xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 3c84f34eea712483b34b57262ab25efd4def2ff9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29 
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46 
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48 
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57 
58 enum mlx5_expansion {
59 	MLX5_EXPANSION_ROOT,
60 	MLX5_EXPANSION_ROOT_OUTER,
61 	MLX5_EXPANSION_ROOT_ETH_VLAN,
62 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63 	MLX5_EXPANSION_OUTER_ETH,
64 	MLX5_EXPANSION_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_VLAN,
66 	MLX5_EXPANSION_OUTER_IPV4,
67 	MLX5_EXPANSION_OUTER_IPV4_UDP,
68 	MLX5_EXPANSION_OUTER_IPV4_TCP,
69 	MLX5_EXPANSION_OUTER_IPV6,
70 	MLX5_EXPANSION_OUTER_IPV6_UDP,
71 	MLX5_EXPANSION_OUTER_IPV6_TCP,
72 	MLX5_EXPANSION_VXLAN,
73 	MLX5_EXPANSION_VXLAN_GPE,
74 	MLX5_EXPANSION_GRE,
75 	MLX5_EXPANSION_MPLS,
76 	MLX5_EXPANSION_ETH,
77 	MLX5_EXPANSION_ETH_VLAN,
78 	MLX5_EXPANSION_VLAN,
79 	MLX5_EXPANSION_IPV4,
80 	MLX5_EXPANSION_IPV4_UDP,
81 	MLX5_EXPANSION_IPV4_TCP,
82 	MLX5_EXPANSION_IPV6,
83 	MLX5_EXPANSION_IPV6_UDP,
84 	MLX5_EXPANSION_IPV6_TCP,
85 };
86 
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89 	[MLX5_EXPANSION_ROOT] = {
90 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91 						 MLX5_EXPANSION_IPV4,
92 						 MLX5_EXPANSION_IPV6),
93 		.type = RTE_FLOW_ITEM_TYPE_END,
94 	},
95 	[MLX5_EXPANSION_ROOT_OUTER] = {
96 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97 						 MLX5_EXPANSION_OUTER_IPV4,
98 						 MLX5_EXPANSION_OUTER_IPV6),
99 		.type = RTE_FLOW_ITEM_TYPE_END,
100 	},
101 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103 		.type = RTE_FLOW_ITEM_TYPE_END,
104 	},
105 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107 		.type = RTE_FLOW_ITEM_TYPE_END,
108 	},
109 	[MLX5_EXPANSION_OUTER_ETH] = {
110 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111 						 MLX5_EXPANSION_OUTER_IPV6,
112 						 MLX5_EXPANSION_MPLS),
113 		.type = RTE_FLOW_ITEM_TYPE_ETH,
114 		.rss_types = 0,
115 	},
116 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118 		.type = RTE_FLOW_ITEM_TYPE_ETH,
119 		.rss_types = 0,
120 	},
121 	[MLX5_EXPANSION_OUTER_VLAN] = {
122 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123 						 MLX5_EXPANSION_OUTER_IPV6),
124 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
125 	},
126 	[MLX5_EXPANSION_OUTER_IPV4] = {
127 		.next = RTE_FLOW_EXPAND_RSS_NEXT
128 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
129 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
130 			 MLX5_EXPANSION_GRE,
131 			 MLX5_EXPANSION_IPV4,
132 			 MLX5_EXPANSION_IPV6),
133 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
134 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135 			ETH_RSS_NONFRAG_IPV4_OTHER,
136 	},
137 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139 						 MLX5_EXPANSION_VXLAN_GPE),
140 		.type = RTE_FLOW_ITEM_TYPE_UDP,
141 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142 	},
143 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144 		.type = RTE_FLOW_ITEM_TYPE_TCP,
145 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146 	},
147 	[MLX5_EXPANSION_OUTER_IPV6] = {
148 		.next = RTE_FLOW_EXPAND_RSS_NEXT
149 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
150 			 MLX5_EXPANSION_OUTER_IPV6_TCP,
151 			 MLX5_EXPANSION_IPV4,
152 			 MLX5_EXPANSION_IPV6),
153 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
154 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
155 			ETH_RSS_NONFRAG_IPV6_OTHER,
156 	},
157 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
158 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
159 						 MLX5_EXPANSION_VXLAN_GPE),
160 		.type = RTE_FLOW_ITEM_TYPE_UDP,
161 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
162 	},
163 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
164 		.type = RTE_FLOW_ITEM_TYPE_TCP,
165 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
166 	},
167 	[MLX5_EXPANSION_VXLAN] = {
168 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
169 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
170 	},
171 	[MLX5_EXPANSION_VXLAN_GPE] = {
172 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
173 						 MLX5_EXPANSION_IPV4,
174 						 MLX5_EXPANSION_IPV6),
175 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
176 	},
177 	[MLX5_EXPANSION_GRE] = {
178 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
179 		.type = RTE_FLOW_ITEM_TYPE_GRE,
180 	},
181 	[MLX5_EXPANSION_MPLS] = {
182 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
183 						 MLX5_EXPANSION_IPV6),
184 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
185 	},
186 	[MLX5_EXPANSION_ETH] = {
187 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
188 						 MLX5_EXPANSION_IPV6),
189 		.type = RTE_FLOW_ITEM_TYPE_ETH,
190 	},
191 	[MLX5_EXPANSION_ETH_VLAN] = {
192 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
193 		.type = RTE_FLOW_ITEM_TYPE_ETH,
194 	},
195 	[MLX5_EXPANSION_VLAN] = {
196 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
197 						 MLX5_EXPANSION_IPV6),
198 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
199 	},
200 	[MLX5_EXPANSION_IPV4] = {
201 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
202 						 MLX5_EXPANSION_IPV4_TCP),
203 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
204 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
205 			ETH_RSS_NONFRAG_IPV4_OTHER,
206 	},
207 	[MLX5_EXPANSION_IPV4_UDP] = {
208 		.type = RTE_FLOW_ITEM_TYPE_UDP,
209 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
210 	},
211 	[MLX5_EXPANSION_IPV4_TCP] = {
212 		.type = RTE_FLOW_ITEM_TYPE_TCP,
213 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
214 	},
215 	[MLX5_EXPANSION_IPV6] = {
216 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
217 						 MLX5_EXPANSION_IPV6_TCP),
218 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
219 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
220 			ETH_RSS_NONFRAG_IPV6_OTHER,
221 	},
222 	[MLX5_EXPANSION_IPV6_UDP] = {
223 		.type = RTE_FLOW_ITEM_TYPE_UDP,
224 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
225 	},
226 	[MLX5_EXPANSION_IPV6_TCP] = {
227 		.type = RTE_FLOW_ITEM_TYPE_TCP,
228 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
229 	},
230 };
231 
232 static const struct rte_flow_ops mlx5_flow_ops = {
233 	.validate = mlx5_flow_validate,
234 	.create = mlx5_flow_create,
235 	.destroy = mlx5_flow_destroy,
236 	.flush = mlx5_flow_flush,
237 	.isolate = mlx5_flow_isolate,
238 	.query = mlx5_flow_query,
239 };
240 
241 /* Convert FDIR request to Generic flow. */
242 struct mlx5_fdir {
243 	struct rte_flow_attr attr;
244 	struct rte_flow_item items[4];
245 	struct rte_flow_item_eth l2;
246 	struct rte_flow_item_eth l2_mask;
247 	union {
248 		struct rte_flow_item_ipv4 ipv4;
249 		struct rte_flow_item_ipv6 ipv6;
250 	} l3;
251 	union {
252 		struct rte_flow_item_ipv4 ipv4;
253 		struct rte_flow_item_ipv6 ipv6;
254 	} l3_mask;
255 	union {
256 		struct rte_flow_item_udp udp;
257 		struct rte_flow_item_tcp tcp;
258 	} l4;
259 	union {
260 		struct rte_flow_item_udp udp;
261 		struct rte_flow_item_tcp tcp;
262 	} l4_mask;
263 	struct rte_flow_action actions[2];
264 	struct rte_flow_action_queue queue;
265 };
266 
267 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
268 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
269 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
270 };
271 
272 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
273 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
274 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
275 	{ 9, 10, 11 }, { 12, 13, 14 },
276 };
277 
278 /* Tunnel information. */
279 struct mlx5_flow_tunnel_info {
280 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
281 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
282 };
283 
284 static struct mlx5_flow_tunnel_info tunnels_info[] = {
285 	{
286 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
287 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
288 	},
289 	{
290 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
291 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
292 	},
293 	{
294 		.tunnel = MLX5_FLOW_LAYER_GRE,
295 		.ptype = RTE_PTYPE_TUNNEL_GRE,
296 	},
297 	{
298 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
299 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
300 	},
301 	{
302 		.tunnel = MLX5_FLOW_LAYER_MPLS,
303 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
304 	},
305 	{
306 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
307 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
308 	},
309 	{
310 		.tunnel = MLX5_FLOW_LAYER_IPIP,
311 		.ptype = RTE_PTYPE_TUNNEL_IP,
312 	},
313 	{
314 		.tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
315 		.ptype = RTE_PTYPE_TUNNEL_IP,
316 	},
317 };
318 
319 enum mlx5_feature_name {
320 	MLX5_HAIRPIN_RX,
321 	MLX5_HAIRPIN_TX,
322 	MLX5_APPLICATION,
323 };
324 
325 /**
326  * Translate tag ID to register.
327  *
328  * @param[in] dev
329  *   Pointer to the Ethernet device structure.
330  * @param[in] feature
331  *   The feature that request the register.
332  * @param[in] id
333  *   The request register ID.
334  * @param[out] error
335  *   Error description in case of any.
336  *
337  * @return
338  *   The request register on success, a negative errno
339  *   value otherwise and rte_errno is set.
340  */
341 __rte_unused
342 static enum modify_reg flow_get_reg_id(struct rte_eth_dev *dev,
343 				       enum mlx5_feature_name feature,
344 				       uint32_t id,
345 				       struct rte_flow_error *error)
346 {
347 	static enum modify_reg id2reg[] = {
348 		[0] = REG_A,
349 		[1] = REG_C_2,
350 		[2] = REG_C_3,
351 		[3] = REG_C_4,
352 		[4] = REG_B,};
353 
354 	dev = (void *)dev;
355 	switch (feature) {
356 	case MLX5_HAIRPIN_RX:
357 		return REG_B;
358 	case MLX5_HAIRPIN_TX:
359 		return REG_A;
360 	case MLX5_APPLICATION:
361 		if (id > 4)
362 			return rte_flow_error_set(error, EINVAL,
363 						  RTE_FLOW_ERROR_TYPE_ITEM,
364 						  NULL, "invalid tag id");
365 		return id2reg[id];
366 	}
367 	return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
368 				  NULL, "invalid feature name");
369 }
370 
371 /**
372  * Discover the maximum number of priority available.
373  *
374  * @param[in] dev
375  *   Pointer to the Ethernet device structure.
376  *
377  * @return
378  *   number of supported flow priority on success, a negative errno
379  *   value otherwise and rte_errno is set.
380  */
381 int
382 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
383 {
384 	struct mlx5_priv *priv = dev->data->dev_private;
385 	struct {
386 		struct ibv_flow_attr attr;
387 		struct ibv_flow_spec_eth eth;
388 		struct ibv_flow_spec_action_drop drop;
389 	} flow_attr = {
390 		.attr = {
391 			.num_of_specs = 2,
392 			.port = (uint8_t)priv->ibv_port,
393 		},
394 		.eth = {
395 			.type = IBV_FLOW_SPEC_ETH,
396 			.size = sizeof(struct ibv_flow_spec_eth),
397 		},
398 		.drop = {
399 			.size = sizeof(struct ibv_flow_spec_action_drop),
400 			.type = IBV_FLOW_SPEC_ACTION_DROP,
401 		},
402 	};
403 	struct ibv_flow *flow;
404 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
405 	uint16_t vprio[] = { 8, 16 };
406 	int i;
407 	int priority = 0;
408 
409 	if (!drop) {
410 		rte_errno = ENOTSUP;
411 		return -rte_errno;
412 	}
413 	for (i = 0; i != RTE_DIM(vprio); i++) {
414 		flow_attr.attr.priority = vprio[i] - 1;
415 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
416 		if (!flow)
417 			break;
418 		claim_zero(mlx5_glue->destroy_flow(flow));
419 		priority = vprio[i];
420 	}
421 	mlx5_hrxq_drop_release(dev);
422 	switch (priority) {
423 	case 8:
424 		priority = RTE_DIM(priority_map_3);
425 		break;
426 	case 16:
427 		priority = RTE_DIM(priority_map_5);
428 		break;
429 	default:
430 		rte_errno = ENOTSUP;
431 		DRV_LOG(ERR,
432 			"port %u verbs maximum priority: %d expected 8/16",
433 			dev->data->port_id, priority);
434 		return -rte_errno;
435 	}
436 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
437 		dev->data->port_id, priority);
438 	return priority;
439 }
440 
441 /**
442  * Adjust flow priority based on the highest layer and the request priority.
443  *
444  * @param[in] dev
445  *   Pointer to the Ethernet device structure.
446  * @param[in] priority
447  *   The rule base priority.
448  * @param[in] subpriority
449  *   The priority based on the items.
450  *
451  * @return
452  *   The new priority.
453  */
454 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
455 				   uint32_t subpriority)
456 {
457 	uint32_t res = 0;
458 	struct mlx5_priv *priv = dev->data->dev_private;
459 
460 	switch (priv->config.flow_prio) {
461 	case RTE_DIM(priority_map_3):
462 		res = priority_map_3[priority][subpriority];
463 		break;
464 	case RTE_DIM(priority_map_5):
465 		res = priority_map_5[priority][subpriority];
466 		break;
467 	}
468 	return  res;
469 }
470 
471 /**
472  * Verify the @p item specifications (spec, last, mask) are compatible with the
473  * NIC capabilities.
474  *
475  * @param[in] item
476  *   Item specification.
477  * @param[in] mask
478  *   @p item->mask or flow default bit-masks.
479  * @param[in] nic_mask
480  *   Bit-masks covering supported fields by the NIC to compare with user mask.
481  * @param[in] size
482  *   Bit-masks size in bytes.
483  * @param[out] error
484  *   Pointer to error structure.
485  *
486  * @return
487  *   0 on success, a negative errno value otherwise and rte_errno is set.
488  */
489 int
490 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
491 			  const uint8_t *mask,
492 			  const uint8_t *nic_mask,
493 			  unsigned int size,
494 			  struct rte_flow_error *error)
495 {
496 	unsigned int i;
497 
498 	assert(nic_mask);
499 	for (i = 0; i < size; ++i)
500 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
501 			return rte_flow_error_set(error, ENOTSUP,
502 						  RTE_FLOW_ERROR_TYPE_ITEM,
503 						  item,
504 						  "mask enables non supported"
505 						  " bits");
506 	if (!item->spec && (item->mask || item->last))
507 		return rte_flow_error_set(error, EINVAL,
508 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
509 					  "mask/last without a spec is not"
510 					  " supported");
511 	if (item->spec && item->last) {
512 		uint8_t spec[size];
513 		uint8_t last[size];
514 		unsigned int i;
515 		int ret;
516 
517 		for (i = 0; i < size; ++i) {
518 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
519 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
520 		}
521 		ret = memcmp(spec, last, size);
522 		if (ret != 0)
523 			return rte_flow_error_set(error, EINVAL,
524 						  RTE_FLOW_ERROR_TYPE_ITEM,
525 						  item,
526 						  "range is not valid");
527 	}
528 	return 0;
529 }
530 
531 /**
532  * Adjust the hash fields according to the @p flow information.
533  *
534  * @param[in] dev_flow.
535  *   Pointer to the mlx5_flow.
536  * @param[in] tunnel
537  *   1 when the hash field is for a tunnel item.
538  * @param[in] layer_types
539  *   ETH_RSS_* types.
540  * @param[in] hash_fields
541  *   Item hash fields.
542  *
543  * @return
544  *   The hash fields that should be used.
545  */
546 uint64_t
547 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
548 			    int tunnel __rte_unused, uint64_t layer_types,
549 			    uint64_t hash_fields)
550 {
551 	struct rte_flow *flow = dev_flow->flow;
552 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
553 	int rss_request_inner = flow->rss.level >= 2;
554 
555 	/* Check RSS hash level for tunnel. */
556 	if (tunnel && rss_request_inner)
557 		hash_fields |= IBV_RX_HASH_INNER;
558 	else if (tunnel || rss_request_inner)
559 		return 0;
560 #endif
561 	/* Check if requested layer matches RSS hash fields. */
562 	if (!(flow->rss.types & layer_types))
563 		return 0;
564 	return hash_fields;
565 }
566 
567 /**
568  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
569  * if several tunnel rules are used on this queue, the tunnel ptype will be
570  * cleared.
571  *
572  * @param rxq_ctrl
573  *   Rx queue to update.
574  */
575 static void
576 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
577 {
578 	unsigned int i;
579 	uint32_t tunnel_ptype = 0;
580 
581 	/* Look up for the ptype to use. */
582 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
583 		if (!rxq_ctrl->flow_tunnels_n[i])
584 			continue;
585 		if (!tunnel_ptype) {
586 			tunnel_ptype = tunnels_info[i].ptype;
587 		} else {
588 			tunnel_ptype = 0;
589 			break;
590 		}
591 	}
592 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
593 }
594 
595 /**
596  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
597  * flow.
598  *
599  * @param[in] dev
600  *   Pointer to the Ethernet device structure.
601  * @param[in] dev_flow
602  *   Pointer to device flow structure.
603  */
604 static void
605 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
606 {
607 	struct mlx5_priv *priv = dev->data->dev_private;
608 	struct rte_flow *flow = dev_flow->flow;
609 	const int mark = !!(flow->actions &
610 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
611 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
612 	unsigned int i;
613 
614 	for (i = 0; i != flow->rss.queue_num; ++i) {
615 		int idx = (*flow->queue)[i];
616 		struct mlx5_rxq_ctrl *rxq_ctrl =
617 			container_of((*priv->rxqs)[idx],
618 				     struct mlx5_rxq_ctrl, rxq);
619 
620 		if (mark) {
621 			rxq_ctrl->rxq.mark = 1;
622 			rxq_ctrl->flow_mark_n++;
623 		}
624 		if (tunnel) {
625 			unsigned int j;
626 
627 			/* Increase the counter matching the flow. */
628 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
629 				if ((tunnels_info[j].tunnel &
630 				     dev_flow->layers) ==
631 				    tunnels_info[j].tunnel) {
632 					rxq_ctrl->flow_tunnels_n[j]++;
633 					break;
634 				}
635 			}
636 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
637 		}
638 	}
639 }
640 
641 /**
642  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
643  *
644  * @param[in] dev
645  *   Pointer to the Ethernet device structure.
646  * @param[in] flow
647  *   Pointer to flow structure.
648  */
649 static void
650 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
651 {
652 	struct mlx5_flow *dev_flow;
653 
654 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
655 		flow_drv_rxq_flags_set(dev, dev_flow);
656 }
657 
658 /**
659  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
660  * device flow if no other flow uses it with the same kind of request.
661  *
662  * @param dev
663  *   Pointer to Ethernet device.
664  * @param[in] dev_flow
665  *   Pointer to the device flow.
666  */
667 static void
668 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
669 {
670 	struct mlx5_priv *priv = dev->data->dev_private;
671 	struct rte_flow *flow = dev_flow->flow;
672 	const int mark = !!(flow->actions &
673 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
674 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
675 	unsigned int i;
676 
677 	assert(dev->data->dev_started);
678 	for (i = 0; i != flow->rss.queue_num; ++i) {
679 		int idx = (*flow->queue)[i];
680 		struct mlx5_rxq_ctrl *rxq_ctrl =
681 			container_of((*priv->rxqs)[idx],
682 				     struct mlx5_rxq_ctrl, rxq);
683 
684 		if (mark) {
685 			rxq_ctrl->flow_mark_n--;
686 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
687 		}
688 		if (tunnel) {
689 			unsigned int j;
690 
691 			/* Decrease the counter matching the flow. */
692 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
693 				if ((tunnels_info[j].tunnel &
694 				     dev_flow->layers) ==
695 				    tunnels_info[j].tunnel) {
696 					rxq_ctrl->flow_tunnels_n[j]--;
697 					break;
698 				}
699 			}
700 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
701 		}
702 	}
703 }
704 
705 /**
706  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
707  * @p flow if no other flow uses it with the same kind of request.
708  *
709  * @param dev
710  *   Pointer to Ethernet device.
711  * @param[in] flow
712  *   Pointer to the flow.
713  */
714 static void
715 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
716 {
717 	struct mlx5_flow *dev_flow;
718 
719 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
720 		flow_drv_rxq_flags_trim(dev, dev_flow);
721 }
722 
723 /**
724  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
725  *
726  * @param dev
727  *   Pointer to Ethernet device.
728  */
729 static void
730 flow_rxq_flags_clear(struct rte_eth_dev *dev)
731 {
732 	struct mlx5_priv *priv = dev->data->dev_private;
733 	unsigned int i;
734 
735 	for (i = 0; i != priv->rxqs_n; ++i) {
736 		struct mlx5_rxq_ctrl *rxq_ctrl;
737 		unsigned int j;
738 
739 		if (!(*priv->rxqs)[i])
740 			continue;
741 		rxq_ctrl = container_of((*priv->rxqs)[i],
742 					struct mlx5_rxq_ctrl, rxq);
743 		rxq_ctrl->flow_mark_n = 0;
744 		rxq_ctrl->rxq.mark = 0;
745 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
746 			rxq_ctrl->flow_tunnels_n[j] = 0;
747 		rxq_ctrl->rxq.tunnel = 0;
748 	}
749 }
750 
751 /*
752  * return a pointer to the desired action in the list of actions.
753  *
754  * @param[in] actions
755  *   The list of actions to search the action in.
756  * @param[in] action
757  *   The action to find.
758  *
759  * @return
760  *   Pointer to the action in the list, if found. NULL otherwise.
761  */
762 const struct rte_flow_action *
763 mlx5_flow_find_action(const struct rte_flow_action *actions,
764 		      enum rte_flow_action_type action)
765 {
766 	if (actions == NULL)
767 		return NULL;
768 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
769 		if (actions->type == action)
770 			return actions;
771 	return NULL;
772 }
773 
774 /*
775  * Validate the flag action.
776  *
777  * @param[in] action_flags
778  *   Bit-fields that holds the actions detected until now.
779  * @param[in] attr
780  *   Attributes of flow that includes this action.
781  * @param[out] error
782  *   Pointer to error structure.
783  *
784  * @return
785  *   0 on success, a negative errno value otherwise and rte_errno is set.
786  */
787 int
788 mlx5_flow_validate_action_flag(uint64_t action_flags,
789 			       const struct rte_flow_attr *attr,
790 			       struct rte_flow_error *error)
791 {
792 
793 	if (action_flags & MLX5_FLOW_ACTION_DROP)
794 		return rte_flow_error_set(error, EINVAL,
795 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
796 					  "can't drop and flag in same flow");
797 	if (action_flags & MLX5_FLOW_ACTION_MARK)
798 		return rte_flow_error_set(error, EINVAL,
799 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
800 					  "can't mark and flag in same flow");
801 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
802 		return rte_flow_error_set(error, EINVAL,
803 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
804 					  "can't have 2 flag"
805 					  " actions in same flow");
806 	if (attr->egress)
807 		return rte_flow_error_set(error, ENOTSUP,
808 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
809 					  "flag action not supported for "
810 					  "egress");
811 	return 0;
812 }
813 
814 /*
815  * Validate the mark action.
816  *
817  * @param[in] action
818  *   Pointer to the queue action.
819  * @param[in] action_flags
820  *   Bit-fields that holds the actions detected until now.
821  * @param[in] attr
822  *   Attributes of flow that includes this action.
823  * @param[out] error
824  *   Pointer to error structure.
825  *
826  * @return
827  *   0 on success, a negative errno value otherwise and rte_errno is set.
828  */
829 int
830 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
831 			       uint64_t action_flags,
832 			       const struct rte_flow_attr *attr,
833 			       struct rte_flow_error *error)
834 {
835 	const struct rte_flow_action_mark *mark = action->conf;
836 
837 	if (!mark)
838 		return rte_flow_error_set(error, EINVAL,
839 					  RTE_FLOW_ERROR_TYPE_ACTION,
840 					  action,
841 					  "configuration cannot be null");
842 	if (mark->id >= MLX5_FLOW_MARK_MAX)
843 		return rte_flow_error_set(error, EINVAL,
844 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
845 					  &mark->id,
846 					  "mark id must in 0 <= id < "
847 					  RTE_STR(MLX5_FLOW_MARK_MAX));
848 	if (action_flags & MLX5_FLOW_ACTION_DROP)
849 		return rte_flow_error_set(error, EINVAL,
850 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
851 					  "can't drop and mark in same flow");
852 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
853 		return rte_flow_error_set(error, EINVAL,
854 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
855 					  "can't flag and mark in same flow");
856 	if (action_flags & MLX5_FLOW_ACTION_MARK)
857 		return rte_flow_error_set(error, EINVAL,
858 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
859 					  "can't have 2 mark actions in same"
860 					  " flow");
861 	if (attr->egress)
862 		return rte_flow_error_set(error, ENOTSUP,
863 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
864 					  "mark action not supported for "
865 					  "egress");
866 	return 0;
867 }
868 
869 /*
870  * Validate the drop action.
871  *
872  * @param[in] action_flags
873  *   Bit-fields that holds the actions detected until now.
874  * @param[in] attr
875  *   Attributes of flow that includes this action.
876  * @param[out] error
877  *   Pointer to error structure.
878  *
879  * @return
880  *   0 on success, a negative errno value otherwise and rte_errno is set.
881  */
882 int
883 mlx5_flow_validate_action_drop(uint64_t action_flags,
884 			       const struct rte_flow_attr *attr,
885 			       struct rte_flow_error *error)
886 {
887 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
888 		return rte_flow_error_set(error, EINVAL,
889 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
890 					  "can't drop and flag in same flow");
891 	if (action_flags & MLX5_FLOW_ACTION_MARK)
892 		return rte_flow_error_set(error, EINVAL,
893 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
894 					  "can't drop and mark in same flow");
895 	if (action_flags & (MLX5_FLOW_FATE_ACTIONS |
896 			    MLX5_FLOW_FATE_ESWITCH_ACTIONS))
897 		return rte_flow_error_set(error, EINVAL,
898 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
899 					  "can't have 2 fate actions in"
900 					  " same flow");
901 	if (attr->egress)
902 		return rte_flow_error_set(error, ENOTSUP,
903 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
904 					  "drop action not supported for "
905 					  "egress");
906 	return 0;
907 }
908 
909 /*
910  * Validate the queue action.
911  *
912  * @param[in] action
913  *   Pointer to the queue action.
914  * @param[in] action_flags
915  *   Bit-fields that holds the actions detected until now.
916  * @param[in] dev
917  *   Pointer to the Ethernet device structure.
918  * @param[in] attr
919  *   Attributes of flow that includes this action.
920  * @param[out] error
921  *   Pointer to error structure.
922  *
923  * @return
924  *   0 on success, a negative errno value otherwise and rte_errno is set.
925  */
926 int
927 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
928 				uint64_t action_flags,
929 				struct rte_eth_dev *dev,
930 				const struct rte_flow_attr *attr,
931 				struct rte_flow_error *error)
932 {
933 	struct mlx5_priv *priv = dev->data->dev_private;
934 	const struct rte_flow_action_queue *queue = action->conf;
935 
936 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
937 		return rte_flow_error_set(error, EINVAL,
938 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
939 					  "can't have 2 fate actions in"
940 					  " same flow");
941 	if (!priv->rxqs_n)
942 		return rte_flow_error_set(error, EINVAL,
943 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
944 					  NULL, "No Rx queues configured");
945 	if (queue->index >= priv->rxqs_n)
946 		return rte_flow_error_set(error, EINVAL,
947 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
948 					  &queue->index,
949 					  "queue index out of range");
950 	if (!(*priv->rxqs)[queue->index])
951 		return rte_flow_error_set(error, EINVAL,
952 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
953 					  &queue->index,
954 					  "queue is not configured");
955 	if (attr->egress)
956 		return rte_flow_error_set(error, ENOTSUP,
957 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
958 					  "queue action not supported for "
959 					  "egress");
960 	return 0;
961 }
962 
963 /*
964  * Validate the rss action.
965  *
966  * @param[in] action
967  *   Pointer to the queue action.
968  * @param[in] action_flags
969  *   Bit-fields that holds the actions detected until now.
970  * @param[in] dev
971  *   Pointer to the Ethernet device structure.
972  * @param[in] attr
973  *   Attributes of flow that includes this action.
974  * @param[in] item_flags
975  *   Items that were detected.
976  * @param[out] error
977  *   Pointer to error structure.
978  *
979  * @return
980  *   0 on success, a negative errno value otherwise and rte_errno is set.
981  */
982 int
983 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
984 			      uint64_t action_flags,
985 			      struct rte_eth_dev *dev,
986 			      const struct rte_flow_attr *attr,
987 			      uint64_t item_flags,
988 			      struct rte_flow_error *error)
989 {
990 	struct mlx5_priv *priv = dev->data->dev_private;
991 	const struct rte_flow_action_rss *rss = action->conf;
992 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
993 	unsigned int i;
994 
995 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
996 		return rte_flow_error_set(error, EINVAL,
997 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
998 					  "can't have 2 fate actions"
999 					  " in same flow");
1000 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1001 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1002 		return rte_flow_error_set(error, ENOTSUP,
1003 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1004 					  &rss->func,
1005 					  "RSS hash function not supported");
1006 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1007 	if (rss->level > 2)
1008 #else
1009 	if (rss->level > 1)
1010 #endif
1011 		return rte_flow_error_set(error, ENOTSUP,
1012 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1013 					  &rss->level,
1014 					  "tunnel RSS is not supported");
1015 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
1016 	if (rss->key_len == 0 && rss->key != NULL)
1017 		return rte_flow_error_set(error, ENOTSUP,
1018 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1019 					  &rss->key_len,
1020 					  "RSS hash key length 0");
1021 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1022 		return rte_flow_error_set(error, ENOTSUP,
1023 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1024 					  &rss->key_len,
1025 					  "RSS hash key too small");
1026 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1027 		return rte_flow_error_set(error, ENOTSUP,
1028 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1029 					  &rss->key_len,
1030 					  "RSS hash key too large");
1031 	if (rss->queue_num > priv->config.ind_table_max_size)
1032 		return rte_flow_error_set(error, ENOTSUP,
1033 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1034 					  &rss->queue_num,
1035 					  "number of queues too large");
1036 	if (rss->types & MLX5_RSS_HF_MASK)
1037 		return rte_flow_error_set(error, ENOTSUP,
1038 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1039 					  &rss->types,
1040 					  "some RSS protocols are not"
1041 					  " supported");
1042 	if (!priv->rxqs_n)
1043 		return rte_flow_error_set(error, EINVAL,
1044 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1045 					  NULL, "No Rx queues configured");
1046 	if (!rss->queue_num)
1047 		return rte_flow_error_set(error, EINVAL,
1048 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1049 					  NULL, "No queues configured");
1050 	for (i = 0; i != rss->queue_num; ++i) {
1051 		if (!(*priv->rxqs)[rss->queue[i]])
1052 			return rte_flow_error_set
1053 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1054 				 &rss->queue[i], "queue is not configured");
1055 	}
1056 	if (attr->egress)
1057 		return rte_flow_error_set(error, ENOTSUP,
1058 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1059 					  "rss action not supported for "
1060 					  "egress");
1061 	if (rss->level > 1 &&  !tunnel)
1062 		return rte_flow_error_set(error, EINVAL,
1063 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1064 					  "inner RSS is not supported for "
1065 					  "non-tunnel flows");
1066 	return 0;
1067 }
1068 
1069 /*
1070  * Validate the count action.
1071  *
1072  * @param[in] dev
1073  *   Pointer to the Ethernet device structure.
1074  * @param[in] attr
1075  *   Attributes of flow that includes this action.
1076  * @param[out] error
1077  *   Pointer to error structure.
1078  *
1079  * @return
1080  *   0 on success, a negative errno value otherwise and rte_errno is set.
1081  */
1082 int
1083 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1084 				const struct rte_flow_attr *attr,
1085 				struct rte_flow_error *error)
1086 {
1087 	if (attr->egress)
1088 		return rte_flow_error_set(error, ENOTSUP,
1089 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1090 					  "count action not supported for "
1091 					  "egress");
1092 	return 0;
1093 }
1094 
1095 /**
1096  * Verify the @p attributes will be correctly understood by the NIC and store
1097  * them in the @p flow if everything is correct.
1098  *
1099  * @param[in] dev
1100  *   Pointer to the Ethernet device structure.
1101  * @param[in] attributes
1102  *   Pointer to flow attributes
1103  * @param[out] error
1104  *   Pointer to error structure.
1105  *
1106  * @return
1107  *   0 on success, a negative errno value otherwise and rte_errno is set.
1108  */
1109 int
1110 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1111 			      const struct rte_flow_attr *attributes,
1112 			      struct rte_flow_error *error)
1113 {
1114 	struct mlx5_priv *priv = dev->data->dev_private;
1115 	uint32_t priority_max = priv->config.flow_prio - 1;
1116 
1117 	if (attributes->group)
1118 		return rte_flow_error_set(error, ENOTSUP,
1119 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1120 					  NULL, "groups is not supported");
1121 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1122 	    attributes->priority >= priority_max)
1123 		return rte_flow_error_set(error, ENOTSUP,
1124 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1125 					  NULL, "priority out of range");
1126 	if (attributes->egress)
1127 		return rte_flow_error_set(error, ENOTSUP,
1128 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1129 					  "egress is not supported");
1130 	if (attributes->transfer && !priv->config.dv_esw_en)
1131 		return rte_flow_error_set(error, ENOTSUP,
1132 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1133 					  NULL, "transfer is not supported");
1134 	if (!attributes->ingress)
1135 		return rte_flow_error_set(error, EINVAL,
1136 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1137 					  NULL,
1138 					  "ingress attribute is mandatory");
1139 	return 0;
1140 }
1141 
1142 /**
1143  * Validate ICMP6 item.
1144  *
1145  * @param[in] item
1146  *   Item specification.
1147  * @param[in] item_flags
1148  *   Bit-fields that holds the items detected until now.
1149  * @param[out] error
1150  *   Pointer to error structure.
1151  *
1152  * @return
1153  *   0 on success, a negative errno value otherwise and rte_errno is set.
1154  */
1155 int
1156 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1157 			       uint64_t item_flags,
1158 			       uint8_t target_protocol,
1159 			       struct rte_flow_error *error)
1160 {
1161 	const struct rte_flow_item_icmp6 *mask = item->mask;
1162 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1163 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1164 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1165 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1166 				      MLX5_FLOW_LAYER_OUTER_L4;
1167 	int ret;
1168 
1169 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1170 		return rte_flow_error_set(error, EINVAL,
1171 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1172 					  "protocol filtering not compatible"
1173 					  " with ICMP6 layer");
1174 	if (!(item_flags & l3m))
1175 		return rte_flow_error_set(error, EINVAL,
1176 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1177 					  "IPv6 is mandatory to filter on"
1178 					  " ICMP6");
1179 	if (item_flags & l4m)
1180 		return rte_flow_error_set(error, EINVAL,
1181 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1182 					  "multiple L4 layers not supported");
1183 	if (!mask)
1184 		mask = &rte_flow_item_icmp6_mask;
1185 	ret = mlx5_flow_item_acceptable
1186 		(item, (const uint8_t *)mask,
1187 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
1188 		 sizeof(struct rte_flow_item_icmp6), error);
1189 	if (ret < 0)
1190 		return ret;
1191 	return 0;
1192 }
1193 
1194 /**
1195  * Validate ICMP item.
1196  *
1197  * @param[in] item
1198  *   Item specification.
1199  * @param[in] item_flags
1200  *   Bit-fields that holds the items detected until now.
1201  * @param[out] error
1202  *   Pointer to error structure.
1203  *
1204  * @return
1205  *   0 on success, a negative errno value otherwise and rte_errno is set.
1206  */
1207 int
1208 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1209 			     uint64_t item_flags,
1210 			     uint8_t target_protocol,
1211 			     struct rte_flow_error *error)
1212 {
1213 	const struct rte_flow_item_icmp *mask = item->mask;
1214 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1215 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1216 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1217 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1218 				      MLX5_FLOW_LAYER_OUTER_L4;
1219 	int ret;
1220 
1221 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1222 		return rte_flow_error_set(error, EINVAL,
1223 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1224 					  "protocol filtering not compatible"
1225 					  " with ICMP layer");
1226 	if (!(item_flags & l3m))
1227 		return rte_flow_error_set(error, EINVAL,
1228 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1229 					  "IPv4 is mandatory to filter"
1230 					  " on ICMP");
1231 	if (item_flags & l4m)
1232 		return rte_flow_error_set(error, EINVAL,
1233 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1234 					  "multiple L4 layers not supported");
1235 	if (!mask)
1236 		mask = &rte_flow_item_icmp_mask;
1237 	ret = mlx5_flow_item_acceptable
1238 		(item, (const uint8_t *)mask,
1239 		 (const uint8_t *)&rte_flow_item_icmp_mask,
1240 		 sizeof(struct rte_flow_item_icmp), error);
1241 	if (ret < 0)
1242 		return ret;
1243 	return 0;
1244 }
1245 
1246 /**
1247  * Validate Ethernet item.
1248  *
1249  * @param[in] item
1250  *   Item specification.
1251  * @param[in] item_flags
1252  *   Bit-fields that holds the items detected until now.
1253  * @param[out] error
1254  *   Pointer to error structure.
1255  *
1256  * @return
1257  *   0 on success, a negative errno value otherwise and rte_errno is set.
1258  */
1259 int
1260 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1261 			    uint64_t item_flags,
1262 			    struct rte_flow_error *error)
1263 {
1264 	const struct rte_flow_item_eth *mask = item->mask;
1265 	const struct rte_flow_item_eth nic_mask = {
1266 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1267 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1268 		.type = RTE_BE16(0xffff),
1269 	};
1270 	int ret;
1271 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1272 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1273 				       MLX5_FLOW_LAYER_OUTER_L2;
1274 
1275 	if (item_flags & ethm)
1276 		return rte_flow_error_set(error, ENOTSUP,
1277 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1278 					  "multiple L2 layers not supported");
1279 	if (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3))
1280 		return rte_flow_error_set(error, EINVAL,
1281 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1282 					  "inner L2 layer should not "
1283 					  "follow inner L3 layers");
1284 	if (!mask)
1285 		mask = &rte_flow_item_eth_mask;
1286 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1287 					(const uint8_t *)&nic_mask,
1288 					sizeof(struct rte_flow_item_eth),
1289 					error);
1290 	return ret;
1291 }
1292 
1293 /**
1294  * Validate VLAN item.
1295  *
1296  * @param[in] item
1297  *   Item specification.
1298  * @param[in] item_flags
1299  *   Bit-fields that holds the items detected until now.
1300  * @param[in] dev
1301  *   Ethernet device flow is being created on.
1302  * @param[out] error
1303  *   Pointer to error structure.
1304  *
1305  * @return
1306  *   0 on success, a negative errno value otherwise and rte_errno is set.
1307  */
1308 int
1309 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1310 			     uint64_t item_flags,
1311 			     struct rte_eth_dev *dev,
1312 			     struct rte_flow_error *error)
1313 {
1314 	const struct rte_flow_item_vlan *spec = item->spec;
1315 	const struct rte_flow_item_vlan *mask = item->mask;
1316 	const struct rte_flow_item_vlan nic_mask = {
1317 		.tci = RTE_BE16(UINT16_MAX),
1318 		.inner_type = RTE_BE16(UINT16_MAX),
1319 	};
1320 	uint16_t vlan_tag = 0;
1321 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1322 	int ret;
1323 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1324 					MLX5_FLOW_LAYER_INNER_L4) :
1325 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1326 					MLX5_FLOW_LAYER_OUTER_L4);
1327 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1328 					MLX5_FLOW_LAYER_OUTER_VLAN;
1329 
1330 	const uint64_t l2m = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1331 				      MLX5_FLOW_LAYER_OUTER_L2;
1332 	if (item_flags & vlanm)
1333 		return rte_flow_error_set(error, EINVAL,
1334 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1335 					  "multiple VLAN layers not supported");
1336 	else if ((item_flags & l34m) != 0)
1337 		return rte_flow_error_set(error, EINVAL,
1338 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1339 					  "L2 layer cannot follow L3/L4 layer");
1340 	else if ((item_flags & l2m) == 0)
1341 		return rte_flow_error_set(error, EINVAL,
1342 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1343 					  "no L2 layer before VLAN");
1344 	if (!mask)
1345 		mask = &rte_flow_item_vlan_mask;
1346 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1347 					(const uint8_t *)&nic_mask,
1348 					sizeof(struct rte_flow_item_vlan),
1349 					error);
1350 	if (ret)
1351 		return ret;
1352 	if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1353 		struct mlx5_priv *priv = dev->data->dev_private;
1354 
1355 		if (priv->vmwa_context) {
1356 			/*
1357 			 * Non-NULL context means we have a virtual machine
1358 			 * and SR-IOV enabled, we have to create VLAN interface
1359 			 * to make hypervisor to setup E-Switch vport
1360 			 * context correctly. We avoid creating the multiple
1361 			 * VLAN interfaces, so we cannot support VLAN tag mask.
1362 			 */
1363 			return rte_flow_error_set(error, EINVAL,
1364 						  RTE_FLOW_ERROR_TYPE_ITEM,
1365 						  item,
1366 						  "VLAN tag mask is not"
1367 						  " supported in virtual"
1368 						  " environment");
1369 		}
1370 	}
1371 	if (spec) {
1372 		vlan_tag = spec->tci;
1373 		vlan_tag &= mask->tci;
1374 	}
1375 	/*
1376 	 * From verbs perspective an empty VLAN is equivalent
1377 	 * to a packet without VLAN layer.
1378 	 */
1379 	if (!vlan_tag)
1380 		return rte_flow_error_set(error, EINVAL,
1381 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1382 					  item->spec,
1383 					  "VLAN cannot be empty");
1384 	return 0;
1385 }
1386 
1387 /**
1388  * Validate IPV4 item.
1389  *
1390  * @param[in] item
1391  *   Item specification.
1392  * @param[in] item_flags
1393  *   Bit-fields that holds the items detected until now.
1394  * @param[in] acc_mask
1395  *   Acceptable mask, if NULL default internal default mask
1396  *   will be used to check whether item fields are supported.
1397  * @param[out] error
1398  *   Pointer to error structure.
1399  *
1400  * @return
1401  *   0 on success, a negative errno value otherwise and rte_errno is set.
1402  */
1403 int
1404 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1405 			     uint64_t item_flags,
1406 			     const struct rte_flow_item_ipv4 *acc_mask,
1407 			     struct rte_flow_error *error)
1408 {
1409 	const struct rte_flow_item_ipv4 *mask = item->mask;
1410 	const struct rte_flow_item_ipv4 *spec = item->spec;
1411 	const struct rte_flow_item_ipv4 nic_mask = {
1412 		.hdr = {
1413 			.src_addr = RTE_BE32(0xffffffff),
1414 			.dst_addr = RTE_BE32(0xffffffff),
1415 			.type_of_service = 0xff,
1416 			.next_proto_id = 0xff,
1417 		},
1418 	};
1419 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1420 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1421 				      MLX5_FLOW_LAYER_OUTER_L3;
1422 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1423 				      MLX5_FLOW_LAYER_OUTER_L4;
1424 	int ret;
1425 	uint8_t next_proto = 0xFF;
1426 
1427 	if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1428 		if (mask && spec)
1429 			next_proto = mask->hdr.next_proto_id &
1430 				     spec->hdr.next_proto_id;
1431 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1432 			return rte_flow_error_set(error, EINVAL,
1433 						  RTE_FLOW_ERROR_TYPE_ITEM,
1434 						  item,
1435 						  "multiple tunnel "
1436 						  "not supported");
1437 	}
1438 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1439 		return rte_flow_error_set(error, EINVAL,
1440 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1441 					  "wrong tunnel type - IPv6 specified "
1442 					  "but IPv4 item provided");
1443 	if (item_flags & l3m)
1444 		return rte_flow_error_set(error, ENOTSUP,
1445 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1446 					  "multiple L3 layers not supported");
1447 	else if (item_flags & l4m)
1448 		return rte_flow_error_set(error, EINVAL,
1449 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1450 					  "L3 cannot follow an L4 layer.");
1451 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1452 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1453 		return rte_flow_error_set(error, EINVAL,
1454 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1455 					  "L3 cannot follow an NVGRE layer.");
1456 	else if (!tunnel && !(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
1457 		return rte_flow_error_set(error, EINVAL,
1458 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1459 					  "no L2 layer before IPV4");
1460 	if (!mask)
1461 		mask = &rte_flow_item_ipv4_mask;
1462 	else if (mask->hdr.next_proto_id != 0 &&
1463 		 mask->hdr.next_proto_id != 0xff)
1464 		return rte_flow_error_set(error, EINVAL,
1465 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1466 					  "partial mask is not supported"
1467 					  " for protocol");
1468 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1469 					acc_mask ? (const uint8_t *)acc_mask
1470 						 : (const uint8_t *)&nic_mask,
1471 					sizeof(struct rte_flow_item_ipv4),
1472 					error);
1473 	if (ret < 0)
1474 		return ret;
1475 	return 0;
1476 }
1477 
1478 /**
1479  * Validate IPV6 item.
1480  *
1481  * @param[in] item
1482  *   Item specification.
1483  * @param[in] item_flags
1484  *   Bit-fields that holds the items detected until now.
1485  * @param[in] acc_mask
1486  *   Acceptable mask, if NULL default internal default mask
1487  *   will be used to check whether item fields are supported.
1488  * @param[out] error
1489  *   Pointer to error structure.
1490  *
1491  * @return
1492  *   0 on success, a negative errno value otherwise and rte_errno is set.
1493  */
1494 int
1495 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1496 			     uint64_t item_flags,
1497 			     const struct rte_flow_item_ipv6 *acc_mask,
1498 			     struct rte_flow_error *error)
1499 {
1500 	const struct rte_flow_item_ipv6 *mask = item->mask;
1501 	const struct rte_flow_item_ipv6 *spec = item->spec;
1502 	const struct rte_flow_item_ipv6 nic_mask = {
1503 		.hdr = {
1504 			.src_addr =
1505 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1506 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1507 			.dst_addr =
1508 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1509 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1510 			.vtc_flow = RTE_BE32(0xffffffff),
1511 			.proto = 0xff,
1512 			.hop_limits = 0xff,
1513 		},
1514 	};
1515 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1516 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1517 				      MLX5_FLOW_LAYER_OUTER_L3;
1518 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1519 				      MLX5_FLOW_LAYER_OUTER_L4;
1520 	int ret;
1521 	uint8_t next_proto = 0xFF;
1522 
1523 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1524 		if (mask && spec)
1525 			next_proto = mask->hdr.proto & spec->hdr.proto;
1526 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1527 			return rte_flow_error_set(error, EINVAL,
1528 						  RTE_FLOW_ERROR_TYPE_ITEM,
1529 						  item,
1530 						  "multiple tunnel "
1531 						  "not supported");
1532 	}
1533 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
1534 		return rte_flow_error_set(error, EINVAL,
1535 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1536 					  "wrong tunnel type - IPv4 specified "
1537 					  "but IPv6 item provided");
1538 	if (item_flags & l3m)
1539 		return rte_flow_error_set(error, ENOTSUP,
1540 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1541 					  "multiple L3 layers not supported");
1542 	else if (item_flags & l4m)
1543 		return rte_flow_error_set(error, EINVAL,
1544 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1545 					  "L3 cannot follow an L4 layer.");
1546 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1547 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1548 		return rte_flow_error_set(error, EINVAL,
1549 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1550 					  "L3 cannot follow an NVGRE layer.");
1551 	else if (!tunnel && !(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
1552 		return rte_flow_error_set(error, EINVAL,
1553 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1554 					  "no L2 layer before IPV6");
1555 	if (!mask)
1556 		mask = &rte_flow_item_ipv6_mask;
1557 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1558 					acc_mask ? (const uint8_t *)acc_mask
1559 						 : (const uint8_t *)&nic_mask,
1560 					sizeof(struct rte_flow_item_ipv6),
1561 					error);
1562 	if (ret < 0)
1563 		return ret;
1564 	return 0;
1565 }
1566 
1567 /**
1568  * Validate UDP item.
1569  *
1570  * @param[in] item
1571  *   Item specification.
1572  * @param[in] item_flags
1573  *   Bit-fields that holds the items detected until now.
1574  * @param[in] target_protocol
1575  *   The next protocol in the previous item.
1576  * @param[in] flow_mask
1577  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1578  * @param[out] error
1579  *   Pointer to error structure.
1580  *
1581  * @return
1582  *   0 on success, a negative errno value otherwise and rte_errno is set.
1583  */
1584 int
1585 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1586 			    uint64_t item_flags,
1587 			    uint8_t target_protocol,
1588 			    struct rte_flow_error *error)
1589 {
1590 	const struct rte_flow_item_udp *mask = item->mask;
1591 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1592 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1593 				      MLX5_FLOW_LAYER_OUTER_L3;
1594 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1595 				      MLX5_FLOW_LAYER_OUTER_L4;
1596 	int ret;
1597 
1598 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1599 		return rte_flow_error_set(error, EINVAL,
1600 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1601 					  "protocol filtering not compatible"
1602 					  " with UDP layer");
1603 	if (!(item_flags & l3m))
1604 		return rte_flow_error_set(error, EINVAL,
1605 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1606 					  "L3 is mandatory to filter on L4");
1607 	if (item_flags & l4m)
1608 		return rte_flow_error_set(error, EINVAL,
1609 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1610 					  "multiple L4 layers not supported");
1611 	if (!mask)
1612 		mask = &rte_flow_item_udp_mask;
1613 	ret = mlx5_flow_item_acceptable
1614 		(item, (const uint8_t *)mask,
1615 		 (const uint8_t *)&rte_flow_item_udp_mask,
1616 		 sizeof(struct rte_flow_item_udp), error);
1617 	if (ret < 0)
1618 		return ret;
1619 	return 0;
1620 }
1621 
1622 /**
1623  * Validate TCP item.
1624  *
1625  * @param[in] item
1626  *   Item specification.
1627  * @param[in] item_flags
1628  *   Bit-fields that holds the items detected until now.
1629  * @param[in] target_protocol
1630  *   The next protocol in the previous item.
1631  * @param[out] error
1632  *   Pointer to error structure.
1633  *
1634  * @return
1635  *   0 on success, a negative errno value otherwise and rte_errno is set.
1636  */
1637 int
1638 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1639 			    uint64_t item_flags,
1640 			    uint8_t target_protocol,
1641 			    const struct rte_flow_item_tcp *flow_mask,
1642 			    struct rte_flow_error *error)
1643 {
1644 	const struct rte_flow_item_tcp *mask = item->mask;
1645 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1646 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1647 				      MLX5_FLOW_LAYER_OUTER_L3;
1648 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1649 				      MLX5_FLOW_LAYER_OUTER_L4;
1650 	int ret;
1651 
1652 	assert(flow_mask);
1653 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1654 		return rte_flow_error_set(error, EINVAL,
1655 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1656 					  "protocol filtering not compatible"
1657 					  " with TCP layer");
1658 	if (!(item_flags & l3m))
1659 		return rte_flow_error_set(error, EINVAL,
1660 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1661 					  "L3 is mandatory to filter on L4");
1662 	if (item_flags & l4m)
1663 		return rte_flow_error_set(error, EINVAL,
1664 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1665 					  "multiple L4 layers not supported");
1666 	if (!mask)
1667 		mask = &rte_flow_item_tcp_mask;
1668 	ret = mlx5_flow_item_acceptable
1669 		(item, (const uint8_t *)mask,
1670 		 (const uint8_t *)flow_mask,
1671 		 sizeof(struct rte_flow_item_tcp), error);
1672 	if (ret < 0)
1673 		return ret;
1674 	return 0;
1675 }
1676 
1677 /**
1678  * Validate VXLAN item.
1679  *
1680  * @param[in] item
1681  *   Item specification.
1682  * @param[in] item_flags
1683  *   Bit-fields that holds the items detected until now.
1684  * @param[in] target_protocol
1685  *   The next protocol in the previous item.
1686  * @param[out] error
1687  *   Pointer to error structure.
1688  *
1689  * @return
1690  *   0 on success, a negative errno value otherwise and rte_errno is set.
1691  */
1692 int
1693 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1694 			      uint64_t item_flags,
1695 			      struct rte_flow_error *error)
1696 {
1697 	const struct rte_flow_item_vxlan *spec = item->spec;
1698 	const struct rte_flow_item_vxlan *mask = item->mask;
1699 	int ret;
1700 	union vni {
1701 		uint32_t vlan_id;
1702 		uint8_t vni[4];
1703 	} id = { .vlan_id = 0, };
1704 	uint32_t vlan_id = 0;
1705 
1706 
1707 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1708 		return rte_flow_error_set(error, ENOTSUP,
1709 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1710 					  "multiple tunnel layers not"
1711 					  " supported");
1712 	/*
1713 	 * Verify only UDPv4 is present as defined in
1714 	 * https://tools.ietf.org/html/rfc7348
1715 	 */
1716 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1717 		return rte_flow_error_set(error, EINVAL,
1718 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1719 					  "no outer UDP layer found");
1720 	if (!mask)
1721 		mask = &rte_flow_item_vxlan_mask;
1722 	ret = mlx5_flow_item_acceptable
1723 		(item, (const uint8_t *)mask,
1724 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1725 		 sizeof(struct rte_flow_item_vxlan),
1726 		 error);
1727 	if (ret < 0)
1728 		return ret;
1729 	if (spec) {
1730 		memcpy(&id.vni[1], spec->vni, 3);
1731 		vlan_id = id.vlan_id;
1732 		memcpy(&id.vni[1], mask->vni, 3);
1733 		vlan_id &= id.vlan_id;
1734 	}
1735 	/*
1736 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1737 	 * only this layer is defined in the Verbs specification it is
1738 	 * interpreted as wildcard and all packets will match this
1739 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1740 	 * udp), all packets matching the layers before will also
1741 	 * match this rule.  To avoid such situation, VNI 0 is
1742 	 * currently refused.
1743 	 */
1744 	if (!vlan_id)
1745 		return rte_flow_error_set(error, ENOTSUP,
1746 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1747 					  "VXLAN vni cannot be 0");
1748 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1749 		return rte_flow_error_set(error, ENOTSUP,
1750 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1751 					  "VXLAN tunnel must be fully defined");
1752 	return 0;
1753 }
1754 
1755 /**
1756  * Validate VXLAN_GPE item.
1757  *
1758  * @param[in] item
1759  *   Item specification.
1760  * @param[in] item_flags
1761  *   Bit-fields that holds the items detected until now.
1762  * @param[in] priv
1763  *   Pointer to the private data structure.
1764  * @param[in] target_protocol
1765  *   The next protocol in the previous item.
1766  * @param[out] error
1767  *   Pointer to error structure.
1768  *
1769  * @return
1770  *   0 on success, a negative errno value otherwise and rte_errno is set.
1771  */
1772 int
1773 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1774 				  uint64_t item_flags,
1775 				  struct rte_eth_dev *dev,
1776 				  struct rte_flow_error *error)
1777 {
1778 	struct mlx5_priv *priv = dev->data->dev_private;
1779 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1780 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1781 	int ret;
1782 	union vni {
1783 		uint32_t vlan_id;
1784 		uint8_t vni[4];
1785 	} id = { .vlan_id = 0, };
1786 	uint32_t vlan_id = 0;
1787 
1788 	if (!priv->config.l3_vxlan_en)
1789 		return rte_flow_error_set(error, ENOTSUP,
1790 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1791 					  "L3 VXLAN is not enabled by device"
1792 					  " parameter and/or not configured in"
1793 					  " firmware");
1794 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1795 		return rte_flow_error_set(error, ENOTSUP,
1796 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1797 					  "multiple tunnel layers not"
1798 					  " supported");
1799 	/*
1800 	 * Verify only UDPv4 is present as defined in
1801 	 * https://tools.ietf.org/html/rfc7348
1802 	 */
1803 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1804 		return rte_flow_error_set(error, EINVAL,
1805 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1806 					  "no outer UDP layer found");
1807 	if (!mask)
1808 		mask = &rte_flow_item_vxlan_gpe_mask;
1809 	ret = mlx5_flow_item_acceptable
1810 		(item, (const uint8_t *)mask,
1811 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1812 		 sizeof(struct rte_flow_item_vxlan_gpe),
1813 		 error);
1814 	if (ret < 0)
1815 		return ret;
1816 	if (spec) {
1817 		if (spec->protocol)
1818 			return rte_flow_error_set(error, ENOTSUP,
1819 						  RTE_FLOW_ERROR_TYPE_ITEM,
1820 						  item,
1821 						  "VxLAN-GPE protocol"
1822 						  " not supported");
1823 		memcpy(&id.vni[1], spec->vni, 3);
1824 		vlan_id = id.vlan_id;
1825 		memcpy(&id.vni[1], mask->vni, 3);
1826 		vlan_id &= id.vlan_id;
1827 	}
1828 	/*
1829 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1830 	 * layer is defined in the Verbs specification it is interpreted as
1831 	 * wildcard and all packets will match this rule, if it follows a full
1832 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1833 	 * before will also match this rule.  To avoid such situation, VNI 0
1834 	 * is currently refused.
1835 	 */
1836 	if (!vlan_id)
1837 		return rte_flow_error_set(error, ENOTSUP,
1838 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1839 					  "VXLAN-GPE vni cannot be 0");
1840 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1841 		return rte_flow_error_set(error, ENOTSUP,
1842 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1843 					  "VXLAN-GPE tunnel must be fully"
1844 					  " defined");
1845 	return 0;
1846 }
1847 /**
1848  * Validate GRE Key item.
1849  *
1850  * @param[in] item
1851  *   Item specification.
1852  * @param[in] item_flags
1853  *   Bit flags to mark detected items.
1854  * @param[in] gre_item
1855  *   Pointer to gre_item
1856  * @param[out] error
1857  *   Pointer to error structure.
1858  *
1859  * @return
1860  *   0 on success, a negative errno value otherwise and rte_errno is set.
1861  */
1862 int
1863 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
1864 				uint64_t item_flags,
1865 				const struct rte_flow_item *gre_item,
1866 				struct rte_flow_error *error)
1867 {
1868 	const rte_be32_t *mask = item->mask;
1869 	int ret = 0;
1870 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
1871 	const struct rte_flow_item_gre *gre_spec = gre_item->spec;
1872 	const struct rte_flow_item_gre *gre_mask = gre_item->mask;
1873 
1874 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
1875 		return rte_flow_error_set(error, ENOTSUP,
1876 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1877 					  "Multiple GRE key not support");
1878 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
1879 		return rte_flow_error_set(error, ENOTSUP,
1880 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1881 					  "No preceding GRE header");
1882 	if (item_flags & MLX5_FLOW_LAYER_INNER)
1883 		return rte_flow_error_set(error, ENOTSUP,
1884 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1885 					  "GRE key following a wrong item");
1886 	if (!gre_mask)
1887 		gre_mask = &rte_flow_item_gre_mask;
1888 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
1889 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
1890 		return rte_flow_error_set(error, EINVAL,
1891 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1892 					  "Key bit must be on");
1893 
1894 	if (!mask)
1895 		mask = &gre_key_default_mask;
1896 	ret = mlx5_flow_item_acceptable
1897 		(item, (const uint8_t *)mask,
1898 		 (const uint8_t *)&gre_key_default_mask,
1899 		 sizeof(rte_be32_t), error);
1900 	return ret;
1901 }
1902 
1903 /**
1904  * Validate GRE item.
1905  *
1906  * @param[in] item
1907  *   Item specification.
1908  * @param[in] item_flags
1909  *   Bit flags to mark detected items.
1910  * @param[in] target_protocol
1911  *   The next protocol in the previous item.
1912  * @param[out] error
1913  *   Pointer to error structure.
1914  *
1915  * @return
1916  *   0 on success, a negative errno value otherwise and rte_errno is set.
1917  */
1918 int
1919 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1920 			    uint64_t item_flags,
1921 			    uint8_t target_protocol,
1922 			    struct rte_flow_error *error)
1923 {
1924 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1925 	const struct rte_flow_item_gre *mask = item->mask;
1926 	int ret;
1927 	const struct rte_flow_item_gre nic_mask = {
1928 		.c_rsvd0_ver = RTE_BE16(0xB000),
1929 		.protocol = RTE_BE16(UINT16_MAX),
1930 	};
1931 
1932 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1933 		return rte_flow_error_set(error, EINVAL,
1934 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1935 					  "protocol filtering not compatible"
1936 					  " with this GRE layer");
1937 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1938 		return rte_flow_error_set(error, ENOTSUP,
1939 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1940 					  "multiple tunnel layers not"
1941 					  " supported");
1942 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1943 		return rte_flow_error_set(error, ENOTSUP,
1944 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1945 					  "L3 Layer is missing");
1946 	if (!mask)
1947 		mask = &rte_flow_item_gre_mask;
1948 	ret = mlx5_flow_item_acceptable
1949 		(item, (const uint8_t *)mask,
1950 		 (const uint8_t *)&nic_mask,
1951 		 sizeof(struct rte_flow_item_gre), error);
1952 	if (ret < 0)
1953 		return ret;
1954 #ifndef HAVE_MLX5DV_DR
1955 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1956 	if (spec && (spec->protocol & mask->protocol))
1957 		return rte_flow_error_set(error, ENOTSUP,
1958 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1959 					  "without MPLS support the"
1960 					  " specification cannot be used for"
1961 					  " filtering");
1962 #endif
1963 #endif
1964 	return 0;
1965 }
1966 
1967 /**
1968  * Validate Geneve item.
1969  *
1970  * @param[in] item
1971  *   Item specification.
1972  * @param[in] itemFlags
1973  *   Bit-fields that holds the items detected until now.
1974  * @param[in] enPriv
1975  *   Pointer to the private data structure.
1976  * @param[out] error
1977  *   Pointer to error structure.
1978  *
1979  * @return
1980  *   0 on success, a negative errno value otherwise and rte_errno is set.
1981  */
1982 
1983 int
1984 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
1985 			       uint64_t item_flags,
1986 			       struct rte_eth_dev *dev,
1987 			       struct rte_flow_error *error)
1988 {
1989 	struct mlx5_priv *priv = dev->data->dev_private;
1990 	const struct rte_flow_item_geneve *spec = item->spec;
1991 	const struct rte_flow_item_geneve *mask = item->mask;
1992 	int ret;
1993 	uint16_t gbhdr;
1994 	uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
1995 			  MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
1996 	const struct rte_flow_item_geneve nic_mask = {
1997 		.ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
1998 		.vni = "\xff\xff\xff",
1999 		.protocol = RTE_BE16(UINT16_MAX),
2000 	};
2001 
2002 	if (!(priv->config.hca_attr.flex_parser_protocols &
2003 	      MLX5_HCA_FLEX_GENEVE_ENABLED) ||
2004 	    !priv->config.hca_attr.tunnel_stateless_geneve_rx)
2005 		return rte_flow_error_set(error, ENOTSUP,
2006 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2007 					  "L3 Geneve is not enabled by device"
2008 					  " parameter and/or not configured in"
2009 					  " firmware");
2010 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2011 		return rte_flow_error_set(error, ENOTSUP,
2012 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2013 					  "multiple tunnel layers not"
2014 					  " supported");
2015 	/*
2016 	 * Verify only UDPv4 is present as defined in
2017 	 * https://tools.ietf.org/html/rfc7348
2018 	 */
2019 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2020 		return rte_flow_error_set(error, EINVAL,
2021 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2022 					  "no outer UDP layer found");
2023 	if (!mask)
2024 		mask = &rte_flow_item_geneve_mask;
2025 	ret = mlx5_flow_item_acceptable
2026 				  (item, (const uint8_t *)mask,
2027 				   (const uint8_t *)&nic_mask,
2028 				   sizeof(struct rte_flow_item_geneve), error);
2029 	if (ret)
2030 		return ret;
2031 	if (spec) {
2032 		gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2033 		if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2034 		     MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2035 		     MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2036 			return rte_flow_error_set(error, ENOTSUP,
2037 						  RTE_FLOW_ERROR_TYPE_ITEM,
2038 						  item,
2039 						  "Geneve protocol unsupported"
2040 						  " fields are being used");
2041 		if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2042 			return rte_flow_error_set
2043 					(error, ENOTSUP,
2044 					 RTE_FLOW_ERROR_TYPE_ITEM,
2045 					 item,
2046 					 "Unsupported Geneve options length");
2047 	}
2048 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2049 		return rte_flow_error_set
2050 				    (error, ENOTSUP,
2051 				     RTE_FLOW_ERROR_TYPE_ITEM, item,
2052 				     "Geneve tunnel must be fully defined");
2053 	return 0;
2054 }
2055 
2056 /**
2057  * Validate MPLS item.
2058  *
2059  * @param[in] dev
2060  *   Pointer to the rte_eth_dev structure.
2061  * @param[in] item
2062  *   Item specification.
2063  * @param[in] item_flags
2064  *   Bit-fields that holds the items detected until now.
2065  * @param[in] prev_layer
2066  *   The protocol layer indicated in previous item.
2067  * @param[out] error
2068  *   Pointer to error structure.
2069  *
2070  * @return
2071  *   0 on success, a negative errno value otherwise and rte_errno is set.
2072  */
2073 int
2074 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2075 			     const struct rte_flow_item *item __rte_unused,
2076 			     uint64_t item_flags __rte_unused,
2077 			     uint64_t prev_layer __rte_unused,
2078 			     struct rte_flow_error *error)
2079 {
2080 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2081 	const struct rte_flow_item_mpls *mask = item->mask;
2082 	struct mlx5_priv *priv = dev->data->dev_private;
2083 	int ret;
2084 
2085 	if (!priv->config.mpls_en)
2086 		return rte_flow_error_set(error, ENOTSUP,
2087 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2088 					  "MPLS not supported or"
2089 					  " disabled in firmware"
2090 					  " configuration.");
2091 	/* MPLS over IP, UDP, GRE is allowed */
2092 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2093 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
2094 			    MLX5_FLOW_LAYER_GRE)))
2095 		return rte_flow_error_set(error, EINVAL,
2096 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2097 					  "protocol filtering not compatible"
2098 					  " with MPLS layer");
2099 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2100 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2101 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
2102 		return rte_flow_error_set(error, ENOTSUP,
2103 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2104 					  "multiple tunnel layers not"
2105 					  " supported");
2106 	if (!mask)
2107 		mask = &rte_flow_item_mpls_mask;
2108 	ret = mlx5_flow_item_acceptable
2109 		(item, (const uint8_t *)mask,
2110 		 (const uint8_t *)&rte_flow_item_mpls_mask,
2111 		 sizeof(struct rte_flow_item_mpls), error);
2112 	if (ret < 0)
2113 		return ret;
2114 	return 0;
2115 #endif
2116 	return rte_flow_error_set(error, ENOTSUP,
2117 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
2118 				  "MPLS is not supported by Verbs, please"
2119 				  " update.");
2120 }
2121 
2122 /**
2123  * Validate NVGRE item.
2124  *
2125  * @param[in] item
2126  *   Item specification.
2127  * @param[in] item_flags
2128  *   Bit flags to mark detected items.
2129  * @param[in] target_protocol
2130  *   The next protocol in the previous item.
2131  * @param[out] error
2132  *   Pointer to error structure.
2133  *
2134  * @return
2135  *   0 on success, a negative errno value otherwise and rte_errno is set.
2136  */
2137 int
2138 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2139 			      uint64_t item_flags,
2140 			      uint8_t target_protocol,
2141 			      struct rte_flow_error *error)
2142 {
2143 	const struct rte_flow_item_nvgre *mask = item->mask;
2144 	int ret;
2145 
2146 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2147 		return rte_flow_error_set(error, EINVAL,
2148 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2149 					  "protocol filtering not compatible"
2150 					  " with this GRE layer");
2151 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2152 		return rte_flow_error_set(error, ENOTSUP,
2153 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2154 					  "multiple tunnel layers not"
2155 					  " supported");
2156 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2157 		return rte_flow_error_set(error, ENOTSUP,
2158 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2159 					  "L3 Layer is missing");
2160 	if (!mask)
2161 		mask = &rte_flow_item_nvgre_mask;
2162 	ret = mlx5_flow_item_acceptable
2163 		(item, (const uint8_t *)mask,
2164 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
2165 		 sizeof(struct rte_flow_item_nvgre), error);
2166 	if (ret < 0)
2167 		return ret;
2168 	return 0;
2169 }
2170 
2171 static int
2172 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2173 		   const struct rte_flow_attr *attr __rte_unused,
2174 		   const struct rte_flow_item items[] __rte_unused,
2175 		   const struct rte_flow_action actions[] __rte_unused,
2176 		   bool external __rte_unused,
2177 		   struct rte_flow_error *error)
2178 {
2179 	return rte_flow_error_set(error, ENOTSUP,
2180 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2181 }
2182 
2183 static struct mlx5_flow *
2184 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
2185 		  const struct rte_flow_item items[] __rte_unused,
2186 		  const struct rte_flow_action actions[] __rte_unused,
2187 		  struct rte_flow_error *error)
2188 {
2189 	rte_flow_error_set(error, ENOTSUP,
2190 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2191 	return NULL;
2192 }
2193 
2194 static int
2195 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2196 		    struct mlx5_flow *dev_flow __rte_unused,
2197 		    const struct rte_flow_attr *attr __rte_unused,
2198 		    const struct rte_flow_item items[] __rte_unused,
2199 		    const struct rte_flow_action actions[] __rte_unused,
2200 		    struct rte_flow_error *error)
2201 {
2202 	return rte_flow_error_set(error, ENOTSUP,
2203 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2204 }
2205 
2206 static int
2207 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2208 		struct rte_flow *flow __rte_unused,
2209 		struct rte_flow_error *error)
2210 {
2211 	return rte_flow_error_set(error, ENOTSUP,
2212 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2213 }
2214 
2215 static void
2216 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2217 		 struct rte_flow *flow __rte_unused)
2218 {
2219 }
2220 
2221 static void
2222 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2223 		  struct rte_flow *flow __rte_unused)
2224 {
2225 }
2226 
2227 static int
2228 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2229 		struct rte_flow *flow __rte_unused,
2230 		const struct rte_flow_action *actions __rte_unused,
2231 		void *data __rte_unused,
2232 		struct rte_flow_error *error)
2233 {
2234 	return rte_flow_error_set(error, ENOTSUP,
2235 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2236 }
2237 
2238 /* Void driver to protect from null pointer reference. */
2239 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2240 	.validate = flow_null_validate,
2241 	.prepare = flow_null_prepare,
2242 	.translate = flow_null_translate,
2243 	.apply = flow_null_apply,
2244 	.remove = flow_null_remove,
2245 	.destroy = flow_null_destroy,
2246 	.query = flow_null_query,
2247 };
2248 
2249 /**
2250  * Select flow driver type according to flow attributes and device
2251  * configuration.
2252  *
2253  * @param[in] dev
2254  *   Pointer to the dev structure.
2255  * @param[in] attr
2256  *   Pointer to the flow attributes.
2257  *
2258  * @return
2259  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2260  */
2261 static enum mlx5_flow_drv_type
2262 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2263 {
2264 	struct mlx5_priv *priv = dev->data->dev_private;
2265 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
2266 
2267 	if (attr->transfer && priv->config.dv_esw_en)
2268 		type = MLX5_FLOW_TYPE_DV;
2269 	if (!attr->transfer)
2270 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2271 						 MLX5_FLOW_TYPE_VERBS;
2272 	return type;
2273 }
2274 
2275 #define flow_get_drv_ops(type) flow_drv_ops[type]
2276 
2277 /**
2278  * Flow driver validation API. This abstracts calling driver specific functions.
2279  * The type of flow driver is determined according to flow attributes.
2280  *
2281  * @param[in] dev
2282  *   Pointer to the dev structure.
2283  * @param[in] attr
2284  *   Pointer to the flow attributes.
2285  * @param[in] items
2286  *   Pointer to the list of items.
2287  * @param[in] actions
2288  *   Pointer to the list of actions.
2289  * @param[in] external
2290  *   This flow rule is created by request external to PMD.
2291  * @param[out] error
2292  *   Pointer to the error structure.
2293  *
2294  * @return
2295  *   0 on success, a negative errno value otherwise and rte_errno is set.
2296  */
2297 static inline int
2298 flow_drv_validate(struct rte_eth_dev *dev,
2299 		  const struct rte_flow_attr *attr,
2300 		  const struct rte_flow_item items[],
2301 		  const struct rte_flow_action actions[],
2302 		  bool external, struct rte_flow_error *error)
2303 {
2304 	const struct mlx5_flow_driver_ops *fops;
2305 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2306 
2307 	fops = flow_get_drv_ops(type);
2308 	return fops->validate(dev, attr, items, actions, external, error);
2309 }
2310 
2311 /**
2312  * Flow driver preparation API. This abstracts calling driver specific
2313  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2314  * calculates the size of memory required for device flow, allocates the memory,
2315  * initializes the device flow and returns the pointer.
2316  *
2317  * @note
2318  *   This function initializes device flow structure such as dv or verbs in
2319  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2320  *   rest. For example, adding returning device flow to flow->dev_flow list and
2321  *   setting backward reference to the flow should be done out of this function.
2322  *   layers field is not filled either.
2323  *
2324  * @param[in] attr
2325  *   Pointer to the flow attributes.
2326  * @param[in] items
2327  *   Pointer to the list of items.
2328  * @param[in] actions
2329  *   Pointer to the list of actions.
2330  * @param[out] error
2331  *   Pointer to the error structure.
2332  *
2333  * @return
2334  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2335  */
2336 static inline struct mlx5_flow *
2337 flow_drv_prepare(const struct rte_flow *flow,
2338 		 const struct rte_flow_attr *attr,
2339 		 const struct rte_flow_item items[],
2340 		 const struct rte_flow_action actions[],
2341 		 struct rte_flow_error *error)
2342 {
2343 	const struct mlx5_flow_driver_ops *fops;
2344 	enum mlx5_flow_drv_type type = flow->drv_type;
2345 
2346 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2347 	fops = flow_get_drv_ops(type);
2348 	return fops->prepare(attr, items, actions, error);
2349 }
2350 
2351 /**
2352  * Flow driver translation API. This abstracts calling driver specific
2353  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2354  * translates a generic flow into a driver flow. flow_drv_prepare() must
2355  * precede.
2356  *
2357  * @note
2358  *   dev_flow->layers could be filled as a result of parsing during translation
2359  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2360  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2361  *   flow->actions could be overwritten even though all the expanded dev_flows
2362  *   have the same actions.
2363  *
2364  * @param[in] dev
2365  *   Pointer to the rte dev structure.
2366  * @param[in, out] dev_flow
2367  *   Pointer to the mlx5 flow.
2368  * @param[in] attr
2369  *   Pointer to the flow attributes.
2370  * @param[in] items
2371  *   Pointer to the list of items.
2372  * @param[in] actions
2373  *   Pointer to the list of actions.
2374  * @param[out] error
2375  *   Pointer to the error structure.
2376  *
2377  * @return
2378  *   0 on success, a negative errno value otherwise and rte_errno is set.
2379  */
2380 static inline int
2381 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2382 		   const struct rte_flow_attr *attr,
2383 		   const struct rte_flow_item items[],
2384 		   const struct rte_flow_action actions[],
2385 		   struct rte_flow_error *error)
2386 {
2387 	const struct mlx5_flow_driver_ops *fops;
2388 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2389 
2390 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2391 	fops = flow_get_drv_ops(type);
2392 	return fops->translate(dev, dev_flow, attr, items, actions, error);
2393 }
2394 
2395 /**
2396  * Flow driver apply API. This abstracts calling driver specific functions.
2397  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2398  * translated driver flows on to device. flow_drv_translate() must precede.
2399  *
2400  * @param[in] dev
2401  *   Pointer to Ethernet device structure.
2402  * @param[in, out] flow
2403  *   Pointer to flow structure.
2404  * @param[out] error
2405  *   Pointer to error structure.
2406  *
2407  * @return
2408  *   0 on success, a negative errno value otherwise and rte_errno is set.
2409  */
2410 static inline int
2411 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2412 	       struct rte_flow_error *error)
2413 {
2414 	const struct mlx5_flow_driver_ops *fops;
2415 	enum mlx5_flow_drv_type type = flow->drv_type;
2416 
2417 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2418 	fops = flow_get_drv_ops(type);
2419 	return fops->apply(dev, flow, error);
2420 }
2421 
2422 /**
2423  * Flow driver remove API. This abstracts calling driver specific functions.
2424  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2425  * on device. All the resources of the flow should be freed by calling
2426  * flow_drv_destroy().
2427  *
2428  * @param[in] dev
2429  *   Pointer to Ethernet device.
2430  * @param[in, out] flow
2431  *   Pointer to flow structure.
2432  */
2433 static inline void
2434 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2435 {
2436 	const struct mlx5_flow_driver_ops *fops;
2437 	enum mlx5_flow_drv_type type = flow->drv_type;
2438 
2439 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2440 	fops = flow_get_drv_ops(type);
2441 	fops->remove(dev, flow);
2442 }
2443 
2444 /**
2445  * Flow driver destroy API. This abstracts calling driver specific functions.
2446  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2447  * on device and releases resources of the flow.
2448  *
2449  * @param[in] dev
2450  *   Pointer to Ethernet device.
2451  * @param[in, out] flow
2452  *   Pointer to flow structure.
2453  */
2454 static inline void
2455 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2456 {
2457 	const struct mlx5_flow_driver_ops *fops;
2458 	enum mlx5_flow_drv_type type = flow->drv_type;
2459 
2460 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2461 	fops = flow_get_drv_ops(type);
2462 	fops->destroy(dev, flow);
2463 }
2464 
2465 /**
2466  * Validate a flow supported by the NIC.
2467  *
2468  * @see rte_flow_validate()
2469  * @see rte_flow_ops
2470  */
2471 int
2472 mlx5_flow_validate(struct rte_eth_dev *dev,
2473 		   const struct rte_flow_attr *attr,
2474 		   const struct rte_flow_item items[],
2475 		   const struct rte_flow_action actions[],
2476 		   struct rte_flow_error *error)
2477 {
2478 	int ret;
2479 
2480 	ret = flow_drv_validate(dev, attr, items, actions, true, error);
2481 	if (ret < 0)
2482 		return ret;
2483 	return 0;
2484 }
2485 
2486 /**
2487  * Get RSS action from the action list.
2488  *
2489  * @param[in] actions
2490  *   Pointer to the list of actions.
2491  *
2492  * @return
2493  *   Pointer to the RSS action if exist, else return NULL.
2494  */
2495 static const struct rte_flow_action_rss*
2496 flow_get_rss_action(const struct rte_flow_action actions[])
2497 {
2498 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2499 		switch (actions->type) {
2500 		case RTE_FLOW_ACTION_TYPE_RSS:
2501 			return (const struct rte_flow_action_rss *)
2502 			       actions->conf;
2503 		default:
2504 			break;
2505 		}
2506 	}
2507 	return NULL;
2508 }
2509 
2510 static unsigned int
2511 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2512 {
2513 	const struct rte_flow_item *item;
2514 	unsigned int has_vlan = 0;
2515 
2516 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2517 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2518 			has_vlan = 1;
2519 			break;
2520 		}
2521 	}
2522 	if (has_vlan)
2523 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2524 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2525 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2526 			       MLX5_EXPANSION_ROOT_OUTER;
2527 }
2528 
2529 /**
2530  * Create a flow and add it to @p list.
2531  *
2532  * @param dev
2533  *   Pointer to Ethernet device.
2534  * @param list
2535  *   Pointer to a TAILQ flow list.
2536  * @param[in] attr
2537  *   Flow rule attributes.
2538  * @param[in] items
2539  *   Pattern specification (list terminated by the END pattern item).
2540  * @param[in] actions
2541  *   Associated actions (list terminated by the END action).
2542  * @param[in] external
2543  *   This flow rule is created by request external to PMD.
2544  * @param[out] error
2545  *   Perform verbose error reporting if not NULL.
2546  *
2547  * @return
2548  *   A flow on success, NULL otherwise and rte_errno is set.
2549  */
2550 static struct rte_flow *
2551 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2552 		 const struct rte_flow_attr *attr,
2553 		 const struct rte_flow_item items[],
2554 		 const struct rte_flow_action actions[],
2555 		 bool external, struct rte_flow_error *error)
2556 {
2557 	struct rte_flow *flow = NULL;
2558 	struct mlx5_flow *dev_flow;
2559 	const struct rte_flow_action_rss *rss;
2560 	union {
2561 		struct rte_flow_expand_rss buf;
2562 		uint8_t buffer[2048];
2563 	} expand_buffer;
2564 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2565 	int ret;
2566 	uint32_t i;
2567 	uint32_t flow_size;
2568 
2569 	ret = flow_drv_validate(dev, attr, items, actions, external, error);
2570 	if (ret < 0)
2571 		return NULL;
2572 	flow_size = sizeof(struct rte_flow);
2573 	rss = flow_get_rss_action(actions);
2574 	if (rss)
2575 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2576 					    sizeof(void *));
2577 	else
2578 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2579 	flow = rte_calloc(__func__, 1, flow_size, 0);
2580 	if (!flow) {
2581 		rte_errno = ENOMEM;
2582 		return NULL;
2583 	}
2584 	flow->drv_type = flow_get_drv_type(dev, attr);
2585 	flow->ingress = attr->ingress;
2586 	flow->transfer = attr->transfer;
2587 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2588 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2589 	flow->queue = (void *)(flow + 1);
2590 	LIST_INIT(&flow->dev_flows);
2591 	if (rss && rss->types) {
2592 		unsigned int graph_root;
2593 
2594 		graph_root = find_graph_root(items, rss->level);
2595 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2596 					  items, rss->types,
2597 					  mlx5_support_expansion,
2598 					  graph_root);
2599 		assert(ret > 0 &&
2600 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2601 	} else {
2602 		buf->entries = 1;
2603 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2604 	}
2605 	for (i = 0; i < buf->entries; ++i) {
2606 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2607 					    actions, error);
2608 		if (!dev_flow)
2609 			goto error;
2610 		dev_flow->flow = flow;
2611 		dev_flow->external = external;
2612 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2613 		ret = flow_drv_translate(dev, dev_flow, attr,
2614 					 buf->entry[i].pattern,
2615 					 actions, error);
2616 		if (ret < 0)
2617 			goto error;
2618 	}
2619 	if (dev->data->dev_started) {
2620 		ret = flow_drv_apply(dev, flow, error);
2621 		if (ret < 0)
2622 			goto error;
2623 	}
2624 	TAILQ_INSERT_TAIL(list, flow, next);
2625 	flow_rxq_flags_set(dev, flow);
2626 	return flow;
2627 error:
2628 	ret = rte_errno; /* Save rte_errno before cleanup. */
2629 	assert(flow);
2630 	flow_drv_destroy(dev, flow);
2631 	rte_free(flow);
2632 	rte_errno = ret; /* Restore rte_errno. */
2633 	return NULL;
2634 }
2635 
2636 /**
2637  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
2638  * incoming packets to table 1.
2639  *
2640  * Other flow rules, requested for group n, will be created in
2641  * e-switch table n+1.
2642  * Jump action to e-switch group n will be created to group n+1.
2643  *
2644  * Used when working in switchdev mode, to utilise advantages of table 1
2645  * and above.
2646  *
2647  * @param dev
2648  *   Pointer to Ethernet device.
2649  *
2650  * @return
2651  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
2652  */
2653 struct rte_flow *
2654 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
2655 {
2656 	const struct rte_flow_attr attr = {
2657 		.group = 0,
2658 		.priority = 0,
2659 		.ingress = 1,
2660 		.egress = 0,
2661 		.transfer = 1,
2662 	};
2663 	const struct rte_flow_item pattern = {
2664 		.type = RTE_FLOW_ITEM_TYPE_END,
2665 	};
2666 	struct rte_flow_action_jump jump = {
2667 		.group = 1,
2668 	};
2669 	const struct rte_flow_action actions[] = {
2670 		{
2671 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
2672 			.conf = &jump,
2673 		},
2674 		{
2675 			.type = RTE_FLOW_ACTION_TYPE_END,
2676 		},
2677 	};
2678 	struct mlx5_priv *priv = dev->data->dev_private;
2679 	struct rte_flow_error error;
2680 
2681 	return flow_list_create(dev, &priv->ctrl_flows, &attr, &pattern,
2682 				actions, false, &error);
2683 }
2684 
2685 /**
2686  * Create a flow.
2687  *
2688  * @see rte_flow_create()
2689  * @see rte_flow_ops
2690  */
2691 struct rte_flow *
2692 mlx5_flow_create(struct rte_eth_dev *dev,
2693 		 const struct rte_flow_attr *attr,
2694 		 const struct rte_flow_item items[],
2695 		 const struct rte_flow_action actions[],
2696 		 struct rte_flow_error *error)
2697 {
2698 	struct mlx5_priv *priv = dev->data->dev_private;
2699 
2700 	return flow_list_create(dev, &priv->flows,
2701 				attr, items, actions, true, error);
2702 }
2703 
2704 /**
2705  * Destroy a flow in a list.
2706  *
2707  * @param dev
2708  *   Pointer to Ethernet device.
2709  * @param list
2710  *   Pointer to a TAILQ flow list.
2711  * @param[in] flow
2712  *   Flow to destroy.
2713  */
2714 static void
2715 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2716 		  struct rte_flow *flow)
2717 {
2718 	/*
2719 	 * Update RX queue flags only if port is started, otherwise it is
2720 	 * already clean.
2721 	 */
2722 	if (dev->data->dev_started)
2723 		flow_rxq_flags_trim(dev, flow);
2724 	flow_drv_destroy(dev, flow);
2725 	TAILQ_REMOVE(list, flow, next);
2726 	rte_free(flow->fdir);
2727 	rte_free(flow);
2728 }
2729 
2730 /**
2731  * Destroy all flows.
2732  *
2733  * @param dev
2734  *   Pointer to Ethernet device.
2735  * @param list
2736  *   Pointer to a TAILQ flow list.
2737  */
2738 void
2739 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2740 {
2741 	while (!TAILQ_EMPTY(list)) {
2742 		struct rte_flow *flow;
2743 
2744 		flow = TAILQ_FIRST(list);
2745 		flow_list_destroy(dev, list, flow);
2746 	}
2747 }
2748 
2749 /**
2750  * Remove all flows.
2751  *
2752  * @param dev
2753  *   Pointer to Ethernet device.
2754  * @param list
2755  *   Pointer to a TAILQ flow list.
2756  */
2757 void
2758 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2759 {
2760 	struct rte_flow *flow;
2761 
2762 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2763 		flow_drv_remove(dev, flow);
2764 	flow_rxq_flags_clear(dev);
2765 }
2766 
2767 /**
2768  * Add all flows.
2769  *
2770  * @param dev
2771  *   Pointer to Ethernet device.
2772  * @param list
2773  *   Pointer to a TAILQ flow list.
2774  *
2775  * @return
2776  *   0 on success, a negative errno value otherwise and rte_errno is set.
2777  */
2778 int
2779 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2780 {
2781 	struct rte_flow *flow;
2782 	struct rte_flow_error error;
2783 	int ret = 0;
2784 
2785 	TAILQ_FOREACH(flow, list, next) {
2786 		ret = flow_drv_apply(dev, flow, &error);
2787 		if (ret < 0)
2788 			goto error;
2789 		flow_rxq_flags_set(dev, flow);
2790 	}
2791 	return 0;
2792 error:
2793 	ret = rte_errno; /* Save rte_errno before cleanup. */
2794 	mlx5_flow_stop(dev, list);
2795 	rte_errno = ret; /* Restore rte_errno. */
2796 	return -rte_errno;
2797 }
2798 
2799 /**
2800  * Verify the flow list is empty
2801  *
2802  * @param dev
2803  *  Pointer to Ethernet device.
2804  *
2805  * @return the number of flows not released.
2806  */
2807 int
2808 mlx5_flow_verify(struct rte_eth_dev *dev)
2809 {
2810 	struct mlx5_priv *priv = dev->data->dev_private;
2811 	struct rte_flow *flow;
2812 	int ret = 0;
2813 
2814 	TAILQ_FOREACH(flow, &priv->flows, next) {
2815 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
2816 			dev->data->port_id, (void *)flow);
2817 		++ret;
2818 	}
2819 	return ret;
2820 }
2821 
2822 /**
2823  * Enable default hairpin egress flow.
2824  *
2825  * @param dev
2826  *   Pointer to Ethernet device.
2827  * @param queue
2828  *   The queue index.
2829  *
2830  * @return
2831  *   0 on success, a negative errno value otherwise and rte_errno is set.
2832  */
2833 int
2834 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
2835 			    uint32_t queue)
2836 {
2837 	struct mlx5_priv *priv = dev->data->dev_private;
2838 	const struct rte_flow_attr attr = {
2839 		.egress = 1,
2840 		.priority = 0,
2841 	};
2842 	struct mlx5_rte_flow_item_tx_queue queue_spec = {
2843 		.queue = queue,
2844 	};
2845 	struct mlx5_rte_flow_item_tx_queue queue_mask = {
2846 		.queue = UINT32_MAX,
2847 	};
2848 	struct rte_flow_item items[] = {
2849 		{
2850 			.type = MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
2851 			.spec = &queue_spec,
2852 			.last = NULL,
2853 			.mask = &queue_mask,
2854 		},
2855 		{
2856 			.type = RTE_FLOW_ITEM_TYPE_END,
2857 		},
2858 	};
2859 	struct rte_flow_action_jump jump = {
2860 		.group = MLX5_HAIRPIN_TX_TABLE,
2861 	};
2862 	struct rte_flow_action actions[2];
2863 	struct rte_flow *flow;
2864 	struct rte_flow_error error;
2865 
2866 	actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
2867 	actions[0].conf = &jump;
2868 	actions[1].type = RTE_FLOW_ACTION_TYPE_END;
2869 	flow = flow_list_create(dev, &priv->ctrl_flows,
2870 				&attr, items, actions, false, &error);
2871 	if (!flow) {
2872 		DRV_LOG(DEBUG,
2873 			"Failed to create ctrl flow: rte_errno(%d),"
2874 			" type(%d), message(%s)\n",
2875 			rte_errno, error.type,
2876 			error.message ? error.message : " (no stated reason)");
2877 		return -rte_errno;
2878 	}
2879 	return 0;
2880 }
2881 
2882 /**
2883  * Enable a control flow configured from the control plane.
2884  *
2885  * @param dev
2886  *   Pointer to Ethernet device.
2887  * @param eth_spec
2888  *   An Ethernet flow spec to apply.
2889  * @param eth_mask
2890  *   An Ethernet flow mask to apply.
2891  * @param vlan_spec
2892  *   A VLAN flow spec to apply.
2893  * @param vlan_mask
2894  *   A VLAN flow mask to apply.
2895  *
2896  * @return
2897  *   0 on success, a negative errno value otherwise and rte_errno is set.
2898  */
2899 int
2900 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2901 		    struct rte_flow_item_eth *eth_spec,
2902 		    struct rte_flow_item_eth *eth_mask,
2903 		    struct rte_flow_item_vlan *vlan_spec,
2904 		    struct rte_flow_item_vlan *vlan_mask)
2905 {
2906 	struct mlx5_priv *priv = dev->data->dev_private;
2907 	const struct rte_flow_attr attr = {
2908 		.ingress = 1,
2909 		.priority = MLX5_FLOW_PRIO_RSVD,
2910 	};
2911 	struct rte_flow_item items[] = {
2912 		{
2913 			.type = RTE_FLOW_ITEM_TYPE_ETH,
2914 			.spec = eth_spec,
2915 			.last = NULL,
2916 			.mask = eth_mask,
2917 		},
2918 		{
2919 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2920 					      RTE_FLOW_ITEM_TYPE_END,
2921 			.spec = vlan_spec,
2922 			.last = NULL,
2923 			.mask = vlan_mask,
2924 		},
2925 		{
2926 			.type = RTE_FLOW_ITEM_TYPE_END,
2927 		},
2928 	};
2929 	uint16_t queue[priv->reta_idx_n];
2930 	struct rte_flow_action_rss action_rss = {
2931 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2932 		.level = 0,
2933 		.types = priv->rss_conf.rss_hf,
2934 		.key_len = priv->rss_conf.rss_key_len,
2935 		.queue_num = priv->reta_idx_n,
2936 		.key = priv->rss_conf.rss_key,
2937 		.queue = queue,
2938 	};
2939 	struct rte_flow_action actions[] = {
2940 		{
2941 			.type = RTE_FLOW_ACTION_TYPE_RSS,
2942 			.conf = &action_rss,
2943 		},
2944 		{
2945 			.type = RTE_FLOW_ACTION_TYPE_END,
2946 		},
2947 	};
2948 	struct rte_flow *flow;
2949 	struct rte_flow_error error;
2950 	unsigned int i;
2951 
2952 	if (!priv->reta_idx_n || !priv->rxqs_n) {
2953 		return 0;
2954 	}
2955 	for (i = 0; i != priv->reta_idx_n; ++i)
2956 		queue[i] = (*priv->reta_idx)[i];
2957 	flow = flow_list_create(dev, &priv->ctrl_flows,
2958 				&attr, items, actions, false, &error);
2959 	if (!flow)
2960 		return -rte_errno;
2961 	return 0;
2962 }
2963 
2964 /**
2965  * Enable a flow control configured from the control plane.
2966  *
2967  * @param dev
2968  *   Pointer to Ethernet device.
2969  * @param eth_spec
2970  *   An Ethernet flow spec to apply.
2971  * @param eth_mask
2972  *   An Ethernet flow mask to apply.
2973  *
2974  * @return
2975  *   0 on success, a negative errno value otherwise and rte_errno is set.
2976  */
2977 int
2978 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2979 	       struct rte_flow_item_eth *eth_spec,
2980 	       struct rte_flow_item_eth *eth_mask)
2981 {
2982 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2983 }
2984 
2985 /**
2986  * Destroy a flow.
2987  *
2988  * @see rte_flow_destroy()
2989  * @see rte_flow_ops
2990  */
2991 int
2992 mlx5_flow_destroy(struct rte_eth_dev *dev,
2993 		  struct rte_flow *flow,
2994 		  struct rte_flow_error *error __rte_unused)
2995 {
2996 	struct mlx5_priv *priv = dev->data->dev_private;
2997 
2998 	flow_list_destroy(dev, &priv->flows, flow);
2999 	return 0;
3000 }
3001 
3002 /**
3003  * Destroy all flows.
3004  *
3005  * @see rte_flow_flush()
3006  * @see rte_flow_ops
3007  */
3008 int
3009 mlx5_flow_flush(struct rte_eth_dev *dev,
3010 		struct rte_flow_error *error __rte_unused)
3011 {
3012 	struct mlx5_priv *priv = dev->data->dev_private;
3013 
3014 	mlx5_flow_list_flush(dev, &priv->flows);
3015 	return 0;
3016 }
3017 
3018 /**
3019  * Isolated mode.
3020  *
3021  * @see rte_flow_isolate()
3022  * @see rte_flow_ops
3023  */
3024 int
3025 mlx5_flow_isolate(struct rte_eth_dev *dev,
3026 		  int enable,
3027 		  struct rte_flow_error *error)
3028 {
3029 	struct mlx5_priv *priv = dev->data->dev_private;
3030 
3031 	if (dev->data->dev_started) {
3032 		rte_flow_error_set(error, EBUSY,
3033 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3034 				   NULL,
3035 				   "port must be stopped first");
3036 		return -rte_errno;
3037 	}
3038 	priv->isolated = !!enable;
3039 	if (enable)
3040 		dev->dev_ops = &mlx5_dev_ops_isolate;
3041 	else
3042 		dev->dev_ops = &mlx5_dev_ops;
3043 	return 0;
3044 }
3045 
3046 /**
3047  * Query a flow.
3048  *
3049  * @see rte_flow_query()
3050  * @see rte_flow_ops
3051  */
3052 static int
3053 flow_drv_query(struct rte_eth_dev *dev,
3054 	       struct rte_flow *flow,
3055 	       const struct rte_flow_action *actions,
3056 	       void *data,
3057 	       struct rte_flow_error *error)
3058 {
3059 	const struct mlx5_flow_driver_ops *fops;
3060 	enum mlx5_flow_drv_type ftype = flow->drv_type;
3061 
3062 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
3063 	fops = flow_get_drv_ops(ftype);
3064 
3065 	return fops->query(dev, flow, actions, data, error);
3066 }
3067 
3068 /**
3069  * Query a flow.
3070  *
3071  * @see rte_flow_query()
3072  * @see rte_flow_ops
3073  */
3074 int
3075 mlx5_flow_query(struct rte_eth_dev *dev,
3076 		struct rte_flow *flow,
3077 		const struct rte_flow_action *actions,
3078 		void *data,
3079 		struct rte_flow_error *error)
3080 {
3081 	int ret;
3082 
3083 	ret = flow_drv_query(dev, flow, actions, data, error);
3084 	if (ret < 0)
3085 		return ret;
3086 	return 0;
3087 }
3088 
3089 /**
3090  * Convert a flow director filter to a generic flow.
3091  *
3092  * @param dev
3093  *   Pointer to Ethernet device.
3094  * @param fdir_filter
3095  *   Flow director filter to add.
3096  * @param attributes
3097  *   Generic flow parameters structure.
3098  *
3099  * @return
3100  *   0 on success, a negative errno value otherwise and rte_errno is set.
3101  */
3102 static int
3103 flow_fdir_filter_convert(struct rte_eth_dev *dev,
3104 			 const struct rte_eth_fdir_filter *fdir_filter,
3105 			 struct mlx5_fdir *attributes)
3106 {
3107 	struct mlx5_priv *priv = dev->data->dev_private;
3108 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
3109 	const struct rte_eth_fdir_masks *mask =
3110 		&dev->data->dev_conf.fdir_conf.mask;
3111 
3112 	/* Validate queue number. */
3113 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
3114 		DRV_LOG(ERR, "port %u invalid queue number %d",
3115 			dev->data->port_id, fdir_filter->action.rx_queue);
3116 		rte_errno = EINVAL;
3117 		return -rte_errno;
3118 	}
3119 	attributes->attr.ingress = 1;
3120 	attributes->items[0] = (struct rte_flow_item) {
3121 		.type = RTE_FLOW_ITEM_TYPE_ETH,
3122 		.spec = &attributes->l2,
3123 		.mask = &attributes->l2_mask,
3124 	};
3125 	switch (fdir_filter->action.behavior) {
3126 	case RTE_ETH_FDIR_ACCEPT:
3127 		attributes->actions[0] = (struct rte_flow_action){
3128 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
3129 			.conf = &attributes->queue,
3130 		};
3131 		break;
3132 	case RTE_ETH_FDIR_REJECT:
3133 		attributes->actions[0] = (struct rte_flow_action){
3134 			.type = RTE_FLOW_ACTION_TYPE_DROP,
3135 		};
3136 		break;
3137 	default:
3138 		DRV_LOG(ERR, "port %u invalid behavior %d",
3139 			dev->data->port_id,
3140 			fdir_filter->action.behavior);
3141 		rte_errno = ENOTSUP;
3142 		return -rte_errno;
3143 	}
3144 	attributes->queue.index = fdir_filter->action.rx_queue;
3145 	/* Handle L3. */
3146 	switch (fdir_filter->input.flow_type) {
3147 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3148 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3149 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3150 		attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
3151 			.src_addr = input->flow.ip4_flow.src_ip,
3152 			.dst_addr = input->flow.ip4_flow.dst_ip,
3153 			.time_to_live = input->flow.ip4_flow.ttl,
3154 			.type_of_service = input->flow.ip4_flow.tos,
3155 		};
3156 		attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
3157 			.src_addr = mask->ipv4_mask.src_ip,
3158 			.dst_addr = mask->ipv4_mask.dst_ip,
3159 			.time_to_live = mask->ipv4_mask.ttl,
3160 			.type_of_service = mask->ipv4_mask.tos,
3161 			.next_proto_id = mask->ipv4_mask.proto,
3162 		};
3163 		attributes->items[1] = (struct rte_flow_item){
3164 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
3165 			.spec = &attributes->l3,
3166 			.mask = &attributes->l3_mask,
3167 		};
3168 		break;
3169 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3170 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3171 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3172 		attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
3173 			.hop_limits = input->flow.ipv6_flow.hop_limits,
3174 			.proto = input->flow.ipv6_flow.proto,
3175 		};
3176 
3177 		memcpy(attributes->l3.ipv6.hdr.src_addr,
3178 		       input->flow.ipv6_flow.src_ip,
3179 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3180 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
3181 		       input->flow.ipv6_flow.dst_ip,
3182 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3183 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
3184 		       mask->ipv6_mask.src_ip,
3185 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3186 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
3187 		       mask->ipv6_mask.dst_ip,
3188 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3189 		attributes->items[1] = (struct rte_flow_item){
3190 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3191 			.spec = &attributes->l3,
3192 			.mask = &attributes->l3_mask,
3193 		};
3194 		break;
3195 	default:
3196 		DRV_LOG(ERR, "port %u invalid flow type%d",
3197 			dev->data->port_id, fdir_filter->input.flow_type);
3198 		rte_errno = ENOTSUP;
3199 		return -rte_errno;
3200 	}
3201 	/* Handle L4. */
3202 	switch (fdir_filter->input.flow_type) {
3203 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3204 		attributes->l4.udp.hdr = (struct rte_udp_hdr){
3205 			.src_port = input->flow.udp4_flow.src_port,
3206 			.dst_port = input->flow.udp4_flow.dst_port,
3207 		};
3208 		attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3209 			.src_port = mask->src_port_mask,
3210 			.dst_port = mask->dst_port_mask,
3211 		};
3212 		attributes->items[2] = (struct rte_flow_item){
3213 			.type = RTE_FLOW_ITEM_TYPE_UDP,
3214 			.spec = &attributes->l4,
3215 			.mask = &attributes->l4_mask,
3216 		};
3217 		break;
3218 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3219 		attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3220 			.src_port = input->flow.tcp4_flow.src_port,
3221 			.dst_port = input->flow.tcp4_flow.dst_port,
3222 		};
3223 		attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3224 			.src_port = mask->src_port_mask,
3225 			.dst_port = mask->dst_port_mask,
3226 		};
3227 		attributes->items[2] = (struct rte_flow_item){
3228 			.type = RTE_FLOW_ITEM_TYPE_TCP,
3229 			.spec = &attributes->l4,
3230 			.mask = &attributes->l4_mask,
3231 		};
3232 		break;
3233 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3234 		attributes->l4.udp.hdr = (struct rte_udp_hdr){
3235 			.src_port = input->flow.udp6_flow.src_port,
3236 			.dst_port = input->flow.udp6_flow.dst_port,
3237 		};
3238 		attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3239 			.src_port = mask->src_port_mask,
3240 			.dst_port = mask->dst_port_mask,
3241 		};
3242 		attributes->items[2] = (struct rte_flow_item){
3243 			.type = RTE_FLOW_ITEM_TYPE_UDP,
3244 			.spec = &attributes->l4,
3245 			.mask = &attributes->l4_mask,
3246 		};
3247 		break;
3248 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3249 		attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3250 			.src_port = input->flow.tcp6_flow.src_port,
3251 			.dst_port = input->flow.tcp6_flow.dst_port,
3252 		};
3253 		attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3254 			.src_port = mask->src_port_mask,
3255 			.dst_port = mask->dst_port_mask,
3256 		};
3257 		attributes->items[2] = (struct rte_flow_item){
3258 			.type = RTE_FLOW_ITEM_TYPE_TCP,
3259 			.spec = &attributes->l4,
3260 			.mask = &attributes->l4_mask,
3261 		};
3262 		break;
3263 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3264 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3265 		break;
3266 	default:
3267 		DRV_LOG(ERR, "port %u invalid flow type%d",
3268 			dev->data->port_id, fdir_filter->input.flow_type);
3269 		rte_errno = ENOTSUP;
3270 		return -rte_errno;
3271 	}
3272 	return 0;
3273 }
3274 
3275 #define FLOW_FDIR_CMP(f1, f2, fld) \
3276 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
3277 
3278 /**
3279  * Compare two FDIR flows. If items and actions are identical, the two flows are
3280  * regarded as same.
3281  *
3282  * @param dev
3283  *   Pointer to Ethernet device.
3284  * @param f1
3285  *   FDIR flow to compare.
3286  * @param f2
3287  *   FDIR flow to compare.
3288  *
3289  * @return
3290  *   Zero on match, 1 otherwise.
3291  */
3292 static int
3293 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
3294 {
3295 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
3296 	    FLOW_FDIR_CMP(f1, f2, l2) ||
3297 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
3298 	    FLOW_FDIR_CMP(f1, f2, l3) ||
3299 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
3300 	    FLOW_FDIR_CMP(f1, f2, l4) ||
3301 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
3302 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
3303 		return 1;
3304 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
3305 	    FLOW_FDIR_CMP(f1, f2, queue))
3306 		return 1;
3307 	return 0;
3308 }
3309 
3310 /**
3311  * Search device flow list to find out a matched FDIR flow.
3312  *
3313  * @param dev
3314  *   Pointer to Ethernet device.
3315  * @param fdir_flow
3316  *   FDIR flow to lookup.
3317  *
3318  * @return
3319  *   Pointer of flow if found, NULL otherwise.
3320  */
3321 static struct rte_flow *
3322 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
3323 {
3324 	struct mlx5_priv *priv = dev->data->dev_private;
3325 	struct rte_flow *flow = NULL;
3326 
3327 	assert(fdir_flow);
3328 	TAILQ_FOREACH(flow, &priv->flows, next) {
3329 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
3330 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
3331 				dev->data->port_id, (void *)flow);
3332 			break;
3333 		}
3334 	}
3335 	return flow;
3336 }
3337 
3338 /**
3339  * Add new flow director filter and store it in list.
3340  *
3341  * @param dev
3342  *   Pointer to Ethernet device.
3343  * @param fdir_filter
3344  *   Flow director filter to add.
3345  *
3346  * @return
3347  *   0 on success, a negative errno value otherwise and rte_errno is set.
3348  */
3349 static int
3350 flow_fdir_filter_add(struct rte_eth_dev *dev,
3351 		     const struct rte_eth_fdir_filter *fdir_filter)
3352 {
3353 	struct mlx5_priv *priv = dev->data->dev_private;
3354 	struct mlx5_fdir *fdir_flow;
3355 	struct rte_flow *flow;
3356 	int ret;
3357 
3358 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
3359 	if (!fdir_flow) {
3360 		rte_errno = ENOMEM;
3361 		return -rte_errno;
3362 	}
3363 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
3364 	if (ret)
3365 		goto error;
3366 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
3367 	if (flow) {
3368 		rte_errno = EEXIST;
3369 		goto error;
3370 	}
3371 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
3372 				fdir_flow->items, fdir_flow->actions, true,
3373 				NULL);
3374 	if (!flow)
3375 		goto error;
3376 	assert(!flow->fdir);
3377 	flow->fdir = fdir_flow;
3378 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
3379 		dev->data->port_id, (void *)flow);
3380 	return 0;
3381 error:
3382 	rte_free(fdir_flow);
3383 	return -rte_errno;
3384 }
3385 
3386 /**
3387  * Delete specific filter.
3388  *
3389  * @param dev
3390  *   Pointer to Ethernet device.
3391  * @param fdir_filter
3392  *   Filter to be deleted.
3393  *
3394  * @return
3395  *   0 on success, a negative errno value otherwise and rte_errno is set.
3396  */
3397 static int
3398 flow_fdir_filter_delete(struct rte_eth_dev *dev,
3399 			const struct rte_eth_fdir_filter *fdir_filter)
3400 {
3401 	struct mlx5_priv *priv = dev->data->dev_private;
3402 	struct rte_flow *flow;
3403 	struct mlx5_fdir fdir_flow = {
3404 		.attr.group = 0,
3405 	};
3406 	int ret;
3407 
3408 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
3409 	if (ret)
3410 		return -rte_errno;
3411 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
3412 	if (!flow) {
3413 		rte_errno = ENOENT;
3414 		return -rte_errno;
3415 	}
3416 	flow_list_destroy(dev, &priv->flows, flow);
3417 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
3418 		dev->data->port_id, (void *)flow);
3419 	return 0;
3420 }
3421 
3422 /**
3423  * Update queue for specific filter.
3424  *
3425  * @param dev
3426  *   Pointer to Ethernet device.
3427  * @param fdir_filter
3428  *   Filter to be updated.
3429  *
3430  * @return
3431  *   0 on success, a negative errno value otherwise and rte_errno is set.
3432  */
3433 static int
3434 flow_fdir_filter_update(struct rte_eth_dev *dev,
3435 			const struct rte_eth_fdir_filter *fdir_filter)
3436 {
3437 	int ret;
3438 
3439 	ret = flow_fdir_filter_delete(dev, fdir_filter);
3440 	if (ret)
3441 		return ret;
3442 	return flow_fdir_filter_add(dev, fdir_filter);
3443 }
3444 
3445 /**
3446  * Flush all filters.
3447  *
3448  * @param dev
3449  *   Pointer to Ethernet device.
3450  */
3451 static void
3452 flow_fdir_filter_flush(struct rte_eth_dev *dev)
3453 {
3454 	struct mlx5_priv *priv = dev->data->dev_private;
3455 
3456 	mlx5_flow_list_flush(dev, &priv->flows);
3457 }
3458 
3459 /**
3460  * Get flow director information.
3461  *
3462  * @param dev
3463  *   Pointer to Ethernet device.
3464  * @param[out] fdir_info
3465  *   Resulting flow director information.
3466  */
3467 static void
3468 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3469 {
3470 	struct rte_eth_fdir_masks *mask =
3471 		&dev->data->dev_conf.fdir_conf.mask;
3472 
3473 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3474 	fdir_info->guarant_spc = 0;
3475 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3476 	fdir_info->max_flexpayload = 0;
3477 	fdir_info->flow_types_mask[0] = 0;
3478 	fdir_info->flex_payload_unit = 0;
3479 	fdir_info->max_flex_payload_segment_num = 0;
3480 	fdir_info->flex_payload_limit = 0;
3481 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3482 }
3483 
3484 /**
3485  * Deal with flow director operations.
3486  *
3487  * @param dev
3488  *   Pointer to Ethernet device.
3489  * @param filter_op
3490  *   Operation to perform.
3491  * @param arg
3492  *   Pointer to operation-specific structure.
3493  *
3494  * @return
3495  *   0 on success, a negative errno value otherwise and rte_errno is set.
3496  */
3497 static int
3498 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3499 		    void *arg)
3500 {
3501 	enum rte_fdir_mode fdir_mode =
3502 		dev->data->dev_conf.fdir_conf.mode;
3503 
3504 	if (filter_op == RTE_ETH_FILTER_NOP)
3505 		return 0;
3506 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3507 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3508 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
3509 			dev->data->port_id, fdir_mode);
3510 		rte_errno = EINVAL;
3511 		return -rte_errno;
3512 	}
3513 	switch (filter_op) {
3514 	case RTE_ETH_FILTER_ADD:
3515 		return flow_fdir_filter_add(dev, arg);
3516 	case RTE_ETH_FILTER_UPDATE:
3517 		return flow_fdir_filter_update(dev, arg);
3518 	case RTE_ETH_FILTER_DELETE:
3519 		return flow_fdir_filter_delete(dev, arg);
3520 	case RTE_ETH_FILTER_FLUSH:
3521 		flow_fdir_filter_flush(dev);
3522 		break;
3523 	case RTE_ETH_FILTER_INFO:
3524 		flow_fdir_info_get(dev, arg);
3525 		break;
3526 	default:
3527 		DRV_LOG(DEBUG, "port %u unknown operation %u",
3528 			dev->data->port_id, filter_op);
3529 		rte_errno = EINVAL;
3530 		return -rte_errno;
3531 	}
3532 	return 0;
3533 }
3534 
3535 /**
3536  * Manage filter operations.
3537  *
3538  * @param dev
3539  *   Pointer to Ethernet device structure.
3540  * @param filter_type
3541  *   Filter type.
3542  * @param filter_op
3543  *   Operation to perform.
3544  * @param arg
3545  *   Pointer to operation-specific structure.
3546  *
3547  * @return
3548  *   0 on success, a negative errno value otherwise and rte_errno is set.
3549  */
3550 int
3551 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3552 		     enum rte_filter_type filter_type,
3553 		     enum rte_filter_op filter_op,
3554 		     void *arg)
3555 {
3556 	switch (filter_type) {
3557 	case RTE_ETH_FILTER_GENERIC:
3558 		if (filter_op != RTE_ETH_FILTER_GET) {
3559 			rte_errno = EINVAL;
3560 			return -rte_errno;
3561 		}
3562 		*(const void **)arg = &mlx5_flow_ops;
3563 		return 0;
3564 	case RTE_ETH_FILTER_FDIR:
3565 		return flow_fdir_ctrl_func(dev, filter_op, arg);
3566 	default:
3567 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
3568 			dev->data->port_id, filter_type);
3569 		rte_errno = ENOTSUP;
3570 		return -rte_errno;
3571 	}
3572 	return 0;
3573 }
3574 
3575 #define MLX5_POOL_QUERY_FREQ_US 1000000
3576 
3577 /**
3578  * Set the periodic procedure for triggering asynchronous batch queries for all
3579  * the counter pools.
3580  *
3581  * @param[in] sh
3582  *   Pointer to mlx5_ibv_shared object.
3583  */
3584 void
3585 mlx5_set_query_alarm(struct mlx5_ibv_shared *sh)
3586 {
3587 	struct mlx5_pools_container *cont = MLX5_CNT_CONTAINER(sh, 0, 0);
3588 	uint32_t pools_n = rte_atomic16_read(&cont->n_valid);
3589 	uint32_t us;
3590 
3591 	cont = MLX5_CNT_CONTAINER(sh, 1, 0);
3592 	pools_n += rte_atomic16_read(&cont->n_valid);
3593 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
3594 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us\n", pools_n, us);
3595 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
3596 		sh->cmng.query_thread_on = 0;
3597 		DRV_LOG(ERR, "Cannot reinitialize query alarm\n");
3598 	} else {
3599 		sh->cmng.query_thread_on = 1;
3600 	}
3601 }
3602 
3603 /**
3604  * The periodic procedure for triggering asynchronous batch queries for all the
3605  * counter pools. This function is probably called by the host thread.
3606  *
3607  * @param[in] arg
3608  *   The parameter for the alarm process.
3609  */
3610 void
3611 mlx5_flow_query_alarm(void *arg)
3612 {
3613 	struct mlx5_ibv_shared *sh = arg;
3614 	struct mlx5_devx_obj *dcs;
3615 	uint16_t offset;
3616 	int ret;
3617 	uint8_t batch = sh->cmng.batch;
3618 	uint16_t pool_index = sh->cmng.pool_index;
3619 	struct mlx5_pools_container *cont;
3620 	struct mlx5_pools_container *mcont;
3621 	struct mlx5_flow_counter_pool *pool;
3622 
3623 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
3624 		goto set_alarm;
3625 next_container:
3626 	cont = MLX5_CNT_CONTAINER(sh, batch, 1);
3627 	mcont = MLX5_CNT_CONTAINER(sh, batch, 0);
3628 	/* Check if resize was done and need to flip a container. */
3629 	if (cont != mcont) {
3630 		if (cont->pools) {
3631 			/* Clean the old container. */
3632 			rte_free(cont->pools);
3633 			memset(cont, 0, sizeof(*cont));
3634 		}
3635 		rte_cio_wmb();
3636 		 /* Flip the host container. */
3637 		sh->cmng.mhi[batch] ^= (uint8_t)2;
3638 		cont = mcont;
3639 	}
3640 	if (!cont->pools) {
3641 		/* 2 empty containers case is unexpected. */
3642 		if (unlikely(batch != sh->cmng.batch))
3643 			goto set_alarm;
3644 		batch ^= 0x1;
3645 		pool_index = 0;
3646 		goto next_container;
3647 	}
3648 	pool = cont->pools[pool_index];
3649 	if (pool->raw_hw)
3650 		/* There is a pool query in progress. */
3651 		goto set_alarm;
3652 	pool->raw_hw =
3653 		LIST_FIRST(&sh->cmng.free_stat_raws);
3654 	if (!pool->raw_hw)
3655 		/* No free counter statistics raw memory. */
3656 		goto set_alarm;
3657 	dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
3658 							      (&pool->a64_dcs);
3659 	offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
3660 	ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
3661 					       offset, NULL, NULL,
3662 					       pool->raw_hw->mem_mng->dm->id,
3663 					       (void *)(uintptr_t)
3664 					       (pool->raw_hw->data + offset),
3665 					       sh->devx_comp,
3666 					       (uint64_t)(uintptr_t)pool);
3667 	if (ret) {
3668 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
3669 			" %d\n", pool->min_dcs->id);
3670 		pool->raw_hw = NULL;
3671 		goto set_alarm;
3672 	}
3673 	pool->raw_hw->min_dcs_id = dcs->id;
3674 	LIST_REMOVE(pool->raw_hw, next);
3675 	sh->cmng.pending_queries++;
3676 	pool_index++;
3677 	if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
3678 		batch ^= 0x1;
3679 		pool_index = 0;
3680 	}
3681 set_alarm:
3682 	sh->cmng.batch = batch;
3683 	sh->cmng.pool_index = pool_index;
3684 	mlx5_set_query_alarm(sh);
3685 }
3686 
3687 /**
3688  * Handler for the HW respond about ready values from an asynchronous batch
3689  * query. This function is probably called by the host thread.
3690  *
3691  * @param[in] sh
3692  *   The pointer to the shared IB device context.
3693  * @param[in] async_id
3694  *   The Devx async ID.
3695  * @param[in] status
3696  *   The status of the completion.
3697  */
3698 void
3699 mlx5_flow_async_pool_query_handle(struct mlx5_ibv_shared *sh,
3700 				  uint64_t async_id, int status)
3701 {
3702 	struct mlx5_flow_counter_pool *pool =
3703 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
3704 	struct mlx5_counter_stats_raw *raw_to_free;
3705 
3706 	if (unlikely(status)) {
3707 		raw_to_free = pool->raw_hw;
3708 	} else {
3709 		raw_to_free = pool->raw;
3710 		rte_spinlock_lock(&pool->sl);
3711 		pool->raw = pool->raw_hw;
3712 		rte_spinlock_unlock(&pool->sl);
3713 		rte_atomic64_add(&pool->query_gen, 1);
3714 		/* Be sure the new raw counters data is updated in memory. */
3715 		rte_cio_wmb();
3716 	}
3717 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
3718 	pool->raw_hw = NULL;
3719 	sh->cmng.pending_queries--;
3720 }
3721 
3722 /**
3723  * Translate the rte_flow group index to HW table value.
3724  *
3725  * @param[in] attributes
3726  *   Pointer to flow attributes
3727  * @param[in] external
3728  *   Value is part of flow rule created by request external to PMD.
3729  * @param[in] group
3730  *   rte_flow group index value.
3731  * @param[out] table
3732  *   HW table value.
3733  * @param[out] error
3734  *   Pointer to error structure.
3735  *
3736  * @return
3737  *   0 on success, a negative errno value otherwise and rte_errno is set.
3738  */
3739 int
3740 mlx5_flow_group_to_table(const struct rte_flow_attr *attributes, bool external,
3741 			 uint32_t group, uint32_t *table,
3742 			 struct rte_flow_error *error)
3743 {
3744 	if (attributes->transfer && external) {
3745 		if (group == UINT32_MAX)
3746 			return rte_flow_error_set
3747 						(error, EINVAL,
3748 						 RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
3749 						 NULL,
3750 						 "group index not supported");
3751 		*table = group + 1;
3752 	} else {
3753 		*table = group;
3754 	}
3755 	return 0;
3756 }
3757