xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 2d0c29a37a9c080c1cccb1ad7941aba2ccf5437e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_eth_ctrl.h>
25 #include <rte_ethdev_driver.h>
26 #include <rte_flow.h>
27 #include <rte_flow_driver.h>
28 #include <rte_malloc.h>
29 #include <rte_ip.h>
30 
31 #include "mlx5.h"
32 #include "mlx5_defs.h"
33 #include "mlx5_prm.h"
34 #include "mlx5_glue.h"
35 #include "mlx5_flow.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47 
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49 
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55 	[MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59 
60 enum mlx5_expansion {
61 	MLX5_EXPANSION_ROOT,
62 	MLX5_EXPANSION_ROOT_OUTER,
63 	MLX5_EXPANSION_ROOT_ETH_VLAN,
64 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_ETH,
66 	MLX5_EXPANSION_OUTER_ETH_VLAN,
67 	MLX5_EXPANSION_OUTER_VLAN,
68 	MLX5_EXPANSION_OUTER_IPV4,
69 	MLX5_EXPANSION_OUTER_IPV4_UDP,
70 	MLX5_EXPANSION_OUTER_IPV4_TCP,
71 	MLX5_EXPANSION_OUTER_IPV6,
72 	MLX5_EXPANSION_OUTER_IPV6_UDP,
73 	MLX5_EXPANSION_OUTER_IPV6_TCP,
74 	MLX5_EXPANSION_VXLAN,
75 	MLX5_EXPANSION_VXLAN_GPE,
76 	MLX5_EXPANSION_GRE,
77 	MLX5_EXPANSION_MPLS,
78 	MLX5_EXPANSION_ETH,
79 	MLX5_EXPANSION_ETH_VLAN,
80 	MLX5_EXPANSION_VLAN,
81 	MLX5_EXPANSION_IPV4,
82 	MLX5_EXPANSION_IPV4_UDP,
83 	MLX5_EXPANSION_IPV4_TCP,
84 	MLX5_EXPANSION_IPV6,
85 	MLX5_EXPANSION_IPV6_UDP,
86 	MLX5_EXPANSION_IPV6_TCP,
87 };
88 
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91 	[MLX5_EXPANSION_ROOT] = {
92 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93 						 MLX5_EXPANSION_IPV4,
94 						 MLX5_EXPANSION_IPV6),
95 		.type = RTE_FLOW_ITEM_TYPE_END,
96 	},
97 	[MLX5_EXPANSION_ROOT_OUTER] = {
98 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99 						 MLX5_EXPANSION_OUTER_IPV4,
100 						 MLX5_EXPANSION_OUTER_IPV6),
101 		.type = RTE_FLOW_ITEM_TYPE_END,
102 	},
103 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105 		.type = RTE_FLOW_ITEM_TYPE_END,
106 	},
107 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109 		.type = RTE_FLOW_ITEM_TYPE_END,
110 	},
111 	[MLX5_EXPANSION_OUTER_ETH] = {
112 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113 						 MLX5_EXPANSION_OUTER_IPV6,
114 						 MLX5_EXPANSION_MPLS),
115 		.type = RTE_FLOW_ITEM_TYPE_ETH,
116 		.rss_types = 0,
117 	},
118 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120 		.type = RTE_FLOW_ITEM_TYPE_ETH,
121 		.rss_types = 0,
122 	},
123 	[MLX5_EXPANSION_OUTER_VLAN] = {
124 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125 						 MLX5_EXPANSION_OUTER_IPV6),
126 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
127 	},
128 	[MLX5_EXPANSION_OUTER_IPV4] = {
129 		.next = RTE_FLOW_EXPAND_RSS_NEXT
130 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
131 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
132 			 MLX5_EXPANSION_GRE),
133 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
134 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135 			ETH_RSS_NONFRAG_IPV4_OTHER,
136 	},
137 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139 						 MLX5_EXPANSION_VXLAN_GPE),
140 		.type = RTE_FLOW_ITEM_TYPE_UDP,
141 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142 	},
143 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144 		.type = RTE_FLOW_ITEM_TYPE_TCP,
145 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146 	},
147 	[MLX5_EXPANSION_OUTER_IPV6] = {
148 		.next = RTE_FLOW_EXPAND_RSS_NEXT
149 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
150 			 MLX5_EXPANSION_OUTER_IPV6_TCP),
151 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
152 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153 			ETH_RSS_NONFRAG_IPV6_OTHER,
154 	},
155 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157 						 MLX5_EXPANSION_VXLAN_GPE),
158 		.type = RTE_FLOW_ITEM_TYPE_UDP,
159 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160 	},
161 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162 		.type = RTE_FLOW_ITEM_TYPE_TCP,
163 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164 	},
165 	[MLX5_EXPANSION_VXLAN] = {
166 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
168 	},
169 	[MLX5_EXPANSION_VXLAN_GPE] = {
170 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171 						 MLX5_EXPANSION_IPV4,
172 						 MLX5_EXPANSION_IPV6),
173 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174 	},
175 	[MLX5_EXPANSION_GRE] = {
176 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177 		.type = RTE_FLOW_ITEM_TYPE_GRE,
178 	},
179 	[MLX5_EXPANSION_MPLS] = {
180 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181 						 MLX5_EXPANSION_IPV6),
182 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
183 	},
184 	[MLX5_EXPANSION_ETH] = {
185 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186 						 MLX5_EXPANSION_IPV6),
187 		.type = RTE_FLOW_ITEM_TYPE_ETH,
188 	},
189 	[MLX5_EXPANSION_ETH_VLAN] = {
190 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191 		.type = RTE_FLOW_ITEM_TYPE_ETH,
192 	},
193 	[MLX5_EXPANSION_VLAN] = {
194 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195 						 MLX5_EXPANSION_IPV6),
196 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
197 	},
198 	[MLX5_EXPANSION_IPV4] = {
199 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200 						 MLX5_EXPANSION_IPV4_TCP),
201 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
202 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203 			ETH_RSS_NONFRAG_IPV4_OTHER,
204 	},
205 	[MLX5_EXPANSION_IPV4_UDP] = {
206 		.type = RTE_FLOW_ITEM_TYPE_UDP,
207 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208 	},
209 	[MLX5_EXPANSION_IPV4_TCP] = {
210 		.type = RTE_FLOW_ITEM_TYPE_TCP,
211 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212 	},
213 	[MLX5_EXPANSION_IPV6] = {
214 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215 						 MLX5_EXPANSION_IPV6_TCP),
216 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
217 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218 			ETH_RSS_NONFRAG_IPV6_OTHER,
219 	},
220 	[MLX5_EXPANSION_IPV6_UDP] = {
221 		.type = RTE_FLOW_ITEM_TYPE_UDP,
222 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223 	},
224 	[MLX5_EXPANSION_IPV6_TCP] = {
225 		.type = RTE_FLOW_ITEM_TYPE_TCP,
226 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227 	},
228 };
229 
230 static const struct rte_flow_ops mlx5_flow_ops = {
231 	.validate = mlx5_flow_validate,
232 	.create = mlx5_flow_create,
233 	.destroy = mlx5_flow_destroy,
234 	.flush = mlx5_flow_flush,
235 	.isolate = mlx5_flow_isolate,
236 	.query = mlx5_flow_query,
237 };
238 
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241 	struct rte_flow_attr attr;
242 	struct rte_flow_item items[4];
243 	struct rte_flow_item_eth l2;
244 	struct rte_flow_item_eth l2_mask;
245 	union {
246 		struct rte_flow_item_ipv4 ipv4;
247 		struct rte_flow_item_ipv6 ipv6;
248 	} l3;
249 	union {
250 		struct rte_flow_item_ipv4 ipv4;
251 		struct rte_flow_item_ipv6 ipv6;
252 	} l3_mask;
253 	union {
254 		struct rte_flow_item_udp udp;
255 		struct rte_flow_item_tcp tcp;
256 	} l4;
257 	union {
258 		struct rte_flow_item_udp udp;
259 		struct rte_flow_item_tcp tcp;
260 	} l4_mask;
261 	struct rte_flow_action actions[2];
262 	struct rte_flow_action_queue queue;
263 };
264 
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269 
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273 	{ 9, 10, 11 }, { 12, 13, 14 },
274 };
275 
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281 
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283 	{
284 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
285 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286 	},
287 	{
288 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290 	},
291 	{
292 		.tunnel = MLX5_FLOW_LAYER_GRE,
293 		.ptype = RTE_PTYPE_TUNNEL_GRE,
294 	},
295 	{
296 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
298 	},
299 	{
300 		.tunnel = MLX5_FLOW_LAYER_MPLS,
301 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302 	},
303 };
304 
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318 	struct mlx5_priv *priv = dev->data->dev_private;
319 	struct {
320 		struct ibv_flow_attr attr;
321 		struct ibv_flow_spec_eth eth;
322 		struct ibv_flow_spec_action_drop drop;
323 	} flow_attr = {
324 		.attr = {
325 			.num_of_specs = 2,
326 			.port = (uint8_t)priv->ibv_port,
327 		},
328 		.eth = {
329 			.type = IBV_FLOW_SPEC_ETH,
330 			.size = sizeof(struct ibv_flow_spec_eth),
331 		},
332 		.drop = {
333 			.size = sizeof(struct ibv_flow_spec_action_drop),
334 			.type = IBV_FLOW_SPEC_ACTION_DROP,
335 		},
336 	};
337 	struct ibv_flow *flow;
338 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
339 	uint16_t vprio[] = { 8, 16 };
340 	int i;
341 	int priority = 0;
342 
343 	if (!drop) {
344 		rte_errno = ENOTSUP;
345 		return -rte_errno;
346 	}
347 	for (i = 0; i != RTE_DIM(vprio); i++) {
348 		flow_attr.attr.priority = vprio[i] - 1;
349 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
350 		if (!flow)
351 			break;
352 		claim_zero(mlx5_glue->destroy_flow(flow));
353 		priority = vprio[i];
354 	}
355 	mlx5_hrxq_drop_release(dev);
356 	switch (priority) {
357 	case 8:
358 		priority = RTE_DIM(priority_map_3);
359 		break;
360 	case 16:
361 		priority = RTE_DIM(priority_map_5);
362 		break;
363 	default:
364 		rte_errno = ENOTSUP;
365 		DRV_LOG(ERR,
366 			"port %u verbs maximum priority: %d expected 8/16",
367 			dev->data->port_id, priority);
368 		return -rte_errno;
369 	}
370 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
371 		dev->data->port_id, priority);
372 	return priority;
373 }
374 
375 /**
376  * Adjust flow priority based on the highest layer and the request priority.
377  *
378  * @param[in] dev
379  *   Pointer to the Ethernet device structure.
380  * @param[in] priority
381  *   The rule base priority.
382  * @param[in] subpriority
383  *   The priority based on the items.
384  *
385  * @return
386  *   The new priority.
387  */
388 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
389 				   uint32_t subpriority)
390 {
391 	uint32_t res = 0;
392 	struct mlx5_priv *priv = dev->data->dev_private;
393 
394 	switch (priv->config.flow_prio) {
395 	case RTE_DIM(priority_map_3):
396 		res = priority_map_3[priority][subpriority];
397 		break;
398 	case RTE_DIM(priority_map_5):
399 		res = priority_map_5[priority][subpriority];
400 		break;
401 	}
402 	return  res;
403 }
404 
405 /**
406  * Verify the @p item specifications (spec, last, mask) are compatible with the
407  * NIC capabilities.
408  *
409  * @param[in] item
410  *   Item specification.
411  * @param[in] mask
412  *   @p item->mask or flow default bit-masks.
413  * @param[in] nic_mask
414  *   Bit-masks covering supported fields by the NIC to compare with user mask.
415  * @param[in] size
416  *   Bit-masks size in bytes.
417  * @param[out] error
418  *   Pointer to error structure.
419  *
420  * @return
421  *   0 on success, a negative errno value otherwise and rte_errno is set.
422  */
423 int
424 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
425 			  const uint8_t *mask,
426 			  const uint8_t *nic_mask,
427 			  unsigned int size,
428 			  struct rte_flow_error *error)
429 {
430 	unsigned int i;
431 
432 	assert(nic_mask);
433 	for (i = 0; i < size; ++i)
434 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
435 			return rte_flow_error_set(error, ENOTSUP,
436 						  RTE_FLOW_ERROR_TYPE_ITEM,
437 						  item,
438 						  "mask enables non supported"
439 						  " bits");
440 	if (!item->spec && (item->mask || item->last))
441 		return rte_flow_error_set(error, EINVAL,
442 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
443 					  "mask/last without a spec is not"
444 					  " supported");
445 	if (item->spec && item->last) {
446 		uint8_t spec[size];
447 		uint8_t last[size];
448 		unsigned int i;
449 		int ret;
450 
451 		for (i = 0; i < size; ++i) {
452 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
453 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
454 		}
455 		ret = memcmp(spec, last, size);
456 		if (ret != 0)
457 			return rte_flow_error_set(error, EINVAL,
458 						  RTE_FLOW_ERROR_TYPE_ITEM,
459 						  item,
460 						  "range is not valid");
461 	}
462 	return 0;
463 }
464 
465 /**
466  * Adjust the hash fields according to the @p flow information.
467  *
468  * @param[in] dev_flow.
469  *   Pointer to the mlx5_flow.
470  * @param[in] tunnel
471  *   1 when the hash field is for a tunnel item.
472  * @param[in] layer_types
473  *   ETH_RSS_* types.
474  * @param[in] hash_fields
475  *   Item hash fields.
476  *
477  * @return
478  *   The hash fileds that should be used.
479  */
480 uint64_t
481 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
482 			    int tunnel __rte_unused, uint64_t layer_types,
483 			    uint64_t hash_fields)
484 {
485 	struct rte_flow *flow = dev_flow->flow;
486 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
487 	int rss_request_inner = flow->rss.level >= 2;
488 
489 	/* Check RSS hash level for tunnel. */
490 	if (tunnel && rss_request_inner)
491 		hash_fields |= IBV_RX_HASH_INNER;
492 	else if (tunnel || rss_request_inner)
493 		return 0;
494 #endif
495 	/* Check if requested layer matches RSS hash fields. */
496 	if (!(flow->rss.types & layer_types))
497 		return 0;
498 	return hash_fields;
499 }
500 
501 /**
502  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
503  * if several tunnel rules are used on this queue, the tunnel ptype will be
504  * cleared.
505  *
506  * @param rxq_ctrl
507  *   Rx queue to update.
508  */
509 static void
510 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
511 {
512 	unsigned int i;
513 	uint32_t tunnel_ptype = 0;
514 
515 	/* Look up for the ptype to use. */
516 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
517 		if (!rxq_ctrl->flow_tunnels_n[i])
518 			continue;
519 		if (!tunnel_ptype) {
520 			tunnel_ptype = tunnels_info[i].ptype;
521 		} else {
522 			tunnel_ptype = 0;
523 			break;
524 		}
525 	}
526 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
527 }
528 
529 /**
530  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
531  * flow.
532  *
533  * @param[in] dev
534  *   Pointer to the Ethernet device structure.
535  * @param[in] dev_flow
536  *   Pointer to device flow structure.
537  */
538 static void
539 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
540 {
541 	struct mlx5_priv *priv = dev->data->dev_private;
542 	struct rte_flow *flow = dev_flow->flow;
543 	const int mark = !!(flow->actions &
544 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
545 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
546 	unsigned int i;
547 
548 	for (i = 0; i != flow->rss.queue_num; ++i) {
549 		int idx = (*flow->queue)[i];
550 		struct mlx5_rxq_ctrl *rxq_ctrl =
551 			container_of((*priv->rxqs)[idx],
552 				     struct mlx5_rxq_ctrl, rxq);
553 
554 		if (mark) {
555 			rxq_ctrl->rxq.mark = 1;
556 			rxq_ctrl->flow_mark_n++;
557 		}
558 		if (tunnel) {
559 			unsigned int j;
560 
561 			/* Increase the counter matching the flow. */
562 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
563 				if ((tunnels_info[j].tunnel &
564 				     dev_flow->layers) ==
565 				    tunnels_info[j].tunnel) {
566 					rxq_ctrl->flow_tunnels_n[j]++;
567 					break;
568 				}
569 			}
570 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
571 		}
572 	}
573 }
574 
575 /**
576  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
577  *
578  * @param[in] dev
579  *   Pointer to the Ethernet device structure.
580  * @param[in] flow
581  *   Pointer to flow structure.
582  */
583 static void
584 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
585 {
586 	struct mlx5_flow *dev_flow;
587 
588 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
589 		flow_drv_rxq_flags_set(dev, dev_flow);
590 }
591 
592 /**
593  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
594  * device flow if no other flow uses it with the same kind of request.
595  *
596  * @param dev
597  *   Pointer to Ethernet device.
598  * @param[in] dev_flow
599  *   Pointer to the device flow.
600  */
601 static void
602 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
603 {
604 	struct mlx5_priv *priv = dev->data->dev_private;
605 	struct rte_flow *flow = dev_flow->flow;
606 	const int mark = !!(flow->actions &
607 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
608 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
609 	unsigned int i;
610 
611 	assert(dev->data->dev_started);
612 	for (i = 0; i != flow->rss.queue_num; ++i) {
613 		int idx = (*flow->queue)[i];
614 		struct mlx5_rxq_ctrl *rxq_ctrl =
615 			container_of((*priv->rxqs)[idx],
616 				     struct mlx5_rxq_ctrl, rxq);
617 
618 		if (mark) {
619 			rxq_ctrl->flow_mark_n--;
620 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
621 		}
622 		if (tunnel) {
623 			unsigned int j;
624 
625 			/* Decrease the counter matching the flow. */
626 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
627 				if ((tunnels_info[j].tunnel &
628 				     dev_flow->layers) ==
629 				    tunnels_info[j].tunnel) {
630 					rxq_ctrl->flow_tunnels_n[j]--;
631 					break;
632 				}
633 			}
634 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
635 		}
636 	}
637 }
638 
639 /**
640  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
641  * @p flow if no other flow uses it with the same kind of request.
642  *
643  * @param dev
644  *   Pointer to Ethernet device.
645  * @param[in] flow
646  *   Pointer to the flow.
647  */
648 static void
649 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
650 {
651 	struct mlx5_flow *dev_flow;
652 
653 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
654 		flow_drv_rxq_flags_trim(dev, dev_flow);
655 }
656 
657 /**
658  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
659  *
660  * @param dev
661  *   Pointer to Ethernet device.
662  */
663 static void
664 flow_rxq_flags_clear(struct rte_eth_dev *dev)
665 {
666 	struct mlx5_priv *priv = dev->data->dev_private;
667 	unsigned int i;
668 
669 	for (i = 0; i != priv->rxqs_n; ++i) {
670 		struct mlx5_rxq_ctrl *rxq_ctrl;
671 		unsigned int j;
672 
673 		if (!(*priv->rxqs)[i])
674 			continue;
675 		rxq_ctrl = container_of((*priv->rxqs)[i],
676 					struct mlx5_rxq_ctrl, rxq);
677 		rxq_ctrl->flow_mark_n = 0;
678 		rxq_ctrl->rxq.mark = 0;
679 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
680 			rxq_ctrl->flow_tunnels_n[j] = 0;
681 		rxq_ctrl->rxq.tunnel = 0;
682 	}
683 }
684 
685 /*
686  * Validate the flag action.
687  *
688  * @param[in] action_flags
689  *   Bit-fields that holds the actions detected until now.
690  * @param[in] attr
691  *   Attributes of flow that includes this action.
692  * @param[out] error
693  *   Pointer to error structure.
694  *
695  * @return
696  *   0 on success, a negative errno value otherwise and rte_errno is set.
697  */
698 int
699 mlx5_flow_validate_action_flag(uint64_t action_flags,
700 			       const struct rte_flow_attr *attr,
701 			       struct rte_flow_error *error)
702 {
703 
704 	if (action_flags & MLX5_FLOW_ACTION_DROP)
705 		return rte_flow_error_set(error, EINVAL,
706 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
707 					  "can't drop and flag in same flow");
708 	if (action_flags & MLX5_FLOW_ACTION_MARK)
709 		return rte_flow_error_set(error, EINVAL,
710 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
711 					  "can't mark and flag in same flow");
712 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
713 		return rte_flow_error_set(error, EINVAL,
714 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
715 					  "can't have 2 flag"
716 					  " actions in same flow");
717 	if (attr->egress)
718 		return rte_flow_error_set(error, ENOTSUP,
719 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
720 					  "flag action not supported for "
721 					  "egress");
722 	return 0;
723 }
724 
725 /*
726  * Validate the mark action.
727  *
728  * @param[in] action
729  *   Pointer to the queue action.
730  * @param[in] action_flags
731  *   Bit-fields that holds the actions detected until now.
732  * @param[in] attr
733  *   Attributes of flow that includes this action.
734  * @param[out] error
735  *   Pointer to error structure.
736  *
737  * @return
738  *   0 on success, a negative errno value otherwise and rte_errno is set.
739  */
740 int
741 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
742 			       uint64_t action_flags,
743 			       const struct rte_flow_attr *attr,
744 			       struct rte_flow_error *error)
745 {
746 	const struct rte_flow_action_mark *mark = action->conf;
747 
748 	if (!mark)
749 		return rte_flow_error_set(error, EINVAL,
750 					  RTE_FLOW_ERROR_TYPE_ACTION,
751 					  action,
752 					  "configuration cannot be null");
753 	if (mark->id >= MLX5_FLOW_MARK_MAX)
754 		return rte_flow_error_set(error, EINVAL,
755 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
756 					  &mark->id,
757 					  "mark id must in 0 <= id < "
758 					  RTE_STR(MLX5_FLOW_MARK_MAX));
759 	if (action_flags & MLX5_FLOW_ACTION_DROP)
760 		return rte_flow_error_set(error, EINVAL,
761 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
762 					  "can't drop and mark in same flow");
763 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
764 		return rte_flow_error_set(error, EINVAL,
765 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
766 					  "can't flag and mark in same flow");
767 	if (action_flags & MLX5_FLOW_ACTION_MARK)
768 		return rte_flow_error_set(error, EINVAL,
769 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
770 					  "can't have 2 mark actions in same"
771 					  " flow");
772 	if (attr->egress)
773 		return rte_flow_error_set(error, ENOTSUP,
774 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
775 					  "mark action not supported for "
776 					  "egress");
777 	return 0;
778 }
779 
780 /*
781  * Validate the drop action.
782  *
783  * @param[in] action_flags
784  *   Bit-fields that holds the actions detected until now.
785  * @param[in] attr
786  *   Attributes of flow that includes this action.
787  * @param[out] error
788  *   Pointer to error structure.
789  *
790  * @return
791  *   0 on success, a negative errno value otherwise and rte_ernno is set.
792  */
793 int
794 mlx5_flow_validate_action_drop(uint64_t action_flags,
795 			       const struct rte_flow_attr *attr,
796 			       struct rte_flow_error *error)
797 {
798 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
799 		return rte_flow_error_set(error, EINVAL,
800 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
801 					  "can't drop and flag in same flow");
802 	if (action_flags & MLX5_FLOW_ACTION_MARK)
803 		return rte_flow_error_set(error, EINVAL,
804 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
805 					  "can't drop and mark in same flow");
806 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
807 		return rte_flow_error_set(error, EINVAL,
808 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
809 					  "can't have 2 fate actions in"
810 					  " same flow");
811 	if (attr->egress)
812 		return rte_flow_error_set(error, ENOTSUP,
813 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
814 					  "drop action not supported for "
815 					  "egress");
816 	return 0;
817 }
818 
819 /*
820  * Validate the queue action.
821  *
822  * @param[in] action
823  *   Pointer to the queue action.
824  * @param[in] action_flags
825  *   Bit-fields that holds the actions detected until now.
826  * @param[in] dev
827  *   Pointer to the Ethernet device structure.
828  * @param[in] attr
829  *   Attributes of flow that includes this action.
830  * @param[out] error
831  *   Pointer to error structure.
832  *
833  * @return
834  *   0 on success, a negative errno value otherwise and rte_ernno is set.
835  */
836 int
837 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
838 				uint64_t action_flags,
839 				struct rte_eth_dev *dev,
840 				const struct rte_flow_attr *attr,
841 				struct rte_flow_error *error)
842 {
843 	struct mlx5_priv *priv = dev->data->dev_private;
844 	const struct rte_flow_action_queue *queue = action->conf;
845 
846 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
847 		return rte_flow_error_set(error, EINVAL,
848 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
849 					  "can't have 2 fate actions in"
850 					  " same flow");
851 	if (!priv->rxqs_n)
852 		return rte_flow_error_set(error, EINVAL,
853 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
854 					  NULL, "No Rx queues configured");
855 	if (queue->index >= priv->rxqs_n)
856 		return rte_flow_error_set(error, EINVAL,
857 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
858 					  &queue->index,
859 					  "queue index out of range");
860 	if (!(*priv->rxqs)[queue->index])
861 		return rte_flow_error_set(error, EINVAL,
862 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
863 					  &queue->index,
864 					  "queue is not configured");
865 	if (attr->egress)
866 		return rte_flow_error_set(error, ENOTSUP,
867 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
868 					  "queue action not supported for "
869 					  "egress");
870 	return 0;
871 }
872 
873 /*
874  * Validate the rss action.
875  *
876  * @param[in] action
877  *   Pointer to the queue action.
878  * @param[in] action_flags
879  *   Bit-fields that holds the actions detected until now.
880  * @param[in] dev
881  *   Pointer to the Ethernet device structure.
882  * @param[in] attr
883  *   Attributes of flow that includes this action.
884  * @param[out] error
885  *   Pointer to error structure.
886  *
887  * @return
888  *   0 on success, a negative errno value otherwise and rte_ernno is set.
889  */
890 int
891 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
892 			      uint64_t action_flags,
893 			      struct rte_eth_dev *dev,
894 			      const struct rte_flow_attr *attr,
895 			      struct rte_flow_error *error)
896 {
897 	struct mlx5_priv *priv = dev->data->dev_private;
898 	const struct rte_flow_action_rss *rss = action->conf;
899 	unsigned int i;
900 
901 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
902 		return rte_flow_error_set(error, EINVAL,
903 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
904 					  "can't have 2 fate actions"
905 					  " in same flow");
906 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
907 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
908 		return rte_flow_error_set(error, ENOTSUP,
909 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
910 					  &rss->func,
911 					  "RSS hash function not supported");
912 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
913 	if (rss->level > 2)
914 #else
915 	if (rss->level > 1)
916 #endif
917 		return rte_flow_error_set(error, ENOTSUP,
918 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
919 					  &rss->level,
920 					  "tunnel RSS is not supported");
921 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
922 	if (rss->key_len == 0 && rss->key != NULL)
923 		return rte_flow_error_set(error, ENOTSUP,
924 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
925 					  &rss->key_len,
926 					  "RSS hash key length 0");
927 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
928 		return rte_flow_error_set(error, ENOTSUP,
929 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
930 					  &rss->key_len,
931 					  "RSS hash key too small");
932 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
933 		return rte_flow_error_set(error, ENOTSUP,
934 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
935 					  &rss->key_len,
936 					  "RSS hash key too large");
937 	if (rss->queue_num > priv->config.ind_table_max_size)
938 		return rte_flow_error_set(error, ENOTSUP,
939 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
940 					  &rss->queue_num,
941 					  "number of queues too large");
942 	if (rss->types & MLX5_RSS_HF_MASK)
943 		return rte_flow_error_set(error, ENOTSUP,
944 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
945 					  &rss->types,
946 					  "some RSS protocols are not"
947 					  " supported");
948 	if (!priv->rxqs_n)
949 		return rte_flow_error_set(error, EINVAL,
950 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
951 					  NULL, "No Rx queues configured");
952 	if (!rss->queue_num)
953 		return rte_flow_error_set(error, EINVAL,
954 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
955 					  NULL, "No queues configured");
956 	for (i = 0; i != rss->queue_num; ++i) {
957 		if (!(*priv->rxqs)[rss->queue[i]])
958 			return rte_flow_error_set
959 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
960 				 &rss->queue[i], "queue is not configured");
961 	}
962 	if (attr->egress)
963 		return rte_flow_error_set(error, ENOTSUP,
964 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
965 					  "rss action not supported for "
966 					  "egress");
967 	return 0;
968 }
969 
970 /*
971  * Validate the count action.
972  *
973  * @param[in] dev
974  *   Pointer to the Ethernet device structure.
975  * @param[in] attr
976  *   Attributes of flow that includes this action.
977  * @param[out] error
978  *   Pointer to error structure.
979  *
980  * @return
981  *   0 on success, a negative errno value otherwise and rte_ernno is set.
982  */
983 int
984 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
985 				const struct rte_flow_attr *attr,
986 				struct rte_flow_error *error)
987 {
988 	if (attr->egress)
989 		return rte_flow_error_set(error, ENOTSUP,
990 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
991 					  "count action not supported for "
992 					  "egress");
993 	return 0;
994 }
995 
996 /**
997  * Verify the @p attributes will be correctly understood by the NIC and store
998  * them in the @p flow if everything is correct.
999  *
1000  * @param[in] dev
1001  *   Pointer to the Ethernet device structure.
1002  * @param[in] attributes
1003  *   Pointer to flow attributes
1004  * @param[out] error
1005  *   Pointer to error structure.
1006  *
1007  * @return
1008  *   0 on success, a negative errno value otherwise and rte_errno is set.
1009  */
1010 int
1011 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1012 			      const struct rte_flow_attr *attributes,
1013 			      struct rte_flow_error *error)
1014 {
1015 	struct mlx5_priv *priv = dev->data->dev_private;
1016 	uint32_t priority_max = priv->config.flow_prio - 1;
1017 
1018 	if (attributes->group)
1019 		return rte_flow_error_set(error, ENOTSUP,
1020 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1021 					  NULL, "groups is not supported");
1022 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1023 	    attributes->priority >= priority_max)
1024 		return rte_flow_error_set(error, ENOTSUP,
1025 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1026 					  NULL, "priority out of range");
1027 	if (attributes->egress)
1028 		return rte_flow_error_set(error, ENOTSUP,
1029 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1030 					  "egress is not supported");
1031 	if (attributes->transfer)
1032 		return rte_flow_error_set(error, ENOTSUP,
1033 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1034 					  NULL, "transfer is not supported");
1035 	if (!attributes->ingress)
1036 		return rte_flow_error_set(error, EINVAL,
1037 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1038 					  NULL,
1039 					  "ingress attribute is mandatory");
1040 	return 0;
1041 }
1042 
1043 /**
1044  * Validate Ethernet item.
1045  *
1046  * @param[in] item
1047  *   Item specification.
1048  * @param[in] item_flags
1049  *   Bit-fields that holds the items detected until now.
1050  * @param[out] error
1051  *   Pointer to error structure.
1052  *
1053  * @return
1054  *   0 on success, a negative errno value otherwise and rte_errno is set.
1055  */
1056 int
1057 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1058 			    uint64_t item_flags,
1059 			    struct rte_flow_error *error)
1060 {
1061 	const struct rte_flow_item_eth *mask = item->mask;
1062 	const struct rte_flow_item_eth nic_mask = {
1063 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1064 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1065 		.type = RTE_BE16(0xffff),
1066 	};
1067 	int ret;
1068 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1069 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1070 				       MLX5_FLOW_LAYER_OUTER_L2;
1071 
1072 	if (item_flags & ethm)
1073 		return rte_flow_error_set(error, ENOTSUP,
1074 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1075 					  "multiple L2 layers not supported");
1076 	if (!mask)
1077 		mask = &rte_flow_item_eth_mask;
1078 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1079 					(const uint8_t *)&nic_mask,
1080 					sizeof(struct rte_flow_item_eth),
1081 					error);
1082 	return ret;
1083 }
1084 
1085 /**
1086  * Validate VLAN item.
1087  *
1088  * @param[in] item
1089  *   Item specification.
1090  * @param[in] item_flags
1091  *   Bit-fields that holds the items detected until now.
1092  * @param[out] error
1093  *   Pointer to error structure.
1094  *
1095  * @return
1096  *   0 on success, a negative errno value otherwise and rte_errno is set.
1097  */
1098 int
1099 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1100 			     uint64_t item_flags,
1101 			     struct rte_flow_error *error)
1102 {
1103 	const struct rte_flow_item_vlan *spec = item->spec;
1104 	const struct rte_flow_item_vlan *mask = item->mask;
1105 	const struct rte_flow_item_vlan nic_mask = {
1106 		.tci = RTE_BE16(0x0fff),
1107 		.inner_type = RTE_BE16(0xffff),
1108 	};
1109 	uint16_t vlan_tag = 0;
1110 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1111 	int ret;
1112 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1113 					MLX5_FLOW_LAYER_INNER_L4) :
1114 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1115 					MLX5_FLOW_LAYER_OUTER_L4);
1116 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1117 					MLX5_FLOW_LAYER_OUTER_VLAN;
1118 
1119 	if (item_flags & vlanm)
1120 		return rte_flow_error_set(error, EINVAL,
1121 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1122 					  "multiple VLAN layers not supported");
1123 	else if ((item_flags & l34m) != 0)
1124 		return rte_flow_error_set(error, EINVAL,
1125 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1126 					  "L2 layer cannot follow L3/L4 layer");
1127 	if (!mask)
1128 		mask = &rte_flow_item_vlan_mask;
1129 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1130 					(const uint8_t *)&nic_mask,
1131 					sizeof(struct rte_flow_item_vlan),
1132 					error);
1133 	if (ret)
1134 		return ret;
1135 	if (spec) {
1136 		vlan_tag = spec->tci;
1137 		vlan_tag &= mask->tci;
1138 	}
1139 	/*
1140 	 * From verbs perspective an empty VLAN is equivalent
1141 	 * to a packet without VLAN layer.
1142 	 */
1143 	if (!vlan_tag)
1144 		return rte_flow_error_set(error, EINVAL,
1145 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1146 					  item->spec,
1147 					  "VLAN cannot be empty");
1148 	return 0;
1149 }
1150 
1151 /**
1152  * Validate IPV4 item.
1153  *
1154  * @param[in] item
1155  *   Item specification.
1156  * @param[in] item_flags
1157  *   Bit-fields that holds the items detected until now.
1158  * @param[in] acc_mask
1159  *   Acceptable mask, if NULL default internal default mask
1160  *   will be used to check whether item fields are supported.
1161  * @param[out] error
1162  *   Pointer to error structure.
1163  *
1164  * @return
1165  *   0 on success, a negative errno value otherwise and rte_errno is set.
1166  */
1167 int
1168 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1169 			     uint64_t item_flags,
1170 			     const struct rte_flow_item_ipv4 *acc_mask,
1171 			     struct rte_flow_error *error)
1172 {
1173 	const struct rte_flow_item_ipv4 *mask = item->mask;
1174 	const struct rte_flow_item_ipv4 nic_mask = {
1175 		.hdr = {
1176 			.src_addr = RTE_BE32(0xffffffff),
1177 			.dst_addr = RTE_BE32(0xffffffff),
1178 			.type_of_service = 0xff,
1179 			.next_proto_id = 0xff,
1180 		},
1181 	};
1182 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1183 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1184 				      MLX5_FLOW_LAYER_OUTER_L3;
1185 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1186 				      MLX5_FLOW_LAYER_OUTER_L4;
1187 	int ret;
1188 
1189 	if (item_flags & l3m)
1190 		return rte_flow_error_set(error, ENOTSUP,
1191 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1192 					  "multiple L3 layers not supported");
1193 	else if (item_flags & l4m)
1194 		return rte_flow_error_set(error, EINVAL,
1195 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1196 					  "L3 cannot follow an L4 layer.");
1197 	if (!mask)
1198 		mask = &rte_flow_item_ipv4_mask;
1199 	else if (mask->hdr.next_proto_id != 0 &&
1200 		 mask->hdr.next_proto_id != 0xff)
1201 		return rte_flow_error_set(error, EINVAL,
1202 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1203 					  "partial mask is not supported"
1204 					  " for protocol");
1205 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1206 					acc_mask ? (const uint8_t *)acc_mask
1207 						 : (const uint8_t *)&nic_mask,
1208 					sizeof(struct rte_flow_item_ipv4),
1209 					error);
1210 	if (ret < 0)
1211 		return ret;
1212 	return 0;
1213 }
1214 
1215 /**
1216  * Validate IPV6 item.
1217  *
1218  * @param[in] item
1219  *   Item specification.
1220  * @param[in] item_flags
1221  *   Bit-fields that holds the items detected until now.
1222  * @param[in] acc_mask
1223  *   Acceptable mask, if NULL default internal default mask
1224  *   will be used to check whether item fields are supported.
1225  * @param[out] error
1226  *   Pointer to error structure.
1227  *
1228  * @return
1229  *   0 on success, a negative errno value otherwise and rte_errno is set.
1230  */
1231 int
1232 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1233 			     uint64_t item_flags,
1234 			     const struct rte_flow_item_ipv6 *acc_mask,
1235 			     struct rte_flow_error *error)
1236 {
1237 	const struct rte_flow_item_ipv6 *mask = item->mask;
1238 	const struct rte_flow_item_ipv6 nic_mask = {
1239 		.hdr = {
1240 			.src_addr =
1241 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1242 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1243 			.dst_addr =
1244 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1245 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1246 			.vtc_flow = RTE_BE32(0xffffffff),
1247 			.proto = 0xff,
1248 			.hop_limits = 0xff,
1249 		},
1250 	};
1251 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1252 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1253 				      MLX5_FLOW_LAYER_OUTER_L3;
1254 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1255 				      MLX5_FLOW_LAYER_OUTER_L4;
1256 	int ret;
1257 
1258 	if (item_flags & l3m)
1259 		return rte_flow_error_set(error, ENOTSUP,
1260 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1261 					  "multiple L3 layers not supported");
1262 	else if (item_flags & l4m)
1263 		return rte_flow_error_set(error, EINVAL,
1264 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1265 					  "L3 cannot follow an L4 layer.");
1266 	if (!mask)
1267 		mask = &rte_flow_item_ipv6_mask;
1268 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1269 					acc_mask ? (const uint8_t *)acc_mask
1270 						 : (const uint8_t *)&nic_mask,
1271 					sizeof(struct rte_flow_item_ipv6),
1272 					error);
1273 	if (ret < 0)
1274 		return ret;
1275 	return 0;
1276 }
1277 
1278 /**
1279  * Validate UDP item.
1280  *
1281  * @param[in] item
1282  *   Item specification.
1283  * @param[in] item_flags
1284  *   Bit-fields that holds the items detected until now.
1285  * @param[in] target_protocol
1286  *   The next protocol in the previous item.
1287  * @param[in] flow_mask
1288  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1289  * @param[out] error
1290  *   Pointer to error structure.
1291  *
1292  * @return
1293  *   0 on success, a negative errno value otherwise and rte_errno is set.
1294  */
1295 int
1296 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1297 			    uint64_t item_flags,
1298 			    uint8_t target_protocol,
1299 			    struct rte_flow_error *error)
1300 {
1301 	const struct rte_flow_item_udp *mask = item->mask;
1302 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1303 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1304 				      MLX5_FLOW_LAYER_OUTER_L3;
1305 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1306 				      MLX5_FLOW_LAYER_OUTER_L4;
1307 	int ret;
1308 
1309 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1310 		return rte_flow_error_set(error, EINVAL,
1311 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1312 					  "protocol filtering not compatible"
1313 					  " with UDP layer");
1314 	if (!(item_flags & l3m))
1315 		return rte_flow_error_set(error, EINVAL,
1316 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1317 					  "L3 is mandatory to filter on L4");
1318 	if (item_flags & l4m)
1319 		return rte_flow_error_set(error, EINVAL,
1320 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1321 					  "multiple L4 layers not supported");
1322 	if (!mask)
1323 		mask = &rte_flow_item_udp_mask;
1324 	ret = mlx5_flow_item_acceptable
1325 		(item, (const uint8_t *)mask,
1326 		 (const uint8_t *)&rte_flow_item_udp_mask,
1327 		 sizeof(struct rte_flow_item_udp), error);
1328 	if (ret < 0)
1329 		return ret;
1330 	return 0;
1331 }
1332 
1333 /**
1334  * Validate TCP item.
1335  *
1336  * @param[in] item
1337  *   Item specification.
1338  * @param[in] item_flags
1339  *   Bit-fields that holds the items detected until now.
1340  * @param[in] target_protocol
1341  *   The next protocol in the previous item.
1342  * @param[out] error
1343  *   Pointer to error structure.
1344  *
1345  * @return
1346  *   0 on success, a negative errno value otherwise and rte_errno is set.
1347  */
1348 int
1349 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1350 			    uint64_t item_flags,
1351 			    uint8_t target_protocol,
1352 			    const struct rte_flow_item_tcp *flow_mask,
1353 			    struct rte_flow_error *error)
1354 {
1355 	const struct rte_flow_item_tcp *mask = item->mask;
1356 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1357 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1358 				      MLX5_FLOW_LAYER_OUTER_L3;
1359 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1360 				      MLX5_FLOW_LAYER_OUTER_L4;
1361 	int ret;
1362 
1363 	assert(flow_mask);
1364 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1365 		return rte_flow_error_set(error, EINVAL,
1366 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1367 					  "protocol filtering not compatible"
1368 					  " with TCP layer");
1369 	if (!(item_flags & l3m))
1370 		return rte_flow_error_set(error, EINVAL,
1371 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1372 					  "L3 is mandatory to filter on L4");
1373 	if (item_flags & l4m)
1374 		return rte_flow_error_set(error, EINVAL,
1375 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1376 					  "multiple L4 layers not supported");
1377 	if (!mask)
1378 		mask = &rte_flow_item_tcp_mask;
1379 	ret = mlx5_flow_item_acceptable
1380 		(item, (const uint8_t *)mask,
1381 		 (const uint8_t *)flow_mask,
1382 		 sizeof(struct rte_flow_item_tcp), error);
1383 	if (ret < 0)
1384 		return ret;
1385 	return 0;
1386 }
1387 
1388 /**
1389  * Validate VXLAN item.
1390  *
1391  * @param[in] item
1392  *   Item specification.
1393  * @param[in] item_flags
1394  *   Bit-fields that holds the items detected until now.
1395  * @param[in] target_protocol
1396  *   The next protocol in the previous item.
1397  * @param[out] error
1398  *   Pointer to error structure.
1399  *
1400  * @return
1401  *   0 on success, a negative errno value otherwise and rte_errno is set.
1402  */
1403 int
1404 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1405 			      uint64_t item_flags,
1406 			      struct rte_flow_error *error)
1407 {
1408 	const struct rte_flow_item_vxlan *spec = item->spec;
1409 	const struct rte_flow_item_vxlan *mask = item->mask;
1410 	int ret;
1411 	union vni {
1412 		uint32_t vlan_id;
1413 		uint8_t vni[4];
1414 	} id = { .vlan_id = 0, };
1415 	uint32_t vlan_id = 0;
1416 
1417 
1418 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1419 		return rte_flow_error_set(error, ENOTSUP,
1420 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1421 					  "multiple tunnel layers not"
1422 					  " supported");
1423 	/*
1424 	 * Verify only UDPv4 is present as defined in
1425 	 * https://tools.ietf.org/html/rfc7348
1426 	 */
1427 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1428 		return rte_flow_error_set(error, EINVAL,
1429 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1430 					  "no outer UDP layer found");
1431 	if (!mask)
1432 		mask = &rte_flow_item_vxlan_mask;
1433 	ret = mlx5_flow_item_acceptable
1434 		(item, (const uint8_t *)mask,
1435 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1436 		 sizeof(struct rte_flow_item_vxlan),
1437 		 error);
1438 	if (ret < 0)
1439 		return ret;
1440 	if (spec) {
1441 		memcpy(&id.vni[1], spec->vni, 3);
1442 		vlan_id = id.vlan_id;
1443 		memcpy(&id.vni[1], mask->vni, 3);
1444 		vlan_id &= id.vlan_id;
1445 	}
1446 	/*
1447 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1448 	 * only this layer is defined in the Verbs specification it is
1449 	 * interpreted as wildcard and all packets will match this
1450 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1451 	 * udp), all packets matching the layers before will also
1452 	 * match this rule.  To avoid such situation, VNI 0 is
1453 	 * currently refused.
1454 	 */
1455 	if (!vlan_id)
1456 		return rte_flow_error_set(error, ENOTSUP,
1457 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1458 					  "VXLAN vni cannot be 0");
1459 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1460 		return rte_flow_error_set(error, ENOTSUP,
1461 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1462 					  "VXLAN tunnel must be fully defined");
1463 	return 0;
1464 }
1465 
1466 /**
1467  * Validate VXLAN_GPE item.
1468  *
1469  * @param[in] item
1470  *   Item specification.
1471  * @param[in] item_flags
1472  *   Bit-fields that holds the items detected until now.
1473  * @param[in] priv
1474  *   Pointer to the private data structure.
1475  * @param[in] target_protocol
1476  *   The next protocol in the previous item.
1477  * @param[out] error
1478  *   Pointer to error structure.
1479  *
1480  * @return
1481  *   0 on success, a negative errno value otherwise and rte_errno is set.
1482  */
1483 int
1484 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1485 				  uint64_t item_flags,
1486 				  struct rte_eth_dev *dev,
1487 				  struct rte_flow_error *error)
1488 {
1489 	struct mlx5_priv *priv = dev->data->dev_private;
1490 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1491 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1492 	int ret;
1493 	union vni {
1494 		uint32_t vlan_id;
1495 		uint8_t vni[4];
1496 	} id = { .vlan_id = 0, };
1497 	uint32_t vlan_id = 0;
1498 
1499 	if (!priv->config.l3_vxlan_en)
1500 		return rte_flow_error_set(error, ENOTSUP,
1501 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1502 					  "L3 VXLAN is not enabled by device"
1503 					  " parameter and/or not configured in"
1504 					  " firmware");
1505 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1506 		return rte_flow_error_set(error, ENOTSUP,
1507 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1508 					  "multiple tunnel layers not"
1509 					  " supported");
1510 	/*
1511 	 * Verify only UDPv4 is present as defined in
1512 	 * https://tools.ietf.org/html/rfc7348
1513 	 */
1514 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1515 		return rte_flow_error_set(error, EINVAL,
1516 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1517 					  "no outer UDP layer found");
1518 	if (!mask)
1519 		mask = &rte_flow_item_vxlan_gpe_mask;
1520 	ret = mlx5_flow_item_acceptable
1521 		(item, (const uint8_t *)mask,
1522 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1523 		 sizeof(struct rte_flow_item_vxlan_gpe),
1524 		 error);
1525 	if (ret < 0)
1526 		return ret;
1527 	if (spec) {
1528 		if (spec->protocol)
1529 			return rte_flow_error_set(error, ENOTSUP,
1530 						  RTE_FLOW_ERROR_TYPE_ITEM,
1531 						  item,
1532 						  "VxLAN-GPE protocol"
1533 						  " not supported");
1534 		memcpy(&id.vni[1], spec->vni, 3);
1535 		vlan_id = id.vlan_id;
1536 		memcpy(&id.vni[1], mask->vni, 3);
1537 		vlan_id &= id.vlan_id;
1538 	}
1539 	/*
1540 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1541 	 * layer is defined in the Verbs specification it is interpreted as
1542 	 * wildcard and all packets will match this rule, if it follows a full
1543 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1544 	 * before will also match this rule.  To avoid such situation, VNI 0
1545 	 * is currently refused.
1546 	 */
1547 	if (!vlan_id)
1548 		return rte_flow_error_set(error, ENOTSUP,
1549 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1550 					  "VXLAN-GPE vni cannot be 0");
1551 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1552 		return rte_flow_error_set(error, ENOTSUP,
1553 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1554 					  "VXLAN-GPE tunnel must be fully"
1555 					  " defined");
1556 	return 0;
1557 }
1558 
1559 /**
1560  * Validate GRE item.
1561  *
1562  * @param[in] item
1563  *   Item specification.
1564  * @param[in] item_flags
1565  *   Bit flags to mark detected items.
1566  * @param[in] target_protocol
1567  *   The next protocol in the previous item.
1568  * @param[out] error
1569  *   Pointer to error structure.
1570  *
1571  * @return
1572  *   0 on success, a negative errno value otherwise and rte_errno is set.
1573  */
1574 int
1575 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1576 			    uint64_t item_flags,
1577 			    uint8_t target_protocol,
1578 			    struct rte_flow_error *error)
1579 {
1580 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1581 	const struct rte_flow_item_gre *mask = item->mask;
1582 	int ret;
1583 
1584 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1585 		return rte_flow_error_set(error, EINVAL,
1586 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1587 					  "protocol filtering not compatible"
1588 					  " with this GRE layer");
1589 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1590 		return rte_flow_error_set(error, ENOTSUP,
1591 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1592 					  "multiple tunnel layers not"
1593 					  " supported");
1594 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1595 		return rte_flow_error_set(error, ENOTSUP,
1596 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1597 					  "L3 Layer is missing");
1598 	if (!mask)
1599 		mask = &rte_flow_item_gre_mask;
1600 	ret = mlx5_flow_item_acceptable
1601 		(item, (const uint8_t *)mask,
1602 		 (const uint8_t *)&rte_flow_item_gre_mask,
1603 		 sizeof(struct rte_flow_item_gre), error);
1604 	if (ret < 0)
1605 		return ret;
1606 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1607 	if (spec && (spec->protocol & mask->protocol))
1608 		return rte_flow_error_set(error, ENOTSUP,
1609 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1610 					  "without MPLS support the"
1611 					  " specification cannot be used for"
1612 					  " filtering");
1613 #endif
1614 	return 0;
1615 }
1616 
1617 /**
1618  * Validate MPLS item.
1619  *
1620  * @param[in] dev
1621  *   Pointer to the rte_eth_dev structure.
1622  * @param[in] item
1623  *   Item specification.
1624  * @param[in] item_flags
1625  *   Bit-fields that holds the items detected until now.
1626  * @param[in] prev_layer
1627  *   The protocol layer indicated in previous item.
1628  * @param[out] error
1629  *   Pointer to error structure.
1630  *
1631  * @return
1632  *   0 on success, a negative errno value otherwise and rte_errno is set.
1633  */
1634 int
1635 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1636 			     const struct rte_flow_item *item __rte_unused,
1637 			     uint64_t item_flags __rte_unused,
1638 			     uint64_t prev_layer __rte_unused,
1639 			     struct rte_flow_error *error)
1640 {
1641 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1642 	const struct rte_flow_item_mpls *mask = item->mask;
1643 	struct mlx5_priv *priv = dev->data->dev_private;
1644 	int ret;
1645 
1646 	if (!priv->config.mpls_en)
1647 		return rte_flow_error_set(error, ENOTSUP,
1648 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1649 					  "MPLS not supported or"
1650 					  " disabled in firmware"
1651 					  " configuration.");
1652 	/* MPLS over IP, UDP, GRE is allowed */
1653 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1654 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
1655 			    MLX5_FLOW_LAYER_GRE)))
1656 		return rte_flow_error_set(error, EINVAL,
1657 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1658 					  "protocol filtering not compatible"
1659 					  " with MPLS layer");
1660 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1661 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1662 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
1663 		return rte_flow_error_set(error, ENOTSUP,
1664 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1665 					  "multiple tunnel layers not"
1666 					  " supported");
1667 	if (!mask)
1668 		mask = &rte_flow_item_mpls_mask;
1669 	ret = mlx5_flow_item_acceptable
1670 		(item, (const uint8_t *)mask,
1671 		 (const uint8_t *)&rte_flow_item_mpls_mask,
1672 		 sizeof(struct rte_flow_item_mpls), error);
1673 	if (ret < 0)
1674 		return ret;
1675 	return 0;
1676 #endif
1677 	return rte_flow_error_set(error, ENOTSUP,
1678 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
1679 				  "MPLS is not supported by Verbs, please"
1680 				  " update.");
1681 }
1682 
1683 static int
1684 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1685 		   const struct rte_flow_attr *attr __rte_unused,
1686 		   const struct rte_flow_item items[] __rte_unused,
1687 		   const struct rte_flow_action actions[] __rte_unused,
1688 		   struct rte_flow_error *error __rte_unused)
1689 {
1690 	rte_errno = ENOTSUP;
1691 	return -rte_errno;
1692 }
1693 
1694 static struct mlx5_flow *
1695 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1696 		  const struct rte_flow_item items[] __rte_unused,
1697 		  const struct rte_flow_action actions[] __rte_unused,
1698 		  struct rte_flow_error *error __rte_unused)
1699 {
1700 	rte_errno = ENOTSUP;
1701 	return NULL;
1702 }
1703 
1704 static int
1705 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1706 		    struct mlx5_flow *dev_flow __rte_unused,
1707 		    const struct rte_flow_attr *attr __rte_unused,
1708 		    const struct rte_flow_item items[] __rte_unused,
1709 		    const struct rte_flow_action actions[] __rte_unused,
1710 		    struct rte_flow_error *error __rte_unused)
1711 {
1712 	rte_errno = ENOTSUP;
1713 	return -rte_errno;
1714 }
1715 
1716 static int
1717 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1718 		struct rte_flow *flow __rte_unused,
1719 		struct rte_flow_error *error __rte_unused)
1720 {
1721 	rte_errno = ENOTSUP;
1722 	return -rte_errno;
1723 }
1724 
1725 static void
1726 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1727 		 struct rte_flow *flow __rte_unused)
1728 {
1729 }
1730 
1731 static void
1732 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1733 		  struct rte_flow *flow __rte_unused)
1734 {
1735 }
1736 
1737 static int
1738 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1739 		struct rte_flow *flow __rte_unused,
1740 		const struct rte_flow_action *actions __rte_unused,
1741 		void *data __rte_unused,
1742 		struct rte_flow_error *error __rte_unused)
1743 {
1744 	rte_errno = ENOTSUP;
1745 	return -rte_errno;
1746 }
1747 
1748 /* Void driver to protect from null pointer reference. */
1749 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1750 	.validate = flow_null_validate,
1751 	.prepare = flow_null_prepare,
1752 	.translate = flow_null_translate,
1753 	.apply = flow_null_apply,
1754 	.remove = flow_null_remove,
1755 	.destroy = flow_null_destroy,
1756 	.query = flow_null_query,
1757 };
1758 
1759 /**
1760  * Select flow driver type according to flow attributes and device
1761  * configuration.
1762  *
1763  * @param[in] dev
1764  *   Pointer to the dev structure.
1765  * @param[in] attr
1766  *   Pointer to the flow attributes.
1767  *
1768  * @return
1769  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1770  */
1771 static enum mlx5_flow_drv_type
1772 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1773 {
1774 	struct mlx5_priv *priv = dev->data->dev_private;
1775 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1776 
1777 	if (attr->transfer)
1778 		type = MLX5_FLOW_TYPE_TCF;
1779 	else
1780 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1781 						 MLX5_FLOW_TYPE_VERBS;
1782 	return type;
1783 }
1784 
1785 #define flow_get_drv_ops(type) flow_drv_ops[type]
1786 
1787 /**
1788  * Flow driver validation API. This abstracts calling driver specific functions.
1789  * The type of flow driver is determined according to flow attributes.
1790  *
1791  * @param[in] dev
1792  *   Pointer to the dev structure.
1793  * @param[in] attr
1794  *   Pointer to the flow attributes.
1795  * @param[in] items
1796  *   Pointer to the list of items.
1797  * @param[in] actions
1798  *   Pointer to the list of actions.
1799  * @param[out] error
1800  *   Pointer to the error structure.
1801  *
1802  * @return
1803  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1804  */
1805 static inline int
1806 flow_drv_validate(struct rte_eth_dev *dev,
1807 		  const struct rte_flow_attr *attr,
1808 		  const struct rte_flow_item items[],
1809 		  const struct rte_flow_action actions[],
1810 		  struct rte_flow_error *error)
1811 {
1812 	const struct mlx5_flow_driver_ops *fops;
1813 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1814 
1815 	fops = flow_get_drv_ops(type);
1816 	return fops->validate(dev, attr, items, actions, error);
1817 }
1818 
1819 /**
1820  * Flow driver preparation API. This abstracts calling driver specific
1821  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1822  * calculates the size of memory required for device flow, allocates the memory,
1823  * initializes the device flow and returns the pointer.
1824  *
1825  * @note
1826  *   This function initializes device flow structure such as dv, tcf or verbs in
1827  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1828  *   rest. For example, adding returning device flow to flow->dev_flow list and
1829  *   setting backward reference to the flow should be done out of this function.
1830  *   layers field is not filled either.
1831  *
1832  * @param[in] attr
1833  *   Pointer to the flow attributes.
1834  * @param[in] items
1835  *   Pointer to the list of items.
1836  * @param[in] actions
1837  *   Pointer to the list of actions.
1838  * @param[out] error
1839  *   Pointer to the error structure.
1840  *
1841  * @return
1842  *   Pointer to device flow on success, otherwise NULL and rte_ernno is set.
1843  */
1844 static inline struct mlx5_flow *
1845 flow_drv_prepare(const struct rte_flow *flow,
1846 		 const struct rte_flow_attr *attr,
1847 		 const struct rte_flow_item items[],
1848 		 const struct rte_flow_action actions[],
1849 		 struct rte_flow_error *error)
1850 {
1851 	const struct mlx5_flow_driver_ops *fops;
1852 	enum mlx5_flow_drv_type type = flow->drv_type;
1853 
1854 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1855 	fops = flow_get_drv_ops(type);
1856 	return fops->prepare(attr, items, actions, error);
1857 }
1858 
1859 /**
1860  * Flow driver translation API. This abstracts calling driver specific
1861  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1862  * translates a generic flow into a driver flow. flow_drv_prepare() must
1863  * precede.
1864  *
1865  * @note
1866  *   dev_flow->layers could be filled as a result of parsing during translation
1867  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1868  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1869  *   flow->actions could be overwritten even though all the expanded dev_flows
1870  *   have the same actions.
1871  *
1872  * @param[in] dev
1873  *   Pointer to the rte dev structure.
1874  * @param[in, out] dev_flow
1875  *   Pointer to the mlx5 flow.
1876  * @param[in] attr
1877  *   Pointer to the flow attributes.
1878  * @param[in] items
1879  *   Pointer to the list of items.
1880  * @param[in] actions
1881  *   Pointer to the list of actions.
1882  * @param[out] error
1883  *   Pointer to the error structure.
1884  *
1885  * @return
1886  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1887  */
1888 static inline int
1889 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1890 		   const struct rte_flow_attr *attr,
1891 		   const struct rte_flow_item items[],
1892 		   const struct rte_flow_action actions[],
1893 		   struct rte_flow_error *error)
1894 {
1895 	const struct mlx5_flow_driver_ops *fops;
1896 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1897 
1898 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1899 	fops = flow_get_drv_ops(type);
1900 	return fops->translate(dev, dev_flow, attr, items, actions, error);
1901 }
1902 
1903 /**
1904  * Flow driver apply API. This abstracts calling driver specific functions.
1905  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1906  * translated driver flows on to device. flow_drv_translate() must precede.
1907  *
1908  * @param[in] dev
1909  *   Pointer to Ethernet device structure.
1910  * @param[in, out] flow
1911  *   Pointer to flow structure.
1912  * @param[out] error
1913  *   Pointer to error structure.
1914  *
1915  * @return
1916  *   0 on success, a negative errno value otherwise and rte_errno is set.
1917  */
1918 static inline int
1919 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1920 	       struct rte_flow_error *error)
1921 {
1922 	const struct mlx5_flow_driver_ops *fops;
1923 	enum mlx5_flow_drv_type type = flow->drv_type;
1924 
1925 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1926 	fops = flow_get_drv_ops(type);
1927 	return fops->apply(dev, flow, error);
1928 }
1929 
1930 /**
1931  * Flow driver remove API. This abstracts calling driver specific functions.
1932  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1933  * on device. All the resources of the flow should be freed by calling
1934  * flow_drv_destroy().
1935  *
1936  * @param[in] dev
1937  *   Pointer to Ethernet device.
1938  * @param[in, out] flow
1939  *   Pointer to flow structure.
1940  */
1941 static inline void
1942 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1943 {
1944 	const struct mlx5_flow_driver_ops *fops;
1945 	enum mlx5_flow_drv_type type = flow->drv_type;
1946 
1947 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1948 	fops = flow_get_drv_ops(type);
1949 	fops->remove(dev, flow);
1950 }
1951 
1952 /**
1953  * Flow driver destroy API. This abstracts calling driver specific functions.
1954  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1955  * on device and releases resources of the flow.
1956  *
1957  * @param[in] dev
1958  *   Pointer to Ethernet device.
1959  * @param[in, out] flow
1960  *   Pointer to flow structure.
1961  */
1962 static inline void
1963 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1964 {
1965 	const struct mlx5_flow_driver_ops *fops;
1966 	enum mlx5_flow_drv_type type = flow->drv_type;
1967 
1968 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1969 	fops = flow_get_drv_ops(type);
1970 	fops->destroy(dev, flow);
1971 }
1972 
1973 /**
1974  * Validate a flow supported by the NIC.
1975  *
1976  * @see rte_flow_validate()
1977  * @see rte_flow_ops
1978  */
1979 int
1980 mlx5_flow_validate(struct rte_eth_dev *dev,
1981 		   const struct rte_flow_attr *attr,
1982 		   const struct rte_flow_item items[],
1983 		   const struct rte_flow_action actions[],
1984 		   struct rte_flow_error *error)
1985 {
1986 	int ret;
1987 
1988 	ret = flow_drv_validate(dev, attr, items, actions, error);
1989 	if (ret < 0)
1990 		return ret;
1991 	return 0;
1992 }
1993 
1994 /**
1995  * Get RSS action from the action list.
1996  *
1997  * @param[in] actions
1998  *   Pointer to the list of actions.
1999  *
2000  * @return
2001  *   Pointer to the RSS action if exist, else return NULL.
2002  */
2003 static const struct rte_flow_action_rss*
2004 flow_get_rss_action(const struct rte_flow_action actions[])
2005 {
2006 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2007 		switch (actions->type) {
2008 		case RTE_FLOW_ACTION_TYPE_RSS:
2009 			return (const struct rte_flow_action_rss *)
2010 			       actions->conf;
2011 		default:
2012 			break;
2013 		}
2014 	}
2015 	return NULL;
2016 }
2017 
2018 static unsigned int
2019 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2020 {
2021 	const struct rte_flow_item *item;
2022 	unsigned int has_vlan = 0;
2023 
2024 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2025 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2026 			has_vlan = 1;
2027 			break;
2028 		}
2029 	}
2030 	if (has_vlan)
2031 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2032 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2033 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2034 			       MLX5_EXPANSION_ROOT_OUTER;
2035 }
2036 
2037 /**
2038  * Create a flow and add it to @p list.
2039  *
2040  * @param dev
2041  *   Pointer to Ethernet device.
2042  * @param list
2043  *   Pointer to a TAILQ flow list.
2044  * @param[in] attr
2045  *   Flow rule attributes.
2046  * @param[in] items
2047  *   Pattern specification (list terminated by the END pattern item).
2048  * @param[in] actions
2049  *   Associated actions (list terminated by the END action).
2050  * @param[out] error
2051  *   Perform verbose error reporting if not NULL.
2052  *
2053  * @return
2054  *   A flow on success, NULL otherwise and rte_errno is set.
2055  */
2056 static struct rte_flow *
2057 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2058 		 const struct rte_flow_attr *attr,
2059 		 const struct rte_flow_item items[],
2060 		 const struct rte_flow_action actions[],
2061 		 struct rte_flow_error *error)
2062 {
2063 	struct rte_flow *flow = NULL;
2064 	struct mlx5_flow *dev_flow;
2065 	const struct rte_flow_action_rss *rss;
2066 	union {
2067 		struct rte_flow_expand_rss buf;
2068 		uint8_t buffer[2048];
2069 	} expand_buffer;
2070 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2071 	int ret;
2072 	uint32_t i;
2073 	uint32_t flow_size;
2074 
2075 	ret = flow_drv_validate(dev, attr, items, actions, error);
2076 	if (ret < 0)
2077 		return NULL;
2078 	flow_size = sizeof(struct rte_flow);
2079 	rss = flow_get_rss_action(actions);
2080 	if (rss)
2081 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2082 					    sizeof(void *));
2083 	else
2084 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2085 	flow = rte_calloc(__func__, 1, flow_size, 0);
2086 	flow->drv_type = flow_get_drv_type(dev, attr);
2087 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2088 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2089 	flow->queue = (void *)(flow + 1);
2090 	LIST_INIT(&flow->dev_flows);
2091 	if (rss && rss->types) {
2092 		unsigned int graph_root;
2093 
2094 		graph_root = find_graph_root(items, rss->level);
2095 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2096 					  items, rss->types,
2097 					  mlx5_support_expansion,
2098 					  graph_root);
2099 		assert(ret > 0 &&
2100 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2101 	} else {
2102 		buf->entries = 1;
2103 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2104 	}
2105 	for (i = 0; i < buf->entries; ++i) {
2106 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2107 					    actions, error);
2108 		if (!dev_flow)
2109 			goto error;
2110 		dev_flow->flow = flow;
2111 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2112 		ret = flow_drv_translate(dev, dev_flow, attr,
2113 					 buf->entry[i].pattern,
2114 					 actions, error);
2115 		if (ret < 0)
2116 			goto error;
2117 	}
2118 	if (dev->data->dev_started) {
2119 		ret = flow_drv_apply(dev, flow, error);
2120 		if (ret < 0)
2121 			goto error;
2122 	}
2123 	TAILQ_INSERT_TAIL(list, flow, next);
2124 	flow_rxq_flags_set(dev, flow);
2125 	return flow;
2126 error:
2127 	ret = rte_errno; /* Save rte_errno before cleanup. */
2128 	assert(flow);
2129 	flow_drv_destroy(dev, flow);
2130 	rte_free(flow);
2131 	rte_errno = ret; /* Restore rte_errno. */
2132 	return NULL;
2133 }
2134 
2135 /**
2136  * Create a flow.
2137  *
2138  * @see rte_flow_create()
2139  * @see rte_flow_ops
2140  */
2141 struct rte_flow *
2142 mlx5_flow_create(struct rte_eth_dev *dev,
2143 		 const struct rte_flow_attr *attr,
2144 		 const struct rte_flow_item items[],
2145 		 const struct rte_flow_action actions[],
2146 		 struct rte_flow_error *error)
2147 {
2148 	struct mlx5_priv *priv = (struct mlx5_priv *)dev->data->dev_private;
2149 
2150 	return flow_list_create(dev, &priv->flows,
2151 				attr, items, actions, error);
2152 }
2153 
2154 /**
2155  * Destroy a flow in a list.
2156  *
2157  * @param dev
2158  *   Pointer to Ethernet device.
2159  * @param list
2160  *   Pointer to a TAILQ flow list.
2161  * @param[in] flow
2162  *   Flow to destroy.
2163  */
2164 static void
2165 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2166 		  struct rte_flow *flow)
2167 {
2168 	/*
2169 	 * Update RX queue flags only if port is started, otherwise it is
2170 	 * already clean.
2171 	 */
2172 	if (dev->data->dev_started)
2173 		flow_rxq_flags_trim(dev, flow);
2174 	flow_drv_destroy(dev, flow);
2175 	TAILQ_REMOVE(list, flow, next);
2176 	rte_free(flow->fdir);
2177 	rte_free(flow);
2178 }
2179 
2180 /**
2181  * Destroy all flows.
2182  *
2183  * @param dev
2184  *   Pointer to Ethernet device.
2185  * @param list
2186  *   Pointer to a TAILQ flow list.
2187  */
2188 void
2189 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2190 {
2191 	while (!TAILQ_EMPTY(list)) {
2192 		struct rte_flow *flow;
2193 
2194 		flow = TAILQ_FIRST(list);
2195 		flow_list_destroy(dev, list, flow);
2196 	}
2197 }
2198 
2199 /**
2200  * Remove all flows.
2201  *
2202  * @param dev
2203  *   Pointer to Ethernet device.
2204  * @param list
2205  *   Pointer to a TAILQ flow list.
2206  */
2207 void
2208 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2209 {
2210 	struct rte_flow *flow;
2211 
2212 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2213 		flow_drv_remove(dev, flow);
2214 	flow_rxq_flags_clear(dev);
2215 }
2216 
2217 /**
2218  * Add all flows.
2219  *
2220  * @param dev
2221  *   Pointer to Ethernet device.
2222  * @param list
2223  *   Pointer to a TAILQ flow list.
2224  *
2225  * @return
2226  *   0 on success, a negative errno value otherwise and rte_errno is set.
2227  */
2228 int
2229 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2230 {
2231 	struct rte_flow *flow;
2232 	struct rte_flow_error error;
2233 	int ret = 0;
2234 
2235 	TAILQ_FOREACH(flow, list, next) {
2236 		ret = flow_drv_apply(dev, flow, &error);
2237 		if (ret < 0)
2238 			goto error;
2239 		flow_rxq_flags_set(dev, flow);
2240 	}
2241 	return 0;
2242 error:
2243 	ret = rte_errno; /* Save rte_errno before cleanup. */
2244 	mlx5_flow_stop(dev, list);
2245 	rte_errno = ret; /* Restore rte_errno. */
2246 	return -rte_errno;
2247 }
2248 
2249 /**
2250  * Verify the flow list is empty
2251  *
2252  * @param dev
2253  *  Pointer to Ethernet device.
2254  *
2255  * @return the number of flows not released.
2256  */
2257 int
2258 mlx5_flow_verify(struct rte_eth_dev *dev)
2259 {
2260 	struct mlx5_priv *priv = dev->data->dev_private;
2261 	struct rte_flow *flow;
2262 	int ret = 0;
2263 
2264 	TAILQ_FOREACH(flow, &priv->flows, next) {
2265 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
2266 			dev->data->port_id, (void *)flow);
2267 		++ret;
2268 	}
2269 	return ret;
2270 }
2271 
2272 /**
2273  * Enable a control flow configured from the control plane.
2274  *
2275  * @param dev
2276  *   Pointer to Ethernet device.
2277  * @param eth_spec
2278  *   An Ethernet flow spec to apply.
2279  * @param eth_mask
2280  *   An Ethernet flow mask to apply.
2281  * @param vlan_spec
2282  *   A VLAN flow spec to apply.
2283  * @param vlan_mask
2284  *   A VLAN flow mask to apply.
2285  *
2286  * @return
2287  *   0 on success, a negative errno value otherwise and rte_errno is set.
2288  */
2289 int
2290 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2291 		    struct rte_flow_item_eth *eth_spec,
2292 		    struct rte_flow_item_eth *eth_mask,
2293 		    struct rte_flow_item_vlan *vlan_spec,
2294 		    struct rte_flow_item_vlan *vlan_mask)
2295 {
2296 	struct mlx5_priv *priv = dev->data->dev_private;
2297 	const struct rte_flow_attr attr = {
2298 		.ingress = 1,
2299 		.priority = MLX5_FLOW_PRIO_RSVD,
2300 	};
2301 	struct rte_flow_item items[] = {
2302 		{
2303 			.type = RTE_FLOW_ITEM_TYPE_ETH,
2304 			.spec = eth_spec,
2305 			.last = NULL,
2306 			.mask = eth_mask,
2307 		},
2308 		{
2309 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2310 					      RTE_FLOW_ITEM_TYPE_END,
2311 			.spec = vlan_spec,
2312 			.last = NULL,
2313 			.mask = vlan_mask,
2314 		},
2315 		{
2316 			.type = RTE_FLOW_ITEM_TYPE_END,
2317 		},
2318 	};
2319 	uint16_t queue[priv->reta_idx_n];
2320 	struct rte_flow_action_rss action_rss = {
2321 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2322 		.level = 0,
2323 		.types = priv->rss_conf.rss_hf,
2324 		.key_len = priv->rss_conf.rss_key_len,
2325 		.queue_num = priv->reta_idx_n,
2326 		.key = priv->rss_conf.rss_key,
2327 		.queue = queue,
2328 	};
2329 	struct rte_flow_action actions[] = {
2330 		{
2331 			.type = RTE_FLOW_ACTION_TYPE_RSS,
2332 			.conf = &action_rss,
2333 		},
2334 		{
2335 			.type = RTE_FLOW_ACTION_TYPE_END,
2336 		},
2337 	};
2338 	struct rte_flow *flow;
2339 	struct rte_flow_error error;
2340 	unsigned int i;
2341 
2342 	if (!priv->reta_idx_n || !priv->rxqs_n) {
2343 		return 0;
2344 	}
2345 	for (i = 0; i != priv->reta_idx_n; ++i)
2346 		queue[i] = (*priv->reta_idx)[i];
2347 	flow = flow_list_create(dev, &priv->ctrl_flows,
2348 				&attr, items, actions, &error);
2349 	if (!flow)
2350 		return -rte_errno;
2351 	return 0;
2352 }
2353 
2354 /**
2355  * Enable a flow control configured from the control plane.
2356  *
2357  * @param dev
2358  *   Pointer to Ethernet device.
2359  * @param eth_spec
2360  *   An Ethernet flow spec to apply.
2361  * @param eth_mask
2362  *   An Ethernet flow mask to apply.
2363  *
2364  * @return
2365  *   0 on success, a negative errno value otherwise and rte_errno is set.
2366  */
2367 int
2368 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2369 	       struct rte_flow_item_eth *eth_spec,
2370 	       struct rte_flow_item_eth *eth_mask)
2371 {
2372 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2373 }
2374 
2375 /**
2376  * Destroy a flow.
2377  *
2378  * @see rte_flow_destroy()
2379  * @see rte_flow_ops
2380  */
2381 int
2382 mlx5_flow_destroy(struct rte_eth_dev *dev,
2383 		  struct rte_flow *flow,
2384 		  struct rte_flow_error *error __rte_unused)
2385 {
2386 	struct mlx5_priv *priv = dev->data->dev_private;
2387 
2388 	flow_list_destroy(dev, &priv->flows, flow);
2389 	return 0;
2390 }
2391 
2392 /**
2393  * Destroy all flows.
2394  *
2395  * @see rte_flow_flush()
2396  * @see rte_flow_ops
2397  */
2398 int
2399 mlx5_flow_flush(struct rte_eth_dev *dev,
2400 		struct rte_flow_error *error __rte_unused)
2401 {
2402 	struct mlx5_priv *priv = dev->data->dev_private;
2403 
2404 	mlx5_flow_list_flush(dev, &priv->flows);
2405 	return 0;
2406 }
2407 
2408 /**
2409  * Isolated mode.
2410  *
2411  * @see rte_flow_isolate()
2412  * @see rte_flow_ops
2413  */
2414 int
2415 mlx5_flow_isolate(struct rte_eth_dev *dev,
2416 		  int enable,
2417 		  struct rte_flow_error *error)
2418 {
2419 	struct mlx5_priv *priv = dev->data->dev_private;
2420 
2421 	if (dev->data->dev_started) {
2422 		rte_flow_error_set(error, EBUSY,
2423 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2424 				   NULL,
2425 				   "port must be stopped first");
2426 		return -rte_errno;
2427 	}
2428 	priv->isolated = !!enable;
2429 	if (enable)
2430 		dev->dev_ops = &mlx5_dev_ops_isolate;
2431 	else
2432 		dev->dev_ops = &mlx5_dev_ops;
2433 	return 0;
2434 }
2435 
2436 /**
2437  * Query a flow.
2438  *
2439  * @see rte_flow_query()
2440  * @see rte_flow_ops
2441  */
2442 static int
2443 flow_drv_query(struct rte_eth_dev *dev,
2444 	       struct rte_flow *flow,
2445 	       const struct rte_flow_action *actions,
2446 	       void *data,
2447 	       struct rte_flow_error *error)
2448 {
2449 	const struct mlx5_flow_driver_ops *fops;
2450 	enum mlx5_flow_drv_type ftype = flow->drv_type;
2451 
2452 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2453 	fops = flow_get_drv_ops(ftype);
2454 
2455 	return fops->query(dev, flow, actions, data, error);
2456 }
2457 
2458 /**
2459  * Query a flow.
2460  *
2461  * @see rte_flow_query()
2462  * @see rte_flow_ops
2463  */
2464 int
2465 mlx5_flow_query(struct rte_eth_dev *dev,
2466 		struct rte_flow *flow,
2467 		const struct rte_flow_action *actions,
2468 		void *data,
2469 		struct rte_flow_error *error)
2470 {
2471 	int ret;
2472 
2473 	ret = flow_drv_query(dev, flow, actions, data, error);
2474 	if (ret < 0)
2475 		return ret;
2476 	return 0;
2477 }
2478 
2479 /**
2480  * Convert a flow director filter to a generic flow.
2481  *
2482  * @param dev
2483  *   Pointer to Ethernet device.
2484  * @param fdir_filter
2485  *   Flow director filter to add.
2486  * @param attributes
2487  *   Generic flow parameters structure.
2488  *
2489  * @return
2490  *   0 on success, a negative errno value otherwise and rte_errno is set.
2491  */
2492 static int
2493 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2494 			 const struct rte_eth_fdir_filter *fdir_filter,
2495 			 struct mlx5_fdir *attributes)
2496 {
2497 	struct mlx5_priv *priv = dev->data->dev_private;
2498 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
2499 	const struct rte_eth_fdir_masks *mask =
2500 		&dev->data->dev_conf.fdir_conf.mask;
2501 
2502 	/* Validate queue number. */
2503 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2504 		DRV_LOG(ERR, "port %u invalid queue number %d",
2505 			dev->data->port_id, fdir_filter->action.rx_queue);
2506 		rte_errno = EINVAL;
2507 		return -rte_errno;
2508 	}
2509 	attributes->attr.ingress = 1;
2510 	attributes->items[0] = (struct rte_flow_item) {
2511 		.type = RTE_FLOW_ITEM_TYPE_ETH,
2512 		.spec = &attributes->l2,
2513 		.mask = &attributes->l2_mask,
2514 	};
2515 	switch (fdir_filter->action.behavior) {
2516 	case RTE_ETH_FDIR_ACCEPT:
2517 		attributes->actions[0] = (struct rte_flow_action){
2518 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
2519 			.conf = &attributes->queue,
2520 		};
2521 		break;
2522 	case RTE_ETH_FDIR_REJECT:
2523 		attributes->actions[0] = (struct rte_flow_action){
2524 			.type = RTE_FLOW_ACTION_TYPE_DROP,
2525 		};
2526 		break;
2527 	default:
2528 		DRV_LOG(ERR, "port %u invalid behavior %d",
2529 			dev->data->port_id,
2530 			fdir_filter->action.behavior);
2531 		rte_errno = ENOTSUP;
2532 		return -rte_errno;
2533 	}
2534 	attributes->queue.index = fdir_filter->action.rx_queue;
2535 	/* Handle L3. */
2536 	switch (fdir_filter->input.flow_type) {
2537 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2538 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2539 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2540 		attributes->l3.ipv4.hdr = (struct ipv4_hdr){
2541 			.src_addr = input->flow.ip4_flow.src_ip,
2542 			.dst_addr = input->flow.ip4_flow.dst_ip,
2543 			.time_to_live = input->flow.ip4_flow.ttl,
2544 			.type_of_service = input->flow.ip4_flow.tos,
2545 		};
2546 		attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
2547 			.src_addr = mask->ipv4_mask.src_ip,
2548 			.dst_addr = mask->ipv4_mask.dst_ip,
2549 			.time_to_live = mask->ipv4_mask.ttl,
2550 			.type_of_service = mask->ipv4_mask.tos,
2551 			.next_proto_id = mask->ipv4_mask.proto,
2552 		};
2553 		attributes->items[1] = (struct rte_flow_item){
2554 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
2555 			.spec = &attributes->l3,
2556 			.mask = &attributes->l3_mask,
2557 		};
2558 		break;
2559 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2560 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2561 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2562 		attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2563 			.hop_limits = input->flow.ipv6_flow.hop_limits,
2564 			.proto = input->flow.ipv6_flow.proto,
2565 		};
2566 
2567 		memcpy(attributes->l3.ipv6.hdr.src_addr,
2568 		       input->flow.ipv6_flow.src_ip,
2569 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2570 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
2571 		       input->flow.ipv6_flow.dst_ip,
2572 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2573 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2574 		       mask->ipv6_mask.src_ip,
2575 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2576 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2577 		       mask->ipv6_mask.dst_ip,
2578 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2579 		attributes->items[1] = (struct rte_flow_item){
2580 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
2581 			.spec = &attributes->l3,
2582 			.mask = &attributes->l3_mask,
2583 		};
2584 		break;
2585 	default:
2586 		DRV_LOG(ERR, "port %u invalid flow type%d",
2587 			dev->data->port_id, fdir_filter->input.flow_type);
2588 		rte_errno = ENOTSUP;
2589 		return -rte_errno;
2590 	}
2591 	/* Handle L4. */
2592 	switch (fdir_filter->input.flow_type) {
2593 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2594 		attributes->l4.udp.hdr = (struct udp_hdr){
2595 			.src_port = input->flow.udp4_flow.src_port,
2596 			.dst_port = input->flow.udp4_flow.dst_port,
2597 		};
2598 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2599 			.src_port = mask->src_port_mask,
2600 			.dst_port = mask->dst_port_mask,
2601 		};
2602 		attributes->items[2] = (struct rte_flow_item){
2603 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2604 			.spec = &attributes->l4,
2605 			.mask = &attributes->l4_mask,
2606 		};
2607 		break;
2608 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2609 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2610 			.src_port = input->flow.tcp4_flow.src_port,
2611 			.dst_port = input->flow.tcp4_flow.dst_port,
2612 		};
2613 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2614 			.src_port = mask->src_port_mask,
2615 			.dst_port = mask->dst_port_mask,
2616 		};
2617 		attributes->items[2] = (struct rte_flow_item){
2618 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2619 			.spec = &attributes->l4,
2620 			.mask = &attributes->l4_mask,
2621 		};
2622 		break;
2623 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2624 		attributes->l4.udp.hdr = (struct udp_hdr){
2625 			.src_port = input->flow.udp6_flow.src_port,
2626 			.dst_port = input->flow.udp6_flow.dst_port,
2627 		};
2628 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2629 			.src_port = mask->src_port_mask,
2630 			.dst_port = mask->dst_port_mask,
2631 		};
2632 		attributes->items[2] = (struct rte_flow_item){
2633 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2634 			.spec = &attributes->l4,
2635 			.mask = &attributes->l4_mask,
2636 		};
2637 		break;
2638 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2639 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2640 			.src_port = input->flow.tcp6_flow.src_port,
2641 			.dst_port = input->flow.tcp6_flow.dst_port,
2642 		};
2643 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2644 			.src_port = mask->src_port_mask,
2645 			.dst_port = mask->dst_port_mask,
2646 		};
2647 		attributes->items[2] = (struct rte_flow_item){
2648 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2649 			.spec = &attributes->l4,
2650 			.mask = &attributes->l4_mask,
2651 		};
2652 		break;
2653 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2654 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2655 		break;
2656 	default:
2657 		DRV_LOG(ERR, "port %u invalid flow type%d",
2658 			dev->data->port_id, fdir_filter->input.flow_type);
2659 		rte_errno = ENOTSUP;
2660 		return -rte_errno;
2661 	}
2662 	return 0;
2663 }
2664 
2665 #define FLOW_FDIR_CMP(f1, f2, fld) \
2666 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2667 
2668 /**
2669  * Compare two FDIR flows. If items and actions are identical, the two flows are
2670  * regarded as same.
2671  *
2672  * @param dev
2673  *   Pointer to Ethernet device.
2674  * @param f1
2675  *   FDIR flow to compare.
2676  * @param f2
2677  *   FDIR flow to compare.
2678  *
2679  * @return
2680  *   Zero on match, 1 otherwise.
2681  */
2682 static int
2683 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2684 {
2685 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
2686 	    FLOW_FDIR_CMP(f1, f2, l2) ||
2687 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2688 	    FLOW_FDIR_CMP(f1, f2, l3) ||
2689 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2690 	    FLOW_FDIR_CMP(f1, f2, l4) ||
2691 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2692 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
2693 		return 1;
2694 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2695 	    FLOW_FDIR_CMP(f1, f2, queue))
2696 		return 1;
2697 	return 0;
2698 }
2699 
2700 /**
2701  * Search device flow list to find out a matched FDIR flow.
2702  *
2703  * @param dev
2704  *   Pointer to Ethernet device.
2705  * @param fdir_flow
2706  *   FDIR flow to lookup.
2707  *
2708  * @return
2709  *   Pointer of flow if found, NULL otherwise.
2710  */
2711 static struct rte_flow *
2712 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2713 {
2714 	struct mlx5_priv *priv = dev->data->dev_private;
2715 	struct rte_flow *flow = NULL;
2716 
2717 	assert(fdir_flow);
2718 	TAILQ_FOREACH(flow, &priv->flows, next) {
2719 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2720 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2721 				dev->data->port_id, (void *)flow);
2722 			break;
2723 		}
2724 	}
2725 	return flow;
2726 }
2727 
2728 /**
2729  * Add new flow director filter and store it in list.
2730  *
2731  * @param dev
2732  *   Pointer to Ethernet device.
2733  * @param fdir_filter
2734  *   Flow director filter to add.
2735  *
2736  * @return
2737  *   0 on success, a negative errno value otherwise and rte_errno is set.
2738  */
2739 static int
2740 flow_fdir_filter_add(struct rte_eth_dev *dev,
2741 		     const struct rte_eth_fdir_filter *fdir_filter)
2742 {
2743 	struct mlx5_priv *priv = dev->data->dev_private;
2744 	struct mlx5_fdir *fdir_flow;
2745 	struct rte_flow *flow;
2746 	int ret;
2747 
2748 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2749 	if (!fdir_flow) {
2750 		rte_errno = ENOMEM;
2751 		return -rte_errno;
2752 	}
2753 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2754 	if (ret)
2755 		goto error;
2756 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
2757 	if (flow) {
2758 		rte_errno = EEXIST;
2759 		goto error;
2760 	}
2761 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2762 				fdir_flow->items, fdir_flow->actions, NULL);
2763 	if (!flow)
2764 		goto error;
2765 	assert(!flow->fdir);
2766 	flow->fdir = fdir_flow;
2767 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2768 		dev->data->port_id, (void *)flow);
2769 	return 0;
2770 error:
2771 	rte_free(fdir_flow);
2772 	return -rte_errno;
2773 }
2774 
2775 /**
2776  * Delete specific filter.
2777  *
2778  * @param dev
2779  *   Pointer to Ethernet device.
2780  * @param fdir_filter
2781  *   Filter to be deleted.
2782  *
2783  * @return
2784  *   0 on success, a negative errno value otherwise and rte_errno is set.
2785  */
2786 static int
2787 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2788 			const struct rte_eth_fdir_filter *fdir_filter)
2789 {
2790 	struct mlx5_priv *priv = dev->data->dev_private;
2791 	struct rte_flow *flow;
2792 	struct mlx5_fdir fdir_flow = {
2793 		.attr.group = 0,
2794 	};
2795 	int ret;
2796 
2797 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2798 	if (ret)
2799 		return -rte_errno;
2800 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2801 	if (!flow) {
2802 		rte_errno = ENOENT;
2803 		return -rte_errno;
2804 	}
2805 	flow_list_destroy(dev, &priv->flows, flow);
2806 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2807 		dev->data->port_id, (void *)flow);
2808 	return 0;
2809 }
2810 
2811 /**
2812  * Update queue for specific filter.
2813  *
2814  * @param dev
2815  *   Pointer to Ethernet device.
2816  * @param fdir_filter
2817  *   Filter to be updated.
2818  *
2819  * @return
2820  *   0 on success, a negative errno value otherwise and rte_errno is set.
2821  */
2822 static int
2823 flow_fdir_filter_update(struct rte_eth_dev *dev,
2824 			const struct rte_eth_fdir_filter *fdir_filter)
2825 {
2826 	int ret;
2827 
2828 	ret = flow_fdir_filter_delete(dev, fdir_filter);
2829 	if (ret)
2830 		return ret;
2831 	return flow_fdir_filter_add(dev, fdir_filter);
2832 }
2833 
2834 /**
2835  * Flush all filters.
2836  *
2837  * @param dev
2838  *   Pointer to Ethernet device.
2839  */
2840 static void
2841 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2842 {
2843 	struct mlx5_priv *priv = dev->data->dev_private;
2844 
2845 	mlx5_flow_list_flush(dev, &priv->flows);
2846 }
2847 
2848 /**
2849  * Get flow director information.
2850  *
2851  * @param dev
2852  *   Pointer to Ethernet device.
2853  * @param[out] fdir_info
2854  *   Resulting flow director information.
2855  */
2856 static void
2857 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2858 {
2859 	struct rte_eth_fdir_masks *mask =
2860 		&dev->data->dev_conf.fdir_conf.mask;
2861 
2862 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2863 	fdir_info->guarant_spc = 0;
2864 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2865 	fdir_info->max_flexpayload = 0;
2866 	fdir_info->flow_types_mask[0] = 0;
2867 	fdir_info->flex_payload_unit = 0;
2868 	fdir_info->max_flex_payload_segment_num = 0;
2869 	fdir_info->flex_payload_limit = 0;
2870 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2871 }
2872 
2873 /**
2874  * Deal with flow director operations.
2875  *
2876  * @param dev
2877  *   Pointer to Ethernet device.
2878  * @param filter_op
2879  *   Operation to perform.
2880  * @param arg
2881  *   Pointer to operation-specific structure.
2882  *
2883  * @return
2884  *   0 on success, a negative errno value otherwise and rte_errno is set.
2885  */
2886 static int
2887 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2888 		    void *arg)
2889 {
2890 	enum rte_fdir_mode fdir_mode =
2891 		dev->data->dev_conf.fdir_conf.mode;
2892 
2893 	if (filter_op == RTE_ETH_FILTER_NOP)
2894 		return 0;
2895 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2896 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2897 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
2898 			dev->data->port_id, fdir_mode);
2899 		rte_errno = EINVAL;
2900 		return -rte_errno;
2901 	}
2902 	switch (filter_op) {
2903 	case RTE_ETH_FILTER_ADD:
2904 		return flow_fdir_filter_add(dev, arg);
2905 	case RTE_ETH_FILTER_UPDATE:
2906 		return flow_fdir_filter_update(dev, arg);
2907 	case RTE_ETH_FILTER_DELETE:
2908 		return flow_fdir_filter_delete(dev, arg);
2909 	case RTE_ETH_FILTER_FLUSH:
2910 		flow_fdir_filter_flush(dev);
2911 		break;
2912 	case RTE_ETH_FILTER_INFO:
2913 		flow_fdir_info_get(dev, arg);
2914 		break;
2915 	default:
2916 		DRV_LOG(DEBUG, "port %u unknown operation %u",
2917 			dev->data->port_id, filter_op);
2918 		rte_errno = EINVAL;
2919 		return -rte_errno;
2920 	}
2921 	return 0;
2922 }
2923 
2924 /**
2925  * Manage filter operations.
2926  *
2927  * @param dev
2928  *   Pointer to Ethernet device structure.
2929  * @param filter_type
2930  *   Filter type.
2931  * @param filter_op
2932  *   Operation to perform.
2933  * @param arg
2934  *   Pointer to operation-specific structure.
2935  *
2936  * @return
2937  *   0 on success, a negative errno value otherwise and rte_errno is set.
2938  */
2939 int
2940 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2941 		     enum rte_filter_type filter_type,
2942 		     enum rte_filter_op filter_op,
2943 		     void *arg)
2944 {
2945 	switch (filter_type) {
2946 	case RTE_ETH_FILTER_GENERIC:
2947 		if (filter_op != RTE_ETH_FILTER_GET) {
2948 			rte_errno = EINVAL;
2949 			return -rte_errno;
2950 		}
2951 		*(const void **)arg = &mlx5_flow_ops;
2952 		return 0;
2953 	case RTE_ETH_FILTER_FDIR:
2954 		return flow_fdir_ctrl_func(dev, filter_op, arg);
2955 	default:
2956 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
2957 			dev->data->port_id, filter_type);
2958 		rte_errno = ENOTSUP;
2959 		return -rte_errno;
2960 	}
2961 	return 0;
2962 }
2963