1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox Technologies, Ltd 4 */ 5 6 #include <netinet/in.h> 7 #include <sys/queue.h> 8 #include <stdalign.h> 9 #include <stdint.h> 10 #include <string.h> 11 12 /* Verbs header. */ 13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ 14 #ifdef PEDANTIC 15 #pragma GCC diagnostic ignored "-Wpedantic" 16 #endif 17 #include <infiniband/verbs.h> 18 #ifdef PEDANTIC 19 #pragma GCC diagnostic error "-Wpedantic" 20 #endif 21 22 #include <rte_common.h> 23 #include <rte_ether.h> 24 #include <rte_eth_ctrl.h> 25 #include <rte_ethdev_driver.h> 26 #include <rte_flow.h> 27 #include <rte_flow_driver.h> 28 #include <rte_malloc.h> 29 #include <rte_ip.h> 30 31 #include "mlx5.h" 32 #include "mlx5_defs.h" 33 #include "mlx5_prm.h" 34 #include "mlx5_glue.h" 35 #include "mlx5_flow.h" 36 37 /* Dev ops structure defined in mlx5.c */ 38 extern const struct eth_dev_ops mlx5_dev_ops; 39 extern const struct eth_dev_ops mlx5_dev_ops_isolate; 40 41 /** Device flow drivers. */ 42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops; 44 #endif 45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops; 46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops; 47 48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops; 49 50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = { 51 [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops, 52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 53 [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops, 54 #endif 55 [MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops, 56 [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops, 57 [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops 58 }; 59 60 enum mlx5_expansion { 61 MLX5_EXPANSION_ROOT, 62 MLX5_EXPANSION_ROOT_OUTER, 63 MLX5_EXPANSION_ROOT_ETH_VLAN, 64 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN, 65 MLX5_EXPANSION_OUTER_ETH, 66 MLX5_EXPANSION_OUTER_ETH_VLAN, 67 MLX5_EXPANSION_OUTER_VLAN, 68 MLX5_EXPANSION_OUTER_IPV4, 69 MLX5_EXPANSION_OUTER_IPV4_UDP, 70 MLX5_EXPANSION_OUTER_IPV4_TCP, 71 MLX5_EXPANSION_OUTER_IPV6, 72 MLX5_EXPANSION_OUTER_IPV6_UDP, 73 MLX5_EXPANSION_OUTER_IPV6_TCP, 74 MLX5_EXPANSION_VXLAN, 75 MLX5_EXPANSION_VXLAN_GPE, 76 MLX5_EXPANSION_GRE, 77 MLX5_EXPANSION_MPLS, 78 MLX5_EXPANSION_ETH, 79 MLX5_EXPANSION_ETH_VLAN, 80 MLX5_EXPANSION_VLAN, 81 MLX5_EXPANSION_IPV4, 82 MLX5_EXPANSION_IPV4_UDP, 83 MLX5_EXPANSION_IPV4_TCP, 84 MLX5_EXPANSION_IPV6, 85 MLX5_EXPANSION_IPV6_UDP, 86 MLX5_EXPANSION_IPV6_TCP, 87 }; 88 89 /** Supported expansion of items. */ 90 static const struct rte_flow_expand_node mlx5_support_expansion[] = { 91 [MLX5_EXPANSION_ROOT] = { 92 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 93 MLX5_EXPANSION_IPV4, 94 MLX5_EXPANSION_IPV6), 95 .type = RTE_FLOW_ITEM_TYPE_END, 96 }, 97 [MLX5_EXPANSION_ROOT_OUTER] = { 98 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH, 99 MLX5_EXPANSION_OUTER_IPV4, 100 MLX5_EXPANSION_OUTER_IPV6), 101 .type = RTE_FLOW_ITEM_TYPE_END, 102 }, 103 [MLX5_EXPANSION_ROOT_ETH_VLAN] = { 104 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN), 105 .type = RTE_FLOW_ITEM_TYPE_END, 106 }, 107 [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = { 108 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN), 109 .type = RTE_FLOW_ITEM_TYPE_END, 110 }, 111 [MLX5_EXPANSION_OUTER_ETH] = { 112 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 113 MLX5_EXPANSION_OUTER_IPV6, 114 MLX5_EXPANSION_MPLS), 115 .type = RTE_FLOW_ITEM_TYPE_ETH, 116 .rss_types = 0, 117 }, 118 [MLX5_EXPANSION_OUTER_ETH_VLAN] = { 119 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN), 120 .type = RTE_FLOW_ITEM_TYPE_ETH, 121 .rss_types = 0, 122 }, 123 [MLX5_EXPANSION_OUTER_VLAN] = { 124 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 125 MLX5_EXPANSION_OUTER_IPV6), 126 .type = RTE_FLOW_ITEM_TYPE_VLAN, 127 }, 128 [MLX5_EXPANSION_OUTER_IPV4] = { 129 .next = RTE_FLOW_EXPAND_RSS_NEXT 130 (MLX5_EXPANSION_OUTER_IPV4_UDP, 131 MLX5_EXPANSION_OUTER_IPV4_TCP, 132 MLX5_EXPANSION_GRE), 133 .type = RTE_FLOW_ITEM_TYPE_IPV4, 134 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 135 ETH_RSS_NONFRAG_IPV4_OTHER, 136 }, 137 [MLX5_EXPANSION_OUTER_IPV4_UDP] = { 138 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 139 MLX5_EXPANSION_VXLAN_GPE), 140 .type = RTE_FLOW_ITEM_TYPE_UDP, 141 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 142 }, 143 [MLX5_EXPANSION_OUTER_IPV4_TCP] = { 144 .type = RTE_FLOW_ITEM_TYPE_TCP, 145 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 146 }, 147 [MLX5_EXPANSION_OUTER_IPV6] = { 148 .next = RTE_FLOW_EXPAND_RSS_NEXT 149 (MLX5_EXPANSION_OUTER_IPV6_UDP, 150 MLX5_EXPANSION_OUTER_IPV6_TCP), 151 .type = RTE_FLOW_ITEM_TYPE_IPV6, 152 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 153 ETH_RSS_NONFRAG_IPV6_OTHER, 154 }, 155 [MLX5_EXPANSION_OUTER_IPV6_UDP] = { 156 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 157 MLX5_EXPANSION_VXLAN_GPE), 158 .type = RTE_FLOW_ITEM_TYPE_UDP, 159 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 160 }, 161 [MLX5_EXPANSION_OUTER_IPV6_TCP] = { 162 .type = RTE_FLOW_ITEM_TYPE_TCP, 163 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 164 }, 165 [MLX5_EXPANSION_VXLAN] = { 166 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH), 167 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 168 }, 169 [MLX5_EXPANSION_VXLAN_GPE] = { 170 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 171 MLX5_EXPANSION_IPV4, 172 MLX5_EXPANSION_IPV6), 173 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE, 174 }, 175 [MLX5_EXPANSION_GRE] = { 176 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4), 177 .type = RTE_FLOW_ITEM_TYPE_GRE, 178 }, 179 [MLX5_EXPANSION_MPLS] = { 180 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 181 MLX5_EXPANSION_IPV6), 182 .type = RTE_FLOW_ITEM_TYPE_MPLS, 183 }, 184 [MLX5_EXPANSION_ETH] = { 185 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 186 MLX5_EXPANSION_IPV6), 187 .type = RTE_FLOW_ITEM_TYPE_ETH, 188 }, 189 [MLX5_EXPANSION_ETH_VLAN] = { 190 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN), 191 .type = RTE_FLOW_ITEM_TYPE_ETH, 192 }, 193 [MLX5_EXPANSION_VLAN] = { 194 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 195 MLX5_EXPANSION_IPV6), 196 .type = RTE_FLOW_ITEM_TYPE_VLAN, 197 }, 198 [MLX5_EXPANSION_IPV4] = { 199 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP, 200 MLX5_EXPANSION_IPV4_TCP), 201 .type = RTE_FLOW_ITEM_TYPE_IPV4, 202 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 203 ETH_RSS_NONFRAG_IPV4_OTHER, 204 }, 205 [MLX5_EXPANSION_IPV4_UDP] = { 206 .type = RTE_FLOW_ITEM_TYPE_UDP, 207 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 208 }, 209 [MLX5_EXPANSION_IPV4_TCP] = { 210 .type = RTE_FLOW_ITEM_TYPE_TCP, 211 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 212 }, 213 [MLX5_EXPANSION_IPV6] = { 214 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP, 215 MLX5_EXPANSION_IPV6_TCP), 216 .type = RTE_FLOW_ITEM_TYPE_IPV6, 217 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 218 ETH_RSS_NONFRAG_IPV6_OTHER, 219 }, 220 [MLX5_EXPANSION_IPV6_UDP] = { 221 .type = RTE_FLOW_ITEM_TYPE_UDP, 222 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 223 }, 224 [MLX5_EXPANSION_IPV6_TCP] = { 225 .type = RTE_FLOW_ITEM_TYPE_TCP, 226 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 227 }, 228 }; 229 230 static const struct rte_flow_ops mlx5_flow_ops = { 231 .validate = mlx5_flow_validate, 232 .create = mlx5_flow_create, 233 .destroy = mlx5_flow_destroy, 234 .flush = mlx5_flow_flush, 235 .isolate = mlx5_flow_isolate, 236 .query = mlx5_flow_query, 237 }; 238 239 /* Convert FDIR request to Generic flow. */ 240 struct mlx5_fdir { 241 struct rte_flow_attr attr; 242 struct rte_flow_action actions[2]; 243 struct rte_flow_item items[4]; 244 struct rte_flow_item_eth l2; 245 struct rte_flow_item_eth l2_mask; 246 union { 247 struct rte_flow_item_ipv4 ipv4; 248 struct rte_flow_item_ipv6 ipv6; 249 } l3; 250 union { 251 struct rte_flow_item_ipv4 ipv4; 252 struct rte_flow_item_ipv6 ipv6; 253 } l3_mask; 254 union { 255 struct rte_flow_item_udp udp; 256 struct rte_flow_item_tcp tcp; 257 } l4; 258 union { 259 struct rte_flow_item_udp udp; 260 struct rte_flow_item_tcp tcp; 261 } l4_mask; 262 struct rte_flow_action_queue queue; 263 }; 264 265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */ 266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = { 267 { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 }, 268 }; 269 270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */ 271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = { 272 { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 }, 273 { 9, 10, 11 }, { 12, 13, 14 }, 274 }; 275 276 /* Tunnel information. */ 277 struct mlx5_flow_tunnel_info { 278 uint32_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */ 279 uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */ 280 }; 281 282 static struct mlx5_flow_tunnel_info tunnels_info[] = { 283 { 284 .tunnel = MLX5_FLOW_LAYER_VXLAN, 285 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP, 286 }, 287 { 288 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE, 289 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP, 290 }, 291 { 292 .tunnel = MLX5_FLOW_LAYER_GRE, 293 .ptype = RTE_PTYPE_TUNNEL_GRE, 294 }, 295 { 296 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP, 297 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE | RTE_PTYPE_L4_UDP, 298 }, 299 { 300 .tunnel = MLX5_FLOW_LAYER_MPLS, 301 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE, 302 }, 303 }; 304 305 /** 306 * Discover the maximum number of priority available. 307 * 308 * @param[in] dev 309 * Pointer to the Ethernet device structure. 310 * 311 * @return 312 * number of supported flow priority on success, a negative errno 313 * value otherwise and rte_errno is set. 314 */ 315 int 316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev) 317 { 318 struct { 319 struct ibv_flow_attr attr; 320 struct ibv_flow_spec_eth eth; 321 struct ibv_flow_spec_action_drop drop; 322 } flow_attr = { 323 .attr = { 324 .num_of_specs = 2, 325 }, 326 .eth = { 327 .type = IBV_FLOW_SPEC_ETH, 328 .size = sizeof(struct ibv_flow_spec_eth), 329 }, 330 .drop = { 331 .size = sizeof(struct ibv_flow_spec_action_drop), 332 .type = IBV_FLOW_SPEC_ACTION_DROP, 333 }, 334 }; 335 struct ibv_flow *flow; 336 struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev); 337 uint16_t vprio[] = { 8, 16 }; 338 int i; 339 int priority = 0; 340 341 if (!drop) { 342 rte_errno = ENOTSUP; 343 return -rte_errno; 344 } 345 for (i = 0; i != RTE_DIM(vprio); i++) { 346 flow_attr.attr.priority = vprio[i] - 1; 347 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr); 348 if (!flow) 349 break; 350 claim_zero(mlx5_glue->destroy_flow(flow)); 351 priority = vprio[i]; 352 } 353 switch (priority) { 354 case 8: 355 priority = RTE_DIM(priority_map_3); 356 break; 357 case 16: 358 priority = RTE_DIM(priority_map_5); 359 break; 360 default: 361 rte_errno = ENOTSUP; 362 DRV_LOG(ERR, 363 "port %u verbs maximum priority: %d expected 8/16", 364 dev->data->port_id, vprio[i]); 365 return -rte_errno; 366 } 367 mlx5_hrxq_drop_release(dev); 368 DRV_LOG(INFO, "port %u flow maximum priority: %d", 369 dev->data->port_id, priority); 370 return priority; 371 } 372 373 /** 374 * Adjust flow priority based on the highest layer and the request priority. 375 * 376 * @param[in] dev 377 * Pointer to the Ethernet device structure. 378 * @param[in] priority 379 * The rule base priority. 380 * @param[in] subpriority 381 * The priority based on the items. 382 * 383 * @return 384 * The new priority. 385 */ 386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority, 387 uint32_t subpriority) 388 { 389 uint32_t res = 0; 390 struct priv *priv = dev->data->dev_private; 391 392 switch (priv->config.flow_prio) { 393 case RTE_DIM(priority_map_3): 394 res = priority_map_3[priority][subpriority]; 395 break; 396 case RTE_DIM(priority_map_5): 397 res = priority_map_5[priority][subpriority]; 398 break; 399 } 400 return res; 401 } 402 403 /** 404 * Verify the @p item specifications (spec, last, mask) are compatible with the 405 * NIC capabilities. 406 * 407 * @param[in] item 408 * Item specification. 409 * @param[in] mask 410 * @p item->mask or flow default bit-masks. 411 * @param[in] nic_mask 412 * Bit-masks covering supported fields by the NIC to compare with user mask. 413 * @param[in] size 414 * Bit-masks size in bytes. 415 * @param[out] error 416 * Pointer to error structure. 417 * 418 * @return 419 * 0 on success, a negative errno value otherwise and rte_errno is set. 420 */ 421 int 422 mlx5_flow_item_acceptable(const struct rte_flow_item *item, 423 const uint8_t *mask, 424 const uint8_t *nic_mask, 425 unsigned int size, 426 struct rte_flow_error *error) 427 { 428 unsigned int i; 429 430 assert(nic_mask); 431 for (i = 0; i < size; ++i) 432 if ((nic_mask[i] | mask[i]) != nic_mask[i]) 433 return rte_flow_error_set(error, ENOTSUP, 434 RTE_FLOW_ERROR_TYPE_ITEM, 435 item, 436 "mask enables non supported" 437 " bits"); 438 if (!item->spec && (item->mask || item->last)) 439 return rte_flow_error_set(error, EINVAL, 440 RTE_FLOW_ERROR_TYPE_ITEM, item, 441 "mask/last without a spec is not" 442 " supported"); 443 if (item->spec && item->last) { 444 uint8_t spec[size]; 445 uint8_t last[size]; 446 unsigned int i; 447 int ret; 448 449 for (i = 0; i < size; ++i) { 450 spec[i] = ((const uint8_t *)item->spec)[i] & mask[i]; 451 last[i] = ((const uint8_t *)item->last)[i] & mask[i]; 452 } 453 ret = memcmp(spec, last, size); 454 if (ret != 0) 455 return rte_flow_error_set(error, EINVAL, 456 RTE_FLOW_ERROR_TYPE_ITEM, 457 item, 458 "range is not valid"); 459 } 460 return 0; 461 } 462 463 /** 464 * Adjust the hash fields according to the @p flow information. 465 * 466 * @param[in] dev_flow. 467 * Pointer to the mlx5_flow. 468 * @param[in] tunnel 469 * 1 when the hash field is for a tunnel item. 470 * @param[in] layer_types 471 * ETH_RSS_* types. 472 * @param[in] hash_fields 473 * Item hash fields. 474 * 475 * @return 476 * The hash fileds that should be used. 477 */ 478 uint64_t 479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow, 480 int tunnel __rte_unused, uint64_t layer_types, 481 uint64_t hash_fields) 482 { 483 struct rte_flow *flow = dev_flow->flow; 484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 485 int rss_request_inner = flow->rss.level >= 2; 486 487 /* Check RSS hash level for tunnel. */ 488 if (tunnel && rss_request_inner) 489 hash_fields |= IBV_RX_HASH_INNER; 490 else if (tunnel || rss_request_inner) 491 return 0; 492 #endif 493 /* Check if requested layer matches RSS hash fields. */ 494 if (!(flow->rss.types & layer_types)) 495 return 0; 496 return hash_fields; 497 } 498 499 /** 500 * Lookup and set the ptype in the data Rx part. A single Ptype can be used, 501 * if several tunnel rules are used on this queue, the tunnel ptype will be 502 * cleared. 503 * 504 * @param rxq_ctrl 505 * Rx queue to update. 506 */ 507 static void 508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl) 509 { 510 unsigned int i; 511 uint32_t tunnel_ptype = 0; 512 513 /* Look up for the ptype to use. */ 514 for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) { 515 if (!rxq_ctrl->flow_tunnels_n[i]) 516 continue; 517 if (!tunnel_ptype) { 518 tunnel_ptype = tunnels_info[i].ptype; 519 } else { 520 tunnel_ptype = 0; 521 break; 522 } 523 } 524 rxq_ctrl->rxq.tunnel = tunnel_ptype; 525 } 526 527 /** 528 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive 529 * flow. 530 * 531 * @param[in] dev 532 * Pointer to the Ethernet device structure. 533 * @param[in] dev_flow 534 * Pointer to device flow structure. 535 */ 536 static void 537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow) 538 { 539 struct priv *priv = dev->data->dev_private; 540 struct rte_flow *flow = dev_flow->flow; 541 const int mark = !!(flow->actions & 542 (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK)); 543 const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL); 544 unsigned int i; 545 546 for (i = 0; i != flow->rss.queue_num; ++i) { 547 int idx = (*flow->queue)[i]; 548 struct mlx5_rxq_ctrl *rxq_ctrl = 549 container_of((*priv->rxqs)[idx], 550 struct mlx5_rxq_ctrl, rxq); 551 552 if (mark) { 553 rxq_ctrl->rxq.mark = 1; 554 rxq_ctrl->flow_mark_n++; 555 } 556 if (tunnel) { 557 unsigned int j; 558 559 /* Increase the counter matching the flow. */ 560 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 561 if ((tunnels_info[j].tunnel & 562 dev_flow->layers) == 563 tunnels_info[j].tunnel) { 564 rxq_ctrl->flow_tunnels_n[j]++; 565 break; 566 } 567 } 568 flow_rxq_tunnel_ptype_update(rxq_ctrl); 569 } 570 } 571 } 572 573 /** 574 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow 575 * 576 * @param[in] dev 577 * Pointer to the Ethernet device structure. 578 * @param[in] flow 579 * Pointer to flow structure. 580 */ 581 static void 582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow) 583 { 584 struct mlx5_flow *dev_flow; 585 586 LIST_FOREACH(dev_flow, &flow->dev_flows, next) 587 flow_drv_rxq_flags_set(dev, dev_flow); 588 } 589 590 /** 591 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 592 * device flow if no other flow uses it with the same kind of request. 593 * 594 * @param dev 595 * Pointer to Ethernet device. 596 * @param[in] dev_flow 597 * Pointer to the device flow. 598 */ 599 static void 600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow) 601 { 602 struct priv *priv = dev->data->dev_private; 603 struct rte_flow *flow = dev_flow->flow; 604 const int mark = !!(flow->actions & 605 (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK)); 606 const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL); 607 unsigned int i; 608 609 assert(dev->data->dev_started); 610 for (i = 0; i != flow->rss.queue_num; ++i) { 611 int idx = (*flow->queue)[i]; 612 struct mlx5_rxq_ctrl *rxq_ctrl = 613 container_of((*priv->rxqs)[idx], 614 struct mlx5_rxq_ctrl, rxq); 615 616 if (mark) { 617 rxq_ctrl->flow_mark_n--; 618 rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n; 619 } 620 if (tunnel) { 621 unsigned int j; 622 623 /* Decrease the counter matching the flow. */ 624 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 625 if ((tunnels_info[j].tunnel & 626 dev_flow->layers) == 627 tunnels_info[j].tunnel) { 628 rxq_ctrl->flow_tunnels_n[j]--; 629 break; 630 } 631 } 632 flow_rxq_tunnel_ptype_update(rxq_ctrl); 633 } 634 } 635 } 636 637 /** 638 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 639 * @p flow if no other flow uses it with the same kind of request. 640 * 641 * @param dev 642 * Pointer to Ethernet device. 643 * @param[in] flow 644 * Pointer to the flow. 645 */ 646 static void 647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow) 648 { 649 struct mlx5_flow *dev_flow; 650 651 LIST_FOREACH(dev_flow, &flow->dev_flows, next) 652 flow_drv_rxq_flags_trim(dev, dev_flow); 653 } 654 655 /** 656 * Clear the Mark/Flag and Tunnel ptype information in all Rx queues. 657 * 658 * @param dev 659 * Pointer to Ethernet device. 660 */ 661 static void 662 flow_rxq_flags_clear(struct rte_eth_dev *dev) 663 { 664 struct priv *priv = dev->data->dev_private; 665 unsigned int i; 666 667 for (i = 0; i != priv->rxqs_n; ++i) { 668 struct mlx5_rxq_ctrl *rxq_ctrl; 669 unsigned int j; 670 671 if (!(*priv->rxqs)[i]) 672 continue; 673 rxq_ctrl = container_of((*priv->rxqs)[i], 674 struct mlx5_rxq_ctrl, rxq); 675 rxq_ctrl->flow_mark_n = 0; 676 rxq_ctrl->rxq.mark = 0; 677 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) 678 rxq_ctrl->flow_tunnels_n[j] = 0; 679 rxq_ctrl->rxq.tunnel = 0; 680 } 681 } 682 683 /* 684 * Validate the flag action. 685 * 686 * @param[in] action_flags 687 * Bit-fields that holds the actions detected until now. 688 * @param[in] attr 689 * Attributes of flow that includes this action. 690 * @param[out] error 691 * Pointer to error structure. 692 * 693 * @return 694 * 0 on success, a negative errno value otherwise and rte_errno is set. 695 */ 696 int 697 mlx5_flow_validate_action_flag(uint64_t action_flags, 698 const struct rte_flow_attr *attr, 699 struct rte_flow_error *error) 700 { 701 702 if (action_flags & MLX5_FLOW_ACTION_DROP) 703 return rte_flow_error_set(error, EINVAL, 704 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 705 "can't drop and flag in same flow"); 706 if (action_flags & MLX5_FLOW_ACTION_MARK) 707 return rte_flow_error_set(error, EINVAL, 708 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 709 "can't mark and flag in same flow"); 710 if (action_flags & MLX5_FLOW_ACTION_FLAG) 711 return rte_flow_error_set(error, EINVAL, 712 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 713 "can't have 2 flag" 714 " actions in same flow"); 715 if (attr->egress) 716 return rte_flow_error_set(error, ENOTSUP, 717 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 718 "flag action not supported for " 719 "egress"); 720 return 0; 721 } 722 723 /* 724 * Validate the mark action. 725 * 726 * @param[in] action 727 * Pointer to the queue action. 728 * @param[in] action_flags 729 * Bit-fields that holds the actions detected until now. 730 * @param[in] attr 731 * Attributes of flow that includes this action. 732 * @param[out] error 733 * Pointer to error structure. 734 * 735 * @return 736 * 0 on success, a negative errno value otherwise and rte_errno is set. 737 */ 738 int 739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action, 740 uint64_t action_flags, 741 const struct rte_flow_attr *attr, 742 struct rte_flow_error *error) 743 { 744 const struct rte_flow_action_mark *mark = action->conf; 745 746 if (!mark) 747 return rte_flow_error_set(error, EINVAL, 748 RTE_FLOW_ERROR_TYPE_ACTION, 749 action, 750 "configuration cannot be null"); 751 if (mark->id >= MLX5_FLOW_MARK_MAX) 752 return rte_flow_error_set(error, EINVAL, 753 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 754 &mark->id, 755 "mark id must in 0 <= id < " 756 RTE_STR(MLX5_FLOW_MARK_MAX)); 757 if (action_flags & MLX5_FLOW_ACTION_DROP) 758 return rte_flow_error_set(error, EINVAL, 759 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 760 "can't drop and mark in same flow"); 761 if (action_flags & MLX5_FLOW_ACTION_FLAG) 762 return rte_flow_error_set(error, EINVAL, 763 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 764 "can't flag and mark in same flow"); 765 if (action_flags & MLX5_FLOW_ACTION_MARK) 766 return rte_flow_error_set(error, EINVAL, 767 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 768 "can't have 2 mark actions in same" 769 " flow"); 770 if (attr->egress) 771 return rte_flow_error_set(error, ENOTSUP, 772 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 773 "mark action not supported for " 774 "egress"); 775 return 0; 776 } 777 778 /* 779 * Validate the drop action. 780 * 781 * @param[in] action_flags 782 * Bit-fields that holds the actions detected until now. 783 * @param[in] attr 784 * Attributes of flow that includes this action. 785 * @param[out] error 786 * Pointer to error structure. 787 * 788 * @return 789 * 0 on success, a negative errno value otherwise and rte_ernno is set. 790 */ 791 int 792 mlx5_flow_validate_action_drop(uint64_t action_flags, 793 const struct rte_flow_attr *attr, 794 struct rte_flow_error *error) 795 { 796 if (action_flags & MLX5_FLOW_ACTION_FLAG) 797 return rte_flow_error_set(error, EINVAL, 798 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 799 "can't drop and flag in same flow"); 800 if (action_flags & MLX5_FLOW_ACTION_MARK) 801 return rte_flow_error_set(error, EINVAL, 802 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 803 "can't drop and mark in same flow"); 804 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 805 return rte_flow_error_set(error, EINVAL, 806 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 807 "can't have 2 fate actions in" 808 " same flow"); 809 if (attr->egress) 810 return rte_flow_error_set(error, ENOTSUP, 811 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 812 "drop action not supported for " 813 "egress"); 814 return 0; 815 } 816 817 /* 818 * Validate the queue action. 819 * 820 * @param[in] action 821 * Pointer to the queue action. 822 * @param[in] action_flags 823 * Bit-fields that holds the actions detected until now. 824 * @param[in] dev 825 * Pointer to the Ethernet device structure. 826 * @param[in] attr 827 * Attributes of flow that includes this action. 828 * @param[out] error 829 * Pointer to error structure. 830 * 831 * @return 832 * 0 on success, a negative errno value otherwise and rte_ernno is set. 833 */ 834 int 835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action, 836 uint64_t action_flags, 837 struct rte_eth_dev *dev, 838 const struct rte_flow_attr *attr, 839 struct rte_flow_error *error) 840 { 841 struct priv *priv = dev->data->dev_private; 842 const struct rte_flow_action_queue *queue = action->conf; 843 844 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 845 return rte_flow_error_set(error, EINVAL, 846 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 847 "can't have 2 fate actions in" 848 " same flow"); 849 if (queue->index >= priv->rxqs_n) 850 return rte_flow_error_set(error, EINVAL, 851 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 852 &queue->index, 853 "queue index out of range"); 854 if (!(*priv->rxqs)[queue->index]) 855 return rte_flow_error_set(error, EINVAL, 856 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 857 &queue->index, 858 "queue is not configured"); 859 if (attr->egress) 860 return rte_flow_error_set(error, ENOTSUP, 861 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 862 "queue action not supported for " 863 "egress"); 864 return 0; 865 } 866 867 /* 868 * Validate the rss action. 869 * 870 * @param[in] action 871 * Pointer to the queue action. 872 * @param[in] action_flags 873 * Bit-fields that holds the actions detected until now. 874 * @param[in] dev 875 * Pointer to the Ethernet device structure. 876 * @param[in] attr 877 * Attributes of flow that includes this action. 878 * @param[out] error 879 * Pointer to error structure. 880 * 881 * @return 882 * 0 on success, a negative errno value otherwise and rte_ernno is set. 883 */ 884 int 885 mlx5_flow_validate_action_rss(const struct rte_flow_action *action, 886 uint64_t action_flags, 887 struct rte_eth_dev *dev, 888 const struct rte_flow_attr *attr, 889 struct rte_flow_error *error) 890 { 891 struct priv *priv = dev->data->dev_private; 892 const struct rte_flow_action_rss *rss = action->conf; 893 unsigned int i; 894 895 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 896 return rte_flow_error_set(error, EINVAL, 897 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 898 "can't have 2 fate actions" 899 " in same flow"); 900 if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT && 901 rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ) 902 return rte_flow_error_set(error, ENOTSUP, 903 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 904 &rss->func, 905 "RSS hash function not supported"); 906 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 907 if (rss->level > 2) 908 #else 909 if (rss->level > 1) 910 #endif 911 return rte_flow_error_set(error, ENOTSUP, 912 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 913 &rss->level, 914 "tunnel RSS is not supported"); 915 if (rss->key_len < MLX5_RSS_HASH_KEY_LEN) 916 return rte_flow_error_set(error, ENOTSUP, 917 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 918 &rss->key_len, 919 "RSS hash key too small"); 920 if (rss->key_len > MLX5_RSS_HASH_KEY_LEN) 921 return rte_flow_error_set(error, ENOTSUP, 922 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 923 &rss->key_len, 924 "RSS hash key too large"); 925 if (rss->queue_num > priv->config.ind_table_max_size) 926 return rte_flow_error_set(error, ENOTSUP, 927 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 928 &rss->queue_num, 929 "number of queues too large"); 930 if (rss->types & MLX5_RSS_HF_MASK) 931 return rte_flow_error_set(error, ENOTSUP, 932 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 933 &rss->types, 934 "some RSS protocols are not" 935 " supported"); 936 for (i = 0; i != rss->queue_num; ++i) { 937 if (!(*priv->rxqs)[rss->queue[i]]) 938 return rte_flow_error_set 939 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, 940 &rss->queue[i], "queue is not configured"); 941 } 942 if (attr->egress) 943 return rte_flow_error_set(error, ENOTSUP, 944 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 945 "rss action not supported for " 946 "egress"); 947 return 0; 948 } 949 950 /* 951 * Validate the count action. 952 * 953 * @param[in] dev 954 * Pointer to the Ethernet device structure. 955 * @param[in] attr 956 * Attributes of flow that includes this action. 957 * @param[out] error 958 * Pointer to error structure. 959 * 960 * @return 961 * 0 on success, a negative errno value otherwise and rte_ernno is set. 962 */ 963 int 964 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused, 965 const struct rte_flow_attr *attr, 966 struct rte_flow_error *error) 967 { 968 if (attr->egress) 969 return rte_flow_error_set(error, ENOTSUP, 970 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 971 "count action not supported for " 972 "egress"); 973 return 0; 974 } 975 976 /** 977 * Verify the @p attributes will be correctly understood by the NIC and store 978 * them in the @p flow if everything is correct. 979 * 980 * @param[in] dev 981 * Pointer to the Ethernet device structure. 982 * @param[in] attributes 983 * Pointer to flow attributes 984 * @param[out] error 985 * Pointer to error structure. 986 * 987 * @return 988 * 0 on success, a negative errno value otherwise and rte_errno is set. 989 */ 990 int 991 mlx5_flow_validate_attributes(struct rte_eth_dev *dev, 992 const struct rte_flow_attr *attributes, 993 struct rte_flow_error *error) 994 { 995 struct priv *priv = dev->data->dev_private; 996 uint32_t priority_max = priv->config.flow_prio - 1; 997 998 if (attributes->group) 999 return rte_flow_error_set(error, ENOTSUP, 1000 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 1001 NULL, "groups is not supported"); 1002 if (attributes->priority != MLX5_FLOW_PRIO_RSVD && 1003 attributes->priority >= priority_max) 1004 return rte_flow_error_set(error, ENOTSUP, 1005 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1006 NULL, "priority out of range"); 1007 if (attributes->egress) 1008 return rte_flow_error_set(error, ENOTSUP, 1009 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1010 "egress is not supported"); 1011 if (attributes->transfer) 1012 return rte_flow_error_set(error, ENOTSUP, 1013 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1014 NULL, "transfer is not supported"); 1015 if (!attributes->ingress) 1016 return rte_flow_error_set(error, EINVAL, 1017 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 1018 NULL, 1019 "ingress attribute is mandatory"); 1020 return 0; 1021 } 1022 1023 /** 1024 * Validate Ethernet item. 1025 * 1026 * @param[in] item 1027 * Item specification. 1028 * @param[in] item_flags 1029 * Bit-fields that holds the items detected until now. 1030 * @param[out] error 1031 * Pointer to error structure. 1032 * 1033 * @return 1034 * 0 on success, a negative errno value otherwise and rte_errno is set. 1035 */ 1036 int 1037 mlx5_flow_validate_item_eth(const struct rte_flow_item *item, 1038 uint64_t item_flags, 1039 struct rte_flow_error *error) 1040 { 1041 const struct rte_flow_item_eth *mask = item->mask; 1042 const struct rte_flow_item_eth nic_mask = { 1043 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1044 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1045 .type = RTE_BE16(0xffff), 1046 }; 1047 int ret; 1048 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1049 1050 if (item_flags & MLX5_FLOW_LAYER_OUTER_L2) 1051 return rte_flow_error_set(error, ENOTSUP, 1052 RTE_FLOW_ERROR_TYPE_ITEM, item, 1053 "3 levels of l2 are not supported"); 1054 if ((item_flags & MLX5_FLOW_LAYER_INNER_L2) && !tunnel) 1055 return rte_flow_error_set(error, ENOTSUP, 1056 RTE_FLOW_ERROR_TYPE_ITEM, item, 1057 "2 L2 without tunnel are not supported"); 1058 if (!mask) 1059 mask = &rte_flow_item_eth_mask; 1060 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1061 (const uint8_t *)&nic_mask, 1062 sizeof(struct rte_flow_item_eth), 1063 error); 1064 return ret; 1065 } 1066 1067 /** 1068 * Validate VLAN item. 1069 * 1070 * @param[in] item 1071 * Item specification. 1072 * @param[in] item_flags 1073 * Bit-fields that holds the items detected until now. 1074 * @param[out] error 1075 * Pointer to error structure. 1076 * 1077 * @return 1078 * 0 on success, a negative errno value otherwise and rte_errno is set. 1079 */ 1080 int 1081 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item, 1082 int64_t item_flags, 1083 struct rte_flow_error *error) 1084 { 1085 const struct rte_flow_item_vlan *spec = item->spec; 1086 const struct rte_flow_item_vlan *mask = item->mask; 1087 const struct rte_flow_item_vlan nic_mask = { 1088 .tci = RTE_BE16(0x0fff), 1089 .inner_type = RTE_BE16(0xffff), 1090 }; 1091 uint16_t vlan_tag = 0; 1092 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1093 int ret; 1094 const uint32_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 | 1095 MLX5_FLOW_LAYER_INNER_L4) : 1096 (MLX5_FLOW_LAYER_OUTER_L3 | 1097 MLX5_FLOW_LAYER_OUTER_L4); 1098 const uint32_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN : 1099 MLX5_FLOW_LAYER_OUTER_VLAN; 1100 1101 if (item_flags & vlanm) 1102 return rte_flow_error_set(error, EINVAL, 1103 RTE_FLOW_ERROR_TYPE_ITEM, item, 1104 "VLAN layer already configured"); 1105 else if ((item_flags & l34m) != 0) 1106 return rte_flow_error_set(error, EINVAL, 1107 RTE_FLOW_ERROR_TYPE_ITEM, item, 1108 "L2 layer cannot follow L3/L4 layer"); 1109 if (!mask) 1110 mask = &rte_flow_item_vlan_mask; 1111 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1112 (const uint8_t *)&nic_mask, 1113 sizeof(struct rte_flow_item_vlan), 1114 error); 1115 if (ret) 1116 return ret; 1117 if (spec) { 1118 vlan_tag = spec->tci; 1119 vlan_tag &= mask->tci; 1120 } 1121 /* 1122 * From verbs perspective an empty VLAN is equivalent 1123 * to a packet without VLAN layer. 1124 */ 1125 if (!vlan_tag) 1126 return rte_flow_error_set(error, EINVAL, 1127 RTE_FLOW_ERROR_TYPE_ITEM_SPEC, 1128 item->spec, 1129 "VLAN cannot be empty"); 1130 return 0; 1131 } 1132 1133 /** 1134 * Validate IPV4 item. 1135 * 1136 * @param[in] item 1137 * Item specification. 1138 * @param[in] item_flags 1139 * Bit-fields that holds the items detected until now. 1140 * @param[out] error 1141 * Pointer to error structure. 1142 * 1143 * @return 1144 * 0 on success, a negative errno value otherwise and rte_errno is set. 1145 */ 1146 int 1147 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item, 1148 int64_t item_flags, 1149 struct rte_flow_error *error) 1150 { 1151 const struct rte_flow_item_ipv4 *mask = item->mask; 1152 const struct rte_flow_item_ipv4 nic_mask = { 1153 .hdr = { 1154 .src_addr = RTE_BE32(0xffffffff), 1155 .dst_addr = RTE_BE32(0xffffffff), 1156 .type_of_service = 0xff, 1157 .next_proto_id = 0xff, 1158 }, 1159 }; 1160 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1161 int ret; 1162 1163 if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1164 MLX5_FLOW_LAYER_OUTER_L3)) 1165 return rte_flow_error_set(error, ENOTSUP, 1166 RTE_FLOW_ERROR_TYPE_ITEM, item, 1167 "multiple L3 layers not supported"); 1168 else if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1169 MLX5_FLOW_LAYER_OUTER_L4)) 1170 return rte_flow_error_set(error, EINVAL, 1171 RTE_FLOW_ERROR_TYPE_ITEM, item, 1172 "L3 cannot follow an L4 layer."); 1173 if (!mask) 1174 mask = &rte_flow_item_ipv4_mask; 1175 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1176 (const uint8_t *)&nic_mask, 1177 sizeof(struct rte_flow_item_ipv4), 1178 error); 1179 if (ret < 0) 1180 return ret; 1181 return 0; 1182 } 1183 1184 /** 1185 * Validate IPV6 item. 1186 * 1187 * @param[in] item 1188 * Item specification. 1189 * @param[in] item_flags 1190 * Bit-fields that holds the items detected until now. 1191 * @param[out] error 1192 * Pointer to error structure. 1193 * 1194 * @return 1195 * 0 on success, a negative errno value otherwise and rte_errno is set. 1196 */ 1197 int 1198 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item, 1199 uint64_t item_flags, 1200 struct rte_flow_error *error) 1201 { 1202 const struct rte_flow_item_ipv6 *mask = item->mask; 1203 const struct rte_flow_item_ipv6 nic_mask = { 1204 .hdr = { 1205 .src_addr = 1206 "\xff\xff\xff\xff\xff\xff\xff\xff" 1207 "\xff\xff\xff\xff\xff\xff\xff\xff", 1208 .dst_addr = 1209 "\xff\xff\xff\xff\xff\xff\xff\xff" 1210 "\xff\xff\xff\xff\xff\xff\xff\xff", 1211 .vtc_flow = RTE_BE32(0xffffffff), 1212 .proto = 0xff, 1213 .hop_limits = 0xff, 1214 }, 1215 }; 1216 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1217 int ret; 1218 1219 if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1220 MLX5_FLOW_LAYER_OUTER_L3)) 1221 return rte_flow_error_set(error, ENOTSUP, 1222 RTE_FLOW_ERROR_TYPE_ITEM, item, 1223 "multiple L3 layers not supported"); 1224 else if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1225 MLX5_FLOW_LAYER_OUTER_L4)) 1226 return rte_flow_error_set(error, EINVAL, 1227 RTE_FLOW_ERROR_TYPE_ITEM, item, 1228 "L3 cannot follow an L4 layer."); 1229 /* 1230 * IPv6 is not recognised by the NIC inside a GRE tunnel. 1231 * Such support has to be disabled as the rule will be 1232 * accepted. Issue reproduced with Mellanox OFED 4.3-3.0.2.1 and 1233 * Mellanox OFED 4.4-1.0.0.0. 1234 */ 1235 if (tunnel && item_flags & MLX5_FLOW_LAYER_GRE) 1236 return rte_flow_error_set(error, ENOTSUP, 1237 RTE_FLOW_ERROR_TYPE_ITEM, item, 1238 "IPv6 inside a GRE tunnel is" 1239 " not recognised."); 1240 if (!mask) 1241 mask = &rte_flow_item_ipv6_mask; 1242 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1243 (const uint8_t *)&nic_mask, 1244 sizeof(struct rte_flow_item_ipv6), 1245 error); 1246 if (ret < 0) 1247 return ret; 1248 return 0; 1249 } 1250 1251 /** 1252 * Validate UDP item. 1253 * 1254 * @param[in] item 1255 * Item specification. 1256 * @param[in] item_flags 1257 * Bit-fields that holds the items detected until now. 1258 * @param[in] target_protocol 1259 * The next protocol in the previous item. 1260 * @param[in] flow_mask 1261 * mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask. 1262 * @param[out] error 1263 * Pointer to error structure. 1264 * 1265 * @return 1266 * 0 on success, a negative errno value otherwise and rte_errno is set. 1267 */ 1268 int 1269 mlx5_flow_validate_item_udp(const struct rte_flow_item *item, 1270 uint64_t item_flags, 1271 uint8_t target_protocol, 1272 struct rte_flow_error *error) 1273 { 1274 const struct rte_flow_item_udp *mask = item->mask; 1275 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1276 int ret; 1277 1278 if (target_protocol != 0xff && target_protocol != IPPROTO_UDP) 1279 return rte_flow_error_set(error, EINVAL, 1280 RTE_FLOW_ERROR_TYPE_ITEM, item, 1281 "protocol filtering not compatible" 1282 " with UDP layer"); 1283 if (!(item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1284 MLX5_FLOW_LAYER_OUTER_L3))) 1285 return rte_flow_error_set(error, EINVAL, 1286 RTE_FLOW_ERROR_TYPE_ITEM, item, 1287 "L3 is mandatory to filter on L4"); 1288 if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1289 MLX5_FLOW_LAYER_OUTER_L4)) 1290 return rte_flow_error_set(error, EINVAL, 1291 RTE_FLOW_ERROR_TYPE_ITEM, item, 1292 "L4 layer is already present"); 1293 if (!mask) 1294 mask = &rte_flow_item_udp_mask; 1295 ret = mlx5_flow_item_acceptable 1296 (item, (const uint8_t *)mask, 1297 (const uint8_t *)&rte_flow_item_udp_mask, 1298 sizeof(struct rte_flow_item_udp), error); 1299 if (ret < 0) 1300 return ret; 1301 return 0; 1302 } 1303 1304 /** 1305 * Validate TCP item. 1306 * 1307 * @param[in] item 1308 * Item specification. 1309 * @param[in] item_flags 1310 * Bit-fields that holds the items detected until now. 1311 * @param[in] target_protocol 1312 * The next protocol in the previous item. 1313 * @param[out] error 1314 * Pointer to error structure. 1315 * 1316 * @return 1317 * 0 on success, a negative errno value otherwise and rte_errno is set. 1318 */ 1319 int 1320 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item, 1321 uint64_t item_flags, 1322 uint8_t target_protocol, 1323 const struct rte_flow_item_tcp *flow_mask, 1324 struct rte_flow_error *error) 1325 { 1326 const struct rte_flow_item_tcp *mask = item->mask; 1327 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1328 int ret; 1329 1330 assert(flow_mask); 1331 if (target_protocol != 0xff && target_protocol != IPPROTO_TCP) 1332 return rte_flow_error_set(error, EINVAL, 1333 RTE_FLOW_ERROR_TYPE_ITEM, item, 1334 "protocol filtering not compatible" 1335 " with TCP layer"); 1336 if (!(item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1337 MLX5_FLOW_LAYER_OUTER_L3))) 1338 return rte_flow_error_set(error, EINVAL, 1339 RTE_FLOW_ERROR_TYPE_ITEM, item, 1340 "L3 is mandatory to filter on L4"); 1341 if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1342 MLX5_FLOW_LAYER_OUTER_L4)) 1343 return rte_flow_error_set(error, EINVAL, 1344 RTE_FLOW_ERROR_TYPE_ITEM, item, 1345 "L4 layer is already present"); 1346 if (!mask) 1347 mask = &rte_flow_item_tcp_mask; 1348 ret = mlx5_flow_item_acceptable 1349 (item, (const uint8_t *)mask, 1350 (const uint8_t *)flow_mask, 1351 sizeof(struct rte_flow_item_tcp), error); 1352 if (ret < 0) 1353 return ret; 1354 return 0; 1355 } 1356 1357 /** 1358 * Validate VXLAN item. 1359 * 1360 * @param[in] item 1361 * Item specification. 1362 * @param[in] item_flags 1363 * Bit-fields that holds the items detected until now. 1364 * @param[in] target_protocol 1365 * The next protocol in the previous item. 1366 * @param[out] error 1367 * Pointer to error structure. 1368 * 1369 * @return 1370 * 0 on success, a negative errno value otherwise and rte_errno is set. 1371 */ 1372 int 1373 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item, 1374 uint64_t item_flags, 1375 struct rte_flow_error *error) 1376 { 1377 const struct rte_flow_item_vxlan *spec = item->spec; 1378 const struct rte_flow_item_vxlan *mask = item->mask; 1379 int ret; 1380 union vni { 1381 uint32_t vlan_id; 1382 uint8_t vni[4]; 1383 } id = { .vlan_id = 0, }; 1384 uint32_t vlan_id = 0; 1385 1386 1387 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1388 return rte_flow_error_set(error, ENOTSUP, 1389 RTE_FLOW_ERROR_TYPE_ITEM, item, 1390 "a tunnel is already present"); 1391 /* 1392 * Verify only UDPv4 is present as defined in 1393 * https://tools.ietf.org/html/rfc7348 1394 */ 1395 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 1396 return rte_flow_error_set(error, EINVAL, 1397 RTE_FLOW_ERROR_TYPE_ITEM, item, 1398 "no outer UDP layer found"); 1399 if (!mask) 1400 mask = &rte_flow_item_vxlan_mask; 1401 ret = mlx5_flow_item_acceptable 1402 (item, (const uint8_t *)mask, 1403 (const uint8_t *)&rte_flow_item_vxlan_mask, 1404 sizeof(struct rte_flow_item_vxlan), 1405 error); 1406 if (ret < 0) 1407 return ret; 1408 if (spec) { 1409 memcpy(&id.vni[1], spec->vni, 3); 1410 vlan_id = id.vlan_id; 1411 memcpy(&id.vni[1], mask->vni, 3); 1412 vlan_id &= id.vlan_id; 1413 } 1414 /* 1415 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if 1416 * only this layer is defined in the Verbs specification it is 1417 * interpreted as wildcard and all packets will match this 1418 * rule, if it follows a full stack layer (ex: eth / ipv4 / 1419 * udp), all packets matching the layers before will also 1420 * match this rule. To avoid such situation, VNI 0 is 1421 * currently refused. 1422 */ 1423 if (!vlan_id) 1424 return rte_flow_error_set(error, ENOTSUP, 1425 RTE_FLOW_ERROR_TYPE_ITEM, item, 1426 "VXLAN vni cannot be 0"); 1427 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 1428 return rte_flow_error_set(error, ENOTSUP, 1429 RTE_FLOW_ERROR_TYPE_ITEM, item, 1430 "VXLAN tunnel must be fully defined"); 1431 return 0; 1432 } 1433 1434 /** 1435 * Validate VXLAN_GPE item. 1436 * 1437 * @param[in] item 1438 * Item specification. 1439 * @param[in] item_flags 1440 * Bit-fields that holds the items detected until now. 1441 * @param[in] priv 1442 * Pointer to the private data structure. 1443 * @param[in] target_protocol 1444 * The next protocol in the previous item. 1445 * @param[out] error 1446 * Pointer to error structure. 1447 * 1448 * @return 1449 * 0 on success, a negative errno value otherwise and rte_errno is set. 1450 */ 1451 int 1452 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item, 1453 uint64_t item_flags, 1454 struct rte_eth_dev *dev, 1455 struct rte_flow_error *error) 1456 { 1457 struct priv *priv = dev->data->dev_private; 1458 const struct rte_flow_item_vxlan_gpe *spec = item->spec; 1459 const struct rte_flow_item_vxlan_gpe *mask = item->mask; 1460 int ret; 1461 union vni { 1462 uint32_t vlan_id; 1463 uint8_t vni[4]; 1464 } id = { .vlan_id = 0, }; 1465 uint32_t vlan_id = 0; 1466 1467 if (!priv->config.l3_vxlan_en) 1468 return rte_flow_error_set(error, ENOTSUP, 1469 RTE_FLOW_ERROR_TYPE_ITEM, item, 1470 "L3 VXLAN is not enabled by device" 1471 " parameter and/or not configured in" 1472 " firmware"); 1473 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1474 return rte_flow_error_set(error, ENOTSUP, 1475 RTE_FLOW_ERROR_TYPE_ITEM, item, 1476 "a tunnel is already present"); 1477 /* 1478 * Verify only UDPv4 is present as defined in 1479 * https://tools.ietf.org/html/rfc7348 1480 */ 1481 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 1482 return rte_flow_error_set(error, EINVAL, 1483 RTE_FLOW_ERROR_TYPE_ITEM, item, 1484 "no outer UDP layer found"); 1485 if (!mask) 1486 mask = &rte_flow_item_vxlan_gpe_mask; 1487 ret = mlx5_flow_item_acceptable 1488 (item, (const uint8_t *)mask, 1489 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask, 1490 sizeof(struct rte_flow_item_vxlan_gpe), 1491 error); 1492 if (ret < 0) 1493 return ret; 1494 if (spec) { 1495 if (spec->protocol) 1496 return rte_flow_error_set(error, ENOTSUP, 1497 RTE_FLOW_ERROR_TYPE_ITEM, 1498 item, 1499 "VxLAN-GPE protocol" 1500 " not supported"); 1501 memcpy(&id.vni[1], spec->vni, 3); 1502 vlan_id = id.vlan_id; 1503 memcpy(&id.vni[1], mask->vni, 3); 1504 vlan_id &= id.vlan_id; 1505 } 1506 /* 1507 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this 1508 * layer is defined in the Verbs specification it is interpreted as 1509 * wildcard and all packets will match this rule, if it follows a full 1510 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers 1511 * before will also match this rule. To avoid such situation, VNI 0 1512 * is currently refused. 1513 */ 1514 if (!vlan_id) 1515 return rte_flow_error_set(error, ENOTSUP, 1516 RTE_FLOW_ERROR_TYPE_ITEM, item, 1517 "VXLAN-GPE vni cannot be 0"); 1518 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 1519 return rte_flow_error_set(error, ENOTSUP, 1520 RTE_FLOW_ERROR_TYPE_ITEM, item, 1521 "VXLAN-GPE tunnel must be fully" 1522 " defined"); 1523 return 0; 1524 } 1525 1526 /** 1527 * Validate GRE item. 1528 * 1529 * @param[in] item 1530 * Item specification. 1531 * @param[in] item_flags 1532 * Bit flags to mark detected items. 1533 * @param[in] target_protocol 1534 * The next protocol in the previous item. 1535 * @param[out] error 1536 * Pointer to error structure. 1537 * 1538 * @return 1539 * 0 on success, a negative errno value otherwise and rte_errno is set. 1540 */ 1541 int 1542 mlx5_flow_validate_item_gre(const struct rte_flow_item *item, 1543 uint64_t item_flags, 1544 uint8_t target_protocol, 1545 struct rte_flow_error *error) 1546 { 1547 const struct rte_flow_item_gre *spec __rte_unused = item->spec; 1548 const struct rte_flow_item_gre *mask = item->mask; 1549 int ret; 1550 1551 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 1552 return rte_flow_error_set(error, EINVAL, 1553 RTE_FLOW_ERROR_TYPE_ITEM, item, 1554 "protocol filtering not compatible" 1555 " with this GRE layer"); 1556 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1557 return rte_flow_error_set(error, ENOTSUP, 1558 RTE_FLOW_ERROR_TYPE_ITEM, item, 1559 "a tunnel is already present"); 1560 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 1561 return rte_flow_error_set(error, ENOTSUP, 1562 RTE_FLOW_ERROR_TYPE_ITEM, item, 1563 "L3 Layer is missing"); 1564 if (!mask) 1565 mask = &rte_flow_item_gre_mask; 1566 ret = mlx5_flow_item_acceptable 1567 (item, (const uint8_t *)mask, 1568 (const uint8_t *)&rte_flow_item_gre_mask, 1569 sizeof(struct rte_flow_item_gre), error); 1570 if (ret < 0) 1571 return ret; 1572 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT 1573 if (spec && (spec->protocol & mask->protocol)) 1574 return rte_flow_error_set(error, ENOTSUP, 1575 RTE_FLOW_ERROR_TYPE_ITEM, item, 1576 "without MPLS support the" 1577 " specification cannot be used for" 1578 " filtering"); 1579 #endif 1580 return 0; 1581 } 1582 1583 /** 1584 * Validate MPLS item. 1585 * 1586 * @param[in] item 1587 * Item specification. 1588 * @param[in] item_flags 1589 * Bit-fields that holds the items detected until now. 1590 * @param[in] target_protocol 1591 * The next protocol in the previous item. 1592 * @param[out] error 1593 * Pointer to error structure. 1594 * 1595 * @return 1596 * 0 on success, a negative errno value otherwise and rte_errno is set. 1597 */ 1598 int 1599 mlx5_flow_validate_item_mpls(const struct rte_flow_item *item __rte_unused, 1600 uint64_t item_flags __rte_unused, 1601 uint8_t target_protocol __rte_unused, 1602 struct rte_flow_error *error) 1603 { 1604 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT 1605 const struct rte_flow_item_mpls *mask = item->mask; 1606 int ret; 1607 1608 if (target_protocol != 0xff && target_protocol != IPPROTO_MPLS) 1609 return rte_flow_error_set(error, EINVAL, 1610 RTE_FLOW_ERROR_TYPE_ITEM, item, 1611 "protocol filtering not compatible" 1612 " with MPLS layer"); 1613 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1614 return rte_flow_error_set(error, ENOTSUP, 1615 RTE_FLOW_ERROR_TYPE_ITEM, item, 1616 "a tunnel is already" 1617 " present"); 1618 if (!mask) 1619 mask = &rte_flow_item_mpls_mask; 1620 ret = mlx5_flow_item_acceptable 1621 (item, (const uint8_t *)mask, 1622 (const uint8_t *)&rte_flow_item_mpls_mask, 1623 sizeof(struct rte_flow_item_mpls), error); 1624 if (ret < 0) 1625 return ret; 1626 return 0; 1627 #endif 1628 return rte_flow_error_set(error, ENOTSUP, 1629 RTE_FLOW_ERROR_TYPE_ITEM, item, 1630 "MPLS is not supported by Verbs, please" 1631 " update."); 1632 } 1633 1634 static int 1635 flow_null_validate(struct rte_eth_dev *dev __rte_unused, 1636 const struct rte_flow_attr *attr __rte_unused, 1637 const struct rte_flow_item items[] __rte_unused, 1638 const struct rte_flow_action actions[] __rte_unused, 1639 struct rte_flow_error *error __rte_unused) 1640 { 1641 rte_errno = ENOTSUP; 1642 return -rte_errno; 1643 } 1644 1645 static struct mlx5_flow * 1646 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused, 1647 const struct rte_flow_item items[] __rte_unused, 1648 const struct rte_flow_action actions[] __rte_unused, 1649 uint64_t *item_flags __rte_unused, 1650 uint64_t *action_flags __rte_unused, 1651 struct rte_flow_error *error __rte_unused) 1652 { 1653 rte_errno = ENOTSUP; 1654 return NULL; 1655 } 1656 1657 static int 1658 flow_null_translate(struct rte_eth_dev *dev __rte_unused, 1659 struct mlx5_flow *dev_flow __rte_unused, 1660 const struct rte_flow_attr *attr __rte_unused, 1661 const struct rte_flow_item items[] __rte_unused, 1662 const struct rte_flow_action actions[] __rte_unused, 1663 struct rte_flow_error *error __rte_unused) 1664 { 1665 rte_errno = ENOTSUP; 1666 return -rte_errno; 1667 } 1668 1669 static int 1670 flow_null_apply(struct rte_eth_dev *dev __rte_unused, 1671 struct rte_flow *flow __rte_unused, 1672 struct rte_flow_error *error __rte_unused) 1673 { 1674 rte_errno = ENOTSUP; 1675 return -rte_errno; 1676 } 1677 1678 static void 1679 flow_null_remove(struct rte_eth_dev *dev __rte_unused, 1680 struct rte_flow *flow __rte_unused) 1681 { 1682 } 1683 1684 static void 1685 flow_null_destroy(struct rte_eth_dev *dev __rte_unused, 1686 struct rte_flow *flow __rte_unused) 1687 { 1688 } 1689 1690 static int 1691 flow_null_query(struct rte_eth_dev *dev __rte_unused, 1692 struct rte_flow *flow __rte_unused, 1693 const struct rte_flow_action *actions __rte_unused, 1694 void *data __rte_unused, 1695 struct rte_flow_error *error __rte_unused) 1696 { 1697 rte_errno = ENOTSUP; 1698 return -rte_errno; 1699 } 1700 1701 /* Void driver to protect from null pointer reference. */ 1702 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = { 1703 .validate = flow_null_validate, 1704 .prepare = flow_null_prepare, 1705 .translate = flow_null_translate, 1706 .apply = flow_null_apply, 1707 .remove = flow_null_remove, 1708 .destroy = flow_null_destroy, 1709 .query = flow_null_query, 1710 }; 1711 1712 /** 1713 * Select flow driver type according to flow attributes and device 1714 * configuration. 1715 * 1716 * @param[in] dev 1717 * Pointer to the dev structure. 1718 * @param[in] attr 1719 * Pointer to the flow attributes. 1720 * 1721 * @return 1722 * flow driver type, MLX5_FLOW_TYPE_MAX otherwise. 1723 */ 1724 static enum mlx5_flow_drv_type 1725 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr) 1726 { 1727 struct priv *priv = dev->data->dev_private; 1728 enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX; 1729 1730 if (attr->transfer) 1731 type = MLX5_FLOW_TYPE_TCF; 1732 else 1733 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV : 1734 MLX5_FLOW_TYPE_VERBS; 1735 return type; 1736 } 1737 1738 #define flow_get_drv_ops(type) flow_drv_ops[type] 1739 1740 /** 1741 * Flow driver validation API. This abstracts calling driver specific functions. 1742 * The type of flow driver is determined according to flow attributes. 1743 * 1744 * @param[in] dev 1745 * Pointer to the dev structure. 1746 * @param[in] attr 1747 * Pointer to the flow attributes. 1748 * @param[in] items 1749 * Pointer to the list of items. 1750 * @param[in] actions 1751 * Pointer to the list of actions. 1752 * @param[out] error 1753 * Pointer to the error structure. 1754 * 1755 * @return 1756 * 0 on success, a negative errno value otherwise and rte_ernno is set. 1757 */ 1758 static inline int 1759 flow_drv_validate(struct rte_eth_dev *dev, 1760 const struct rte_flow_attr *attr, 1761 const struct rte_flow_item items[], 1762 const struct rte_flow_action actions[], 1763 struct rte_flow_error *error) 1764 { 1765 const struct mlx5_flow_driver_ops *fops; 1766 enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr); 1767 1768 fops = flow_get_drv_ops(type); 1769 return fops->validate(dev, attr, items, actions, error); 1770 } 1771 1772 /** 1773 * Flow driver preparation API. This abstracts calling driver specific 1774 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 1775 * calculates the size of memory required for device flow, allocates the memory, 1776 * initializes the device flow and returns the pointer. 1777 * 1778 * @param[in] attr 1779 * Pointer to the flow attributes. 1780 * @param[in] items 1781 * Pointer to the list of items. 1782 * @param[in] actions 1783 * Pointer to the list of actions. 1784 * @param[out] item_flags 1785 * Pointer to bit mask of all items detected. 1786 * @param[out] action_flags 1787 * Pointer to bit mask of all actions detected. 1788 * @param[out] error 1789 * Pointer to the error structure. 1790 * 1791 * @return 1792 * Pointer to device flow on success, otherwise NULL and rte_ernno is set. 1793 */ 1794 static inline struct mlx5_flow * 1795 flow_drv_prepare(struct rte_flow *flow, 1796 const struct rte_flow_attr *attr, 1797 const struct rte_flow_item items[], 1798 const struct rte_flow_action actions[], 1799 uint64_t *item_flags, 1800 uint64_t *action_flags, 1801 struct rte_flow_error *error) 1802 { 1803 const struct mlx5_flow_driver_ops *fops; 1804 enum mlx5_flow_drv_type type = flow->drv_type; 1805 1806 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1807 fops = flow_get_drv_ops(type); 1808 return fops->prepare(attr, items, actions, item_flags, action_flags, 1809 error); 1810 } 1811 1812 /** 1813 * Flow driver translation API. This abstracts calling driver specific 1814 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 1815 * translates a generic flow into a driver flow. flow_drv_prepare() must 1816 * precede. 1817 * 1818 * 1819 * @param[in] dev 1820 * Pointer to the rte dev structure. 1821 * @param[in, out] dev_flow 1822 * Pointer to the mlx5 flow. 1823 * @param[in] attr 1824 * Pointer to the flow attributes. 1825 * @param[in] items 1826 * Pointer to the list of items. 1827 * @param[in] actions 1828 * Pointer to the list of actions. 1829 * @param[out] error 1830 * Pointer to the error structure. 1831 * 1832 * @return 1833 * 0 on success, a negative errno value otherwise and rte_ernno is set. 1834 */ 1835 static inline int 1836 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow, 1837 const struct rte_flow_attr *attr, 1838 const struct rte_flow_item items[], 1839 const struct rte_flow_action actions[], 1840 struct rte_flow_error *error) 1841 { 1842 const struct mlx5_flow_driver_ops *fops; 1843 enum mlx5_flow_drv_type type = dev_flow->flow->drv_type; 1844 1845 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1846 fops = flow_get_drv_ops(type); 1847 return fops->translate(dev, dev_flow, attr, items, actions, error); 1848 } 1849 1850 /** 1851 * Flow driver apply API. This abstracts calling driver specific functions. 1852 * Parent flow (rte_flow) should have driver type (drv_type). It applies 1853 * translated driver flows on to device. flow_drv_translate() must precede. 1854 * 1855 * @param[in] dev 1856 * Pointer to Ethernet device structure. 1857 * @param[in, out] flow 1858 * Pointer to flow structure. 1859 * @param[out] error 1860 * Pointer to error structure. 1861 * 1862 * @return 1863 * 0 on success, a negative errno value otherwise and rte_errno is set. 1864 */ 1865 static inline int 1866 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow, 1867 struct rte_flow_error *error) 1868 { 1869 const struct mlx5_flow_driver_ops *fops; 1870 enum mlx5_flow_drv_type type = flow->drv_type; 1871 1872 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1873 fops = flow_get_drv_ops(type); 1874 return fops->apply(dev, flow, error); 1875 } 1876 1877 /** 1878 * Flow driver remove API. This abstracts calling driver specific functions. 1879 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 1880 * on device. All the resources of the flow should be freed by calling 1881 * flow_dv_destroy(). 1882 * 1883 * @param[in] dev 1884 * Pointer to Ethernet device. 1885 * @param[in, out] flow 1886 * Pointer to flow structure. 1887 */ 1888 static inline void 1889 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow) 1890 { 1891 const struct mlx5_flow_driver_ops *fops; 1892 enum mlx5_flow_drv_type type = flow->drv_type; 1893 1894 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1895 fops = flow_get_drv_ops(type); 1896 fops->remove(dev, flow); 1897 } 1898 1899 /** 1900 * Flow driver destroy API. This abstracts calling driver specific functions. 1901 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 1902 * on device and releases resources of the flow. 1903 * 1904 * @param[in] dev 1905 * Pointer to Ethernet device. 1906 * @param[in, out] flow 1907 * Pointer to flow structure. 1908 */ 1909 static inline void 1910 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow) 1911 { 1912 const struct mlx5_flow_driver_ops *fops; 1913 enum mlx5_flow_drv_type type = flow->drv_type; 1914 1915 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1916 fops = flow_get_drv_ops(type); 1917 fops->destroy(dev, flow); 1918 } 1919 1920 /** 1921 * Validate a flow supported by the NIC. 1922 * 1923 * @see rte_flow_validate() 1924 * @see rte_flow_ops 1925 */ 1926 int 1927 mlx5_flow_validate(struct rte_eth_dev *dev, 1928 const struct rte_flow_attr *attr, 1929 const struct rte_flow_item items[], 1930 const struct rte_flow_action actions[], 1931 struct rte_flow_error *error) 1932 { 1933 int ret; 1934 1935 ret = flow_drv_validate(dev, attr, items, actions, error); 1936 if (ret < 0) 1937 return ret; 1938 return 0; 1939 } 1940 1941 /** 1942 * Get RSS action from the action list. 1943 * 1944 * @param[in] actions 1945 * Pointer to the list of actions. 1946 * 1947 * @return 1948 * Pointer to the RSS action if exist, else return NULL. 1949 */ 1950 static const struct rte_flow_action_rss* 1951 flow_get_rss_action(const struct rte_flow_action actions[]) 1952 { 1953 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 1954 switch (actions->type) { 1955 case RTE_FLOW_ACTION_TYPE_RSS: 1956 return (const struct rte_flow_action_rss *) 1957 actions->conf; 1958 default: 1959 break; 1960 } 1961 } 1962 return NULL; 1963 } 1964 1965 static unsigned int 1966 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level) 1967 { 1968 const struct rte_flow_item *item; 1969 unsigned int has_vlan = 0; 1970 1971 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 1972 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) { 1973 has_vlan = 1; 1974 break; 1975 } 1976 } 1977 if (has_vlan) 1978 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN : 1979 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN; 1980 return rss_level < 2 ? MLX5_EXPANSION_ROOT : 1981 MLX5_EXPANSION_ROOT_OUTER; 1982 } 1983 1984 /** 1985 * Create a flow and add it to @p list. 1986 * 1987 * @param dev 1988 * Pointer to Ethernet device. 1989 * @param list 1990 * Pointer to a TAILQ flow list. 1991 * @param[in] attr 1992 * Flow rule attributes. 1993 * @param[in] items 1994 * Pattern specification (list terminated by the END pattern item). 1995 * @param[in] actions 1996 * Associated actions (list terminated by the END action). 1997 * @param[out] error 1998 * Perform verbose error reporting if not NULL. 1999 * 2000 * @return 2001 * A flow on success, NULL otherwise and rte_errno is set. 2002 */ 2003 static struct rte_flow * 2004 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list, 2005 const struct rte_flow_attr *attr, 2006 const struct rte_flow_item items[], 2007 const struct rte_flow_action actions[], 2008 struct rte_flow_error *error) 2009 { 2010 struct rte_flow *flow = NULL; 2011 struct mlx5_flow *dev_flow; 2012 uint64_t action_flags = 0; 2013 uint64_t item_flags = 0; 2014 const struct rte_flow_action_rss *rss; 2015 union { 2016 struct rte_flow_expand_rss buf; 2017 uint8_t buffer[2048]; 2018 } expand_buffer; 2019 struct rte_flow_expand_rss *buf = &expand_buffer.buf; 2020 int ret; 2021 uint32_t i; 2022 uint32_t flow_size; 2023 2024 ret = flow_drv_validate(dev, attr, items, actions, error); 2025 if (ret < 0) 2026 return NULL; 2027 flow_size = sizeof(struct rte_flow); 2028 rss = flow_get_rss_action(actions); 2029 if (rss) 2030 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t), 2031 sizeof(void *)); 2032 else 2033 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *)); 2034 flow = rte_calloc(__func__, 1, flow_size, 0); 2035 flow->drv_type = flow_get_drv_type(dev, attr); 2036 assert(flow->drv_type > MLX5_FLOW_TYPE_MIN && 2037 flow->drv_type < MLX5_FLOW_TYPE_MAX); 2038 flow->queue = (void *)(flow + 1); 2039 LIST_INIT(&flow->dev_flows); 2040 if (rss && rss->types) { 2041 unsigned int graph_root; 2042 2043 graph_root = find_graph_root(items, rss->level); 2044 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer), 2045 items, rss->types, 2046 mlx5_support_expansion, 2047 graph_root); 2048 assert(ret > 0 && 2049 (unsigned int)ret < sizeof(expand_buffer.buffer)); 2050 } else { 2051 buf->entries = 1; 2052 buf->entry[0].pattern = (void *)(uintptr_t)items; 2053 } 2054 for (i = 0; i < buf->entries; ++i) { 2055 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern, 2056 actions, &item_flags, &action_flags, 2057 error); 2058 if (!dev_flow) 2059 goto error; 2060 dev_flow->flow = flow; 2061 dev_flow->layers = item_flags; 2062 /* Store actions once as expanded flows have same actions. */ 2063 if (i == 0) 2064 flow->actions = action_flags; 2065 assert(flow->actions == action_flags); 2066 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next); 2067 ret = flow_drv_translate(dev, dev_flow, attr, 2068 buf->entry[i].pattern, 2069 actions, error); 2070 if (ret < 0) 2071 goto error; 2072 } 2073 if (dev->data->dev_started) { 2074 ret = flow_drv_apply(dev, flow, error); 2075 if (ret < 0) 2076 goto error; 2077 } 2078 TAILQ_INSERT_TAIL(list, flow, next); 2079 flow_rxq_flags_set(dev, flow); 2080 return flow; 2081 error: 2082 ret = rte_errno; /* Save rte_errno before cleanup. */ 2083 assert(flow); 2084 flow_drv_destroy(dev, flow); 2085 rte_free(flow); 2086 rte_errno = ret; /* Restore rte_errno. */ 2087 return NULL; 2088 } 2089 2090 /** 2091 * Create a flow. 2092 * 2093 * @see rte_flow_create() 2094 * @see rte_flow_ops 2095 */ 2096 struct rte_flow * 2097 mlx5_flow_create(struct rte_eth_dev *dev, 2098 const struct rte_flow_attr *attr, 2099 const struct rte_flow_item items[], 2100 const struct rte_flow_action actions[], 2101 struct rte_flow_error *error) 2102 { 2103 return flow_list_create(dev, 2104 &((struct priv *)dev->data->dev_private)->flows, 2105 attr, items, actions, error); 2106 } 2107 2108 /** 2109 * Destroy a flow in a list. 2110 * 2111 * @param dev 2112 * Pointer to Ethernet device. 2113 * @param list 2114 * Pointer to a TAILQ flow list. 2115 * @param[in] flow 2116 * Flow to destroy. 2117 */ 2118 static void 2119 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list, 2120 struct rte_flow *flow) 2121 { 2122 flow_drv_destroy(dev, flow); 2123 TAILQ_REMOVE(list, flow, next); 2124 /* 2125 * Update RX queue flags only if port is started, otherwise it is 2126 * already clean. 2127 */ 2128 if (dev->data->dev_started) 2129 flow_rxq_flags_trim(dev, flow); 2130 rte_free(flow); 2131 } 2132 2133 /** 2134 * Destroy all flows. 2135 * 2136 * @param dev 2137 * Pointer to Ethernet device. 2138 * @param list 2139 * Pointer to a TAILQ flow list. 2140 */ 2141 void 2142 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list) 2143 { 2144 while (!TAILQ_EMPTY(list)) { 2145 struct rte_flow *flow; 2146 2147 flow = TAILQ_FIRST(list); 2148 flow_list_destroy(dev, list, flow); 2149 } 2150 } 2151 2152 /** 2153 * Remove all flows. 2154 * 2155 * @param dev 2156 * Pointer to Ethernet device. 2157 * @param list 2158 * Pointer to a TAILQ flow list. 2159 */ 2160 void 2161 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list) 2162 { 2163 struct rte_flow *flow; 2164 2165 TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next) 2166 flow_drv_remove(dev, flow); 2167 flow_rxq_flags_clear(dev); 2168 } 2169 2170 /** 2171 * Add all flows. 2172 * 2173 * @param dev 2174 * Pointer to Ethernet device. 2175 * @param list 2176 * Pointer to a TAILQ flow list. 2177 * 2178 * @return 2179 * 0 on success, a negative errno value otherwise and rte_errno is set. 2180 */ 2181 int 2182 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list) 2183 { 2184 struct rte_flow *flow; 2185 struct rte_flow_error error; 2186 int ret = 0; 2187 2188 TAILQ_FOREACH(flow, list, next) { 2189 ret = flow_drv_apply(dev, flow, &error); 2190 if (ret < 0) 2191 goto error; 2192 flow_rxq_flags_set(dev, flow); 2193 } 2194 return 0; 2195 error: 2196 ret = rte_errno; /* Save rte_errno before cleanup. */ 2197 mlx5_flow_stop(dev, list); 2198 rte_errno = ret; /* Restore rte_errno. */ 2199 return -rte_errno; 2200 } 2201 2202 /** 2203 * Verify the flow list is empty 2204 * 2205 * @param dev 2206 * Pointer to Ethernet device. 2207 * 2208 * @return the number of flows not released. 2209 */ 2210 int 2211 mlx5_flow_verify(struct rte_eth_dev *dev) 2212 { 2213 struct priv *priv = dev->data->dev_private; 2214 struct rte_flow *flow; 2215 int ret = 0; 2216 2217 TAILQ_FOREACH(flow, &priv->flows, next) { 2218 DRV_LOG(DEBUG, "port %u flow %p still referenced", 2219 dev->data->port_id, (void *)flow); 2220 ++ret; 2221 } 2222 return ret; 2223 } 2224 2225 /** 2226 * Enable a control flow configured from the control plane. 2227 * 2228 * @param dev 2229 * Pointer to Ethernet device. 2230 * @param eth_spec 2231 * An Ethernet flow spec to apply. 2232 * @param eth_mask 2233 * An Ethernet flow mask to apply. 2234 * @param vlan_spec 2235 * A VLAN flow spec to apply. 2236 * @param vlan_mask 2237 * A VLAN flow mask to apply. 2238 * 2239 * @return 2240 * 0 on success, a negative errno value otherwise and rte_errno is set. 2241 */ 2242 int 2243 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 2244 struct rte_flow_item_eth *eth_spec, 2245 struct rte_flow_item_eth *eth_mask, 2246 struct rte_flow_item_vlan *vlan_spec, 2247 struct rte_flow_item_vlan *vlan_mask) 2248 { 2249 struct priv *priv = dev->data->dev_private; 2250 const struct rte_flow_attr attr = { 2251 .ingress = 1, 2252 .priority = MLX5_FLOW_PRIO_RSVD, 2253 }; 2254 struct rte_flow_item items[] = { 2255 { 2256 .type = RTE_FLOW_ITEM_TYPE_ETH, 2257 .spec = eth_spec, 2258 .last = NULL, 2259 .mask = eth_mask, 2260 }, 2261 { 2262 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 2263 RTE_FLOW_ITEM_TYPE_END, 2264 .spec = vlan_spec, 2265 .last = NULL, 2266 .mask = vlan_mask, 2267 }, 2268 { 2269 .type = RTE_FLOW_ITEM_TYPE_END, 2270 }, 2271 }; 2272 uint16_t queue[priv->reta_idx_n]; 2273 struct rte_flow_action_rss action_rss = { 2274 .func = RTE_ETH_HASH_FUNCTION_DEFAULT, 2275 .level = 0, 2276 .types = priv->rss_conf.rss_hf, 2277 .key_len = priv->rss_conf.rss_key_len, 2278 .queue_num = priv->reta_idx_n, 2279 .key = priv->rss_conf.rss_key, 2280 .queue = queue, 2281 }; 2282 struct rte_flow_action actions[] = { 2283 { 2284 .type = RTE_FLOW_ACTION_TYPE_RSS, 2285 .conf = &action_rss, 2286 }, 2287 { 2288 .type = RTE_FLOW_ACTION_TYPE_END, 2289 }, 2290 }; 2291 struct rte_flow *flow; 2292 struct rte_flow_error error; 2293 unsigned int i; 2294 2295 if (!priv->reta_idx_n) { 2296 rte_errno = EINVAL; 2297 return -rte_errno; 2298 } 2299 for (i = 0; i != priv->reta_idx_n; ++i) 2300 queue[i] = (*priv->reta_idx)[i]; 2301 flow = flow_list_create(dev, &priv->ctrl_flows, 2302 &attr, items, actions, &error); 2303 if (!flow) 2304 return -rte_errno; 2305 return 0; 2306 } 2307 2308 /** 2309 * Enable a flow control configured from the control plane. 2310 * 2311 * @param dev 2312 * Pointer to Ethernet device. 2313 * @param eth_spec 2314 * An Ethernet flow spec to apply. 2315 * @param eth_mask 2316 * An Ethernet flow mask to apply. 2317 * 2318 * @return 2319 * 0 on success, a negative errno value otherwise and rte_errno is set. 2320 */ 2321 int 2322 mlx5_ctrl_flow(struct rte_eth_dev *dev, 2323 struct rte_flow_item_eth *eth_spec, 2324 struct rte_flow_item_eth *eth_mask) 2325 { 2326 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 2327 } 2328 2329 /** 2330 * Destroy a flow. 2331 * 2332 * @see rte_flow_destroy() 2333 * @see rte_flow_ops 2334 */ 2335 int 2336 mlx5_flow_destroy(struct rte_eth_dev *dev, 2337 struct rte_flow *flow, 2338 struct rte_flow_error *error __rte_unused) 2339 { 2340 struct priv *priv = dev->data->dev_private; 2341 2342 flow_list_destroy(dev, &priv->flows, flow); 2343 return 0; 2344 } 2345 2346 /** 2347 * Destroy all flows. 2348 * 2349 * @see rte_flow_flush() 2350 * @see rte_flow_ops 2351 */ 2352 int 2353 mlx5_flow_flush(struct rte_eth_dev *dev, 2354 struct rte_flow_error *error __rte_unused) 2355 { 2356 struct priv *priv = dev->data->dev_private; 2357 2358 mlx5_flow_list_flush(dev, &priv->flows); 2359 return 0; 2360 } 2361 2362 /** 2363 * Isolated mode. 2364 * 2365 * @see rte_flow_isolate() 2366 * @see rte_flow_ops 2367 */ 2368 int 2369 mlx5_flow_isolate(struct rte_eth_dev *dev, 2370 int enable, 2371 struct rte_flow_error *error) 2372 { 2373 struct priv *priv = dev->data->dev_private; 2374 2375 if (dev->data->dev_started) { 2376 rte_flow_error_set(error, EBUSY, 2377 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2378 NULL, 2379 "port must be stopped first"); 2380 return -rte_errno; 2381 } 2382 priv->isolated = !!enable; 2383 if (enable) 2384 dev->dev_ops = &mlx5_dev_ops_isolate; 2385 else 2386 dev->dev_ops = &mlx5_dev_ops; 2387 return 0; 2388 } 2389 2390 /** 2391 * Query a flow. 2392 * 2393 * @see rte_flow_query() 2394 * @see rte_flow_ops 2395 */ 2396 static int 2397 flow_drv_query(struct rte_eth_dev *dev, 2398 struct rte_flow *flow, 2399 const struct rte_flow_action *actions, 2400 void *data, 2401 struct rte_flow_error *error) 2402 { 2403 const struct mlx5_flow_driver_ops *fops; 2404 enum mlx5_flow_drv_type ftype = flow->drv_type; 2405 2406 assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX); 2407 fops = flow_get_drv_ops(ftype); 2408 2409 return fops->query(dev, flow, actions, data, error); 2410 } 2411 2412 /** 2413 * Query a flow. 2414 * 2415 * @see rte_flow_query() 2416 * @see rte_flow_ops 2417 */ 2418 int 2419 mlx5_flow_query(struct rte_eth_dev *dev, 2420 struct rte_flow *flow, 2421 const struct rte_flow_action *actions, 2422 void *data, 2423 struct rte_flow_error *error) 2424 { 2425 int ret; 2426 2427 ret = flow_drv_query(dev, flow, actions, data, error); 2428 if (ret < 0) 2429 return ret; 2430 return 0; 2431 } 2432 2433 /** 2434 * Convert a flow director filter to a generic flow. 2435 * 2436 * @param dev 2437 * Pointer to Ethernet device. 2438 * @param fdir_filter 2439 * Flow director filter to add. 2440 * @param attributes 2441 * Generic flow parameters structure. 2442 * 2443 * @return 2444 * 0 on success, a negative errno value otherwise and rte_errno is set. 2445 */ 2446 static int 2447 mlx5_fdir_filter_convert(struct rte_eth_dev *dev, 2448 const struct rte_eth_fdir_filter *fdir_filter, 2449 struct mlx5_fdir *attributes) 2450 { 2451 struct priv *priv = dev->data->dev_private; 2452 const struct rte_eth_fdir_input *input = &fdir_filter->input; 2453 const struct rte_eth_fdir_masks *mask = 2454 &dev->data->dev_conf.fdir_conf.mask; 2455 2456 /* Validate queue number. */ 2457 if (fdir_filter->action.rx_queue >= priv->rxqs_n) { 2458 DRV_LOG(ERR, "port %u invalid queue number %d", 2459 dev->data->port_id, fdir_filter->action.rx_queue); 2460 rte_errno = EINVAL; 2461 return -rte_errno; 2462 } 2463 attributes->attr.ingress = 1; 2464 attributes->items[0] = (struct rte_flow_item) { 2465 .type = RTE_FLOW_ITEM_TYPE_ETH, 2466 .spec = &attributes->l2, 2467 .mask = &attributes->l2_mask, 2468 }; 2469 switch (fdir_filter->action.behavior) { 2470 case RTE_ETH_FDIR_ACCEPT: 2471 attributes->actions[0] = (struct rte_flow_action){ 2472 .type = RTE_FLOW_ACTION_TYPE_QUEUE, 2473 .conf = &attributes->queue, 2474 }; 2475 break; 2476 case RTE_ETH_FDIR_REJECT: 2477 attributes->actions[0] = (struct rte_flow_action){ 2478 .type = RTE_FLOW_ACTION_TYPE_DROP, 2479 }; 2480 break; 2481 default: 2482 DRV_LOG(ERR, "port %u invalid behavior %d", 2483 dev->data->port_id, 2484 fdir_filter->action.behavior); 2485 rte_errno = ENOTSUP; 2486 return -rte_errno; 2487 } 2488 attributes->queue.index = fdir_filter->action.rx_queue; 2489 /* Handle L3. */ 2490 switch (fdir_filter->input.flow_type) { 2491 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2492 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2493 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2494 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2495 .src_addr = input->flow.ip4_flow.src_ip, 2496 .dst_addr = input->flow.ip4_flow.dst_ip, 2497 .time_to_live = input->flow.ip4_flow.ttl, 2498 .type_of_service = input->flow.ip4_flow.tos, 2499 }; 2500 attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){ 2501 .src_addr = mask->ipv4_mask.src_ip, 2502 .dst_addr = mask->ipv4_mask.dst_ip, 2503 .time_to_live = mask->ipv4_mask.ttl, 2504 .type_of_service = mask->ipv4_mask.tos, 2505 .next_proto_id = mask->ipv4_mask.proto, 2506 }; 2507 attributes->items[1] = (struct rte_flow_item){ 2508 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2509 .spec = &attributes->l3, 2510 .mask = &attributes->l3_mask, 2511 }; 2512 break; 2513 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2514 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2515 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2516 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2517 .hop_limits = input->flow.ipv6_flow.hop_limits, 2518 .proto = input->flow.ipv6_flow.proto, 2519 }; 2520 2521 memcpy(attributes->l3.ipv6.hdr.src_addr, 2522 input->flow.ipv6_flow.src_ip, 2523 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2524 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2525 input->flow.ipv6_flow.dst_ip, 2526 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2527 memcpy(attributes->l3_mask.ipv6.hdr.src_addr, 2528 mask->ipv6_mask.src_ip, 2529 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 2530 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr, 2531 mask->ipv6_mask.dst_ip, 2532 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 2533 attributes->items[1] = (struct rte_flow_item){ 2534 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2535 .spec = &attributes->l3, 2536 .mask = &attributes->l3_mask, 2537 }; 2538 break; 2539 default: 2540 DRV_LOG(ERR, "port %u invalid flow type%d", 2541 dev->data->port_id, fdir_filter->input.flow_type); 2542 rte_errno = ENOTSUP; 2543 return -rte_errno; 2544 } 2545 /* Handle L4. */ 2546 switch (fdir_filter->input.flow_type) { 2547 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2548 attributes->l4.udp.hdr = (struct udp_hdr){ 2549 .src_port = input->flow.udp4_flow.src_port, 2550 .dst_port = input->flow.udp4_flow.dst_port, 2551 }; 2552 attributes->l4_mask.udp.hdr = (struct udp_hdr){ 2553 .src_port = mask->src_port_mask, 2554 .dst_port = mask->dst_port_mask, 2555 }; 2556 attributes->items[2] = (struct rte_flow_item){ 2557 .type = RTE_FLOW_ITEM_TYPE_UDP, 2558 .spec = &attributes->l4, 2559 .mask = &attributes->l4_mask, 2560 }; 2561 break; 2562 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2563 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2564 .src_port = input->flow.tcp4_flow.src_port, 2565 .dst_port = input->flow.tcp4_flow.dst_port, 2566 }; 2567 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){ 2568 .src_port = mask->src_port_mask, 2569 .dst_port = mask->dst_port_mask, 2570 }; 2571 attributes->items[2] = (struct rte_flow_item){ 2572 .type = RTE_FLOW_ITEM_TYPE_TCP, 2573 .spec = &attributes->l4, 2574 .mask = &attributes->l4_mask, 2575 }; 2576 break; 2577 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2578 attributes->l4.udp.hdr = (struct udp_hdr){ 2579 .src_port = input->flow.udp6_flow.src_port, 2580 .dst_port = input->flow.udp6_flow.dst_port, 2581 }; 2582 attributes->l4_mask.udp.hdr = (struct udp_hdr){ 2583 .src_port = mask->src_port_mask, 2584 .dst_port = mask->dst_port_mask, 2585 }; 2586 attributes->items[2] = (struct rte_flow_item){ 2587 .type = RTE_FLOW_ITEM_TYPE_UDP, 2588 .spec = &attributes->l4, 2589 .mask = &attributes->l4_mask, 2590 }; 2591 break; 2592 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2593 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2594 .src_port = input->flow.tcp6_flow.src_port, 2595 .dst_port = input->flow.tcp6_flow.dst_port, 2596 }; 2597 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){ 2598 .src_port = mask->src_port_mask, 2599 .dst_port = mask->dst_port_mask, 2600 }; 2601 attributes->items[2] = (struct rte_flow_item){ 2602 .type = RTE_FLOW_ITEM_TYPE_TCP, 2603 .spec = &attributes->l4, 2604 .mask = &attributes->l4_mask, 2605 }; 2606 break; 2607 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2608 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2609 break; 2610 default: 2611 DRV_LOG(ERR, "port %u invalid flow type%d", 2612 dev->data->port_id, fdir_filter->input.flow_type); 2613 rte_errno = ENOTSUP; 2614 return -rte_errno; 2615 } 2616 return 0; 2617 } 2618 2619 /** 2620 * Add new flow director filter and store it in list. 2621 * 2622 * @param dev 2623 * Pointer to Ethernet device. 2624 * @param fdir_filter 2625 * Flow director filter to add. 2626 * 2627 * @return 2628 * 0 on success, a negative errno value otherwise and rte_errno is set. 2629 */ 2630 static int 2631 mlx5_fdir_filter_add(struct rte_eth_dev *dev, 2632 const struct rte_eth_fdir_filter *fdir_filter) 2633 { 2634 struct priv *priv = dev->data->dev_private; 2635 struct mlx5_fdir attributes = { 2636 .attr.group = 0, 2637 .l2_mask = { 2638 .dst.addr_bytes = "\x00\x00\x00\x00\x00\x00", 2639 .src.addr_bytes = "\x00\x00\x00\x00\x00\x00", 2640 .type = 0, 2641 }, 2642 }; 2643 struct rte_flow_error error; 2644 struct rte_flow *flow; 2645 int ret; 2646 2647 ret = mlx5_fdir_filter_convert(dev, fdir_filter, &attributes); 2648 if (ret) 2649 return ret; 2650 flow = flow_list_create(dev, &priv->flows, &attributes.attr, 2651 attributes.items, attributes.actions, &error); 2652 if (flow) { 2653 DRV_LOG(DEBUG, "port %u FDIR created %p", dev->data->port_id, 2654 (void *)flow); 2655 return 0; 2656 } 2657 return -rte_errno; 2658 } 2659 2660 /** 2661 * Delete specific filter. 2662 * 2663 * @param dev 2664 * Pointer to Ethernet device. 2665 * @param fdir_filter 2666 * Filter to be deleted. 2667 * 2668 * @return 2669 * 0 on success, a negative errno value otherwise and rte_errno is set. 2670 */ 2671 static int 2672 mlx5_fdir_filter_delete(struct rte_eth_dev *dev __rte_unused, 2673 const struct rte_eth_fdir_filter *fdir_filter 2674 __rte_unused) 2675 { 2676 rte_errno = ENOTSUP; 2677 return -rte_errno; 2678 } 2679 2680 /** 2681 * Update queue for specific filter. 2682 * 2683 * @param dev 2684 * Pointer to Ethernet device. 2685 * @param fdir_filter 2686 * Filter to be updated. 2687 * 2688 * @return 2689 * 0 on success, a negative errno value otherwise and rte_errno is set. 2690 */ 2691 static int 2692 mlx5_fdir_filter_update(struct rte_eth_dev *dev, 2693 const struct rte_eth_fdir_filter *fdir_filter) 2694 { 2695 int ret; 2696 2697 ret = mlx5_fdir_filter_delete(dev, fdir_filter); 2698 if (ret) 2699 return ret; 2700 return mlx5_fdir_filter_add(dev, fdir_filter); 2701 } 2702 2703 /** 2704 * Flush all filters. 2705 * 2706 * @param dev 2707 * Pointer to Ethernet device. 2708 */ 2709 static void 2710 mlx5_fdir_filter_flush(struct rte_eth_dev *dev) 2711 { 2712 struct priv *priv = dev->data->dev_private; 2713 2714 mlx5_flow_list_flush(dev, &priv->flows); 2715 } 2716 2717 /** 2718 * Get flow director information. 2719 * 2720 * @param dev 2721 * Pointer to Ethernet device. 2722 * @param[out] fdir_info 2723 * Resulting flow director information. 2724 */ 2725 static void 2726 mlx5_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info) 2727 { 2728 struct rte_eth_fdir_masks *mask = 2729 &dev->data->dev_conf.fdir_conf.mask; 2730 2731 fdir_info->mode = dev->data->dev_conf.fdir_conf.mode; 2732 fdir_info->guarant_spc = 0; 2733 rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask)); 2734 fdir_info->max_flexpayload = 0; 2735 fdir_info->flow_types_mask[0] = 0; 2736 fdir_info->flex_payload_unit = 0; 2737 fdir_info->max_flex_payload_segment_num = 0; 2738 fdir_info->flex_payload_limit = 0; 2739 memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf)); 2740 } 2741 2742 /** 2743 * Deal with flow director operations. 2744 * 2745 * @param dev 2746 * Pointer to Ethernet device. 2747 * @param filter_op 2748 * Operation to perform. 2749 * @param arg 2750 * Pointer to operation-specific structure. 2751 * 2752 * @return 2753 * 0 on success, a negative errno value otherwise and rte_errno is set. 2754 */ 2755 static int 2756 mlx5_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op, 2757 void *arg) 2758 { 2759 enum rte_fdir_mode fdir_mode = 2760 dev->data->dev_conf.fdir_conf.mode; 2761 2762 if (filter_op == RTE_ETH_FILTER_NOP) 2763 return 0; 2764 if (fdir_mode != RTE_FDIR_MODE_PERFECT && 2765 fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2766 DRV_LOG(ERR, "port %u flow director mode %d not supported", 2767 dev->data->port_id, fdir_mode); 2768 rte_errno = EINVAL; 2769 return -rte_errno; 2770 } 2771 switch (filter_op) { 2772 case RTE_ETH_FILTER_ADD: 2773 return mlx5_fdir_filter_add(dev, arg); 2774 case RTE_ETH_FILTER_UPDATE: 2775 return mlx5_fdir_filter_update(dev, arg); 2776 case RTE_ETH_FILTER_DELETE: 2777 return mlx5_fdir_filter_delete(dev, arg); 2778 case RTE_ETH_FILTER_FLUSH: 2779 mlx5_fdir_filter_flush(dev); 2780 break; 2781 case RTE_ETH_FILTER_INFO: 2782 mlx5_fdir_info_get(dev, arg); 2783 break; 2784 default: 2785 DRV_LOG(DEBUG, "port %u unknown operation %u", 2786 dev->data->port_id, filter_op); 2787 rte_errno = EINVAL; 2788 return -rte_errno; 2789 } 2790 return 0; 2791 } 2792 2793 /** 2794 * Manage filter operations. 2795 * 2796 * @param dev 2797 * Pointer to Ethernet device structure. 2798 * @param filter_type 2799 * Filter type. 2800 * @param filter_op 2801 * Operation to perform. 2802 * @param arg 2803 * Pointer to operation-specific structure. 2804 * 2805 * @return 2806 * 0 on success, a negative errno value otherwise and rte_errno is set. 2807 */ 2808 int 2809 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 2810 enum rte_filter_type filter_type, 2811 enum rte_filter_op filter_op, 2812 void *arg) 2813 { 2814 switch (filter_type) { 2815 case RTE_ETH_FILTER_GENERIC: 2816 if (filter_op != RTE_ETH_FILTER_GET) { 2817 rte_errno = EINVAL; 2818 return -rte_errno; 2819 } 2820 *(const void **)arg = &mlx5_flow_ops; 2821 return 0; 2822 case RTE_ETH_FILTER_FDIR: 2823 return mlx5_fdir_ctrl_func(dev, filter_op, arg); 2824 default: 2825 DRV_LOG(ERR, "port %u filter type (%d) not supported", 2826 dev->data->port_id, filter_type); 2827 rte_errno = ENOTSUP; 2828 return -rte_errno; 2829 } 2830 return 0; 2831 } 2832