xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 388dd1c9a6d4f9c3c4b788fa05049220e289345b)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdbool.h>
12 
13 #include <rte_common.h>
14 #include <rte_ether.h>
15 #include <rte_ethdev_driver.h>
16 #include <rte_eal_paging.h>
17 #include <rte_flow.h>
18 #include <rte_cycles.h>
19 #include <rte_flow_driver.h>
20 #include <rte_malloc.h>
21 #include <rte_ip.h>
22 
23 #include <mlx5_glue.h>
24 #include <mlx5_devx_cmds.h>
25 #include <mlx5_prm.h>
26 #include <mlx5_malloc.h>
27 
28 #include "mlx5_defs.h"
29 #include "mlx5.h"
30 #include "mlx5_flow.h"
31 #include "mlx5_flow_os.h"
32 #include "mlx5_rxtx.h"
33 #include "mlx5_common_os.h"
34 #include "rte_pmd_mlx5.h"
35 
36 struct tunnel_default_miss_ctx {
37 	uint16_t *queue;
38 	__extension__
39 	union {
40 		struct rte_flow_action_rss action_rss;
41 		struct rte_flow_action_queue miss_queue;
42 		struct rte_flow_action_jump miss_jump;
43 		uint8_t raw[0];
44 	};
45 };
46 
47 static int
48 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
49 			     struct rte_flow *flow,
50 			     const struct rte_flow_attr *attr,
51 			     const struct rte_flow_action *app_actions,
52 			     uint32_t flow_idx,
53 			     struct tunnel_default_miss_ctx *ctx,
54 			     struct rte_flow_error *error);
55 static struct mlx5_flow_tunnel *
56 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id);
57 static void
58 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel);
59 static uint32_t
60 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
61 				const struct mlx5_flow_tunnel *tunnel,
62 				uint32_t group, uint32_t *table,
63 				struct rte_flow_error *error);
64 
65 static struct mlx5_flow_workspace *mlx5_flow_push_thread_workspace(void);
66 static void mlx5_flow_pop_thread_workspace(void);
67 
68 
69 /** Device flow drivers. */
70 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
71 
72 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
73 
74 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
75 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
76 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
77 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
78 #endif
79 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
80 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
81 };
82 
83 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
84 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
85 	(const int []){ \
86 		__VA_ARGS__, 0, \
87 	}
88 
89 /** Node object of input graph for mlx5_flow_expand_rss(). */
90 struct mlx5_flow_expand_node {
91 	const int *const next;
92 	/**<
93 	 * List of next node indexes. Index 0 is interpreted as a terminator.
94 	 */
95 	const enum rte_flow_item_type type;
96 	/**< Pattern item type of current node. */
97 	uint64_t rss_types;
98 	/**<
99 	 * RSS types bit-field associated with this node
100 	 * (see ETH_RSS_* definitions).
101 	 */
102 };
103 
104 /** Object returned by mlx5_flow_expand_rss(). */
105 struct mlx5_flow_expand_rss {
106 	uint32_t entries;
107 	/**< Number of entries @p patterns and @p priorities. */
108 	struct {
109 		struct rte_flow_item *pattern; /**< Expanded pattern array. */
110 		uint32_t priority; /**< Priority offset for each expansion. */
111 	} entry[];
112 };
113 
114 static enum rte_flow_item_type
115 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
116 {
117 	enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
118 	uint16_t ether_type = 0;
119 	uint16_t ether_type_m;
120 	uint8_t ip_next_proto = 0;
121 	uint8_t ip_next_proto_m;
122 
123 	if (item == NULL || item->spec == NULL)
124 		return ret;
125 	switch (item->type) {
126 	case RTE_FLOW_ITEM_TYPE_ETH:
127 		if (item->mask)
128 			ether_type_m = ((const struct rte_flow_item_eth *)
129 						(item->mask))->type;
130 		else
131 			ether_type_m = rte_flow_item_eth_mask.type;
132 		if (ether_type_m != RTE_BE16(0xFFFF))
133 			break;
134 		ether_type = ((const struct rte_flow_item_eth *)
135 				(item->spec))->type;
136 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
137 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
138 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
139 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
140 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
141 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
142 		else
143 			ret = RTE_FLOW_ITEM_TYPE_END;
144 		break;
145 	case RTE_FLOW_ITEM_TYPE_VLAN:
146 		if (item->mask)
147 			ether_type_m = ((const struct rte_flow_item_vlan *)
148 						(item->mask))->inner_type;
149 		else
150 			ether_type_m = rte_flow_item_vlan_mask.inner_type;
151 		if (ether_type_m != RTE_BE16(0xFFFF))
152 			break;
153 		ether_type = ((const struct rte_flow_item_vlan *)
154 				(item->spec))->inner_type;
155 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
156 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
157 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
158 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
159 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
160 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
161 		else
162 			ret = RTE_FLOW_ITEM_TYPE_END;
163 		break;
164 	case RTE_FLOW_ITEM_TYPE_IPV4:
165 		if (item->mask)
166 			ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
167 					(item->mask))->hdr.next_proto_id;
168 		else
169 			ip_next_proto_m =
170 				rte_flow_item_ipv4_mask.hdr.next_proto_id;
171 		if (ip_next_proto_m != 0xFF)
172 			break;
173 		ip_next_proto = ((const struct rte_flow_item_ipv4 *)
174 				(item->spec))->hdr.next_proto_id;
175 		if (ip_next_proto == IPPROTO_UDP)
176 			ret = RTE_FLOW_ITEM_TYPE_UDP;
177 		else if (ip_next_proto == IPPROTO_TCP)
178 			ret = RTE_FLOW_ITEM_TYPE_TCP;
179 		else if (ip_next_proto == IPPROTO_IP)
180 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
181 		else if (ip_next_proto == IPPROTO_IPV6)
182 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
183 		else
184 			ret = RTE_FLOW_ITEM_TYPE_END;
185 		break;
186 	case RTE_FLOW_ITEM_TYPE_IPV6:
187 		if (item->mask)
188 			ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
189 						(item->mask))->hdr.proto;
190 		else
191 			ip_next_proto_m =
192 				rte_flow_item_ipv6_mask.hdr.proto;
193 		if (ip_next_proto_m != 0xFF)
194 			break;
195 		ip_next_proto = ((const struct rte_flow_item_ipv6 *)
196 				(item->spec))->hdr.proto;
197 		if (ip_next_proto == IPPROTO_UDP)
198 			ret = RTE_FLOW_ITEM_TYPE_UDP;
199 		else if (ip_next_proto == IPPROTO_TCP)
200 			ret = RTE_FLOW_ITEM_TYPE_TCP;
201 		else if (ip_next_proto == IPPROTO_IP)
202 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
203 		else if (ip_next_proto == IPPROTO_IPV6)
204 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
205 		else
206 			ret = RTE_FLOW_ITEM_TYPE_END;
207 		break;
208 	default:
209 		ret = RTE_FLOW_ITEM_TYPE_VOID;
210 		break;
211 	}
212 	return ret;
213 }
214 
215 /**
216  * Expand RSS flows into several possible flows according to the RSS hash
217  * fields requested and the driver capabilities.
218  *
219  * @param[out] buf
220  *   Buffer to store the result expansion.
221  * @param[in] size
222  *   Buffer size in bytes. If 0, @p buf can be NULL.
223  * @param[in] pattern
224  *   User flow pattern.
225  * @param[in] types
226  *   RSS types to expand (see ETH_RSS_* definitions).
227  * @param[in] graph
228  *   Input graph to expand @p pattern according to @p types.
229  * @param[in] graph_root_index
230  *   Index of root node in @p graph, typically 0.
231  *
232  * @return
233  *   A positive value representing the size of @p buf in bytes regardless of
234  *   @p size on success, a negative errno value otherwise and rte_errno is
235  *   set, the following errors are defined:
236  *
237  *   -E2BIG: graph-depth @p graph is too deep.
238  */
239 static int
240 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
241 		     const struct rte_flow_item *pattern, uint64_t types,
242 		     const struct mlx5_flow_expand_node graph[],
243 		     int graph_root_index)
244 {
245 	const int elt_n = 8;
246 	const struct rte_flow_item *item;
247 	const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
248 	const int *next_node;
249 	const int *stack[elt_n];
250 	int stack_pos = 0;
251 	struct rte_flow_item flow_items[elt_n];
252 	unsigned int i;
253 	size_t lsize;
254 	size_t user_pattern_size = 0;
255 	void *addr = NULL;
256 	const struct mlx5_flow_expand_node *next = NULL;
257 	struct rte_flow_item missed_item;
258 	int missed = 0;
259 	int elt = 0;
260 	const struct rte_flow_item *last_item = NULL;
261 
262 	memset(&missed_item, 0, sizeof(missed_item));
263 	lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
264 		elt_n * sizeof(buf->entry[0]);
265 	if (lsize <= size) {
266 		buf->entry[0].priority = 0;
267 		buf->entry[0].pattern = (void *)&buf->entry[elt_n];
268 		buf->entries = 0;
269 		addr = buf->entry[0].pattern;
270 	}
271 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
272 		if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
273 			last_item = item;
274 		for (i = 0; node->next && node->next[i]; ++i) {
275 			next = &graph[node->next[i]];
276 			if (next->type == item->type)
277 				break;
278 		}
279 		if (next)
280 			node = next;
281 		user_pattern_size += sizeof(*item);
282 	}
283 	user_pattern_size += sizeof(*item); /* Handle END item. */
284 	lsize += user_pattern_size;
285 	/* Copy the user pattern in the first entry of the buffer. */
286 	if (lsize <= size) {
287 		rte_memcpy(addr, pattern, user_pattern_size);
288 		addr = (void *)(((uintptr_t)addr) + user_pattern_size);
289 		buf->entries = 1;
290 	}
291 	/* Start expanding. */
292 	memset(flow_items, 0, sizeof(flow_items));
293 	user_pattern_size -= sizeof(*item);
294 	/*
295 	 * Check if the last valid item has spec set, need complete pattern,
296 	 * and the pattern can be used for expansion.
297 	 */
298 	missed_item.type = mlx5_flow_expand_rss_item_complete(last_item);
299 	if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
300 		/* Item type END indicates expansion is not required. */
301 		return lsize;
302 	}
303 	if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
304 		next = NULL;
305 		missed = 1;
306 		for (i = 0; node->next && node->next[i]; ++i) {
307 			next = &graph[node->next[i]];
308 			if (next->type == missed_item.type) {
309 				flow_items[0].type = missed_item.type;
310 				flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
311 				break;
312 			}
313 			next = NULL;
314 		}
315 	}
316 	if (next && missed) {
317 		elt = 2; /* missed item + item end. */
318 		node = next;
319 		lsize += elt * sizeof(*item) + user_pattern_size;
320 		if ((node->rss_types & types) && lsize <= size) {
321 			buf->entry[buf->entries].priority = 1;
322 			buf->entry[buf->entries].pattern = addr;
323 			buf->entries++;
324 			rte_memcpy(addr, buf->entry[0].pattern,
325 				   user_pattern_size);
326 			addr = (void *)(((uintptr_t)addr) + user_pattern_size);
327 			rte_memcpy(addr, flow_items, elt * sizeof(*item));
328 			addr = (void *)(((uintptr_t)addr) +
329 					elt * sizeof(*item));
330 		}
331 	}
332 	memset(flow_items, 0, sizeof(flow_items));
333 	next_node = node->next;
334 	stack[stack_pos] = next_node;
335 	node = next_node ? &graph[*next_node] : NULL;
336 	while (node) {
337 		flow_items[stack_pos].type = node->type;
338 		if (node->rss_types & types) {
339 			/*
340 			 * compute the number of items to copy from the
341 			 * expansion and copy it.
342 			 * When the stack_pos is 0, there are 1 element in it,
343 			 * plus the addition END item.
344 			 */
345 			elt = stack_pos + 2;
346 			flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
347 			lsize += elt * sizeof(*item) + user_pattern_size;
348 			if (lsize <= size) {
349 				size_t n = elt * sizeof(*item);
350 
351 				buf->entry[buf->entries].priority =
352 					stack_pos + 1 + missed;
353 				buf->entry[buf->entries].pattern = addr;
354 				buf->entries++;
355 				rte_memcpy(addr, buf->entry[0].pattern,
356 					   user_pattern_size);
357 				addr = (void *)(((uintptr_t)addr) +
358 						user_pattern_size);
359 				rte_memcpy(addr, &missed_item,
360 					   missed * sizeof(*item));
361 				addr = (void *)(((uintptr_t)addr) +
362 					missed * sizeof(*item));
363 				rte_memcpy(addr, flow_items, n);
364 				addr = (void *)(((uintptr_t)addr) + n);
365 			}
366 		}
367 		/* Go deeper. */
368 		if (node->next) {
369 			next_node = node->next;
370 			if (stack_pos++ == elt_n) {
371 				rte_errno = E2BIG;
372 				return -rte_errno;
373 			}
374 			stack[stack_pos] = next_node;
375 		} else if (*(next_node + 1)) {
376 			/* Follow up with the next possibility. */
377 			++next_node;
378 		} else {
379 			/* Move to the next path. */
380 			if (stack_pos)
381 				next_node = stack[--stack_pos];
382 			next_node++;
383 			stack[stack_pos] = next_node;
384 		}
385 		node = *next_node ? &graph[*next_node] : NULL;
386 	};
387 	/* no expanded flows but we have missed item, create one rule for it */
388 	if (buf->entries == 1 && missed != 0) {
389 		elt = 2;
390 		lsize += elt * sizeof(*item) + user_pattern_size;
391 		if (lsize <= size) {
392 			buf->entry[buf->entries].priority = 1;
393 			buf->entry[buf->entries].pattern = addr;
394 			buf->entries++;
395 			flow_items[0].type = missed_item.type;
396 			flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
397 			rte_memcpy(addr, buf->entry[0].pattern,
398 				   user_pattern_size);
399 			addr = (void *)(((uintptr_t)addr) + user_pattern_size);
400 			rte_memcpy(addr, flow_items, elt * sizeof(*item));
401 		}
402 	}
403 	return lsize;
404 }
405 
406 enum mlx5_expansion {
407 	MLX5_EXPANSION_ROOT,
408 	MLX5_EXPANSION_ROOT_OUTER,
409 	MLX5_EXPANSION_ROOT_ETH_VLAN,
410 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
411 	MLX5_EXPANSION_OUTER_ETH,
412 	MLX5_EXPANSION_OUTER_ETH_VLAN,
413 	MLX5_EXPANSION_OUTER_VLAN,
414 	MLX5_EXPANSION_OUTER_IPV4,
415 	MLX5_EXPANSION_OUTER_IPV4_UDP,
416 	MLX5_EXPANSION_OUTER_IPV4_TCP,
417 	MLX5_EXPANSION_OUTER_IPV6,
418 	MLX5_EXPANSION_OUTER_IPV6_UDP,
419 	MLX5_EXPANSION_OUTER_IPV6_TCP,
420 	MLX5_EXPANSION_VXLAN,
421 	MLX5_EXPANSION_VXLAN_GPE,
422 	MLX5_EXPANSION_GRE,
423 	MLX5_EXPANSION_MPLS,
424 	MLX5_EXPANSION_ETH,
425 	MLX5_EXPANSION_ETH_VLAN,
426 	MLX5_EXPANSION_VLAN,
427 	MLX5_EXPANSION_IPV4,
428 	MLX5_EXPANSION_IPV4_UDP,
429 	MLX5_EXPANSION_IPV4_TCP,
430 	MLX5_EXPANSION_IPV6,
431 	MLX5_EXPANSION_IPV6_UDP,
432 	MLX5_EXPANSION_IPV6_TCP,
433 };
434 
435 /** Supported expansion of items. */
436 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
437 	[MLX5_EXPANSION_ROOT] = {
438 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
439 						  MLX5_EXPANSION_IPV4,
440 						  MLX5_EXPANSION_IPV6),
441 		.type = RTE_FLOW_ITEM_TYPE_END,
442 	},
443 	[MLX5_EXPANSION_ROOT_OUTER] = {
444 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
445 						  MLX5_EXPANSION_OUTER_IPV4,
446 						  MLX5_EXPANSION_OUTER_IPV6),
447 		.type = RTE_FLOW_ITEM_TYPE_END,
448 	},
449 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
450 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
451 		.type = RTE_FLOW_ITEM_TYPE_END,
452 	},
453 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
454 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
455 						(MLX5_EXPANSION_OUTER_ETH_VLAN),
456 		.type = RTE_FLOW_ITEM_TYPE_END,
457 	},
458 	[MLX5_EXPANSION_OUTER_ETH] = {
459 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
460 						  MLX5_EXPANSION_OUTER_IPV6,
461 						  MLX5_EXPANSION_MPLS),
462 		.type = RTE_FLOW_ITEM_TYPE_ETH,
463 		.rss_types = 0,
464 	},
465 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
466 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
467 		.type = RTE_FLOW_ITEM_TYPE_ETH,
468 		.rss_types = 0,
469 	},
470 	[MLX5_EXPANSION_OUTER_VLAN] = {
471 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
472 						  MLX5_EXPANSION_OUTER_IPV6),
473 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
474 	},
475 	[MLX5_EXPANSION_OUTER_IPV4] = {
476 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
477 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
478 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
479 			 MLX5_EXPANSION_GRE,
480 			 MLX5_EXPANSION_IPV4,
481 			 MLX5_EXPANSION_IPV6),
482 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
483 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
484 			ETH_RSS_NONFRAG_IPV4_OTHER,
485 	},
486 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
487 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
488 						  MLX5_EXPANSION_VXLAN_GPE),
489 		.type = RTE_FLOW_ITEM_TYPE_UDP,
490 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
491 	},
492 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
493 		.type = RTE_FLOW_ITEM_TYPE_TCP,
494 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
495 	},
496 	[MLX5_EXPANSION_OUTER_IPV6] = {
497 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
498 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
499 			 MLX5_EXPANSION_OUTER_IPV6_TCP,
500 			 MLX5_EXPANSION_IPV4,
501 			 MLX5_EXPANSION_IPV6),
502 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
503 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
504 			ETH_RSS_NONFRAG_IPV6_OTHER,
505 	},
506 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
507 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
508 						  MLX5_EXPANSION_VXLAN_GPE),
509 		.type = RTE_FLOW_ITEM_TYPE_UDP,
510 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
511 	},
512 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
513 		.type = RTE_FLOW_ITEM_TYPE_TCP,
514 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
515 	},
516 	[MLX5_EXPANSION_VXLAN] = {
517 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
518 						  MLX5_EXPANSION_IPV4,
519 						  MLX5_EXPANSION_IPV6),
520 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
521 	},
522 	[MLX5_EXPANSION_VXLAN_GPE] = {
523 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
524 						  MLX5_EXPANSION_IPV4,
525 						  MLX5_EXPANSION_IPV6),
526 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
527 	},
528 	[MLX5_EXPANSION_GRE] = {
529 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
530 		.type = RTE_FLOW_ITEM_TYPE_GRE,
531 	},
532 	[MLX5_EXPANSION_MPLS] = {
533 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
534 						  MLX5_EXPANSION_IPV6),
535 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
536 	},
537 	[MLX5_EXPANSION_ETH] = {
538 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
539 						  MLX5_EXPANSION_IPV6),
540 		.type = RTE_FLOW_ITEM_TYPE_ETH,
541 	},
542 	[MLX5_EXPANSION_ETH_VLAN] = {
543 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
544 		.type = RTE_FLOW_ITEM_TYPE_ETH,
545 	},
546 	[MLX5_EXPANSION_VLAN] = {
547 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
548 						  MLX5_EXPANSION_IPV6),
549 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
550 	},
551 	[MLX5_EXPANSION_IPV4] = {
552 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
553 						  MLX5_EXPANSION_IPV4_TCP),
554 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
555 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
556 			ETH_RSS_NONFRAG_IPV4_OTHER,
557 	},
558 	[MLX5_EXPANSION_IPV4_UDP] = {
559 		.type = RTE_FLOW_ITEM_TYPE_UDP,
560 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
561 	},
562 	[MLX5_EXPANSION_IPV4_TCP] = {
563 		.type = RTE_FLOW_ITEM_TYPE_TCP,
564 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
565 	},
566 	[MLX5_EXPANSION_IPV6] = {
567 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
568 						  MLX5_EXPANSION_IPV6_TCP),
569 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
570 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
571 			ETH_RSS_NONFRAG_IPV6_OTHER,
572 	},
573 	[MLX5_EXPANSION_IPV6_UDP] = {
574 		.type = RTE_FLOW_ITEM_TYPE_UDP,
575 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
576 	},
577 	[MLX5_EXPANSION_IPV6_TCP] = {
578 		.type = RTE_FLOW_ITEM_TYPE_TCP,
579 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
580 	},
581 };
582 
583 static struct rte_flow_shared_action *
584 mlx5_shared_action_create(struct rte_eth_dev *dev,
585 			  const struct rte_flow_shared_action_conf *conf,
586 			  const struct rte_flow_action *action,
587 			  struct rte_flow_error *error);
588 static int mlx5_shared_action_destroy
589 				(struct rte_eth_dev *dev,
590 				 struct rte_flow_shared_action *shared_action,
591 				 struct rte_flow_error *error);
592 static int mlx5_shared_action_update
593 				(struct rte_eth_dev *dev,
594 				 struct rte_flow_shared_action *shared_action,
595 				 const struct rte_flow_action *action,
596 				 struct rte_flow_error *error);
597 static int mlx5_shared_action_query
598 				(struct rte_eth_dev *dev,
599 				 const struct rte_flow_shared_action *action,
600 				 void *data,
601 				 struct rte_flow_error *error);
602 static int
603 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
604 		    struct rte_flow_tunnel *app_tunnel,
605 		    struct rte_flow_action **actions,
606 		    uint32_t *num_of_actions,
607 		    struct rte_flow_error *error);
608 static int
609 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
610 		       struct rte_flow_tunnel *app_tunnel,
611 		       struct rte_flow_item **items,
612 		       uint32_t *num_of_items,
613 		       struct rte_flow_error *error);
614 static int
615 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
616 			      struct rte_flow_item *pmd_items,
617 			      uint32_t num_items, struct rte_flow_error *err);
618 static int
619 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
620 				struct rte_flow_action *pmd_actions,
621 				uint32_t num_actions,
622 				struct rte_flow_error *err);
623 static int
624 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
625 				  struct rte_mbuf *m,
626 				  struct rte_flow_restore_info *info,
627 				  struct rte_flow_error *err);
628 
629 static const struct rte_flow_ops mlx5_flow_ops = {
630 	.validate = mlx5_flow_validate,
631 	.create = mlx5_flow_create,
632 	.destroy = mlx5_flow_destroy,
633 	.flush = mlx5_flow_flush,
634 	.isolate = mlx5_flow_isolate,
635 	.query = mlx5_flow_query,
636 	.dev_dump = mlx5_flow_dev_dump,
637 	.get_aged_flows = mlx5_flow_get_aged_flows,
638 	.shared_action_create = mlx5_shared_action_create,
639 	.shared_action_destroy = mlx5_shared_action_destroy,
640 	.shared_action_update = mlx5_shared_action_update,
641 	.shared_action_query = mlx5_shared_action_query,
642 	.tunnel_decap_set = mlx5_flow_tunnel_decap_set,
643 	.tunnel_match = mlx5_flow_tunnel_match,
644 	.tunnel_action_decap_release = mlx5_flow_tunnel_action_release,
645 	.tunnel_item_release = mlx5_flow_tunnel_item_release,
646 	.get_restore_info = mlx5_flow_tunnel_get_restore_info,
647 };
648 
649 /* Tunnel information. */
650 struct mlx5_flow_tunnel_info {
651 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
652 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
653 };
654 
655 static struct mlx5_flow_tunnel_info tunnels_info[] = {
656 	{
657 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
658 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
659 	},
660 	{
661 		.tunnel = MLX5_FLOW_LAYER_GENEVE,
662 		.ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
663 	},
664 	{
665 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
666 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
667 	},
668 	{
669 		.tunnel = MLX5_FLOW_LAYER_GRE,
670 		.ptype = RTE_PTYPE_TUNNEL_GRE,
671 	},
672 	{
673 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
674 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
675 	},
676 	{
677 		.tunnel = MLX5_FLOW_LAYER_MPLS,
678 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
679 	},
680 	{
681 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
682 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
683 	},
684 	{
685 		.tunnel = MLX5_FLOW_LAYER_IPIP,
686 		.ptype = RTE_PTYPE_TUNNEL_IP,
687 	},
688 	{
689 		.tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
690 		.ptype = RTE_PTYPE_TUNNEL_IP,
691 	},
692 	{
693 		.tunnel = MLX5_FLOW_LAYER_GTP,
694 		.ptype = RTE_PTYPE_TUNNEL_GTPU,
695 	},
696 };
697 
698 /* Key of thread specific flow workspace data. */
699 static pthread_key_t key_workspace;
700 
701 /* Thread specific flow workspace data once initialization data. */
702 static pthread_once_t key_workspace_init;
703 
704 
705 /**
706  * Translate tag ID to register.
707  *
708  * @param[in] dev
709  *   Pointer to the Ethernet device structure.
710  * @param[in] feature
711  *   The feature that request the register.
712  * @param[in] id
713  *   The request register ID.
714  * @param[out] error
715  *   Error description in case of any.
716  *
717  * @return
718  *   The request register on success, a negative errno
719  *   value otherwise and rte_errno is set.
720  */
721 int
722 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
723 		     enum mlx5_feature_name feature,
724 		     uint32_t id,
725 		     struct rte_flow_error *error)
726 {
727 	struct mlx5_priv *priv = dev->data->dev_private;
728 	struct mlx5_dev_config *config = &priv->config;
729 	enum modify_reg start_reg;
730 	bool skip_mtr_reg = false;
731 
732 	switch (feature) {
733 	case MLX5_HAIRPIN_RX:
734 		return REG_B;
735 	case MLX5_HAIRPIN_TX:
736 		return REG_A;
737 	case MLX5_METADATA_RX:
738 		switch (config->dv_xmeta_en) {
739 		case MLX5_XMETA_MODE_LEGACY:
740 			return REG_B;
741 		case MLX5_XMETA_MODE_META16:
742 			return REG_C_0;
743 		case MLX5_XMETA_MODE_META32:
744 			return REG_C_1;
745 		}
746 		break;
747 	case MLX5_METADATA_TX:
748 		return REG_A;
749 	case MLX5_METADATA_FDB:
750 		switch (config->dv_xmeta_en) {
751 		case MLX5_XMETA_MODE_LEGACY:
752 			return REG_NON;
753 		case MLX5_XMETA_MODE_META16:
754 			return REG_C_0;
755 		case MLX5_XMETA_MODE_META32:
756 			return REG_C_1;
757 		}
758 		break;
759 	case MLX5_FLOW_MARK:
760 		switch (config->dv_xmeta_en) {
761 		case MLX5_XMETA_MODE_LEGACY:
762 			return REG_NON;
763 		case MLX5_XMETA_MODE_META16:
764 			return REG_C_1;
765 		case MLX5_XMETA_MODE_META32:
766 			return REG_C_0;
767 		}
768 		break;
769 	case MLX5_MTR_SFX:
770 		/*
771 		 * If meter color and flow match share one register, flow match
772 		 * should use the meter color register for match.
773 		 */
774 		if (priv->mtr_reg_share)
775 			return priv->mtr_color_reg;
776 		else
777 			return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
778 			       REG_C_3;
779 	case MLX5_MTR_COLOR:
780 	case MLX5_ASO_FLOW_HIT: /* Both features use the same REG_C. */
781 		MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
782 		return priv->mtr_color_reg;
783 	case MLX5_COPY_MARK:
784 		/*
785 		 * Metadata COPY_MARK register using is in meter suffix sub
786 		 * flow while with meter. It's safe to share the same register.
787 		 */
788 		return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
789 	case MLX5_APP_TAG:
790 		/*
791 		 * If meter is enable, it will engage the register for color
792 		 * match and flow match. If meter color match is not using the
793 		 * REG_C_2, need to skip the REG_C_x be used by meter color
794 		 * match.
795 		 * If meter is disable, free to use all available registers.
796 		 */
797 		start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
798 			    (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
799 		skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
800 		if (id > (REG_C_7 - start_reg))
801 			return rte_flow_error_set(error, EINVAL,
802 						  RTE_FLOW_ERROR_TYPE_ITEM,
803 						  NULL, "invalid tag id");
804 		if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
805 			return rte_flow_error_set(error, ENOTSUP,
806 						  RTE_FLOW_ERROR_TYPE_ITEM,
807 						  NULL, "unsupported tag id");
808 		/*
809 		 * This case means meter is using the REG_C_x great than 2.
810 		 * Take care not to conflict with meter color REG_C_x.
811 		 * If the available index REG_C_y >= REG_C_x, skip the
812 		 * color register.
813 		 */
814 		if (skip_mtr_reg && config->flow_mreg_c
815 		    [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
816 			if (id >= (REG_C_7 - start_reg))
817 				return rte_flow_error_set(error, EINVAL,
818 						       RTE_FLOW_ERROR_TYPE_ITEM,
819 							NULL, "invalid tag id");
820 			if (config->flow_mreg_c
821 			    [id + 1 + start_reg - REG_C_0] != REG_NON)
822 				return config->flow_mreg_c
823 					       [id + 1 + start_reg - REG_C_0];
824 			return rte_flow_error_set(error, ENOTSUP,
825 						  RTE_FLOW_ERROR_TYPE_ITEM,
826 						  NULL, "unsupported tag id");
827 		}
828 		return config->flow_mreg_c[id + start_reg - REG_C_0];
829 	}
830 	MLX5_ASSERT(false);
831 	return rte_flow_error_set(error, EINVAL,
832 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
833 				  NULL, "invalid feature name");
834 }
835 
836 /**
837  * Check extensive flow metadata register support.
838  *
839  * @param dev
840  *   Pointer to rte_eth_dev structure.
841  *
842  * @return
843  *   True if device supports extensive flow metadata register, otherwise false.
844  */
845 bool
846 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
847 {
848 	struct mlx5_priv *priv = dev->data->dev_private;
849 	struct mlx5_dev_config *config = &priv->config;
850 
851 	/*
852 	 * Having available reg_c can be regarded inclusively as supporting
853 	 * extensive flow metadata register, which could mean,
854 	 * - metadata register copy action by modify header.
855 	 * - 16 modify header actions is supported.
856 	 * - reg_c's are preserved across different domain (FDB and NIC) on
857 	 *   packet loopback by flow lookup miss.
858 	 */
859 	return config->flow_mreg_c[2] != REG_NON;
860 }
861 
862 /**
863  * Verify the @p item specifications (spec, last, mask) are compatible with the
864  * NIC capabilities.
865  *
866  * @param[in] item
867  *   Item specification.
868  * @param[in] mask
869  *   @p item->mask or flow default bit-masks.
870  * @param[in] nic_mask
871  *   Bit-masks covering supported fields by the NIC to compare with user mask.
872  * @param[in] size
873  *   Bit-masks size in bytes.
874  * @param[in] range_accepted
875  *   True if range of values is accepted for specific fields, false otherwise.
876  * @param[out] error
877  *   Pointer to error structure.
878  *
879  * @return
880  *   0 on success, a negative errno value otherwise and rte_errno is set.
881  */
882 int
883 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
884 			  const uint8_t *mask,
885 			  const uint8_t *nic_mask,
886 			  unsigned int size,
887 			  bool range_accepted,
888 			  struct rte_flow_error *error)
889 {
890 	unsigned int i;
891 
892 	MLX5_ASSERT(nic_mask);
893 	for (i = 0; i < size; ++i)
894 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
895 			return rte_flow_error_set(error, ENOTSUP,
896 						  RTE_FLOW_ERROR_TYPE_ITEM,
897 						  item,
898 						  "mask enables non supported"
899 						  " bits");
900 	if (!item->spec && (item->mask || item->last))
901 		return rte_flow_error_set(error, EINVAL,
902 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
903 					  "mask/last without a spec is not"
904 					  " supported");
905 	if (item->spec && item->last && !range_accepted) {
906 		uint8_t spec[size];
907 		uint8_t last[size];
908 		unsigned int i;
909 		int ret;
910 
911 		for (i = 0; i < size; ++i) {
912 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
913 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
914 		}
915 		ret = memcmp(spec, last, size);
916 		if (ret != 0)
917 			return rte_flow_error_set(error, EINVAL,
918 						  RTE_FLOW_ERROR_TYPE_ITEM,
919 						  item,
920 						  "range is not valid");
921 	}
922 	return 0;
923 }
924 
925 /**
926  * Adjust the hash fields according to the @p flow information.
927  *
928  * @param[in] dev_flow.
929  *   Pointer to the mlx5_flow.
930  * @param[in] tunnel
931  *   1 when the hash field is for a tunnel item.
932  * @param[in] layer_types
933  *   ETH_RSS_* types.
934  * @param[in] hash_fields
935  *   Item hash fields.
936  *
937  * @return
938  *   The hash fields that should be used.
939  */
940 uint64_t
941 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
942 			    int tunnel __rte_unused, uint64_t layer_types,
943 			    uint64_t hash_fields)
944 {
945 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
946 	int rss_request_inner = rss_desc->level >= 2;
947 
948 	/* Check RSS hash level for tunnel. */
949 	if (tunnel && rss_request_inner)
950 		hash_fields |= IBV_RX_HASH_INNER;
951 	else if (tunnel || rss_request_inner)
952 		return 0;
953 #endif
954 	/* Check if requested layer matches RSS hash fields. */
955 	if (!(rss_desc->types & layer_types))
956 		return 0;
957 	return hash_fields;
958 }
959 
960 /**
961  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
962  * if several tunnel rules are used on this queue, the tunnel ptype will be
963  * cleared.
964  *
965  * @param rxq_ctrl
966  *   Rx queue to update.
967  */
968 static void
969 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
970 {
971 	unsigned int i;
972 	uint32_t tunnel_ptype = 0;
973 
974 	/* Look up for the ptype to use. */
975 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
976 		if (!rxq_ctrl->flow_tunnels_n[i])
977 			continue;
978 		if (!tunnel_ptype) {
979 			tunnel_ptype = tunnels_info[i].ptype;
980 		} else {
981 			tunnel_ptype = 0;
982 			break;
983 		}
984 	}
985 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
986 }
987 
988 /**
989  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
990  * flow.
991  *
992  * @param[in] dev
993  *   Pointer to the Ethernet device structure.
994  * @param[in] dev_handle
995  *   Pointer to device flow handle structure.
996  */
997 static void
998 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
999 		       struct mlx5_flow_handle *dev_handle)
1000 {
1001 	struct mlx5_priv *priv = dev->data->dev_private;
1002 	const int mark = dev_handle->mark;
1003 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1004 	struct mlx5_hrxq *hrxq;
1005 	unsigned int i;
1006 
1007 	if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE)
1008 		return;
1009 	hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1010 			      dev_handle->rix_hrxq);
1011 	if (!hrxq)
1012 		return;
1013 	for (i = 0; i != hrxq->ind_table->queues_n; ++i) {
1014 		int idx = hrxq->ind_table->queues[i];
1015 		struct mlx5_rxq_ctrl *rxq_ctrl =
1016 			container_of((*priv->rxqs)[idx],
1017 				     struct mlx5_rxq_ctrl, rxq);
1018 
1019 		/*
1020 		 * To support metadata register copy on Tx loopback,
1021 		 * this must be always enabled (metadata may arive
1022 		 * from other port - not from local flows only.
1023 		 */
1024 		if (priv->config.dv_flow_en &&
1025 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1026 		    mlx5_flow_ext_mreg_supported(dev)) {
1027 			rxq_ctrl->rxq.mark = 1;
1028 			rxq_ctrl->flow_mark_n = 1;
1029 		} else if (mark) {
1030 			rxq_ctrl->rxq.mark = 1;
1031 			rxq_ctrl->flow_mark_n++;
1032 		}
1033 		if (tunnel) {
1034 			unsigned int j;
1035 
1036 			/* Increase the counter matching the flow. */
1037 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1038 				if ((tunnels_info[j].tunnel &
1039 				     dev_handle->layers) ==
1040 				    tunnels_info[j].tunnel) {
1041 					rxq_ctrl->flow_tunnels_n[j]++;
1042 					break;
1043 				}
1044 			}
1045 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1046 		}
1047 	}
1048 }
1049 
1050 /**
1051  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
1052  *
1053  * @param[in] dev
1054  *   Pointer to the Ethernet device structure.
1055  * @param[in] flow
1056  *   Pointer to flow structure.
1057  */
1058 static void
1059 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
1060 {
1061 	struct mlx5_priv *priv = dev->data->dev_private;
1062 	uint32_t handle_idx;
1063 	struct mlx5_flow_handle *dev_handle;
1064 
1065 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1066 		       handle_idx, dev_handle, next)
1067 		flow_drv_rxq_flags_set(dev, dev_handle);
1068 }
1069 
1070 /**
1071  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1072  * device flow if no other flow uses it with the same kind of request.
1073  *
1074  * @param dev
1075  *   Pointer to Ethernet device.
1076  * @param[in] dev_handle
1077  *   Pointer to the device flow handle structure.
1078  */
1079 static void
1080 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1081 			struct mlx5_flow_handle *dev_handle)
1082 {
1083 	struct mlx5_priv *priv = dev->data->dev_private;
1084 	const int mark = dev_handle->mark;
1085 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1086 	struct mlx5_hrxq *hrxq;
1087 	unsigned int i;
1088 
1089 	if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE)
1090 		return;
1091 	hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1092 			      dev_handle->rix_hrxq);
1093 	if (!hrxq)
1094 		return;
1095 	MLX5_ASSERT(dev->data->dev_started);
1096 	for (i = 0; i != hrxq->ind_table->queues_n; ++i) {
1097 		int idx = hrxq->ind_table->queues[i];
1098 		struct mlx5_rxq_ctrl *rxq_ctrl =
1099 			container_of((*priv->rxqs)[idx],
1100 				     struct mlx5_rxq_ctrl, rxq);
1101 
1102 		if (priv->config.dv_flow_en &&
1103 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1104 		    mlx5_flow_ext_mreg_supported(dev)) {
1105 			rxq_ctrl->rxq.mark = 1;
1106 			rxq_ctrl->flow_mark_n = 1;
1107 		} else if (mark) {
1108 			rxq_ctrl->flow_mark_n--;
1109 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
1110 		}
1111 		if (tunnel) {
1112 			unsigned int j;
1113 
1114 			/* Decrease the counter matching the flow. */
1115 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1116 				if ((tunnels_info[j].tunnel &
1117 				     dev_handle->layers) ==
1118 				    tunnels_info[j].tunnel) {
1119 					rxq_ctrl->flow_tunnels_n[j]--;
1120 					break;
1121 				}
1122 			}
1123 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1124 		}
1125 	}
1126 }
1127 
1128 /**
1129  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1130  * @p flow if no other flow uses it with the same kind of request.
1131  *
1132  * @param dev
1133  *   Pointer to Ethernet device.
1134  * @param[in] flow
1135  *   Pointer to the flow.
1136  */
1137 static void
1138 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1139 {
1140 	struct mlx5_priv *priv = dev->data->dev_private;
1141 	uint32_t handle_idx;
1142 	struct mlx5_flow_handle *dev_handle;
1143 
1144 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1145 		       handle_idx, dev_handle, next)
1146 		flow_drv_rxq_flags_trim(dev, dev_handle);
1147 }
1148 
1149 /**
1150  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1151  *
1152  * @param dev
1153  *   Pointer to Ethernet device.
1154  */
1155 static void
1156 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1157 {
1158 	struct mlx5_priv *priv = dev->data->dev_private;
1159 	unsigned int i;
1160 
1161 	for (i = 0; i != priv->rxqs_n; ++i) {
1162 		struct mlx5_rxq_ctrl *rxq_ctrl;
1163 		unsigned int j;
1164 
1165 		if (!(*priv->rxqs)[i])
1166 			continue;
1167 		rxq_ctrl = container_of((*priv->rxqs)[i],
1168 					struct mlx5_rxq_ctrl, rxq);
1169 		rxq_ctrl->flow_mark_n = 0;
1170 		rxq_ctrl->rxq.mark = 0;
1171 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1172 			rxq_ctrl->flow_tunnels_n[j] = 0;
1173 		rxq_ctrl->rxq.tunnel = 0;
1174 	}
1175 }
1176 
1177 /**
1178  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1179  *
1180  * @param[in] dev
1181  *   Pointer to the Ethernet device structure.
1182  */
1183 void
1184 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1185 {
1186 	struct mlx5_priv *priv = dev->data->dev_private;
1187 	struct mlx5_rxq_data *data;
1188 	unsigned int i;
1189 
1190 	for (i = 0; i != priv->rxqs_n; ++i) {
1191 		if (!(*priv->rxqs)[i])
1192 			continue;
1193 		data = (*priv->rxqs)[i];
1194 		if (!rte_flow_dynf_metadata_avail()) {
1195 			data->dynf_meta = 0;
1196 			data->flow_meta_mask = 0;
1197 			data->flow_meta_offset = -1;
1198 		} else {
1199 			data->dynf_meta = 1;
1200 			data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1201 			data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1202 		}
1203 	}
1204 }
1205 
1206 /*
1207  * return a pointer to the desired action in the list of actions.
1208  *
1209  * @param[in] actions
1210  *   The list of actions to search the action in.
1211  * @param[in] action
1212  *   The action to find.
1213  *
1214  * @return
1215  *   Pointer to the action in the list, if found. NULL otherwise.
1216  */
1217 const struct rte_flow_action *
1218 mlx5_flow_find_action(const struct rte_flow_action *actions,
1219 		      enum rte_flow_action_type action)
1220 {
1221 	if (actions == NULL)
1222 		return NULL;
1223 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1224 		if (actions->type == action)
1225 			return actions;
1226 	return NULL;
1227 }
1228 
1229 /*
1230  * Validate the flag action.
1231  *
1232  * @param[in] action_flags
1233  *   Bit-fields that holds the actions detected until now.
1234  * @param[in] attr
1235  *   Attributes of flow that includes this action.
1236  * @param[out] error
1237  *   Pointer to error structure.
1238  *
1239  * @return
1240  *   0 on success, a negative errno value otherwise and rte_errno is set.
1241  */
1242 int
1243 mlx5_flow_validate_action_flag(uint64_t action_flags,
1244 			       const struct rte_flow_attr *attr,
1245 			       struct rte_flow_error *error)
1246 {
1247 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1248 		return rte_flow_error_set(error, EINVAL,
1249 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1250 					  "can't mark and flag in same flow");
1251 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1252 		return rte_flow_error_set(error, EINVAL,
1253 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1254 					  "can't have 2 flag"
1255 					  " actions in same flow");
1256 	if (attr->egress)
1257 		return rte_flow_error_set(error, ENOTSUP,
1258 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1259 					  "flag action not supported for "
1260 					  "egress");
1261 	return 0;
1262 }
1263 
1264 /*
1265  * Validate the mark action.
1266  *
1267  * @param[in] action
1268  *   Pointer to the queue action.
1269  * @param[in] action_flags
1270  *   Bit-fields that holds the actions detected until now.
1271  * @param[in] attr
1272  *   Attributes of flow that includes this action.
1273  * @param[out] error
1274  *   Pointer to error structure.
1275  *
1276  * @return
1277  *   0 on success, a negative errno value otherwise and rte_errno is set.
1278  */
1279 int
1280 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1281 			       uint64_t action_flags,
1282 			       const struct rte_flow_attr *attr,
1283 			       struct rte_flow_error *error)
1284 {
1285 	const struct rte_flow_action_mark *mark = action->conf;
1286 
1287 	if (!mark)
1288 		return rte_flow_error_set(error, EINVAL,
1289 					  RTE_FLOW_ERROR_TYPE_ACTION,
1290 					  action,
1291 					  "configuration cannot be null");
1292 	if (mark->id >= MLX5_FLOW_MARK_MAX)
1293 		return rte_flow_error_set(error, EINVAL,
1294 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1295 					  &mark->id,
1296 					  "mark id must in 0 <= id < "
1297 					  RTE_STR(MLX5_FLOW_MARK_MAX));
1298 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1299 		return rte_flow_error_set(error, EINVAL,
1300 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1301 					  "can't flag and mark in same flow");
1302 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1303 		return rte_flow_error_set(error, EINVAL,
1304 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1305 					  "can't have 2 mark actions in same"
1306 					  " flow");
1307 	if (attr->egress)
1308 		return rte_flow_error_set(error, ENOTSUP,
1309 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1310 					  "mark action not supported for "
1311 					  "egress");
1312 	return 0;
1313 }
1314 
1315 /*
1316  * Validate the drop action.
1317  *
1318  * @param[in] action_flags
1319  *   Bit-fields that holds the actions detected until now.
1320  * @param[in] attr
1321  *   Attributes of flow that includes this action.
1322  * @param[out] error
1323  *   Pointer to error structure.
1324  *
1325  * @return
1326  *   0 on success, a negative errno value otherwise and rte_errno is set.
1327  */
1328 int
1329 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1330 			       const struct rte_flow_attr *attr,
1331 			       struct rte_flow_error *error)
1332 {
1333 	if (attr->egress)
1334 		return rte_flow_error_set(error, ENOTSUP,
1335 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1336 					  "drop action not supported for "
1337 					  "egress");
1338 	return 0;
1339 }
1340 
1341 /*
1342  * Validate the queue action.
1343  *
1344  * @param[in] action
1345  *   Pointer to the queue action.
1346  * @param[in] action_flags
1347  *   Bit-fields that holds the actions detected until now.
1348  * @param[in] dev
1349  *   Pointer to the Ethernet device structure.
1350  * @param[in] attr
1351  *   Attributes of flow that includes this action.
1352  * @param[out] error
1353  *   Pointer to error structure.
1354  *
1355  * @return
1356  *   0 on success, a negative errno value otherwise and rte_errno is set.
1357  */
1358 int
1359 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1360 				uint64_t action_flags,
1361 				struct rte_eth_dev *dev,
1362 				const struct rte_flow_attr *attr,
1363 				struct rte_flow_error *error)
1364 {
1365 	struct mlx5_priv *priv = dev->data->dev_private;
1366 	const struct rte_flow_action_queue *queue = action->conf;
1367 
1368 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1369 		return rte_flow_error_set(error, EINVAL,
1370 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1371 					  "can't have 2 fate actions in"
1372 					  " same flow");
1373 	if (!priv->rxqs_n)
1374 		return rte_flow_error_set(error, EINVAL,
1375 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1376 					  NULL, "No Rx queues configured");
1377 	if (queue->index >= priv->rxqs_n)
1378 		return rte_flow_error_set(error, EINVAL,
1379 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1380 					  &queue->index,
1381 					  "queue index out of range");
1382 	if (!(*priv->rxqs)[queue->index])
1383 		return rte_flow_error_set(error, EINVAL,
1384 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1385 					  &queue->index,
1386 					  "queue is not configured");
1387 	if (attr->egress)
1388 		return rte_flow_error_set(error, ENOTSUP,
1389 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1390 					  "queue action not supported for "
1391 					  "egress");
1392 	return 0;
1393 }
1394 
1395 /*
1396  * Validate the rss action.
1397  *
1398  * @param[in] dev
1399  *   Pointer to the Ethernet device structure.
1400  * @param[in] action
1401  *   Pointer to the queue action.
1402  * @param[out] error
1403  *   Pointer to error structure.
1404  *
1405  * @return
1406  *   0 on success, a negative errno value otherwise and rte_errno is set.
1407  */
1408 int
1409 mlx5_validate_action_rss(struct rte_eth_dev *dev,
1410 			 const struct rte_flow_action *action,
1411 			 struct rte_flow_error *error)
1412 {
1413 	struct mlx5_priv *priv = dev->data->dev_private;
1414 	const struct rte_flow_action_rss *rss = action->conf;
1415 	enum mlx5_rxq_type rxq_type = MLX5_RXQ_TYPE_UNDEFINED;
1416 	unsigned int i;
1417 
1418 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1419 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1420 		return rte_flow_error_set(error, ENOTSUP,
1421 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1422 					  &rss->func,
1423 					  "RSS hash function not supported");
1424 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1425 	if (rss->level > 2)
1426 #else
1427 	if (rss->level > 1)
1428 #endif
1429 		return rte_flow_error_set(error, ENOTSUP,
1430 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1431 					  &rss->level,
1432 					  "tunnel RSS is not supported");
1433 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
1434 	if (rss->key_len == 0 && rss->key != NULL)
1435 		return rte_flow_error_set(error, ENOTSUP,
1436 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1437 					  &rss->key_len,
1438 					  "RSS hash key length 0");
1439 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1440 		return rte_flow_error_set(error, ENOTSUP,
1441 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1442 					  &rss->key_len,
1443 					  "RSS hash key too small");
1444 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1445 		return rte_flow_error_set(error, ENOTSUP,
1446 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1447 					  &rss->key_len,
1448 					  "RSS hash key too large");
1449 	if (rss->queue_num > priv->config.ind_table_max_size)
1450 		return rte_flow_error_set(error, ENOTSUP,
1451 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1452 					  &rss->queue_num,
1453 					  "number of queues too large");
1454 	if (rss->types & MLX5_RSS_HF_MASK)
1455 		return rte_flow_error_set(error, ENOTSUP,
1456 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1457 					  &rss->types,
1458 					  "some RSS protocols are not"
1459 					  " supported");
1460 	if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) &&
1461 	    !(rss->types & ETH_RSS_IP))
1462 		return rte_flow_error_set(error, EINVAL,
1463 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1464 					  "L3 partial RSS requested but L3 RSS"
1465 					  " type not specified");
1466 	if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) &&
1467 	    !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP)))
1468 		return rte_flow_error_set(error, EINVAL,
1469 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1470 					  "L4 partial RSS requested but L4 RSS"
1471 					  " type not specified");
1472 	if (!priv->rxqs_n)
1473 		return rte_flow_error_set(error, EINVAL,
1474 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1475 					  NULL, "No Rx queues configured");
1476 	if (!rss->queue_num)
1477 		return rte_flow_error_set(error, EINVAL,
1478 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1479 					  NULL, "No queues configured");
1480 	for (i = 0; i != rss->queue_num; ++i) {
1481 		struct mlx5_rxq_ctrl *rxq_ctrl;
1482 
1483 		if (rss->queue[i] >= priv->rxqs_n)
1484 			return rte_flow_error_set
1485 				(error, EINVAL,
1486 				 RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1487 				 &rss->queue[i], "queue index out of range");
1488 		if (!(*priv->rxqs)[rss->queue[i]])
1489 			return rte_flow_error_set
1490 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1491 				 &rss->queue[i], "queue is not configured");
1492 		rxq_ctrl = container_of((*priv->rxqs)[rss->queue[i]],
1493 					struct mlx5_rxq_ctrl, rxq);
1494 		if (i == 0)
1495 			rxq_type = rxq_ctrl->type;
1496 		if (rxq_type != rxq_ctrl->type)
1497 			return rte_flow_error_set
1498 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1499 				 &rss->queue[i],
1500 				 "combining hairpin and regular RSS queues is not supported");
1501 	}
1502 	return 0;
1503 }
1504 
1505 /*
1506  * Validate the rss action.
1507  *
1508  * @param[in] action
1509  *   Pointer to the queue action.
1510  * @param[in] action_flags
1511  *   Bit-fields that holds the actions detected until now.
1512  * @param[in] dev
1513  *   Pointer to the Ethernet device structure.
1514  * @param[in] attr
1515  *   Attributes of flow that includes this action.
1516  * @param[in] item_flags
1517  *   Items that were detected.
1518  * @param[out] error
1519  *   Pointer to error structure.
1520  *
1521  * @return
1522  *   0 on success, a negative errno value otherwise and rte_errno is set.
1523  */
1524 int
1525 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1526 			      uint64_t action_flags,
1527 			      struct rte_eth_dev *dev,
1528 			      const struct rte_flow_attr *attr,
1529 			      uint64_t item_flags,
1530 			      struct rte_flow_error *error)
1531 {
1532 	const struct rte_flow_action_rss *rss = action->conf;
1533 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1534 	int ret;
1535 
1536 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1537 		return rte_flow_error_set(error, EINVAL,
1538 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1539 					  "can't have 2 fate actions"
1540 					  " in same flow");
1541 	ret = mlx5_validate_action_rss(dev, action, error);
1542 	if (ret)
1543 		return ret;
1544 	if (attr->egress)
1545 		return rte_flow_error_set(error, ENOTSUP,
1546 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1547 					  "rss action not supported for "
1548 					  "egress");
1549 	if (rss->level > 1 && !tunnel)
1550 		return rte_flow_error_set(error, EINVAL,
1551 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1552 					  "inner RSS is not supported for "
1553 					  "non-tunnel flows");
1554 	if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1555 	    !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1556 		return rte_flow_error_set(error, EINVAL,
1557 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1558 					  "RSS on eCPRI is not supported now");
1559 	}
1560 	return 0;
1561 }
1562 
1563 /*
1564  * Validate the default miss action.
1565  *
1566  * @param[in] action_flags
1567  *   Bit-fields that holds the actions detected until now.
1568  * @param[out] error
1569  *   Pointer to error structure.
1570  *
1571  * @return
1572  *   0 on success, a negative errno value otherwise and rte_errno is set.
1573  */
1574 int
1575 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
1576 				const struct rte_flow_attr *attr,
1577 				struct rte_flow_error *error)
1578 {
1579 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1580 		return rte_flow_error_set(error, EINVAL,
1581 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1582 					  "can't have 2 fate actions in"
1583 					  " same flow");
1584 	if (attr->egress)
1585 		return rte_flow_error_set(error, ENOTSUP,
1586 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1587 					  "default miss action not supported "
1588 					  "for egress");
1589 	if (attr->group)
1590 		return rte_flow_error_set(error, ENOTSUP,
1591 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
1592 					  "only group 0 is supported");
1593 	if (attr->transfer)
1594 		return rte_flow_error_set(error, ENOTSUP,
1595 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1596 					  NULL, "transfer is not supported");
1597 	return 0;
1598 }
1599 
1600 /*
1601  * Validate the count action.
1602  *
1603  * @param[in] dev
1604  *   Pointer to the Ethernet device structure.
1605  * @param[in] attr
1606  *   Attributes of flow that includes this action.
1607  * @param[out] error
1608  *   Pointer to error structure.
1609  *
1610  * @return
1611  *   0 on success, a negative errno value otherwise and rte_errno is set.
1612  */
1613 int
1614 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1615 				const struct rte_flow_attr *attr,
1616 				struct rte_flow_error *error)
1617 {
1618 	if (attr->egress)
1619 		return rte_flow_error_set(error, ENOTSUP,
1620 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1621 					  "count action not supported for "
1622 					  "egress");
1623 	return 0;
1624 }
1625 
1626 /**
1627  * Verify the @p attributes will be correctly understood by the NIC and store
1628  * them in the @p flow if everything is correct.
1629  *
1630  * @param[in] dev
1631  *   Pointer to the Ethernet device structure.
1632  * @param[in] attributes
1633  *   Pointer to flow attributes
1634  * @param[out] error
1635  *   Pointer to error structure.
1636  *
1637  * @return
1638  *   0 on success, a negative errno value otherwise and rte_errno is set.
1639  */
1640 int
1641 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1642 			      const struct rte_flow_attr *attributes,
1643 			      struct rte_flow_error *error)
1644 {
1645 	struct mlx5_priv *priv = dev->data->dev_private;
1646 	uint32_t priority_max = priv->config.flow_prio - 1;
1647 
1648 	if (attributes->group)
1649 		return rte_flow_error_set(error, ENOTSUP,
1650 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1651 					  NULL, "groups is not supported");
1652 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1653 	    attributes->priority >= priority_max)
1654 		return rte_flow_error_set(error, ENOTSUP,
1655 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1656 					  NULL, "priority out of range");
1657 	if (attributes->egress)
1658 		return rte_flow_error_set(error, ENOTSUP,
1659 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1660 					  "egress is not supported");
1661 	if (attributes->transfer && !priv->config.dv_esw_en)
1662 		return rte_flow_error_set(error, ENOTSUP,
1663 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1664 					  NULL, "transfer is not supported");
1665 	if (!attributes->ingress)
1666 		return rte_flow_error_set(error, EINVAL,
1667 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1668 					  NULL,
1669 					  "ingress attribute is mandatory");
1670 	return 0;
1671 }
1672 
1673 /**
1674  * Validate ICMP6 item.
1675  *
1676  * @param[in] item
1677  *   Item specification.
1678  * @param[in] item_flags
1679  *   Bit-fields that holds the items detected until now.
1680  * @param[in] ext_vlan_sup
1681  *   Whether extended VLAN features are supported or not.
1682  * @param[out] error
1683  *   Pointer to error structure.
1684  *
1685  * @return
1686  *   0 on success, a negative errno value otherwise and rte_errno is set.
1687  */
1688 int
1689 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1690 			       uint64_t item_flags,
1691 			       uint8_t target_protocol,
1692 			       struct rte_flow_error *error)
1693 {
1694 	const struct rte_flow_item_icmp6 *mask = item->mask;
1695 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1696 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1697 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1698 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1699 				      MLX5_FLOW_LAYER_OUTER_L4;
1700 	int ret;
1701 
1702 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1703 		return rte_flow_error_set(error, EINVAL,
1704 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1705 					  "protocol filtering not compatible"
1706 					  " with ICMP6 layer");
1707 	if (!(item_flags & l3m))
1708 		return rte_flow_error_set(error, EINVAL,
1709 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1710 					  "IPv6 is mandatory to filter on"
1711 					  " ICMP6");
1712 	if (item_flags & l4m)
1713 		return rte_flow_error_set(error, EINVAL,
1714 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1715 					  "multiple L4 layers not supported");
1716 	if (!mask)
1717 		mask = &rte_flow_item_icmp6_mask;
1718 	ret = mlx5_flow_item_acceptable
1719 		(item, (const uint8_t *)mask,
1720 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
1721 		 sizeof(struct rte_flow_item_icmp6),
1722 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1723 	if (ret < 0)
1724 		return ret;
1725 	return 0;
1726 }
1727 
1728 /**
1729  * Validate ICMP item.
1730  *
1731  * @param[in] item
1732  *   Item specification.
1733  * @param[in] item_flags
1734  *   Bit-fields that holds the items detected until now.
1735  * @param[out] error
1736  *   Pointer to error structure.
1737  *
1738  * @return
1739  *   0 on success, a negative errno value otherwise and rte_errno is set.
1740  */
1741 int
1742 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1743 			     uint64_t item_flags,
1744 			     uint8_t target_protocol,
1745 			     struct rte_flow_error *error)
1746 {
1747 	const struct rte_flow_item_icmp *mask = item->mask;
1748 	const struct rte_flow_item_icmp nic_mask = {
1749 		.hdr.icmp_type = 0xff,
1750 		.hdr.icmp_code = 0xff,
1751 		.hdr.icmp_ident = RTE_BE16(0xffff),
1752 		.hdr.icmp_seq_nb = RTE_BE16(0xffff),
1753 	};
1754 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1755 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1756 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1757 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1758 				      MLX5_FLOW_LAYER_OUTER_L4;
1759 	int ret;
1760 
1761 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1762 		return rte_flow_error_set(error, EINVAL,
1763 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1764 					  "protocol filtering not compatible"
1765 					  " with ICMP layer");
1766 	if (!(item_flags & l3m))
1767 		return rte_flow_error_set(error, EINVAL,
1768 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1769 					  "IPv4 is mandatory to filter"
1770 					  " on ICMP");
1771 	if (item_flags & l4m)
1772 		return rte_flow_error_set(error, EINVAL,
1773 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1774 					  "multiple L4 layers not supported");
1775 	if (!mask)
1776 		mask = &nic_mask;
1777 	ret = mlx5_flow_item_acceptable
1778 		(item, (const uint8_t *)mask,
1779 		 (const uint8_t *)&nic_mask,
1780 		 sizeof(struct rte_flow_item_icmp),
1781 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1782 	if (ret < 0)
1783 		return ret;
1784 	return 0;
1785 }
1786 
1787 /**
1788  * Validate Ethernet item.
1789  *
1790  * @param[in] item
1791  *   Item specification.
1792  * @param[in] item_flags
1793  *   Bit-fields that holds the items detected until now.
1794  * @param[out] error
1795  *   Pointer to error structure.
1796  *
1797  * @return
1798  *   0 on success, a negative errno value otherwise and rte_errno is set.
1799  */
1800 int
1801 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1802 			    uint64_t item_flags, bool ext_vlan_sup,
1803 			    struct rte_flow_error *error)
1804 {
1805 	const struct rte_flow_item_eth *mask = item->mask;
1806 	const struct rte_flow_item_eth nic_mask = {
1807 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1808 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1809 		.type = RTE_BE16(0xffff),
1810 		.has_vlan = ext_vlan_sup ? 1 : 0,
1811 	};
1812 	int ret;
1813 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1814 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1815 				       MLX5_FLOW_LAYER_OUTER_L2;
1816 
1817 	if (item_flags & ethm)
1818 		return rte_flow_error_set(error, ENOTSUP,
1819 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1820 					  "multiple L2 layers not supported");
1821 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
1822 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
1823 		return rte_flow_error_set(error, EINVAL,
1824 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1825 					  "L2 layer should not follow "
1826 					  "L3 layers");
1827 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
1828 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
1829 		return rte_flow_error_set(error, EINVAL,
1830 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1831 					  "L2 layer should not follow VLAN");
1832 	if (!mask)
1833 		mask = &rte_flow_item_eth_mask;
1834 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1835 					(const uint8_t *)&nic_mask,
1836 					sizeof(struct rte_flow_item_eth),
1837 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1838 	return ret;
1839 }
1840 
1841 /**
1842  * Validate VLAN item.
1843  *
1844  * @param[in] item
1845  *   Item specification.
1846  * @param[in] item_flags
1847  *   Bit-fields that holds the items detected until now.
1848  * @param[in] dev
1849  *   Ethernet device flow is being created on.
1850  * @param[out] error
1851  *   Pointer to error structure.
1852  *
1853  * @return
1854  *   0 on success, a negative errno value otherwise and rte_errno is set.
1855  */
1856 int
1857 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1858 			     uint64_t item_flags,
1859 			     struct rte_eth_dev *dev,
1860 			     struct rte_flow_error *error)
1861 {
1862 	const struct rte_flow_item_vlan *spec = item->spec;
1863 	const struct rte_flow_item_vlan *mask = item->mask;
1864 	const struct rte_flow_item_vlan nic_mask = {
1865 		.tci = RTE_BE16(UINT16_MAX),
1866 		.inner_type = RTE_BE16(UINT16_MAX),
1867 	};
1868 	uint16_t vlan_tag = 0;
1869 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1870 	int ret;
1871 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1872 					MLX5_FLOW_LAYER_INNER_L4) :
1873 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1874 					MLX5_FLOW_LAYER_OUTER_L4);
1875 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1876 					MLX5_FLOW_LAYER_OUTER_VLAN;
1877 
1878 	if (item_flags & vlanm)
1879 		return rte_flow_error_set(error, EINVAL,
1880 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1881 					  "multiple VLAN layers not supported");
1882 	else if ((item_flags & l34m) != 0)
1883 		return rte_flow_error_set(error, EINVAL,
1884 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1885 					  "VLAN cannot follow L3/L4 layer");
1886 	if (!mask)
1887 		mask = &rte_flow_item_vlan_mask;
1888 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1889 					(const uint8_t *)&nic_mask,
1890 					sizeof(struct rte_flow_item_vlan),
1891 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1892 	if (ret)
1893 		return ret;
1894 	if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1895 		struct mlx5_priv *priv = dev->data->dev_private;
1896 
1897 		if (priv->vmwa_context) {
1898 			/*
1899 			 * Non-NULL context means we have a virtual machine
1900 			 * and SR-IOV enabled, we have to create VLAN interface
1901 			 * to make hypervisor to setup E-Switch vport
1902 			 * context correctly. We avoid creating the multiple
1903 			 * VLAN interfaces, so we cannot support VLAN tag mask.
1904 			 */
1905 			return rte_flow_error_set(error, EINVAL,
1906 						  RTE_FLOW_ERROR_TYPE_ITEM,
1907 						  item,
1908 						  "VLAN tag mask is not"
1909 						  " supported in virtual"
1910 						  " environment");
1911 		}
1912 	}
1913 	if (spec) {
1914 		vlan_tag = spec->tci;
1915 		vlan_tag &= mask->tci;
1916 	}
1917 	/*
1918 	 * From verbs perspective an empty VLAN is equivalent
1919 	 * to a packet without VLAN layer.
1920 	 */
1921 	if (!vlan_tag)
1922 		return rte_flow_error_set(error, EINVAL,
1923 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1924 					  item->spec,
1925 					  "VLAN cannot be empty");
1926 	return 0;
1927 }
1928 
1929 /**
1930  * Validate IPV4 item.
1931  *
1932  * @param[in] item
1933  *   Item specification.
1934  * @param[in] item_flags
1935  *   Bit-fields that holds the items detected until now.
1936  * @param[in] last_item
1937  *   Previous validated item in the pattern items.
1938  * @param[in] ether_type
1939  *   Type in the ethernet layer header (including dot1q).
1940  * @param[in] acc_mask
1941  *   Acceptable mask, if NULL default internal default mask
1942  *   will be used to check whether item fields are supported.
1943  * @param[in] range_accepted
1944  *   True if range of values is accepted for specific fields, false otherwise.
1945  * @param[out] error
1946  *   Pointer to error structure.
1947  *
1948  * @return
1949  *   0 on success, a negative errno value otherwise and rte_errno is set.
1950  */
1951 int
1952 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1953 			     uint64_t item_flags,
1954 			     uint64_t last_item,
1955 			     uint16_t ether_type,
1956 			     const struct rte_flow_item_ipv4 *acc_mask,
1957 			     bool range_accepted,
1958 			     struct rte_flow_error *error)
1959 {
1960 	const struct rte_flow_item_ipv4 *mask = item->mask;
1961 	const struct rte_flow_item_ipv4 *spec = item->spec;
1962 	const struct rte_flow_item_ipv4 nic_mask = {
1963 		.hdr = {
1964 			.src_addr = RTE_BE32(0xffffffff),
1965 			.dst_addr = RTE_BE32(0xffffffff),
1966 			.type_of_service = 0xff,
1967 			.next_proto_id = 0xff,
1968 		},
1969 	};
1970 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1971 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1972 				      MLX5_FLOW_LAYER_OUTER_L3;
1973 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1974 				      MLX5_FLOW_LAYER_OUTER_L4;
1975 	int ret;
1976 	uint8_t next_proto = 0xFF;
1977 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1978 				  MLX5_FLOW_LAYER_OUTER_VLAN |
1979 				  MLX5_FLOW_LAYER_INNER_VLAN);
1980 
1981 	if ((last_item & l2_vlan) && ether_type &&
1982 	    ether_type != RTE_ETHER_TYPE_IPV4)
1983 		return rte_flow_error_set(error, EINVAL,
1984 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1985 					  "IPv4 cannot follow L2/VLAN layer "
1986 					  "which ether type is not IPv4");
1987 	if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1988 		if (mask && spec)
1989 			next_proto = mask->hdr.next_proto_id &
1990 				     spec->hdr.next_proto_id;
1991 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1992 			return rte_flow_error_set(error, EINVAL,
1993 						  RTE_FLOW_ERROR_TYPE_ITEM,
1994 						  item,
1995 						  "multiple tunnel "
1996 						  "not supported");
1997 	}
1998 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1999 		return rte_flow_error_set(error, EINVAL,
2000 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2001 					  "wrong tunnel type - IPv6 specified "
2002 					  "but IPv4 item provided");
2003 	if (item_flags & l3m)
2004 		return rte_flow_error_set(error, ENOTSUP,
2005 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2006 					  "multiple L3 layers not supported");
2007 	else if (item_flags & l4m)
2008 		return rte_flow_error_set(error, EINVAL,
2009 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2010 					  "L3 cannot follow an L4 layer.");
2011 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2012 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2013 		return rte_flow_error_set(error, EINVAL,
2014 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2015 					  "L3 cannot follow an NVGRE layer.");
2016 	if (!mask)
2017 		mask = &rte_flow_item_ipv4_mask;
2018 	else if (mask->hdr.next_proto_id != 0 &&
2019 		 mask->hdr.next_proto_id != 0xff)
2020 		return rte_flow_error_set(error, EINVAL,
2021 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2022 					  "partial mask is not supported"
2023 					  " for protocol");
2024 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2025 					acc_mask ? (const uint8_t *)acc_mask
2026 						 : (const uint8_t *)&nic_mask,
2027 					sizeof(struct rte_flow_item_ipv4),
2028 					range_accepted, error);
2029 	if (ret < 0)
2030 		return ret;
2031 	return 0;
2032 }
2033 
2034 /**
2035  * Validate IPV6 item.
2036  *
2037  * @param[in] item
2038  *   Item specification.
2039  * @param[in] item_flags
2040  *   Bit-fields that holds the items detected until now.
2041  * @param[in] last_item
2042  *   Previous validated item in the pattern items.
2043  * @param[in] ether_type
2044  *   Type in the ethernet layer header (including dot1q).
2045  * @param[in] acc_mask
2046  *   Acceptable mask, if NULL default internal default mask
2047  *   will be used to check whether item fields are supported.
2048  * @param[out] error
2049  *   Pointer to error structure.
2050  *
2051  * @return
2052  *   0 on success, a negative errno value otherwise and rte_errno is set.
2053  */
2054 int
2055 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
2056 			     uint64_t item_flags,
2057 			     uint64_t last_item,
2058 			     uint16_t ether_type,
2059 			     const struct rte_flow_item_ipv6 *acc_mask,
2060 			     struct rte_flow_error *error)
2061 {
2062 	const struct rte_flow_item_ipv6 *mask = item->mask;
2063 	const struct rte_flow_item_ipv6 *spec = item->spec;
2064 	const struct rte_flow_item_ipv6 nic_mask = {
2065 		.hdr = {
2066 			.src_addr =
2067 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2068 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2069 			.dst_addr =
2070 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2071 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2072 			.vtc_flow = RTE_BE32(0xffffffff),
2073 			.proto = 0xff,
2074 		},
2075 	};
2076 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2077 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2078 				      MLX5_FLOW_LAYER_OUTER_L3;
2079 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2080 				      MLX5_FLOW_LAYER_OUTER_L4;
2081 	int ret;
2082 	uint8_t next_proto = 0xFF;
2083 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2084 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2085 				  MLX5_FLOW_LAYER_INNER_VLAN);
2086 
2087 	if ((last_item & l2_vlan) && ether_type &&
2088 	    ether_type != RTE_ETHER_TYPE_IPV6)
2089 		return rte_flow_error_set(error, EINVAL,
2090 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2091 					  "IPv6 cannot follow L2/VLAN layer "
2092 					  "which ether type is not IPv6");
2093 	if (mask && mask->hdr.proto == UINT8_MAX && spec)
2094 		next_proto = spec->hdr.proto;
2095 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
2096 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2097 			return rte_flow_error_set(error, EINVAL,
2098 						  RTE_FLOW_ERROR_TYPE_ITEM,
2099 						  item,
2100 						  "multiple tunnel "
2101 						  "not supported");
2102 	}
2103 	if (next_proto == IPPROTO_HOPOPTS  ||
2104 	    next_proto == IPPROTO_ROUTING  ||
2105 	    next_proto == IPPROTO_FRAGMENT ||
2106 	    next_proto == IPPROTO_ESP	   ||
2107 	    next_proto == IPPROTO_AH	   ||
2108 	    next_proto == IPPROTO_DSTOPTS)
2109 		return rte_flow_error_set(error, EINVAL,
2110 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2111 					  "IPv6 proto (next header) should "
2112 					  "not be set as extension header");
2113 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
2114 		return rte_flow_error_set(error, EINVAL,
2115 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2116 					  "wrong tunnel type - IPv4 specified "
2117 					  "but IPv6 item provided");
2118 	if (item_flags & l3m)
2119 		return rte_flow_error_set(error, ENOTSUP,
2120 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2121 					  "multiple L3 layers not supported");
2122 	else if (item_flags & l4m)
2123 		return rte_flow_error_set(error, EINVAL,
2124 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2125 					  "L3 cannot follow an L4 layer.");
2126 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2127 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2128 		return rte_flow_error_set(error, EINVAL,
2129 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2130 					  "L3 cannot follow an NVGRE layer.");
2131 	if (!mask)
2132 		mask = &rte_flow_item_ipv6_mask;
2133 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2134 					acc_mask ? (const uint8_t *)acc_mask
2135 						 : (const uint8_t *)&nic_mask,
2136 					sizeof(struct rte_flow_item_ipv6),
2137 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2138 	if (ret < 0)
2139 		return ret;
2140 	return 0;
2141 }
2142 
2143 /**
2144  * Validate UDP item.
2145  *
2146  * @param[in] item
2147  *   Item specification.
2148  * @param[in] item_flags
2149  *   Bit-fields that holds the items detected until now.
2150  * @param[in] target_protocol
2151  *   The next protocol in the previous item.
2152  * @param[in] flow_mask
2153  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2154  * @param[out] error
2155  *   Pointer to error structure.
2156  *
2157  * @return
2158  *   0 on success, a negative errno value otherwise and rte_errno is set.
2159  */
2160 int
2161 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2162 			    uint64_t item_flags,
2163 			    uint8_t target_protocol,
2164 			    struct rte_flow_error *error)
2165 {
2166 	const struct rte_flow_item_udp *mask = item->mask;
2167 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2168 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2169 				      MLX5_FLOW_LAYER_OUTER_L3;
2170 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2171 				      MLX5_FLOW_LAYER_OUTER_L4;
2172 	int ret;
2173 
2174 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2175 		return rte_flow_error_set(error, EINVAL,
2176 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2177 					  "protocol filtering not compatible"
2178 					  " with UDP layer");
2179 	if (!(item_flags & l3m))
2180 		return rte_flow_error_set(error, EINVAL,
2181 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2182 					  "L3 is mandatory to filter on L4");
2183 	if (item_flags & l4m)
2184 		return rte_flow_error_set(error, EINVAL,
2185 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2186 					  "multiple L4 layers not supported");
2187 	if (!mask)
2188 		mask = &rte_flow_item_udp_mask;
2189 	ret = mlx5_flow_item_acceptable
2190 		(item, (const uint8_t *)mask,
2191 		 (const uint8_t *)&rte_flow_item_udp_mask,
2192 		 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2193 		 error);
2194 	if (ret < 0)
2195 		return ret;
2196 	return 0;
2197 }
2198 
2199 /**
2200  * Validate TCP item.
2201  *
2202  * @param[in] item
2203  *   Item specification.
2204  * @param[in] item_flags
2205  *   Bit-fields that holds the items detected until now.
2206  * @param[in] target_protocol
2207  *   The next protocol in the previous item.
2208  * @param[out] error
2209  *   Pointer to error structure.
2210  *
2211  * @return
2212  *   0 on success, a negative errno value otherwise and rte_errno is set.
2213  */
2214 int
2215 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2216 			    uint64_t item_flags,
2217 			    uint8_t target_protocol,
2218 			    const struct rte_flow_item_tcp *flow_mask,
2219 			    struct rte_flow_error *error)
2220 {
2221 	const struct rte_flow_item_tcp *mask = item->mask;
2222 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2223 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2224 				      MLX5_FLOW_LAYER_OUTER_L3;
2225 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2226 				      MLX5_FLOW_LAYER_OUTER_L4;
2227 	int ret;
2228 
2229 	MLX5_ASSERT(flow_mask);
2230 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2231 		return rte_flow_error_set(error, EINVAL,
2232 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2233 					  "protocol filtering not compatible"
2234 					  " with TCP layer");
2235 	if (!(item_flags & l3m))
2236 		return rte_flow_error_set(error, EINVAL,
2237 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2238 					  "L3 is mandatory to filter on L4");
2239 	if (item_flags & l4m)
2240 		return rte_flow_error_set(error, EINVAL,
2241 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2242 					  "multiple L4 layers not supported");
2243 	if (!mask)
2244 		mask = &rte_flow_item_tcp_mask;
2245 	ret = mlx5_flow_item_acceptable
2246 		(item, (const uint8_t *)mask,
2247 		 (const uint8_t *)flow_mask,
2248 		 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2249 		 error);
2250 	if (ret < 0)
2251 		return ret;
2252 	return 0;
2253 }
2254 
2255 /**
2256  * Validate VXLAN item.
2257  *
2258  * @param[in] item
2259  *   Item specification.
2260  * @param[in] item_flags
2261  *   Bit-fields that holds the items detected until now.
2262  * @param[in] target_protocol
2263  *   The next protocol in the previous item.
2264  * @param[out] error
2265  *   Pointer to error structure.
2266  *
2267  * @return
2268  *   0 on success, a negative errno value otherwise and rte_errno is set.
2269  */
2270 int
2271 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
2272 			      uint64_t item_flags,
2273 			      struct rte_flow_error *error)
2274 {
2275 	const struct rte_flow_item_vxlan *spec = item->spec;
2276 	const struct rte_flow_item_vxlan *mask = item->mask;
2277 	int ret;
2278 	union vni {
2279 		uint32_t vlan_id;
2280 		uint8_t vni[4];
2281 	} id = { .vlan_id = 0, };
2282 
2283 
2284 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2285 		return rte_flow_error_set(error, ENOTSUP,
2286 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2287 					  "multiple tunnel layers not"
2288 					  " supported");
2289 	/*
2290 	 * Verify only UDPv4 is present as defined in
2291 	 * https://tools.ietf.org/html/rfc7348
2292 	 */
2293 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2294 		return rte_flow_error_set(error, EINVAL,
2295 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2296 					  "no outer UDP layer found");
2297 	if (!mask)
2298 		mask = &rte_flow_item_vxlan_mask;
2299 	ret = mlx5_flow_item_acceptable
2300 		(item, (const uint8_t *)mask,
2301 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
2302 		 sizeof(struct rte_flow_item_vxlan),
2303 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2304 	if (ret < 0)
2305 		return ret;
2306 	if (spec) {
2307 		memcpy(&id.vni[1], spec->vni, 3);
2308 		memcpy(&id.vni[1], mask->vni, 3);
2309 	}
2310 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2311 		return rte_flow_error_set(error, ENOTSUP,
2312 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2313 					  "VXLAN tunnel must be fully defined");
2314 	return 0;
2315 }
2316 
2317 /**
2318  * Validate VXLAN_GPE item.
2319  *
2320  * @param[in] item
2321  *   Item specification.
2322  * @param[in] item_flags
2323  *   Bit-fields that holds the items detected until now.
2324  * @param[in] priv
2325  *   Pointer to the private data structure.
2326  * @param[in] target_protocol
2327  *   The next protocol in the previous item.
2328  * @param[out] error
2329  *   Pointer to error structure.
2330  *
2331  * @return
2332  *   0 on success, a negative errno value otherwise and rte_errno is set.
2333  */
2334 int
2335 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2336 				  uint64_t item_flags,
2337 				  struct rte_eth_dev *dev,
2338 				  struct rte_flow_error *error)
2339 {
2340 	struct mlx5_priv *priv = dev->data->dev_private;
2341 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2342 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2343 	int ret;
2344 	union vni {
2345 		uint32_t vlan_id;
2346 		uint8_t vni[4];
2347 	} id = { .vlan_id = 0, };
2348 
2349 	if (!priv->config.l3_vxlan_en)
2350 		return rte_flow_error_set(error, ENOTSUP,
2351 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2352 					  "L3 VXLAN is not enabled by device"
2353 					  " parameter and/or not configured in"
2354 					  " firmware");
2355 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2356 		return rte_flow_error_set(error, ENOTSUP,
2357 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2358 					  "multiple tunnel layers not"
2359 					  " supported");
2360 	/*
2361 	 * Verify only UDPv4 is present as defined in
2362 	 * https://tools.ietf.org/html/rfc7348
2363 	 */
2364 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2365 		return rte_flow_error_set(error, EINVAL,
2366 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2367 					  "no outer UDP layer found");
2368 	if (!mask)
2369 		mask = &rte_flow_item_vxlan_gpe_mask;
2370 	ret = mlx5_flow_item_acceptable
2371 		(item, (const uint8_t *)mask,
2372 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2373 		 sizeof(struct rte_flow_item_vxlan_gpe),
2374 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2375 	if (ret < 0)
2376 		return ret;
2377 	if (spec) {
2378 		if (spec->protocol)
2379 			return rte_flow_error_set(error, ENOTSUP,
2380 						  RTE_FLOW_ERROR_TYPE_ITEM,
2381 						  item,
2382 						  "VxLAN-GPE protocol"
2383 						  " not supported");
2384 		memcpy(&id.vni[1], spec->vni, 3);
2385 		memcpy(&id.vni[1], mask->vni, 3);
2386 	}
2387 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2388 		return rte_flow_error_set(error, ENOTSUP,
2389 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2390 					  "VXLAN-GPE tunnel must be fully"
2391 					  " defined");
2392 	return 0;
2393 }
2394 /**
2395  * Validate GRE Key item.
2396  *
2397  * @param[in] item
2398  *   Item specification.
2399  * @param[in] item_flags
2400  *   Bit flags to mark detected items.
2401  * @param[in] gre_item
2402  *   Pointer to gre_item
2403  * @param[out] error
2404  *   Pointer to error structure.
2405  *
2406  * @return
2407  *   0 on success, a negative errno value otherwise and rte_errno is set.
2408  */
2409 int
2410 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2411 				uint64_t item_flags,
2412 				const struct rte_flow_item *gre_item,
2413 				struct rte_flow_error *error)
2414 {
2415 	const rte_be32_t *mask = item->mask;
2416 	int ret = 0;
2417 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2418 	const struct rte_flow_item_gre *gre_spec;
2419 	const struct rte_flow_item_gre *gre_mask;
2420 
2421 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2422 		return rte_flow_error_set(error, ENOTSUP,
2423 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2424 					  "Multiple GRE key not support");
2425 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2426 		return rte_flow_error_set(error, ENOTSUP,
2427 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2428 					  "No preceding GRE header");
2429 	if (item_flags & MLX5_FLOW_LAYER_INNER)
2430 		return rte_flow_error_set(error, ENOTSUP,
2431 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2432 					  "GRE key following a wrong item");
2433 	gre_mask = gre_item->mask;
2434 	if (!gre_mask)
2435 		gre_mask = &rte_flow_item_gre_mask;
2436 	gre_spec = gre_item->spec;
2437 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2438 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2439 		return rte_flow_error_set(error, EINVAL,
2440 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2441 					  "Key bit must be on");
2442 
2443 	if (!mask)
2444 		mask = &gre_key_default_mask;
2445 	ret = mlx5_flow_item_acceptable
2446 		(item, (const uint8_t *)mask,
2447 		 (const uint8_t *)&gre_key_default_mask,
2448 		 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2449 	return ret;
2450 }
2451 
2452 /**
2453  * Validate GRE item.
2454  *
2455  * @param[in] item
2456  *   Item specification.
2457  * @param[in] item_flags
2458  *   Bit flags to mark detected items.
2459  * @param[in] target_protocol
2460  *   The next protocol in the previous item.
2461  * @param[out] error
2462  *   Pointer to error structure.
2463  *
2464  * @return
2465  *   0 on success, a negative errno value otherwise and rte_errno is set.
2466  */
2467 int
2468 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
2469 			    uint64_t item_flags,
2470 			    uint8_t target_protocol,
2471 			    struct rte_flow_error *error)
2472 {
2473 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
2474 	const struct rte_flow_item_gre *mask = item->mask;
2475 	int ret;
2476 	const struct rte_flow_item_gre nic_mask = {
2477 		.c_rsvd0_ver = RTE_BE16(0xB000),
2478 		.protocol = RTE_BE16(UINT16_MAX),
2479 	};
2480 
2481 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2482 		return rte_flow_error_set(error, EINVAL,
2483 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2484 					  "protocol filtering not compatible"
2485 					  " with this GRE layer");
2486 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2487 		return rte_flow_error_set(error, ENOTSUP,
2488 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2489 					  "multiple tunnel layers not"
2490 					  " supported");
2491 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2492 		return rte_flow_error_set(error, ENOTSUP,
2493 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2494 					  "L3 Layer is missing");
2495 	if (!mask)
2496 		mask = &rte_flow_item_gre_mask;
2497 	ret = mlx5_flow_item_acceptable
2498 		(item, (const uint8_t *)mask,
2499 		 (const uint8_t *)&nic_mask,
2500 		 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2501 		 error);
2502 	if (ret < 0)
2503 		return ret;
2504 #ifndef HAVE_MLX5DV_DR
2505 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
2506 	if (spec && (spec->protocol & mask->protocol))
2507 		return rte_flow_error_set(error, ENOTSUP,
2508 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2509 					  "without MPLS support the"
2510 					  " specification cannot be used for"
2511 					  " filtering");
2512 #endif
2513 #endif
2514 	return 0;
2515 }
2516 
2517 /**
2518  * Validate Geneve item.
2519  *
2520  * @param[in] item
2521  *   Item specification.
2522  * @param[in] itemFlags
2523  *   Bit-fields that holds the items detected until now.
2524  * @param[in] enPriv
2525  *   Pointer to the private data structure.
2526  * @param[out] error
2527  *   Pointer to error structure.
2528  *
2529  * @return
2530  *   0 on success, a negative errno value otherwise and rte_errno is set.
2531  */
2532 
2533 int
2534 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
2535 			       uint64_t item_flags,
2536 			       struct rte_eth_dev *dev,
2537 			       struct rte_flow_error *error)
2538 {
2539 	struct mlx5_priv *priv = dev->data->dev_private;
2540 	const struct rte_flow_item_geneve *spec = item->spec;
2541 	const struct rte_flow_item_geneve *mask = item->mask;
2542 	int ret;
2543 	uint16_t gbhdr;
2544 	uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2545 			  MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2546 	const struct rte_flow_item_geneve nic_mask = {
2547 		.ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2548 		.vni = "\xff\xff\xff",
2549 		.protocol = RTE_BE16(UINT16_MAX),
2550 	};
2551 
2552 	if (!priv->config.hca_attr.tunnel_stateless_geneve_rx)
2553 		return rte_flow_error_set(error, ENOTSUP,
2554 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2555 					  "L3 Geneve is not enabled by device"
2556 					  " parameter and/or not configured in"
2557 					  " firmware");
2558 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2559 		return rte_flow_error_set(error, ENOTSUP,
2560 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2561 					  "multiple tunnel layers not"
2562 					  " supported");
2563 	/*
2564 	 * Verify only UDPv4 is present as defined in
2565 	 * https://tools.ietf.org/html/rfc7348
2566 	 */
2567 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2568 		return rte_flow_error_set(error, EINVAL,
2569 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2570 					  "no outer UDP layer found");
2571 	if (!mask)
2572 		mask = &rte_flow_item_geneve_mask;
2573 	ret = mlx5_flow_item_acceptable
2574 				  (item, (const uint8_t *)mask,
2575 				   (const uint8_t *)&nic_mask,
2576 				   sizeof(struct rte_flow_item_geneve),
2577 				   MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2578 	if (ret)
2579 		return ret;
2580 	if (spec) {
2581 		gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2582 		if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2583 		     MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2584 		     MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2585 			return rte_flow_error_set(error, ENOTSUP,
2586 						  RTE_FLOW_ERROR_TYPE_ITEM,
2587 						  item,
2588 						  "Geneve protocol unsupported"
2589 						  " fields are being used");
2590 		if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2591 			return rte_flow_error_set
2592 					(error, ENOTSUP,
2593 					 RTE_FLOW_ERROR_TYPE_ITEM,
2594 					 item,
2595 					 "Unsupported Geneve options length");
2596 	}
2597 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2598 		return rte_flow_error_set
2599 				    (error, ENOTSUP,
2600 				     RTE_FLOW_ERROR_TYPE_ITEM, item,
2601 				     "Geneve tunnel must be fully defined");
2602 	return 0;
2603 }
2604 
2605 /**
2606  * Validate MPLS item.
2607  *
2608  * @param[in] dev
2609  *   Pointer to the rte_eth_dev structure.
2610  * @param[in] item
2611  *   Item specification.
2612  * @param[in] item_flags
2613  *   Bit-fields that holds the items detected until now.
2614  * @param[in] prev_layer
2615  *   The protocol layer indicated in previous item.
2616  * @param[out] error
2617  *   Pointer to error structure.
2618  *
2619  * @return
2620  *   0 on success, a negative errno value otherwise and rte_errno is set.
2621  */
2622 int
2623 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2624 			     const struct rte_flow_item *item __rte_unused,
2625 			     uint64_t item_flags __rte_unused,
2626 			     uint64_t prev_layer __rte_unused,
2627 			     struct rte_flow_error *error)
2628 {
2629 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2630 	const struct rte_flow_item_mpls *mask = item->mask;
2631 	struct mlx5_priv *priv = dev->data->dev_private;
2632 	int ret;
2633 
2634 	if (!priv->config.mpls_en)
2635 		return rte_flow_error_set(error, ENOTSUP,
2636 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2637 					  "MPLS not supported or"
2638 					  " disabled in firmware"
2639 					  " configuration.");
2640 	/* MPLS over IP, UDP, GRE is allowed */
2641 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2642 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
2643 			    MLX5_FLOW_LAYER_GRE |
2644 			    MLX5_FLOW_LAYER_GRE_KEY)))
2645 		return rte_flow_error_set(error, EINVAL,
2646 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2647 					  "protocol filtering not compatible"
2648 					  " with MPLS layer");
2649 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2650 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2651 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
2652 		return rte_flow_error_set(error, ENOTSUP,
2653 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2654 					  "multiple tunnel layers not"
2655 					  " supported");
2656 	if (!mask)
2657 		mask = &rte_flow_item_mpls_mask;
2658 	ret = mlx5_flow_item_acceptable
2659 		(item, (const uint8_t *)mask,
2660 		 (const uint8_t *)&rte_flow_item_mpls_mask,
2661 		 sizeof(struct rte_flow_item_mpls),
2662 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2663 	if (ret < 0)
2664 		return ret;
2665 	return 0;
2666 #else
2667 	return rte_flow_error_set(error, ENOTSUP,
2668 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
2669 				  "MPLS is not supported by Verbs, please"
2670 				  " update.");
2671 #endif
2672 }
2673 
2674 /**
2675  * Validate NVGRE item.
2676  *
2677  * @param[in] item
2678  *   Item specification.
2679  * @param[in] item_flags
2680  *   Bit flags to mark detected items.
2681  * @param[in] target_protocol
2682  *   The next protocol in the previous item.
2683  * @param[out] error
2684  *   Pointer to error structure.
2685  *
2686  * @return
2687  *   0 on success, a negative errno value otherwise and rte_errno is set.
2688  */
2689 int
2690 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2691 			      uint64_t item_flags,
2692 			      uint8_t target_protocol,
2693 			      struct rte_flow_error *error)
2694 {
2695 	const struct rte_flow_item_nvgre *mask = item->mask;
2696 	int ret;
2697 
2698 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2699 		return rte_flow_error_set(error, EINVAL,
2700 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2701 					  "protocol filtering not compatible"
2702 					  " with this GRE layer");
2703 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2704 		return rte_flow_error_set(error, ENOTSUP,
2705 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2706 					  "multiple tunnel layers not"
2707 					  " supported");
2708 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2709 		return rte_flow_error_set(error, ENOTSUP,
2710 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2711 					  "L3 Layer is missing");
2712 	if (!mask)
2713 		mask = &rte_flow_item_nvgre_mask;
2714 	ret = mlx5_flow_item_acceptable
2715 		(item, (const uint8_t *)mask,
2716 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
2717 		 sizeof(struct rte_flow_item_nvgre),
2718 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2719 	if (ret < 0)
2720 		return ret;
2721 	return 0;
2722 }
2723 
2724 /**
2725  * Validate eCPRI item.
2726  *
2727  * @param[in] item
2728  *   Item specification.
2729  * @param[in] item_flags
2730  *   Bit-fields that holds the items detected until now.
2731  * @param[in] last_item
2732  *   Previous validated item in the pattern items.
2733  * @param[in] ether_type
2734  *   Type in the ethernet layer header (including dot1q).
2735  * @param[in] acc_mask
2736  *   Acceptable mask, if NULL default internal default mask
2737  *   will be used to check whether item fields are supported.
2738  * @param[out] error
2739  *   Pointer to error structure.
2740  *
2741  * @return
2742  *   0 on success, a negative errno value otherwise and rte_errno is set.
2743  */
2744 int
2745 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
2746 			      uint64_t item_flags,
2747 			      uint64_t last_item,
2748 			      uint16_t ether_type,
2749 			      const struct rte_flow_item_ecpri *acc_mask,
2750 			      struct rte_flow_error *error)
2751 {
2752 	const struct rte_flow_item_ecpri *mask = item->mask;
2753 	const struct rte_flow_item_ecpri nic_mask = {
2754 		.hdr = {
2755 			.common = {
2756 				.u32 =
2757 				RTE_BE32(((const struct rte_ecpri_common_hdr) {
2758 					.type = 0xFF,
2759 					}).u32),
2760 			},
2761 			.dummy[0] = 0xFFFFFFFF,
2762 		},
2763 	};
2764 	const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
2765 					MLX5_FLOW_LAYER_OUTER_VLAN);
2766 	struct rte_flow_item_ecpri mask_lo;
2767 
2768 	if (!(last_item & outer_l2_vlan) &&
2769 	    last_item != MLX5_FLOW_LAYER_OUTER_L4_UDP)
2770 		return rte_flow_error_set(error, EINVAL,
2771 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2772 					  "eCPRI can only follow L2/VLAN layer or UDP layer");
2773 	if ((last_item & outer_l2_vlan) && ether_type &&
2774 	    ether_type != RTE_ETHER_TYPE_ECPRI)
2775 		return rte_flow_error_set(error, EINVAL,
2776 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2777 					  "eCPRI cannot follow L2/VLAN layer which ether type is not 0xAEFE");
2778 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2779 		return rte_flow_error_set(error, EINVAL,
2780 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2781 					  "eCPRI with tunnel is not supported right now");
2782 	if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
2783 		return rte_flow_error_set(error, ENOTSUP,
2784 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2785 					  "multiple L3 layers not supported");
2786 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
2787 		return rte_flow_error_set(error, EINVAL,
2788 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2789 					  "eCPRI cannot coexist with a TCP layer");
2790 	/* In specification, eCPRI could be over UDP layer. */
2791 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
2792 		return rte_flow_error_set(error, EINVAL,
2793 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2794 					  "eCPRI over UDP layer is not yet supported right now");
2795 	/* Mask for type field in common header could be zero. */
2796 	if (!mask)
2797 		mask = &rte_flow_item_ecpri_mask;
2798 	mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
2799 	/* Input mask is in big-endian format. */
2800 	if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
2801 		return rte_flow_error_set(error, EINVAL,
2802 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2803 					  "partial mask is not supported for protocol");
2804 	else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
2805 		return rte_flow_error_set(error, EINVAL,
2806 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2807 					  "message header mask must be after a type mask");
2808 	return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2809 					 acc_mask ? (const uint8_t *)acc_mask
2810 						  : (const uint8_t *)&nic_mask,
2811 					 sizeof(struct rte_flow_item_ecpri),
2812 					 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2813 }
2814 
2815 /**
2816  * Release resource related QUEUE/RSS action split.
2817  *
2818  * @param dev
2819  *   Pointer to Ethernet device.
2820  * @param flow
2821  *   Flow to release id's from.
2822  */
2823 static void
2824 flow_mreg_split_qrss_release(struct rte_eth_dev *dev,
2825 			     struct rte_flow *flow)
2826 {
2827 	struct mlx5_priv *priv = dev->data->dev_private;
2828 	uint32_t handle_idx;
2829 	struct mlx5_flow_handle *dev_handle;
2830 
2831 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
2832 		       handle_idx, dev_handle, next)
2833 		if (dev_handle->split_flow_id)
2834 			mlx5_ipool_free(priv->sh->ipool
2835 					[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
2836 					dev_handle->split_flow_id);
2837 }
2838 
2839 static int
2840 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2841 		   const struct rte_flow_attr *attr __rte_unused,
2842 		   const struct rte_flow_item items[] __rte_unused,
2843 		   const struct rte_flow_action actions[] __rte_unused,
2844 		   bool external __rte_unused,
2845 		   int hairpin __rte_unused,
2846 		   struct rte_flow_error *error)
2847 {
2848 	return rte_flow_error_set(error, ENOTSUP,
2849 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2850 }
2851 
2852 static struct mlx5_flow *
2853 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
2854 		  const struct rte_flow_attr *attr __rte_unused,
2855 		  const struct rte_flow_item items[] __rte_unused,
2856 		  const struct rte_flow_action actions[] __rte_unused,
2857 		  struct rte_flow_error *error)
2858 {
2859 	rte_flow_error_set(error, ENOTSUP,
2860 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2861 	return NULL;
2862 }
2863 
2864 static int
2865 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2866 		    struct mlx5_flow *dev_flow __rte_unused,
2867 		    const struct rte_flow_attr *attr __rte_unused,
2868 		    const struct rte_flow_item items[] __rte_unused,
2869 		    const struct rte_flow_action actions[] __rte_unused,
2870 		    struct rte_flow_error *error)
2871 {
2872 	return rte_flow_error_set(error, ENOTSUP,
2873 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2874 }
2875 
2876 static int
2877 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2878 		struct rte_flow *flow __rte_unused,
2879 		struct rte_flow_error *error)
2880 {
2881 	return rte_flow_error_set(error, ENOTSUP,
2882 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2883 }
2884 
2885 static void
2886 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2887 		 struct rte_flow *flow __rte_unused)
2888 {
2889 }
2890 
2891 static void
2892 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2893 		  struct rte_flow *flow __rte_unused)
2894 {
2895 }
2896 
2897 static int
2898 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2899 		struct rte_flow *flow __rte_unused,
2900 		const struct rte_flow_action *actions __rte_unused,
2901 		void *data __rte_unused,
2902 		struct rte_flow_error *error)
2903 {
2904 	return rte_flow_error_set(error, ENOTSUP,
2905 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2906 }
2907 
2908 static int
2909 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused,
2910 		      uint32_t domains __rte_unused,
2911 		      uint32_t flags __rte_unused)
2912 {
2913 	return 0;
2914 }
2915 
2916 /* Void driver to protect from null pointer reference. */
2917 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2918 	.validate = flow_null_validate,
2919 	.prepare = flow_null_prepare,
2920 	.translate = flow_null_translate,
2921 	.apply = flow_null_apply,
2922 	.remove = flow_null_remove,
2923 	.destroy = flow_null_destroy,
2924 	.query = flow_null_query,
2925 	.sync_domain = flow_null_sync_domain,
2926 };
2927 
2928 /**
2929  * Select flow driver type according to flow attributes and device
2930  * configuration.
2931  *
2932  * @param[in] dev
2933  *   Pointer to the dev structure.
2934  * @param[in] attr
2935  *   Pointer to the flow attributes.
2936  *
2937  * @return
2938  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2939  */
2940 static enum mlx5_flow_drv_type
2941 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2942 {
2943 	struct mlx5_priv *priv = dev->data->dev_private;
2944 	/* The OS can determine first a specific flow type (DV, VERBS) */
2945 	enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
2946 
2947 	if (type != MLX5_FLOW_TYPE_MAX)
2948 		return type;
2949 	/* If no OS specific type - continue with DV/VERBS selection */
2950 	if (attr->transfer && priv->config.dv_esw_en)
2951 		type = MLX5_FLOW_TYPE_DV;
2952 	if (!attr->transfer)
2953 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2954 						 MLX5_FLOW_TYPE_VERBS;
2955 	return type;
2956 }
2957 
2958 #define flow_get_drv_ops(type) flow_drv_ops[type]
2959 
2960 /**
2961  * Flow driver validation API. This abstracts calling driver specific functions.
2962  * The type of flow driver is determined according to flow attributes.
2963  *
2964  * @param[in] dev
2965  *   Pointer to the dev structure.
2966  * @param[in] attr
2967  *   Pointer to the flow attributes.
2968  * @param[in] items
2969  *   Pointer to the list of items.
2970  * @param[in] actions
2971  *   Pointer to the list of actions.
2972  * @param[in] external
2973  *   This flow rule is created by request external to PMD.
2974  * @param[in] hairpin
2975  *   Number of hairpin TX actions, 0 means classic flow.
2976  * @param[out] error
2977  *   Pointer to the error structure.
2978  *
2979  * @return
2980  *   0 on success, a negative errno value otherwise and rte_errno is set.
2981  */
2982 static inline int
2983 flow_drv_validate(struct rte_eth_dev *dev,
2984 		  const struct rte_flow_attr *attr,
2985 		  const struct rte_flow_item items[],
2986 		  const struct rte_flow_action actions[],
2987 		  bool external, int hairpin, struct rte_flow_error *error)
2988 {
2989 	const struct mlx5_flow_driver_ops *fops;
2990 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2991 
2992 	fops = flow_get_drv_ops(type);
2993 	return fops->validate(dev, attr, items, actions, external,
2994 			      hairpin, error);
2995 }
2996 
2997 /**
2998  * Flow driver preparation API. This abstracts calling driver specific
2999  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3000  * calculates the size of memory required for device flow, allocates the memory,
3001  * initializes the device flow and returns the pointer.
3002  *
3003  * @note
3004  *   This function initializes device flow structure such as dv or verbs in
3005  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
3006  *   rest. For example, adding returning device flow to flow->dev_flow list and
3007  *   setting backward reference to the flow should be done out of this function.
3008  *   layers field is not filled either.
3009  *
3010  * @param[in] dev
3011  *   Pointer to the dev structure.
3012  * @param[in] attr
3013  *   Pointer to the flow attributes.
3014  * @param[in] items
3015  *   Pointer to the list of items.
3016  * @param[in] actions
3017  *   Pointer to the list of actions.
3018  * @param[in] flow_idx
3019  *   This memory pool index to the flow.
3020  * @param[out] error
3021  *   Pointer to the error structure.
3022  *
3023  * @return
3024  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
3025  */
3026 static inline struct mlx5_flow *
3027 flow_drv_prepare(struct rte_eth_dev *dev,
3028 		 const struct rte_flow *flow,
3029 		 const struct rte_flow_attr *attr,
3030 		 const struct rte_flow_item items[],
3031 		 const struct rte_flow_action actions[],
3032 		 uint32_t flow_idx,
3033 		 struct rte_flow_error *error)
3034 {
3035 	const struct mlx5_flow_driver_ops *fops;
3036 	enum mlx5_flow_drv_type type = flow->drv_type;
3037 	struct mlx5_flow *mlx5_flow = NULL;
3038 
3039 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3040 	fops = flow_get_drv_ops(type);
3041 	mlx5_flow = fops->prepare(dev, attr, items, actions, error);
3042 	if (mlx5_flow)
3043 		mlx5_flow->flow_idx = flow_idx;
3044 	return mlx5_flow;
3045 }
3046 
3047 /**
3048  * Flow driver translation API. This abstracts calling driver specific
3049  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3050  * translates a generic flow into a driver flow. flow_drv_prepare() must
3051  * precede.
3052  *
3053  * @note
3054  *   dev_flow->layers could be filled as a result of parsing during translation
3055  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
3056  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
3057  *   flow->actions could be overwritten even though all the expanded dev_flows
3058  *   have the same actions.
3059  *
3060  * @param[in] dev
3061  *   Pointer to the rte dev structure.
3062  * @param[in, out] dev_flow
3063  *   Pointer to the mlx5 flow.
3064  * @param[in] attr
3065  *   Pointer to the flow attributes.
3066  * @param[in] items
3067  *   Pointer to the list of items.
3068  * @param[in] actions
3069  *   Pointer to the list of actions.
3070  * @param[out] error
3071  *   Pointer to the error structure.
3072  *
3073  * @return
3074  *   0 on success, a negative errno value otherwise and rte_errno is set.
3075  */
3076 static inline int
3077 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
3078 		   const struct rte_flow_attr *attr,
3079 		   const struct rte_flow_item items[],
3080 		   const struct rte_flow_action actions[],
3081 		   struct rte_flow_error *error)
3082 {
3083 	const struct mlx5_flow_driver_ops *fops;
3084 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
3085 
3086 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3087 	fops = flow_get_drv_ops(type);
3088 	return fops->translate(dev, dev_flow, attr, items, actions, error);
3089 }
3090 
3091 /**
3092  * Flow driver apply API. This abstracts calling driver specific functions.
3093  * Parent flow (rte_flow) should have driver type (drv_type). It applies
3094  * translated driver flows on to device. flow_drv_translate() must precede.
3095  *
3096  * @param[in] dev
3097  *   Pointer to Ethernet device structure.
3098  * @param[in, out] flow
3099  *   Pointer to flow structure.
3100  * @param[out] error
3101  *   Pointer to error structure.
3102  *
3103  * @return
3104  *   0 on success, a negative errno value otherwise and rte_errno is set.
3105  */
3106 static inline int
3107 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
3108 	       struct rte_flow_error *error)
3109 {
3110 	const struct mlx5_flow_driver_ops *fops;
3111 	enum mlx5_flow_drv_type type = flow->drv_type;
3112 
3113 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3114 	fops = flow_get_drv_ops(type);
3115 	return fops->apply(dev, flow, error);
3116 }
3117 
3118 /**
3119  * Flow driver destroy API. This abstracts calling driver specific functions.
3120  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3121  * on device and releases resources of the flow.
3122  *
3123  * @param[in] dev
3124  *   Pointer to Ethernet device.
3125  * @param[in, out] flow
3126  *   Pointer to flow structure.
3127  */
3128 static inline void
3129 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3130 {
3131 	const struct mlx5_flow_driver_ops *fops;
3132 	enum mlx5_flow_drv_type type = flow->drv_type;
3133 
3134 	flow_mreg_split_qrss_release(dev, flow);
3135 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3136 	fops = flow_get_drv_ops(type);
3137 	fops->destroy(dev, flow);
3138 }
3139 
3140 /**
3141  * Get RSS action from the action list.
3142  *
3143  * @param[in] actions
3144  *   Pointer to the list of actions.
3145  *
3146  * @return
3147  *   Pointer to the RSS action if exist, else return NULL.
3148  */
3149 static const struct rte_flow_action_rss*
3150 flow_get_rss_action(const struct rte_flow_action actions[])
3151 {
3152 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3153 		switch (actions->type) {
3154 		case RTE_FLOW_ACTION_TYPE_RSS:
3155 			return (const struct rte_flow_action_rss *)
3156 			       actions->conf;
3157 		default:
3158 			break;
3159 		}
3160 	}
3161 	return NULL;
3162 }
3163 
3164 /**
3165  * Get ASO age action by index.
3166  *
3167  * @param[in] dev
3168  *   Pointer to the Ethernet device structure.
3169  * @param[in] age_idx
3170  *   Index to the ASO age action.
3171  *
3172  * @return
3173  *   The specified ASO age action.
3174  */
3175 struct mlx5_aso_age_action*
3176 flow_aso_age_get_by_idx(struct rte_eth_dev *dev, uint32_t age_idx)
3177 {
3178 	uint16_t pool_idx = age_idx & UINT16_MAX;
3179 	uint16_t offset = (age_idx >> 16) & UINT16_MAX;
3180 	struct mlx5_priv *priv = dev->data->dev_private;
3181 	struct mlx5_aso_age_mng *mng = priv->sh->aso_age_mng;
3182 	struct mlx5_aso_age_pool *pool = mng->pools[pool_idx];
3183 
3184 	return &pool->actions[offset - 1];
3185 }
3186 
3187 /* maps shared action to translated non shared in some actions array */
3188 struct mlx5_translated_shared_action {
3189 	struct rte_flow_shared_action *action; /**< Shared action */
3190 	int index; /**< Index in related array of rte_flow_action */
3191 };
3192 
3193 /**
3194  * Translates actions of type RTE_FLOW_ACTION_TYPE_SHARED to related
3195  * non shared action if translation possible.
3196  * This functionality used to run same execution path for both shared & non
3197  * shared actions on flow create. All necessary preparations for shared
3198  * action handling should be preformed on *shared* actions list returned
3199  * from this call.
3200  *
3201  * @param[in] dev
3202  *   Pointer to Ethernet device.
3203  * @param[in] actions
3204  *   List of actions to translate.
3205  * @param[out] shared
3206  *   List to store translated shared actions.
3207  * @param[in, out] shared_n
3208  *   Size of *shared* array. On return should be updated with number of shared
3209  *   actions retrieved from the *actions* list.
3210  * @param[out] translated_actions
3211  *   List of actions where all shared actions were translated to non shared
3212  *   if possible. NULL if no translation took place.
3213  * @param[out] error
3214  *   Pointer to the error structure.
3215  *
3216  * @return
3217  *   0 on success, a negative errno value otherwise and rte_errno is set.
3218  */
3219 static int
3220 flow_shared_actions_translate(struct rte_eth_dev *dev,
3221 			      const struct rte_flow_action actions[],
3222 			      struct mlx5_translated_shared_action *shared,
3223 			      int *shared_n,
3224 			      struct rte_flow_action **translated_actions,
3225 			      struct rte_flow_error *error)
3226 {
3227 	struct mlx5_priv *priv = dev->data->dev_private;
3228 	struct rte_flow_action *translated = NULL;
3229 	size_t actions_size;
3230 	int n;
3231 	int copied_n = 0;
3232 	struct mlx5_translated_shared_action *shared_end = NULL;
3233 
3234 	for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) {
3235 		if (actions[n].type != RTE_FLOW_ACTION_TYPE_SHARED)
3236 			continue;
3237 		if (copied_n == *shared_n) {
3238 			return rte_flow_error_set
3239 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM,
3240 				 NULL, "too many shared actions");
3241 		}
3242 		rte_memcpy(&shared[copied_n].action, &actions[n].conf,
3243 			   sizeof(actions[n].conf));
3244 		shared[copied_n].index = n;
3245 		copied_n++;
3246 	}
3247 	n++;
3248 	*shared_n = copied_n;
3249 	if (!copied_n)
3250 		return 0;
3251 	actions_size = sizeof(struct rte_flow_action) * n;
3252 	translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY);
3253 	if (!translated) {
3254 		rte_errno = ENOMEM;
3255 		return -ENOMEM;
3256 	}
3257 	memcpy(translated, actions, actions_size);
3258 	for (shared_end = shared + copied_n; shared < shared_end; shared++) {
3259 		struct mlx5_shared_action_rss *shared_rss;
3260 		uint32_t act_idx = (uint32_t)(uintptr_t)shared->action;
3261 		uint32_t type = act_idx >> MLX5_SHARED_ACTION_TYPE_OFFSET;
3262 		uint32_t idx = act_idx & ((1u << MLX5_SHARED_ACTION_TYPE_OFFSET)
3263 									   - 1);
3264 
3265 		switch (type) {
3266 		case MLX5_SHARED_ACTION_TYPE_RSS:
3267 			shared_rss = mlx5_ipool_get
3268 			  (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], idx);
3269 			translated[shared->index].type =
3270 				RTE_FLOW_ACTION_TYPE_RSS;
3271 			translated[shared->index].conf =
3272 				&shared_rss->origin;
3273 			break;
3274 		case MLX5_SHARED_ACTION_TYPE_AGE:
3275 			if (priv->sh->flow_hit_aso_en) {
3276 				translated[shared->index].type =
3277 					(enum rte_flow_action_type)
3278 					MLX5_RTE_FLOW_ACTION_TYPE_AGE;
3279 				translated[shared->index].conf =
3280 							 (void *)(uintptr_t)idx;
3281 				break;
3282 			}
3283 			/* Fall-through */
3284 		default:
3285 			mlx5_free(translated);
3286 			return rte_flow_error_set
3287 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
3288 				 NULL, "invalid shared action type");
3289 		}
3290 	}
3291 	*translated_actions = translated;
3292 	return 0;
3293 }
3294 
3295 /**
3296  * Get Shared RSS action from the action list.
3297  *
3298  * @param[in] dev
3299  *   Pointer to Ethernet device.
3300  * @param[in] shared
3301  *   Pointer to the list of actions.
3302  * @param[in] shared_n
3303  *   Actions list length.
3304  *
3305  * @return
3306  *   The MLX5 RSS action ID if exists, otherwise return 0.
3307  */
3308 static uint32_t
3309 flow_get_shared_rss_action(struct rte_eth_dev *dev,
3310 			   struct mlx5_translated_shared_action *shared,
3311 			   int shared_n)
3312 {
3313 	struct mlx5_translated_shared_action *shared_end;
3314 	struct mlx5_priv *priv = dev->data->dev_private;
3315 	struct mlx5_shared_action_rss *shared_rss;
3316 
3317 
3318 	for (shared_end = shared + shared_n; shared < shared_end; shared++) {
3319 		uint32_t act_idx = (uint32_t)(uintptr_t)shared->action;
3320 		uint32_t type = act_idx >> MLX5_SHARED_ACTION_TYPE_OFFSET;
3321 		uint32_t idx = act_idx &
3322 				   ((1u << MLX5_SHARED_ACTION_TYPE_OFFSET) - 1);
3323 		switch (type) {
3324 		case MLX5_SHARED_ACTION_TYPE_RSS:
3325 			shared_rss = mlx5_ipool_get
3326 				(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
3327 									   idx);
3328 			__atomic_add_fetch(&shared_rss->refcnt, 1,
3329 					   __ATOMIC_RELAXED);
3330 			return idx;
3331 		default:
3332 			break;
3333 		}
3334 	}
3335 	return 0;
3336 }
3337 
3338 static unsigned int
3339 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
3340 {
3341 	const struct rte_flow_item *item;
3342 	unsigned int has_vlan = 0;
3343 
3344 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
3345 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
3346 			has_vlan = 1;
3347 			break;
3348 		}
3349 	}
3350 	if (has_vlan)
3351 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
3352 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
3353 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
3354 			       MLX5_EXPANSION_ROOT_OUTER;
3355 }
3356 
3357 /**
3358  *  Get layer flags from the prefix flow.
3359  *
3360  *  Some flows may be split to several subflows, the prefix subflow gets the
3361  *  match items and the suffix sub flow gets the actions.
3362  *  Some actions need the user defined match item flags to get the detail for
3363  *  the action.
3364  *  This function helps the suffix flow to get the item layer flags from prefix
3365  *  subflow.
3366  *
3367  * @param[in] dev_flow
3368  *   Pointer the created preifx subflow.
3369  *
3370  * @return
3371  *   The layers get from prefix subflow.
3372  */
3373 static inline uint64_t
3374 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
3375 {
3376 	uint64_t layers = 0;
3377 
3378 	/*
3379 	 * Layers bits could be localization, but usually the compiler will
3380 	 * help to do the optimization work for source code.
3381 	 * If no decap actions, use the layers directly.
3382 	 */
3383 	if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
3384 		return dev_flow->handle->layers;
3385 	/* Convert L3 layers with decap action. */
3386 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
3387 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
3388 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
3389 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
3390 	/* Convert L4 layers with decap action.  */
3391 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
3392 		layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
3393 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
3394 		layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
3395 	return layers;
3396 }
3397 
3398 /**
3399  * Get metadata split action information.
3400  *
3401  * @param[in] actions
3402  *   Pointer to the list of actions.
3403  * @param[out] qrss
3404  *   Pointer to the return pointer.
3405  * @param[out] qrss_type
3406  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
3407  *   if no QUEUE/RSS is found.
3408  * @param[out] encap_idx
3409  *   Pointer to the index of the encap action if exists, otherwise the last
3410  *   action index.
3411  *
3412  * @return
3413  *   Total number of actions.
3414  */
3415 static int
3416 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
3417 				       const struct rte_flow_action **qrss,
3418 				       int *encap_idx)
3419 {
3420 	const struct rte_flow_action_raw_encap *raw_encap;
3421 	int actions_n = 0;
3422 	int raw_decap_idx = -1;
3423 
3424 	*encap_idx = -1;
3425 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3426 		switch (actions->type) {
3427 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3428 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3429 			*encap_idx = actions_n;
3430 			break;
3431 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3432 			raw_decap_idx = actions_n;
3433 			break;
3434 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3435 			raw_encap = actions->conf;
3436 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3437 				*encap_idx = raw_decap_idx != -1 ?
3438 						      raw_decap_idx : actions_n;
3439 			break;
3440 		case RTE_FLOW_ACTION_TYPE_QUEUE:
3441 		case RTE_FLOW_ACTION_TYPE_RSS:
3442 			*qrss = actions;
3443 			break;
3444 		default:
3445 			break;
3446 		}
3447 		actions_n++;
3448 	}
3449 	if (*encap_idx == -1)
3450 		*encap_idx = actions_n;
3451 	/* Count RTE_FLOW_ACTION_TYPE_END. */
3452 	return actions_n + 1;
3453 }
3454 
3455 /**
3456  * Check meter action from the action list.
3457  *
3458  * @param[in] actions
3459  *   Pointer to the list of actions.
3460  * @param[out] mtr
3461  *   Pointer to the meter exist flag.
3462  *
3463  * @return
3464  *   Total number of actions.
3465  */
3466 static int
3467 flow_check_meter_action(const struct rte_flow_action actions[], uint32_t *mtr)
3468 {
3469 	int actions_n = 0;
3470 
3471 	MLX5_ASSERT(mtr);
3472 	*mtr = 0;
3473 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3474 		switch (actions->type) {
3475 		case RTE_FLOW_ACTION_TYPE_METER:
3476 			*mtr = 1;
3477 			break;
3478 		default:
3479 			break;
3480 		}
3481 		actions_n++;
3482 	}
3483 	/* Count RTE_FLOW_ACTION_TYPE_END. */
3484 	return actions_n + 1;
3485 }
3486 
3487 /**
3488  * Check if the flow should be split due to hairpin.
3489  * The reason for the split is that in current HW we can't
3490  * support encap and push-vlan on Rx, so if a flow contains
3491  * these actions we move it to Tx.
3492  *
3493  * @param dev
3494  *   Pointer to Ethernet device.
3495  * @param[in] attr
3496  *   Flow rule attributes.
3497  * @param[in] actions
3498  *   Associated actions (list terminated by the END action).
3499  *
3500  * @return
3501  *   > 0 the number of actions and the flow should be split,
3502  *   0 when no split required.
3503  */
3504 static int
3505 flow_check_hairpin_split(struct rte_eth_dev *dev,
3506 			 const struct rte_flow_attr *attr,
3507 			 const struct rte_flow_action actions[])
3508 {
3509 	int queue_action = 0;
3510 	int action_n = 0;
3511 	int split = 0;
3512 	const struct rte_flow_action_queue *queue;
3513 	const struct rte_flow_action_rss *rss;
3514 	const struct rte_flow_action_raw_encap *raw_encap;
3515 	const struct rte_eth_hairpin_conf *conf;
3516 
3517 	if (!attr->ingress)
3518 		return 0;
3519 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3520 		switch (actions->type) {
3521 		case RTE_FLOW_ACTION_TYPE_QUEUE:
3522 			queue = actions->conf;
3523 			if (queue == NULL)
3524 				return 0;
3525 			conf = mlx5_rxq_get_hairpin_conf(dev, queue->index);
3526 			if (conf != NULL && !!conf->tx_explicit)
3527 				return 0;
3528 			queue_action = 1;
3529 			action_n++;
3530 			break;
3531 		case RTE_FLOW_ACTION_TYPE_RSS:
3532 			rss = actions->conf;
3533 			if (rss == NULL || rss->queue_num == 0)
3534 				return 0;
3535 			conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]);
3536 			if (conf != NULL && !!conf->tx_explicit)
3537 				return 0;
3538 			queue_action = 1;
3539 			action_n++;
3540 			break;
3541 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3542 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3543 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3544 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3545 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3546 			split++;
3547 			action_n++;
3548 			break;
3549 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3550 			raw_encap = actions->conf;
3551 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3552 				split++;
3553 			action_n++;
3554 			break;
3555 		default:
3556 			action_n++;
3557 			break;
3558 		}
3559 	}
3560 	if (split && queue_action)
3561 		return action_n;
3562 	return 0;
3563 }
3564 
3565 /* Declare flow create/destroy prototype in advance. */
3566 static uint32_t
3567 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
3568 		 const struct rte_flow_attr *attr,
3569 		 const struct rte_flow_item items[],
3570 		 const struct rte_flow_action actions[],
3571 		 bool external, struct rte_flow_error *error);
3572 
3573 static void
3574 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
3575 		  uint32_t flow_idx);
3576 
3577 struct mlx5_hlist_entry *
3578 flow_dv_mreg_create_cb(struct mlx5_hlist *list, uint64_t key,
3579 		       void *cb_ctx)
3580 {
3581 	struct rte_eth_dev *dev = list->ctx;
3582 	struct mlx5_priv *priv = dev->data->dev_private;
3583 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
3584 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3585 	struct rte_flow_error *error = ctx->error;
3586 	uint32_t idx = 0;
3587 	int ret;
3588 	uint32_t mark_id = key;
3589 	struct rte_flow_attr attr = {
3590 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
3591 		.ingress = 1,
3592 	};
3593 	struct mlx5_rte_flow_item_tag tag_spec = {
3594 		.data = mark_id,
3595 	};
3596 	struct rte_flow_item items[] = {
3597 		[1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
3598 	};
3599 	struct rte_flow_action_mark ftag = {
3600 		.id = mark_id,
3601 	};
3602 	struct mlx5_flow_action_copy_mreg cp_mreg = {
3603 		.dst = REG_B,
3604 		.src = REG_NON,
3605 	};
3606 	struct rte_flow_action_jump jump = {
3607 		.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
3608 	};
3609 	struct rte_flow_action actions[] = {
3610 		[3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
3611 	};
3612 
3613 	/* Fill the register fileds in the flow. */
3614 	ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
3615 	if (ret < 0)
3616 		return NULL;
3617 	tag_spec.id = ret;
3618 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
3619 	if (ret < 0)
3620 		return NULL;
3621 	cp_mreg.src = ret;
3622 	/* Provide the full width of FLAG specific value. */
3623 	if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
3624 		tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
3625 	/* Build a new flow. */
3626 	if (mark_id != MLX5_DEFAULT_COPY_ID) {
3627 		items[0] = (struct rte_flow_item){
3628 			.type = (enum rte_flow_item_type)
3629 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
3630 			.spec = &tag_spec,
3631 		};
3632 		items[1] = (struct rte_flow_item){
3633 			.type = RTE_FLOW_ITEM_TYPE_END,
3634 		};
3635 		actions[0] = (struct rte_flow_action){
3636 			.type = (enum rte_flow_action_type)
3637 				MLX5_RTE_FLOW_ACTION_TYPE_MARK,
3638 			.conf = &ftag,
3639 		};
3640 		actions[1] = (struct rte_flow_action){
3641 			.type = (enum rte_flow_action_type)
3642 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3643 			.conf = &cp_mreg,
3644 		};
3645 		actions[2] = (struct rte_flow_action){
3646 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
3647 			.conf = &jump,
3648 		};
3649 		actions[3] = (struct rte_flow_action){
3650 			.type = RTE_FLOW_ACTION_TYPE_END,
3651 		};
3652 	} else {
3653 		/* Default rule, wildcard match. */
3654 		attr.priority = MLX5_FLOW_PRIO_RSVD;
3655 		items[0] = (struct rte_flow_item){
3656 			.type = RTE_FLOW_ITEM_TYPE_END,
3657 		};
3658 		actions[0] = (struct rte_flow_action){
3659 			.type = (enum rte_flow_action_type)
3660 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3661 			.conf = &cp_mreg,
3662 		};
3663 		actions[1] = (struct rte_flow_action){
3664 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
3665 			.conf = &jump,
3666 		};
3667 		actions[2] = (struct rte_flow_action){
3668 			.type = RTE_FLOW_ACTION_TYPE_END,
3669 		};
3670 	}
3671 	/* Build a new entry. */
3672 	mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
3673 	if (!mcp_res) {
3674 		rte_errno = ENOMEM;
3675 		return NULL;
3676 	}
3677 	mcp_res->idx = idx;
3678 	/*
3679 	 * The copy Flows are not included in any list. There
3680 	 * ones are referenced from other Flows and can not
3681 	 * be applied, removed, deleted in ardbitrary order
3682 	 * by list traversing.
3683 	 */
3684 	mcp_res->rix_flow = flow_list_create(dev, NULL, &attr, items,
3685 					 actions, false, error);
3686 	if (!mcp_res->rix_flow) {
3687 		mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], idx);
3688 		return NULL;
3689 	}
3690 	return &mcp_res->hlist_ent;
3691 }
3692 
3693 /**
3694  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3695  *
3696  * As mark_id is unique, if there's already a registered flow for the mark_id,
3697  * return by increasing the reference counter of the resource. Otherwise, create
3698  * the resource (mcp_res) and flow.
3699  *
3700  * Flow looks like,
3701  *   - If ingress port is ANY and reg_c[1] is mark_id,
3702  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3703  *
3704  * For default flow (zero mark_id), flow is like,
3705  *   - If ingress port is ANY,
3706  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
3707  *
3708  * @param dev
3709  *   Pointer to Ethernet device.
3710  * @param mark_id
3711  *   ID of MARK action, zero means default flow for META.
3712  * @param[out] error
3713  *   Perform verbose error reporting if not NULL.
3714  *
3715  * @return
3716  *   Associated resource on success, NULL otherwise and rte_errno is set.
3717  */
3718 static struct mlx5_flow_mreg_copy_resource *
3719 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
3720 			  struct rte_flow_error *error)
3721 {
3722 	struct mlx5_priv *priv = dev->data->dev_private;
3723 	struct mlx5_hlist_entry *entry;
3724 	struct mlx5_flow_cb_ctx ctx = {
3725 		.dev = dev,
3726 		.error = error,
3727 	};
3728 
3729 	/* Check if already registered. */
3730 	MLX5_ASSERT(priv->mreg_cp_tbl);
3731 	entry = mlx5_hlist_register(priv->mreg_cp_tbl, mark_id, &ctx);
3732 	if (!entry)
3733 		return NULL;
3734 	return container_of(entry, struct mlx5_flow_mreg_copy_resource,
3735 			    hlist_ent);
3736 }
3737 
3738 void
3739 flow_dv_mreg_remove_cb(struct mlx5_hlist *list, struct mlx5_hlist_entry *entry)
3740 {
3741 	struct mlx5_flow_mreg_copy_resource *mcp_res =
3742 		container_of(entry, typeof(*mcp_res), hlist_ent);
3743 	struct rte_eth_dev *dev = list->ctx;
3744 	struct mlx5_priv *priv = dev->data->dev_private;
3745 
3746 	MLX5_ASSERT(mcp_res->rix_flow);
3747 	flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3748 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3749 }
3750 
3751 /**
3752  * Release flow in RX_CP_TBL.
3753  *
3754  * @param dev
3755  *   Pointer to Ethernet device.
3756  * @flow
3757  *   Parent flow for wich copying is provided.
3758  */
3759 static void
3760 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
3761 			  struct rte_flow *flow)
3762 {
3763 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3764 	struct mlx5_priv *priv = dev->data->dev_private;
3765 
3766 	if (!flow->rix_mreg_copy)
3767 		return;
3768 	mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3769 				 flow->rix_mreg_copy);
3770 	if (!mcp_res || !priv->mreg_cp_tbl)
3771 		return;
3772 	MLX5_ASSERT(mcp_res->rix_flow);
3773 	mlx5_hlist_unregister(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
3774 	flow->rix_mreg_copy = 0;
3775 }
3776 
3777 /**
3778  * Remove the default copy action from RX_CP_TBL.
3779  *
3780  * This functions is called in the mlx5_dev_start(). No thread safe
3781  * is guaranteed.
3782  *
3783  * @param dev
3784  *   Pointer to Ethernet device.
3785  */
3786 static void
3787 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
3788 {
3789 	struct mlx5_hlist_entry *entry;
3790 	struct mlx5_priv *priv = dev->data->dev_private;
3791 
3792 	/* Check if default flow is registered. */
3793 	if (!priv->mreg_cp_tbl)
3794 		return;
3795 	entry = mlx5_hlist_lookup(priv->mreg_cp_tbl,
3796 				  MLX5_DEFAULT_COPY_ID, NULL);
3797 	if (!entry)
3798 		return;
3799 	mlx5_hlist_unregister(priv->mreg_cp_tbl, entry);
3800 }
3801 
3802 /**
3803  * Add the default copy action in in RX_CP_TBL.
3804  *
3805  * This functions is called in the mlx5_dev_start(). No thread safe
3806  * is guaranteed.
3807  *
3808  * @param dev
3809  *   Pointer to Ethernet device.
3810  * @param[out] error
3811  *   Perform verbose error reporting if not NULL.
3812  *
3813  * @return
3814  *   0 for success, negative value otherwise and rte_errno is set.
3815  */
3816 static int
3817 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
3818 				  struct rte_flow_error *error)
3819 {
3820 	struct mlx5_priv *priv = dev->data->dev_private;
3821 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3822 
3823 	/* Check whether extensive metadata feature is engaged. */
3824 	if (!priv->config.dv_flow_en ||
3825 	    priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3826 	    !mlx5_flow_ext_mreg_supported(dev) ||
3827 	    !priv->sh->dv_regc0_mask)
3828 		return 0;
3829 	/*
3830 	 * Add default mreg copy flow may be called multiple time, but
3831 	 * only be called once in stop. Avoid register it twice.
3832 	 */
3833 	if (mlx5_hlist_lookup(priv->mreg_cp_tbl, MLX5_DEFAULT_COPY_ID, NULL))
3834 		return 0;
3835 	mcp_res = flow_mreg_add_copy_action(dev, MLX5_DEFAULT_COPY_ID, error);
3836 	if (!mcp_res)
3837 		return -rte_errno;
3838 	return 0;
3839 }
3840 
3841 /**
3842  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3843  *
3844  * All the flow having Q/RSS action should be split by
3845  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
3846  * performs the following,
3847  *   - CQE->flow_tag := reg_c[1] (MARK)
3848  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
3849  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
3850  * but there should be a flow per each MARK ID set by MARK action.
3851  *
3852  * For the aforementioned reason, if there's a MARK action in flow's action
3853  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
3854  * the MARK ID to CQE's flow_tag like,
3855  *   - If reg_c[1] is mark_id,
3856  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3857  *
3858  * For SET_META action which stores value in reg_c[0], as the destination is
3859  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
3860  * MARK ID means the default flow. The default flow looks like,
3861  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3862  *
3863  * @param dev
3864  *   Pointer to Ethernet device.
3865  * @param flow
3866  *   Pointer to flow structure.
3867  * @param[in] actions
3868  *   Pointer to the list of actions.
3869  * @param[out] error
3870  *   Perform verbose error reporting if not NULL.
3871  *
3872  * @return
3873  *   0 on success, negative value otherwise and rte_errno is set.
3874  */
3875 static int
3876 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
3877 			    struct rte_flow *flow,
3878 			    const struct rte_flow_action *actions,
3879 			    struct rte_flow_error *error)
3880 {
3881 	struct mlx5_priv *priv = dev->data->dev_private;
3882 	struct mlx5_dev_config *config = &priv->config;
3883 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3884 	const struct rte_flow_action_mark *mark;
3885 
3886 	/* Check whether extensive metadata feature is engaged. */
3887 	if (!config->dv_flow_en ||
3888 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3889 	    !mlx5_flow_ext_mreg_supported(dev) ||
3890 	    !priv->sh->dv_regc0_mask)
3891 		return 0;
3892 	/* Find MARK action. */
3893 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3894 		switch (actions->type) {
3895 		case RTE_FLOW_ACTION_TYPE_FLAG:
3896 			mcp_res = flow_mreg_add_copy_action
3897 				(dev, MLX5_FLOW_MARK_DEFAULT, error);
3898 			if (!mcp_res)
3899 				return -rte_errno;
3900 			flow->rix_mreg_copy = mcp_res->idx;
3901 			return 0;
3902 		case RTE_FLOW_ACTION_TYPE_MARK:
3903 			mark = (const struct rte_flow_action_mark *)
3904 				actions->conf;
3905 			mcp_res =
3906 				flow_mreg_add_copy_action(dev, mark->id, error);
3907 			if (!mcp_res)
3908 				return -rte_errno;
3909 			flow->rix_mreg_copy = mcp_res->idx;
3910 			return 0;
3911 		default:
3912 			break;
3913 		}
3914 	}
3915 	return 0;
3916 }
3917 
3918 #define MLX5_MAX_SPLIT_ACTIONS 24
3919 #define MLX5_MAX_SPLIT_ITEMS 24
3920 
3921 /**
3922  * Split the hairpin flow.
3923  * Since HW can't support encap and push-vlan on Rx, we move these
3924  * actions to Tx.
3925  * If the count action is after the encap then we also
3926  * move the count action. in this case the count will also measure
3927  * the outer bytes.
3928  *
3929  * @param dev
3930  *   Pointer to Ethernet device.
3931  * @param[in] actions
3932  *   Associated actions (list terminated by the END action).
3933  * @param[out] actions_rx
3934  *   Rx flow actions.
3935  * @param[out] actions_tx
3936  *   Tx flow actions..
3937  * @param[out] pattern_tx
3938  *   The pattern items for the Tx flow.
3939  * @param[out] flow_id
3940  *   The flow ID connected to this flow.
3941  *
3942  * @return
3943  *   0 on success.
3944  */
3945 static int
3946 flow_hairpin_split(struct rte_eth_dev *dev,
3947 		   const struct rte_flow_action actions[],
3948 		   struct rte_flow_action actions_rx[],
3949 		   struct rte_flow_action actions_tx[],
3950 		   struct rte_flow_item pattern_tx[],
3951 		   uint32_t flow_id)
3952 {
3953 	const struct rte_flow_action_raw_encap *raw_encap;
3954 	const struct rte_flow_action_raw_decap *raw_decap;
3955 	struct mlx5_rte_flow_action_set_tag *set_tag;
3956 	struct rte_flow_action *tag_action;
3957 	struct mlx5_rte_flow_item_tag *tag_item;
3958 	struct rte_flow_item *item;
3959 	char *addr;
3960 	int encap = 0;
3961 
3962 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3963 		switch (actions->type) {
3964 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3965 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3966 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3967 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3968 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3969 			rte_memcpy(actions_tx, actions,
3970 			       sizeof(struct rte_flow_action));
3971 			actions_tx++;
3972 			break;
3973 		case RTE_FLOW_ACTION_TYPE_COUNT:
3974 			if (encap) {
3975 				rte_memcpy(actions_tx, actions,
3976 					   sizeof(struct rte_flow_action));
3977 				actions_tx++;
3978 			} else {
3979 				rte_memcpy(actions_rx, actions,
3980 					   sizeof(struct rte_flow_action));
3981 				actions_rx++;
3982 			}
3983 			break;
3984 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3985 			raw_encap = actions->conf;
3986 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) {
3987 				memcpy(actions_tx, actions,
3988 				       sizeof(struct rte_flow_action));
3989 				actions_tx++;
3990 				encap = 1;
3991 			} else {
3992 				rte_memcpy(actions_rx, actions,
3993 					   sizeof(struct rte_flow_action));
3994 				actions_rx++;
3995 			}
3996 			break;
3997 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3998 			raw_decap = actions->conf;
3999 			if (raw_decap->size < MLX5_ENCAPSULATION_DECISION_SIZE) {
4000 				memcpy(actions_tx, actions,
4001 				       sizeof(struct rte_flow_action));
4002 				actions_tx++;
4003 			} else {
4004 				rte_memcpy(actions_rx, actions,
4005 					   sizeof(struct rte_flow_action));
4006 				actions_rx++;
4007 			}
4008 			break;
4009 		default:
4010 			rte_memcpy(actions_rx, actions,
4011 				   sizeof(struct rte_flow_action));
4012 			actions_rx++;
4013 			break;
4014 		}
4015 	}
4016 	/* Add set meta action and end action for the Rx flow. */
4017 	tag_action = actions_rx;
4018 	tag_action->type = (enum rte_flow_action_type)
4019 			   MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4020 	actions_rx++;
4021 	rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
4022 	actions_rx++;
4023 	set_tag = (void *)actions_rx;
4024 	set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL);
4025 	MLX5_ASSERT(set_tag->id > REG_NON);
4026 	set_tag->data = flow_id;
4027 	tag_action->conf = set_tag;
4028 	/* Create Tx item list. */
4029 	rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
4030 	addr = (void *)&pattern_tx[2];
4031 	item = pattern_tx;
4032 	item->type = (enum rte_flow_item_type)
4033 		     MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4034 	tag_item = (void *)addr;
4035 	tag_item->data = flow_id;
4036 	tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
4037 	MLX5_ASSERT(set_tag->id > REG_NON);
4038 	item->spec = tag_item;
4039 	addr += sizeof(struct mlx5_rte_flow_item_tag);
4040 	tag_item = (void *)addr;
4041 	tag_item->data = UINT32_MAX;
4042 	tag_item->id = UINT16_MAX;
4043 	item->mask = tag_item;
4044 	item->last = NULL;
4045 	item++;
4046 	item->type = RTE_FLOW_ITEM_TYPE_END;
4047 	return 0;
4048 }
4049 
4050 /**
4051  * The last stage of splitting chain, just creates the subflow
4052  * without any modification.
4053  *
4054  * @param[in] dev
4055  *   Pointer to Ethernet device.
4056  * @param[in] flow
4057  *   Parent flow structure pointer.
4058  * @param[in, out] sub_flow
4059  *   Pointer to return the created subflow, may be NULL.
4060  * @param[in] attr
4061  *   Flow rule attributes.
4062  * @param[in] items
4063  *   Pattern specification (list terminated by the END pattern item).
4064  * @param[in] actions
4065  *   Associated actions (list terminated by the END action).
4066  * @param[in] flow_split_info
4067  *   Pointer to flow split info structure.
4068  * @param[out] error
4069  *   Perform verbose error reporting if not NULL.
4070  * @return
4071  *   0 on success, negative value otherwise
4072  */
4073 static int
4074 flow_create_split_inner(struct rte_eth_dev *dev,
4075 			struct rte_flow *flow,
4076 			struct mlx5_flow **sub_flow,
4077 			const struct rte_flow_attr *attr,
4078 			const struct rte_flow_item items[],
4079 			const struct rte_flow_action actions[],
4080 			struct mlx5_flow_split_info *flow_split_info,
4081 			struct rte_flow_error *error)
4082 {
4083 	struct mlx5_flow *dev_flow;
4084 
4085 	dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
4086 				    flow_split_info->flow_idx, error);
4087 	if (!dev_flow)
4088 		return -rte_errno;
4089 	dev_flow->flow = flow;
4090 	dev_flow->external = flow_split_info->external;
4091 	dev_flow->skip_scale = flow_split_info->skip_scale;
4092 	/* Subflow object was created, we must include one in the list. */
4093 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
4094 		      dev_flow->handle, next);
4095 	/*
4096 	 * If dev_flow is as one of the suffix flow, some actions in suffix
4097 	 * flow may need some user defined item layer flags, and pass the
4098 	 * Metadate rxq mark flag to suffix flow as well.
4099 	 */
4100 	if (flow_split_info->prefix_layers)
4101 		dev_flow->handle->layers = flow_split_info->prefix_layers;
4102 	if (flow_split_info->prefix_mark)
4103 		dev_flow->handle->mark = 1;
4104 	if (sub_flow)
4105 		*sub_flow = dev_flow;
4106 	return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
4107 }
4108 
4109 /**
4110  * Split the meter flow.
4111  *
4112  * As meter flow will split to three sub flow, other than meter
4113  * action, the other actions make sense to only meter accepts
4114  * the packet. If it need to be dropped, no other additional
4115  * actions should be take.
4116  *
4117  * One kind of special action which decapsulates the L3 tunnel
4118  * header will be in the prefix sub flow, as not to take the
4119  * L3 tunnel header into account.
4120  *
4121  * @param dev
4122  *   Pointer to Ethernet device.
4123  * @param[in] items
4124  *   Pattern specification (list terminated by the END pattern item).
4125  * @param[out] sfx_items
4126  *   Suffix flow match items (list terminated by the END pattern item).
4127  * @param[in] actions
4128  *   Associated actions (list terminated by the END action).
4129  * @param[out] actions_sfx
4130  *   Suffix flow actions.
4131  * @param[out] actions_pre
4132  *   Prefix flow actions.
4133  * @param[out] pattern_sfx
4134  *   The pattern items for the suffix flow.
4135  * @param[out] tag_sfx
4136  *   Pointer to suffix flow tag.
4137  *
4138  * @return
4139  *   0 on success.
4140  */
4141 static int
4142 flow_meter_split_prep(struct rte_eth_dev *dev,
4143 		 const struct rte_flow_item items[],
4144 		 struct rte_flow_item sfx_items[],
4145 		 const struct rte_flow_action actions[],
4146 		 struct rte_flow_action actions_sfx[],
4147 		 struct rte_flow_action actions_pre[])
4148 {
4149 	struct mlx5_priv *priv = dev->data->dev_private;
4150 	struct rte_flow_action *tag_action = NULL;
4151 	struct rte_flow_item *tag_item;
4152 	struct mlx5_rte_flow_action_set_tag *set_tag;
4153 	struct rte_flow_error error;
4154 	const struct rte_flow_action_raw_encap *raw_encap;
4155 	const struct rte_flow_action_raw_decap *raw_decap;
4156 	struct mlx5_rte_flow_item_tag *tag_spec;
4157 	struct mlx5_rte_flow_item_tag *tag_mask;
4158 	uint32_t tag_id = 0;
4159 	bool copy_vlan = false;
4160 
4161 	/* Prepare the actions for prefix and suffix flow. */
4162 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4163 		struct rte_flow_action **action_cur = NULL;
4164 
4165 		switch (actions->type) {
4166 		case RTE_FLOW_ACTION_TYPE_METER:
4167 			/* Add the extra tag action first. */
4168 			tag_action = actions_pre;
4169 			tag_action->type = (enum rte_flow_action_type)
4170 					   MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4171 			actions_pre++;
4172 			action_cur = &actions_pre;
4173 			break;
4174 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
4175 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
4176 			action_cur = &actions_pre;
4177 			break;
4178 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4179 			raw_encap = actions->conf;
4180 			if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
4181 				action_cur = &actions_pre;
4182 			break;
4183 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4184 			raw_decap = actions->conf;
4185 			if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4186 				action_cur = &actions_pre;
4187 			break;
4188 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4189 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4190 			copy_vlan = true;
4191 			break;
4192 		default:
4193 			break;
4194 		}
4195 		if (!action_cur)
4196 			action_cur = &actions_sfx;
4197 		memcpy(*action_cur, actions, sizeof(struct rte_flow_action));
4198 		(*action_cur)++;
4199 	}
4200 	/* Add end action to the actions. */
4201 	actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
4202 	actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
4203 	actions_pre++;
4204 	/* Set the tag. */
4205 	set_tag = (void *)actions_pre;
4206 	set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4207 	mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
4208 			  &tag_id);
4209 	if (tag_id >= (1 << (sizeof(tag_id) * 8 - MLX5_MTR_COLOR_BITS))) {
4210 		DRV_LOG(ERR, "Port %u meter flow id exceed max limit.",
4211 			dev->data->port_id);
4212 		mlx5_ipool_free(priv->sh->ipool
4213 				[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], tag_id);
4214 		return 0;
4215 	} else if (!tag_id) {
4216 		return 0;
4217 	}
4218 	set_tag->data = tag_id << MLX5_MTR_COLOR_BITS;
4219 	assert(tag_action);
4220 	tag_action->conf = set_tag;
4221 	/* Prepare the suffix subflow items. */
4222 	tag_item = sfx_items++;
4223 	for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
4224 		int item_type = items->type;
4225 
4226 		switch (item_type) {
4227 		case RTE_FLOW_ITEM_TYPE_PORT_ID:
4228 			memcpy(sfx_items, items, sizeof(*sfx_items));
4229 			sfx_items++;
4230 			break;
4231 		case RTE_FLOW_ITEM_TYPE_VLAN:
4232 			if (copy_vlan) {
4233 				memcpy(sfx_items, items, sizeof(*sfx_items));
4234 				/*
4235 				 * Convert to internal match item, it is used
4236 				 * for vlan push and set vid.
4237 				 */
4238 				sfx_items->type = (enum rte_flow_item_type)
4239 						  MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
4240 				sfx_items++;
4241 			}
4242 			break;
4243 		default:
4244 			break;
4245 		}
4246 	}
4247 	sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
4248 	sfx_items++;
4249 	tag_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
4250 	tag_spec->data = tag_id << MLX5_MTR_COLOR_BITS;
4251 	tag_spec->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4252 	tag_mask = tag_spec + 1;
4253 	tag_mask->data = 0xffffff00;
4254 	tag_item->type = (enum rte_flow_item_type)
4255 			 MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4256 	tag_item->spec = tag_spec;
4257 	tag_item->last = NULL;
4258 	tag_item->mask = tag_mask;
4259 	return tag_id;
4260 }
4261 
4262 /**
4263  * Split action list having QUEUE/RSS for metadata register copy.
4264  *
4265  * Once Q/RSS action is detected in user's action list, the flow action
4266  * should be split in order to copy metadata registers, which will happen in
4267  * RX_CP_TBL like,
4268  *   - CQE->flow_tag := reg_c[1] (MARK)
4269  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4270  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
4271  * This is because the last action of each flow must be a terminal action
4272  * (QUEUE, RSS or DROP).
4273  *
4274  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
4275  * stored and kept in the mlx5_flow structure per each sub_flow.
4276  *
4277  * The Q/RSS action is replaced with,
4278  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
4279  * And the following JUMP action is added at the end,
4280  *   - JUMP, to RX_CP_TBL.
4281  *
4282  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
4283  * flow_create_split_metadata() routine. The flow will look like,
4284  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
4285  *
4286  * @param dev
4287  *   Pointer to Ethernet device.
4288  * @param[out] split_actions
4289  *   Pointer to store split actions to jump to CP_TBL.
4290  * @param[in] actions
4291  *   Pointer to the list of original flow actions.
4292  * @param[in] qrss
4293  *   Pointer to the Q/RSS action.
4294  * @param[in] actions_n
4295  *   Number of original actions.
4296  * @param[out] error
4297  *   Perform verbose error reporting if not NULL.
4298  *
4299  * @return
4300  *   non-zero unique flow_id on success, otherwise 0 and
4301  *   error/rte_error are set.
4302  */
4303 static uint32_t
4304 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
4305 			  struct rte_flow_action *split_actions,
4306 			  const struct rte_flow_action *actions,
4307 			  const struct rte_flow_action *qrss,
4308 			  int actions_n, struct rte_flow_error *error)
4309 {
4310 	struct mlx5_priv *priv = dev->data->dev_private;
4311 	struct mlx5_rte_flow_action_set_tag *set_tag;
4312 	struct rte_flow_action_jump *jump;
4313 	const int qrss_idx = qrss - actions;
4314 	uint32_t flow_id = 0;
4315 	int ret = 0;
4316 
4317 	/*
4318 	 * Given actions will be split
4319 	 * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
4320 	 * - Add jump to mreg CP_TBL.
4321 	 * As a result, there will be one more action.
4322 	 */
4323 	++actions_n;
4324 	memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
4325 	set_tag = (void *)(split_actions + actions_n);
4326 	/*
4327 	 * If tag action is not set to void(it means we are not the meter
4328 	 * suffix flow), add the tag action. Since meter suffix flow already
4329 	 * has the tag added.
4330 	 */
4331 	if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) {
4332 		/*
4333 		 * Allocate the new subflow ID. This one is unique within
4334 		 * device and not shared with representors. Otherwise,
4335 		 * we would have to resolve multi-thread access synch
4336 		 * issue. Each flow on the shared device is appended
4337 		 * with source vport identifier, so the resulting
4338 		 * flows will be unique in the shared (by master and
4339 		 * representors) domain even if they have coinciding
4340 		 * IDs.
4341 		 */
4342 		mlx5_ipool_malloc(priv->sh->ipool
4343 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id);
4344 		if (!flow_id)
4345 			return rte_flow_error_set(error, ENOMEM,
4346 						  RTE_FLOW_ERROR_TYPE_ACTION,
4347 						  NULL, "can't allocate id "
4348 						  "for split Q/RSS subflow");
4349 		/* Internal SET_TAG action to set flow ID. */
4350 		*set_tag = (struct mlx5_rte_flow_action_set_tag){
4351 			.data = flow_id,
4352 		};
4353 		ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
4354 		if (ret < 0)
4355 			return ret;
4356 		set_tag->id = ret;
4357 		/* Construct new actions array. */
4358 		/* Replace QUEUE/RSS action. */
4359 		split_actions[qrss_idx] = (struct rte_flow_action){
4360 			.type = (enum rte_flow_action_type)
4361 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4362 			.conf = set_tag,
4363 		};
4364 	}
4365 	/* JUMP action to jump to mreg copy table (CP_TBL). */
4366 	jump = (void *)(set_tag + 1);
4367 	*jump = (struct rte_flow_action_jump){
4368 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4369 	};
4370 	split_actions[actions_n - 2] = (struct rte_flow_action){
4371 		.type = RTE_FLOW_ACTION_TYPE_JUMP,
4372 		.conf = jump,
4373 	};
4374 	split_actions[actions_n - 1] = (struct rte_flow_action){
4375 		.type = RTE_FLOW_ACTION_TYPE_END,
4376 	};
4377 	return flow_id;
4378 }
4379 
4380 /**
4381  * Extend the given action list for Tx metadata copy.
4382  *
4383  * Copy the given action list to the ext_actions and add flow metadata register
4384  * copy action in order to copy reg_a set by WQE to reg_c[0].
4385  *
4386  * @param[out] ext_actions
4387  *   Pointer to the extended action list.
4388  * @param[in] actions
4389  *   Pointer to the list of actions.
4390  * @param[in] actions_n
4391  *   Number of actions in the list.
4392  * @param[out] error
4393  *   Perform verbose error reporting if not NULL.
4394  * @param[in] encap_idx
4395  *   The encap action inndex.
4396  *
4397  * @return
4398  *   0 on success, negative value otherwise
4399  */
4400 static int
4401 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
4402 		       struct rte_flow_action *ext_actions,
4403 		       const struct rte_flow_action *actions,
4404 		       int actions_n, struct rte_flow_error *error,
4405 		       int encap_idx)
4406 {
4407 	struct mlx5_flow_action_copy_mreg *cp_mreg =
4408 		(struct mlx5_flow_action_copy_mreg *)
4409 			(ext_actions + actions_n + 1);
4410 	int ret;
4411 
4412 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4413 	if (ret < 0)
4414 		return ret;
4415 	cp_mreg->dst = ret;
4416 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
4417 	if (ret < 0)
4418 		return ret;
4419 	cp_mreg->src = ret;
4420 	if (encap_idx != 0)
4421 		memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
4422 	if (encap_idx == actions_n - 1) {
4423 		ext_actions[actions_n - 1] = (struct rte_flow_action){
4424 			.type = (enum rte_flow_action_type)
4425 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4426 			.conf = cp_mreg,
4427 		};
4428 		ext_actions[actions_n] = (struct rte_flow_action){
4429 			.type = RTE_FLOW_ACTION_TYPE_END,
4430 		};
4431 	} else {
4432 		ext_actions[encap_idx] = (struct rte_flow_action){
4433 			.type = (enum rte_flow_action_type)
4434 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4435 			.conf = cp_mreg,
4436 		};
4437 		memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
4438 				sizeof(*ext_actions) * (actions_n - encap_idx));
4439 	}
4440 	return 0;
4441 }
4442 
4443 /**
4444  * Check the match action from the action list.
4445  *
4446  * @param[in] actions
4447  *   Pointer to the list of actions.
4448  * @param[in] attr
4449  *   Flow rule attributes.
4450  * @param[in] action
4451  *   The action to be check if exist.
4452  * @param[out] match_action_pos
4453  *   Pointer to the position of the matched action if exists, otherwise is -1.
4454  * @param[out] qrss_action_pos
4455  *   Pointer to the position of the Queue/RSS action if exists, otherwise is -1.
4456  *
4457  * @return
4458  *   > 0 the total number of actions.
4459  *   0 if not found match action in action list.
4460  */
4461 static int
4462 flow_check_match_action(const struct rte_flow_action actions[],
4463 			const struct rte_flow_attr *attr,
4464 			enum rte_flow_action_type action,
4465 			int *match_action_pos, int *qrss_action_pos)
4466 {
4467 	const struct rte_flow_action_sample *sample;
4468 	int actions_n = 0;
4469 	int jump_flag = 0;
4470 	uint32_t ratio = 0;
4471 	int sub_type = 0;
4472 	int flag = 0;
4473 
4474 	*match_action_pos = -1;
4475 	*qrss_action_pos = -1;
4476 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4477 		if (actions->type == action) {
4478 			flag = 1;
4479 			*match_action_pos = actions_n;
4480 		}
4481 		if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE ||
4482 		    actions->type == RTE_FLOW_ACTION_TYPE_RSS)
4483 			*qrss_action_pos = actions_n;
4484 		if (actions->type == RTE_FLOW_ACTION_TYPE_JUMP)
4485 			jump_flag = 1;
4486 		if (actions->type == RTE_FLOW_ACTION_TYPE_SAMPLE) {
4487 			sample = actions->conf;
4488 			ratio = sample->ratio;
4489 			sub_type = ((const struct rte_flow_action *)
4490 					(sample->actions))->type;
4491 		}
4492 		actions_n++;
4493 	}
4494 	if (flag && action == RTE_FLOW_ACTION_TYPE_SAMPLE && attr->transfer) {
4495 		if (ratio == 1) {
4496 			/* JUMP Action not support for Mirroring;
4497 			 * Mirroring support multi-destination;
4498 			 */
4499 			if (!jump_flag && sub_type != RTE_FLOW_ACTION_TYPE_END)
4500 				flag = 0;
4501 		}
4502 	}
4503 	/* Count RTE_FLOW_ACTION_TYPE_END. */
4504 	return flag ? actions_n + 1 : 0;
4505 }
4506 
4507 #define SAMPLE_SUFFIX_ITEM 2
4508 
4509 /**
4510  * Split the sample flow.
4511  *
4512  * As sample flow will split to two sub flow, sample flow with
4513  * sample action, the other actions will move to new suffix flow.
4514  *
4515  * Also add unique tag id with tag action in the sample flow,
4516  * the same tag id will be as match in the suffix flow.
4517  *
4518  * @param dev
4519  *   Pointer to Ethernet device.
4520  * @param[in] fdb_tx
4521  *   FDB egress flow flag.
4522  * @param[out] sfx_items
4523  *   Suffix flow match items (list terminated by the END pattern item).
4524  * @param[in] actions
4525  *   Associated actions (list terminated by the END action).
4526  * @param[out] actions_sfx
4527  *   Suffix flow actions.
4528  * @param[out] actions_pre
4529  *   Prefix flow actions.
4530  * @param[in] actions_n
4531  *  The total number of actions.
4532  * @param[in] sample_action_pos
4533  *   The sample action position.
4534  * @param[in] qrss_action_pos
4535  *   The Queue/RSS action position.
4536  * @param[out] error
4537  *   Perform verbose error reporting if not NULL.
4538  *
4539  * @return
4540  *   0 on success, or unique flow_id, a negative errno value
4541  *   otherwise and rte_errno is set.
4542  */
4543 static int
4544 flow_sample_split_prep(struct rte_eth_dev *dev,
4545 		       uint32_t fdb_tx,
4546 		       struct rte_flow_item sfx_items[],
4547 		       const struct rte_flow_action actions[],
4548 		       struct rte_flow_action actions_sfx[],
4549 		       struct rte_flow_action actions_pre[],
4550 		       int actions_n,
4551 		       int sample_action_pos,
4552 		       int qrss_action_pos,
4553 		       struct rte_flow_error *error)
4554 {
4555 	struct mlx5_priv *priv = dev->data->dev_private;
4556 	struct mlx5_rte_flow_action_set_tag *set_tag;
4557 	struct mlx5_rte_flow_item_tag *tag_spec;
4558 	struct mlx5_rte_flow_item_tag *tag_mask;
4559 	uint32_t tag_id = 0;
4560 	int index;
4561 	int ret;
4562 
4563 	if (sample_action_pos < 0)
4564 		return rte_flow_error_set(error, EINVAL,
4565 					  RTE_FLOW_ERROR_TYPE_ACTION,
4566 					  NULL, "invalid position of sample "
4567 					  "action in list");
4568 	if (!fdb_tx) {
4569 		/* Prepare the prefix tag action. */
4570 		set_tag = (void *)(actions_pre + actions_n + 1);
4571 		ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error);
4572 		if (ret < 0)
4573 			return ret;
4574 		set_tag->id = ret;
4575 		mlx5_ipool_malloc(priv->sh->ipool
4576 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id);
4577 		set_tag->data = tag_id;
4578 		/* Prepare the suffix subflow items. */
4579 		tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM);
4580 		tag_spec->data = tag_id;
4581 		tag_spec->id = set_tag->id;
4582 		tag_mask = tag_spec + 1;
4583 		tag_mask->data = UINT32_MAX;
4584 		sfx_items[0] = (struct rte_flow_item){
4585 			.type = (enum rte_flow_item_type)
4586 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4587 			.spec = tag_spec,
4588 			.last = NULL,
4589 			.mask = tag_mask,
4590 		};
4591 		sfx_items[1] = (struct rte_flow_item){
4592 			.type = (enum rte_flow_item_type)
4593 				RTE_FLOW_ITEM_TYPE_END,
4594 		};
4595 	}
4596 	/* Prepare the actions for prefix and suffix flow. */
4597 	if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) {
4598 		index = qrss_action_pos;
4599 		/* Put the preceding the Queue/RSS action into prefix flow. */
4600 		if (index != 0)
4601 			memcpy(actions_pre, actions,
4602 			       sizeof(struct rte_flow_action) * index);
4603 		/* Put others preceding the sample action into prefix flow. */
4604 		if (sample_action_pos > index + 1)
4605 			memcpy(actions_pre + index, actions + index + 1,
4606 			       sizeof(struct rte_flow_action) *
4607 			       (sample_action_pos - index - 1));
4608 		index = sample_action_pos - 1;
4609 		/* Put Queue/RSS action into Suffix flow. */
4610 		memcpy(actions_sfx, actions + qrss_action_pos,
4611 		       sizeof(struct rte_flow_action));
4612 		actions_sfx++;
4613 	} else {
4614 		index = sample_action_pos;
4615 		if (index != 0)
4616 			memcpy(actions_pre, actions,
4617 			       sizeof(struct rte_flow_action) * index);
4618 	}
4619 	/* Add the extra tag action for NIC-RX and E-Switch ingress. */
4620 	if (!fdb_tx) {
4621 		actions_pre[index++] =
4622 			(struct rte_flow_action){
4623 			.type = (enum rte_flow_action_type)
4624 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4625 			.conf = set_tag,
4626 		};
4627 	}
4628 	memcpy(actions_pre + index, actions + sample_action_pos,
4629 	       sizeof(struct rte_flow_action));
4630 	index += 1;
4631 	actions_pre[index] = (struct rte_flow_action){
4632 		.type = (enum rte_flow_action_type)
4633 			RTE_FLOW_ACTION_TYPE_END,
4634 	};
4635 	/* Put the actions after sample into Suffix flow. */
4636 	memcpy(actions_sfx, actions + sample_action_pos + 1,
4637 	       sizeof(struct rte_flow_action) *
4638 	       (actions_n - sample_action_pos - 1));
4639 	return tag_id;
4640 }
4641 
4642 /**
4643  * The splitting for metadata feature.
4644  *
4645  * - Q/RSS action on NIC Rx should be split in order to pass by
4646  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
4647  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
4648  *
4649  * - All the actions on NIC Tx should have a mreg copy action to
4650  *   copy reg_a from WQE to reg_c[0].
4651  *
4652  * @param dev
4653  *   Pointer to Ethernet device.
4654  * @param[in] flow
4655  *   Parent flow structure pointer.
4656  * @param[in] attr
4657  *   Flow rule attributes.
4658  * @param[in] items
4659  *   Pattern specification (list terminated by the END pattern item).
4660  * @param[in] actions
4661  *   Associated actions (list terminated by the END action).
4662  * @param[in] flow_split_info
4663  *   Pointer to flow split info structure.
4664  * @param[out] error
4665  *   Perform verbose error reporting if not NULL.
4666  * @return
4667  *   0 on success, negative value otherwise
4668  */
4669 static int
4670 flow_create_split_metadata(struct rte_eth_dev *dev,
4671 			   struct rte_flow *flow,
4672 			   const struct rte_flow_attr *attr,
4673 			   const struct rte_flow_item items[],
4674 			   const struct rte_flow_action actions[],
4675 			   struct mlx5_flow_split_info *flow_split_info,
4676 			   struct rte_flow_error *error)
4677 {
4678 	struct mlx5_priv *priv = dev->data->dev_private;
4679 	struct mlx5_dev_config *config = &priv->config;
4680 	const struct rte_flow_action *qrss = NULL;
4681 	struct rte_flow_action *ext_actions = NULL;
4682 	struct mlx5_flow *dev_flow = NULL;
4683 	uint32_t qrss_id = 0;
4684 	int mtr_sfx = 0;
4685 	size_t act_size;
4686 	int actions_n;
4687 	int encap_idx;
4688 	int ret;
4689 
4690 	/* Check whether extensive metadata feature is engaged. */
4691 	if (!config->dv_flow_en ||
4692 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4693 	    !mlx5_flow_ext_mreg_supported(dev))
4694 		return flow_create_split_inner(dev, flow, NULL, attr, items,
4695 					       actions, flow_split_info, error);
4696 	actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
4697 							   &encap_idx);
4698 	if (qrss) {
4699 		/* Exclude hairpin flows from splitting. */
4700 		if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
4701 			const struct rte_flow_action_queue *queue;
4702 
4703 			queue = qrss->conf;
4704 			if (mlx5_rxq_get_type(dev, queue->index) ==
4705 			    MLX5_RXQ_TYPE_HAIRPIN)
4706 				qrss = NULL;
4707 		} else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
4708 			const struct rte_flow_action_rss *rss;
4709 
4710 			rss = qrss->conf;
4711 			if (mlx5_rxq_get_type(dev, rss->queue[0]) ==
4712 			    MLX5_RXQ_TYPE_HAIRPIN)
4713 				qrss = NULL;
4714 		}
4715 	}
4716 	if (qrss) {
4717 		/* Check if it is in meter suffix table. */
4718 		mtr_sfx = attr->group == (attr->transfer ?
4719 			  (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4720 			  MLX5_FLOW_TABLE_LEVEL_SUFFIX);
4721 		/*
4722 		 * Q/RSS action on NIC Rx should be split in order to pass by
4723 		 * the mreg copy table (RX_CP_TBL) and then it jumps to the
4724 		 * action table (RX_ACT_TBL) which has the split Q/RSS action.
4725 		 */
4726 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4727 			   sizeof(struct rte_flow_action_set_tag) +
4728 			   sizeof(struct rte_flow_action_jump);
4729 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4730 					  SOCKET_ID_ANY);
4731 		if (!ext_actions)
4732 			return rte_flow_error_set(error, ENOMEM,
4733 						  RTE_FLOW_ERROR_TYPE_ACTION,
4734 						  NULL, "no memory to split "
4735 						  "metadata flow");
4736 		/*
4737 		 * If we are the suffix flow of meter, tag already exist.
4738 		 * Set the tag action to void.
4739 		 */
4740 		if (mtr_sfx)
4741 			ext_actions[qrss - actions].type =
4742 						RTE_FLOW_ACTION_TYPE_VOID;
4743 		else
4744 			ext_actions[qrss - actions].type =
4745 						(enum rte_flow_action_type)
4746 						MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4747 		/*
4748 		 * Create the new actions list with removed Q/RSS action
4749 		 * and appended set tag and jump to register copy table
4750 		 * (RX_CP_TBL). We should preallocate unique tag ID here
4751 		 * in advance, because it is needed for set tag action.
4752 		 */
4753 		qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
4754 						    qrss, actions_n, error);
4755 		if (!mtr_sfx && !qrss_id) {
4756 			ret = -rte_errno;
4757 			goto exit;
4758 		}
4759 	} else if (attr->egress && !attr->transfer) {
4760 		/*
4761 		 * All the actions on NIC Tx should have a metadata register
4762 		 * copy action to copy reg_a from WQE to reg_c[meta]
4763 		 */
4764 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4765 			   sizeof(struct mlx5_flow_action_copy_mreg);
4766 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4767 					  SOCKET_ID_ANY);
4768 		if (!ext_actions)
4769 			return rte_flow_error_set(error, ENOMEM,
4770 						  RTE_FLOW_ERROR_TYPE_ACTION,
4771 						  NULL, "no memory to split "
4772 						  "metadata flow");
4773 		/* Create the action list appended with copy register. */
4774 		ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
4775 					     actions_n, error, encap_idx);
4776 		if (ret < 0)
4777 			goto exit;
4778 	}
4779 	/* Add the unmodified original or prefix subflow. */
4780 	ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
4781 				      items, ext_actions ? ext_actions :
4782 				      actions, flow_split_info, error);
4783 	if (ret < 0)
4784 		goto exit;
4785 	MLX5_ASSERT(dev_flow);
4786 	if (qrss) {
4787 		const struct rte_flow_attr q_attr = {
4788 			.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4789 			.ingress = 1,
4790 		};
4791 		/* Internal PMD action to set register. */
4792 		struct mlx5_rte_flow_item_tag q_tag_spec = {
4793 			.data = qrss_id,
4794 			.id = REG_NON,
4795 		};
4796 		struct rte_flow_item q_items[] = {
4797 			{
4798 				.type = (enum rte_flow_item_type)
4799 					MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4800 				.spec = &q_tag_spec,
4801 				.last = NULL,
4802 				.mask = NULL,
4803 			},
4804 			{
4805 				.type = RTE_FLOW_ITEM_TYPE_END,
4806 			},
4807 		};
4808 		struct rte_flow_action q_actions[] = {
4809 			{
4810 				.type = qrss->type,
4811 				.conf = qrss->conf,
4812 			},
4813 			{
4814 				.type = RTE_FLOW_ACTION_TYPE_END,
4815 			},
4816 		};
4817 		uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
4818 
4819 		/*
4820 		 * Configure the tag item only if there is no meter subflow.
4821 		 * Since tag is already marked in the meter suffix subflow
4822 		 * we can just use the meter suffix items as is.
4823 		 */
4824 		if (qrss_id) {
4825 			/* Not meter subflow. */
4826 			MLX5_ASSERT(!mtr_sfx);
4827 			/*
4828 			 * Put unique id in prefix flow due to it is destroyed
4829 			 * after suffix flow and id will be freed after there
4830 			 * is no actual flows with this id and identifier
4831 			 * reallocation becomes possible (for example, for
4832 			 * other flows in other threads).
4833 			 */
4834 			dev_flow->handle->split_flow_id = qrss_id;
4835 			ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
4836 						   error);
4837 			if (ret < 0)
4838 				goto exit;
4839 			q_tag_spec.id = ret;
4840 		}
4841 		dev_flow = NULL;
4842 		/* Add suffix subflow to execute Q/RSS. */
4843 		flow_split_info->prefix_layers = layers;
4844 		flow_split_info->prefix_mark = 0;
4845 		ret = flow_create_split_inner(dev, flow, &dev_flow,
4846 					      &q_attr, mtr_sfx ? items :
4847 					      q_items, q_actions,
4848 					      flow_split_info, error);
4849 		if (ret < 0)
4850 			goto exit;
4851 		/* qrss ID should be freed if failed. */
4852 		qrss_id = 0;
4853 		MLX5_ASSERT(dev_flow);
4854 	}
4855 
4856 exit:
4857 	/*
4858 	 * We do not destroy the partially created sub_flows in case of error.
4859 	 * These ones are included into parent flow list and will be destroyed
4860 	 * by flow_drv_destroy.
4861 	 */
4862 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
4863 			qrss_id);
4864 	mlx5_free(ext_actions);
4865 	return ret;
4866 }
4867 
4868 /**
4869  * The splitting for meter feature.
4870  *
4871  * - The meter flow will be split to two flows as prefix and
4872  *   suffix flow. The packets make sense only it pass the prefix
4873  *   meter action.
4874  *
4875  * - Reg_C_5 is used for the packet to match betweend prefix and
4876  *   suffix flow.
4877  *
4878  * @param dev
4879  *   Pointer to Ethernet device.
4880  * @param[in] flow
4881  *   Parent flow structure pointer.
4882  * @param[in] attr
4883  *   Flow rule attributes.
4884  * @param[in] items
4885  *   Pattern specification (list terminated by the END pattern item).
4886  * @param[in] actions
4887  *   Associated actions (list terminated by the END action).
4888  * @param[in] flow_split_info
4889  *   Pointer to flow split info structure.
4890  * @param[out] error
4891  *   Perform verbose error reporting if not NULL.
4892  * @return
4893  *   0 on success, negative value otherwise
4894  */
4895 static int
4896 flow_create_split_meter(struct rte_eth_dev *dev,
4897 			struct rte_flow *flow,
4898 			const struct rte_flow_attr *attr,
4899 			const struct rte_flow_item items[],
4900 			const struct rte_flow_action actions[],
4901 			struct mlx5_flow_split_info *flow_split_info,
4902 			struct rte_flow_error *error)
4903 {
4904 	struct mlx5_priv *priv = dev->data->dev_private;
4905 	struct rte_flow_action *sfx_actions = NULL;
4906 	struct rte_flow_action *pre_actions = NULL;
4907 	struct rte_flow_item *sfx_items = NULL;
4908 	struct mlx5_flow *dev_flow = NULL;
4909 	struct rte_flow_attr sfx_attr = *attr;
4910 	uint32_t mtr = 0;
4911 	uint32_t mtr_tag_id = 0;
4912 	size_t act_size;
4913 	size_t item_size;
4914 	int actions_n = 0;
4915 	int ret;
4916 
4917 	if (priv->mtr_en)
4918 		actions_n = flow_check_meter_action(actions, &mtr);
4919 	if (mtr) {
4920 		/* The five prefix actions: meter, decap, encap, tag, end. */
4921 		act_size = sizeof(struct rte_flow_action) * (actions_n + 5) +
4922 			   sizeof(struct mlx5_rte_flow_action_set_tag);
4923 		/* tag, vlan, port id, end. */
4924 #define METER_SUFFIX_ITEM 4
4925 		item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
4926 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
4927 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
4928 					  0, SOCKET_ID_ANY);
4929 		if (!sfx_actions)
4930 			return rte_flow_error_set(error, ENOMEM,
4931 						  RTE_FLOW_ERROR_TYPE_ACTION,
4932 						  NULL, "no memory to split "
4933 						  "meter flow");
4934 		sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
4935 			     act_size);
4936 		pre_actions = sfx_actions + actions_n;
4937 		mtr_tag_id = flow_meter_split_prep(dev, items, sfx_items,
4938 						   actions, sfx_actions,
4939 						   pre_actions);
4940 		if (!mtr_tag_id) {
4941 			ret = -rte_errno;
4942 			goto exit;
4943 		}
4944 		/* Add the prefix subflow. */
4945 		flow_split_info->prefix_mark = 0;
4946 		ret = flow_create_split_inner(dev, flow, &dev_flow,
4947 					      attr, items, pre_actions,
4948 					      flow_split_info, error);
4949 		if (ret) {
4950 			ret = -rte_errno;
4951 			goto exit;
4952 		}
4953 		dev_flow->handle->split_flow_id = mtr_tag_id;
4954 		/* Setting the sfx group atrr. */
4955 		sfx_attr.group = sfx_attr.transfer ?
4956 				(MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4957 				 MLX5_FLOW_TABLE_LEVEL_SUFFIX;
4958 		flow_split_info->prefix_layers =
4959 				flow_get_prefix_layer_flags(dev_flow);
4960 		flow_split_info->prefix_mark = dev_flow->handle->mark;
4961 	}
4962 	/* Add the prefix subflow. */
4963 	ret = flow_create_split_metadata(dev, flow,
4964 					 &sfx_attr, sfx_items ?
4965 					 sfx_items : items,
4966 					 sfx_actions ? sfx_actions : actions,
4967 					 flow_split_info, error);
4968 exit:
4969 	if (sfx_actions)
4970 		mlx5_free(sfx_actions);
4971 	return ret;
4972 }
4973 
4974 /**
4975  * The splitting for sample feature.
4976  *
4977  * Once Sample action is detected in the action list, the flow actions should
4978  * be split into prefix sub flow and suffix sub flow.
4979  *
4980  * The original items remain in the prefix sub flow, all actions preceding the
4981  * sample action and the sample action itself will be copied to the prefix
4982  * sub flow, the actions following the sample action will be copied to the
4983  * suffix sub flow, Queue action always be located in the suffix sub flow.
4984  *
4985  * In order to make the packet from prefix sub flow matches with suffix sub
4986  * flow, an extra tag action be added into prefix sub flow, and the suffix sub
4987  * flow uses tag item with the unique flow id.
4988  *
4989  * @param dev
4990  *   Pointer to Ethernet device.
4991  * @param[in] flow
4992  *   Parent flow structure pointer.
4993  * @param[in] attr
4994  *   Flow rule attributes.
4995  * @param[in] items
4996  *   Pattern specification (list terminated by the END pattern item).
4997  * @param[in] actions
4998  *   Associated actions (list terminated by the END action).
4999  * @param[in] flow_split_info
5000  *   Pointer to flow split info structure.
5001  * @param[out] error
5002  *   Perform verbose error reporting if not NULL.
5003  * @return
5004  *   0 on success, negative value otherwise
5005  */
5006 static int
5007 flow_create_split_sample(struct rte_eth_dev *dev,
5008 			 struct rte_flow *flow,
5009 			 const struct rte_flow_attr *attr,
5010 			 const struct rte_flow_item items[],
5011 			 const struct rte_flow_action actions[],
5012 			 struct mlx5_flow_split_info *flow_split_info,
5013 			 struct rte_flow_error *error)
5014 {
5015 	struct mlx5_priv *priv = dev->data->dev_private;
5016 	struct rte_flow_action *sfx_actions = NULL;
5017 	struct rte_flow_action *pre_actions = NULL;
5018 	struct rte_flow_item *sfx_items = NULL;
5019 	struct mlx5_flow *dev_flow = NULL;
5020 	struct rte_flow_attr sfx_attr = *attr;
5021 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5022 	struct mlx5_flow_dv_sample_resource *sample_res;
5023 	struct mlx5_flow_tbl_data_entry *sfx_tbl_data;
5024 	struct mlx5_flow_tbl_resource *sfx_tbl;
5025 	union mlx5_flow_tbl_key sfx_table_key;
5026 #endif
5027 	size_t act_size;
5028 	size_t item_size;
5029 	uint32_t fdb_tx = 0;
5030 	int32_t tag_id = 0;
5031 	int actions_n = 0;
5032 	int sample_action_pos;
5033 	int qrss_action_pos;
5034 	int ret = 0;
5035 
5036 	if (priv->sampler_en)
5037 		actions_n = flow_check_match_action(actions, attr,
5038 					RTE_FLOW_ACTION_TYPE_SAMPLE,
5039 					&sample_action_pos, &qrss_action_pos);
5040 	if (actions_n) {
5041 		/* The prefix actions must includes sample, tag, end. */
5042 		act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1)
5043 			   + sizeof(struct mlx5_rte_flow_action_set_tag);
5044 		item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM +
5045 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
5046 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size +
5047 					  item_size), 0, SOCKET_ID_ANY);
5048 		if (!sfx_actions)
5049 			return rte_flow_error_set(error, ENOMEM,
5050 						  RTE_FLOW_ERROR_TYPE_ACTION,
5051 						  NULL, "no memory to split "
5052 						  "sample flow");
5053 		/* The representor_id is -1 for uplink. */
5054 		fdb_tx = (attr->transfer && priv->representor_id != -1);
5055 		if (!fdb_tx)
5056 			sfx_items = (struct rte_flow_item *)((char *)sfx_actions
5057 					+ act_size);
5058 		pre_actions = sfx_actions + actions_n;
5059 		tag_id = flow_sample_split_prep(dev, fdb_tx, sfx_items,
5060 						actions, sfx_actions,
5061 						pre_actions, actions_n,
5062 						sample_action_pos,
5063 						qrss_action_pos, error);
5064 		if (tag_id < 0 || (!fdb_tx && !tag_id)) {
5065 			ret = -rte_errno;
5066 			goto exit;
5067 		}
5068 		/* Add the prefix subflow. */
5069 		ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
5070 					      items, pre_actions,
5071 					      flow_split_info, error);
5072 		if (ret) {
5073 			ret = -rte_errno;
5074 			goto exit;
5075 		}
5076 		dev_flow->handle->split_flow_id = tag_id;
5077 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5078 		/* Set the sfx group attr. */
5079 		sample_res = (struct mlx5_flow_dv_sample_resource *)
5080 					dev_flow->dv.sample_res;
5081 		sfx_tbl = (struct mlx5_flow_tbl_resource *)
5082 					sample_res->normal_path_tbl;
5083 		sfx_tbl_data = container_of(sfx_tbl,
5084 					struct mlx5_flow_tbl_data_entry, tbl);
5085 		sfx_table_key.v64 = sfx_tbl_data->entry.key;
5086 		sfx_attr.group = sfx_attr.transfer ?
5087 					(sfx_table_key.table_id - 1) :
5088 					 sfx_table_key.table_id;
5089 		flow_split_info->prefix_layers =
5090 				flow_get_prefix_layer_flags(dev_flow);
5091 		flow_split_info->prefix_mark = dev_flow->handle->mark;
5092 		/* Suffix group level already be scaled with factor, set
5093 		 * skip_scale to 1 to avoid scale again in translation.
5094 		 */
5095 		flow_split_info->skip_scale = 1;
5096 #endif
5097 	}
5098 	/* Add the suffix subflow. */
5099 	ret = flow_create_split_meter(dev, flow, &sfx_attr,
5100 				      sfx_items ? sfx_items : items,
5101 				      sfx_actions ? sfx_actions : actions,
5102 				      flow_split_info, error);
5103 exit:
5104 	if (sfx_actions)
5105 		mlx5_free(sfx_actions);
5106 	return ret;
5107 }
5108 
5109 /**
5110  * Split the flow to subflow set. The splitters might be linked
5111  * in the chain, like this:
5112  * flow_create_split_outer() calls:
5113  *   flow_create_split_meter() calls:
5114  *     flow_create_split_metadata(meter_subflow_0) calls:
5115  *       flow_create_split_inner(metadata_subflow_0)
5116  *       flow_create_split_inner(metadata_subflow_1)
5117  *       flow_create_split_inner(metadata_subflow_2)
5118  *     flow_create_split_metadata(meter_subflow_1) calls:
5119  *       flow_create_split_inner(metadata_subflow_0)
5120  *       flow_create_split_inner(metadata_subflow_1)
5121  *       flow_create_split_inner(metadata_subflow_2)
5122  *
5123  * This provide flexible way to add new levels of flow splitting.
5124  * The all of successfully created subflows are included to the
5125  * parent flow dev_flow list.
5126  *
5127  * @param dev
5128  *   Pointer to Ethernet device.
5129  * @param[in] flow
5130  *   Parent flow structure pointer.
5131  * @param[in] attr
5132  *   Flow rule attributes.
5133  * @param[in] items
5134  *   Pattern specification (list terminated by the END pattern item).
5135  * @param[in] actions
5136  *   Associated actions (list terminated by the END action).
5137  * @param[in] flow_split_info
5138  *   Pointer to flow split info structure.
5139  * @param[out] error
5140  *   Perform verbose error reporting if not NULL.
5141  * @return
5142  *   0 on success, negative value otherwise
5143  */
5144 static int
5145 flow_create_split_outer(struct rte_eth_dev *dev,
5146 			struct rte_flow *flow,
5147 			const struct rte_flow_attr *attr,
5148 			const struct rte_flow_item items[],
5149 			const struct rte_flow_action actions[],
5150 			struct mlx5_flow_split_info *flow_split_info,
5151 			struct rte_flow_error *error)
5152 {
5153 	int ret;
5154 
5155 	ret = flow_create_split_sample(dev, flow, attr, items,
5156 				       actions, flow_split_info, error);
5157 	MLX5_ASSERT(ret <= 0);
5158 	return ret;
5159 }
5160 
5161 static struct mlx5_flow_tunnel *
5162 flow_tunnel_from_rule(struct rte_eth_dev *dev,
5163 		      const struct rte_flow_attr *attr,
5164 		      const struct rte_flow_item items[],
5165 		      const struct rte_flow_action actions[])
5166 {
5167 	struct mlx5_flow_tunnel *tunnel;
5168 
5169 #pragma GCC diagnostic push
5170 #pragma GCC diagnostic ignored "-Wcast-qual"
5171 	if (is_flow_tunnel_match_rule(dev, attr, items, actions))
5172 		tunnel = (struct mlx5_flow_tunnel *)items[0].spec;
5173 	else if (is_flow_tunnel_steer_rule(dev, attr, items, actions))
5174 		tunnel = (struct mlx5_flow_tunnel *)actions[0].conf;
5175 	else
5176 		tunnel = NULL;
5177 #pragma GCC diagnostic pop
5178 
5179 	return tunnel;
5180 }
5181 
5182 /**
5183  * Adjust flow RSS workspace if needed.
5184  *
5185  * @param wks
5186  *   Pointer to thread flow work space.
5187  * @param rss_desc
5188  *   Pointer to RSS descriptor.
5189  * @param[in] nrssq_num
5190  *   New RSS queue number.
5191  *
5192  * @return
5193  *   0 on success, -1 otherwise and rte_errno is set.
5194  */
5195 static int
5196 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks,
5197 			  struct mlx5_flow_rss_desc *rss_desc,
5198 			  uint32_t nrssq_num)
5199 {
5200 	if (likely(nrssq_num <= wks->rssq_num))
5201 		return 0;
5202 	rss_desc->queue = realloc(rss_desc->queue,
5203 			  sizeof(*rss_desc->queue) * RTE_ALIGN(nrssq_num, 2));
5204 	if (!rss_desc->queue) {
5205 		rte_errno = ENOMEM;
5206 		return -1;
5207 	}
5208 	wks->rssq_num = RTE_ALIGN(nrssq_num, 2);
5209 	return 0;
5210 }
5211 
5212 /**
5213  * Create a flow and add it to @p list.
5214  *
5215  * @param dev
5216  *   Pointer to Ethernet device.
5217  * @param list
5218  *   Pointer to a TAILQ flow list. If this parameter NULL,
5219  *   no list insertion occurred, flow is just created,
5220  *   this is caller's responsibility to track the
5221  *   created flow.
5222  * @param[in] attr
5223  *   Flow rule attributes.
5224  * @param[in] items
5225  *   Pattern specification (list terminated by the END pattern item).
5226  * @param[in] actions
5227  *   Associated actions (list terminated by the END action).
5228  * @param[in] external
5229  *   This flow rule is created by request external to PMD.
5230  * @param[out] error
5231  *   Perform verbose error reporting if not NULL.
5232  *
5233  * @return
5234  *   A flow index on success, 0 otherwise and rte_errno is set.
5235  */
5236 static uint32_t
5237 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
5238 		 const struct rte_flow_attr *attr,
5239 		 const struct rte_flow_item items[],
5240 		 const struct rte_flow_action original_actions[],
5241 		 bool external, struct rte_flow_error *error)
5242 {
5243 	struct mlx5_priv *priv = dev->data->dev_private;
5244 	struct rte_flow *flow = NULL;
5245 	struct mlx5_flow *dev_flow;
5246 	const struct rte_flow_action_rss *rss;
5247 	struct mlx5_translated_shared_action
5248 		shared_actions[MLX5_MAX_SHARED_ACTIONS];
5249 	int shared_actions_n = MLX5_MAX_SHARED_ACTIONS;
5250 	union {
5251 		struct mlx5_flow_expand_rss buf;
5252 		uint8_t buffer[2048];
5253 	} expand_buffer;
5254 	union {
5255 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
5256 		uint8_t buffer[2048];
5257 	} actions_rx;
5258 	union {
5259 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
5260 		uint8_t buffer[2048];
5261 	} actions_hairpin_tx;
5262 	union {
5263 		struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
5264 		uint8_t buffer[2048];
5265 	} items_tx;
5266 	struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
5267 	struct mlx5_flow_rss_desc *rss_desc;
5268 	const struct rte_flow_action *p_actions_rx;
5269 	uint32_t i;
5270 	uint32_t idx = 0;
5271 	int hairpin_flow;
5272 	struct rte_flow_attr attr_tx = { .priority = 0 };
5273 	const struct rte_flow_action *actions;
5274 	struct rte_flow_action *translated_actions = NULL;
5275 	struct mlx5_flow_tunnel *tunnel;
5276 	struct tunnel_default_miss_ctx default_miss_ctx = { 0, };
5277 	struct mlx5_flow_workspace *wks = mlx5_flow_push_thread_workspace();
5278 	struct mlx5_flow_split_info flow_split_info = {
5279 		.external = !!external,
5280 		.skip_scale = 0,
5281 		.flow_idx = 0,
5282 		.prefix_mark = 0,
5283 		.prefix_layers = 0
5284 	};
5285 	int ret;
5286 
5287 	MLX5_ASSERT(wks);
5288 	rss_desc = &wks->rss_desc;
5289 	ret = flow_shared_actions_translate(dev, original_actions,
5290 					    shared_actions,
5291 					    &shared_actions_n,
5292 					    &translated_actions, error);
5293 	if (ret < 0) {
5294 		MLX5_ASSERT(translated_actions == NULL);
5295 		return 0;
5296 	}
5297 	actions = translated_actions ? translated_actions : original_actions;
5298 	p_actions_rx = actions;
5299 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
5300 	ret = flow_drv_validate(dev, attr, items, p_actions_rx,
5301 				external, hairpin_flow, error);
5302 	if (ret < 0)
5303 		goto error_before_hairpin_split;
5304 	flow = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], &idx);
5305 	if (!flow) {
5306 		rte_errno = ENOMEM;
5307 		goto error_before_hairpin_split;
5308 	}
5309 	if (hairpin_flow > 0) {
5310 		if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
5311 			rte_errno = EINVAL;
5312 			goto error_before_hairpin_split;
5313 		}
5314 		flow_hairpin_split(dev, actions, actions_rx.actions,
5315 				   actions_hairpin_tx.actions, items_tx.items,
5316 				   idx);
5317 		p_actions_rx = actions_rx.actions;
5318 	}
5319 	flow_split_info.flow_idx = idx;
5320 	flow->drv_type = flow_get_drv_type(dev, attr);
5321 	MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
5322 		    flow->drv_type < MLX5_FLOW_TYPE_MAX);
5323 	memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue));
5324 	rss = flow_get_rss_action(p_actions_rx);
5325 	if (rss) {
5326 		if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num))
5327 			return 0;
5328 		/*
5329 		 * The following information is required by
5330 		 * mlx5_flow_hashfields_adjust() in advance.
5331 		 */
5332 		rss_desc->level = rss->level;
5333 		/* RSS type 0 indicates default RSS type (ETH_RSS_IP). */
5334 		rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types;
5335 	}
5336 	flow->dev_handles = 0;
5337 	if (rss && rss->types) {
5338 		unsigned int graph_root;
5339 
5340 		graph_root = find_graph_root(items, rss->level);
5341 		ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
5342 					   items, rss->types,
5343 					   mlx5_support_expansion, graph_root);
5344 		MLX5_ASSERT(ret > 0 &&
5345 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
5346 	} else {
5347 		buf->entries = 1;
5348 		buf->entry[0].pattern = (void *)(uintptr_t)items;
5349 	}
5350 	rss_desc->shared_rss = flow_get_shared_rss_action(dev, shared_actions,
5351 						      shared_actions_n);
5352 	for (i = 0; i < buf->entries; ++i) {
5353 		/* Initialize flow split data. */
5354 		flow_split_info.prefix_layers = 0;
5355 		flow_split_info.prefix_mark = 0;
5356 		flow_split_info.skip_scale = 0;
5357 		/*
5358 		 * The splitter may create multiple dev_flows,
5359 		 * depending on configuration. In the simplest
5360 		 * case it just creates unmodified original flow.
5361 		 */
5362 		ret = flow_create_split_outer(dev, flow, attr,
5363 					      buf->entry[i].pattern,
5364 					      p_actions_rx, &flow_split_info,
5365 					      error);
5366 		if (ret < 0)
5367 			goto error;
5368 		if (is_flow_tunnel_steer_rule(dev, attr,
5369 					      buf->entry[i].pattern,
5370 					      p_actions_rx)) {
5371 			ret = flow_tunnel_add_default_miss(dev, flow, attr,
5372 							   p_actions_rx,
5373 							   idx,
5374 							   &default_miss_ctx,
5375 							   error);
5376 			if (ret < 0) {
5377 				mlx5_free(default_miss_ctx.queue);
5378 				goto error;
5379 			}
5380 		}
5381 	}
5382 	/* Create the tx flow. */
5383 	if (hairpin_flow) {
5384 		attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
5385 		attr_tx.ingress = 0;
5386 		attr_tx.egress = 1;
5387 		dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
5388 					 actions_hairpin_tx.actions,
5389 					 idx, error);
5390 		if (!dev_flow)
5391 			goto error;
5392 		dev_flow->flow = flow;
5393 		dev_flow->external = 0;
5394 		SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
5395 			      dev_flow->handle, next);
5396 		ret = flow_drv_translate(dev, dev_flow, &attr_tx,
5397 					 items_tx.items,
5398 					 actions_hairpin_tx.actions, error);
5399 		if (ret < 0)
5400 			goto error;
5401 	}
5402 	/*
5403 	 * Update the metadata register copy table. If extensive
5404 	 * metadata feature is enabled and registers are supported
5405 	 * we might create the extra rte_flow for each unique
5406 	 * MARK/FLAG action ID.
5407 	 *
5408 	 * The table is updated for ingress Flows only, because
5409 	 * the egress Flows belong to the different device and
5410 	 * copy table should be updated in peer NIC Rx domain.
5411 	 */
5412 	if (attr->ingress &&
5413 	    (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
5414 		ret = flow_mreg_update_copy_table(dev, flow, actions, error);
5415 		if (ret)
5416 			goto error;
5417 	}
5418 	/*
5419 	 * If the flow is external (from application) OR device is started,
5420 	 * OR mreg discover, then apply immediately.
5421 	 */
5422 	if (external || dev->data->dev_started ||
5423 	    (attr->group == MLX5_FLOW_MREG_CP_TABLE_GROUP &&
5424 	     attr->priority == MLX5_FLOW_PRIO_RSVD)) {
5425 		ret = flow_drv_apply(dev, flow, error);
5426 		if (ret < 0)
5427 			goto error;
5428 	}
5429 	if (list) {
5430 		rte_spinlock_lock(&priv->flow_list_lock);
5431 		ILIST_INSERT(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, idx,
5432 			     flow, next);
5433 		rte_spinlock_unlock(&priv->flow_list_lock);
5434 	}
5435 	flow_rxq_flags_set(dev, flow);
5436 	rte_free(translated_actions);
5437 	tunnel = flow_tunnel_from_rule(dev, attr, items, actions);
5438 	if (tunnel) {
5439 		flow->tunnel = 1;
5440 		flow->tunnel_id = tunnel->tunnel_id;
5441 		__atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED);
5442 		mlx5_free(default_miss_ctx.queue);
5443 	}
5444 	mlx5_flow_pop_thread_workspace();
5445 	return idx;
5446 error:
5447 	MLX5_ASSERT(flow);
5448 	ret = rte_errno; /* Save rte_errno before cleanup. */
5449 	flow_mreg_del_copy_action(dev, flow);
5450 	flow_drv_destroy(dev, flow);
5451 	if (rss_desc->shared_rss)
5452 		__atomic_sub_fetch(&((struct mlx5_shared_action_rss *)
5453 			mlx5_ipool_get
5454 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
5455 			rss_desc->shared_rss))->refcnt, 1, __ATOMIC_RELAXED);
5456 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], idx);
5457 	rte_errno = ret; /* Restore rte_errno. */
5458 	ret = rte_errno;
5459 	rte_errno = ret;
5460 	mlx5_flow_pop_thread_workspace();
5461 error_before_hairpin_split:
5462 	rte_free(translated_actions);
5463 	return 0;
5464 }
5465 
5466 /**
5467  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
5468  * incoming packets to table 1.
5469  *
5470  * Other flow rules, requested for group n, will be created in
5471  * e-switch table n+1.
5472  * Jump action to e-switch group n will be created to group n+1.
5473  *
5474  * Used when working in switchdev mode, to utilise advantages of table 1
5475  * and above.
5476  *
5477  * @param dev
5478  *   Pointer to Ethernet device.
5479  *
5480  * @return
5481  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
5482  */
5483 struct rte_flow *
5484 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
5485 {
5486 	const struct rte_flow_attr attr = {
5487 		.group = 0,
5488 		.priority = 0,
5489 		.ingress = 1,
5490 		.egress = 0,
5491 		.transfer = 1,
5492 	};
5493 	const struct rte_flow_item pattern = {
5494 		.type = RTE_FLOW_ITEM_TYPE_END,
5495 	};
5496 	struct rte_flow_action_jump jump = {
5497 		.group = 1,
5498 	};
5499 	const struct rte_flow_action actions[] = {
5500 		{
5501 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
5502 			.conf = &jump,
5503 		},
5504 		{
5505 			.type = RTE_FLOW_ACTION_TYPE_END,
5506 		},
5507 	};
5508 	struct mlx5_priv *priv = dev->data->dev_private;
5509 	struct rte_flow_error error;
5510 
5511 	return (void *)(uintptr_t)flow_list_create(dev, &priv->ctrl_flows,
5512 						   &attr, &pattern,
5513 						   actions, false, &error);
5514 }
5515 
5516 /**
5517  * Validate a flow supported by the NIC.
5518  *
5519  * @see rte_flow_validate()
5520  * @see rte_flow_ops
5521  */
5522 int
5523 mlx5_flow_validate(struct rte_eth_dev *dev,
5524 		   const struct rte_flow_attr *attr,
5525 		   const struct rte_flow_item items[],
5526 		   const struct rte_flow_action original_actions[],
5527 		   struct rte_flow_error *error)
5528 {
5529 	int hairpin_flow;
5530 	struct mlx5_translated_shared_action
5531 		shared_actions[MLX5_MAX_SHARED_ACTIONS];
5532 	int shared_actions_n = MLX5_MAX_SHARED_ACTIONS;
5533 	const struct rte_flow_action *actions;
5534 	struct rte_flow_action *translated_actions = NULL;
5535 	int ret = flow_shared_actions_translate(dev, original_actions,
5536 						shared_actions,
5537 						&shared_actions_n,
5538 						&translated_actions, error);
5539 
5540 	if (ret)
5541 		return ret;
5542 	actions = translated_actions ? translated_actions : original_actions;
5543 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
5544 	ret = flow_drv_validate(dev, attr, items, actions,
5545 				true, hairpin_flow, error);
5546 	rte_free(translated_actions);
5547 	return ret;
5548 }
5549 
5550 /**
5551  * Create a flow.
5552  *
5553  * @see rte_flow_create()
5554  * @see rte_flow_ops
5555  */
5556 struct rte_flow *
5557 mlx5_flow_create(struct rte_eth_dev *dev,
5558 		 const struct rte_flow_attr *attr,
5559 		 const struct rte_flow_item items[],
5560 		 const struct rte_flow_action actions[],
5561 		 struct rte_flow_error *error)
5562 {
5563 	struct mlx5_priv *priv = dev->data->dev_private;
5564 
5565 	/*
5566 	 * If the device is not started yet, it is not allowed to created a
5567 	 * flow from application. PMD default flows and traffic control flows
5568 	 * are not affected.
5569 	 */
5570 	if (unlikely(!dev->data->dev_started)) {
5571 		DRV_LOG(DEBUG, "port %u is not started when "
5572 			"inserting a flow", dev->data->port_id);
5573 		rte_flow_error_set(error, ENODEV,
5574 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5575 				   NULL,
5576 				   "port not started");
5577 		return NULL;
5578 	}
5579 
5580 	return (void *)(uintptr_t)flow_list_create(dev, &priv->flows,
5581 				  attr, items, actions, true, error);
5582 }
5583 
5584 /**
5585  * Destroy a flow in a list.
5586  *
5587  * @param dev
5588  *   Pointer to Ethernet device.
5589  * @param list
5590  *   Pointer to the Indexed flow list. If this parameter NULL,
5591  *   there is no flow removal from the list. Be noted that as
5592  *   flow is add to the indexed list, memory of the indexed
5593  *   list points to maybe changed as flow destroyed.
5594  * @param[in] flow_idx
5595  *   Index of flow to destroy.
5596  */
5597 static void
5598 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
5599 		  uint32_t flow_idx)
5600 {
5601 	struct mlx5_priv *priv = dev->data->dev_private;
5602 	struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
5603 					       [MLX5_IPOOL_RTE_FLOW], flow_idx);
5604 
5605 	if (!flow)
5606 		return;
5607 	/*
5608 	 * Update RX queue flags only if port is started, otherwise it is
5609 	 * already clean.
5610 	 */
5611 	if (dev->data->dev_started)
5612 		flow_rxq_flags_trim(dev, flow);
5613 	flow_drv_destroy(dev, flow);
5614 	if (list) {
5615 		rte_spinlock_lock(&priv->flow_list_lock);
5616 		ILIST_REMOVE(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list,
5617 			     flow_idx, flow, next);
5618 		rte_spinlock_unlock(&priv->flow_list_lock);
5619 	}
5620 	if (flow->tunnel) {
5621 		struct mlx5_flow_tunnel *tunnel;
5622 
5623 		tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id);
5624 		RTE_VERIFY(tunnel);
5625 		if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
5626 			mlx5_flow_tunnel_free(dev, tunnel);
5627 	}
5628 	flow_mreg_del_copy_action(dev, flow);
5629 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
5630 }
5631 
5632 /**
5633  * Destroy all flows.
5634  *
5635  * @param dev
5636  *   Pointer to Ethernet device.
5637  * @param list
5638  *   Pointer to the Indexed flow list.
5639  * @param active
5640  *   If flushing is called avtively.
5641  */
5642 void
5643 mlx5_flow_list_flush(struct rte_eth_dev *dev, uint32_t *list, bool active)
5644 {
5645 	uint32_t num_flushed = 0;
5646 
5647 	while (*list) {
5648 		flow_list_destroy(dev, list, *list);
5649 		num_flushed++;
5650 	}
5651 	if (active) {
5652 		DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
5653 			dev->data->port_id, num_flushed);
5654 	}
5655 }
5656 
5657 /**
5658  * Stop all default actions for flows.
5659  *
5660  * @param dev
5661  *   Pointer to Ethernet device.
5662  */
5663 void
5664 mlx5_flow_stop_default(struct rte_eth_dev *dev)
5665 {
5666 	flow_mreg_del_default_copy_action(dev);
5667 	flow_rxq_flags_clear(dev);
5668 }
5669 
5670 /**
5671  * Start all default actions for flows.
5672  *
5673  * @param dev
5674  *   Pointer to Ethernet device.
5675  * @return
5676  *   0 on success, a negative errno value otherwise and rte_errno is set.
5677  */
5678 int
5679 mlx5_flow_start_default(struct rte_eth_dev *dev)
5680 {
5681 	struct rte_flow_error error;
5682 
5683 	/* Make sure default copy action (reg_c[0] -> reg_b) is created. */
5684 	return flow_mreg_add_default_copy_action(dev, &error);
5685 }
5686 
5687 /**
5688  * Release key of thread specific flow workspace data.
5689  */
5690 static void
5691 flow_release_workspace(void *data)
5692 {
5693 	struct mlx5_flow_workspace *wks = data;
5694 	struct mlx5_flow_workspace *next;
5695 
5696 	while (wks) {
5697 		next = wks->next;
5698 		free(wks->rss_desc.queue);
5699 		free(wks);
5700 		wks = next;
5701 	}
5702 }
5703 
5704 /**
5705  * Initialize key of thread specific flow workspace data.
5706  */
5707 static void
5708 flow_alloc_workspace(void)
5709 {
5710 	if (pthread_key_create(&key_workspace, flow_release_workspace))
5711 		DRV_LOG(ERR, "Can't create flow workspace data thread key.");
5712 }
5713 
5714 /**
5715  * Get thread specific current flow workspace.
5716  *
5717  * @return pointer to thread specific flow workspace data, NULL on error.
5718  */
5719 struct mlx5_flow_workspace*
5720 mlx5_flow_get_thread_workspace(void)
5721 {
5722 	struct mlx5_flow_workspace *data;
5723 
5724 	data = pthread_getspecific(key_workspace);
5725 	MLX5_ASSERT(data && data->inuse);
5726 	if (!data || !data->inuse)
5727 		DRV_LOG(ERR, "flow workspace not initialized.");
5728 	return data;
5729 }
5730 
5731 /**
5732  * Allocate and init new flow workspace.
5733  *
5734  * @return pointer to flow workspace data, NULL on error.
5735  */
5736 static struct mlx5_flow_workspace*
5737 flow_alloc_thread_workspace(void)
5738 {
5739 	struct mlx5_flow_workspace *data = calloc(1, sizeof(*data));
5740 
5741 	if (!data) {
5742 		DRV_LOG(ERR, "Failed to allocate flow workspace "
5743 			"memory.");
5744 		return NULL;
5745 	}
5746 	data->rss_desc.queue = calloc(1,
5747 			sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM);
5748 	if (!data->rss_desc.queue)
5749 		goto err;
5750 	data->rssq_num = MLX5_RSSQ_DEFAULT_NUM;
5751 	return data;
5752 err:
5753 	if (data->rss_desc.queue)
5754 		free(data->rss_desc.queue);
5755 	free(data);
5756 	return NULL;
5757 }
5758 
5759 /**
5760  * Get new thread specific flow workspace.
5761  *
5762  * If current workspace inuse, create new one and set as current.
5763  *
5764  * @return pointer to thread specific flow workspace data, NULL on error.
5765  */
5766 static struct mlx5_flow_workspace*
5767 mlx5_flow_push_thread_workspace(void)
5768 {
5769 	struct mlx5_flow_workspace *curr;
5770 	struct mlx5_flow_workspace *data;
5771 
5772 	if (pthread_once(&key_workspace_init, flow_alloc_workspace)) {
5773 		DRV_LOG(ERR, "Failed to init flow workspace data thread key.");
5774 		return NULL;
5775 	}
5776 	curr = pthread_getspecific(key_workspace);
5777 	if (!curr) {
5778 		data = flow_alloc_thread_workspace();
5779 		if (!data)
5780 			return NULL;
5781 	} else if (!curr->inuse) {
5782 		data = curr;
5783 	} else if (curr->next) {
5784 		data = curr->next;
5785 	} else {
5786 		data = flow_alloc_thread_workspace();
5787 		if (!data)
5788 			return NULL;
5789 		curr->next = data;
5790 		data->prev = curr;
5791 	}
5792 	data->inuse = 1;
5793 	data->flow_idx = 0;
5794 	/* Set as current workspace */
5795 	if (pthread_setspecific(key_workspace, data))
5796 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
5797 	return data;
5798 }
5799 
5800 /**
5801  * Close current thread specific flow workspace.
5802  *
5803  * If previous workspace available, set it as current.
5804  *
5805  * @return pointer to thread specific flow workspace data, NULL on error.
5806  */
5807 static void
5808 mlx5_flow_pop_thread_workspace(void)
5809 {
5810 	struct mlx5_flow_workspace *data = mlx5_flow_get_thread_workspace();
5811 
5812 	if (!data)
5813 		return;
5814 	if (!data->inuse) {
5815 		DRV_LOG(ERR, "Failed to close unused flow workspace.");
5816 		return;
5817 	}
5818 	data->inuse = 0;
5819 	if (!data->prev)
5820 		return;
5821 	if (pthread_setspecific(key_workspace, data->prev))
5822 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
5823 }
5824 
5825 /**
5826  * Verify the flow list is empty
5827  *
5828  * @param dev
5829  *  Pointer to Ethernet device.
5830  *
5831  * @return the number of flows not released.
5832  */
5833 int
5834 mlx5_flow_verify(struct rte_eth_dev *dev)
5835 {
5836 	struct mlx5_priv *priv = dev->data->dev_private;
5837 	struct rte_flow *flow;
5838 	uint32_t idx;
5839 	int ret = 0;
5840 
5841 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], priv->flows, idx,
5842 		      flow, next) {
5843 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
5844 			dev->data->port_id, (void *)flow);
5845 		++ret;
5846 	}
5847 	return ret;
5848 }
5849 
5850 /**
5851  * Enable default hairpin egress flow.
5852  *
5853  * @param dev
5854  *   Pointer to Ethernet device.
5855  * @param queue
5856  *   The queue index.
5857  *
5858  * @return
5859  *   0 on success, a negative errno value otherwise and rte_errno is set.
5860  */
5861 int
5862 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
5863 			    uint32_t queue)
5864 {
5865 	struct mlx5_priv *priv = dev->data->dev_private;
5866 	const struct rte_flow_attr attr = {
5867 		.egress = 1,
5868 		.priority = 0,
5869 	};
5870 	struct mlx5_rte_flow_item_tx_queue queue_spec = {
5871 		.queue = queue,
5872 	};
5873 	struct mlx5_rte_flow_item_tx_queue queue_mask = {
5874 		.queue = UINT32_MAX,
5875 	};
5876 	struct rte_flow_item items[] = {
5877 		{
5878 			.type = (enum rte_flow_item_type)
5879 				MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
5880 			.spec = &queue_spec,
5881 			.last = NULL,
5882 			.mask = &queue_mask,
5883 		},
5884 		{
5885 			.type = RTE_FLOW_ITEM_TYPE_END,
5886 		},
5887 	};
5888 	struct rte_flow_action_jump jump = {
5889 		.group = MLX5_HAIRPIN_TX_TABLE,
5890 	};
5891 	struct rte_flow_action actions[2];
5892 	uint32_t flow_idx;
5893 	struct rte_flow_error error;
5894 
5895 	actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
5896 	actions[0].conf = &jump;
5897 	actions[1].type = RTE_FLOW_ACTION_TYPE_END;
5898 	flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5899 				&attr, items, actions, false, &error);
5900 	if (!flow_idx) {
5901 		DRV_LOG(DEBUG,
5902 			"Failed to create ctrl flow: rte_errno(%d),"
5903 			" type(%d), message(%s)",
5904 			rte_errno, error.type,
5905 			error.message ? error.message : " (no stated reason)");
5906 		return -rte_errno;
5907 	}
5908 	return 0;
5909 }
5910 
5911 /**
5912  * Enable a control flow configured from the control plane.
5913  *
5914  * @param dev
5915  *   Pointer to Ethernet device.
5916  * @param eth_spec
5917  *   An Ethernet flow spec to apply.
5918  * @param eth_mask
5919  *   An Ethernet flow mask to apply.
5920  * @param vlan_spec
5921  *   A VLAN flow spec to apply.
5922  * @param vlan_mask
5923  *   A VLAN flow mask to apply.
5924  *
5925  * @return
5926  *   0 on success, a negative errno value otherwise and rte_errno is set.
5927  */
5928 int
5929 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
5930 		    struct rte_flow_item_eth *eth_spec,
5931 		    struct rte_flow_item_eth *eth_mask,
5932 		    struct rte_flow_item_vlan *vlan_spec,
5933 		    struct rte_flow_item_vlan *vlan_mask)
5934 {
5935 	struct mlx5_priv *priv = dev->data->dev_private;
5936 	const struct rte_flow_attr attr = {
5937 		.ingress = 1,
5938 		.priority = MLX5_FLOW_PRIO_RSVD,
5939 	};
5940 	struct rte_flow_item items[] = {
5941 		{
5942 			.type = RTE_FLOW_ITEM_TYPE_ETH,
5943 			.spec = eth_spec,
5944 			.last = NULL,
5945 			.mask = eth_mask,
5946 		},
5947 		{
5948 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
5949 					      RTE_FLOW_ITEM_TYPE_END,
5950 			.spec = vlan_spec,
5951 			.last = NULL,
5952 			.mask = vlan_mask,
5953 		},
5954 		{
5955 			.type = RTE_FLOW_ITEM_TYPE_END,
5956 		},
5957 	};
5958 	uint16_t queue[priv->reta_idx_n];
5959 	struct rte_flow_action_rss action_rss = {
5960 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
5961 		.level = 0,
5962 		.types = priv->rss_conf.rss_hf,
5963 		.key_len = priv->rss_conf.rss_key_len,
5964 		.queue_num = priv->reta_idx_n,
5965 		.key = priv->rss_conf.rss_key,
5966 		.queue = queue,
5967 	};
5968 	struct rte_flow_action actions[] = {
5969 		{
5970 			.type = RTE_FLOW_ACTION_TYPE_RSS,
5971 			.conf = &action_rss,
5972 		},
5973 		{
5974 			.type = RTE_FLOW_ACTION_TYPE_END,
5975 		},
5976 	};
5977 	uint32_t flow_idx;
5978 	struct rte_flow_error error;
5979 	unsigned int i;
5980 
5981 	if (!priv->reta_idx_n || !priv->rxqs_n) {
5982 		return 0;
5983 	}
5984 	if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
5985 		action_rss.types = 0;
5986 	for (i = 0; i != priv->reta_idx_n; ++i)
5987 		queue[i] = (*priv->reta_idx)[i];
5988 	flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5989 				&attr, items, actions, false, &error);
5990 	if (!flow_idx)
5991 		return -rte_errno;
5992 	return 0;
5993 }
5994 
5995 /**
5996  * Enable a flow control configured from the control plane.
5997  *
5998  * @param dev
5999  *   Pointer to Ethernet device.
6000  * @param eth_spec
6001  *   An Ethernet flow spec to apply.
6002  * @param eth_mask
6003  *   An Ethernet flow mask to apply.
6004  *
6005  * @return
6006  *   0 on success, a negative errno value otherwise and rte_errno is set.
6007  */
6008 int
6009 mlx5_ctrl_flow(struct rte_eth_dev *dev,
6010 	       struct rte_flow_item_eth *eth_spec,
6011 	       struct rte_flow_item_eth *eth_mask)
6012 {
6013 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
6014 }
6015 
6016 /**
6017  * Create default miss flow rule matching lacp traffic
6018  *
6019  * @param dev
6020  *   Pointer to Ethernet device.
6021  * @param eth_spec
6022  *   An Ethernet flow spec to apply.
6023  *
6024  * @return
6025  *   0 on success, a negative errno value otherwise and rte_errno is set.
6026  */
6027 int
6028 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
6029 {
6030 	struct mlx5_priv *priv = dev->data->dev_private;
6031 	/*
6032 	 * The LACP matching is done by only using ether type since using
6033 	 * a multicast dst mac causes kernel to give low priority to this flow.
6034 	 */
6035 	static const struct rte_flow_item_eth lacp_spec = {
6036 		.type = RTE_BE16(0x8809),
6037 	};
6038 	static const struct rte_flow_item_eth lacp_mask = {
6039 		.type = 0xffff,
6040 	};
6041 	const struct rte_flow_attr attr = {
6042 		.ingress = 1,
6043 	};
6044 	struct rte_flow_item items[] = {
6045 		{
6046 			.type = RTE_FLOW_ITEM_TYPE_ETH,
6047 			.spec = &lacp_spec,
6048 			.mask = &lacp_mask,
6049 		},
6050 		{
6051 			.type = RTE_FLOW_ITEM_TYPE_END,
6052 		},
6053 	};
6054 	struct rte_flow_action actions[] = {
6055 		{
6056 			.type = (enum rte_flow_action_type)
6057 				MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
6058 		},
6059 		{
6060 			.type = RTE_FLOW_ACTION_TYPE_END,
6061 		},
6062 	};
6063 	struct rte_flow_error error;
6064 	uint32_t flow_idx = flow_list_create(dev, &priv->ctrl_flows,
6065 				&attr, items, actions, false, &error);
6066 
6067 	if (!flow_idx)
6068 		return -rte_errno;
6069 	return 0;
6070 }
6071 
6072 /**
6073  * Destroy a flow.
6074  *
6075  * @see rte_flow_destroy()
6076  * @see rte_flow_ops
6077  */
6078 int
6079 mlx5_flow_destroy(struct rte_eth_dev *dev,
6080 		  struct rte_flow *flow,
6081 		  struct rte_flow_error *error __rte_unused)
6082 {
6083 	struct mlx5_priv *priv = dev->data->dev_private;
6084 
6085 	flow_list_destroy(dev, &priv->flows, (uintptr_t)(void *)flow);
6086 	return 0;
6087 }
6088 
6089 /**
6090  * Destroy all flows.
6091  *
6092  * @see rte_flow_flush()
6093  * @see rte_flow_ops
6094  */
6095 int
6096 mlx5_flow_flush(struct rte_eth_dev *dev,
6097 		struct rte_flow_error *error __rte_unused)
6098 {
6099 	struct mlx5_priv *priv = dev->data->dev_private;
6100 
6101 	mlx5_flow_list_flush(dev, &priv->flows, false);
6102 	return 0;
6103 }
6104 
6105 /**
6106  * Isolated mode.
6107  *
6108  * @see rte_flow_isolate()
6109  * @see rte_flow_ops
6110  */
6111 int
6112 mlx5_flow_isolate(struct rte_eth_dev *dev,
6113 		  int enable,
6114 		  struct rte_flow_error *error)
6115 {
6116 	struct mlx5_priv *priv = dev->data->dev_private;
6117 
6118 	if (dev->data->dev_started) {
6119 		rte_flow_error_set(error, EBUSY,
6120 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6121 				   NULL,
6122 				   "port must be stopped first");
6123 		return -rte_errno;
6124 	}
6125 	priv->isolated = !!enable;
6126 	if (enable)
6127 		dev->dev_ops = &mlx5_os_dev_ops_isolate;
6128 	else
6129 		dev->dev_ops = &mlx5_os_dev_ops;
6130 
6131 	dev->rx_descriptor_status = mlx5_rx_descriptor_status;
6132 	dev->tx_descriptor_status = mlx5_tx_descriptor_status;
6133 
6134 	return 0;
6135 }
6136 
6137 /**
6138  * Query a flow.
6139  *
6140  * @see rte_flow_query()
6141  * @see rte_flow_ops
6142  */
6143 static int
6144 flow_drv_query(struct rte_eth_dev *dev,
6145 	       uint32_t flow_idx,
6146 	       const struct rte_flow_action *actions,
6147 	       void *data,
6148 	       struct rte_flow_error *error)
6149 {
6150 	struct mlx5_priv *priv = dev->data->dev_private;
6151 	const struct mlx5_flow_driver_ops *fops;
6152 	struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
6153 					       [MLX5_IPOOL_RTE_FLOW],
6154 					       flow_idx);
6155 	enum mlx5_flow_drv_type ftype;
6156 
6157 	if (!flow) {
6158 		return rte_flow_error_set(error, ENOENT,
6159 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6160 			  NULL,
6161 			  "invalid flow handle");
6162 	}
6163 	ftype = flow->drv_type;
6164 	MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
6165 	fops = flow_get_drv_ops(ftype);
6166 
6167 	return fops->query(dev, flow, actions, data, error);
6168 }
6169 
6170 /**
6171  * Query a flow.
6172  *
6173  * @see rte_flow_query()
6174  * @see rte_flow_ops
6175  */
6176 int
6177 mlx5_flow_query(struct rte_eth_dev *dev,
6178 		struct rte_flow *flow,
6179 		const struct rte_flow_action *actions,
6180 		void *data,
6181 		struct rte_flow_error *error)
6182 {
6183 	int ret;
6184 
6185 	ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
6186 			     error);
6187 	if (ret < 0)
6188 		return ret;
6189 	return 0;
6190 }
6191 
6192 /**
6193  * Manage filter operations.
6194  *
6195  * @param dev
6196  *   Pointer to Ethernet device structure.
6197  * @param filter_type
6198  *   Filter type.
6199  * @param filter_op
6200  *   Operation to perform.
6201  * @param arg
6202  *   Pointer to operation-specific structure.
6203  *
6204  * @return
6205  *   0 on success, a negative errno value otherwise and rte_errno is set.
6206  */
6207 int
6208 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
6209 		     enum rte_filter_type filter_type,
6210 		     enum rte_filter_op filter_op,
6211 		     void *arg)
6212 {
6213 	switch (filter_type) {
6214 	case RTE_ETH_FILTER_GENERIC:
6215 		if (filter_op != RTE_ETH_FILTER_GET) {
6216 			rte_errno = EINVAL;
6217 			return -rte_errno;
6218 		}
6219 		*(const void **)arg = &mlx5_flow_ops;
6220 		return 0;
6221 	default:
6222 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
6223 			dev->data->port_id, filter_type);
6224 		rte_errno = ENOTSUP;
6225 		return -rte_errno;
6226 	}
6227 	return 0;
6228 }
6229 
6230 /**
6231  * Create the needed meter and suffix tables.
6232  *
6233  * @param[in] dev
6234  *   Pointer to Ethernet device.
6235  * @param[in] fm
6236  *   Pointer to the flow meter.
6237  *
6238  * @return
6239  *   Pointer to table set on success, NULL otherwise.
6240  */
6241 struct mlx5_meter_domains_infos *
6242 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
6243 			  const struct mlx5_flow_meter *fm)
6244 {
6245 	const struct mlx5_flow_driver_ops *fops;
6246 
6247 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6248 	return fops->create_mtr_tbls(dev, fm);
6249 }
6250 
6251 /**
6252  * Destroy the meter table set.
6253  *
6254  * @param[in] dev
6255  *   Pointer to Ethernet device.
6256  * @param[in] tbl
6257  *   Pointer to the meter table set.
6258  *
6259  * @return
6260  *   0 on success.
6261  */
6262 int
6263 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
6264 			   struct mlx5_meter_domains_infos *tbls)
6265 {
6266 	const struct mlx5_flow_driver_ops *fops;
6267 
6268 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6269 	return fops->destroy_mtr_tbls(dev, tbls);
6270 }
6271 
6272 /**
6273  * Create policer rules.
6274  *
6275  * @param[in] dev
6276  *   Pointer to Ethernet device.
6277  * @param[in] fm
6278  *   Pointer to flow meter structure.
6279  * @param[in] attr
6280  *   Pointer to flow attributes.
6281  *
6282  * @return
6283  *   0 on success, -1 otherwise.
6284  */
6285 int
6286 mlx5_flow_create_policer_rules(struct rte_eth_dev *dev,
6287 			       struct mlx5_flow_meter *fm,
6288 			       const struct rte_flow_attr *attr)
6289 {
6290 	const struct mlx5_flow_driver_ops *fops;
6291 
6292 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6293 	return fops->create_policer_rules(dev, fm, attr);
6294 }
6295 
6296 /**
6297  * Destroy policer rules.
6298  *
6299  * @param[in] fm
6300  *   Pointer to flow meter structure.
6301  * @param[in] attr
6302  *   Pointer to flow attributes.
6303  *
6304  * @return
6305  *   0 on success, -1 otherwise.
6306  */
6307 int
6308 mlx5_flow_destroy_policer_rules(struct rte_eth_dev *dev,
6309 				struct mlx5_flow_meter *fm,
6310 				const struct rte_flow_attr *attr)
6311 {
6312 	const struct mlx5_flow_driver_ops *fops;
6313 
6314 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6315 	return fops->destroy_policer_rules(dev, fm, attr);
6316 }
6317 
6318 /**
6319  * Allocate a counter.
6320  *
6321  * @param[in] dev
6322  *   Pointer to Ethernet device structure.
6323  *
6324  * @return
6325  *   Index to allocated counter  on success, 0 otherwise.
6326  */
6327 uint32_t
6328 mlx5_counter_alloc(struct rte_eth_dev *dev)
6329 {
6330 	const struct mlx5_flow_driver_ops *fops;
6331 	struct rte_flow_attr attr = { .transfer = 0 };
6332 
6333 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6334 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6335 		return fops->counter_alloc(dev);
6336 	}
6337 	DRV_LOG(ERR,
6338 		"port %u counter allocate is not supported.",
6339 		 dev->data->port_id);
6340 	return 0;
6341 }
6342 
6343 /**
6344  * Free a counter.
6345  *
6346  * @param[in] dev
6347  *   Pointer to Ethernet device structure.
6348  * @param[in] cnt
6349  *   Index to counter to be free.
6350  */
6351 void
6352 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
6353 {
6354 	const struct mlx5_flow_driver_ops *fops;
6355 	struct rte_flow_attr attr = { .transfer = 0 };
6356 
6357 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6358 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6359 		fops->counter_free(dev, cnt);
6360 		return;
6361 	}
6362 	DRV_LOG(ERR,
6363 		"port %u counter free is not supported.",
6364 		 dev->data->port_id);
6365 }
6366 
6367 /**
6368  * Query counter statistics.
6369  *
6370  * @param[in] dev
6371  *   Pointer to Ethernet device structure.
6372  * @param[in] cnt
6373  *   Index to counter to query.
6374  * @param[in] clear
6375  *   Set to clear counter statistics.
6376  * @param[out] pkts
6377  *   The counter hits packets number to save.
6378  * @param[out] bytes
6379  *   The counter hits bytes number to save.
6380  *
6381  * @return
6382  *   0 on success, a negative errno value otherwise.
6383  */
6384 int
6385 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
6386 		   bool clear, uint64_t *pkts, uint64_t *bytes)
6387 {
6388 	const struct mlx5_flow_driver_ops *fops;
6389 	struct rte_flow_attr attr = { .transfer = 0 };
6390 
6391 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6392 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6393 		return fops->counter_query(dev, cnt, clear, pkts, bytes);
6394 	}
6395 	DRV_LOG(ERR,
6396 		"port %u counter query is not supported.",
6397 		 dev->data->port_id);
6398 	return -ENOTSUP;
6399 }
6400 
6401 /**
6402  * Allocate a new memory for the counter values wrapped by all the needed
6403  * management.
6404  *
6405  * @param[in] sh
6406  *   Pointer to mlx5_dev_ctx_shared object.
6407  *
6408  * @return
6409  *   0 on success, a negative errno value otherwise.
6410  */
6411 static int
6412 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh)
6413 {
6414 	struct mlx5_devx_mkey_attr mkey_attr;
6415 	struct mlx5_counter_stats_mem_mng *mem_mng;
6416 	volatile struct flow_counter_stats *raw_data;
6417 	int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES;
6418 	int size = (sizeof(struct flow_counter_stats) *
6419 			MLX5_COUNTERS_PER_POOL +
6420 			sizeof(struct mlx5_counter_stats_raw)) * raws_n +
6421 			sizeof(struct mlx5_counter_stats_mem_mng);
6422 	size_t pgsize = rte_mem_page_size();
6423 	uint8_t *mem;
6424 	int i;
6425 
6426 	if (pgsize == (size_t)-1) {
6427 		DRV_LOG(ERR, "Failed to get mem page size");
6428 		rte_errno = ENOMEM;
6429 		return -ENOMEM;
6430 	}
6431 	mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY);
6432 	if (!mem) {
6433 		rte_errno = ENOMEM;
6434 		return -ENOMEM;
6435 	}
6436 	mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1;
6437 	size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n;
6438 	mem_mng->umem = mlx5_glue->devx_umem_reg(sh->ctx, mem, size,
6439 						 IBV_ACCESS_LOCAL_WRITE);
6440 	if (!mem_mng->umem) {
6441 		rte_errno = errno;
6442 		mlx5_free(mem);
6443 		return -rte_errno;
6444 	}
6445 	mkey_attr.addr = (uintptr_t)mem;
6446 	mkey_attr.size = size;
6447 	mkey_attr.umem_id = mlx5_os_get_umem_id(mem_mng->umem);
6448 	mkey_attr.pd = sh->pdn;
6449 	mkey_attr.log_entity_size = 0;
6450 	mkey_attr.pg_access = 0;
6451 	mkey_attr.klm_array = NULL;
6452 	mkey_attr.klm_num = 0;
6453 	mkey_attr.relaxed_ordering_write = sh->cmng.relaxed_ordering_write;
6454 	mkey_attr.relaxed_ordering_read = sh->cmng.relaxed_ordering_read;
6455 	mem_mng->dm = mlx5_devx_cmd_mkey_create(sh->ctx, &mkey_attr);
6456 	if (!mem_mng->dm) {
6457 		mlx5_glue->devx_umem_dereg(mem_mng->umem);
6458 		rte_errno = errno;
6459 		mlx5_free(mem);
6460 		return -rte_errno;
6461 	}
6462 	mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size);
6463 	raw_data = (volatile struct flow_counter_stats *)mem;
6464 	for (i = 0; i < raws_n; ++i) {
6465 		mem_mng->raws[i].mem_mng = mem_mng;
6466 		mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL;
6467 	}
6468 	for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i)
6469 		LIST_INSERT_HEAD(&sh->cmng.free_stat_raws,
6470 				 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i,
6471 				 next);
6472 	LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next);
6473 	sh->cmng.mem_mng = mem_mng;
6474 	return 0;
6475 }
6476 
6477 /**
6478  * Set the statistic memory to the new counter pool.
6479  *
6480  * @param[in] sh
6481  *   Pointer to mlx5_dev_ctx_shared object.
6482  * @param[in] pool
6483  *   Pointer to the pool to set the statistic memory.
6484  *
6485  * @return
6486  *   0 on success, a negative errno value otherwise.
6487  */
6488 static int
6489 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh,
6490 			       struct mlx5_flow_counter_pool *pool)
6491 {
6492 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6493 	/* Resize statistic memory once used out. */
6494 	if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) &&
6495 	    mlx5_flow_create_counter_stat_mem_mng(sh)) {
6496 		DRV_LOG(ERR, "Cannot resize counter stat mem.");
6497 		return -1;
6498 	}
6499 	rte_spinlock_lock(&pool->sl);
6500 	pool->raw = cmng->mem_mng->raws + pool->index %
6501 		    MLX5_CNT_CONTAINER_RESIZE;
6502 	rte_spinlock_unlock(&pool->sl);
6503 	pool->raw_hw = NULL;
6504 	return 0;
6505 }
6506 
6507 #define MLX5_POOL_QUERY_FREQ_US 1000000
6508 
6509 /**
6510  * Set the periodic procedure for triggering asynchronous batch queries for all
6511  * the counter pools.
6512  *
6513  * @param[in] sh
6514  *   Pointer to mlx5_dev_ctx_shared object.
6515  */
6516 void
6517 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
6518 {
6519 	uint32_t pools_n, us;
6520 
6521 	pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED);
6522 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
6523 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
6524 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
6525 		sh->cmng.query_thread_on = 0;
6526 		DRV_LOG(ERR, "Cannot reinitialize query alarm");
6527 	} else {
6528 		sh->cmng.query_thread_on = 1;
6529 	}
6530 }
6531 
6532 /**
6533  * The periodic procedure for triggering asynchronous batch queries for all the
6534  * counter pools. This function is probably called by the host thread.
6535  *
6536  * @param[in] arg
6537  *   The parameter for the alarm process.
6538  */
6539 void
6540 mlx5_flow_query_alarm(void *arg)
6541 {
6542 	struct mlx5_dev_ctx_shared *sh = arg;
6543 	int ret;
6544 	uint16_t pool_index = sh->cmng.pool_index;
6545 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6546 	struct mlx5_flow_counter_pool *pool;
6547 	uint16_t n_valid;
6548 
6549 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
6550 		goto set_alarm;
6551 	rte_spinlock_lock(&cmng->pool_update_sl);
6552 	pool = cmng->pools[pool_index];
6553 	n_valid = cmng->n_valid;
6554 	rte_spinlock_unlock(&cmng->pool_update_sl);
6555 	/* Set the statistic memory to the new created pool. */
6556 	if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool)))
6557 		goto set_alarm;
6558 	if (pool->raw_hw)
6559 		/* There is a pool query in progress. */
6560 		goto set_alarm;
6561 	pool->raw_hw =
6562 		LIST_FIRST(&sh->cmng.free_stat_raws);
6563 	if (!pool->raw_hw)
6564 		/* No free counter statistics raw memory. */
6565 		goto set_alarm;
6566 	/*
6567 	 * Identify the counters released between query trigger and query
6568 	 * handle more efficiently. The counter released in this gap period
6569 	 * should wait for a new round of query as the new arrived packets
6570 	 * will not be taken into account.
6571 	 */
6572 	pool->query_gen++;
6573 	ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0,
6574 					       MLX5_COUNTERS_PER_POOL,
6575 					       NULL, NULL,
6576 					       pool->raw_hw->mem_mng->dm->id,
6577 					       (void *)(uintptr_t)
6578 					       pool->raw_hw->data,
6579 					       sh->devx_comp,
6580 					       (uint64_t)(uintptr_t)pool);
6581 	if (ret) {
6582 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
6583 			" %d", pool->min_dcs->id);
6584 		pool->raw_hw = NULL;
6585 		goto set_alarm;
6586 	}
6587 	LIST_REMOVE(pool->raw_hw, next);
6588 	sh->cmng.pending_queries++;
6589 	pool_index++;
6590 	if (pool_index >= n_valid)
6591 		pool_index = 0;
6592 set_alarm:
6593 	sh->cmng.pool_index = pool_index;
6594 	mlx5_set_query_alarm(sh);
6595 }
6596 
6597 /**
6598  * Check and callback event for new aged flow in the counter pool
6599  *
6600  * @param[in] sh
6601  *   Pointer to mlx5_dev_ctx_shared object.
6602  * @param[in] pool
6603  *   Pointer to Current counter pool.
6604  */
6605 static void
6606 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
6607 		   struct mlx5_flow_counter_pool *pool)
6608 {
6609 	struct mlx5_priv *priv;
6610 	struct mlx5_flow_counter *cnt;
6611 	struct mlx5_age_info *age_info;
6612 	struct mlx5_age_param *age_param;
6613 	struct mlx5_counter_stats_raw *cur = pool->raw_hw;
6614 	struct mlx5_counter_stats_raw *prev = pool->raw;
6615 	const uint64_t curr_time = MLX5_CURR_TIME_SEC;
6616 	const uint32_t time_delta = curr_time - pool->time_of_last_age_check;
6617 	uint16_t expected = AGE_CANDIDATE;
6618 	uint32_t i;
6619 
6620 	pool->time_of_last_age_check = curr_time;
6621 	for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
6622 		cnt = MLX5_POOL_GET_CNT(pool, i);
6623 		age_param = MLX5_CNT_TO_AGE(cnt);
6624 		if (__atomic_load_n(&age_param->state,
6625 				    __ATOMIC_RELAXED) != AGE_CANDIDATE)
6626 			continue;
6627 		if (cur->data[i].hits != prev->data[i].hits) {
6628 			__atomic_store_n(&age_param->sec_since_last_hit, 0,
6629 					 __ATOMIC_RELAXED);
6630 			continue;
6631 		}
6632 		if (__atomic_add_fetch(&age_param->sec_since_last_hit,
6633 				       time_delta,
6634 				       __ATOMIC_RELAXED) <= age_param->timeout)
6635 			continue;
6636 		/**
6637 		 * Hold the lock first, or if between the
6638 		 * state AGE_TMOUT and tailq operation the
6639 		 * release happened, the release procedure
6640 		 * may delete a non-existent tailq node.
6641 		 */
6642 		priv = rte_eth_devices[age_param->port_id].data->dev_private;
6643 		age_info = GET_PORT_AGE_INFO(priv);
6644 		rte_spinlock_lock(&age_info->aged_sl);
6645 		if (__atomic_compare_exchange_n(&age_param->state, &expected,
6646 						AGE_TMOUT, false,
6647 						__ATOMIC_RELAXED,
6648 						__ATOMIC_RELAXED)) {
6649 			TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
6650 			MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
6651 		}
6652 		rte_spinlock_unlock(&age_info->aged_sl);
6653 	}
6654 	mlx5_age_event_prepare(sh);
6655 }
6656 
6657 /**
6658  * Handler for the HW respond about ready values from an asynchronous batch
6659  * query. This function is probably called by the host thread.
6660  *
6661  * @param[in] sh
6662  *   The pointer to the shared device context.
6663  * @param[in] async_id
6664  *   The Devx async ID.
6665  * @param[in] status
6666  *   The status of the completion.
6667  */
6668 void
6669 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
6670 				  uint64_t async_id, int status)
6671 {
6672 	struct mlx5_flow_counter_pool *pool =
6673 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
6674 	struct mlx5_counter_stats_raw *raw_to_free;
6675 	uint8_t query_gen = pool->query_gen ^ 1;
6676 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6677 	enum mlx5_counter_type cnt_type =
6678 		pool->is_aged ? MLX5_COUNTER_TYPE_AGE :
6679 				MLX5_COUNTER_TYPE_ORIGIN;
6680 
6681 	if (unlikely(status)) {
6682 		raw_to_free = pool->raw_hw;
6683 	} else {
6684 		raw_to_free = pool->raw;
6685 		if (pool->is_aged)
6686 			mlx5_flow_aging_check(sh, pool);
6687 		rte_spinlock_lock(&pool->sl);
6688 		pool->raw = pool->raw_hw;
6689 		rte_spinlock_unlock(&pool->sl);
6690 		/* Be sure the new raw counters data is updated in memory. */
6691 		rte_io_wmb();
6692 		if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
6693 			rte_spinlock_lock(&cmng->csl[cnt_type]);
6694 			TAILQ_CONCAT(&cmng->counters[cnt_type],
6695 				     &pool->counters[query_gen], next);
6696 			rte_spinlock_unlock(&cmng->csl[cnt_type]);
6697 		}
6698 	}
6699 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
6700 	pool->raw_hw = NULL;
6701 	sh->cmng.pending_queries--;
6702 }
6703 
6704 static int
6705 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table,
6706 		    const struct flow_grp_info *grp_info,
6707 		    struct rte_flow_error *error)
6708 {
6709 	if (grp_info->transfer && grp_info->external &&
6710 	    grp_info->fdb_def_rule) {
6711 		if (group == UINT32_MAX)
6712 			return rte_flow_error_set
6713 						(error, EINVAL,
6714 						 RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
6715 						 NULL,
6716 						 "group index not supported");
6717 		*table = group + 1;
6718 	} else {
6719 		*table = group;
6720 	}
6721 	DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table);
6722 	return 0;
6723 }
6724 
6725 /**
6726  * Translate the rte_flow group index to HW table value.
6727  *
6728  * If tunnel offload is disabled, all group ids converted to flow table
6729  * id using the standard method.
6730  * If tunnel offload is enabled, group id can be converted using the
6731  * standard or tunnel conversion method. Group conversion method
6732  * selection depends on flags in `grp_info` parameter:
6733  * - Internal (grp_info.external == 0) groups conversion uses the
6734  *   standard method.
6735  * - Group ids in JUMP action converted with the tunnel conversion.
6736  * - Group id in rule attribute conversion depends on a rule type and
6737  *   group id value:
6738  *   ** non zero group attributes converted with the tunnel method
6739  *   ** zero group attribute in non-tunnel rule is converted using the
6740  *      standard method - there's only one root table
6741  *   ** zero group attribute in steer tunnel rule is converted with the
6742  *      standard method - single root table
6743  *   ** zero group attribute in match tunnel rule is a special OvS
6744  *      case: that value is used for portability reasons. That group
6745  *      id is converted with the tunnel conversion method.
6746  *
6747  * @param[in] dev
6748  *   Port device
6749  * @param[in] tunnel
6750  *   PMD tunnel offload object
6751  * @param[in] group
6752  *   rte_flow group index value.
6753  * @param[out] table
6754  *   HW table value.
6755  * @param[in] grp_info
6756  *   flags used for conversion
6757  * @param[out] error
6758  *   Pointer to error structure.
6759  *
6760  * @return
6761  *   0 on success, a negative errno value otherwise and rte_errno is set.
6762  */
6763 int
6764 mlx5_flow_group_to_table(struct rte_eth_dev *dev,
6765 			 const struct mlx5_flow_tunnel *tunnel,
6766 			 uint32_t group, uint32_t *table,
6767 			 const struct flow_grp_info *grp_info,
6768 			 struct rte_flow_error *error)
6769 {
6770 	int ret;
6771 	bool standard_translation;
6772 
6773 	if (!grp_info->skip_scale && grp_info->external &&
6774 	    group < MLX5_MAX_TABLES_EXTERNAL)
6775 		group *= MLX5_FLOW_TABLE_FACTOR;
6776 	if (is_tunnel_offload_active(dev)) {
6777 		standard_translation = !grp_info->external ||
6778 					grp_info->std_tbl_fix;
6779 	} else {
6780 		standard_translation = true;
6781 	}
6782 	DRV_LOG(DEBUG,
6783 		"port %u group=%u transfer=%d external=%d fdb_def_rule=%d translate=%s",
6784 		dev->data->port_id, group, grp_info->transfer,
6785 		grp_info->external, grp_info->fdb_def_rule,
6786 		standard_translation ? "STANDARD" : "TUNNEL");
6787 	if (standard_translation)
6788 		ret = flow_group_to_table(dev->data->port_id, group, table,
6789 					  grp_info, error);
6790 	else
6791 		ret = tunnel_flow_group_to_flow_table(dev, tunnel, group,
6792 						      table, error);
6793 
6794 	return ret;
6795 }
6796 
6797 /**
6798  * Discover availability of metadata reg_c's.
6799  *
6800  * Iteratively use test flows to check availability.
6801  *
6802  * @param[in] dev
6803  *   Pointer to the Ethernet device structure.
6804  *
6805  * @return
6806  *   0 on success, a negative errno value otherwise and rte_errno is set.
6807  */
6808 int
6809 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
6810 {
6811 	struct mlx5_priv *priv = dev->data->dev_private;
6812 	struct mlx5_dev_config *config = &priv->config;
6813 	enum modify_reg idx;
6814 	int n = 0;
6815 
6816 	/* reg_c[0] and reg_c[1] are reserved. */
6817 	config->flow_mreg_c[n++] = REG_C_0;
6818 	config->flow_mreg_c[n++] = REG_C_1;
6819 	/* Discover availability of other reg_c's. */
6820 	for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
6821 		struct rte_flow_attr attr = {
6822 			.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
6823 			.priority = MLX5_FLOW_PRIO_RSVD,
6824 			.ingress = 1,
6825 		};
6826 		struct rte_flow_item items[] = {
6827 			[0] = {
6828 				.type = RTE_FLOW_ITEM_TYPE_END,
6829 			},
6830 		};
6831 		struct rte_flow_action actions[] = {
6832 			[0] = {
6833 				.type = (enum rte_flow_action_type)
6834 					MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
6835 				.conf = &(struct mlx5_flow_action_copy_mreg){
6836 					.src = REG_C_1,
6837 					.dst = idx,
6838 				},
6839 			},
6840 			[1] = {
6841 				.type = RTE_FLOW_ACTION_TYPE_JUMP,
6842 				.conf = &(struct rte_flow_action_jump){
6843 					.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
6844 				},
6845 			},
6846 			[2] = {
6847 				.type = RTE_FLOW_ACTION_TYPE_END,
6848 			},
6849 		};
6850 		uint32_t flow_idx;
6851 		struct rte_flow *flow;
6852 		struct rte_flow_error error;
6853 
6854 		if (!config->dv_flow_en)
6855 			break;
6856 		/* Create internal flow, validation skips copy action. */
6857 		flow_idx = flow_list_create(dev, NULL, &attr, items,
6858 					    actions, false, &error);
6859 		flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
6860 				      flow_idx);
6861 		if (!flow)
6862 			continue;
6863 		config->flow_mreg_c[n++] = idx;
6864 		flow_list_destroy(dev, NULL, flow_idx);
6865 	}
6866 	for (; n < MLX5_MREG_C_NUM; ++n)
6867 		config->flow_mreg_c[n] = REG_NON;
6868 	return 0;
6869 }
6870 
6871 /**
6872  * Dump flow raw hw data to file
6873  *
6874  * @param[in] dev
6875  *    The pointer to Ethernet device.
6876  * @param[in] file
6877  *   A pointer to a file for output.
6878  * @param[out] error
6879  *   Perform verbose error reporting if not NULL. PMDs initialize this
6880  *   structure in case of error only.
6881  * @return
6882  *   0 on success, a nagative value otherwise.
6883  */
6884 int
6885 mlx5_flow_dev_dump(struct rte_eth_dev *dev,
6886 		   FILE *file,
6887 		   struct rte_flow_error *error __rte_unused)
6888 {
6889 	struct mlx5_priv *priv = dev->data->dev_private;
6890 	struct mlx5_dev_ctx_shared *sh = priv->sh;
6891 
6892 	if (!priv->config.dv_flow_en) {
6893 		if (fputs("device dv flow disabled\n", file) <= 0)
6894 			return -errno;
6895 		return -ENOTSUP;
6896 	}
6897 	return mlx5_devx_cmd_flow_dump(sh->fdb_domain, sh->rx_domain,
6898 				       sh->tx_domain, file);
6899 }
6900 
6901 /**
6902  * Get aged-out flows.
6903  *
6904  * @param[in] dev
6905  *   Pointer to the Ethernet device structure.
6906  * @param[in] context
6907  *   The address of an array of pointers to the aged-out flows contexts.
6908  * @param[in] nb_countexts
6909  *   The length of context array pointers.
6910  * @param[out] error
6911  *   Perform verbose error reporting if not NULL. Initialized in case of
6912  *   error only.
6913  *
6914  * @return
6915  *   how many contexts get in success, otherwise negative errno value.
6916  *   if nb_contexts is 0, return the amount of all aged contexts.
6917  *   if nb_contexts is not 0 , return the amount of aged flows reported
6918  *   in the context array.
6919  */
6920 int
6921 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
6922 			uint32_t nb_contexts, struct rte_flow_error *error)
6923 {
6924 	const struct mlx5_flow_driver_ops *fops;
6925 	struct rte_flow_attr attr = { .transfer = 0 };
6926 
6927 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6928 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6929 		return fops->get_aged_flows(dev, contexts, nb_contexts,
6930 						    error);
6931 	}
6932 	DRV_LOG(ERR,
6933 		"port %u get aged flows is not supported.",
6934 		 dev->data->port_id);
6935 	return -ENOTSUP;
6936 }
6937 
6938 /* Wrapper for driver action_validate op callback */
6939 static int
6940 flow_drv_action_validate(struct rte_eth_dev *dev,
6941 			 const struct rte_flow_shared_action_conf *conf,
6942 			 const struct rte_flow_action *action,
6943 			 const struct mlx5_flow_driver_ops *fops,
6944 			 struct rte_flow_error *error)
6945 {
6946 	static const char err_msg[] = "shared action validation unsupported";
6947 
6948 	if (!fops->action_validate) {
6949 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
6950 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
6951 				   NULL, err_msg);
6952 		return -rte_errno;
6953 	}
6954 	return fops->action_validate(dev, conf, action, error);
6955 }
6956 
6957 /**
6958  * Destroys the shared action by handle.
6959  *
6960  * @param dev
6961  *   Pointer to Ethernet device structure.
6962  * @param[in] action
6963  *   Handle for the shared action to be destroyed.
6964  * @param[out] error
6965  *   Perform verbose error reporting if not NULL. PMDs initialize this
6966  *   structure in case of error only.
6967  *
6968  * @return
6969  *   0 on success, a negative errno value otherwise and rte_errno is set.
6970  *
6971  * @note: wrapper for driver action_create op callback.
6972  */
6973 static int
6974 mlx5_shared_action_destroy(struct rte_eth_dev *dev,
6975 			   struct rte_flow_shared_action *action,
6976 			   struct rte_flow_error *error)
6977 {
6978 	static const char err_msg[] = "shared action destruction unsupported";
6979 	struct rte_flow_attr attr = { .transfer = 0 };
6980 	const struct mlx5_flow_driver_ops *fops =
6981 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
6982 
6983 	if (!fops->action_destroy) {
6984 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
6985 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
6986 				   NULL, err_msg);
6987 		return -rte_errno;
6988 	}
6989 	return fops->action_destroy(dev, action, error);
6990 }
6991 
6992 /* Wrapper for driver action_destroy op callback */
6993 static int
6994 flow_drv_action_update(struct rte_eth_dev *dev,
6995 		       struct rte_flow_shared_action *action,
6996 		       const void *action_conf,
6997 		       const struct mlx5_flow_driver_ops *fops,
6998 		       struct rte_flow_error *error)
6999 {
7000 	static const char err_msg[] = "shared action update unsupported";
7001 
7002 	if (!fops->action_update) {
7003 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7004 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7005 				   NULL, err_msg);
7006 		return -rte_errno;
7007 	}
7008 	return fops->action_update(dev, action, action_conf, error);
7009 }
7010 
7011 /* Wrapper for driver action_destroy op callback */
7012 static int
7013 flow_drv_action_query(struct rte_eth_dev *dev,
7014 		      const struct rte_flow_shared_action *action,
7015 		      void *data,
7016 		      const struct mlx5_flow_driver_ops *fops,
7017 		      struct rte_flow_error *error)
7018 {
7019 	static const char err_msg[] = "shared action query unsupported";
7020 
7021 	if (!fops->action_query) {
7022 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7023 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7024 				   NULL, err_msg);
7025 		return -rte_errno;
7026 	}
7027 	return fops->action_query(dev, action, data, error);
7028 }
7029 
7030 /**
7031  * Create shared action for reuse in multiple flow rules.
7032  *
7033  * @param dev
7034  *   Pointer to Ethernet device structure.
7035  * @param[in] action
7036  *   Action configuration for shared action creation.
7037  * @param[out] error
7038  *   Perform verbose error reporting if not NULL. PMDs initialize this
7039  *   structure in case of error only.
7040  * @return
7041  *   A valid handle in case of success, NULL otherwise and rte_errno is set.
7042  */
7043 static struct rte_flow_shared_action *
7044 mlx5_shared_action_create(struct rte_eth_dev *dev,
7045 			  const struct rte_flow_shared_action_conf *conf,
7046 			  const struct rte_flow_action *action,
7047 			  struct rte_flow_error *error)
7048 {
7049 	static const char err_msg[] = "shared action creation unsupported";
7050 	struct rte_flow_attr attr = { .transfer = 0 };
7051 	const struct mlx5_flow_driver_ops *fops =
7052 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7053 
7054 	if (flow_drv_action_validate(dev, conf, action, fops, error))
7055 		return NULL;
7056 	if (!fops->action_create) {
7057 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7058 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7059 				   NULL, err_msg);
7060 		return NULL;
7061 	}
7062 	return fops->action_create(dev, conf, action, error);
7063 }
7064 
7065 /**
7066  * Updates inplace the shared action configuration pointed by *action* handle
7067  * with the configuration provided as *action* argument.
7068  * The update of the shared action configuration effects all flow rules reusing
7069  * the action via handle.
7070  *
7071  * @param dev
7072  *   Pointer to Ethernet device structure.
7073  * @param[in] shared_action
7074  *   Handle for the shared action to be updated.
7075  * @param[in] action
7076  *   Action specification used to modify the action pointed by handle.
7077  *   *action* should be of same type with the action pointed by the *action*
7078  *   handle argument, otherwise considered as invalid.
7079  * @param[out] error
7080  *   Perform verbose error reporting if not NULL. PMDs initialize this
7081  *   structure in case of error only.
7082  *
7083  * @return
7084  *   0 on success, a negative errno value otherwise and rte_errno is set.
7085  */
7086 static int
7087 mlx5_shared_action_update(struct rte_eth_dev *dev,
7088 		struct rte_flow_shared_action *shared_action,
7089 		const struct rte_flow_action *action,
7090 		struct rte_flow_error *error)
7091 {
7092 	struct rte_flow_attr attr = { .transfer = 0 };
7093 	const struct mlx5_flow_driver_ops *fops =
7094 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7095 	int ret;
7096 
7097 	ret = flow_drv_action_validate(dev, NULL, action, fops, error);
7098 	if (ret)
7099 		return ret;
7100 	return flow_drv_action_update(dev, shared_action, action->conf, fops,
7101 				      error);
7102 }
7103 
7104 /**
7105  * Query the shared action by handle.
7106  *
7107  * This function allows retrieving action-specific data such as counters.
7108  * Data is gathered by special action which may be present/referenced in
7109  * more than one flow rule definition.
7110  *
7111  * \see RTE_FLOW_ACTION_TYPE_COUNT
7112  *
7113  * @param dev
7114  *   Pointer to Ethernet device structure.
7115  * @param[in] action
7116  *   Handle for the shared action to query.
7117  * @param[in, out] data
7118  *   Pointer to storage for the associated query data type.
7119  * @param[out] error
7120  *   Perform verbose error reporting if not NULL. PMDs initialize this
7121  *   structure in case of error only.
7122  *
7123  * @return
7124  *   0 on success, a negative errno value otherwise and rte_errno is set.
7125  */
7126 static int
7127 mlx5_shared_action_query(struct rte_eth_dev *dev,
7128 			 const struct rte_flow_shared_action *action,
7129 			 void *data,
7130 			 struct rte_flow_error *error)
7131 {
7132 	struct rte_flow_attr attr = { .transfer = 0 };
7133 	const struct mlx5_flow_driver_ops *fops =
7134 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7135 
7136 	return flow_drv_action_query(dev, action, data, fops, error);
7137 }
7138 
7139 /**
7140  * Destroy all shared actions.
7141  *
7142  * @param dev
7143  *   Pointer to Ethernet device.
7144  *
7145  * @return
7146  *   0 on success, a negative errno value otherwise and rte_errno is set.
7147  */
7148 int
7149 mlx5_shared_action_flush(struct rte_eth_dev *dev)
7150 {
7151 	struct rte_flow_error error;
7152 	struct mlx5_priv *priv = dev->data->dev_private;
7153 	struct mlx5_shared_action_rss *action;
7154 	int ret = 0;
7155 	uint32_t idx;
7156 
7157 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
7158 		      priv->rss_shared_actions, idx, action, next) {
7159 		ret |= mlx5_shared_action_destroy(dev,
7160 		       (struct rte_flow_shared_action *)(uintptr_t)idx, &error);
7161 	}
7162 	return ret;
7163 }
7164 
7165 #ifndef HAVE_MLX5DV_DR
7166 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1))
7167 #else
7168 #define MLX5_DOMAIN_SYNC_FLOW \
7169 	(MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW)
7170 #endif
7171 
7172 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains)
7173 {
7174 	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
7175 	const struct mlx5_flow_driver_ops *fops;
7176 	int ret;
7177 	struct rte_flow_attr attr = { .transfer = 0 };
7178 
7179 	fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7180 	ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW);
7181 	if (ret > 0)
7182 		ret = -ret;
7183 	return ret;
7184 }
7185 
7186 /**
7187  * tunnel offload functionalilty is defined for DV environment only
7188  */
7189 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
7190 __extension__
7191 union tunnel_offload_mark {
7192 	uint32_t val;
7193 	struct {
7194 		uint32_t app_reserve:8;
7195 		uint32_t table_id:15;
7196 		uint32_t transfer:1;
7197 		uint32_t _unused_:8;
7198 	};
7199 };
7200 
7201 static bool
7202 mlx5_access_tunnel_offload_db
7203 	(struct rte_eth_dev *dev,
7204 	 bool (*match)(struct rte_eth_dev *,
7205 		       struct mlx5_flow_tunnel *, const void *),
7206 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
7207 	 void (*miss)(struct rte_eth_dev *, void *),
7208 	 void *ctx, bool lock_op);
7209 
7210 static int
7211 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
7212 			     struct rte_flow *flow,
7213 			     const struct rte_flow_attr *attr,
7214 			     const struct rte_flow_action *app_actions,
7215 			     uint32_t flow_idx,
7216 			     struct tunnel_default_miss_ctx *ctx,
7217 			     struct rte_flow_error *error)
7218 {
7219 	struct mlx5_priv *priv = dev->data->dev_private;
7220 	struct mlx5_flow *dev_flow;
7221 	struct rte_flow_attr miss_attr = *attr;
7222 	const struct mlx5_flow_tunnel *tunnel = app_actions[0].conf;
7223 	const struct rte_flow_item miss_items[2] = {
7224 		{
7225 			.type = RTE_FLOW_ITEM_TYPE_ETH,
7226 			.spec = NULL,
7227 			.last = NULL,
7228 			.mask = NULL
7229 		},
7230 		{
7231 			.type = RTE_FLOW_ITEM_TYPE_END,
7232 			.spec = NULL,
7233 			.last = NULL,
7234 			.mask = NULL
7235 		}
7236 	};
7237 	union tunnel_offload_mark mark_id;
7238 	struct rte_flow_action_mark miss_mark;
7239 	struct rte_flow_action miss_actions[3] = {
7240 		[0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark },
7241 		[2] = { .type = RTE_FLOW_ACTION_TYPE_END,  .conf = NULL }
7242 	};
7243 	const struct rte_flow_action_jump *jump_data;
7244 	uint32_t i, flow_table = 0; /* prevent compilation warning */
7245 	struct flow_grp_info grp_info = {
7246 		.external = 1,
7247 		.transfer = attr->transfer,
7248 		.fdb_def_rule = !!priv->fdb_def_rule,
7249 		.std_tbl_fix = 0,
7250 	};
7251 	int ret;
7252 
7253 	if (!attr->transfer) {
7254 		uint32_t q_size;
7255 
7256 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS;
7257 		q_size = priv->reta_idx_n * sizeof(ctx->queue[0]);
7258 		ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size,
7259 					 0, SOCKET_ID_ANY);
7260 		if (!ctx->queue)
7261 			return rte_flow_error_set
7262 				(error, ENOMEM,
7263 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
7264 				NULL, "invalid default miss RSS");
7265 		ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
7266 		ctx->action_rss.level = 0,
7267 		ctx->action_rss.types = priv->rss_conf.rss_hf,
7268 		ctx->action_rss.key_len = priv->rss_conf.rss_key_len,
7269 		ctx->action_rss.queue_num = priv->reta_idx_n,
7270 		ctx->action_rss.key = priv->rss_conf.rss_key,
7271 		ctx->action_rss.queue = ctx->queue;
7272 		if (!priv->reta_idx_n || !priv->rxqs_n)
7273 			return rte_flow_error_set
7274 				(error, EINVAL,
7275 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
7276 				NULL, "invalid port configuration");
7277 		if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
7278 			ctx->action_rss.types = 0;
7279 		for (i = 0; i != priv->reta_idx_n; ++i)
7280 			ctx->queue[i] = (*priv->reta_idx)[i];
7281 	} else {
7282 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP;
7283 		ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP;
7284 	}
7285 	miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw;
7286 	for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++);
7287 	jump_data = app_actions->conf;
7288 	miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY;
7289 	miss_attr.group = jump_data->group;
7290 	ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group,
7291 				       &flow_table, &grp_info, error);
7292 	if (ret)
7293 		return rte_flow_error_set(error, EINVAL,
7294 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
7295 					  NULL, "invalid tunnel id");
7296 	mark_id.app_reserve = 0;
7297 	mark_id.table_id = tunnel_flow_tbl_to_id(flow_table);
7298 	mark_id.transfer = !!attr->transfer;
7299 	mark_id._unused_ = 0;
7300 	miss_mark.id = mark_id.val;
7301 	dev_flow = flow_drv_prepare(dev, flow, &miss_attr,
7302 				    miss_items, miss_actions, flow_idx, error);
7303 	if (!dev_flow)
7304 		return -rte_errno;
7305 	dev_flow->flow = flow;
7306 	dev_flow->external = true;
7307 	dev_flow->tunnel = tunnel;
7308 	/* Subflow object was created, we must include one in the list. */
7309 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
7310 		      dev_flow->handle, next);
7311 	DRV_LOG(DEBUG,
7312 		"port %u tunnel type=%d id=%u miss rule priority=%u group=%u",
7313 		dev->data->port_id, tunnel->app_tunnel.type,
7314 		tunnel->tunnel_id, miss_attr.priority, miss_attr.group);
7315 	ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items,
7316 				  miss_actions, error);
7317 	if (!ret)
7318 		ret = flow_mreg_update_copy_table(dev, flow, miss_actions,
7319 						  error);
7320 
7321 	return ret;
7322 }
7323 
7324 static const struct mlx5_flow_tbl_data_entry  *
7325 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark)
7326 {
7327 	struct mlx5_priv *priv = dev->data->dev_private;
7328 	struct mlx5_dev_ctx_shared *sh = priv->sh;
7329 	struct mlx5_hlist_entry *he;
7330 	union tunnel_offload_mark mbits = { .val = mark };
7331 	union mlx5_flow_tbl_key table_key = {
7332 		{
7333 			.table_id = tunnel_id_to_flow_tbl(mbits.table_id),
7334 			.dummy = 0,
7335 			.domain = !!mbits.transfer,
7336 			.direction = 0,
7337 		}
7338 	};
7339 	he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, NULL);
7340 	return he ?
7341 	       container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL;
7342 }
7343 
7344 static void
7345 mlx5_flow_tunnel_grp2tbl_remove_cb(struct mlx5_hlist *list,
7346 				   struct mlx5_hlist_entry *entry)
7347 {
7348 	struct mlx5_dev_ctx_shared *sh = list->ctx;
7349 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
7350 
7351 	mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
7352 			tunnel_flow_tbl_to_id(tte->flow_table));
7353 	mlx5_free(tte);
7354 }
7355 
7356 static struct mlx5_hlist_entry *
7357 mlx5_flow_tunnel_grp2tbl_create_cb(struct mlx5_hlist *list,
7358 				   uint64_t key __rte_unused,
7359 				   void *ctx __rte_unused)
7360 {
7361 	struct mlx5_dev_ctx_shared *sh = list->ctx;
7362 	struct tunnel_tbl_entry *tte;
7363 
7364 	tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO,
7365 			  sizeof(*tte), 0,
7366 			  SOCKET_ID_ANY);
7367 	if (!tte)
7368 		goto err;
7369 	mlx5_ipool_malloc(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
7370 			  &tte->flow_table);
7371 	if (tte->flow_table >= MLX5_MAX_TABLES) {
7372 		DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.",
7373 			tte->flow_table);
7374 		mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
7375 				tte->flow_table);
7376 		goto err;
7377 	} else if (!tte->flow_table) {
7378 		goto err;
7379 	}
7380 	tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table);
7381 	return &tte->hash;
7382 err:
7383 	if (tte)
7384 		mlx5_free(tte);
7385 	return NULL;
7386 }
7387 
7388 static uint32_t
7389 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
7390 				const struct mlx5_flow_tunnel *tunnel,
7391 				uint32_t group, uint32_t *table,
7392 				struct rte_flow_error *error)
7393 {
7394 	struct mlx5_hlist_entry *he;
7395 	struct tunnel_tbl_entry *tte;
7396 	union tunnel_tbl_key key = {
7397 		.tunnel_id = tunnel ? tunnel->tunnel_id : 0,
7398 		.group = group
7399 	};
7400 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
7401 	struct mlx5_hlist *group_hash;
7402 
7403 	group_hash = tunnel ? tunnel->groups : thub->groups;
7404 	he = mlx5_hlist_register(group_hash, key.val, NULL);
7405 	if (!he)
7406 		return rte_flow_error_set(error, EINVAL,
7407 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
7408 					  NULL,
7409 					  "tunnel group index not supported");
7410 	tte = container_of(he, typeof(*tte), hash);
7411 	*table = tte->flow_table;
7412 	DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x",
7413 		dev->data->port_id, key.tunnel_id, group, *table);
7414 	return 0;
7415 }
7416 
7417 static void
7418 mlx5_flow_tunnel_free(struct rte_eth_dev *dev,
7419 		      struct mlx5_flow_tunnel *tunnel)
7420 {
7421 	struct mlx5_priv *priv = dev->data->dev_private;
7422 	struct mlx5_indexed_pool *ipool;
7423 
7424 	DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x",
7425 		dev->data->port_id, tunnel->tunnel_id);
7426 	mlx5_hlist_destroy(tunnel->groups);
7427 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
7428 	mlx5_ipool_free(ipool, tunnel->tunnel_id);
7429 }
7430 
7431 static bool
7432 mlx5_access_tunnel_offload_db
7433 	(struct rte_eth_dev *dev,
7434 	 bool (*match)(struct rte_eth_dev *,
7435 		       struct mlx5_flow_tunnel *, const void *),
7436 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
7437 	 void (*miss)(struct rte_eth_dev *, void *),
7438 	 void *ctx, bool lock_op)
7439 {
7440 	bool verdict = false;
7441 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
7442 	struct mlx5_flow_tunnel *tunnel;
7443 
7444 	rte_spinlock_lock(&thub->sl);
7445 	LIST_FOREACH(tunnel, &thub->tunnels, chain) {
7446 		verdict = match(dev, tunnel, (const void *)ctx);
7447 		if (verdict)
7448 			break;
7449 	}
7450 	if (!lock_op)
7451 		rte_spinlock_unlock(&thub->sl);
7452 	if (verdict && hit)
7453 		hit(dev, tunnel, ctx);
7454 	if (!verdict && miss)
7455 		miss(dev, ctx);
7456 	if (lock_op)
7457 		rte_spinlock_unlock(&thub->sl);
7458 
7459 	return verdict;
7460 }
7461 
7462 struct tunnel_db_find_tunnel_id_ctx {
7463 	uint32_t tunnel_id;
7464 	struct mlx5_flow_tunnel *tunnel;
7465 };
7466 
7467 static bool
7468 find_tunnel_id_match(struct rte_eth_dev *dev,
7469 		     struct mlx5_flow_tunnel *tunnel, const void *x)
7470 {
7471 	const struct tunnel_db_find_tunnel_id_ctx *ctx = x;
7472 
7473 	RTE_SET_USED(dev);
7474 	return tunnel->tunnel_id == ctx->tunnel_id;
7475 }
7476 
7477 static void
7478 find_tunnel_id_hit(struct rte_eth_dev *dev,
7479 		   struct mlx5_flow_tunnel *tunnel, void *x)
7480 {
7481 	struct tunnel_db_find_tunnel_id_ctx *ctx = x;
7482 	RTE_SET_USED(dev);
7483 	ctx->tunnel = tunnel;
7484 }
7485 
7486 static struct mlx5_flow_tunnel *
7487 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id)
7488 {
7489 	struct tunnel_db_find_tunnel_id_ctx ctx = {
7490 		.tunnel_id = id,
7491 	};
7492 
7493 	mlx5_access_tunnel_offload_db(dev, find_tunnel_id_match,
7494 				      find_tunnel_id_hit, NULL, &ctx, true);
7495 
7496 	return ctx.tunnel;
7497 }
7498 
7499 static struct mlx5_flow_tunnel *
7500 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev,
7501 			  const struct rte_flow_tunnel *app_tunnel)
7502 {
7503 	struct mlx5_priv *priv = dev->data->dev_private;
7504 	struct mlx5_indexed_pool *ipool;
7505 	struct mlx5_flow_tunnel *tunnel;
7506 	uint32_t id;
7507 
7508 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
7509 	tunnel = mlx5_ipool_zmalloc(ipool, &id);
7510 	if (!tunnel)
7511 		return NULL;
7512 	if (id >= MLX5_MAX_TUNNELS) {
7513 		mlx5_ipool_free(ipool, id);
7514 		DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id);
7515 		return NULL;
7516 	}
7517 	tunnel->groups = mlx5_hlist_create("tunnel groups", 1024, 0, 0,
7518 					   mlx5_flow_tunnel_grp2tbl_create_cb,
7519 					   NULL,
7520 					   mlx5_flow_tunnel_grp2tbl_remove_cb);
7521 	if (!tunnel->groups) {
7522 		mlx5_ipool_free(ipool, id);
7523 		return NULL;
7524 	}
7525 	tunnel->groups->ctx = priv->sh;
7526 	/* initiate new PMD tunnel */
7527 	memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel));
7528 	tunnel->tunnel_id = id;
7529 	tunnel->action.type = (typeof(tunnel->action.type))
7530 			      MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET;
7531 	tunnel->action.conf = tunnel;
7532 	tunnel->item.type = (typeof(tunnel->item.type))
7533 			    MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL;
7534 	tunnel->item.spec = tunnel;
7535 	tunnel->item.last = NULL;
7536 	tunnel->item.mask = NULL;
7537 
7538 	DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x",
7539 		dev->data->port_id, tunnel->tunnel_id);
7540 
7541 	return tunnel;
7542 }
7543 
7544 struct tunnel_db_get_tunnel_ctx {
7545 	const struct rte_flow_tunnel *app_tunnel;
7546 	struct mlx5_flow_tunnel *tunnel;
7547 };
7548 
7549 static bool get_tunnel_match(struct rte_eth_dev *dev,
7550 			     struct mlx5_flow_tunnel *tunnel, const void *x)
7551 {
7552 	const struct tunnel_db_get_tunnel_ctx *ctx = x;
7553 
7554 	RTE_SET_USED(dev);
7555 	return !memcmp(ctx->app_tunnel, &tunnel->app_tunnel,
7556 		       sizeof(*ctx->app_tunnel));
7557 }
7558 
7559 static void get_tunnel_hit(struct rte_eth_dev *dev,
7560 			   struct mlx5_flow_tunnel *tunnel, void *x)
7561 {
7562 	/* called under tunnel spinlock protection */
7563 	struct tunnel_db_get_tunnel_ctx *ctx = x;
7564 
7565 	RTE_SET_USED(dev);
7566 	tunnel->refctn++;
7567 	ctx->tunnel = tunnel;
7568 }
7569 
7570 static void get_tunnel_miss(struct rte_eth_dev *dev, void *x)
7571 {
7572 	/* called under tunnel spinlock protection */
7573 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
7574 	struct tunnel_db_get_tunnel_ctx *ctx = x;
7575 
7576 	rte_spinlock_unlock(&thub->sl);
7577 	ctx->tunnel = mlx5_flow_tunnel_allocate(dev, ctx->app_tunnel);
7578 	ctx->tunnel->refctn = 1;
7579 	rte_spinlock_lock(&thub->sl);
7580 	if (ctx->tunnel)
7581 		LIST_INSERT_HEAD(&thub->tunnels, ctx->tunnel, chain);
7582 }
7583 
7584 
7585 static int
7586 mlx5_get_flow_tunnel(struct rte_eth_dev *dev,
7587 		     const struct rte_flow_tunnel *app_tunnel,
7588 		     struct mlx5_flow_tunnel **tunnel)
7589 {
7590 	struct tunnel_db_get_tunnel_ctx ctx = {
7591 		.app_tunnel = app_tunnel,
7592 	};
7593 
7594 	mlx5_access_tunnel_offload_db(dev, get_tunnel_match, get_tunnel_hit,
7595 				      get_tunnel_miss, &ctx, true);
7596 	*tunnel = ctx.tunnel;
7597 	return ctx.tunnel ? 0 : -ENOMEM;
7598 }
7599 
7600 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id)
7601 {
7602 	struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub;
7603 
7604 	if (!thub)
7605 		return;
7606 	if (!LIST_EMPTY(&thub->tunnels))
7607 		DRV_LOG(WARNING, "port %u tunnels present\n", port_id);
7608 	mlx5_hlist_destroy(thub->groups);
7609 	mlx5_free(thub);
7610 }
7611 
7612 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh)
7613 {
7614 	int err;
7615 	struct mlx5_flow_tunnel_hub *thub;
7616 
7617 	thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub),
7618 			   0, SOCKET_ID_ANY);
7619 	if (!thub)
7620 		return -ENOMEM;
7621 	LIST_INIT(&thub->tunnels);
7622 	rte_spinlock_init(&thub->sl);
7623 	thub->groups = mlx5_hlist_create("flow groups", MLX5_MAX_TABLES, 0,
7624 					 0, mlx5_flow_tunnel_grp2tbl_create_cb,
7625 					 NULL,
7626 					 mlx5_flow_tunnel_grp2tbl_remove_cb);
7627 	if (!thub->groups) {
7628 		err = -rte_errno;
7629 		goto err;
7630 	}
7631 	thub->groups->ctx = sh;
7632 	sh->tunnel_hub = thub;
7633 
7634 	return 0;
7635 
7636 err:
7637 	if (thub->groups)
7638 		mlx5_hlist_destroy(thub->groups);
7639 	if (thub)
7640 		mlx5_free(thub);
7641 	return err;
7642 }
7643 
7644 static inline bool
7645 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev,
7646 			  struct rte_flow_tunnel *tunnel,
7647 			  const char *err_msg)
7648 {
7649 	err_msg = NULL;
7650 	if (!is_tunnel_offload_active(dev)) {
7651 		err_msg = "tunnel offload was not activated";
7652 		goto out;
7653 	} else if (!tunnel) {
7654 		err_msg = "no application tunnel";
7655 		goto out;
7656 	}
7657 
7658 	switch (tunnel->type) {
7659 	default:
7660 		err_msg = "unsupported tunnel type";
7661 		goto out;
7662 	case RTE_FLOW_ITEM_TYPE_VXLAN:
7663 		break;
7664 	}
7665 
7666 out:
7667 	return !err_msg;
7668 }
7669 
7670 static int
7671 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
7672 		    struct rte_flow_tunnel *app_tunnel,
7673 		    struct rte_flow_action **actions,
7674 		    uint32_t *num_of_actions,
7675 		    struct rte_flow_error *error)
7676 {
7677 	int ret;
7678 	struct mlx5_flow_tunnel *tunnel;
7679 	const char *err_msg = NULL;
7680 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
7681 
7682 	if (!verdict)
7683 		return rte_flow_error_set(error, EINVAL,
7684 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
7685 					  err_msg);
7686 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
7687 	if (ret < 0) {
7688 		return rte_flow_error_set(error, ret,
7689 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
7690 					  "failed to initialize pmd tunnel");
7691 	}
7692 	*actions = &tunnel->action;
7693 	*num_of_actions = 1;
7694 	return 0;
7695 }
7696 
7697 static int
7698 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
7699 		       struct rte_flow_tunnel *app_tunnel,
7700 		       struct rte_flow_item **items,
7701 		       uint32_t *num_of_items,
7702 		       struct rte_flow_error *error)
7703 {
7704 	int ret;
7705 	struct mlx5_flow_tunnel *tunnel;
7706 	const char *err_msg = NULL;
7707 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
7708 
7709 	if (!verdict)
7710 		return rte_flow_error_set(error, EINVAL,
7711 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
7712 					  err_msg);
7713 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
7714 	if (ret < 0) {
7715 		return rte_flow_error_set(error, ret,
7716 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
7717 					  "failed to initialize pmd tunnel");
7718 	}
7719 	*items = &tunnel->item;
7720 	*num_of_items = 1;
7721 	return 0;
7722 }
7723 
7724 struct tunnel_db_element_release_ctx {
7725 	struct rte_flow_item *items;
7726 	struct rte_flow_action *actions;
7727 	uint32_t num_elements;
7728 	struct rte_flow_error *error;
7729 	int ret;
7730 };
7731 
7732 static bool
7733 tunnel_element_release_match(struct rte_eth_dev *dev,
7734 			     struct mlx5_flow_tunnel *tunnel, const void *x)
7735 {
7736 	const struct tunnel_db_element_release_ctx *ctx = x;
7737 
7738 	RTE_SET_USED(dev);
7739 	if (ctx->num_elements != 1)
7740 		return false;
7741 	else if (ctx->items)
7742 		return ctx->items == &tunnel->item;
7743 	else if (ctx->actions)
7744 		return ctx->actions == &tunnel->action;
7745 
7746 	return false;
7747 }
7748 
7749 static void
7750 tunnel_element_release_hit(struct rte_eth_dev *dev,
7751 			   struct mlx5_flow_tunnel *tunnel, void *x)
7752 {
7753 	struct tunnel_db_element_release_ctx *ctx = x;
7754 	ctx->ret = 0;
7755 	if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
7756 		mlx5_flow_tunnel_free(dev, tunnel);
7757 }
7758 
7759 static void
7760 tunnel_element_release_miss(struct rte_eth_dev *dev, void *x)
7761 {
7762 	struct tunnel_db_element_release_ctx *ctx = x;
7763 	RTE_SET_USED(dev);
7764 	ctx->ret = rte_flow_error_set(ctx->error, EINVAL,
7765 				      RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
7766 				      "invalid argument");
7767 }
7768 
7769 static int
7770 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
7771 		       struct rte_flow_item *pmd_items,
7772 		       uint32_t num_items, struct rte_flow_error *err)
7773 {
7774 	struct tunnel_db_element_release_ctx ctx = {
7775 		.items = pmd_items,
7776 		.actions = NULL,
7777 		.num_elements = num_items,
7778 		.error = err,
7779 	};
7780 
7781 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
7782 				      tunnel_element_release_hit,
7783 				      tunnel_element_release_miss, &ctx, false);
7784 
7785 	return ctx.ret;
7786 }
7787 
7788 static int
7789 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
7790 			 struct rte_flow_action *pmd_actions,
7791 			 uint32_t num_actions, struct rte_flow_error *err)
7792 {
7793 	struct tunnel_db_element_release_ctx ctx = {
7794 		.items = NULL,
7795 		.actions = pmd_actions,
7796 		.num_elements = num_actions,
7797 		.error = err,
7798 	};
7799 
7800 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
7801 				      tunnel_element_release_hit,
7802 				      tunnel_element_release_miss, &ctx, false);
7803 
7804 	return ctx.ret;
7805 }
7806 
7807 static int
7808 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
7809 				  struct rte_mbuf *m,
7810 				  struct rte_flow_restore_info *info,
7811 				  struct rte_flow_error *err)
7812 {
7813 	uint64_t ol_flags = m->ol_flags;
7814 	const struct mlx5_flow_tbl_data_entry *tble;
7815 	const uint64_t mask = PKT_RX_FDIR | PKT_RX_FDIR_ID;
7816 
7817 	if (!is_tunnel_offload_active(dev)) {
7818 		info->flags = 0;
7819 		return 0;
7820 	}
7821 
7822 	if ((ol_flags & mask) != mask)
7823 		goto err;
7824 	tble = tunnel_mark_decode(dev, m->hash.fdir.hi);
7825 	if (!tble) {
7826 		DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x",
7827 			dev->data->port_id, m->hash.fdir.hi);
7828 		goto err;
7829 	}
7830 	MLX5_ASSERT(tble->tunnel);
7831 	memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel));
7832 	info->group_id = tble->group_id;
7833 	info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL |
7834 		      RTE_FLOW_RESTORE_INFO_GROUP_ID |
7835 		      RTE_FLOW_RESTORE_INFO_ENCAPSULATED;
7836 
7837 	return 0;
7838 
7839 err:
7840 	return rte_flow_error_set(err, EINVAL,
7841 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
7842 				  "failed to get restore info");
7843 }
7844 
7845 #else /* HAVE_IBV_FLOW_DV_SUPPORT */
7846 static int
7847 mlx5_flow_tunnel_decap_set(__rte_unused struct rte_eth_dev *dev,
7848 			   __rte_unused struct rte_flow_tunnel *app_tunnel,
7849 			   __rte_unused struct rte_flow_action **actions,
7850 			   __rte_unused uint32_t *num_of_actions,
7851 			   __rte_unused struct rte_flow_error *error)
7852 {
7853 	return -ENOTSUP;
7854 }
7855 
7856 static int
7857 mlx5_flow_tunnel_match(__rte_unused struct rte_eth_dev *dev,
7858 		       __rte_unused struct rte_flow_tunnel *app_tunnel,
7859 		       __rte_unused struct rte_flow_item **items,
7860 		       __rte_unused uint32_t *num_of_items,
7861 		       __rte_unused struct rte_flow_error *error)
7862 {
7863 	return -ENOTSUP;
7864 }
7865 
7866 static int
7867 mlx5_flow_tunnel_item_release(__rte_unused struct rte_eth_dev *dev,
7868 			      __rte_unused struct rte_flow_item *pmd_items,
7869 			      __rte_unused uint32_t num_items,
7870 			      __rte_unused struct rte_flow_error *err)
7871 {
7872 	return -ENOTSUP;
7873 }
7874 
7875 static int
7876 mlx5_flow_tunnel_action_release(__rte_unused struct rte_eth_dev *dev,
7877 				__rte_unused struct rte_flow_action *pmd_action,
7878 				__rte_unused uint32_t num_actions,
7879 				__rte_unused struct rte_flow_error *err)
7880 {
7881 	return -ENOTSUP;
7882 }
7883 
7884 static int
7885 mlx5_flow_tunnel_get_restore_info(__rte_unused struct rte_eth_dev *dev,
7886 				  __rte_unused struct rte_mbuf *m,
7887 				  __rte_unused struct rte_flow_restore_info *i,
7888 				  __rte_unused struct rte_flow_error *err)
7889 {
7890 	return -ENOTSUP;
7891 }
7892 
7893 static int
7894 flow_tunnel_add_default_miss(__rte_unused struct rte_eth_dev *dev,
7895 			     __rte_unused struct rte_flow *flow,
7896 			     __rte_unused const struct rte_flow_attr *attr,
7897 			     __rte_unused const struct rte_flow_action *actions,
7898 			     __rte_unused uint32_t flow_idx,
7899 			     __rte_unused struct tunnel_default_miss_ctx *ctx,
7900 			     __rte_unused struct rte_flow_error *error)
7901 {
7902 	return -ENOTSUP;
7903 }
7904 
7905 static struct mlx5_flow_tunnel *
7906 mlx5_find_tunnel_id(__rte_unused struct rte_eth_dev *dev,
7907 		    __rte_unused uint32_t id)
7908 {
7909 	return NULL;
7910 }
7911 
7912 static void
7913 mlx5_flow_tunnel_free(__rte_unused struct rte_eth_dev *dev,
7914 		      __rte_unused struct mlx5_flow_tunnel *tunnel)
7915 {
7916 }
7917 
7918 static uint32_t
7919 tunnel_flow_group_to_flow_table(__rte_unused struct rte_eth_dev *dev,
7920 				__rte_unused const struct mlx5_flow_tunnel *t,
7921 				__rte_unused uint32_t group,
7922 				__rte_unused uint32_t *table,
7923 				struct rte_flow_error *error)
7924 {
7925 	return rte_flow_error_set(error, ENOTSUP,
7926 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
7927 				  "tunnel offload requires DV support");
7928 }
7929 
7930 void
7931 mlx5_release_tunnel_hub(__rte_unused struct mlx5_dev_ctx_shared *sh,
7932 			__rte_unused  uint16_t port_id)
7933 {
7934 }
7935 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */
7936 
7937