xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 3b557cac65662a9ed78598d1fd4b4dc9f4b68f55)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_eth_ctrl.h>
25 #include <rte_ethdev_driver.h>
26 #include <rte_flow.h>
27 #include <rte_flow_driver.h>
28 #include <rte_malloc.h>
29 #include <rte_ip.h>
30 
31 #include "mlx5.h"
32 #include "mlx5_defs.h"
33 #include "mlx5_prm.h"
34 #include "mlx5_glue.h"
35 #include "mlx5_flow.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47 
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49 
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55 	[MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59 
60 enum mlx5_expansion {
61 	MLX5_EXPANSION_ROOT,
62 	MLX5_EXPANSION_ROOT_OUTER,
63 	MLX5_EXPANSION_ROOT_ETH_VLAN,
64 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_ETH,
66 	MLX5_EXPANSION_OUTER_ETH_VLAN,
67 	MLX5_EXPANSION_OUTER_VLAN,
68 	MLX5_EXPANSION_OUTER_IPV4,
69 	MLX5_EXPANSION_OUTER_IPV4_UDP,
70 	MLX5_EXPANSION_OUTER_IPV4_TCP,
71 	MLX5_EXPANSION_OUTER_IPV6,
72 	MLX5_EXPANSION_OUTER_IPV6_UDP,
73 	MLX5_EXPANSION_OUTER_IPV6_TCP,
74 	MLX5_EXPANSION_VXLAN,
75 	MLX5_EXPANSION_VXLAN_GPE,
76 	MLX5_EXPANSION_GRE,
77 	MLX5_EXPANSION_MPLS,
78 	MLX5_EXPANSION_ETH,
79 	MLX5_EXPANSION_ETH_VLAN,
80 	MLX5_EXPANSION_VLAN,
81 	MLX5_EXPANSION_IPV4,
82 	MLX5_EXPANSION_IPV4_UDP,
83 	MLX5_EXPANSION_IPV4_TCP,
84 	MLX5_EXPANSION_IPV6,
85 	MLX5_EXPANSION_IPV6_UDP,
86 	MLX5_EXPANSION_IPV6_TCP,
87 };
88 
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91 	[MLX5_EXPANSION_ROOT] = {
92 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93 						 MLX5_EXPANSION_IPV4,
94 						 MLX5_EXPANSION_IPV6),
95 		.type = RTE_FLOW_ITEM_TYPE_END,
96 	},
97 	[MLX5_EXPANSION_ROOT_OUTER] = {
98 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99 						 MLX5_EXPANSION_OUTER_IPV4,
100 						 MLX5_EXPANSION_OUTER_IPV6),
101 		.type = RTE_FLOW_ITEM_TYPE_END,
102 	},
103 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105 		.type = RTE_FLOW_ITEM_TYPE_END,
106 	},
107 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109 		.type = RTE_FLOW_ITEM_TYPE_END,
110 	},
111 	[MLX5_EXPANSION_OUTER_ETH] = {
112 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113 						 MLX5_EXPANSION_OUTER_IPV6,
114 						 MLX5_EXPANSION_MPLS),
115 		.type = RTE_FLOW_ITEM_TYPE_ETH,
116 		.rss_types = 0,
117 	},
118 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120 		.type = RTE_FLOW_ITEM_TYPE_ETH,
121 		.rss_types = 0,
122 	},
123 	[MLX5_EXPANSION_OUTER_VLAN] = {
124 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125 						 MLX5_EXPANSION_OUTER_IPV6),
126 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
127 	},
128 	[MLX5_EXPANSION_OUTER_IPV4] = {
129 		.next = RTE_FLOW_EXPAND_RSS_NEXT
130 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
131 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
132 			 MLX5_EXPANSION_GRE),
133 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
134 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135 			ETH_RSS_NONFRAG_IPV4_OTHER,
136 	},
137 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139 						 MLX5_EXPANSION_VXLAN_GPE),
140 		.type = RTE_FLOW_ITEM_TYPE_UDP,
141 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142 	},
143 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144 		.type = RTE_FLOW_ITEM_TYPE_TCP,
145 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146 	},
147 	[MLX5_EXPANSION_OUTER_IPV6] = {
148 		.next = RTE_FLOW_EXPAND_RSS_NEXT
149 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
150 			 MLX5_EXPANSION_OUTER_IPV6_TCP),
151 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
152 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153 			ETH_RSS_NONFRAG_IPV6_OTHER,
154 	},
155 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157 						 MLX5_EXPANSION_VXLAN_GPE),
158 		.type = RTE_FLOW_ITEM_TYPE_UDP,
159 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160 	},
161 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162 		.type = RTE_FLOW_ITEM_TYPE_TCP,
163 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164 	},
165 	[MLX5_EXPANSION_VXLAN] = {
166 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
168 	},
169 	[MLX5_EXPANSION_VXLAN_GPE] = {
170 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171 						 MLX5_EXPANSION_IPV4,
172 						 MLX5_EXPANSION_IPV6),
173 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174 	},
175 	[MLX5_EXPANSION_GRE] = {
176 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177 		.type = RTE_FLOW_ITEM_TYPE_GRE,
178 	},
179 	[MLX5_EXPANSION_MPLS] = {
180 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181 						 MLX5_EXPANSION_IPV6),
182 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
183 	},
184 	[MLX5_EXPANSION_ETH] = {
185 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186 						 MLX5_EXPANSION_IPV6),
187 		.type = RTE_FLOW_ITEM_TYPE_ETH,
188 	},
189 	[MLX5_EXPANSION_ETH_VLAN] = {
190 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191 		.type = RTE_FLOW_ITEM_TYPE_ETH,
192 	},
193 	[MLX5_EXPANSION_VLAN] = {
194 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195 						 MLX5_EXPANSION_IPV6),
196 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
197 	},
198 	[MLX5_EXPANSION_IPV4] = {
199 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200 						 MLX5_EXPANSION_IPV4_TCP),
201 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
202 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203 			ETH_RSS_NONFRAG_IPV4_OTHER,
204 	},
205 	[MLX5_EXPANSION_IPV4_UDP] = {
206 		.type = RTE_FLOW_ITEM_TYPE_UDP,
207 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208 	},
209 	[MLX5_EXPANSION_IPV4_TCP] = {
210 		.type = RTE_FLOW_ITEM_TYPE_TCP,
211 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212 	},
213 	[MLX5_EXPANSION_IPV6] = {
214 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215 						 MLX5_EXPANSION_IPV6_TCP),
216 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
217 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218 			ETH_RSS_NONFRAG_IPV6_OTHER,
219 	},
220 	[MLX5_EXPANSION_IPV6_UDP] = {
221 		.type = RTE_FLOW_ITEM_TYPE_UDP,
222 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223 	},
224 	[MLX5_EXPANSION_IPV6_TCP] = {
225 		.type = RTE_FLOW_ITEM_TYPE_TCP,
226 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227 	},
228 };
229 
230 static const struct rte_flow_ops mlx5_flow_ops = {
231 	.validate = mlx5_flow_validate,
232 	.create = mlx5_flow_create,
233 	.destroy = mlx5_flow_destroy,
234 	.flush = mlx5_flow_flush,
235 	.isolate = mlx5_flow_isolate,
236 	.query = mlx5_flow_query,
237 };
238 
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241 	struct rte_flow_attr attr;
242 	struct rte_flow_action actions[2];
243 	struct rte_flow_item items[4];
244 	struct rte_flow_item_eth l2;
245 	struct rte_flow_item_eth l2_mask;
246 	union {
247 		struct rte_flow_item_ipv4 ipv4;
248 		struct rte_flow_item_ipv6 ipv6;
249 	} l3;
250 	union {
251 		struct rte_flow_item_ipv4 ipv4;
252 		struct rte_flow_item_ipv6 ipv6;
253 	} l3_mask;
254 	union {
255 		struct rte_flow_item_udp udp;
256 		struct rte_flow_item_tcp tcp;
257 	} l4;
258 	union {
259 		struct rte_flow_item_udp udp;
260 		struct rte_flow_item_tcp tcp;
261 	} l4_mask;
262 	struct rte_flow_action_queue queue;
263 };
264 
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269 
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273 	{ 9, 10, 11 }, { 12, 13, 14 },
274 };
275 
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281 
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283 	{
284 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
285 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286 	},
287 	{
288 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290 	},
291 	{
292 		.tunnel = MLX5_FLOW_LAYER_GRE,
293 		.ptype = RTE_PTYPE_TUNNEL_GRE,
294 	},
295 	{
296 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE | RTE_PTYPE_L4_UDP,
298 	},
299 	{
300 		.tunnel = MLX5_FLOW_LAYER_MPLS,
301 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302 	},
303 };
304 
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318 	struct {
319 		struct ibv_flow_attr attr;
320 		struct ibv_flow_spec_eth eth;
321 		struct ibv_flow_spec_action_drop drop;
322 	} flow_attr = {
323 		.attr = {
324 			.num_of_specs = 2,
325 		},
326 		.eth = {
327 			.type = IBV_FLOW_SPEC_ETH,
328 			.size = sizeof(struct ibv_flow_spec_eth),
329 		},
330 		.drop = {
331 			.size = sizeof(struct ibv_flow_spec_action_drop),
332 			.type = IBV_FLOW_SPEC_ACTION_DROP,
333 		},
334 	};
335 	struct ibv_flow *flow;
336 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337 	uint16_t vprio[] = { 8, 16 };
338 	int i;
339 	int priority = 0;
340 
341 	if (!drop) {
342 		rte_errno = ENOTSUP;
343 		return -rte_errno;
344 	}
345 	for (i = 0; i != RTE_DIM(vprio); i++) {
346 		flow_attr.attr.priority = vprio[i] - 1;
347 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348 		if (!flow)
349 			break;
350 		claim_zero(mlx5_glue->destroy_flow(flow));
351 		priority = vprio[i];
352 	}
353 	switch (priority) {
354 	case 8:
355 		priority = RTE_DIM(priority_map_3);
356 		break;
357 	case 16:
358 		priority = RTE_DIM(priority_map_5);
359 		break;
360 	default:
361 		rte_errno = ENOTSUP;
362 		DRV_LOG(ERR,
363 			"port %u verbs maximum priority: %d expected 8/16",
364 			dev->data->port_id, vprio[i]);
365 		return -rte_errno;
366 	}
367 	mlx5_hrxq_drop_release(dev);
368 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
369 		dev->data->port_id, priority);
370 	return priority;
371 }
372 
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387 				   uint32_t subpriority)
388 {
389 	uint32_t res = 0;
390 	struct priv *priv = dev->data->dev_private;
391 
392 	switch (priv->config.flow_prio) {
393 	case RTE_DIM(priority_map_3):
394 		res = priority_map_3[priority][subpriority];
395 		break;
396 	case RTE_DIM(priority_map_5):
397 		res = priority_map_5[priority][subpriority];
398 		break;
399 	}
400 	return  res;
401 }
402 
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423 			  const uint8_t *mask,
424 			  const uint8_t *nic_mask,
425 			  unsigned int size,
426 			  struct rte_flow_error *error)
427 {
428 	unsigned int i;
429 
430 	assert(nic_mask);
431 	for (i = 0; i < size; ++i)
432 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
433 			return rte_flow_error_set(error, ENOTSUP,
434 						  RTE_FLOW_ERROR_TYPE_ITEM,
435 						  item,
436 						  "mask enables non supported"
437 						  " bits");
438 	if (!item->spec && (item->mask || item->last))
439 		return rte_flow_error_set(error, EINVAL,
440 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
441 					  "mask/last without a spec is not"
442 					  " supported");
443 	if (item->spec && item->last) {
444 		uint8_t spec[size];
445 		uint8_t last[size];
446 		unsigned int i;
447 		int ret;
448 
449 		for (i = 0; i < size; ++i) {
450 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452 		}
453 		ret = memcmp(spec, last, size);
454 		if (ret != 0)
455 			return rte_flow_error_set(error, EINVAL,
456 						  RTE_FLOW_ERROR_TYPE_ITEM,
457 						  item,
458 						  "range is not valid");
459 	}
460 	return 0;
461 }
462 
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480 			    int tunnel __rte_unused, uint64_t layer_types,
481 			    uint64_t hash_fields)
482 {
483 	struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485 	int rss_request_inner = flow->rss.level >= 2;
486 
487 	/* Check RSS hash level for tunnel. */
488 	if (tunnel && rss_request_inner)
489 		hash_fields |= IBV_RX_HASH_INNER;
490 	else if (tunnel || rss_request_inner)
491 		return 0;
492 #endif
493 	/* Check if requested layer matches RSS hash fields. */
494 	if (!(flow->rss.types & layer_types))
495 		return 0;
496 	return hash_fields;
497 }
498 
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510 	unsigned int i;
511 	uint32_t tunnel_ptype = 0;
512 
513 	/* Look up for the ptype to use. */
514 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515 		if (!rxq_ctrl->flow_tunnels_n[i])
516 			continue;
517 		if (!tunnel_ptype) {
518 			tunnel_ptype = tunnels_info[i].ptype;
519 		} else {
520 			tunnel_ptype = 0;
521 			break;
522 		}
523 	}
524 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526 
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539 	struct priv *priv = dev->data->dev_private;
540 	struct rte_flow *flow = dev_flow->flow;
541 	const int mark = !!(flow->actions &
542 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544 	unsigned int i;
545 
546 	for (i = 0; i != flow->rss.queue_num; ++i) {
547 		int idx = (*flow->queue)[i];
548 		struct mlx5_rxq_ctrl *rxq_ctrl =
549 			container_of((*priv->rxqs)[idx],
550 				     struct mlx5_rxq_ctrl, rxq);
551 
552 		if (mark) {
553 			rxq_ctrl->rxq.mark = 1;
554 			rxq_ctrl->flow_mark_n++;
555 		}
556 		if (tunnel) {
557 			unsigned int j;
558 
559 			/* Increase the counter matching the flow. */
560 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561 				if ((tunnels_info[j].tunnel &
562 				     dev_flow->layers) ==
563 				    tunnels_info[j].tunnel) {
564 					rxq_ctrl->flow_tunnels_n[j]++;
565 					break;
566 				}
567 			}
568 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
569 		}
570 	}
571 }
572 
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584 	struct mlx5_flow *dev_flow;
585 
586 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587 		flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589 
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602 	struct priv *priv = dev->data->dev_private;
603 	struct rte_flow *flow = dev_flow->flow;
604 	const int mark = !!(flow->actions &
605 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607 	unsigned int i;
608 
609 	assert(dev->data->dev_started);
610 	for (i = 0; i != flow->rss.queue_num; ++i) {
611 		int idx = (*flow->queue)[i];
612 		struct mlx5_rxq_ctrl *rxq_ctrl =
613 			container_of((*priv->rxqs)[idx],
614 				     struct mlx5_rxq_ctrl, rxq);
615 
616 		if (mark) {
617 			rxq_ctrl->flow_mark_n--;
618 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619 		}
620 		if (tunnel) {
621 			unsigned int j;
622 
623 			/* Decrease the counter matching the flow. */
624 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625 				if ((tunnels_info[j].tunnel &
626 				     dev_flow->layers) ==
627 				    tunnels_info[j].tunnel) {
628 					rxq_ctrl->flow_tunnels_n[j]--;
629 					break;
630 				}
631 			}
632 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
633 		}
634 	}
635 }
636 
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649 	struct mlx5_flow *dev_flow;
650 
651 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652 		flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654 
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664 	struct priv *priv = dev->data->dev_private;
665 	unsigned int i;
666 
667 	for (i = 0; i != priv->rxqs_n; ++i) {
668 		struct mlx5_rxq_ctrl *rxq_ctrl;
669 		unsigned int j;
670 
671 		if (!(*priv->rxqs)[i])
672 			continue;
673 		rxq_ctrl = container_of((*priv->rxqs)[i],
674 					struct mlx5_rxq_ctrl, rxq);
675 		rxq_ctrl->flow_mark_n = 0;
676 		rxq_ctrl->rxq.mark = 0;
677 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678 			rxq_ctrl->flow_tunnels_n[j] = 0;
679 		rxq_ctrl->rxq.tunnel = 0;
680 	}
681 }
682 
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698 			       const struct rte_flow_attr *attr,
699 			       struct rte_flow_error *error)
700 {
701 
702 	if (action_flags & MLX5_FLOW_ACTION_DROP)
703 		return rte_flow_error_set(error, EINVAL,
704 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705 					  "can't drop and flag in same flow");
706 	if (action_flags & MLX5_FLOW_ACTION_MARK)
707 		return rte_flow_error_set(error, EINVAL,
708 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709 					  "can't mark and flag in same flow");
710 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
711 		return rte_flow_error_set(error, EINVAL,
712 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713 					  "can't have 2 flag"
714 					  " actions in same flow");
715 	if (attr->egress)
716 		return rte_flow_error_set(error, ENOTSUP,
717 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718 					  "flag action not supported for "
719 					  "egress");
720 	return 0;
721 }
722 
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740 			       uint64_t action_flags,
741 			       const struct rte_flow_attr *attr,
742 			       struct rte_flow_error *error)
743 {
744 	const struct rte_flow_action_mark *mark = action->conf;
745 
746 	if (!mark)
747 		return rte_flow_error_set(error, EINVAL,
748 					  RTE_FLOW_ERROR_TYPE_ACTION,
749 					  action,
750 					  "configuration cannot be null");
751 	if (mark->id >= MLX5_FLOW_MARK_MAX)
752 		return rte_flow_error_set(error, EINVAL,
753 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754 					  &mark->id,
755 					  "mark id must in 0 <= id < "
756 					  RTE_STR(MLX5_FLOW_MARK_MAX));
757 	if (action_flags & MLX5_FLOW_ACTION_DROP)
758 		return rte_flow_error_set(error, EINVAL,
759 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760 					  "can't drop and mark in same flow");
761 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
762 		return rte_flow_error_set(error, EINVAL,
763 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764 					  "can't flag and mark in same flow");
765 	if (action_flags & MLX5_FLOW_ACTION_MARK)
766 		return rte_flow_error_set(error, EINVAL,
767 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768 					  "can't have 2 mark actions in same"
769 					  " flow");
770 	if (attr->egress)
771 		return rte_flow_error_set(error, ENOTSUP,
772 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773 					  "mark action not supported for "
774 					  "egress");
775 	return 0;
776 }
777 
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_ernno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793 			       const struct rte_flow_attr *attr,
794 			       struct rte_flow_error *error)
795 {
796 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
797 		return rte_flow_error_set(error, EINVAL,
798 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799 					  "can't drop and flag in same flow");
800 	if (action_flags & MLX5_FLOW_ACTION_MARK)
801 		return rte_flow_error_set(error, EINVAL,
802 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803 					  "can't drop and mark in same flow");
804 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805 		return rte_flow_error_set(error, EINVAL,
806 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807 					  "can't have 2 fate actions in"
808 					  " same flow");
809 	if (attr->egress)
810 		return rte_flow_error_set(error, ENOTSUP,
811 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812 					  "drop action not supported for "
813 					  "egress");
814 	return 0;
815 }
816 
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_ernno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836 				uint64_t action_flags,
837 				struct rte_eth_dev *dev,
838 				const struct rte_flow_attr *attr,
839 				struct rte_flow_error *error)
840 {
841 	struct priv *priv = dev->data->dev_private;
842 	const struct rte_flow_action_queue *queue = action->conf;
843 
844 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845 		return rte_flow_error_set(error, EINVAL,
846 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847 					  "can't have 2 fate actions in"
848 					  " same flow");
849 	if (queue->index >= priv->rxqs_n)
850 		return rte_flow_error_set(error, EINVAL,
851 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852 					  &queue->index,
853 					  "queue index out of range");
854 	if (!(*priv->rxqs)[queue->index])
855 		return rte_flow_error_set(error, EINVAL,
856 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
857 					  &queue->index,
858 					  "queue is not configured");
859 	if (attr->egress)
860 		return rte_flow_error_set(error, ENOTSUP,
861 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
862 					  "queue action not supported for "
863 					  "egress");
864 	return 0;
865 }
866 
867 /*
868  * Validate the rss action.
869  *
870  * @param[in] action
871  *   Pointer to the queue action.
872  * @param[in] action_flags
873  *   Bit-fields that holds the actions detected until now.
874  * @param[in] dev
875  *   Pointer to the Ethernet device structure.
876  * @param[in] attr
877  *   Attributes of flow that includes this action.
878  * @param[out] error
879  *   Pointer to error structure.
880  *
881  * @return
882  *   0 on success, a negative errno value otherwise and rte_ernno is set.
883  */
884 int
885 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
886 			      uint64_t action_flags,
887 			      struct rte_eth_dev *dev,
888 			      const struct rte_flow_attr *attr,
889 			      struct rte_flow_error *error)
890 {
891 	struct priv *priv = dev->data->dev_private;
892 	const struct rte_flow_action_rss *rss = action->conf;
893 	unsigned int i;
894 
895 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
896 		return rte_flow_error_set(error, EINVAL,
897 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
898 					  "can't have 2 fate actions"
899 					  " in same flow");
900 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
901 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
902 		return rte_flow_error_set(error, ENOTSUP,
903 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
904 					  &rss->func,
905 					  "RSS hash function not supported");
906 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
907 	if (rss->level > 2)
908 #else
909 	if (rss->level > 1)
910 #endif
911 		return rte_flow_error_set(error, ENOTSUP,
912 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
913 					  &rss->level,
914 					  "tunnel RSS is not supported");
915 	if (rss->key_len < MLX5_RSS_HASH_KEY_LEN)
916 		return rte_flow_error_set(error, ENOTSUP,
917 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
918 					  &rss->key_len,
919 					  "RSS hash key too small");
920 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
921 		return rte_flow_error_set(error, ENOTSUP,
922 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
923 					  &rss->key_len,
924 					  "RSS hash key too large");
925 	if (rss->queue_num > priv->config.ind_table_max_size)
926 		return rte_flow_error_set(error, ENOTSUP,
927 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
928 					  &rss->queue_num,
929 					  "number of queues too large");
930 	if (rss->types & MLX5_RSS_HF_MASK)
931 		return rte_flow_error_set(error, ENOTSUP,
932 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
933 					  &rss->types,
934 					  "some RSS protocols are not"
935 					  " supported");
936 	for (i = 0; i != rss->queue_num; ++i) {
937 		if (!(*priv->rxqs)[rss->queue[i]])
938 			return rte_flow_error_set
939 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
940 				 &rss->queue[i], "queue is not configured");
941 	}
942 	if (attr->egress)
943 		return rte_flow_error_set(error, ENOTSUP,
944 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
945 					  "rss action not supported for "
946 					  "egress");
947 	return 0;
948 }
949 
950 /*
951  * Validate the count action.
952  *
953  * @param[in] dev
954  *   Pointer to the Ethernet device structure.
955  * @param[in] attr
956  *   Attributes of flow that includes this action.
957  * @param[out] error
958  *   Pointer to error structure.
959  *
960  * @return
961  *   0 on success, a negative errno value otherwise and rte_ernno is set.
962  */
963 int
964 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
965 				const struct rte_flow_attr *attr,
966 				struct rte_flow_error *error)
967 {
968 	if (attr->egress)
969 		return rte_flow_error_set(error, ENOTSUP,
970 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
971 					  "count action not supported for "
972 					  "egress");
973 	return 0;
974 }
975 
976 /**
977  * Verify the @p attributes will be correctly understood by the NIC and store
978  * them in the @p flow if everything is correct.
979  *
980  * @param[in] dev
981  *   Pointer to the Ethernet device structure.
982  * @param[in] attributes
983  *   Pointer to flow attributes
984  * @param[out] error
985  *   Pointer to error structure.
986  *
987  * @return
988  *   0 on success, a negative errno value otherwise and rte_errno is set.
989  */
990 int
991 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
992 			      const struct rte_flow_attr *attributes,
993 			      struct rte_flow_error *error)
994 {
995 	struct priv *priv = dev->data->dev_private;
996 	uint32_t priority_max = priv->config.flow_prio - 1;
997 
998 	if (attributes->group)
999 		return rte_flow_error_set(error, ENOTSUP,
1000 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1001 					  NULL, "groups is not supported");
1002 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1003 	    attributes->priority >= priority_max)
1004 		return rte_flow_error_set(error, ENOTSUP,
1005 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1006 					  NULL, "priority out of range");
1007 	if (attributes->egress)
1008 		return rte_flow_error_set(error, ENOTSUP,
1009 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1010 					  "egress is not supported");
1011 	if (attributes->transfer)
1012 		return rte_flow_error_set(error, ENOTSUP,
1013 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1014 					  NULL, "transfer is not supported");
1015 	if (!attributes->ingress)
1016 		return rte_flow_error_set(error, EINVAL,
1017 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1018 					  NULL,
1019 					  "ingress attribute is mandatory");
1020 	return 0;
1021 }
1022 
1023 /**
1024  * Validate Ethernet item.
1025  *
1026  * @param[in] item
1027  *   Item specification.
1028  * @param[in] item_flags
1029  *   Bit-fields that holds the items detected until now.
1030  * @param[out] error
1031  *   Pointer to error structure.
1032  *
1033  * @return
1034  *   0 on success, a negative errno value otherwise and rte_errno is set.
1035  */
1036 int
1037 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1038 			    uint64_t item_flags,
1039 			    struct rte_flow_error *error)
1040 {
1041 	const struct rte_flow_item_eth *mask = item->mask;
1042 	const struct rte_flow_item_eth nic_mask = {
1043 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1044 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1045 		.type = RTE_BE16(0xffff),
1046 	};
1047 	int ret;
1048 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1049 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1050 				       MLX5_FLOW_LAYER_OUTER_L2;
1051 
1052 	if (item_flags & ethm)
1053 		return rte_flow_error_set(error, ENOTSUP,
1054 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1055 					  "multiple L2 layers not supported");
1056 	if (!mask)
1057 		mask = &rte_flow_item_eth_mask;
1058 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1059 					(const uint8_t *)&nic_mask,
1060 					sizeof(struct rte_flow_item_eth),
1061 					error);
1062 	return ret;
1063 }
1064 
1065 /**
1066  * Validate VLAN item.
1067  *
1068  * @param[in] item
1069  *   Item specification.
1070  * @param[in] item_flags
1071  *   Bit-fields that holds the items detected until now.
1072  * @param[out] error
1073  *   Pointer to error structure.
1074  *
1075  * @return
1076  *   0 on success, a negative errno value otherwise and rte_errno is set.
1077  */
1078 int
1079 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1080 			     uint64_t item_flags,
1081 			     struct rte_flow_error *error)
1082 {
1083 	const struct rte_flow_item_vlan *spec = item->spec;
1084 	const struct rte_flow_item_vlan *mask = item->mask;
1085 	const struct rte_flow_item_vlan nic_mask = {
1086 		.tci = RTE_BE16(0x0fff),
1087 		.inner_type = RTE_BE16(0xffff),
1088 	};
1089 	uint16_t vlan_tag = 0;
1090 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1091 	int ret;
1092 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1093 					MLX5_FLOW_LAYER_INNER_L4) :
1094 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1095 					MLX5_FLOW_LAYER_OUTER_L4);
1096 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1097 					MLX5_FLOW_LAYER_OUTER_VLAN;
1098 
1099 	if (item_flags & vlanm)
1100 		return rte_flow_error_set(error, EINVAL,
1101 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1102 					  "multiple VLAN layers not supported");
1103 	else if ((item_flags & l34m) != 0)
1104 		return rte_flow_error_set(error, EINVAL,
1105 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1106 					  "L2 layer cannot follow L3/L4 layer");
1107 	if (!mask)
1108 		mask = &rte_flow_item_vlan_mask;
1109 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1110 					(const uint8_t *)&nic_mask,
1111 					sizeof(struct rte_flow_item_vlan),
1112 					error);
1113 	if (ret)
1114 		return ret;
1115 	if (spec) {
1116 		vlan_tag = spec->tci;
1117 		vlan_tag &= mask->tci;
1118 	}
1119 	/*
1120 	 * From verbs perspective an empty VLAN is equivalent
1121 	 * to a packet without VLAN layer.
1122 	 */
1123 	if (!vlan_tag)
1124 		return rte_flow_error_set(error, EINVAL,
1125 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1126 					  item->spec,
1127 					  "VLAN cannot be empty");
1128 	return 0;
1129 }
1130 
1131 /**
1132  * Validate IPV4 item.
1133  *
1134  * @param[in] item
1135  *   Item specification.
1136  * @param[in] item_flags
1137  *   Bit-fields that holds the items detected until now.
1138  * @param[out] error
1139  *   Pointer to error structure.
1140  *
1141  * @return
1142  *   0 on success, a negative errno value otherwise and rte_errno is set.
1143  */
1144 int
1145 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1146 			     uint64_t item_flags,
1147 			     struct rte_flow_error *error)
1148 {
1149 	const struct rte_flow_item_ipv4 *mask = item->mask;
1150 	const struct rte_flow_item_ipv4 nic_mask = {
1151 		.hdr = {
1152 			.src_addr = RTE_BE32(0xffffffff),
1153 			.dst_addr = RTE_BE32(0xffffffff),
1154 			.type_of_service = 0xff,
1155 			.next_proto_id = 0xff,
1156 		},
1157 	};
1158 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1159 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1160 				      MLX5_FLOW_LAYER_OUTER_L3;
1161 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1162 				      MLX5_FLOW_LAYER_OUTER_L4;
1163 	int ret;
1164 
1165 	if (item_flags & l3m)
1166 		return rte_flow_error_set(error, ENOTSUP,
1167 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1168 					  "multiple L3 layers not supported");
1169 	else if (item_flags & l4m)
1170 		return rte_flow_error_set(error, EINVAL,
1171 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1172 					  "L3 cannot follow an L4 layer.");
1173 	if (!mask)
1174 		mask = &rte_flow_item_ipv4_mask;
1175 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1176 					(const uint8_t *)&nic_mask,
1177 					sizeof(struct rte_flow_item_ipv4),
1178 					error);
1179 	if (ret < 0)
1180 		return ret;
1181 	return 0;
1182 }
1183 
1184 /**
1185  * Validate IPV6 item.
1186  *
1187  * @param[in] item
1188  *   Item specification.
1189  * @param[in] item_flags
1190  *   Bit-fields that holds the items detected until now.
1191  * @param[out] error
1192  *   Pointer to error structure.
1193  *
1194  * @return
1195  *   0 on success, a negative errno value otherwise and rte_errno is set.
1196  */
1197 int
1198 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1199 			     uint64_t item_flags,
1200 			     struct rte_flow_error *error)
1201 {
1202 	const struct rte_flow_item_ipv6 *mask = item->mask;
1203 	const struct rte_flow_item_ipv6 nic_mask = {
1204 		.hdr = {
1205 			.src_addr =
1206 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1207 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1208 			.dst_addr =
1209 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1210 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1211 			.vtc_flow = RTE_BE32(0xffffffff),
1212 			.proto = 0xff,
1213 			.hop_limits = 0xff,
1214 		},
1215 	};
1216 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1217 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1218 				      MLX5_FLOW_LAYER_OUTER_L3;
1219 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1220 				      MLX5_FLOW_LAYER_OUTER_L4;
1221 	int ret;
1222 
1223 	if (item_flags & l3m)
1224 		return rte_flow_error_set(error, ENOTSUP,
1225 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1226 					  "multiple L3 layers not supported");
1227 	else if (item_flags & l4m)
1228 		return rte_flow_error_set(error, EINVAL,
1229 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1230 					  "L3 cannot follow an L4 layer.");
1231 	/*
1232 	 * IPv6 is not recognised by the NIC inside a GRE tunnel.
1233 	 * Such support has to be disabled as the rule will be
1234 	 * accepted.  Issue reproduced with Mellanox OFED 4.3-3.0.2.1 and
1235 	 * Mellanox OFED 4.4-1.0.0.0.
1236 	 */
1237 	if (tunnel && item_flags & MLX5_FLOW_LAYER_GRE)
1238 		return rte_flow_error_set(error, ENOTSUP,
1239 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1240 					  "IPv6 inside a GRE tunnel is"
1241 					  " not recognised.");
1242 	if (!mask)
1243 		mask = &rte_flow_item_ipv6_mask;
1244 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1245 					(const uint8_t *)&nic_mask,
1246 					sizeof(struct rte_flow_item_ipv6),
1247 					error);
1248 	if (ret < 0)
1249 		return ret;
1250 	return 0;
1251 }
1252 
1253 /**
1254  * Validate UDP item.
1255  *
1256  * @param[in] item
1257  *   Item specification.
1258  * @param[in] item_flags
1259  *   Bit-fields that holds the items detected until now.
1260  * @param[in] target_protocol
1261  *   The next protocol in the previous item.
1262  * @param[in] flow_mask
1263  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1264  * @param[out] error
1265  *   Pointer to error structure.
1266  *
1267  * @return
1268  *   0 on success, a negative errno value otherwise and rte_errno is set.
1269  */
1270 int
1271 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1272 			    uint64_t item_flags,
1273 			    uint8_t target_protocol,
1274 			    struct rte_flow_error *error)
1275 {
1276 	const struct rte_flow_item_udp *mask = item->mask;
1277 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1278 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1279 				      MLX5_FLOW_LAYER_OUTER_L3;
1280 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1281 				      MLX5_FLOW_LAYER_OUTER_L4;
1282 	int ret;
1283 
1284 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1285 		return rte_flow_error_set(error, EINVAL,
1286 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1287 					  "protocol filtering not compatible"
1288 					  " with UDP layer");
1289 	if (!(item_flags & l3m))
1290 		return rte_flow_error_set(error, EINVAL,
1291 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1292 					  "L3 is mandatory to filter on L4");
1293 	if (item_flags & l4m)
1294 		return rte_flow_error_set(error, EINVAL,
1295 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1296 					  "multiple L4 layers not supported");
1297 	if (!mask)
1298 		mask = &rte_flow_item_udp_mask;
1299 	ret = mlx5_flow_item_acceptable
1300 		(item, (const uint8_t *)mask,
1301 		 (const uint8_t *)&rte_flow_item_udp_mask,
1302 		 sizeof(struct rte_flow_item_udp), error);
1303 	if (ret < 0)
1304 		return ret;
1305 	return 0;
1306 }
1307 
1308 /**
1309  * Validate TCP item.
1310  *
1311  * @param[in] item
1312  *   Item specification.
1313  * @param[in] item_flags
1314  *   Bit-fields that holds the items detected until now.
1315  * @param[in] target_protocol
1316  *   The next protocol in the previous item.
1317  * @param[out] error
1318  *   Pointer to error structure.
1319  *
1320  * @return
1321  *   0 on success, a negative errno value otherwise and rte_errno is set.
1322  */
1323 int
1324 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1325 			    uint64_t item_flags,
1326 			    uint8_t target_protocol,
1327 			    const struct rte_flow_item_tcp *flow_mask,
1328 			    struct rte_flow_error *error)
1329 {
1330 	const struct rte_flow_item_tcp *mask = item->mask;
1331 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1332 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1333 				      MLX5_FLOW_LAYER_OUTER_L3;
1334 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1335 				      MLX5_FLOW_LAYER_OUTER_L4;
1336 	int ret;
1337 
1338 	assert(flow_mask);
1339 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1340 		return rte_flow_error_set(error, EINVAL,
1341 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1342 					  "protocol filtering not compatible"
1343 					  " with TCP layer");
1344 	if (!(item_flags & l3m))
1345 		return rte_flow_error_set(error, EINVAL,
1346 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1347 					  "L3 is mandatory to filter on L4");
1348 	if (item_flags & l4m)
1349 		return rte_flow_error_set(error, EINVAL,
1350 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1351 					  "multiple L4 layers not supported");
1352 	if (!mask)
1353 		mask = &rte_flow_item_tcp_mask;
1354 	ret = mlx5_flow_item_acceptable
1355 		(item, (const uint8_t *)mask,
1356 		 (const uint8_t *)flow_mask,
1357 		 sizeof(struct rte_flow_item_tcp), error);
1358 	if (ret < 0)
1359 		return ret;
1360 	return 0;
1361 }
1362 
1363 /**
1364  * Validate VXLAN item.
1365  *
1366  * @param[in] item
1367  *   Item specification.
1368  * @param[in] item_flags
1369  *   Bit-fields that holds the items detected until now.
1370  * @param[in] target_protocol
1371  *   The next protocol in the previous item.
1372  * @param[out] error
1373  *   Pointer to error structure.
1374  *
1375  * @return
1376  *   0 on success, a negative errno value otherwise and rte_errno is set.
1377  */
1378 int
1379 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1380 			      uint64_t item_flags,
1381 			      struct rte_flow_error *error)
1382 {
1383 	const struct rte_flow_item_vxlan *spec = item->spec;
1384 	const struct rte_flow_item_vxlan *mask = item->mask;
1385 	int ret;
1386 	union vni {
1387 		uint32_t vlan_id;
1388 		uint8_t vni[4];
1389 	} id = { .vlan_id = 0, };
1390 	uint32_t vlan_id = 0;
1391 
1392 
1393 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1394 		return rte_flow_error_set(error, ENOTSUP,
1395 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1396 					  "multiple tunnel layers not"
1397 					  " supported");
1398 	/*
1399 	 * Verify only UDPv4 is present as defined in
1400 	 * https://tools.ietf.org/html/rfc7348
1401 	 */
1402 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1403 		return rte_flow_error_set(error, EINVAL,
1404 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1405 					  "no outer UDP layer found");
1406 	if (!mask)
1407 		mask = &rte_flow_item_vxlan_mask;
1408 	ret = mlx5_flow_item_acceptable
1409 		(item, (const uint8_t *)mask,
1410 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1411 		 sizeof(struct rte_flow_item_vxlan),
1412 		 error);
1413 	if (ret < 0)
1414 		return ret;
1415 	if (spec) {
1416 		memcpy(&id.vni[1], spec->vni, 3);
1417 		vlan_id = id.vlan_id;
1418 		memcpy(&id.vni[1], mask->vni, 3);
1419 		vlan_id &= id.vlan_id;
1420 	}
1421 	/*
1422 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1423 	 * only this layer is defined in the Verbs specification it is
1424 	 * interpreted as wildcard and all packets will match this
1425 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1426 	 * udp), all packets matching the layers before will also
1427 	 * match this rule.  To avoid such situation, VNI 0 is
1428 	 * currently refused.
1429 	 */
1430 	if (!vlan_id)
1431 		return rte_flow_error_set(error, ENOTSUP,
1432 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1433 					  "VXLAN vni cannot be 0");
1434 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1435 		return rte_flow_error_set(error, ENOTSUP,
1436 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1437 					  "VXLAN tunnel must be fully defined");
1438 	return 0;
1439 }
1440 
1441 /**
1442  * Validate VXLAN_GPE item.
1443  *
1444  * @param[in] item
1445  *   Item specification.
1446  * @param[in] item_flags
1447  *   Bit-fields that holds the items detected until now.
1448  * @param[in] priv
1449  *   Pointer to the private data structure.
1450  * @param[in] target_protocol
1451  *   The next protocol in the previous item.
1452  * @param[out] error
1453  *   Pointer to error structure.
1454  *
1455  * @return
1456  *   0 on success, a negative errno value otherwise and rte_errno is set.
1457  */
1458 int
1459 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1460 				  uint64_t item_flags,
1461 				  struct rte_eth_dev *dev,
1462 				  struct rte_flow_error *error)
1463 {
1464 	struct priv *priv = dev->data->dev_private;
1465 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1466 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1467 	int ret;
1468 	union vni {
1469 		uint32_t vlan_id;
1470 		uint8_t vni[4];
1471 	} id = { .vlan_id = 0, };
1472 	uint32_t vlan_id = 0;
1473 
1474 	if (!priv->config.l3_vxlan_en)
1475 		return rte_flow_error_set(error, ENOTSUP,
1476 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1477 					  "L3 VXLAN is not enabled by device"
1478 					  " parameter and/or not configured in"
1479 					  " firmware");
1480 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1481 		return rte_flow_error_set(error, ENOTSUP,
1482 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1483 					  "multiple tunnel layers not"
1484 					  " supported");
1485 	/*
1486 	 * Verify only UDPv4 is present as defined in
1487 	 * https://tools.ietf.org/html/rfc7348
1488 	 */
1489 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1490 		return rte_flow_error_set(error, EINVAL,
1491 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1492 					  "no outer UDP layer found");
1493 	if (!mask)
1494 		mask = &rte_flow_item_vxlan_gpe_mask;
1495 	ret = mlx5_flow_item_acceptable
1496 		(item, (const uint8_t *)mask,
1497 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1498 		 sizeof(struct rte_flow_item_vxlan_gpe),
1499 		 error);
1500 	if (ret < 0)
1501 		return ret;
1502 	if (spec) {
1503 		if (spec->protocol)
1504 			return rte_flow_error_set(error, ENOTSUP,
1505 						  RTE_FLOW_ERROR_TYPE_ITEM,
1506 						  item,
1507 						  "VxLAN-GPE protocol"
1508 						  " not supported");
1509 		memcpy(&id.vni[1], spec->vni, 3);
1510 		vlan_id = id.vlan_id;
1511 		memcpy(&id.vni[1], mask->vni, 3);
1512 		vlan_id &= id.vlan_id;
1513 	}
1514 	/*
1515 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1516 	 * layer is defined in the Verbs specification it is interpreted as
1517 	 * wildcard and all packets will match this rule, if it follows a full
1518 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1519 	 * before will also match this rule.  To avoid such situation, VNI 0
1520 	 * is currently refused.
1521 	 */
1522 	if (!vlan_id)
1523 		return rte_flow_error_set(error, ENOTSUP,
1524 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1525 					  "VXLAN-GPE vni cannot be 0");
1526 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1527 		return rte_flow_error_set(error, ENOTSUP,
1528 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1529 					  "VXLAN-GPE tunnel must be fully"
1530 					  " defined");
1531 	return 0;
1532 }
1533 
1534 /**
1535  * Validate GRE item.
1536  *
1537  * @param[in] item
1538  *   Item specification.
1539  * @param[in] item_flags
1540  *   Bit flags to mark detected items.
1541  * @param[in] target_protocol
1542  *   The next protocol in the previous item.
1543  * @param[out] error
1544  *   Pointer to error structure.
1545  *
1546  * @return
1547  *   0 on success, a negative errno value otherwise and rte_errno is set.
1548  */
1549 int
1550 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1551 			    uint64_t item_flags,
1552 			    uint8_t target_protocol,
1553 			    struct rte_flow_error *error)
1554 {
1555 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1556 	const struct rte_flow_item_gre *mask = item->mask;
1557 	int ret;
1558 
1559 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1560 		return rte_flow_error_set(error, EINVAL,
1561 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1562 					  "protocol filtering not compatible"
1563 					  " with this GRE layer");
1564 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1565 		return rte_flow_error_set(error, ENOTSUP,
1566 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1567 					  "multiple tunnel layers not"
1568 					  " supported");
1569 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1570 		return rte_flow_error_set(error, ENOTSUP,
1571 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1572 					  "L3 Layer is missing");
1573 	if (!mask)
1574 		mask = &rte_flow_item_gre_mask;
1575 	ret = mlx5_flow_item_acceptable
1576 		(item, (const uint8_t *)mask,
1577 		 (const uint8_t *)&rte_flow_item_gre_mask,
1578 		 sizeof(struct rte_flow_item_gre), error);
1579 	if (ret < 0)
1580 		return ret;
1581 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1582 	if (spec && (spec->protocol & mask->protocol))
1583 		return rte_flow_error_set(error, ENOTSUP,
1584 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1585 					  "without MPLS support the"
1586 					  " specification cannot be used for"
1587 					  " filtering");
1588 #endif
1589 	return 0;
1590 }
1591 
1592 /**
1593  * Validate MPLS item.
1594  *
1595  * @param[in] item
1596  *   Item specification.
1597  * @param[in] item_flags
1598  *   Bit-fields that holds the items detected until now.
1599  * @param[in] target_protocol
1600  *   The next protocol in the previous item.
1601  * @param[out] error
1602  *   Pointer to error structure.
1603  *
1604  * @return
1605  *   0 on success, a negative errno value otherwise and rte_errno is set.
1606  */
1607 int
1608 mlx5_flow_validate_item_mpls(const struct rte_flow_item *item __rte_unused,
1609 			     uint64_t item_flags __rte_unused,
1610 			     uint8_t target_protocol __rte_unused,
1611 			     struct rte_flow_error *error)
1612 {
1613 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1614 	const struct rte_flow_item_mpls *mask = item->mask;
1615 	int ret;
1616 
1617 	if (target_protocol != 0xff && target_protocol != IPPROTO_MPLS)
1618 		return rte_flow_error_set(error, EINVAL,
1619 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1620 					  "protocol filtering not compatible"
1621 					  " with MPLS layer");
1622 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1623 		return rte_flow_error_set(error, ENOTSUP,
1624 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1625 					  "multiple tunnel layers not"
1626 					  " supported");
1627 	if (!mask)
1628 		mask = &rte_flow_item_mpls_mask;
1629 	ret = mlx5_flow_item_acceptable
1630 		(item, (const uint8_t *)mask,
1631 		 (const uint8_t *)&rte_flow_item_mpls_mask,
1632 		 sizeof(struct rte_flow_item_mpls), error);
1633 	if (ret < 0)
1634 		return ret;
1635 	return 0;
1636 #endif
1637 	return rte_flow_error_set(error, ENOTSUP,
1638 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
1639 				  "MPLS is not supported by Verbs, please"
1640 				  " update.");
1641 }
1642 
1643 static int
1644 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1645 		   const struct rte_flow_attr *attr __rte_unused,
1646 		   const struct rte_flow_item items[] __rte_unused,
1647 		   const struct rte_flow_action actions[] __rte_unused,
1648 		   struct rte_flow_error *error __rte_unused)
1649 {
1650 	rte_errno = ENOTSUP;
1651 	return -rte_errno;
1652 }
1653 
1654 static struct mlx5_flow *
1655 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1656 		  const struct rte_flow_item items[] __rte_unused,
1657 		  const struct rte_flow_action actions[] __rte_unused,
1658 		  uint64_t *item_flags __rte_unused,
1659 		  uint64_t *action_flags __rte_unused,
1660 		  struct rte_flow_error *error __rte_unused)
1661 {
1662 	rte_errno = ENOTSUP;
1663 	return NULL;
1664 }
1665 
1666 static int
1667 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1668 		    struct mlx5_flow *dev_flow __rte_unused,
1669 		    const struct rte_flow_attr *attr __rte_unused,
1670 		    const struct rte_flow_item items[] __rte_unused,
1671 		    const struct rte_flow_action actions[] __rte_unused,
1672 		    struct rte_flow_error *error __rte_unused)
1673 {
1674 	rte_errno = ENOTSUP;
1675 	return -rte_errno;
1676 }
1677 
1678 static int
1679 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1680 		struct rte_flow *flow __rte_unused,
1681 		struct rte_flow_error *error __rte_unused)
1682 {
1683 	rte_errno = ENOTSUP;
1684 	return -rte_errno;
1685 }
1686 
1687 static void
1688 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1689 		 struct rte_flow *flow __rte_unused)
1690 {
1691 }
1692 
1693 static void
1694 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1695 		  struct rte_flow *flow __rte_unused)
1696 {
1697 }
1698 
1699 static int
1700 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1701 		struct rte_flow *flow __rte_unused,
1702 		const struct rte_flow_action *actions __rte_unused,
1703 		void *data __rte_unused,
1704 		struct rte_flow_error *error __rte_unused)
1705 {
1706 	rte_errno = ENOTSUP;
1707 	return -rte_errno;
1708 }
1709 
1710 /* Void driver to protect from null pointer reference. */
1711 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1712 	.validate = flow_null_validate,
1713 	.prepare = flow_null_prepare,
1714 	.translate = flow_null_translate,
1715 	.apply = flow_null_apply,
1716 	.remove = flow_null_remove,
1717 	.destroy = flow_null_destroy,
1718 	.query = flow_null_query,
1719 };
1720 
1721 /**
1722  * Select flow driver type according to flow attributes and device
1723  * configuration.
1724  *
1725  * @param[in] dev
1726  *   Pointer to the dev structure.
1727  * @param[in] attr
1728  *   Pointer to the flow attributes.
1729  *
1730  * @return
1731  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1732  */
1733 static enum mlx5_flow_drv_type
1734 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1735 {
1736 	struct priv *priv = dev->data->dev_private;
1737 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1738 
1739 	if (attr->transfer)
1740 		type = MLX5_FLOW_TYPE_TCF;
1741 	else
1742 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1743 						 MLX5_FLOW_TYPE_VERBS;
1744 	return type;
1745 }
1746 
1747 #define flow_get_drv_ops(type) flow_drv_ops[type]
1748 
1749 /**
1750  * Flow driver validation API. This abstracts calling driver specific functions.
1751  * The type of flow driver is determined according to flow attributes.
1752  *
1753  * @param[in] dev
1754  *   Pointer to the dev structure.
1755  * @param[in] attr
1756  *   Pointer to the flow attributes.
1757  * @param[in] items
1758  *   Pointer to the list of items.
1759  * @param[in] actions
1760  *   Pointer to the list of actions.
1761  * @param[out] error
1762  *   Pointer to the error structure.
1763  *
1764  * @return
1765  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1766  */
1767 static inline int
1768 flow_drv_validate(struct rte_eth_dev *dev,
1769 		  const struct rte_flow_attr *attr,
1770 		  const struct rte_flow_item items[],
1771 		  const struct rte_flow_action actions[],
1772 		  struct rte_flow_error *error)
1773 {
1774 	const struct mlx5_flow_driver_ops *fops;
1775 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1776 
1777 	fops = flow_get_drv_ops(type);
1778 	return fops->validate(dev, attr, items, actions, error);
1779 }
1780 
1781 /**
1782  * Flow driver preparation API. This abstracts calling driver specific
1783  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1784  * calculates the size of memory required for device flow, allocates the memory,
1785  * initializes the device flow and returns the pointer.
1786  *
1787  * @param[in] attr
1788  *   Pointer to the flow attributes.
1789  * @param[in] items
1790  *   Pointer to the list of items.
1791  * @param[in] actions
1792  *   Pointer to the list of actions.
1793  * @param[out] item_flags
1794  *   Pointer to bit mask of all items detected.
1795  * @param[out] action_flags
1796  *   Pointer to bit mask of all actions detected.
1797  * @param[out] error
1798  *   Pointer to the error structure.
1799  *
1800  * @return
1801  *   Pointer to device flow on success, otherwise NULL and rte_ernno is set.
1802  */
1803 static inline struct mlx5_flow *
1804 flow_drv_prepare(struct rte_flow *flow,
1805 		 const struct rte_flow_attr *attr,
1806 		 const struct rte_flow_item items[],
1807 		 const struct rte_flow_action actions[],
1808 		 uint64_t *item_flags,
1809 		 uint64_t *action_flags,
1810 		 struct rte_flow_error *error)
1811 {
1812 	const struct mlx5_flow_driver_ops *fops;
1813 	enum mlx5_flow_drv_type type = flow->drv_type;
1814 
1815 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1816 	fops = flow_get_drv_ops(type);
1817 	return fops->prepare(attr, items, actions, item_flags, action_flags,
1818 			     error);
1819 }
1820 
1821 /**
1822  * Flow driver translation API. This abstracts calling driver specific
1823  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1824  * translates a generic flow into a driver flow. flow_drv_prepare() must
1825  * precede.
1826  *
1827  *
1828  * @param[in] dev
1829  *   Pointer to the rte dev structure.
1830  * @param[in, out] dev_flow
1831  *   Pointer to the mlx5 flow.
1832  * @param[in] attr
1833  *   Pointer to the flow attributes.
1834  * @param[in] items
1835  *   Pointer to the list of items.
1836  * @param[in] actions
1837  *   Pointer to the list of actions.
1838  * @param[out] error
1839  *   Pointer to the error structure.
1840  *
1841  * @return
1842  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1843  */
1844 static inline int
1845 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1846 		   const struct rte_flow_attr *attr,
1847 		   const struct rte_flow_item items[],
1848 		   const struct rte_flow_action actions[],
1849 		   struct rte_flow_error *error)
1850 {
1851 	const struct mlx5_flow_driver_ops *fops;
1852 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1853 
1854 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1855 	fops = flow_get_drv_ops(type);
1856 	return fops->translate(dev, dev_flow, attr, items, actions, error);
1857 }
1858 
1859 /**
1860  * Flow driver apply API. This abstracts calling driver specific functions.
1861  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1862  * translated driver flows on to device. flow_drv_translate() must precede.
1863  *
1864  * @param[in] dev
1865  *   Pointer to Ethernet device structure.
1866  * @param[in, out] flow
1867  *   Pointer to flow structure.
1868  * @param[out] error
1869  *   Pointer to error structure.
1870  *
1871  * @return
1872  *   0 on success, a negative errno value otherwise and rte_errno is set.
1873  */
1874 static inline int
1875 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1876 	       struct rte_flow_error *error)
1877 {
1878 	const struct mlx5_flow_driver_ops *fops;
1879 	enum mlx5_flow_drv_type type = flow->drv_type;
1880 
1881 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1882 	fops = flow_get_drv_ops(type);
1883 	return fops->apply(dev, flow, error);
1884 }
1885 
1886 /**
1887  * Flow driver remove API. This abstracts calling driver specific functions.
1888  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1889  * on device. All the resources of the flow should be freed by calling
1890  * flow_dv_destroy().
1891  *
1892  * @param[in] dev
1893  *   Pointer to Ethernet device.
1894  * @param[in, out] flow
1895  *   Pointer to flow structure.
1896  */
1897 static inline void
1898 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1899 {
1900 	const struct mlx5_flow_driver_ops *fops;
1901 	enum mlx5_flow_drv_type type = flow->drv_type;
1902 
1903 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1904 	fops = flow_get_drv_ops(type);
1905 	fops->remove(dev, flow);
1906 }
1907 
1908 /**
1909  * Flow driver destroy API. This abstracts calling driver specific functions.
1910  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1911  * on device and releases resources of the flow.
1912  *
1913  * @param[in] dev
1914  *   Pointer to Ethernet device.
1915  * @param[in, out] flow
1916  *   Pointer to flow structure.
1917  */
1918 static inline void
1919 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1920 {
1921 	const struct mlx5_flow_driver_ops *fops;
1922 	enum mlx5_flow_drv_type type = flow->drv_type;
1923 
1924 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1925 	fops = flow_get_drv_ops(type);
1926 	fops->destroy(dev, flow);
1927 }
1928 
1929 /**
1930  * Validate a flow supported by the NIC.
1931  *
1932  * @see rte_flow_validate()
1933  * @see rte_flow_ops
1934  */
1935 int
1936 mlx5_flow_validate(struct rte_eth_dev *dev,
1937 		   const struct rte_flow_attr *attr,
1938 		   const struct rte_flow_item items[],
1939 		   const struct rte_flow_action actions[],
1940 		   struct rte_flow_error *error)
1941 {
1942 	int ret;
1943 
1944 	ret = flow_drv_validate(dev, attr, items, actions, error);
1945 	if (ret < 0)
1946 		return ret;
1947 	return 0;
1948 }
1949 
1950 /**
1951  * Get RSS action from the action list.
1952  *
1953  * @param[in] actions
1954  *   Pointer to the list of actions.
1955  *
1956  * @return
1957  *   Pointer to the RSS action if exist, else return NULL.
1958  */
1959 static const struct rte_flow_action_rss*
1960 flow_get_rss_action(const struct rte_flow_action actions[])
1961 {
1962 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1963 		switch (actions->type) {
1964 		case RTE_FLOW_ACTION_TYPE_RSS:
1965 			return (const struct rte_flow_action_rss *)
1966 			       actions->conf;
1967 		default:
1968 			break;
1969 		}
1970 	}
1971 	return NULL;
1972 }
1973 
1974 static unsigned int
1975 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
1976 {
1977 	const struct rte_flow_item *item;
1978 	unsigned int has_vlan = 0;
1979 
1980 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
1981 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
1982 			has_vlan = 1;
1983 			break;
1984 		}
1985 	}
1986 	if (has_vlan)
1987 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
1988 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
1989 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
1990 			       MLX5_EXPANSION_ROOT_OUTER;
1991 }
1992 
1993 /**
1994  * Create a flow and add it to @p list.
1995  *
1996  * @param dev
1997  *   Pointer to Ethernet device.
1998  * @param list
1999  *   Pointer to a TAILQ flow list.
2000  * @param[in] attr
2001  *   Flow rule attributes.
2002  * @param[in] items
2003  *   Pattern specification (list terminated by the END pattern item).
2004  * @param[in] actions
2005  *   Associated actions (list terminated by the END action).
2006  * @param[out] error
2007  *   Perform verbose error reporting if not NULL.
2008  *
2009  * @return
2010  *   A flow on success, NULL otherwise and rte_errno is set.
2011  */
2012 static struct rte_flow *
2013 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2014 		 const struct rte_flow_attr *attr,
2015 		 const struct rte_flow_item items[],
2016 		 const struct rte_flow_action actions[],
2017 		 struct rte_flow_error *error)
2018 {
2019 	struct rte_flow *flow = NULL;
2020 	struct mlx5_flow *dev_flow;
2021 	uint64_t action_flags = 0;
2022 	uint64_t item_flags = 0;
2023 	const struct rte_flow_action_rss *rss;
2024 	union {
2025 		struct rte_flow_expand_rss buf;
2026 		uint8_t buffer[2048];
2027 	} expand_buffer;
2028 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2029 	int ret;
2030 	uint32_t i;
2031 	uint32_t flow_size;
2032 
2033 	ret = flow_drv_validate(dev, attr, items, actions, error);
2034 	if (ret < 0)
2035 		return NULL;
2036 	flow_size = sizeof(struct rte_flow);
2037 	rss = flow_get_rss_action(actions);
2038 	if (rss)
2039 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2040 					    sizeof(void *));
2041 	else
2042 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2043 	flow = rte_calloc(__func__, 1, flow_size, 0);
2044 	flow->drv_type = flow_get_drv_type(dev, attr);
2045 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2046 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2047 	flow->queue = (void *)(flow + 1);
2048 	LIST_INIT(&flow->dev_flows);
2049 	if (rss && rss->types) {
2050 		unsigned int graph_root;
2051 
2052 		graph_root = find_graph_root(items, rss->level);
2053 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2054 					  items, rss->types,
2055 					  mlx5_support_expansion,
2056 					  graph_root);
2057 		assert(ret > 0 &&
2058 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2059 	} else {
2060 		buf->entries = 1;
2061 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2062 	}
2063 	for (i = 0; i < buf->entries; ++i) {
2064 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2065 					    actions, &item_flags, &action_flags,
2066 					    error);
2067 		if (!dev_flow)
2068 			goto error;
2069 		dev_flow->flow = flow;
2070 		dev_flow->layers = item_flags;
2071 		/* Store actions once as expanded flows have same actions. */
2072 		if (i == 0)
2073 			flow->actions = action_flags;
2074 		assert(flow->actions == action_flags);
2075 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2076 		ret = flow_drv_translate(dev, dev_flow, attr,
2077 					 buf->entry[i].pattern,
2078 					 actions, error);
2079 		if (ret < 0)
2080 			goto error;
2081 	}
2082 	if (dev->data->dev_started) {
2083 		ret = flow_drv_apply(dev, flow, error);
2084 		if (ret < 0)
2085 			goto error;
2086 	}
2087 	TAILQ_INSERT_TAIL(list, flow, next);
2088 	flow_rxq_flags_set(dev, flow);
2089 	return flow;
2090 error:
2091 	ret = rte_errno; /* Save rte_errno before cleanup. */
2092 	assert(flow);
2093 	flow_drv_destroy(dev, flow);
2094 	rte_free(flow);
2095 	rte_errno = ret; /* Restore rte_errno. */
2096 	return NULL;
2097 }
2098 
2099 /**
2100  * Create a flow.
2101  *
2102  * @see rte_flow_create()
2103  * @see rte_flow_ops
2104  */
2105 struct rte_flow *
2106 mlx5_flow_create(struct rte_eth_dev *dev,
2107 		 const struct rte_flow_attr *attr,
2108 		 const struct rte_flow_item items[],
2109 		 const struct rte_flow_action actions[],
2110 		 struct rte_flow_error *error)
2111 {
2112 	return flow_list_create(dev,
2113 				&((struct priv *)dev->data->dev_private)->flows,
2114 				attr, items, actions, error);
2115 }
2116 
2117 /**
2118  * Destroy a flow in a list.
2119  *
2120  * @param dev
2121  *   Pointer to Ethernet device.
2122  * @param list
2123  *   Pointer to a TAILQ flow list.
2124  * @param[in] flow
2125  *   Flow to destroy.
2126  */
2127 static void
2128 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2129 		  struct rte_flow *flow)
2130 {
2131 	flow_drv_destroy(dev, flow);
2132 	TAILQ_REMOVE(list, flow, next);
2133 	/*
2134 	 * Update RX queue flags only if port is started, otherwise it is
2135 	 * already clean.
2136 	 */
2137 	if (dev->data->dev_started)
2138 		flow_rxq_flags_trim(dev, flow);
2139 	rte_free(flow);
2140 }
2141 
2142 /**
2143  * Destroy all flows.
2144  *
2145  * @param dev
2146  *   Pointer to Ethernet device.
2147  * @param list
2148  *   Pointer to a TAILQ flow list.
2149  */
2150 void
2151 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2152 {
2153 	while (!TAILQ_EMPTY(list)) {
2154 		struct rte_flow *flow;
2155 
2156 		flow = TAILQ_FIRST(list);
2157 		flow_list_destroy(dev, list, flow);
2158 	}
2159 }
2160 
2161 /**
2162  * Remove all flows.
2163  *
2164  * @param dev
2165  *   Pointer to Ethernet device.
2166  * @param list
2167  *   Pointer to a TAILQ flow list.
2168  */
2169 void
2170 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2171 {
2172 	struct rte_flow *flow;
2173 
2174 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2175 		flow_drv_remove(dev, flow);
2176 	flow_rxq_flags_clear(dev);
2177 }
2178 
2179 /**
2180  * Add all flows.
2181  *
2182  * @param dev
2183  *   Pointer to Ethernet device.
2184  * @param list
2185  *   Pointer to a TAILQ flow list.
2186  *
2187  * @return
2188  *   0 on success, a negative errno value otherwise and rte_errno is set.
2189  */
2190 int
2191 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2192 {
2193 	struct rte_flow *flow;
2194 	struct rte_flow_error error;
2195 	int ret = 0;
2196 
2197 	TAILQ_FOREACH(flow, list, next) {
2198 		ret = flow_drv_apply(dev, flow, &error);
2199 		if (ret < 0)
2200 			goto error;
2201 		flow_rxq_flags_set(dev, flow);
2202 	}
2203 	return 0;
2204 error:
2205 	ret = rte_errno; /* Save rte_errno before cleanup. */
2206 	mlx5_flow_stop(dev, list);
2207 	rte_errno = ret; /* Restore rte_errno. */
2208 	return -rte_errno;
2209 }
2210 
2211 /**
2212  * Verify the flow list is empty
2213  *
2214  * @param dev
2215  *  Pointer to Ethernet device.
2216  *
2217  * @return the number of flows not released.
2218  */
2219 int
2220 mlx5_flow_verify(struct rte_eth_dev *dev)
2221 {
2222 	struct priv *priv = dev->data->dev_private;
2223 	struct rte_flow *flow;
2224 	int ret = 0;
2225 
2226 	TAILQ_FOREACH(flow, &priv->flows, next) {
2227 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
2228 			dev->data->port_id, (void *)flow);
2229 		++ret;
2230 	}
2231 	return ret;
2232 }
2233 
2234 /**
2235  * Enable a control flow configured from the control plane.
2236  *
2237  * @param dev
2238  *   Pointer to Ethernet device.
2239  * @param eth_spec
2240  *   An Ethernet flow spec to apply.
2241  * @param eth_mask
2242  *   An Ethernet flow mask to apply.
2243  * @param vlan_spec
2244  *   A VLAN flow spec to apply.
2245  * @param vlan_mask
2246  *   A VLAN flow mask to apply.
2247  *
2248  * @return
2249  *   0 on success, a negative errno value otherwise and rte_errno is set.
2250  */
2251 int
2252 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2253 		    struct rte_flow_item_eth *eth_spec,
2254 		    struct rte_flow_item_eth *eth_mask,
2255 		    struct rte_flow_item_vlan *vlan_spec,
2256 		    struct rte_flow_item_vlan *vlan_mask)
2257 {
2258 	struct priv *priv = dev->data->dev_private;
2259 	const struct rte_flow_attr attr = {
2260 		.ingress = 1,
2261 		.priority = MLX5_FLOW_PRIO_RSVD,
2262 	};
2263 	struct rte_flow_item items[] = {
2264 		{
2265 			.type = RTE_FLOW_ITEM_TYPE_ETH,
2266 			.spec = eth_spec,
2267 			.last = NULL,
2268 			.mask = eth_mask,
2269 		},
2270 		{
2271 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2272 					      RTE_FLOW_ITEM_TYPE_END,
2273 			.spec = vlan_spec,
2274 			.last = NULL,
2275 			.mask = vlan_mask,
2276 		},
2277 		{
2278 			.type = RTE_FLOW_ITEM_TYPE_END,
2279 		},
2280 	};
2281 	uint16_t queue[priv->reta_idx_n];
2282 	struct rte_flow_action_rss action_rss = {
2283 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2284 		.level = 0,
2285 		.types = priv->rss_conf.rss_hf,
2286 		.key_len = priv->rss_conf.rss_key_len,
2287 		.queue_num = priv->reta_idx_n,
2288 		.key = priv->rss_conf.rss_key,
2289 		.queue = queue,
2290 	};
2291 	struct rte_flow_action actions[] = {
2292 		{
2293 			.type = RTE_FLOW_ACTION_TYPE_RSS,
2294 			.conf = &action_rss,
2295 		},
2296 		{
2297 			.type = RTE_FLOW_ACTION_TYPE_END,
2298 		},
2299 	};
2300 	struct rte_flow *flow;
2301 	struct rte_flow_error error;
2302 	unsigned int i;
2303 
2304 	if (!priv->reta_idx_n) {
2305 		rte_errno = EINVAL;
2306 		return -rte_errno;
2307 	}
2308 	for (i = 0; i != priv->reta_idx_n; ++i)
2309 		queue[i] = (*priv->reta_idx)[i];
2310 	flow = flow_list_create(dev, &priv->ctrl_flows,
2311 				&attr, items, actions, &error);
2312 	if (!flow)
2313 		return -rte_errno;
2314 	return 0;
2315 }
2316 
2317 /**
2318  * Enable a flow control configured from the control plane.
2319  *
2320  * @param dev
2321  *   Pointer to Ethernet device.
2322  * @param eth_spec
2323  *   An Ethernet flow spec to apply.
2324  * @param eth_mask
2325  *   An Ethernet flow mask to apply.
2326  *
2327  * @return
2328  *   0 on success, a negative errno value otherwise and rte_errno is set.
2329  */
2330 int
2331 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2332 	       struct rte_flow_item_eth *eth_spec,
2333 	       struct rte_flow_item_eth *eth_mask)
2334 {
2335 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2336 }
2337 
2338 /**
2339  * Destroy a flow.
2340  *
2341  * @see rte_flow_destroy()
2342  * @see rte_flow_ops
2343  */
2344 int
2345 mlx5_flow_destroy(struct rte_eth_dev *dev,
2346 		  struct rte_flow *flow,
2347 		  struct rte_flow_error *error __rte_unused)
2348 {
2349 	struct priv *priv = dev->data->dev_private;
2350 
2351 	flow_list_destroy(dev, &priv->flows, flow);
2352 	return 0;
2353 }
2354 
2355 /**
2356  * Destroy all flows.
2357  *
2358  * @see rte_flow_flush()
2359  * @see rte_flow_ops
2360  */
2361 int
2362 mlx5_flow_flush(struct rte_eth_dev *dev,
2363 		struct rte_flow_error *error __rte_unused)
2364 {
2365 	struct priv *priv = dev->data->dev_private;
2366 
2367 	mlx5_flow_list_flush(dev, &priv->flows);
2368 	return 0;
2369 }
2370 
2371 /**
2372  * Isolated mode.
2373  *
2374  * @see rte_flow_isolate()
2375  * @see rte_flow_ops
2376  */
2377 int
2378 mlx5_flow_isolate(struct rte_eth_dev *dev,
2379 		  int enable,
2380 		  struct rte_flow_error *error)
2381 {
2382 	struct priv *priv = dev->data->dev_private;
2383 
2384 	if (dev->data->dev_started) {
2385 		rte_flow_error_set(error, EBUSY,
2386 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2387 				   NULL,
2388 				   "port must be stopped first");
2389 		return -rte_errno;
2390 	}
2391 	priv->isolated = !!enable;
2392 	if (enable)
2393 		dev->dev_ops = &mlx5_dev_ops_isolate;
2394 	else
2395 		dev->dev_ops = &mlx5_dev_ops;
2396 	return 0;
2397 }
2398 
2399 /**
2400  * Query a flow.
2401  *
2402  * @see rte_flow_query()
2403  * @see rte_flow_ops
2404  */
2405 static int
2406 flow_drv_query(struct rte_eth_dev *dev,
2407 	       struct rte_flow *flow,
2408 	       const struct rte_flow_action *actions,
2409 	       void *data,
2410 	       struct rte_flow_error *error)
2411 {
2412 	const struct mlx5_flow_driver_ops *fops;
2413 	enum mlx5_flow_drv_type ftype = flow->drv_type;
2414 
2415 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2416 	fops = flow_get_drv_ops(ftype);
2417 
2418 	return fops->query(dev, flow, actions, data, error);
2419 }
2420 
2421 /**
2422  * Query a flow.
2423  *
2424  * @see rte_flow_query()
2425  * @see rte_flow_ops
2426  */
2427 int
2428 mlx5_flow_query(struct rte_eth_dev *dev,
2429 		struct rte_flow *flow,
2430 		const struct rte_flow_action *actions,
2431 		void *data,
2432 		struct rte_flow_error *error)
2433 {
2434 	int ret;
2435 
2436 	ret = flow_drv_query(dev, flow, actions, data, error);
2437 	if (ret < 0)
2438 		return ret;
2439 	return 0;
2440 }
2441 
2442 /**
2443  * Convert a flow director filter to a generic flow.
2444  *
2445  * @param dev
2446  *   Pointer to Ethernet device.
2447  * @param fdir_filter
2448  *   Flow director filter to add.
2449  * @param attributes
2450  *   Generic flow parameters structure.
2451  *
2452  * @return
2453  *   0 on success, a negative errno value otherwise and rte_errno is set.
2454  */
2455 static int
2456 mlx5_fdir_filter_convert(struct rte_eth_dev *dev,
2457 			 const struct rte_eth_fdir_filter *fdir_filter,
2458 			 struct mlx5_fdir *attributes)
2459 {
2460 	struct priv *priv = dev->data->dev_private;
2461 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
2462 	const struct rte_eth_fdir_masks *mask =
2463 		&dev->data->dev_conf.fdir_conf.mask;
2464 
2465 	/* Validate queue number. */
2466 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2467 		DRV_LOG(ERR, "port %u invalid queue number %d",
2468 			dev->data->port_id, fdir_filter->action.rx_queue);
2469 		rte_errno = EINVAL;
2470 		return -rte_errno;
2471 	}
2472 	attributes->attr.ingress = 1;
2473 	attributes->items[0] = (struct rte_flow_item) {
2474 		.type = RTE_FLOW_ITEM_TYPE_ETH,
2475 		.spec = &attributes->l2,
2476 		.mask = &attributes->l2_mask,
2477 	};
2478 	switch (fdir_filter->action.behavior) {
2479 	case RTE_ETH_FDIR_ACCEPT:
2480 		attributes->actions[0] = (struct rte_flow_action){
2481 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
2482 			.conf = &attributes->queue,
2483 		};
2484 		break;
2485 	case RTE_ETH_FDIR_REJECT:
2486 		attributes->actions[0] = (struct rte_flow_action){
2487 			.type = RTE_FLOW_ACTION_TYPE_DROP,
2488 		};
2489 		break;
2490 	default:
2491 		DRV_LOG(ERR, "port %u invalid behavior %d",
2492 			dev->data->port_id,
2493 			fdir_filter->action.behavior);
2494 		rte_errno = ENOTSUP;
2495 		return -rte_errno;
2496 	}
2497 	attributes->queue.index = fdir_filter->action.rx_queue;
2498 	/* Handle L3. */
2499 	switch (fdir_filter->input.flow_type) {
2500 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2501 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2502 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2503 		attributes->l3.ipv4.hdr = (struct ipv4_hdr){
2504 			.src_addr = input->flow.ip4_flow.src_ip,
2505 			.dst_addr = input->flow.ip4_flow.dst_ip,
2506 			.time_to_live = input->flow.ip4_flow.ttl,
2507 			.type_of_service = input->flow.ip4_flow.tos,
2508 		};
2509 		attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
2510 			.src_addr = mask->ipv4_mask.src_ip,
2511 			.dst_addr = mask->ipv4_mask.dst_ip,
2512 			.time_to_live = mask->ipv4_mask.ttl,
2513 			.type_of_service = mask->ipv4_mask.tos,
2514 			.next_proto_id = mask->ipv4_mask.proto,
2515 		};
2516 		attributes->items[1] = (struct rte_flow_item){
2517 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
2518 			.spec = &attributes->l3,
2519 			.mask = &attributes->l3_mask,
2520 		};
2521 		break;
2522 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2523 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2524 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2525 		attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2526 			.hop_limits = input->flow.ipv6_flow.hop_limits,
2527 			.proto = input->flow.ipv6_flow.proto,
2528 		};
2529 
2530 		memcpy(attributes->l3.ipv6.hdr.src_addr,
2531 		       input->flow.ipv6_flow.src_ip,
2532 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2533 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
2534 		       input->flow.ipv6_flow.dst_ip,
2535 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2536 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2537 		       mask->ipv6_mask.src_ip,
2538 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2539 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2540 		       mask->ipv6_mask.dst_ip,
2541 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2542 		attributes->items[1] = (struct rte_flow_item){
2543 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
2544 			.spec = &attributes->l3,
2545 			.mask = &attributes->l3_mask,
2546 		};
2547 		break;
2548 	default:
2549 		DRV_LOG(ERR, "port %u invalid flow type%d",
2550 			dev->data->port_id, fdir_filter->input.flow_type);
2551 		rte_errno = ENOTSUP;
2552 		return -rte_errno;
2553 	}
2554 	/* Handle L4. */
2555 	switch (fdir_filter->input.flow_type) {
2556 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2557 		attributes->l4.udp.hdr = (struct udp_hdr){
2558 			.src_port = input->flow.udp4_flow.src_port,
2559 			.dst_port = input->flow.udp4_flow.dst_port,
2560 		};
2561 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2562 			.src_port = mask->src_port_mask,
2563 			.dst_port = mask->dst_port_mask,
2564 		};
2565 		attributes->items[2] = (struct rte_flow_item){
2566 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2567 			.spec = &attributes->l4,
2568 			.mask = &attributes->l4_mask,
2569 		};
2570 		break;
2571 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2572 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2573 			.src_port = input->flow.tcp4_flow.src_port,
2574 			.dst_port = input->flow.tcp4_flow.dst_port,
2575 		};
2576 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2577 			.src_port = mask->src_port_mask,
2578 			.dst_port = mask->dst_port_mask,
2579 		};
2580 		attributes->items[2] = (struct rte_flow_item){
2581 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2582 			.spec = &attributes->l4,
2583 			.mask = &attributes->l4_mask,
2584 		};
2585 		break;
2586 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2587 		attributes->l4.udp.hdr = (struct udp_hdr){
2588 			.src_port = input->flow.udp6_flow.src_port,
2589 			.dst_port = input->flow.udp6_flow.dst_port,
2590 		};
2591 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2592 			.src_port = mask->src_port_mask,
2593 			.dst_port = mask->dst_port_mask,
2594 		};
2595 		attributes->items[2] = (struct rte_flow_item){
2596 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2597 			.spec = &attributes->l4,
2598 			.mask = &attributes->l4_mask,
2599 		};
2600 		break;
2601 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2602 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2603 			.src_port = input->flow.tcp6_flow.src_port,
2604 			.dst_port = input->flow.tcp6_flow.dst_port,
2605 		};
2606 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2607 			.src_port = mask->src_port_mask,
2608 			.dst_port = mask->dst_port_mask,
2609 		};
2610 		attributes->items[2] = (struct rte_flow_item){
2611 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2612 			.spec = &attributes->l4,
2613 			.mask = &attributes->l4_mask,
2614 		};
2615 		break;
2616 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2617 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2618 		break;
2619 	default:
2620 		DRV_LOG(ERR, "port %u invalid flow type%d",
2621 			dev->data->port_id, fdir_filter->input.flow_type);
2622 		rte_errno = ENOTSUP;
2623 		return -rte_errno;
2624 	}
2625 	return 0;
2626 }
2627 
2628 /**
2629  * Add new flow director filter and store it in list.
2630  *
2631  * @param dev
2632  *   Pointer to Ethernet device.
2633  * @param fdir_filter
2634  *   Flow director filter to add.
2635  *
2636  * @return
2637  *   0 on success, a negative errno value otherwise and rte_errno is set.
2638  */
2639 static int
2640 mlx5_fdir_filter_add(struct rte_eth_dev *dev,
2641 		     const struct rte_eth_fdir_filter *fdir_filter)
2642 {
2643 	struct priv *priv = dev->data->dev_private;
2644 	struct mlx5_fdir attributes = {
2645 		.attr.group = 0,
2646 		.l2_mask = {
2647 			.dst.addr_bytes = "\x00\x00\x00\x00\x00\x00",
2648 			.src.addr_bytes = "\x00\x00\x00\x00\x00\x00",
2649 			.type = 0,
2650 		},
2651 	};
2652 	struct rte_flow_error error;
2653 	struct rte_flow *flow;
2654 	int ret;
2655 
2656 	ret = mlx5_fdir_filter_convert(dev, fdir_filter, &attributes);
2657 	if (ret)
2658 		return ret;
2659 	flow = flow_list_create(dev, &priv->flows, &attributes.attr,
2660 				attributes.items, attributes.actions, &error);
2661 	if (flow) {
2662 		DRV_LOG(DEBUG, "port %u FDIR created %p", dev->data->port_id,
2663 			(void *)flow);
2664 		return 0;
2665 	}
2666 	return -rte_errno;
2667 }
2668 
2669 /**
2670  * Delete specific filter.
2671  *
2672  * @param dev
2673  *   Pointer to Ethernet device.
2674  * @param fdir_filter
2675  *   Filter to be deleted.
2676  *
2677  * @return
2678  *   0 on success, a negative errno value otherwise and rte_errno is set.
2679  */
2680 static int
2681 mlx5_fdir_filter_delete(struct rte_eth_dev *dev __rte_unused,
2682 			const struct rte_eth_fdir_filter *fdir_filter
2683 			__rte_unused)
2684 {
2685 	rte_errno = ENOTSUP;
2686 	return -rte_errno;
2687 }
2688 
2689 /**
2690  * Update queue for specific filter.
2691  *
2692  * @param dev
2693  *   Pointer to Ethernet device.
2694  * @param fdir_filter
2695  *   Filter to be updated.
2696  *
2697  * @return
2698  *   0 on success, a negative errno value otherwise and rte_errno is set.
2699  */
2700 static int
2701 mlx5_fdir_filter_update(struct rte_eth_dev *dev,
2702 			const struct rte_eth_fdir_filter *fdir_filter)
2703 {
2704 	int ret;
2705 
2706 	ret = mlx5_fdir_filter_delete(dev, fdir_filter);
2707 	if (ret)
2708 		return ret;
2709 	return mlx5_fdir_filter_add(dev, fdir_filter);
2710 }
2711 
2712 /**
2713  * Flush all filters.
2714  *
2715  * @param dev
2716  *   Pointer to Ethernet device.
2717  */
2718 static void
2719 mlx5_fdir_filter_flush(struct rte_eth_dev *dev)
2720 {
2721 	struct priv *priv = dev->data->dev_private;
2722 
2723 	mlx5_flow_list_flush(dev, &priv->flows);
2724 }
2725 
2726 /**
2727  * Get flow director information.
2728  *
2729  * @param dev
2730  *   Pointer to Ethernet device.
2731  * @param[out] fdir_info
2732  *   Resulting flow director information.
2733  */
2734 static void
2735 mlx5_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2736 {
2737 	struct rte_eth_fdir_masks *mask =
2738 		&dev->data->dev_conf.fdir_conf.mask;
2739 
2740 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2741 	fdir_info->guarant_spc = 0;
2742 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2743 	fdir_info->max_flexpayload = 0;
2744 	fdir_info->flow_types_mask[0] = 0;
2745 	fdir_info->flex_payload_unit = 0;
2746 	fdir_info->max_flex_payload_segment_num = 0;
2747 	fdir_info->flex_payload_limit = 0;
2748 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2749 }
2750 
2751 /**
2752  * Deal with flow director operations.
2753  *
2754  * @param dev
2755  *   Pointer to Ethernet device.
2756  * @param filter_op
2757  *   Operation to perform.
2758  * @param arg
2759  *   Pointer to operation-specific structure.
2760  *
2761  * @return
2762  *   0 on success, a negative errno value otherwise and rte_errno is set.
2763  */
2764 static int
2765 mlx5_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2766 		    void *arg)
2767 {
2768 	enum rte_fdir_mode fdir_mode =
2769 		dev->data->dev_conf.fdir_conf.mode;
2770 
2771 	if (filter_op == RTE_ETH_FILTER_NOP)
2772 		return 0;
2773 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2774 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2775 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
2776 			dev->data->port_id, fdir_mode);
2777 		rte_errno = EINVAL;
2778 		return -rte_errno;
2779 	}
2780 	switch (filter_op) {
2781 	case RTE_ETH_FILTER_ADD:
2782 		return mlx5_fdir_filter_add(dev, arg);
2783 	case RTE_ETH_FILTER_UPDATE:
2784 		return mlx5_fdir_filter_update(dev, arg);
2785 	case RTE_ETH_FILTER_DELETE:
2786 		return mlx5_fdir_filter_delete(dev, arg);
2787 	case RTE_ETH_FILTER_FLUSH:
2788 		mlx5_fdir_filter_flush(dev);
2789 		break;
2790 	case RTE_ETH_FILTER_INFO:
2791 		mlx5_fdir_info_get(dev, arg);
2792 		break;
2793 	default:
2794 		DRV_LOG(DEBUG, "port %u unknown operation %u",
2795 			dev->data->port_id, filter_op);
2796 		rte_errno = EINVAL;
2797 		return -rte_errno;
2798 	}
2799 	return 0;
2800 }
2801 
2802 /**
2803  * Manage filter operations.
2804  *
2805  * @param dev
2806  *   Pointer to Ethernet device structure.
2807  * @param filter_type
2808  *   Filter type.
2809  * @param filter_op
2810  *   Operation to perform.
2811  * @param arg
2812  *   Pointer to operation-specific structure.
2813  *
2814  * @return
2815  *   0 on success, a negative errno value otherwise and rte_errno is set.
2816  */
2817 int
2818 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2819 		     enum rte_filter_type filter_type,
2820 		     enum rte_filter_op filter_op,
2821 		     void *arg)
2822 {
2823 	switch (filter_type) {
2824 	case RTE_ETH_FILTER_GENERIC:
2825 		if (filter_op != RTE_ETH_FILTER_GET) {
2826 			rte_errno = EINVAL;
2827 			return -rte_errno;
2828 		}
2829 		*(const void **)arg = &mlx5_flow_ops;
2830 		return 0;
2831 	case RTE_ETH_FILTER_FDIR:
2832 		return mlx5_fdir_ctrl_func(dev, filter_op, arg);
2833 	default:
2834 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
2835 			dev->data->port_id, filter_type);
2836 		rte_errno = ENOTSUP;
2837 		return -rte_errno;
2838 	}
2839 	return 0;
2840 }
2841