to the private data structure.
2546  * @param[out] error
2547  *   Pointer to error structure.
2548  *
2549  * @return
2550  *   0 on success, a negative errno value otherwise and rte_errno is set.
2551  */
2552 
2553 int
2554 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
2555 			       uint64_t item_flags,
2556 			       struct rte_eth_dev *dev,
2557 			       struct rte_flow_error *error)
2558 {
2559 	struct mlx5_priv *priv = dev->data->dev_private;
2560 	const struct rte_flow_item_geneve *spec = item->spec;
2561 	const struct rte_flow_item_geneve *mask = item->mask;
2562 	int ret;
2563 	uint16_t gbhdr;
2564 	uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2565 			  MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2566 	const struct rte_flow_item_geneve nic_mask = {
2567 		.ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2568 		.vni = "\xff\xff\xff",
2569 		.protocol = RTE_BE16(UINT16_MAX),
2570 	};
2571 
2572 	if (!priv->config.hca_attr.tunnel_stateless_geneve_rx)
2573 		return rte_flow_error_set(error, ENOTSUP,
2574 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2575 					  "L3 Geneve is not enabled by device"
2576 					  " parameter and/or not configured in"
2577 					  " firmware");
2578 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2579 		return rte_flow_error_set(error, ENOTSUP,
2580 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2581 					  "multiple tunnel layers not"
2582 					  " supported");
2583 	/*
2584 	 * Verify only UDPv4 is present as defined in
2585 	 * https://tools.ietf.org/html/rfc7348
2586 	 */
2587 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2588 		return rte_flow_error_set(error, EINVAL,
2589 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2590 					  "no outer UDP layer found");
2591 	if (!mask)
2592 		mask = &rte_flow_item_geneve_mask;
2593 	ret = mlx5_flow_item_acceptable
2594 				  (item, (const uint8_t *)mask,
2595 				   (const uint8_t *)&nic_mask,
2596 				   sizeof(struct rte_flow_item_geneve),
2597 				   MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2598 	if (ret)
2599 		return ret;
2600 	if (spec) {
2601 		gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2602 		if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2603 		     MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2604 		     MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2605 			return rte_flow_error_set(error, ENOTSUP,
2606 						  RTE_FLOW_ERROR_TYPE_ITEM,
2607 						  item,
2608 						  "Geneve protocol unsupported"
2609 						  " fields are being used");
2610 		if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2611 			return rte_flow_error_set
2612 					(error, ENOTSUP,
2613 					 RTE_FLOW_ERROR_TYPE_ITEM,
2614 					 item,
2615 					 "Unsupported Geneve options length");
2616 	}
2617 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2618 		return rte_flow_error_set
2619 				    (error, ENOTSUP,
2620 				     RTE_FLOW_ERROR_TYPE_ITEM, item,
2621 				     "Geneve tunnel must be fully defined");
2622 	return 0;
2623 }
2624 
2625 /**
2626  * Validate MPLS item.
2627  *
2628  * @param[in] dev
2629  *   Pointer to the rte_eth_dev structure.
2630  * @param[in] item
2631  *   Item specification.
2632  * @param[in] item_flags
2633  *   Bit-fields that holds the items detected until now.
2634  * @param[in] prev_layer
2635  *   The protocol layer indicated in previous item.
2636  * @param[out] error
2637  *   Pointer to error structure.
2638  *
2639  * @return
2640  *   0 on success, a negative errno value otherwise and rte_errno is set.
2641  */
2642 int
2643 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2644 			     const struct rte_flow_item *item __rte_unused,
2645 			     uint64_t item_flags __rte_unused,
2646 			     uint64_t prev_layer __rte_unused,
2647 			     struct rte_flow_error *error)
2648 {
2649 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2650 	const struct rte_flow_item_mpls *mask = item->mask;
2651 	struct mlx5_priv *priv = dev->data->dev_private;
2652 	int ret;
2653 
2654 	if (!priv->config.mpls_en)
2655 		return rte_flow_error_set(error, ENOTSUP,
2656 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2657 					  "MPLS not supported or"
2658 					  " disabled in firmware"
2659 					  " configuration.");
2660 	/* MPLS over IP, UDP, GRE is allowed */
2661 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2662 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
2663 			    MLX5_FLOW_LAYER_GRE |
2664 			    MLX5_FLOW_LAYER_GRE_KEY)))
2665 		return rte_flow_error_set(error, EINVAL,
2666 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2667 					  "protocol filtering not compatible"
2668 					  " with MPLS layer");
2669 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2670 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2671 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
2672 		return rte_flow_error_set(error, ENOTSUP,
2673 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2674 					  "multiple tunnel layers not"
2675 					  " supported");
2676 	if (!mask)
2677 		mask = &rte_flow_item_mpls_mask;
2678 	ret = mlx5_flow_item_acceptable
2679 		(item, (const uint8_t *)mask,
2680 		 (const uint8_t *)&rte_flow_item_mpls_mask,
2681 		 sizeof(struct rte_flow_item_mpls),
2682 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2683 	if (ret < 0)
2684 		return ret;
2685 	return 0;
2686 #else
2687 	return rte_flow_error_set(error, ENOTSUP,
2688 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
2689 				  "MPLS is not supported by Verbs, please"
2690 				  " update.");
2691 #endif
2692 }
2693 
2694 /**
2695  * Validate NVGRE item.
2696  *
2697  * @param[in] item
2698  *   Item specification.
2699  * @param[in] item_flags
2700  *   Bit flags to mark detected items.
2701  * @param[in] target_protocol
2702  *   The next protocol in the previous item.
2703  * @param[out] error
2704  *   Pointer to error structure.
2705  *
2706  * @return
2707  *   0 on success, a negative errno value otherwise and rte_errno is set.
2708  */
2709 int
2710 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2711 			      uint64_t item_flags,
2712 			      uint8_t target_protocol,
2713 			      struct rte_flow_error *error)
2714 {
2715 	const struct rte_flow_item_nvgre *mask = item->mask;
2716 	int ret;
2717 
2718 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2719 		return rte_flow_error_set(error, EINVAL,
2720 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2721 					  "protocol filtering not compatible"
2722 					  " with this GRE layer");
2723 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2724 		return rte_flow_error_set(error, ENOTSUP,
2725 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2726 					  "multiple tunnel layers not"
2727 					  " supported");
2728 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2729 		return rte_flow_error_set(error, ENOTSUP,
2730 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2731 					  "L3 Layer is missing");
2732 	if (!mask)
2733 		mask = &rte_flow_item_nvgre_mask;
2734 	ret = mlx5_flow_item_acceptable
2735 		(item, (const uint8_t *)mask,
2736 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
2737 		 sizeof(struct rte_flow_item_nvgre),
2738 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2739 	if (ret < 0)
2740 		return ret;
2741 	return 0;
2742 }
2743 
2744 /**
2745  * Validate eCPRI item.
2746  *
2747  * @param[in] item
2748  *   Item specification.
2749  * @param[in] item_flags
2750  *   Bit-fields that holds the items detected until now.
2751  * @param[in] last_item
2752  *   Previous validated item in the pattern items.
2753  * @param[in] ether_type
2754  *   Type in the ethernet layer header (including dot1q).
2755  * @param[in] acc_mask
2756  *   Acceptable mask, if NULL default internal default mask
2757  *   will be used to check whether item fields are supported.
2758  * @param[out] error
2759  *   Pointer to error structure.
2760  *
2761  * @return
2762  *   0 on success, a negative errno value otherwise and rte_errno is set.
2763  */
2764 int
2765 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
2766 			      uint64_t item_flags,
2767 			      uint64_t last_item,
2768 			      uint16_t ether_type,
2769 			      const struct rte_flow_item_ecpri *acc_mask,
2770 			      struct rte_flow_error *error)
2771 {
2772 	const struct rte_flow_item_ecpri *mask = item->mask;
2773 	const struct rte_flow_item_ecpri nic_mask = {
2774 		.hdr = {
2775 			.common = {
2776 				.u32 =
2777 				RTE_BE32(((const struct rte_ecpri_common_hdr) {
2778 					.type = 0xFF,
2779 					}).u32),
2780 			},
2781 			.dummy[0] = 0xFFFFFFFF,
2782 		},
2783 	};
2784 	const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
2785 					MLX5_FLOW_LAYER_OUTER_VLAN);
2786 	struct rte_flow_item_ecpri mask_lo;
2787 
2788 	if (!(last_item & outer_l2_vlan) &&
2789 	    last_item != MLX5_FLOW_LAYER_OUTER_L4_UDP)
2790 		return rte_flow_error_set(error, EINVAL,
2791 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2792 					  "eCPRI can only follow L2/VLAN layer or UDP layer");
2793 	if ((last_item & outer_l2_vlan) && ether_type &&
2794 	    ether_type != RTE_ETHER_TYPE_ECPRI)
2795 		return rte_flow_error_set(error, EINVAL,
2796 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2797 					  "eCPRI cannot follow L2/VLAN layer which ether type is not 0xAEFE");
2798 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2799 		return rte_flow_error_set(error, EINVAL,
2800 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2801 					  "eCPRI with tunnel is not supported right now");
2802 	if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
2803 		return rte_flow_error_set(error, ENOTSUP,
2804 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2805 					  "multiple L3 layers not supported");
2806 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
2807 		return rte_flow_error_set(error, EINVAL,
2808 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2809 					  "eCPRI cannot coexist with a TCP layer");
2810 	/* In specification, eCPRI could be over UDP layer. */
2811 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
2812 		return rte_flow_error_set(error, EINVAL,
2813 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2814 					  "eCPRI over UDP layer is not yet supported right now");
2815 	/* Mask for type field in common header could be zero. */
2816 	if (!mask)
2817 		mask = &rte_flow_item_ecpri_mask;
2818 	mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
2819 	/* Input mask is in big-endian format. */
2820 	if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
2821 		return rte_flow_error_set(error, EINVAL,
2822 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2823 					  "partial mask is not supported for protocol");
2824 	else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
2825 		return rte_flow_error_set(error, EINVAL,
2826 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2827 					  "message header mask must be after a type mask");
2828 	return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2829 					 acc_mask ? (const uint8_t *)acc_mask
2830 						  : (const uint8_t *)&nic_mask,
2831 					 sizeof(struct rte_flow_item_ecpri),
2832 					 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2833 }
2834 
2835 /**
2836  * Release resource related QUEUE/RSS action split.
2837  *
2838  * @param dev
2839  *   Pointer to Ethernet device.
2840  * @param flow
2841  *   Flow to release id's from.
2842  */
2843 static void
2844 flow_mreg_split_qrss_release(struct rte_eth_dev *dev,
2845 			     struct rte_flow *flow)
2846 {
2847 	struct mlx5_priv *priv = dev->data->dev_private;
2848 	uint32_t handle_idx;
2849 	struct mlx5_flow_handle *dev_handle;
2850 
2851 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
2852 		       handle_idx, dev_handle, next)
2853 		if (dev_handle->split_flow_id)
2854 			mlx5_ipool_free(priv->sh->ipool
2855 					[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
2856 					dev_handle->split_flow_id);
2857 }
2858 
2859 static int
2860 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2861 		   const struct rte_flow_attr *attr __rte_unused,
2862 		   const struct rte_flow_item items[] __rte_unused,
2863 		   const struct rte_flow_action actions[] __rte_unused,
2864 		   bool external __rte_unused,
2865 		   int hairpin __rte_unused,
2866 		   struct rte_flow_error *error)
2867 {
2868 	return rte_flow_error_set(error, ENOTSUP,
2869 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2870 }
2871 
2872 static struct mlx5_flow *
2873 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
2874 		  const struct rte_flow_attr *attr __rte_unused,
2875 		  const struct rte_flow_item items[] __rte_unused,
2876 		  const struct rte_flow_action actions[] __rte_unused,
2877 		  struct rte_flow_error *error)
2878 {
2879 	rte_flow_error_set(error, ENOTSUP,
2880 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2881 	return NULL;
2882 }
2883 
2884 static int
2885 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2886 		    struct mlx5_flow *dev_flow __rte_unused,
2887 		    const struct rte_flow_attr *attr __rte_unused,
2888 		    const struct rte_flow_item items[] __rte_unused,
2889 		    const struct rte_flow_action actions[] __rte_unused,
2890 		    struct rte_flow_error *error)
2891 {
2892 	return rte_flow_error_set(error, ENOTSUP,
2893 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2894 }
2895 
2896 static int
2897 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2898 		struct rte_flow *flow __rte_unused,
2899 		struct rte_flow_error *error)
2900 {
2901 	return rte_flow_error_set(error, ENOTSUP,
2902 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2903 }
2904 
2905 static void
2906 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2907 		 struct rte_flow *flow __rte_unused)
2908 {
2909 }
2910 
2911 static void
2912 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2913 		  struct rte_flow *flow __rte_unused)
2914 {
2915 }
2916 
2917 static int
2918 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2919 		struct rte_flow *flow __rte_unused,
2920 		const struct rte_flow_action *actions __rte_unused,
2921 		void *data __rte_unused,
2922 		struct rte_flow_error *error)
2923 {
2924 	return rte_flow_error_set(error, ENOTSUP,
2925 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2926 }
2927 
2928 static int
2929 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused,
2930 		      uint32_t domains __rte_unused,
2931 		      uint32_t flags __rte_unused)
2932 {
2933 	return 0;
2934 }
2935 
2936 /* Void driver to protect from null pointer reference. */
2937 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2938 	.validate = flow_null_validate,
2939 	.prepare = flow_null_prepare,
2940 	.translate = flow_null_translate,
2941 	.apply = flow_null_apply,
2942 	.remove = flow_null_remove,
2943 	.destroy = flow_null_destroy,
2944 	.query = flow_null_query,
2945 	.sync_domain = flow_null_sync_domain,
2946 };
2947 
2948 /**
2949  * Select flow driver type according to flow attributes and device
2950  * configuration.
2951  *
2952  * @param[in] dev
2953  *   Pointer to the dev structure.
2954  * @param[in] attr
2955  *   Pointer to the flow attributes.
2956  *
2957  * @return
2958  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2959  */
2960 static enum mlx5_flow_drv_type
2961 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2962 {
2963 	struct mlx5_priv *priv = dev->data->dev_private;
2964 	/* The OS can determine first a specific flow type (DV, VERBS) */
2965 	enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
2966 
2967 	if (type != MLX5_FLOW_TYPE_MAX)
2968 		return type;
2969 	/* If no OS specific type - continue with DV/VERBS selection */
2970 	if (attr->transfer && priv->config.dv_esw_en)
2971 		type = MLX5_FLOW_TYPE_DV;
2972 	if (!attr->transfer)
2973 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2974 						 MLX5_FLOW_TYPE_VERBS;
2975 	return type;
2976 }
2977 
2978 #define flow_get_drv_ops(type) flow_drv_ops[type]
2979 
2980 /**
2981  * Flow driver validation API. This abstracts calling driver specific functions.
2982  * The type of flow driver is determined according to flow attributes.
2983  *
2984  * @param[in] dev
2985  *   Pointer to the dev structure.
2986  * @param[in] attr
2987  *   Pointer to the flow attributes.
2988  * @param[in] items
2989  *   Pointer to the list of items.
2990  * @param[in] actions
2991  *   Pointer to the list of actions.
2992  * @param[in] external
2993  *   This flow rule is created by request external to PMD.
2994  * @param[in] hairpin
2995  *   Number of hairpin TX actions, 0 means classic flow.
2996  * @param[out] error
2997  *   Pointer to the error structure.
2998  *
2999  * @return
3000  *   0 on success, a negative errno value otherwise and rte_errno is set.
3001  */
3002 static inline int
3003 flow_drv_validate(struct rte_eth_dev *dev,
3004 		  const struct rte_flow_attr *attr,
3005 		  const struct rte_flow_item items[],
3006 		  const struct rte_flow_action actions[],
3007 		  bool external, int hairpin, struct rte_flow_error *error)
3008 {
3009 	const struct mlx5_flow_driver_ops *fops;
3010 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
3011 
3012 	fops = flow_get_drv_ops(type);
3013 	return fops->validate(dev, attr, items, actions, external,
3014 			      hairpin, error);
3015 }
3016 
3017 /**
3018  * Flow driver preparation API. This abstracts calling driver specific
3019  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3020  * calculates the size of memory required for device flow, allocates the memory,
3021  * initializes the device flow and returns the pointer.
3022  *
3023  * @note
3024  *   This function initializes device flow structure such as dv or verbs in
3025  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
3026  *   rest. For example, adding returning device flow to flow->dev_flow list and
3027  *   setting backward reference to the flow should be done out of this function.
3028  *   layers field is not filled either.
3029  *
3030  * @param[in] dev
3031  *   Pointer to the dev structure.
3032  * @param[in] attr
3033  *   Pointer to the flow attributes.
3034  * @param[in] items
3035  *   Pointer to the list of items.
3036  * @param[in] actions
3037  *   Pointer to the list of actions.
3038  * @param[in] flow_idx
3039  *   This memory pool index to the flow.
3040  * @param[out] error
3041  *   Pointer to the error structure.
3042  *
3043  * @return
3044  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
3045  */
3046 static inline struct mlx5_flow *
3047 flow_drv_prepare(struct rte_eth_dev *dev,
3048 		 const struct rte_flow *flow,
3049 		 const struct rte_flow_attr *attr,
3050 		 const struct rte_flow_item items[],
3051 		 const struct rte_flow_action actions[],
3052 		 uint32_t flow_idx,
3053 		 struct rte_flow_error *error)
3054 {
3055 	const struct mlx5_flow_driver_ops *fops;
3056 	enum mlx5_flow_drv_type type = flow->drv_type;
3057 	struct mlx5_flow *mlx5_flow = NULL;
3058 
3059 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3060 	fops = flow_get_drv_ops(type);
3061 	mlx5_flow = fops->prepare(dev, attr, items, actions, error);
3062 	if (mlx5_flow)
3063 		mlx5_flow->flow_idx = flow_idx;
3064 	return mlx5_flow;
3065 }
3066 
3067 /**
3068  * Flow driver translation API. This abstracts calling driver specific
3069  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3070  * translates a generic flow into a driver flow. flow_drv_prepare() must
3071  * precede.
3072  *
3073  * @note
3074  *   dev_flow->layers could be filled as a result of parsing during translation
3075  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
3076  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
3077  *   flow->actions could be overwritten even though all the expanded dev_flows
3078  *   have the same actions.
3079  *
3080  * @param[in] dev
3081  *   Pointer to the rte dev structure.
3082  * @param[in, out] dev_flow
3083  *   Pointer to the mlx5 flow.
3084  * @param[in] attr
3085  *   Pointer to the flow attributes.
3086  * @param[in] items
3087  *   Pointer to the list of items.
3088  * @param[in] actions
3089  *   Pointer to the list of actions.
3090  * @param[out] error
3091  *   Pointer to the error structure.
3092  *
3093  * @return
3094  *   0 on success, a negative errno value otherwise and rte_errno is set.
3095  */
3096 static inline int
3097 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
3098 		   const struct rte_flow_attr *attr,
3099 		   const struct rte_flow_item items[],
3100 		   const struct rte_flow_action actions[],
3101 		   struct rte_flow_error *error)
3102 {
3103 	const struct mlx5_flow_driver_ops *fops;
3104 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
3105 
3106 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3107 	fops = flow_get_drv_ops(type);
3108 	return fops->translate(dev, dev_flow, attr, items, actions, error);
3109 }
3110 
3111 /**
3112  * Flow driver apply API. This abstracts calling driver specific functions.
3113  * Parent flow (rte_flow) should have driver type (drv_type). It applies
3114  * translated driver flows on to device. flow_drv_translate() must precede.
3115  *
3116  * @param[in] dev
3117  *   Pointer to Ethernet device structure.
3118  * @param[in, out] flow
3119  *   Pointer to flow structure.
3120  * @param[out] error
3121  *   Pointer to error structure.
3122  *
3123  * @return
3124  *   0 on success, a negative errno value otherwise and rte_errno is set.
3125  */
3126 static inline int
3127 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
3128 	       struct rte_flow_error *error)
3129 {
3130 	const struct mlx5_flow_driver_ops *fops;
3131 	enum mlx5_flow_drv_type type = flow->drv_type;
3132 
3133 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3134 	fops = flow_get_drv_ops(type);
3135 	return fops->apply(dev, flow, error);
3136 }
3137 
3138 /**
3139  * Flow driver destroy API. This abstracts calling driver specific functions.
3140  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3141  * on device and releases resources of the flow.
3142  *
3143  * @param[in] dev
3144  *   Pointer to Ethernet device.
3145  * @param[in, out] flow
3146  *   Pointer to flow structure.
3147  */
3148 static inline void
3149 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3150 {
3151 	const struct mlx5_flow_driver_ops *fops;
3152 	enum mlx5_flow_drv_type type = flow->drv_type;
3153 
3154 	flow_mreg_split_qrss_release(dev, flow);
3155 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3156 	fops = flow_get_drv_ops(type);
3157 	fops->destroy(dev, flow);
3158 }
3159 
3160 /**
3161  * Get RSS action from the action list.
3162  *
3163  * @param[in] actions
3164  *   Pointer to the list of actions.
3165  *
3166  * @return
3167  *   Pointer to the RSS action if exist, else return NULL.
3168  */
3169 static const struct rte_flow_action_rss*
3170 flow_get_rss_action(const struct rte_flow_action actions[])
3171 {
3172 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3173 		switch (actions->type) {
3174 		case RTE_FLOW_ACTION_TYPE_RSS:
3175 			return (const struct rte_flow_action_rss *)
3176 			       actions->conf;
3177 		default:
3178 			break;
3179 		}
3180 	}
3181 	return NULL;
3182 }
3183 
3184 /**
3185  * Get ASO age action by index.
3186  *
3187  * @param[in] dev
3188  *   Pointer to the Ethernet device structure.
3189  * @param[in] age_idx
3190  *   Index to the ASO age action.
3191  *
3192  * @return
3193  *   The specified ASO age action.
3194  */
3195 struct mlx5_aso_age_action*
3196 flow_aso_age_get_by_idx(struct rte_eth_dev *dev, uint32_t age_idx)
3197 {
3198 	uint16_t pool_idx = age_idx & UINT16_MAX;
3199 	uint16_t offset = (age_idx >> 16) & UINT16_MAX;
3200 	struct mlx5_priv *priv = dev->data->dev_private;
3201 	struct mlx5_aso_age_mng *mng = priv->sh->aso_age_mng;
3202 	struct mlx5_aso_age_pool *pool = mng->pools[pool_idx];
3203 
3204 	return &pool->actions[offset - 1];
3205 }
3206 
3207 /* maps shared action to translated non shared in some actions array */
3208 struct mlx5_translated_shared_action {
3209 	struct rte_flow_shared_action *action; /**< Shared action */
3210 	int index; /**< Index in related array of rte_flow_action */
3211 };
3212 
3213 /**
3214  * Translates actions of type RTE_FLOW_ACTION_TYPE_SHARED to related
3215  * non shared action if translation possible.
3216  * This functionality used to run same execution path for both shared & non
3217  * shared actions on flow create. All necessary preparations for shared
3218  * action handling should be preformed on *shared* actions list returned
3219  * from this call.
3220  *
3221  * @param[in] dev
3222  *   Pointer to Ethernet device.
3223  * @param[in] actions
3224  *   List of actions to translate.
3225  * @param[out] shared
3226  *   List to store translated shared actions.
3227  * @param[in, out] shared_n
3228  *   Size of *shared* array. On return should be updated with number of shared
3229  *   actions retrieved from the *actions* list.
3230  * @param[out] translated_actions
3231  *   List of actions where all shared actions were translated to non shared
3232  *   if possible. NULL if no translation took place.
3233  * @param[out] error
3234  *   Pointer to the error structure.
3235  *
3236  * @return
3237  *   0 on success, a negative errno value otherwise and rte_errno is set.
3238  */
3239 static int
3240 flow_shared_actions_translate(struct rte_eth_dev *dev,
3241 			      const struct rte_flow_action actions[],
3242 			      struct mlx5_translated_shared_action *shared,
3243 			      int *shared_n,
3244 			      struct rte_flow_action **translated_actions,
3245 			      struct rte_flow_error *error)
3246 {
3247 	struct mlx5_priv *priv = dev->data->dev_private;
3248 	struct rte_flow_action *translated = NULL;
3249 	size_t actions_size;
3250 	int n;
3251 	int copied_n = 0;
3252 	struct mlx5_translated_shared_action *shared_end = NULL;
3253 
3254 	for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) {
3255 		if (actions[n].type != RTE_FLOW_ACTION_TYPE_SHARED)
3256 			continue;
3257 		if (copied_n == *shared_n) {
3258 			return rte_flow_error_set
3259 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM,
3260 				 NULL, "too many shared actions");
3261 		}
3262 		rte_memcpy(&shared[copied_n].action, &actions[n].conf,
3263 			   sizeof(actions[n].conf));
3264 		shared[copied_n].index = n;
3265 		copied_n++;
3266 	}
3267 	n++;
3268 	*shared_n = copied_n;
3269 	if (!copied_n)
3270 		return 0;
3271 	actions_size = sizeof(struct rte_flow_action) * n;
3272 	translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY);
3273 	if (!translated) {
3274 		rte_errno = ENOMEM;
3275 		return -ENOMEM;
3276 	}
3277 	memcpy(translated, actions, actions_size);
3278 	for (shared_end = shared + copied_n; shared < shared_end; shared++) {
3279 		struct mlx5_shared_action_rss *shared_rss;
3280 		uint32_t act_idx = (uint32_t)(uintptr_t)shared->action;
3281 		uint32_t type = act_idx >> MLX5_SHARED_ACTION_TYPE_OFFSET;
3282 		uint32_t idx = act_idx & ((1u << MLX5_SHARED_ACTION_TYPE_OFFSET)
3283 									   - 1);
3284 
3285 		switch (type) {
3286 		case MLX5_SHARED_ACTION_TYPE_RSS:
3287 			shared_rss = mlx5_ipool_get
3288 			  (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], idx);
3289 			translated[shared->index].type =
3290 				RTE_FLOW_ACTION_TYPE_RSS;
3291 			translated[shared->index].conf =
3292 				&shared_rss->origin;
3293 			break;
3294 		case MLX5_SHARED_ACTION_TYPE_AGE:
3295 			if (priv->sh->flow_hit_aso_en) {
3296 				translated[shared->index].type =
3297 					(enum rte_flow_action_type)
3298 					MLX5_RTE_FLOW_ACTION_TYPE_AGE;
3299 				translated[shared->index].conf =
3300 							 (void *)(uintptr_t)idx;
3301 				break;
3302 			}
3303 			/* Fall-through */
3304 		default:
3305 			mlx5_free(translated);
3306 			return rte_flow_error_set
3307 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
3308 				 NULL, "invalid shared action type");
3309 		}
3310 	}
3311 	*translated_actions = translated;
3312 	return 0;
3313 }
3314 
3315 /**
3316  * Get Shared RSS action from the action list.
3317  *
3318  * @param[in] dev
3319  *   Pointer to Ethernet device.
3320  * @param[in] shared
3321  *   Pointer to the list of actions.
3322  * @param[in] shared_n
3323  *   Actions list length.
3324  *
3325  * @return
3326  *   The MLX5 RSS action ID if exists, otherwise return 0.
3327  */
3328 static uint32_t
3329 flow_get_shared_rss_action(struct rte_eth_dev *dev,
3330 			   struct mlx5_translated_shared_action *shared,
3331 			   int shared_n)
3332 {
3333 	struct mlx5_translated_shared_action *shared_end;
3334 	struct mlx5_priv *priv = dev->data->dev_private;
3335 	struct mlx5_shared_action_rss *shared_rss;
3336 
3337 
3338 	for (shared_end = shared + shared_n; shared < shared_end; shared++) {
3339 		uint32_t act_idx = (uint32_t)(uintptr_t)shared->action;
3340 		uint32_t type = act_idx >> MLX5_SHARED_ACTION_TYPE_OFFSET;
3341 		uint32_t idx = act_idx &
3342 				   ((1u << MLX5_SHARED_ACTION_TYPE_OFFSET) - 1);
3343 		switch (type) {
3344 		case MLX5_SHARED_ACTION_TYPE_RSS:
3345 			shared_rss = mlx5_ipool_get
3346 				(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
3347 									   idx);
3348 			__atomic_add_fetch(&shared_rss->refcnt, 1,
3349 					   __ATOMIC_RELAXED);
3350 			return idx;
3351 		default:
3352 			break;
3353 		}
3354 	}
3355 	return 0;
3356 }
3357 
3358 static unsigned int
3359 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
3360 {
3361 	const struct rte_flow_item *item;
3362 	unsigned int has_vlan = 0;
3363 
3364 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
3365 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
3366 			has_vlan = 1;
3367 			break;
3368 		}
3369 	}
3370 	if (has_vlan)
3371 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
3372 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
3373 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
3374 			       MLX5_EXPANSION_ROOT_OUTER;
3375 }
3376 
3377 /**
3378  *  Get layer flags from the prefix flow.
3379  *
3380  *  Some flows may be split to several subflows, the prefix subflow gets the
3381  *  match items and the suffix sub flow gets the actions.
3382  *  Some actions need the user defined match item flags to get the detail for
3383  *  the action.
3384  *  This function helps the suffix flow to get the item layer flags from prefix
3385  *  subflow.
3386  *
3387  * @param[in] dev_flow
3388  *   Pointer the created preifx subflow.
3389  *
3390  * @return
3391  *   The layers get from prefix subflow.
3392  */
3393 static inline uint64_t
3394 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
3395 {
3396 	uint64_t layers = 0;
3397 
3398 	/*
3399 	 * Layers bits could be localization, but usually the compiler will
3400 	 * help to do the optimization work for source code.
3401 	 * If no decap actions, use the layers directly.
3402 	 */
3403 	if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
3404 		return dev_flow->handle->layers;
3405 	/* Convert L3 layers with decap action. */
3406 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
3407 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
3408 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
3409 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
3410 	/* Convert L4 layers with decap action.  */
3411 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
3412 		layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
3413 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
3414 		layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
3415 	return layers;
3416 }
3417 
3418 /**
3419  * Get metadata split action information.
3420  *
3421  * @param[in] actions
3422  *   Pointer to the list of actions.
3423  * @param[out] qrss
3424  *   Pointer to the return pointer.
3425  * @param[out] qrss_type
3426  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
3427  *   if no QUEUE/RSS is found.
3428  * @param[out] encap_idx
3429  *   Pointer to the index of the encap action if exists, otherwise the last
3430  *   action index.
3431  *
3432  * @return
3433  *   Total number of actions.
3434  */
3435 static int
3436 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
3437 				       const struct rte_flow_action **qrss,
3438 				       int *encap_idx)
3439 {
3440 	const struct rte_flow_action_raw_encap *raw_encap;
3441 	int actions_n = 0;
3442 	int raw_decap_idx = -1;
3443 
3444 	*encap_idx = -1;
3445 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3446 		switch (actions->type) {
3447 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3448 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3449 			*encap_idx = actions_n;
3450 			break;
3451 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3452 			raw_decap_idx = actions_n;
3453 			break;
3454 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3455 			raw_encap = actions->conf;
3456 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3457 				*encap_idx = raw_decap_idx != -1 ?
3458 						      raw_decap_idx : actions_n;
3459 			break;
3460 		case RTE_FLOW_ACTION_TYPE_QUEUE:
3461 		case RTE_FLOW_ACTION_TYPE_RSS:
3462 			*qrss = actions;
3463 			break;
3464 		default:
3465 			break;
3466 		}
3467 		actions_n++;
3468 	}
3469 	if (*encap_idx == -1)
3470 		*encap_idx = actions_n;
3471 	/* Count RTE_FLOW_ACTION_TYPE_END. */
3472 	return actions_n + 1;
3473 }
3474 
3475 /**
3476  * Check meter action from the action list.
3477  *
3478  * @param[in] actions
3479  *   Pointer to the list of actions.
3480  * @param[out] mtr
3481  *   Pointer to the meter exist flag.
3482  *
3483  * @return
3484  *   Total number of actions.
3485  */
3486 static int
3487 flow_check_meter_action(const struct rte_flow_action actions[], uint32_t *mtr)
3488 {
3489 	int actions_n = 0;
3490 
3491 	MLX5_ASSERT(mtr);
3492 	*mtr = 0;
3493 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3494 		switch (actions->type) {
3495 		case RTE_FLOW_ACTION_TYPE_METER:
3496 			*mtr = 1;
3497 			break;
3498 		default:
3499 			break;
3500 		}
3501 		actions_n++;
3502 	}
3503 	/* Count RTE_FLOW_ACTION_TYPE_END. */
3504 	return actions_n + 1;
3505 }
3506 
3507 /**
3508  * Check if the flow should be split due to hairpin.
3509  * The reason for the split is that in current HW we can't
3510  * support encap and push-vlan on Rx, so if a flow contains
3511  * these actions we move it to Tx.
3512  *
3513  * @param dev
3514  *   Pointer to Ethernet device.
3515  * @param[in] attr
3516  *   Flow rule attributes.
3517  * @param[in] actions
3518  *   Associated actions (list terminated by the END action).
3519  *
3520  * @return
3521  *   > 0 the number of actions and the flow should be split,
3522  *   0 when no split required.
3523  */
3524 static int
3525 flow_check_hairpin_split(struct rte_eth_dev *dev,
3526 			 const struct rte_flow_attr *attr,
3527 			 const struct rte_flow_action actions[])
3528 {
3529 	int queue_action = 0;
3530 	int action_n = 0;
3531 	int split = 0;
3532 	const struct rte_flow_action_queue *queue;
3533 	const struct rte_flow_action_rss *rss;
3534 	const struct rte_flow_action_raw_encap *raw_encap;
3535 	const struct rte_eth_hairpin_conf *conf;
3536 
3537 	if (!attr->ingress)
3538 		return 0;
3539 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3540 		switch (actions->type) {
3541 		case RTE_FLOW_ACTION_TYPE_QUEUE:
3542 			queue = actions->conf;
3543 			if (queue == NULL)
3544 				return 0;
3545 			conf = mlx5_rxq_get_hairpin_conf(dev, queue->index);
3546 			if (conf != NULL && !!conf->tx_explicit)
3547 				return 0;
3548 			queue_action = 1;
3549 			action_n++;
3550 			break;
3551 		case RTE_FLOW_ACTION_TYPE_RSS:
3552 			rss = actions->conf;
3553 			if (rss == NULL || rss->queue_num == 0)
3554 				return 0;
3555 			conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]);
3556 			if (conf != NULL && !!conf->tx_explicit)
3557 				return 0;
3558 			queue_action = 1;
3559 			action_n++;
3560 			break;
3561 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3562 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3563 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3564 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3565 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3566 			split++;
3567 			action_n++;
3568 			break;
3569 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3570 			raw_encap = actions->conf;
3571 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3572 				split++;
3573 			action_n++;
3574 			break;
3575 		default:
3576 			action_n++;
3577 			break;
3578 		}
3579 	}
3580 	if (split && queue_action)
3581 		return action_n;
3582 	return 0;
3583 }
3584 
3585 /* Declare flow create/destroy prototype in advance. */
3586 static uint32_t
3587 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
3588 		 const struct rte_flow_attr *attr,
3589 		 const struct rte_flow_item items[],
3590 		 const struct rte_flow_action actions[],
3591 		 bool external, struct rte_flow_error *error);
3592 
3593 static void
3594 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
3595 		  uint32_t flow_idx);
3596 
3597 int
3598 flow_dv_mreg_match_cb(struct mlx5_hlist *list __rte_unused,
3599 		      struct mlx5_hlist_entry *entry,
3600 		      uint64_t key, void *cb_ctx __rte_unused)
3601 {
3602 	struct mlx5_flow_mreg_copy_resource *mcp_res =
3603 		container_of(entry, typeof(*mcp_res), hlist_ent);
3604 
3605 	return mcp_res->mark_id != key;
3606 }
3607 
3608 struct mlx5_hlist_entry *
3609 flow_dv_mreg_create_cb(struct mlx5_hlist *list, uint64_t key,
3610 		       void *cb_ctx)
3611 {
3612 	struct rte_eth_dev *dev = list->ctx;
3613 	struct mlx5_priv *priv = dev->data->dev_private;
3614 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
3615 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3616 	struct rte_flow_error *error = ctx->error;
3617 	uint32_t idx = 0;
3618 	int ret;
3619 	uint32_t mark_id = key;
3620 	struct rte_flow_attr attr = {
3621 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
3622 		.ingress = 1,
3623 	};
3624 	struct mlx5_rte_flow_item_tag tag_spec = {
3625 		.data = mark_id,
3626 	};
3627 	struct rte_flow_item items[] = {
3628 		[1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
3629 	};
3630 	struct rte_flow_action_mark ftag = {
3631 		.id = mark_id,
3632 	};
3633 	struct mlx5_flow_action_copy_mreg cp_mreg = {
3634 		.dst = REG_B,
3635 		.src = REG_NON,
3636 	};
3637 	struct rte_flow_action_jump jump = {
3638 		.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
3639 	};
3640 	struct rte_flow_action actions[] = {
3641 		[3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
3642 	};
3643 
3644 	/* Fill the register fileds in the flow. */
3645 	ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
3646 	if (ret < 0)
3647 		return NULL;
3648 	tag_spec.id = ret;
3649 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
3650 	if (ret < 0)
3651 		return NULL;
3652 	cp_mreg.src = ret;
3653 	/* Provide the full width of FLAG specific value. */
3654 	if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
3655 		tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
3656 	/* Build a new flow. */
3657 	if (mark_id != MLX5_DEFAULT_COPY_ID) {
3658 		items[0] = (struct rte_flow_item){
3659 			.type = (enum rte_flow_item_type)
3660 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
3661 			.spec = &tag_spec,
3662 		};
3663 		items[1] = (struct rte_flow_item){
3664 			.type = RTE_FLOW_ITEM_TYPE_END,
3665 		};
3666 		actions[0] = (struct rte_flow_action){
3667 			.type = (enum rte_flow_action_type)
3668 				MLX5_RTE_FLOW_ACTION_TYPE_MARK,
3669 			.conf = &ftag,
3670 		};
3671 		actions[1] = (struct rte_flow_action){
3672 			.type = (enum rte_flow_action_type)
3673 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3674 			.conf = &cp_mreg,
3675 		};
3676 		actions[2] = (struct rte_flow_action){
3677 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
3678 			.conf = &jump,
3679 		};
3680 		actions[3] = (struct rte_flow_action){
3681 			.type = RTE_FLOW_ACTION_TYPE_END,
3682 		};
3683 	} else {
3684 		/* Default rule, wildcard match. */
3685 		attr.priority = MLX5_FLOW_PRIO_RSVD;
3686 		items[0] = (struct rte_flow_item){
3687 			.type = RTE_FLOW_ITEM_TYPE_END,
3688 		};
3689 		actions[0] = (struct rte_flow_action){
3690 			.type = (enum rte_flow_action_type)
3691 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3692 			.conf = &cp_mreg,
3693 		};
3694 		actions[1] = (struct rte_flow_action){
3695 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
3696 			.conf = &jump,
3697 		};
3698 		actions[2] = (struct rte_flow_action){
3699 			.type = RTE_FLOW_ACTION_TYPE_END,
3700 		};
3701 	}
3702 	/* Build a new entry. */
3703 	mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
3704 	if (!mcp_res) {
3705 		rte_errno = ENOMEM;
3706 		return NULL;
3707 	}
3708 	mcp_res->idx = idx;
3709 	mcp_res->mark_id = mark_id;
3710 	/*
3711 	 * The copy Flows are not included in any list. There
3712 	 * ones are referenced from other Flows and can not
3713 	 * be applied, removed, deleted in ardbitrary order
3714 	 * by list traversing.
3715 	 */
3716 	mcp_res->rix_flow = flow_list_create(dev, NULL, &attr, items,
3717 					 actions, false, error);
3718 	if (!mcp_res->rix_flow) {
3719 		mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], idx);
3720 		return NULL;
3721 	}
3722 	return &mcp_res->hlist_ent;
3723 }
3724 
3725 /**
3726  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3727  *
3728  * As mark_id is unique, if there's already a registered flow for the mark_id,
3729  * return by increasing the reference counter of the resource. Otherwise, create
3730  * the resource (mcp_res) and flow.
3731  *
3732  * Flow looks like,
3733  *   - If ingress port is ANY and reg_c[1] is mark_id,
3734  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3735  *
3736  * For default flow (zero mark_id), flow is like,
3737  *   - If ingress port is ANY,
3738  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
3739  *
3740  * @param dev
3741  *   Pointer to Ethernet device.
3742  * @param mark_id
3743  *   ID of MARK action, zero means default flow for META.
3744  * @param[out] error
3745  *   Perform verbose error reporting if not NULL.
3746  *
3747  * @return
3748  *   Associated resource on success, NULL otherwise and rte_errno is set.
3749  */
3750 static struct mlx5_flow_mreg_copy_resource *
3751 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
3752 			  struct rte_flow_error *error)
3753 {
3754 	struct mlx5_priv *priv = dev->data->dev_private;
3755 	struct mlx5_hlist_entry *entry;
3756 	struct mlx5_flow_cb_ctx ctx = {
3757 		.dev = dev,
3758 		.error = error,
3759 	};
3760 
3761 	/* Check if already registered. */
3762 	MLX5_ASSERT(priv->mreg_cp_tbl);
3763 	entry = mlx5_hlist_register(priv->mreg_cp_tbl, mark_id, &ctx);
3764 	if (!entry)
3765 		return NULL;
3766 	return container_of(entry, struct mlx5_flow_mreg_copy_resource,
3767 			    hlist_ent);
3768 }
3769 
3770 void
3771 flow_dv_mreg_remove_cb(struct mlx5_hlist *list, struct mlx5_hlist_entry *entry)
3772 {
3773 	struct mlx5_flow_mreg_copy_resource *mcp_res =
3774 		container_of(entry, typeof(*mcp_res), hlist_ent);
3775 	struct rte_eth_dev *dev = list->ctx;
3776 	struct mlx5_priv *priv = dev->data->dev_private;
3777 
3778 	MLX5_ASSERT(mcp_res->rix_flow);
3779 	flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3780 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3781 }
3782 
3783 /**
3784  * Release flow in RX_CP_TBL.
3785  *
3786  * @param dev
3787  *   Pointer to Ethernet device.
3788  * @flow
3789  *   Parent flow for wich copying is provided.
3790  */
3791 static void
3792 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
3793 			  struct rte_flow *flow)
3794 {
3795 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3796 	struct mlx5_priv *priv = dev->data->dev_private;
3797 
3798 	if (!flow->rix_mreg_copy)
3799 		return;
3800 	mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3801 				 flow->rix_mreg_copy);
3802 	if (!mcp_res || !priv->mreg_cp_tbl)
3803 		return;
3804 	MLX5_ASSERT(mcp_res->rix_flow);
3805 	mlx5_hlist_unregister(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
3806 	flow->rix_mreg_copy = 0;
3807 }
3808 
3809 /**
3810  * Remove the default copy action from RX_CP_TBL.
3811  *
3812  * This functions is called in the mlx5_dev_start(). No thread safe
3813  * is guaranteed.
3814  *
3815  * @param dev
3816  *   Pointer to Ethernet device.
3817  */
3818 static void
3819 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
3820 {
3821 	struct mlx5_hlist_entry *entry;
3822 	struct mlx5_priv *priv = dev->data->dev_private;
3823 
3824 	/* Check if default flow is registered. */
3825 	if (!priv->mreg_cp_tbl)
3826 		return;
3827 	entry = mlx5_hlist_lookup(priv->mreg_cp_tbl,
3828 				  MLX5_DEFAULT_COPY_ID, NULL);
3829 	if (!entry)
3830 		return;
3831 	mlx5_hlist_unregister(priv->mreg_cp_tbl, entry);
3832 }
3833 
3834 /**
3835  * Add the default copy action in in RX_CP_TBL.
3836  *
3837  * This functions is called in the mlx5_dev_start(). No thread safe
3838  * is guaranteed.
3839  *
3840  * @param dev
3841  *   Pointer to Ethernet device.
3842  * @param[out] error
3843  *   Perform verbose error reporting if not NULL.
3844  *
3845  * @return
3846  *   0 for success, negative value otherwise and rte_errno is set.
3847  */
3848 static int
3849 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
3850 				  struct rte_flow_error *error)
3851 {
3852 	struct mlx5_priv *priv = dev->data->dev_private;
3853 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3854 
3855 	/* Check whether extensive metadata feature is engaged. */
3856 	if (!priv->config.dv_flow_en ||
3857 	    priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3858 	    !mlx5_flow_ext_mreg_supported(dev) ||
3859 	    !priv->sh->dv_regc0_mask)
3860 		return 0;
3861 	/*
3862 	 * Add default mreg copy flow may be called multiple time, but
3863 	 * only be called once in stop. Avoid register it twice.
3864 	 */
3865 	if (mlx5_hlist_lookup(priv->mreg_cp_tbl, MLX5_DEFAULT_COPY_ID, NULL))
3866 		return 0;
3867 	mcp_res = flow_mreg_add_copy_action(dev, MLX5_DEFAULT_COPY_ID, error);
3868 	if (!mcp_res)
3869 		return -rte_errno;
3870 	return 0;
3871 }
3872 
3873 /**
3874  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3875  *
3876  * All the flow having Q/RSS action should be split by
3877  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
3878  * performs the following,
3879  *   - CQE->flow_tag := reg_c[1] (MARK)
3880  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
3881  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
3882  * but there should be a flow per each MARK ID set by MARK action.
3883  *
3884  * For the aforementioned reason, if there's a MARK action in flow's action
3885  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
3886  * the MARK ID to CQE's flow_tag like,
3887  *   - If reg_c[1] is mark_id,
3888  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3889  *
3890  * For SET_META action which stores value in reg_c[0], as the destination is
3891  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
3892  * MARK ID means the default flow. The default flow looks like,
3893  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3894  *
3895  * @param dev
3896  *   Pointer to Ethernet device.
3897  * @param flow
3898  *   Pointer to flow structure.
3899  * @param[in] actions
3900  *   Pointer to the list of actions.
3901  * @param[out] error
3902  *   Perform verbose error reporting if not NULL.
3903  *
3904  * @return
3905  *   0 on success, negative value otherwise and rte_errno is set.
3906  */
3907 static int
3908 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
3909 			    struct rte_flow *flow,
3910 			    const struct rte_flow_action *actions,
3911 			    struct rte_flow_error *error)
3912 {
3913 	struct mlx5_priv *priv = dev->data->dev_private;
3914 	struct mlx5_dev_config *config = &priv->config;
3915 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3916 	const struct rte_flow_action_mark *mark;
3917 
3918 	/* Check whether extensive metadata feature is engaged. */
3919 	if (!config->dv_flow_en ||
3920 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3921 	    !mlx5_flow_ext_mreg_supported(dev) ||
3922 	    !priv->sh->dv_regc0_mask)
3923 		return 0;
3924 	/* Find MARK action. */
3925 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3926 		switch (actions->type) {
3927 		case RTE_FLOW_ACTION_TYPE_FLAG:
3928 			mcp_res = flow_mreg_add_copy_action
3929 				(dev, MLX5_FLOW_MARK_DEFAULT, error);
3930 			if (!mcp_res)
3931 				return -rte_errno;
3932 			flow->rix_mreg_copy = mcp_res->idx;
3933 			return 0;
3934 		case RTE_FLOW_ACTION_TYPE_MARK:
3935 			mark = (const struct rte_flow_action_mark *)
3936 				actions->conf;
3937 			mcp_res =
3938 				flow_mreg_add_copy_action(dev, mark->id, error);
3939 			if (!mcp_res)
3940 				return -rte_errno;
3941 			flow->rix_mreg_copy = mcp_res->idx;
3942 			return 0;
3943 		default:
3944 			break;
3945 		}
3946 	}
3947 	return 0;
3948 }
3949 
3950 #define MLX5_MAX_SPLIT_ACTIONS 24
3951 #define MLX5_MAX_SPLIT_ITEMS 24
3952 
3953 /**
3954  * Split the hairpin flow.
3955  * Since HW can't support encap and push-vlan on Rx, we move these
3956  * actions to Tx.
3957  * If the count action is after the encap then we also
3958  * move the count action. in this case the count will also measure
3959  * the outer bytes.
3960  *
3961  * @param dev
3962  *   Pointer to Ethernet device.
3963  * @param[in] actions
3964  *   Associated actions (list terminated by the END action).
3965  * @param[out] actions_rx
3966  *   Rx flow actions.
3967  * @param[out] actions_tx
3968  *   Tx flow actions..
3969  * @param[out] pattern_tx
3970  *   The pattern items for the Tx flow.
3971  * @param[out] flow_id
3972  *   The flow ID connected to this flow.
3973  *
3974  * @return
3975  *   0 on success.
3976  */
3977 static int
3978 flow_hairpin_split(struct rte_eth_dev *dev,
3979 		   const struct rte_flow_action actions[],
3980 		   struct rte_flow_action actions_rx[],
3981 		   struct rte_flow_action actions_tx[],
3982 		   struct rte_flow_item pattern_tx[],
3983 		   uint32_t flow_id)
3984 {
3985 	const struct rte_flow_action_raw_encap *raw_encap;
3986 	const struct rte_flow_action_raw_decap *raw_decap;
3987 	struct mlx5_rte_flow_action_set_tag *set_tag;
3988 	struct rte_flow_action *tag_action;
3989 	struct mlx5_rte_flow_item_tag *tag_item;
3990 	struct rte_flow_item *item;
3991 	char *addr;
3992 	int encap = 0;
3993 
3994 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3995 		switch (actions->type) {
3996 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3997 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3998 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3999 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4000 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4001 			rte_memcpy(actions_tx, actions,
4002 			       sizeof(struct rte_flow_action));
4003 			actions_tx++;
4004 			break;
4005 		case RTE_FLOW_ACTION_TYPE_COUNT:
4006 			if (encap) {
4007 				rte_memcpy(actions_tx, actions,
4008 					   sizeof(struct rte_flow_action));
4009 				actions_tx++;
4010 			} else {
4011 				rte_memcpy(actions_rx, actions,
4012 					   sizeof(struct rte_flow_action));
4013 				actions_rx++;
4014 			}
4015 			break;
4016 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4017 			raw_encap = actions->conf;
4018 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) {
4019 				memcpy(actions_tx, actions,
4020 				       sizeof(struct rte_flow_action));
4021 				actions_tx++;
4022 				encap = 1;
4023 			} else {
4024 				rte_memcpy(actions_rx, actions,
4025 					   sizeof(struct rte_flow_action));
4026 				actions_rx++;
4027 			}
4028 			break;
4029 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4030 			raw_decap = actions->conf;
4031 			if (raw_decap->size < MLX5_ENCAPSULATION_DECISION_SIZE) {
4032 				memcpy(actions_tx, actions,
4033 				       sizeof(struct rte_flow_action));
4034 				actions_tx++;
4035 			} else {
4036 				rte_memcpy(actions_rx, actions,
4037 					   sizeof(struct rte_flow_action));
4038 				actions_rx++;
4039 			}
4040 			break;
4041 		default:
4042 			rte_memcpy(actions_rx, actions,
4043 				   sizeof(struct rte_flow_action));
4044 			actions_rx++;
4045 			break;
4046 		}
4047 	}
4048 	/* Add set meta action and end action for the Rx flow. */
4049 	tag_action = actions_rx;
4050 	tag_action->type = (enum rte_flow_action_type)
4051 			   MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4052 	actions_rx++;
4053 	rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
4054 	actions_rx++;
4055 	set_tag = (void *)actions_rx;
4056 	set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL);
4057 	MLX5_ASSERT(set_tag->id > REG_NON);
4058 	set_tag->data = flow_id;
4059 	tag_action->conf = set_tag;
4060 	/* Create Tx item list. */
4061 	rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
4062 	addr = (void *)&pattern_tx[2];
4063 	item = pattern_tx;
4064 	item->type = (enum rte_flow_item_type)
4065 		     MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4066 	tag_item = (void *)addr;
4067 	tag_item->data = flow_id;
4068 	tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
4069 	MLX5_ASSERT(set_tag->id > REG_NON);
4070 	item->spec = tag_item;
4071 	addr += sizeof(struct mlx5_rte_flow_item_tag);
4072 	tag_item = (void *)addr;
4073 	tag_item->data = UINT32_MAX;
4074 	tag_item->id = UINT16_MAX;
4075 	item->mask = tag_item;
4076 	item->last = NULL;
4077 	item++;
4078 	item->type = RTE_FLOW_ITEM_TYPE_END;
4079 	return 0;
4080 }
4081 
4082 /**
4083  * The last stage of splitting chain, just creates the subflow
4084  * without any modification.
4085  *
4086  * @param[in] dev
4087  *   Pointer to Ethernet device.
4088  * @param[in] flow
4089  *   Parent flow structure pointer.
4090  * @param[in, out] sub_flow
4091  *   Pointer to return the created subflow, may be NULL.
4092  * @param[in] attr
4093  *   Flow rule attributes.
4094  * @param[in] items
4095  *   Pattern specification (list terminated by the END pattern item).
4096  * @param[in] actions
4097  *   Associated actions (list terminated by the END action).
4098  * @param[in] flow_split_info
4099  *   Pointer to flow split info structure.
4100  * @param[out] error
4101  *   Perform verbose error reporting if not NULL.
4102  * @return
4103  *   0 on success, negative value otherwise
4104  */
4105 static int
4106 flow_create_split_inner(struct rte_eth_dev *dev,
4107 			struct rte_flow *flow,
4108 			struct mlx5_flow **sub_flow,
4109 			const struct rte_flow_attr *attr,
4110 			const struct rte_flow_item items[],
4111 			const struct rte_flow_action actions[],
4112 			struct mlx5_flow_split_info *flow_split_info,
4113 			struct rte_flow_error *error)
4114 {
4115 	struct mlx5_flow *dev_flow;
4116 
4117 	dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
4118 				    flow_split_info->flow_idx, error);
4119 	if (!dev_flow)
4120 		return -rte_errno;
4121 	dev_flow->flow = flow;
4122 	dev_flow->external = flow_split_info->external;
4123 	dev_flow->skip_scale = flow_split_info->skip_scale;
4124 	/* Subflow object was created, we must include one in the list. */
4125 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
4126 		      dev_flow->handle, next);
4127 	/*
4128 	 * If dev_flow is as one of the suffix flow, some actions in suffix
4129 	 * flow may need some user defined item layer flags, and pass the
4130 	 * Metadate rxq mark flag to suffix flow as well.
4131 	 */
4132 	if (flow_split_info->prefix_layers)
4133 		dev_flow->handle->layers = flow_split_info->prefix_layers;
4134 	if (flow_split_info->prefix_mark)
4135 		dev_flow->handle->mark = 1;
4136 	if (sub_flow)
4137 		*sub_flow = dev_flow;
4138 	return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
4139 }
4140 
4141 /**
4142  * Split the meter flow.
4143  *
4144  * As meter flow will split to three sub flow, other than meter
4145  * action, the other actions make sense to only meter accepts
4146  * the packet. If it need to be dropped, no other additional
4147  * actions should be take.
4148  *
4149  * One kind of special action which decapsulates the L3 tunnel
4150  * header will be in the prefix sub flow, as not to take the
4151  * L3 tunnel header into account.
4152  *
4153  * @param dev
4154  *   Pointer to Ethernet device.
4155  * @param[in] items
4156  *   Pattern specification (list terminated by the END pattern item).
4157  * @param[out] sfx_items
4158  *   Suffix flow match items (list terminated by the END pattern item).
4159  * @param[in] actions
4160  *   Associated actions (list terminated by the END action).
4161  * @param[out] actions_sfx
4162  *   Suffix flow actions.
4163  * @param[out] actions_pre
4164  *   Prefix flow actions.
4165  * @param[out] pattern_sfx
4166  *   The pattern items for the suffix flow.
4167  * @param[out] tag_sfx
4168  *   Pointer to suffix flow tag.
4169  *
4170  * @return
4171  *   0 on success.
4172  */
4173 static int
4174 flow_meter_split_prep(struct rte_eth_dev *dev,
4175 		 const struct rte_flow_item items[],
4176 		 struct rte_flow_item sfx_items[],
4177 		 const struct rte_flow_action actions[],
4178 		 struct rte_flow_action actions_sfx[],
4179 		 struct rte_flow_action actions_pre[])
4180 {
4181 	struct mlx5_priv *priv = dev->data->dev_private;
4182 	struct rte_flow_action *tag_action = NULL;
4183 	struct rte_flow_item *tag_item;
4184 	struct mlx5_rte_flow_action_set_tag *set_tag;
4185 	struct rte_flow_error error;
4186 	const struct rte_flow_action_raw_encap *raw_encap;
4187 	const struct rte_flow_action_raw_decap *raw_decap;
4188 	struct mlx5_rte_flow_item_tag *tag_spec;
4189 	struct mlx5_rte_flow_item_tag *tag_mask;
4190 	uint32_t tag_id = 0;
4191 	bool copy_vlan = false;
4192 
4193 	/* Prepare the actions for prefix and suffix flow. */
4194 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4195 		struct rte_flow_action **action_cur = NULL;
4196 
4197 		switch (actions->type) {
4198 		case RTE_FLOW_ACTION_TYPE_METER:
4199 			/* Add the extra tag action first. */
4200 			tag_action = actions_pre;
4201 			tag_action->type = (enum rte_flow_action_type)
4202 					   MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4203 			actions_pre++;
4204 			action_cur = &actions_pre;
4205 			break;
4206 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
4207 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
4208 			action_cur = &actions_pre;
4209 			break;
4210 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4211 			raw_encap = actions->conf;
4212 			if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
4213 				action_cur = &actions_pre;
4214 			break;
4215 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4216 			raw_decap = actions->conf;
4217 			if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4218 				action_cur = &actions_pre;
4219 			break;
4220 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4221 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4222 			copy_vlan = true;
4223 			break;
4224 		default:
4225 			break;
4226 		}
4227 		if (!action_cur)
4228 			action_cur = &actions_sfx;
4229 		memcpy(*action_cur, actions, sizeof(struct rte_flow_action));
4230 		(*action_cur)++;
4231 	}
4232 	/* Add end action to the actions. */
4233 	actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
4234 	actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
4235 	actions_pre++;
4236 	/* Set the tag. */
4237 	set_tag = (void *)actions_pre;
4238 	set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4239 	mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
4240 			  &tag_id);
4241 	if (tag_id >= (1 << (sizeof(tag_id) * 8 - MLX5_MTR_COLOR_BITS))) {
4242 		DRV_LOG(ERR, "Port %u meter flow id exceed max limit.",
4243 			dev->data->port_id);
4244 		mlx5_ipool_free(priv->sh->ipool
4245 				[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], tag_id);
4246 		return 0;
4247 	} else if (!tag_id) {
4248 		return 0;
4249 	}
4250 	set_tag->data = tag_id << MLX5_MTR_COLOR_BITS;
4251 	assert(tag_action);
4252 	tag_action->conf = set_tag;
4253 	/* Prepare the suffix subflow items. */
4254 	tag_item = sfx_items++;
4255 	for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
4256 		int item_type = items->type;
4257 
4258 		switch (item_type) {
4259 		case RTE_FLOW_ITEM_TYPE_PORT_ID:
4260 			memcpy(sfx_items, items, sizeof(*sfx_items));
4261 			sfx_items++;
4262 			break;
4263 		case RTE_FLOW_ITEM_TYPE_VLAN:
4264 			if (copy_vlan) {
4265 				memcpy(sfx_items, items, sizeof(*sfx_items));
4266 				/*
4267 				 * Convert to internal match item, it is used
4268 				 * for vlan push and set vid.
4269 				 */
4270 				sfx_items->type = (enum rte_flow_item_type)
4271 						  MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
4272 				sfx_items++;
4273 			}
4274 			break;
4275 		default:
4276 			break;
4277 		}
4278 	}
4279 	sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
4280 	sfx_items++;
4281 	tag_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
4282 	tag_spec->data = tag_id << MLX5_MTR_COLOR_BITS;
4283 	tag_spec->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4284 	tag_mask = tag_spec + 1;
4285 	tag_mask->data = 0xffffff00;
4286 	tag_item->type = (enum rte_flow_item_type)
4287 			 MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4288 	tag_item->spec = tag_spec;
4289 	tag_item->last = NULL;
4290 	tag_item->mask = tag_mask;
4291 	return tag_id;
4292 }
4293 
4294 /**
4295  * Split action list having QUEUE/RSS for metadata register copy.
4296  *
4297  * Once Q/RSS action is detected in user's action list, the flow action
4298  * should be split in order to copy metadata registers, which will happen in
4299  * RX_CP_TBL like,
4300  *   - CQE->flow_tag := reg_c[1] (MARK)
4301  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4302  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
4303  * This is because the last action of each flow must be a terminal action
4304  * (QUEUE, RSS or DROP).
4305  *
4306  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
4307  * stored and kept in the mlx5_flow structure per each sub_flow.
4308  *
4309  * The Q/RSS action is replaced with,
4310  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
4311  * And the following JUMP action is added at the end,
4312  *   - JUMP, to RX_CP_TBL.
4313  *
4314  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
4315  * flow_create_split_metadata() routine. The flow will look like,
4316  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
4317  *
4318  * @param dev
4319  *   Pointer to Ethernet device.
4320  * @param[out] split_actions
4321  *   Pointer to store split actions to jump to CP_TBL.
4322  * @param[in] actions
4323  *   Pointer to the list of original flow actions.
4324  * @param[in] qrss
4325  *   Pointer to the Q/RSS action.
4326  * @param[in] actions_n
4327  *   Number of original actions.
4328  * @param[out] error
4329  *   Perform verbose error reporting if not NULL.
4330  *
4331  * @return
4332  *   non-zero unique flow_id on success, otherwise 0 and
4333  *   error/rte_error are set.
4334  */
4335 static uint32_t
4336 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
4337 			  struct rte_flow_action *split_actions,
4338 			  const struct rte_flow_action *actions,
4339 			  const struct rte_flow_action *qrss,
4340 			  int actions_n, struct rte_flow_error *error)
4341 {
4342 	struct mlx5_priv *priv = dev->data->dev_private;
4343 	struct mlx5_rte_flow_action_set_tag *set_tag;
4344 	struct rte_flow_action_jump *jump;
4345 	const int qrss_idx = qrss - actions;
4346 	uint32_t flow_id = 0;
4347 	int ret = 0;
4348 
4349 	/*
4350 	 * Given actions will be split
4351 	 * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
4352 	 * - Add jump to mreg CP_TBL.
4353 	 * As a result, there will be one more action.
4354 	 */
4355 	++actions_n;
4356 	memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
4357 	set_tag = (void *)(split_actions + actions_n);
4358 	/*
4359 	 * If tag action is not set to void(it means we are not the meter
4360 	 * suffix flow), add the tag action. Since meter suffix flow already
4361 	 * has the tag added.
4362 	 */
4363 	if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) {
4364 		/*
4365 		 * Allocate the new subflow ID. This one is unique within
4366 		 * device and not shared with representors. Otherwise,
4367 		 * we would have to resolve multi-thread access synch
4368 		 * issue. Each flow on the shared device is appended
4369 		 * with source vport identifier, so the resulting
4370 		 * flows will be unique in the shared (by master and
4371 		 * representors) domain even if they have coinciding
4372 		 * IDs.
4373 		 */
4374 		mlx5_ipool_malloc(priv->sh->ipool
4375 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id);
4376 		if (!flow_id)
4377 			return rte_flow_error_set(error, ENOMEM,
4378 						  RTE_FLOW_ERROR_TYPE_ACTION,
4379 						  NULL, "can't allocate id "
4380 						  "for split Q/RSS subflow");
4381 		/* Internal SET_TAG action to set flow ID. */
4382 		*set_tag = (struct mlx5_rte_flow_action_set_tag){
4383 			.data = flow_id,
4384 		};
4385 		ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
4386 		if (ret < 0)
4387 			return ret;
4388 		set_tag->id = ret;
4389 		/* Construct new actions array. */
4390 		/* Replace QUEUE/RSS action. */
4391 		split_actions[qrss_idx] = (struct rte_flow_action){
4392 			.type = (enum rte_flow_action_type)
4393 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4394 			.conf = set_tag,
4395 		};
4396 	}
4397 	/* JUMP action to jump to mreg copy table (CP_TBL). */
4398 	jump = (void *)(set_tag + 1);
4399 	*jump = (struct rte_flow_action_jump){
4400 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4401 	};
4402 	split_actions[actions_n - 2] = (struct rte_flow_action){
4403 		.type = RTE_FLOW_ACTION_TYPE_JUMP,
4404 		.conf = jump,
4405 	};
4406 	split_actions[actions_n - 1] = (struct rte_flow_action){
4407 		.type = RTE_FLOW_ACTION_TYPE_END,
4408 	};
4409 	return flow_id;
4410 }
4411 
4412 /**
4413  * Extend the given action list for Tx metadata copy.
4414  *
4415  * Copy the given action list to the ext_actions and add flow metadata register
4416  * copy action in order to copy reg_a set by WQE to reg_c[0].
4417  *
4418  * @param[out] ext_actions
4419  *   Pointer to the extended action list.
4420  * @param[in] actions
4421  *   Pointer to the list of actions.
4422  * @param[in] actions_n
4423  *   Number of actions in the list.
4424  * @param[out] error
4425  *   Perform verbose error reporting if not NULL.
4426  * @param[in] encap_idx
4427  *   The encap action inndex.
4428  *
4429  * @return
4430  *   0 on success, negative value otherwise
4431  */
4432 static int
4433 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
4434 		       struct rte_flow_action *ext_actions,
4435 		       const struct rte_flow_action *actions,
4436 		       int actions_n, struct rte_flow_error *error,
4437 		       int encap_idx)
4438 {
4439 	struct mlx5_flow_action_copy_mreg *cp_mreg =
4440 		(struct mlx5_flow_action_copy_mreg *)
4441 			(ext_actions + actions_n + 1);
4442 	int ret;
4443 
4444 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4445 	if (ret < 0)
4446 		return ret;
4447 	cp_mreg->dst = ret;
4448 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
4449 	if (ret < 0)
4450 		return ret;
4451 	cp_mreg->src = ret;
4452 	if (encap_idx != 0)
4453 		memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
4454 	if (encap_idx == actions_n - 1) {
4455 		ext_actions[actions_n - 1] = (struct rte_flow_action){
4456 			.type = (enum rte_flow_action_type)
4457 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4458 			.conf = cp_mreg,
4459 		};
4460 		ext_actions[actions_n] = (struct rte_flow_action){
4461 			.type = RTE_FLOW_ACTION_TYPE_END,
4462 		};
4463 	} else {
4464 		ext_actions[encap_idx] = (struct rte_flow_action){
4465 			.type = (enum rte_flow_action_type)
4466 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4467 			.conf = cp_mreg,
4468 		};
4469 		memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
4470 				sizeof(*ext_actions) * (actions_n - encap_idx));
4471 	}
4472 	return 0;
4473 }
4474 
4475 /**
4476  * Check the match action from the action list.
4477  *
4478  * @param[in] actions
4479  *   Pointer to the list of actions.
4480  * @param[in] attr
4481  *   Flow rule attributes.
4482  * @param[in] action
4483  *   The action to be check if exist.
4484  * @param[out] match_action_pos
4485  *   Pointer to the position of the matched action if exists, otherwise is -1.
4486  * @param[out] qrss_action_pos
4487  *   Pointer to the position of the Queue/RSS action if exists, otherwise is -1.
4488  *
4489  * @return
4490  *   > 0 the total number of actions.
4491  *   0 if not found match action in action list.
4492  */
4493 static int
4494 flow_check_match_action(const struct rte_flow_action actions[],
4495 			const struct rte_flow_attr *attr,
4496 			enum rte_flow_action_type action,
4497 			int *match_action_pos, int *qrss_action_pos)
4498 {
4499 	const struct rte_flow_action_sample *sample;
4500 	int actions_n = 0;
4501 	int jump_flag = 0;
4502 	uint32_t ratio = 0;
4503 	int sub_type = 0;
4504 	int flag = 0;
4505 
4506 	*match_action_pos = -1;
4507 	*qrss_action_pos = -1;
4508 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4509 		if (actions->type == action) {
4510 			flag = 1;
4511 			*match_action_pos = actions_n;
4512 		}
4513 		if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE ||
4514 		    actions->type == RTE_FLOW_ACTION_TYPE_RSS)
4515 			*qrss_action_pos = actions_n;
4516 		if (actions->type == RTE_FLOW_ACTION_TYPE_JUMP)
4517 			jump_flag = 1;
4518 		if (actions->type == RTE_FLOW_ACTION_TYPE_SAMPLE) {
4519 			sample = actions->conf;
4520 			ratio = sample->ratio;
4521 			sub_type = ((const struct rte_flow_action *)
4522 					(sample->actions))->type;
4523 		}
4524 		actions_n++;
4525 	}
4526 	if (flag && action == RTE_FLOW_ACTION_TYPE_SAMPLE && attr->transfer) {
4527 		if (ratio == 1) {
4528 			/* JUMP Action not support for Mirroring;
4529 			 * Mirroring support multi-destination;
4530 			 */
4531 			if (!jump_flag && sub_type != RTE_FLOW_ACTION_TYPE_END)
4532 				flag = 0;
4533 		}
4534 	}
4535 	/* Count RTE_FLOW_ACTION_TYPE_END. */
4536 	return flag ? actions_n + 1 : 0;
4537 }
4538 
4539 #define SAMPLE_SUFFIX_ITEM 2
4540 
4541 /**
4542  * Split the sample flow.
4543  *
4544  * As sample flow will split to two sub flow, sample flow with
4545  * sample action, the other actions will move to new suffix flow.
4546  *
4547  * Also add unique tag id with tag action in the sample flow,
4548  * the same tag id will be as match in the suffix flow.
4549  *
4550  * @param dev
4551  *   Pointer to Ethernet device.
4552  * @param[in] fdb_tx
4553  *   FDB egress flow flag.
4554  * @param[out] sfx_items
4555  *   Suffix flow match items (list terminated by the END pattern item).
4556  * @param[in] actions
4557  *   Associated actions (list terminated by the END action).
4558  * @param[out] actions_sfx
4559  *   Suffix flow actions.
4560  * @param[out] actions_pre
4561  *   Prefix flow actions.
4562  * @param[in] actions_n
4563  *  The total number of actions.
4564  * @param[in] sample_action_pos
4565  *   The sample action position.
4566  * @param[in] qrss_action_pos
4567  *   The Queue/RSS action position.
4568  * @param[out] error
4569  *   Perform verbose error reporting if not NULL.
4570  *
4571  * @return
4572  *   0 on success, or unique flow_id, a negative errno value
4573  *   otherwise and rte_errno is set.
4574  */
4575 static int
4576 flow_sample_split_prep(struct rte_eth_dev *dev,
4577 		       uint32_t fdb_tx,
4578 		       struct rte_flow_item sfx_items[],
4579 		       const struct rte_flow_action actions[],
4580 		       struct rte_flow_action actions_sfx[],
4581 		       struct rte_flow_action actions_pre[],
4582 		       int actions_n,
4583 		       int sample_action_pos,
4584 		       int qrss_action_pos,
4585 		       struct rte_flow_error *error)
4586 {
4587 	struct mlx5_priv *priv = dev->data->dev_private;
4588 	struct mlx5_rte_flow_action_set_tag *set_tag;
4589 	struct mlx5_rte_flow_item_tag *tag_spec;
4590 	struct mlx5_rte_flow_item_tag *tag_mask;
4591 	uint32_t tag_id = 0;
4592 	int index;
4593 	int ret;
4594 
4595 	if (sample_action_pos < 0)
4596 		return rte_flow_error_set(error, EINVAL,
4597 					  RTE_FLOW_ERROR_TYPE_ACTION,
4598 					  NULL, "invalid position of sample "
4599 					  "action in list");
4600 	if (!fdb_tx) {
4601 		/* Prepare the prefix tag action. */
4602 		set_tag = (void *)(actions_pre + actions_n + 1);
4603 		ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error);
4604 		if (ret < 0)
4605 			return ret;
4606 		set_tag->id = ret;
4607 		mlx5_ipool_malloc(priv->sh->ipool
4608 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id);
4609 		set_tag->data = tag_id;
4610 		/* Prepare the suffix subflow items. */
4611 		tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM);
4612 		tag_spec->data = tag_id;
4613 		tag_spec->id = set_tag->id;
4614 		tag_mask = tag_spec + 1;
4615 		tag_mask->data = UINT32_MAX;
4616 		sfx_items[0] = (struct rte_flow_item){
4617 			.type = (enum rte_flow_item_type)
4618 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4619 			.spec = tag_spec,
4620 			.last = NULL,
4621 			.mask = tag_mask,
4622 		};
4623 		sfx_items[1] = (struct rte_flow_item){
4624 			.type = (enum rte_flow_item_type)
4625 				RTE_FLOW_ITEM_TYPE_END,
4626 		};
4627 	}
4628 	/* Prepare the actions for prefix and suffix flow. */
4629 	if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) {
4630 		index = qrss_action_pos;
4631 		/* Put the preceding the Queue/RSS action into prefix flow. */
4632 		if (index != 0)
4633 			memcpy(actions_pre, actions,
4634 			       sizeof(struct rte_flow_action) * index);
4635 		/* Put others preceding the sample action into prefix flow. */
4636 		if (sample_action_pos > index + 1)
4637 			memcpy(actions_pre + index, actions + index + 1,
4638 			       sizeof(struct rte_flow_action) *
4639 			       (sample_action_pos - index - 1));
4640 		index = sample_action_pos - 1;
4641 		/* Put Queue/RSS action into Suffix flow. */
4642 		memcpy(actions_sfx, actions + qrss_action_pos,
4643 		       sizeof(struct rte_flow_action));
4644 		actions_sfx++;
4645 	} else {
4646 		index = sample_action_pos;
4647 		if (index != 0)
4648 			memcpy(actions_pre, actions,
4649 			       sizeof(struct rte_flow_action) * index);
4650 	}
4651 	/* Add the extra tag action for NIC-RX and E-Switch ingress. */
4652 	if (!fdb_tx) {
4653 		actions_pre[index++] =
4654 			(struct rte_flow_action){
4655 			.type = (enum rte_flow_action_type)
4656 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4657 			.conf = set_tag,
4658 		};
4659 	}
4660 	memcpy(actions_pre + index, actions + sample_action_pos,
4661 	       sizeof(struct rte_flow_action));
4662 	index += 1;
4663 	actions_pre[index] = (struct rte_flow_action){
4664 		.type = (enum rte_flow_action_type)
4665 			RTE_FLOW_ACTION_TYPE_END,
4666 	};
4667 	/* Put the actions after sample into Suffix flow. */
4668 	memcpy(actions_sfx, actions + sample_action_pos + 1,
4669 	       sizeof(struct rte_flow_action) *
4670 	       (actions_n - sample_action_pos - 1));
4671 	return tag_id;
4672 }
4673 
4674 /**
4675  * The splitting for metadata feature.
4676  *
4677  * - Q/RSS action on NIC Rx should be split in order to pass by
4678  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
4679  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
4680  *
4681  * - All the actions on NIC Tx should have a mreg copy action to
4682  *   copy reg_a from WQE to reg_c[0].
4683  *
4684  * @param dev
4685  *   Pointer to Ethernet device.
4686  * @param[in] flow
4687  *   Parent flow structure pointer.
4688  * @param[in] attr
4689  *   Flow rule attributes.
4690  * @param[in] items
4691  *   Pattern specification (list terminated by the END pattern item).
4692  * @param[in] actions
4693  *   Associated actions (list terminated by the END action).
4694  * @param[in] flow_split_info
4695  *   Pointer to flow split info structure.
4696  * @param[out] error
4697  *   Perform verbose error reporting if not NULL.
4698  * @return
4699  *   0 on success, negative value otherwise
4700  */
4701 static int
4702 flow_create_split_metadata(struct rte_eth_dev *dev,
4703 			   struct rte_flow *flow,
4704 			   const struct rte_flow_attr *attr,
4705 			   const struct rte_flow_item items[],
4706 			   const struct rte_flow_action actions[],
4707 			   struct mlx5_flow_split_info *flow_split_info,
4708 			   struct rte_flow_error *error)
4709 {
4710 	struct mlx5_priv *priv = dev->data->dev_private;
4711 	struct mlx5_dev_config *config = &priv->config;
4712 	const struct rte_flow_action *qrss = NULL;
4713 	struct rte_flow_action *ext_actions = NULL;
4714 	struct mlx5_flow *dev_flow = NULL;
4715 	uint32_t qrss_id = 0;
4716 	int mtr_sfx = 0;
4717 	size_t act_size;
4718 	int actions_n;
4719 	int encap_idx;
4720 	int ret;
4721 
4722 	/* Check whether extensive metadata feature is engaged. */
4723 	if (!config->dv_flow_en ||
4724 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4725 	    !mlx5_flow_ext_mreg_supported(dev))
4726 		return flow_create_split_inner(dev, flow, NULL, attr, items,
4727 					       actions, flow_split_info, error);
4728 	actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
4729 							   &encap_idx);
4730 	if (qrss) {
4731 		/* Exclude hairpin flows from splitting. */
4732 		if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
4733 			const struct rte_flow_action_queue *queue;
4734 
4735 			queue = qrss->conf;
4736 			if (mlx5_rxq_get_type(dev, queue->index) ==
4737 			    MLX5_RXQ_TYPE_HAIRPIN)
4738 				qrss = NULL;
4739 		} else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
4740 			const struct rte_flow_action_rss *rss;
4741 
4742 			rss = qrss->conf;
4743 			if (mlx5_rxq_get_type(dev, rss->queue[0]) ==
4744 			    MLX5_RXQ_TYPE_HAIRPIN)
4745 				qrss = NULL;
4746 		}
4747 	}
4748 	if (qrss) {
4749 		/* Check if it is in meter suffix table. */
4750 		mtr_sfx = attr->group == (attr->transfer ?
4751 			  (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4752 			  MLX5_FLOW_TABLE_LEVEL_SUFFIX);
4753 		/*
4754 		 * Q/RSS action on NIC Rx should be split in order to pass by
4755 		 * the mreg copy table (RX_CP_TBL) and then it jumps to the
4756 		 * action table (RX_ACT_TBL) which has the split Q/RSS action.
4757 		 */
4758 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4759 			   sizeof(struct rte_flow_action_set_tag) +
4760 			   sizeof(struct rte_flow_action_jump);
4761 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4762 					  SOCKET_ID_ANY);
4763 		if (!ext_actions)
4764 			return rte_flow_error_set(error, ENOMEM,
4765 						  RTE_FLOW_ERROR_TYPE_ACTION,
4766 						  NULL, "no memory to split "
4767 						  "metadata flow");
4768 		/*
4769 		 * If we are the suffix flow of meter, tag already exist.
4770 		 * Set the tag action to void.
4771 		 */
4772 		if (mtr_sfx)
4773 			ext_actions[qrss - actions].type =
4774 						RTE_FLOW_ACTION_TYPE_VOID;
4775 		else
4776 			ext_actions[qrss - actions].type =
4777 						(enum rte_flow_action_type)
4778 						MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4779 		/*
4780 		 * Create the new actions list with removed Q/RSS action
4781 		 * and appended set tag and jump to register copy table
4782 		 * (RX_CP_TBL). We should preallocate unique tag ID here
4783 		 * in advance, because it is needed for set tag action.
4784 		 */
4785 		qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
4786 						    qrss, actions_n, error);
4787 		if (!mtr_sfx && !qrss_id) {
4788 			ret = -rte_errno;
4789 			goto exit;
4790 		}
4791 	} else if (attr->egress && !attr->transfer) {
4792 		/*
4793 		 * All the actions on NIC Tx should have a metadata register
4794 		 * copy action to copy reg_a from WQE to reg_c[meta]
4795 		 */
4796 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4797 			   sizeof(struct mlx5_flow_action_copy_mreg);
4798 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4799 					  SOCKET_ID_ANY);
4800 		if (!ext_actions)
4801 			return rte_flow_error_set(error, ENOMEM,
4802 						  RTE_FLOW_ERROR_TYPE_ACTION,
4803 						  NULL, "no memory to split "
4804 						  "metadata flow");
4805 		/* Create the action list appended with copy register. */
4806 		ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
4807 					     actions_n, error, encap_idx);
4808 		if (ret < 0)
4809 			goto exit;
4810 	}
4811 	/* Add the unmodified original or prefix subflow. */
4812 	ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
4813 				      items, ext_actions ? ext_actions :
4814 				      actions, flow_split_info, error);
4815 	if (ret < 0)
4816 		goto exit;
4817 	MLX5_ASSERT(dev_flow);
4818 	if (qrss) {
4819 		const struct rte_flow_attr q_attr = {
4820 			.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4821 			.ingress = 1,
4822 		};
4823 		/* Internal PMD action to set register. */
4824 		struct mlx5_rte_flow_item_tag q_tag_spec = {
4825 			.data = qrss_id,
4826 			.id = REG_NON,
4827 		};
4828 		struct rte_flow_item q_items[] = {
4829 			{
4830 				.type = (enum rte_flow_item_type)
4831 					MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4832 				.spec = &q_tag_spec,
4833 				.last = NULL,
4834 				.mask = NULL,
4835 			},
4836 			{
4837 				.type = RTE_FLOW_ITEM_TYPE_END,
4838 			},
4839 		};
4840 		struct rte_flow_action q_actions[] = {
4841 			{
4842 				.type = qrss->type,
4843 				.conf = qrss->conf,
4844 			},
4845 			{
4846 				.type = RTE_FLOW_ACTION_TYPE_END,
4847 			},
4848 		};
4849 		uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
4850 
4851 		/*
4852 		 * Configure the tag item only if there is no meter subflow.
4853 		 * Since tag is already marked in the meter suffix subflow
4854 		 * we can just use the meter suffix items as is.
4855 		 */
4856 		if (qrss_id) {
4857 			/* Not meter subflow. */
4858 			MLX5_ASSERT(!mtr_sfx);
4859 			/*
4860 			 * Put unique id in prefix flow due to it is destroyed
4861 			 * after suffix flow and id will be freed after there
4862 			 * is no actual flows with this id and identifier
4863 			 * reallocation becomes possible (for example, for
4864 			 * other flows in other threads).
4865 			 */
4866 			dev_flow->handle->split_flow_id = qrss_id;
4867 			ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
4868 						   error);
4869 			if (ret < 0)
4870 				goto exit;
4871 			q_tag_spec.id = ret;
4872 		}
4873 		dev_flow = NULL;
4874 		/* Add suffix subflow to execute Q/RSS. */
4875 		flow_split_info->prefix_layers = layers;
4876 		flow_split_info->prefix_mark = 0;
4877 		ret = flow_create_split_inner(dev, flow, &dev_flow,
4878 					      &q_attr, mtr_sfx ? items :
4879 					      q_items, q_actions,
4880 					      flow_split_info, error);
4881 		if (ret < 0)
4882 			goto exit;
4883 		/* qrss ID should be freed if failed. */
4884 		qrss_id = 0;
4885 		MLX5_ASSERT(dev_flow);
4886 	}
4887 
4888 exit:
4889 	/*
4890 	 * We do not destroy the partially created sub_flows in case of error.
4891 	 * These ones are included into parent flow list and will be destroyed
4892 	 * by flow_drv_destroy.
4893 	 */
4894 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
4895 			qrss_id);
4896 	mlx5_free(ext_actions);
4897 	return ret;
4898 }
4899 
4900 /**
4901  * The splitting for meter feature.
4902  *
4903  * - The meter flow will be split to two flows as prefix and
4904  *   suffix flow. The packets make sense only it pass the prefix
4905  *   meter action.
4906  *
4907  * - Reg_C_5 is used for the packet to match betweend prefix and
4908  *   suffix flow.
4909  *
4910  * @param dev
4911  *   Pointer to Ethernet device.
4912  * @param[in] flow
4913  *   Parent flow structure pointer.
4914  * @param[in] attr
4915  *   Flow rule attributes.
4916  * @param[in] items
4917  *   Pattern specification (list terminated by the END pattern item).
4918  * @param[in] actions
4919  *   Associated actions (list terminated by the END action).
4920  * @param[in] flow_split_info
4921  *   Pointer to flow split info structure.
4922  * @param[out] error
4923  *   Perform verbose error reporting if not NULL.
4924  * @return
4925  *   0 on success, negative value otherwise
4926  */
4927 static int
4928 flow_create_split_meter(struct rte_eth_dev *dev,
4929 			struct rte_flow *flow,
4930 			const struct rte_flow_attr *attr,
4931 			const struct rte_flow_item items[],
4932 			const struct rte_flow_action actions[],
4933 			struct mlx5_flow_split_info *flow_split_info,
4934 			struct rte_flow_error *error)
4935 {
4936 	struct mlx5_priv *priv = dev->data->dev_private;
4937 	struct rte_flow_action *sfx_actions = NULL;
4938 	struct rte_flow_action *pre_actions = NULL;
4939 	struct rte_flow_item *sfx_items = NULL;
4940 	struct mlx5_flow *dev_flow = NULL;
4941 	struct rte_flow_attr sfx_attr = *attr;
4942 	uint32_t mtr = 0;
4943 	uint32_t mtr_tag_id = 0;
4944 	size_t act_size;
4945 	size_t item_size;
4946 	int actions_n = 0;
4947 	int ret;
4948 
4949 	if (priv->mtr_en)
4950 		actions_n = flow_check_meter_action(actions, &mtr);
4951 	if (mtr) {
4952 		/* The five prefix actions: meter, decap, encap, tag, end. */
4953 		act_size = sizeof(struct rte_flow_action) * (actions_n + 5) +
4954 			   sizeof(struct mlx5_rte_flow_action_set_tag);
4955 		/* tag, vlan, port id, end. */
4956 #define METER_SUFFIX_ITEM 4
4957 		item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
4958 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
4959 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
4960 					  0, SOCKET_ID_ANY);
4961 		if (!sfx_actions)
4962 			return rte_flow_error_set(error, ENOMEM,
4963 						  RTE_FLOW_ERROR_TYPE_ACTION,
4964 						  NULL, "no memory to split "
4965 						  "meter flow");
4966 		sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
4967 			     act_size);
4968 		pre_actions = sfx_actions + actions_n;
4969 		mtr_tag_id = flow_meter_split_prep(dev, items, sfx_items,
4970 						   actions, sfx_actions,
4971 						   pre_actions);
4972 		if (!mtr_tag_id) {
4973 			ret = -rte_errno;
4974 			goto exit;
4975 		}
4976 		/* Add the prefix subflow. */
4977 		flow_split_info->prefix_mark = 0;
4978 		ret = flow_create_split_inner(dev, flow, &dev_flow,
4979 					      attr, items, pre_actions,
4980 					      flow_split_info, error);
4981 		if (ret) {
4982 			ret = -rte_errno;
4983 			goto exit;
4984 		}
4985 		dev_flow->handle->split_flow_id = mtr_tag_id;
4986 		/* Setting the sfx group atrr. */
4987 		sfx_attr.group = sfx_attr.transfer ?
4988 				(MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4989 				 MLX5_FLOW_TABLE_LEVEL_SUFFIX;
4990 		flow_split_info->prefix_layers =
4991 				flow_get_prefix_layer_flags(dev_flow);
4992 		flow_split_info->prefix_mark = dev_flow->handle->mark;
4993 	}
4994 	/* Add the prefix subflow. */
4995 	ret = flow_create_split_metadata(dev, flow,
4996 					 &sfx_attr, sfx_items ?
4997 					 sfx_items : items,
4998 					 sfx_actions ? sfx_actions : actions,
4999 					 flow_split_info, error);
5000 exit:
5001 	if (sfx_actions)
5002 		mlx5_free(sfx_actions);
5003 	return ret;
5004 }
5005 
5006 /**
5007  * The splitting for sample feature.
5008  *
5009  * Once Sample action is detected in the action list, the flow actions should
5010  * be split into prefix sub flow and suffix sub flow.
5011  *
5012  * The original items remain in the prefix sub flow, all actions preceding the
5013  * sample action and the sample action itself will be copied to the prefix
5014  * sub flow, the actions following the sample action will be copied to the
5015  * suffix sub flow, Queue action always be located in the suffix sub flow.
5016  *
5017  * In order to make the packet from prefix sub flow matches with suffix sub
5018  * flow, an extra tag action be added into prefix sub flow, and the suffix sub
5019  * flow uses tag item with the unique flow id.
5020  *
5021  * @param dev
5022  *   Pointer to Ethernet device.
5023  * @param[in] flow
5024  *   Parent flow structure pointer.
5025  * @param[in] attr
5026  *   Flow rule attributes.
5027  * @param[in] items
5028  *   Pattern specification (list terminated by the END pattern item).
5029  * @param[in] actions
5030  *   Associated actions (list terminated by the END action).
5031  * @param[in] flow_split_info
5032  *   Pointer to flow split info structure.
5033  * @param[out] error
5034  *   Perform verbose error reporting if not NULL.
5035  * @return
5036  *   0 on success, negative value otherwise
5037  */
5038 static int
5039 flow_create_split_sample(struct rte_eth_dev *dev,
5040 			 struct rte_flow *flow,
5041 			 const struct rte_flow_attr *attr,
5042 			 const struct rte_flow_item items[],
5043 			 const struct rte_flow_action actions[],
5044 			 struct mlx5_flow_split_info *flow_split_info,
5045 			 struct rte_flow_error *error)
5046 {
5047 	struct mlx5_priv *priv = dev->data->dev_private;
5048 	struct rte_flow_action *sfx_actions = NULL;
5049 	struct rte_flow_action *pre_actions = NULL;
5050 	struct rte_flow_item *sfx_items = NULL;
5051 	struct mlx5_flow *dev_flow = NULL;
5052 	struct rte_flow_attr sfx_attr = *attr;
5053 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5054 	struct mlx5_flow_dv_sample_resource *sample_res;
5055 	struct mlx5_flow_tbl_data_entry *sfx_tbl_data;
5056 	struct mlx5_flow_tbl_resource *sfx_tbl;
5057 #endif
5058 	size_t act_size;
5059 	size_t item_size;
5060 	uint32_t fdb_tx = 0;
5061 	int32_t tag_id = 0;
5062 	int actions_n = 0;
5063 	int sample_action_pos;
5064 	int qrss_action_pos;
5065 	int ret = 0;
5066 
5067 	if (priv->sampler_en)
5068 		actions_n = flow_check_match_action(actions, attr,
5069 					RTE_FLOW_ACTION_TYPE_SAMPLE,
5070 					&sample_action_pos, &qrss_action_pos);
5071 	if (actions_n) {
5072 		/* The prefix actions must includes sample, tag, end. */
5073 		act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1)
5074 			   + sizeof(struct mlx5_rte_flow_action_set_tag);
5075 		item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM +
5076 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
5077 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size +
5078 					  item_size), 0, SOCKET_ID_ANY);
5079 		if (!sfx_actions)
5080 			return rte_flow_error_set(error, ENOMEM,
5081 						  RTE_FLOW_ERROR_TYPE_ACTION,
5082 						  NULL, "no memory to split "
5083 						  "sample flow");
5084 		/* The representor_id is -1 for uplink. */
5085 		fdb_tx = (attr->transfer && priv->representor_id != -1);
5086 		if (!fdb_tx)
5087 			sfx_items = (struct rte_flow_item *)((char *)sfx_actions
5088 					+ act_size);
5089 		pre_actions = sfx_actions + actions_n;
5090 		tag_id = flow_sample_split_prep(dev, fdb_tx, sfx_items,
5091 						actions, sfx_actions,
5092 						pre_actions, actions_n,
5093 						sample_action_pos,
5094 						qrss_action_pos, error);
5095 		if (tag_id < 0 || (!fdb_tx && !tag_id)) {
5096 			ret = -rte_errno;
5097 			goto exit;
5098 		}
5099 		/* Add the prefix subflow. */
5100 		ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
5101 					      items, pre_actions,
5102 					      flow_split_info, error);
5103 		if (ret) {
5104 			ret = -rte_errno;
5105 			goto exit;
5106 		}
5107 		dev_flow->handle->split_flow_id = tag_id;
5108 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5109 		/* Set the sfx group attr. */
5110 		sample_res = (struct mlx5_flow_dv_sample_resource *)
5111 					dev_flow->dv.sample_res;
5112 		sfx_tbl = (struct mlx5_flow_tbl_resource *)
5113 					sample_res->normal_path_tbl;
5114 		sfx_tbl_data = container_of(sfx_tbl,
5115 					struct mlx5_flow_tbl_data_entry, tbl);
5116 		sfx_attr.group = sfx_attr.transfer ?
5117 					(sfx_tbl_data->table_id - 1) :
5118 					 sfx_tbl_data->table_id;
5119 		flow_split_info->prefix_layers =
5120 				flow_get_prefix_layer_flags(dev_flow);
5121 		flow_split_info->prefix_mark = dev_flow->handle->mark;
5122 		/* Suffix group level already be scaled with factor, set
5123 		 * skip_scale to 1 to avoid scale again in translation.
5124 		 */
5125 		flow_split_info->skip_scale = 1;
5126 #endif
5127 	}
5128 	/* Add the suffix subflow. */
5129 	ret = flow_create_split_meter(dev, flow, &sfx_attr,
5130 				      sfx_items ? sfx_items : items,
5131 				      sfx_actions ? sfx_actions : actions,
5132 				      flow_split_info, error);
5133 exit:
5134 	if (sfx_actions)
5135 		mlx5_free(sfx_actions);
5136 	return ret;
5137 }
5138 
5139 /**
5140  * Split the flow to subflow set. The splitters might be linked
5141  * in the chain, like this:
5142  * flow_create_split_outer() calls:
5143  *   flow_create_split_meter() calls:
5144  *     flow_create_split_metadata(meter_subflow_0) calls:
5145  *       flow_create_split_inner(metadata_subflow_0)
5146  *       flow_create_split_inner(metadata_subflow_1)
5147  *       flow_create_split_inner(metadata_subflow_2)
5148  *     flow_create_split_metadata(meter_subflow_1) calls:
5149  *       flow_create_split_inner(metadata_subflow_0)
5150  *       flow_create_split_inner(metadata_subflow_1)
5151  *       flow_create_split_inner(metadata_subflow_2)
5152  *
5153  * This provide flexible way to add new levels of flow splitting.
5154  * The all of successfully created subflows are included to the
5155  * parent flow dev_flow list.
5156  *
5157  * @param dev
5158  *   Pointer to Ethernet device.
5159  * @param[in] flow
5160  *   Parent flow structure pointer.
5161  * @param[in] attr
5162  *   Flow rule attributes.
5163  * @param[in] items
5164  *   Pattern specification (list terminated by the END pattern item).
5165  * @param[in] actions
5166  *   Associated actions (list terminated by the END action).
5167  * @param[in] flow_split_info
5168  *   Pointer to flow split info structure.
5169  * @param[out] error
5170  *   Perform verbose error reporting if not NULL.
5171  * @return
5172  *   0 on success, negative value otherwise
5173  */
5174 static int
5175 flow_create_split_outer(struct rte_eth_dev *dev,
5176 			struct rte_flow *flow,
5177 			const struct rte_flow_attr *attr,
5178 			const struct rte_flow_item items[],
5179 			const struct rte_flow_action actions[],
5180 			struct mlx5_flow_split_info *flow_split_info,
5181 			struct rte_flow_error *error)
5182 {
5183 	int ret;
5184 
5185 	ret = flow_create_split_sample(dev, flow, attr, items,
5186 				       actions, flow_split_info, error);
5187 	MLX5_ASSERT(ret <= 0);
5188 	return ret;
5189 }
5190 
5191 static struct mlx5_flow_tunnel *
5192 flow_tunnel_from_rule(struct rte_eth_dev *dev,
5193 		      const struct rte_flow_attr *attr,
5194 		      const struct rte_flow_item items[],
5195 		      const struct rte_flow_action actions[])
5196 {
5197 	struct mlx5_flow_tunnel *tunnel;
5198 
5199 #pragma GCC diagnostic push
5200 #pragma GCC diagnostic ignored "-Wcast-qual"
5201 	if (is_flow_tunnel_match_rule(dev, attr, items, actions))
5202 		tunnel = (struct mlx5_flow_tunnel *)items[0].spec;
5203 	else if (is_flow_tunnel_steer_rule(dev, attr, items, actions))
5204 		tunnel = (struct mlx5_flow_tunnel *)actions[0].conf;
5205 	else
5206 		tunnel = NULL;
5207 #pragma GCC diagnostic pop
5208 
5209 	return tunnel;
5210 }
5211 
5212 /**
5213  * Adjust flow RSS workspace if needed.
5214  *
5215  * @param wks
5216  *   Pointer to thread flow work space.
5217  * @param rss_desc
5218  *   Pointer to RSS descriptor.
5219  * @param[in] nrssq_num
5220  *   New RSS queue number.
5221  *
5222  * @return
5223  *   0 on success, -1 otherwise and rte_errno is set.
5224  */
5225 static int
5226 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks,
5227 			  struct mlx5_flow_rss_desc *rss_desc,
5228 			  uint32_t nrssq_num)
5229 {
5230 	if (likely(nrssq_num <= wks->rssq_num))
5231 		return 0;
5232 	rss_desc->queue = realloc(rss_desc->queue,
5233 			  sizeof(*rss_desc->queue) * RTE_ALIGN(nrssq_num, 2));
5234 	if (!rss_desc->queue) {
5235 		rte_errno = ENOMEM;
5236 		return -1;
5237 	}
5238 	wks->rssq_num = RTE_ALIGN(nrssq_num, 2);
5239 	return 0;
5240 }
5241 
5242 /**
5243  * Create a flow and add it to @p list.
5244  *
5245  * @param dev
5246  *   Pointer to Ethernet device.
5247  * @param list
5248  *   Pointer to a TAILQ flow list. If this parameter NULL,
5249  *   no list insertion occurred, flow is just created,
5250  *   this is caller's responsibility to track the
5251  *   created flow.
5252  * @param[in] attr
5253  *   Flow rule attributes.
5254  * @param[in] items
5255  *   Pattern specification (list terminated by the END pattern item).
5256  * @param[in] actions
5257  *   Associated actions (list terminated by the END action).
5258  * @param[in] external
5259  *   This flow rule is created by request external to PMD.
5260  * @param[out] error
5261  *   Perform verbose error reporting if not NULL.
5262  *
5263  * @return
5264  *   A flow index on success, 0 otherwise and rte_errno is set.
5265  */
5266 static uint32_t
5267 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
5268 		 const struct rte_flow_attr *attr,
5269 		 const struct rte_flow_item items[],
5270 		 const struct rte_flow_action original_actions[],
5271 		 bool external, struct rte_flow_error *error)
5272 {
5273 	struct mlx5_priv *priv = dev->data->dev_private;
5274 	struct rte_flow *flow = NULL;
5275 	struct mlx5_flow *dev_flow;
5276 	const struct rte_flow_action_rss *rss;
5277 	struct mlx5_translated_shared_action
5278 		shared_actions[MLX5_MAX_SHARED_ACTIONS];
5279 	int shared_actions_n = MLX5_MAX_SHARED_ACTIONS;
5280 	union {
5281 		struct mlx5_flow_expand_rss buf;
5282 		uint8_t buffer[2048];
5283 	} expand_buffer;
5284 	union {
5285 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
5286 		uint8_t buffer[2048];
5287 	} actions_rx;
5288 	union {
5289 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
5290 		uint8_t buffer[2048];
5291 	} actions_hairpin_tx;
5292 	union {
5293 		struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
5294 		uint8_t buffer[2048];
5295 	} items_tx;
5296 	struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
5297 	struct mlx5_flow_rss_desc *rss_desc;
5298 	const struct rte_flow_action *p_actions_rx;
5299 	uint32_t i;
5300 	uint32_t idx = 0;
5301 	int hairpin_flow;
5302 	struct rte_flow_attr attr_tx = { .priority = 0 };
5303 	const struct rte_flow_action *actions;
5304 	struct rte_flow_action *translated_actions = NULL;
5305 	struct mlx5_flow_tunnel *tunnel;
5306 	struct tunnel_default_miss_ctx default_miss_ctx = { 0, };
5307 	struct mlx5_flow_workspace *wks = mlx5_flow_push_thread_workspace();
5308 	struct mlx5_flow_split_info flow_split_info = {
5309 		.external = !!external,
5310 		.skip_scale = 0,
5311 		.flow_idx = 0,
5312 		.prefix_mark = 0,
5313 		.prefix_layers = 0
5314 	};
5315 	int ret;
5316 
5317 	MLX5_ASSERT(wks);
5318 	rss_desc = &wks->rss_desc;
5319 	ret = flow_shared_actions_translate(dev, original_actions,
5320 					    shared_actions,
5321 					    &shared_actions_n,
5322 					    &translated_actions, error);
5323 	if (ret < 0) {
5324 		MLX5_ASSERT(translated_actions == NULL);
5325 		return 0;
5326 	}
5327 	actions = translated_actions ? translated_actions : original_actions;
5328 	p_actions_rx = actions;
5329 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
5330 	ret = flow_drv_validate(dev, attr, items, p_actions_rx,
5331 				external, hairpin_flow, error);
5332 	if (ret < 0)
5333 		goto error_before_hairpin_split;
5334 	flow = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], &idx);
5335 	if (!flow) {
5336 		rte_errno = ENOMEM;
5337 		goto error_before_hairpin_split;
5338 	}
5339 	if (hairpin_flow > 0) {
5340 		if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
5341 			rte_errno = EINVAL;
5342 			goto error_before_hairpin_split;
5343 		}
5344 		flow_hairpin_split(dev, actions, actions_rx.actions,
5345 				   actions_hairpin_tx.actions, items_tx.items,
5346 				   idx);
5347 		p_actions_rx = actions_rx.actions;
5348 	}
5349 	flow_split_info.flow_idx = idx;
5350 	flow->drv_type = flow_get_drv_type(dev, attr);
5351 	MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
5352 		    flow->drv_type < MLX5_FLOW_TYPE_MAX);
5353 	memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue));
5354 	rss = flow_get_rss_action(p_actions_rx);
5355 	if (rss) {
5356 		if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num))
5357 			return 0;
5358 		/*
5359 		 * The following information is required by
5360 		 * mlx5_flow_hashfields_adjust() in advance.
5361 		 */
5362 		rss_desc->level = rss->level;
5363 		/* RSS type 0 indicates default RSS type (ETH_RSS_IP). */
5364 		rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types;
5365 	}
5366 	flow->dev_handles = 0;
5367 	if (rss && rss->types) {
5368 		unsigned int graph_root;
5369 
5370 		graph_root = find_graph_root(items, rss->level);
5371 		ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
5372 					   items, rss->types,
5373 					   mlx5_support_expansion, graph_root);
5374 		MLX5_ASSERT(ret > 0 &&
5375 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
5376 	} else {
5377 		buf->entries = 1;
5378 		buf->entry[0].pattern = (void *)(uintptr_t)items;
5379 	}
5380 	rss_desc->shared_rss = flow_get_shared_rss_action(dev, shared_actions,
5381 						      shared_actions_n);
5382 	for (i = 0; i < buf->entries; ++i) {
5383 		/* Initialize flow split data. */
5384 		flow_split_info.prefix_layers = 0;
5385 		flow_split_info.prefix_mark = 0;
5386 		flow_split_info.skip_scale = 0;
5387 		/*
5388 		 * The splitter may create multiple dev_flows,
5389 		 * depending on configuration. In the simplest
5390 		 * case it just creates unmodified original flow.
5391 		 */
5392 		ret = flow_create_split_outer(dev, flow, attr,
5393 					      buf->entry[i].pattern,
5394 					      p_actions_rx, &flow_split_info,
5395 					      error);
5396 		if (ret < 0)
5397 			goto error;
5398 		if (is_flow_tunnel_steer_rule(dev, attr,
5399 					      buf->entry[i].pattern,
5400 					      p_actions_rx)) {
5401 			ret = flow_tunnel_add_default_miss(dev, flow, attr,
5402 							   p_actions_rx,
5403 							   idx,
5404 							   &default_miss_ctx,
5405 							   error);
5406 			if (ret < 0) {
5407 				mlx5_free(default_miss_ctx.queue);
5408 				goto error;
5409 			}
5410 		}
5411 	}
5412 	/* Create the tx flow. */
5413 	if (hairpin_flow) {
5414 		attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
5415 		attr_tx.ingress = 0;
5416 		attr_tx.egress = 1;
5417 		dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
5418 					 actions_hairpin_tx.actions,
5419 					 idx, error);
5420 		if (!dev_flow)
5421 			goto error;
5422 		dev_flow->flow = flow;
5423 		dev_flow->external = 0;
5424 		SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
5425 			      dev_flow->handle, next);
5426 		ret = flow_drv_translate(dev, dev_flow, &attr_tx,
5427 					 items_tx.items,
5428 					 actions_hairpin_tx.actions, error);
5429 		if (ret < 0)
5430 			goto error;
5431 	}
5432 	/*
5433 	 * Update the metadata register copy table. If extensive
5434 	 * metadata feature is enabled and registers are supported
5435 	 * we might create the extra rte_flow for each unique
5436 	 * MARK/FLAG action ID.
5437 	 *
5438 	 * The table is updated for ingress Flows only, because
5439 	 * the egress Flows belong to the different device and
5440 	 * copy table should be updated in peer NIC Rx domain.
5441 	 */
5442 	if (attr->ingress &&
5443 	    (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
5444 		ret = flow_mreg_update_copy_table(dev, flow, actions, error);
5445 		if (ret)
5446 			goto error;
5447 	}
5448 	/*
5449 	 * If the flow is external (from application) OR device is started,
5450 	 * OR mreg discover, then apply immediately.
5451 	 */
5452 	if (external || dev->data->dev_started ||
5453 	    (attr->group == MLX5_FLOW_MREG_CP_TABLE_GROUP &&
5454 	     attr->priority == MLX5_FLOW_PRIO_RSVD)) {
5455 		ret = flow_drv_apply(dev, flow, error);
5456 		if (ret < 0)
5457 			goto error;
5458 	}
5459 	if (list) {
5460 		rte_spinlock_lock(&priv->flow_list_lock);
5461 		ILIST_INSERT(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, idx,
5462 			     flow, next);
5463 		rte_spinlock_unlock(&priv->flow_list_lock);
5464 	}
5465 	flow_rxq_flags_set(dev, flow);
5466 	rte_free(translated_actions);
5467 	tunnel = flow_tunnel_from_rule(dev, attr, items, actions);
5468 	if (tunnel) {
5469 		flow->tunnel = 1;
5470 		flow->tunnel_id = tunnel->tunnel_id;
5471 		__atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED);
5472 		mlx5_free(default_miss_ctx.queue);
5473 	}
5474 	mlx5_flow_pop_thread_workspace();
5475 	return idx;
5476 error:
5477 	MLX5_ASSERT(flow);
5478 	ret = rte_errno; /* Save rte_errno before cleanup. */
5479 	flow_mreg_del_copy_action(dev, flow);
5480 	flow_drv_destroy(dev, flow);
5481 	if (rss_desc->shared_rss)
5482 		__atomic_sub_fetch(&((struct mlx5_shared_action_rss *)
5483 			mlx5_ipool_get
5484 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
5485 			rss_desc->shared_rss))->refcnt, 1, __ATOMIC_RELAXED);
5486 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], idx);
5487 	rte_errno = ret; /* Restore rte_errno. */
5488 	ret = rte_errno;
5489 	rte_errno = ret;
5490 	mlx5_flow_pop_thread_workspace();
5491 error_before_hairpin_split:
5492 	rte_free(translated_actions);
5493 	return 0;
5494 }
5495 
5496 /**
5497  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
5498  * incoming packets to table 1.
5499  *
5500  * Other flow rules, requested for group n, will be created in
5501  * e-switch table n+1.
5502  * Jump action to e-switch group n will be created to group n+1.
5503  *
5504  * Used when working in switchdev mode, to utilise advantages of table 1
5505  * and above.
5506  *
5507  * @param dev
5508  *   Pointer to Ethernet device.
5509  *
5510  * @return
5511  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
5512  */
5513 struct rte_flow *
5514 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
5515 {
5516 	const struct rte_flow_attr attr = {
5517 		.group = 0,
5518 		.priority = 0,
5519 		.ingress = 1,
5520 		.egress = 0,
5521 		.transfer = 1,
5522 	};
5523 	const struct rte_flow_item pattern = {
5524 		.type = RTE_FLOW_ITEM_TYPE_END,
5525 	};
5526 	struct rte_flow_action_jump jump = {
5527 		.group = 1,
5528 	};
5529 	const struct rte_flow_action actions[] = {
5530 		{
5531 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
5532 			.conf = &jump,
5533 		},
5534 		{
5535 			.type = RTE_FLOW_ACTION_TYPE_END,
5536 		},
5537 	};
5538 	struct mlx5_priv *priv = dev->data->dev_private;
5539 	struct rte_flow_error error;
5540 
5541 	return (void *)(uintptr_t)flow_list_create(dev, &priv->ctrl_flows,
5542 						   &attr, &pattern,
5543 						   actions, false, &error);
5544 }
5545 
5546 /**
5547  * Validate a flow supported by the NIC.
5548  *
5549  * @see rte_flow_validate()
5550  * @see rte_flow_ops
5551  */
5552 int
5553 mlx5_flow_validate(struct rte_eth_dev *dev,
5554 		   const struct rte_flow_attr *attr,
5555 		   const struct rte_flow_item items[],
5556 		   const struct rte_flow_action original_actions[],
5557 		   struct rte_flow_error *error)
5558 {
5559 	int hairpin_flow;
5560 	struct mlx5_translated_shared_action
5561 		shared_actions[MLX5_MAX_SHARED_ACTIONS];
5562 	int shared_actions_n = MLX5_MAX_SHARED_ACTIONS;
5563 	const struct rte_flow_action *actions;
5564 	struct rte_flow_action *translated_actions = NULL;
5565 	int ret = flow_shared_actions_translate(dev, original_actions,
5566 						shared_actions,
5567 						&shared_actions_n,
5568 						&translated_actions, error);
5569 
5570 	if (ret)
5571 		return ret;
5572 	actions = translated_actions ? translated_actions : original_actions;
5573 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
5574 	ret = flow_drv_validate(dev, attr, items, actions,
5575 				true, hairpin_flow, error);
5576 	rte_free(translated_actions);
5577 	return ret;
5578 }
5579 
5580 /**
5581  * Create a flow.
5582  *
5583  * @see rte_flow_create()
5584  * @see rte_flow_ops
5585  */
5586 struct rte_flow *
5587 mlx5_flow_create(struct rte_eth_dev *dev,
5588 		 const struct rte_flow_attr *attr,
5589 		 const struct rte_flow_item items[],
5590 		 const struct rte_flow_action actions[],
5591 		 struct rte_flow_error *error)
5592 {
5593 	struct mlx5_priv *priv = dev->data->dev_private;
5594 
5595 	/*
5596 	 * If the device is not started yet, it is not allowed to created a
5597 	 * flow from application. PMD default flows and traffic control flows
5598 	 * are not affected.
5599 	 */
5600 	if (unlikely(!dev->data->dev_started)) {
5601 		DRV_LOG(DEBUG, "port %u is not started when "
5602 			"inserting a flow", dev->data->port_id);
5603 		rte_flow_error_set(error, ENODEV,
5604 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5605 				   NULL,
5606 				   "port not started");
5607 		return NULL;
5608 	}
5609 
5610 	return (void *)(uintptr_t)flow_list_create(dev, &priv->flows,
5611 				  attr, items, actions, true, error);
5612 }
5613 
5614 /**
5615  * Destroy a flow in a list.
5616  *
5617  * @param dev
5618  *   Pointer to Ethernet device.
5619  * @param list
5620  *   Pointer to the Indexed flow list. If this parameter NULL,
5621  *   there is no flow removal from the list. Be noted that as
5622  *   flow is add to the indexed list, memory of the indexed
5623  *   list points to maybe changed as flow destroyed.
5624  * @param[in] flow_idx
5625  *   Index of flow to destroy.
5626  */
5627 static void
5628 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
5629 		  uint32_t flow_idx)
5630 {
5631 	struct mlx5_priv *priv = dev->data->dev_private;
5632 	struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
5633 					       [MLX5_IPOOL_RTE_FLOW], flow_idx);
5634 
5635 	if (!flow)
5636 		return;
5637 	/*
5638 	 * Update RX queue flags only if port is started, otherwise it is
5639 	 * already clean.
5640 	 */
5641 	if (dev->data->dev_started)
5642 		flow_rxq_flags_trim(dev, flow);
5643 	flow_drv_destroy(dev, flow);
5644 	if (list) {
5645 		rte_spinlock_lock(&priv->flow_list_lock);
5646 		ILIST_REMOVE(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list,
5647 			     flow_idx, flow, next);
5648 		rte_spinlock_unlock(&priv->flow_list_lock);
5649 	}
5650 	if (flow->tunnel) {
5651 		struct mlx5_flow_tunnel *tunnel;
5652 
5653 		tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id);
5654 		RTE_VERIFY(tunnel);
5655 		if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
5656 			mlx5_flow_tunnel_free(dev, tunnel);
5657 	}
5658 	flow_mreg_del_copy_action(dev, flow);
5659 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
5660 }
5661 
5662 /**
5663  * Destroy all flows.
5664  *
5665  * @param dev
5666  *   Pointer to Ethernet device.
5667  * @param list
5668  *   Pointer to the Indexed flow list.
5669  * @param active
5670  *   If flushing is called avtively.
5671  */
5672 void
5673 mlx5_flow_list_flush(struct rte_eth_dev *dev, uint32_t *list, bool active)
5674 {
5675 	uint32_t num_flushed = 0;
5676 
5677 	while (*list) {
5678 		flow_list_destroy(dev, list, *list);
5679 		num_flushed++;
5680 	}
5681 	if (active) {
5682 		DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
5683 			dev->data->port_id, num_flushed);
5684 	}
5685 }
5686 
5687 /**
5688  * Stop all default actions for flows.
5689  *
5690  * @param dev
5691  *   Pointer to Ethernet device.
5692  */
5693 void
5694 mlx5_flow_stop_default(struct rte_eth_dev *dev)
5695 {
5696 	flow_mreg_del_default_copy_action(dev);
5697 	flow_rxq_flags_clear(dev);
5698 }
5699 
5700 /**
5701  * Start all default actions for flows.
5702  *
5703  * @param dev
5704  *   Pointer to Ethernet device.
5705  * @return
5706  *   0 on success, a negative errno value otherwise and rte_errno is set.
5707  */
5708 int
5709 mlx5_flow_start_default(struct rte_eth_dev *dev)
5710 {
5711 	struct rte_flow_error error;
5712 
5713 	/* Make sure default copy action (reg_c[0] -> reg_b) is created. */
5714 	return flow_mreg_add_default_copy_action(dev, &error);
5715 }
5716 
5717 /**
5718  * Release key of thread specific flow workspace data.
5719  */
5720 void
5721 flow_release_workspace(void *data)
5722 {
5723 	struct mlx5_flow_workspace *wks = data;
5724 	struct mlx5_flow_workspace *next;
5725 
5726 	while (wks) {
5727 		next = wks->next;
5728 		free(wks->rss_desc.queue);
5729 		free(wks);
5730 		wks = next;
5731 	}
5732 }
5733 
5734 /**
5735  * Get thread specific current flow workspace.
5736  *
5737  * @return pointer to thread specific flow workspace data, NULL on error.
5738  */
5739 struct mlx5_flow_workspace*
5740 mlx5_flow_get_thread_workspace(void)
5741 {
5742 	struct mlx5_flow_workspace *data;
5743 
5744 	data = mlx5_flow_os_get_specific_workspace();
5745 	MLX5_ASSERT(data && data->inuse);
5746 	if (!data || !data->inuse)
5747 		DRV_LOG(ERR, "flow workspace not initialized.");
5748 	return data;
5749 }
5750 
5751 /**
5752  * Allocate and init new flow workspace.
5753  *
5754  * @return pointer to flow workspace data, NULL on error.
5755  */
5756 static struct mlx5_flow_workspace*
5757 flow_alloc_thread_workspace(void)
5758 {
5759 	struct mlx5_flow_workspace *data = calloc(1, sizeof(*data));
5760 
5761 	if (!data) {
5762 		DRV_LOG(ERR, "Failed to allocate flow workspace "
5763 			"memory.");
5764 		return NULL;
5765 	}
5766 	data->rss_desc.queue = calloc(1,
5767 			sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM);
5768 	if (!data->rss_desc.queue)
5769 		goto err;
5770 	data->rssq_num = MLX5_RSSQ_DEFAULT_NUM;
5771 	return data;
5772 err:
5773 	if (data->rss_desc.queue)
5774 		free(data->rss_desc.queue);
5775 	free(data);
5776 	return NULL;
5777 }
5778 
5779 /**
5780  * Get new thread specific flow workspace.
5781  *
5782  * If current workspace inuse, create new one and set as current.
5783  *
5784  * @return pointer to thread specific flow workspace data, NULL on error.
5785  */
5786 static struct mlx5_flow_workspace*
5787 mlx5_flow_push_thread_workspace(void)
5788 {
5789 	struct mlx5_flow_workspace *curr;
5790 	struct mlx5_flow_workspace *data;
5791 
5792 	curr = mlx5_flow_os_get_specific_workspace();
5793 	if (!curr) {
5794 		data = flow_alloc_thread_workspace();
5795 		if (!data)
5796 			return NULL;
5797 	} else if (!curr->inuse) {
5798 		data = curr;
5799 	} else if (curr->next) {
5800 		data = curr->next;
5801 	} else {
5802 		data = flow_alloc_thread_workspace();
5803 		if (!data)
5804 			return NULL;
5805 		curr->next = data;
5806 		data->prev = curr;
5807 	}
5808 	data->inuse = 1;
5809 	data->flow_idx = 0;
5810 	/* Set as current workspace */
5811 	if (mlx5_flow_os_set_specific_workspace(data))
5812 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
5813 	return data;
5814 }
5815 
5816 /**
5817  * Close current thread specific flow workspace.
5818  *
5819  * If previous workspace available, set it as current.
5820  *
5821  * @return pointer to thread specific flow workspace data, NULL on error.
5822  */
5823 static void
5824 mlx5_flow_pop_thread_workspace(void)
5825 {
5826 	struct mlx5_flow_workspace *data = mlx5_flow_get_thread_workspace();
5827 
5828 	if (!data)
5829 		return;
5830 	if (!data->inuse) {
5831 		DRV_LOG(ERR, "Failed to close unused flow workspace.");
5832 		return;
5833 	}
5834 	data->inuse = 0;
5835 	if (!data->prev)
5836 		return;
5837 	if (mlx5_flow_os_set_specific_workspace(data->prev))
5838 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
5839 }
5840 
5841 /**
5842  * Verify the flow list is empty
5843  *
5844  * @param dev
5845  *  Pointer to Ethernet device.
5846  *
5847  * @return the number of flows not released.
5848  */
5849 int
5850 mlx5_flow_verify(struct rte_eth_dev *dev)
5851 {
5852 	struct mlx5_priv *priv = dev->data->dev_private;
5853 	struct rte_flow *flow;
5854 	uint32_t idx;
5855 	int ret = 0;
5856 
5857 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], priv->flows, idx,
5858 		      flow, next) {
5859 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
5860 			dev->data->port_id, (void *)flow);
5861 		++ret;
5862 	}
5863 	return ret;
5864 }
5865 
5866 /**
5867  * Enable default hairpin egress flow.
5868  *
5869  * @param dev
5870  *   Pointer to Ethernet device.
5871  * @param queue
5872  *   The queue index.
5873  *
5874  * @return
5875  *   0 on success, a negative errno value otherwise and rte_errno is set.
5876  */
5877 int
5878 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
5879 			    uint32_t queue)
5880 {
5881 	struct mlx5_priv *priv = dev->data->dev_private;
5882 	const struct rte_flow_attr attr = {
5883 		.egress = 1,
5884 		.priority = 0,
5885 	};
5886 	struct mlx5_rte_flow_item_tx_queue queue_spec = {
5887 		.queue = queue,
5888 	};
5889 	struct mlx5_rte_flow_item_tx_queue queue_mask = {
5890 		.queue = UINT32_MAX,
5891 	};
5892 	struct rte_flow_item items[] = {
5893 		{
5894 			.type = (enum rte_flow_item_type)
5895 				MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
5896 			.spec = &queue_spec,
5897 			.last = NULL,
5898 			.mask = &queue_mask,
5899 		},
5900 		{
5901 			.type = RTE_FLOW_ITEM_TYPE_END,
5902 		},
5903 	};
5904 	struct rte_flow_action_jump jump = {
5905 		.group = MLX5_HAIRPIN_TX_TABLE,
5906 	};
5907 	struct rte_flow_action actions[2];
5908 	uint32_t flow_idx;
5909 	struct rte_flow_error error;
5910 
5911 	actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
5912 	actions[0].conf = &jump;
5913 	actions[1].type = RTE_FLOW_ACTION_TYPE_END;
5914 	flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5915 				&attr, items, actions, false, &error);
5916 	if (!flow_idx) {
5917 		DRV_LOG(DEBUG,
5918 			"Failed to create ctrl flow: rte_errno(%d),"
5919 			" type(%d), message(%s)",
5920 			rte_errno, error.type,
5921 			error.message ? error.message : " (no stated reason)");
5922 		return -rte_errno;
5923 	}
5924 	return 0;
5925 }
5926 
5927 /**
5928  * Enable a control flow configured from the control plane.
5929  *
5930  * @param dev
5931  *   Pointer to Ethernet device.
5932  * @param eth_spec
5933  *   An Ethernet flow spec to apply.
5934  * @param eth_mask
5935  *   An Ethernet flow mask to apply.
5936  * @param vlan_spec
5937  *   A VLAN flow spec to apply.
5938  * @param vlan_mask
5939  *   A VLAN flow mask to apply.
5940  *
5941  * @return
5942  *   0 on success, a negative errno value otherwise and rte_errno is set.
5943  */
5944 int
5945 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
5946 		    struct rte_flow_item_eth *eth_spec,
5947 		    struct rte_flow_item_eth *eth_mask,
5948 		    struct rte_flow_item_vlan *vlan_spec,
5949 		    struct rte_flow_item_vlan *vlan_mask)
5950 {
5951 	struct mlx5_priv *priv = dev->data->dev_private;
5952 	const struct rte_flow_attr attr = {
5953 		.ingress = 1,
5954 		.priority = MLX5_FLOW_PRIO_RSVD,
5955 	};
5956 	struct rte_flow_item items[] = {
5957 		{
5958 			.type = RTE_FLOW_ITEM_TYPE_ETH,
5959 			.spec = eth_spec,
5960 			.last = NULL,
5961 			.mask = eth_mask,
5962 		},
5963 		{
5964 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
5965 					      RTE_FLOW_ITEM_TYPE_END,
5966 			.spec = vlan_spec,
5967 			.last = NULL,
5968 			.mask = vlan_mask,
5969 		},
5970 		{
5971 			.type = RTE_FLOW_ITEM_TYPE_END,
5972 		},
5973 	};
5974 	uint16_t queue[priv->reta_idx_n];
5975 	struct rte_flow_action_rss action_rss = {
5976 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
5977 		.level = 0,
5978 		.types = priv->rss_conf.rss_hf,
5979 		.key_len = priv->rss_conf.rss_key_len,
5980 		.queue_num = priv->reta_idx_n,
5981 		.key = priv->rss_conf.rss_key,
5982 		.queue = queue,
5983 	};
5984 	struct rte_flow_action actions[] = {
5985 		{
5986 			.type = RTE_FLOW_ACTION_TYPE_RSS,
5987 			.conf = &action_rss,
5988 		},
5989 		{
5990 			.type = RTE_FLOW_ACTION_TYPE_END,
5991 		},
5992 	};
5993 	uint32_t flow_idx;
5994 	struct rte_flow_error error;
5995 	unsigned int i;
5996 
5997 	if (!priv->reta_idx_n || !priv->rxqs_n) {
5998 		return 0;
5999 	}
6000 	if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
6001 		action_rss.types = 0;
6002 	for (i = 0; i != priv->reta_idx_n; ++i)
6003 		queue[i] = (*priv->reta_idx)[i];
6004 	flow_idx = flow_list_create(dev, &priv->ctrl_flows,
6005 				&attr, items, actions, false, &error);
6006 	if (!flow_idx)
6007 		return -rte_errno;
6008 	return 0;
6009 }
6010 
6011 /**
6012  * Enable a flow control configured from the control plane.
6013  *
6014  * @param dev
6015  *   Pointer to Ethernet device.
6016  * @param eth_spec
6017  *   An Ethernet flow spec to apply.
6018  * @param eth_mask
6019  *   An Ethernet flow mask to apply.
6020  *
6021  * @return
6022  *   0 on success, a negative errno value otherwise and rte_errno is set.
6023  */
6024 int
6025 mlx5_ctrl_flow(struct rte_eth_dev *dev,
6026 	       struct rte_flow_item_eth *eth_spec,
6027 	       struct rte_flow_item_eth *eth_mask)
6028 {
6029 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
6030 }
6031 
6032 /**
6033  * Create default miss flow rule matching lacp traffic
6034  *
6035  * @param dev
6036  *   Pointer to Ethernet device.
6037  * @param eth_spec
6038  *   An Ethernet flow spec to apply.
6039  *
6040  * @return
6041  *   0 on success, a negative errno value otherwise and rte_errno is set.
6042  */
6043 int
6044 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
6045 {
6046 	struct mlx5_priv *priv = dev->data->dev_private;
6047 	/*
6048 	 * The LACP matching is done by only using ether type since using
6049 	 * a multicast dst mac causes kernel to give low priority to this flow.
6050 	 */
6051 	static const struct rte_flow_item_eth lacp_spec = {
6052 		.type = RTE_BE16(0x8809),
6053 	};
6054 	static const struct rte_flow_item_eth lacp_mask = {
6055 		.type = 0xffff,
6056 	};
6057 	const struct rte_flow_attr attr = {
6058 		.ingress = 1,
6059 	};
6060 	struct rte_flow_item items[] = {
6061 		{
6062 			.type = RTE_FLOW_ITEM_TYPE_ETH,
6063 			.spec = &lacp_spec,
6064 			.mask = &lacp_mask,
6065 		},
6066 		{
6067 			.type = RTE_FLOW_ITEM_TYPE_END,
6068 		},
6069 	};
6070 	struct rte_flow_action actions[] = {
6071 		{
6072 			.type = (enum rte_flow_action_type)
6073 				MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
6074 		},
6075 		{
6076 			.type = RTE_FLOW_ACTION_TYPE_END,
6077 		},
6078 	};
6079 	struct rte_flow_error error;
6080 	uint32_t flow_idx = flow_list_create(dev, &priv->ctrl_flows,
6081 				&attr, items, actions, false, &error);
6082 
6083 	if (!flow_idx)
6084 		return -rte_errno;
6085 	return 0;
6086 }
6087 
6088 /**
6089  * Destroy a flow.
6090  *
6091  * @see rte_flow_destroy()
6092  * @see rte_flow_ops
6093  */
6094 int
6095 mlx5_flow_destroy(struct rte_eth_dev *dev,
6096 		  struct rte_flow *flow,
6097 		  struct rte_flow_error *error __rte_unused)
6098 {
6099 	struct mlx5_priv *priv = dev->data->dev_private;
6100 
6101 	flow_list_destroy(dev, &priv->flows, (uintptr_t)(void *)flow);
6102 	return 0;
6103 }
6104 
6105 /**
6106  * Destroy all flows.
6107  *
6108  * @see rte_flow_flush()
6109  * @see rte_flow_ops
6110  */
6111 int
6112 mlx5_flow_flush(struct rte_eth_dev *dev,
6113 		struct rte_flow_error *error __rte_unused)
6114 {
6115 	struct mlx5_priv *priv = dev->data->dev_private;
6116 
6117 	mlx5_flow_list_flush(dev, &priv->flows, false);
6118 	return 0;
6119 }
6120 
6121 /**
6122  * Isolated mode.
6123  *
6124  * @see rte_flow_isolate()
6125  * @see rte_flow_ops
6126  */
6127 int
6128 mlx5_flow_isolate(struct rte_eth_dev *dev,
6129 		  int enable,
6130 		  struct rte_flow_error *error)
6131 {
6132 	struct mlx5_priv *priv = dev->data->dev_private;
6133 
6134 	if (dev->data->dev_started) {
6135 		rte_flow_error_set(error, EBUSY,
6136 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6137 				   NULL,
6138 				   "port must be stopped first");
6139 		return -rte_errno;
6140 	}
6141 	priv->isolated = !!enable;
6142 	if (enable)
6143 		dev->dev_ops = &mlx5_dev_ops_isolate;
6144 	else
6145 		dev->dev_ops = &mlx5_dev_ops;
6146 
6147 	dev->rx_descriptor_status = mlx5_rx_descriptor_status;
6148 	dev->tx_descriptor_status = mlx5_tx_descriptor_status;
6149 
6150 	return 0;
6151 }
6152 
6153 /**
6154  * Query a flow.
6155  *
6156  * @see rte_flow_query()
6157  * @see rte_flow_ops
6158  */
6159 static int
6160 flow_drv_query(struct rte_eth_dev *dev,
6161 	       uint32_t flow_idx,
6162 	       const struct rte_flow_action *actions,
6163 	       void *data,
6164 	       struct rte_flow_error *error)
6165 {
6166 	struct mlx5_priv *priv = dev->data->dev_private;
6167 	const struct mlx5_flow_driver_ops *fops;
6168 	struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
6169 					       [MLX5_IPOOL_RTE_FLOW],
6170 					       flow_idx);
6171 	enum mlx5_flow_drv_type ftype;
6172 
6173 	if (!flow) {
6174 		return rte_flow_error_set(error, ENOENT,
6175 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6176 			  NULL,
6177 			  "invalid flow handle");
6178 	}
6179 	ftype = flow->drv_type;
6180 	MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
6181 	fops = flow_get_drv_ops(ftype);
6182 
6183 	return fops->query(dev, flow, actions, data, error);
6184 }
6185 
6186 /**
6187  * Query a flow.
6188  *
6189  * @see rte_flow_query()
6190  * @see rte_flow_ops
6191  */
6192 int
6193 mlx5_flow_query(struct rte_eth_dev *dev,
6194 		struct rte_flow *flow,
6195 		const struct rte_flow_action *actions,
6196 		void *data,
6197 		struct rte_flow_error *error)
6198 {
6199 	int ret;
6200 
6201 	ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
6202 			     error);
6203 	if (ret < 0)
6204 		return ret;
6205 	return 0;
6206 }
6207 
6208 /**
6209  * Manage filter operations.
6210  *
6211  * @param dev
6212  *   Pointer to Ethernet device structure.
6213  * @param filter_type
6214  *   Filter type.
6215  * @param filter_op
6216  *   Operation to perform.
6217  * @param arg
6218  *   Pointer to operation-specific structure.
6219  *
6220  * @return
6221  *   0 on success, a negative errno value otherwise and rte_errno is set.
6222  */
6223 int
6224 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
6225 		     enum rte_filter_type filter_type,
6226 		     enum rte_filter_op filter_op,
6227 		     void *arg)
6228 {
6229 	switch (filter_type) {
6230 	case RTE_ETH_FILTER_GENERIC:
6231 		if (filter_op != RTE_ETH_FILTER_GET) {
6232 			rte_errno = EINVAL;
6233 			return -rte_errno;
6234 		}
6235 		*(const void **)arg = &mlx5_flow_ops;
6236 		return 0;
6237 	default:
6238 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
6239 			dev->data->port_id, filter_type);
6240 		rte_errno = ENOTSUP;
6241 		return -rte_errno;
6242 	}
6243 	return 0;
6244 }
6245 
6246 /**
6247  * Create the needed meter and suffix tables.
6248  *
6249  * @param[in] dev
6250  *   Pointer to Ethernet device.
6251  * @param[in] fm
6252  *   Pointer to the flow meter.
6253  *
6254  * @return
6255  *   Pointer to table set on success, NULL otherwise.
6256  */
6257 struct mlx5_meter_domains_infos *
6258 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
6259 			  const struct mlx5_flow_meter *fm)
6260 {
6261 	const struct mlx5_flow_driver_ops *fops;
6262 
6263 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6264 	return fops->create_mtr_tbls(dev, fm);
6265 }
6266 
6267 /**
6268  * Destroy the meter table set.
6269  *
6270  * @param[in] dev
6271  *   Pointer to Ethernet device.
6272  * @param[in] tbl
6273  *   Pointer to the meter table set.
6274  *
6275  * @return
6276  *   0 on success.
6277  */
6278 int
6279 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
6280 			   struct mlx5_meter_domains_infos *tbls)
6281 {
6282 	const struct mlx5_flow_driver_ops *fops;
6283 
6284 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6285 	return fops->destroy_mtr_tbls(dev, tbls);
6286 }
6287 
6288 /**
6289  * Create policer rules.
6290  *
6291  * @param[in] dev
6292  *   Pointer to Ethernet device.
6293  * @param[in] fm
6294  *   Pointer to flow meter structure.
6295  * @param[in] attr
6296  *   Pointer to flow attributes.
6297  *
6298  * @return
6299  *   0 on success, -1 otherwise.
6300  */
6301 int
6302 mlx5_flow_create_policer_rules(struct rte_eth_dev *dev,
6303 			       struct mlx5_flow_meter *fm,
6304 			       const struct rte_flow_attr *attr)
6305 {
6306 	const struct mlx5_flow_driver_ops *fops;
6307 
6308 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6309 	return fops->create_policer_rules(dev, fm, attr);
6310 }
6311 
6312 /**
6313  * Destroy policer rules.
6314  *
6315  * @param[in] fm
6316  *   Pointer to flow meter structure.
6317  * @param[in] attr
6318  *   Pointer to flow attributes.
6319  *
6320  * @return
6321  *   0 on success, -1 otherwise.
6322  */
6323 int
6324 mlx5_flow_destroy_policer_rules(struct rte_eth_dev *dev,
6325 				struct mlx5_flow_meter *fm,
6326 				const struct rte_flow_attr *attr)
6327 {
6328 	const struct mlx5_flow_driver_ops *fops;
6329 
6330 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6331 	return fops->destroy_policer_rules(dev, fm, attr);
6332 }
6333 
6334 /**
6335  * Allocate a counter.
6336  *
6337  * @param[in] dev
6338  *   Pointer to Ethernet device structure.
6339  *
6340  * @return
6341  *   Index to allocated counter  on success, 0 otherwise.
6342  */
6343 uint32_t
6344 mlx5_counter_alloc(struct rte_eth_dev *dev)
6345 {
6346 	const struct mlx5_flow_driver_ops *fops;
6347 	struct rte_flow_attr attr = { .transfer = 0 };
6348 
6349 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6350 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6351 		return fops->counter_alloc(dev);
6352 	}
6353 	DRV_LOG(ERR,
6354 		"port %u counter allocate is not supported.",
6355 		 dev->data->port_id);
6356 	return 0;
6357 }
6358 
6359 /**
6360  * Free a counter.
6361  *
6362  * @param[in] dev
6363  *   Pointer to Ethernet device structure.
6364  * @param[in] cnt
6365  *   Index to counter to be free.
6366  */
6367 void
6368 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
6369 {
6370 	const struct mlx5_flow_driver_ops *fops;
6371 	struct rte_flow_attr attr = { .transfer = 0 };
6372 
6373 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6374 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6375 		fops->counter_free(dev, cnt);
6376 		return;
6377 	}
6378 	DRV_LOG(ERR,
6379 		"port %u counter free is not supported.",
6380 		 dev->data->port_id);
6381 }
6382 
6383 /**
6384  * Query counter statistics.
6385  *
6386  * @param[in] dev
6387  *   Pointer to Ethernet device structure.
6388  * @param[in] cnt
6389  *   Index to counter to query.
6390  * @param[in] clear
6391  *   Set to clear counter statistics.
6392  * @param[out] pkts
6393  *   The counter hits packets number to save.
6394  * @param[out] bytes
6395  *   The counter hits bytes number to save.
6396  *
6397  * @return
6398  *   0 on success, a negative errno value otherwise.
6399  */
6400 int
6401 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
6402 		   bool clear, uint64_t *pkts, uint64_t *bytes)
6403 {
6404 	const struct mlx5_flow_driver_ops *fops;
6405 	struct rte_flow_attr attr = { .transfer = 0 };
6406 
6407 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6408 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6409 		return fops->counter_query(dev, cnt, clear, pkts, bytes);
6410 	}
6411 	DRV_LOG(ERR,
6412 		"port %u counter query is not supported.",
6413 		 dev->data->port_id);
6414 	return -ENOTSUP;
6415 }
6416 
6417 /**
6418  * Allocate a new memory for the counter values wrapped by all the needed
6419  * management.
6420  *
6421  * @param[in] sh
6422  *   Pointer to mlx5_dev_ctx_shared object.
6423  *
6424  * @return
6425  *   0 on success, a negative errno value otherwise.
6426  */
6427 static int
6428 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh)
6429 {
6430 	struct mlx5_devx_mkey_attr mkey_attr;
6431 	struct mlx5_counter_stats_mem_mng *mem_mng;
6432 	volatile struct flow_counter_stats *raw_data;
6433 	int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES;
6434 	int size = (sizeof(struct flow_counter_stats) *
6435 			MLX5_COUNTERS_PER_POOL +
6436 			sizeof(struct mlx5_counter_stats_raw)) * raws_n +
6437 			sizeof(struct mlx5_counter_stats_mem_mng);
6438 	size_t pgsize = rte_mem_page_size();
6439 	uint8_t *mem;
6440 	int i;
6441 
6442 	if (pgsize == (size_t)-1) {
6443 		DRV_LOG(ERR, "Failed to get mem page size");
6444 		rte_errno = ENOMEM;
6445 		return -ENOMEM;
6446 	}
6447 	mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY);
6448 	if (!mem) {
6449 		rte_errno = ENOMEM;
6450 		return -ENOMEM;
6451 	}
6452 	mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1;
6453 	size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n;
6454 	mem_mng->umem = mlx5_os_umem_reg(sh->ctx, mem, size,
6455 						 IBV_ACCESS_LOCAL_WRITE);
6456 	if (!mem_mng->umem) {
6457 		rte_errno = errno;
6458 		mlx5_free(mem);
6459 		return -rte_errno;
6460 	}
6461 	mkey_attr.addr = (uintptr_t)mem;
6462 	mkey_attr.size = size;
6463 	mkey_attr.umem_id = mlx5_os_get_umem_id(mem_mng->umem);
6464 	mkey_attr.pd = sh->pdn;
6465 	mkey_attr.log_entity_size = 0;
6466 	mkey_attr.pg_access = 0;
6467 	mkey_attr.klm_array = NULL;
6468 	mkey_attr.klm_num = 0;
6469 	mkey_attr.relaxed_ordering_write = sh->cmng.relaxed_ordering_write;
6470 	mkey_attr.relaxed_ordering_read = sh->cmng.relaxed_ordering_read;
6471 	mem_mng->dm = mlx5_devx_cmd_mkey_create(sh->ctx, &mkey_attr);
6472 	if (!mem_mng->dm) {
6473 		mlx5_os_umem_dereg(mem_mng->umem);
6474 		rte_errno = errno;
6475 		mlx5_free(mem);
6476 		return -rte_errno;
6477 	}
6478 	mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size);
6479 	raw_data = (volatile struct flow_counter_stats *)mem;
6480 	for (i = 0; i < raws_n; ++i) {
6481 		mem_mng->raws[i].mem_mng = mem_mng;
6482 		mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL;
6483 	}
6484 	for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i)
6485 		LIST_INSERT_HEAD(&sh->cmng.free_stat_raws,
6486 				 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i,
6487 				 next);
6488 	LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next);
6489 	sh->cmng.mem_mng = mem_mng;
6490 	return 0;
6491 }
6492 
6493 /**
6494  * Set the statistic memory to the new counter pool.
6495  *
6496  * @param[in] sh
6497  *   Pointer to mlx5_dev_ctx_shared object.
6498  * @param[in] pool
6499  *   Pointer to the pool to set the statistic memory.
6500  *
6501  * @return
6502  *   0 on success, a negative errno value otherwise.
6503  */
6504 static int
6505 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh,
6506 			       struct mlx5_flow_counter_pool *pool)
6507 {
6508 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6509 	/* Resize statistic memory once used out. */
6510 	if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) &&
6511 	    mlx5_flow_create_counter_stat_mem_mng(sh)) {
6512 		DRV_LOG(ERR, "Cannot resize counter stat mem.");
6513 		return -1;
6514 	}
6515 	rte_spinlock_lock(&pool->sl);
6516 	pool->raw = cmng->mem_mng->raws + pool->index %
6517 		    MLX5_CNT_CONTAINER_RESIZE;
6518 	rte_spinlock_unlock(&pool->sl);
6519 	pool->raw_hw = NULL;
6520 	return 0;
6521 }
6522 
6523 #define MLX5_POOL_QUERY_FREQ_US 1000000
6524 
6525 /**
6526  * Set the periodic procedure for triggering asynchronous batch queries for all
6527  * the counter pools.
6528  *
6529  * @param[in] sh
6530  *   Pointer to mlx5_dev_ctx_shared object.
6531  */
6532 void
6533 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
6534 {
6535 	uint32_t pools_n, us;
6536 
6537 	pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED);
6538 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
6539 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
6540 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
6541 		sh->cmng.query_thread_on = 0;
6542 		DRV_LOG(ERR, "Cannot reinitialize query alarm");
6543 	} else {
6544 		sh->cmng.query_thread_on = 1;
6545 	}
6546 }
6547 
6548 /**
6549  * The periodic procedure for triggering asynchronous batch queries for all the
6550  * counter pools. This function is probably called by the host thread.
6551  *
6552  * @param[in] arg
6553  *   The parameter for the alarm process.
6554  */
6555 void
6556 mlx5_flow_query_alarm(void *arg)
6557 {
6558 	struct mlx5_dev_ctx_shared *sh = arg;
6559 	int ret;
6560 	uint16_t pool_index = sh->cmng.pool_index;
6561 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6562 	struct mlx5_flow_counter_pool *pool;
6563 	uint16_t n_valid;
6564 
6565 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
6566 		goto set_alarm;
6567 	rte_spinlock_lock(&cmng->pool_update_sl);
6568 	pool = cmng->pools[pool_index];
6569 	n_valid = cmng->n_valid;
6570 	rte_spinlock_unlock(&cmng->pool_update_sl);
6571 	/* Set the statistic memory to the new created pool. */
6572 	if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool)))
6573 		goto set_alarm;
6574 	if (pool->raw_hw)
6575 		/* There is a pool query in progress. */
6576 		goto set_alarm;
6577 	pool->raw_hw =
6578 		LIST_FIRST(&sh->cmng.free_stat_raws);
6579 	if (!pool->raw_hw)
6580 		/* No free counter statistics raw memory. */
6581 		goto set_alarm;
6582 	/*
6583 	 * Identify the counters released between query trigger and query
6584 	 * handle more efficiently. The counter released in this gap period
6585 	 * should wait for a new round of query as the new arrived packets
6586 	 * will not be taken into account.
6587 	 */
6588 	pool->query_gen++;
6589 	ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0,
6590 					       MLX5_COUNTERS_PER_POOL,
6591 					       NULL, NULL,
6592 					       pool->raw_hw->mem_mng->dm->id,
6593 					       (void *)(uintptr_t)
6594 					       pool->raw_hw->data,
6595 					       sh->devx_comp,
6596 					       (uint64_t)(uintptr_t)pool);
6597 	if (ret) {
6598 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
6599 			" %d", pool->min_dcs->id);
6600 		pool->raw_hw = NULL;
6601 		goto set_alarm;
6602 	}
6603 	LIST_REMOVE(pool->raw_hw, next);
6604 	sh->cmng.pending_queries++;
6605 	pool_index++;
6606 	if (pool_index >= n_valid)
6607 		pool_index = 0;
6608 set_alarm:
6609 	sh->cmng.pool_index = pool_index;
6610 	mlx5_set_query_alarm(sh);
6611 }
6612 
6613 /**
6614  * Check and callback event for new aged flow in the counter pool
6615  *
6616  * @param[in] sh
6617  *   Pointer to mlx5_dev_ctx_shared object.
6618  * @param[in] pool
6619  *   Pointer to Current counter pool.
6620  */
6621 static void
6622 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
6623 		   struct mlx5_flow_counter_pool *pool)
6624 {
6625 	struct mlx5_priv *priv;
6626 	struct mlx5_flow_counter *cnt;
6627 	struct mlx5_age_info *age_info;
6628 	struct mlx5_age_param *age_param;
6629 	struct mlx5_counter_stats_raw *cur = pool->raw_hw;
6630 	struct mlx5_counter_stats_raw *prev = pool->raw;
6631 	const uint64_t curr_time = MLX5_CURR_TIME_SEC;
6632 	const uint32_t time_delta = curr_time - pool->time_of_last_age_check;
6633 	uint16_t expected = AGE_CANDIDATE;
6634 	uint32_t i;
6635 
6636 	pool->time_of_last_age_check = curr_time;
6637 	for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
6638 		cnt = MLX5_POOL_GET_CNT(pool, i);
6639 		age_param = MLX5_CNT_TO_AGE(cnt);
6640 		if (__atomic_load_n(&age_param->state,
6641 				    __ATOMIC_RELAXED) != AGE_CANDIDATE)
6642 			continue;
6643 		if (cur->data[i].hits != prev->data[i].hits) {
6644 			__atomic_store_n(&age_param->sec_since_last_hit, 0,
6645 					 __ATOMIC_RELAXED);
6646 			continue;
6647 		}
6648 		if (__atomic_add_fetch(&age_param->sec_since_last_hit,
6649 				       time_delta,
6650 				       __ATOMIC_RELAXED) <= age_param->timeout)
6651 			continue;
6652 		/**
6653 		 * Hold the lock first, or if between the
6654 		 * state AGE_TMOUT and tailq operation the
6655 		 * release happened, the release procedure
6656 		 * may delete a non-existent tailq node.
6657 		 */
6658 		priv = rte_eth_devices[age_param->port_id].data->dev_private;
6659 		age_info = GET_PORT_AGE_INFO(priv);
6660 		rte_spinlock_lock(&age_info->aged_sl);
6661 		if (__atomic_compare_exchange_n(&age_param->state, &expected,
6662 						AGE_TMOUT, false,
6663 						__ATOMIC_RELAXED,
6664 						__ATOMIC_RELAXED)) {
6665 			TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
6666 			MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
6667 		}
6668 		rte_spinlock_unlock(&age_info->aged_sl);
6669 	}
6670 	mlx5_age_event_prepare(sh);
6671 }
6672 
6673 /**
6674  * Handler for the HW respond about ready values from an asynchronous batch
6675  * query. This function is probably called by the host thread.
6676  *
6677  * @param[in] sh
6678  *   The pointer to the shared device context.
6679  * @param[in] async_id
6680  *   The Devx async ID.
6681  * @param[in] status
6682  *   The status of the completion.
6683  */
6684 void
6685 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
6686 				  uint64_t async_id, int status)
6687 {
6688 	struct mlx5_flow_counter_pool *pool =
6689 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
6690 	struct mlx5_counter_stats_raw *raw_to_free;
6691 	uint8_t query_gen = pool->query_gen ^ 1;
6692 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6693 	enum mlx5_counter_type cnt_type =
6694 		pool->is_aged ? MLX5_COUNTER_TYPE_AGE :
6695 				MLX5_COUNTER_TYPE_ORIGIN;
6696 
6697 	if (unlikely(status)) {
6698 		raw_to_free = pool->raw_hw;
6699 	} else {
6700 		raw_to_free = pool->raw;
6701 		if (pool->is_aged)
6702 			mlx5_flow_aging_check(sh, pool);
6703 		rte_spinlock_lock(&pool->sl);
6704 		pool->raw = pool->raw_hw;
6705 		rte_spinlock_unlock(&pool->sl);
6706 		/* Be sure the new raw counters data is updated in memory. */
6707 		rte_io_wmb();
6708 		if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
6709 			rte_spinlock_lock(&cmng->csl[cnt_type]);
6710 			TAILQ_CONCAT(&cmng->counters[cnt_type],
6711 				     &pool->counters[query_gen], next);
6712 			rte_spinlock_unlock(&cmng->csl[cnt_type]);
6713 		}
6714 	}
6715 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
6716 	pool->raw_hw = NULL;
6717 	sh->cmng.pending_queries--;
6718 }
6719 
6720 static int
6721 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table,
6722 		    const struct flow_grp_info *grp_info,
6723 		    struct rte_flow_error *error)
6724 {
6725 	if (grp_info->transfer && grp_info->external &&
6726 	    grp_info->fdb_def_rule) {
6727 		if (group == UINT32_MAX)
6728 			return rte_flow_error_set
6729 						(error, EINVAL,
6730 						 RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
6731 						 NULL,
6732 						 "group index not supported");
6733 		*table = group + 1;
6734 	} else {
6735 		*table = group;
6736 	}
6737 	DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table);
6738 	return 0;
6739 }
6740 
6741 /**
6742  * Translate the rte_flow group index to HW table value.
6743  *
6744  * If tunnel offload is disabled, all group ids converted to flow table
6745  * id using the standard method.
6746  * If tunnel offload is enabled, group id can be converted using the
6747  * standard or tunnel conversion method. Group conversion method
6748  * selection depends on flags in `grp_info` parameter:
6749  * - Internal (grp_info.external == 0) groups conversion uses the
6750  *   standard method.
6751  * - Group ids in JUMP action converted with the tunnel conversion.
6752  * - Group id in rule attribute conversion depends on a rule type and
6753  *   group id value:
6754  *   ** non zero group attributes converted with the tunnel method
6755  *   ** zero group attribute in non-tunnel rule is converted using the
6756  *      standard method - there's only one root table
6757  *   ** zero group attribute in steer tunnel rule is converted with the
6758  *      standard method - single root table
6759  *   ** zero group attribute in match tunnel rule is a special OvS
6760  *      case: that value is used for portability reasons. That group
6761  *      id is converted with the tunnel conversion method.
6762  *
6763  * @param[in] dev
6764  *   Port device
6765  * @param[in] tunnel
6766  *   PMD tunnel offload object
6767  * @param[in] group
6768  *   rte_flow group index value.
6769  * @param[out] table
6770  *   HW table value.
6771  * @param[in] grp_info
6772  *   flags used for conversion
6773  * @param[out] error
6774  *   Pointer to error structure.
6775  *
6776  * @return
6777  *   0 on success, a negative errno value otherwise and rte_errno is set.
6778  */
6779 int
6780 mlx5_flow_group_to_table(struct rte_eth_dev *dev,
6781 			 const struct mlx5_flow_tunnel *tunnel,
6782 			 uint32_t group, uint32_t *table,
6783 			 const struct flow_grp_info *grp_info,
6784 			 struct rte_flow_error *error)
6785 {
6786 	int ret;
6787 	bool standard_translation;
6788 
6789 	if (!grp_info->skip_scale && grp_info->external &&
6790 	    group < MLX5_MAX_TABLES_EXTERNAL)
6791 		group *= MLX5_FLOW_TABLE_FACTOR;
6792 	if (is_tunnel_offload_active(dev)) {
6793 		standard_translation = !grp_info->external ||
6794 					grp_info->std_tbl_fix;
6795 	} else {
6796 		standard_translation = true;
6797 	}
6798 	DRV_LOG(DEBUG,
6799 		"port %u group=%u transfer=%d external=%d fdb_def_rule=%d translate=%s",
6800 		dev->data->port_id, group, grp_info->transfer,
6801 		grp_info->external, grp_info->fdb_def_rule,
6802 		standard_translation ? "STANDARD" : "TUNNEL");
6803 	if (standard_translation)
6804 		ret = flow_group_to_table(dev->data->port_id, group, table,
6805 					  grp_info, error);
6806 	else
6807 		ret = tunnel_flow_group_to_flow_table(dev, tunnel, group,
6808 						      table, error);
6809 
6810 	return ret;
6811 }
6812 
6813 /**
6814  * Discover availability of metadata reg_c's.
6815  *
6816  * Iteratively use test flows to check availability.
6817  *
6818  * @param[in] dev
6819  *   Pointer to the Ethernet device structure.
6820  *
6821  * @return
6822  *   0 on success, a negative errno value otherwise and rte_errno is set.
6823  */
6824 int
6825 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
6826 {
6827 	struct mlx5_priv *priv = dev->data->dev_private;
6828 	struct mlx5_dev_config *config = &priv->config;
6829 	enum modify_reg idx;
6830 	int n = 0;
6831 
6832 	/* reg_c[0] and reg_c[1] are reserved. */
6833 	config->flow_mreg_c[n++] = REG_C_0;
6834 	config->flow_mreg_c[n++] = REG_C_1;
6835 	/* Discover availability of other reg_c's. */
6836 	for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
6837 		struct rte_flow_attr attr = {
6838 			.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
6839 			.priority = MLX5_FLOW_PRIO_RSVD,
6840 			.ingress = 1,
6841 		};
6842 		struct rte_flow_item items[] = {
6843 			[0] = {
6844 				.type = RTE_FLOW_ITEM_TYPE_END,
6845 			},
6846 		};
6847 		struct rte_flow_action actions[] = {
6848 			[0] = {
6849 				.type = (enum rte_flow_action_type)
6850 					MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
6851 				.conf = &(struct mlx5_flow_action_copy_mreg){
6852 					.src = REG_C_1,
6853 					.dst = idx,
6854 				},
6855 			},
6856 			[1] = {
6857 				.type = RTE_FLOW_ACTION_TYPE_JUMP,
6858 				.conf = &(struct rte_flow_action_jump){
6859 					.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
6860 				},
6861 			},
6862 			[2] = {
6863 				.type = RTE_FLOW_ACTION_TYPE_END,
6864 			},
6865 		};
6866 		uint32_t flow_idx;
6867 		struct rte_flow *flow;
6868 		struct rte_flow_error error;
6869 
6870 		if (!config->dv_flow_en)
6871 			break;
6872 		/* Create internal flow, validation skips copy action. */
6873 		flow_idx = flow_list_create(dev, NULL, &attr, items,
6874 					    actions, false, &error);
6875 		flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
6876 				      flow_idx);
6877 		if (!flow)
6878 			continue;
6879 		config->flow_mreg_c[n++] = idx;
6880 		flow_list_destroy(dev, NULL, flow_idx);
6881 	}
6882 	for (; n < MLX5_MREG_C_NUM; ++n)
6883 		config->flow_mreg_c[n] = REG_NON;
6884 	return 0;
6885 }
6886 
6887 /**
6888  * Dump flow raw hw data to file
6889  *
6890  * @param[in] dev
6891  *    The pointer to Ethernet device.
6892  * @param[in] file
6893  *   A pointer to a file for output.
6894  * @param[out] error
6895  *   Perform verbose error reporting if not NULL. PMDs initialize this
6896  *   structure in case of error only.
6897  * @return
6898  *   0 on success, a nagative value otherwise.
6899  */
6900 int
6901 mlx5_flow_dev_dump(struct rte_eth_dev *dev,
6902 		   FILE *file,
6903 		   struct rte_flow_error *error __rte_unused)
6904 {
6905 	struct mlx5_priv *priv = dev->data->dev_private;
6906 	struct mlx5_dev_ctx_shared *sh = priv->sh;
6907 
6908 	if (!priv->config.dv_flow_en) {
6909 		if (fputs("device dv flow disabled\n", file) <= 0)
6910 			return -errno;
6911 		return -ENOTSUP;
6912 	}
6913 	return mlx5_devx_cmd_flow_dump(sh->fdb_domain, sh->rx_domain,
6914 				       sh->tx_domain, file);
6915 }
6916 
6917 /**
6918  * Get aged-out flows.
6919  *
6920  * @param[in] dev
6921  *   Pointer to the Ethernet device structure.
6922  * @param[in] context
6923  *   The address of an array of pointers to the aged-out flows contexts.
6924  * @param[in] nb_countexts
6925  *   The length of context array pointers.
6926  * @param[out] error
6927  *   Perform verbose error reporting if not NULL. Initialized in case of
6928  *   error only.
6929  *
6930  * @return
6931  *   how many contexts get in success, otherwise negative errno value.
6932  *   if nb_contexts is 0, return the amount of all aged contexts.
6933  *   if nb_contexts is not 0 , return the amount of aged flows reported
6934  *   in the context array.
6935  */
6936 int
6937 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
6938 			uint32_t nb_contexts, struct rte_flow_error *error)
6939 {
6940 	const struct mlx5_flow_driver_ops *fops;
6941 	struct rte_flow_attr attr = { .transfer = 0 };
6942 
6943 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6944 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6945 		return fops->get_aged_flows(dev, contexts, nb_contexts,
6946 						    error);
6947 	}
6948 	DRV_LOG(ERR,
6949 		"port %u get aged flows is not supported.",
6950 		 dev->data->port_id);
6951 	return -ENOTSUP;
6952 }
6953 
6954 /* Wrapper for driver action_validate op callback */
6955 static int
6956 flow_drv_action_validate(struct rte_eth_dev *dev,
6957 			 const struct rte_flow_shared_action_conf *conf,
6958 			 const struct rte_flow_action *action,
6959 			 const struct mlx5_flow_driver_ops *fops,
6960 			 struct rte_flow_error *error)
6961 {
6962 	static const char err_msg[] = "shared action validation unsupported";
6963 
6964 	if (!fops->action_validate) {
6965 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
6966 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
6967 				   NULL, err_msg);
6968 		return -rte_errno;
6969 	}
6970 	return fops->action_validate(dev, conf, action, error);
6971 }
6972 
6973 /**
6974  * Destroys the shared action by handle.
6975  *
6976  * @param dev
6977  *   Pointer to Ethernet device structure.
6978  * @param[in] action
6979  *   Handle for the shared action to be destroyed.
6980  * @param[out] error
6981  *   Perform verbose error reporting if not NULL. PMDs initialize this
6982  *   structure in case of error only.
6983  *
6984  * @return
6985  *   0 on success, a negative errno value otherwise and rte_errno is set.
6986  *
6987  * @note: wrapper for driver action_create op callback.
6988  */
6989 static int
6990 mlx5_shared_action_destroy(struct rte_eth_dev *dev,
6991 			   struct rte_flow_shared_action *action,
6992 			   struct rte_flow_error *error)
6993 {
6994 	static const char err_msg[] = "shared action destruction unsupported";
6995 	struct rte_flow_attr attr = { .transfer = 0 };
6996 	const struct mlx5_flow_driver_ops *fops =
6997 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
6998 
6999 	if (!fops->action_destroy) {
7000 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7001 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7002 				   NULL, err_msg);
7003 		return -rte_errno;
7004 	}
7005 	return fops->action_destroy(dev, action, error);
7006 }
7007 
7008 /* Wrapper for driver action_destroy op callback */
7009 static int
7010 flow_drv_action_update(struct rte_eth_dev *dev,
7011 		       struct rte_flow_shared_action *action,
7012 		       const void *action_conf,
7013 		       const struct mlx5_flow_driver_ops *fops,
7014 		       struct rte_flow_error *error)
7015 {
7016 	static const char err_msg[] = "shared action update unsupported";
7017 
7018 	if (!fops->action_update) {
7019 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7020 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7021 				   NULL, err_msg);
7022 		return -rte_errno;
7023 	}
7024 	return fops->action_update(dev, action, action_conf, error);
7025 }
7026 
7027 /* Wrapper for driver action_destroy op callback */
7028 static int
7029 flow_drv_action_query(struct rte_eth_dev *dev,
7030 		      const struct rte_flow_shared_action *action,
7031 		      void *data,
7032 		      const struct mlx5_flow_driver_ops *fops,
7033 		      struct rte_flow_error *error)
7034 {
7035 	static const char err_msg[] = "shared action query unsupported";
7036 
7037 	if (!fops->action_query) {
7038 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7039 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7040 				   NULL, err_msg);
7041 		return -rte_errno;
7042 	}
7043 	return fops->action_query(dev, action, data, error);
7044 }
7045 
7046 /**
7047  * Create shared action for reuse in multiple flow rules.
7048  *
7049  * @param dev
7050  *   Pointer to Ethernet device structure.
7051  * @param[in] action
7052  *   Action configuration for shared action creation.
7053  * @param[out] error
7054  *   Perform verbose error reporting if not NULL. PMDs initialize this
7055  *   structure in case of error only.
7056  * @return
7057  *   A valid handle in case of success, NULL otherwise and rte_errno is set.
7058  */
7059 static struct rte_flow_shared_action *
7060 mlx5_shared_action_create(struct rte_eth_dev *dev,
7061 			  const struct rte_flow_shared_action_conf *conf,
7062 			  const struct rte_flow_action *action,
7063 			  struct rte_flow_error *error)
7064 {
7065 	static const char err_msg[] = "shared action creation unsupported";
7066 	struct rte_flow_attr attr = { .transfer = 0 };
7067 	const struct mlx5_flow_driver_ops *fops =
7068 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7069 
7070 	if (flow_drv_action_validate(dev, conf, action, fops, error))
7071 		return NULL;
7072 	if (!fops->action_create) {
7073 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7074 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7075 				   NULL, err_msg);
7076 		return NULL;
7077 	}
7078 	return fops->action_create(dev, conf, action, error);
7079 }
7080 
7081 /**
7082  * Updates inplace the shared action configuration pointed by *action* handle
7083  * with the configuration provided as *action* argument.
7084  * The update of the shared action configuration effects all flow rules reusing
7085  * the action via handle.
7086  *
7087  * @param dev
7088  *   Pointer to Ethernet device structure.
7089  * @param[in] shared_action
7090  *   Handle for the shared action to be updated.
7091  * @param[in] action
7092  *   Action specification used to modify the action pointed by handle.
7093  *   *action* should be of same type with the action pointed by the *action*
7094  *   handle argument, otherwise considered as invalid.
7095  * @param[out] error
7096  *   Perform verbose error reporting if not NULL. PMDs initialize this
7097  *   structure in case of error only.
7098  *
7099  * @return
7100  *   0 on success, a negative errno value otherwise and rte_errno is set.
7101  */
7102 static int
7103 mlx5_shared_action_update(struct rte_eth_dev *dev,
7104 		struct rte_flow_shared_action *shared_action,
7105 		const struct rte_flow_action *action,
7106 		struct rte_flow_error *error)
7107 {
7108 	struct rte_flow_attr attr = { .transfer = 0 };
7109 	const struct mlx5_flow_driver_ops *fops =
7110 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7111 	int ret;
7112 
7113 	ret = flow_drv_action_validate(dev, NULL, action, fops, error);
7114 	if (ret)
7115 		return ret;
7116 	return flow_drv_action_update(dev, shared_action, action->conf, fops,
7117 				      error);
7118 }
7119 
7120 /**
7121  * Query the shared action by handle.
7122  *
7123  * This function allows retrieving action-specific data such as counters.
7124  * Data is gathered by special action which may be present/referenced in
7125  * more than one flow rule definition.
7126  *
7127  * \see RTE_FLOW_ACTION_TYPE_COUNT
7128  *
7129  * @param dev
7130  *   Pointer to Ethernet device structure.
7131  * @param[in] action
7132  *   Handle for the shared action to query.
7133  * @param[in, out] data
7134  *   Pointer to storage for the associated query data type.
7135  * @param[out] error
7136  *   Perform verbose error reporting if not NULL. PMDs initialize this
7137  *   structure in case of error only.
7138  *
7139  * @return
7140  *   0 on success, a negative errno value otherwise and rte_errno is set.
7141  */
7142 static int
7143 mlx5_shared_action_query(struct rte_eth_dev *dev,
7144 			 const struct rte_flow_shared_action *action,
7145 			 void *data,
7146 			 struct rte_flow_error *error)
7147 {
7148 	struct rte_flow_attr attr = { .transfer = 0 };
7149 	const struct mlx5_flow_driver_ops *fops =
7150 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7151 
7152 	return flow_drv_action_query(dev, action, data, fops, error);
7153 }
7154 
7155 /**
7156  * Destroy all shared actions.
7157  *
7158  * @param dev
7159  *   Pointer to Ethernet device.
7160  *
7161  * @return
7162  *   0 on success, a negative errno value otherwise and rte_errno is set.
7163  */
7164 int
7165 mlx5_shared_action_flush(struct rte_eth_dev *dev)
7166 {
7167 	struct rte_flow_error error;
7168 	struct mlx5_priv *priv = dev->data->dev_private;
7169 	struct mlx5_shared_action_rss *action;
7170 	int ret = 0;
7171 	uint32_t idx;
7172 
7173 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
7174 		      priv->rss_shared_actions, idx, action, next) {
7175 		ret |= mlx5_shared_action_destroy(dev,
7176 		       (struct rte_flow_shared_action *)(uintptr_t)idx, &error);
7177 	}
7178 	return ret;
7179 }
7180 
7181 #ifndef HAVE_MLX5DV_DR
7182 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1))
7183 #else
7184 #define MLX5_DOMAIN_SYNC_FLOW \
7185 	(MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW)
7186 #endif
7187 
7188 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains)
7189 {
7190 	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
7191 	const struct mlx5_flow_driver_ops *fops;
7192 	int ret;
7193 	struct rte_flow_attr attr = { .transfer = 0 };
7194 
7195 	fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7196 	ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW);
7197 	if (ret > 0)
7198 		ret = -ret;
7199 	return ret;
7200 }
7201 
7202 /**
7203  * tunnel offload functionalilty is defined for DV environment only
7204  */
7205 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
7206 __extension__
7207 union tunnel_offload_mark {
7208 	uint32_t val;
7209 	struct {
7210 		uint32_t app_reserve:8;
7211 		uint32_t table_id:15;
7212 		uint32_t transfer:1;
7213 		uint32_t _unused_:8;
7214 	};
7215 };
7216 
7217 static bool
7218 mlx5_access_tunnel_offload_db
7219 	(struct rte_eth_dev *dev,
7220 	 bool (*match)(struct rte_eth_dev *,
7221 		       struct mlx5_flow_tunnel *, const void *),
7222 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
7223 	 void (*miss)(struct rte_eth_dev *, void *),
7224 	 void *ctx, bool lock_op);
7225 
7226 static int
7227 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
7228 			     struct rte_flow *flow,
7229 			     const struct rte_flow_attr *attr,
7230 			     const struct rte_flow_action *app_actions,
7231 			     uint32_t flow_idx,
7232 			     struct tunnel_default_miss_ctx *ctx,
7233 			     struct rte_flow_error *error)
7234 {
7235 	struct mlx5_priv *priv = dev->data->dev_private;
7236 	struct mlx5_flow *dev_flow;
7237 	struct rte_flow_attr miss_attr = *attr;
7238 	const struct mlx5_flow_tunnel *tunnel = app_actions[0].conf;
7239 	const struct rte_flow_item miss_items[2] = {
7240 		{
7241 			.type = RTE_FLOW_ITEM_TYPE_ETH,
7242 			.spec = NULL,
7243 			.last = NULL,
7244 			.mask = NULL
7245 		},
7246 		{
7247 			.type = RTE_FLOW_ITEM_TYPE_END,
7248 			.spec = NULL,
7249 			.last = NULL,
7250 			.mask = NULL
7251 		}
7252 	};
7253 	union tunnel_offload_mark mark_id;
7254 	struct rte_flow_action_mark miss_mark;
7255 	struct rte_flow_action miss_actions[3] = {
7256 		[0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark },
7257 		[2] = { .type = RTE_FLOW_ACTION_TYPE_END,  .conf = NULL }
7258 	};
7259 	const struct rte_flow_action_jump *jump_data;
7260 	uint32_t i, flow_table = 0; /* prevent compilation warning */
7261 	struct flow_grp_info grp_info = {
7262 		.external = 1,
7263 		.transfer = attr->transfer,
7264 		.fdb_def_rule = !!priv->fdb_def_rule,
7265 		.std_tbl_fix = 0,
7266 	};
7267 	int ret;
7268 
7269 	if (!attr->transfer) {
7270 		uint32_t q_size;
7271 
7272 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS;
7273 		q_size = priv->reta_idx_n * sizeof(ctx->queue[0]);
7274 		ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size,
7275 					 0, SOCKET_ID_ANY);
7276 		if (!ctx->queue)
7277 			return rte_flow_error_set
7278 				(error, ENOMEM,
7279 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
7280 				NULL, "invalid default miss RSS");
7281 		ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
7282 		ctx->action_rss.level = 0,
7283 		ctx->action_rss.types = priv->rss_conf.rss_hf,
7284 		ctx->action_rss.key_len = priv->rss_conf.rss_key_len,
7285 		ctx->action_rss.queue_num = priv->reta_idx_n,
7286 		ctx->action_rss.key = priv->rss_conf.rss_key,
7287 		ctx->action_rss.queue = ctx->queue;
7288 		if (!priv->reta_idx_n || !priv->rxqs_n)
7289 			return rte_flow_error_set
7290 				(error, EINVAL,
7291 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
7292 				NULL, "invalid port configuration");
7293 		if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
7294 			ctx->action_rss.types = 0;
7295 		for (i = 0; i != priv->reta_idx_n; ++i)
7296 			ctx->queue[i] = (*priv->reta_idx)[i];
7297 	} else {
7298 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP;
7299 		ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP;
7300 	}
7301 	miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw;
7302 	for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++);
7303 	jump_data = app_actions->conf;
7304 	miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY;
7305 	miss_attr.group = jump_data->group;
7306 	ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group,
7307 				       &flow_table, &grp_info, error);
7308 	if (ret)
7309 		return rte_flow_error_set(error, EINVAL,
7310 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
7311 					  NULL, "invalid tunnel id");
7312 	mark_id.app_reserve = 0;
7313 	mark_id.table_id = tunnel_flow_tbl_to_id(flow_table);
7314 	mark_id.transfer = !!attr->transfer;
7315 	mark_id._unused_ = 0;
7316 	miss_mark.id = mark_id.val;
7317 	dev_flow = flow_drv_prepare(dev, flow, &miss_attr,
7318 				    miss_items, miss_actions, flow_idx, error);
7319 	if (!dev_flow)
7320 		return -rte_errno;
7321 	dev_flow->flow = flow;
7322 	dev_flow->external = true;
7323 	dev_flow->tunnel = tunnel;
7324 	/* Subflow object was created, we must include one in the list. */
7325 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
7326 		      dev_flow->handle, next);
7327 	DRV_LOG(DEBUG,
7328 		"port %u tunnel type=%d id=%u miss rule priority=%u group=%u",
7329 		dev->data->port_id, tunnel->app_tunnel.type,
7330 		tunnel->tunnel_id, miss_attr.priority, miss_attr.group);
7331 	ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items,
7332 				  miss_actions, error);
7333 	if (!ret)
7334 		ret = flow_mreg_update_copy_table(dev, flow, miss_actions,
7335 						  error);
7336 
7337 	return ret;
7338 }
7339 
7340 static const struct mlx5_flow_tbl_data_entry  *
7341 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark)
7342 {
7343 	struct mlx5_priv *priv = dev->data->dev_private;
7344 	struct mlx5_dev_ctx_shared *sh = priv->sh;
7345 	struct mlx5_hlist_entry *he;
7346 	union tunnel_offload_mark mbits = { .val = mark };
7347 	union mlx5_flow_tbl_key table_key = {
7348 		{
7349 			.table_id = tunnel_id_to_flow_tbl(mbits.table_id),
7350 			.dummy = 0,
7351 			.domain = !!mbits.transfer,
7352 			.direction = 0,
7353 		}
7354 	};
7355 	he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, NULL);
7356 	return he ?
7357 	       container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL;
7358 }
7359 
7360 static void
7361 mlx5_flow_tunnel_grp2tbl_remove_cb(struct mlx5_hlist *list,
7362 				   struct mlx5_hlist_entry *entry)
7363 {
7364 	struct mlx5_dev_ctx_shared *sh = list->ctx;
7365 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
7366 
7367 	mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
7368 			tunnel_flow_tbl_to_id(tte->flow_table));
7369 	mlx5_free(tte);
7370 }
7371 
7372 static int
7373 mlx5_flow_tunnel_grp2tbl_match_cb(struct mlx5_hlist *list __rte_unused,
7374 				  struct mlx5_hlist_entry *entry,
7375 				  uint64_t key, void *cb_ctx __rte_unused)
7376 {
7377 	union tunnel_tbl_key tbl = {
7378 		.val = key,
7379 	};
7380 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
7381 
7382 	return tbl.tunnel_id != tte->tunnel_id || tbl.group != tte->group;
7383 }
7384 
7385 static struct mlx5_hlist_entry *
7386 mlx5_flow_tunnel_grp2tbl_create_cb(struct mlx5_hlist *list, uint64_t key,
7387 				   void *ctx __rte_unused)
7388 {
7389 	struct mlx5_dev_ctx_shared *sh = list->ctx;
7390 	struct tunnel_tbl_entry *tte;
7391 	union tunnel_tbl_key tbl = {
7392 		.val = key,
7393 	};
7394 
7395 	tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO,
7396 			  sizeof(*tte), 0,
7397 			  SOCKET_ID_ANY);
7398 	if (!tte)
7399 		goto err;
7400 	mlx5_ipool_malloc(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
7401 			  &tte->flow_table);
7402 	if (tte->flow_table >= MLX5_MAX_TABLES) {
7403 		DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.",
7404 			tte->flow_table);
7405 		mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
7406 				tte->flow_table);
7407 		goto err;
7408 	} else if (!tte->flow_table) {
7409 		goto err;
7410 	}
7411 	tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table);
7412 	tte->tunnel_id = tbl.tunnel_id;
7413 	tte->group = tbl.group;
7414 	return &tte->hash;
7415 err:
7416 	if (tte)
7417 		mlx5_free(tte);
7418 	return NULL;
7419 }
7420 
7421 static uint32_t
7422 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
7423 				const struct mlx5_flow_tunnel *tunnel,
7424 				uint32_t group, uint32_t *table,
7425 				struct rte_flow_error *error)
7426 {
7427 	struct mlx5_hlist_entry *he;
7428 	struct tunnel_tbl_entry *tte;
7429 	union tunnel_tbl_key key = {
7430 		.tunnel_id = tunnel ? tunnel->tunnel_id : 0,
7431 		.group = group
7432 	};
7433 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
7434 	struct mlx5_hlist *group_hash;
7435 
7436 	group_hash = tunnel ? tunnel->groups : thub->groups;
7437 	he = mlx5_hlist_register(group_hash, key.val, NULL);
7438 	if (!he)
7439 		return rte_flow_error_set(error, EINVAL,
7440 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
7441 					  NULL,
7442 					  "tunnel group index not supported");
7443 	tte = container_of(he, typeof(*tte), hash);
7444 	*table = tte->flow_table;
7445 	DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x",
7446 		dev->data->port_id, key.tunnel_id, group, *table);
7447 	return 0;
7448 }
7449 
7450 static void
7451 mlx5_flow_tunnel_free(struct rte_eth_dev *dev,
7452 		      struct mlx5_flow_tunnel *tunnel)
7453 {
7454 	struct mlx5_priv *priv = dev->data->dev_private;
7455 	struct mlx5_indexed_pool *ipool;
7456 
7457 	DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x",
7458 		dev->data->port_id, tunnel->tunnel_id);
7459 	LIST_REMOVE(tunnel, chain);
7460 	mlx5_hlist_destroy(tunnel->groups);
7461 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
7462 	mlx5_ipool_free(ipool, tunnel->tunnel_id);
7463 }
7464 
7465 static bool
7466 mlx5_access_tunnel_offload_db
7467 	(struct rte_eth_dev *dev,
7468 	 bool (*match)(struct rte_eth_dev *,
7469 		       struct mlx5_flow_tunnel *, const void *),
7470 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
7471 	 void (*miss)(struct rte_eth_dev *, void *),
7472 	 void *ctx, bool lock_op)
7473 {
7474 	bool verdict = false;
7475 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
7476 	struct mlx5_flow_tunnel *tunnel;
7477 
7478 	rte_spinlock_lock(&thub->sl);
7479 	LIST_FOREACH(tunnel, &thub->tunnels, chain) {
7480 		verdict = match(dev, tunnel, (const void *)ctx);
7481 		if (verdict)
7482 			break;
7483 	}
7484 	if (!lock_op)
7485 		rte_spinlock_unlock(&thub->sl);
7486 	if (verdict && hit)
7487 		hit(dev, tunnel, ctx);
7488 	if (!verdict && miss)
7489 		miss(dev, ctx);
7490 	if (lock_op)
7491 		rte_spinlock_unlock(&thub->sl);
7492 
7493 	return verdict;
7494 }
7495 
7496 struct tunnel_db_find_tunnel_id_ctx {
7497 	uint32_t tunnel_id;
7498 	struct mlx5_flow_tunnel *tunnel;
7499 };
7500 
7501 static bool
7502 find_tunnel_id_match(struct rte_eth_dev *dev,
7503 		     struct mlx5_flow_tunnel *tunnel, const void *x)
7504 {
7505 	const struct tunnel_db_find_tunnel_id_ctx *ctx = x;
7506 
7507 	RTE_SET_USED(dev);
7508 	return tunnel->tunnel_id == ctx->tunnel_id;
7509 }
7510 
7511 static void
7512 find_tunnel_id_hit(struct rte_eth_dev *dev,
7513 		   struct mlx5_flow_tunnel *tunnel, void *x)
7514 {
7515 	struct tunnel_db_find_tunnel_id_ctx *ctx = x;
7516 	RTE_SET_USED(dev);
7517 	ctx->tunnel = tunnel;
7518 }
7519 
7520 static struct mlx5_flow_tunnel *
7521 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id)
7522 {
7523 	struct tunnel_db_find_tunnel_id_ctx ctx = {
7524 		.tunnel_id = id,
7525 	};
7526 
7527 	mlx5_access_tunnel_offload_db(dev, find_tunnel_id_match,
7528 				      find_tunnel_id_hit, NULL, &ctx, true);
7529 
7530 	return ctx.tunnel;
7531 }
7532 
7533 static struct mlx5_flow_tunnel *
7534 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev,
7535 			  const struct rte_flow_tunnel *app_tunnel)
7536 {
7537 	struct mlx5_priv *priv = dev->data->dev_private;
7538 	struct mlx5_indexed_pool *ipool;
7539 	struct mlx5_flow_tunnel *tunnel;
7540 	uint32_t id;
7541 
7542 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
7543 	tunnel = mlx5_ipool_zmalloc(ipool, &id);
7544 	if (!tunnel)
7545 		return NULL;
7546 	if (id >= MLX5_MAX_TUNNELS) {
7547 		mlx5_ipool_free(ipool, id);
7548 		DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id);
7549 		return NULL;
7550 	}
7551 	tunnel->groups = mlx5_hlist_create("tunnel groups", 1024, 0, 0,
7552 					   mlx5_flow_tunnel_grp2tbl_create_cb,
7553 					   mlx5_flow_tunnel_grp2tbl_match_cb,
7554 					   mlx5_flow_tunnel_grp2tbl_remove_cb);
7555 	if (!tunnel->groups) {
7556 		mlx5_ipool_free(ipool, id);
7557 		return NULL;
7558 	}
7559 	tunnel->groups->ctx = priv->sh;
7560 	/* initiate new PMD tunnel */
7561 	memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel));
7562 	tunnel->tunnel_id = id;
7563 	tunnel->action.type = (typeof(tunnel->action.type))
7564 			      MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET;
7565 	tunnel->action.conf = tunnel;
7566 	tunnel->item.type = (typeof(tunnel->item.type))
7567 			    MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL;
7568 	tunnel->item.spec = tunnel;
7569 	tunnel->item.last = NULL;
7570 	tunnel->item.mask = NULL;
7571 
7572 	DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x",
7573 		dev->data->port_id, tunnel->tunnel_id);
7574 
7575 	return tunnel;
7576 }
7577 
7578 struct tunnel_db_get_tunnel_ctx {
7579 	const struct rte_flow_tunnel *app_tunnel;
7580 	struct mlx5_flow_tunnel *tunnel;
7581 };
7582 
7583 static bool get_tunnel_match(struct rte_eth_dev *dev,
7584 			     struct mlx5_flow_tunnel *tunnel, const void *x)
7585 {
7586 	const struct tunnel_db_get_tunnel_ctx *ctx = x;
7587 
7588 	RTE_SET_USED(dev);
7589 	return !memcmp(ctx->app_tunnel, &tunnel->app_tunnel,
7590 		       sizeof(*ctx->app_tunnel));
7591 }
7592 
7593 static void get_tunnel_hit(struct rte_eth_dev *dev,
7594 			   struct mlx5_flow_tunnel *tunnel, void *x)
7595 {
7596 	/* called under tunnel spinlock protection */
7597 	struct tunnel_db_get_tunnel_ctx *ctx = x;
7598 
7599 	RTE_SET_USED(dev);
7600 	tunnel->refctn++;
7601 	ctx->tunnel = tunnel;
7602 }
7603 
7604 static void get_tunnel_miss(struct rte_eth_dev *dev, void *x)
7605 {
7606 	/* called under tunnel spinlock protection */
7607 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
7608 	struct tunnel_db_get_tunnel_ctx *ctx = x;
7609 
7610 	rte_spinlock_unlock(&thub->sl);
7611 	ctx->tunnel = mlx5_flow_tunnel_allocate(dev, ctx->app_tunnel);
7612 	ctx->tunnel->refctn = 1;
7613 	rte_spinlock_lock(&thub->sl);
7614 	if (ctx->tunnel)
7615 		LIST_INSERT_HEAD(&thub->tunnels, ctx->tunnel, chain);
7616 }
7617 
7618 
7619 static int
7620 mlx5_get_flow_tunnel(struct rte_eth_dev *dev,
7621 		     const struct rte_flow_tunnel *app_tunnel,
7622 		     struct mlx5_flow_tunnel **tunnel)
7623 {
7624 	struct tunnel_db_get_tunnel_ctx ctx = {
7625 		.app_tunnel = app_tunnel,
7626 	};
7627 
7628 	mlx5_access_tunnel_offload_db(dev, get_tunnel_match, get_tunnel_hit,
7629 				      get_tunnel_miss, &ctx, true);
7630 	*tunnel = ctx.tunnel;
7631 	return ctx.tunnel ? 0 : -ENOMEM;
7632 }
7633 
7634 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id)
7635 {
7636 	struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub;
7637 
7638 	if (!thub)
7639 		return;
7640 	if (!LIST_EMPTY(&thub->tunnels))
7641 		DRV_LOG(WARNING, "port %u tunnels present\n", port_id);
7642 	mlx5_hlist_destroy(thub->groups);
7643 	mlx5_free(thub);
7644 }
7645 
7646 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh)
7647 {
7648 	int err;
7649 	struct mlx5_flow_tunnel_hub *thub;
7650 
7651 	thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub),
7652 			   0, SOCKET_ID_ANY);
7653 	if (!thub)
7654 		return -ENOMEM;
7655 	LIST_INIT(&thub->tunnels);
7656 	rte_spinlock_init(&thub->sl);
7657 	thub->groups = mlx5_hlist_create("flow groups", MLX5_MAX_TABLES, 0,
7658 					 0, mlx5_flow_tunnel_grp2tbl_create_cb,
7659 					 mlx5_flow_tunnel_grp2tbl_match_cb,
7660 					 mlx5_flow_tunnel_grp2tbl_remove_cb);
7661 	if (!thub->groups) {
7662 		err = -rte_errno;
7663 		goto err;
7664 	}
7665 	thub->groups->ctx = sh;
7666 	sh->tunnel_hub = thub;
7667 
7668 	return 0;
7669 
7670 err:
7671 	if (thub->groups)
7672 		mlx5_hlist_destroy(thub->groups);
7673 	if (thub)
7674 		mlx5_free(thub);
7675 	return err;
7676 }
7677 
7678 static inline bool
7679 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev,
7680 			  struct rte_flow_tunnel *tunnel,
7681 			  const char *err_msg)
7682 {
7683 	err_msg = NULL;
7684 	if (!is_tunnel_offload_active(dev)) {
7685 		err_msg = "tunnel offload was not activated";
7686 		goto out;
7687 	} else if (!tunnel) {
7688 		err_msg = "no application tunnel";
7689 		goto out;
7690 	}
7691 
7692 	switch (tunnel->type) {
7693 	default:
7694 		err_msg = "unsupported tunnel type";
7695 		goto out;
7696 	case RTE_FLOW_ITEM_TYPE_VXLAN:
7697 		break;
7698 	}
7699 
7700 out:
7701 	return !err_msg;
7702 }
7703 
7704 static int
7705 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
7706 		    struct rte_flow_tunnel *app_tunnel,
7707 		    struct rte_flow_action **actions,
7708 		    uint32_t *num_of_actions,
7709 		    struct rte_flow_error *error)
7710 {
7711 	int ret;
7712 	struct mlx5_flow_tunnel *tunnel;
7713 	const char *err_msg = NULL;
7714 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
7715 
7716 	if (!verdict)
7717 		return rte_flow_error_set(error, EINVAL,
7718 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
7719 					  err_msg);
7720 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
7721 	if (ret < 0) {
7722 		return rte_flow_error_set(error, ret,
7723 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
7724 					  "failed to initialize pmd tunnel");
7725 	}
7726 	*actions = &tunnel->action;
7727 	*num_of_actions = 1;
7728 	return 0;
7729 }
7730 
7731 static int
7732 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
7733 		       struct rte_flow_tunnel *app_tunnel,
7734 		       struct rte_flow_item **items,
7735 		       uint32_t *num_of_items,
7736 		       struct rte_flow_error *error)
7737 {
7738 	int ret;
7739 	struct mlx5_flow_tunnel *tunnel;
7740 	const char *err_msg = NULL;
7741 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
7742 
7743 	if (!verdict)
7744 		return rte_flow_error_set(error, EINVAL,
7745 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
7746 					  err_msg);
7747 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
7748 	if (ret < 0) {
7749 		return rte_flow_error_set(error, ret,
7750 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
7751 					  "failed to initialize pmd tunnel");
7752 	}
7753 	*items = &tunnel->item;
7754 	*num_of_items = 1;
7755 	return 0;
7756 }
7757 
7758 struct tunnel_db_element_release_ctx {
7759 	struct rte_flow_item *items;
7760 	struct rte_flow_action *actions;
7761 	uint32_t num_elements;
7762 	struct rte_flow_error *error;
7763 	int ret;
7764 };
7765 
7766 static bool
7767 tunnel_element_release_match(struct rte_eth_dev *dev,
7768 			     struct mlx5_flow_tunnel *tunnel, const void *x)
7769 {
7770 	const struct tunnel_db_element_release_ctx *ctx = x;
7771 
7772 	RTE_SET_USED(dev);
7773 	if (ctx->num_elements != 1)
7774 		return false;
7775 	else if (ctx->items)
7776 		return ctx->items == &tunnel->item;
7777 	else if (ctx->actions)
7778 		return ctx->actions == &tunnel->action;
7779 
7780 	return false;
7781 }
7782 
7783 static void
7784 tunnel_element_release_hit(struct rte_eth_dev *dev,
7785 			   struct mlx5_flow_tunnel *tunnel, void *x)
7786 {
7787 	struct tunnel_db_element_release_ctx *ctx = x;
7788 	ctx->ret = 0;
7789 	if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
7790 		mlx5_flow_tunnel_free(dev, tunnel);
7791 }
7792 
7793 static void
7794 tunnel_element_release_miss(struct rte_eth_dev *dev, void *x)
7795 {
7796 	struct tunnel_db_element_release_ctx *ctx = x;
7797 	RTE_SET_USED(dev);
7798 	ctx->ret = rte_flow_error_set(ctx->error, EINVAL,
7799 				      RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
7800 				      "invalid argument");
7801 }
7802 
7803 static int
7804 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
7805 		       struct rte_flow_item *pmd_items,
7806 		       uint32_t num_items, struct rte_flow_error *err)
7807 {
7808 	struct tunnel_db_element_release_ctx ctx = {
7809 		.items = pmd_items,
7810 		.actions = NULL,
7811 		.num_elements = num_items,
7812 		.error = err,
7813 	};
7814 
7815 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
7816 				      tunnel_element_release_hit,
7817 				      tunnel_element_release_miss, &ctx, false);
7818 
7819 	return ctx.ret;
7820 }
7821 
7822 static int
7823 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
7824 			 struct rte_flow_action *pmd_actions,
7825 			 uint32_t num_actions, struct rte_flow_error *err)
7826 {
7827 	struct tunnel_db_element_release_ctx ctx = {
7828 		.items = NULL,
7829 		.actions = pmd_actions,
7830 		.num_elements = num_actions,
7831 		.error = err,
7832 	};
7833 
7834 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
7835 				      tunnel_element_release_hit,
7836 				      tunnel_element_release_miss, &ctx, false);
7837 
7838 	return ctx.ret;
7839 }
7840 
7841 static int
7842 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
7843 				  struct rte_mbuf *m,
7844 				  struct rte_flow_restore_info *info,
7845 				  struct rte_flow_error *err)
7846 {
7847 	uint64_t ol_flags = m->ol_flags;
7848 	const struct mlx5_flow_tbl_data_entry *tble;
7849 	const uint64_t mask = PKT_RX_FDIR | PKT_RX_FDIR_ID;
7850 
7851 	if (!is_tunnel_offload_active(dev)) {
7852 		info->flags = 0;
7853 		return 0;
7854 	}
7855 
7856 	if ((ol_flags & mask) != mask)
7857 		goto err;
7858 	tble = tunnel_mark_decode(dev, m->hash.fdir.hi);
7859 	if (!tble) {
7860 		DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x",
7861 			dev->data->port_id, m->hash.fdir.hi);
7862 		goto err;
7863 	}
7864 	MLX5_ASSERT(tble->tunnel);
7865 	memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel));
7866 	info->group_id = tble->group_id;
7867 	info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL |
7868 		      RTE_FLOW_RESTORE_INFO_GROUP_ID |
7869 		      RTE_FLOW_RESTORE_INFO_ENCAPSULATED;
7870 
7871 	return 0;
7872 
7873 err:
7874 	return rte_flow_error_set(err, EINVAL,
7875 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
7876 				  "failed to get restore info");
7877 }
7878 
7879 #else /* HAVE_IBV_FLOW_DV_SUPPORT */
7880 static int
7881 mlx5_flow_tunnel_decap_set(__rte_unused struct rte_eth_dev *dev,
7882 			   __rte_unused struct rte_flow_tunnel *app_tunnel,
7883 			   __rte_unused struct rte_flow_action **actions,
7884 			   __rte_unused uint32_t *num_of_actions,
7885 			   __rte_unused struct rte_flow_error *error)
7886 {
7887 	return -ENOTSUP;
7888 }
7889 
7890 static int
7891 mlx5_flow_tunnel_match(__rte_unused struct rte_eth_dev *dev,
7892 		       __rte_unused struct rte_flow_tunnel *app_tunnel,
7893 		       __rte_unused struct rte_flow_item **items,
7894 		       __rte_unused uint32_t *num_of_items,
7895 		       __rte_unused struct rte_flow_error *error)
7896 {
7897 	return -ENOTSUP;
7898 }
7899 
7900 static int
7901 mlx5_flow_tunnel_item_release(__rte_unused struct rte_eth_dev *dev,
7902 			      __rte_unused struct rte_flow_item *pmd_items,
7903 			      __rte_unused uint32_t num_items,
7904 			      __rte_unused struct rte_flow_error *err)
7905 {
7906 	return -ENOTSUP;
7907 }
7908 
7909 static int
7910 mlx5_flow_tunnel_action_release(__rte_unused struct rte_eth_dev *dev,
7911 				__rte_unused struct rte_flow_action *pmd_action,
7912 				__rte_unused uint32_t num_actions,
7913 				__rte_unused struct rte_flow_error *err)
7914 {
7915 	return -ENOTSUP;
7916 }
7917 
7918 static int
7919 mlx5_flow_tunnel_get_restore_info(__rte_unused struct rte_eth_dev *dev,
7920 				  __rte_unused struct rte_mbuf *m,
7921 				  __rte_unused struct rte_flow_restore_info *i,
7922 				  __rte_unused struct rte_flow_error *err)
7923 {
7924 	return -ENOTSUP;
7925 }
7926 
7927 static int
7928 flow_tunnel_add_default_miss(__rte_unused struct rte_eth_dev *dev,
7929 			     __rte_unused struct rte_flow *flow,
7930 			     __rte_unused const struct rte_flow_attr *attr,
7931 			     __rte_unused const struct rte_flow_action *actions,
7932 			     __rte_unused uint32_t flow_idx,
7933 			     __rte_unused struct tunnel_default_miss_ctx *ctx,
7934 			     __rte_unused struct rte_flow_error *error)
7935 {
7936 	return -ENOTSUP;
7937 }
7938 
7939 static struct mlx5_flow_tunnel *
7940 mlx5_find_tunnel_id(__rte_unused struct rte_eth_dev *dev,
7941 		    __rte_unused uint32_t id)
7942 {
7943 	return NULL;
7944 }
7945 
7946 static void
7947 mlx5_flow_tunnel_free(__rte_unused struct rte_eth_dev *dev,
7948 		      __rte_unused struct mlx5_flow_tunnel *tunnel)
7949 {
7950 }
7951 
7952 static uint32_t
7953 tunnel_flow_group_to_flow_table(__rte_unused struct rte_eth_dev *dev,
7954 				__rte_unused const struct mlx5_flow_tunnel *t,
7955 				__rte_unused uint32_t group,
7956 				__rte_unused uint32_t *table,
7957 				struct rte_flow_error *error)
7958 {
7959 	return rte_flow_error_set(error, ENOTSUP,
7960 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
7961 				  "tunnel offload requires DV support");
7962 }
7963 
7964 void
7965 mlx5_release_tunnel_hub(__rte_unused struct mlx5_dev_ctx_shared *sh,
7966 			__rte_unused  uint16_t port_id)
7967 {
7968 }
7969 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */
7970 
7971