1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox. 4 */ 5 6 #include <sys/queue.h> 7 #include <string.h> 8 9 /* Verbs header. */ 10 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ 11 #ifdef PEDANTIC 12 #pragma GCC diagnostic ignored "-Wpedantic" 13 #endif 14 #include <infiniband/verbs.h> 15 #ifdef PEDANTIC 16 #pragma GCC diagnostic error "-Wpedantic" 17 #endif 18 19 #include <rte_ethdev_driver.h> 20 #include <rte_flow.h> 21 #include <rte_flow_driver.h> 22 #include <rte_malloc.h> 23 #include <rte_ip.h> 24 25 #include "mlx5.h" 26 #include "mlx5_defs.h" 27 #include "mlx5_prm.h" 28 #include "mlx5_glue.h" 29 30 /* Define minimal priority for control plane flows. */ 31 #define MLX5_CTRL_FLOW_PRIORITY 4 32 33 /* Internet Protocol versions. */ 34 #define MLX5_IPV4 4 35 #define MLX5_IPV6 6 36 37 #ifndef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 38 struct ibv_flow_spec_counter_action { 39 int dummy; 40 }; 41 #endif 42 43 /* Dev ops structure defined in mlx5.c */ 44 extern const struct eth_dev_ops mlx5_dev_ops; 45 extern const struct eth_dev_ops mlx5_dev_ops_isolate; 46 47 /** Structure give to the conversion functions. */ 48 struct mlx5_flow_data { 49 struct mlx5_flow_parse *parser; /** Parser context. */ 50 struct rte_flow_error *error; /** Error context. */ 51 }; 52 53 static int 54 mlx5_flow_create_eth(const struct rte_flow_item *item, 55 const void *default_mask, 56 struct mlx5_flow_data *data); 57 58 static int 59 mlx5_flow_create_vlan(const struct rte_flow_item *item, 60 const void *default_mask, 61 struct mlx5_flow_data *data); 62 63 static int 64 mlx5_flow_create_ipv4(const struct rte_flow_item *item, 65 const void *default_mask, 66 struct mlx5_flow_data *data); 67 68 static int 69 mlx5_flow_create_ipv6(const struct rte_flow_item *item, 70 const void *default_mask, 71 struct mlx5_flow_data *data); 72 73 static int 74 mlx5_flow_create_udp(const struct rte_flow_item *item, 75 const void *default_mask, 76 struct mlx5_flow_data *data); 77 78 static int 79 mlx5_flow_create_tcp(const struct rte_flow_item *item, 80 const void *default_mask, 81 struct mlx5_flow_data *data); 82 83 static int 84 mlx5_flow_create_vxlan(const struct rte_flow_item *item, 85 const void *default_mask, 86 struct mlx5_flow_data *data); 87 88 struct mlx5_flow_parse; 89 90 static void 91 mlx5_flow_create_copy(struct mlx5_flow_parse *parser, void *src, 92 unsigned int size); 93 94 static int 95 mlx5_flow_create_flag_mark(struct mlx5_flow_parse *parser, uint32_t mark_id); 96 97 static int 98 mlx5_flow_create_count(struct rte_eth_dev *dev, struct mlx5_flow_parse *parser); 99 100 /* Hash RX queue types. */ 101 enum hash_rxq_type { 102 HASH_RXQ_TCPV4, 103 HASH_RXQ_UDPV4, 104 HASH_RXQ_IPV4, 105 HASH_RXQ_TCPV6, 106 HASH_RXQ_UDPV6, 107 HASH_RXQ_IPV6, 108 HASH_RXQ_ETH, 109 }; 110 111 /* Initialization data for hash RX queue. */ 112 struct hash_rxq_init { 113 uint64_t hash_fields; /* Fields that participate in the hash. */ 114 uint64_t dpdk_rss_hf; /* Matching DPDK RSS hash fields. */ 115 unsigned int flow_priority; /* Flow priority to use. */ 116 unsigned int ip_version; /* Internet protocol. */ 117 }; 118 119 /* Initialization data for hash RX queues. */ 120 const struct hash_rxq_init hash_rxq_init[] = { 121 [HASH_RXQ_TCPV4] = { 122 .hash_fields = (IBV_RX_HASH_SRC_IPV4 | 123 IBV_RX_HASH_DST_IPV4 | 124 IBV_RX_HASH_SRC_PORT_TCP | 125 IBV_RX_HASH_DST_PORT_TCP), 126 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV4_TCP, 127 .flow_priority = 1, 128 .ip_version = MLX5_IPV4, 129 }, 130 [HASH_RXQ_UDPV4] = { 131 .hash_fields = (IBV_RX_HASH_SRC_IPV4 | 132 IBV_RX_HASH_DST_IPV4 | 133 IBV_RX_HASH_SRC_PORT_UDP | 134 IBV_RX_HASH_DST_PORT_UDP), 135 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV4_UDP, 136 .flow_priority = 1, 137 .ip_version = MLX5_IPV4, 138 }, 139 [HASH_RXQ_IPV4] = { 140 .hash_fields = (IBV_RX_HASH_SRC_IPV4 | 141 IBV_RX_HASH_DST_IPV4), 142 .dpdk_rss_hf = (ETH_RSS_IPV4 | 143 ETH_RSS_FRAG_IPV4), 144 .flow_priority = 2, 145 .ip_version = MLX5_IPV4, 146 }, 147 [HASH_RXQ_TCPV6] = { 148 .hash_fields = (IBV_RX_HASH_SRC_IPV6 | 149 IBV_RX_HASH_DST_IPV6 | 150 IBV_RX_HASH_SRC_PORT_TCP | 151 IBV_RX_HASH_DST_PORT_TCP), 152 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV6_TCP, 153 .flow_priority = 1, 154 .ip_version = MLX5_IPV6, 155 }, 156 [HASH_RXQ_UDPV6] = { 157 .hash_fields = (IBV_RX_HASH_SRC_IPV6 | 158 IBV_RX_HASH_DST_IPV6 | 159 IBV_RX_HASH_SRC_PORT_UDP | 160 IBV_RX_HASH_DST_PORT_UDP), 161 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV6_UDP, 162 .flow_priority = 1, 163 .ip_version = MLX5_IPV6, 164 }, 165 [HASH_RXQ_IPV6] = { 166 .hash_fields = (IBV_RX_HASH_SRC_IPV6 | 167 IBV_RX_HASH_DST_IPV6), 168 .dpdk_rss_hf = (ETH_RSS_IPV6 | 169 ETH_RSS_FRAG_IPV6), 170 .flow_priority = 2, 171 .ip_version = MLX5_IPV6, 172 }, 173 [HASH_RXQ_ETH] = { 174 .hash_fields = 0, 175 .dpdk_rss_hf = 0, 176 .flow_priority = 3, 177 }, 178 }; 179 180 /* Number of entries in hash_rxq_init[]. */ 181 const unsigned int hash_rxq_init_n = RTE_DIM(hash_rxq_init); 182 183 /** Structure for holding counter stats. */ 184 struct mlx5_flow_counter_stats { 185 uint64_t hits; /**< Number of packets matched by the rule. */ 186 uint64_t bytes; /**< Number of bytes matched by the rule. */ 187 }; 188 189 /** Structure for Drop queue. */ 190 struct mlx5_hrxq_drop { 191 struct ibv_rwq_ind_table *ind_table; /**< Indirection table. */ 192 struct ibv_qp *qp; /**< Verbs queue pair. */ 193 struct ibv_wq *wq; /**< Verbs work queue. */ 194 struct ibv_cq *cq; /**< Verbs completion queue. */ 195 }; 196 197 /* Flows structures. */ 198 struct mlx5_flow { 199 uint64_t hash_fields; /**< Fields that participate in the hash. */ 200 struct ibv_flow_attr *ibv_attr; /**< Pointer to Verbs attributes. */ 201 struct ibv_flow *ibv_flow; /**< Verbs flow. */ 202 struct mlx5_hrxq *hrxq; /**< Hash Rx queues. */ 203 }; 204 205 /* Drop flows structures. */ 206 struct mlx5_flow_drop { 207 struct ibv_flow_attr *ibv_attr; /**< Pointer to Verbs attributes. */ 208 struct ibv_flow *ibv_flow; /**< Verbs flow. */ 209 }; 210 211 struct rte_flow { 212 TAILQ_ENTRY(rte_flow) next; /**< Pointer to the next flow structure. */ 213 uint32_t mark:1; /**< Set if the flow is marked. */ 214 uint32_t drop:1; /**< Drop queue. */ 215 uint16_t queues_n; /**< Number of entries in queue[]. */ 216 uint16_t (*queues)[]; /**< Queues indexes to use. */ 217 struct rte_eth_rss_conf rss_conf; /**< RSS configuration */ 218 uint8_t rss_key[40]; /**< copy of the RSS key. */ 219 struct ibv_counter_set *cs; /**< Holds the counters for the rule. */ 220 struct mlx5_flow_counter_stats counter_stats;/**<The counter stats. */ 221 struct mlx5_flow frxq[RTE_DIM(hash_rxq_init)]; 222 /**< Flow with Rx queue. */ 223 }; 224 225 /** Static initializer for items. */ 226 #define ITEMS(...) \ 227 (const enum rte_flow_item_type []){ \ 228 __VA_ARGS__, RTE_FLOW_ITEM_TYPE_END, \ 229 } 230 231 /** Structure to generate a simple graph of layers supported by the NIC. */ 232 struct mlx5_flow_items { 233 /** List of possible actions for these items. */ 234 const enum rte_flow_action_type *const actions; 235 /** Bit-masks corresponding to the possibilities for the item. */ 236 const void *mask; 237 /** 238 * Default bit-masks to use when item->mask is not provided. When 239 * \default_mask is also NULL, the full supported bit-mask (\mask) is 240 * used instead. 241 */ 242 const void *default_mask; 243 /** Bit-masks size in bytes. */ 244 const unsigned int mask_sz; 245 /** 246 * Conversion function from rte_flow to NIC specific flow. 247 * 248 * @param item 249 * rte_flow item to convert. 250 * @param default_mask 251 * Default bit-masks to use when item->mask is not provided. 252 * @param data 253 * Internal structure to store the conversion. 254 * 255 * @return 256 * 0 on success, a negative errno value otherwise and rte_errno is 257 * set. 258 */ 259 int (*convert)(const struct rte_flow_item *item, 260 const void *default_mask, 261 struct mlx5_flow_data *data); 262 /** Size in bytes of the destination structure. */ 263 const unsigned int dst_sz; 264 /** List of possible following items. */ 265 const enum rte_flow_item_type *const items; 266 }; 267 268 /** Valid action for this PMD. */ 269 static const enum rte_flow_action_type valid_actions[] = { 270 RTE_FLOW_ACTION_TYPE_DROP, 271 RTE_FLOW_ACTION_TYPE_QUEUE, 272 RTE_FLOW_ACTION_TYPE_MARK, 273 RTE_FLOW_ACTION_TYPE_FLAG, 274 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 275 RTE_FLOW_ACTION_TYPE_COUNT, 276 #endif 277 RTE_FLOW_ACTION_TYPE_END, 278 }; 279 280 /** Graph of supported items and associated actions. */ 281 static const struct mlx5_flow_items mlx5_flow_items[] = { 282 [RTE_FLOW_ITEM_TYPE_END] = { 283 .items = ITEMS(RTE_FLOW_ITEM_TYPE_ETH, 284 RTE_FLOW_ITEM_TYPE_VXLAN), 285 }, 286 [RTE_FLOW_ITEM_TYPE_ETH] = { 287 .items = ITEMS(RTE_FLOW_ITEM_TYPE_VLAN, 288 RTE_FLOW_ITEM_TYPE_IPV4, 289 RTE_FLOW_ITEM_TYPE_IPV6), 290 .actions = valid_actions, 291 .mask = &(const struct rte_flow_item_eth){ 292 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 293 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 294 .type = -1, 295 }, 296 .default_mask = &rte_flow_item_eth_mask, 297 .mask_sz = sizeof(struct rte_flow_item_eth), 298 .convert = mlx5_flow_create_eth, 299 .dst_sz = sizeof(struct ibv_flow_spec_eth), 300 }, 301 [RTE_FLOW_ITEM_TYPE_VLAN] = { 302 .items = ITEMS(RTE_FLOW_ITEM_TYPE_IPV4, 303 RTE_FLOW_ITEM_TYPE_IPV6), 304 .actions = valid_actions, 305 .mask = &(const struct rte_flow_item_vlan){ 306 .tci = -1, 307 }, 308 .default_mask = &rte_flow_item_vlan_mask, 309 .mask_sz = sizeof(struct rte_flow_item_vlan), 310 .convert = mlx5_flow_create_vlan, 311 .dst_sz = 0, 312 }, 313 [RTE_FLOW_ITEM_TYPE_IPV4] = { 314 .items = ITEMS(RTE_FLOW_ITEM_TYPE_UDP, 315 RTE_FLOW_ITEM_TYPE_TCP), 316 .actions = valid_actions, 317 .mask = &(const struct rte_flow_item_ipv4){ 318 .hdr = { 319 .src_addr = -1, 320 .dst_addr = -1, 321 .type_of_service = -1, 322 .next_proto_id = -1, 323 }, 324 }, 325 .default_mask = &rte_flow_item_ipv4_mask, 326 .mask_sz = sizeof(struct rte_flow_item_ipv4), 327 .convert = mlx5_flow_create_ipv4, 328 .dst_sz = sizeof(struct ibv_flow_spec_ipv4_ext), 329 }, 330 [RTE_FLOW_ITEM_TYPE_IPV6] = { 331 .items = ITEMS(RTE_FLOW_ITEM_TYPE_UDP, 332 RTE_FLOW_ITEM_TYPE_TCP), 333 .actions = valid_actions, 334 .mask = &(const struct rte_flow_item_ipv6){ 335 .hdr = { 336 .src_addr = { 337 0xff, 0xff, 0xff, 0xff, 338 0xff, 0xff, 0xff, 0xff, 339 0xff, 0xff, 0xff, 0xff, 340 0xff, 0xff, 0xff, 0xff, 341 }, 342 .dst_addr = { 343 0xff, 0xff, 0xff, 0xff, 344 0xff, 0xff, 0xff, 0xff, 345 0xff, 0xff, 0xff, 0xff, 346 0xff, 0xff, 0xff, 0xff, 347 }, 348 .vtc_flow = -1, 349 .proto = -1, 350 .hop_limits = -1, 351 }, 352 }, 353 .default_mask = &rte_flow_item_ipv6_mask, 354 .mask_sz = sizeof(struct rte_flow_item_ipv6), 355 .convert = mlx5_flow_create_ipv6, 356 .dst_sz = sizeof(struct ibv_flow_spec_ipv6), 357 }, 358 [RTE_FLOW_ITEM_TYPE_UDP] = { 359 .items = ITEMS(RTE_FLOW_ITEM_TYPE_VXLAN), 360 .actions = valid_actions, 361 .mask = &(const struct rte_flow_item_udp){ 362 .hdr = { 363 .src_port = -1, 364 .dst_port = -1, 365 }, 366 }, 367 .default_mask = &rte_flow_item_udp_mask, 368 .mask_sz = sizeof(struct rte_flow_item_udp), 369 .convert = mlx5_flow_create_udp, 370 .dst_sz = sizeof(struct ibv_flow_spec_tcp_udp), 371 }, 372 [RTE_FLOW_ITEM_TYPE_TCP] = { 373 .actions = valid_actions, 374 .mask = &(const struct rte_flow_item_tcp){ 375 .hdr = { 376 .src_port = -1, 377 .dst_port = -1, 378 }, 379 }, 380 .default_mask = &rte_flow_item_tcp_mask, 381 .mask_sz = sizeof(struct rte_flow_item_tcp), 382 .convert = mlx5_flow_create_tcp, 383 .dst_sz = sizeof(struct ibv_flow_spec_tcp_udp), 384 }, 385 [RTE_FLOW_ITEM_TYPE_VXLAN] = { 386 .items = ITEMS(RTE_FLOW_ITEM_TYPE_ETH), 387 .actions = valid_actions, 388 .mask = &(const struct rte_flow_item_vxlan){ 389 .vni = "\xff\xff\xff", 390 }, 391 .default_mask = &rte_flow_item_vxlan_mask, 392 .mask_sz = sizeof(struct rte_flow_item_vxlan), 393 .convert = mlx5_flow_create_vxlan, 394 .dst_sz = sizeof(struct ibv_flow_spec_tunnel), 395 }, 396 }; 397 398 /** Structure to pass to the conversion function. */ 399 struct mlx5_flow_parse { 400 uint32_t inner; /**< Set once VXLAN is encountered. */ 401 uint32_t create:1; 402 /**< Whether resources should remain after a validate. */ 403 uint32_t drop:1; /**< Target is a drop queue. */ 404 uint32_t mark:1; /**< Mark is present in the flow. */ 405 uint32_t count:1; /**< Count is present in the flow. */ 406 uint32_t mark_id; /**< Mark identifier. */ 407 uint16_t queues[RTE_MAX_QUEUES_PER_PORT]; /**< Queues indexes to use. */ 408 uint16_t queues_n; /**< Number of entries in queue[]. */ 409 struct rte_eth_rss_conf rss_conf; /**< RSS configuration */ 410 uint8_t rss_key[40]; /**< copy of the RSS key. */ 411 enum hash_rxq_type layer; /**< Last pattern layer detected. */ 412 struct ibv_counter_set *cs; /**< Holds the counter set for the rule */ 413 struct { 414 struct ibv_flow_attr *ibv_attr; 415 /**< Pointer to Verbs attributes. */ 416 unsigned int offset; 417 /**< Current position or total size of the attribute. */ 418 } queue[RTE_DIM(hash_rxq_init)]; 419 }; 420 421 static const struct rte_flow_ops mlx5_flow_ops = { 422 .validate = mlx5_flow_validate, 423 .create = mlx5_flow_create, 424 .destroy = mlx5_flow_destroy, 425 .flush = mlx5_flow_flush, 426 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 427 .query = mlx5_flow_query, 428 #else 429 .query = NULL, 430 #endif 431 .isolate = mlx5_flow_isolate, 432 }; 433 434 /* Convert FDIR request to Generic flow. */ 435 struct mlx5_fdir { 436 struct rte_flow_attr attr; 437 struct rte_flow_action actions[2]; 438 struct rte_flow_item items[4]; 439 struct rte_flow_item_eth l2; 440 struct rte_flow_item_eth l2_mask; 441 union { 442 struct rte_flow_item_ipv4 ipv4; 443 struct rte_flow_item_ipv6 ipv6; 444 } l3; 445 union { 446 struct rte_flow_item_udp udp; 447 struct rte_flow_item_tcp tcp; 448 } l4; 449 struct rte_flow_action_queue queue; 450 }; 451 452 /* Verbs specification header. */ 453 struct ibv_spec_header { 454 enum ibv_flow_spec_type type; 455 uint16_t size; 456 }; 457 458 /** 459 * Check support for a given item. 460 * 461 * @param item[in] 462 * Item specification. 463 * @param mask[in] 464 * Bit-masks covering supported fields to compare with spec, last and mask in 465 * \item. 466 * @param size 467 * Bit-Mask size in bytes. 468 * 469 * @return 470 * 0 on success, a negative errno value otherwise and rte_errno is set. 471 */ 472 static int 473 mlx5_flow_item_validate(const struct rte_flow_item *item, 474 const uint8_t *mask, unsigned int size) 475 { 476 if (!item->spec && (item->mask || item->last)) { 477 rte_errno = EINVAL; 478 return -rte_errno; 479 } 480 if (item->spec && !item->mask) { 481 unsigned int i; 482 const uint8_t *spec = item->spec; 483 484 for (i = 0; i < size; ++i) 485 if ((spec[i] | mask[i]) != mask[i]) { 486 rte_errno = EINVAL; 487 return -rte_errno; 488 } 489 } 490 if (item->last && !item->mask) { 491 unsigned int i; 492 const uint8_t *spec = item->last; 493 494 for (i = 0; i < size; ++i) 495 if ((spec[i] | mask[i]) != mask[i]) { 496 rte_errno = EINVAL; 497 return -rte_errno; 498 } 499 } 500 if (item->mask) { 501 unsigned int i; 502 const uint8_t *spec = item->spec; 503 504 for (i = 0; i < size; ++i) 505 if ((spec[i] | mask[i]) != mask[i]) { 506 rte_errno = EINVAL; 507 return -rte_errno; 508 } 509 } 510 if (item->spec && item->last) { 511 uint8_t spec[size]; 512 uint8_t last[size]; 513 const uint8_t *apply = mask; 514 unsigned int i; 515 int ret; 516 517 if (item->mask) 518 apply = item->mask; 519 for (i = 0; i < size; ++i) { 520 spec[i] = ((const uint8_t *)item->spec)[i] & apply[i]; 521 last[i] = ((const uint8_t *)item->last)[i] & apply[i]; 522 } 523 ret = memcmp(spec, last, size); 524 if (ret != 0) { 525 rte_errno = EINVAL; 526 return -rte_errno; 527 } 528 } 529 return 0; 530 } 531 532 /** 533 * Copy the RSS configuration from the user ones, of the rss_conf is null, 534 * uses the driver one. 535 * 536 * @param parser 537 * Internal parser structure. 538 * @param rss_conf 539 * User RSS configuration to save. 540 * 541 * @return 542 * 0 on success, a negative errno value otherwise and rte_errno is set. 543 */ 544 static int 545 mlx5_flow_convert_rss_conf(struct mlx5_flow_parse *parser, 546 const struct rte_eth_rss_conf *rss_conf) 547 { 548 /* 549 * This function is also called at the beginning of 550 * mlx5_flow_convert_actions() to initialize the parser with the 551 * device default RSS configuration. 552 */ 553 if (rss_conf) { 554 if (rss_conf->rss_hf & MLX5_RSS_HF_MASK) { 555 rte_errno = EINVAL; 556 return -rte_errno; 557 } 558 if (rss_conf->rss_key_len != 40) { 559 rte_errno = EINVAL; 560 return -rte_errno; 561 } 562 if (rss_conf->rss_key_len && rss_conf->rss_key) { 563 parser->rss_conf.rss_key_len = rss_conf->rss_key_len; 564 memcpy(parser->rss_key, rss_conf->rss_key, 565 rss_conf->rss_key_len); 566 parser->rss_conf.rss_key = parser->rss_key; 567 } 568 parser->rss_conf.rss_hf = rss_conf->rss_hf; 569 } 570 return 0; 571 } 572 573 /** 574 * Extract attribute to the parser. 575 * 576 * @param[in] attr 577 * Flow rule attributes. 578 * @param[out] error 579 * Perform verbose error reporting if not NULL. 580 * 581 * @return 582 * 0 on success, a negative errno value otherwise and rte_errno is set. 583 */ 584 static int 585 mlx5_flow_convert_attributes(const struct rte_flow_attr *attr, 586 struct rte_flow_error *error) 587 { 588 if (attr->group) { 589 rte_flow_error_set(error, ENOTSUP, 590 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 591 NULL, 592 "groups are not supported"); 593 return -rte_errno; 594 } 595 if (attr->priority && attr->priority != MLX5_CTRL_FLOW_PRIORITY) { 596 rte_flow_error_set(error, ENOTSUP, 597 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 598 NULL, 599 "priorities are not supported"); 600 return -rte_errno; 601 } 602 if (attr->egress) { 603 rte_flow_error_set(error, ENOTSUP, 604 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, 605 NULL, 606 "egress is not supported"); 607 return -rte_errno; 608 } 609 if (!attr->ingress) { 610 rte_flow_error_set(error, ENOTSUP, 611 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 612 NULL, 613 "only ingress is supported"); 614 return -rte_errno; 615 } 616 return 0; 617 } 618 619 /** 620 * Extract actions request to the parser. 621 * 622 * @param dev 623 * Pointer to Ethernet device. 624 * @param[in] actions 625 * Associated actions (list terminated by the END action). 626 * @param[out] error 627 * Perform verbose error reporting if not NULL. 628 * @param[in, out] parser 629 * Internal parser structure. 630 * 631 * @return 632 * 0 on success, a negative errno value otherwise and rte_errno is set. 633 */ 634 static int 635 mlx5_flow_convert_actions(struct rte_eth_dev *dev, 636 const struct rte_flow_action actions[], 637 struct rte_flow_error *error, 638 struct mlx5_flow_parse *parser) 639 { 640 struct priv *priv = dev->data->dev_private; 641 int ret; 642 643 /* 644 * Add default RSS configuration necessary for Verbs to create QP even 645 * if no RSS is necessary. 646 */ 647 ret = mlx5_flow_convert_rss_conf(parser, 648 (const struct rte_eth_rss_conf *) 649 &priv->rss_conf); 650 if (ret) 651 return ret; 652 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; ++actions) { 653 if (actions->type == RTE_FLOW_ACTION_TYPE_VOID) { 654 continue; 655 } else if (actions->type == RTE_FLOW_ACTION_TYPE_DROP) { 656 parser->drop = 1; 657 } else if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE) { 658 const struct rte_flow_action_queue *queue = 659 (const struct rte_flow_action_queue *) 660 actions->conf; 661 uint16_t n; 662 uint16_t found = 0; 663 664 if (!queue || (queue->index > (priv->rxqs_n - 1))) 665 goto exit_action_not_supported; 666 for (n = 0; n < parser->queues_n; ++n) { 667 if (parser->queues[n] == queue->index) { 668 found = 1; 669 break; 670 } 671 } 672 if (parser->queues_n > 1 && !found) { 673 rte_flow_error_set(error, ENOTSUP, 674 RTE_FLOW_ERROR_TYPE_ACTION, 675 actions, 676 "queue action not in RSS queues"); 677 return -rte_errno; 678 } 679 if (!found) { 680 parser->queues_n = 1; 681 parser->queues[0] = queue->index; 682 } 683 } else if (actions->type == RTE_FLOW_ACTION_TYPE_RSS) { 684 const struct rte_flow_action_rss *rss = 685 (const struct rte_flow_action_rss *) 686 actions->conf; 687 uint16_t n; 688 689 if (!rss || !rss->num) { 690 rte_flow_error_set(error, EINVAL, 691 RTE_FLOW_ERROR_TYPE_ACTION, 692 actions, 693 "no valid queues"); 694 return -rte_errno; 695 } 696 if (parser->queues_n == 1) { 697 uint16_t found = 0; 698 699 assert(parser->queues_n); 700 for (n = 0; n < rss->num; ++n) { 701 if (parser->queues[0] == 702 rss->queue[n]) { 703 found = 1; 704 break; 705 } 706 } 707 if (!found) { 708 rte_flow_error_set(error, ENOTSUP, 709 RTE_FLOW_ERROR_TYPE_ACTION, 710 actions, 711 "queue action not in RSS" 712 " queues"); 713 return -rte_errno; 714 } 715 } 716 for (n = 0; n < rss->num; ++n) { 717 if (rss->queue[n] >= priv->rxqs_n) { 718 rte_flow_error_set(error, EINVAL, 719 RTE_FLOW_ERROR_TYPE_ACTION, 720 actions, 721 "queue id > number of" 722 " queues"); 723 return -rte_errno; 724 } 725 } 726 for (n = 0; n < rss->num; ++n) 727 parser->queues[n] = rss->queue[n]; 728 parser->queues_n = rss->num; 729 if (mlx5_flow_convert_rss_conf(parser, rss->rss_conf)) { 730 rte_flow_error_set(error, EINVAL, 731 RTE_FLOW_ERROR_TYPE_ACTION, 732 actions, 733 "wrong RSS configuration"); 734 return -rte_errno; 735 } 736 } else if (actions->type == RTE_FLOW_ACTION_TYPE_MARK) { 737 const struct rte_flow_action_mark *mark = 738 (const struct rte_flow_action_mark *) 739 actions->conf; 740 741 if (!mark) { 742 rte_flow_error_set(error, EINVAL, 743 RTE_FLOW_ERROR_TYPE_ACTION, 744 actions, 745 "mark must be defined"); 746 return -rte_errno; 747 } else if (mark->id >= MLX5_FLOW_MARK_MAX) { 748 rte_flow_error_set(error, ENOTSUP, 749 RTE_FLOW_ERROR_TYPE_ACTION, 750 actions, 751 "mark must be between 0" 752 " and 16777199"); 753 return -rte_errno; 754 } 755 parser->mark = 1; 756 parser->mark_id = mark->id; 757 } else if (actions->type == RTE_FLOW_ACTION_TYPE_FLAG) { 758 parser->mark = 1; 759 } else if (actions->type == RTE_FLOW_ACTION_TYPE_COUNT && 760 priv->config.flow_counter_en) { 761 parser->count = 1; 762 } else { 763 goto exit_action_not_supported; 764 } 765 } 766 if (parser->drop && parser->mark) 767 parser->mark = 0; 768 if (!parser->queues_n && !parser->drop) { 769 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE, 770 NULL, "no valid action"); 771 return -rte_errno; 772 } 773 return 0; 774 exit_action_not_supported: 775 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 776 actions, "action not supported"); 777 return -rte_errno; 778 } 779 780 /** 781 * Validate items. 782 * 783 * @param[in] items 784 * Pattern specification (list terminated by the END pattern item). 785 * @param[out] error 786 * Perform verbose error reporting if not NULL. 787 * @param[in, out] parser 788 * Internal parser structure. 789 * 790 * @return 791 * 0 on success, a negative errno value otherwise and rte_errno is set. 792 */ 793 static int 794 mlx5_flow_convert_items_validate(const struct rte_flow_item items[], 795 struct rte_flow_error *error, 796 struct mlx5_flow_parse *parser) 797 { 798 const struct mlx5_flow_items *cur_item = mlx5_flow_items; 799 unsigned int i; 800 int ret = 0; 801 802 /* Initialise the offsets to start after verbs attribute. */ 803 for (i = 0; i != hash_rxq_init_n; ++i) 804 parser->queue[i].offset = sizeof(struct ibv_flow_attr); 805 for (; items->type != RTE_FLOW_ITEM_TYPE_END; ++items) { 806 const struct mlx5_flow_items *token = NULL; 807 unsigned int n; 808 809 if (items->type == RTE_FLOW_ITEM_TYPE_VOID) 810 continue; 811 for (i = 0; 812 cur_item->items && 813 cur_item->items[i] != RTE_FLOW_ITEM_TYPE_END; 814 ++i) { 815 if (cur_item->items[i] == items->type) { 816 token = &mlx5_flow_items[items->type]; 817 break; 818 } 819 } 820 if (!token) 821 goto exit_item_not_supported; 822 cur_item = token; 823 ret = mlx5_flow_item_validate(items, 824 (const uint8_t *)cur_item->mask, 825 cur_item->mask_sz); 826 if (ret) 827 goto exit_item_not_supported; 828 if (items->type == RTE_FLOW_ITEM_TYPE_VXLAN) { 829 if (parser->inner) { 830 rte_flow_error_set(error, ENOTSUP, 831 RTE_FLOW_ERROR_TYPE_ITEM, 832 items, 833 "cannot recognize multiple" 834 " VXLAN encapsulations"); 835 return -rte_errno; 836 } 837 parser->inner = IBV_FLOW_SPEC_INNER; 838 } 839 if (parser->drop) { 840 parser->queue[HASH_RXQ_ETH].offset += cur_item->dst_sz; 841 } else { 842 for (n = 0; n != hash_rxq_init_n; ++n) 843 parser->queue[n].offset += cur_item->dst_sz; 844 } 845 } 846 if (parser->drop) { 847 parser->queue[HASH_RXQ_ETH].offset += 848 sizeof(struct ibv_flow_spec_action_drop); 849 } 850 if (parser->mark) { 851 for (i = 0; i != hash_rxq_init_n; ++i) 852 parser->queue[i].offset += 853 sizeof(struct ibv_flow_spec_action_tag); 854 } 855 if (parser->count) { 856 unsigned int size = sizeof(struct ibv_flow_spec_counter_action); 857 858 for (i = 0; i != hash_rxq_init_n; ++i) 859 parser->queue[i].offset += size; 860 } 861 return 0; 862 exit_item_not_supported: 863 return rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_ITEM, 864 items, "item not supported"); 865 } 866 867 /** 868 * Allocate memory space to store verbs flow attributes. 869 * 870 * @param[in] size 871 * Amount of byte to allocate. 872 * @param[out] error 873 * Perform verbose error reporting if not NULL. 874 * 875 * @return 876 * A verbs flow attribute on success, NULL otherwise and rte_errno is set. 877 */ 878 static struct ibv_flow_attr * 879 mlx5_flow_convert_allocate(unsigned int size, struct rte_flow_error *error) 880 { 881 struct ibv_flow_attr *ibv_attr; 882 883 ibv_attr = rte_calloc(__func__, 1, size, 0); 884 if (!ibv_attr) { 885 rte_flow_error_set(error, ENOMEM, 886 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 887 NULL, 888 "cannot allocate verbs spec attributes"); 889 return NULL; 890 } 891 return ibv_attr; 892 } 893 894 /** 895 * Make inner packet matching with an higher priority from the non Inner 896 * matching. 897 * 898 * @param[in, out] parser 899 * Internal parser structure. 900 * @param attr 901 * User flow attribute. 902 */ 903 static void 904 mlx5_flow_update_priority(struct mlx5_flow_parse *parser, 905 const struct rte_flow_attr *attr) 906 { 907 unsigned int i; 908 909 if (parser->drop) { 910 parser->queue[HASH_RXQ_ETH].ibv_attr->priority = 911 attr->priority + 912 hash_rxq_init[HASH_RXQ_ETH].flow_priority; 913 return; 914 } 915 for (i = 0; i != hash_rxq_init_n; ++i) { 916 if (parser->queue[i].ibv_attr) { 917 parser->queue[i].ibv_attr->priority = 918 attr->priority + 919 hash_rxq_init[i].flow_priority - 920 (parser->inner ? 1 : 0); 921 } 922 } 923 } 924 925 /** 926 * Finalise verbs flow attributes. 927 * 928 * @param[in, out] parser 929 * Internal parser structure. 930 */ 931 static void 932 mlx5_flow_convert_finalise(struct mlx5_flow_parse *parser) 933 { 934 const unsigned int ipv4 = 935 hash_rxq_init[parser->layer].ip_version == MLX5_IPV4; 936 const enum hash_rxq_type hmin = ipv4 ? HASH_RXQ_TCPV4 : HASH_RXQ_TCPV6; 937 const enum hash_rxq_type hmax = ipv4 ? HASH_RXQ_IPV4 : HASH_RXQ_IPV6; 938 const enum hash_rxq_type ohmin = ipv4 ? HASH_RXQ_TCPV6 : HASH_RXQ_TCPV4; 939 const enum hash_rxq_type ohmax = ipv4 ? HASH_RXQ_IPV6 : HASH_RXQ_IPV4; 940 const enum hash_rxq_type ip = ipv4 ? HASH_RXQ_IPV4 : HASH_RXQ_IPV6; 941 unsigned int i; 942 943 /* Remove any other flow not matching the pattern. */ 944 if (parser->queues_n == 1 && !parser->rss_conf.rss_hf) { 945 for (i = 0; i != hash_rxq_init_n; ++i) { 946 if (i == HASH_RXQ_ETH) 947 continue; 948 rte_free(parser->queue[i].ibv_attr); 949 parser->queue[i].ibv_attr = NULL; 950 } 951 return; 952 } 953 if (parser->layer == HASH_RXQ_ETH) { 954 goto fill; 955 } else { 956 /* 957 * This layer becomes useless as the pattern define under 958 * layers. 959 */ 960 rte_free(parser->queue[HASH_RXQ_ETH].ibv_attr); 961 parser->queue[HASH_RXQ_ETH].ibv_attr = NULL; 962 } 963 /* Remove opposite kind of layer e.g. IPv6 if the pattern is IPv4. */ 964 for (i = ohmin; i != (ohmax + 1); ++i) { 965 if (!parser->queue[i].ibv_attr) 966 continue; 967 rte_free(parser->queue[i].ibv_attr); 968 parser->queue[i].ibv_attr = NULL; 969 } 970 /* Remove impossible flow according to the RSS configuration. */ 971 if (hash_rxq_init[parser->layer].dpdk_rss_hf & 972 parser->rss_conf.rss_hf) { 973 /* Remove any other flow. */ 974 for (i = hmin; i != (hmax + 1); ++i) { 975 if ((i == parser->layer) || 976 (!parser->queue[i].ibv_attr)) 977 continue; 978 rte_free(parser->queue[i].ibv_attr); 979 parser->queue[i].ibv_attr = NULL; 980 } 981 } else if (!parser->queue[ip].ibv_attr) { 982 /* no RSS possible with the current configuration. */ 983 parser->queues_n = 1; 984 return; 985 } 986 fill: 987 /* 988 * Fill missing layers in verbs specifications, or compute the correct 989 * offset to allocate the memory space for the attributes and 990 * specifications. 991 */ 992 for (i = 0; i != hash_rxq_init_n - 1; ++i) { 993 union { 994 struct ibv_flow_spec_ipv4_ext ipv4; 995 struct ibv_flow_spec_ipv6 ipv6; 996 struct ibv_flow_spec_tcp_udp udp_tcp; 997 } specs; 998 void *dst; 999 uint16_t size; 1000 1001 if (i == parser->layer) 1002 continue; 1003 if (parser->layer == HASH_RXQ_ETH) { 1004 if (hash_rxq_init[i].ip_version == MLX5_IPV4) { 1005 size = sizeof(struct ibv_flow_spec_ipv4_ext); 1006 specs.ipv4 = (struct ibv_flow_spec_ipv4_ext){ 1007 .type = IBV_FLOW_SPEC_IPV4_EXT, 1008 .size = size, 1009 }; 1010 } else { 1011 size = sizeof(struct ibv_flow_spec_ipv6); 1012 specs.ipv6 = (struct ibv_flow_spec_ipv6){ 1013 .type = IBV_FLOW_SPEC_IPV6, 1014 .size = size, 1015 }; 1016 } 1017 if (parser->queue[i].ibv_attr) { 1018 dst = (void *)((uintptr_t) 1019 parser->queue[i].ibv_attr + 1020 parser->queue[i].offset); 1021 memcpy(dst, &specs, size); 1022 ++parser->queue[i].ibv_attr->num_of_specs; 1023 } 1024 parser->queue[i].offset += size; 1025 } 1026 if ((i == HASH_RXQ_UDPV4) || (i == HASH_RXQ_TCPV4) || 1027 (i == HASH_RXQ_UDPV6) || (i == HASH_RXQ_TCPV6)) { 1028 size = sizeof(struct ibv_flow_spec_tcp_udp); 1029 specs.udp_tcp = (struct ibv_flow_spec_tcp_udp) { 1030 .type = ((i == HASH_RXQ_UDPV4 || 1031 i == HASH_RXQ_UDPV6) ? 1032 IBV_FLOW_SPEC_UDP : 1033 IBV_FLOW_SPEC_TCP), 1034 .size = size, 1035 }; 1036 if (parser->queue[i].ibv_attr) { 1037 dst = (void *)((uintptr_t) 1038 parser->queue[i].ibv_attr + 1039 parser->queue[i].offset); 1040 memcpy(dst, &specs, size); 1041 ++parser->queue[i].ibv_attr->num_of_specs; 1042 } 1043 parser->queue[i].offset += size; 1044 } 1045 } 1046 } 1047 1048 /** 1049 * Validate and convert a flow supported by the NIC. 1050 * 1051 * @param dev 1052 * Pointer to Ethernet device. 1053 * @param[in] attr 1054 * Flow rule attributes. 1055 * @param[in] pattern 1056 * Pattern specification (list terminated by the END pattern item). 1057 * @param[in] actions 1058 * Associated actions (list terminated by the END action). 1059 * @param[out] error 1060 * Perform verbose error reporting if not NULL. 1061 * @param[in, out] parser 1062 * Internal parser structure. 1063 * 1064 * @return 1065 * 0 on success, a negative errno value otherwise and rte_errno is set. 1066 */ 1067 static int 1068 mlx5_flow_convert(struct rte_eth_dev *dev, 1069 const struct rte_flow_attr *attr, 1070 const struct rte_flow_item items[], 1071 const struct rte_flow_action actions[], 1072 struct rte_flow_error *error, 1073 struct mlx5_flow_parse *parser) 1074 { 1075 const struct mlx5_flow_items *cur_item = mlx5_flow_items; 1076 unsigned int i; 1077 int ret; 1078 1079 /* First step. Validate the attributes, items and actions. */ 1080 *parser = (struct mlx5_flow_parse){ 1081 .create = parser->create, 1082 .layer = HASH_RXQ_ETH, 1083 .mark_id = MLX5_FLOW_MARK_DEFAULT, 1084 }; 1085 ret = mlx5_flow_convert_attributes(attr, error); 1086 if (ret) 1087 return ret; 1088 ret = mlx5_flow_convert_actions(dev, actions, error, parser); 1089 if (ret) 1090 return ret; 1091 ret = mlx5_flow_convert_items_validate(items, error, parser); 1092 if (ret) 1093 return ret; 1094 mlx5_flow_convert_finalise(parser); 1095 /* 1096 * Second step. 1097 * Allocate the memory space to store verbs specifications. 1098 */ 1099 if (parser->drop) { 1100 unsigned int offset = parser->queue[HASH_RXQ_ETH].offset; 1101 1102 parser->queue[HASH_RXQ_ETH].ibv_attr = 1103 mlx5_flow_convert_allocate(offset, error); 1104 if (!parser->queue[HASH_RXQ_ETH].ibv_attr) 1105 goto exit_enomem; 1106 parser->queue[HASH_RXQ_ETH].offset = 1107 sizeof(struct ibv_flow_attr); 1108 } else { 1109 for (i = 0; i != hash_rxq_init_n; ++i) { 1110 unsigned int offset; 1111 1112 if (!(parser->rss_conf.rss_hf & 1113 hash_rxq_init[i].dpdk_rss_hf) && 1114 (i != HASH_RXQ_ETH)) 1115 continue; 1116 offset = parser->queue[i].offset; 1117 parser->queue[i].ibv_attr = 1118 mlx5_flow_convert_allocate(offset, error); 1119 if (!parser->queue[i].ibv_attr) 1120 goto exit_enomem; 1121 parser->queue[i].offset = sizeof(struct ibv_flow_attr); 1122 } 1123 } 1124 /* Third step. Conversion parse, fill the specifications. */ 1125 parser->inner = 0; 1126 for (; items->type != RTE_FLOW_ITEM_TYPE_END; ++items) { 1127 struct mlx5_flow_data data = { 1128 .parser = parser, 1129 .error = error, 1130 }; 1131 1132 if (items->type == RTE_FLOW_ITEM_TYPE_VOID) 1133 continue; 1134 cur_item = &mlx5_flow_items[items->type]; 1135 ret = cur_item->convert(items, 1136 (cur_item->default_mask ? 1137 cur_item->default_mask : 1138 cur_item->mask), 1139 &data); 1140 if (ret) 1141 goto exit_free; 1142 } 1143 if (parser->mark) 1144 mlx5_flow_create_flag_mark(parser, parser->mark_id); 1145 if (parser->count && parser->create) { 1146 mlx5_flow_create_count(dev, parser); 1147 if (!parser->cs) 1148 goto exit_count_error; 1149 } 1150 /* 1151 * Last step. Complete missing specification to reach the RSS 1152 * configuration. 1153 */ 1154 if (!parser->drop) 1155 mlx5_flow_convert_finalise(parser); 1156 mlx5_flow_update_priority(parser, attr); 1157 exit_free: 1158 /* Only verification is expected, all resources should be released. */ 1159 if (!parser->create) { 1160 for (i = 0; i != hash_rxq_init_n; ++i) { 1161 if (parser->queue[i].ibv_attr) { 1162 rte_free(parser->queue[i].ibv_attr); 1163 parser->queue[i].ibv_attr = NULL; 1164 } 1165 } 1166 } 1167 return ret; 1168 exit_enomem: 1169 for (i = 0; i != hash_rxq_init_n; ++i) { 1170 if (parser->queue[i].ibv_attr) { 1171 rte_free(parser->queue[i].ibv_attr); 1172 parser->queue[i].ibv_attr = NULL; 1173 } 1174 } 1175 rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1176 NULL, "cannot allocate verbs spec attributes"); 1177 return -rte_errno; 1178 exit_count_error: 1179 rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1180 NULL, "cannot create counter"); 1181 return -rte_errno; 1182 } 1183 1184 /** 1185 * Copy the specification created into the flow. 1186 * 1187 * @param parser 1188 * Internal parser structure. 1189 * @param src 1190 * Create specification. 1191 * @param size 1192 * Size in bytes of the specification to copy. 1193 */ 1194 static void 1195 mlx5_flow_create_copy(struct mlx5_flow_parse *parser, void *src, 1196 unsigned int size) 1197 { 1198 unsigned int i; 1199 void *dst; 1200 1201 for (i = 0; i != hash_rxq_init_n; ++i) { 1202 if (!parser->queue[i].ibv_attr) 1203 continue; 1204 /* Specification must be the same l3 type or none. */ 1205 if (parser->layer == HASH_RXQ_ETH || 1206 (hash_rxq_init[parser->layer].ip_version == 1207 hash_rxq_init[i].ip_version) || 1208 (hash_rxq_init[i].ip_version == 0)) { 1209 dst = (void *)((uintptr_t)parser->queue[i].ibv_attr + 1210 parser->queue[i].offset); 1211 memcpy(dst, src, size); 1212 ++parser->queue[i].ibv_attr->num_of_specs; 1213 parser->queue[i].offset += size; 1214 } 1215 } 1216 } 1217 1218 /** 1219 * Convert Ethernet item to Verbs specification. 1220 * 1221 * @param item[in] 1222 * Item specification. 1223 * @param default_mask[in] 1224 * Default bit-masks to use when item->mask is not provided. 1225 * @param data[in, out] 1226 * User structure. 1227 * 1228 * @return 1229 * 0 on success, a negative errno value otherwise and rte_errno is set. 1230 */ 1231 static int 1232 mlx5_flow_create_eth(const struct rte_flow_item *item, 1233 const void *default_mask, 1234 struct mlx5_flow_data *data) 1235 { 1236 const struct rte_flow_item_eth *spec = item->spec; 1237 const struct rte_flow_item_eth *mask = item->mask; 1238 struct mlx5_flow_parse *parser = data->parser; 1239 const unsigned int eth_size = sizeof(struct ibv_flow_spec_eth); 1240 struct ibv_flow_spec_eth eth = { 1241 .type = parser->inner | IBV_FLOW_SPEC_ETH, 1242 .size = eth_size, 1243 }; 1244 1245 /* Don't update layer for the inner pattern. */ 1246 if (!parser->inner) 1247 parser->layer = HASH_RXQ_ETH; 1248 if (spec) { 1249 unsigned int i; 1250 1251 if (!mask) 1252 mask = default_mask; 1253 memcpy(ð.val.dst_mac, spec->dst.addr_bytes, ETHER_ADDR_LEN); 1254 memcpy(ð.val.src_mac, spec->src.addr_bytes, ETHER_ADDR_LEN); 1255 eth.val.ether_type = spec->type; 1256 memcpy(ð.mask.dst_mac, mask->dst.addr_bytes, ETHER_ADDR_LEN); 1257 memcpy(ð.mask.src_mac, mask->src.addr_bytes, ETHER_ADDR_LEN); 1258 eth.mask.ether_type = mask->type; 1259 /* Remove unwanted bits from values. */ 1260 for (i = 0; i < ETHER_ADDR_LEN; ++i) { 1261 eth.val.dst_mac[i] &= eth.mask.dst_mac[i]; 1262 eth.val.src_mac[i] &= eth.mask.src_mac[i]; 1263 } 1264 eth.val.ether_type &= eth.mask.ether_type; 1265 } 1266 mlx5_flow_create_copy(parser, ð, eth_size); 1267 return 0; 1268 } 1269 1270 /** 1271 * Convert VLAN item to Verbs specification. 1272 * 1273 * @param item[in] 1274 * Item specification. 1275 * @param default_mask[in] 1276 * Default bit-masks to use when item->mask is not provided. 1277 * @param data[in, out] 1278 * User structure. 1279 * 1280 * @return 1281 * 0 on success, a negative errno value otherwise and rte_errno is set. 1282 */ 1283 static int 1284 mlx5_flow_create_vlan(const struct rte_flow_item *item, 1285 const void *default_mask, 1286 struct mlx5_flow_data *data) 1287 { 1288 const struct rte_flow_item_vlan *spec = item->spec; 1289 const struct rte_flow_item_vlan *mask = item->mask; 1290 struct mlx5_flow_parse *parser = data->parser; 1291 struct ibv_flow_spec_eth *eth; 1292 const unsigned int eth_size = sizeof(struct ibv_flow_spec_eth); 1293 1294 if (spec) { 1295 unsigned int i; 1296 if (!mask) 1297 mask = default_mask; 1298 1299 for (i = 0; i != hash_rxq_init_n; ++i) { 1300 if (!parser->queue[i].ibv_attr) 1301 continue; 1302 1303 eth = (void *)((uintptr_t)parser->queue[i].ibv_attr + 1304 parser->queue[i].offset - eth_size); 1305 eth->val.vlan_tag = spec->tci; 1306 eth->mask.vlan_tag = mask->tci; 1307 eth->val.vlan_tag &= eth->mask.vlan_tag; 1308 /* 1309 * From verbs perspective an empty VLAN is equivalent 1310 * to a packet without VLAN layer. 1311 */ 1312 if (!eth->mask.vlan_tag) 1313 goto error; 1314 } 1315 return 0; 1316 } 1317 error: 1318 return rte_flow_error_set(data->error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM, 1319 item, "VLAN cannot be empty"); 1320 } 1321 1322 /** 1323 * Convert IPv4 item to Verbs specification. 1324 * 1325 * @param item[in] 1326 * Item specification. 1327 * @param default_mask[in] 1328 * Default bit-masks to use when item->mask is not provided. 1329 * @param data[in, out] 1330 * User structure. 1331 * 1332 * @return 1333 * 0 on success, a negative errno value otherwise and rte_errno is set. 1334 */ 1335 static int 1336 mlx5_flow_create_ipv4(const struct rte_flow_item *item, 1337 const void *default_mask, 1338 struct mlx5_flow_data *data) 1339 { 1340 const struct rte_flow_item_ipv4 *spec = item->spec; 1341 const struct rte_flow_item_ipv4 *mask = item->mask; 1342 struct mlx5_flow_parse *parser = data->parser; 1343 unsigned int ipv4_size = sizeof(struct ibv_flow_spec_ipv4_ext); 1344 struct ibv_flow_spec_ipv4_ext ipv4 = { 1345 .type = parser->inner | IBV_FLOW_SPEC_IPV4_EXT, 1346 .size = ipv4_size, 1347 }; 1348 1349 /* Don't update layer for the inner pattern. */ 1350 if (!parser->inner) 1351 parser->layer = HASH_RXQ_IPV4; 1352 if (spec) { 1353 if (!mask) 1354 mask = default_mask; 1355 ipv4.val = (struct ibv_flow_ipv4_ext_filter){ 1356 .src_ip = spec->hdr.src_addr, 1357 .dst_ip = spec->hdr.dst_addr, 1358 .proto = spec->hdr.next_proto_id, 1359 .tos = spec->hdr.type_of_service, 1360 }; 1361 ipv4.mask = (struct ibv_flow_ipv4_ext_filter){ 1362 .src_ip = mask->hdr.src_addr, 1363 .dst_ip = mask->hdr.dst_addr, 1364 .proto = mask->hdr.next_proto_id, 1365 .tos = mask->hdr.type_of_service, 1366 }; 1367 /* Remove unwanted bits from values. */ 1368 ipv4.val.src_ip &= ipv4.mask.src_ip; 1369 ipv4.val.dst_ip &= ipv4.mask.dst_ip; 1370 ipv4.val.proto &= ipv4.mask.proto; 1371 ipv4.val.tos &= ipv4.mask.tos; 1372 } 1373 mlx5_flow_create_copy(parser, &ipv4, ipv4_size); 1374 return 0; 1375 } 1376 1377 /** 1378 * Convert IPv6 item to Verbs specification. 1379 * 1380 * @param item[in] 1381 * Item specification. 1382 * @param default_mask[in] 1383 * Default bit-masks to use when item->mask is not provided. 1384 * @param data[in, out] 1385 * User structure. 1386 * 1387 * @return 1388 * 0 on success, a negative errno value otherwise and rte_errno is set. 1389 */ 1390 static int 1391 mlx5_flow_create_ipv6(const struct rte_flow_item *item, 1392 const void *default_mask, 1393 struct mlx5_flow_data *data) 1394 { 1395 const struct rte_flow_item_ipv6 *spec = item->spec; 1396 const struct rte_flow_item_ipv6 *mask = item->mask; 1397 struct mlx5_flow_parse *parser = data->parser; 1398 unsigned int ipv6_size = sizeof(struct ibv_flow_spec_ipv6); 1399 struct ibv_flow_spec_ipv6 ipv6 = { 1400 .type = parser->inner | IBV_FLOW_SPEC_IPV6, 1401 .size = ipv6_size, 1402 }; 1403 1404 /* Don't update layer for the inner pattern. */ 1405 if (!parser->inner) 1406 parser->layer = HASH_RXQ_IPV6; 1407 if (spec) { 1408 unsigned int i; 1409 uint32_t vtc_flow_val; 1410 uint32_t vtc_flow_mask; 1411 1412 if (!mask) 1413 mask = default_mask; 1414 memcpy(&ipv6.val.src_ip, spec->hdr.src_addr, 1415 RTE_DIM(ipv6.val.src_ip)); 1416 memcpy(&ipv6.val.dst_ip, spec->hdr.dst_addr, 1417 RTE_DIM(ipv6.val.dst_ip)); 1418 memcpy(&ipv6.mask.src_ip, mask->hdr.src_addr, 1419 RTE_DIM(ipv6.mask.src_ip)); 1420 memcpy(&ipv6.mask.dst_ip, mask->hdr.dst_addr, 1421 RTE_DIM(ipv6.mask.dst_ip)); 1422 vtc_flow_val = rte_be_to_cpu_32(spec->hdr.vtc_flow); 1423 vtc_flow_mask = rte_be_to_cpu_32(mask->hdr.vtc_flow); 1424 ipv6.val.flow_label = 1425 rte_cpu_to_be_32((vtc_flow_val & IPV6_HDR_FL_MASK) >> 1426 IPV6_HDR_FL_SHIFT); 1427 ipv6.val.traffic_class = (vtc_flow_val & IPV6_HDR_TC_MASK) >> 1428 IPV6_HDR_TC_SHIFT; 1429 ipv6.val.next_hdr = spec->hdr.proto; 1430 ipv6.val.hop_limit = spec->hdr.hop_limits; 1431 ipv6.mask.flow_label = 1432 rte_cpu_to_be_32((vtc_flow_mask & IPV6_HDR_FL_MASK) >> 1433 IPV6_HDR_FL_SHIFT); 1434 ipv6.mask.traffic_class = (vtc_flow_mask & IPV6_HDR_TC_MASK) >> 1435 IPV6_HDR_TC_SHIFT; 1436 ipv6.mask.next_hdr = mask->hdr.proto; 1437 ipv6.mask.hop_limit = mask->hdr.hop_limits; 1438 /* Remove unwanted bits from values. */ 1439 for (i = 0; i < RTE_DIM(ipv6.val.src_ip); ++i) { 1440 ipv6.val.src_ip[i] &= ipv6.mask.src_ip[i]; 1441 ipv6.val.dst_ip[i] &= ipv6.mask.dst_ip[i]; 1442 } 1443 ipv6.val.flow_label &= ipv6.mask.flow_label; 1444 ipv6.val.traffic_class &= ipv6.mask.traffic_class; 1445 ipv6.val.next_hdr &= ipv6.mask.next_hdr; 1446 ipv6.val.hop_limit &= ipv6.mask.hop_limit; 1447 } 1448 mlx5_flow_create_copy(parser, &ipv6, ipv6_size); 1449 return 0; 1450 } 1451 1452 /** 1453 * Convert UDP item to Verbs specification. 1454 * 1455 * @param item[in] 1456 * Item specification. 1457 * @param default_mask[in] 1458 * Default bit-masks to use when item->mask is not provided. 1459 * @param data[in, out] 1460 * User structure. 1461 * 1462 * @return 1463 * 0 on success, a negative errno value otherwise and rte_errno is set. 1464 */ 1465 static int 1466 mlx5_flow_create_udp(const struct rte_flow_item *item, 1467 const void *default_mask, 1468 struct mlx5_flow_data *data) 1469 { 1470 const struct rte_flow_item_udp *spec = item->spec; 1471 const struct rte_flow_item_udp *mask = item->mask; 1472 struct mlx5_flow_parse *parser = data->parser; 1473 unsigned int udp_size = sizeof(struct ibv_flow_spec_tcp_udp); 1474 struct ibv_flow_spec_tcp_udp udp = { 1475 .type = parser->inner | IBV_FLOW_SPEC_UDP, 1476 .size = udp_size, 1477 }; 1478 1479 /* Don't update layer for the inner pattern. */ 1480 if (!parser->inner) { 1481 if (parser->layer == HASH_RXQ_IPV4) 1482 parser->layer = HASH_RXQ_UDPV4; 1483 else 1484 parser->layer = HASH_RXQ_UDPV6; 1485 } 1486 if (spec) { 1487 if (!mask) 1488 mask = default_mask; 1489 udp.val.dst_port = spec->hdr.dst_port; 1490 udp.val.src_port = spec->hdr.src_port; 1491 udp.mask.dst_port = mask->hdr.dst_port; 1492 udp.mask.src_port = mask->hdr.src_port; 1493 /* Remove unwanted bits from values. */ 1494 udp.val.src_port &= udp.mask.src_port; 1495 udp.val.dst_port &= udp.mask.dst_port; 1496 } 1497 mlx5_flow_create_copy(parser, &udp, udp_size); 1498 return 0; 1499 } 1500 1501 /** 1502 * Convert TCP item to Verbs specification. 1503 * 1504 * @param item[in] 1505 * Item specification. 1506 * @param default_mask[in] 1507 * Default bit-masks to use when item->mask is not provided. 1508 * @param data[in, out] 1509 * User structure. 1510 * 1511 * @return 1512 * 0 on success, a negative errno value otherwise and rte_errno is set. 1513 */ 1514 static int 1515 mlx5_flow_create_tcp(const struct rte_flow_item *item, 1516 const void *default_mask, 1517 struct mlx5_flow_data *data) 1518 { 1519 const struct rte_flow_item_tcp *spec = item->spec; 1520 const struct rte_flow_item_tcp *mask = item->mask; 1521 struct mlx5_flow_parse *parser = data->parser; 1522 unsigned int tcp_size = sizeof(struct ibv_flow_spec_tcp_udp); 1523 struct ibv_flow_spec_tcp_udp tcp = { 1524 .type = parser->inner | IBV_FLOW_SPEC_TCP, 1525 .size = tcp_size, 1526 }; 1527 1528 /* Don't update layer for the inner pattern. */ 1529 if (!parser->inner) { 1530 if (parser->layer == HASH_RXQ_IPV4) 1531 parser->layer = HASH_RXQ_TCPV4; 1532 else 1533 parser->layer = HASH_RXQ_TCPV6; 1534 } 1535 if (spec) { 1536 if (!mask) 1537 mask = default_mask; 1538 tcp.val.dst_port = spec->hdr.dst_port; 1539 tcp.val.src_port = spec->hdr.src_port; 1540 tcp.mask.dst_port = mask->hdr.dst_port; 1541 tcp.mask.src_port = mask->hdr.src_port; 1542 /* Remove unwanted bits from values. */ 1543 tcp.val.src_port &= tcp.mask.src_port; 1544 tcp.val.dst_port &= tcp.mask.dst_port; 1545 } 1546 mlx5_flow_create_copy(parser, &tcp, tcp_size); 1547 return 0; 1548 } 1549 1550 /** 1551 * Convert VXLAN item to Verbs specification. 1552 * 1553 * @param item[in] 1554 * Item specification. 1555 * @param default_mask[in] 1556 * Default bit-masks to use when item->mask is not provided. 1557 * @param data[in, out] 1558 * User structure. 1559 * 1560 * @return 1561 * 0 on success, a negative errno value otherwise and rte_errno is set. 1562 */ 1563 static int 1564 mlx5_flow_create_vxlan(const struct rte_flow_item *item, 1565 const void *default_mask, 1566 struct mlx5_flow_data *data) 1567 { 1568 const struct rte_flow_item_vxlan *spec = item->spec; 1569 const struct rte_flow_item_vxlan *mask = item->mask; 1570 struct mlx5_flow_parse *parser = data->parser; 1571 unsigned int size = sizeof(struct ibv_flow_spec_tunnel); 1572 struct ibv_flow_spec_tunnel vxlan = { 1573 .type = parser->inner | IBV_FLOW_SPEC_VXLAN_TUNNEL, 1574 .size = size, 1575 }; 1576 union vni { 1577 uint32_t vlan_id; 1578 uint8_t vni[4]; 1579 } id; 1580 1581 id.vni[0] = 0; 1582 parser->inner = IBV_FLOW_SPEC_INNER; 1583 if (spec) { 1584 if (!mask) 1585 mask = default_mask; 1586 memcpy(&id.vni[1], spec->vni, 3); 1587 vxlan.val.tunnel_id = id.vlan_id; 1588 memcpy(&id.vni[1], mask->vni, 3); 1589 vxlan.mask.tunnel_id = id.vlan_id; 1590 /* Remove unwanted bits from values. */ 1591 vxlan.val.tunnel_id &= vxlan.mask.tunnel_id; 1592 } 1593 /* 1594 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this 1595 * layer is defined in the Verbs specification it is interpreted as 1596 * wildcard and all packets will match this rule, if it follows a full 1597 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers 1598 * before will also match this rule. 1599 * To avoid such situation, VNI 0 is currently refused. 1600 */ 1601 if (!vxlan.val.tunnel_id) 1602 return rte_flow_error_set(data->error, EINVAL, 1603 RTE_FLOW_ERROR_TYPE_ITEM, 1604 item, 1605 "VxLAN vni cannot be 0"); 1606 mlx5_flow_create_copy(parser, &vxlan, size); 1607 return 0; 1608 } 1609 1610 /** 1611 * Convert mark/flag action to Verbs specification. 1612 * 1613 * @param parser 1614 * Internal parser structure. 1615 * @param mark_id 1616 * Mark identifier. 1617 * 1618 * @return 1619 * 0 on success, a negative errno value otherwise and rte_errno is set. 1620 */ 1621 static int 1622 mlx5_flow_create_flag_mark(struct mlx5_flow_parse *parser, uint32_t mark_id) 1623 { 1624 unsigned int size = sizeof(struct ibv_flow_spec_action_tag); 1625 struct ibv_flow_spec_action_tag tag = { 1626 .type = IBV_FLOW_SPEC_ACTION_TAG, 1627 .size = size, 1628 .tag_id = mlx5_flow_mark_set(mark_id), 1629 }; 1630 1631 assert(parser->mark); 1632 mlx5_flow_create_copy(parser, &tag, size); 1633 return 0; 1634 } 1635 1636 /** 1637 * Convert count action to Verbs specification. 1638 * 1639 * @param dev 1640 * Pointer to Ethernet device. 1641 * @param parser 1642 * Pointer to MLX5 flow parser structure. 1643 * 1644 * @return 1645 * 0 on success, a negative errno value otherwise and rte_errno is set. 1646 */ 1647 static int 1648 mlx5_flow_create_count(struct rte_eth_dev *dev __rte_unused, 1649 struct mlx5_flow_parse *parser __rte_unused) 1650 { 1651 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 1652 struct priv *priv = dev->data->dev_private; 1653 unsigned int size = sizeof(struct ibv_flow_spec_counter_action); 1654 struct ibv_counter_set_init_attr init_attr = {0}; 1655 struct ibv_flow_spec_counter_action counter = { 1656 .type = IBV_FLOW_SPEC_ACTION_COUNT, 1657 .size = size, 1658 .counter_set_handle = 0, 1659 }; 1660 1661 init_attr.counter_set_id = 0; 1662 parser->cs = mlx5_glue->create_counter_set(priv->ctx, &init_attr); 1663 if (!parser->cs) { 1664 rte_errno = EINVAL; 1665 return -rte_errno; 1666 } 1667 counter.counter_set_handle = parser->cs->handle; 1668 mlx5_flow_create_copy(parser, &counter, size); 1669 #endif 1670 return 0; 1671 } 1672 1673 /** 1674 * Complete flow rule creation with a drop queue. 1675 * 1676 * @param dev 1677 * Pointer to Ethernet device. 1678 * @param parser 1679 * Internal parser structure. 1680 * @param flow 1681 * Pointer to the rte_flow. 1682 * @param[out] error 1683 * Perform verbose error reporting if not NULL. 1684 * 1685 * @return 1686 * 0 on success, a negative errno value otherwise and rte_errno is set. 1687 */ 1688 static int 1689 mlx5_flow_create_action_queue_drop(struct rte_eth_dev *dev, 1690 struct mlx5_flow_parse *parser, 1691 struct rte_flow *flow, 1692 struct rte_flow_error *error) 1693 { 1694 struct priv *priv = dev->data->dev_private; 1695 struct ibv_flow_spec_action_drop *drop; 1696 unsigned int size = sizeof(struct ibv_flow_spec_action_drop); 1697 1698 assert(priv->pd); 1699 assert(priv->ctx); 1700 flow->drop = 1; 1701 drop = (void *)((uintptr_t)parser->queue[HASH_RXQ_ETH].ibv_attr + 1702 parser->queue[HASH_RXQ_ETH].offset); 1703 *drop = (struct ibv_flow_spec_action_drop){ 1704 .type = IBV_FLOW_SPEC_ACTION_DROP, 1705 .size = size, 1706 }; 1707 ++parser->queue[HASH_RXQ_ETH].ibv_attr->num_of_specs; 1708 parser->queue[HASH_RXQ_ETH].offset += size; 1709 flow->frxq[HASH_RXQ_ETH].ibv_attr = 1710 parser->queue[HASH_RXQ_ETH].ibv_attr; 1711 if (parser->count) 1712 flow->cs = parser->cs; 1713 if (!priv->dev->data->dev_started) 1714 return 0; 1715 parser->queue[HASH_RXQ_ETH].ibv_attr = NULL; 1716 flow->frxq[HASH_RXQ_ETH].ibv_flow = 1717 mlx5_glue->create_flow(priv->flow_drop_queue->qp, 1718 flow->frxq[HASH_RXQ_ETH].ibv_attr); 1719 if (!flow->frxq[HASH_RXQ_ETH].ibv_flow) { 1720 rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, 1721 NULL, "flow rule creation failure"); 1722 goto error; 1723 } 1724 return 0; 1725 error: 1726 assert(flow); 1727 if (flow->frxq[HASH_RXQ_ETH].ibv_flow) { 1728 claim_zero(mlx5_glue->destroy_flow 1729 (flow->frxq[HASH_RXQ_ETH].ibv_flow)); 1730 flow->frxq[HASH_RXQ_ETH].ibv_flow = NULL; 1731 } 1732 if (flow->frxq[HASH_RXQ_ETH].ibv_attr) { 1733 rte_free(flow->frxq[HASH_RXQ_ETH].ibv_attr); 1734 flow->frxq[HASH_RXQ_ETH].ibv_attr = NULL; 1735 } 1736 if (flow->cs) { 1737 claim_zero(mlx5_glue->destroy_counter_set(flow->cs)); 1738 flow->cs = NULL; 1739 parser->cs = NULL; 1740 } 1741 return -rte_errno; 1742 } 1743 1744 /** 1745 * Create hash Rx queues when RSS is enabled. 1746 * 1747 * @param dev 1748 * Pointer to Ethernet device. 1749 * @param parser 1750 * Internal parser structure. 1751 * @param flow 1752 * Pointer to the rte_flow. 1753 * @param[out] error 1754 * Perform verbose error reporting if not NULL. 1755 * 1756 * @return 1757 * 0 on success, a negative errno value otherwise and rte_errno is set. 1758 */ 1759 static int 1760 mlx5_flow_create_action_queue_rss(struct rte_eth_dev *dev, 1761 struct mlx5_flow_parse *parser, 1762 struct rte_flow *flow, 1763 struct rte_flow_error *error) 1764 { 1765 struct priv *priv = dev->data->dev_private; 1766 unsigned int i; 1767 1768 for (i = 0; i != hash_rxq_init_n; ++i) { 1769 uint64_t hash_fields; 1770 1771 if (!parser->queue[i].ibv_attr) 1772 continue; 1773 flow->frxq[i].ibv_attr = parser->queue[i].ibv_attr; 1774 parser->queue[i].ibv_attr = NULL; 1775 hash_fields = hash_rxq_init[i].hash_fields; 1776 if (!priv->dev->data->dev_started) 1777 continue; 1778 flow->frxq[i].hrxq = 1779 mlx5_hrxq_get(dev, 1780 parser->rss_conf.rss_key, 1781 parser->rss_conf.rss_key_len, 1782 hash_fields, 1783 parser->queues, 1784 parser->queues_n); 1785 if (flow->frxq[i].hrxq) 1786 continue; 1787 flow->frxq[i].hrxq = 1788 mlx5_hrxq_new(dev, 1789 parser->rss_conf.rss_key, 1790 parser->rss_conf.rss_key_len, 1791 hash_fields, 1792 parser->queues, 1793 parser->queues_n); 1794 if (!flow->frxq[i].hrxq) { 1795 return rte_flow_error_set(error, ENOMEM, 1796 RTE_FLOW_ERROR_TYPE_HANDLE, 1797 NULL, 1798 "cannot create hash rxq"); 1799 } 1800 } 1801 return 0; 1802 } 1803 1804 /** 1805 * Complete flow rule creation. 1806 * 1807 * @param dev 1808 * Pointer to Ethernet device. 1809 * @param parser 1810 * Internal parser structure. 1811 * @param flow 1812 * Pointer to the rte_flow. 1813 * @param[out] error 1814 * Perform verbose error reporting if not NULL. 1815 * 1816 * @return 1817 * 0 on success, a negative errno value otherwise and rte_errno is set. 1818 */ 1819 static int 1820 mlx5_flow_create_action_queue(struct rte_eth_dev *dev, 1821 struct mlx5_flow_parse *parser, 1822 struct rte_flow *flow, 1823 struct rte_flow_error *error) 1824 { 1825 struct priv *priv = dev->data->dev_private; 1826 int ret; 1827 unsigned int i; 1828 unsigned int flows_n = 0; 1829 1830 assert(priv->pd); 1831 assert(priv->ctx); 1832 assert(!parser->drop); 1833 ret = mlx5_flow_create_action_queue_rss(dev, parser, flow, error); 1834 if (ret) 1835 goto error; 1836 if (parser->count) 1837 flow->cs = parser->cs; 1838 if (!priv->dev->data->dev_started) 1839 return 0; 1840 for (i = 0; i != hash_rxq_init_n; ++i) { 1841 if (!flow->frxq[i].hrxq) 1842 continue; 1843 flow->frxq[i].ibv_flow = 1844 mlx5_glue->create_flow(flow->frxq[i].hrxq->qp, 1845 flow->frxq[i].ibv_attr); 1846 if (!flow->frxq[i].ibv_flow) { 1847 rte_flow_error_set(error, ENOMEM, 1848 RTE_FLOW_ERROR_TYPE_HANDLE, 1849 NULL, "flow rule creation failure"); 1850 goto error; 1851 } 1852 ++flows_n; 1853 DRV_LOG(DEBUG, "port %u %p type %d QP %p ibv_flow %p", 1854 dev->data->port_id, 1855 (void *)flow, i, 1856 (void *)flow->frxq[i].hrxq, 1857 (void *)flow->frxq[i].ibv_flow); 1858 } 1859 if (!flows_n) { 1860 rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE, 1861 NULL, "internal error in flow creation"); 1862 goto error; 1863 } 1864 for (i = 0; i != parser->queues_n; ++i) { 1865 struct mlx5_rxq_data *q = 1866 (*priv->rxqs)[parser->queues[i]]; 1867 1868 q->mark |= parser->mark; 1869 } 1870 return 0; 1871 error: 1872 ret = rte_errno; /* Save rte_errno before cleanup. */ 1873 assert(flow); 1874 for (i = 0; i != hash_rxq_init_n; ++i) { 1875 if (flow->frxq[i].ibv_flow) { 1876 struct ibv_flow *ibv_flow = flow->frxq[i].ibv_flow; 1877 1878 claim_zero(mlx5_glue->destroy_flow(ibv_flow)); 1879 } 1880 if (flow->frxq[i].hrxq) 1881 mlx5_hrxq_release(dev, flow->frxq[i].hrxq); 1882 if (flow->frxq[i].ibv_attr) 1883 rte_free(flow->frxq[i].ibv_attr); 1884 } 1885 if (flow->cs) { 1886 claim_zero(mlx5_glue->destroy_counter_set(flow->cs)); 1887 flow->cs = NULL; 1888 parser->cs = NULL; 1889 } 1890 rte_errno = ret; /* Restore rte_errno. */ 1891 return -rte_errno; 1892 } 1893 1894 /** 1895 * Convert a flow. 1896 * 1897 * @param dev 1898 * Pointer to Ethernet device. 1899 * @param list 1900 * Pointer to a TAILQ flow list. 1901 * @param[in] attr 1902 * Flow rule attributes. 1903 * @param[in] pattern 1904 * Pattern specification (list terminated by the END pattern item). 1905 * @param[in] actions 1906 * Associated actions (list terminated by the END action). 1907 * @param[out] error 1908 * Perform verbose error reporting if not NULL. 1909 * 1910 * @return 1911 * A flow on success, NULL otherwise and rte_errno is set. 1912 */ 1913 static struct rte_flow * 1914 mlx5_flow_list_create(struct rte_eth_dev *dev, 1915 struct mlx5_flows *list, 1916 const struct rte_flow_attr *attr, 1917 const struct rte_flow_item items[], 1918 const struct rte_flow_action actions[], 1919 struct rte_flow_error *error) 1920 { 1921 struct mlx5_flow_parse parser = { .create = 1, }; 1922 struct rte_flow *flow = NULL; 1923 unsigned int i; 1924 int ret; 1925 1926 ret = mlx5_flow_convert(dev, attr, items, actions, error, &parser); 1927 if (ret) 1928 goto exit; 1929 flow = rte_calloc(__func__, 1, 1930 sizeof(*flow) + parser.queues_n * sizeof(uint16_t), 1931 0); 1932 if (!flow) { 1933 rte_flow_error_set(error, ENOMEM, 1934 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1935 NULL, 1936 "cannot allocate flow memory"); 1937 return NULL; 1938 } 1939 /* Copy queues configuration. */ 1940 flow->queues = (uint16_t (*)[])(flow + 1); 1941 memcpy(flow->queues, parser.queues, parser.queues_n * sizeof(uint16_t)); 1942 flow->queues_n = parser.queues_n; 1943 flow->mark = parser.mark; 1944 /* Copy RSS configuration. */ 1945 flow->rss_conf = parser.rss_conf; 1946 flow->rss_conf.rss_key = flow->rss_key; 1947 memcpy(flow->rss_key, parser.rss_key, parser.rss_conf.rss_key_len); 1948 /* finalise the flow. */ 1949 if (parser.drop) 1950 ret = mlx5_flow_create_action_queue_drop(dev, &parser, flow, 1951 error); 1952 else 1953 ret = mlx5_flow_create_action_queue(dev, &parser, flow, error); 1954 if (ret) 1955 goto exit; 1956 TAILQ_INSERT_TAIL(list, flow, next); 1957 DRV_LOG(DEBUG, "port %u flow created %p", dev->data->port_id, 1958 (void *)flow); 1959 return flow; 1960 exit: 1961 DRV_LOG(ERR, "port %u flow creation error: %s", dev->data->port_id, 1962 error->message); 1963 for (i = 0; i != hash_rxq_init_n; ++i) { 1964 if (parser.queue[i].ibv_attr) 1965 rte_free(parser.queue[i].ibv_attr); 1966 } 1967 rte_free(flow); 1968 return NULL; 1969 } 1970 1971 /** 1972 * Validate a flow supported by the NIC. 1973 * 1974 * @see rte_flow_validate() 1975 * @see rte_flow_ops 1976 */ 1977 int 1978 mlx5_flow_validate(struct rte_eth_dev *dev, 1979 const struct rte_flow_attr *attr, 1980 const struct rte_flow_item items[], 1981 const struct rte_flow_action actions[], 1982 struct rte_flow_error *error) 1983 { 1984 struct mlx5_flow_parse parser = { .create = 0, }; 1985 1986 return mlx5_flow_convert(dev, attr, items, actions, error, &parser); 1987 } 1988 1989 /** 1990 * Create a flow. 1991 * 1992 * @see rte_flow_create() 1993 * @see rte_flow_ops 1994 */ 1995 struct rte_flow * 1996 mlx5_flow_create(struct rte_eth_dev *dev, 1997 const struct rte_flow_attr *attr, 1998 const struct rte_flow_item items[], 1999 const struct rte_flow_action actions[], 2000 struct rte_flow_error *error) 2001 { 2002 struct priv *priv = dev->data->dev_private; 2003 2004 return mlx5_flow_list_create(dev, &priv->flows, attr, items, actions, 2005 error); 2006 } 2007 2008 /** 2009 * Destroy a flow in a list. 2010 * 2011 * @param dev 2012 * Pointer to Ethernet device. 2013 * @param list 2014 * Pointer to a TAILQ flow list. 2015 * @param[in] flow 2016 * Flow to destroy. 2017 */ 2018 static void 2019 mlx5_flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list, 2020 struct rte_flow *flow) 2021 { 2022 struct priv *priv = dev->data->dev_private; 2023 unsigned int i; 2024 2025 if (flow->drop || !flow->mark) 2026 goto free; 2027 for (i = 0; i != flow->queues_n; ++i) { 2028 struct rte_flow *tmp; 2029 int mark = 0; 2030 2031 /* 2032 * To remove the mark from the queue, the queue must not be 2033 * present in any other marked flow (RSS or not). 2034 */ 2035 TAILQ_FOREACH(tmp, list, next) { 2036 unsigned int j; 2037 uint16_t *tqs = NULL; 2038 uint16_t tq_n = 0; 2039 2040 if (!tmp->mark) 2041 continue; 2042 for (j = 0; j != hash_rxq_init_n; ++j) { 2043 if (!tmp->frxq[j].hrxq) 2044 continue; 2045 tqs = tmp->frxq[j].hrxq->ind_table->queues; 2046 tq_n = tmp->frxq[j].hrxq->ind_table->queues_n; 2047 } 2048 if (!tq_n) 2049 continue; 2050 for (j = 0; (j != tq_n) && !mark; j++) 2051 if (tqs[j] == (*flow->queues)[i]) 2052 mark = 1; 2053 } 2054 (*priv->rxqs)[(*flow->queues)[i]]->mark = mark; 2055 } 2056 free: 2057 if (flow->drop) { 2058 if (flow->frxq[HASH_RXQ_ETH].ibv_flow) 2059 claim_zero(mlx5_glue->destroy_flow 2060 (flow->frxq[HASH_RXQ_ETH].ibv_flow)); 2061 rte_free(flow->frxq[HASH_RXQ_ETH].ibv_attr); 2062 } else { 2063 for (i = 0; i != hash_rxq_init_n; ++i) { 2064 struct mlx5_flow *frxq = &flow->frxq[i]; 2065 2066 if (frxq->ibv_flow) 2067 claim_zero(mlx5_glue->destroy_flow 2068 (frxq->ibv_flow)); 2069 if (frxq->hrxq) 2070 mlx5_hrxq_release(dev, frxq->hrxq); 2071 if (frxq->ibv_attr) 2072 rte_free(frxq->ibv_attr); 2073 } 2074 } 2075 if (flow->cs) { 2076 claim_zero(mlx5_glue->destroy_counter_set(flow->cs)); 2077 flow->cs = NULL; 2078 } 2079 TAILQ_REMOVE(list, flow, next); 2080 DRV_LOG(DEBUG, "port %u flow destroyed %p", dev->data->port_id, 2081 (void *)flow); 2082 rte_free(flow); 2083 } 2084 2085 /** 2086 * Destroy all flows. 2087 * 2088 * @param dev 2089 * Pointer to Ethernet device. 2090 * @param list 2091 * Pointer to a TAILQ flow list. 2092 */ 2093 void 2094 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list) 2095 { 2096 while (!TAILQ_EMPTY(list)) { 2097 struct rte_flow *flow; 2098 2099 flow = TAILQ_FIRST(list); 2100 mlx5_flow_list_destroy(dev, list, flow); 2101 } 2102 } 2103 2104 /** 2105 * Create drop queue. 2106 * 2107 * @param dev 2108 * Pointer to Ethernet device. 2109 * 2110 * @return 2111 * 0 on success, a negative errno value otherwise and rte_errno is set. 2112 */ 2113 int 2114 mlx5_flow_create_drop_queue(struct rte_eth_dev *dev) 2115 { 2116 struct priv *priv = dev->data->dev_private; 2117 struct mlx5_hrxq_drop *fdq = NULL; 2118 2119 assert(priv->pd); 2120 assert(priv->ctx); 2121 fdq = rte_calloc(__func__, 1, sizeof(*fdq), 0); 2122 if (!fdq) { 2123 DRV_LOG(WARNING, 2124 "port %u cannot allocate memory for drop queue", 2125 dev->data->port_id); 2126 rte_errno = ENOMEM; 2127 return -rte_errno; 2128 } 2129 fdq->cq = mlx5_glue->create_cq(priv->ctx, 1, NULL, NULL, 0); 2130 if (!fdq->cq) { 2131 DRV_LOG(WARNING, "port %u cannot allocate CQ for drop queue", 2132 dev->data->port_id); 2133 rte_errno = errno; 2134 goto error; 2135 } 2136 fdq->wq = mlx5_glue->create_wq 2137 (priv->ctx, 2138 &(struct ibv_wq_init_attr){ 2139 .wq_type = IBV_WQT_RQ, 2140 .max_wr = 1, 2141 .max_sge = 1, 2142 .pd = priv->pd, 2143 .cq = fdq->cq, 2144 }); 2145 if (!fdq->wq) { 2146 DRV_LOG(WARNING, "port %u cannot allocate WQ for drop queue", 2147 dev->data->port_id); 2148 rte_errno = errno; 2149 goto error; 2150 } 2151 fdq->ind_table = mlx5_glue->create_rwq_ind_table 2152 (priv->ctx, 2153 &(struct ibv_rwq_ind_table_init_attr){ 2154 .log_ind_tbl_size = 0, 2155 .ind_tbl = &fdq->wq, 2156 .comp_mask = 0, 2157 }); 2158 if (!fdq->ind_table) { 2159 DRV_LOG(WARNING, 2160 "port %u cannot allocate indirection table for drop" 2161 " queue", 2162 dev->data->port_id); 2163 rte_errno = errno; 2164 goto error; 2165 } 2166 fdq->qp = mlx5_glue->create_qp_ex 2167 (priv->ctx, 2168 &(struct ibv_qp_init_attr_ex){ 2169 .qp_type = IBV_QPT_RAW_PACKET, 2170 .comp_mask = 2171 IBV_QP_INIT_ATTR_PD | 2172 IBV_QP_INIT_ATTR_IND_TABLE | 2173 IBV_QP_INIT_ATTR_RX_HASH, 2174 .rx_hash_conf = (struct ibv_rx_hash_conf){ 2175 .rx_hash_function = 2176 IBV_RX_HASH_FUNC_TOEPLITZ, 2177 .rx_hash_key_len = rss_hash_default_key_len, 2178 .rx_hash_key = rss_hash_default_key, 2179 .rx_hash_fields_mask = 0, 2180 }, 2181 .rwq_ind_tbl = fdq->ind_table, 2182 .pd = priv->pd 2183 }); 2184 if (!fdq->qp) { 2185 DRV_LOG(WARNING, "port %u cannot allocate QP for drop queue", 2186 dev->data->port_id); 2187 rte_errno = errno; 2188 goto error; 2189 } 2190 priv->flow_drop_queue = fdq; 2191 return 0; 2192 error: 2193 if (fdq->qp) 2194 claim_zero(mlx5_glue->destroy_qp(fdq->qp)); 2195 if (fdq->ind_table) 2196 claim_zero(mlx5_glue->destroy_rwq_ind_table(fdq->ind_table)); 2197 if (fdq->wq) 2198 claim_zero(mlx5_glue->destroy_wq(fdq->wq)); 2199 if (fdq->cq) 2200 claim_zero(mlx5_glue->destroy_cq(fdq->cq)); 2201 if (fdq) 2202 rte_free(fdq); 2203 priv->flow_drop_queue = NULL; 2204 return -rte_errno; 2205 } 2206 2207 /** 2208 * Delete drop queue. 2209 * 2210 * @param dev 2211 * Pointer to Ethernet device. 2212 */ 2213 void 2214 mlx5_flow_delete_drop_queue(struct rte_eth_dev *dev) 2215 { 2216 struct priv *priv = dev->data->dev_private; 2217 struct mlx5_hrxq_drop *fdq = priv->flow_drop_queue; 2218 2219 if (!fdq) 2220 return; 2221 if (fdq->qp) 2222 claim_zero(mlx5_glue->destroy_qp(fdq->qp)); 2223 if (fdq->ind_table) 2224 claim_zero(mlx5_glue->destroy_rwq_ind_table(fdq->ind_table)); 2225 if (fdq->wq) 2226 claim_zero(mlx5_glue->destroy_wq(fdq->wq)); 2227 if (fdq->cq) 2228 claim_zero(mlx5_glue->destroy_cq(fdq->cq)); 2229 rte_free(fdq); 2230 priv->flow_drop_queue = NULL; 2231 } 2232 2233 /** 2234 * Remove all flows. 2235 * 2236 * @param dev 2237 * Pointer to Ethernet device. 2238 * @param list 2239 * Pointer to a TAILQ flow list. 2240 */ 2241 void 2242 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list) 2243 { 2244 struct priv *priv = dev->data->dev_private; 2245 struct rte_flow *flow; 2246 2247 TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next) { 2248 unsigned int i; 2249 struct mlx5_ind_table_ibv *ind_tbl = NULL; 2250 2251 if (flow->drop) { 2252 if (!flow->frxq[HASH_RXQ_ETH].ibv_flow) 2253 continue; 2254 claim_zero(mlx5_glue->destroy_flow 2255 (flow->frxq[HASH_RXQ_ETH].ibv_flow)); 2256 flow->frxq[HASH_RXQ_ETH].ibv_flow = NULL; 2257 DRV_LOG(DEBUG, "port %u flow %p removed", 2258 dev->data->port_id, (void *)flow); 2259 /* Next flow. */ 2260 continue; 2261 } 2262 /* Verify the flow has not already been cleaned. */ 2263 for (i = 0; i != hash_rxq_init_n; ++i) { 2264 if (!flow->frxq[i].ibv_flow) 2265 continue; 2266 /* 2267 * Indirection table may be necessary to remove the 2268 * flags in the Rx queues. 2269 * This helps to speed-up the process by avoiding 2270 * another loop. 2271 */ 2272 ind_tbl = flow->frxq[i].hrxq->ind_table; 2273 break; 2274 } 2275 if (i == hash_rxq_init_n) 2276 return; 2277 if (flow->mark) { 2278 assert(ind_tbl); 2279 for (i = 0; i != ind_tbl->queues_n; ++i) 2280 (*priv->rxqs)[ind_tbl->queues[i]]->mark = 0; 2281 } 2282 for (i = 0; i != hash_rxq_init_n; ++i) { 2283 if (!flow->frxq[i].ibv_flow) 2284 continue; 2285 claim_zero(mlx5_glue->destroy_flow 2286 (flow->frxq[i].ibv_flow)); 2287 flow->frxq[i].ibv_flow = NULL; 2288 mlx5_hrxq_release(dev, flow->frxq[i].hrxq); 2289 flow->frxq[i].hrxq = NULL; 2290 } 2291 DRV_LOG(DEBUG, "port %u flow %p removed", dev->data->port_id, 2292 (void *)flow); 2293 } 2294 } 2295 2296 /** 2297 * Add all flows. 2298 * 2299 * @param dev 2300 * Pointer to Ethernet device. 2301 * @param list 2302 * Pointer to a TAILQ flow list. 2303 * 2304 * @return 2305 * 0 on success, a negative errno value otherwise and rte_errno is set. 2306 */ 2307 int 2308 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list) 2309 { 2310 struct priv *priv = dev->data->dev_private; 2311 struct rte_flow *flow; 2312 2313 TAILQ_FOREACH(flow, list, next) { 2314 unsigned int i; 2315 2316 if (flow->drop) { 2317 flow->frxq[HASH_RXQ_ETH].ibv_flow = 2318 mlx5_glue->create_flow 2319 (priv->flow_drop_queue->qp, 2320 flow->frxq[HASH_RXQ_ETH].ibv_attr); 2321 if (!flow->frxq[HASH_RXQ_ETH].ibv_flow) { 2322 DRV_LOG(DEBUG, 2323 "port %u flow %p cannot be applied", 2324 dev->data->port_id, (void *)flow); 2325 rte_errno = EINVAL; 2326 return -rte_errno; 2327 } 2328 DRV_LOG(DEBUG, "port %u flow %p applied", 2329 dev->data->port_id, (void *)flow); 2330 /* Next flow. */ 2331 continue; 2332 } 2333 for (i = 0; i != hash_rxq_init_n; ++i) { 2334 if (!flow->frxq[i].ibv_attr) 2335 continue; 2336 flow->frxq[i].hrxq = 2337 mlx5_hrxq_get(dev, flow->rss_conf.rss_key, 2338 flow->rss_conf.rss_key_len, 2339 hash_rxq_init[i].hash_fields, 2340 (*flow->queues), 2341 flow->queues_n); 2342 if (flow->frxq[i].hrxq) 2343 goto flow_create; 2344 flow->frxq[i].hrxq = 2345 mlx5_hrxq_new(dev, flow->rss_conf.rss_key, 2346 flow->rss_conf.rss_key_len, 2347 hash_rxq_init[i].hash_fields, 2348 (*flow->queues), 2349 flow->queues_n); 2350 if (!flow->frxq[i].hrxq) { 2351 DRV_LOG(DEBUG, 2352 "port %u flow %p cannot be applied", 2353 dev->data->port_id, (void *)flow); 2354 rte_errno = EINVAL; 2355 return -rte_errno; 2356 } 2357 flow_create: 2358 flow->frxq[i].ibv_flow = 2359 mlx5_glue->create_flow(flow->frxq[i].hrxq->qp, 2360 flow->frxq[i].ibv_attr); 2361 if (!flow->frxq[i].ibv_flow) { 2362 DRV_LOG(DEBUG, 2363 "port %u flow %p cannot be applied", 2364 dev->data->port_id, (void *)flow); 2365 rte_errno = EINVAL; 2366 return -rte_errno; 2367 } 2368 DRV_LOG(DEBUG, "port %u flow %p applied", 2369 dev->data->port_id, (void *)flow); 2370 } 2371 if (!flow->mark) 2372 continue; 2373 for (i = 0; i != flow->queues_n; ++i) 2374 (*priv->rxqs)[(*flow->queues)[i]]->mark = 1; 2375 } 2376 return 0; 2377 } 2378 2379 /** 2380 * Verify the flow list is empty 2381 * 2382 * @param dev 2383 * Pointer to Ethernet device. 2384 * 2385 * @return the number of flows not released. 2386 */ 2387 int 2388 mlx5_flow_verify(struct rte_eth_dev *dev) 2389 { 2390 struct priv *priv = dev->data->dev_private; 2391 struct rte_flow *flow; 2392 int ret = 0; 2393 2394 TAILQ_FOREACH(flow, &priv->flows, next) { 2395 DRV_LOG(DEBUG, "port %u flow %p still referenced", 2396 dev->data->port_id, (void *)flow); 2397 ++ret; 2398 } 2399 return ret; 2400 } 2401 2402 /** 2403 * Enable a control flow configured from the control plane. 2404 * 2405 * @param dev 2406 * Pointer to Ethernet device. 2407 * @param eth_spec 2408 * An Ethernet flow spec to apply. 2409 * @param eth_mask 2410 * An Ethernet flow mask to apply. 2411 * @param vlan_spec 2412 * A VLAN flow spec to apply. 2413 * @param vlan_mask 2414 * A VLAN flow mask to apply. 2415 * 2416 * @return 2417 * 0 on success, a negative errno value otherwise and rte_errno is set. 2418 */ 2419 int 2420 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 2421 struct rte_flow_item_eth *eth_spec, 2422 struct rte_flow_item_eth *eth_mask, 2423 struct rte_flow_item_vlan *vlan_spec, 2424 struct rte_flow_item_vlan *vlan_mask) 2425 { 2426 struct priv *priv = dev->data->dev_private; 2427 const struct rte_flow_attr attr = { 2428 .ingress = 1, 2429 .priority = MLX5_CTRL_FLOW_PRIORITY, 2430 }; 2431 struct rte_flow_item items[] = { 2432 { 2433 .type = RTE_FLOW_ITEM_TYPE_ETH, 2434 .spec = eth_spec, 2435 .last = NULL, 2436 .mask = eth_mask, 2437 }, 2438 { 2439 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 2440 RTE_FLOW_ITEM_TYPE_END, 2441 .spec = vlan_spec, 2442 .last = NULL, 2443 .mask = vlan_mask, 2444 }, 2445 { 2446 .type = RTE_FLOW_ITEM_TYPE_END, 2447 }, 2448 }; 2449 struct rte_flow_action actions[] = { 2450 { 2451 .type = RTE_FLOW_ACTION_TYPE_RSS, 2452 }, 2453 { 2454 .type = RTE_FLOW_ACTION_TYPE_END, 2455 }, 2456 }; 2457 struct rte_flow *flow; 2458 struct rte_flow_error error; 2459 unsigned int i; 2460 union { 2461 struct rte_flow_action_rss rss; 2462 struct { 2463 const struct rte_eth_rss_conf *rss_conf; 2464 uint16_t num; 2465 uint16_t queue[RTE_MAX_QUEUES_PER_PORT]; 2466 } local; 2467 } action_rss; 2468 2469 if (!priv->reta_idx_n) { 2470 rte_errno = EINVAL; 2471 return -rte_errno; 2472 } 2473 for (i = 0; i != priv->reta_idx_n; ++i) 2474 action_rss.local.queue[i] = (*priv->reta_idx)[i]; 2475 action_rss.local.rss_conf = &priv->rss_conf; 2476 action_rss.local.num = priv->reta_idx_n; 2477 actions[0].conf = (const void *)&action_rss.rss; 2478 flow = mlx5_flow_list_create(dev, &priv->ctrl_flows, &attr, items, 2479 actions, &error); 2480 if (!flow) 2481 return -rte_errno; 2482 return 0; 2483 } 2484 2485 /** 2486 * Enable a flow control configured from the control plane. 2487 * 2488 * @param dev 2489 * Pointer to Ethernet device. 2490 * @param eth_spec 2491 * An Ethernet flow spec to apply. 2492 * @param eth_mask 2493 * An Ethernet flow mask to apply. 2494 * 2495 * @return 2496 * 0 on success, a negative errno value otherwise and rte_errno is set. 2497 */ 2498 int 2499 mlx5_ctrl_flow(struct rte_eth_dev *dev, 2500 struct rte_flow_item_eth *eth_spec, 2501 struct rte_flow_item_eth *eth_mask) 2502 { 2503 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 2504 } 2505 2506 /** 2507 * Destroy a flow. 2508 * 2509 * @see rte_flow_destroy() 2510 * @see rte_flow_ops 2511 */ 2512 int 2513 mlx5_flow_destroy(struct rte_eth_dev *dev, 2514 struct rte_flow *flow, 2515 struct rte_flow_error *error __rte_unused) 2516 { 2517 struct priv *priv = dev->data->dev_private; 2518 2519 mlx5_flow_list_destroy(dev, &priv->flows, flow); 2520 return 0; 2521 } 2522 2523 /** 2524 * Destroy all flows. 2525 * 2526 * @see rte_flow_flush() 2527 * @see rte_flow_ops 2528 */ 2529 int 2530 mlx5_flow_flush(struct rte_eth_dev *dev, 2531 struct rte_flow_error *error __rte_unused) 2532 { 2533 struct priv *priv = dev->data->dev_private; 2534 2535 mlx5_flow_list_flush(dev, &priv->flows); 2536 return 0; 2537 } 2538 2539 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 2540 /** 2541 * Query flow counter. 2542 * 2543 * @param cs 2544 * the counter set. 2545 * @param counter_value 2546 * returned data from the counter. 2547 * 2548 * @return 2549 * 0 on success, a negative errno value otherwise and rte_errno is set. 2550 */ 2551 static int 2552 mlx5_flow_query_count(struct ibv_counter_set *cs, 2553 struct mlx5_flow_counter_stats *counter_stats, 2554 struct rte_flow_query_count *query_count, 2555 struct rte_flow_error *error) 2556 { 2557 uint64_t counters[2]; 2558 struct ibv_query_counter_set_attr query_cs_attr = { 2559 .cs = cs, 2560 .query_flags = IBV_COUNTER_SET_FORCE_UPDATE, 2561 }; 2562 struct ibv_counter_set_data query_out = { 2563 .out = counters, 2564 .outlen = 2 * sizeof(uint64_t), 2565 }; 2566 int err = mlx5_glue->query_counter_set(&query_cs_attr, &query_out); 2567 2568 if (err) 2569 return rte_flow_error_set(error, err, 2570 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2571 NULL, 2572 "cannot read counter"); 2573 query_count->hits_set = 1; 2574 query_count->bytes_set = 1; 2575 query_count->hits = counters[0] - counter_stats->hits; 2576 query_count->bytes = counters[1] - counter_stats->bytes; 2577 if (query_count->reset) { 2578 counter_stats->hits = counters[0]; 2579 counter_stats->bytes = counters[1]; 2580 } 2581 return 0; 2582 } 2583 2584 /** 2585 * Query a flows. 2586 * 2587 * @see rte_flow_query() 2588 * @see rte_flow_ops 2589 */ 2590 int 2591 mlx5_flow_query(struct rte_eth_dev *dev __rte_unused, 2592 struct rte_flow *flow, 2593 enum rte_flow_action_type action __rte_unused, 2594 void *data, 2595 struct rte_flow_error *error) 2596 { 2597 if (flow->cs) { 2598 int ret; 2599 2600 ret = mlx5_flow_query_count(flow->cs, 2601 &flow->counter_stats, 2602 (struct rte_flow_query_count *)data, 2603 error); 2604 if (ret) 2605 return ret; 2606 } else { 2607 return rte_flow_error_set(error, EINVAL, 2608 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2609 NULL, 2610 "no counter found for flow"); 2611 } 2612 return 0; 2613 } 2614 #endif 2615 2616 /** 2617 * Isolated mode. 2618 * 2619 * @see rte_flow_isolate() 2620 * @see rte_flow_ops 2621 */ 2622 int 2623 mlx5_flow_isolate(struct rte_eth_dev *dev, 2624 int enable, 2625 struct rte_flow_error *error) 2626 { 2627 struct priv *priv = dev->data->dev_private; 2628 2629 if (dev->data->dev_started) { 2630 rte_flow_error_set(error, EBUSY, 2631 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2632 NULL, 2633 "port must be stopped first"); 2634 return -rte_errno; 2635 } 2636 priv->isolated = !!enable; 2637 if (enable) 2638 priv->dev->dev_ops = &mlx5_dev_ops_isolate; 2639 else 2640 priv->dev->dev_ops = &mlx5_dev_ops; 2641 return 0; 2642 } 2643 2644 /** 2645 * Convert a flow director filter to a generic flow. 2646 * 2647 * @param dev 2648 * Pointer to Ethernet device. 2649 * @param fdir_filter 2650 * Flow director filter to add. 2651 * @param attributes 2652 * Generic flow parameters structure. 2653 * 2654 * @return 2655 * 0 on success, a negative errno value otherwise and rte_errno is set. 2656 */ 2657 static int 2658 mlx5_fdir_filter_convert(struct rte_eth_dev *dev, 2659 const struct rte_eth_fdir_filter *fdir_filter, 2660 struct mlx5_fdir *attributes) 2661 { 2662 struct priv *priv = dev->data->dev_private; 2663 const struct rte_eth_fdir_input *input = &fdir_filter->input; 2664 2665 /* Validate queue number. */ 2666 if (fdir_filter->action.rx_queue >= priv->rxqs_n) { 2667 DRV_LOG(ERR, "port %u invalid queue number %d", 2668 dev->data->port_id, fdir_filter->action.rx_queue); 2669 rte_errno = EINVAL; 2670 return -rte_errno; 2671 } 2672 attributes->attr.ingress = 1; 2673 attributes->items[0] = (struct rte_flow_item) { 2674 .type = RTE_FLOW_ITEM_TYPE_ETH, 2675 .spec = &attributes->l2, 2676 .mask = &attributes->l2_mask, 2677 }; 2678 switch (fdir_filter->action.behavior) { 2679 case RTE_ETH_FDIR_ACCEPT: 2680 attributes->actions[0] = (struct rte_flow_action){ 2681 .type = RTE_FLOW_ACTION_TYPE_QUEUE, 2682 .conf = &attributes->queue, 2683 }; 2684 break; 2685 case RTE_ETH_FDIR_REJECT: 2686 attributes->actions[0] = (struct rte_flow_action){ 2687 .type = RTE_FLOW_ACTION_TYPE_DROP, 2688 }; 2689 break; 2690 default: 2691 DRV_LOG(ERR, "port %u invalid behavior %d", 2692 dev->data->port_id, 2693 fdir_filter->action.behavior); 2694 rte_errno = ENOTSUP; 2695 return -rte_errno; 2696 } 2697 attributes->queue.index = fdir_filter->action.rx_queue; 2698 switch (fdir_filter->input.flow_type) { 2699 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2700 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2701 .src_addr = input->flow.udp4_flow.ip.src_ip, 2702 .dst_addr = input->flow.udp4_flow.ip.dst_ip, 2703 .time_to_live = input->flow.udp4_flow.ip.ttl, 2704 .type_of_service = input->flow.udp4_flow.ip.tos, 2705 .next_proto_id = input->flow.udp4_flow.ip.proto, 2706 }; 2707 attributes->l4.udp.hdr = (struct udp_hdr){ 2708 .src_port = input->flow.udp4_flow.src_port, 2709 .dst_port = input->flow.udp4_flow.dst_port, 2710 }; 2711 attributes->items[1] = (struct rte_flow_item){ 2712 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2713 .spec = &attributes->l3, 2714 .mask = &attributes->l3, 2715 }; 2716 attributes->items[2] = (struct rte_flow_item){ 2717 .type = RTE_FLOW_ITEM_TYPE_UDP, 2718 .spec = &attributes->l4, 2719 .mask = &attributes->l4, 2720 }; 2721 break; 2722 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2723 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2724 .src_addr = input->flow.tcp4_flow.ip.src_ip, 2725 .dst_addr = input->flow.tcp4_flow.ip.dst_ip, 2726 .time_to_live = input->flow.tcp4_flow.ip.ttl, 2727 .type_of_service = input->flow.tcp4_flow.ip.tos, 2728 .next_proto_id = input->flow.tcp4_flow.ip.proto, 2729 }; 2730 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2731 .src_port = input->flow.tcp4_flow.src_port, 2732 .dst_port = input->flow.tcp4_flow.dst_port, 2733 }; 2734 attributes->items[1] = (struct rte_flow_item){ 2735 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2736 .spec = &attributes->l3, 2737 .mask = &attributes->l3, 2738 }; 2739 attributes->items[2] = (struct rte_flow_item){ 2740 .type = RTE_FLOW_ITEM_TYPE_TCP, 2741 .spec = &attributes->l4, 2742 .mask = &attributes->l4, 2743 }; 2744 break; 2745 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2746 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2747 .src_addr = input->flow.ip4_flow.src_ip, 2748 .dst_addr = input->flow.ip4_flow.dst_ip, 2749 .time_to_live = input->flow.ip4_flow.ttl, 2750 .type_of_service = input->flow.ip4_flow.tos, 2751 .next_proto_id = input->flow.ip4_flow.proto, 2752 }; 2753 attributes->items[1] = (struct rte_flow_item){ 2754 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2755 .spec = &attributes->l3, 2756 .mask = &attributes->l3, 2757 }; 2758 break; 2759 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2760 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2761 .hop_limits = input->flow.udp6_flow.ip.hop_limits, 2762 .proto = input->flow.udp6_flow.ip.proto, 2763 }; 2764 memcpy(attributes->l3.ipv6.hdr.src_addr, 2765 input->flow.udp6_flow.ip.src_ip, 2766 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2767 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2768 input->flow.udp6_flow.ip.dst_ip, 2769 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2770 attributes->l4.udp.hdr = (struct udp_hdr){ 2771 .src_port = input->flow.udp6_flow.src_port, 2772 .dst_port = input->flow.udp6_flow.dst_port, 2773 }; 2774 attributes->items[1] = (struct rte_flow_item){ 2775 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2776 .spec = &attributes->l3, 2777 .mask = &attributes->l3, 2778 }; 2779 attributes->items[2] = (struct rte_flow_item){ 2780 .type = RTE_FLOW_ITEM_TYPE_UDP, 2781 .spec = &attributes->l4, 2782 .mask = &attributes->l4, 2783 }; 2784 break; 2785 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2786 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2787 .hop_limits = input->flow.tcp6_flow.ip.hop_limits, 2788 .proto = input->flow.tcp6_flow.ip.proto, 2789 }; 2790 memcpy(attributes->l3.ipv6.hdr.src_addr, 2791 input->flow.tcp6_flow.ip.src_ip, 2792 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2793 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2794 input->flow.tcp6_flow.ip.dst_ip, 2795 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2796 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2797 .src_port = input->flow.tcp6_flow.src_port, 2798 .dst_port = input->flow.tcp6_flow.dst_port, 2799 }; 2800 attributes->items[1] = (struct rte_flow_item){ 2801 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2802 .spec = &attributes->l3, 2803 .mask = &attributes->l3, 2804 }; 2805 attributes->items[2] = (struct rte_flow_item){ 2806 .type = RTE_FLOW_ITEM_TYPE_TCP, 2807 .spec = &attributes->l4, 2808 .mask = &attributes->l4, 2809 }; 2810 break; 2811 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2812 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2813 .hop_limits = input->flow.ipv6_flow.hop_limits, 2814 .proto = input->flow.ipv6_flow.proto, 2815 }; 2816 memcpy(attributes->l3.ipv6.hdr.src_addr, 2817 input->flow.ipv6_flow.src_ip, 2818 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2819 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2820 input->flow.ipv6_flow.dst_ip, 2821 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2822 attributes->items[1] = (struct rte_flow_item){ 2823 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2824 .spec = &attributes->l3, 2825 .mask = &attributes->l3, 2826 }; 2827 break; 2828 default: 2829 DRV_LOG(ERR, "port %u invalid flow type%d", 2830 dev->data->port_id, fdir_filter->input.flow_type); 2831 rte_errno = ENOTSUP; 2832 return -rte_errno; 2833 } 2834 return 0; 2835 } 2836 2837 /** 2838 * Add new flow director filter and store it in list. 2839 * 2840 * @param dev 2841 * Pointer to Ethernet device. 2842 * @param fdir_filter 2843 * Flow director filter to add. 2844 * 2845 * @return 2846 * 0 on success, a negative errno value otherwise and rte_errno is set. 2847 */ 2848 static int 2849 mlx5_fdir_filter_add(struct rte_eth_dev *dev, 2850 const struct rte_eth_fdir_filter *fdir_filter) 2851 { 2852 struct priv *priv = dev->data->dev_private; 2853 struct mlx5_fdir attributes = { 2854 .attr.group = 0, 2855 .l2_mask = { 2856 .dst.addr_bytes = "\x00\x00\x00\x00\x00\x00", 2857 .src.addr_bytes = "\x00\x00\x00\x00\x00\x00", 2858 .type = 0, 2859 }, 2860 }; 2861 struct mlx5_flow_parse parser = { 2862 .layer = HASH_RXQ_ETH, 2863 }; 2864 struct rte_flow_error error; 2865 struct rte_flow *flow; 2866 int ret; 2867 2868 ret = mlx5_fdir_filter_convert(dev, fdir_filter, &attributes); 2869 if (ret) 2870 return ret; 2871 ret = mlx5_flow_convert(dev, &attributes.attr, attributes.items, 2872 attributes.actions, &error, &parser); 2873 if (ret) 2874 return ret; 2875 flow = mlx5_flow_list_create(dev, &priv->flows, &attributes.attr, 2876 attributes.items, attributes.actions, 2877 &error); 2878 if (flow) { 2879 DRV_LOG(DEBUG, "port %u FDIR created %p", dev->data->port_id, 2880 (void *)flow); 2881 return 0; 2882 } 2883 return -rte_errno; 2884 } 2885 2886 /** 2887 * Delete specific filter. 2888 * 2889 * @param dev 2890 * Pointer to Ethernet device. 2891 * @param fdir_filter 2892 * Filter to be deleted. 2893 * 2894 * @return 2895 * 0 on success, a negative errno value otherwise and rte_errno is set. 2896 */ 2897 static int 2898 mlx5_fdir_filter_delete(struct rte_eth_dev *dev, 2899 const struct rte_eth_fdir_filter *fdir_filter) 2900 { 2901 struct priv *priv = dev->data->dev_private; 2902 struct mlx5_fdir attributes = { 2903 .attr.group = 0, 2904 }; 2905 struct mlx5_flow_parse parser = { 2906 .create = 1, 2907 .layer = HASH_RXQ_ETH, 2908 }; 2909 struct rte_flow_error error; 2910 struct rte_flow *flow; 2911 unsigned int i; 2912 int ret; 2913 2914 ret = mlx5_fdir_filter_convert(dev, fdir_filter, &attributes); 2915 if (ret) 2916 return ret; 2917 ret = mlx5_flow_convert(dev, &attributes.attr, attributes.items, 2918 attributes.actions, &error, &parser); 2919 if (ret) 2920 goto exit; 2921 /* 2922 * Special case for drop action which is only set in the 2923 * specifications when the flow is created. In this situation the 2924 * drop specification is missing. 2925 */ 2926 if (parser.drop) { 2927 struct ibv_flow_spec_action_drop *drop; 2928 2929 drop = (void *)((uintptr_t)parser.queue[HASH_RXQ_ETH].ibv_attr + 2930 parser.queue[HASH_RXQ_ETH].offset); 2931 *drop = (struct ibv_flow_spec_action_drop){ 2932 .type = IBV_FLOW_SPEC_ACTION_DROP, 2933 .size = sizeof(struct ibv_flow_spec_action_drop), 2934 }; 2935 parser.queue[HASH_RXQ_ETH].ibv_attr->num_of_specs++; 2936 } 2937 TAILQ_FOREACH(flow, &priv->flows, next) { 2938 struct ibv_flow_attr *attr; 2939 struct ibv_spec_header *attr_h; 2940 void *spec; 2941 struct ibv_flow_attr *flow_attr; 2942 struct ibv_spec_header *flow_h; 2943 void *flow_spec; 2944 unsigned int specs_n; 2945 2946 attr = parser.queue[HASH_RXQ_ETH].ibv_attr; 2947 flow_attr = flow->frxq[HASH_RXQ_ETH].ibv_attr; 2948 /* Compare first the attributes. */ 2949 if (memcmp(attr, flow_attr, sizeof(struct ibv_flow_attr))) 2950 continue; 2951 if (attr->num_of_specs == 0) 2952 continue; 2953 spec = (void *)((uintptr_t)attr + 2954 sizeof(struct ibv_flow_attr)); 2955 flow_spec = (void *)((uintptr_t)flow_attr + 2956 sizeof(struct ibv_flow_attr)); 2957 specs_n = RTE_MIN(attr->num_of_specs, flow_attr->num_of_specs); 2958 for (i = 0; i != specs_n; ++i) { 2959 attr_h = spec; 2960 flow_h = flow_spec; 2961 if (memcmp(spec, flow_spec, 2962 RTE_MIN(attr_h->size, flow_h->size))) 2963 goto wrong_flow; 2964 spec = (void *)((uintptr_t)spec + attr_h->size); 2965 flow_spec = (void *)((uintptr_t)flow_spec + 2966 flow_h->size); 2967 } 2968 /* At this point, the flow match. */ 2969 break; 2970 wrong_flow: 2971 /* The flow does not match. */ 2972 continue; 2973 } 2974 ret = rte_errno; /* Save rte_errno before cleanup. */ 2975 if (flow) 2976 mlx5_flow_list_destroy(dev, &priv->flows, flow); 2977 exit: 2978 for (i = 0; i != hash_rxq_init_n; ++i) { 2979 if (parser.queue[i].ibv_attr) 2980 rte_free(parser.queue[i].ibv_attr); 2981 } 2982 rte_errno = ret; /* Restore rte_errno. */ 2983 return -rte_errno; 2984 } 2985 2986 /** 2987 * Update queue for specific filter. 2988 * 2989 * @param dev 2990 * Pointer to Ethernet device. 2991 * @param fdir_filter 2992 * Filter to be updated. 2993 * 2994 * @return 2995 * 0 on success, a negative errno value otherwise and rte_errno is set. 2996 */ 2997 static int 2998 mlx5_fdir_filter_update(struct rte_eth_dev *dev, 2999 const struct rte_eth_fdir_filter *fdir_filter) 3000 { 3001 int ret; 3002 3003 ret = mlx5_fdir_filter_delete(dev, fdir_filter); 3004 if (ret) 3005 return ret; 3006 return mlx5_fdir_filter_add(dev, fdir_filter); 3007 } 3008 3009 /** 3010 * Flush all filters. 3011 * 3012 * @param dev 3013 * Pointer to Ethernet device. 3014 */ 3015 static void 3016 mlx5_fdir_filter_flush(struct rte_eth_dev *dev) 3017 { 3018 struct priv *priv = dev->data->dev_private; 3019 3020 mlx5_flow_list_flush(dev, &priv->flows); 3021 } 3022 3023 /** 3024 * Get flow director information. 3025 * 3026 * @param dev 3027 * Pointer to Ethernet device. 3028 * @param[out] fdir_info 3029 * Resulting flow director information. 3030 */ 3031 static void 3032 mlx5_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info) 3033 { 3034 struct priv *priv = dev->data->dev_private; 3035 struct rte_eth_fdir_masks *mask = 3036 &priv->dev->data->dev_conf.fdir_conf.mask; 3037 3038 fdir_info->mode = priv->dev->data->dev_conf.fdir_conf.mode; 3039 fdir_info->guarant_spc = 0; 3040 rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask)); 3041 fdir_info->max_flexpayload = 0; 3042 fdir_info->flow_types_mask[0] = 0; 3043 fdir_info->flex_payload_unit = 0; 3044 fdir_info->max_flex_payload_segment_num = 0; 3045 fdir_info->flex_payload_limit = 0; 3046 memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf)); 3047 } 3048 3049 /** 3050 * Deal with flow director operations. 3051 * 3052 * @param dev 3053 * Pointer to Ethernet device. 3054 * @param filter_op 3055 * Operation to perform. 3056 * @param arg 3057 * Pointer to operation-specific structure. 3058 * 3059 * @return 3060 * 0 on success, a negative errno value otherwise and rte_errno is set. 3061 */ 3062 static int 3063 mlx5_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op, 3064 void *arg) 3065 { 3066 struct priv *priv = dev->data->dev_private; 3067 enum rte_fdir_mode fdir_mode = 3068 priv->dev->data->dev_conf.fdir_conf.mode; 3069 3070 if (filter_op == RTE_ETH_FILTER_NOP) 3071 return 0; 3072 if (fdir_mode != RTE_FDIR_MODE_PERFECT && 3073 fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 3074 DRV_LOG(ERR, "port %u flow director mode %d not supported", 3075 dev->data->port_id, fdir_mode); 3076 rte_errno = EINVAL; 3077 return -rte_errno; 3078 } 3079 switch (filter_op) { 3080 case RTE_ETH_FILTER_ADD: 3081 return mlx5_fdir_filter_add(dev, arg); 3082 case RTE_ETH_FILTER_UPDATE: 3083 return mlx5_fdir_filter_update(dev, arg); 3084 case RTE_ETH_FILTER_DELETE: 3085 return mlx5_fdir_filter_delete(dev, arg); 3086 case RTE_ETH_FILTER_FLUSH: 3087 mlx5_fdir_filter_flush(dev); 3088 break; 3089 case RTE_ETH_FILTER_INFO: 3090 mlx5_fdir_info_get(dev, arg); 3091 break; 3092 default: 3093 DRV_LOG(DEBUG, "port %u unknown operation %u", 3094 dev->data->port_id, filter_op); 3095 rte_errno = EINVAL; 3096 return -rte_errno; 3097 } 3098 return 0; 3099 } 3100 3101 /** 3102 * Manage filter operations. 3103 * 3104 * @param dev 3105 * Pointer to Ethernet device structure. 3106 * @param filter_type 3107 * Filter type. 3108 * @param filter_op 3109 * Operation to perform. 3110 * @param arg 3111 * Pointer to operation-specific structure. 3112 * 3113 * @return 3114 * 0 on success, a negative errno value otherwise and rte_errno is set. 3115 */ 3116 int 3117 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 3118 enum rte_filter_type filter_type, 3119 enum rte_filter_op filter_op, 3120 void *arg) 3121 { 3122 switch (filter_type) { 3123 case RTE_ETH_FILTER_GENERIC: 3124 if (filter_op != RTE_ETH_FILTER_GET) { 3125 rte_errno = EINVAL; 3126 return -rte_errno; 3127 } 3128 *(const void **)arg = &mlx5_flow_ops; 3129 return 0; 3130 case RTE_ETH_FILTER_FDIR: 3131 return mlx5_fdir_ctrl_func(dev, filter_op, arg); 3132 default: 3133 DRV_LOG(ERR, "port %u filter type (%d) not supported", 3134 dev->data->port_id, filter_type); 3135 rte_errno = ENOTSUP; 3136 return -rte_errno; 3137 } 3138 return 0; 3139 } 3140