xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 59f3a8acbcdbafeebe816a26d76dfb06e6450f31)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stdalign.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdbool.h>
10 #include <sys/queue.h>
11 
12 #include <rte_common.h>
13 #include <rte_ether.h>
14 #include <ethdev_driver.h>
15 #include <rte_eal_paging.h>
16 #include <rte_flow.h>
17 #include <rte_cycles.h>
18 #include <rte_flow_driver.h>
19 #include <rte_malloc.h>
20 #include <rte_ip.h>
21 
22 #include <mlx5_glue.h>
23 #include <mlx5_devx_cmds.h>
24 #include <mlx5_prm.h>
25 #include <mlx5_malloc.h>
26 
27 #include "mlx5_defs.h"
28 #include "mlx5.h"
29 #include "mlx5_flow.h"
30 #include "mlx5_flow_os.h"
31 #include "mlx5_rx.h"
32 #include "mlx5_tx.h"
33 #include "mlx5_common_os.h"
34 #include "rte_pmd_mlx5.h"
35 
36 struct tunnel_default_miss_ctx {
37 	uint16_t *queue;
38 	__extension__
39 	union {
40 		struct rte_flow_action_rss action_rss;
41 		struct rte_flow_action_queue miss_queue;
42 		struct rte_flow_action_jump miss_jump;
43 		uint8_t raw[0];
44 	};
45 };
46 
47 static int
48 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
49 			     struct rte_flow *flow,
50 			     const struct rte_flow_attr *attr,
51 			     const struct rte_flow_action *app_actions,
52 			     uint32_t flow_idx,
53 			     const struct mlx5_flow_tunnel *tunnel,
54 			     struct tunnel_default_miss_ctx *ctx,
55 			     struct rte_flow_error *error);
56 static struct mlx5_flow_tunnel *
57 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id);
58 static void
59 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel);
60 static uint32_t
61 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
62 				const struct mlx5_flow_tunnel *tunnel,
63 				uint32_t group, uint32_t *table,
64 				struct rte_flow_error *error);
65 
66 static struct mlx5_flow_workspace *mlx5_flow_push_thread_workspace(void);
67 static void mlx5_flow_pop_thread_workspace(void);
68 
69 
70 /** Device flow drivers. */
71 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
72 
73 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
74 
75 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
76 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
77 #if defined(HAVE_IBV_FLOW_DV_SUPPORT) || !defined(HAVE_INFINIBAND_VERBS_H)
78 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
79 #endif
80 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
81 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
82 };
83 
84 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
85 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
86 	(const int []){ \
87 		__VA_ARGS__, 0, \
88 	}
89 
90 /** Node object of input graph for mlx5_flow_expand_rss(). */
91 struct mlx5_flow_expand_node {
92 	const int *const next;
93 	/**<
94 	 * List of next node indexes. Index 0 is interpreted as a terminator.
95 	 */
96 	const enum rte_flow_item_type type;
97 	/**< Pattern item type of current node. */
98 	uint64_t rss_types;
99 	/**<
100 	 * RSS types bit-field associated with this node
101 	 * (see ETH_RSS_* definitions).
102 	 */
103 	uint64_t node_flags;
104 	/**<
105 	 *  Bit-fields that define how the node is used in the expansion.
106 	 * (see MLX5_EXPANSION_NODE_* definitions).
107 	 */
108 };
109 
110 /* Optional expand field. The expansion alg will not go deeper. */
111 #define MLX5_EXPANSION_NODE_OPTIONAL (UINT64_C(1) << 0)
112 
113 /* The node is not added implicitly as expansion to the flow pattern.
114  * If the node type does not match the flow pattern item type, the
115  * expansion alg will go deeper to its next items.
116  * In the current implementation, the list of next nodes indexes can
117  * have up to one node with this flag set and it has to be the last
118  * node index (before the list terminator).
119  */
120 #define MLX5_EXPANSION_NODE_EXPLICIT (UINT64_C(1) << 1)
121 
122 /** Object returned by mlx5_flow_expand_rss(). */
123 struct mlx5_flow_expand_rss {
124 	uint32_t entries;
125 	/**< Number of entries @p patterns and @p priorities. */
126 	struct {
127 		struct rte_flow_item *pattern; /**< Expanded pattern array. */
128 		uint32_t priority; /**< Priority offset for each expansion. */
129 	} entry[];
130 };
131 
132 static void
133 mlx5_dbg__print_pattern(const struct rte_flow_item *item);
134 
135 static const struct mlx5_flow_expand_node *
136 mlx5_flow_expand_rss_adjust_node(const struct rte_flow_item *pattern,
137 		unsigned int item_idx,
138 		const struct mlx5_flow_expand_node graph[],
139 		const struct mlx5_flow_expand_node *node);
140 
141 static bool
142 mlx5_flow_is_rss_expandable_item(const struct rte_flow_item *item)
143 {
144 	switch (item->type) {
145 	case RTE_FLOW_ITEM_TYPE_ETH:
146 	case RTE_FLOW_ITEM_TYPE_VLAN:
147 	case RTE_FLOW_ITEM_TYPE_IPV4:
148 	case RTE_FLOW_ITEM_TYPE_IPV6:
149 	case RTE_FLOW_ITEM_TYPE_UDP:
150 	case RTE_FLOW_ITEM_TYPE_TCP:
151 	case RTE_FLOW_ITEM_TYPE_VXLAN:
152 	case RTE_FLOW_ITEM_TYPE_NVGRE:
153 	case RTE_FLOW_ITEM_TYPE_GRE:
154 	case RTE_FLOW_ITEM_TYPE_GENEVE:
155 	case RTE_FLOW_ITEM_TYPE_MPLS:
156 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
157 	case RTE_FLOW_ITEM_TYPE_GRE_KEY:
158 	case RTE_FLOW_ITEM_TYPE_IPV6_FRAG_EXT:
159 	case RTE_FLOW_ITEM_TYPE_GTP:
160 		return true;
161 	default:
162 		break;
163 	}
164 	return false;
165 }
166 
167 static enum rte_flow_item_type
168 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
169 {
170 	enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
171 	uint16_t ether_type = 0;
172 	uint16_t ether_type_m;
173 	uint8_t ip_next_proto = 0;
174 	uint8_t ip_next_proto_m;
175 
176 	if (item == NULL || item->spec == NULL)
177 		return ret;
178 	switch (item->type) {
179 	case RTE_FLOW_ITEM_TYPE_ETH:
180 		if (item->mask)
181 			ether_type_m = ((const struct rte_flow_item_eth *)
182 						(item->mask))->type;
183 		else
184 			ether_type_m = rte_flow_item_eth_mask.type;
185 		if (ether_type_m != RTE_BE16(0xFFFF))
186 			break;
187 		ether_type = ((const struct rte_flow_item_eth *)
188 				(item->spec))->type;
189 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
190 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
191 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
192 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
193 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
194 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
195 		else
196 			ret = RTE_FLOW_ITEM_TYPE_END;
197 		break;
198 	case RTE_FLOW_ITEM_TYPE_VLAN:
199 		if (item->mask)
200 			ether_type_m = ((const struct rte_flow_item_vlan *)
201 						(item->mask))->inner_type;
202 		else
203 			ether_type_m = rte_flow_item_vlan_mask.inner_type;
204 		if (ether_type_m != RTE_BE16(0xFFFF))
205 			break;
206 		ether_type = ((const struct rte_flow_item_vlan *)
207 				(item->spec))->inner_type;
208 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
209 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
210 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
211 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
212 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
213 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
214 		else
215 			ret = RTE_FLOW_ITEM_TYPE_END;
216 		break;
217 	case RTE_FLOW_ITEM_TYPE_IPV4:
218 		if (item->mask)
219 			ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
220 					(item->mask))->hdr.next_proto_id;
221 		else
222 			ip_next_proto_m =
223 				rte_flow_item_ipv4_mask.hdr.next_proto_id;
224 		if (ip_next_proto_m != 0xFF)
225 			break;
226 		ip_next_proto = ((const struct rte_flow_item_ipv4 *)
227 				(item->spec))->hdr.next_proto_id;
228 		if (ip_next_proto == IPPROTO_UDP)
229 			ret = RTE_FLOW_ITEM_TYPE_UDP;
230 		else if (ip_next_proto == IPPROTO_TCP)
231 			ret = RTE_FLOW_ITEM_TYPE_TCP;
232 		else if (ip_next_proto == IPPROTO_IP)
233 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
234 		else if (ip_next_proto == IPPROTO_IPV6)
235 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
236 		else
237 			ret = RTE_FLOW_ITEM_TYPE_END;
238 		break;
239 	case RTE_FLOW_ITEM_TYPE_IPV6:
240 		if (item->mask)
241 			ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
242 						(item->mask))->hdr.proto;
243 		else
244 			ip_next_proto_m =
245 				rte_flow_item_ipv6_mask.hdr.proto;
246 		if (ip_next_proto_m != 0xFF)
247 			break;
248 		ip_next_proto = ((const struct rte_flow_item_ipv6 *)
249 				(item->spec))->hdr.proto;
250 		if (ip_next_proto == IPPROTO_UDP)
251 			ret = RTE_FLOW_ITEM_TYPE_UDP;
252 		else if (ip_next_proto == IPPROTO_TCP)
253 			ret = RTE_FLOW_ITEM_TYPE_TCP;
254 		else if (ip_next_proto == IPPROTO_IP)
255 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
256 		else if (ip_next_proto == IPPROTO_IPV6)
257 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
258 		else
259 			ret = RTE_FLOW_ITEM_TYPE_END;
260 		break;
261 	default:
262 		ret = RTE_FLOW_ITEM_TYPE_VOID;
263 		break;
264 	}
265 	return ret;
266 }
267 
268 static const int *
269 mlx5_flow_expand_rss_skip_explicit(const struct mlx5_flow_expand_node graph[],
270 		const int *next_node)
271 {
272 	const struct mlx5_flow_expand_node *node = NULL;
273 	const int *next = next_node;
274 
275 	while (next && *next) {
276 		/*
277 		 * Skip the nodes with the MLX5_EXPANSION_NODE_EXPLICIT
278 		 * flag set, because they were not found in the flow pattern.
279 		 */
280 		node = &graph[*next];
281 		if (!(node->node_flags & MLX5_EXPANSION_NODE_EXPLICIT))
282 			break;
283 		next = node->next;
284 	}
285 	return next;
286 }
287 
288 #define MLX5_RSS_EXP_ELT_N 16
289 
290 /**
291  * Expand RSS flows into several possible flows according to the RSS hash
292  * fields requested and the driver capabilities.
293  *
294  * @param[out] buf
295  *   Buffer to store the result expansion.
296  * @param[in] size
297  *   Buffer size in bytes. If 0, @p buf can be NULL.
298  * @param[in] pattern
299  *   User flow pattern.
300  * @param[in] types
301  *   RSS types to expand (see ETH_RSS_* definitions).
302  * @param[in] graph
303  *   Input graph to expand @p pattern according to @p types.
304  * @param[in] graph_root_index
305  *   Index of root node in @p graph, typically 0.
306  *
307  * @return
308  *   A positive value representing the size of @p buf in bytes regardless of
309  *   @p size on success, a negative errno value otherwise and rte_errno is
310  *   set, the following errors are defined:
311  *
312  *   -E2BIG: graph-depth @p graph is too deep.
313  *   -EINVAL: @p size has not enough space for expanded pattern.
314  */
315 static int
316 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
317 		     const struct rte_flow_item *pattern, uint64_t types,
318 		     const struct mlx5_flow_expand_node graph[],
319 		     int graph_root_index)
320 {
321 	const struct rte_flow_item *item;
322 	const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
323 	const int *next_node;
324 	const int *stack[MLX5_RSS_EXP_ELT_N];
325 	int stack_pos = 0;
326 	struct rte_flow_item flow_items[MLX5_RSS_EXP_ELT_N];
327 	unsigned int i, item_idx, last_expand_item_idx = 0;
328 	size_t lsize;
329 	size_t user_pattern_size = 0;
330 	void *addr = NULL;
331 	const struct mlx5_flow_expand_node *next = NULL;
332 	struct rte_flow_item missed_item;
333 	int missed = 0;
334 	int elt = 0;
335 	const struct rte_flow_item *last_expand_item = NULL;
336 
337 	memset(&missed_item, 0, sizeof(missed_item));
338 	lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
339 		MLX5_RSS_EXP_ELT_N * sizeof(buf->entry[0]);
340 	if (lsize > size)
341 		return -EINVAL;
342 	buf->entry[0].priority = 0;
343 	buf->entry[0].pattern = (void *)&buf->entry[MLX5_RSS_EXP_ELT_N];
344 	buf->entries = 0;
345 	addr = buf->entry[0].pattern;
346 	for (item = pattern, item_idx = 0;
347 			item->type != RTE_FLOW_ITEM_TYPE_END;
348 			item++, item_idx++) {
349 		if (!mlx5_flow_is_rss_expandable_item(item)) {
350 			user_pattern_size += sizeof(*item);
351 			continue;
352 		}
353 		last_expand_item = item;
354 		last_expand_item_idx = item_idx;
355 		i = 0;
356 		while (node->next && node->next[i]) {
357 			next = &graph[node->next[i]];
358 			if (next->type == item->type)
359 				break;
360 			if (next->node_flags & MLX5_EXPANSION_NODE_EXPLICIT) {
361 				node = next;
362 				i = 0;
363 			} else {
364 				++i;
365 			}
366 		}
367 		if (next)
368 			node = next;
369 		user_pattern_size += sizeof(*item);
370 	}
371 	user_pattern_size += sizeof(*item); /* Handle END item. */
372 	lsize += user_pattern_size;
373 	if (lsize > size)
374 		return -EINVAL;
375 	/* Copy the user pattern in the first entry of the buffer. */
376 	rte_memcpy(addr, pattern, user_pattern_size);
377 	addr = (void *)(((uintptr_t)addr) + user_pattern_size);
378 	buf->entries = 1;
379 	/* Start expanding. */
380 	memset(flow_items, 0, sizeof(flow_items));
381 	user_pattern_size -= sizeof(*item);
382 	/*
383 	 * Check if the last valid item has spec set, need complete pattern,
384 	 * and the pattern can be used for expansion.
385 	 */
386 	missed_item.type = mlx5_flow_expand_rss_item_complete(last_expand_item);
387 	if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
388 		/* Item type END indicates expansion is not required. */
389 		return lsize;
390 	}
391 	if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
392 		next = NULL;
393 		missed = 1;
394 		for (i = 0; node->next && node->next[i]; ++i) {
395 			next = &graph[node->next[i]];
396 			if (next->type == missed_item.type) {
397 				flow_items[0].type = missed_item.type;
398 				flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
399 				break;
400 			}
401 			next = NULL;
402 		}
403 	}
404 	if (next && missed) {
405 		elt = 2; /* missed item + item end. */
406 		node = next;
407 		lsize += elt * sizeof(*item) + user_pattern_size;
408 		if (lsize > size)
409 			return -EINVAL;
410 		if (node->rss_types & types) {
411 			buf->entry[buf->entries].priority = 1;
412 			buf->entry[buf->entries].pattern = addr;
413 			buf->entries++;
414 			rte_memcpy(addr, buf->entry[0].pattern,
415 				   user_pattern_size);
416 			addr = (void *)(((uintptr_t)addr) + user_pattern_size);
417 			rte_memcpy(addr, flow_items, elt * sizeof(*item));
418 			addr = (void *)(((uintptr_t)addr) +
419 					elt * sizeof(*item));
420 		}
421 	} else if (last_expand_item != NULL) {
422 		node = mlx5_flow_expand_rss_adjust_node(pattern,
423 				last_expand_item_idx, graph, node);
424 	}
425 	memset(flow_items, 0, sizeof(flow_items));
426 	next_node = mlx5_flow_expand_rss_skip_explicit(graph,
427 			node->next);
428 	stack[stack_pos] = next_node;
429 	node = next_node ? &graph[*next_node] : NULL;
430 	while (node) {
431 		flow_items[stack_pos].type = node->type;
432 		if (node->rss_types & types) {
433 			size_t n;
434 			/*
435 			 * compute the number of items to copy from the
436 			 * expansion and copy it.
437 			 * When the stack_pos is 0, there are 1 element in it,
438 			 * plus the addition END item.
439 			 */
440 			elt = stack_pos + 2;
441 			flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
442 			lsize += elt * sizeof(*item) + user_pattern_size;
443 			if (lsize > size)
444 				return -EINVAL;
445 			n = elt * sizeof(*item);
446 			buf->entry[buf->entries].priority =
447 				stack_pos + 1 + missed;
448 			buf->entry[buf->entries].pattern = addr;
449 			buf->entries++;
450 			rte_memcpy(addr, buf->entry[0].pattern,
451 				   user_pattern_size);
452 			addr = (void *)(((uintptr_t)addr) +
453 					user_pattern_size);
454 			rte_memcpy(addr, &missed_item,
455 				   missed * sizeof(*item));
456 			addr = (void *)(((uintptr_t)addr) +
457 				missed * sizeof(*item));
458 			rte_memcpy(addr, flow_items, n);
459 			addr = (void *)(((uintptr_t)addr) + n);
460 		}
461 		/* Go deeper. */
462 		if (!(node->node_flags & MLX5_EXPANSION_NODE_OPTIONAL) &&
463 				node->next) {
464 			next_node = mlx5_flow_expand_rss_skip_explicit(graph,
465 					node->next);
466 			if (stack_pos++ == MLX5_RSS_EXP_ELT_N) {
467 				rte_errno = E2BIG;
468 				return -rte_errno;
469 			}
470 			stack[stack_pos] = next_node;
471 		} else if (*(next_node + 1)) {
472 			/* Follow up with the next possibility. */
473 			next_node = mlx5_flow_expand_rss_skip_explicit(graph,
474 					++next_node);
475 		} else if (!stack_pos) {
476 			/*
477 			 * Completing the traverse over the different paths.
478 			 * The next_node is advanced to the terminator.
479 			 */
480 			++next_node;
481 		} else {
482 			/* Move to the next path. */
483 			while (stack_pos) {
484 				next_node = stack[--stack_pos];
485 				next_node++;
486 				if (*next_node)
487 					break;
488 			}
489 			next_node = mlx5_flow_expand_rss_skip_explicit(graph,
490 					next_node);
491 			stack[stack_pos] = next_node;
492 		}
493 		node = next_node && *next_node ? &graph[*next_node] : NULL;
494 	};
495 	return lsize;
496 }
497 
498 enum mlx5_expansion {
499 	MLX5_EXPANSION_ROOT,
500 	MLX5_EXPANSION_ROOT_OUTER,
501 	MLX5_EXPANSION_OUTER_ETH,
502 	MLX5_EXPANSION_OUTER_VLAN,
503 	MLX5_EXPANSION_OUTER_IPV4,
504 	MLX5_EXPANSION_OUTER_IPV4_UDP,
505 	MLX5_EXPANSION_OUTER_IPV4_TCP,
506 	MLX5_EXPANSION_OUTER_IPV6,
507 	MLX5_EXPANSION_OUTER_IPV6_UDP,
508 	MLX5_EXPANSION_OUTER_IPV6_TCP,
509 	MLX5_EXPANSION_VXLAN,
510 	MLX5_EXPANSION_STD_VXLAN,
511 	MLX5_EXPANSION_L3_VXLAN,
512 	MLX5_EXPANSION_VXLAN_GPE,
513 	MLX5_EXPANSION_GRE,
514 	MLX5_EXPANSION_NVGRE,
515 	MLX5_EXPANSION_GRE_KEY,
516 	MLX5_EXPANSION_MPLS,
517 	MLX5_EXPANSION_ETH,
518 	MLX5_EXPANSION_VLAN,
519 	MLX5_EXPANSION_IPV4,
520 	MLX5_EXPANSION_IPV4_UDP,
521 	MLX5_EXPANSION_IPV4_TCP,
522 	MLX5_EXPANSION_IPV6,
523 	MLX5_EXPANSION_IPV6_UDP,
524 	MLX5_EXPANSION_IPV6_TCP,
525 	MLX5_EXPANSION_IPV6_FRAG_EXT,
526 	MLX5_EXPANSION_GTP
527 };
528 
529 /** Supported expansion of items. */
530 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
531 	[MLX5_EXPANSION_ROOT] = {
532 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
533 						  MLX5_EXPANSION_IPV4,
534 						  MLX5_EXPANSION_IPV6),
535 		.type = RTE_FLOW_ITEM_TYPE_END,
536 	},
537 	[MLX5_EXPANSION_ROOT_OUTER] = {
538 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
539 						  MLX5_EXPANSION_OUTER_IPV4,
540 						  MLX5_EXPANSION_OUTER_IPV6),
541 		.type = RTE_FLOW_ITEM_TYPE_END,
542 	},
543 	[MLX5_EXPANSION_OUTER_ETH] = {
544 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
545 		.type = RTE_FLOW_ITEM_TYPE_ETH,
546 		.rss_types = 0,
547 	},
548 	[MLX5_EXPANSION_OUTER_VLAN] = {
549 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
550 						  MLX5_EXPANSION_OUTER_IPV6),
551 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
552 		.node_flags = MLX5_EXPANSION_NODE_EXPLICIT,
553 	},
554 	[MLX5_EXPANSION_OUTER_IPV4] = {
555 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
556 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
557 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
558 			 MLX5_EXPANSION_GRE,
559 			 MLX5_EXPANSION_NVGRE,
560 			 MLX5_EXPANSION_IPV4,
561 			 MLX5_EXPANSION_IPV6),
562 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
563 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
564 			ETH_RSS_NONFRAG_IPV4_OTHER,
565 	},
566 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
567 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
568 						  MLX5_EXPANSION_VXLAN_GPE,
569 						  MLX5_EXPANSION_MPLS,
570 						  MLX5_EXPANSION_GTP),
571 		.type = RTE_FLOW_ITEM_TYPE_UDP,
572 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
573 	},
574 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
575 		.type = RTE_FLOW_ITEM_TYPE_TCP,
576 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
577 	},
578 	[MLX5_EXPANSION_OUTER_IPV6] = {
579 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
580 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
581 			 MLX5_EXPANSION_OUTER_IPV6_TCP,
582 			 MLX5_EXPANSION_IPV4,
583 			 MLX5_EXPANSION_IPV6,
584 			 MLX5_EXPANSION_GRE,
585 			 MLX5_EXPANSION_NVGRE),
586 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
587 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
588 			ETH_RSS_NONFRAG_IPV6_OTHER,
589 	},
590 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
591 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
592 						  MLX5_EXPANSION_VXLAN_GPE,
593 						  MLX5_EXPANSION_MPLS,
594 						  MLX5_EXPANSION_GTP),
595 		.type = RTE_FLOW_ITEM_TYPE_UDP,
596 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
597 	},
598 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
599 		.type = RTE_FLOW_ITEM_TYPE_TCP,
600 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
601 	},
602 	[MLX5_EXPANSION_VXLAN] = {
603 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
604 						  MLX5_EXPANSION_IPV4,
605 						  MLX5_EXPANSION_IPV6),
606 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
607 	},
608 	[MLX5_EXPANSION_STD_VXLAN] = {
609 			.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
610 					.type = RTE_FLOW_ITEM_TYPE_VXLAN,
611 	},
612 	[MLX5_EXPANSION_L3_VXLAN] = {
613 			.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
614 					MLX5_EXPANSION_IPV6),
615 					.type = RTE_FLOW_ITEM_TYPE_VXLAN,
616 	},
617 	[MLX5_EXPANSION_VXLAN_GPE] = {
618 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
619 						  MLX5_EXPANSION_IPV4,
620 						  MLX5_EXPANSION_IPV6),
621 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
622 	},
623 	[MLX5_EXPANSION_GRE] = {
624 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
625 						  MLX5_EXPANSION_IPV6,
626 						  MLX5_EXPANSION_GRE_KEY,
627 						  MLX5_EXPANSION_MPLS),
628 		.type = RTE_FLOW_ITEM_TYPE_GRE,
629 	},
630 	[MLX5_EXPANSION_GRE_KEY] = {
631 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
632 						  MLX5_EXPANSION_IPV6,
633 						  MLX5_EXPANSION_MPLS),
634 		.type = RTE_FLOW_ITEM_TYPE_GRE_KEY,
635 		.node_flags = MLX5_EXPANSION_NODE_OPTIONAL,
636 	},
637 	[MLX5_EXPANSION_NVGRE] = {
638 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
639 		.type = RTE_FLOW_ITEM_TYPE_NVGRE,
640 	},
641 	[MLX5_EXPANSION_MPLS] = {
642 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
643 						  MLX5_EXPANSION_IPV6,
644 						  MLX5_EXPANSION_ETH),
645 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
646 		.node_flags = MLX5_EXPANSION_NODE_OPTIONAL,
647 	},
648 	[MLX5_EXPANSION_ETH] = {
649 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
650 		.type = RTE_FLOW_ITEM_TYPE_ETH,
651 	},
652 	[MLX5_EXPANSION_VLAN] = {
653 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
654 						  MLX5_EXPANSION_IPV6),
655 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
656 		.node_flags = MLX5_EXPANSION_NODE_EXPLICIT,
657 	},
658 	[MLX5_EXPANSION_IPV4] = {
659 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
660 						  MLX5_EXPANSION_IPV4_TCP),
661 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
662 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
663 			ETH_RSS_NONFRAG_IPV4_OTHER,
664 	},
665 	[MLX5_EXPANSION_IPV4_UDP] = {
666 		.type = RTE_FLOW_ITEM_TYPE_UDP,
667 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
668 	},
669 	[MLX5_EXPANSION_IPV4_TCP] = {
670 		.type = RTE_FLOW_ITEM_TYPE_TCP,
671 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
672 	},
673 	[MLX5_EXPANSION_IPV6] = {
674 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
675 						  MLX5_EXPANSION_IPV6_TCP,
676 						  MLX5_EXPANSION_IPV6_FRAG_EXT),
677 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
678 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
679 			ETH_RSS_NONFRAG_IPV6_OTHER,
680 	},
681 	[MLX5_EXPANSION_IPV6_UDP] = {
682 		.type = RTE_FLOW_ITEM_TYPE_UDP,
683 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
684 	},
685 	[MLX5_EXPANSION_IPV6_TCP] = {
686 		.type = RTE_FLOW_ITEM_TYPE_TCP,
687 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
688 	},
689 	[MLX5_EXPANSION_IPV6_FRAG_EXT] = {
690 		.type = RTE_FLOW_ITEM_TYPE_IPV6_FRAG_EXT,
691 	},
692 	[MLX5_EXPANSION_GTP] = {
693 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
694 						  MLX5_EXPANSION_IPV6),
695 		.type = RTE_FLOW_ITEM_TYPE_GTP,
696 	},
697 };
698 
699 static struct rte_flow_action_handle *
700 mlx5_action_handle_create(struct rte_eth_dev *dev,
701 			  const struct rte_flow_indir_action_conf *conf,
702 			  const struct rte_flow_action *action,
703 			  struct rte_flow_error *error);
704 static int mlx5_action_handle_destroy
705 				(struct rte_eth_dev *dev,
706 				 struct rte_flow_action_handle *handle,
707 				 struct rte_flow_error *error);
708 static int mlx5_action_handle_update
709 				(struct rte_eth_dev *dev,
710 				 struct rte_flow_action_handle *handle,
711 				 const void *update,
712 				 struct rte_flow_error *error);
713 static int mlx5_action_handle_query
714 				(struct rte_eth_dev *dev,
715 				 const struct rte_flow_action_handle *handle,
716 				 void *data,
717 				 struct rte_flow_error *error);
718 static int
719 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
720 		    struct rte_flow_tunnel *app_tunnel,
721 		    struct rte_flow_action **actions,
722 		    uint32_t *num_of_actions,
723 		    struct rte_flow_error *error);
724 static int
725 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
726 		       struct rte_flow_tunnel *app_tunnel,
727 		       struct rte_flow_item **items,
728 		       uint32_t *num_of_items,
729 		       struct rte_flow_error *error);
730 static int
731 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
732 			      struct rte_flow_item *pmd_items,
733 			      uint32_t num_items, struct rte_flow_error *err);
734 static int
735 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
736 				struct rte_flow_action *pmd_actions,
737 				uint32_t num_actions,
738 				struct rte_flow_error *err);
739 static int
740 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
741 				  struct rte_mbuf *m,
742 				  struct rte_flow_restore_info *info,
743 				  struct rte_flow_error *err);
744 
745 static const struct rte_flow_ops mlx5_flow_ops = {
746 	.validate = mlx5_flow_validate,
747 	.create = mlx5_flow_create,
748 	.destroy = mlx5_flow_destroy,
749 	.flush = mlx5_flow_flush,
750 	.isolate = mlx5_flow_isolate,
751 	.query = mlx5_flow_query,
752 	.dev_dump = mlx5_flow_dev_dump,
753 	.get_aged_flows = mlx5_flow_get_aged_flows,
754 	.action_handle_create = mlx5_action_handle_create,
755 	.action_handle_destroy = mlx5_action_handle_destroy,
756 	.action_handle_update = mlx5_action_handle_update,
757 	.action_handle_query = mlx5_action_handle_query,
758 	.tunnel_decap_set = mlx5_flow_tunnel_decap_set,
759 	.tunnel_match = mlx5_flow_tunnel_match,
760 	.tunnel_action_decap_release = mlx5_flow_tunnel_action_release,
761 	.tunnel_item_release = mlx5_flow_tunnel_item_release,
762 	.get_restore_info = mlx5_flow_tunnel_get_restore_info,
763 };
764 
765 /* Tunnel information. */
766 struct mlx5_flow_tunnel_info {
767 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
768 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
769 };
770 
771 static struct mlx5_flow_tunnel_info tunnels_info[] = {
772 	{
773 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
774 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
775 	},
776 	{
777 		.tunnel = MLX5_FLOW_LAYER_GENEVE,
778 		.ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
779 	},
780 	{
781 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
782 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
783 	},
784 	{
785 		.tunnel = MLX5_FLOW_LAYER_GRE,
786 		.ptype = RTE_PTYPE_TUNNEL_GRE,
787 	},
788 	{
789 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
790 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
791 	},
792 	{
793 		.tunnel = MLX5_FLOW_LAYER_MPLS,
794 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
795 	},
796 	{
797 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
798 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
799 	},
800 	{
801 		.tunnel = MLX5_FLOW_LAYER_IPIP,
802 		.ptype = RTE_PTYPE_TUNNEL_IP,
803 	},
804 	{
805 		.tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
806 		.ptype = RTE_PTYPE_TUNNEL_IP,
807 	},
808 	{
809 		.tunnel = MLX5_FLOW_LAYER_GTP,
810 		.ptype = RTE_PTYPE_TUNNEL_GTPU,
811 	},
812 };
813 
814 
815 
816 /**
817  * Translate tag ID to register.
818  *
819  * @param[in] dev
820  *   Pointer to the Ethernet device structure.
821  * @param[in] feature
822  *   The feature that request the register.
823  * @param[in] id
824  *   The request register ID.
825  * @param[out] error
826  *   Error description in case of any.
827  *
828  * @return
829  *   The request register on success, a negative errno
830  *   value otherwise and rte_errno is set.
831  */
832 int
833 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
834 		     enum mlx5_feature_name feature,
835 		     uint32_t id,
836 		     struct rte_flow_error *error)
837 {
838 	struct mlx5_priv *priv = dev->data->dev_private;
839 	struct mlx5_dev_config *config = &priv->config;
840 	enum modify_reg start_reg;
841 	bool skip_mtr_reg = false;
842 
843 	switch (feature) {
844 	case MLX5_HAIRPIN_RX:
845 		return REG_B;
846 	case MLX5_HAIRPIN_TX:
847 		return REG_A;
848 	case MLX5_METADATA_RX:
849 		switch (config->dv_xmeta_en) {
850 		case MLX5_XMETA_MODE_LEGACY:
851 			return REG_B;
852 		case MLX5_XMETA_MODE_META16:
853 			return REG_C_0;
854 		case MLX5_XMETA_MODE_META32:
855 			return REG_C_1;
856 		}
857 		break;
858 	case MLX5_METADATA_TX:
859 		return REG_A;
860 	case MLX5_METADATA_FDB:
861 		switch (config->dv_xmeta_en) {
862 		case MLX5_XMETA_MODE_LEGACY:
863 			return REG_NON;
864 		case MLX5_XMETA_MODE_META16:
865 			return REG_C_0;
866 		case MLX5_XMETA_MODE_META32:
867 			return REG_C_1;
868 		}
869 		break;
870 	case MLX5_FLOW_MARK:
871 		switch (config->dv_xmeta_en) {
872 		case MLX5_XMETA_MODE_LEGACY:
873 			return REG_NON;
874 		case MLX5_XMETA_MODE_META16:
875 			return REG_C_1;
876 		case MLX5_XMETA_MODE_META32:
877 			return REG_C_0;
878 		}
879 		break;
880 	case MLX5_MTR_ID:
881 		/*
882 		 * If meter color and meter id share one register, flow match
883 		 * should use the meter color register for match.
884 		 */
885 		if (priv->mtr_reg_share)
886 			return priv->mtr_color_reg;
887 		else
888 			return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
889 			       REG_C_3;
890 	case MLX5_MTR_COLOR:
891 	case MLX5_ASO_FLOW_HIT:
892 	case MLX5_ASO_CONNTRACK:
893 		/* All features use the same REG_C. */
894 		MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
895 		return priv->mtr_color_reg;
896 	case MLX5_COPY_MARK:
897 		/*
898 		 * Metadata COPY_MARK register using is in meter suffix sub
899 		 * flow while with meter. It's safe to share the same register.
900 		 */
901 		return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
902 	case MLX5_APP_TAG:
903 		/*
904 		 * If meter is enable, it will engage the register for color
905 		 * match and flow match. If meter color match is not using the
906 		 * REG_C_2, need to skip the REG_C_x be used by meter color
907 		 * match.
908 		 * If meter is disable, free to use all available registers.
909 		 */
910 		start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
911 			    (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
912 		skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
913 		if (id > (uint32_t)(REG_C_7 - start_reg))
914 			return rte_flow_error_set(error, EINVAL,
915 						  RTE_FLOW_ERROR_TYPE_ITEM,
916 						  NULL, "invalid tag id");
917 		if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
918 			return rte_flow_error_set(error, ENOTSUP,
919 						  RTE_FLOW_ERROR_TYPE_ITEM,
920 						  NULL, "unsupported tag id");
921 		/*
922 		 * This case means meter is using the REG_C_x great than 2.
923 		 * Take care not to conflict with meter color REG_C_x.
924 		 * If the available index REG_C_y >= REG_C_x, skip the
925 		 * color register.
926 		 */
927 		if (skip_mtr_reg && config->flow_mreg_c
928 		    [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
929 			if (id >= (uint32_t)(REG_C_7 - start_reg))
930 				return rte_flow_error_set(error, EINVAL,
931 						       RTE_FLOW_ERROR_TYPE_ITEM,
932 							NULL, "invalid tag id");
933 			if (config->flow_mreg_c
934 			    [id + 1 + start_reg - REG_C_0] != REG_NON)
935 				return config->flow_mreg_c
936 					       [id + 1 + start_reg - REG_C_0];
937 			return rte_flow_error_set(error, ENOTSUP,
938 						  RTE_FLOW_ERROR_TYPE_ITEM,
939 						  NULL, "unsupported tag id");
940 		}
941 		return config->flow_mreg_c[id + start_reg - REG_C_0];
942 	}
943 	MLX5_ASSERT(false);
944 	return rte_flow_error_set(error, EINVAL,
945 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
946 				  NULL, "invalid feature name");
947 }
948 
949 /**
950  * Check extensive flow metadata register support.
951  *
952  * @param dev
953  *   Pointer to rte_eth_dev structure.
954  *
955  * @return
956  *   True if device supports extensive flow metadata register, otherwise false.
957  */
958 bool
959 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
960 {
961 	struct mlx5_priv *priv = dev->data->dev_private;
962 	struct mlx5_dev_config *config = &priv->config;
963 
964 	/*
965 	 * Having available reg_c can be regarded inclusively as supporting
966 	 * extensive flow metadata register, which could mean,
967 	 * - metadata register copy action by modify header.
968 	 * - 16 modify header actions is supported.
969 	 * - reg_c's are preserved across different domain (FDB and NIC) on
970 	 *   packet loopback by flow lookup miss.
971 	 */
972 	return config->flow_mreg_c[2] != REG_NON;
973 }
974 
975 /**
976  * Get the lowest priority.
977  *
978  * @param[in] dev
979  *   Pointer to the Ethernet device structure.
980  * @param[in] attributes
981  *   Pointer to device flow rule attributes.
982  *
983  * @return
984  *   The value of lowest priority of flow.
985  */
986 uint32_t
987 mlx5_get_lowest_priority(struct rte_eth_dev *dev,
988 			  const struct rte_flow_attr *attr)
989 {
990 	struct mlx5_priv *priv = dev->data->dev_private;
991 
992 	if (!attr->group && !attr->transfer)
993 		return priv->config.flow_prio - 2;
994 	return MLX5_NON_ROOT_FLOW_MAX_PRIO - 1;
995 }
996 
997 /**
998  * Calculate matcher priority of the flow.
999  *
1000  * @param[in] dev
1001  *   Pointer to the Ethernet device structure.
1002  * @param[in] attr
1003  *   Pointer to device flow rule attributes.
1004  * @param[in] subpriority
1005  *   The priority based on the items.
1006  * @return
1007  *   The matcher priority of the flow.
1008  */
1009 uint16_t
1010 mlx5_get_matcher_priority(struct rte_eth_dev *dev,
1011 			  const struct rte_flow_attr *attr,
1012 			  uint32_t subpriority)
1013 {
1014 	uint16_t priority = (uint16_t)attr->priority;
1015 	struct mlx5_priv *priv = dev->data->dev_private;
1016 
1017 	if (!attr->group && !attr->transfer) {
1018 		if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)
1019 			priority = priv->config.flow_prio - 1;
1020 		return mlx5_os_flow_adjust_priority(dev, priority, subpriority);
1021 	}
1022 	if (attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)
1023 		priority = MLX5_NON_ROOT_FLOW_MAX_PRIO;
1024 	return priority * 3 + subpriority;
1025 }
1026 
1027 /**
1028  * Verify the @p item specifications (spec, last, mask) are compatible with the
1029  * NIC capabilities.
1030  *
1031  * @param[in] item
1032  *   Item specification.
1033  * @param[in] mask
1034  *   @p item->mask or flow default bit-masks.
1035  * @param[in] nic_mask
1036  *   Bit-masks covering supported fields by the NIC to compare with user mask.
1037  * @param[in] size
1038  *   Bit-masks size in bytes.
1039  * @param[in] range_accepted
1040  *   True if range of values is accepted for specific fields, false otherwise.
1041  * @param[out] error
1042  *   Pointer to error structure.
1043  *
1044  * @return
1045  *   0 on success, a negative errno value otherwise and rte_errno is set.
1046  */
1047 int
1048 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
1049 			  const uint8_t *mask,
1050 			  const uint8_t *nic_mask,
1051 			  unsigned int size,
1052 			  bool range_accepted,
1053 			  struct rte_flow_error *error)
1054 {
1055 	unsigned int i;
1056 
1057 	MLX5_ASSERT(nic_mask);
1058 	for (i = 0; i < size; ++i)
1059 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
1060 			return rte_flow_error_set(error, ENOTSUP,
1061 						  RTE_FLOW_ERROR_TYPE_ITEM,
1062 						  item,
1063 						  "mask enables non supported"
1064 						  " bits");
1065 	if (!item->spec && (item->mask || item->last))
1066 		return rte_flow_error_set(error, EINVAL,
1067 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1068 					  "mask/last without a spec is not"
1069 					  " supported");
1070 	if (item->spec && item->last && !range_accepted) {
1071 		uint8_t spec[size];
1072 		uint8_t last[size];
1073 		unsigned int i;
1074 		int ret;
1075 
1076 		for (i = 0; i < size; ++i) {
1077 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
1078 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
1079 		}
1080 		ret = memcmp(spec, last, size);
1081 		if (ret != 0)
1082 			return rte_flow_error_set(error, EINVAL,
1083 						  RTE_FLOW_ERROR_TYPE_ITEM,
1084 						  item,
1085 						  "range is not valid");
1086 	}
1087 	return 0;
1088 }
1089 
1090 /**
1091  * Adjust the hash fields according to the @p flow information.
1092  *
1093  * @param[in] dev_flow.
1094  *   Pointer to the mlx5_flow.
1095  * @param[in] tunnel
1096  *   1 when the hash field is for a tunnel item.
1097  * @param[in] layer_types
1098  *   ETH_RSS_* types.
1099  * @param[in] hash_fields
1100  *   Item hash fields.
1101  *
1102  * @return
1103  *   The hash fields that should be used.
1104  */
1105 uint64_t
1106 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
1107 			    int tunnel __rte_unused, uint64_t layer_types,
1108 			    uint64_t hash_fields)
1109 {
1110 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1111 	int rss_request_inner = rss_desc->level >= 2;
1112 
1113 	/* Check RSS hash level for tunnel. */
1114 	if (tunnel && rss_request_inner)
1115 		hash_fields |= IBV_RX_HASH_INNER;
1116 	else if (tunnel || rss_request_inner)
1117 		return 0;
1118 #endif
1119 	/* Check if requested layer matches RSS hash fields. */
1120 	if (!(rss_desc->types & layer_types))
1121 		return 0;
1122 	return hash_fields;
1123 }
1124 
1125 /**
1126  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
1127  * if several tunnel rules are used on this queue, the tunnel ptype will be
1128  * cleared.
1129  *
1130  * @param rxq_ctrl
1131  *   Rx queue to update.
1132  */
1133 static void
1134 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
1135 {
1136 	unsigned int i;
1137 	uint32_t tunnel_ptype = 0;
1138 
1139 	/* Look up for the ptype to use. */
1140 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
1141 		if (!rxq_ctrl->flow_tunnels_n[i])
1142 			continue;
1143 		if (!tunnel_ptype) {
1144 			tunnel_ptype = tunnels_info[i].ptype;
1145 		} else {
1146 			tunnel_ptype = 0;
1147 			break;
1148 		}
1149 	}
1150 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
1151 }
1152 
1153 /**
1154  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
1155  * flow.
1156  *
1157  * @param[in] dev
1158  *   Pointer to the Ethernet device structure.
1159  * @param[in] dev_handle
1160  *   Pointer to device flow handle structure.
1161  */
1162 void
1163 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
1164 		       struct mlx5_flow_handle *dev_handle)
1165 {
1166 	struct mlx5_priv *priv = dev->data->dev_private;
1167 	const int mark = dev_handle->mark;
1168 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1169 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1170 	unsigned int i;
1171 
1172 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1173 		struct mlx5_hrxq *hrxq;
1174 
1175 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1176 			      dev_handle->rix_hrxq);
1177 		if (hrxq)
1178 			ind_tbl = hrxq->ind_table;
1179 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1180 		struct mlx5_shared_action_rss *shared_rss;
1181 
1182 		shared_rss = mlx5_ipool_get
1183 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1184 			 dev_handle->rix_srss);
1185 		if (shared_rss)
1186 			ind_tbl = shared_rss->ind_tbl;
1187 	}
1188 	if (!ind_tbl)
1189 		return;
1190 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1191 		int idx = ind_tbl->queues[i];
1192 		struct mlx5_rxq_ctrl *rxq_ctrl =
1193 			container_of((*priv->rxqs)[idx],
1194 				     struct mlx5_rxq_ctrl, rxq);
1195 
1196 		/*
1197 		 * To support metadata register copy on Tx loopback,
1198 		 * this must be always enabled (metadata may arive
1199 		 * from other port - not from local flows only.
1200 		 */
1201 		if (priv->config.dv_flow_en &&
1202 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1203 		    mlx5_flow_ext_mreg_supported(dev)) {
1204 			rxq_ctrl->rxq.mark = 1;
1205 			rxq_ctrl->flow_mark_n = 1;
1206 		} else if (mark) {
1207 			rxq_ctrl->rxq.mark = 1;
1208 			rxq_ctrl->flow_mark_n++;
1209 		}
1210 		if (tunnel) {
1211 			unsigned int j;
1212 
1213 			/* Increase the counter matching the flow. */
1214 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1215 				if ((tunnels_info[j].tunnel &
1216 				     dev_handle->layers) ==
1217 				    tunnels_info[j].tunnel) {
1218 					rxq_ctrl->flow_tunnels_n[j]++;
1219 					break;
1220 				}
1221 			}
1222 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1223 		}
1224 	}
1225 }
1226 
1227 /**
1228  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
1229  *
1230  * @param[in] dev
1231  *   Pointer to the Ethernet device structure.
1232  * @param[in] flow
1233  *   Pointer to flow structure.
1234  */
1235 static void
1236 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
1237 {
1238 	struct mlx5_priv *priv = dev->data->dev_private;
1239 	uint32_t handle_idx;
1240 	struct mlx5_flow_handle *dev_handle;
1241 
1242 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1243 		       handle_idx, dev_handle, next)
1244 		flow_drv_rxq_flags_set(dev, dev_handle);
1245 }
1246 
1247 /**
1248  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1249  * device flow if no other flow uses it with the same kind of request.
1250  *
1251  * @param dev
1252  *   Pointer to Ethernet device.
1253  * @param[in] dev_handle
1254  *   Pointer to the device flow handle structure.
1255  */
1256 static void
1257 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1258 			struct mlx5_flow_handle *dev_handle)
1259 {
1260 	struct mlx5_priv *priv = dev->data->dev_private;
1261 	const int mark = dev_handle->mark;
1262 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1263 	struct mlx5_ind_table_obj *ind_tbl = NULL;
1264 	unsigned int i;
1265 
1266 	if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) {
1267 		struct mlx5_hrxq *hrxq;
1268 
1269 		hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1270 			      dev_handle->rix_hrxq);
1271 		if (hrxq)
1272 			ind_tbl = hrxq->ind_table;
1273 	} else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) {
1274 		struct mlx5_shared_action_rss *shared_rss;
1275 
1276 		shared_rss = mlx5_ipool_get
1277 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
1278 			 dev_handle->rix_srss);
1279 		if (shared_rss)
1280 			ind_tbl = shared_rss->ind_tbl;
1281 	}
1282 	if (!ind_tbl)
1283 		return;
1284 	MLX5_ASSERT(dev->data->dev_started);
1285 	for (i = 0; i != ind_tbl->queues_n; ++i) {
1286 		int idx = ind_tbl->queues[i];
1287 		struct mlx5_rxq_ctrl *rxq_ctrl =
1288 			container_of((*priv->rxqs)[idx],
1289 				     struct mlx5_rxq_ctrl, rxq);
1290 
1291 		if (priv->config.dv_flow_en &&
1292 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1293 		    mlx5_flow_ext_mreg_supported(dev)) {
1294 			rxq_ctrl->rxq.mark = 1;
1295 			rxq_ctrl->flow_mark_n = 1;
1296 		} else if (mark) {
1297 			rxq_ctrl->flow_mark_n--;
1298 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
1299 		}
1300 		if (tunnel) {
1301 			unsigned int j;
1302 
1303 			/* Decrease the counter matching the flow. */
1304 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1305 				if ((tunnels_info[j].tunnel &
1306 				     dev_handle->layers) ==
1307 				    tunnels_info[j].tunnel) {
1308 					rxq_ctrl->flow_tunnels_n[j]--;
1309 					break;
1310 				}
1311 			}
1312 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1313 		}
1314 	}
1315 }
1316 
1317 /**
1318  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1319  * @p flow if no other flow uses it with the same kind of request.
1320  *
1321  * @param dev
1322  *   Pointer to Ethernet device.
1323  * @param[in] flow
1324  *   Pointer to the flow.
1325  */
1326 static void
1327 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1328 {
1329 	struct mlx5_priv *priv = dev->data->dev_private;
1330 	uint32_t handle_idx;
1331 	struct mlx5_flow_handle *dev_handle;
1332 
1333 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1334 		       handle_idx, dev_handle, next)
1335 		flow_drv_rxq_flags_trim(dev, dev_handle);
1336 }
1337 
1338 /**
1339  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1340  *
1341  * @param dev
1342  *   Pointer to Ethernet device.
1343  */
1344 static void
1345 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1346 {
1347 	struct mlx5_priv *priv = dev->data->dev_private;
1348 	unsigned int i;
1349 
1350 	for (i = 0; i != priv->rxqs_n; ++i) {
1351 		struct mlx5_rxq_ctrl *rxq_ctrl;
1352 		unsigned int j;
1353 
1354 		if (!(*priv->rxqs)[i])
1355 			continue;
1356 		rxq_ctrl = container_of((*priv->rxqs)[i],
1357 					struct mlx5_rxq_ctrl, rxq);
1358 		rxq_ctrl->flow_mark_n = 0;
1359 		rxq_ctrl->rxq.mark = 0;
1360 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1361 			rxq_ctrl->flow_tunnels_n[j] = 0;
1362 		rxq_ctrl->rxq.tunnel = 0;
1363 	}
1364 }
1365 
1366 /**
1367  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1368  *
1369  * @param[in] dev
1370  *   Pointer to the Ethernet device structure.
1371  */
1372 void
1373 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1374 {
1375 	struct mlx5_priv *priv = dev->data->dev_private;
1376 	struct mlx5_rxq_data *data;
1377 	unsigned int i;
1378 
1379 	for (i = 0; i != priv->rxqs_n; ++i) {
1380 		if (!(*priv->rxqs)[i])
1381 			continue;
1382 		data = (*priv->rxqs)[i];
1383 		if (!rte_flow_dynf_metadata_avail()) {
1384 			data->dynf_meta = 0;
1385 			data->flow_meta_mask = 0;
1386 			data->flow_meta_offset = -1;
1387 			data->flow_meta_port_mask = 0;
1388 		} else {
1389 			data->dynf_meta = 1;
1390 			data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1391 			data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1392 			data->flow_meta_port_mask = priv->sh->dv_meta_mask;
1393 		}
1394 	}
1395 }
1396 
1397 /*
1398  * return a pointer to the desired action in the list of actions.
1399  *
1400  * @param[in] actions
1401  *   The list of actions to search the action in.
1402  * @param[in] action
1403  *   The action to find.
1404  *
1405  * @return
1406  *   Pointer to the action in the list, if found. NULL otherwise.
1407  */
1408 const struct rte_flow_action *
1409 mlx5_flow_find_action(const struct rte_flow_action *actions,
1410 		      enum rte_flow_action_type action)
1411 {
1412 	if (actions == NULL)
1413 		return NULL;
1414 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1415 		if (actions->type == action)
1416 			return actions;
1417 	return NULL;
1418 }
1419 
1420 /*
1421  * Validate the flag action.
1422  *
1423  * @param[in] action_flags
1424  *   Bit-fields that holds the actions detected until now.
1425  * @param[in] attr
1426  *   Attributes of flow that includes this action.
1427  * @param[out] error
1428  *   Pointer to error structure.
1429  *
1430  * @return
1431  *   0 on success, a negative errno value otherwise and rte_errno is set.
1432  */
1433 int
1434 mlx5_flow_validate_action_flag(uint64_t action_flags,
1435 			       const struct rte_flow_attr *attr,
1436 			       struct rte_flow_error *error)
1437 {
1438 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1439 		return rte_flow_error_set(error, EINVAL,
1440 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1441 					  "can't mark and flag in same flow");
1442 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1443 		return rte_flow_error_set(error, EINVAL,
1444 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1445 					  "can't have 2 flag"
1446 					  " actions in same flow");
1447 	if (attr->egress)
1448 		return rte_flow_error_set(error, ENOTSUP,
1449 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1450 					  "flag action not supported for "
1451 					  "egress");
1452 	return 0;
1453 }
1454 
1455 /*
1456  * Validate the mark action.
1457  *
1458  * @param[in] action
1459  *   Pointer to the queue action.
1460  * @param[in] action_flags
1461  *   Bit-fields that holds the actions detected until now.
1462  * @param[in] attr
1463  *   Attributes of flow that includes this action.
1464  * @param[out] error
1465  *   Pointer to error structure.
1466  *
1467  * @return
1468  *   0 on success, a negative errno value otherwise and rte_errno is set.
1469  */
1470 int
1471 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1472 			       uint64_t action_flags,
1473 			       const struct rte_flow_attr *attr,
1474 			       struct rte_flow_error *error)
1475 {
1476 	const struct rte_flow_action_mark *mark = action->conf;
1477 
1478 	if (!mark)
1479 		return rte_flow_error_set(error, EINVAL,
1480 					  RTE_FLOW_ERROR_TYPE_ACTION,
1481 					  action,
1482 					  "configuration cannot be null");
1483 	if (mark->id >= MLX5_FLOW_MARK_MAX)
1484 		return rte_flow_error_set(error, EINVAL,
1485 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1486 					  &mark->id,
1487 					  "mark id must in 0 <= id < "
1488 					  RTE_STR(MLX5_FLOW_MARK_MAX));
1489 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1490 		return rte_flow_error_set(error, EINVAL,
1491 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1492 					  "can't flag and mark in same flow");
1493 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1494 		return rte_flow_error_set(error, EINVAL,
1495 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1496 					  "can't have 2 mark actions in same"
1497 					  " flow");
1498 	if (attr->egress)
1499 		return rte_flow_error_set(error, ENOTSUP,
1500 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1501 					  "mark action not supported for "
1502 					  "egress");
1503 	return 0;
1504 }
1505 
1506 /*
1507  * Validate the drop action.
1508  *
1509  * @param[in] action_flags
1510  *   Bit-fields that holds the actions detected until now.
1511  * @param[in] attr
1512  *   Attributes of flow that includes this action.
1513  * @param[out] error
1514  *   Pointer to error structure.
1515  *
1516  * @return
1517  *   0 on success, a negative errno value otherwise and rte_errno is set.
1518  */
1519 int
1520 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1521 			       const struct rte_flow_attr *attr,
1522 			       struct rte_flow_error *error)
1523 {
1524 	if (attr->egress)
1525 		return rte_flow_error_set(error, ENOTSUP,
1526 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1527 					  "drop action not supported for "
1528 					  "egress");
1529 	return 0;
1530 }
1531 
1532 /*
1533  * Validate the queue action.
1534  *
1535  * @param[in] action
1536  *   Pointer to the queue action.
1537  * @param[in] action_flags
1538  *   Bit-fields that holds the actions detected until now.
1539  * @param[in] dev
1540  *   Pointer to the Ethernet device structure.
1541  * @param[in] attr
1542  *   Attributes of flow that includes this action.
1543  * @param[out] error
1544  *   Pointer to error structure.
1545  *
1546  * @return
1547  *   0 on success, a negative errno value otherwise and rte_errno is set.
1548  */
1549 int
1550 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1551 				uint64_t action_flags,
1552 				struct rte_eth_dev *dev,
1553 				const struct rte_flow_attr *attr,
1554 				struct rte_flow_error *error)
1555 {
1556 	struct mlx5_priv *priv = dev->data->dev_private;
1557 	const struct rte_flow_action_queue *queue = action->conf;
1558 
1559 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1560 		return rte_flow_error_set(error, EINVAL,
1561 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1562 					  "can't have 2 fate actions in"
1563 					  " same flow");
1564 	if (!priv->rxqs_n)
1565 		return rte_flow_error_set(error, EINVAL,
1566 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1567 					  NULL, "No Rx queues configured");
1568 	if (queue->index >= priv->rxqs_n)
1569 		return rte_flow_error_set(error, EINVAL,
1570 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1571 					  &queue->index,
1572 					  "queue index out of range");
1573 	if (!(*priv->rxqs)[queue->index])
1574 		return rte_flow_error_set(error, EINVAL,
1575 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1576 					  &queue->index,
1577 					  "queue is not configured");
1578 	if (attr->egress)
1579 		return rte_flow_error_set(error, ENOTSUP,
1580 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1581 					  "queue action not supported for "
1582 					  "egress");
1583 	return 0;
1584 }
1585 
1586 /*
1587  * Validate the rss action.
1588  *
1589  * @param[in] dev
1590  *   Pointer to the Ethernet device structure.
1591  * @param[in] action
1592  *   Pointer to the queue action.
1593  * @param[out] error
1594  *   Pointer to error structure.
1595  *
1596  * @return
1597  *   0 on success, a negative errno value otherwise and rte_errno is set.
1598  */
1599 int
1600 mlx5_validate_action_rss(struct rte_eth_dev *dev,
1601 			 const struct rte_flow_action *action,
1602 			 struct rte_flow_error *error)
1603 {
1604 	struct mlx5_priv *priv = dev->data->dev_private;
1605 	const struct rte_flow_action_rss *rss = action->conf;
1606 	enum mlx5_rxq_type rxq_type = MLX5_RXQ_TYPE_UNDEFINED;
1607 	unsigned int i;
1608 
1609 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1610 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1611 		return rte_flow_error_set(error, ENOTSUP,
1612 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1613 					  &rss->func,
1614 					  "RSS hash function not supported");
1615 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1616 	if (rss->level > 2)
1617 #else
1618 	if (rss->level > 1)
1619 #endif
1620 		return rte_flow_error_set(error, ENOTSUP,
1621 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1622 					  &rss->level,
1623 					  "tunnel RSS is not supported");
1624 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
1625 	if (rss->key_len == 0 && rss->key != NULL)
1626 		return rte_flow_error_set(error, ENOTSUP,
1627 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1628 					  &rss->key_len,
1629 					  "RSS hash key length 0");
1630 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1631 		return rte_flow_error_set(error, ENOTSUP,
1632 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1633 					  &rss->key_len,
1634 					  "RSS hash key too small");
1635 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1636 		return rte_flow_error_set(error, ENOTSUP,
1637 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1638 					  &rss->key_len,
1639 					  "RSS hash key too large");
1640 	if (rss->queue_num > priv->config.ind_table_max_size)
1641 		return rte_flow_error_set(error, ENOTSUP,
1642 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1643 					  &rss->queue_num,
1644 					  "number of queues too large");
1645 	if (rss->types & MLX5_RSS_HF_MASK)
1646 		return rte_flow_error_set(error, ENOTSUP,
1647 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1648 					  &rss->types,
1649 					  "some RSS protocols are not"
1650 					  " supported");
1651 	if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) &&
1652 	    !(rss->types & ETH_RSS_IP))
1653 		return rte_flow_error_set(error, EINVAL,
1654 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1655 					  "L3 partial RSS requested but L3 RSS"
1656 					  " type not specified");
1657 	if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) &&
1658 	    !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP)))
1659 		return rte_flow_error_set(error, EINVAL,
1660 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1661 					  "L4 partial RSS requested but L4 RSS"
1662 					  " type not specified");
1663 	if (!priv->rxqs_n)
1664 		return rte_flow_error_set(error, EINVAL,
1665 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1666 					  NULL, "No Rx queues configured");
1667 	if (!rss->queue_num)
1668 		return rte_flow_error_set(error, EINVAL,
1669 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1670 					  NULL, "No queues configured");
1671 	for (i = 0; i != rss->queue_num; ++i) {
1672 		struct mlx5_rxq_ctrl *rxq_ctrl;
1673 
1674 		if (rss->queue[i] >= priv->rxqs_n)
1675 			return rte_flow_error_set
1676 				(error, EINVAL,
1677 				 RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1678 				 &rss->queue[i], "queue index out of range");
1679 		if (!(*priv->rxqs)[rss->queue[i]])
1680 			return rte_flow_error_set
1681 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1682 				 &rss->queue[i], "queue is not configured");
1683 		rxq_ctrl = container_of((*priv->rxqs)[rss->queue[i]],
1684 					struct mlx5_rxq_ctrl, rxq);
1685 		if (i == 0)
1686 			rxq_type = rxq_ctrl->type;
1687 		if (rxq_type != rxq_ctrl->type)
1688 			return rte_flow_error_set
1689 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1690 				 &rss->queue[i],
1691 				 "combining hairpin and regular RSS queues is not supported");
1692 	}
1693 	return 0;
1694 }
1695 
1696 /*
1697  * Validate the rss action.
1698  *
1699  * @param[in] action
1700  *   Pointer to the queue action.
1701  * @param[in] action_flags
1702  *   Bit-fields that holds the actions detected until now.
1703  * @param[in] dev
1704  *   Pointer to the Ethernet device structure.
1705  * @param[in] attr
1706  *   Attributes of flow that includes this action.
1707  * @param[in] item_flags
1708  *   Items that were detected.
1709  * @param[out] error
1710  *   Pointer to error structure.
1711  *
1712  * @return
1713  *   0 on success, a negative errno value otherwise and rte_errno is set.
1714  */
1715 int
1716 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1717 			      uint64_t action_flags,
1718 			      struct rte_eth_dev *dev,
1719 			      const struct rte_flow_attr *attr,
1720 			      uint64_t item_flags,
1721 			      struct rte_flow_error *error)
1722 {
1723 	const struct rte_flow_action_rss *rss = action->conf;
1724 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1725 	int ret;
1726 
1727 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1728 		return rte_flow_error_set(error, EINVAL,
1729 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1730 					  "can't have 2 fate actions"
1731 					  " in same flow");
1732 	ret = mlx5_validate_action_rss(dev, action, error);
1733 	if (ret)
1734 		return ret;
1735 	if (attr->egress)
1736 		return rte_flow_error_set(error, ENOTSUP,
1737 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1738 					  "rss action not supported for "
1739 					  "egress");
1740 	if (rss->level > 1 && !tunnel)
1741 		return rte_flow_error_set(error, EINVAL,
1742 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1743 					  "inner RSS is not supported for "
1744 					  "non-tunnel flows");
1745 	if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1746 	    !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1747 		return rte_flow_error_set(error, EINVAL,
1748 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1749 					  "RSS on eCPRI is not supported now");
1750 	}
1751 	if ((item_flags & MLX5_FLOW_LAYER_MPLS) &&
1752 	    !(item_flags &
1753 	      (MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_L3)) &&
1754 	    rss->level > 1)
1755 		return rte_flow_error_set(error, EINVAL,
1756 					  RTE_FLOW_ERROR_TYPE_ITEM, NULL,
1757 					  "MPLS inner RSS needs to specify inner L2/L3 items after MPLS in pattern");
1758 	return 0;
1759 }
1760 
1761 /*
1762  * Validate the default miss action.
1763  *
1764  * @param[in] action_flags
1765  *   Bit-fields that holds the actions detected until now.
1766  * @param[out] error
1767  *   Pointer to error structure.
1768  *
1769  * @return
1770  *   0 on success, a negative errno value otherwise and rte_errno is set.
1771  */
1772 int
1773 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
1774 				const struct rte_flow_attr *attr,
1775 				struct rte_flow_error *error)
1776 {
1777 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1778 		return rte_flow_error_set(error, EINVAL,
1779 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1780 					  "can't have 2 fate actions in"
1781 					  " same flow");
1782 	if (attr->egress)
1783 		return rte_flow_error_set(error, ENOTSUP,
1784 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1785 					  "default miss action not supported "
1786 					  "for egress");
1787 	if (attr->group)
1788 		return rte_flow_error_set(error, ENOTSUP,
1789 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
1790 					  "only group 0 is supported");
1791 	if (attr->transfer)
1792 		return rte_flow_error_set(error, ENOTSUP,
1793 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1794 					  NULL, "transfer is not supported");
1795 	return 0;
1796 }
1797 
1798 /*
1799  * Validate the count action.
1800  *
1801  * @param[in] dev
1802  *   Pointer to the Ethernet device structure.
1803  * @param[in] attr
1804  *   Attributes of flow that includes this action.
1805  * @param[out] error
1806  *   Pointer to error structure.
1807  *
1808  * @return
1809  *   0 on success, a negative errno value otherwise and rte_errno is set.
1810  */
1811 int
1812 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1813 				const struct rte_flow_attr *attr,
1814 				struct rte_flow_error *error)
1815 {
1816 	if (attr->egress)
1817 		return rte_flow_error_set(error, ENOTSUP,
1818 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1819 					  "count action not supported for "
1820 					  "egress");
1821 	return 0;
1822 }
1823 
1824 /*
1825  * Validate the ASO CT action.
1826  *
1827  * @param[in] dev
1828  *   Pointer to the Ethernet device structure.
1829  * @param[in] conntrack
1830  *   Pointer to the CT action profile.
1831  * @param[out] error
1832  *   Pointer to error structure.
1833  *
1834  * @return
1835  *   0 on success, a negative errno value otherwise and rte_errno is set.
1836  */
1837 int
1838 mlx5_validate_action_ct(struct rte_eth_dev *dev,
1839 			const struct rte_flow_action_conntrack *conntrack,
1840 			struct rte_flow_error *error)
1841 {
1842 	RTE_SET_USED(dev);
1843 
1844 	if (conntrack->state > RTE_FLOW_CONNTRACK_STATE_TIME_WAIT)
1845 		return rte_flow_error_set(error, EINVAL,
1846 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1847 					  "Invalid CT state");
1848 	if (conntrack->last_index > RTE_FLOW_CONNTRACK_FLAG_RST)
1849 		return rte_flow_error_set(error, EINVAL,
1850 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1851 					  "Invalid last TCP packet flag");
1852 	return 0;
1853 }
1854 
1855 /**
1856  * Verify the @p attributes will be correctly understood by the NIC and store
1857  * them in the @p flow if everything is correct.
1858  *
1859  * @param[in] dev
1860  *   Pointer to the Ethernet device structure.
1861  * @param[in] attributes
1862  *   Pointer to flow attributes
1863  * @param[out] error
1864  *   Pointer to error structure.
1865  *
1866  * @return
1867  *   0 on success, a negative errno value otherwise and rte_errno is set.
1868  */
1869 int
1870 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1871 			      const struct rte_flow_attr *attributes,
1872 			      struct rte_flow_error *error)
1873 {
1874 	struct mlx5_priv *priv = dev->data->dev_private;
1875 	uint32_t priority_max = priv->config.flow_prio - 1;
1876 
1877 	if (attributes->group)
1878 		return rte_flow_error_set(error, ENOTSUP,
1879 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1880 					  NULL, "groups is not supported");
1881 	if (attributes->priority != MLX5_FLOW_LOWEST_PRIO_INDICATOR &&
1882 	    attributes->priority >= priority_max)
1883 		return rte_flow_error_set(error, ENOTSUP,
1884 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1885 					  NULL, "priority out of range");
1886 	if (attributes->egress)
1887 		return rte_flow_error_set(error, ENOTSUP,
1888 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1889 					  "egress is not supported");
1890 	if (attributes->transfer && !priv->config.dv_esw_en)
1891 		return rte_flow_error_set(error, ENOTSUP,
1892 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1893 					  NULL, "transfer is not supported");
1894 	if (!attributes->ingress)
1895 		return rte_flow_error_set(error, EINVAL,
1896 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1897 					  NULL,
1898 					  "ingress attribute is mandatory");
1899 	return 0;
1900 }
1901 
1902 /**
1903  * Validate ICMP6 item.
1904  *
1905  * @param[in] item
1906  *   Item specification.
1907  * @param[in] item_flags
1908  *   Bit-fields that holds the items detected until now.
1909  * @param[in] ext_vlan_sup
1910  *   Whether extended VLAN features are supported or not.
1911  * @param[out] error
1912  *   Pointer to error structure.
1913  *
1914  * @return
1915  *   0 on success, a negative errno value otherwise and rte_errno is set.
1916  */
1917 int
1918 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1919 			       uint64_t item_flags,
1920 			       uint8_t target_protocol,
1921 			       struct rte_flow_error *error)
1922 {
1923 	const struct rte_flow_item_icmp6 *mask = item->mask;
1924 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1925 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1926 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1927 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1928 				      MLX5_FLOW_LAYER_OUTER_L4;
1929 	int ret;
1930 
1931 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1932 		return rte_flow_error_set(error, EINVAL,
1933 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1934 					  "protocol filtering not compatible"
1935 					  " with ICMP6 layer");
1936 	if (!(item_flags & l3m))
1937 		return rte_flow_error_set(error, EINVAL,
1938 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1939 					  "IPv6 is mandatory to filter on"
1940 					  " ICMP6");
1941 	if (item_flags & l4m)
1942 		return rte_flow_error_set(error, EINVAL,
1943 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1944 					  "multiple L4 layers not supported");
1945 	if (!mask)
1946 		mask = &rte_flow_item_icmp6_mask;
1947 	ret = mlx5_flow_item_acceptable
1948 		(item, (const uint8_t *)mask,
1949 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
1950 		 sizeof(struct rte_flow_item_icmp6),
1951 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1952 	if (ret < 0)
1953 		return ret;
1954 	return 0;
1955 }
1956 
1957 /**
1958  * Validate ICMP item.
1959  *
1960  * @param[in] item
1961  *   Item specification.
1962  * @param[in] item_flags
1963  *   Bit-fields that holds the items detected until now.
1964  * @param[out] error
1965  *   Pointer to error structure.
1966  *
1967  * @return
1968  *   0 on success, a negative errno value otherwise and rte_errno is set.
1969  */
1970 int
1971 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1972 			     uint64_t item_flags,
1973 			     uint8_t target_protocol,
1974 			     struct rte_flow_error *error)
1975 {
1976 	const struct rte_flow_item_icmp *mask = item->mask;
1977 	const struct rte_flow_item_icmp nic_mask = {
1978 		.hdr.icmp_type = 0xff,
1979 		.hdr.icmp_code = 0xff,
1980 		.hdr.icmp_ident = RTE_BE16(0xffff),
1981 		.hdr.icmp_seq_nb = RTE_BE16(0xffff),
1982 	};
1983 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1984 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1985 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1986 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1987 				      MLX5_FLOW_LAYER_OUTER_L4;
1988 	int ret;
1989 
1990 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1991 		return rte_flow_error_set(error, EINVAL,
1992 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1993 					  "protocol filtering not compatible"
1994 					  " with ICMP layer");
1995 	if (!(item_flags & l3m))
1996 		return rte_flow_error_set(error, EINVAL,
1997 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1998 					  "IPv4 is mandatory to filter"
1999 					  " on ICMP");
2000 	if (item_flags & l4m)
2001 		return rte_flow_error_set(error, EINVAL,
2002 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2003 					  "multiple L4 layers not supported");
2004 	if (!mask)
2005 		mask = &nic_mask;
2006 	ret = mlx5_flow_item_acceptable
2007 		(item, (const uint8_t *)mask,
2008 		 (const uint8_t *)&nic_mask,
2009 		 sizeof(struct rte_flow_item_icmp),
2010 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2011 	if (ret < 0)
2012 		return ret;
2013 	return 0;
2014 }
2015 
2016 /**
2017  * Validate Ethernet item.
2018  *
2019  * @param[in] item
2020  *   Item specification.
2021  * @param[in] item_flags
2022  *   Bit-fields that holds the items detected until now.
2023  * @param[out] error
2024  *   Pointer to error structure.
2025  *
2026  * @return
2027  *   0 on success, a negative errno value otherwise and rte_errno is set.
2028  */
2029 int
2030 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
2031 			    uint64_t item_flags, bool ext_vlan_sup,
2032 			    struct rte_flow_error *error)
2033 {
2034 	const struct rte_flow_item_eth *mask = item->mask;
2035 	const struct rte_flow_item_eth nic_mask = {
2036 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
2037 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
2038 		.type = RTE_BE16(0xffff),
2039 		.has_vlan = ext_vlan_sup ? 1 : 0,
2040 	};
2041 	int ret;
2042 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2043 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
2044 				       MLX5_FLOW_LAYER_OUTER_L2;
2045 
2046 	if (item_flags & ethm)
2047 		return rte_flow_error_set(error, ENOTSUP,
2048 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2049 					  "multiple L2 layers not supported");
2050 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
2051 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
2052 		return rte_flow_error_set(error, EINVAL,
2053 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2054 					  "L2 layer should not follow "
2055 					  "L3 layers");
2056 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
2057 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
2058 		return rte_flow_error_set(error, EINVAL,
2059 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2060 					  "L2 layer should not follow VLAN");
2061 	if (item_flags & MLX5_FLOW_LAYER_GTP)
2062 		return rte_flow_error_set(error, EINVAL,
2063 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2064 					  "L2 layer should not follow GTP");
2065 	if (!mask)
2066 		mask = &rte_flow_item_eth_mask;
2067 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2068 					(const uint8_t *)&nic_mask,
2069 					sizeof(struct rte_flow_item_eth),
2070 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2071 	return ret;
2072 }
2073 
2074 /**
2075  * Validate VLAN item.
2076  *
2077  * @param[in] item
2078  *   Item specification.
2079  * @param[in] item_flags
2080  *   Bit-fields that holds the items detected until now.
2081  * @param[in] dev
2082  *   Ethernet device flow is being created on.
2083  * @param[out] error
2084  *   Pointer to error structure.
2085  *
2086  * @return
2087  *   0 on success, a negative errno value otherwise and rte_errno is set.
2088  */
2089 int
2090 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
2091 			     uint64_t item_flags,
2092 			     struct rte_eth_dev *dev,
2093 			     struct rte_flow_error *error)
2094 {
2095 	const struct rte_flow_item_vlan *spec = item->spec;
2096 	const struct rte_flow_item_vlan *mask = item->mask;
2097 	const struct rte_flow_item_vlan nic_mask = {
2098 		.tci = RTE_BE16(UINT16_MAX),
2099 		.inner_type = RTE_BE16(UINT16_MAX),
2100 	};
2101 	uint16_t vlan_tag = 0;
2102 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2103 	int ret;
2104 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
2105 					MLX5_FLOW_LAYER_INNER_L4) :
2106 				       (MLX5_FLOW_LAYER_OUTER_L3 |
2107 					MLX5_FLOW_LAYER_OUTER_L4);
2108 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
2109 					MLX5_FLOW_LAYER_OUTER_VLAN;
2110 
2111 	if (item_flags & vlanm)
2112 		return rte_flow_error_set(error, EINVAL,
2113 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2114 					  "multiple VLAN layers not supported");
2115 	else if ((item_flags & l34m) != 0)
2116 		return rte_flow_error_set(error, EINVAL,
2117 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2118 					  "VLAN cannot follow L3/L4 layer");
2119 	if (!mask)
2120 		mask = &rte_flow_item_vlan_mask;
2121 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2122 					(const uint8_t *)&nic_mask,
2123 					sizeof(struct rte_flow_item_vlan),
2124 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2125 	if (ret)
2126 		return ret;
2127 	if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
2128 		struct mlx5_priv *priv = dev->data->dev_private;
2129 
2130 		if (priv->vmwa_context) {
2131 			/*
2132 			 * Non-NULL context means we have a virtual machine
2133 			 * and SR-IOV enabled, we have to create VLAN interface
2134 			 * to make hypervisor to setup E-Switch vport
2135 			 * context correctly. We avoid creating the multiple
2136 			 * VLAN interfaces, so we cannot support VLAN tag mask.
2137 			 */
2138 			return rte_flow_error_set(error, EINVAL,
2139 						  RTE_FLOW_ERROR_TYPE_ITEM,
2140 						  item,
2141 						  "VLAN tag mask is not"
2142 						  " supported in virtual"
2143 						  " environment");
2144 		}
2145 	}
2146 	if (spec) {
2147 		vlan_tag = spec->tci;
2148 		vlan_tag &= mask->tci;
2149 	}
2150 	/*
2151 	 * From verbs perspective an empty VLAN is equivalent
2152 	 * to a packet without VLAN layer.
2153 	 */
2154 	if (!vlan_tag)
2155 		return rte_flow_error_set(error, EINVAL,
2156 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
2157 					  item->spec,
2158 					  "VLAN cannot be empty");
2159 	return 0;
2160 }
2161 
2162 /**
2163  * Validate IPV4 item.
2164  *
2165  * @param[in] item
2166  *   Item specification.
2167  * @param[in] item_flags
2168  *   Bit-fields that holds the items detected until now.
2169  * @param[in] last_item
2170  *   Previous validated item in the pattern items.
2171  * @param[in] ether_type
2172  *   Type in the ethernet layer header (including dot1q).
2173  * @param[in] acc_mask
2174  *   Acceptable mask, if NULL default internal default mask
2175  *   will be used to check whether item fields are supported.
2176  * @param[in] range_accepted
2177  *   True if range of values is accepted for specific fields, false otherwise.
2178  * @param[out] error
2179  *   Pointer to error structure.
2180  *
2181  * @return
2182  *   0 on success, a negative errno value otherwise and rte_errno is set.
2183  */
2184 int
2185 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
2186 			     uint64_t item_flags,
2187 			     uint64_t last_item,
2188 			     uint16_t ether_type,
2189 			     const struct rte_flow_item_ipv4 *acc_mask,
2190 			     bool range_accepted,
2191 			     struct rte_flow_error *error)
2192 {
2193 	const struct rte_flow_item_ipv4 *mask = item->mask;
2194 	const struct rte_flow_item_ipv4 *spec = item->spec;
2195 	const struct rte_flow_item_ipv4 nic_mask = {
2196 		.hdr = {
2197 			.src_addr = RTE_BE32(0xffffffff),
2198 			.dst_addr = RTE_BE32(0xffffffff),
2199 			.type_of_service = 0xff,
2200 			.next_proto_id = 0xff,
2201 		},
2202 	};
2203 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2204 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2205 				      MLX5_FLOW_LAYER_OUTER_L3;
2206 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2207 				      MLX5_FLOW_LAYER_OUTER_L4;
2208 	int ret;
2209 	uint8_t next_proto = 0xFF;
2210 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2211 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2212 				  MLX5_FLOW_LAYER_INNER_VLAN);
2213 
2214 	if ((last_item & l2_vlan) && ether_type &&
2215 	    ether_type != RTE_ETHER_TYPE_IPV4)
2216 		return rte_flow_error_set(error, EINVAL,
2217 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2218 					  "IPv4 cannot follow L2/VLAN layer "
2219 					  "which ether type is not IPv4");
2220 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
2221 		if (mask && spec)
2222 			next_proto = mask->hdr.next_proto_id &
2223 				     spec->hdr.next_proto_id;
2224 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2225 			return rte_flow_error_set(error, EINVAL,
2226 						  RTE_FLOW_ERROR_TYPE_ITEM,
2227 						  item,
2228 						  "multiple tunnel "
2229 						  "not supported");
2230 	}
2231 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
2232 		return rte_flow_error_set(error, EINVAL,
2233 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2234 					  "wrong tunnel type - IPv6 specified "
2235 					  "but IPv4 item provided");
2236 	if (item_flags & l3m)
2237 		return rte_flow_error_set(error, ENOTSUP,
2238 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2239 					  "multiple L3 layers not supported");
2240 	else if (item_flags & l4m)
2241 		return rte_flow_error_set(error, EINVAL,
2242 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2243 					  "L3 cannot follow an L4 layer.");
2244 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2245 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2246 		return rte_flow_error_set(error, EINVAL,
2247 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2248 					  "L3 cannot follow an NVGRE layer.");
2249 	if (!mask)
2250 		mask = &rte_flow_item_ipv4_mask;
2251 	else if (mask->hdr.next_proto_id != 0 &&
2252 		 mask->hdr.next_proto_id != 0xff)
2253 		return rte_flow_error_set(error, EINVAL,
2254 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2255 					  "partial mask is not supported"
2256 					  " for protocol");
2257 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2258 					acc_mask ? (const uint8_t *)acc_mask
2259 						 : (const uint8_t *)&nic_mask,
2260 					sizeof(struct rte_flow_item_ipv4),
2261 					range_accepted, error);
2262 	if (ret < 0)
2263 		return ret;
2264 	return 0;
2265 }
2266 
2267 /**
2268  * Validate IPV6 item.
2269  *
2270  * @param[in] item
2271  *   Item specification.
2272  * @param[in] item_flags
2273  *   Bit-fields that holds the items detected until now.
2274  * @param[in] last_item
2275  *   Previous validated item in the pattern items.
2276  * @param[in] ether_type
2277  *   Type in the ethernet layer header (including dot1q).
2278  * @param[in] acc_mask
2279  *   Acceptable mask, if NULL default internal default mask
2280  *   will be used to check whether item fields are supported.
2281  * @param[out] error
2282  *   Pointer to error structure.
2283  *
2284  * @return
2285  *   0 on success, a negative errno value otherwise and rte_errno is set.
2286  */
2287 int
2288 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
2289 			     uint64_t item_flags,
2290 			     uint64_t last_item,
2291 			     uint16_t ether_type,
2292 			     const struct rte_flow_item_ipv6 *acc_mask,
2293 			     struct rte_flow_error *error)
2294 {
2295 	const struct rte_flow_item_ipv6 *mask = item->mask;
2296 	const struct rte_flow_item_ipv6 *spec = item->spec;
2297 	const struct rte_flow_item_ipv6 nic_mask = {
2298 		.hdr = {
2299 			.src_addr =
2300 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2301 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2302 			.dst_addr =
2303 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2304 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2305 			.vtc_flow = RTE_BE32(0xffffffff),
2306 			.proto = 0xff,
2307 		},
2308 	};
2309 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2310 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2311 				      MLX5_FLOW_LAYER_OUTER_L3;
2312 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2313 				      MLX5_FLOW_LAYER_OUTER_L4;
2314 	int ret;
2315 	uint8_t next_proto = 0xFF;
2316 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2317 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2318 				  MLX5_FLOW_LAYER_INNER_VLAN);
2319 
2320 	if ((last_item & l2_vlan) && ether_type &&
2321 	    ether_type != RTE_ETHER_TYPE_IPV6)
2322 		return rte_flow_error_set(error, EINVAL,
2323 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2324 					  "IPv6 cannot follow L2/VLAN layer "
2325 					  "which ether type is not IPv6");
2326 	if (mask && mask->hdr.proto == UINT8_MAX && spec)
2327 		next_proto = spec->hdr.proto;
2328 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL) {
2329 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2330 			return rte_flow_error_set(error, EINVAL,
2331 						  RTE_FLOW_ERROR_TYPE_ITEM,
2332 						  item,
2333 						  "multiple tunnel "
2334 						  "not supported");
2335 	}
2336 	if (next_proto == IPPROTO_HOPOPTS  ||
2337 	    next_proto == IPPROTO_ROUTING  ||
2338 	    next_proto == IPPROTO_FRAGMENT ||
2339 	    next_proto == IPPROTO_ESP	   ||
2340 	    next_proto == IPPROTO_AH	   ||
2341 	    next_proto == IPPROTO_DSTOPTS)
2342 		return rte_flow_error_set(error, EINVAL,
2343 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2344 					  "IPv6 proto (next header) should "
2345 					  "not be set as extension header");
2346 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
2347 		return rte_flow_error_set(error, EINVAL,
2348 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2349 					  "wrong tunnel type - IPv4 specified "
2350 					  "but IPv6 item provided");
2351 	if (item_flags & l3m)
2352 		return rte_flow_error_set(error, ENOTSUP,
2353 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2354 					  "multiple L3 layers not supported");
2355 	else if (item_flags & l4m)
2356 		return rte_flow_error_set(error, EINVAL,
2357 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2358 					  "L3 cannot follow an L4 layer.");
2359 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2360 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2361 		return rte_flow_error_set(error, EINVAL,
2362 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2363 					  "L3 cannot follow an NVGRE layer.");
2364 	if (!mask)
2365 		mask = &rte_flow_item_ipv6_mask;
2366 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2367 					acc_mask ? (const uint8_t *)acc_mask
2368 						 : (const uint8_t *)&nic_mask,
2369 					sizeof(struct rte_flow_item_ipv6),
2370 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2371 	if (ret < 0)
2372 		return ret;
2373 	return 0;
2374 }
2375 
2376 /**
2377  * Validate UDP item.
2378  *
2379  * @param[in] item
2380  *   Item specification.
2381  * @param[in] item_flags
2382  *   Bit-fields that holds the items detected until now.
2383  * @param[in] target_protocol
2384  *   The next protocol in the previous item.
2385  * @param[in] flow_mask
2386  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2387  * @param[out] error
2388  *   Pointer to error structure.
2389  *
2390  * @return
2391  *   0 on success, a negative errno value otherwise and rte_errno is set.
2392  */
2393 int
2394 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2395 			    uint64_t item_flags,
2396 			    uint8_t target_protocol,
2397 			    struct rte_flow_error *error)
2398 {
2399 	const struct rte_flow_item_udp *mask = item->mask;
2400 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2401 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2402 				      MLX5_FLOW_LAYER_OUTER_L3;
2403 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2404 				      MLX5_FLOW_LAYER_OUTER_L4;
2405 	int ret;
2406 
2407 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2408 		return rte_flow_error_set(error, EINVAL,
2409 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2410 					  "protocol filtering not compatible"
2411 					  " with UDP layer");
2412 	if (!(item_flags & l3m))
2413 		return rte_flow_error_set(error, EINVAL,
2414 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2415 					  "L3 is mandatory to filter on L4");
2416 	if (item_flags & l4m)
2417 		return rte_flow_error_set(error, EINVAL,
2418 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2419 					  "multiple L4 layers not supported");
2420 	if (!mask)
2421 		mask = &rte_flow_item_udp_mask;
2422 	ret = mlx5_flow_item_acceptable
2423 		(item, (const uint8_t *)mask,
2424 		 (const uint8_t *)&rte_flow_item_udp_mask,
2425 		 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2426 		 error);
2427 	if (ret < 0)
2428 		return ret;
2429 	return 0;
2430 }
2431 
2432 /**
2433  * Validate TCP item.
2434  *
2435  * @param[in] item
2436  *   Item specification.
2437  * @param[in] item_flags
2438  *   Bit-fields that holds the items detected until now.
2439  * @param[in] target_protocol
2440  *   The next protocol in the previous item.
2441  * @param[out] error
2442  *   Pointer to error structure.
2443  *
2444  * @return
2445  *   0 on success, a negative errno value otherwise and rte_errno is set.
2446  */
2447 int
2448 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2449 			    uint64_t item_flags,
2450 			    uint8_t target_protocol,
2451 			    const struct rte_flow_item_tcp *flow_mask,
2452 			    struct rte_flow_error *error)
2453 {
2454 	const struct rte_flow_item_tcp *mask = item->mask;
2455 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2456 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2457 				      MLX5_FLOW_LAYER_OUTER_L3;
2458 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2459 				      MLX5_FLOW_LAYER_OUTER_L4;
2460 	int ret;
2461 
2462 	MLX5_ASSERT(flow_mask);
2463 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2464 		return rte_flow_error_set(error, EINVAL,
2465 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2466 					  "protocol filtering not compatible"
2467 					  " with TCP layer");
2468 	if (!(item_flags & l3m))
2469 		return rte_flow_error_set(error, EINVAL,
2470 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2471 					  "L3 is mandatory to filter on L4");
2472 	if (item_flags & l4m)
2473 		return rte_flow_error_set(error, EINVAL,
2474 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2475 					  "multiple L4 layers not supported");
2476 	if (!mask)
2477 		mask = &rte_flow_item_tcp_mask;
2478 	ret = mlx5_flow_item_acceptable
2479 		(item, (const uint8_t *)mask,
2480 		 (const uint8_t *)flow_mask,
2481 		 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2482 		 error);
2483 	if (ret < 0)
2484 		return ret;
2485 	return 0;
2486 }
2487 
2488 /**
2489  * Validate VXLAN item.
2490  *
2491  * @param[in] dev
2492  *   Pointer to the Ethernet device structure.
2493  * @param[in] udp_dport
2494  *   UDP destination port
2495  * @param[in] item
2496  *   Item specification.
2497  * @param[in] item_flags
2498  *   Bit-fields that holds the items detected until now.
2499  * @param[in] attr
2500  *   Flow rule attributes.
2501  * @param[out] error
2502  *   Pointer to error structure.
2503  *
2504  * @return
2505  *   0 on success, a negative errno value otherwise and rte_errno is set.
2506  */
2507 int
2508 mlx5_flow_validate_item_vxlan(struct rte_eth_dev *dev,
2509 			      uint16_t udp_dport,
2510 			      const struct rte_flow_item *item,
2511 			      uint64_t item_flags,
2512 			      const struct rte_flow_attr *attr,
2513 			      struct rte_flow_error *error)
2514 {
2515 	const struct rte_flow_item_vxlan *spec = item->spec;
2516 	const struct rte_flow_item_vxlan *mask = item->mask;
2517 	int ret;
2518 	struct mlx5_priv *priv = dev->data->dev_private;
2519 	union vni {
2520 		uint32_t vlan_id;
2521 		uint8_t vni[4];
2522 	} id = { .vlan_id = 0, };
2523 	const struct rte_flow_item_vxlan nic_mask = {
2524 		.vni = "\xff\xff\xff",
2525 		.rsvd1 = 0xff,
2526 	};
2527 	const struct rte_flow_item_vxlan *valid_mask;
2528 
2529 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2530 		return rte_flow_error_set(error, ENOTSUP,
2531 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2532 					  "multiple tunnel layers not"
2533 					  " supported");
2534 	valid_mask = &rte_flow_item_vxlan_mask;
2535 	/*
2536 	 * Verify only UDPv4 is present as defined in
2537 	 * https://tools.ietf.org/html/rfc7348
2538 	 */
2539 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2540 		return rte_flow_error_set(error, EINVAL,
2541 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2542 					  "no outer UDP layer found");
2543 	if (!mask)
2544 		mask = &rte_flow_item_vxlan_mask;
2545 
2546 	if (priv->sh->steering_format_version !=
2547 	    MLX5_STEERING_LOGIC_FORMAT_CONNECTX_5 ||
2548 	    !udp_dport || udp_dport == MLX5_UDP_PORT_VXLAN) {
2549 		/* FDB domain & NIC domain non-zero group */
2550 		if ((attr->transfer || attr->group) && priv->sh->misc5_cap)
2551 			valid_mask = &nic_mask;
2552 		/* Group zero in NIC domain */
2553 		if (!attr->group && !attr->transfer &&
2554 		    priv->sh->tunnel_header_0_1)
2555 			valid_mask = &nic_mask;
2556 	}
2557 	ret = mlx5_flow_item_acceptable
2558 		(item, (const uint8_t *)mask,
2559 		 (const uint8_t *)valid_mask,
2560 		 sizeof(struct rte_flow_item_vxlan),
2561 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2562 	if (ret < 0)
2563 		return ret;
2564 	if (spec) {
2565 		memcpy(&id.vni[1], spec->vni, 3);
2566 		memcpy(&id.vni[1], mask->vni, 3);
2567 	}
2568 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2569 		return rte_flow_error_set(error, ENOTSUP,
2570 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2571 					  "VXLAN tunnel must be fully defined");
2572 	return 0;
2573 }
2574 
2575 /**
2576  * Validate VXLAN_GPE item.
2577  *
2578  * @param[in] item
2579  *   Item specification.
2580  * @param[in] item_flags
2581  *   Bit-fields that holds the items detected until now.
2582  * @param[in] priv
2583  *   Pointer to the private data structure.
2584  * @param[in] target_protocol
2585  *   The next protocol in the previous item.
2586  * @param[out] error
2587  *   Pointer to error structure.
2588  *
2589  * @return
2590  *   0 on success, a negative errno value otherwise and rte_errno is set.
2591  */
2592 int
2593 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2594 				  uint64_t item_flags,
2595 				  struct rte_eth_dev *dev,
2596 				  struct rte_flow_error *error)
2597 {
2598 	struct mlx5_priv *priv = dev->data->dev_private;
2599 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2600 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2601 	int ret;
2602 	union vni {
2603 		uint32_t vlan_id;
2604 		uint8_t vni[4];
2605 	} id = { .vlan_id = 0, };
2606 
2607 	if (!priv->config.l3_vxlan_en)
2608 		return rte_flow_error_set(error, ENOTSUP,
2609 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2610 					  "L3 VXLAN is not enabled by device"
2611 					  " parameter and/or not configured in"
2612 					  " firmware");
2613 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2614 		return rte_flow_error_set(error, ENOTSUP,
2615 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2616 					  "multiple tunnel layers not"
2617 					  " supported");
2618 	/*
2619 	 * Verify only UDPv4 is present as defined in
2620 	 * https://tools.ietf.org/html/rfc7348
2621 	 */
2622 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2623 		return rte_flow_error_set(error, EINVAL,
2624 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2625 					  "no outer UDP layer found");
2626 	if (!mask)
2627 		mask = &rte_flow_item_vxlan_gpe_mask;
2628 	ret = mlx5_flow_item_acceptable
2629 		(item, (const uint8_t *)mask,
2630 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2631 		 sizeof(struct rte_flow_item_vxlan_gpe),
2632 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2633 	if (ret < 0)
2634 		return ret;
2635 	if (spec) {
2636 		if (spec->protocol)
2637 			return rte_flow_error_set(error, ENOTSUP,
2638 						  RTE_FLOW_ERROR_TYPE_ITEM,
2639 						  item,
2640 						  "VxLAN-GPE protocol"
2641 						  " not supported");
2642 		memcpy(&id.vni[1], spec->vni, 3);
2643 		memcpy(&id.vni[1], mask->vni, 3);
2644 	}
2645 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2646 		return rte_flow_error_set(error, ENOTSUP,
2647 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2648 					  "VXLAN-GPE tunnel must be fully"
2649 					  " defined");
2650 	return 0;
2651 }
2652 /**
2653  * Validate GRE Key item.
2654  *
2655  * @param[in] item
2656  *   Item specification.
2657  * @param[in] item_flags
2658  *   Bit flags to mark detected items.
2659  * @param[in] gre_item
2660  *   Pointer to gre_item
2661  * @param[out] error
2662  *   Pointer to error structure.
2663  *
2664  * @return
2665  *   0 on success, a negative errno value otherwise and rte_errno is set.
2666  */
2667 int
2668 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2669 				uint64_t item_flags,
2670 				const struct rte_flow_item *gre_item,
2671 				struct rte_flow_error *error)
2672 {
2673 	const rte_be32_t *mask = item->mask;
2674 	int ret = 0;
2675 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2676 	const struct rte_flow_item_gre *gre_spec;
2677 	const struct rte_flow_item_gre *gre_mask;
2678 
2679 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2680 		return rte_flow_error_set(error, ENOTSUP,
2681 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2682 					  "Multiple GRE key not support");
2683 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2684 		return rte_flow_error_set(error, ENOTSUP,
2685 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2686 					  "No preceding GRE header");
2687 	if (item_flags & MLX5_FLOW_LAYER_INNER)
2688 		return rte_flow_error_set(error, ENOTSUP,
2689 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2690 					  "GRE key following a wrong item");
2691 	gre_mask = gre_item->mask;
2692 	if (!gre_mask)
2693 		gre_mask = &rte_flow_item_gre_mask;
2694 	gre_spec = gre_item->spec;
2695 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2696 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2697 		return rte_flow_error_set(error, EINVAL,
2698 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2699 					  "Key bit must be on");
2700 
2701 	if (!mask)
2702 		mask = &gre_key_default_mask;
2703 	ret = mlx5_flow_item_acceptable
2704 		(item, (const uint8_t *)mask,
2705 		 (const uint8_t *)&gre_key_default_mask,
2706 		 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2707 	return ret;
2708 }
2709 
2710 /**
2711  * Validate GRE item.
2712  *
2713  * @param[in] item
2714  *   Item specification.
2715  * @param[in] item_flags
2716  *   Bit flags to mark detected items.
2717  * @param[in] target_protocol
2718  *   The next protocol in the previous item.
2719  * @param[out] error
2720  *   Pointer to error structure.
2721  *
2722  * @return
2723  *   0 on success, a negative errno value otherwise and rte_errno is set.
2724  */
2725 int
2726 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
2727 			    uint64_t item_flags,
2728 			    uint8_t target_protocol,
2729 			    struct rte_flow_error *error)
2730 {
2731 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
2732 	const struct rte_flow_item_gre *mask = item->mask;
2733 	int ret;
2734 	const struct rte_flow_item_gre nic_mask = {
2735 		.c_rsvd0_ver = RTE_BE16(0xB000),
2736 		.protocol = RTE_BE16(UINT16_MAX),
2737 	};
2738 
2739 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2740 		return rte_flow_error_set(error, EINVAL,
2741 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2742 					  "protocol filtering not compatible"
2743 					  " with this GRE layer");
2744 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2745 		return rte_flow_error_set(error, ENOTSUP,
2746 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2747 					  "multiple tunnel layers not"
2748 					  " supported");
2749 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2750 		return rte_flow_error_set(error, ENOTSUP,
2751 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2752 					  "L3 Layer is missing");
2753 	if (!mask)
2754 		mask = &rte_flow_item_gre_mask;
2755 	ret = mlx5_flow_item_acceptable
2756 		(item, (const uint8_t *)mask,
2757 		 (const uint8_t *)&nic_mask,
2758 		 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2759 		 error);
2760 	if (ret < 0)
2761 		return ret;
2762 #ifndef HAVE_MLX5DV_DR
2763 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
2764 	if (spec && (spec->protocol & mask->protocol))
2765 		return rte_flow_error_set(error, ENOTSUP,
2766 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2767 					  "without MPLS support the"
2768 					  " specification cannot be used for"
2769 					  " filtering");
2770 #endif
2771 #endif
2772 	return 0;
2773 }
2774 
2775 /**
2776  * Validate Geneve item.
2777  *
2778  * @param[in] item
2779  *   Item specification.
2780  * @param[in] itemFlags
2781  *   Bit-fields that holds the items detected until now.
2782  * @param[in] enPriv
2783  *   Pointer to the private data structure.
2784  * @param[out] error
2785  *   Pointer to error structure.
2786  *
2787  * @return
2788  *   0 on success, a negative errno value otherwise and rte_errno is set.
2789  */
2790 
2791 int
2792 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
2793 			       uint64_t item_flags,
2794 			       struct rte_eth_dev *dev,
2795 			       struct rte_flow_error *error)
2796 {
2797 	struct mlx5_priv *priv = dev->data->dev_private;
2798 	const struct rte_flow_item_geneve *spec = item->spec;
2799 	const struct rte_flow_item_geneve *mask = item->mask;
2800 	int ret;
2801 	uint16_t gbhdr;
2802 	uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2803 			  MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2804 	const struct rte_flow_item_geneve nic_mask = {
2805 		.ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2806 		.vni = "\xff\xff\xff",
2807 		.protocol = RTE_BE16(UINT16_MAX),
2808 	};
2809 
2810 	if (!priv->config.hca_attr.tunnel_stateless_geneve_rx)
2811 		return rte_flow_error_set(error, ENOTSUP,
2812 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2813 					  "L3 Geneve is not enabled by device"
2814 					  " parameter and/or not configured in"
2815 					  " firmware");
2816 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2817 		return rte_flow_error_set(error, ENOTSUP,
2818 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2819 					  "multiple tunnel layers not"
2820 					  " supported");
2821 	/*
2822 	 * Verify only UDPv4 is present as defined in
2823 	 * https://tools.ietf.org/html/rfc7348
2824 	 */
2825 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2826 		return rte_flow_error_set(error, EINVAL,
2827 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2828 					  "no outer UDP layer found");
2829 	if (!mask)
2830 		mask = &rte_flow_item_geneve_mask;
2831 	ret = mlx5_flow_item_acceptable
2832 				  (item, (const uint8_t *)mask,
2833 				   (const uint8_t *)&nic_mask,
2834 				   sizeof(struct rte_flow_item_geneve),
2835 				   MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2836 	if (ret)
2837 		return ret;
2838 	if (spec) {
2839 		gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2840 		if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2841 		     MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2842 		     MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2843 			return rte_flow_error_set(error, ENOTSUP,
2844 						  RTE_FLOW_ERROR_TYPE_ITEM,
2845 						  item,
2846 						  "Geneve protocol unsupported"
2847 						  " fields are being used");
2848 		if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2849 			return rte_flow_error_set
2850 					(error, ENOTSUP,
2851 					 RTE_FLOW_ERROR_TYPE_ITEM,
2852 					 item,
2853 					 "Unsupported Geneve options length");
2854 	}
2855 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2856 		return rte_flow_error_set
2857 				    (error, ENOTSUP,
2858 				     RTE_FLOW_ERROR_TYPE_ITEM, item,
2859 				     "Geneve tunnel must be fully defined");
2860 	return 0;
2861 }
2862 
2863 /**
2864  * Validate Geneve TLV option item.
2865  *
2866  * @param[in] item
2867  *   Item specification.
2868  * @param[in] last_item
2869  *   Previous validated item in the pattern items.
2870  * @param[in] geneve_item
2871  *   Previous GENEVE item specification.
2872  * @param[in] dev
2873  *   Pointer to the rte_eth_dev structure.
2874  * @param[out] error
2875  *   Pointer to error structure.
2876  *
2877  * @return
2878  *   0 on success, a negative errno value otherwise and rte_errno is set.
2879  */
2880 int
2881 mlx5_flow_validate_item_geneve_opt(const struct rte_flow_item *item,
2882 				   uint64_t last_item,
2883 				   const struct rte_flow_item *geneve_item,
2884 				   struct rte_eth_dev *dev,
2885 				   struct rte_flow_error *error)
2886 {
2887 	struct mlx5_priv *priv = dev->data->dev_private;
2888 	struct mlx5_dev_ctx_shared *sh = priv->sh;
2889 	struct mlx5_geneve_tlv_option_resource *geneve_opt_resource;
2890 	struct mlx5_hca_attr *hca_attr = &priv->config.hca_attr;
2891 	uint8_t data_max_supported =
2892 			hca_attr->max_geneve_tlv_option_data_len * 4;
2893 	struct mlx5_dev_config *config = &priv->config;
2894 	const struct rte_flow_item_geneve *geneve_spec;
2895 	const struct rte_flow_item_geneve *geneve_mask;
2896 	const struct rte_flow_item_geneve_opt *spec = item->spec;
2897 	const struct rte_flow_item_geneve_opt *mask = item->mask;
2898 	unsigned int i;
2899 	unsigned int data_len;
2900 	uint8_t tlv_option_len;
2901 	uint16_t optlen_m, optlen_v;
2902 	const struct rte_flow_item_geneve_opt full_mask = {
2903 		.option_class = RTE_BE16(0xffff),
2904 		.option_type = 0xff,
2905 		.option_len = 0x1f,
2906 	};
2907 
2908 	if (!mask)
2909 		mask = &rte_flow_item_geneve_opt_mask;
2910 	if (!spec)
2911 		return rte_flow_error_set
2912 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2913 			"Geneve TLV opt class/type/length must be specified");
2914 	if ((uint32_t)spec->option_len > MLX5_GENEVE_OPTLEN_MASK)
2915 		return rte_flow_error_set
2916 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2917 			"Geneve TLV opt length exceeeds the limit (31)");
2918 	/* Check if class type and length masks are full. */
2919 	if (full_mask.option_class != mask->option_class ||
2920 	    full_mask.option_type != mask->option_type ||
2921 	    full_mask.option_len != (mask->option_len & full_mask.option_len))
2922 		return rte_flow_error_set
2923 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2924 			"Geneve TLV opt class/type/length masks must be full");
2925 	/* Check if length is supported */
2926 	if ((uint32_t)spec->option_len >
2927 			config->hca_attr.max_geneve_tlv_option_data_len)
2928 		return rte_flow_error_set
2929 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2930 			"Geneve TLV opt length not supported");
2931 	if (config->hca_attr.max_geneve_tlv_options > 1)
2932 		DRV_LOG(DEBUG,
2933 			"max_geneve_tlv_options supports more than 1 option");
2934 	/* Check GENEVE item preceding. */
2935 	if (!geneve_item || !(last_item & MLX5_FLOW_LAYER_GENEVE))
2936 		return rte_flow_error_set
2937 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2938 			"Geneve opt item must be preceded with Geneve item");
2939 	geneve_spec = geneve_item->spec;
2940 	geneve_mask = geneve_item->mask ? geneve_item->mask :
2941 					  &rte_flow_item_geneve_mask;
2942 	/* Check if GENEVE TLV option size doesn't exceed option length */
2943 	if (geneve_spec && (geneve_mask->ver_opt_len_o_c_rsvd0 ||
2944 			    geneve_spec->ver_opt_len_o_c_rsvd0)) {
2945 		tlv_option_len = spec->option_len & mask->option_len;
2946 		optlen_v = rte_be_to_cpu_16(geneve_spec->ver_opt_len_o_c_rsvd0);
2947 		optlen_v = MLX5_GENEVE_OPTLEN_VAL(optlen_v);
2948 		optlen_m = rte_be_to_cpu_16(geneve_mask->ver_opt_len_o_c_rsvd0);
2949 		optlen_m = MLX5_GENEVE_OPTLEN_VAL(optlen_m);
2950 		if ((optlen_v & optlen_m) <= tlv_option_len)
2951 			return rte_flow_error_set
2952 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2953 				 "GENEVE TLV option length exceeds optlen");
2954 	}
2955 	/* Check if length is 0 or data is 0. */
2956 	if (spec->data == NULL || spec->option_len == 0)
2957 		return rte_flow_error_set
2958 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2959 			"Geneve TLV opt with zero data/length not supported");
2960 	/* Check not all data & mask are 0. */
2961 	data_len = spec->option_len * 4;
2962 	if (mask->data == NULL) {
2963 		for (i = 0; i < data_len; i++)
2964 			if (spec->data[i])
2965 				break;
2966 		if (i == data_len)
2967 			return rte_flow_error_set(error, ENOTSUP,
2968 				RTE_FLOW_ERROR_TYPE_ITEM, item,
2969 				"Can't match on Geneve option data 0");
2970 	} else {
2971 		for (i = 0; i < data_len; i++)
2972 			if (spec->data[i] & mask->data[i])
2973 				break;
2974 		if (i == data_len)
2975 			return rte_flow_error_set(error, ENOTSUP,
2976 				RTE_FLOW_ERROR_TYPE_ITEM, item,
2977 				"Can't match on Geneve option data and mask 0");
2978 		/* Check data mask supported. */
2979 		for (i = data_max_supported; i < data_len ; i++)
2980 			if (mask->data[i])
2981 				return rte_flow_error_set(error, ENOTSUP,
2982 					RTE_FLOW_ERROR_TYPE_ITEM, item,
2983 					"Data mask is of unsupported size");
2984 	}
2985 	/* Check GENEVE option is supported in NIC. */
2986 	if (!config->hca_attr.geneve_tlv_opt)
2987 		return rte_flow_error_set
2988 			(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item,
2989 			"Geneve TLV opt not supported");
2990 	/* Check if we already have geneve option with different type/class. */
2991 	rte_spinlock_lock(&sh->geneve_tlv_opt_sl);
2992 	geneve_opt_resource = sh->geneve_tlv_option_resource;
2993 	if (geneve_opt_resource != NULL)
2994 		if (geneve_opt_resource->option_class != spec->option_class ||
2995 		    geneve_opt_resource->option_type != spec->option_type ||
2996 		    geneve_opt_resource->length != spec->option_len) {
2997 			rte_spinlock_unlock(&sh->geneve_tlv_opt_sl);
2998 			return rte_flow_error_set(error, ENOTSUP,
2999 				RTE_FLOW_ERROR_TYPE_ITEM, item,
3000 				"Only one Geneve TLV option supported");
3001 		}
3002 	rte_spinlock_unlock(&sh->geneve_tlv_opt_sl);
3003 	return 0;
3004 }
3005 
3006 /**
3007  * Validate MPLS item.
3008  *
3009  * @param[in] dev
3010  *   Pointer to the rte_eth_dev structure.
3011  * @param[in] item
3012  *   Item specification.
3013  * @param[in] item_flags
3014  *   Bit-fields that holds the items detected until now.
3015  * @param[in] prev_layer
3016  *   The protocol layer indicated in previous item.
3017  * @param[out] error
3018  *   Pointer to error structure.
3019  *
3020  * @return
3021  *   0 on success, a negative errno value otherwise and rte_errno is set.
3022  */
3023 int
3024 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
3025 			     const struct rte_flow_item *item __rte_unused,
3026 			     uint64_t item_flags __rte_unused,
3027 			     uint64_t prev_layer __rte_unused,
3028 			     struct rte_flow_error *error)
3029 {
3030 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
3031 	const struct rte_flow_item_mpls *mask = item->mask;
3032 	struct mlx5_priv *priv = dev->data->dev_private;
3033 	int ret;
3034 
3035 	if (!priv->config.mpls_en)
3036 		return rte_flow_error_set(error, ENOTSUP,
3037 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3038 					  "MPLS not supported or"
3039 					  " disabled in firmware"
3040 					  " configuration.");
3041 	/* MPLS over UDP, GRE is allowed */
3042 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L4_UDP |
3043 			    MLX5_FLOW_LAYER_GRE |
3044 			    MLX5_FLOW_LAYER_GRE_KEY)))
3045 		return rte_flow_error_set(error, EINVAL,
3046 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3047 					  "protocol filtering not compatible"
3048 					  " with MPLS layer");
3049 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
3050 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
3051 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
3052 		return rte_flow_error_set(error, ENOTSUP,
3053 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3054 					  "multiple tunnel layers not"
3055 					  " supported");
3056 	if (!mask)
3057 		mask = &rte_flow_item_mpls_mask;
3058 	ret = mlx5_flow_item_acceptable
3059 		(item, (const uint8_t *)mask,
3060 		 (const uint8_t *)&rte_flow_item_mpls_mask,
3061 		 sizeof(struct rte_flow_item_mpls),
3062 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3063 	if (ret < 0)
3064 		return ret;
3065 	return 0;
3066 #else
3067 	return rte_flow_error_set(error, ENOTSUP,
3068 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
3069 				  "MPLS is not supported by Verbs, please"
3070 				  " update.");
3071 #endif
3072 }
3073 
3074 /**
3075  * Validate NVGRE item.
3076  *
3077  * @param[in] item
3078  *   Item specification.
3079  * @param[in] item_flags
3080  *   Bit flags to mark detected items.
3081  * @param[in] target_protocol
3082  *   The next protocol in the previous item.
3083  * @param[out] error
3084  *   Pointer to error structure.
3085  *
3086  * @return
3087  *   0 on success, a negative errno value otherwise and rte_errno is set.
3088  */
3089 int
3090 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
3091 			      uint64_t item_flags,
3092 			      uint8_t target_protocol,
3093 			      struct rte_flow_error *error)
3094 {
3095 	const struct rte_flow_item_nvgre *mask = item->mask;
3096 	int ret;
3097 
3098 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
3099 		return rte_flow_error_set(error, EINVAL,
3100 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3101 					  "protocol filtering not compatible"
3102 					  " with this GRE layer");
3103 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3104 		return rte_flow_error_set(error, ENOTSUP,
3105 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3106 					  "multiple tunnel layers not"
3107 					  " supported");
3108 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
3109 		return rte_flow_error_set(error, ENOTSUP,
3110 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3111 					  "L3 Layer is missing");
3112 	if (!mask)
3113 		mask = &rte_flow_item_nvgre_mask;
3114 	ret = mlx5_flow_item_acceptable
3115 		(item, (const uint8_t *)mask,
3116 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
3117 		 sizeof(struct rte_flow_item_nvgre),
3118 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3119 	if (ret < 0)
3120 		return ret;
3121 	return 0;
3122 }
3123 
3124 /**
3125  * Validate eCPRI item.
3126  *
3127  * @param[in] item
3128  *   Item specification.
3129  * @param[in] item_flags
3130  *   Bit-fields that holds the items detected until now.
3131  * @param[in] last_item
3132  *   Previous validated item in the pattern items.
3133  * @param[in] ether_type
3134  *   Type in the ethernet layer header (including dot1q).
3135  * @param[in] acc_mask
3136  *   Acceptable mask, if NULL default internal default mask
3137  *   will be used to check whether item fields are supported.
3138  * @param[out] error
3139  *   Pointer to error structure.
3140  *
3141  * @return
3142  *   0 on success, a negative errno value otherwise and rte_errno is set.
3143  */
3144 int
3145 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
3146 			      uint64_t item_flags,
3147 			      uint64_t last_item,
3148 			      uint16_t ether_type,
3149 			      const struct rte_flow_item_ecpri *acc_mask,
3150 			      struct rte_flow_error *error)
3151 {
3152 	const struct rte_flow_item_ecpri *mask = item->mask;
3153 	const struct rte_flow_item_ecpri nic_mask = {
3154 		.hdr = {
3155 			.common = {
3156 				.u32 =
3157 				RTE_BE32(((const struct rte_ecpri_common_hdr) {
3158 					.type = 0xFF,
3159 					}).u32),
3160 			},
3161 			.dummy[0] = 0xFFFFFFFF,
3162 		},
3163 	};
3164 	const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
3165 					MLX5_FLOW_LAYER_OUTER_VLAN);
3166 	struct rte_flow_item_ecpri mask_lo;
3167 
3168 	if (!(last_item & outer_l2_vlan) &&
3169 	    last_item != MLX5_FLOW_LAYER_OUTER_L4_UDP)
3170 		return rte_flow_error_set(error, EINVAL,
3171 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3172 					  "eCPRI can only follow L2/VLAN layer or UDP layer");
3173 	if ((last_item & outer_l2_vlan) && ether_type &&
3174 	    ether_type != RTE_ETHER_TYPE_ECPRI)
3175 		return rte_flow_error_set(error, EINVAL,
3176 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3177 					  "eCPRI cannot follow L2/VLAN layer which ether type is not 0xAEFE");
3178 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
3179 		return rte_flow_error_set(error, EINVAL,
3180 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3181 					  "eCPRI with tunnel is not supported right now");
3182 	if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
3183 		return rte_flow_error_set(error, ENOTSUP,
3184 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3185 					  "multiple L3 layers not supported");
3186 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
3187 		return rte_flow_error_set(error, EINVAL,
3188 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3189 					  "eCPRI cannot coexist with a TCP layer");
3190 	/* In specification, eCPRI could be over UDP layer. */
3191 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
3192 		return rte_flow_error_set(error, EINVAL,
3193 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
3194 					  "eCPRI over UDP layer is not yet supported right now");
3195 	/* Mask for type field in common header could be zero. */
3196 	if (!mask)
3197 		mask = &rte_flow_item_ecpri_mask;
3198 	mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
3199 	/* Input mask is in big-endian format. */
3200 	if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
3201 		return rte_flow_error_set(error, EINVAL,
3202 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
3203 					  "partial mask is not supported for protocol");
3204 	else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
3205 		return rte_flow_error_set(error, EINVAL,
3206 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
3207 					  "message header mask must be after a type mask");
3208 	return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
3209 					 acc_mask ? (const uint8_t *)acc_mask
3210 						  : (const uint8_t *)&nic_mask,
3211 					 sizeof(struct rte_flow_item_ecpri),
3212 					 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
3213 }
3214 
3215 static int
3216 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
3217 		   const struct rte_flow_attr *attr __rte_unused,
3218 		   const struct rte_flow_item items[] __rte_unused,
3219 		   const struct rte_flow_action actions[] __rte_unused,
3220 		   bool external __rte_unused,
3221 		   int hairpin __rte_unused,
3222 		   struct rte_flow_error *error)
3223 {
3224 	return rte_flow_error_set(error, ENOTSUP,
3225 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3226 }
3227 
3228 static struct mlx5_flow *
3229 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
3230 		  const struct rte_flow_attr *attr __rte_unused,
3231 		  const struct rte_flow_item items[] __rte_unused,
3232 		  const struct rte_flow_action actions[] __rte_unused,
3233 		  struct rte_flow_error *error)
3234 {
3235 	rte_flow_error_set(error, ENOTSUP,
3236 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3237 	return NULL;
3238 }
3239 
3240 static int
3241 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
3242 		    struct mlx5_flow *dev_flow __rte_unused,
3243 		    const struct rte_flow_attr *attr __rte_unused,
3244 		    const struct rte_flow_item items[] __rte_unused,
3245 		    const struct rte_flow_action actions[] __rte_unused,
3246 		    struct rte_flow_error *error)
3247 {
3248 	return rte_flow_error_set(error, ENOTSUP,
3249 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3250 }
3251 
3252 static int
3253 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
3254 		struct rte_flow *flow __rte_unused,
3255 		struct rte_flow_error *error)
3256 {
3257 	return rte_flow_error_set(error, ENOTSUP,
3258 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3259 }
3260 
3261 static void
3262 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
3263 		 struct rte_flow *flow __rte_unused)
3264 {
3265 }
3266 
3267 static void
3268 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
3269 		  struct rte_flow *flow __rte_unused)
3270 {
3271 }
3272 
3273 static int
3274 flow_null_query(struct rte_eth_dev *dev __rte_unused,
3275 		struct rte_flow *flow __rte_unused,
3276 		const struct rte_flow_action *actions __rte_unused,
3277 		void *data __rte_unused,
3278 		struct rte_flow_error *error)
3279 {
3280 	return rte_flow_error_set(error, ENOTSUP,
3281 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
3282 }
3283 
3284 static int
3285 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused,
3286 		      uint32_t domains __rte_unused,
3287 		      uint32_t flags __rte_unused)
3288 {
3289 	return 0;
3290 }
3291 
3292 /* Void driver to protect from null pointer reference. */
3293 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
3294 	.validate = flow_null_validate,
3295 	.prepare = flow_null_prepare,
3296 	.translate = flow_null_translate,
3297 	.apply = flow_null_apply,
3298 	.remove = flow_null_remove,
3299 	.destroy = flow_null_destroy,
3300 	.query = flow_null_query,
3301 	.sync_domain = flow_null_sync_domain,
3302 };
3303 
3304 /**
3305  * Select flow driver type according to flow attributes and device
3306  * configuration.
3307  *
3308  * @param[in] dev
3309  *   Pointer to the dev structure.
3310  * @param[in] attr
3311  *   Pointer to the flow attributes.
3312  *
3313  * @return
3314  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
3315  */
3316 static enum mlx5_flow_drv_type
3317 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
3318 {
3319 	struct mlx5_priv *priv = dev->data->dev_private;
3320 	/* The OS can determine first a specific flow type (DV, VERBS) */
3321 	enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
3322 
3323 	if (type != MLX5_FLOW_TYPE_MAX)
3324 		return type;
3325 	/* If no OS specific type - continue with DV/VERBS selection */
3326 	if (attr->transfer && priv->config.dv_esw_en)
3327 		type = MLX5_FLOW_TYPE_DV;
3328 	if (!attr->transfer)
3329 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
3330 						 MLX5_FLOW_TYPE_VERBS;
3331 	return type;
3332 }
3333 
3334 #define flow_get_drv_ops(type) flow_drv_ops[type]
3335 
3336 /**
3337  * Flow driver validation API. This abstracts calling driver specific functions.
3338  * The type of flow driver is determined according to flow attributes.
3339  *
3340  * @param[in] dev
3341  *   Pointer to the dev structure.
3342  * @param[in] attr
3343  *   Pointer to the flow attributes.
3344  * @param[in] items
3345  *   Pointer to the list of items.
3346  * @param[in] actions
3347  *   Pointer to the list of actions.
3348  * @param[in] external
3349  *   This flow rule is created by request external to PMD.
3350  * @param[in] hairpin
3351  *   Number of hairpin TX actions, 0 means classic flow.
3352  * @param[out] error
3353  *   Pointer to the error structure.
3354  *
3355  * @return
3356  *   0 on success, a negative errno value otherwise and rte_errno is set.
3357  */
3358 static inline int
3359 flow_drv_validate(struct rte_eth_dev *dev,
3360 		  const struct rte_flow_attr *attr,
3361 		  const struct rte_flow_item items[],
3362 		  const struct rte_flow_action actions[],
3363 		  bool external, int hairpin, struct rte_flow_error *error)
3364 {
3365 	const struct mlx5_flow_driver_ops *fops;
3366 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
3367 
3368 	fops = flow_get_drv_ops(type);
3369 	return fops->validate(dev, attr, items, actions, external,
3370 			      hairpin, error);
3371 }
3372 
3373 /**
3374  * Flow driver preparation API. This abstracts calling driver specific
3375  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3376  * calculates the size of memory required for device flow, allocates the memory,
3377  * initializes the device flow and returns the pointer.
3378  *
3379  * @note
3380  *   This function initializes device flow structure such as dv or verbs in
3381  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
3382  *   rest. For example, adding returning device flow to flow->dev_flow list and
3383  *   setting backward reference to the flow should be done out of this function.
3384  *   layers field is not filled either.
3385  *
3386  * @param[in] dev
3387  *   Pointer to the dev structure.
3388  * @param[in] attr
3389  *   Pointer to the flow attributes.
3390  * @param[in] items
3391  *   Pointer to the list of items.
3392  * @param[in] actions
3393  *   Pointer to the list of actions.
3394  * @param[in] flow_idx
3395  *   This memory pool index to the flow.
3396  * @param[out] error
3397  *   Pointer to the error structure.
3398  *
3399  * @return
3400  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
3401  */
3402 static inline struct mlx5_flow *
3403 flow_drv_prepare(struct rte_eth_dev *dev,
3404 		 const struct rte_flow *flow,
3405 		 const struct rte_flow_attr *attr,
3406 		 const struct rte_flow_item items[],
3407 		 const struct rte_flow_action actions[],
3408 		 uint32_t flow_idx,
3409 		 struct rte_flow_error *error)
3410 {
3411 	const struct mlx5_flow_driver_ops *fops;
3412 	enum mlx5_flow_drv_type type = flow->drv_type;
3413 	struct mlx5_flow *mlx5_flow = NULL;
3414 
3415 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3416 	fops = flow_get_drv_ops(type);
3417 	mlx5_flow = fops->prepare(dev, attr, items, actions, error);
3418 	if (mlx5_flow)
3419 		mlx5_flow->flow_idx = flow_idx;
3420 	return mlx5_flow;
3421 }
3422 
3423 /**
3424  * Flow driver translation API. This abstracts calling driver specific
3425  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3426  * translates a generic flow into a driver flow. flow_drv_prepare() must
3427  * precede.
3428  *
3429  * @note
3430  *   dev_flow->layers could be filled as a result of parsing during translation
3431  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
3432  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
3433  *   flow->actions could be overwritten even though all the expanded dev_flows
3434  *   have the same actions.
3435  *
3436  * @param[in] dev
3437  *   Pointer to the rte dev structure.
3438  * @param[in, out] dev_flow
3439  *   Pointer to the mlx5 flow.
3440  * @param[in] attr
3441  *   Pointer to the flow attributes.
3442  * @param[in] items
3443  *   Pointer to the list of items.
3444  * @param[in] actions
3445  *   Pointer to the list of actions.
3446  * @param[out] error
3447  *   Pointer to the error structure.
3448  *
3449  * @return
3450  *   0 on success, a negative errno value otherwise and rte_errno is set.
3451  */
3452 static inline int
3453 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
3454 		   const struct rte_flow_attr *attr,
3455 		   const struct rte_flow_item items[],
3456 		   const struct rte_flow_action actions[],
3457 		   struct rte_flow_error *error)
3458 {
3459 	const struct mlx5_flow_driver_ops *fops;
3460 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
3461 
3462 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3463 	fops = flow_get_drv_ops(type);
3464 	return fops->translate(dev, dev_flow, attr, items, actions, error);
3465 }
3466 
3467 /**
3468  * Flow driver apply API. This abstracts calling driver specific functions.
3469  * Parent flow (rte_flow) should have driver type (drv_type). It applies
3470  * translated driver flows on to device. flow_drv_translate() must precede.
3471  *
3472  * @param[in] dev
3473  *   Pointer to Ethernet device structure.
3474  * @param[in, out] flow
3475  *   Pointer to flow structure.
3476  * @param[out] error
3477  *   Pointer to error structure.
3478  *
3479  * @return
3480  *   0 on success, a negative errno value otherwise and rte_errno is set.
3481  */
3482 static inline int
3483 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
3484 	       struct rte_flow_error *error)
3485 {
3486 	const struct mlx5_flow_driver_ops *fops;
3487 	enum mlx5_flow_drv_type type = flow->drv_type;
3488 
3489 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3490 	fops = flow_get_drv_ops(type);
3491 	return fops->apply(dev, flow, error);
3492 }
3493 
3494 /**
3495  * Flow driver destroy API. This abstracts calling driver specific functions.
3496  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3497  * on device and releases resources of the flow.
3498  *
3499  * @param[in] dev
3500  *   Pointer to Ethernet device.
3501  * @param[in, out] flow
3502  *   Pointer to flow structure.
3503  */
3504 static inline void
3505 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3506 {
3507 	const struct mlx5_flow_driver_ops *fops;
3508 	enum mlx5_flow_drv_type type = flow->drv_type;
3509 
3510 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3511 	fops = flow_get_drv_ops(type);
3512 	fops->destroy(dev, flow);
3513 }
3514 
3515 /**
3516  * Flow driver find RSS policy tbl API. This abstracts calling driver
3517  * specific functions. Parent flow (rte_flow) should have driver
3518  * type (drv_type). It will find the RSS policy table that has the rss_desc.
3519  *
3520  * @param[in] dev
3521  *   Pointer to Ethernet device.
3522  * @param[in, out] flow
3523  *   Pointer to flow structure.
3524  * @param[in] policy
3525  *   Pointer to meter policy table.
3526  * @param[in] rss_desc
3527  *   Pointer to rss_desc
3528  */
3529 static struct mlx5_flow_meter_sub_policy *
3530 flow_drv_meter_sub_policy_rss_prepare(struct rte_eth_dev *dev,
3531 		struct rte_flow *flow,
3532 		struct mlx5_flow_meter_policy *policy,
3533 		struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS])
3534 {
3535 	const struct mlx5_flow_driver_ops *fops;
3536 	enum mlx5_flow_drv_type type = flow->drv_type;
3537 
3538 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3539 	fops = flow_get_drv_ops(type);
3540 	return fops->meter_sub_policy_rss_prepare(dev, policy, rss_desc);
3541 }
3542 
3543 /**
3544  * Flow driver color tag rule API. This abstracts calling driver
3545  * specific functions. Parent flow (rte_flow) should have driver
3546  * type (drv_type). It will create the color tag rules in hierarchy meter.
3547  *
3548  * @param[in] dev
3549  *   Pointer to Ethernet device.
3550  * @param[in, out] flow
3551  *   Pointer to flow structure.
3552  * @param[in] fm
3553  *   Pointer to flow meter structure.
3554  * @param[in] src_port
3555  *   The src port this extra rule should use.
3556  * @param[in] item
3557  *   The src port id match item.
3558  * @param[out] error
3559  *   Pointer to error structure.
3560  */
3561 static int
3562 flow_drv_mtr_hierarchy_rule_create(struct rte_eth_dev *dev,
3563 		struct rte_flow *flow,
3564 		struct mlx5_flow_meter_info *fm,
3565 		int32_t src_port,
3566 		const struct rte_flow_item *item,
3567 		struct rte_flow_error *error)
3568 {
3569 	const struct mlx5_flow_driver_ops *fops;
3570 	enum mlx5_flow_drv_type type = flow->drv_type;
3571 
3572 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3573 	fops = flow_get_drv_ops(type);
3574 	return fops->meter_hierarchy_rule_create(dev, fm,
3575 						src_port, item, error);
3576 }
3577 
3578 /**
3579  * Get RSS action from the action list.
3580  *
3581  * @param[in] dev
3582  *   Pointer to Ethernet device.
3583  * @param[in] actions
3584  *   Pointer to the list of actions.
3585  * @param[in] flow
3586  *   Parent flow structure pointer.
3587  *
3588  * @return
3589  *   Pointer to the RSS action if exist, else return NULL.
3590  */
3591 static const struct rte_flow_action_rss*
3592 flow_get_rss_action(struct rte_eth_dev *dev,
3593 		    const struct rte_flow_action actions[])
3594 {
3595 	struct mlx5_priv *priv = dev->data->dev_private;
3596 	const struct rte_flow_action_rss *rss = NULL;
3597 
3598 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3599 		switch (actions->type) {
3600 		case RTE_FLOW_ACTION_TYPE_RSS:
3601 			rss = actions->conf;
3602 			break;
3603 		case RTE_FLOW_ACTION_TYPE_SAMPLE:
3604 		{
3605 			const struct rte_flow_action_sample *sample =
3606 								actions->conf;
3607 			const struct rte_flow_action *act = sample->actions;
3608 			for (; act->type != RTE_FLOW_ACTION_TYPE_END; act++)
3609 				if (act->type == RTE_FLOW_ACTION_TYPE_RSS)
3610 					rss = act->conf;
3611 			break;
3612 		}
3613 		case RTE_FLOW_ACTION_TYPE_METER:
3614 		{
3615 			uint32_t mtr_idx;
3616 			struct mlx5_flow_meter_info *fm;
3617 			struct mlx5_flow_meter_policy *policy;
3618 			const struct rte_flow_action_meter *mtr = actions->conf;
3619 
3620 			fm = mlx5_flow_meter_find(priv, mtr->mtr_id, &mtr_idx);
3621 			if (fm && !fm->def_policy) {
3622 				policy = mlx5_flow_meter_policy_find(dev,
3623 						fm->policy_id, NULL);
3624 				MLX5_ASSERT(policy);
3625 				if (policy->is_hierarchy) {
3626 					policy =
3627 				mlx5_flow_meter_hierarchy_get_final_policy(dev,
3628 									policy);
3629 					if (!policy)
3630 						return NULL;
3631 				}
3632 				if (policy->is_rss)
3633 					rss =
3634 				policy->act_cnt[RTE_COLOR_GREEN].rss->conf;
3635 			}
3636 			break;
3637 		}
3638 		default:
3639 			break;
3640 		}
3641 	}
3642 	return rss;
3643 }
3644 
3645 /**
3646  * Get ASO age action by index.
3647  *
3648  * @param[in] dev
3649  *   Pointer to the Ethernet device structure.
3650  * @param[in] age_idx
3651  *   Index to the ASO age action.
3652  *
3653  * @return
3654  *   The specified ASO age action.
3655  */
3656 struct mlx5_aso_age_action*
3657 flow_aso_age_get_by_idx(struct rte_eth_dev *dev, uint32_t age_idx)
3658 {
3659 	uint16_t pool_idx = age_idx & UINT16_MAX;
3660 	uint16_t offset = (age_idx >> 16) & UINT16_MAX;
3661 	struct mlx5_priv *priv = dev->data->dev_private;
3662 	struct mlx5_aso_age_mng *mng = priv->sh->aso_age_mng;
3663 	struct mlx5_aso_age_pool *pool = mng->pools[pool_idx];
3664 
3665 	return &pool->actions[offset - 1];
3666 }
3667 
3668 /* maps indirect action to translated direct in some actions array */
3669 struct mlx5_translated_action_handle {
3670 	struct rte_flow_action_handle *action; /**< Indirect action handle. */
3671 	int index; /**< Index in related array of rte_flow_action. */
3672 };
3673 
3674 /**
3675  * Translates actions of type RTE_FLOW_ACTION_TYPE_INDIRECT to related
3676  * direct action if translation possible.
3677  * This functionality used to run same execution path for both direct and
3678  * indirect actions on flow create. All necessary preparations for indirect
3679  * action handling should be performed on *handle* actions list returned
3680  * from this call.
3681  *
3682  * @param[in] dev
3683  *   Pointer to Ethernet device.
3684  * @param[in] actions
3685  *   List of actions to translate.
3686  * @param[out] handle
3687  *   List to store translated indirect action object handles.
3688  * @param[in, out] indir_n
3689  *   Size of *handle* array. On return should be updated with number of
3690  *   indirect actions retrieved from the *actions* list.
3691  * @param[out] translated_actions
3692  *   List of actions where all indirect actions were translated to direct
3693  *   if possible. NULL if no translation took place.
3694  * @param[out] error
3695  *   Pointer to the error structure.
3696  *
3697  * @return
3698  *   0 on success, a negative errno value otherwise and rte_errno is set.
3699  */
3700 static int
3701 flow_action_handles_translate(struct rte_eth_dev *dev,
3702 			      const struct rte_flow_action actions[],
3703 			      struct mlx5_translated_action_handle *handle,
3704 			      int *indir_n,
3705 			      struct rte_flow_action **translated_actions,
3706 			      struct rte_flow_error *error)
3707 {
3708 	struct mlx5_priv *priv = dev->data->dev_private;
3709 	struct rte_flow_action *translated = NULL;
3710 	size_t actions_size;
3711 	int n;
3712 	int copied_n = 0;
3713 	struct mlx5_translated_action_handle *handle_end = NULL;
3714 
3715 	for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) {
3716 		if (actions[n].type != RTE_FLOW_ACTION_TYPE_INDIRECT)
3717 			continue;
3718 		if (copied_n == *indir_n) {
3719 			return rte_flow_error_set
3720 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM,
3721 				 NULL, "too many shared actions");
3722 		}
3723 		rte_memcpy(&handle[copied_n].action, &actions[n].conf,
3724 			   sizeof(actions[n].conf));
3725 		handle[copied_n].index = n;
3726 		copied_n++;
3727 	}
3728 	n++;
3729 	*indir_n = copied_n;
3730 	if (!copied_n)
3731 		return 0;
3732 	actions_size = sizeof(struct rte_flow_action) * n;
3733 	translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY);
3734 	if (!translated) {
3735 		rte_errno = ENOMEM;
3736 		return -ENOMEM;
3737 	}
3738 	memcpy(translated, actions, actions_size);
3739 	for (handle_end = handle + copied_n; handle < handle_end; handle++) {
3740 		struct mlx5_shared_action_rss *shared_rss;
3741 		uint32_t act_idx = (uint32_t)(uintptr_t)handle->action;
3742 		uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET;
3743 		uint32_t idx = act_idx &
3744 			       ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1);
3745 
3746 		switch (type) {
3747 		case MLX5_INDIRECT_ACTION_TYPE_RSS:
3748 			shared_rss = mlx5_ipool_get
3749 			  (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], idx);
3750 			translated[handle->index].type =
3751 				RTE_FLOW_ACTION_TYPE_RSS;
3752 			translated[handle->index].conf =
3753 				&shared_rss->origin;
3754 			break;
3755 		case MLX5_INDIRECT_ACTION_TYPE_COUNT:
3756 			translated[handle->index].type =
3757 						(enum rte_flow_action_type)
3758 						MLX5_RTE_FLOW_ACTION_TYPE_COUNT;
3759 			translated[handle->index].conf = (void *)(uintptr_t)idx;
3760 			break;
3761 		case MLX5_INDIRECT_ACTION_TYPE_AGE:
3762 			if (priv->sh->flow_hit_aso_en) {
3763 				translated[handle->index].type =
3764 					(enum rte_flow_action_type)
3765 					MLX5_RTE_FLOW_ACTION_TYPE_AGE;
3766 				translated[handle->index].conf =
3767 							 (void *)(uintptr_t)idx;
3768 				break;
3769 			}
3770 			/* Fall-through */
3771 		case MLX5_INDIRECT_ACTION_TYPE_CT:
3772 			if (priv->sh->ct_aso_en) {
3773 				translated[handle->index].type =
3774 					RTE_FLOW_ACTION_TYPE_CONNTRACK;
3775 				translated[handle->index].conf =
3776 							 (void *)(uintptr_t)idx;
3777 				break;
3778 			}
3779 			/* Fall-through */
3780 		default:
3781 			mlx5_free(translated);
3782 			return rte_flow_error_set
3783 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
3784 				 NULL, "invalid indirect action type");
3785 		}
3786 	}
3787 	*translated_actions = translated;
3788 	return 0;
3789 }
3790 
3791 /**
3792  * Get Shared RSS action from the action list.
3793  *
3794  * @param[in] dev
3795  *   Pointer to Ethernet device.
3796  * @param[in] shared
3797  *   Pointer to the list of actions.
3798  * @param[in] shared_n
3799  *   Actions list length.
3800  *
3801  * @return
3802  *   The MLX5 RSS action ID if exists, otherwise return 0.
3803  */
3804 static uint32_t
3805 flow_get_shared_rss_action(struct rte_eth_dev *dev,
3806 			   struct mlx5_translated_action_handle *handle,
3807 			   int shared_n)
3808 {
3809 	struct mlx5_translated_action_handle *handle_end;
3810 	struct mlx5_priv *priv = dev->data->dev_private;
3811 	struct mlx5_shared_action_rss *shared_rss;
3812 
3813 
3814 	for (handle_end = handle + shared_n; handle < handle_end; handle++) {
3815 		uint32_t act_idx = (uint32_t)(uintptr_t)handle->action;
3816 		uint32_t type = act_idx >> MLX5_INDIRECT_ACTION_TYPE_OFFSET;
3817 		uint32_t idx = act_idx &
3818 			       ((1u << MLX5_INDIRECT_ACTION_TYPE_OFFSET) - 1);
3819 		switch (type) {
3820 		case MLX5_INDIRECT_ACTION_TYPE_RSS:
3821 			shared_rss = mlx5_ipool_get
3822 				(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
3823 									   idx);
3824 			__atomic_add_fetch(&shared_rss->refcnt, 1,
3825 					   __ATOMIC_RELAXED);
3826 			return idx;
3827 		default:
3828 			break;
3829 		}
3830 	}
3831 	return 0;
3832 }
3833 
3834 static unsigned int
3835 find_graph_root(uint32_t rss_level)
3836 {
3837 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
3838 			       MLX5_EXPANSION_ROOT_OUTER;
3839 }
3840 
3841 /**
3842  *  Get layer flags from the prefix flow.
3843  *
3844  *  Some flows may be split to several subflows, the prefix subflow gets the
3845  *  match items and the suffix sub flow gets the actions.
3846  *  Some actions need the user defined match item flags to get the detail for
3847  *  the action.
3848  *  This function helps the suffix flow to get the item layer flags from prefix
3849  *  subflow.
3850  *
3851  * @param[in] dev_flow
3852  *   Pointer the created preifx subflow.
3853  *
3854  * @return
3855  *   The layers get from prefix subflow.
3856  */
3857 static inline uint64_t
3858 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
3859 {
3860 	uint64_t layers = 0;
3861 
3862 	/*
3863 	 * Layers bits could be localization, but usually the compiler will
3864 	 * help to do the optimization work for source code.
3865 	 * If no decap actions, use the layers directly.
3866 	 */
3867 	if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
3868 		return dev_flow->handle->layers;
3869 	/* Convert L3 layers with decap action. */
3870 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
3871 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
3872 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
3873 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
3874 	/* Convert L4 layers with decap action.  */
3875 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
3876 		layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
3877 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
3878 		layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
3879 	return layers;
3880 }
3881 
3882 /**
3883  * Get metadata split action information.
3884  *
3885  * @param[in] actions
3886  *   Pointer to the list of actions.
3887  * @param[out] qrss
3888  *   Pointer to the return pointer.
3889  * @param[out] qrss_type
3890  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
3891  *   if no QUEUE/RSS is found.
3892  * @param[out] encap_idx
3893  *   Pointer to the index of the encap action if exists, otherwise the last
3894  *   action index.
3895  *
3896  * @return
3897  *   Total number of actions.
3898  */
3899 static int
3900 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
3901 				       const struct rte_flow_action **qrss,
3902 				       int *encap_idx)
3903 {
3904 	const struct rte_flow_action_raw_encap *raw_encap;
3905 	int actions_n = 0;
3906 	int raw_decap_idx = -1;
3907 
3908 	*encap_idx = -1;
3909 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3910 		switch (actions->type) {
3911 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3912 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3913 			*encap_idx = actions_n;
3914 			break;
3915 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3916 			raw_decap_idx = actions_n;
3917 			break;
3918 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3919 			raw_encap = actions->conf;
3920 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3921 				*encap_idx = raw_decap_idx != -1 ?
3922 						      raw_decap_idx : actions_n;
3923 			break;
3924 		case RTE_FLOW_ACTION_TYPE_QUEUE:
3925 		case RTE_FLOW_ACTION_TYPE_RSS:
3926 			*qrss = actions;
3927 			break;
3928 		default:
3929 			break;
3930 		}
3931 		actions_n++;
3932 	}
3933 	if (*encap_idx == -1)
3934 		*encap_idx = actions_n;
3935 	/* Count RTE_FLOW_ACTION_TYPE_END. */
3936 	return actions_n + 1;
3937 }
3938 
3939 /**
3940  * Check if the action will change packet.
3941  *
3942  * @param dev
3943  *   Pointer to Ethernet device.
3944  * @param[in] type
3945  *   action type.
3946  *
3947  * @return
3948  *   true if action will change packet, false otherwise.
3949  */
3950 static bool flow_check_modify_action_type(struct rte_eth_dev *dev,
3951 					  enum rte_flow_action_type type)
3952 {
3953 	struct mlx5_priv *priv = dev->data->dev_private;
3954 
3955 	switch (type) {
3956 	case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
3957 	case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
3958 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
3959 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
3960 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
3961 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
3962 	case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
3963 	case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
3964 	case RTE_FLOW_ACTION_TYPE_DEC_TTL:
3965 	case RTE_FLOW_ACTION_TYPE_SET_TTL:
3966 	case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ:
3967 	case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ:
3968 	case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK:
3969 	case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK:
3970 	case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP:
3971 	case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP:
3972 	case RTE_FLOW_ACTION_TYPE_SET_META:
3973 	case RTE_FLOW_ACTION_TYPE_SET_TAG:
3974 	case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
3975 	case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3976 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3977 	case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3978 	case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3979 	case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
3980 	case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3981 	case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
3982 	case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3983 	case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3984 	case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD:
3985 		return true;
3986 	case RTE_FLOW_ACTION_TYPE_FLAG:
3987 	case RTE_FLOW_ACTION_TYPE_MARK:
3988 		if (priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY)
3989 			return true;
3990 		else
3991 			return false;
3992 	default:
3993 		return false;
3994 	}
3995 }
3996 
3997 /**
3998  * Check meter action from the action list.
3999  *
4000  * @param dev
4001  *   Pointer to Ethernet device.
4002  * @param[in] actions
4003  *   Pointer to the list of actions.
4004  * @param[out] has_mtr
4005  *   Pointer to the meter exist flag.
4006  * @param[out] has_modify
4007  *   Pointer to the flag showing there's packet change action.
4008  * @param[out] meter_id
4009  *   Pointer to the meter id.
4010  *
4011  * @return
4012  *   Total number of actions.
4013  */
4014 static int
4015 flow_check_meter_action(struct rte_eth_dev *dev,
4016 			const struct rte_flow_action actions[],
4017 			bool *has_mtr, bool *has_modify, uint32_t *meter_id)
4018 {
4019 	const struct rte_flow_action_meter *mtr = NULL;
4020 	int actions_n = 0;
4021 
4022 	MLX5_ASSERT(has_mtr);
4023 	*has_mtr = false;
4024 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4025 		switch (actions->type) {
4026 		case RTE_FLOW_ACTION_TYPE_METER:
4027 			mtr = actions->conf;
4028 			*meter_id = mtr->mtr_id;
4029 			*has_mtr = true;
4030 			break;
4031 		default:
4032 			break;
4033 		}
4034 		if (!*has_mtr)
4035 			*has_modify |= flow_check_modify_action_type(dev,
4036 								actions->type);
4037 		actions_n++;
4038 	}
4039 	/* Count RTE_FLOW_ACTION_TYPE_END. */
4040 	return actions_n + 1;
4041 }
4042 
4043 /**
4044  * Check if the flow should be split due to hairpin.
4045  * The reason for the split is that in current HW we can't
4046  * support encap and push-vlan on Rx, so if a flow contains
4047  * these actions we move it to Tx.
4048  *
4049  * @param dev
4050  *   Pointer to Ethernet device.
4051  * @param[in] attr
4052  *   Flow rule attributes.
4053  * @param[in] actions
4054  *   Associated actions (list terminated by the END action).
4055  *
4056  * @return
4057  *   > 0 the number of actions and the flow should be split,
4058  *   0 when no split required.
4059  */
4060 static int
4061 flow_check_hairpin_split(struct rte_eth_dev *dev,
4062 			 const struct rte_flow_attr *attr,
4063 			 const struct rte_flow_action actions[])
4064 {
4065 	int queue_action = 0;
4066 	int action_n = 0;
4067 	int split = 0;
4068 	const struct rte_flow_action_queue *queue;
4069 	const struct rte_flow_action_rss *rss;
4070 	const struct rte_flow_action_raw_encap *raw_encap;
4071 	const struct rte_eth_hairpin_conf *conf;
4072 
4073 	if (!attr->ingress)
4074 		return 0;
4075 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4076 		switch (actions->type) {
4077 		case RTE_FLOW_ACTION_TYPE_QUEUE:
4078 			queue = actions->conf;
4079 			if (queue == NULL)
4080 				return 0;
4081 			conf = mlx5_rxq_get_hairpin_conf(dev, queue->index);
4082 			if (conf == NULL || conf->tx_explicit != 0)
4083 				return 0;
4084 			queue_action = 1;
4085 			action_n++;
4086 			break;
4087 		case RTE_FLOW_ACTION_TYPE_RSS:
4088 			rss = actions->conf;
4089 			if (rss == NULL || rss->queue_num == 0)
4090 				return 0;
4091 			conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]);
4092 			if (conf == NULL || conf->tx_explicit != 0)
4093 				return 0;
4094 			queue_action = 1;
4095 			action_n++;
4096 			break;
4097 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4098 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4099 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4100 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4101 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4102 			split++;
4103 			action_n++;
4104 			break;
4105 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4106 			raw_encap = actions->conf;
4107 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4108 				split++;
4109 			action_n++;
4110 			break;
4111 		default:
4112 			action_n++;
4113 			break;
4114 		}
4115 	}
4116 	if (split && queue_action)
4117 		return action_n;
4118 	return 0;
4119 }
4120 
4121 /* Declare flow create/destroy prototype in advance. */
4122 static uint32_t
4123 flow_list_create(struct rte_eth_dev *dev, enum mlx5_flow_type type,
4124 		 const struct rte_flow_attr *attr,
4125 		 const struct rte_flow_item items[],
4126 		 const struct rte_flow_action actions[],
4127 		 bool external, struct rte_flow_error *error);
4128 
4129 static void
4130 flow_list_destroy(struct rte_eth_dev *dev, enum mlx5_flow_type type,
4131 		  uint32_t flow_idx);
4132 
4133 int
4134 flow_dv_mreg_match_cb(void *tool_ctx __rte_unused,
4135 		      struct mlx5_list_entry *entry, void *cb_ctx)
4136 {
4137 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
4138 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4139 			       container_of(entry, typeof(*mcp_res), hlist_ent);
4140 
4141 	return mcp_res->mark_id != *(uint32_t *)(ctx->data);
4142 }
4143 
4144 struct mlx5_list_entry *
4145 flow_dv_mreg_create_cb(void *tool_ctx, void *cb_ctx)
4146 {
4147 	struct rte_eth_dev *dev = tool_ctx;
4148 	struct mlx5_priv *priv = dev->data->dev_private;
4149 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
4150 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4151 	struct rte_flow_error *error = ctx->error;
4152 	uint32_t idx = 0;
4153 	int ret;
4154 	uint32_t mark_id = *(uint32_t *)(ctx->data);
4155 	struct rte_flow_attr attr = {
4156 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4157 		.ingress = 1,
4158 	};
4159 	struct mlx5_rte_flow_item_tag tag_spec = {
4160 		.data = mark_id,
4161 	};
4162 	struct rte_flow_item items[] = {
4163 		[1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
4164 	};
4165 	struct rte_flow_action_mark ftag = {
4166 		.id = mark_id,
4167 	};
4168 	struct mlx5_flow_action_copy_mreg cp_mreg = {
4169 		.dst = REG_B,
4170 		.src = REG_NON,
4171 	};
4172 	struct rte_flow_action_jump jump = {
4173 		.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4174 	};
4175 	struct rte_flow_action actions[] = {
4176 		[3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
4177 	};
4178 
4179 	/* Fill the register fileds in the flow. */
4180 	ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
4181 	if (ret < 0)
4182 		return NULL;
4183 	tag_spec.id = ret;
4184 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4185 	if (ret < 0)
4186 		return NULL;
4187 	cp_mreg.src = ret;
4188 	/* Provide the full width of FLAG specific value. */
4189 	if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
4190 		tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
4191 	/* Build a new flow. */
4192 	if (mark_id != MLX5_DEFAULT_COPY_ID) {
4193 		items[0] = (struct rte_flow_item){
4194 			.type = (enum rte_flow_item_type)
4195 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4196 			.spec = &tag_spec,
4197 		};
4198 		items[1] = (struct rte_flow_item){
4199 			.type = RTE_FLOW_ITEM_TYPE_END,
4200 		};
4201 		actions[0] = (struct rte_flow_action){
4202 			.type = (enum rte_flow_action_type)
4203 				MLX5_RTE_FLOW_ACTION_TYPE_MARK,
4204 			.conf = &ftag,
4205 		};
4206 		actions[1] = (struct rte_flow_action){
4207 			.type = (enum rte_flow_action_type)
4208 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4209 			.conf = &cp_mreg,
4210 		};
4211 		actions[2] = (struct rte_flow_action){
4212 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
4213 			.conf = &jump,
4214 		};
4215 		actions[3] = (struct rte_flow_action){
4216 			.type = RTE_FLOW_ACTION_TYPE_END,
4217 		};
4218 	} else {
4219 		/* Default rule, wildcard match. */
4220 		attr.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR;
4221 		items[0] = (struct rte_flow_item){
4222 			.type = RTE_FLOW_ITEM_TYPE_END,
4223 		};
4224 		actions[0] = (struct rte_flow_action){
4225 			.type = (enum rte_flow_action_type)
4226 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4227 			.conf = &cp_mreg,
4228 		};
4229 		actions[1] = (struct rte_flow_action){
4230 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
4231 			.conf = &jump,
4232 		};
4233 		actions[2] = (struct rte_flow_action){
4234 			.type = RTE_FLOW_ACTION_TYPE_END,
4235 		};
4236 	}
4237 	/* Build a new entry. */
4238 	mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
4239 	if (!mcp_res) {
4240 		rte_errno = ENOMEM;
4241 		return NULL;
4242 	}
4243 	mcp_res->idx = idx;
4244 	mcp_res->mark_id = mark_id;
4245 	/*
4246 	 * The copy Flows are not included in any list. There
4247 	 * ones are referenced from other Flows and can not
4248 	 * be applied, removed, deleted in ardbitrary order
4249 	 * by list traversing.
4250 	 */
4251 	mcp_res->rix_flow = flow_list_create(dev, MLX5_FLOW_TYPE_MCP,
4252 					&attr, items, actions, false, error);
4253 	if (!mcp_res->rix_flow) {
4254 		mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], idx);
4255 		return NULL;
4256 	}
4257 	return &mcp_res->hlist_ent;
4258 }
4259 
4260 struct mlx5_list_entry *
4261 flow_dv_mreg_clone_cb(void *tool_ctx, struct mlx5_list_entry *oentry,
4262 		      void *cb_ctx __rte_unused)
4263 {
4264 	struct rte_eth_dev *dev = tool_ctx;
4265 	struct mlx5_priv *priv = dev->data->dev_private;
4266 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4267 	uint32_t idx = 0;
4268 
4269 	mcp_res = mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
4270 	if (!mcp_res) {
4271 		rte_errno = ENOMEM;
4272 		return NULL;
4273 	}
4274 	memcpy(mcp_res, oentry, sizeof(*mcp_res));
4275 	mcp_res->idx = idx;
4276 	return &mcp_res->hlist_ent;
4277 }
4278 
4279 void
4280 flow_dv_mreg_clone_free_cb(void *tool_ctx, struct mlx5_list_entry *entry)
4281 {
4282 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4283 			       container_of(entry, typeof(*mcp_res), hlist_ent);
4284 	struct rte_eth_dev *dev = tool_ctx;
4285 	struct mlx5_priv *priv = dev->data->dev_private;
4286 
4287 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
4288 }
4289 
4290 /**
4291  * Add a flow of copying flow metadata registers in RX_CP_TBL.
4292  *
4293  * As mark_id is unique, if there's already a registered flow for the mark_id,
4294  * return by increasing the reference counter of the resource. Otherwise, create
4295  * the resource (mcp_res) and flow.
4296  *
4297  * Flow looks like,
4298  *   - If ingress port is ANY and reg_c[1] is mark_id,
4299  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4300  *
4301  * For default flow (zero mark_id), flow is like,
4302  *   - If ingress port is ANY,
4303  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
4304  *
4305  * @param dev
4306  *   Pointer to Ethernet device.
4307  * @param mark_id
4308  *   ID of MARK action, zero means default flow for META.
4309  * @param[out] error
4310  *   Perform verbose error reporting if not NULL.
4311  *
4312  * @return
4313  *   Associated resource on success, NULL otherwise and rte_errno is set.
4314  */
4315 static struct mlx5_flow_mreg_copy_resource *
4316 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
4317 			  struct rte_flow_error *error)
4318 {
4319 	struct mlx5_priv *priv = dev->data->dev_private;
4320 	struct mlx5_list_entry *entry;
4321 	struct mlx5_flow_cb_ctx ctx = {
4322 		.dev = dev,
4323 		.error = error,
4324 		.data = &mark_id,
4325 	};
4326 
4327 	/* Check if already registered. */
4328 	MLX5_ASSERT(priv->mreg_cp_tbl);
4329 	entry = mlx5_hlist_register(priv->mreg_cp_tbl, mark_id, &ctx);
4330 	if (!entry)
4331 		return NULL;
4332 	return container_of(entry, struct mlx5_flow_mreg_copy_resource,
4333 			    hlist_ent);
4334 }
4335 
4336 void
4337 flow_dv_mreg_remove_cb(void *tool_ctx, struct mlx5_list_entry *entry)
4338 {
4339 	struct mlx5_flow_mreg_copy_resource *mcp_res =
4340 			       container_of(entry, typeof(*mcp_res), hlist_ent);
4341 	struct rte_eth_dev *dev = tool_ctx;
4342 	struct mlx5_priv *priv = dev->data->dev_private;
4343 
4344 	MLX5_ASSERT(mcp_res->rix_flow);
4345 	flow_list_destroy(dev, MLX5_FLOW_TYPE_MCP, mcp_res->rix_flow);
4346 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
4347 }
4348 
4349 /**
4350  * Release flow in RX_CP_TBL.
4351  *
4352  * @param dev
4353  *   Pointer to Ethernet device.
4354  * @flow
4355  *   Parent flow for wich copying is provided.
4356  */
4357 static void
4358 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
4359 			  struct rte_flow *flow)
4360 {
4361 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4362 	struct mlx5_priv *priv = dev->data->dev_private;
4363 
4364 	if (!flow->rix_mreg_copy)
4365 		return;
4366 	mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
4367 				 flow->rix_mreg_copy);
4368 	if (!mcp_res || !priv->mreg_cp_tbl)
4369 		return;
4370 	MLX5_ASSERT(mcp_res->rix_flow);
4371 	mlx5_hlist_unregister(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
4372 	flow->rix_mreg_copy = 0;
4373 }
4374 
4375 /**
4376  * Remove the default copy action from RX_CP_TBL.
4377  *
4378  * This functions is called in the mlx5_dev_start(). No thread safe
4379  * is guaranteed.
4380  *
4381  * @param dev
4382  *   Pointer to Ethernet device.
4383  */
4384 static void
4385 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
4386 {
4387 	struct mlx5_list_entry *entry;
4388 	struct mlx5_priv *priv = dev->data->dev_private;
4389 	struct mlx5_flow_cb_ctx ctx;
4390 	uint32_t mark_id;
4391 
4392 	/* Check if default flow is registered. */
4393 	if (!priv->mreg_cp_tbl)
4394 		return;
4395 	mark_id = MLX5_DEFAULT_COPY_ID;
4396 	ctx.data = &mark_id;
4397 	entry = mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id, &ctx);
4398 	if (!entry)
4399 		return;
4400 	mlx5_hlist_unregister(priv->mreg_cp_tbl, entry);
4401 }
4402 
4403 /**
4404  * Add the default copy action in in RX_CP_TBL.
4405  *
4406  * This functions is called in the mlx5_dev_start(). No thread safe
4407  * is guaranteed.
4408  *
4409  * @param dev
4410  *   Pointer to Ethernet device.
4411  * @param[out] error
4412  *   Perform verbose error reporting if not NULL.
4413  *
4414  * @return
4415  *   0 for success, negative value otherwise and rte_errno is set.
4416  */
4417 static int
4418 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
4419 				  struct rte_flow_error *error)
4420 {
4421 	struct mlx5_priv *priv = dev->data->dev_private;
4422 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4423 	struct mlx5_flow_cb_ctx ctx;
4424 	uint32_t mark_id;
4425 
4426 	/* Check whether extensive metadata feature is engaged. */
4427 	if (!priv->config.dv_flow_en ||
4428 	    priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4429 	    !mlx5_flow_ext_mreg_supported(dev) ||
4430 	    !priv->sh->dv_regc0_mask)
4431 		return 0;
4432 	/*
4433 	 * Add default mreg copy flow may be called multiple time, but
4434 	 * only be called once in stop. Avoid register it twice.
4435 	 */
4436 	mark_id = MLX5_DEFAULT_COPY_ID;
4437 	ctx.data = &mark_id;
4438 	if (mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id, &ctx))
4439 		return 0;
4440 	mcp_res = flow_mreg_add_copy_action(dev, mark_id, error);
4441 	if (!mcp_res)
4442 		return -rte_errno;
4443 	return 0;
4444 }
4445 
4446 /**
4447  * Add a flow of copying flow metadata registers in RX_CP_TBL.
4448  *
4449  * All the flow having Q/RSS action should be split by
4450  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
4451  * performs the following,
4452  *   - CQE->flow_tag := reg_c[1] (MARK)
4453  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4454  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
4455  * but there should be a flow per each MARK ID set by MARK action.
4456  *
4457  * For the aforementioned reason, if there's a MARK action in flow's action
4458  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
4459  * the MARK ID to CQE's flow_tag like,
4460  *   - If reg_c[1] is mark_id,
4461  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4462  *
4463  * For SET_META action which stores value in reg_c[0], as the destination is
4464  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
4465  * MARK ID means the default flow. The default flow looks like,
4466  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
4467  *
4468  * @param dev
4469  *   Pointer to Ethernet device.
4470  * @param flow
4471  *   Pointer to flow structure.
4472  * @param[in] actions
4473  *   Pointer to the list of actions.
4474  * @param[out] error
4475  *   Perform verbose error reporting if not NULL.
4476  *
4477  * @return
4478  *   0 on success, negative value otherwise and rte_errno is set.
4479  */
4480 static int
4481 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
4482 			    struct rte_flow *flow,
4483 			    const struct rte_flow_action *actions,
4484 			    struct rte_flow_error *error)
4485 {
4486 	struct mlx5_priv *priv = dev->data->dev_private;
4487 	struct mlx5_dev_config *config = &priv->config;
4488 	struct mlx5_flow_mreg_copy_resource *mcp_res;
4489 	const struct rte_flow_action_mark *mark;
4490 
4491 	/* Check whether extensive metadata feature is engaged. */
4492 	if (!config->dv_flow_en ||
4493 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4494 	    !mlx5_flow_ext_mreg_supported(dev) ||
4495 	    !priv->sh->dv_regc0_mask)
4496 		return 0;
4497 	/* Find MARK action. */
4498 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4499 		switch (actions->type) {
4500 		case RTE_FLOW_ACTION_TYPE_FLAG:
4501 			mcp_res = flow_mreg_add_copy_action
4502 				(dev, MLX5_FLOW_MARK_DEFAULT, error);
4503 			if (!mcp_res)
4504 				return -rte_errno;
4505 			flow->rix_mreg_copy = mcp_res->idx;
4506 			return 0;
4507 		case RTE_FLOW_ACTION_TYPE_MARK:
4508 			mark = (const struct rte_flow_action_mark *)
4509 				actions->conf;
4510 			mcp_res =
4511 				flow_mreg_add_copy_action(dev, mark->id, error);
4512 			if (!mcp_res)
4513 				return -rte_errno;
4514 			flow->rix_mreg_copy = mcp_res->idx;
4515 			return 0;
4516 		default:
4517 			break;
4518 		}
4519 	}
4520 	return 0;
4521 }
4522 
4523 #define MLX5_MAX_SPLIT_ACTIONS 24
4524 #define MLX5_MAX_SPLIT_ITEMS 24
4525 
4526 /**
4527  * Split the hairpin flow.
4528  * Since HW can't support encap and push-vlan on Rx, we move these
4529  * actions to Tx.
4530  * If the count action is after the encap then we also
4531  * move the count action. in this case the count will also measure
4532  * the outer bytes.
4533  *
4534  * @param dev
4535  *   Pointer to Ethernet device.
4536  * @param[in] actions
4537  *   Associated actions (list terminated by the END action).
4538  * @param[out] actions_rx
4539  *   Rx flow actions.
4540  * @param[out] actions_tx
4541  *   Tx flow actions..
4542  * @param[out] pattern_tx
4543  *   The pattern items for the Tx flow.
4544  * @param[out] flow_id
4545  *   The flow ID connected to this flow.
4546  *
4547  * @return
4548  *   0 on success.
4549  */
4550 static int
4551 flow_hairpin_split(struct rte_eth_dev *dev,
4552 		   const struct rte_flow_action actions[],
4553 		   struct rte_flow_action actions_rx[],
4554 		   struct rte_flow_action actions_tx[],
4555 		   struct rte_flow_item pattern_tx[],
4556 		   uint32_t flow_id)
4557 {
4558 	const struct rte_flow_action_raw_encap *raw_encap;
4559 	const struct rte_flow_action_raw_decap *raw_decap;
4560 	struct mlx5_rte_flow_action_set_tag *set_tag;
4561 	struct rte_flow_action *tag_action;
4562 	struct mlx5_rte_flow_item_tag *tag_item;
4563 	struct rte_flow_item *item;
4564 	char *addr;
4565 	int encap = 0;
4566 
4567 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4568 		switch (actions->type) {
4569 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
4570 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
4571 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4572 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4573 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
4574 			rte_memcpy(actions_tx, actions,
4575 			       sizeof(struct rte_flow_action));
4576 			actions_tx++;
4577 			break;
4578 		case RTE_FLOW_ACTION_TYPE_COUNT:
4579 			if (encap) {
4580 				rte_memcpy(actions_tx, actions,
4581 					   sizeof(struct rte_flow_action));
4582 				actions_tx++;
4583 			} else {
4584 				rte_memcpy(actions_rx, actions,
4585 					   sizeof(struct rte_flow_action));
4586 				actions_rx++;
4587 			}
4588 			break;
4589 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4590 			raw_encap = actions->conf;
4591 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) {
4592 				memcpy(actions_tx, actions,
4593 				       sizeof(struct rte_flow_action));
4594 				actions_tx++;
4595 				encap = 1;
4596 			} else {
4597 				rte_memcpy(actions_rx, actions,
4598 					   sizeof(struct rte_flow_action));
4599 				actions_rx++;
4600 			}
4601 			break;
4602 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4603 			raw_decap = actions->conf;
4604 			if (raw_decap->size < MLX5_ENCAPSULATION_DECISION_SIZE) {
4605 				memcpy(actions_tx, actions,
4606 				       sizeof(struct rte_flow_action));
4607 				actions_tx++;
4608 			} else {
4609 				rte_memcpy(actions_rx, actions,
4610 					   sizeof(struct rte_flow_action));
4611 				actions_rx++;
4612 			}
4613 			break;
4614 		default:
4615 			rte_memcpy(actions_rx, actions,
4616 				   sizeof(struct rte_flow_action));
4617 			actions_rx++;
4618 			break;
4619 		}
4620 	}
4621 	/* Add set meta action and end action for the Rx flow. */
4622 	tag_action = actions_rx;
4623 	tag_action->type = (enum rte_flow_action_type)
4624 			   MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4625 	actions_rx++;
4626 	rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
4627 	actions_rx++;
4628 	set_tag = (void *)actions_rx;
4629 	*set_tag = (struct mlx5_rte_flow_action_set_tag) {
4630 		.id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL),
4631 		.data = flow_id,
4632 	};
4633 	MLX5_ASSERT(set_tag->id > REG_NON);
4634 	tag_action->conf = set_tag;
4635 	/* Create Tx item list. */
4636 	rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
4637 	addr = (void *)&pattern_tx[2];
4638 	item = pattern_tx;
4639 	item->type = (enum rte_flow_item_type)
4640 		     MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4641 	tag_item = (void *)addr;
4642 	tag_item->data = flow_id;
4643 	tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
4644 	MLX5_ASSERT(set_tag->id > REG_NON);
4645 	item->spec = tag_item;
4646 	addr += sizeof(struct mlx5_rte_flow_item_tag);
4647 	tag_item = (void *)addr;
4648 	tag_item->data = UINT32_MAX;
4649 	tag_item->id = UINT16_MAX;
4650 	item->mask = tag_item;
4651 	item->last = NULL;
4652 	item++;
4653 	item->type = RTE_FLOW_ITEM_TYPE_END;
4654 	return 0;
4655 }
4656 
4657 /**
4658  * The last stage of splitting chain, just creates the subflow
4659  * without any modification.
4660  *
4661  * @param[in] dev
4662  *   Pointer to Ethernet device.
4663  * @param[in] flow
4664  *   Parent flow structure pointer.
4665  * @param[in, out] sub_flow
4666  *   Pointer to return the created subflow, may be NULL.
4667  * @param[in] attr
4668  *   Flow rule attributes.
4669  * @param[in] items
4670  *   Pattern specification (list terminated by the END pattern item).
4671  * @param[in] actions
4672  *   Associated actions (list terminated by the END action).
4673  * @param[in] flow_split_info
4674  *   Pointer to flow split info structure.
4675  * @param[out] error
4676  *   Perform verbose error reporting if not NULL.
4677  * @return
4678  *   0 on success, negative value otherwise
4679  */
4680 static int
4681 flow_create_split_inner(struct rte_eth_dev *dev,
4682 			struct rte_flow *flow,
4683 			struct mlx5_flow **sub_flow,
4684 			const struct rte_flow_attr *attr,
4685 			const struct rte_flow_item items[],
4686 			const struct rte_flow_action actions[],
4687 			struct mlx5_flow_split_info *flow_split_info,
4688 			struct rte_flow_error *error)
4689 {
4690 	struct mlx5_flow *dev_flow;
4691 
4692 	dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
4693 				    flow_split_info->flow_idx, error);
4694 	if (!dev_flow)
4695 		return -rte_errno;
4696 	dev_flow->flow = flow;
4697 	dev_flow->external = flow_split_info->external;
4698 	dev_flow->skip_scale = flow_split_info->skip_scale;
4699 	/* Subflow object was created, we must include one in the list. */
4700 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
4701 		      dev_flow->handle, next);
4702 	/*
4703 	 * If dev_flow is as one of the suffix flow, some actions in suffix
4704 	 * flow may need some user defined item layer flags, and pass the
4705 	 * Metadate rxq mark flag to suffix flow as well.
4706 	 */
4707 	if (flow_split_info->prefix_layers)
4708 		dev_flow->handle->layers = flow_split_info->prefix_layers;
4709 	if (flow_split_info->prefix_mark)
4710 		dev_flow->handle->mark = 1;
4711 	if (sub_flow)
4712 		*sub_flow = dev_flow;
4713 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4714 	dev_flow->dv.table_id = flow_split_info->table_id;
4715 #endif
4716 	return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
4717 }
4718 
4719 /**
4720  * Get the sub policy of a meter.
4721  *
4722  * @param[in] dev
4723  *   Pointer to Ethernet device.
4724  * @param[in] flow
4725  *   Parent flow structure pointer.
4726  * @param wks
4727  *   Pointer to thread flow work space.
4728  * @param[in] attr
4729  *   Flow rule attributes.
4730  * @param[in] items
4731  *   Pattern specification (list terminated by the END pattern item).
4732  * @param[out] error
4733  *   Perform verbose error reporting if not NULL.
4734  *
4735  * @return
4736  *   Pointer to the meter sub policy, NULL otherwise and rte_errno is set.
4737  */
4738 static struct mlx5_flow_meter_sub_policy *
4739 get_meter_sub_policy(struct rte_eth_dev *dev,
4740 		     struct rte_flow *flow,
4741 		     struct mlx5_flow_workspace *wks,
4742 		     const struct rte_flow_attr *attr,
4743 		     const struct rte_flow_item items[],
4744 		     struct rte_flow_error *error)
4745 {
4746 	struct mlx5_flow_meter_policy *policy;
4747 	struct mlx5_flow_meter_policy *final_policy;
4748 	struct mlx5_flow_meter_sub_policy *sub_policy = NULL;
4749 
4750 	policy = wks->policy;
4751 	final_policy = policy->is_hierarchy ? wks->final_policy : policy;
4752 	if (final_policy->is_rss || final_policy->is_queue) {
4753 		struct mlx5_flow_rss_desc rss_desc_v[MLX5_MTR_RTE_COLORS];
4754 		struct mlx5_flow_rss_desc *rss_desc[MLX5_MTR_RTE_COLORS] = {0};
4755 		uint32_t i;
4756 
4757 		/*
4758 		 * This is a tmp dev_flow,
4759 		 * no need to register any matcher for it in translate.
4760 		 */
4761 		wks->skip_matcher_reg = 1;
4762 		for (i = 0; i < MLX5_MTR_RTE_COLORS; i++) {
4763 			struct mlx5_flow dev_flow = {0};
4764 			struct mlx5_flow_handle dev_handle = { {0} };
4765 			uint8_t fate = final_policy->act_cnt[i].fate_action;
4766 
4767 			if (fate == MLX5_FLOW_FATE_SHARED_RSS) {
4768 				const struct rte_flow_action_rss *rss_act =
4769 					final_policy->act_cnt[i].rss->conf;
4770 				struct rte_flow_action rss_actions[2] = {
4771 					[0] = {
4772 					.type = RTE_FLOW_ACTION_TYPE_RSS,
4773 					.conf = rss_act,
4774 					},
4775 					[1] = {
4776 					.type = RTE_FLOW_ACTION_TYPE_END,
4777 					.conf = NULL,
4778 					}
4779 				};
4780 
4781 				dev_flow.handle = &dev_handle;
4782 				dev_flow.ingress = attr->ingress;
4783 				dev_flow.flow = flow;
4784 				dev_flow.external = 0;
4785 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
4786 				dev_flow.dv.transfer = attr->transfer;
4787 #endif
4788 				/**
4789 				 * Translate RSS action to get rss hash fields.
4790 				 */
4791 				if (flow_drv_translate(dev, &dev_flow, attr,
4792 						items, rss_actions, error))
4793 					goto exit;
4794 				rss_desc_v[i] = wks->rss_desc;
4795 				rss_desc_v[i].key_len = MLX5_RSS_HASH_KEY_LEN;
4796 				rss_desc_v[i].hash_fields =
4797 						dev_flow.hash_fields;
4798 				rss_desc_v[i].queue_num =
4799 						rss_desc_v[i].hash_fields ?
4800 						rss_desc_v[i].queue_num : 1;
4801 				rss_desc_v[i].tunnel =
4802 						!!(dev_flow.handle->layers &
4803 						   MLX5_FLOW_LAYER_TUNNEL);
4804 				/* Use the RSS queues in the containers. */
4805 				rss_desc_v[i].queue =
4806 					(uint16_t *)(uintptr_t)rss_act->queue;
4807 				rss_desc[i] = &rss_desc_v[i];
4808 			} else if (fate == MLX5_FLOW_FATE_QUEUE) {
4809 				/* This is queue action. */
4810 				rss_desc_v[i] = wks->rss_desc;
4811 				rss_desc_v[i].key_len = 0;
4812 				rss_desc_v[i].hash_fields = 0;
4813 				rss_desc_v[i].queue =
4814 					&final_policy->act_cnt[i].queue;
4815 				rss_desc_v[i].queue_num = 1;
4816 				rss_desc[i] = &rss_desc_v[i];
4817 			} else {
4818 				rss_desc[i] = NULL;
4819 			}
4820 		}
4821 		sub_policy = flow_drv_meter_sub_policy_rss_prepare(dev,
4822 						flow, policy, rss_desc);
4823 	} else {
4824 		enum mlx5_meter_domain mtr_domain =
4825 			attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER :
4826 				(attr->egress ? MLX5_MTR_DOMAIN_EGRESS :
4827 						MLX5_MTR_DOMAIN_INGRESS);
4828 		sub_policy = policy->sub_policys[mtr_domain][0];
4829 	}
4830 	if (!sub_policy)
4831 		rte_flow_error_set(error, EINVAL,
4832 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
4833 				   "Failed to get meter sub-policy.");
4834 exit:
4835 	return sub_policy;
4836 }
4837 
4838 /**
4839  * Split the meter flow.
4840  *
4841  * As meter flow will split to three sub flow, other than meter
4842  * action, the other actions make sense to only meter accepts
4843  * the packet. If it need to be dropped, no other additional
4844  * actions should be take.
4845  *
4846  * One kind of special action which decapsulates the L3 tunnel
4847  * header will be in the prefix sub flow, as not to take the
4848  * L3 tunnel header into account.
4849  *
4850  * @param[in] dev
4851  *   Pointer to Ethernet device.
4852  * @param[in] flow
4853  *   Parent flow structure pointer.
4854  * @param wks
4855  *   Pointer to thread flow work space.
4856  * @param[in] attr
4857  *   Flow rule attributes.
4858  * @param[in] items
4859  *   Pattern specification (list terminated by the END pattern item).
4860  * @param[out] sfx_items
4861  *   Suffix flow match items (list terminated by the END pattern item).
4862  * @param[in] actions
4863  *   Associated actions (list terminated by the END action).
4864  * @param[out] actions_sfx
4865  *   Suffix flow actions.
4866  * @param[out] actions_pre
4867  *   Prefix flow actions.
4868  * @param[out] mtr_flow_id
4869  *   Pointer to meter flow id.
4870  * @param[out] error
4871  *   Perform verbose error reporting if not NULL.
4872  *
4873  * @return
4874  *   0 on success, a negative errno value otherwise and rte_errno is set.
4875  */
4876 static int
4877 flow_meter_split_prep(struct rte_eth_dev *dev,
4878 		      struct rte_flow *flow,
4879 		      struct mlx5_flow_workspace *wks,
4880 		      const struct rte_flow_attr *attr,
4881 		      const struct rte_flow_item items[],
4882 		      struct rte_flow_item sfx_items[],
4883 		      const struct rte_flow_action actions[],
4884 		      struct rte_flow_action actions_sfx[],
4885 		      struct rte_flow_action actions_pre[],
4886 		      uint32_t *mtr_flow_id,
4887 		      struct rte_flow_error *error)
4888 {
4889 	struct mlx5_priv *priv = dev->data->dev_private;
4890 	struct mlx5_flow_meter_info *fm = wks->fm;
4891 	struct rte_flow_action *tag_action = NULL;
4892 	struct rte_flow_item *tag_item;
4893 	struct mlx5_rte_flow_action_set_tag *set_tag;
4894 	const struct rte_flow_action_raw_encap *raw_encap;
4895 	const struct rte_flow_action_raw_decap *raw_decap;
4896 	struct mlx5_rte_flow_item_tag *tag_item_spec;
4897 	struct mlx5_rte_flow_item_tag *tag_item_mask;
4898 	uint32_t tag_id = 0;
4899 	struct rte_flow_item *vlan_item_dst = NULL;
4900 	const struct rte_flow_item *vlan_item_src = NULL;
4901 	struct rte_flow_action *hw_mtr_action;
4902 	struct rte_flow_action *action_pre_head = NULL;
4903 	int32_t flow_src_port = priv->representor_id;
4904 	bool mtr_first;
4905 	uint8_t mtr_id_offset = priv->mtr_reg_share ? MLX5_MTR_COLOR_BITS : 0;
4906 	uint8_t mtr_reg_bits = priv->mtr_reg_share ?
4907 				MLX5_MTR_IDLE_BITS_IN_COLOR_REG : MLX5_REG_BITS;
4908 	uint32_t flow_id = 0;
4909 	uint32_t flow_id_reversed = 0;
4910 	uint8_t flow_id_bits = 0;
4911 	int shift;
4912 
4913 	/* Prepare the suffix subflow items. */
4914 	tag_item = sfx_items++;
4915 	for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
4916 		struct mlx5_priv *port_priv;
4917 		const struct rte_flow_item_port_id *pid_v;
4918 		int item_type = items->type;
4919 
4920 		switch (item_type) {
4921 		case RTE_FLOW_ITEM_TYPE_PORT_ID:
4922 			pid_v = items->spec;
4923 			MLX5_ASSERT(pid_v);
4924 			port_priv = mlx5_port_to_eswitch_info(pid_v->id, false);
4925 			if (!port_priv)
4926 				return rte_flow_error_set(error,
4927 						rte_errno,
4928 						RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
4929 						pid_v,
4930 						"Failed to get port info.");
4931 			flow_src_port = port_priv->representor_id;
4932 			if (!fm->def_policy && wks->policy->is_hierarchy &&
4933 			    flow_src_port != priv->representor_id) {
4934 				if (flow_drv_mtr_hierarchy_rule_create(dev,
4935 								flow, fm,
4936 								flow_src_port,
4937 								items,
4938 								error))
4939 					return -rte_errno;
4940 			}
4941 			memcpy(sfx_items, items, sizeof(*sfx_items));
4942 			sfx_items++;
4943 			break;
4944 		case RTE_FLOW_ITEM_TYPE_VLAN:
4945 			/* Determine if copy vlan item below. */
4946 			vlan_item_src = items;
4947 			vlan_item_dst = sfx_items++;
4948 			vlan_item_dst->type = RTE_FLOW_ITEM_TYPE_VOID;
4949 			break;
4950 		default:
4951 			break;
4952 		}
4953 	}
4954 	sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
4955 	sfx_items++;
4956 	mtr_first = priv->sh->meter_aso_en &&
4957 		(attr->egress || (attr->transfer && flow_src_port != UINT16_MAX));
4958 	/* For ASO meter, meter must be before tag in TX direction. */
4959 	if (mtr_first) {
4960 		action_pre_head = actions_pre++;
4961 		/* Leave space for tag action. */
4962 		tag_action = actions_pre++;
4963 	}
4964 	/* Prepare the actions for prefix and suffix flow. */
4965 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4966 		struct rte_flow_action *action_cur = NULL;
4967 
4968 		switch (actions->type) {
4969 		case RTE_FLOW_ACTION_TYPE_METER:
4970 			if (mtr_first) {
4971 				action_cur = action_pre_head;
4972 			} else {
4973 				/* Leave space for tag action. */
4974 				tag_action = actions_pre++;
4975 				action_cur = actions_pre++;
4976 			}
4977 			break;
4978 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
4979 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
4980 			action_cur = actions_pre++;
4981 			break;
4982 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4983 			raw_encap = actions->conf;
4984 			if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
4985 				action_cur = actions_pre++;
4986 			break;
4987 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4988 			raw_decap = actions->conf;
4989 			if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4990 				action_cur = actions_pre++;
4991 			break;
4992 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4993 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4994 			if (vlan_item_dst && vlan_item_src) {
4995 				memcpy(vlan_item_dst, vlan_item_src,
4996 					sizeof(*vlan_item_dst));
4997 				/*
4998 				 * Convert to internal match item, it is used
4999 				 * for vlan push and set vid.
5000 				 */
5001 				vlan_item_dst->type = (enum rte_flow_item_type)
5002 						MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
5003 			}
5004 			break;
5005 		default:
5006 			break;
5007 		}
5008 		if (!action_cur)
5009 			action_cur = (fm->def_policy) ?
5010 					actions_sfx++ : actions_pre++;
5011 		memcpy(action_cur, actions, sizeof(struct rte_flow_action));
5012 	}
5013 	/* Add end action to the actions. */
5014 	actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
5015 	if (priv->sh->meter_aso_en) {
5016 		/**
5017 		 * For ASO meter, need to add an extra jump action explicitly,
5018 		 * to jump from meter to policer table.
5019 		 */
5020 		struct mlx5_flow_meter_sub_policy *sub_policy;
5021 		struct mlx5_flow_tbl_data_entry *tbl_data;
5022 
5023 		if (!fm->def_policy) {
5024 			sub_policy = get_meter_sub_policy(dev, flow, wks,
5025 							  attr, items, error);
5026 			if (!sub_policy)
5027 				return -rte_errno;
5028 		} else {
5029 			enum mlx5_meter_domain mtr_domain =
5030 			attr->transfer ? MLX5_MTR_DOMAIN_TRANSFER :
5031 				(attr->egress ? MLX5_MTR_DOMAIN_EGRESS :
5032 						MLX5_MTR_DOMAIN_INGRESS);
5033 
5034 			sub_policy =
5035 			&priv->sh->mtrmng->def_policy[mtr_domain]->sub_policy;
5036 		}
5037 		tbl_data = container_of(sub_policy->tbl_rsc,
5038 					struct mlx5_flow_tbl_data_entry, tbl);
5039 		hw_mtr_action = actions_pre++;
5040 		hw_mtr_action->type = (enum rte_flow_action_type)
5041 				      MLX5_RTE_FLOW_ACTION_TYPE_JUMP;
5042 		hw_mtr_action->conf = tbl_data->jump.action;
5043 	}
5044 	actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
5045 	actions_pre++;
5046 	if (!tag_action)
5047 		return rte_flow_error_set(error, ENOMEM,
5048 					  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5049 					  NULL, "No tag action space.");
5050 	if (!mtr_flow_id) {
5051 		tag_action->type = RTE_FLOW_ACTION_TYPE_VOID;
5052 		goto exit;
5053 	}
5054 	/* Only default-policy Meter creates mtr flow id. */
5055 	if (fm->def_policy) {
5056 		mlx5_ipool_malloc(fm->flow_ipool, &tag_id);
5057 		if (!tag_id)
5058 			return rte_flow_error_set(error, ENOMEM,
5059 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
5060 					"Failed to allocate meter flow id.");
5061 		flow_id = tag_id - 1;
5062 		flow_id_bits = (!flow_id) ? 1 :
5063 				(MLX5_REG_BITS - __builtin_clz(flow_id));
5064 		if ((flow_id_bits + priv->sh->mtrmng->max_mtr_bits) >
5065 		    mtr_reg_bits) {
5066 			mlx5_ipool_free(fm->flow_ipool, tag_id);
5067 			return rte_flow_error_set(error, EINVAL,
5068 					RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
5069 					"Meter flow id exceeds max limit.");
5070 		}
5071 		if (flow_id_bits > priv->sh->mtrmng->max_mtr_flow_bits)
5072 			priv->sh->mtrmng->max_mtr_flow_bits = flow_id_bits;
5073 	}
5074 	/* Build tag actions and items for meter_id/meter flow_id. */
5075 	set_tag = (struct mlx5_rte_flow_action_set_tag *)actions_pre;
5076 	tag_item_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
5077 	tag_item_mask = tag_item_spec + 1;
5078 	/* Both flow_id and meter_id share the same register. */
5079 	*set_tag = (struct mlx5_rte_flow_action_set_tag) {
5080 		.id = (enum modify_reg)mlx5_flow_get_reg_id(dev, MLX5_MTR_ID,
5081 							    0, error),
5082 		.offset = mtr_id_offset,
5083 		.length = mtr_reg_bits,
5084 		.data = flow->meter,
5085 	};
5086 	/*
5087 	 * The color Reg bits used by flow_id are growing from
5088 	 * msb to lsb, so must do bit reverse for flow_id val in RegC.
5089 	 */
5090 	for (shift = 0; shift < flow_id_bits; shift++)
5091 		flow_id_reversed = (flow_id_reversed << 1) |
5092 				((flow_id >> shift) & 0x1);
5093 	set_tag->data |=
5094 		flow_id_reversed << (mtr_reg_bits - flow_id_bits);
5095 	tag_item_spec->id = set_tag->id;
5096 	tag_item_spec->data = set_tag->data << mtr_id_offset;
5097 	tag_item_mask->data = UINT32_MAX << mtr_id_offset;
5098 	tag_action->type = (enum rte_flow_action_type)
5099 				MLX5_RTE_FLOW_ACTION_TYPE_TAG;
5100 	tag_action->conf = set_tag;
5101 	tag_item->type = (enum rte_flow_item_type)
5102 				MLX5_RTE_FLOW_ITEM_TYPE_TAG;
5103 	tag_item->spec = tag_item_spec;
5104 	tag_item->last = NULL;
5105 	tag_item->mask = tag_item_mask;
5106 exit:
5107 	if (mtr_flow_id)
5108 		*mtr_flow_id = tag_id;
5109 	return 0;
5110 }
5111 
5112 /**
5113  * Split action list having QUEUE/RSS for metadata register copy.
5114  *
5115  * Once Q/RSS action is detected in user's action list, the flow action
5116  * should be split in order to copy metadata registers, which will happen in
5117  * RX_CP_TBL like,
5118  *   - CQE->flow_tag := reg_c[1] (MARK)
5119  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
5120  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
5121  * This is because the last action of each flow must be a terminal action
5122  * (QUEUE, RSS or DROP).
5123  *
5124  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
5125  * stored and kept in the mlx5_flow structure per each sub_flow.
5126  *
5127  * The Q/RSS action is replaced with,
5128  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
5129  * And the following JUMP action is added at the end,
5130  *   - JUMP, to RX_CP_TBL.
5131  *
5132  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
5133  * flow_create_split_metadata() routine. The flow will look like,
5134  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
5135  *
5136  * @param dev
5137  *   Pointer to Ethernet device.
5138  * @param[out] split_actions
5139  *   Pointer to store split actions to jump to CP_TBL.
5140  * @param[in] actions
5141  *   Pointer to the list of original flow actions.
5142  * @param[in] qrss
5143  *   Pointer to the Q/RSS action.
5144  * @param[in] actions_n
5145  *   Number of original actions.
5146  * @param[out] error
5147  *   Perform verbose error reporting if not NULL.
5148  *
5149  * @return
5150  *   non-zero unique flow_id on success, otherwise 0 and
5151  *   error/rte_error are set.
5152  */
5153 static uint32_t
5154 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
5155 			  struct rte_flow_action *split_actions,
5156 			  const struct rte_flow_action *actions,
5157 			  const struct rte_flow_action *qrss,
5158 			  int actions_n, struct rte_flow_error *error)
5159 {
5160 	struct mlx5_priv *priv = dev->data->dev_private;
5161 	struct mlx5_rte_flow_action_set_tag *set_tag;
5162 	struct rte_flow_action_jump *jump;
5163 	const int qrss_idx = qrss - actions;
5164 	uint32_t flow_id = 0;
5165 	int ret = 0;
5166 
5167 	/*
5168 	 * Given actions will be split
5169 	 * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
5170 	 * - Add jump to mreg CP_TBL.
5171 	 * As a result, there will be one more action.
5172 	 */
5173 	++actions_n;
5174 	memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
5175 	set_tag = (void *)(split_actions + actions_n);
5176 	/*
5177 	 * If tag action is not set to void(it means we are not the meter
5178 	 * suffix flow), add the tag action. Since meter suffix flow already
5179 	 * has the tag added.
5180 	 */
5181 	if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) {
5182 		/*
5183 		 * Allocate the new subflow ID. This one is unique within
5184 		 * device and not shared with representors. Otherwise,
5185 		 * we would have to resolve multi-thread access synch
5186 		 * issue. Each flow on the shared device is appended
5187 		 * with source vport identifier, so the resulting
5188 		 * flows will be unique in the shared (by master and
5189 		 * representors) domain even if they have coinciding
5190 		 * IDs.
5191 		 */
5192 		mlx5_ipool_malloc(priv->sh->ipool
5193 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id);
5194 		if (!flow_id)
5195 			return rte_flow_error_set(error, ENOMEM,
5196 						  RTE_FLOW_ERROR_TYPE_ACTION,
5197 						  NULL, "can't allocate id "
5198 						  "for split Q/RSS subflow");
5199 		/* Internal SET_TAG action to set flow ID. */
5200 		*set_tag = (struct mlx5_rte_flow_action_set_tag){
5201 			.data = flow_id,
5202 		};
5203 		ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
5204 		if (ret < 0)
5205 			return ret;
5206 		set_tag->id = ret;
5207 		/* Construct new actions array. */
5208 		/* Replace QUEUE/RSS action. */
5209 		split_actions[qrss_idx] = (struct rte_flow_action){
5210 			.type = (enum rte_flow_action_type)
5211 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
5212 			.conf = set_tag,
5213 		};
5214 	}
5215 	/* JUMP action to jump to mreg copy table (CP_TBL). */
5216 	jump = (void *)(set_tag + 1);
5217 	*jump = (struct rte_flow_action_jump){
5218 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
5219 	};
5220 	split_actions[actions_n - 2] = (struct rte_flow_action){
5221 		.type = RTE_FLOW_ACTION_TYPE_JUMP,
5222 		.conf = jump,
5223 	};
5224 	split_actions[actions_n - 1] = (struct rte_flow_action){
5225 		.type = RTE_FLOW_ACTION_TYPE_END,
5226 	};
5227 	return flow_id;
5228 }
5229 
5230 /**
5231  * Extend the given action list for Tx metadata copy.
5232  *
5233  * Copy the given action list to the ext_actions and add flow metadata register
5234  * copy action in order to copy reg_a set by WQE to reg_c[0].
5235  *
5236  * @param[out] ext_actions
5237  *   Pointer to the extended action list.
5238  * @param[in] actions
5239  *   Pointer to the list of actions.
5240  * @param[in] actions_n
5241  *   Number of actions in the list.
5242  * @param[out] error
5243  *   Perform verbose error reporting if not NULL.
5244  * @param[in] encap_idx
5245  *   The encap action inndex.
5246  *
5247  * @return
5248  *   0 on success, negative value otherwise
5249  */
5250 static int
5251 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
5252 		       struct rte_flow_action *ext_actions,
5253 		       const struct rte_flow_action *actions,
5254 		       int actions_n, struct rte_flow_error *error,
5255 		       int encap_idx)
5256 {
5257 	struct mlx5_flow_action_copy_mreg *cp_mreg =
5258 		(struct mlx5_flow_action_copy_mreg *)
5259 			(ext_actions + actions_n + 1);
5260 	int ret;
5261 
5262 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
5263 	if (ret < 0)
5264 		return ret;
5265 	cp_mreg->dst = ret;
5266 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
5267 	if (ret < 0)
5268 		return ret;
5269 	cp_mreg->src = ret;
5270 	if (encap_idx != 0)
5271 		memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
5272 	if (encap_idx == actions_n - 1) {
5273 		ext_actions[actions_n - 1] = (struct rte_flow_action){
5274 			.type = (enum rte_flow_action_type)
5275 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
5276 			.conf = cp_mreg,
5277 		};
5278 		ext_actions[actions_n] = (struct rte_flow_action){
5279 			.type = RTE_FLOW_ACTION_TYPE_END,
5280 		};
5281 	} else {
5282 		ext_actions[encap_idx] = (struct rte_flow_action){
5283 			.type = (enum rte_flow_action_type)
5284 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
5285 			.conf = cp_mreg,
5286 		};
5287 		memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
5288 				sizeof(*ext_actions) * (actions_n - encap_idx));
5289 	}
5290 	return 0;
5291 }
5292 
5293 /**
5294  * Check the match action from the action list.
5295  *
5296  * @param[in] actions
5297  *   Pointer to the list of actions.
5298  * @param[in] attr
5299  *   Flow rule attributes.
5300  * @param[in] action
5301  *   The action to be check if exist.
5302  * @param[out] match_action_pos
5303  *   Pointer to the position of the matched action if exists, otherwise is -1.
5304  * @param[out] qrss_action_pos
5305  *   Pointer to the position of the Queue/RSS action if exists, otherwise is -1.
5306  * @param[out] modify_after_mirror
5307  *   Pointer to the flag of modify action after FDB mirroring.
5308  *
5309  * @return
5310  *   > 0 the total number of actions.
5311  *   0 if not found match action in action list.
5312  */
5313 static int
5314 flow_check_match_action(const struct rte_flow_action actions[],
5315 			const struct rte_flow_attr *attr,
5316 			enum rte_flow_action_type action,
5317 			int *match_action_pos, int *qrss_action_pos,
5318 			int *modify_after_mirror)
5319 {
5320 	const struct rte_flow_action_sample *sample;
5321 	const struct rte_flow_action_raw_decap *decap;
5322 	int actions_n = 0;
5323 	uint32_t ratio = 0;
5324 	int sub_type = 0;
5325 	int flag = 0;
5326 	int fdb_mirror = 0;
5327 
5328 	*match_action_pos = -1;
5329 	*qrss_action_pos = -1;
5330 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
5331 		if (actions->type == action) {
5332 			flag = 1;
5333 			*match_action_pos = actions_n;
5334 		}
5335 		switch (actions->type) {
5336 		case RTE_FLOW_ACTION_TYPE_QUEUE:
5337 		case RTE_FLOW_ACTION_TYPE_RSS:
5338 			*qrss_action_pos = actions_n;
5339 			break;
5340 		case RTE_FLOW_ACTION_TYPE_SAMPLE:
5341 			sample = actions->conf;
5342 			ratio = sample->ratio;
5343 			sub_type = ((const struct rte_flow_action *)
5344 					(sample->actions))->type;
5345 			if (ratio == 1 && attr->transfer)
5346 				fdb_mirror = 1;
5347 			break;
5348 		case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC:
5349 		case RTE_FLOW_ACTION_TYPE_SET_MAC_DST:
5350 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC:
5351 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST:
5352 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC:
5353 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST:
5354 		case RTE_FLOW_ACTION_TYPE_SET_TP_SRC:
5355 		case RTE_FLOW_ACTION_TYPE_SET_TP_DST:
5356 		case RTE_FLOW_ACTION_TYPE_DEC_TTL:
5357 		case RTE_FLOW_ACTION_TYPE_SET_TTL:
5358 		case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ:
5359 		case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ:
5360 		case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK:
5361 		case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK:
5362 		case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP:
5363 		case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP:
5364 		case RTE_FLOW_ACTION_TYPE_FLAG:
5365 		case RTE_FLOW_ACTION_TYPE_MARK:
5366 		case RTE_FLOW_ACTION_TYPE_SET_META:
5367 		case RTE_FLOW_ACTION_TYPE_SET_TAG:
5368 		case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
5369 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
5370 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
5371 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
5372 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
5373 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
5374 		case RTE_FLOW_ACTION_TYPE_MODIFY_FIELD:
5375 		case RTE_FLOW_ACTION_TYPE_METER:
5376 			if (fdb_mirror)
5377 				*modify_after_mirror = 1;
5378 			break;
5379 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
5380 			decap = actions->conf;
5381 			while ((++actions)->type == RTE_FLOW_ACTION_TYPE_VOID)
5382 				;
5383 			actions_n++;
5384 			if (actions->type == RTE_FLOW_ACTION_TYPE_RAW_ENCAP) {
5385 				const struct rte_flow_action_raw_encap *encap =
5386 								actions->conf;
5387 				if (decap->size <=
5388 					MLX5_ENCAPSULATION_DECISION_SIZE &&
5389 				    encap->size >
5390 					MLX5_ENCAPSULATION_DECISION_SIZE)
5391 					/* L3 encap. */
5392 					break;
5393 			}
5394 			if (fdb_mirror)
5395 				*modify_after_mirror = 1;
5396 			break;
5397 		default:
5398 			break;
5399 		}
5400 		actions_n++;
5401 	}
5402 	if (flag && fdb_mirror && !*modify_after_mirror) {
5403 		/* FDB mirroring uses the destination array to implement
5404 		 * instead of FLOW_SAMPLER object.
5405 		 */
5406 		if (sub_type != RTE_FLOW_ACTION_TYPE_END)
5407 			flag = 0;
5408 	}
5409 	/* Count RTE_FLOW_ACTION_TYPE_END. */
5410 	return flag ? actions_n + 1 : 0;
5411 }
5412 
5413 #define SAMPLE_SUFFIX_ITEM 2
5414 
5415 /**
5416  * Split the sample flow.
5417  *
5418  * As sample flow will split to two sub flow, sample flow with
5419  * sample action, the other actions will move to new suffix flow.
5420  *
5421  * Also add unique tag id with tag action in the sample flow,
5422  * the same tag id will be as match in the suffix flow.
5423  *
5424  * @param dev
5425  *   Pointer to Ethernet device.
5426  * @param[in] add_tag
5427  *   Add extra tag action flag.
5428  * @param[out] sfx_items
5429  *   Suffix flow match items (list terminated by the END pattern item).
5430  * @param[in] actions
5431  *   Associated actions (list terminated by the END action).
5432  * @param[out] actions_sfx
5433  *   Suffix flow actions.
5434  * @param[out] actions_pre
5435  *   Prefix flow actions.
5436  * @param[in] actions_n
5437  *  The total number of actions.
5438  * @param[in] sample_action_pos
5439  *   The sample action position.
5440  * @param[in] qrss_action_pos
5441  *   The Queue/RSS action position.
5442  * @param[in] jump_table
5443  *   Add extra jump action flag.
5444  * @param[out] error
5445  *   Perform verbose error reporting if not NULL.
5446  *
5447  * @return
5448  *   0 on success, or unique flow_id, a negative errno value
5449  *   otherwise and rte_errno is set.
5450  */
5451 static int
5452 flow_sample_split_prep(struct rte_eth_dev *dev,
5453 		       int add_tag,
5454 		       struct rte_flow_item sfx_items[],
5455 		       const struct rte_flow_action actions[],
5456 		       struct rte_flow_action actions_sfx[],
5457 		       struct rte_flow_action actions_pre[],
5458 		       int actions_n,
5459 		       int sample_action_pos,
5460 		       int qrss_action_pos,
5461 		       int jump_table,
5462 		       struct rte_flow_error *error)
5463 {
5464 	struct mlx5_priv *priv = dev->data->dev_private;
5465 	struct mlx5_rte_flow_action_set_tag *set_tag;
5466 	struct mlx5_rte_flow_item_tag *tag_spec;
5467 	struct mlx5_rte_flow_item_tag *tag_mask;
5468 	struct rte_flow_action_jump *jump_action;
5469 	uint32_t tag_id = 0;
5470 	int index;
5471 	int append_index = 0;
5472 	int ret;
5473 
5474 	if (sample_action_pos < 0)
5475 		return rte_flow_error_set(error, EINVAL,
5476 					  RTE_FLOW_ERROR_TYPE_ACTION,
5477 					  NULL, "invalid position of sample "
5478 					  "action in list");
5479 	/* Prepare the actions for prefix and suffix flow. */
5480 	if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) {
5481 		index = qrss_action_pos;
5482 		/* Put the preceding the Queue/RSS action into prefix flow. */
5483 		if (index != 0)
5484 			memcpy(actions_pre, actions,
5485 			       sizeof(struct rte_flow_action) * index);
5486 		/* Put others preceding the sample action into prefix flow. */
5487 		if (sample_action_pos > index + 1)
5488 			memcpy(actions_pre + index, actions + index + 1,
5489 			       sizeof(struct rte_flow_action) *
5490 			       (sample_action_pos - index - 1));
5491 		index = sample_action_pos - 1;
5492 		/* Put Queue/RSS action into Suffix flow. */
5493 		memcpy(actions_sfx, actions + qrss_action_pos,
5494 		       sizeof(struct rte_flow_action));
5495 		actions_sfx++;
5496 	} else {
5497 		index = sample_action_pos;
5498 		if (index != 0)
5499 			memcpy(actions_pre, actions,
5500 			       sizeof(struct rte_flow_action) * index);
5501 	}
5502 	/* For CX5, add an extra tag action for NIC-RX and E-Switch ingress.
5503 	 * For CX6DX and above, metadata registers Cx preserve their value,
5504 	 * add an extra tag action for NIC-RX and E-Switch Domain.
5505 	 */
5506 	if (add_tag) {
5507 		/* Prepare the prefix tag action. */
5508 		append_index++;
5509 		set_tag = (void *)(actions_pre + actions_n + append_index);
5510 		ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error);
5511 		if (ret < 0)
5512 			return ret;
5513 		mlx5_ipool_malloc(priv->sh->ipool
5514 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id);
5515 		*set_tag = (struct mlx5_rte_flow_action_set_tag) {
5516 			.id = ret,
5517 			.data = tag_id,
5518 		};
5519 		/* Prepare the suffix subflow items. */
5520 		tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM);
5521 		tag_spec->data = tag_id;
5522 		tag_spec->id = set_tag->id;
5523 		tag_mask = tag_spec + 1;
5524 		tag_mask->data = UINT32_MAX;
5525 		sfx_items[0] = (struct rte_flow_item){
5526 			.type = (enum rte_flow_item_type)
5527 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
5528 			.spec = tag_spec,
5529 			.last = NULL,
5530 			.mask = tag_mask,
5531 		};
5532 		sfx_items[1] = (struct rte_flow_item){
5533 			.type = (enum rte_flow_item_type)
5534 				RTE_FLOW_ITEM_TYPE_END,
5535 		};
5536 		/* Prepare the tag action in prefix subflow. */
5537 		actions_pre[index++] =
5538 			(struct rte_flow_action){
5539 			.type = (enum rte_flow_action_type)
5540 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
5541 			.conf = set_tag,
5542 		};
5543 	}
5544 	memcpy(actions_pre + index, actions + sample_action_pos,
5545 	       sizeof(struct rte_flow_action));
5546 	index += 1;
5547 	/* For the modify action after the sample action in E-Switch mirroring,
5548 	 * Add the extra jump action in prefix subflow and jump into the next
5549 	 * table, then do the modify action in the new table.
5550 	 */
5551 	if (jump_table) {
5552 		/* Prepare the prefix jump action. */
5553 		append_index++;
5554 		jump_action = (void *)(actions_pre + actions_n + append_index);
5555 		jump_action->group = jump_table;
5556 		actions_pre[index++] =
5557 			(struct rte_flow_action){
5558 			.type = (enum rte_flow_action_type)
5559 				RTE_FLOW_ACTION_TYPE_JUMP,
5560 			.conf = jump_action,
5561 		};
5562 	}
5563 	actions_pre[index] = (struct rte_flow_action){
5564 		.type = (enum rte_flow_action_type)
5565 			RTE_FLOW_ACTION_TYPE_END,
5566 	};
5567 	/* Put the actions after sample into Suffix flow. */
5568 	memcpy(actions_sfx, actions + sample_action_pos + 1,
5569 	       sizeof(struct rte_flow_action) *
5570 	       (actions_n - sample_action_pos - 1));
5571 	return tag_id;
5572 }
5573 
5574 /**
5575  * The splitting for metadata feature.
5576  *
5577  * - Q/RSS action on NIC Rx should be split in order to pass by
5578  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
5579  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
5580  *
5581  * - All the actions on NIC Tx should have a mreg copy action to
5582  *   copy reg_a from WQE to reg_c[0].
5583  *
5584  * @param dev
5585  *   Pointer to Ethernet device.
5586  * @param[in] flow
5587  *   Parent flow structure pointer.
5588  * @param[in] attr
5589  *   Flow rule attributes.
5590  * @param[in] items
5591  *   Pattern specification (list terminated by the END pattern item).
5592  * @param[in] actions
5593  *   Associated actions (list terminated by the END action).
5594  * @param[in] flow_split_info
5595  *   Pointer to flow split info structure.
5596  * @param[out] error
5597  *   Perform verbose error reporting if not NULL.
5598  * @return
5599  *   0 on success, negative value otherwise
5600  */
5601 static int
5602 flow_create_split_metadata(struct rte_eth_dev *dev,
5603 			   struct rte_flow *flow,
5604 			   const struct rte_flow_attr *attr,
5605 			   const struct rte_flow_item items[],
5606 			   const struct rte_flow_action actions[],
5607 			   struct mlx5_flow_split_info *flow_split_info,
5608 			   struct rte_flow_error *error)
5609 {
5610 	struct mlx5_priv *priv = dev->data->dev_private;
5611 	struct mlx5_dev_config *config = &priv->config;
5612 	const struct rte_flow_action *qrss = NULL;
5613 	struct rte_flow_action *ext_actions = NULL;
5614 	struct mlx5_flow *dev_flow = NULL;
5615 	uint32_t qrss_id = 0;
5616 	int mtr_sfx = 0;
5617 	size_t act_size;
5618 	int actions_n;
5619 	int encap_idx;
5620 	int ret;
5621 
5622 	/* Check whether extensive metadata feature is engaged. */
5623 	if (!config->dv_flow_en ||
5624 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
5625 	    !mlx5_flow_ext_mreg_supported(dev))
5626 		return flow_create_split_inner(dev, flow, NULL, attr, items,
5627 					       actions, flow_split_info, error);
5628 	actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
5629 							   &encap_idx);
5630 	if (qrss) {
5631 		/* Exclude hairpin flows from splitting. */
5632 		if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
5633 			const struct rte_flow_action_queue *queue;
5634 
5635 			queue = qrss->conf;
5636 			if (mlx5_rxq_get_type(dev, queue->index) ==
5637 			    MLX5_RXQ_TYPE_HAIRPIN)
5638 				qrss = NULL;
5639 		} else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
5640 			const struct rte_flow_action_rss *rss;
5641 
5642 			rss = qrss->conf;
5643 			if (mlx5_rxq_get_type(dev, rss->queue[0]) ==
5644 			    MLX5_RXQ_TYPE_HAIRPIN)
5645 				qrss = NULL;
5646 		}
5647 	}
5648 	if (qrss) {
5649 		/* Check if it is in meter suffix table. */
5650 		mtr_sfx = attr->group == (attr->transfer ?
5651 			  (MLX5_FLOW_TABLE_LEVEL_METER - 1) :
5652 			  MLX5_FLOW_TABLE_LEVEL_METER);
5653 		/*
5654 		 * Q/RSS action on NIC Rx should be split in order to pass by
5655 		 * the mreg copy table (RX_CP_TBL) and then it jumps to the
5656 		 * action table (RX_ACT_TBL) which has the split Q/RSS action.
5657 		 */
5658 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
5659 			   sizeof(struct rte_flow_action_set_tag) +
5660 			   sizeof(struct rte_flow_action_jump);
5661 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
5662 					  SOCKET_ID_ANY);
5663 		if (!ext_actions)
5664 			return rte_flow_error_set(error, ENOMEM,
5665 						  RTE_FLOW_ERROR_TYPE_ACTION,
5666 						  NULL, "no memory to split "
5667 						  "metadata flow");
5668 		/*
5669 		 * If we are the suffix flow of meter, tag already exist.
5670 		 * Set the tag action to void.
5671 		 */
5672 		if (mtr_sfx)
5673 			ext_actions[qrss - actions].type =
5674 						RTE_FLOW_ACTION_TYPE_VOID;
5675 		else
5676 			ext_actions[qrss - actions].type =
5677 						(enum rte_flow_action_type)
5678 						MLX5_RTE_FLOW_ACTION_TYPE_TAG;
5679 		/*
5680 		 * Create the new actions list with removed Q/RSS action
5681 		 * and appended set tag and jump to register copy table
5682 		 * (RX_CP_TBL). We should preallocate unique tag ID here
5683 		 * in advance, because it is needed for set tag action.
5684 		 */
5685 		qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
5686 						    qrss, actions_n, error);
5687 		if (!mtr_sfx && !qrss_id) {
5688 			ret = -rte_errno;
5689 			goto exit;
5690 		}
5691 	} else if (attr->egress && !attr->transfer) {
5692 		/*
5693 		 * All the actions on NIC Tx should have a metadata register
5694 		 * copy action to copy reg_a from WQE to reg_c[meta]
5695 		 */
5696 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
5697 			   sizeof(struct mlx5_flow_action_copy_mreg);
5698 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
5699 					  SOCKET_ID_ANY);
5700 		if (!ext_actions)
5701 			return rte_flow_error_set(error, ENOMEM,
5702 						  RTE_FLOW_ERROR_TYPE_ACTION,
5703 						  NULL, "no memory to split "
5704 						  "metadata flow");
5705 		/* Create the action list appended with copy register. */
5706 		ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
5707 					     actions_n, error, encap_idx);
5708 		if (ret < 0)
5709 			goto exit;
5710 	}
5711 	/* Add the unmodified original or prefix subflow. */
5712 	ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
5713 				      items, ext_actions ? ext_actions :
5714 				      actions, flow_split_info, error);
5715 	if (ret < 0)
5716 		goto exit;
5717 	MLX5_ASSERT(dev_flow);
5718 	if (qrss) {
5719 		const struct rte_flow_attr q_attr = {
5720 			.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
5721 			.ingress = 1,
5722 		};
5723 		/* Internal PMD action to set register. */
5724 		struct mlx5_rte_flow_item_tag q_tag_spec = {
5725 			.data = qrss_id,
5726 			.id = REG_NON,
5727 		};
5728 		struct rte_flow_item q_items[] = {
5729 			{
5730 				.type = (enum rte_flow_item_type)
5731 					MLX5_RTE_FLOW_ITEM_TYPE_TAG,
5732 				.spec = &q_tag_spec,
5733 				.last = NULL,
5734 				.mask = NULL,
5735 			},
5736 			{
5737 				.type = RTE_FLOW_ITEM_TYPE_END,
5738 			},
5739 		};
5740 		struct rte_flow_action q_actions[] = {
5741 			{
5742 				.type = qrss->type,
5743 				.conf = qrss->conf,
5744 			},
5745 			{
5746 				.type = RTE_FLOW_ACTION_TYPE_END,
5747 			},
5748 		};
5749 		uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
5750 
5751 		/*
5752 		 * Configure the tag item only if there is no meter subflow.
5753 		 * Since tag is already marked in the meter suffix subflow
5754 		 * we can just use the meter suffix items as is.
5755 		 */
5756 		if (qrss_id) {
5757 			/* Not meter subflow. */
5758 			MLX5_ASSERT(!mtr_sfx);
5759 			/*
5760 			 * Put unique id in prefix flow due to it is destroyed
5761 			 * after suffix flow and id will be freed after there
5762 			 * is no actual flows with this id and identifier
5763 			 * reallocation becomes possible (for example, for
5764 			 * other flows in other threads).
5765 			 */
5766 			dev_flow->handle->split_flow_id = qrss_id;
5767 			ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
5768 						   error);
5769 			if (ret < 0)
5770 				goto exit;
5771 			q_tag_spec.id = ret;
5772 		}
5773 		dev_flow = NULL;
5774 		/* Add suffix subflow to execute Q/RSS. */
5775 		flow_split_info->prefix_layers = layers;
5776 		flow_split_info->prefix_mark = 0;
5777 		ret = flow_create_split_inner(dev, flow, &dev_flow,
5778 					      &q_attr, mtr_sfx ? items :
5779 					      q_items, q_actions,
5780 					      flow_split_info, error);
5781 		if (ret < 0)
5782 			goto exit;
5783 		/* qrss ID should be freed if failed. */
5784 		qrss_id = 0;
5785 		MLX5_ASSERT(dev_flow);
5786 	}
5787 
5788 exit:
5789 	/*
5790 	 * We do not destroy the partially created sub_flows in case of error.
5791 	 * These ones are included into parent flow list and will be destroyed
5792 	 * by flow_drv_destroy.
5793 	 */
5794 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
5795 			qrss_id);
5796 	mlx5_free(ext_actions);
5797 	return ret;
5798 }
5799 
5800 /**
5801  * Create meter internal drop flow with the original pattern.
5802  *
5803  * @param dev
5804  *   Pointer to Ethernet device.
5805  * @param[in] flow
5806  *   Parent flow structure pointer.
5807  * @param[in] attr
5808  *   Flow rule attributes.
5809  * @param[in] items
5810  *   Pattern specification (list terminated by the END pattern item).
5811  * @param[in] flow_split_info
5812  *   Pointer to flow split info structure.
5813  * @param[in] fm
5814  *   Pointer to flow meter structure.
5815  * @param[out] error
5816  *   Perform verbose error reporting if not NULL.
5817  * @return
5818  *   0 on success, negative value otherwise
5819  */
5820 static uint32_t
5821 flow_meter_create_drop_flow_with_org_pattern(struct rte_eth_dev *dev,
5822 			struct rte_flow *flow,
5823 			const struct rte_flow_attr *attr,
5824 			const struct rte_flow_item items[],
5825 			struct mlx5_flow_split_info *flow_split_info,
5826 			struct mlx5_flow_meter_info *fm,
5827 			struct rte_flow_error *error)
5828 {
5829 	struct mlx5_flow *dev_flow = NULL;
5830 	struct rte_flow_attr drop_attr = *attr;
5831 	struct rte_flow_action drop_actions[3];
5832 	struct mlx5_flow_split_info drop_split_info = *flow_split_info;
5833 
5834 	MLX5_ASSERT(fm->drop_cnt);
5835 	drop_actions[0].type =
5836 		(enum rte_flow_action_type)MLX5_RTE_FLOW_ACTION_TYPE_COUNT;
5837 	drop_actions[0].conf = (void *)(uintptr_t)fm->drop_cnt;
5838 	drop_actions[1].type = RTE_FLOW_ACTION_TYPE_DROP;
5839 	drop_actions[1].conf = NULL;
5840 	drop_actions[2].type = RTE_FLOW_ACTION_TYPE_END;
5841 	drop_actions[2].conf = NULL;
5842 	drop_split_info.external = false;
5843 	drop_split_info.skip_scale |= 1 << MLX5_SCALE_FLOW_GROUP_BIT;
5844 	drop_split_info.table_id = MLX5_MTR_TABLE_ID_DROP;
5845 	drop_attr.group = MLX5_FLOW_TABLE_LEVEL_METER;
5846 	return flow_create_split_inner(dev, flow, &dev_flow,
5847 				&drop_attr, items, drop_actions,
5848 				&drop_split_info, error);
5849 }
5850 
5851 /**
5852  * The splitting for meter feature.
5853  *
5854  * - The meter flow will be split to two flows as prefix and
5855  *   suffix flow. The packets make sense only it pass the prefix
5856  *   meter action.
5857  *
5858  * - Reg_C_5 is used for the packet to match betweend prefix and
5859  *   suffix flow.
5860  *
5861  * @param dev
5862  *   Pointer to Ethernet device.
5863  * @param[in] flow
5864  *   Parent flow structure pointer.
5865  * @param[in] attr
5866  *   Flow rule attributes.
5867  * @param[in] items
5868  *   Pattern specification (list terminated by the END pattern item).
5869  * @param[in] actions
5870  *   Associated actions (list terminated by the END action).
5871  * @param[in] flow_split_info
5872  *   Pointer to flow split info structure.
5873  * @param[out] error
5874  *   Perform verbose error reporting if not NULL.
5875  * @return
5876  *   0 on success, negative value otherwise
5877  */
5878 static int
5879 flow_create_split_meter(struct rte_eth_dev *dev,
5880 			struct rte_flow *flow,
5881 			const struct rte_flow_attr *attr,
5882 			const struct rte_flow_item items[],
5883 			const struct rte_flow_action actions[],
5884 			struct mlx5_flow_split_info *flow_split_info,
5885 			struct rte_flow_error *error)
5886 {
5887 	struct mlx5_priv *priv = dev->data->dev_private;
5888 	struct mlx5_flow_workspace *wks = mlx5_flow_get_thread_workspace();
5889 	struct rte_flow_action *sfx_actions = NULL;
5890 	struct rte_flow_action *pre_actions = NULL;
5891 	struct rte_flow_item *sfx_items = NULL;
5892 	struct mlx5_flow *dev_flow = NULL;
5893 	struct rte_flow_attr sfx_attr = *attr;
5894 	struct mlx5_flow_meter_info *fm = NULL;
5895 	uint8_t skip_scale_restore;
5896 	bool has_mtr = false;
5897 	bool has_modify = false;
5898 	bool set_mtr_reg = true;
5899 	bool is_mtr_hierarchy = false;
5900 	uint32_t meter_id = 0;
5901 	uint32_t mtr_idx = 0;
5902 	uint32_t mtr_flow_id = 0;
5903 	size_t act_size;
5904 	size_t item_size;
5905 	int actions_n = 0;
5906 	int ret = 0;
5907 
5908 	if (priv->mtr_en)
5909 		actions_n = flow_check_meter_action(dev, actions, &has_mtr,
5910 						    &has_modify, &meter_id);
5911 	if (has_mtr) {
5912 		if (flow->meter) {
5913 			fm = flow_dv_meter_find_by_idx(priv, flow->meter);
5914 			if (!fm)
5915 				return rte_flow_error_set(error, EINVAL,
5916 						RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5917 						NULL, "Meter not found.");
5918 		} else {
5919 			fm = mlx5_flow_meter_find(priv, meter_id, &mtr_idx);
5920 			if (!fm)
5921 				return rte_flow_error_set(error, EINVAL,
5922 						RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5923 						NULL, "Meter not found.");
5924 			ret = mlx5_flow_meter_attach(priv, fm,
5925 						     &sfx_attr, error);
5926 			if (ret)
5927 				return -rte_errno;
5928 			flow->meter = mtr_idx;
5929 		}
5930 		MLX5_ASSERT(wks);
5931 		wks->fm = fm;
5932 		if (!fm->def_policy) {
5933 			wks->policy = mlx5_flow_meter_policy_find(dev,
5934 								  fm->policy_id,
5935 								  NULL);
5936 			MLX5_ASSERT(wks->policy);
5937 			if (wks->policy->is_hierarchy) {
5938 				wks->final_policy =
5939 				mlx5_flow_meter_hierarchy_get_final_policy(dev,
5940 								wks->policy);
5941 				if (!wks->final_policy)
5942 					return rte_flow_error_set(error,
5943 					EINVAL,
5944 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
5945 				"Failed to find terminal policy of hierarchy.");
5946 				is_mtr_hierarchy = true;
5947 			}
5948 		}
5949 		/*
5950 		 * If it isn't default-policy Meter, and
5951 		 * 1. There's no action in flow to change
5952 		 *    packet (modify/encap/decap etc.), OR
5953 		 * 2. No drop count needed for this meter.
5954 		 * 3. It's not meter hierarchy.
5955 		 * Then no need to use regC to save meter id anymore.
5956 		 */
5957 		if (!fm->def_policy && !is_mtr_hierarchy &&
5958 		    (!has_modify || !fm->drop_cnt))
5959 			set_mtr_reg = false;
5960 		/* Prefix actions: meter, decap, encap, tag, jump, end. */
5961 		act_size = sizeof(struct rte_flow_action) * (actions_n + 6) +
5962 			   sizeof(struct mlx5_rte_flow_action_set_tag);
5963 		/* Suffix items: tag, vlan, port id, end. */
5964 #define METER_SUFFIX_ITEM 4
5965 		item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
5966 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
5967 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
5968 					  0, SOCKET_ID_ANY);
5969 		if (!sfx_actions)
5970 			return rte_flow_error_set(error, ENOMEM,
5971 						  RTE_FLOW_ERROR_TYPE_ACTION,
5972 						  NULL, "no memory to split "
5973 						  "meter flow");
5974 		sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
5975 			     act_size);
5976 		/* There's no suffix flow for meter of non-default policy. */
5977 		if (!fm->def_policy)
5978 			pre_actions = sfx_actions + 1;
5979 		else
5980 			pre_actions = sfx_actions + actions_n;
5981 		ret = flow_meter_split_prep(dev, flow, wks, &sfx_attr,
5982 					    items, sfx_items, actions,
5983 					    sfx_actions, pre_actions,
5984 					    (set_mtr_reg ? &mtr_flow_id : NULL),
5985 					    error);
5986 		if (ret) {
5987 			ret = -rte_errno;
5988 			goto exit;
5989 		}
5990 		/* Add the prefix subflow. */
5991 		flow_split_info->prefix_mark = 0;
5992 		skip_scale_restore = flow_split_info->skip_scale;
5993 		flow_split_info->skip_scale |=
5994 			1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT;
5995 		ret = flow_create_split_inner(dev, flow, &dev_flow,
5996 					      attr, items, pre_actions,
5997 					      flow_split_info, error);
5998 		flow_split_info->skip_scale = skip_scale_restore;
5999 		if (ret) {
6000 			if (mtr_flow_id)
6001 				mlx5_ipool_free(fm->flow_ipool, mtr_flow_id);
6002 			ret = -rte_errno;
6003 			goto exit;
6004 		}
6005 		if (mtr_flow_id) {
6006 			dev_flow->handle->split_flow_id = mtr_flow_id;
6007 			dev_flow->handle->is_meter_flow_id = 1;
6008 		}
6009 		if (!fm->def_policy) {
6010 			if (!set_mtr_reg && fm->drop_cnt)
6011 				ret =
6012 			flow_meter_create_drop_flow_with_org_pattern(dev, flow,
6013 							&sfx_attr, items,
6014 							flow_split_info,
6015 							fm, error);
6016 			goto exit;
6017 		}
6018 		/* Setting the sfx group atrr. */
6019 		sfx_attr.group = sfx_attr.transfer ?
6020 				(MLX5_FLOW_TABLE_LEVEL_METER - 1) :
6021 				 MLX5_FLOW_TABLE_LEVEL_METER;
6022 		flow_split_info->prefix_layers =
6023 				flow_get_prefix_layer_flags(dev_flow);
6024 		flow_split_info->prefix_mark = dev_flow->handle->mark;
6025 		flow_split_info->table_id = MLX5_MTR_TABLE_ID_SUFFIX;
6026 	}
6027 	/* Add the prefix subflow. */
6028 	ret = flow_create_split_metadata(dev, flow,
6029 					 &sfx_attr, sfx_items ?
6030 					 sfx_items : items,
6031 					 sfx_actions ? sfx_actions : actions,
6032 					 flow_split_info, error);
6033 exit:
6034 	if (sfx_actions)
6035 		mlx5_free(sfx_actions);
6036 	return ret;
6037 }
6038 
6039 /**
6040  * The splitting for sample feature.
6041  *
6042  * Once Sample action is detected in the action list, the flow actions should
6043  * be split into prefix sub flow and suffix sub flow.
6044  *
6045  * The original items remain in the prefix sub flow, all actions preceding the
6046  * sample action and the sample action itself will be copied to the prefix
6047  * sub flow, the actions following the sample action will be copied to the
6048  * suffix sub flow, Queue action always be located in the suffix sub flow.
6049  *
6050  * In order to make the packet from prefix sub flow matches with suffix sub
6051  * flow, an extra tag action be added into prefix sub flow, and the suffix sub
6052  * flow uses tag item with the unique flow id.
6053  *
6054  * @param dev
6055  *   Pointer to Ethernet device.
6056  * @param[in] flow
6057  *   Parent flow structure pointer.
6058  * @param[in] attr
6059  *   Flow rule attributes.
6060  * @param[in] items
6061  *   Pattern specification (list terminated by the END pattern item).
6062  * @param[in] actions
6063  *   Associated actions (list terminated by the END action).
6064  * @param[in] flow_split_info
6065  *   Pointer to flow split info structure.
6066  * @param[out] error
6067  *   Perform verbose error reporting if not NULL.
6068  * @return
6069  *   0 on success, negative value otherwise
6070  */
6071 static int
6072 flow_create_split_sample(struct rte_eth_dev *dev,
6073 			 struct rte_flow *flow,
6074 			 const struct rte_flow_attr *attr,
6075 			 const struct rte_flow_item items[],
6076 			 const struct rte_flow_action actions[],
6077 			 struct mlx5_flow_split_info *flow_split_info,
6078 			 struct rte_flow_error *error)
6079 {
6080 	struct mlx5_priv *priv = dev->data->dev_private;
6081 	struct rte_flow_action *sfx_actions = NULL;
6082 	struct rte_flow_action *pre_actions = NULL;
6083 	struct rte_flow_item *sfx_items = NULL;
6084 	struct mlx5_flow *dev_flow = NULL;
6085 	struct rte_flow_attr sfx_attr = *attr;
6086 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
6087 	struct mlx5_flow_dv_sample_resource *sample_res;
6088 	struct mlx5_flow_tbl_data_entry *sfx_tbl_data;
6089 	struct mlx5_flow_tbl_resource *sfx_tbl;
6090 #endif
6091 	size_t act_size;
6092 	size_t item_size;
6093 	uint32_t fdb_tx = 0;
6094 	int32_t tag_id = 0;
6095 	int actions_n = 0;
6096 	int sample_action_pos;
6097 	int qrss_action_pos;
6098 	int add_tag = 0;
6099 	int modify_after_mirror = 0;
6100 	uint16_t jump_table = 0;
6101 	const uint32_t next_ft_step = 1;
6102 	int ret = 0;
6103 
6104 	if (priv->sampler_en)
6105 		actions_n = flow_check_match_action(actions, attr,
6106 					RTE_FLOW_ACTION_TYPE_SAMPLE,
6107 					&sample_action_pos, &qrss_action_pos,
6108 					&modify_after_mirror);
6109 	if (actions_n) {
6110 		/* The prefix actions must includes sample, tag, end. */
6111 		act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1)
6112 			   + sizeof(struct mlx5_rte_flow_action_set_tag);
6113 		item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM +
6114 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
6115 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size +
6116 					  item_size), 0, SOCKET_ID_ANY);
6117 		if (!sfx_actions)
6118 			return rte_flow_error_set(error, ENOMEM,
6119 						  RTE_FLOW_ERROR_TYPE_ACTION,
6120 						  NULL, "no memory to split "
6121 						  "sample flow");
6122 		/* The representor_id is UINT16_MAX for uplink. */
6123 		fdb_tx = (attr->transfer && priv->representor_id != UINT16_MAX);
6124 		/*
6125 		 * When reg_c_preserve is set, metadata registers Cx preserve
6126 		 * their value even through packet duplication.
6127 		 */
6128 		add_tag = (!fdb_tx || priv->config.hca_attr.reg_c_preserve);
6129 		if (add_tag)
6130 			sfx_items = (struct rte_flow_item *)((char *)sfx_actions
6131 					+ act_size);
6132 		if (modify_after_mirror)
6133 			jump_table = attr->group * MLX5_FLOW_TABLE_FACTOR +
6134 				     next_ft_step;
6135 		pre_actions = sfx_actions + actions_n;
6136 		tag_id = flow_sample_split_prep(dev, add_tag, sfx_items,
6137 						actions, sfx_actions,
6138 						pre_actions, actions_n,
6139 						sample_action_pos,
6140 						qrss_action_pos, jump_table,
6141 						error);
6142 		if (tag_id < 0 || (add_tag && !tag_id)) {
6143 			ret = -rte_errno;
6144 			goto exit;
6145 		}
6146 		if (modify_after_mirror)
6147 			flow_split_info->skip_scale =
6148 					1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT;
6149 		/* Add the prefix subflow. */
6150 		ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
6151 					      items, pre_actions,
6152 					      flow_split_info, error);
6153 		if (ret) {
6154 			ret = -rte_errno;
6155 			goto exit;
6156 		}
6157 		dev_flow->handle->split_flow_id = tag_id;
6158 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
6159 		if (!modify_after_mirror) {
6160 			/* Set the sfx group attr. */
6161 			sample_res = (struct mlx5_flow_dv_sample_resource *)
6162 						dev_flow->dv.sample_res;
6163 			sfx_tbl = (struct mlx5_flow_tbl_resource *)
6164 						sample_res->normal_path_tbl;
6165 			sfx_tbl_data = container_of(sfx_tbl,
6166 						struct mlx5_flow_tbl_data_entry,
6167 						tbl);
6168 			sfx_attr.group = sfx_attr.transfer ?
6169 			(sfx_tbl_data->level - 1) : sfx_tbl_data->level;
6170 		} else {
6171 			MLX5_ASSERT(attr->transfer);
6172 			sfx_attr.group = jump_table;
6173 		}
6174 		flow_split_info->prefix_layers =
6175 				flow_get_prefix_layer_flags(dev_flow);
6176 		flow_split_info->prefix_mark = dev_flow->handle->mark;
6177 		/* Suffix group level already be scaled with factor, set
6178 		 * MLX5_SCALE_FLOW_GROUP_BIT of skip_scale to 1 to avoid scale
6179 		 * again in translation.
6180 		 */
6181 		flow_split_info->skip_scale = 1 << MLX5_SCALE_FLOW_GROUP_BIT;
6182 #endif
6183 	}
6184 	/* Add the suffix subflow. */
6185 	ret = flow_create_split_meter(dev, flow, &sfx_attr,
6186 				      sfx_items ? sfx_items : items,
6187 				      sfx_actions ? sfx_actions : actions,
6188 				      flow_split_info, error);
6189 exit:
6190 	if (sfx_actions)
6191 		mlx5_free(sfx_actions);
6192 	return ret;
6193 }
6194 
6195 /**
6196  * Split the flow to subflow set. The splitters might be linked
6197  * in the chain, like this:
6198  * flow_create_split_outer() calls:
6199  *   flow_create_split_meter() calls:
6200  *     flow_create_split_metadata(meter_subflow_0) calls:
6201  *       flow_create_split_inner(metadata_subflow_0)
6202  *       flow_create_split_inner(metadata_subflow_1)
6203  *       flow_create_split_inner(metadata_subflow_2)
6204  *     flow_create_split_metadata(meter_subflow_1) calls:
6205  *       flow_create_split_inner(metadata_subflow_0)
6206  *       flow_create_split_inner(metadata_subflow_1)
6207  *       flow_create_split_inner(metadata_subflow_2)
6208  *
6209  * This provide flexible way to add new levels of flow splitting.
6210  * The all of successfully created subflows are included to the
6211  * parent flow dev_flow list.
6212  *
6213  * @param dev
6214  *   Pointer to Ethernet device.
6215  * @param[in] flow
6216  *   Parent flow structure pointer.
6217  * @param[in] attr
6218  *   Flow rule attributes.
6219  * @param[in] items
6220  *   Pattern specification (list terminated by the END pattern item).
6221  * @param[in] actions
6222  *   Associated actions (list terminated by the END action).
6223  * @param[in] flow_split_info
6224  *   Pointer to flow split info structure.
6225  * @param[out] error
6226  *   Perform verbose error reporting if not NULL.
6227  * @return
6228  *   0 on success, negative value otherwise
6229  */
6230 static int
6231 flow_create_split_outer(struct rte_eth_dev *dev,
6232 			struct rte_flow *flow,
6233 			const struct rte_flow_attr *attr,
6234 			const struct rte_flow_item items[],
6235 			const struct rte_flow_action actions[],
6236 			struct mlx5_flow_split_info *flow_split_info,
6237 			struct rte_flow_error *error)
6238 {
6239 	int ret;
6240 
6241 	ret = flow_create_split_sample(dev, flow, attr, items,
6242 				       actions, flow_split_info, error);
6243 	MLX5_ASSERT(ret <= 0);
6244 	return ret;
6245 }
6246 
6247 static inline struct mlx5_flow_tunnel *
6248 flow_tunnel_from_rule(const struct mlx5_flow *flow)
6249 {
6250 	struct mlx5_flow_tunnel *tunnel;
6251 
6252 #pragma GCC diagnostic push
6253 #pragma GCC diagnostic ignored "-Wcast-qual"
6254 	tunnel = (typeof(tunnel))flow->tunnel;
6255 #pragma GCC diagnostic pop
6256 
6257 	return tunnel;
6258 }
6259 
6260 /**
6261  * Adjust flow RSS workspace if needed.
6262  *
6263  * @param wks
6264  *   Pointer to thread flow work space.
6265  * @param rss_desc
6266  *   Pointer to RSS descriptor.
6267  * @param[in] nrssq_num
6268  *   New RSS queue number.
6269  *
6270  * @return
6271  *   0 on success, -1 otherwise and rte_errno is set.
6272  */
6273 static int
6274 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks,
6275 			  struct mlx5_flow_rss_desc *rss_desc,
6276 			  uint32_t nrssq_num)
6277 {
6278 	if (likely(nrssq_num <= wks->rssq_num))
6279 		return 0;
6280 	rss_desc->queue = realloc(rss_desc->queue,
6281 			  sizeof(*rss_desc->queue) * RTE_ALIGN(nrssq_num, 2));
6282 	if (!rss_desc->queue) {
6283 		rte_errno = ENOMEM;
6284 		return -1;
6285 	}
6286 	wks->rssq_num = RTE_ALIGN(nrssq_num, 2);
6287 	return 0;
6288 }
6289 
6290 /**
6291  * Create a flow and add it to @p list.
6292  *
6293  * @param dev
6294  *   Pointer to Ethernet device.
6295  * @param list
6296  *   Pointer to a TAILQ flow list. If this parameter NULL,
6297  *   no list insertion occurred, flow is just created,
6298  *   this is caller's responsibility to track the
6299  *   created flow.
6300  * @param[in] attr
6301  *   Flow rule attributes.
6302  * @param[in] items
6303  *   Pattern specification (list terminated by the END pattern item).
6304  * @param[in] actions
6305  *   Associated actions (list terminated by the END action).
6306  * @param[in] external
6307  *   This flow rule is created by request external to PMD.
6308  * @param[out] error
6309  *   Perform verbose error reporting if not NULL.
6310  *
6311  * @return
6312  *   A flow index on success, 0 otherwise and rte_errno is set.
6313  */
6314 static uint32_t
6315 flow_list_create(struct rte_eth_dev *dev, enum mlx5_flow_type type,
6316 		 const struct rte_flow_attr *attr,
6317 		 const struct rte_flow_item items[],
6318 		 const struct rte_flow_action original_actions[],
6319 		 bool external, struct rte_flow_error *error)
6320 {
6321 	struct mlx5_priv *priv = dev->data->dev_private;
6322 	struct rte_flow *flow = NULL;
6323 	struct mlx5_flow *dev_flow;
6324 	const struct rte_flow_action_rss *rss = NULL;
6325 	struct mlx5_translated_action_handle
6326 		indir_actions[MLX5_MAX_INDIRECT_ACTIONS];
6327 	int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS;
6328 	union {
6329 		struct mlx5_flow_expand_rss buf;
6330 		uint8_t buffer[4096];
6331 	} expand_buffer;
6332 	union {
6333 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
6334 		uint8_t buffer[2048];
6335 	} actions_rx;
6336 	union {
6337 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
6338 		uint8_t buffer[2048];
6339 	} actions_hairpin_tx;
6340 	union {
6341 		struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
6342 		uint8_t buffer[2048];
6343 	} items_tx;
6344 	struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
6345 	struct mlx5_flow_rss_desc *rss_desc;
6346 	const struct rte_flow_action *p_actions_rx;
6347 	uint32_t i;
6348 	uint32_t idx = 0;
6349 	int hairpin_flow;
6350 	struct rte_flow_attr attr_tx = { .priority = 0 };
6351 	const struct rte_flow_action *actions;
6352 	struct rte_flow_action *translated_actions = NULL;
6353 	struct mlx5_flow_tunnel *tunnel;
6354 	struct tunnel_default_miss_ctx default_miss_ctx = { 0, };
6355 	struct mlx5_flow_workspace *wks = mlx5_flow_push_thread_workspace();
6356 	struct mlx5_flow_split_info flow_split_info = {
6357 		.external = !!external,
6358 		.skip_scale = 0,
6359 		.flow_idx = 0,
6360 		.prefix_mark = 0,
6361 		.prefix_layers = 0,
6362 		.table_id = 0
6363 	};
6364 	int ret;
6365 
6366 	MLX5_ASSERT(wks);
6367 	rss_desc = &wks->rss_desc;
6368 	ret = flow_action_handles_translate(dev, original_actions,
6369 					    indir_actions,
6370 					    &indir_actions_n,
6371 					    &translated_actions, error);
6372 	if (ret < 0) {
6373 		MLX5_ASSERT(translated_actions == NULL);
6374 		return 0;
6375 	}
6376 	actions = translated_actions ? translated_actions : original_actions;
6377 	p_actions_rx = actions;
6378 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
6379 	ret = flow_drv_validate(dev, attr, items, p_actions_rx,
6380 				external, hairpin_flow, error);
6381 	if (ret < 0)
6382 		goto error_before_hairpin_split;
6383 	flow = mlx5_ipool_zmalloc(priv->flows[type], &idx);
6384 	if (!flow) {
6385 		rte_errno = ENOMEM;
6386 		goto error_before_hairpin_split;
6387 	}
6388 	if (hairpin_flow > 0) {
6389 		if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
6390 			rte_errno = EINVAL;
6391 			goto error_before_hairpin_split;
6392 		}
6393 		flow_hairpin_split(dev, actions, actions_rx.actions,
6394 				   actions_hairpin_tx.actions, items_tx.items,
6395 				   idx);
6396 		p_actions_rx = actions_rx.actions;
6397 	}
6398 	flow_split_info.flow_idx = idx;
6399 	flow->drv_type = flow_get_drv_type(dev, attr);
6400 	MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
6401 		    flow->drv_type < MLX5_FLOW_TYPE_MAX);
6402 	memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue));
6403 	/* RSS Action only works on NIC RX domain */
6404 	if (attr->ingress && !attr->transfer)
6405 		rss = flow_get_rss_action(dev, p_actions_rx);
6406 	if (rss) {
6407 		if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num))
6408 			return 0;
6409 		/*
6410 		 * The following information is required by
6411 		 * mlx5_flow_hashfields_adjust() in advance.
6412 		 */
6413 		rss_desc->level = rss->level;
6414 		/* RSS type 0 indicates default RSS type (ETH_RSS_IP). */
6415 		rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types;
6416 	}
6417 	flow->dev_handles = 0;
6418 	if (rss && rss->types) {
6419 		unsigned int graph_root;
6420 
6421 		graph_root = find_graph_root(rss->level);
6422 		ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
6423 					   items, rss->types,
6424 					   mlx5_support_expansion, graph_root);
6425 		MLX5_ASSERT(ret > 0 &&
6426 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
6427 		if (rte_log_can_log(mlx5_logtype, RTE_LOG_DEBUG)) {
6428 			for (i = 0; i < buf->entries; ++i)
6429 				mlx5_dbg__print_pattern(buf->entry[i].pattern);
6430 		}
6431 	} else {
6432 		buf->entries = 1;
6433 		buf->entry[0].pattern = (void *)(uintptr_t)items;
6434 	}
6435 	rss_desc->shared_rss = flow_get_shared_rss_action(dev, indir_actions,
6436 						      indir_actions_n);
6437 	for (i = 0; i < buf->entries; ++i) {
6438 		/* Initialize flow split data. */
6439 		flow_split_info.prefix_layers = 0;
6440 		flow_split_info.prefix_mark = 0;
6441 		flow_split_info.skip_scale = 0;
6442 		/*
6443 		 * The splitter may create multiple dev_flows,
6444 		 * depending on configuration. In the simplest
6445 		 * case it just creates unmodified original flow.
6446 		 */
6447 		ret = flow_create_split_outer(dev, flow, attr,
6448 					      buf->entry[i].pattern,
6449 					      p_actions_rx, &flow_split_info,
6450 					      error);
6451 		if (ret < 0)
6452 			goto error;
6453 		if (is_flow_tunnel_steer_rule(wks->flows[0].tof_type)) {
6454 			ret = flow_tunnel_add_default_miss(dev, flow, attr,
6455 							   p_actions_rx,
6456 							   idx,
6457 							   wks->flows[0].tunnel,
6458 							   &default_miss_ctx,
6459 							   error);
6460 			if (ret < 0) {
6461 				mlx5_free(default_miss_ctx.queue);
6462 				goto error;
6463 			}
6464 		}
6465 	}
6466 	/* Create the tx flow. */
6467 	if (hairpin_flow) {
6468 		attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
6469 		attr_tx.ingress = 0;
6470 		attr_tx.egress = 1;
6471 		dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
6472 					 actions_hairpin_tx.actions,
6473 					 idx, error);
6474 		if (!dev_flow)
6475 			goto error;
6476 		dev_flow->flow = flow;
6477 		dev_flow->external = 0;
6478 		SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
6479 			      dev_flow->handle, next);
6480 		ret = flow_drv_translate(dev, dev_flow, &attr_tx,
6481 					 items_tx.items,
6482 					 actions_hairpin_tx.actions, error);
6483 		if (ret < 0)
6484 			goto error;
6485 	}
6486 	/*
6487 	 * Update the metadata register copy table. If extensive
6488 	 * metadata feature is enabled and registers are supported
6489 	 * we might create the extra rte_flow for each unique
6490 	 * MARK/FLAG action ID.
6491 	 *
6492 	 * The table is updated for ingress Flows only, because
6493 	 * the egress Flows belong to the different device and
6494 	 * copy table should be updated in peer NIC Rx domain.
6495 	 */
6496 	if (attr->ingress &&
6497 	    (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
6498 		ret = flow_mreg_update_copy_table(dev, flow, actions, error);
6499 		if (ret)
6500 			goto error;
6501 	}
6502 	/*
6503 	 * If the flow is external (from application) OR device is started,
6504 	 * OR mreg discover, then apply immediately.
6505 	 */
6506 	if (external || dev->data->dev_started ||
6507 	    (attr->group == MLX5_FLOW_MREG_CP_TABLE_GROUP &&
6508 	     attr->priority == MLX5_FLOW_LOWEST_PRIO_INDICATOR)) {
6509 		ret = flow_drv_apply(dev, flow, error);
6510 		if (ret < 0)
6511 			goto error;
6512 	}
6513 	flow->type = type;
6514 	flow_rxq_flags_set(dev, flow);
6515 	rte_free(translated_actions);
6516 	tunnel = flow_tunnel_from_rule(wks->flows);
6517 	if (tunnel) {
6518 		flow->tunnel = 1;
6519 		flow->tunnel_id = tunnel->tunnel_id;
6520 		__atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED);
6521 		mlx5_free(default_miss_ctx.queue);
6522 	}
6523 	mlx5_flow_pop_thread_workspace();
6524 	return idx;
6525 error:
6526 	MLX5_ASSERT(flow);
6527 	ret = rte_errno; /* Save rte_errno before cleanup. */
6528 	flow_mreg_del_copy_action(dev, flow);
6529 	flow_drv_destroy(dev, flow);
6530 	if (rss_desc->shared_rss)
6531 		__atomic_sub_fetch(&((struct mlx5_shared_action_rss *)
6532 			mlx5_ipool_get
6533 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
6534 			rss_desc->shared_rss))->refcnt, 1, __ATOMIC_RELAXED);
6535 	mlx5_ipool_free(priv->flows[type], idx);
6536 	rte_errno = ret; /* Restore rte_errno. */
6537 	ret = rte_errno;
6538 	rte_errno = ret;
6539 	mlx5_flow_pop_thread_workspace();
6540 error_before_hairpin_split:
6541 	rte_free(translated_actions);
6542 	return 0;
6543 }
6544 
6545 /**
6546  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
6547  * incoming packets to table 1.
6548  *
6549  * Other flow rules, requested for group n, will be created in
6550  * e-switch table n+1.
6551  * Jump action to e-switch group n will be created to group n+1.
6552  *
6553  * Used when working in switchdev mode, to utilise advantages of table 1
6554  * and above.
6555  *
6556  * @param dev
6557  *   Pointer to Ethernet device.
6558  *
6559  * @return
6560  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
6561  */
6562 struct rte_flow *
6563 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
6564 {
6565 	const struct rte_flow_attr attr = {
6566 		.group = 0,
6567 		.priority = 0,
6568 		.ingress = 1,
6569 		.egress = 0,
6570 		.transfer = 1,
6571 	};
6572 	const struct rte_flow_item pattern = {
6573 		.type = RTE_FLOW_ITEM_TYPE_END,
6574 	};
6575 	struct rte_flow_action_jump jump = {
6576 		.group = 1,
6577 	};
6578 	const struct rte_flow_action actions[] = {
6579 		{
6580 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
6581 			.conf = &jump,
6582 		},
6583 		{
6584 			.type = RTE_FLOW_ACTION_TYPE_END,
6585 		},
6586 	};
6587 	struct rte_flow_error error;
6588 
6589 	return (void *)(uintptr_t)flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
6590 						   &attr, &pattern,
6591 						   actions, false, &error);
6592 }
6593 
6594 /**
6595  * Validate a flow supported by the NIC.
6596  *
6597  * @see rte_flow_validate()
6598  * @see rte_flow_ops
6599  */
6600 int
6601 mlx5_flow_validate(struct rte_eth_dev *dev,
6602 		   const struct rte_flow_attr *attr,
6603 		   const struct rte_flow_item items[],
6604 		   const struct rte_flow_action original_actions[],
6605 		   struct rte_flow_error *error)
6606 {
6607 	int hairpin_flow;
6608 	struct mlx5_translated_action_handle
6609 		indir_actions[MLX5_MAX_INDIRECT_ACTIONS];
6610 	int indir_actions_n = MLX5_MAX_INDIRECT_ACTIONS;
6611 	const struct rte_flow_action *actions;
6612 	struct rte_flow_action *translated_actions = NULL;
6613 	int ret = flow_action_handles_translate(dev, original_actions,
6614 						indir_actions,
6615 						&indir_actions_n,
6616 						&translated_actions, error);
6617 
6618 	if (ret)
6619 		return ret;
6620 	actions = translated_actions ? translated_actions : original_actions;
6621 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
6622 	ret = flow_drv_validate(dev, attr, items, actions,
6623 				true, hairpin_flow, error);
6624 	rte_free(translated_actions);
6625 	return ret;
6626 }
6627 
6628 /**
6629  * Create a flow.
6630  *
6631  * @see rte_flow_create()
6632  * @see rte_flow_ops
6633  */
6634 struct rte_flow *
6635 mlx5_flow_create(struct rte_eth_dev *dev,
6636 		 const struct rte_flow_attr *attr,
6637 		 const struct rte_flow_item items[],
6638 		 const struct rte_flow_action actions[],
6639 		 struct rte_flow_error *error)
6640 {
6641 	/*
6642 	 * If the device is not started yet, it is not allowed to created a
6643 	 * flow from application. PMD default flows and traffic control flows
6644 	 * are not affected.
6645 	 */
6646 	if (unlikely(!dev->data->dev_started)) {
6647 		DRV_LOG(DEBUG, "port %u is not started when "
6648 			"inserting a flow", dev->data->port_id);
6649 		rte_flow_error_set(error, ENODEV,
6650 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6651 				   NULL,
6652 				   "port not started");
6653 		return NULL;
6654 	}
6655 
6656 	return (void *)(uintptr_t)flow_list_create(dev, MLX5_FLOW_TYPE_GEN,
6657 						   attr, items, actions,
6658 						   true, error);
6659 }
6660 
6661 /**
6662  * Destroy a flow in a list.
6663  *
6664  * @param dev
6665  *   Pointer to Ethernet device.
6666  * @param[in] flow_idx
6667  *   Index of flow to destroy.
6668  */
6669 static void
6670 flow_list_destroy(struct rte_eth_dev *dev, enum mlx5_flow_type type,
6671 		  uint32_t flow_idx)
6672 {
6673 	struct mlx5_priv *priv = dev->data->dev_private;
6674 	struct rte_flow *flow = mlx5_ipool_get(priv->flows[type], flow_idx);
6675 
6676 	if (!flow)
6677 		return;
6678 	MLX5_ASSERT(flow->type == type);
6679 	/*
6680 	 * Update RX queue flags only if port is started, otherwise it is
6681 	 * already clean.
6682 	 */
6683 	if (dev->data->dev_started)
6684 		flow_rxq_flags_trim(dev, flow);
6685 	flow_drv_destroy(dev, flow);
6686 	if (flow->tunnel) {
6687 		struct mlx5_flow_tunnel *tunnel;
6688 
6689 		tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id);
6690 		RTE_VERIFY(tunnel);
6691 		if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
6692 			mlx5_flow_tunnel_free(dev, tunnel);
6693 	}
6694 	flow_mreg_del_copy_action(dev, flow);
6695 	mlx5_ipool_free(priv->flows[type], flow_idx);
6696 }
6697 
6698 /**
6699  * Destroy all flows.
6700  *
6701  * @param dev
6702  *   Pointer to Ethernet device.
6703  * @param type
6704  *   Flow type to be flushed.
6705  * @param active
6706  *   If flushing is called avtively.
6707  */
6708 void
6709 mlx5_flow_list_flush(struct rte_eth_dev *dev, enum mlx5_flow_type type,
6710 		     bool active)
6711 {
6712 	struct mlx5_priv *priv = dev->data->dev_private;
6713 	uint32_t num_flushed = 0, fidx = 1;
6714 	struct rte_flow *flow;
6715 
6716 	MLX5_IPOOL_FOREACH(priv->flows[type], fidx, flow) {
6717 		flow_list_destroy(dev, type, fidx);
6718 		num_flushed++;
6719 	}
6720 	if (active) {
6721 		DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
6722 			dev->data->port_id, num_flushed);
6723 	}
6724 }
6725 
6726 /**
6727  * Stop all default actions for flows.
6728  *
6729  * @param dev
6730  *   Pointer to Ethernet device.
6731  */
6732 void
6733 mlx5_flow_stop_default(struct rte_eth_dev *dev)
6734 {
6735 	flow_mreg_del_default_copy_action(dev);
6736 	flow_rxq_flags_clear(dev);
6737 }
6738 
6739 /**
6740  * Start all default actions for flows.
6741  *
6742  * @param dev
6743  *   Pointer to Ethernet device.
6744  * @return
6745  *   0 on success, a negative errno value otherwise and rte_errno is set.
6746  */
6747 int
6748 mlx5_flow_start_default(struct rte_eth_dev *dev)
6749 {
6750 	struct rte_flow_error error;
6751 
6752 	/* Make sure default copy action (reg_c[0] -> reg_b) is created. */
6753 	return flow_mreg_add_default_copy_action(dev, &error);
6754 }
6755 
6756 /**
6757  * Release key of thread specific flow workspace data.
6758  */
6759 void
6760 flow_release_workspace(void *data)
6761 {
6762 	struct mlx5_flow_workspace *wks = data;
6763 	struct mlx5_flow_workspace *next;
6764 
6765 	while (wks) {
6766 		next = wks->next;
6767 		free(wks->rss_desc.queue);
6768 		free(wks);
6769 		wks = next;
6770 	}
6771 }
6772 
6773 /**
6774  * Get thread specific current flow workspace.
6775  *
6776  * @return pointer to thread specific flow workspace data, NULL on error.
6777  */
6778 struct mlx5_flow_workspace*
6779 mlx5_flow_get_thread_workspace(void)
6780 {
6781 	struct mlx5_flow_workspace *data;
6782 
6783 	data = mlx5_flow_os_get_specific_workspace();
6784 	MLX5_ASSERT(data && data->inuse);
6785 	if (!data || !data->inuse)
6786 		DRV_LOG(ERR, "flow workspace not initialized.");
6787 	return data;
6788 }
6789 
6790 /**
6791  * Allocate and init new flow workspace.
6792  *
6793  * @return pointer to flow workspace data, NULL on error.
6794  */
6795 static struct mlx5_flow_workspace*
6796 flow_alloc_thread_workspace(void)
6797 {
6798 	struct mlx5_flow_workspace *data = calloc(1, sizeof(*data));
6799 
6800 	if (!data) {
6801 		DRV_LOG(ERR, "Failed to allocate flow workspace "
6802 			"memory.");
6803 		return NULL;
6804 	}
6805 	data->rss_desc.queue = calloc(1,
6806 			sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM);
6807 	if (!data->rss_desc.queue)
6808 		goto err;
6809 	data->rssq_num = MLX5_RSSQ_DEFAULT_NUM;
6810 	return data;
6811 err:
6812 	if (data->rss_desc.queue)
6813 		free(data->rss_desc.queue);
6814 	free(data);
6815 	return NULL;
6816 }
6817 
6818 /**
6819  * Get new thread specific flow workspace.
6820  *
6821  * If current workspace inuse, create new one and set as current.
6822  *
6823  * @return pointer to thread specific flow workspace data, NULL on error.
6824  */
6825 static struct mlx5_flow_workspace*
6826 mlx5_flow_push_thread_workspace(void)
6827 {
6828 	struct mlx5_flow_workspace *curr;
6829 	struct mlx5_flow_workspace *data;
6830 
6831 	curr = mlx5_flow_os_get_specific_workspace();
6832 	if (!curr) {
6833 		data = flow_alloc_thread_workspace();
6834 		if (!data)
6835 			return NULL;
6836 	} else if (!curr->inuse) {
6837 		data = curr;
6838 	} else if (curr->next) {
6839 		data = curr->next;
6840 	} else {
6841 		data = flow_alloc_thread_workspace();
6842 		if (!data)
6843 			return NULL;
6844 		curr->next = data;
6845 		data->prev = curr;
6846 	}
6847 	data->inuse = 1;
6848 	data->flow_idx = 0;
6849 	/* Set as current workspace */
6850 	if (mlx5_flow_os_set_specific_workspace(data))
6851 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
6852 	return data;
6853 }
6854 
6855 /**
6856  * Close current thread specific flow workspace.
6857  *
6858  * If previous workspace available, set it as current.
6859  *
6860  * @return pointer to thread specific flow workspace data, NULL on error.
6861  */
6862 static void
6863 mlx5_flow_pop_thread_workspace(void)
6864 {
6865 	struct mlx5_flow_workspace *data = mlx5_flow_get_thread_workspace();
6866 
6867 	if (!data)
6868 		return;
6869 	if (!data->inuse) {
6870 		DRV_LOG(ERR, "Failed to close unused flow workspace.");
6871 		return;
6872 	}
6873 	data->inuse = 0;
6874 	if (!data->prev)
6875 		return;
6876 	if (mlx5_flow_os_set_specific_workspace(data->prev))
6877 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
6878 }
6879 
6880 /**
6881  * Verify the flow list is empty
6882  *
6883  * @param dev
6884  *  Pointer to Ethernet device.
6885  *
6886  * @return the number of flows not released.
6887  */
6888 int
6889 mlx5_flow_verify(struct rte_eth_dev *dev __rte_unused)
6890 {
6891 	struct mlx5_priv *priv = dev->data->dev_private;
6892 	struct rte_flow *flow;
6893 	uint32_t idx = 0;
6894 	int ret = 0, i;
6895 
6896 	for (i = 0; i < MLX5_FLOW_TYPE_MAXI; i++) {
6897 		MLX5_IPOOL_FOREACH(priv->flows[i], idx, flow) {
6898 			DRV_LOG(DEBUG, "port %u flow %p still referenced",
6899 				dev->data->port_id, (void *)flow);
6900 			ret++;
6901 		}
6902 	}
6903 	return ret;
6904 }
6905 
6906 /**
6907  * Enable default hairpin egress flow.
6908  *
6909  * @param dev
6910  *   Pointer to Ethernet device.
6911  * @param queue
6912  *   The queue index.
6913  *
6914  * @return
6915  *   0 on success, a negative errno value otherwise and rte_errno is set.
6916  */
6917 int
6918 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
6919 			    uint32_t queue)
6920 {
6921 	const struct rte_flow_attr attr = {
6922 		.egress = 1,
6923 		.priority = 0,
6924 	};
6925 	struct mlx5_rte_flow_item_tx_queue queue_spec = {
6926 		.queue = queue,
6927 	};
6928 	struct mlx5_rte_flow_item_tx_queue queue_mask = {
6929 		.queue = UINT32_MAX,
6930 	};
6931 	struct rte_flow_item items[] = {
6932 		{
6933 			.type = (enum rte_flow_item_type)
6934 				MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
6935 			.spec = &queue_spec,
6936 			.last = NULL,
6937 			.mask = &queue_mask,
6938 		},
6939 		{
6940 			.type = RTE_FLOW_ITEM_TYPE_END,
6941 		},
6942 	};
6943 	struct rte_flow_action_jump jump = {
6944 		.group = MLX5_HAIRPIN_TX_TABLE,
6945 	};
6946 	struct rte_flow_action actions[2];
6947 	uint32_t flow_idx;
6948 	struct rte_flow_error error;
6949 
6950 	actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
6951 	actions[0].conf = &jump;
6952 	actions[1].type = RTE_FLOW_ACTION_TYPE_END;
6953 	flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
6954 				    &attr, items, actions, false, &error);
6955 	if (!flow_idx) {
6956 		DRV_LOG(DEBUG,
6957 			"Failed to create ctrl flow: rte_errno(%d),"
6958 			" type(%d), message(%s)",
6959 			rte_errno, error.type,
6960 			error.message ? error.message : " (no stated reason)");
6961 		return -rte_errno;
6962 	}
6963 	return 0;
6964 }
6965 
6966 /**
6967  * Enable a control flow configured from the control plane.
6968  *
6969  * @param dev
6970  *   Pointer to Ethernet device.
6971  * @param eth_spec
6972  *   An Ethernet flow spec to apply.
6973  * @param eth_mask
6974  *   An Ethernet flow mask to apply.
6975  * @param vlan_spec
6976  *   A VLAN flow spec to apply.
6977  * @param vlan_mask
6978  *   A VLAN flow mask to apply.
6979  *
6980  * @return
6981  *   0 on success, a negative errno value otherwise and rte_errno is set.
6982  */
6983 int
6984 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
6985 		    struct rte_flow_item_eth *eth_spec,
6986 		    struct rte_flow_item_eth *eth_mask,
6987 		    struct rte_flow_item_vlan *vlan_spec,
6988 		    struct rte_flow_item_vlan *vlan_mask)
6989 {
6990 	struct mlx5_priv *priv = dev->data->dev_private;
6991 	const struct rte_flow_attr attr = {
6992 		.ingress = 1,
6993 		.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
6994 	};
6995 	struct rte_flow_item items[] = {
6996 		{
6997 			.type = RTE_FLOW_ITEM_TYPE_ETH,
6998 			.spec = eth_spec,
6999 			.last = NULL,
7000 			.mask = eth_mask,
7001 		},
7002 		{
7003 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
7004 					      RTE_FLOW_ITEM_TYPE_END,
7005 			.spec = vlan_spec,
7006 			.last = NULL,
7007 			.mask = vlan_mask,
7008 		},
7009 		{
7010 			.type = RTE_FLOW_ITEM_TYPE_END,
7011 		},
7012 	};
7013 	uint16_t queue[priv->reta_idx_n];
7014 	struct rte_flow_action_rss action_rss = {
7015 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
7016 		.level = 0,
7017 		.types = priv->rss_conf.rss_hf,
7018 		.key_len = priv->rss_conf.rss_key_len,
7019 		.queue_num = priv->reta_idx_n,
7020 		.key = priv->rss_conf.rss_key,
7021 		.queue = queue,
7022 	};
7023 	struct rte_flow_action actions[] = {
7024 		{
7025 			.type = RTE_FLOW_ACTION_TYPE_RSS,
7026 			.conf = &action_rss,
7027 		},
7028 		{
7029 			.type = RTE_FLOW_ACTION_TYPE_END,
7030 		},
7031 	};
7032 	uint32_t flow_idx;
7033 	struct rte_flow_error error;
7034 	unsigned int i;
7035 
7036 	if (!priv->reta_idx_n || !priv->rxqs_n) {
7037 		return 0;
7038 	}
7039 	if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
7040 		action_rss.types = 0;
7041 	for (i = 0; i != priv->reta_idx_n; ++i)
7042 		queue[i] = (*priv->reta_idx)[i];
7043 	flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
7044 				    &attr, items, actions, false, &error);
7045 	if (!flow_idx)
7046 		return -rte_errno;
7047 	return 0;
7048 }
7049 
7050 /**
7051  * Enable a flow control configured from the control plane.
7052  *
7053  * @param dev
7054  *   Pointer to Ethernet device.
7055  * @param eth_spec
7056  *   An Ethernet flow spec to apply.
7057  * @param eth_mask
7058  *   An Ethernet flow mask to apply.
7059  *
7060  * @return
7061  *   0 on success, a negative errno value otherwise and rte_errno is set.
7062  */
7063 int
7064 mlx5_ctrl_flow(struct rte_eth_dev *dev,
7065 	       struct rte_flow_item_eth *eth_spec,
7066 	       struct rte_flow_item_eth *eth_mask)
7067 {
7068 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
7069 }
7070 
7071 /**
7072  * Create default miss flow rule matching lacp traffic
7073  *
7074  * @param dev
7075  *   Pointer to Ethernet device.
7076  * @param eth_spec
7077  *   An Ethernet flow spec to apply.
7078  *
7079  * @return
7080  *   0 on success, a negative errno value otherwise and rte_errno is set.
7081  */
7082 int
7083 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
7084 {
7085 	/*
7086 	 * The LACP matching is done by only using ether type since using
7087 	 * a multicast dst mac causes kernel to give low priority to this flow.
7088 	 */
7089 	static const struct rte_flow_item_eth lacp_spec = {
7090 		.type = RTE_BE16(0x8809),
7091 	};
7092 	static const struct rte_flow_item_eth lacp_mask = {
7093 		.type = 0xffff,
7094 	};
7095 	const struct rte_flow_attr attr = {
7096 		.ingress = 1,
7097 	};
7098 	struct rte_flow_item items[] = {
7099 		{
7100 			.type = RTE_FLOW_ITEM_TYPE_ETH,
7101 			.spec = &lacp_spec,
7102 			.mask = &lacp_mask,
7103 		},
7104 		{
7105 			.type = RTE_FLOW_ITEM_TYPE_END,
7106 		},
7107 	};
7108 	struct rte_flow_action actions[] = {
7109 		{
7110 			.type = (enum rte_flow_action_type)
7111 				MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
7112 		},
7113 		{
7114 			.type = RTE_FLOW_ACTION_TYPE_END,
7115 		},
7116 	};
7117 	struct rte_flow_error error;
7118 	uint32_t flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_CTL,
7119 					&attr, items, actions,
7120 					false, &error);
7121 
7122 	if (!flow_idx)
7123 		return -rte_errno;
7124 	return 0;
7125 }
7126 
7127 /**
7128  * Destroy a flow.
7129  *
7130  * @see rte_flow_destroy()
7131  * @see rte_flow_ops
7132  */
7133 int
7134 mlx5_flow_destroy(struct rte_eth_dev *dev,
7135 		  struct rte_flow *flow,
7136 		  struct rte_flow_error *error __rte_unused)
7137 {
7138 	flow_list_destroy(dev, MLX5_FLOW_TYPE_GEN,
7139 				(uintptr_t)(void *)flow);
7140 	return 0;
7141 }
7142 
7143 /**
7144  * Destroy all flows.
7145  *
7146  * @see rte_flow_flush()
7147  * @see rte_flow_ops
7148  */
7149 int
7150 mlx5_flow_flush(struct rte_eth_dev *dev,
7151 		struct rte_flow_error *error __rte_unused)
7152 {
7153 	mlx5_flow_list_flush(dev, MLX5_FLOW_TYPE_GEN, false);
7154 	return 0;
7155 }
7156 
7157 /**
7158  * Isolated mode.
7159  *
7160  * @see rte_flow_isolate()
7161  * @see rte_flow_ops
7162  */
7163 int
7164 mlx5_flow_isolate(struct rte_eth_dev *dev,
7165 		  int enable,
7166 		  struct rte_flow_error *error)
7167 {
7168 	struct mlx5_priv *priv = dev->data->dev_private;
7169 
7170 	if (dev->data->dev_started) {
7171 		rte_flow_error_set(error, EBUSY,
7172 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7173 				   NULL,
7174 				   "port must be stopped first");
7175 		return -rte_errno;
7176 	}
7177 	priv->isolated = !!enable;
7178 	if (enable)
7179 		dev->dev_ops = &mlx5_dev_ops_isolate;
7180 	else
7181 		dev->dev_ops = &mlx5_dev_ops;
7182 
7183 	dev->rx_descriptor_status = mlx5_rx_descriptor_status;
7184 	dev->tx_descriptor_status = mlx5_tx_descriptor_status;
7185 
7186 	return 0;
7187 }
7188 
7189 /**
7190  * Query a flow.
7191  *
7192  * @see rte_flow_query()
7193  * @see rte_flow_ops
7194  */
7195 static int
7196 flow_drv_query(struct rte_eth_dev *dev,
7197 	       uint32_t flow_idx,
7198 	       const struct rte_flow_action *actions,
7199 	       void *data,
7200 	       struct rte_flow_error *error)
7201 {
7202 	struct mlx5_priv *priv = dev->data->dev_private;
7203 	const struct mlx5_flow_driver_ops *fops;
7204 	struct rte_flow *flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN],
7205 					       flow_idx);
7206 	enum mlx5_flow_drv_type ftype;
7207 
7208 	if (!flow) {
7209 		return rte_flow_error_set(error, ENOENT,
7210 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
7211 			  NULL,
7212 			  "invalid flow handle");
7213 	}
7214 	ftype = flow->drv_type;
7215 	MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
7216 	fops = flow_get_drv_ops(ftype);
7217 
7218 	return fops->query(dev, flow, actions, data, error);
7219 }
7220 
7221 /**
7222  * Query a flow.
7223  *
7224  * @see rte_flow_query()
7225  * @see rte_flow_ops
7226  */
7227 int
7228 mlx5_flow_query(struct rte_eth_dev *dev,
7229 		struct rte_flow *flow,
7230 		const struct rte_flow_action *actions,
7231 		void *data,
7232 		struct rte_flow_error *error)
7233 {
7234 	int ret;
7235 
7236 	ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
7237 			     error);
7238 	if (ret < 0)
7239 		return ret;
7240 	return 0;
7241 }
7242 
7243 /**
7244  * Get rte_flow callbacks.
7245  *
7246  * @param dev
7247  *   Pointer to Ethernet device structure.
7248  * @param ops
7249  *   Pointer to operation-specific structure.
7250  *
7251  * @return 0
7252  */
7253 int
7254 mlx5_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
7255 		  const struct rte_flow_ops **ops)
7256 {
7257 	*ops = &mlx5_flow_ops;
7258 	return 0;
7259 }
7260 
7261 /**
7262  * Validate meter policy actions.
7263  * Dispatcher for action type specific validation.
7264  *
7265  * @param[in] dev
7266  *   Pointer to the Ethernet device structure.
7267  * @param[in] action
7268  *   The meter policy action object to validate.
7269  * @param[in] attr
7270  *   Attributes of flow to determine steering domain.
7271  * @param[out] is_rss
7272  *   Is RSS or not.
7273  * @param[out] domain_bitmap
7274  *   Domain bitmap.
7275  * @param[out] is_def_policy
7276  *   Is default policy or not.
7277  * @param[out] error
7278  *   Perform verbose error reporting if not NULL. Initialized in case of
7279  *   error only.
7280  *
7281  * @return
7282  *   0 on success, otherwise negative errno value.
7283  */
7284 int
7285 mlx5_flow_validate_mtr_acts(struct rte_eth_dev *dev,
7286 			const struct rte_flow_action *actions[RTE_COLORS],
7287 			struct rte_flow_attr *attr,
7288 			bool *is_rss,
7289 			uint8_t *domain_bitmap,
7290 			uint8_t *policy_mode,
7291 			struct rte_mtr_error *error)
7292 {
7293 	const struct mlx5_flow_driver_ops *fops;
7294 
7295 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7296 	return fops->validate_mtr_acts(dev, actions, attr, is_rss,
7297 				       domain_bitmap, policy_mode, error);
7298 }
7299 
7300 /**
7301  * Destroy the meter table set.
7302  *
7303  * @param[in] dev
7304  *   Pointer to Ethernet device.
7305  * @param[in] mtr_policy
7306  *   Meter policy struct.
7307  */
7308 void
7309 mlx5_flow_destroy_mtr_acts(struct rte_eth_dev *dev,
7310 		      struct mlx5_flow_meter_policy *mtr_policy)
7311 {
7312 	const struct mlx5_flow_driver_ops *fops;
7313 
7314 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7315 	fops->destroy_mtr_acts(dev, mtr_policy);
7316 }
7317 
7318 /**
7319  * Create policy action, lock free,
7320  * (mutex should be acquired by caller).
7321  * Dispatcher for action type specific call.
7322  *
7323  * @param[in] dev
7324  *   Pointer to the Ethernet device structure.
7325  * @param[in] mtr_policy
7326  *   Meter policy struct.
7327  * @param[in] action
7328  *   Action specification used to create meter actions.
7329  * @param[out] error
7330  *   Perform verbose error reporting if not NULL. Initialized in case of
7331  *   error only.
7332  *
7333  * @return
7334  *   0 on success, otherwise negative errno value.
7335  */
7336 int
7337 mlx5_flow_create_mtr_acts(struct rte_eth_dev *dev,
7338 		      struct mlx5_flow_meter_policy *mtr_policy,
7339 		      const struct rte_flow_action *actions[RTE_COLORS],
7340 		      struct rte_mtr_error *error)
7341 {
7342 	const struct mlx5_flow_driver_ops *fops;
7343 
7344 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7345 	return fops->create_mtr_acts(dev, mtr_policy, actions, error);
7346 }
7347 
7348 /**
7349  * Create policy rules, lock free,
7350  * (mutex should be acquired by caller).
7351  * Dispatcher for action type specific call.
7352  *
7353  * @param[in] dev
7354  *   Pointer to the Ethernet device structure.
7355  * @param[in] mtr_policy
7356  *   Meter policy struct.
7357  *
7358  * @return
7359  *   0 on success, -1 otherwise.
7360  */
7361 int
7362 mlx5_flow_create_policy_rules(struct rte_eth_dev *dev,
7363 			     struct mlx5_flow_meter_policy *mtr_policy)
7364 {
7365 	const struct mlx5_flow_driver_ops *fops;
7366 
7367 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7368 	return fops->create_policy_rules(dev, mtr_policy);
7369 }
7370 
7371 /**
7372  * Destroy policy rules, lock free,
7373  * (mutex should be acquired by caller).
7374  * Dispatcher for action type specific call.
7375  *
7376  * @param[in] dev
7377  *   Pointer to the Ethernet device structure.
7378  * @param[in] mtr_policy
7379  *   Meter policy struct.
7380  */
7381 void
7382 mlx5_flow_destroy_policy_rules(struct rte_eth_dev *dev,
7383 			     struct mlx5_flow_meter_policy *mtr_policy)
7384 {
7385 	const struct mlx5_flow_driver_ops *fops;
7386 
7387 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7388 	fops->destroy_policy_rules(dev, mtr_policy);
7389 }
7390 
7391 /**
7392  * Destroy the default policy table set.
7393  *
7394  * @param[in] dev
7395  *   Pointer to Ethernet device.
7396  */
7397 void
7398 mlx5_flow_destroy_def_policy(struct rte_eth_dev *dev)
7399 {
7400 	const struct mlx5_flow_driver_ops *fops;
7401 
7402 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7403 	fops->destroy_def_policy(dev);
7404 }
7405 
7406 /**
7407  * Destroy the default policy table set.
7408  *
7409  * @param[in] dev
7410  *   Pointer to Ethernet device.
7411  *
7412  * @return
7413  *   0 on success, -1 otherwise.
7414  */
7415 int
7416 mlx5_flow_create_def_policy(struct rte_eth_dev *dev)
7417 {
7418 	const struct mlx5_flow_driver_ops *fops;
7419 
7420 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7421 	return fops->create_def_policy(dev);
7422 }
7423 
7424 /**
7425  * Create the needed meter and suffix tables.
7426  *
7427  * @param[in] dev
7428  *   Pointer to Ethernet device.
7429  *
7430  * @return
7431  *   0 on success, -1 otherwise.
7432  */
7433 int
7434 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
7435 			struct mlx5_flow_meter_info *fm,
7436 			uint32_t mtr_idx,
7437 			uint8_t domain_bitmap)
7438 {
7439 	const struct mlx5_flow_driver_ops *fops;
7440 
7441 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7442 	return fops->create_mtr_tbls(dev, fm, mtr_idx, domain_bitmap);
7443 }
7444 
7445 /**
7446  * Destroy the meter table set.
7447  *
7448  * @param[in] dev
7449  *   Pointer to Ethernet device.
7450  * @param[in] tbl
7451  *   Pointer to the meter table set.
7452  */
7453 void
7454 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
7455 			   struct mlx5_flow_meter_info *fm)
7456 {
7457 	const struct mlx5_flow_driver_ops *fops;
7458 
7459 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7460 	fops->destroy_mtr_tbls(dev, fm);
7461 }
7462 
7463 /**
7464  * Destroy the global meter drop table.
7465  *
7466  * @param[in] dev
7467  *   Pointer to Ethernet device.
7468  */
7469 void
7470 mlx5_flow_destroy_mtr_drop_tbls(struct rte_eth_dev *dev)
7471 {
7472 	const struct mlx5_flow_driver_ops *fops;
7473 
7474 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7475 	fops->destroy_mtr_drop_tbls(dev);
7476 }
7477 
7478 /**
7479  * Destroy the sub policy table with RX queue.
7480  *
7481  * @param[in] dev
7482  *   Pointer to Ethernet device.
7483  * @param[in] mtr_policy
7484  *   Pointer to meter policy table.
7485  */
7486 void
7487 mlx5_flow_destroy_sub_policy_with_rxq(struct rte_eth_dev *dev,
7488 		struct mlx5_flow_meter_policy *mtr_policy)
7489 {
7490 	const struct mlx5_flow_driver_ops *fops;
7491 
7492 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7493 	fops->destroy_sub_policy_with_rxq(dev, mtr_policy);
7494 }
7495 
7496 /**
7497  * Allocate the needed aso flow meter id.
7498  *
7499  * @param[in] dev
7500  *   Pointer to Ethernet device.
7501  *
7502  * @return
7503  *   Index to aso flow meter on success, NULL otherwise.
7504  */
7505 uint32_t
7506 mlx5_flow_mtr_alloc(struct rte_eth_dev *dev)
7507 {
7508 	const struct mlx5_flow_driver_ops *fops;
7509 
7510 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7511 	return fops->create_meter(dev);
7512 }
7513 
7514 /**
7515  * Free the aso flow meter id.
7516  *
7517  * @param[in] dev
7518  *   Pointer to Ethernet device.
7519  * @param[in] mtr_idx
7520  *  Index to aso flow meter to be free.
7521  *
7522  * @return
7523  *   0 on success.
7524  */
7525 void
7526 mlx5_flow_mtr_free(struct rte_eth_dev *dev, uint32_t mtr_idx)
7527 {
7528 	const struct mlx5_flow_driver_ops *fops;
7529 
7530 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7531 	fops->free_meter(dev, mtr_idx);
7532 }
7533 
7534 /**
7535  * Allocate a counter.
7536  *
7537  * @param[in] dev
7538  *   Pointer to Ethernet device structure.
7539  *
7540  * @return
7541  *   Index to allocated counter  on success, 0 otherwise.
7542  */
7543 uint32_t
7544 mlx5_counter_alloc(struct rte_eth_dev *dev)
7545 {
7546 	const struct mlx5_flow_driver_ops *fops;
7547 	struct rte_flow_attr attr = { .transfer = 0 };
7548 
7549 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7550 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7551 		return fops->counter_alloc(dev);
7552 	}
7553 	DRV_LOG(ERR,
7554 		"port %u counter allocate is not supported.",
7555 		 dev->data->port_id);
7556 	return 0;
7557 }
7558 
7559 /**
7560  * Free a counter.
7561  *
7562  * @param[in] dev
7563  *   Pointer to Ethernet device structure.
7564  * @param[in] cnt
7565  *   Index to counter to be free.
7566  */
7567 void
7568 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
7569 {
7570 	const struct mlx5_flow_driver_ops *fops;
7571 	struct rte_flow_attr attr = { .transfer = 0 };
7572 
7573 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7574 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7575 		fops->counter_free(dev, cnt);
7576 		return;
7577 	}
7578 	DRV_LOG(ERR,
7579 		"port %u counter free is not supported.",
7580 		 dev->data->port_id);
7581 }
7582 
7583 /**
7584  * Query counter statistics.
7585  *
7586  * @param[in] dev
7587  *   Pointer to Ethernet device structure.
7588  * @param[in] cnt
7589  *   Index to counter to query.
7590  * @param[in] clear
7591  *   Set to clear counter statistics.
7592  * @param[out] pkts
7593  *   The counter hits packets number to save.
7594  * @param[out] bytes
7595  *   The counter hits bytes number to save.
7596  *
7597  * @return
7598  *   0 on success, a negative errno value otherwise.
7599  */
7600 int
7601 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
7602 		   bool clear, uint64_t *pkts, uint64_t *bytes)
7603 {
7604 	const struct mlx5_flow_driver_ops *fops;
7605 	struct rte_flow_attr attr = { .transfer = 0 };
7606 
7607 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
7608 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
7609 		return fops->counter_query(dev, cnt, clear, pkts, bytes);
7610 	}
7611 	DRV_LOG(ERR,
7612 		"port %u counter query is not supported.",
7613 		 dev->data->port_id);
7614 	return -ENOTSUP;
7615 }
7616 
7617 /**
7618  * Allocate a new memory for the counter values wrapped by all the needed
7619  * management.
7620  *
7621  * @param[in] sh
7622  *   Pointer to mlx5_dev_ctx_shared object.
7623  *
7624  * @return
7625  *   0 on success, a negative errno value otherwise.
7626  */
7627 static int
7628 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh)
7629 {
7630 	struct mlx5_devx_mkey_attr mkey_attr;
7631 	struct mlx5_counter_stats_mem_mng *mem_mng;
7632 	volatile struct flow_counter_stats *raw_data;
7633 	int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES;
7634 	int size = (sizeof(struct flow_counter_stats) *
7635 			MLX5_COUNTERS_PER_POOL +
7636 			sizeof(struct mlx5_counter_stats_raw)) * raws_n +
7637 			sizeof(struct mlx5_counter_stats_mem_mng);
7638 	size_t pgsize = rte_mem_page_size();
7639 	uint8_t *mem;
7640 	int i;
7641 
7642 	if (pgsize == (size_t)-1) {
7643 		DRV_LOG(ERR, "Failed to get mem page size");
7644 		rte_errno = ENOMEM;
7645 		return -ENOMEM;
7646 	}
7647 	mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY);
7648 	if (!mem) {
7649 		rte_errno = ENOMEM;
7650 		return -ENOMEM;
7651 	}
7652 	mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1;
7653 	size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n;
7654 	mem_mng->umem = mlx5_os_umem_reg(sh->ctx, mem, size,
7655 						 IBV_ACCESS_LOCAL_WRITE);
7656 	if (!mem_mng->umem) {
7657 		rte_errno = errno;
7658 		mlx5_free(mem);
7659 		return -rte_errno;
7660 	}
7661 	memset(&mkey_attr, 0, sizeof(mkey_attr));
7662 	mkey_attr.addr = (uintptr_t)mem;
7663 	mkey_attr.size = size;
7664 	mkey_attr.umem_id = mlx5_os_get_umem_id(mem_mng->umem);
7665 	mkey_attr.pd = sh->pdn;
7666 	mkey_attr.relaxed_ordering_write = sh->cmng.relaxed_ordering_write;
7667 	mkey_attr.relaxed_ordering_read = sh->cmng.relaxed_ordering_read;
7668 	mem_mng->dm = mlx5_devx_cmd_mkey_create(sh->ctx, &mkey_attr);
7669 	if (!mem_mng->dm) {
7670 		mlx5_os_umem_dereg(mem_mng->umem);
7671 		rte_errno = errno;
7672 		mlx5_free(mem);
7673 		return -rte_errno;
7674 	}
7675 	mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size);
7676 	raw_data = (volatile struct flow_counter_stats *)mem;
7677 	for (i = 0; i < raws_n; ++i) {
7678 		mem_mng->raws[i].mem_mng = mem_mng;
7679 		mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL;
7680 	}
7681 	for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i)
7682 		LIST_INSERT_HEAD(&sh->cmng.free_stat_raws,
7683 				 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i,
7684 				 next);
7685 	LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next);
7686 	sh->cmng.mem_mng = mem_mng;
7687 	return 0;
7688 }
7689 
7690 /**
7691  * Set the statistic memory to the new counter pool.
7692  *
7693  * @param[in] sh
7694  *   Pointer to mlx5_dev_ctx_shared object.
7695  * @param[in] pool
7696  *   Pointer to the pool to set the statistic memory.
7697  *
7698  * @return
7699  *   0 on success, a negative errno value otherwise.
7700  */
7701 static int
7702 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh,
7703 			       struct mlx5_flow_counter_pool *pool)
7704 {
7705 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7706 	/* Resize statistic memory once used out. */
7707 	if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) &&
7708 	    mlx5_flow_create_counter_stat_mem_mng(sh)) {
7709 		DRV_LOG(ERR, "Cannot resize counter stat mem.");
7710 		return -1;
7711 	}
7712 	rte_spinlock_lock(&pool->sl);
7713 	pool->raw = cmng->mem_mng->raws + pool->index %
7714 		    MLX5_CNT_CONTAINER_RESIZE;
7715 	rte_spinlock_unlock(&pool->sl);
7716 	pool->raw_hw = NULL;
7717 	return 0;
7718 }
7719 
7720 #define MLX5_POOL_QUERY_FREQ_US 1000000
7721 
7722 /**
7723  * Set the periodic procedure for triggering asynchronous batch queries for all
7724  * the counter pools.
7725  *
7726  * @param[in] sh
7727  *   Pointer to mlx5_dev_ctx_shared object.
7728  */
7729 void
7730 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
7731 {
7732 	uint32_t pools_n, us;
7733 
7734 	pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED);
7735 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
7736 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
7737 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
7738 		sh->cmng.query_thread_on = 0;
7739 		DRV_LOG(ERR, "Cannot reinitialize query alarm");
7740 	} else {
7741 		sh->cmng.query_thread_on = 1;
7742 	}
7743 }
7744 
7745 /**
7746  * The periodic procedure for triggering asynchronous batch queries for all the
7747  * counter pools. This function is probably called by the host thread.
7748  *
7749  * @param[in] arg
7750  *   The parameter for the alarm process.
7751  */
7752 void
7753 mlx5_flow_query_alarm(void *arg)
7754 {
7755 	struct mlx5_dev_ctx_shared *sh = arg;
7756 	int ret;
7757 	uint16_t pool_index = sh->cmng.pool_index;
7758 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7759 	struct mlx5_flow_counter_pool *pool;
7760 	uint16_t n_valid;
7761 
7762 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
7763 		goto set_alarm;
7764 	rte_spinlock_lock(&cmng->pool_update_sl);
7765 	pool = cmng->pools[pool_index];
7766 	n_valid = cmng->n_valid;
7767 	rte_spinlock_unlock(&cmng->pool_update_sl);
7768 	/* Set the statistic memory to the new created pool. */
7769 	if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool)))
7770 		goto set_alarm;
7771 	if (pool->raw_hw)
7772 		/* There is a pool query in progress. */
7773 		goto set_alarm;
7774 	pool->raw_hw =
7775 		LIST_FIRST(&sh->cmng.free_stat_raws);
7776 	if (!pool->raw_hw)
7777 		/* No free counter statistics raw memory. */
7778 		goto set_alarm;
7779 	/*
7780 	 * Identify the counters released between query trigger and query
7781 	 * handle more efficiently. The counter released in this gap period
7782 	 * should wait for a new round of query as the new arrived packets
7783 	 * will not be taken into account.
7784 	 */
7785 	pool->query_gen++;
7786 	ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0,
7787 					       MLX5_COUNTERS_PER_POOL,
7788 					       NULL, NULL,
7789 					       pool->raw_hw->mem_mng->dm->id,
7790 					       (void *)(uintptr_t)
7791 					       pool->raw_hw->data,
7792 					       sh->devx_comp,
7793 					       (uint64_t)(uintptr_t)pool);
7794 	if (ret) {
7795 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
7796 			" %d", pool->min_dcs->id);
7797 		pool->raw_hw = NULL;
7798 		goto set_alarm;
7799 	}
7800 	LIST_REMOVE(pool->raw_hw, next);
7801 	sh->cmng.pending_queries++;
7802 	pool_index++;
7803 	if (pool_index >= n_valid)
7804 		pool_index = 0;
7805 set_alarm:
7806 	sh->cmng.pool_index = pool_index;
7807 	mlx5_set_query_alarm(sh);
7808 }
7809 
7810 /**
7811  * Check and callback event for new aged flow in the counter pool
7812  *
7813  * @param[in] sh
7814  *   Pointer to mlx5_dev_ctx_shared object.
7815  * @param[in] pool
7816  *   Pointer to Current counter pool.
7817  */
7818 static void
7819 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
7820 		   struct mlx5_flow_counter_pool *pool)
7821 {
7822 	struct mlx5_priv *priv;
7823 	struct mlx5_flow_counter *cnt;
7824 	struct mlx5_age_info *age_info;
7825 	struct mlx5_age_param *age_param;
7826 	struct mlx5_counter_stats_raw *cur = pool->raw_hw;
7827 	struct mlx5_counter_stats_raw *prev = pool->raw;
7828 	const uint64_t curr_time = MLX5_CURR_TIME_SEC;
7829 	const uint32_t time_delta = curr_time - pool->time_of_last_age_check;
7830 	uint16_t expected = AGE_CANDIDATE;
7831 	uint32_t i;
7832 
7833 	pool->time_of_last_age_check = curr_time;
7834 	for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
7835 		cnt = MLX5_POOL_GET_CNT(pool, i);
7836 		age_param = MLX5_CNT_TO_AGE(cnt);
7837 		if (__atomic_load_n(&age_param->state,
7838 				    __ATOMIC_RELAXED) != AGE_CANDIDATE)
7839 			continue;
7840 		if (cur->data[i].hits != prev->data[i].hits) {
7841 			__atomic_store_n(&age_param->sec_since_last_hit, 0,
7842 					 __ATOMIC_RELAXED);
7843 			continue;
7844 		}
7845 		if (__atomic_add_fetch(&age_param->sec_since_last_hit,
7846 				       time_delta,
7847 				       __ATOMIC_RELAXED) <= age_param->timeout)
7848 			continue;
7849 		/**
7850 		 * Hold the lock first, or if between the
7851 		 * state AGE_TMOUT and tailq operation the
7852 		 * release happened, the release procedure
7853 		 * may delete a non-existent tailq node.
7854 		 */
7855 		priv = rte_eth_devices[age_param->port_id].data->dev_private;
7856 		age_info = GET_PORT_AGE_INFO(priv);
7857 		rte_spinlock_lock(&age_info->aged_sl);
7858 		if (__atomic_compare_exchange_n(&age_param->state, &expected,
7859 						AGE_TMOUT, false,
7860 						__ATOMIC_RELAXED,
7861 						__ATOMIC_RELAXED)) {
7862 			TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
7863 			MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
7864 		}
7865 		rte_spinlock_unlock(&age_info->aged_sl);
7866 	}
7867 	mlx5_age_event_prepare(sh);
7868 }
7869 
7870 /**
7871  * Handler for the HW respond about ready values from an asynchronous batch
7872  * query. This function is probably called by the host thread.
7873  *
7874  * @param[in] sh
7875  *   The pointer to the shared device context.
7876  * @param[in] async_id
7877  *   The Devx async ID.
7878  * @param[in] status
7879  *   The status of the completion.
7880  */
7881 void
7882 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
7883 				  uint64_t async_id, int status)
7884 {
7885 	struct mlx5_flow_counter_pool *pool =
7886 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
7887 	struct mlx5_counter_stats_raw *raw_to_free;
7888 	uint8_t query_gen = pool->query_gen ^ 1;
7889 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
7890 	enum mlx5_counter_type cnt_type =
7891 		pool->is_aged ? MLX5_COUNTER_TYPE_AGE :
7892 				MLX5_COUNTER_TYPE_ORIGIN;
7893 
7894 	if (unlikely(status)) {
7895 		raw_to_free = pool->raw_hw;
7896 	} else {
7897 		raw_to_free = pool->raw;
7898 		if (pool->is_aged)
7899 			mlx5_flow_aging_check(sh, pool);
7900 		rte_spinlock_lock(&pool->sl);
7901 		pool->raw = pool->raw_hw;
7902 		rte_spinlock_unlock(&pool->sl);
7903 		/* Be sure the new raw counters data is updated in memory. */
7904 		rte_io_wmb();
7905 		if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
7906 			rte_spinlock_lock(&cmng->csl[cnt_type]);
7907 			TAILQ_CONCAT(&cmng->counters[cnt_type],
7908 				     &pool->counters[query_gen], next);
7909 			rte_spinlock_unlock(&cmng->csl[cnt_type]);
7910 		}
7911 	}
7912 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
7913 	pool->raw_hw = NULL;
7914 	sh->cmng.pending_queries--;
7915 }
7916 
7917 static int
7918 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table,
7919 		    const struct flow_grp_info *grp_info,
7920 		    struct rte_flow_error *error)
7921 {
7922 	if (grp_info->transfer && grp_info->external &&
7923 	    grp_info->fdb_def_rule) {
7924 		if (group == UINT32_MAX)
7925 			return rte_flow_error_set
7926 						(error, EINVAL,
7927 						 RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
7928 						 NULL,
7929 						 "group index not supported");
7930 		*table = group + 1;
7931 	} else {
7932 		*table = group;
7933 	}
7934 	DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table);
7935 	return 0;
7936 }
7937 
7938 /**
7939  * Translate the rte_flow group index to HW table value.
7940  *
7941  * If tunnel offload is disabled, all group ids converted to flow table
7942  * id using the standard method.
7943  * If tunnel offload is enabled, group id can be converted using the
7944  * standard or tunnel conversion method. Group conversion method
7945  * selection depends on flags in `grp_info` parameter:
7946  * - Internal (grp_info.external == 0) groups conversion uses the
7947  *   standard method.
7948  * - Group ids in JUMP action converted with the tunnel conversion.
7949  * - Group id in rule attribute conversion depends on a rule type and
7950  *   group id value:
7951  *   ** non zero group attributes converted with the tunnel method
7952  *   ** zero group attribute in non-tunnel rule is converted using the
7953  *      standard method - there's only one root table
7954  *   ** zero group attribute in steer tunnel rule is converted with the
7955  *      standard method - single root table
7956  *   ** zero group attribute in match tunnel rule is a special OvS
7957  *      case: that value is used for portability reasons. That group
7958  *      id is converted with the tunnel conversion method.
7959  *
7960  * @param[in] dev
7961  *   Port device
7962  * @param[in] tunnel
7963  *   PMD tunnel offload object
7964  * @param[in] group
7965  *   rte_flow group index value.
7966  * @param[out] table
7967  *   HW table value.
7968  * @param[in] grp_info
7969  *   flags used for conversion
7970  * @param[out] error
7971  *   Pointer to error structure.
7972  *
7973  * @return
7974  *   0 on success, a negative errno value otherwise and rte_errno is set.
7975  */
7976 int
7977 mlx5_flow_group_to_table(struct rte_eth_dev *dev,
7978 			 const struct mlx5_flow_tunnel *tunnel,
7979 			 uint32_t group, uint32_t *table,
7980 			 const struct flow_grp_info *grp_info,
7981 			 struct rte_flow_error *error)
7982 {
7983 	int ret;
7984 	bool standard_translation;
7985 
7986 	if (!grp_info->skip_scale && grp_info->external &&
7987 	    group < MLX5_MAX_TABLES_EXTERNAL)
7988 		group *= MLX5_FLOW_TABLE_FACTOR;
7989 	if (is_tunnel_offload_active(dev)) {
7990 		standard_translation = !grp_info->external ||
7991 					grp_info->std_tbl_fix;
7992 	} else {
7993 		standard_translation = true;
7994 	}
7995 	DRV_LOG(DEBUG,
7996 		"port %u group=%u transfer=%d external=%d fdb_def_rule=%d translate=%s",
7997 		dev->data->port_id, group, grp_info->transfer,
7998 		grp_info->external, grp_info->fdb_def_rule,
7999 		standard_translation ? "STANDARD" : "TUNNEL");
8000 	if (standard_translation)
8001 		ret = flow_group_to_table(dev->data->port_id, group, table,
8002 					  grp_info, error);
8003 	else
8004 		ret = tunnel_flow_group_to_flow_table(dev, tunnel, group,
8005 						      table, error);
8006 
8007 	return ret;
8008 }
8009 
8010 /**
8011  * Discover availability of metadata reg_c's.
8012  *
8013  * Iteratively use test flows to check availability.
8014  *
8015  * @param[in] dev
8016  *   Pointer to the Ethernet device structure.
8017  *
8018  * @return
8019  *   0 on success, a negative errno value otherwise and rte_errno is set.
8020  */
8021 int
8022 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
8023 {
8024 	struct mlx5_priv *priv = dev->data->dev_private;
8025 	struct mlx5_dev_config *config = &priv->config;
8026 	enum modify_reg idx;
8027 	int n = 0;
8028 
8029 	/* reg_c[0] and reg_c[1] are reserved. */
8030 	config->flow_mreg_c[n++] = REG_C_0;
8031 	config->flow_mreg_c[n++] = REG_C_1;
8032 	/* Discover availability of other reg_c's. */
8033 	for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
8034 		struct rte_flow_attr attr = {
8035 			.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
8036 			.priority = MLX5_FLOW_LOWEST_PRIO_INDICATOR,
8037 			.ingress = 1,
8038 		};
8039 		struct rte_flow_item items[] = {
8040 			[0] = {
8041 				.type = RTE_FLOW_ITEM_TYPE_END,
8042 			},
8043 		};
8044 		struct rte_flow_action actions[] = {
8045 			[0] = {
8046 				.type = (enum rte_flow_action_type)
8047 					MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
8048 				.conf = &(struct mlx5_flow_action_copy_mreg){
8049 					.src = REG_C_1,
8050 					.dst = idx,
8051 				},
8052 			},
8053 			[1] = {
8054 				.type = RTE_FLOW_ACTION_TYPE_JUMP,
8055 				.conf = &(struct rte_flow_action_jump){
8056 					.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
8057 				},
8058 			},
8059 			[2] = {
8060 				.type = RTE_FLOW_ACTION_TYPE_END,
8061 			},
8062 		};
8063 		uint32_t flow_idx;
8064 		struct rte_flow *flow;
8065 		struct rte_flow_error error;
8066 
8067 		if (!config->dv_flow_en)
8068 			break;
8069 		/* Create internal flow, validation skips copy action. */
8070 		flow_idx = flow_list_create(dev, MLX5_FLOW_TYPE_GEN, &attr,
8071 					items, actions, false, &error);
8072 		flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN],
8073 				      flow_idx);
8074 		if (!flow)
8075 			continue;
8076 		config->flow_mreg_c[n++] = idx;
8077 		flow_list_destroy(dev, MLX5_FLOW_TYPE_GEN, flow_idx);
8078 	}
8079 	for (; n < MLX5_MREG_C_NUM; ++n)
8080 		config->flow_mreg_c[n] = REG_NON;
8081 	return 0;
8082 }
8083 
8084 int
8085 save_dump_file(const uint8_t *data, uint32_t size,
8086 	uint32_t type, uint32_t id, void *arg, FILE *file)
8087 {
8088 	char line[BUF_SIZE];
8089 	uint32_t out = 0;
8090 	uint32_t k;
8091 	uint32_t actions_num;
8092 	struct rte_flow_query_count *count;
8093 
8094 	memset(line, 0, BUF_SIZE);
8095 	switch (type) {
8096 	case DR_DUMP_REC_TYPE_PMD_MODIFY_HDR:
8097 		actions_num = *(uint32_t *)(arg);
8098 		out += snprintf(line + out, BUF_SIZE - out, "%d,0x%x,%d,",
8099 				type, id, actions_num);
8100 		break;
8101 	case DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT:
8102 		out += snprintf(line + out, BUF_SIZE - out, "%d,0x%x,",
8103 				type, id);
8104 		break;
8105 	case DR_DUMP_REC_TYPE_PMD_COUNTER:
8106 		count = (struct rte_flow_query_count *)arg;
8107 		fprintf(file, "%d,0x%x,%" PRIu64 ",%" PRIu64 "\n", type,
8108 				id, count->hits, count->bytes);
8109 		return 0;
8110 	default:
8111 		return -1;
8112 	}
8113 
8114 	for (k = 0; k < size; k++) {
8115 		/* Make sure we do not overrun the line buffer length. */
8116 		if (out >= BUF_SIZE - 4) {
8117 			line[out] = '\0';
8118 			break;
8119 		}
8120 		out += snprintf(line + out, BUF_SIZE - out, "%02x",
8121 				(data[k]) & 0xff);
8122 	}
8123 	fprintf(file, "%s\n", line);
8124 	return 0;
8125 }
8126 
8127 int
8128 mlx5_flow_query_counter(struct rte_eth_dev *dev, struct rte_flow *flow,
8129 	struct rte_flow_query_count *count, struct rte_flow_error *error)
8130 {
8131 	struct rte_flow_action action[2];
8132 	enum mlx5_flow_drv_type ftype;
8133 	const struct mlx5_flow_driver_ops *fops;
8134 
8135 	if (!flow) {
8136 		return rte_flow_error_set(error, ENOENT,
8137 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8138 				NULL,
8139 				"invalid flow handle");
8140 	}
8141 	action[0].type = RTE_FLOW_ACTION_TYPE_COUNT;
8142 	action[1].type = RTE_FLOW_ACTION_TYPE_END;
8143 	if (flow->counter) {
8144 		memset(count, 0, sizeof(struct rte_flow_query_count));
8145 		ftype = (enum mlx5_flow_drv_type)(flow->drv_type);
8146 		MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN &&
8147 						ftype < MLX5_FLOW_TYPE_MAX);
8148 		fops = flow_get_drv_ops(ftype);
8149 		return fops->query(dev, flow, action, count, error);
8150 	}
8151 	return -1;
8152 }
8153 
8154 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
8155 /**
8156  * Dump flow ipool data to file
8157  *
8158  * @param[in] dev
8159  *   The pointer to Ethernet device.
8160  * @param[in] file
8161  *   A pointer to a file for output.
8162  * @param[out] error
8163  *   Perform verbose error reporting if not NULL. PMDs initialize this
8164  *   structure in case of error only.
8165  * @return
8166  *   0 on success, a negative value otherwise.
8167  */
8168 int
8169 mlx5_flow_dev_dump_ipool(struct rte_eth_dev *dev,
8170 	struct rte_flow *flow, FILE *file,
8171 	struct rte_flow_error *error)
8172 {
8173 	struct mlx5_priv *priv = dev->data->dev_private;
8174 	struct mlx5_flow_dv_modify_hdr_resource  *modify_hdr;
8175 	struct mlx5_flow_dv_encap_decap_resource *encap_decap;
8176 	uint32_t handle_idx;
8177 	struct mlx5_flow_handle *dh;
8178 	struct rte_flow_query_count count;
8179 	uint32_t actions_num;
8180 	const uint8_t *data;
8181 	size_t size;
8182 	uint32_t id;
8183 	uint32_t type;
8184 
8185 	if (!flow) {
8186 		return rte_flow_error_set(error, ENOENT,
8187 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
8188 			NULL,
8189 			"invalid flow handle");
8190 	}
8191 	handle_idx = flow->dev_handles;
8192 	while (handle_idx) {
8193 		dh = mlx5_ipool_get(priv->sh->ipool
8194 			[MLX5_IPOOL_MLX5_FLOW], handle_idx);
8195 		if (!dh)
8196 			continue;
8197 		handle_idx = dh->next.next;
8198 		id = (uint32_t)(uintptr_t)dh->drv_flow;
8199 
8200 		/* query counter */
8201 		type = DR_DUMP_REC_TYPE_PMD_COUNTER;
8202 		if (!mlx5_flow_query_counter(dev, flow, &count, error))
8203 			save_dump_file(NULL, 0, type,
8204 					id, (void *)&count, file);
8205 
8206 		/* Get modify_hdr and encap_decap buf from ipools. */
8207 		encap_decap = NULL;
8208 		modify_hdr = dh->dvh.modify_hdr;
8209 
8210 		if (dh->dvh.rix_encap_decap) {
8211 			encap_decap = mlx5_ipool_get(priv->sh->ipool
8212 						[MLX5_IPOOL_DECAP_ENCAP],
8213 						dh->dvh.rix_encap_decap);
8214 		}
8215 		if (modify_hdr) {
8216 			data = (const uint8_t *)modify_hdr->actions;
8217 			size = (size_t)(modify_hdr->actions_num) * 8;
8218 			actions_num = modify_hdr->actions_num;
8219 			type = DR_DUMP_REC_TYPE_PMD_MODIFY_HDR;
8220 			save_dump_file(data, size, type, id,
8221 					(void *)(&actions_num), file);
8222 		}
8223 		if (encap_decap) {
8224 			data = encap_decap->buf;
8225 			size = encap_decap->size;
8226 			type = DR_DUMP_REC_TYPE_PMD_PKT_REFORMAT;
8227 			save_dump_file(data, size, type,
8228 						id, NULL, file);
8229 		}
8230 	}
8231 	return 0;
8232 }
8233 #endif
8234 
8235 /**
8236  * Dump flow raw hw data to file
8237  *
8238  * @param[in] dev
8239  *    The pointer to Ethernet device.
8240  * @param[in] file
8241  *   A pointer to a file for output.
8242  * @param[out] error
8243  *   Perform verbose error reporting if not NULL. PMDs initialize this
8244  *   structure in case of error only.
8245  * @return
8246  *   0 on success, a nagative value otherwise.
8247  */
8248 int
8249 mlx5_flow_dev_dump(struct rte_eth_dev *dev, struct rte_flow *flow_idx,
8250 		   FILE *file,
8251 		   struct rte_flow_error *error __rte_unused)
8252 {
8253 	struct mlx5_priv *priv = dev->data->dev_private;
8254 	struct mlx5_dev_ctx_shared *sh = priv->sh;
8255 	uint32_t handle_idx;
8256 	int ret;
8257 	struct mlx5_flow_handle *dh;
8258 	struct rte_flow *flow;
8259 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
8260 	uint32_t idx;
8261 #endif
8262 
8263 	if (!priv->config.dv_flow_en) {
8264 		if (fputs("device dv flow disabled\n", file) <= 0)
8265 			return -errno;
8266 		return -ENOTSUP;
8267 	}
8268 
8269 	/* dump all */
8270 	if (!flow_idx) {
8271 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
8272 		MLX5_IPOOL_FOREACH(priv->flows[MLX5_FLOW_TYPE_GEN], idx, flow)
8273 			mlx5_flow_dev_dump_ipool(dev, flow, file, error);
8274 #endif
8275 		return mlx5_devx_cmd_flow_dump(sh->fdb_domain,
8276 					sh->rx_domain,
8277 					sh->tx_domain, file);
8278 	}
8279 	/* dump one */
8280 	flow = mlx5_ipool_get(priv->flows[MLX5_FLOW_TYPE_GEN],
8281 			(uintptr_t)(void *)flow_idx);
8282 	if (!flow)
8283 		return -ENOENT;
8284 
8285 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
8286 	mlx5_flow_dev_dump_ipool(dev, flow, file, error);
8287 #endif
8288 	handle_idx = flow->dev_handles;
8289 	while (handle_idx) {
8290 		dh = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW],
8291 				handle_idx);
8292 		if (!dh)
8293 			return -ENOENT;
8294 		if (dh->drv_flow) {
8295 			ret = mlx5_devx_cmd_flow_single_dump(dh->drv_flow,
8296 					file);
8297 			if (ret)
8298 				return -ENOENT;
8299 		}
8300 		handle_idx = dh->next.next;
8301 	}
8302 	return 0;
8303 }
8304 
8305 /**
8306  * Get aged-out flows.
8307  *
8308  * @param[in] dev
8309  *   Pointer to the Ethernet device structure.
8310  * @param[in] context
8311  *   The address of an array of pointers to the aged-out flows contexts.
8312  * @param[in] nb_countexts
8313  *   The length of context array pointers.
8314  * @param[out] error
8315  *   Perform verbose error reporting if not NULL. Initialized in case of
8316  *   error only.
8317  *
8318  * @return
8319  *   how many contexts get in success, otherwise negative errno value.
8320  *   if nb_contexts is 0, return the amount of all aged contexts.
8321  *   if nb_contexts is not 0 , return the amount of aged flows reported
8322  *   in the context array.
8323  */
8324 int
8325 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
8326 			uint32_t nb_contexts, struct rte_flow_error *error)
8327 {
8328 	const struct mlx5_flow_driver_ops *fops;
8329 	struct rte_flow_attr attr = { .transfer = 0 };
8330 
8331 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
8332 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
8333 		return fops->get_aged_flows(dev, contexts, nb_contexts,
8334 						    error);
8335 	}
8336 	DRV_LOG(ERR,
8337 		"port %u get aged flows is not supported.",
8338 		 dev->data->port_id);
8339 	return -ENOTSUP;
8340 }
8341 
8342 /* Wrapper for driver action_validate op callback */
8343 static int
8344 flow_drv_action_validate(struct rte_eth_dev *dev,
8345 			 const struct rte_flow_indir_action_conf *conf,
8346 			 const struct rte_flow_action *action,
8347 			 const struct mlx5_flow_driver_ops *fops,
8348 			 struct rte_flow_error *error)
8349 {
8350 	static const char err_msg[] = "indirect action validation unsupported";
8351 
8352 	if (!fops->action_validate) {
8353 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
8354 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
8355 				   NULL, err_msg);
8356 		return -rte_errno;
8357 	}
8358 	return fops->action_validate(dev, conf, action, error);
8359 }
8360 
8361 /**
8362  * Destroys the shared action by handle.
8363  *
8364  * @param dev
8365  *   Pointer to Ethernet device structure.
8366  * @param[in] handle
8367  *   Handle for the indirect action object to be destroyed.
8368  * @param[out] error
8369  *   Perform verbose error reporting if not NULL. PMDs initialize this
8370  *   structure in case of error only.
8371  *
8372  * @return
8373  *   0 on success, a negative errno value otherwise and rte_errno is set.
8374  *
8375  * @note: wrapper for driver action_create op callback.
8376  */
8377 static int
8378 mlx5_action_handle_destroy(struct rte_eth_dev *dev,
8379 			   struct rte_flow_action_handle *handle,
8380 			   struct rte_flow_error *error)
8381 {
8382 	static const char err_msg[] = "indirect action destruction unsupported";
8383 	struct rte_flow_attr attr = { .transfer = 0 };
8384 	const struct mlx5_flow_driver_ops *fops =
8385 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8386 
8387 	if (!fops->action_destroy) {
8388 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
8389 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
8390 				   NULL, err_msg);
8391 		return -rte_errno;
8392 	}
8393 	return fops->action_destroy(dev, handle, error);
8394 }
8395 
8396 /* Wrapper for driver action_destroy op callback */
8397 static int
8398 flow_drv_action_update(struct rte_eth_dev *dev,
8399 		       struct rte_flow_action_handle *handle,
8400 		       const void *update,
8401 		       const struct mlx5_flow_driver_ops *fops,
8402 		       struct rte_flow_error *error)
8403 {
8404 	static const char err_msg[] = "indirect action update unsupported";
8405 
8406 	if (!fops->action_update) {
8407 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
8408 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
8409 				   NULL, err_msg);
8410 		return -rte_errno;
8411 	}
8412 	return fops->action_update(dev, handle, update, error);
8413 }
8414 
8415 /* Wrapper for driver action_destroy op callback */
8416 static int
8417 flow_drv_action_query(struct rte_eth_dev *dev,
8418 		      const struct rte_flow_action_handle *handle,
8419 		      void *data,
8420 		      const struct mlx5_flow_driver_ops *fops,
8421 		      struct rte_flow_error *error)
8422 {
8423 	static const char err_msg[] = "indirect action query unsupported";
8424 
8425 	if (!fops->action_query) {
8426 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
8427 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
8428 				   NULL, err_msg);
8429 		return -rte_errno;
8430 	}
8431 	return fops->action_query(dev, handle, data, error);
8432 }
8433 
8434 /**
8435  * Create indirect action for reuse in multiple flow rules.
8436  *
8437  * @param dev
8438  *   Pointer to Ethernet device structure.
8439  * @param conf
8440  *   Pointer to indirect action object configuration.
8441  * @param[in] action
8442  *   Action configuration for indirect action object creation.
8443  * @param[out] error
8444  *   Perform verbose error reporting if not NULL. PMDs initialize this
8445  *   structure in case of error only.
8446  * @return
8447  *   A valid handle in case of success, NULL otherwise and rte_errno is set.
8448  */
8449 static struct rte_flow_action_handle *
8450 mlx5_action_handle_create(struct rte_eth_dev *dev,
8451 			  const struct rte_flow_indir_action_conf *conf,
8452 			  const struct rte_flow_action *action,
8453 			  struct rte_flow_error *error)
8454 {
8455 	static const char err_msg[] = "indirect action creation unsupported";
8456 	struct rte_flow_attr attr = { .transfer = 0 };
8457 	const struct mlx5_flow_driver_ops *fops =
8458 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8459 
8460 	if (flow_drv_action_validate(dev, conf, action, fops, error))
8461 		return NULL;
8462 	if (!fops->action_create) {
8463 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
8464 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
8465 				   NULL, err_msg);
8466 		return NULL;
8467 	}
8468 	return fops->action_create(dev, conf, action, error);
8469 }
8470 
8471 /**
8472  * Updates inplace the indirect action configuration pointed by *handle*
8473  * with the configuration provided as *update* argument.
8474  * The update of the indirect action configuration effects all flow rules
8475  * reusing the action via handle.
8476  *
8477  * @param dev
8478  *   Pointer to Ethernet device structure.
8479  * @param[in] handle
8480  *   Handle for the indirect action to be updated.
8481  * @param[in] update
8482  *   Action specification used to modify the action pointed by handle.
8483  *   *update* could be of same type with the action pointed by the *handle*
8484  *   handle argument, or some other structures like a wrapper, depending on
8485  *   the indirect action type.
8486  * @param[out] error
8487  *   Perform verbose error reporting if not NULL. PMDs initialize this
8488  *   structure in case of error only.
8489  *
8490  * @return
8491  *   0 on success, a negative errno value otherwise and rte_errno is set.
8492  */
8493 static int
8494 mlx5_action_handle_update(struct rte_eth_dev *dev,
8495 		struct rte_flow_action_handle *handle,
8496 		const void *update,
8497 		struct rte_flow_error *error)
8498 {
8499 	struct rte_flow_attr attr = { .transfer = 0 };
8500 	const struct mlx5_flow_driver_ops *fops =
8501 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8502 	int ret;
8503 
8504 	ret = flow_drv_action_validate(dev, NULL,
8505 			(const struct rte_flow_action *)update, fops, error);
8506 	if (ret)
8507 		return ret;
8508 	return flow_drv_action_update(dev, handle, update, fops,
8509 				      error);
8510 }
8511 
8512 /**
8513  * Query the indirect action by handle.
8514  *
8515  * This function allows retrieving action-specific data such as counters.
8516  * Data is gathered by special action which may be present/referenced in
8517  * more than one flow rule definition.
8518  *
8519  * see @RTE_FLOW_ACTION_TYPE_COUNT
8520  *
8521  * @param dev
8522  *   Pointer to Ethernet device structure.
8523  * @param[in] handle
8524  *   Handle for the indirect action to query.
8525  * @param[in, out] data
8526  *   Pointer to storage for the associated query data type.
8527  * @param[out] error
8528  *   Perform verbose error reporting if not NULL. PMDs initialize this
8529  *   structure in case of error only.
8530  *
8531  * @return
8532  *   0 on success, a negative errno value otherwise and rte_errno is set.
8533  */
8534 static int
8535 mlx5_action_handle_query(struct rte_eth_dev *dev,
8536 			 const struct rte_flow_action_handle *handle,
8537 			 void *data,
8538 			 struct rte_flow_error *error)
8539 {
8540 	struct rte_flow_attr attr = { .transfer = 0 };
8541 	const struct mlx5_flow_driver_ops *fops =
8542 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8543 
8544 	return flow_drv_action_query(dev, handle, data, fops, error);
8545 }
8546 
8547 /**
8548  * Destroy all indirect actions (shared RSS).
8549  *
8550  * @param dev
8551  *   Pointer to Ethernet device.
8552  *
8553  * @return
8554  *   0 on success, a negative errno value otherwise and rte_errno is set.
8555  */
8556 int
8557 mlx5_action_handle_flush(struct rte_eth_dev *dev)
8558 {
8559 	struct rte_flow_error error;
8560 	struct mlx5_priv *priv = dev->data->dev_private;
8561 	struct mlx5_shared_action_rss *shared_rss;
8562 	int ret = 0;
8563 	uint32_t idx;
8564 
8565 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
8566 		      priv->rss_shared_actions, idx, shared_rss, next) {
8567 		ret |= mlx5_action_handle_destroy(dev,
8568 		       (struct rte_flow_action_handle *)(uintptr_t)idx, &error);
8569 	}
8570 	return ret;
8571 }
8572 
8573 #ifndef HAVE_MLX5DV_DR
8574 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1))
8575 #else
8576 #define MLX5_DOMAIN_SYNC_FLOW \
8577 	(MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW)
8578 #endif
8579 
8580 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains)
8581 {
8582 	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
8583 	const struct mlx5_flow_driver_ops *fops;
8584 	int ret;
8585 	struct rte_flow_attr attr = { .transfer = 0 };
8586 
8587 	fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr));
8588 	ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW);
8589 	if (ret > 0)
8590 		ret = -ret;
8591 	return ret;
8592 }
8593 
8594 const struct mlx5_flow_tunnel *
8595 mlx5_get_tof(const struct rte_flow_item *item,
8596 	     const struct rte_flow_action *action,
8597 	     enum mlx5_tof_rule_type *rule_type)
8598 {
8599 	for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
8600 		if (item->type == (typeof(item->type))
8601 				  MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL) {
8602 			*rule_type = MLX5_TUNNEL_OFFLOAD_MATCH_RULE;
8603 			return flow_items_to_tunnel(item);
8604 		}
8605 	}
8606 	for (; action->conf != RTE_FLOW_ACTION_TYPE_END; action++) {
8607 		if (action->type == (typeof(action->type))
8608 				    MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET) {
8609 			*rule_type = MLX5_TUNNEL_OFFLOAD_SET_RULE;
8610 			return flow_actions_to_tunnel(action);
8611 		}
8612 	}
8613 	return NULL;
8614 }
8615 
8616 /**
8617  * tunnel offload functionalilty is defined for DV environment only
8618  */
8619 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
8620 __extension__
8621 union tunnel_offload_mark {
8622 	uint32_t val;
8623 	struct {
8624 		uint32_t app_reserve:8;
8625 		uint32_t table_id:15;
8626 		uint32_t transfer:1;
8627 		uint32_t _unused_:8;
8628 	};
8629 };
8630 
8631 static bool
8632 mlx5_access_tunnel_offload_db
8633 	(struct rte_eth_dev *dev,
8634 	 bool (*match)(struct rte_eth_dev *,
8635 		       struct mlx5_flow_tunnel *, const void *),
8636 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
8637 	 void (*miss)(struct rte_eth_dev *, void *),
8638 	 void *ctx, bool lock_op);
8639 
8640 static int
8641 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
8642 			     struct rte_flow *flow,
8643 			     const struct rte_flow_attr *attr,
8644 			     const struct rte_flow_action *app_actions,
8645 			     uint32_t flow_idx,
8646 			     const struct mlx5_flow_tunnel *tunnel,
8647 			     struct tunnel_default_miss_ctx *ctx,
8648 			     struct rte_flow_error *error)
8649 {
8650 	struct mlx5_priv *priv = dev->data->dev_private;
8651 	struct mlx5_flow *dev_flow;
8652 	struct rte_flow_attr miss_attr = *attr;
8653 	const struct rte_flow_item miss_items[2] = {
8654 		{
8655 			.type = RTE_FLOW_ITEM_TYPE_ETH,
8656 			.spec = NULL,
8657 			.last = NULL,
8658 			.mask = NULL
8659 		},
8660 		{
8661 			.type = RTE_FLOW_ITEM_TYPE_END,
8662 			.spec = NULL,
8663 			.last = NULL,
8664 			.mask = NULL
8665 		}
8666 	};
8667 	union tunnel_offload_mark mark_id;
8668 	struct rte_flow_action_mark miss_mark;
8669 	struct rte_flow_action miss_actions[3] = {
8670 		[0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark },
8671 		[2] = { .type = RTE_FLOW_ACTION_TYPE_END,  .conf = NULL }
8672 	};
8673 	const struct rte_flow_action_jump *jump_data;
8674 	uint32_t i, flow_table = 0; /* prevent compilation warning */
8675 	struct flow_grp_info grp_info = {
8676 		.external = 1,
8677 		.transfer = attr->transfer,
8678 		.fdb_def_rule = !!priv->fdb_def_rule,
8679 		.std_tbl_fix = 0,
8680 	};
8681 	int ret;
8682 
8683 	if (!attr->transfer) {
8684 		uint32_t q_size;
8685 
8686 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS;
8687 		q_size = priv->reta_idx_n * sizeof(ctx->queue[0]);
8688 		ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size,
8689 					 0, SOCKET_ID_ANY);
8690 		if (!ctx->queue)
8691 			return rte_flow_error_set
8692 				(error, ENOMEM,
8693 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
8694 				NULL, "invalid default miss RSS");
8695 		ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
8696 		ctx->action_rss.level = 0,
8697 		ctx->action_rss.types = priv->rss_conf.rss_hf,
8698 		ctx->action_rss.key_len = priv->rss_conf.rss_key_len,
8699 		ctx->action_rss.queue_num = priv->reta_idx_n,
8700 		ctx->action_rss.key = priv->rss_conf.rss_key,
8701 		ctx->action_rss.queue = ctx->queue;
8702 		if (!priv->reta_idx_n || !priv->rxqs_n)
8703 			return rte_flow_error_set
8704 				(error, EINVAL,
8705 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
8706 				NULL, "invalid port configuration");
8707 		if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
8708 			ctx->action_rss.types = 0;
8709 		for (i = 0; i != priv->reta_idx_n; ++i)
8710 			ctx->queue[i] = (*priv->reta_idx)[i];
8711 	} else {
8712 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP;
8713 		ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP;
8714 	}
8715 	miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw;
8716 	for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++);
8717 	jump_data = app_actions->conf;
8718 	miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY;
8719 	miss_attr.group = jump_data->group;
8720 	ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group,
8721 				       &flow_table, &grp_info, error);
8722 	if (ret)
8723 		return rte_flow_error_set(error, EINVAL,
8724 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
8725 					  NULL, "invalid tunnel id");
8726 	mark_id.app_reserve = 0;
8727 	mark_id.table_id = tunnel_flow_tbl_to_id(flow_table);
8728 	mark_id.transfer = !!attr->transfer;
8729 	mark_id._unused_ = 0;
8730 	miss_mark.id = mark_id.val;
8731 	dev_flow = flow_drv_prepare(dev, flow, &miss_attr,
8732 				    miss_items, miss_actions, flow_idx, error);
8733 	if (!dev_flow)
8734 		return -rte_errno;
8735 	dev_flow->flow = flow;
8736 	dev_flow->external = true;
8737 	dev_flow->tunnel = tunnel;
8738 	dev_flow->tof_type = MLX5_TUNNEL_OFFLOAD_MISS_RULE;
8739 	/* Subflow object was created, we must include one in the list. */
8740 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
8741 		      dev_flow->handle, next);
8742 	DRV_LOG(DEBUG,
8743 		"port %u tunnel type=%d id=%u miss rule priority=%u group=%u",
8744 		dev->data->port_id, tunnel->app_tunnel.type,
8745 		tunnel->tunnel_id, miss_attr.priority, miss_attr.group);
8746 	ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items,
8747 				  miss_actions, error);
8748 	if (!ret)
8749 		ret = flow_mreg_update_copy_table(dev, flow, miss_actions,
8750 						  error);
8751 
8752 	return ret;
8753 }
8754 
8755 static const struct mlx5_flow_tbl_data_entry  *
8756 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark)
8757 {
8758 	struct mlx5_priv *priv = dev->data->dev_private;
8759 	struct mlx5_dev_ctx_shared *sh = priv->sh;
8760 	struct mlx5_list_entry *he;
8761 	union tunnel_offload_mark mbits = { .val = mark };
8762 	union mlx5_flow_tbl_key table_key = {
8763 		{
8764 			.level = tunnel_id_to_flow_tbl(mbits.table_id),
8765 			.id = 0,
8766 			.reserved = 0,
8767 			.dummy = 0,
8768 			.is_fdb = !!mbits.transfer,
8769 			.is_egress = 0,
8770 		}
8771 	};
8772 	struct mlx5_flow_cb_ctx ctx = {
8773 		.data = &table_key.v64,
8774 	};
8775 
8776 	he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, &ctx);
8777 	return he ?
8778 	       container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL;
8779 }
8780 
8781 static void
8782 mlx5_flow_tunnel_grp2tbl_remove_cb(void *tool_ctx,
8783 				   struct mlx5_list_entry *entry)
8784 {
8785 	struct mlx5_dev_ctx_shared *sh = tool_ctx;
8786 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
8787 
8788 	mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
8789 			tunnel_flow_tbl_to_id(tte->flow_table));
8790 	mlx5_free(tte);
8791 }
8792 
8793 static int
8794 mlx5_flow_tunnel_grp2tbl_match_cb(void *tool_ctx __rte_unused,
8795 				  struct mlx5_list_entry *entry, void *cb_ctx)
8796 {
8797 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
8798 	union tunnel_tbl_key tbl = {
8799 		.val = *(uint64_t *)(ctx->data),
8800 	};
8801 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
8802 
8803 	return tbl.tunnel_id != tte->tunnel_id || tbl.group != tte->group;
8804 }
8805 
8806 static struct mlx5_list_entry *
8807 mlx5_flow_tunnel_grp2tbl_create_cb(void *tool_ctx, void *cb_ctx)
8808 {
8809 	struct mlx5_dev_ctx_shared *sh = tool_ctx;
8810 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
8811 	struct tunnel_tbl_entry *tte;
8812 	union tunnel_tbl_key tbl = {
8813 		.val = *(uint64_t *)(ctx->data),
8814 	};
8815 
8816 	tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO,
8817 			  sizeof(*tte), 0,
8818 			  SOCKET_ID_ANY);
8819 	if (!tte)
8820 		goto err;
8821 	mlx5_ipool_malloc(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
8822 			  &tte->flow_table);
8823 	if (tte->flow_table >= MLX5_MAX_TABLES) {
8824 		DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.",
8825 			tte->flow_table);
8826 		mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
8827 				tte->flow_table);
8828 		goto err;
8829 	} else if (!tte->flow_table) {
8830 		goto err;
8831 	}
8832 	tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table);
8833 	tte->tunnel_id = tbl.tunnel_id;
8834 	tte->group = tbl.group;
8835 	return &tte->hash;
8836 err:
8837 	if (tte)
8838 		mlx5_free(tte);
8839 	return NULL;
8840 }
8841 
8842 static struct mlx5_list_entry *
8843 mlx5_flow_tunnel_grp2tbl_clone_cb(void *tool_ctx __rte_unused,
8844 				  struct mlx5_list_entry *oentry,
8845 				  void *cb_ctx __rte_unused)
8846 {
8847 	struct tunnel_tbl_entry *tte = mlx5_malloc(MLX5_MEM_SYS, sizeof(*tte),
8848 						   0, SOCKET_ID_ANY);
8849 
8850 	if (!tte)
8851 		return NULL;
8852 	memcpy(tte, oentry, sizeof(*tte));
8853 	return &tte->hash;
8854 }
8855 
8856 static void
8857 mlx5_flow_tunnel_grp2tbl_clone_free_cb(void *tool_ctx __rte_unused,
8858 				       struct mlx5_list_entry *entry)
8859 {
8860 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
8861 
8862 	mlx5_free(tte);
8863 }
8864 
8865 static uint32_t
8866 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
8867 				const struct mlx5_flow_tunnel *tunnel,
8868 				uint32_t group, uint32_t *table,
8869 				struct rte_flow_error *error)
8870 {
8871 	struct mlx5_list_entry *he;
8872 	struct tunnel_tbl_entry *tte;
8873 	union tunnel_tbl_key key = {
8874 		.tunnel_id = tunnel ? tunnel->tunnel_id : 0,
8875 		.group = group
8876 	};
8877 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
8878 	struct mlx5_hlist *group_hash;
8879 	struct mlx5_flow_cb_ctx ctx = {
8880 		.data = &key.val,
8881 	};
8882 
8883 	group_hash = tunnel ? tunnel->groups : thub->groups;
8884 	he = mlx5_hlist_register(group_hash, key.val, &ctx);
8885 	if (!he)
8886 		return rte_flow_error_set(error, EINVAL,
8887 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
8888 					  NULL,
8889 					  "tunnel group index not supported");
8890 	tte = container_of(he, typeof(*tte), hash);
8891 	*table = tte->flow_table;
8892 	DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x",
8893 		dev->data->port_id, key.tunnel_id, group, *table);
8894 	return 0;
8895 }
8896 
8897 static void
8898 mlx5_flow_tunnel_free(struct rte_eth_dev *dev,
8899 		      struct mlx5_flow_tunnel *tunnel)
8900 {
8901 	struct mlx5_priv *priv = dev->data->dev_private;
8902 	struct mlx5_indexed_pool *ipool;
8903 
8904 	DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x",
8905 		dev->data->port_id, tunnel->tunnel_id);
8906 	LIST_REMOVE(tunnel, chain);
8907 	mlx5_hlist_destroy(tunnel->groups);
8908 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
8909 	mlx5_ipool_free(ipool, tunnel->tunnel_id);
8910 }
8911 
8912 static bool
8913 mlx5_access_tunnel_offload_db
8914 	(struct rte_eth_dev *dev,
8915 	 bool (*match)(struct rte_eth_dev *,
8916 		       struct mlx5_flow_tunnel *, const void *),
8917 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
8918 	 void (*miss)(struct rte_eth_dev *, void *),
8919 	 void *ctx, bool lock_op)
8920 {
8921 	bool verdict = false;
8922 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
8923 	struct mlx5_flow_tunnel *tunnel;
8924 
8925 	rte_spinlock_lock(&thub->sl);
8926 	LIST_FOREACH(tunnel, &thub->tunnels, chain) {
8927 		verdict = match(dev, tunnel, (const void *)ctx);
8928 		if (verdict)
8929 			break;
8930 	}
8931 	if (!lock_op)
8932 		rte_spinlock_unlock(&thub->sl);
8933 	if (verdict && hit)
8934 		hit(dev, tunnel, ctx);
8935 	if (!verdict && miss)
8936 		miss(dev, ctx);
8937 	if (lock_op)
8938 		rte_spinlock_unlock(&thub->sl);
8939 
8940 	return verdict;
8941 }
8942 
8943 struct tunnel_db_find_tunnel_id_ctx {
8944 	uint32_t tunnel_id;
8945 	struct mlx5_flow_tunnel *tunnel;
8946 };
8947 
8948 static bool
8949 find_tunnel_id_match(struct rte_eth_dev *dev,
8950 		     struct mlx5_flow_tunnel *tunnel, const void *x)
8951 {
8952 	const struct tunnel_db_find_tunnel_id_ctx *ctx = x;
8953 
8954 	RTE_SET_USED(dev);
8955 	return tunnel->tunnel_id == ctx->tunnel_id;
8956 }
8957 
8958 static void
8959 find_tunnel_id_hit(struct rte_eth_dev *dev,
8960 		   struct mlx5_flow_tunnel *tunnel, void *x)
8961 {
8962 	struct tunnel_db_find_tunnel_id_ctx *ctx = x;
8963 	RTE_SET_USED(dev);
8964 	ctx->tunnel = tunnel;
8965 }
8966 
8967 static struct mlx5_flow_tunnel *
8968 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id)
8969 {
8970 	struct tunnel_db_find_tunnel_id_ctx ctx = {
8971 		.tunnel_id = id,
8972 	};
8973 
8974 	mlx5_access_tunnel_offload_db(dev, find_tunnel_id_match,
8975 				      find_tunnel_id_hit, NULL, &ctx, true);
8976 
8977 	return ctx.tunnel;
8978 }
8979 
8980 static struct mlx5_flow_tunnel *
8981 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev,
8982 			  const struct rte_flow_tunnel *app_tunnel)
8983 {
8984 	struct mlx5_priv *priv = dev->data->dev_private;
8985 	struct mlx5_indexed_pool *ipool;
8986 	struct mlx5_flow_tunnel *tunnel;
8987 	uint32_t id;
8988 
8989 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
8990 	tunnel = mlx5_ipool_zmalloc(ipool, &id);
8991 	if (!tunnel)
8992 		return NULL;
8993 	if (id >= MLX5_MAX_TUNNELS) {
8994 		mlx5_ipool_free(ipool, id);
8995 		DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id);
8996 		return NULL;
8997 	}
8998 	tunnel->groups = mlx5_hlist_create("tunnel groups", 64, false, true,
8999 					   priv->sh,
9000 					   mlx5_flow_tunnel_grp2tbl_create_cb,
9001 					   mlx5_flow_tunnel_grp2tbl_match_cb,
9002 					   mlx5_flow_tunnel_grp2tbl_remove_cb,
9003 					   mlx5_flow_tunnel_grp2tbl_clone_cb,
9004 					mlx5_flow_tunnel_grp2tbl_clone_free_cb);
9005 	if (!tunnel->groups) {
9006 		mlx5_ipool_free(ipool, id);
9007 		return NULL;
9008 	}
9009 	/* initiate new PMD tunnel */
9010 	memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel));
9011 	tunnel->tunnel_id = id;
9012 	tunnel->action.type = (typeof(tunnel->action.type))
9013 			      MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET;
9014 	tunnel->action.conf = tunnel;
9015 	tunnel->item.type = (typeof(tunnel->item.type))
9016 			    MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL;
9017 	tunnel->item.spec = tunnel;
9018 	tunnel->item.last = NULL;
9019 	tunnel->item.mask = NULL;
9020 
9021 	DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x",
9022 		dev->data->port_id, tunnel->tunnel_id);
9023 
9024 	return tunnel;
9025 }
9026 
9027 struct tunnel_db_get_tunnel_ctx {
9028 	const struct rte_flow_tunnel *app_tunnel;
9029 	struct mlx5_flow_tunnel *tunnel;
9030 };
9031 
9032 static bool get_tunnel_match(struct rte_eth_dev *dev,
9033 			     struct mlx5_flow_tunnel *tunnel, const void *x)
9034 {
9035 	const struct tunnel_db_get_tunnel_ctx *ctx = x;
9036 
9037 	RTE_SET_USED(dev);
9038 	return !memcmp(ctx->app_tunnel, &tunnel->app_tunnel,
9039 		       sizeof(*ctx->app_tunnel));
9040 }
9041 
9042 static void get_tunnel_hit(struct rte_eth_dev *dev,
9043 			   struct mlx5_flow_tunnel *tunnel, void *x)
9044 {
9045 	/* called under tunnel spinlock protection */
9046 	struct tunnel_db_get_tunnel_ctx *ctx = x;
9047 
9048 	RTE_SET_USED(dev);
9049 	tunnel->refctn++;
9050 	ctx->tunnel = tunnel;
9051 }
9052 
9053 static void get_tunnel_miss(struct rte_eth_dev *dev, void *x)
9054 {
9055 	/* called under tunnel spinlock protection */
9056 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
9057 	struct tunnel_db_get_tunnel_ctx *ctx = x;
9058 
9059 	rte_spinlock_unlock(&thub->sl);
9060 	ctx->tunnel = mlx5_flow_tunnel_allocate(dev, ctx->app_tunnel);
9061 	rte_spinlock_lock(&thub->sl);
9062 	if (ctx->tunnel) {
9063 		ctx->tunnel->refctn = 1;
9064 		LIST_INSERT_HEAD(&thub->tunnels, ctx->tunnel, chain);
9065 	}
9066 }
9067 
9068 
9069 static int
9070 mlx5_get_flow_tunnel(struct rte_eth_dev *dev,
9071 		     const struct rte_flow_tunnel *app_tunnel,
9072 		     struct mlx5_flow_tunnel **tunnel)
9073 {
9074 	struct tunnel_db_get_tunnel_ctx ctx = {
9075 		.app_tunnel = app_tunnel,
9076 	};
9077 
9078 	mlx5_access_tunnel_offload_db(dev, get_tunnel_match, get_tunnel_hit,
9079 				      get_tunnel_miss, &ctx, true);
9080 	*tunnel = ctx.tunnel;
9081 	return ctx.tunnel ? 0 : -ENOMEM;
9082 }
9083 
9084 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id)
9085 {
9086 	struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub;
9087 
9088 	if (!thub)
9089 		return;
9090 	if (!LIST_EMPTY(&thub->tunnels))
9091 		DRV_LOG(WARNING, "port %u tunnels present", port_id);
9092 	mlx5_hlist_destroy(thub->groups);
9093 	mlx5_free(thub);
9094 }
9095 
9096 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh)
9097 {
9098 	int err;
9099 	struct mlx5_flow_tunnel_hub *thub;
9100 
9101 	thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub),
9102 			   0, SOCKET_ID_ANY);
9103 	if (!thub)
9104 		return -ENOMEM;
9105 	LIST_INIT(&thub->tunnels);
9106 	rte_spinlock_init(&thub->sl);
9107 	thub->groups = mlx5_hlist_create("flow groups", 64,
9108 					 false, true, sh,
9109 					 mlx5_flow_tunnel_grp2tbl_create_cb,
9110 					 mlx5_flow_tunnel_grp2tbl_match_cb,
9111 					 mlx5_flow_tunnel_grp2tbl_remove_cb,
9112 					 mlx5_flow_tunnel_grp2tbl_clone_cb,
9113 					mlx5_flow_tunnel_grp2tbl_clone_free_cb);
9114 	if (!thub->groups) {
9115 		err = -rte_errno;
9116 		goto err;
9117 	}
9118 	sh->tunnel_hub = thub;
9119 
9120 	return 0;
9121 
9122 err:
9123 	if (thub->groups)
9124 		mlx5_hlist_destroy(thub->groups);
9125 	if (thub)
9126 		mlx5_free(thub);
9127 	return err;
9128 }
9129 
9130 static inline bool
9131 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev,
9132 			  struct rte_flow_tunnel *tunnel,
9133 			  const char *err_msg)
9134 {
9135 	err_msg = NULL;
9136 	if (!is_tunnel_offload_active(dev)) {
9137 		err_msg = "tunnel offload was not activated";
9138 		goto out;
9139 	} else if (!tunnel) {
9140 		err_msg = "no application tunnel";
9141 		goto out;
9142 	}
9143 
9144 	switch (tunnel->type) {
9145 	default:
9146 		err_msg = "unsupported tunnel type";
9147 		goto out;
9148 	case RTE_FLOW_ITEM_TYPE_VXLAN:
9149 	case RTE_FLOW_ITEM_TYPE_GRE:
9150 	case RTE_FLOW_ITEM_TYPE_NVGRE:
9151 	case RTE_FLOW_ITEM_TYPE_GENEVE:
9152 		break;
9153 	}
9154 
9155 out:
9156 	return !err_msg;
9157 }
9158 
9159 static int
9160 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
9161 		    struct rte_flow_tunnel *app_tunnel,
9162 		    struct rte_flow_action **actions,
9163 		    uint32_t *num_of_actions,
9164 		    struct rte_flow_error *error)
9165 {
9166 	int ret;
9167 	struct mlx5_flow_tunnel *tunnel;
9168 	const char *err_msg = NULL;
9169 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
9170 
9171 	if (!verdict)
9172 		return rte_flow_error_set(error, EINVAL,
9173 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
9174 					  err_msg);
9175 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
9176 	if (ret < 0) {
9177 		return rte_flow_error_set(error, ret,
9178 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
9179 					  "failed to initialize pmd tunnel");
9180 	}
9181 	*actions = &tunnel->action;
9182 	*num_of_actions = 1;
9183 	return 0;
9184 }
9185 
9186 static int
9187 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
9188 		       struct rte_flow_tunnel *app_tunnel,
9189 		       struct rte_flow_item **items,
9190 		       uint32_t *num_of_items,
9191 		       struct rte_flow_error *error)
9192 {
9193 	int ret;
9194 	struct mlx5_flow_tunnel *tunnel;
9195 	const char *err_msg = NULL;
9196 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
9197 
9198 	if (!verdict)
9199 		return rte_flow_error_set(error, EINVAL,
9200 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
9201 					  err_msg);
9202 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
9203 	if (ret < 0) {
9204 		return rte_flow_error_set(error, ret,
9205 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
9206 					  "failed to initialize pmd tunnel");
9207 	}
9208 	*items = &tunnel->item;
9209 	*num_of_items = 1;
9210 	return 0;
9211 }
9212 
9213 struct tunnel_db_element_release_ctx {
9214 	struct rte_flow_item *items;
9215 	struct rte_flow_action *actions;
9216 	uint32_t num_elements;
9217 	struct rte_flow_error *error;
9218 	int ret;
9219 };
9220 
9221 static bool
9222 tunnel_element_release_match(struct rte_eth_dev *dev,
9223 			     struct mlx5_flow_tunnel *tunnel, const void *x)
9224 {
9225 	const struct tunnel_db_element_release_ctx *ctx = x;
9226 
9227 	RTE_SET_USED(dev);
9228 	if (ctx->num_elements != 1)
9229 		return false;
9230 	else if (ctx->items)
9231 		return ctx->items == &tunnel->item;
9232 	else if (ctx->actions)
9233 		return ctx->actions == &tunnel->action;
9234 
9235 	return false;
9236 }
9237 
9238 static void
9239 tunnel_element_release_hit(struct rte_eth_dev *dev,
9240 			   struct mlx5_flow_tunnel *tunnel, void *x)
9241 {
9242 	struct tunnel_db_element_release_ctx *ctx = x;
9243 	ctx->ret = 0;
9244 	if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
9245 		mlx5_flow_tunnel_free(dev, tunnel);
9246 }
9247 
9248 static void
9249 tunnel_element_release_miss(struct rte_eth_dev *dev, void *x)
9250 {
9251 	struct tunnel_db_element_release_ctx *ctx = x;
9252 	RTE_SET_USED(dev);
9253 	ctx->ret = rte_flow_error_set(ctx->error, EINVAL,
9254 				      RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
9255 				      "invalid argument");
9256 }
9257 
9258 static int
9259 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
9260 		       struct rte_flow_item *pmd_items,
9261 		       uint32_t num_items, struct rte_flow_error *err)
9262 {
9263 	struct tunnel_db_element_release_ctx ctx = {
9264 		.items = pmd_items,
9265 		.actions = NULL,
9266 		.num_elements = num_items,
9267 		.error = err,
9268 	};
9269 
9270 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
9271 				      tunnel_element_release_hit,
9272 				      tunnel_element_release_miss, &ctx, false);
9273 
9274 	return ctx.ret;
9275 }
9276 
9277 static int
9278 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
9279 			 struct rte_flow_action *pmd_actions,
9280 			 uint32_t num_actions, struct rte_flow_error *err)
9281 {
9282 	struct tunnel_db_element_release_ctx ctx = {
9283 		.items = NULL,
9284 		.actions = pmd_actions,
9285 		.num_elements = num_actions,
9286 		.error = err,
9287 	};
9288 
9289 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
9290 				      tunnel_element_release_hit,
9291 				      tunnel_element_release_miss, &ctx, false);
9292 
9293 	return ctx.ret;
9294 }
9295 
9296 static int
9297 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
9298 				  struct rte_mbuf *m,
9299 				  struct rte_flow_restore_info *info,
9300 				  struct rte_flow_error *err)
9301 {
9302 	uint64_t ol_flags = m->ol_flags;
9303 	const struct mlx5_flow_tbl_data_entry *tble;
9304 	const uint64_t mask = PKT_RX_FDIR | PKT_RX_FDIR_ID;
9305 
9306 	if (!is_tunnel_offload_active(dev)) {
9307 		info->flags = 0;
9308 		return 0;
9309 	}
9310 
9311 	if ((ol_flags & mask) != mask)
9312 		goto err;
9313 	tble = tunnel_mark_decode(dev, m->hash.fdir.hi);
9314 	if (!tble) {
9315 		DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x",
9316 			dev->data->port_id, m->hash.fdir.hi);
9317 		goto err;
9318 	}
9319 	MLX5_ASSERT(tble->tunnel);
9320 	memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel));
9321 	info->group_id = tble->group_id;
9322 	info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL |
9323 		      RTE_FLOW_RESTORE_INFO_GROUP_ID |
9324 		      RTE_FLOW_RESTORE_INFO_ENCAPSULATED;
9325 
9326 	return 0;
9327 
9328 err:
9329 	return rte_flow_error_set(err, EINVAL,
9330 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
9331 				  "failed to get restore info");
9332 }
9333 
9334 #else /* HAVE_IBV_FLOW_DV_SUPPORT */
9335 static int
9336 mlx5_flow_tunnel_decap_set(__rte_unused struct rte_eth_dev *dev,
9337 			   __rte_unused struct rte_flow_tunnel *app_tunnel,
9338 			   __rte_unused struct rte_flow_action **actions,
9339 			   __rte_unused uint32_t *num_of_actions,
9340 			   __rte_unused struct rte_flow_error *error)
9341 {
9342 	return -ENOTSUP;
9343 }
9344 
9345 static int
9346 mlx5_flow_tunnel_match(__rte_unused struct rte_eth_dev *dev,
9347 		       __rte_unused struct rte_flow_tunnel *app_tunnel,
9348 		       __rte_unused struct rte_flow_item **items,
9349 		       __rte_unused uint32_t *num_of_items,
9350 		       __rte_unused struct rte_flow_error *error)
9351 {
9352 	return -ENOTSUP;
9353 }
9354 
9355 static int
9356 mlx5_flow_tunnel_item_release(__rte_unused struct rte_eth_dev *dev,
9357 			      __rte_unused struct rte_flow_item *pmd_items,
9358 			      __rte_unused uint32_t num_items,
9359 			      __rte_unused struct rte_flow_error *err)
9360 {
9361 	return -ENOTSUP;
9362 }
9363 
9364 static int
9365 mlx5_flow_tunnel_action_release(__rte_unused struct rte_eth_dev *dev,
9366 				__rte_unused struct rte_flow_action *pmd_action,
9367 				__rte_unused uint32_t num_actions,
9368 				__rte_unused struct rte_flow_error *err)
9369 {
9370 	return -ENOTSUP;
9371 }
9372 
9373 static int
9374 mlx5_flow_tunnel_get_restore_info(__rte_unused struct rte_eth_dev *dev,
9375 				  __rte_unused struct rte_mbuf *m,
9376 				  __rte_unused struct rte_flow_restore_info *i,
9377 				  __rte_unused struct rte_flow_error *err)
9378 {
9379 	return -ENOTSUP;
9380 }
9381 
9382 static int
9383 flow_tunnel_add_default_miss(__rte_unused struct rte_eth_dev *dev,
9384 			     __rte_unused struct rte_flow *flow,
9385 			     __rte_unused const struct rte_flow_attr *attr,
9386 			     __rte_unused const struct rte_flow_action *actions,
9387 			     __rte_unused uint32_t flow_idx,
9388 			     __rte_unused const struct mlx5_flow_tunnel *tunnel,
9389 			     __rte_unused struct tunnel_default_miss_ctx *ctx,
9390 			     __rte_unused struct rte_flow_error *error)
9391 {
9392 	return -ENOTSUP;
9393 }
9394 
9395 static struct mlx5_flow_tunnel *
9396 mlx5_find_tunnel_id(__rte_unused struct rte_eth_dev *dev,
9397 		    __rte_unused uint32_t id)
9398 {
9399 	return NULL;
9400 }
9401 
9402 static void
9403 mlx5_flow_tunnel_free(__rte_unused struct rte_eth_dev *dev,
9404 		      __rte_unused struct mlx5_flow_tunnel *tunnel)
9405 {
9406 }
9407 
9408 static uint32_t
9409 tunnel_flow_group_to_flow_table(__rte_unused struct rte_eth_dev *dev,
9410 				__rte_unused const struct mlx5_flow_tunnel *t,
9411 				__rte_unused uint32_t group,
9412 				__rte_unused uint32_t *table,
9413 				struct rte_flow_error *error)
9414 {
9415 	return rte_flow_error_set(error, ENOTSUP,
9416 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
9417 				  "tunnel offload requires DV support");
9418 }
9419 
9420 void
9421 mlx5_release_tunnel_hub(__rte_unused struct mlx5_dev_ctx_shared *sh,
9422 			__rte_unused  uint16_t port_id)
9423 {
9424 }
9425 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */
9426 
9427 static void
9428 mlx5_dbg__print_pattern(const struct rte_flow_item *item)
9429 {
9430 	int ret;
9431 	struct rte_flow_error error;
9432 
9433 	for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
9434 		char *item_name;
9435 		ret = rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR, &item_name,
9436 				    sizeof(item_name),
9437 				    (void *)(uintptr_t)item->type, &error);
9438 		if (ret > 0)
9439 			printf("%s ", item_name);
9440 		else
9441 			printf("%d\n", (int)item->type);
9442 	}
9443 	printf("END\n");
9444 }
9445 
9446 static int
9447 mlx5_flow_is_std_vxlan_port(const struct rte_flow_item *udp_item)
9448 {
9449 	const struct rte_flow_item_udp *spec = udp_item->spec;
9450 	const struct rte_flow_item_udp *mask = udp_item->mask;
9451 	uint16_t udp_dport = 0;
9452 
9453 	if (spec != NULL) {
9454 		if (!mask)
9455 			mask = &rte_flow_item_udp_mask;
9456 		udp_dport = rte_be_to_cpu_16(spec->hdr.dst_port &
9457 				mask->hdr.dst_port);
9458 	}
9459 	return (!udp_dport || udp_dport == MLX5_UDP_PORT_VXLAN);
9460 }
9461 
9462 static const struct mlx5_flow_expand_node *
9463 mlx5_flow_expand_rss_adjust_node(const struct rte_flow_item *pattern,
9464 		unsigned int item_idx,
9465 		const struct mlx5_flow_expand_node graph[],
9466 		const struct mlx5_flow_expand_node *node)
9467 {
9468 	const struct rte_flow_item *item = pattern + item_idx, *prev_item;
9469 	switch (item->type) {
9470 	case RTE_FLOW_ITEM_TYPE_VXLAN:
9471 		MLX5_ASSERT(item_idx > 0);
9472 		prev_item = pattern + item_idx - 1;
9473 		MLX5_ASSERT(prev_item->type == RTE_FLOW_ITEM_TYPE_UDP);
9474 		if (mlx5_flow_is_std_vxlan_port(prev_item))
9475 			return &graph[MLX5_EXPANSION_STD_VXLAN];
9476 		else
9477 			return &graph[MLX5_EXPANSION_L3_VXLAN];
9478 		break;
9479 	default:
9480 		return node;
9481 	}
9482 }
9483