1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox Technologies, Ltd 4 */ 5 6 #include <netinet/in.h> 7 #include <sys/queue.h> 8 #include <stdalign.h> 9 #include <stdint.h> 10 #include <string.h> 11 12 /* Verbs header. */ 13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ 14 #ifdef PEDANTIC 15 #pragma GCC diagnostic ignored "-Wpedantic" 16 #endif 17 #include <infiniband/verbs.h> 18 #ifdef PEDANTIC 19 #pragma GCC diagnostic error "-Wpedantic" 20 #endif 21 22 #include <rte_common.h> 23 #include <rte_ether.h> 24 #include <rte_eth_ctrl.h> 25 #include <rte_ethdev_driver.h> 26 #include <rte_flow.h> 27 #include <rte_flow_driver.h> 28 #include <rte_malloc.h> 29 #include <rte_ip.h> 30 31 #include "mlx5.h" 32 #include "mlx5_defs.h" 33 #include "mlx5_prm.h" 34 #include "mlx5_glue.h" 35 #include "mlx5_flow.h" 36 37 /* Dev ops structure defined in mlx5.c */ 38 extern const struct eth_dev_ops mlx5_dev_ops; 39 extern const struct eth_dev_ops mlx5_dev_ops_isolate; 40 41 /** Device flow drivers. */ 42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops; 44 #endif 45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops; 46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops; 47 48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops; 49 50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = { 51 [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops, 52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 53 [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops, 54 #endif 55 [MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops, 56 [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops, 57 [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops 58 }; 59 60 enum mlx5_expansion { 61 MLX5_EXPANSION_ROOT, 62 MLX5_EXPANSION_ROOT_OUTER, 63 MLX5_EXPANSION_ROOT_ETH_VLAN, 64 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN, 65 MLX5_EXPANSION_OUTER_ETH, 66 MLX5_EXPANSION_OUTER_ETH_VLAN, 67 MLX5_EXPANSION_OUTER_VLAN, 68 MLX5_EXPANSION_OUTER_IPV4, 69 MLX5_EXPANSION_OUTER_IPV4_UDP, 70 MLX5_EXPANSION_OUTER_IPV4_TCP, 71 MLX5_EXPANSION_OUTER_IPV6, 72 MLX5_EXPANSION_OUTER_IPV6_UDP, 73 MLX5_EXPANSION_OUTER_IPV6_TCP, 74 MLX5_EXPANSION_VXLAN, 75 MLX5_EXPANSION_VXLAN_GPE, 76 MLX5_EXPANSION_GRE, 77 MLX5_EXPANSION_MPLS, 78 MLX5_EXPANSION_ETH, 79 MLX5_EXPANSION_ETH_VLAN, 80 MLX5_EXPANSION_VLAN, 81 MLX5_EXPANSION_IPV4, 82 MLX5_EXPANSION_IPV4_UDP, 83 MLX5_EXPANSION_IPV4_TCP, 84 MLX5_EXPANSION_IPV6, 85 MLX5_EXPANSION_IPV6_UDP, 86 MLX5_EXPANSION_IPV6_TCP, 87 }; 88 89 /** Supported expansion of items. */ 90 static const struct rte_flow_expand_node mlx5_support_expansion[] = { 91 [MLX5_EXPANSION_ROOT] = { 92 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 93 MLX5_EXPANSION_IPV4, 94 MLX5_EXPANSION_IPV6), 95 .type = RTE_FLOW_ITEM_TYPE_END, 96 }, 97 [MLX5_EXPANSION_ROOT_OUTER] = { 98 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH, 99 MLX5_EXPANSION_OUTER_IPV4, 100 MLX5_EXPANSION_OUTER_IPV6), 101 .type = RTE_FLOW_ITEM_TYPE_END, 102 }, 103 [MLX5_EXPANSION_ROOT_ETH_VLAN] = { 104 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN), 105 .type = RTE_FLOW_ITEM_TYPE_END, 106 }, 107 [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = { 108 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN), 109 .type = RTE_FLOW_ITEM_TYPE_END, 110 }, 111 [MLX5_EXPANSION_OUTER_ETH] = { 112 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 113 MLX5_EXPANSION_OUTER_IPV6, 114 MLX5_EXPANSION_MPLS), 115 .type = RTE_FLOW_ITEM_TYPE_ETH, 116 .rss_types = 0, 117 }, 118 [MLX5_EXPANSION_OUTER_ETH_VLAN] = { 119 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN), 120 .type = RTE_FLOW_ITEM_TYPE_ETH, 121 .rss_types = 0, 122 }, 123 [MLX5_EXPANSION_OUTER_VLAN] = { 124 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 125 MLX5_EXPANSION_OUTER_IPV6), 126 .type = RTE_FLOW_ITEM_TYPE_VLAN, 127 }, 128 [MLX5_EXPANSION_OUTER_IPV4] = { 129 .next = RTE_FLOW_EXPAND_RSS_NEXT 130 (MLX5_EXPANSION_OUTER_IPV4_UDP, 131 MLX5_EXPANSION_OUTER_IPV4_TCP, 132 MLX5_EXPANSION_GRE), 133 .type = RTE_FLOW_ITEM_TYPE_IPV4, 134 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 135 ETH_RSS_NONFRAG_IPV4_OTHER, 136 }, 137 [MLX5_EXPANSION_OUTER_IPV4_UDP] = { 138 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 139 MLX5_EXPANSION_VXLAN_GPE), 140 .type = RTE_FLOW_ITEM_TYPE_UDP, 141 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 142 }, 143 [MLX5_EXPANSION_OUTER_IPV4_TCP] = { 144 .type = RTE_FLOW_ITEM_TYPE_TCP, 145 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 146 }, 147 [MLX5_EXPANSION_OUTER_IPV6] = { 148 .next = RTE_FLOW_EXPAND_RSS_NEXT 149 (MLX5_EXPANSION_OUTER_IPV6_UDP, 150 MLX5_EXPANSION_OUTER_IPV6_TCP), 151 .type = RTE_FLOW_ITEM_TYPE_IPV6, 152 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 153 ETH_RSS_NONFRAG_IPV6_OTHER, 154 }, 155 [MLX5_EXPANSION_OUTER_IPV6_UDP] = { 156 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 157 MLX5_EXPANSION_VXLAN_GPE), 158 .type = RTE_FLOW_ITEM_TYPE_UDP, 159 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 160 }, 161 [MLX5_EXPANSION_OUTER_IPV6_TCP] = { 162 .type = RTE_FLOW_ITEM_TYPE_TCP, 163 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 164 }, 165 [MLX5_EXPANSION_VXLAN] = { 166 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH), 167 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 168 }, 169 [MLX5_EXPANSION_VXLAN_GPE] = { 170 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 171 MLX5_EXPANSION_IPV4, 172 MLX5_EXPANSION_IPV6), 173 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE, 174 }, 175 [MLX5_EXPANSION_GRE] = { 176 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4), 177 .type = RTE_FLOW_ITEM_TYPE_GRE, 178 }, 179 [MLX5_EXPANSION_MPLS] = { 180 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 181 MLX5_EXPANSION_IPV6), 182 .type = RTE_FLOW_ITEM_TYPE_MPLS, 183 }, 184 [MLX5_EXPANSION_ETH] = { 185 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 186 MLX5_EXPANSION_IPV6), 187 .type = RTE_FLOW_ITEM_TYPE_ETH, 188 }, 189 [MLX5_EXPANSION_ETH_VLAN] = { 190 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN), 191 .type = RTE_FLOW_ITEM_TYPE_ETH, 192 }, 193 [MLX5_EXPANSION_VLAN] = { 194 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 195 MLX5_EXPANSION_IPV6), 196 .type = RTE_FLOW_ITEM_TYPE_VLAN, 197 }, 198 [MLX5_EXPANSION_IPV4] = { 199 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP, 200 MLX5_EXPANSION_IPV4_TCP), 201 .type = RTE_FLOW_ITEM_TYPE_IPV4, 202 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 203 ETH_RSS_NONFRAG_IPV4_OTHER, 204 }, 205 [MLX5_EXPANSION_IPV4_UDP] = { 206 .type = RTE_FLOW_ITEM_TYPE_UDP, 207 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 208 }, 209 [MLX5_EXPANSION_IPV4_TCP] = { 210 .type = RTE_FLOW_ITEM_TYPE_TCP, 211 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 212 }, 213 [MLX5_EXPANSION_IPV6] = { 214 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP, 215 MLX5_EXPANSION_IPV6_TCP), 216 .type = RTE_FLOW_ITEM_TYPE_IPV6, 217 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 218 ETH_RSS_NONFRAG_IPV6_OTHER, 219 }, 220 [MLX5_EXPANSION_IPV6_UDP] = { 221 .type = RTE_FLOW_ITEM_TYPE_UDP, 222 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 223 }, 224 [MLX5_EXPANSION_IPV6_TCP] = { 225 .type = RTE_FLOW_ITEM_TYPE_TCP, 226 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 227 }, 228 }; 229 230 static const struct rte_flow_ops mlx5_flow_ops = { 231 .validate = mlx5_flow_validate, 232 .create = mlx5_flow_create, 233 .destroy = mlx5_flow_destroy, 234 .flush = mlx5_flow_flush, 235 .isolate = mlx5_flow_isolate, 236 .query = mlx5_flow_query, 237 }; 238 239 /* Convert FDIR request to Generic flow. */ 240 struct mlx5_fdir { 241 struct rte_flow_attr attr; 242 struct rte_flow_item items[4]; 243 struct rte_flow_item_eth l2; 244 struct rte_flow_item_eth l2_mask; 245 union { 246 struct rte_flow_item_ipv4 ipv4; 247 struct rte_flow_item_ipv6 ipv6; 248 } l3; 249 union { 250 struct rte_flow_item_ipv4 ipv4; 251 struct rte_flow_item_ipv6 ipv6; 252 } l3_mask; 253 union { 254 struct rte_flow_item_udp udp; 255 struct rte_flow_item_tcp tcp; 256 } l4; 257 union { 258 struct rte_flow_item_udp udp; 259 struct rte_flow_item_tcp tcp; 260 } l4_mask; 261 struct rte_flow_action actions[2]; 262 struct rte_flow_action_queue queue; 263 }; 264 265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */ 266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = { 267 { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 }, 268 }; 269 270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */ 271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = { 272 { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 }, 273 { 9, 10, 11 }, { 12, 13, 14 }, 274 }; 275 276 /* Tunnel information. */ 277 struct mlx5_flow_tunnel_info { 278 uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */ 279 uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */ 280 }; 281 282 static struct mlx5_flow_tunnel_info tunnels_info[] = { 283 { 284 .tunnel = MLX5_FLOW_LAYER_VXLAN, 285 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP, 286 }, 287 { 288 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE, 289 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP, 290 }, 291 { 292 .tunnel = MLX5_FLOW_LAYER_GRE, 293 .ptype = RTE_PTYPE_TUNNEL_GRE, 294 }, 295 { 296 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP, 297 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP, 298 }, 299 { 300 .tunnel = MLX5_FLOW_LAYER_MPLS, 301 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE, 302 }, 303 }; 304 305 /** 306 * Discover the maximum number of priority available. 307 * 308 * @param[in] dev 309 * Pointer to the Ethernet device structure. 310 * 311 * @return 312 * number of supported flow priority on success, a negative errno 313 * value otherwise and rte_errno is set. 314 */ 315 int 316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev) 317 { 318 struct { 319 struct ibv_flow_attr attr; 320 struct ibv_flow_spec_eth eth; 321 struct ibv_flow_spec_action_drop drop; 322 } flow_attr = { 323 .attr = { 324 .num_of_specs = 2, 325 }, 326 .eth = { 327 .type = IBV_FLOW_SPEC_ETH, 328 .size = sizeof(struct ibv_flow_spec_eth), 329 }, 330 .drop = { 331 .size = sizeof(struct ibv_flow_spec_action_drop), 332 .type = IBV_FLOW_SPEC_ACTION_DROP, 333 }, 334 }; 335 struct ibv_flow *flow; 336 struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev); 337 uint16_t vprio[] = { 8, 16 }; 338 int i; 339 int priority = 0; 340 341 if (!drop) { 342 rte_errno = ENOTSUP; 343 return -rte_errno; 344 } 345 for (i = 0; i != RTE_DIM(vprio); i++) { 346 flow_attr.attr.priority = vprio[i] - 1; 347 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr); 348 if (!flow) 349 break; 350 claim_zero(mlx5_glue->destroy_flow(flow)); 351 priority = vprio[i]; 352 } 353 switch (priority) { 354 case 8: 355 priority = RTE_DIM(priority_map_3); 356 break; 357 case 16: 358 priority = RTE_DIM(priority_map_5); 359 break; 360 default: 361 rte_errno = ENOTSUP; 362 DRV_LOG(ERR, 363 "port %u verbs maximum priority: %d expected 8/16", 364 dev->data->port_id, vprio[i]); 365 return -rte_errno; 366 } 367 mlx5_hrxq_drop_release(dev); 368 DRV_LOG(INFO, "port %u flow maximum priority: %d", 369 dev->data->port_id, priority); 370 return priority; 371 } 372 373 /** 374 * Adjust flow priority based on the highest layer and the request priority. 375 * 376 * @param[in] dev 377 * Pointer to the Ethernet device structure. 378 * @param[in] priority 379 * The rule base priority. 380 * @param[in] subpriority 381 * The priority based on the items. 382 * 383 * @return 384 * The new priority. 385 */ 386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority, 387 uint32_t subpriority) 388 { 389 uint32_t res = 0; 390 struct priv *priv = dev->data->dev_private; 391 392 switch (priv->config.flow_prio) { 393 case RTE_DIM(priority_map_3): 394 res = priority_map_3[priority][subpriority]; 395 break; 396 case RTE_DIM(priority_map_5): 397 res = priority_map_5[priority][subpriority]; 398 break; 399 } 400 return res; 401 } 402 403 /** 404 * Verify the @p item specifications (spec, last, mask) are compatible with the 405 * NIC capabilities. 406 * 407 * @param[in] item 408 * Item specification. 409 * @param[in] mask 410 * @p item->mask or flow default bit-masks. 411 * @param[in] nic_mask 412 * Bit-masks covering supported fields by the NIC to compare with user mask. 413 * @param[in] size 414 * Bit-masks size in bytes. 415 * @param[out] error 416 * Pointer to error structure. 417 * 418 * @return 419 * 0 on success, a negative errno value otherwise and rte_errno is set. 420 */ 421 int 422 mlx5_flow_item_acceptable(const struct rte_flow_item *item, 423 const uint8_t *mask, 424 const uint8_t *nic_mask, 425 unsigned int size, 426 struct rte_flow_error *error) 427 { 428 unsigned int i; 429 430 assert(nic_mask); 431 for (i = 0; i < size; ++i) 432 if ((nic_mask[i] | mask[i]) != nic_mask[i]) 433 return rte_flow_error_set(error, ENOTSUP, 434 RTE_FLOW_ERROR_TYPE_ITEM, 435 item, 436 "mask enables non supported" 437 " bits"); 438 if (!item->spec && (item->mask || item->last)) 439 return rte_flow_error_set(error, EINVAL, 440 RTE_FLOW_ERROR_TYPE_ITEM, item, 441 "mask/last without a spec is not" 442 " supported"); 443 if (item->spec && item->last) { 444 uint8_t spec[size]; 445 uint8_t last[size]; 446 unsigned int i; 447 int ret; 448 449 for (i = 0; i < size; ++i) { 450 spec[i] = ((const uint8_t *)item->spec)[i] & mask[i]; 451 last[i] = ((const uint8_t *)item->last)[i] & mask[i]; 452 } 453 ret = memcmp(spec, last, size); 454 if (ret != 0) 455 return rte_flow_error_set(error, EINVAL, 456 RTE_FLOW_ERROR_TYPE_ITEM, 457 item, 458 "range is not valid"); 459 } 460 return 0; 461 } 462 463 /** 464 * Adjust the hash fields according to the @p flow information. 465 * 466 * @param[in] dev_flow. 467 * Pointer to the mlx5_flow. 468 * @param[in] tunnel 469 * 1 when the hash field is for a tunnel item. 470 * @param[in] layer_types 471 * ETH_RSS_* types. 472 * @param[in] hash_fields 473 * Item hash fields. 474 * 475 * @return 476 * The hash fileds that should be used. 477 */ 478 uint64_t 479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow, 480 int tunnel __rte_unused, uint64_t layer_types, 481 uint64_t hash_fields) 482 { 483 struct rte_flow *flow = dev_flow->flow; 484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 485 int rss_request_inner = flow->rss.level >= 2; 486 487 /* Check RSS hash level for tunnel. */ 488 if (tunnel && rss_request_inner) 489 hash_fields |= IBV_RX_HASH_INNER; 490 else if (tunnel || rss_request_inner) 491 return 0; 492 #endif 493 /* Check if requested layer matches RSS hash fields. */ 494 if (!(flow->rss.types & layer_types)) 495 return 0; 496 return hash_fields; 497 } 498 499 /** 500 * Lookup and set the ptype in the data Rx part. A single Ptype can be used, 501 * if several tunnel rules are used on this queue, the tunnel ptype will be 502 * cleared. 503 * 504 * @param rxq_ctrl 505 * Rx queue to update. 506 */ 507 static void 508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl) 509 { 510 unsigned int i; 511 uint32_t tunnel_ptype = 0; 512 513 /* Look up for the ptype to use. */ 514 for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) { 515 if (!rxq_ctrl->flow_tunnels_n[i]) 516 continue; 517 if (!tunnel_ptype) { 518 tunnel_ptype = tunnels_info[i].ptype; 519 } else { 520 tunnel_ptype = 0; 521 break; 522 } 523 } 524 rxq_ctrl->rxq.tunnel = tunnel_ptype; 525 } 526 527 /** 528 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive 529 * flow. 530 * 531 * @param[in] dev 532 * Pointer to the Ethernet device structure. 533 * @param[in] dev_flow 534 * Pointer to device flow structure. 535 */ 536 static void 537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow) 538 { 539 struct priv *priv = dev->data->dev_private; 540 struct rte_flow *flow = dev_flow->flow; 541 const int mark = !!(flow->actions & 542 (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK)); 543 const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL); 544 unsigned int i; 545 546 for (i = 0; i != flow->rss.queue_num; ++i) { 547 int idx = (*flow->queue)[i]; 548 struct mlx5_rxq_ctrl *rxq_ctrl = 549 container_of((*priv->rxqs)[idx], 550 struct mlx5_rxq_ctrl, rxq); 551 552 if (mark) { 553 rxq_ctrl->rxq.mark = 1; 554 rxq_ctrl->flow_mark_n++; 555 } 556 if (tunnel) { 557 unsigned int j; 558 559 /* Increase the counter matching the flow. */ 560 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 561 if ((tunnels_info[j].tunnel & 562 dev_flow->layers) == 563 tunnels_info[j].tunnel) { 564 rxq_ctrl->flow_tunnels_n[j]++; 565 break; 566 } 567 } 568 flow_rxq_tunnel_ptype_update(rxq_ctrl); 569 } 570 } 571 } 572 573 /** 574 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow 575 * 576 * @param[in] dev 577 * Pointer to the Ethernet device structure. 578 * @param[in] flow 579 * Pointer to flow structure. 580 */ 581 static void 582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow) 583 { 584 struct mlx5_flow *dev_flow; 585 586 LIST_FOREACH(dev_flow, &flow->dev_flows, next) 587 flow_drv_rxq_flags_set(dev, dev_flow); 588 } 589 590 /** 591 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 592 * device flow if no other flow uses it with the same kind of request. 593 * 594 * @param dev 595 * Pointer to Ethernet device. 596 * @param[in] dev_flow 597 * Pointer to the device flow. 598 */ 599 static void 600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow) 601 { 602 struct priv *priv = dev->data->dev_private; 603 struct rte_flow *flow = dev_flow->flow; 604 const int mark = !!(flow->actions & 605 (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK)); 606 const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL); 607 unsigned int i; 608 609 assert(dev->data->dev_started); 610 for (i = 0; i != flow->rss.queue_num; ++i) { 611 int idx = (*flow->queue)[i]; 612 struct mlx5_rxq_ctrl *rxq_ctrl = 613 container_of((*priv->rxqs)[idx], 614 struct mlx5_rxq_ctrl, rxq); 615 616 if (mark) { 617 rxq_ctrl->flow_mark_n--; 618 rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n; 619 } 620 if (tunnel) { 621 unsigned int j; 622 623 /* Decrease the counter matching the flow. */ 624 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 625 if ((tunnels_info[j].tunnel & 626 dev_flow->layers) == 627 tunnels_info[j].tunnel) { 628 rxq_ctrl->flow_tunnels_n[j]--; 629 break; 630 } 631 } 632 flow_rxq_tunnel_ptype_update(rxq_ctrl); 633 } 634 } 635 } 636 637 /** 638 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 639 * @p flow if no other flow uses it with the same kind of request. 640 * 641 * @param dev 642 * Pointer to Ethernet device. 643 * @param[in] flow 644 * Pointer to the flow. 645 */ 646 static void 647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow) 648 { 649 struct mlx5_flow *dev_flow; 650 651 LIST_FOREACH(dev_flow, &flow->dev_flows, next) 652 flow_drv_rxq_flags_trim(dev, dev_flow); 653 } 654 655 /** 656 * Clear the Mark/Flag and Tunnel ptype information in all Rx queues. 657 * 658 * @param dev 659 * Pointer to Ethernet device. 660 */ 661 static void 662 flow_rxq_flags_clear(struct rte_eth_dev *dev) 663 { 664 struct priv *priv = dev->data->dev_private; 665 unsigned int i; 666 667 for (i = 0; i != priv->rxqs_n; ++i) { 668 struct mlx5_rxq_ctrl *rxq_ctrl; 669 unsigned int j; 670 671 if (!(*priv->rxqs)[i]) 672 continue; 673 rxq_ctrl = container_of((*priv->rxqs)[i], 674 struct mlx5_rxq_ctrl, rxq); 675 rxq_ctrl->flow_mark_n = 0; 676 rxq_ctrl->rxq.mark = 0; 677 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) 678 rxq_ctrl->flow_tunnels_n[j] = 0; 679 rxq_ctrl->rxq.tunnel = 0; 680 } 681 } 682 683 /* 684 * Validate the flag action. 685 * 686 * @param[in] action_flags 687 * Bit-fields that holds the actions detected until now. 688 * @param[in] attr 689 * Attributes of flow that includes this action. 690 * @param[out] error 691 * Pointer to error structure. 692 * 693 * @return 694 * 0 on success, a negative errno value otherwise and rte_errno is set. 695 */ 696 int 697 mlx5_flow_validate_action_flag(uint64_t action_flags, 698 const struct rte_flow_attr *attr, 699 struct rte_flow_error *error) 700 { 701 702 if (action_flags & MLX5_FLOW_ACTION_DROP) 703 return rte_flow_error_set(error, EINVAL, 704 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 705 "can't drop and flag in same flow"); 706 if (action_flags & MLX5_FLOW_ACTION_MARK) 707 return rte_flow_error_set(error, EINVAL, 708 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 709 "can't mark and flag in same flow"); 710 if (action_flags & MLX5_FLOW_ACTION_FLAG) 711 return rte_flow_error_set(error, EINVAL, 712 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 713 "can't have 2 flag" 714 " actions in same flow"); 715 if (attr->egress) 716 return rte_flow_error_set(error, ENOTSUP, 717 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 718 "flag action not supported for " 719 "egress"); 720 return 0; 721 } 722 723 /* 724 * Validate the mark action. 725 * 726 * @param[in] action 727 * Pointer to the queue action. 728 * @param[in] action_flags 729 * Bit-fields that holds the actions detected until now. 730 * @param[in] attr 731 * Attributes of flow that includes this action. 732 * @param[out] error 733 * Pointer to error structure. 734 * 735 * @return 736 * 0 on success, a negative errno value otherwise and rte_errno is set. 737 */ 738 int 739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action, 740 uint64_t action_flags, 741 const struct rte_flow_attr *attr, 742 struct rte_flow_error *error) 743 { 744 const struct rte_flow_action_mark *mark = action->conf; 745 746 if (!mark) 747 return rte_flow_error_set(error, EINVAL, 748 RTE_FLOW_ERROR_TYPE_ACTION, 749 action, 750 "configuration cannot be null"); 751 if (mark->id >= MLX5_FLOW_MARK_MAX) 752 return rte_flow_error_set(error, EINVAL, 753 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 754 &mark->id, 755 "mark id must in 0 <= id < " 756 RTE_STR(MLX5_FLOW_MARK_MAX)); 757 if (action_flags & MLX5_FLOW_ACTION_DROP) 758 return rte_flow_error_set(error, EINVAL, 759 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 760 "can't drop and mark in same flow"); 761 if (action_flags & MLX5_FLOW_ACTION_FLAG) 762 return rte_flow_error_set(error, EINVAL, 763 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 764 "can't flag and mark in same flow"); 765 if (action_flags & MLX5_FLOW_ACTION_MARK) 766 return rte_flow_error_set(error, EINVAL, 767 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 768 "can't have 2 mark actions in same" 769 " flow"); 770 if (attr->egress) 771 return rte_flow_error_set(error, ENOTSUP, 772 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 773 "mark action not supported for " 774 "egress"); 775 return 0; 776 } 777 778 /* 779 * Validate the drop action. 780 * 781 * @param[in] action_flags 782 * Bit-fields that holds the actions detected until now. 783 * @param[in] attr 784 * Attributes of flow that includes this action. 785 * @param[out] error 786 * Pointer to error structure. 787 * 788 * @return 789 * 0 on success, a negative errno value otherwise and rte_ernno is set. 790 */ 791 int 792 mlx5_flow_validate_action_drop(uint64_t action_flags, 793 const struct rte_flow_attr *attr, 794 struct rte_flow_error *error) 795 { 796 if (action_flags & MLX5_FLOW_ACTION_FLAG) 797 return rte_flow_error_set(error, EINVAL, 798 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 799 "can't drop and flag in same flow"); 800 if (action_flags & MLX5_FLOW_ACTION_MARK) 801 return rte_flow_error_set(error, EINVAL, 802 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 803 "can't drop and mark in same flow"); 804 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 805 return rte_flow_error_set(error, EINVAL, 806 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 807 "can't have 2 fate actions in" 808 " same flow"); 809 if (attr->egress) 810 return rte_flow_error_set(error, ENOTSUP, 811 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 812 "drop action not supported for " 813 "egress"); 814 return 0; 815 } 816 817 /* 818 * Validate the queue action. 819 * 820 * @param[in] action 821 * Pointer to the queue action. 822 * @param[in] action_flags 823 * Bit-fields that holds the actions detected until now. 824 * @param[in] dev 825 * Pointer to the Ethernet device structure. 826 * @param[in] attr 827 * Attributes of flow that includes this action. 828 * @param[out] error 829 * Pointer to error structure. 830 * 831 * @return 832 * 0 on success, a negative errno value otherwise and rte_ernno is set. 833 */ 834 int 835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action, 836 uint64_t action_flags, 837 struct rte_eth_dev *dev, 838 const struct rte_flow_attr *attr, 839 struct rte_flow_error *error) 840 { 841 struct priv *priv = dev->data->dev_private; 842 const struct rte_flow_action_queue *queue = action->conf; 843 844 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 845 return rte_flow_error_set(error, EINVAL, 846 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 847 "can't have 2 fate actions in" 848 " same flow"); 849 if (queue->index >= priv->rxqs_n) 850 return rte_flow_error_set(error, EINVAL, 851 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 852 &queue->index, 853 "queue index out of range"); 854 if (!(*priv->rxqs)[queue->index]) 855 return rte_flow_error_set(error, EINVAL, 856 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 857 &queue->index, 858 "queue is not configured"); 859 if (attr->egress) 860 return rte_flow_error_set(error, ENOTSUP, 861 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 862 "queue action not supported for " 863 "egress"); 864 return 0; 865 } 866 867 /* 868 * Validate the rss action. 869 * 870 * @param[in] action 871 * Pointer to the queue action. 872 * @param[in] action_flags 873 * Bit-fields that holds the actions detected until now. 874 * @param[in] dev 875 * Pointer to the Ethernet device structure. 876 * @param[in] attr 877 * Attributes of flow that includes this action. 878 * @param[out] error 879 * Pointer to error structure. 880 * 881 * @return 882 * 0 on success, a negative errno value otherwise and rte_ernno is set. 883 */ 884 int 885 mlx5_flow_validate_action_rss(const struct rte_flow_action *action, 886 uint64_t action_flags, 887 struct rte_eth_dev *dev, 888 const struct rte_flow_attr *attr, 889 struct rte_flow_error *error) 890 { 891 struct priv *priv = dev->data->dev_private; 892 const struct rte_flow_action_rss *rss = action->conf; 893 unsigned int i; 894 895 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 896 return rte_flow_error_set(error, EINVAL, 897 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 898 "can't have 2 fate actions" 899 " in same flow"); 900 if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT && 901 rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ) 902 return rte_flow_error_set(error, ENOTSUP, 903 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 904 &rss->func, 905 "RSS hash function not supported"); 906 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 907 if (rss->level > 2) 908 #else 909 if (rss->level > 1) 910 #endif 911 return rte_flow_error_set(error, ENOTSUP, 912 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 913 &rss->level, 914 "tunnel RSS is not supported"); 915 /* allow RSS key_len 0 in case of NULL (default) RSS key. */ 916 if (rss->key_len == 0 && rss->key != NULL) 917 return rte_flow_error_set(error, ENOTSUP, 918 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 919 &rss->key_len, 920 "RSS hash key length 0"); 921 if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN) 922 return rte_flow_error_set(error, ENOTSUP, 923 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 924 &rss->key_len, 925 "RSS hash key too small"); 926 if (rss->key_len > MLX5_RSS_HASH_KEY_LEN) 927 return rte_flow_error_set(error, ENOTSUP, 928 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 929 &rss->key_len, 930 "RSS hash key too large"); 931 if (rss->queue_num > priv->config.ind_table_max_size) 932 return rte_flow_error_set(error, ENOTSUP, 933 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 934 &rss->queue_num, 935 "number of queues too large"); 936 if (rss->types & MLX5_RSS_HF_MASK) 937 return rte_flow_error_set(error, ENOTSUP, 938 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 939 &rss->types, 940 "some RSS protocols are not" 941 " supported"); 942 for (i = 0; i != rss->queue_num; ++i) { 943 if (!(*priv->rxqs)[rss->queue[i]]) 944 return rte_flow_error_set 945 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, 946 &rss->queue[i], "queue is not configured"); 947 } 948 if (attr->egress) 949 return rte_flow_error_set(error, ENOTSUP, 950 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 951 "rss action not supported for " 952 "egress"); 953 return 0; 954 } 955 956 /* 957 * Validate the count action. 958 * 959 * @param[in] dev 960 * Pointer to the Ethernet device structure. 961 * @param[in] attr 962 * Attributes of flow that includes this action. 963 * @param[out] error 964 * Pointer to error structure. 965 * 966 * @return 967 * 0 on success, a negative errno value otherwise and rte_ernno is set. 968 */ 969 int 970 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused, 971 const struct rte_flow_attr *attr, 972 struct rte_flow_error *error) 973 { 974 if (attr->egress) 975 return rte_flow_error_set(error, ENOTSUP, 976 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 977 "count action not supported for " 978 "egress"); 979 return 0; 980 } 981 982 /** 983 * Verify the @p attributes will be correctly understood by the NIC and store 984 * them in the @p flow if everything is correct. 985 * 986 * @param[in] dev 987 * Pointer to the Ethernet device structure. 988 * @param[in] attributes 989 * Pointer to flow attributes 990 * @param[out] error 991 * Pointer to error structure. 992 * 993 * @return 994 * 0 on success, a negative errno value otherwise and rte_errno is set. 995 */ 996 int 997 mlx5_flow_validate_attributes(struct rte_eth_dev *dev, 998 const struct rte_flow_attr *attributes, 999 struct rte_flow_error *error) 1000 { 1001 struct priv *priv = dev->data->dev_private; 1002 uint32_t priority_max = priv->config.flow_prio - 1; 1003 1004 if (attributes->group) 1005 return rte_flow_error_set(error, ENOTSUP, 1006 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 1007 NULL, "groups is not supported"); 1008 if (attributes->priority != MLX5_FLOW_PRIO_RSVD && 1009 attributes->priority >= priority_max) 1010 return rte_flow_error_set(error, ENOTSUP, 1011 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1012 NULL, "priority out of range"); 1013 if (attributes->egress) 1014 return rte_flow_error_set(error, ENOTSUP, 1015 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1016 "egress is not supported"); 1017 if (attributes->transfer) 1018 return rte_flow_error_set(error, ENOTSUP, 1019 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1020 NULL, "transfer is not supported"); 1021 if (!attributes->ingress) 1022 return rte_flow_error_set(error, EINVAL, 1023 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 1024 NULL, 1025 "ingress attribute is mandatory"); 1026 return 0; 1027 } 1028 1029 /** 1030 * Validate Ethernet item. 1031 * 1032 * @param[in] item 1033 * Item specification. 1034 * @param[in] item_flags 1035 * Bit-fields that holds the items detected until now. 1036 * @param[out] error 1037 * Pointer to error structure. 1038 * 1039 * @return 1040 * 0 on success, a negative errno value otherwise and rte_errno is set. 1041 */ 1042 int 1043 mlx5_flow_validate_item_eth(const struct rte_flow_item *item, 1044 uint64_t item_flags, 1045 struct rte_flow_error *error) 1046 { 1047 const struct rte_flow_item_eth *mask = item->mask; 1048 const struct rte_flow_item_eth nic_mask = { 1049 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1050 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1051 .type = RTE_BE16(0xffff), 1052 }; 1053 int ret; 1054 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1055 const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 : 1056 MLX5_FLOW_LAYER_OUTER_L2; 1057 1058 if (item_flags & ethm) 1059 return rte_flow_error_set(error, ENOTSUP, 1060 RTE_FLOW_ERROR_TYPE_ITEM, item, 1061 "multiple L2 layers not supported"); 1062 if (!mask) 1063 mask = &rte_flow_item_eth_mask; 1064 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1065 (const uint8_t *)&nic_mask, 1066 sizeof(struct rte_flow_item_eth), 1067 error); 1068 return ret; 1069 } 1070 1071 /** 1072 * Validate VLAN item. 1073 * 1074 * @param[in] item 1075 * Item specification. 1076 * @param[in] item_flags 1077 * Bit-fields that holds the items detected until now. 1078 * @param[out] error 1079 * Pointer to error structure. 1080 * 1081 * @return 1082 * 0 on success, a negative errno value otherwise and rte_errno is set. 1083 */ 1084 int 1085 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item, 1086 uint64_t item_flags, 1087 struct rte_flow_error *error) 1088 { 1089 const struct rte_flow_item_vlan *spec = item->spec; 1090 const struct rte_flow_item_vlan *mask = item->mask; 1091 const struct rte_flow_item_vlan nic_mask = { 1092 .tci = RTE_BE16(0x0fff), 1093 .inner_type = RTE_BE16(0xffff), 1094 }; 1095 uint16_t vlan_tag = 0; 1096 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1097 int ret; 1098 const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 | 1099 MLX5_FLOW_LAYER_INNER_L4) : 1100 (MLX5_FLOW_LAYER_OUTER_L3 | 1101 MLX5_FLOW_LAYER_OUTER_L4); 1102 const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN : 1103 MLX5_FLOW_LAYER_OUTER_VLAN; 1104 1105 if (item_flags & vlanm) 1106 return rte_flow_error_set(error, EINVAL, 1107 RTE_FLOW_ERROR_TYPE_ITEM, item, 1108 "multiple VLAN layers not supported"); 1109 else if ((item_flags & l34m) != 0) 1110 return rte_flow_error_set(error, EINVAL, 1111 RTE_FLOW_ERROR_TYPE_ITEM, item, 1112 "L2 layer cannot follow L3/L4 layer"); 1113 if (!mask) 1114 mask = &rte_flow_item_vlan_mask; 1115 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1116 (const uint8_t *)&nic_mask, 1117 sizeof(struct rte_flow_item_vlan), 1118 error); 1119 if (ret) 1120 return ret; 1121 if (spec) { 1122 vlan_tag = spec->tci; 1123 vlan_tag &= mask->tci; 1124 } 1125 /* 1126 * From verbs perspective an empty VLAN is equivalent 1127 * to a packet without VLAN layer. 1128 */ 1129 if (!vlan_tag) 1130 return rte_flow_error_set(error, EINVAL, 1131 RTE_FLOW_ERROR_TYPE_ITEM_SPEC, 1132 item->spec, 1133 "VLAN cannot be empty"); 1134 return 0; 1135 } 1136 1137 /** 1138 * Validate IPV4 item. 1139 * 1140 * @param[in] item 1141 * Item specification. 1142 * @param[in] item_flags 1143 * Bit-fields that holds the items detected until now. 1144 * @param[in] acc_mask 1145 * Acceptable mask, if NULL default internal default mask 1146 * will be used to check whether item fields are supported. 1147 * @param[out] error 1148 * Pointer to error structure. 1149 * 1150 * @return 1151 * 0 on success, a negative errno value otherwise and rte_errno is set. 1152 */ 1153 int 1154 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item, 1155 uint64_t item_flags, 1156 const struct rte_flow_item_ipv4 *acc_mask, 1157 struct rte_flow_error *error) 1158 { 1159 const struct rte_flow_item_ipv4 *mask = item->mask; 1160 const struct rte_flow_item_ipv4 nic_mask = { 1161 .hdr = { 1162 .src_addr = RTE_BE32(0xffffffff), 1163 .dst_addr = RTE_BE32(0xffffffff), 1164 .type_of_service = 0xff, 1165 .next_proto_id = 0xff, 1166 }, 1167 }; 1168 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1169 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1170 MLX5_FLOW_LAYER_OUTER_L3; 1171 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1172 MLX5_FLOW_LAYER_OUTER_L4; 1173 int ret; 1174 1175 if (item_flags & l3m) 1176 return rte_flow_error_set(error, ENOTSUP, 1177 RTE_FLOW_ERROR_TYPE_ITEM, item, 1178 "multiple L3 layers not supported"); 1179 else if (item_flags & l4m) 1180 return rte_flow_error_set(error, EINVAL, 1181 RTE_FLOW_ERROR_TYPE_ITEM, item, 1182 "L3 cannot follow an L4 layer."); 1183 if (!mask) 1184 mask = &rte_flow_item_ipv4_mask; 1185 else if (mask->hdr.next_proto_id != 0 && 1186 mask->hdr.next_proto_id != 0xff) 1187 return rte_flow_error_set(error, EINVAL, 1188 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 1189 "partial mask is not supported" 1190 " for protocol"); 1191 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1192 acc_mask ? (const uint8_t *)acc_mask 1193 : (const uint8_t *)&nic_mask, 1194 sizeof(struct rte_flow_item_ipv4), 1195 error); 1196 if (ret < 0) 1197 return ret; 1198 return 0; 1199 } 1200 1201 /** 1202 * Validate IPV6 item. 1203 * 1204 * @param[in] item 1205 * Item specification. 1206 * @param[in] item_flags 1207 * Bit-fields that holds the items detected until now. 1208 * @param[in] acc_mask 1209 * Acceptable mask, if NULL default internal default mask 1210 * will be used to check whether item fields are supported. 1211 * @param[out] error 1212 * Pointer to error structure. 1213 * 1214 * @return 1215 * 0 on success, a negative errno value otherwise and rte_errno is set. 1216 */ 1217 int 1218 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item, 1219 uint64_t item_flags, 1220 const struct rte_flow_item_ipv6 *acc_mask, 1221 struct rte_flow_error *error) 1222 { 1223 const struct rte_flow_item_ipv6 *mask = item->mask; 1224 const struct rte_flow_item_ipv6 nic_mask = { 1225 .hdr = { 1226 .src_addr = 1227 "\xff\xff\xff\xff\xff\xff\xff\xff" 1228 "\xff\xff\xff\xff\xff\xff\xff\xff", 1229 .dst_addr = 1230 "\xff\xff\xff\xff\xff\xff\xff\xff" 1231 "\xff\xff\xff\xff\xff\xff\xff\xff", 1232 .vtc_flow = RTE_BE32(0xffffffff), 1233 .proto = 0xff, 1234 .hop_limits = 0xff, 1235 }, 1236 }; 1237 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1238 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1239 MLX5_FLOW_LAYER_OUTER_L3; 1240 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1241 MLX5_FLOW_LAYER_OUTER_L4; 1242 int ret; 1243 1244 if (item_flags & l3m) 1245 return rte_flow_error_set(error, ENOTSUP, 1246 RTE_FLOW_ERROR_TYPE_ITEM, item, 1247 "multiple L3 layers not supported"); 1248 else if (item_flags & l4m) 1249 return rte_flow_error_set(error, EINVAL, 1250 RTE_FLOW_ERROR_TYPE_ITEM, item, 1251 "L3 cannot follow an L4 layer."); 1252 if (!mask) 1253 mask = &rte_flow_item_ipv6_mask; 1254 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1255 acc_mask ? (const uint8_t *)acc_mask 1256 : (const uint8_t *)&nic_mask, 1257 sizeof(struct rte_flow_item_ipv6), 1258 error); 1259 if (ret < 0) 1260 return ret; 1261 return 0; 1262 } 1263 1264 /** 1265 * Validate UDP item. 1266 * 1267 * @param[in] item 1268 * Item specification. 1269 * @param[in] item_flags 1270 * Bit-fields that holds the items detected until now. 1271 * @param[in] target_protocol 1272 * The next protocol in the previous item. 1273 * @param[in] flow_mask 1274 * mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask. 1275 * @param[out] error 1276 * Pointer to error structure. 1277 * 1278 * @return 1279 * 0 on success, a negative errno value otherwise and rte_errno is set. 1280 */ 1281 int 1282 mlx5_flow_validate_item_udp(const struct rte_flow_item *item, 1283 uint64_t item_flags, 1284 uint8_t target_protocol, 1285 struct rte_flow_error *error) 1286 { 1287 const struct rte_flow_item_udp *mask = item->mask; 1288 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1289 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1290 MLX5_FLOW_LAYER_OUTER_L3; 1291 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1292 MLX5_FLOW_LAYER_OUTER_L4; 1293 int ret; 1294 1295 if (target_protocol != 0xff && target_protocol != IPPROTO_UDP) 1296 return rte_flow_error_set(error, EINVAL, 1297 RTE_FLOW_ERROR_TYPE_ITEM, item, 1298 "protocol filtering not compatible" 1299 " with UDP layer"); 1300 if (!(item_flags & l3m)) 1301 return rte_flow_error_set(error, EINVAL, 1302 RTE_FLOW_ERROR_TYPE_ITEM, item, 1303 "L3 is mandatory to filter on L4"); 1304 if (item_flags & l4m) 1305 return rte_flow_error_set(error, EINVAL, 1306 RTE_FLOW_ERROR_TYPE_ITEM, item, 1307 "multiple L4 layers not supported"); 1308 if (!mask) 1309 mask = &rte_flow_item_udp_mask; 1310 ret = mlx5_flow_item_acceptable 1311 (item, (const uint8_t *)mask, 1312 (const uint8_t *)&rte_flow_item_udp_mask, 1313 sizeof(struct rte_flow_item_udp), error); 1314 if (ret < 0) 1315 return ret; 1316 return 0; 1317 } 1318 1319 /** 1320 * Validate TCP item. 1321 * 1322 * @param[in] item 1323 * Item specification. 1324 * @param[in] item_flags 1325 * Bit-fields that holds the items detected until now. 1326 * @param[in] target_protocol 1327 * The next protocol in the previous item. 1328 * @param[out] error 1329 * Pointer to error structure. 1330 * 1331 * @return 1332 * 0 on success, a negative errno value otherwise and rte_errno is set. 1333 */ 1334 int 1335 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item, 1336 uint64_t item_flags, 1337 uint8_t target_protocol, 1338 const struct rte_flow_item_tcp *flow_mask, 1339 struct rte_flow_error *error) 1340 { 1341 const struct rte_flow_item_tcp *mask = item->mask; 1342 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1343 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1344 MLX5_FLOW_LAYER_OUTER_L3; 1345 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1346 MLX5_FLOW_LAYER_OUTER_L4; 1347 int ret; 1348 1349 assert(flow_mask); 1350 if (target_protocol != 0xff && target_protocol != IPPROTO_TCP) 1351 return rte_flow_error_set(error, EINVAL, 1352 RTE_FLOW_ERROR_TYPE_ITEM, item, 1353 "protocol filtering not compatible" 1354 " with TCP layer"); 1355 if (!(item_flags & l3m)) 1356 return rte_flow_error_set(error, EINVAL, 1357 RTE_FLOW_ERROR_TYPE_ITEM, item, 1358 "L3 is mandatory to filter on L4"); 1359 if (item_flags & l4m) 1360 return rte_flow_error_set(error, EINVAL, 1361 RTE_FLOW_ERROR_TYPE_ITEM, item, 1362 "multiple L4 layers not supported"); 1363 if (!mask) 1364 mask = &rte_flow_item_tcp_mask; 1365 ret = mlx5_flow_item_acceptable 1366 (item, (const uint8_t *)mask, 1367 (const uint8_t *)flow_mask, 1368 sizeof(struct rte_flow_item_tcp), error); 1369 if (ret < 0) 1370 return ret; 1371 return 0; 1372 } 1373 1374 /** 1375 * Validate VXLAN item. 1376 * 1377 * @param[in] item 1378 * Item specification. 1379 * @param[in] item_flags 1380 * Bit-fields that holds the items detected until now. 1381 * @param[in] target_protocol 1382 * The next protocol in the previous item. 1383 * @param[out] error 1384 * Pointer to error structure. 1385 * 1386 * @return 1387 * 0 on success, a negative errno value otherwise and rte_errno is set. 1388 */ 1389 int 1390 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item, 1391 uint64_t item_flags, 1392 struct rte_flow_error *error) 1393 { 1394 const struct rte_flow_item_vxlan *spec = item->spec; 1395 const struct rte_flow_item_vxlan *mask = item->mask; 1396 int ret; 1397 union vni { 1398 uint32_t vlan_id; 1399 uint8_t vni[4]; 1400 } id = { .vlan_id = 0, }; 1401 uint32_t vlan_id = 0; 1402 1403 1404 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1405 return rte_flow_error_set(error, ENOTSUP, 1406 RTE_FLOW_ERROR_TYPE_ITEM, item, 1407 "multiple tunnel layers not" 1408 " supported"); 1409 /* 1410 * Verify only UDPv4 is present as defined in 1411 * https://tools.ietf.org/html/rfc7348 1412 */ 1413 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 1414 return rte_flow_error_set(error, EINVAL, 1415 RTE_FLOW_ERROR_TYPE_ITEM, item, 1416 "no outer UDP layer found"); 1417 if (!mask) 1418 mask = &rte_flow_item_vxlan_mask; 1419 ret = mlx5_flow_item_acceptable 1420 (item, (const uint8_t *)mask, 1421 (const uint8_t *)&rte_flow_item_vxlan_mask, 1422 sizeof(struct rte_flow_item_vxlan), 1423 error); 1424 if (ret < 0) 1425 return ret; 1426 if (spec) { 1427 memcpy(&id.vni[1], spec->vni, 3); 1428 vlan_id = id.vlan_id; 1429 memcpy(&id.vni[1], mask->vni, 3); 1430 vlan_id &= id.vlan_id; 1431 } 1432 /* 1433 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if 1434 * only this layer is defined in the Verbs specification it is 1435 * interpreted as wildcard and all packets will match this 1436 * rule, if it follows a full stack layer (ex: eth / ipv4 / 1437 * udp), all packets matching the layers before will also 1438 * match this rule. To avoid such situation, VNI 0 is 1439 * currently refused. 1440 */ 1441 if (!vlan_id) 1442 return rte_flow_error_set(error, ENOTSUP, 1443 RTE_FLOW_ERROR_TYPE_ITEM, item, 1444 "VXLAN vni cannot be 0"); 1445 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 1446 return rte_flow_error_set(error, ENOTSUP, 1447 RTE_FLOW_ERROR_TYPE_ITEM, item, 1448 "VXLAN tunnel must be fully defined"); 1449 return 0; 1450 } 1451 1452 /** 1453 * Validate VXLAN_GPE item. 1454 * 1455 * @param[in] item 1456 * Item specification. 1457 * @param[in] item_flags 1458 * Bit-fields that holds the items detected until now. 1459 * @param[in] priv 1460 * Pointer to the private data structure. 1461 * @param[in] target_protocol 1462 * The next protocol in the previous item. 1463 * @param[out] error 1464 * Pointer to error structure. 1465 * 1466 * @return 1467 * 0 on success, a negative errno value otherwise and rte_errno is set. 1468 */ 1469 int 1470 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item, 1471 uint64_t item_flags, 1472 struct rte_eth_dev *dev, 1473 struct rte_flow_error *error) 1474 { 1475 struct priv *priv = dev->data->dev_private; 1476 const struct rte_flow_item_vxlan_gpe *spec = item->spec; 1477 const struct rte_flow_item_vxlan_gpe *mask = item->mask; 1478 int ret; 1479 union vni { 1480 uint32_t vlan_id; 1481 uint8_t vni[4]; 1482 } id = { .vlan_id = 0, }; 1483 uint32_t vlan_id = 0; 1484 1485 if (!priv->config.l3_vxlan_en) 1486 return rte_flow_error_set(error, ENOTSUP, 1487 RTE_FLOW_ERROR_TYPE_ITEM, item, 1488 "L3 VXLAN is not enabled by device" 1489 " parameter and/or not configured in" 1490 " firmware"); 1491 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1492 return rte_flow_error_set(error, ENOTSUP, 1493 RTE_FLOW_ERROR_TYPE_ITEM, item, 1494 "multiple tunnel layers not" 1495 " supported"); 1496 /* 1497 * Verify only UDPv4 is present as defined in 1498 * https://tools.ietf.org/html/rfc7348 1499 */ 1500 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 1501 return rte_flow_error_set(error, EINVAL, 1502 RTE_FLOW_ERROR_TYPE_ITEM, item, 1503 "no outer UDP layer found"); 1504 if (!mask) 1505 mask = &rte_flow_item_vxlan_gpe_mask; 1506 ret = mlx5_flow_item_acceptable 1507 (item, (const uint8_t *)mask, 1508 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask, 1509 sizeof(struct rte_flow_item_vxlan_gpe), 1510 error); 1511 if (ret < 0) 1512 return ret; 1513 if (spec) { 1514 if (spec->protocol) 1515 return rte_flow_error_set(error, ENOTSUP, 1516 RTE_FLOW_ERROR_TYPE_ITEM, 1517 item, 1518 "VxLAN-GPE protocol" 1519 " not supported"); 1520 memcpy(&id.vni[1], spec->vni, 3); 1521 vlan_id = id.vlan_id; 1522 memcpy(&id.vni[1], mask->vni, 3); 1523 vlan_id &= id.vlan_id; 1524 } 1525 /* 1526 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this 1527 * layer is defined in the Verbs specification it is interpreted as 1528 * wildcard and all packets will match this rule, if it follows a full 1529 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers 1530 * before will also match this rule. To avoid such situation, VNI 0 1531 * is currently refused. 1532 */ 1533 if (!vlan_id) 1534 return rte_flow_error_set(error, ENOTSUP, 1535 RTE_FLOW_ERROR_TYPE_ITEM, item, 1536 "VXLAN-GPE vni cannot be 0"); 1537 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 1538 return rte_flow_error_set(error, ENOTSUP, 1539 RTE_FLOW_ERROR_TYPE_ITEM, item, 1540 "VXLAN-GPE tunnel must be fully" 1541 " defined"); 1542 return 0; 1543 } 1544 1545 /** 1546 * Validate GRE item. 1547 * 1548 * @param[in] item 1549 * Item specification. 1550 * @param[in] item_flags 1551 * Bit flags to mark detected items. 1552 * @param[in] target_protocol 1553 * The next protocol in the previous item. 1554 * @param[out] error 1555 * Pointer to error structure. 1556 * 1557 * @return 1558 * 0 on success, a negative errno value otherwise and rte_errno is set. 1559 */ 1560 int 1561 mlx5_flow_validate_item_gre(const struct rte_flow_item *item, 1562 uint64_t item_flags, 1563 uint8_t target_protocol, 1564 struct rte_flow_error *error) 1565 { 1566 const struct rte_flow_item_gre *spec __rte_unused = item->spec; 1567 const struct rte_flow_item_gre *mask = item->mask; 1568 int ret; 1569 1570 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 1571 return rte_flow_error_set(error, EINVAL, 1572 RTE_FLOW_ERROR_TYPE_ITEM, item, 1573 "protocol filtering not compatible" 1574 " with this GRE layer"); 1575 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1576 return rte_flow_error_set(error, ENOTSUP, 1577 RTE_FLOW_ERROR_TYPE_ITEM, item, 1578 "multiple tunnel layers not" 1579 " supported"); 1580 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 1581 return rte_flow_error_set(error, ENOTSUP, 1582 RTE_FLOW_ERROR_TYPE_ITEM, item, 1583 "L3 Layer is missing"); 1584 if (!mask) 1585 mask = &rte_flow_item_gre_mask; 1586 ret = mlx5_flow_item_acceptable 1587 (item, (const uint8_t *)mask, 1588 (const uint8_t *)&rte_flow_item_gre_mask, 1589 sizeof(struct rte_flow_item_gre), error); 1590 if (ret < 0) 1591 return ret; 1592 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT 1593 if (spec && (spec->protocol & mask->protocol)) 1594 return rte_flow_error_set(error, ENOTSUP, 1595 RTE_FLOW_ERROR_TYPE_ITEM, item, 1596 "without MPLS support the" 1597 " specification cannot be used for" 1598 " filtering"); 1599 #endif 1600 return 0; 1601 } 1602 1603 /** 1604 * Validate MPLS item. 1605 * 1606 * @param[in] dev 1607 * Pointer to the rte_eth_dev structure. 1608 * @param[in] item 1609 * Item specification. 1610 * @param[in] item_flags 1611 * Bit-fields that holds the items detected until now. 1612 * @param[in] prev_layer 1613 * The protocol layer indicated in previous item. 1614 * @param[out] error 1615 * Pointer to error structure. 1616 * 1617 * @return 1618 * 0 on success, a negative errno value otherwise and rte_errno is set. 1619 */ 1620 int 1621 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused, 1622 const struct rte_flow_item *item __rte_unused, 1623 uint64_t item_flags __rte_unused, 1624 uint64_t prev_layer __rte_unused, 1625 struct rte_flow_error *error) 1626 { 1627 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT 1628 const struct rte_flow_item_mpls *mask = item->mask; 1629 struct priv *priv = dev->data->dev_private; 1630 int ret; 1631 1632 if (!priv->config.mpls_en) 1633 return rte_flow_error_set(error, ENOTSUP, 1634 RTE_FLOW_ERROR_TYPE_ITEM, item, 1635 "MPLS not supported or" 1636 " disabled in firmware" 1637 " configuration."); 1638 /* MPLS over IP, UDP, GRE is allowed */ 1639 if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 | 1640 MLX5_FLOW_LAYER_OUTER_L4_UDP | 1641 MLX5_FLOW_LAYER_GRE))) 1642 return rte_flow_error_set(error, EINVAL, 1643 RTE_FLOW_ERROR_TYPE_ITEM, item, 1644 "protocol filtering not compatible" 1645 " with MPLS layer"); 1646 /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */ 1647 if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) && 1648 !(item_flags & MLX5_FLOW_LAYER_GRE)) 1649 return rte_flow_error_set(error, ENOTSUP, 1650 RTE_FLOW_ERROR_TYPE_ITEM, item, 1651 "multiple tunnel layers not" 1652 " supported"); 1653 if (!mask) 1654 mask = &rte_flow_item_mpls_mask; 1655 ret = mlx5_flow_item_acceptable 1656 (item, (const uint8_t *)mask, 1657 (const uint8_t *)&rte_flow_item_mpls_mask, 1658 sizeof(struct rte_flow_item_mpls), error); 1659 if (ret < 0) 1660 return ret; 1661 return 0; 1662 #endif 1663 return rte_flow_error_set(error, ENOTSUP, 1664 RTE_FLOW_ERROR_TYPE_ITEM, item, 1665 "MPLS is not supported by Verbs, please" 1666 " update."); 1667 } 1668 1669 static int 1670 flow_null_validate(struct rte_eth_dev *dev __rte_unused, 1671 const struct rte_flow_attr *attr __rte_unused, 1672 const struct rte_flow_item items[] __rte_unused, 1673 const struct rte_flow_action actions[] __rte_unused, 1674 struct rte_flow_error *error __rte_unused) 1675 { 1676 rte_errno = ENOTSUP; 1677 return -rte_errno; 1678 } 1679 1680 static struct mlx5_flow * 1681 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused, 1682 const struct rte_flow_item items[] __rte_unused, 1683 const struct rte_flow_action actions[] __rte_unused, 1684 struct rte_flow_error *error __rte_unused) 1685 { 1686 rte_errno = ENOTSUP; 1687 return NULL; 1688 } 1689 1690 static int 1691 flow_null_translate(struct rte_eth_dev *dev __rte_unused, 1692 struct mlx5_flow *dev_flow __rte_unused, 1693 const struct rte_flow_attr *attr __rte_unused, 1694 const struct rte_flow_item items[] __rte_unused, 1695 const struct rte_flow_action actions[] __rte_unused, 1696 struct rte_flow_error *error __rte_unused) 1697 { 1698 rte_errno = ENOTSUP; 1699 return -rte_errno; 1700 } 1701 1702 static int 1703 flow_null_apply(struct rte_eth_dev *dev __rte_unused, 1704 struct rte_flow *flow __rte_unused, 1705 struct rte_flow_error *error __rte_unused) 1706 { 1707 rte_errno = ENOTSUP; 1708 return -rte_errno; 1709 } 1710 1711 static void 1712 flow_null_remove(struct rte_eth_dev *dev __rte_unused, 1713 struct rte_flow *flow __rte_unused) 1714 { 1715 } 1716 1717 static void 1718 flow_null_destroy(struct rte_eth_dev *dev __rte_unused, 1719 struct rte_flow *flow __rte_unused) 1720 { 1721 } 1722 1723 static int 1724 flow_null_query(struct rte_eth_dev *dev __rte_unused, 1725 struct rte_flow *flow __rte_unused, 1726 const struct rte_flow_action *actions __rte_unused, 1727 void *data __rte_unused, 1728 struct rte_flow_error *error __rte_unused) 1729 { 1730 rte_errno = ENOTSUP; 1731 return -rte_errno; 1732 } 1733 1734 /* Void driver to protect from null pointer reference. */ 1735 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = { 1736 .validate = flow_null_validate, 1737 .prepare = flow_null_prepare, 1738 .translate = flow_null_translate, 1739 .apply = flow_null_apply, 1740 .remove = flow_null_remove, 1741 .destroy = flow_null_destroy, 1742 .query = flow_null_query, 1743 }; 1744 1745 /** 1746 * Select flow driver type according to flow attributes and device 1747 * configuration. 1748 * 1749 * @param[in] dev 1750 * Pointer to the dev structure. 1751 * @param[in] attr 1752 * Pointer to the flow attributes. 1753 * 1754 * @return 1755 * flow driver type, MLX5_FLOW_TYPE_MAX otherwise. 1756 */ 1757 static enum mlx5_flow_drv_type 1758 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr) 1759 { 1760 struct priv *priv = dev->data->dev_private; 1761 enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX; 1762 1763 if (attr->transfer) 1764 type = MLX5_FLOW_TYPE_TCF; 1765 else 1766 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV : 1767 MLX5_FLOW_TYPE_VERBS; 1768 return type; 1769 } 1770 1771 #define flow_get_drv_ops(type) flow_drv_ops[type] 1772 1773 /** 1774 * Flow driver validation API. This abstracts calling driver specific functions. 1775 * The type of flow driver is determined according to flow attributes. 1776 * 1777 * @param[in] dev 1778 * Pointer to the dev structure. 1779 * @param[in] attr 1780 * Pointer to the flow attributes. 1781 * @param[in] items 1782 * Pointer to the list of items. 1783 * @param[in] actions 1784 * Pointer to the list of actions. 1785 * @param[out] error 1786 * Pointer to the error structure. 1787 * 1788 * @return 1789 * 0 on success, a negative errno value otherwise and rte_ernno is set. 1790 */ 1791 static inline int 1792 flow_drv_validate(struct rte_eth_dev *dev, 1793 const struct rte_flow_attr *attr, 1794 const struct rte_flow_item items[], 1795 const struct rte_flow_action actions[], 1796 struct rte_flow_error *error) 1797 { 1798 const struct mlx5_flow_driver_ops *fops; 1799 enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr); 1800 1801 fops = flow_get_drv_ops(type); 1802 return fops->validate(dev, attr, items, actions, error); 1803 } 1804 1805 /** 1806 * Flow driver preparation API. This abstracts calling driver specific 1807 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 1808 * calculates the size of memory required for device flow, allocates the memory, 1809 * initializes the device flow and returns the pointer. 1810 * 1811 * @note 1812 * This function initializes device flow structure such as dv, tcf or verbs in 1813 * struct mlx5_flow. However, it is caller's responsibility to initialize the 1814 * rest. For example, adding returning device flow to flow->dev_flow list and 1815 * setting backward reference to the flow should be done out of this function. 1816 * layers field is not filled either. 1817 * 1818 * @param[in] attr 1819 * Pointer to the flow attributes. 1820 * @param[in] items 1821 * Pointer to the list of items. 1822 * @param[in] actions 1823 * Pointer to the list of actions. 1824 * @param[out] error 1825 * Pointer to the error structure. 1826 * 1827 * @return 1828 * Pointer to device flow on success, otherwise NULL and rte_ernno is set. 1829 */ 1830 static inline struct mlx5_flow * 1831 flow_drv_prepare(const struct rte_flow *flow, 1832 const struct rte_flow_attr *attr, 1833 const struct rte_flow_item items[], 1834 const struct rte_flow_action actions[], 1835 struct rte_flow_error *error) 1836 { 1837 const struct mlx5_flow_driver_ops *fops; 1838 enum mlx5_flow_drv_type type = flow->drv_type; 1839 1840 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1841 fops = flow_get_drv_ops(type); 1842 return fops->prepare(attr, items, actions, error); 1843 } 1844 1845 /** 1846 * Flow driver translation API. This abstracts calling driver specific 1847 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 1848 * translates a generic flow into a driver flow. flow_drv_prepare() must 1849 * precede. 1850 * 1851 * @note 1852 * dev_flow->layers could be filled as a result of parsing during translation 1853 * if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled 1854 * if necessary. As a flow can have multiple dev_flows by RSS flow expansion, 1855 * flow->actions could be overwritten even though all the expanded dev_flows 1856 * have the same actions. 1857 * 1858 * @param[in] dev 1859 * Pointer to the rte dev structure. 1860 * @param[in, out] dev_flow 1861 * Pointer to the mlx5 flow. 1862 * @param[in] attr 1863 * Pointer to the flow attributes. 1864 * @param[in] items 1865 * Pointer to the list of items. 1866 * @param[in] actions 1867 * Pointer to the list of actions. 1868 * @param[out] error 1869 * Pointer to the error structure. 1870 * 1871 * @return 1872 * 0 on success, a negative errno value otherwise and rte_ernno is set. 1873 */ 1874 static inline int 1875 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow, 1876 const struct rte_flow_attr *attr, 1877 const struct rte_flow_item items[], 1878 const struct rte_flow_action actions[], 1879 struct rte_flow_error *error) 1880 { 1881 const struct mlx5_flow_driver_ops *fops; 1882 enum mlx5_flow_drv_type type = dev_flow->flow->drv_type; 1883 1884 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1885 fops = flow_get_drv_ops(type); 1886 return fops->translate(dev, dev_flow, attr, items, actions, error); 1887 } 1888 1889 /** 1890 * Flow driver apply API. This abstracts calling driver specific functions. 1891 * Parent flow (rte_flow) should have driver type (drv_type). It applies 1892 * translated driver flows on to device. flow_drv_translate() must precede. 1893 * 1894 * @param[in] dev 1895 * Pointer to Ethernet device structure. 1896 * @param[in, out] flow 1897 * Pointer to flow structure. 1898 * @param[out] error 1899 * Pointer to error structure. 1900 * 1901 * @return 1902 * 0 on success, a negative errno value otherwise and rte_errno is set. 1903 */ 1904 static inline int 1905 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow, 1906 struct rte_flow_error *error) 1907 { 1908 const struct mlx5_flow_driver_ops *fops; 1909 enum mlx5_flow_drv_type type = flow->drv_type; 1910 1911 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1912 fops = flow_get_drv_ops(type); 1913 return fops->apply(dev, flow, error); 1914 } 1915 1916 /** 1917 * Flow driver remove API. This abstracts calling driver specific functions. 1918 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 1919 * on device. All the resources of the flow should be freed by calling 1920 * flow_drv_destroy(). 1921 * 1922 * @param[in] dev 1923 * Pointer to Ethernet device. 1924 * @param[in, out] flow 1925 * Pointer to flow structure. 1926 */ 1927 static inline void 1928 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow) 1929 { 1930 const struct mlx5_flow_driver_ops *fops; 1931 enum mlx5_flow_drv_type type = flow->drv_type; 1932 1933 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1934 fops = flow_get_drv_ops(type); 1935 fops->remove(dev, flow); 1936 } 1937 1938 /** 1939 * Flow driver destroy API. This abstracts calling driver specific functions. 1940 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 1941 * on device and releases resources of the flow. 1942 * 1943 * @param[in] dev 1944 * Pointer to Ethernet device. 1945 * @param[in, out] flow 1946 * Pointer to flow structure. 1947 */ 1948 static inline void 1949 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow) 1950 { 1951 const struct mlx5_flow_driver_ops *fops; 1952 enum mlx5_flow_drv_type type = flow->drv_type; 1953 1954 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1955 fops = flow_get_drv_ops(type); 1956 fops->destroy(dev, flow); 1957 } 1958 1959 /** 1960 * Validate a flow supported by the NIC. 1961 * 1962 * @see rte_flow_validate() 1963 * @see rte_flow_ops 1964 */ 1965 int 1966 mlx5_flow_validate(struct rte_eth_dev *dev, 1967 const struct rte_flow_attr *attr, 1968 const struct rte_flow_item items[], 1969 const struct rte_flow_action actions[], 1970 struct rte_flow_error *error) 1971 { 1972 int ret; 1973 1974 ret = flow_drv_validate(dev, attr, items, actions, error); 1975 if (ret < 0) 1976 return ret; 1977 return 0; 1978 } 1979 1980 /** 1981 * Get RSS action from the action list. 1982 * 1983 * @param[in] actions 1984 * Pointer to the list of actions. 1985 * 1986 * @return 1987 * Pointer to the RSS action if exist, else return NULL. 1988 */ 1989 static const struct rte_flow_action_rss* 1990 flow_get_rss_action(const struct rte_flow_action actions[]) 1991 { 1992 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 1993 switch (actions->type) { 1994 case RTE_FLOW_ACTION_TYPE_RSS: 1995 return (const struct rte_flow_action_rss *) 1996 actions->conf; 1997 default: 1998 break; 1999 } 2000 } 2001 return NULL; 2002 } 2003 2004 static unsigned int 2005 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level) 2006 { 2007 const struct rte_flow_item *item; 2008 unsigned int has_vlan = 0; 2009 2010 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 2011 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) { 2012 has_vlan = 1; 2013 break; 2014 } 2015 } 2016 if (has_vlan) 2017 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN : 2018 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN; 2019 return rss_level < 2 ? MLX5_EXPANSION_ROOT : 2020 MLX5_EXPANSION_ROOT_OUTER; 2021 } 2022 2023 /** 2024 * Create a flow and add it to @p list. 2025 * 2026 * @param dev 2027 * Pointer to Ethernet device. 2028 * @param list 2029 * Pointer to a TAILQ flow list. 2030 * @param[in] attr 2031 * Flow rule attributes. 2032 * @param[in] items 2033 * Pattern specification (list terminated by the END pattern item). 2034 * @param[in] actions 2035 * Associated actions (list terminated by the END action). 2036 * @param[out] error 2037 * Perform verbose error reporting if not NULL. 2038 * 2039 * @return 2040 * A flow on success, NULL otherwise and rte_errno is set. 2041 */ 2042 static struct rte_flow * 2043 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list, 2044 const struct rte_flow_attr *attr, 2045 const struct rte_flow_item items[], 2046 const struct rte_flow_action actions[], 2047 struct rte_flow_error *error) 2048 { 2049 struct rte_flow *flow = NULL; 2050 struct mlx5_flow *dev_flow; 2051 const struct rte_flow_action_rss *rss; 2052 union { 2053 struct rte_flow_expand_rss buf; 2054 uint8_t buffer[2048]; 2055 } expand_buffer; 2056 struct rte_flow_expand_rss *buf = &expand_buffer.buf; 2057 int ret; 2058 uint32_t i; 2059 uint32_t flow_size; 2060 2061 ret = flow_drv_validate(dev, attr, items, actions, error); 2062 if (ret < 0) 2063 return NULL; 2064 flow_size = sizeof(struct rte_flow); 2065 rss = flow_get_rss_action(actions); 2066 if (rss) 2067 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t), 2068 sizeof(void *)); 2069 else 2070 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *)); 2071 flow = rte_calloc(__func__, 1, flow_size, 0); 2072 flow->drv_type = flow_get_drv_type(dev, attr); 2073 assert(flow->drv_type > MLX5_FLOW_TYPE_MIN && 2074 flow->drv_type < MLX5_FLOW_TYPE_MAX); 2075 flow->queue = (void *)(flow + 1); 2076 LIST_INIT(&flow->dev_flows); 2077 if (rss && rss->types) { 2078 unsigned int graph_root; 2079 2080 graph_root = find_graph_root(items, rss->level); 2081 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer), 2082 items, rss->types, 2083 mlx5_support_expansion, 2084 graph_root); 2085 assert(ret > 0 && 2086 (unsigned int)ret < sizeof(expand_buffer.buffer)); 2087 } else { 2088 buf->entries = 1; 2089 buf->entry[0].pattern = (void *)(uintptr_t)items; 2090 } 2091 for (i = 0; i < buf->entries; ++i) { 2092 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern, 2093 actions, error); 2094 if (!dev_flow) 2095 goto error; 2096 dev_flow->flow = flow; 2097 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next); 2098 ret = flow_drv_translate(dev, dev_flow, attr, 2099 buf->entry[i].pattern, 2100 actions, error); 2101 if (ret < 0) 2102 goto error; 2103 } 2104 if (dev->data->dev_started) { 2105 ret = flow_drv_apply(dev, flow, error); 2106 if (ret < 0) 2107 goto error; 2108 } 2109 TAILQ_INSERT_TAIL(list, flow, next); 2110 flow_rxq_flags_set(dev, flow); 2111 return flow; 2112 error: 2113 ret = rte_errno; /* Save rte_errno before cleanup. */ 2114 assert(flow); 2115 flow_drv_destroy(dev, flow); 2116 rte_free(flow); 2117 rte_errno = ret; /* Restore rte_errno. */ 2118 return NULL; 2119 } 2120 2121 /** 2122 * Create a flow. 2123 * 2124 * @see rte_flow_create() 2125 * @see rte_flow_ops 2126 */ 2127 struct rte_flow * 2128 mlx5_flow_create(struct rte_eth_dev *dev, 2129 const struct rte_flow_attr *attr, 2130 const struct rte_flow_item items[], 2131 const struct rte_flow_action actions[], 2132 struct rte_flow_error *error) 2133 { 2134 return flow_list_create(dev, 2135 &((struct priv *)dev->data->dev_private)->flows, 2136 attr, items, actions, error); 2137 } 2138 2139 /** 2140 * Destroy a flow in a list. 2141 * 2142 * @param dev 2143 * Pointer to Ethernet device. 2144 * @param list 2145 * Pointer to a TAILQ flow list. 2146 * @param[in] flow 2147 * Flow to destroy. 2148 */ 2149 static void 2150 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list, 2151 struct rte_flow *flow) 2152 { 2153 /* 2154 * Update RX queue flags only if port is started, otherwise it is 2155 * already clean. 2156 */ 2157 if (dev->data->dev_started) 2158 flow_rxq_flags_trim(dev, flow); 2159 flow_drv_destroy(dev, flow); 2160 TAILQ_REMOVE(list, flow, next); 2161 rte_free(flow->fdir); 2162 rte_free(flow); 2163 } 2164 2165 /** 2166 * Destroy all flows. 2167 * 2168 * @param dev 2169 * Pointer to Ethernet device. 2170 * @param list 2171 * Pointer to a TAILQ flow list. 2172 */ 2173 void 2174 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list) 2175 { 2176 while (!TAILQ_EMPTY(list)) { 2177 struct rte_flow *flow; 2178 2179 flow = TAILQ_FIRST(list); 2180 flow_list_destroy(dev, list, flow); 2181 } 2182 } 2183 2184 /** 2185 * Remove all flows. 2186 * 2187 * @param dev 2188 * Pointer to Ethernet device. 2189 * @param list 2190 * Pointer to a TAILQ flow list. 2191 */ 2192 void 2193 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list) 2194 { 2195 struct rte_flow *flow; 2196 2197 TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next) 2198 flow_drv_remove(dev, flow); 2199 flow_rxq_flags_clear(dev); 2200 } 2201 2202 /** 2203 * Add all flows. 2204 * 2205 * @param dev 2206 * Pointer to Ethernet device. 2207 * @param list 2208 * Pointer to a TAILQ flow list. 2209 * 2210 * @return 2211 * 0 on success, a negative errno value otherwise and rte_errno is set. 2212 */ 2213 int 2214 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list) 2215 { 2216 struct rte_flow *flow; 2217 struct rte_flow_error error; 2218 int ret = 0; 2219 2220 TAILQ_FOREACH(flow, list, next) { 2221 ret = flow_drv_apply(dev, flow, &error); 2222 if (ret < 0) 2223 goto error; 2224 flow_rxq_flags_set(dev, flow); 2225 } 2226 return 0; 2227 error: 2228 ret = rte_errno; /* Save rte_errno before cleanup. */ 2229 mlx5_flow_stop(dev, list); 2230 rte_errno = ret; /* Restore rte_errno. */ 2231 return -rte_errno; 2232 } 2233 2234 /** 2235 * Verify the flow list is empty 2236 * 2237 * @param dev 2238 * Pointer to Ethernet device. 2239 * 2240 * @return the number of flows not released. 2241 */ 2242 int 2243 mlx5_flow_verify(struct rte_eth_dev *dev) 2244 { 2245 struct priv *priv = dev->data->dev_private; 2246 struct rte_flow *flow; 2247 int ret = 0; 2248 2249 TAILQ_FOREACH(flow, &priv->flows, next) { 2250 DRV_LOG(DEBUG, "port %u flow %p still referenced", 2251 dev->data->port_id, (void *)flow); 2252 ++ret; 2253 } 2254 return ret; 2255 } 2256 2257 /** 2258 * Enable a control flow configured from the control plane. 2259 * 2260 * @param dev 2261 * Pointer to Ethernet device. 2262 * @param eth_spec 2263 * An Ethernet flow spec to apply. 2264 * @param eth_mask 2265 * An Ethernet flow mask to apply. 2266 * @param vlan_spec 2267 * A VLAN flow spec to apply. 2268 * @param vlan_mask 2269 * A VLAN flow mask to apply. 2270 * 2271 * @return 2272 * 0 on success, a negative errno value otherwise and rte_errno is set. 2273 */ 2274 int 2275 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 2276 struct rte_flow_item_eth *eth_spec, 2277 struct rte_flow_item_eth *eth_mask, 2278 struct rte_flow_item_vlan *vlan_spec, 2279 struct rte_flow_item_vlan *vlan_mask) 2280 { 2281 struct priv *priv = dev->data->dev_private; 2282 const struct rte_flow_attr attr = { 2283 .ingress = 1, 2284 .priority = MLX5_FLOW_PRIO_RSVD, 2285 }; 2286 struct rte_flow_item items[] = { 2287 { 2288 .type = RTE_FLOW_ITEM_TYPE_ETH, 2289 .spec = eth_spec, 2290 .last = NULL, 2291 .mask = eth_mask, 2292 }, 2293 { 2294 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 2295 RTE_FLOW_ITEM_TYPE_END, 2296 .spec = vlan_spec, 2297 .last = NULL, 2298 .mask = vlan_mask, 2299 }, 2300 { 2301 .type = RTE_FLOW_ITEM_TYPE_END, 2302 }, 2303 }; 2304 uint16_t queue[priv->reta_idx_n]; 2305 struct rte_flow_action_rss action_rss = { 2306 .func = RTE_ETH_HASH_FUNCTION_DEFAULT, 2307 .level = 0, 2308 .types = priv->rss_conf.rss_hf, 2309 .key_len = priv->rss_conf.rss_key_len, 2310 .queue_num = priv->reta_idx_n, 2311 .key = priv->rss_conf.rss_key, 2312 .queue = queue, 2313 }; 2314 struct rte_flow_action actions[] = { 2315 { 2316 .type = RTE_FLOW_ACTION_TYPE_RSS, 2317 .conf = &action_rss, 2318 }, 2319 { 2320 .type = RTE_FLOW_ACTION_TYPE_END, 2321 }, 2322 }; 2323 struct rte_flow *flow; 2324 struct rte_flow_error error; 2325 unsigned int i; 2326 2327 if (!priv->reta_idx_n || !priv->rxqs_n) { 2328 rte_errno = EINVAL; 2329 return -rte_errno; 2330 } 2331 for (i = 0; i != priv->reta_idx_n; ++i) 2332 queue[i] = (*priv->reta_idx)[i]; 2333 flow = flow_list_create(dev, &priv->ctrl_flows, 2334 &attr, items, actions, &error); 2335 if (!flow) 2336 return -rte_errno; 2337 return 0; 2338 } 2339 2340 /** 2341 * Enable a flow control configured from the control plane. 2342 * 2343 * @param dev 2344 * Pointer to Ethernet device. 2345 * @param eth_spec 2346 * An Ethernet flow spec to apply. 2347 * @param eth_mask 2348 * An Ethernet flow mask to apply. 2349 * 2350 * @return 2351 * 0 on success, a negative errno value otherwise and rte_errno is set. 2352 */ 2353 int 2354 mlx5_ctrl_flow(struct rte_eth_dev *dev, 2355 struct rte_flow_item_eth *eth_spec, 2356 struct rte_flow_item_eth *eth_mask) 2357 { 2358 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 2359 } 2360 2361 /** 2362 * Destroy a flow. 2363 * 2364 * @see rte_flow_destroy() 2365 * @see rte_flow_ops 2366 */ 2367 int 2368 mlx5_flow_destroy(struct rte_eth_dev *dev, 2369 struct rte_flow *flow, 2370 struct rte_flow_error *error __rte_unused) 2371 { 2372 struct priv *priv = dev->data->dev_private; 2373 2374 flow_list_destroy(dev, &priv->flows, flow); 2375 return 0; 2376 } 2377 2378 /** 2379 * Destroy all flows. 2380 * 2381 * @see rte_flow_flush() 2382 * @see rte_flow_ops 2383 */ 2384 int 2385 mlx5_flow_flush(struct rte_eth_dev *dev, 2386 struct rte_flow_error *error __rte_unused) 2387 { 2388 struct priv *priv = dev->data->dev_private; 2389 2390 mlx5_flow_list_flush(dev, &priv->flows); 2391 return 0; 2392 } 2393 2394 /** 2395 * Isolated mode. 2396 * 2397 * @see rte_flow_isolate() 2398 * @see rte_flow_ops 2399 */ 2400 int 2401 mlx5_flow_isolate(struct rte_eth_dev *dev, 2402 int enable, 2403 struct rte_flow_error *error) 2404 { 2405 struct priv *priv = dev->data->dev_private; 2406 2407 if (dev->data->dev_started) { 2408 rte_flow_error_set(error, EBUSY, 2409 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2410 NULL, 2411 "port must be stopped first"); 2412 return -rte_errno; 2413 } 2414 priv->isolated = !!enable; 2415 if (enable) 2416 dev->dev_ops = &mlx5_dev_ops_isolate; 2417 else 2418 dev->dev_ops = &mlx5_dev_ops; 2419 return 0; 2420 } 2421 2422 /** 2423 * Query a flow. 2424 * 2425 * @see rte_flow_query() 2426 * @see rte_flow_ops 2427 */ 2428 static int 2429 flow_drv_query(struct rte_eth_dev *dev, 2430 struct rte_flow *flow, 2431 const struct rte_flow_action *actions, 2432 void *data, 2433 struct rte_flow_error *error) 2434 { 2435 const struct mlx5_flow_driver_ops *fops; 2436 enum mlx5_flow_drv_type ftype = flow->drv_type; 2437 2438 assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX); 2439 fops = flow_get_drv_ops(ftype); 2440 2441 return fops->query(dev, flow, actions, data, error); 2442 } 2443 2444 /** 2445 * Query a flow. 2446 * 2447 * @see rte_flow_query() 2448 * @see rte_flow_ops 2449 */ 2450 int 2451 mlx5_flow_query(struct rte_eth_dev *dev, 2452 struct rte_flow *flow, 2453 const struct rte_flow_action *actions, 2454 void *data, 2455 struct rte_flow_error *error) 2456 { 2457 int ret; 2458 2459 ret = flow_drv_query(dev, flow, actions, data, error); 2460 if (ret < 0) 2461 return ret; 2462 return 0; 2463 } 2464 2465 /** 2466 * Convert a flow director filter to a generic flow. 2467 * 2468 * @param dev 2469 * Pointer to Ethernet device. 2470 * @param fdir_filter 2471 * Flow director filter to add. 2472 * @param attributes 2473 * Generic flow parameters structure. 2474 * 2475 * @return 2476 * 0 on success, a negative errno value otherwise and rte_errno is set. 2477 */ 2478 static int 2479 flow_fdir_filter_convert(struct rte_eth_dev *dev, 2480 const struct rte_eth_fdir_filter *fdir_filter, 2481 struct mlx5_fdir *attributes) 2482 { 2483 struct priv *priv = dev->data->dev_private; 2484 const struct rte_eth_fdir_input *input = &fdir_filter->input; 2485 const struct rte_eth_fdir_masks *mask = 2486 &dev->data->dev_conf.fdir_conf.mask; 2487 2488 /* Validate queue number. */ 2489 if (fdir_filter->action.rx_queue >= priv->rxqs_n) { 2490 DRV_LOG(ERR, "port %u invalid queue number %d", 2491 dev->data->port_id, fdir_filter->action.rx_queue); 2492 rte_errno = EINVAL; 2493 return -rte_errno; 2494 } 2495 attributes->attr.ingress = 1; 2496 attributes->items[0] = (struct rte_flow_item) { 2497 .type = RTE_FLOW_ITEM_TYPE_ETH, 2498 .spec = &attributes->l2, 2499 .mask = &attributes->l2_mask, 2500 }; 2501 switch (fdir_filter->action.behavior) { 2502 case RTE_ETH_FDIR_ACCEPT: 2503 attributes->actions[0] = (struct rte_flow_action){ 2504 .type = RTE_FLOW_ACTION_TYPE_QUEUE, 2505 .conf = &attributes->queue, 2506 }; 2507 break; 2508 case RTE_ETH_FDIR_REJECT: 2509 attributes->actions[0] = (struct rte_flow_action){ 2510 .type = RTE_FLOW_ACTION_TYPE_DROP, 2511 }; 2512 break; 2513 default: 2514 DRV_LOG(ERR, "port %u invalid behavior %d", 2515 dev->data->port_id, 2516 fdir_filter->action.behavior); 2517 rte_errno = ENOTSUP; 2518 return -rte_errno; 2519 } 2520 attributes->queue.index = fdir_filter->action.rx_queue; 2521 /* Handle L3. */ 2522 switch (fdir_filter->input.flow_type) { 2523 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2524 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2525 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2526 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2527 .src_addr = input->flow.ip4_flow.src_ip, 2528 .dst_addr = input->flow.ip4_flow.dst_ip, 2529 .time_to_live = input->flow.ip4_flow.ttl, 2530 .type_of_service = input->flow.ip4_flow.tos, 2531 }; 2532 attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){ 2533 .src_addr = mask->ipv4_mask.src_ip, 2534 .dst_addr = mask->ipv4_mask.dst_ip, 2535 .time_to_live = mask->ipv4_mask.ttl, 2536 .type_of_service = mask->ipv4_mask.tos, 2537 .next_proto_id = mask->ipv4_mask.proto, 2538 }; 2539 attributes->items[1] = (struct rte_flow_item){ 2540 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2541 .spec = &attributes->l3, 2542 .mask = &attributes->l3_mask, 2543 }; 2544 break; 2545 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2546 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2547 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2548 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2549 .hop_limits = input->flow.ipv6_flow.hop_limits, 2550 .proto = input->flow.ipv6_flow.proto, 2551 }; 2552 2553 memcpy(attributes->l3.ipv6.hdr.src_addr, 2554 input->flow.ipv6_flow.src_ip, 2555 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2556 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2557 input->flow.ipv6_flow.dst_ip, 2558 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2559 memcpy(attributes->l3_mask.ipv6.hdr.src_addr, 2560 mask->ipv6_mask.src_ip, 2561 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 2562 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr, 2563 mask->ipv6_mask.dst_ip, 2564 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 2565 attributes->items[1] = (struct rte_flow_item){ 2566 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2567 .spec = &attributes->l3, 2568 .mask = &attributes->l3_mask, 2569 }; 2570 break; 2571 default: 2572 DRV_LOG(ERR, "port %u invalid flow type%d", 2573 dev->data->port_id, fdir_filter->input.flow_type); 2574 rte_errno = ENOTSUP; 2575 return -rte_errno; 2576 } 2577 /* Handle L4. */ 2578 switch (fdir_filter->input.flow_type) { 2579 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2580 attributes->l4.udp.hdr = (struct udp_hdr){ 2581 .src_port = input->flow.udp4_flow.src_port, 2582 .dst_port = input->flow.udp4_flow.dst_port, 2583 }; 2584 attributes->l4_mask.udp.hdr = (struct udp_hdr){ 2585 .src_port = mask->src_port_mask, 2586 .dst_port = mask->dst_port_mask, 2587 }; 2588 attributes->items[2] = (struct rte_flow_item){ 2589 .type = RTE_FLOW_ITEM_TYPE_UDP, 2590 .spec = &attributes->l4, 2591 .mask = &attributes->l4_mask, 2592 }; 2593 break; 2594 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2595 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2596 .src_port = input->flow.tcp4_flow.src_port, 2597 .dst_port = input->flow.tcp4_flow.dst_port, 2598 }; 2599 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){ 2600 .src_port = mask->src_port_mask, 2601 .dst_port = mask->dst_port_mask, 2602 }; 2603 attributes->items[2] = (struct rte_flow_item){ 2604 .type = RTE_FLOW_ITEM_TYPE_TCP, 2605 .spec = &attributes->l4, 2606 .mask = &attributes->l4_mask, 2607 }; 2608 break; 2609 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2610 attributes->l4.udp.hdr = (struct udp_hdr){ 2611 .src_port = input->flow.udp6_flow.src_port, 2612 .dst_port = input->flow.udp6_flow.dst_port, 2613 }; 2614 attributes->l4_mask.udp.hdr = (struct udp_hdr){ 2615 .src_port = mask->src_port_mask, 2616 .dst_port = mask->dst_port_mask, 2617 }; 2618 attributes->items[2] = (struct rte_flow_item){ 2619 .type = RTE_FLOW_ITEM_TYPE_UDP, 2620 .spec = &attributes->l4, 2621 .mask = &attributes->l4_mask, 2622 }; 2623 break; 2624 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2625 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2626 .src_port = input->flow.tcp6_flow.src_port, 2627 .dst_port = input->flow.tcp6_flow.dst_port, 2628 }; 2629 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){ 2630 .src_port = mask->src_port_mask, 2631 .dst_port = mask->dst_port_mask, 2632 }; 2633 attributes->items[2] = (struct rte_flow_item){ 2634 .type = RTE_FLOW_ITEM_TYPE_TCP, 2635 .spec = &attributes->l4, 2636 .mask = &attributes->l4_mask, 2637 }; 2638 break; 2639 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2640 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2641 break; 2642 default: 2643 DRV_LOG(ERR, "port %u invalid flow type%d", 2644 dev->data->port_id, fdir_filter->input.flow_type); 2645 rte_errno = ENOTSUP; 2646 return -rte_errno; 2647 } 2648 return 0; 2649 } 2650 2651 #define FLOW_FDIR_CMP(f1, f2, fld) \ 2652 memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld)) 2653 2654 /** 2655 * Compare two FDIR flows. If items and actions are identical, the two flows are 2656 * regarded as same. 2657 * 2658 * @param dev 2659 * Pointer to Ethernet device. 2660 * @param f1 2661 * FDIR flow to compare. 2662 * @param f2 2663 * FDIR flow to compare. 2664 * 2665 * @return 2666 * Zero on match, 1 otherwise. 2667 */ 2668 static int 2669 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2) 2670 { 2671 if (FLOW_FDIR_CMP(f1, f2, attr) || 2672 FLOW_FDIR_CMP(f1, f2, l2) || 2673 FLOW_FDIR_CMP(f1, f2, l2_mask) || 2674 FLOW_FDIR_CMP(f1, f2, l3) || 2675 FLOW_FDIR_CMP(f1, f2, l3_mask) || 2676 FLOW_FDIR_CMP(f1, f2, l4) || 2677 FLOW_FDIR_CMP(f1, f2, l4_mask) || 2678 FLOW_FDIR_CMP(f1, f2, actions[0].type)) 2679 return 1; 2680 if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE && 2681 FLOW_FDIR_CMP(f1, f2, queue)) 2682 return 1; 2683 return 0; 2684 } 2685 2686 /** 2687 * Search device flow list to find out a matched FDIR flow. 2688 * 2689 * @param dev 2690 * Pointer to Ethernet device. 2691 * @param fdir_flow 2692 * FDIR flow to lookup. 2693 * 2694 * @return 2695 * Pointer of flow if found, NULL otherwise. 2696 */ 2697 static struct rte_flow * 2698 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow) 2699 { 2700 struct priv *priv = dev->data->dev_private; 2701 struct rte_flow *flow = NULL; 2702 2703 assert(fdir_flow); 2704 TAILQ_FOREACH(flow, &priv->flows, next) { 2705 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) { 2706 DRV_LOG(DEBUG, "port %u found FDIR flow %p", 2707 dev->data->port_id, (void *)flow); 2708 break; 2709 } 2710 } 2711 return flow; 2712 } 2713 2714 /** 2715 * Add new flow director filter and store it in list. 2716 * 2717 * @param dev 2718 * Pointer to Ethernet device. 2719 * @param fdir_filter 2720 * Flow director filter to add. 2721 * 2722 * @return 2723 * 0 on success, a negative errno value otherwise and rte_errno is set. 2724 */ 2725 static int 2726 flow_fdir_filter_add(struct rte_eth_dev *dev, 2727 const struct rte_eth_fdir_filter *fdir_filter) 2728 { 2729 struct priv *priv = dev->data->dev_private; 2730 struct mlx5_fdir *fdir_flow; 2731 struct rte_flow *flow; 2732 int ret; 2733 2734 fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0); 2735 if (!fdir_flow) { 2736 rte_errno = ENOMEM; 2737 return -rte_errno; 2738 } 2739 ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow); 2740 if (ret) 2741 goto error; 2742 flow = flow_fdir_filter_lookup(dev, fdir_flow); 2743 if (flow) { 2744 rte_errno = EEXIST; 2745 goto error; 2746 } 2747 flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr, 2748 fdir_flow->items, fdir_flow->actions, NULL); 2749 if (!flow) 2750 goto error; 2751 assert(!flow->fdir); 2752 flow->fdir = fdir_flow; 2753 DRV_LOG(DEBUG, "port %u created FDIR flow %p", 2754 dev->data->port_id, (void *)flow); 2755 return 0; 2756 error: 2757 rte_free(fdir_flow); 2758 return -rte_errno; 2759 } 2760 2761 /** 2762 * Delete specific filter. 2763 * 2764 * @param dev 2765 * Pointer to Ethernet device. 2766 * @param fdir_filter 2767 * Filter to be deleted. 2768 * 2769 * @return 2770 * 0 on success, a negative errno value otherwise and rte_errno is set. 2771 */ 2772 static int 2773 flow_fdir_filter_delete(struct rte_eth_dev *dev, 2774 const struct rte_eth_fdir_filter *fdir_filter) 2775 { 2776 struct priv *priv = dev->data->dev_private; 2777 struct rte_flow *flow; 2778 struct mlx5_fdir fdir_flow = { 2779 .attr.group = 0, 2780 }; 2781 int ret; 2782 2783 ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow); 2784 if (ret) 2785 return -rte_errno; 2786 flow = flow_fdir_filter_lookup(dev, &fdir_flow); 2787 if (!flow) { 2788 rte_errno = ENOENT; 2789 return -rte_errno; 2790 } 2791 flow_list_destroy(dev, &priv->flows, flow); 2792 DRV_LOG(DEBUG, "port %u deleted FDIR flow %p", 2793 dev->data->port_id, (void *)flow); 2794 return 0; 2795 } 2796 2797 /** 2798 * Update queue for specific filter. 2799 * 2800 * @param dev 2801 * Pointer to Ethernet device. 2802 * @param fdir_filter 2803 * Filter to be updated. 2804 * 2805 * @return 2806 * 0 on success, a negative errno value otherwise and rte_errno is set. 2807 */ 2808 static int 2809 flow_fdir_filter_update(struct rte_eth_dev *dev, 2810 const struct rte_eth_fdir_filter *fdir_filter) 2811 { 2812 int ret; 2813 2814 ret = flow_fdir_filter_delete(dev, fdir_filter); 2815 if (ret) 2816 return ret; 2817 return flow_fdir_filter_add(dev, fdir_filter); 2818 } 2819 2820 /** 2821 * Flush all filters. 2822 * 2823 * @param dev 2824 * Pointer to Ethernet device. 2825 */ 2826 static void 2827 flow_fdir_filter_flush(struct rte_eth_dev *dev) 2828 { 2829 struct priv *priv = dev->data->dev_private; 2830 2831 mlx5_flow_list_flush(dev, &priv->flows); 2832 } 2833 2834 /** 2835 * Get flow director information. 2836 * 2837 * @param dev 2838 * Pointer to Ethernet device. 2839 * @param[out] fdir_info 2840 * Resulting flow director information. 2841 */ 2842 static void 2843 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info) 2844 { 2845 struct rte_eth_fdir_masks *mask = 2846 &dev->data->dev_conf.fdir_conf.mask; 2847 2848 fdir_info->mode = dev->data->dev_conf.fdir_conf.mode; 2849 fdir_info->guarant_spc = 0; 2850 rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask)); 2851 fdir_info->max_flexpayload = 0; 2852 fdir_info->flow_types_mask[0] = 0; 2853 fdir_info->flex_payload_unit = 0; 2854 fdir_info->max_flex_payload_segment_num = 0; 2855 fdir_info->flex_payload_limit = 0; 2856 memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf)); 2857 } 2858 2859 /** 2860 * Deal with flow director operations. 2861 * 2862 * @param dev 2863 * Pointer to Ethernet device. 2864 * @param filter_op 2865 * Operation to perform. 2866 * @param arg 2867 * Pointer to operation-specific structure. 2868 * 2869 * @return 2870 * 0 on success, a negative errno value otherwise and rte_errno is set. 2871 */ 2872 static int 2873 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op, 2874 void *arg) 2875 { 2876 enum rte_fdir_mode fdir_mode = 2877 dev->data->dev_conf.fdir_conf.mode; 2878 2879 if (filter_op == RTE_ETH_FILTER_NOP) 2880 return 0; 2881 if (fdir_mode != RTE_FDIR_MODE_PERFECT && 2882 fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2883 DRV_LOG(ERR, "port %u flow director mode %d not supported", 2884 dev->data->port_id, fdir_mode); 2885 rte_errno = EINVAL; 2886 return -rte_errno; 2887 } 2888 switch (filter_op) { 2889 case RTE_ETH_FILTER_ADD: 2890 return flow_fdir_filter_add(dev, arg); 2891 case RTE_ETH_FILTER_UPDATE: 2892 return flow_fdir_filter_update(dev, arg); 2893 case RTE_ETH_FILTER_DELETE: 2894 return flow_fdir_filter_delete(dev, arg); 2895 case RTE_ETH_FILTER_FLUSH: 2896 flow_fdir_filter_flush(dev); 2897 break; 2898 case RTE_ETH_FILTER_INFO: 2899 flow_fdir_info_get(dev, arg); 2900 break; 2901 default: 2902 DRV_LOG(DEBUG, "port %u unknown operation %u", 2903 dev->data->port_id, filter_op); 2904 rte_errno = EINVAL; 2905 return -rte_errno; 2906 } 2907 return 0; 2908 } 2909 2910 /** 2911 * Manage filter operations. 2912 * 2913 * @param dev 2914 * Pointer to Ethernet device structure. 2915 * @param filter_type 2916 * Filter type. 2917 * @param filter_op 2918 * Operation to perform. 2919 * @param arg 2920 * Pointer to operation-specific structure. 2921 * 2922 * @return 2923 * 0 on success, a negative errno value otherwise and rte_errno is set. 2924 */ 2925 int 2926 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 2927 enum rte_filter_type filter_type, 2928 enum rte_filter_op filter_op, 2929 void *arg) 2930 { 2931 switch (filter_type) { 2932 case RTE_ETH_FILTER_GENERIC: 2933 if (filter_op != RTE_ETH_FILTER_GET) { 2934 rte_errno = EINVAL; 2935 return -rte_errno; 2936 } 2937 *(const void **)arg = &mlx5_flow_ops; 2938 return 0; 2939 case RTE_ETH_FILTER_FDIR: 2940 return flow_fdir_ctrl_func(dev, filter_op, arg); 2941 default: 2942 DRV_LOG(ERR, "port %u filter type (%d) not supported", 2943 dev->data->port_id, filter_type); 2944 rte_errno = ENOTSUP; 2945 return -rte_errno; 2946 } 2947 return 0; 2948 } 2949