xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 2a7bb4fdf61e9edfb7adbaecb50e728b82da9e23)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_eth_ctrl.h>
25 #include <rte_ethdev_driver.h>
26 #include <rte_flow.h>
27 #include <rte_flow_driver.h>
28 #include <rte_malloc.h>
29 #include <rte_ip.h>
30 
31 #include "mlx5.h"
32 #include "mlx5_defs.h"
33 #include "mlx5_prm.h"
34 #include "mlx5_glue.h"
35 #include "mlx5_flow.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47 
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49 
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55 	[MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59 
60 enum mlx5_expansion {
61 	MLX5_EXPANSION_ROOT,
62 	MLX5_EXPANSION_ROOT_OUTER,
63 	MLX5_EXPANSION_ROOT_ETH_VLAN,
64 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_ETH,
66 	MLX5_EXPANSION_OUTER_ETH_VLAN,
67 	MLX5_EXPANSION_OUTER_VLAN,
68 	MLX5_EXPANSION_OUTER_IPV4,
69 	MLX5_EXPANSION_OUTER_IPV4_UDP,
70 	MLX5_EXPANSION_OUTER_IPV4_TCP,
71 	MLX5_EXPANSION_OUTER_IPV6,
72 	MLX5_EXPANSION_OUTER_IPV6_UDP,
73 	MLX5_EXPANSION_OUTER_IPV6_TCP,
74 	MLX5_EXPANSION_VXLAN,
75 	MLX5_EXPANSION_VXLAN_GPE,
76 	MLX5_EXPANSION_GRE,
77 	MLX5_EXPANSION_MPLS,
78 	MLX5_EXPANSION_ETH,
79 	MLX5_EXPANSION_ETH_VLAN,
80 	MLX5_EXPANSION_VLAN,
81 	MLX5_EXPANSION_IPV4,
82 	MLX5_EXPANSION_IPV4_UDP,
83 	MLX5_EXPANSION_IPV4_TCP,
84 	MLX5_EXPANSION_IPV6,
85 	MLX5_EXPANSION_IPV6_UDP,
86 	MLX5_EXPANSION_IPV6_TCP,
87 };
88 
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91 	[MLX5_EXPANSION_ROOT] = {
92 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93 						 MLX5_EXPANSION_IPV4,
94 						 MLX5_EXPANSION_IPV6),
95 		.type = RTE_FLOW_ITEM_TYPE_END,
96 	},
97 	[MLX5_EXPANSION_ROOT_OUTER] = {
98 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99 						 MLX5_EXPANSION_OUTER_IPV4,
100 						 MLX5_EXPANSION_OUTER_IPV6),
101 		.type = RTE_FLOW_ITEM_TYPE_END,
102 	},
103 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105 		.type = RTE_FLOW_ITEM_TYPE_END,
106 	},
107 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109 		.type = RTE_FLOW_ITEM_TYPE_END,
110 	},
111 	[MLX5_EXPANSION_OUTER_ETH] = {
112 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113 						 MLX5_EXPANSION_OUTER_IPV6,
114 						 MLX5_EXPANSION_MPLS),
115 		.type = RTE_FLOW_ITEM_TYPE_ETH,
116 		.rss_types = 0,
117 	},
118 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120 		.type = RTE_FLOW_ITEM_TYPE_ETH,
121 		.rss_types = 0,
122 	},
123 	[MLX5_EXPANSION_OUTER_VLAN] = {
124 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125 						 MLX5_EXPANSION_OUTER_IPV6),
126 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
127 	},
128 	[MLX5_EXPANSION_OUTER_IPV4] = {
129 		.next = RTE_FLOW_EXPAND_RSS_NEXT
130 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
131 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
132 			 MLX5_EXPANSION_GRE),
133 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
134 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135 			ETH_RSS_NONFRAG_IPV4_OTHER,
136 	},
137 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139 						 MLX5_EXPANSION_VXLAN_GPE),
140 		.type = RTE_FLOW_ITEM_TYPE_UDP,
141 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142 	},
143 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144 		.type = RTE_FLOW_ITEM_TYPE_TCP,
145 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146 	},
147 	[MLX5_EXPANSION_OUTER_IPV6] = {
148 		.next = RTE_FLOW_EXPAND_RSS_NEXT
149 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
150 			 MLX5_EXPANSION_OUTER_IPV6_TCP),
151 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
152 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153 			ETH_RSS_NONFRAG_IPV6_OTHER,
154 	},
155 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157 						 MLX5_EXPANSION_VXLAN_GPE),
158 		.type = RTE_FLOW_ITEM_TYPE_UDP,
159 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160 	},
161 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162 		.type = RTE_FLOW_ITEM_TYPE_TCP,
163 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164 	},
165 	[MLX5_EXPANSION_VXLAN] = {
166 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
168 	},
169 	[MLX5_EXPANSION_VXLAN_GPE] = {
170 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171 						 MLX5_EXPANSION_IPV4,
172 						 MLX5_EXPANSION_IPV6),
173 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174 	},
175 	[MLX5_EXPANSION_GRE] = {
176 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177 		.type = RTE_FLOW_ITEM_TYPE_GRE,
178 	},
179 	[MLX5_EXPANSION_MPLS] = {
180 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181 						 MLX5_EXPANSION_IPV6),
182 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
183 	},
184 	[MLX5_EXPANSION_ETH] = {
185 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186 						 MLX5_EXPANSION_IPV6),
187 		.type = RTE_FLOW_ITEM_TYPE_ETH,
188 	},
189 	[MLX5_EXPANSION_ETH_VLAN] = {
190 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191 		.type = RTE_FLOW_ITEM_TYPE_ETH,
192 	},
193 	[MLX5_EXPANSION_VLAN] = {
194 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195 						 MLX5_EXPANSION_IPV6),
196 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
197 	},
198 	[MLX5_EXPANSION_IPV4] = {
199 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200 						 MLX5_EXPANSION_IPV4_TCP),
201 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
202 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203 			ETH_RSS_NONFRAG_IPV4_OTHER,
204 	},
205 	[MLX5_EXPANSION_IPV4_UDP] = {
206 		.type = RTE_FLOW_ITEM_TYPE_UDP,
207 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208 	},
209 	[MLX5_EXPANSION_IPV4_TCP] = {
210 		.type = RTE_FLOW_ITEM_TYPE_TCP,
211 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212 	},
213 	[MLX5_EXPANSION_IPV6] = {
214 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215 						 MLX5_EXPANSION_IPV6_TCP),
216 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
217 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218 			ETH_RSS_NONFRAG_IPV6_OTHER,
219 	},
220 	[MLX5_EXPANSION_IPV6_UDP] = {
221 		.type = RTE_FLOW_ITEM_TYPE_UDP,
222 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223 	},
224 	[MLX5_EXPANSION_IPV6_TCP] = {
225 		.type = RTE_FLOW_ITEM_TYPE_TCP,
226 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227 	},
228 };
229 
230 static const struct rte_flow_ops mlx5_flow_ops = {
231 	.validate = mlx5_flow_validate,
232 	.create = mlx5_flow_create,
233 	.destroy = mlx5_flow_destroy,
234 	.flush = mlx5_flow_flush,
235 	.isolate = mlx5_flow_isolate,
236 	.query = mlx5_flow_query,
237 };
238 
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241 	struct rte_flow_attr attr;
242 	struct rte_flow_item items[4];
243 	struct rte_flow_item_eth l2;
244 	struct rte_flow_item_eth l2_mask;
245 	union {
246 		struct rte_flow_item_ipv4 ipv4;
247 		struct rte_flow_item_ipv6 ipv6;
248 	} l3;
249 	union {
250 		struct rte_flow_item_ipv4 ipv4;
251 		struct rte_flow_item_ipv6 ipv6;
252 	} l3_mask;
253 	union {
254 		struct rte_flow_item_udp udp;
255 		struct rte_flow_item_tcp tcp;
256 	} l4;
257 	union {
258 		struct rte_flow_item_udp udp;
259 		struct rte_flow_item_tcp tcp;
260 	} l4_mask;
261 	struct rte_flow_action actions[2];
262 	struct rte_flow_action_queue queue;
263 };
264 
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269 
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273 	{ 9, 10, 11 }, { 12, 13, 14 },
274 };
275 
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281 
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283 	{
284 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
285 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286 	},
287 	{
288 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290 	},
291 	{
292 		.tunnel = MLX5_FLOW_LAYER_GRE,
293 		.ptype = RTE_PTYPE_TUNNEL_GRE,
294 	},
295 	{
296 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
298 	},
299 	{
300 		.tunnel = MLX5_FLOW_LAYER_MPLS,
301 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302 	},
303 };
304 
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318 	struct {
319 		struct ibv_flow_attr attr;
320 		struct ibv_flow_spec_eth eth;
321 		struct ibv_flow_spec_action_drop drop;
322 	} flow_attr = {
323 		.attr = {
324 			.num_of_specs = 2,
325 		},
326 		.eth = {
327 			.type = IBV_FLOW_SPEC_ETH,
328 			.size = sizeof(struct ibv_flow_spec_eth),
329 		},
330 		.drop = {
331 			.size = sizeof(struct ibv_flow_spec_action_drop),
332 			.type = IBV_FLOW_SPEC_ACTION_DROP,
333 		},
334 	};
335 	struct ibv_flow *flow;
336 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337 	uint16_t vprio[] = { 8, 16 };
338 	int i;
339 	int priority = 0;
340 
341 	if (!drop) {
342 		rte_errno = ENOTSUP;
343 		return -rte_errno;
344 	}
345 	for (i = 0; i != RTE_DIM(vprio); i++) {
346 		flow_attr.attr.priority = vprio[i] - 1;
347 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348 		if (!flow)
349 			break;
350 		claim_zero(mlx5_glue->destroy_flow(flow));
351 		priority = vprio[i];
352 	}
353 	switch (priority) {
354 	case 8:
355 		priority = RTE_DIM(priority_map_3);
356 		break;
357 	case 16:
358 		priority = RTE_DIM(priority_map_5);
359 		break;
360 	default:
361 		rte_errno = ENOTSUP;
362 		DRV_LOG(ERR,
363 			"port %u verbs maximum priority: %d expected 8/16",
364 			dev->data->port_id, vprio[i]);
365 		return -rte_errno;
366 	}
367 	mlx5_hrxq_drop_release(dev);
368 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
369 		dev->data->port_id, priority);
370 	return priority;
371 }
372 
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387 				   uint32_t subpriority)
388 {
389 	uint32_t res = 0;
390 	struct priv *priv = dev->data->dev_private;
391 
392 	switch (priv->config.flow_prio) {
393 	case RTE_DIM(priority_map_3):
394 		res = priority_map_3[priority][subpriority];
395 		break;
396 	case RTE_DIM(priority_map_5):
397 		res = priority_map_5[priority][subpriority];
398 		break;
399 	}
400 	return  res;
401 }
402 
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423 			  const uint8_t *mask,
424 			  const uint8_t *nic_mask,
425 			  unsigned int size,
426 			  struct rte_flow_error *error)
427 {
428 	unsigned int i;
429 
430 	assert(nic_mask);
431 	for (i = 0; i < size; ++i)
432 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
433 			return rte_flow_error_set(error, ENOTSUP,
434 						  RTE_FLOW_ERROR_TYPE_ITEM,
435 						  item,
436 						  "mask enables non supported"
437 						  " bits");
438 	if (!item->spec && (item->mask || item->last))
439 		return rte_flow_error_set(error, EINVAL,
440 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
441 					  "mask/last without a spec is not"
442 					  " supported");
443 	if (item->spec && item->last) {
444 		uint8_t spec[size];
445 		uint8_t last[size];
446 		unsigned int i;
447 		int ret;
448 
449 		for (i = 0; i < size; ++i) {
450 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452 		}
453 		ret = memcmp(spec, last, size);
454 		if (ret != 0)
455 			return rte_flow_error_set(error, EINVAL,
456 						  RTE_FLOW_ERROR_TYPE_ITEM,
457 						  item,
458 						  "range is not valid");
459 	}
460 	return 0;
461 }
462 
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480 			    int tunnel __rte_unused, uint64_t layer_types,
481 			    uint64_t hash_fields)
482 {
483 	struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485 	int rss_request_inner = flow->rss.level >= 2;
486 
487 	/* Check RSS hash level for tunnel. */
488 	if (tunnel && rss_request_inner)
489 		hash_fields |= IBV_RX_HASH_INNER;
490 	else if (tunnel || rss_request_inner)
491 		return 0;
492 #endif
493 	/* Check if requested layer matches RSS hash fields. */
494 	if (!(flow->rss.types & layer_types))
495 		return 0;
496 	return hash_fields;
497 }
498 
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510 	unsigned int i;
511 	uint32_t tunnel_ptype = 0;
512 
513 	/* Look up for the ptype to use. */
514 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515 		if (!rxq_ctrl->flow_tunnels_n[i])
516 			continue;
517 		if (!tunnel_ptype) {
518 			tunnel_ptype = tunnels_info[i].ptype;
519 		} else {
520 			tunnel_ptype = 0;
521 			break;
522 		}
523 	}
524 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526 
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539 	struct priv *priv = dev->data->dev_private;
540 	struct rte_flow *flow = dev_flow->flow;
541 	const int mark = !!(flow->actions &
542 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544 	unsigned int i;
545 
546 	for (i = 0; i != flow->rss.queue_num; ++i) {
547 		int idx = (*flow->queue)[i];
548 		struct mlx5_rxq_ctrl *rxq_ctrl =
549 			container_of((*priv->rxqs)[idx],
550 				     struct mlx5_rxq_ctrl, rxq);
551 
552 		if (mark) {
553 			rxq_ctrl->rxq.mark = 1;
554 			rxq_ctrl->flow_mark_n++;
555 		}
556 		if (tunnel) {
557 			unsigned int j;
558 
559 			/* Increase the counter matching the flow. */
560 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561 				if ((tunnels_info[j].tunnel &
562 				     dev_flow->layers) ==
563 				    tunnels_info[j].tunnel) {
564 					rxq_ctrl->flow_tunnels_n[j]++;
565 					break;
566 				}
567 			}
568 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
569 		}
570 	}
571 }
572 
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584 	struct mlx5_flow *dev_flow;
585 
586 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587 		flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589 
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602 	struct priv *priv = dev->data->dev_private;
603 	struct rte_flow *flow = dev_flow->flow;
604 	const int mark = !!(flow->actions &
605 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607 	unsigned int i;
608 
609 	assert(dev->data->dev_started);
610 	for (i = 0; i != flow->rss.queue_num; ++i) {
611 		int idx = (*flow->queue)[i];
612 		struct mlx5_rxq_ctrl *rxq_ctrl =
613 			container_of((*priv->rxqs)[idx],
614 				     struct mlx5_rxq_ctrl, rxq);
615 
616 		if (mark) {
617 			rxq_ctrl->flow_mark_n--;
618 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619 		}
620 		if (tunnel) {
621 			unsigned int j;
622 
623 			/* Decrease the counter matching the flow. */
624 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625 				if ((tunnels_info[j].tunnel &
626 				     dev_flow->layers) ==
627 				    tunnels_info[j].tunnel) {
628 					rxq_ctrl->flow_tunnels_n[j]--;
629 					break;
630 				}
631 			}
632 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
633 		}
634 	}
635 }
636 
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649 	struct mlx5_flow *dev_flow;
650 
651 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652 		flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654 
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664 	struct priv *priv = dev->data->dev_private;
665 	unsigned int i;
666 
667 	for (i = 0; i != priv->rxqs_n; ++i) {
668 		struct mlx5_rxq_ctrl *rxq_ctrl;
669 		unsigned int j;
670 
671 		if (!(*priv->rxqs)[i])
672 			continue;
673 		rxq_ctrl = container_of((*priv->rxqs)[i],
674 					struct mlx5_rxq_ctrl, rxq);
675 		rxq_ctrl->flow_mark_n = 0;
676 		rxq_ctrl->rxq.mark = 0;
677 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678 			rxq_ctrl->flow_tunnels_n[j] = 0;
679 		rxq_ctrl->rxq.tunnel = 0;
680 	}
681 }
682 
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698 			       const struct rte_flow_attr *attr,
699 			       struct rte_flow_error *error)
700 {
701 
702 	if (action_flags & MLX5_FLOW_ACTION_DROP)
703 		return rte_flow_error_set(error, EINVAL,
704 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705 					  "can't drop and flag in same flow");
706 	if (action_flags & MLX5_FLOW_ACTION_MARK)
707 		return rte_flow_error_set(error, EINVAL,
708 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709 					  "can't mark and flag in same flow");
710 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
711 		return rte_flow_error_set(error, EINVAL,
712 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713 					  "can't have 2 flag"
714 					  " actions in same flow");
715 	if (attr->egress)
716 		return rte_flow_error_set(error, ENOTSUP,
717 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718 					  "flag action not supported for "
719 					  "egress");
720 	return 0;
721 }
722 
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740 			       uint64_t action_flags,
741 			       const struct rte_flow_attr *attr,
742 			       struct rte_flow_error *error)
743 {
744 	const struct rte_flow_action_mark *mark = action->conf;
745 
746 	if (!mark)
747 		return rte_flow_error_set(error, EINVAL,
748 					  RTE_FLOW_ERROR_TYPE_ACTION,
749 					  action,
750 					  "configuration cannot be null");
751 	if (mark->id >= MLX5_FLOW_MARK_MAX)
752 		return rte_flow_error_set(error, EINVAL,
753 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754 					  &mark->id,
755 					  "mark id must in 0 <= id < "
756 					  RTE_STR(MLX5_FLOW_MARK_MAX));
757 	if (action_flags & MLX5_FLOW_ACTION_DROP)
758 		return rte_flow_error_set(error, EINVAL,
759 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760 					  "can't drop and mark in same flow");
761 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
762 		return rte_flow_error_set(error, EINVAL,
763 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764 					  "can't flag and mark in same flow");
765 	if (action_flags & MLX5_FLOW_ACTION_MARK)
766 		return rte_flow_error_set(error, EINVAL,
767 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768 					  "can't have 2 mark actions in same"
769 					  " flow");
770 	if (attr->egress)
771 		return rte_flow_error_set(error, ENOTSUP,
772 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773 					  "mark action not supported for "
774 					  "egress");
775 	return 0;
776 }
777 
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_ernno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793 			       const struct rte_flow_attr *attr,
794 			       struct rte_flow_error *error)
795 {
796 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
797 		return rte_flow_error_set(error, EINVAL,
798 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799 					  "can't drop and flag in same flow");
800 	if (action_flags & MLX5_FLOW_ACTION_MARK)
801 		return rte_flow_error_set(error, EINVAL,
802 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803 					  "can't drop and mark in same flow");
804 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805 		return rte_flow_error_set(error, EINVAL,
806 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807 					  "can't have 2 fate actions in"
808 					  " same flow");
809 	if (attr->egress)
810 		return rte_flow_error_set(error, ENOTSUP,
811 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812 					  "drop action not supported for "
813 					  "egress");
814 	return 0;
815 }
816 
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_ernno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836 				uint64_t action_flags,
837 				struct rte_eth_dev *dev,
838 				const struct rte_flow_attr *attr,
839 				struct rte_flow_error *error)
840 {
841 	struct priv *priv = dev->data->dev_private;
842 	const struct rte_flow_action_queue *queue = action->conf;
843 
844 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845 		return rte_flow_error_set(error, EINVAL,
846 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847 					  "can't have 2 fate actions in"
848 					  " same flow");
849 	if (queue->index >= priv->rxqs_n)
850 		return rte_flow_error_set(error, EINVAL,
851 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852 					  &queue->index,
853 					  "queue index out of range");
854 	if (!(*priv->rxqs)[queue->index])
855 		return rte_flow_error_set(error, EINVAL,
856 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
857 					  &queue->index,
858 					  "queue is not configured");
859 	if (attr->egress)
860 		return rte_flow_error_set(error, ENOTSUP,
861 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
862 					  "queue action not supported for "
863 					  "egress");
864 	return 0;
865 }
866 
867 /*
868  * Validate the rss action.
869  *
870  * @param[in] action
871  *   Pointer to the queue action.
872  * @param[in] action_flags
873  *   Bit-fields that holds the actions detected until now.
874  * @param[in] dev
875  *   Pointer to the Ethernet device structure.
876  * @param[in] attr
877  *   Attributes of flow that includes this action.
878  * @param[out] error
879  *   Pointer to error structure.
880  *
881  * @return
882  *   0 on success, a negative errno value otherwise and rte_ernno is set.
883  */
884 int
885 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
886 			      uint64_t action_flags,
887 			      struct rte_eth_dev *dev,
888 			      const struct rte_flow_attr *attr,
889 			      struct rte_flow_error *error)
890 {
891 	struct priv *priv = dev->data->dev_private;
892 	const struct rte_flow_action_rss *rss = action->conf;
893 	unsigned int i;
894 
895 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
896 		return rte_flow_error_set(error, EINVAL,
897 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
898 					  "can't have 2 fate actions"
899 					  " in same flow");
900 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
901 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
902 		return rte_flow_error_set(error, ENOTSUP,
903 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
904 					  &rss->func,
905 					  "RSS hash function not supported");
906 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
907 	if (rss->level > 2)
908 #else
909 	if (rss->level > 1)
910 #endif
911 		return rte_flow_error_set(error, ENOTSUP,
912 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
913 					  &rss->level,
914 					  "tunnel RSS is not supported");
915 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
916 	if (rss->key_len == 0 && rss->key != NULL)
917 		return rte_flow_error_set(error, ENOTSUP,
918 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
919 					  &rss->key_len,
920 					  "RSS hash key length 0");
921 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
922 		return rte_flow_error_set(error, ENOTSUP,
923 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
924 					  &rss->key_len,
925 					  "RSS hash key too small");
926 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
927 		return rte_flow_error_set(error, ENOTSUP,
928 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
929 					  &rss->key_len,
930 					  "RSS hash key too large");
931 	if (rss->queue_num > priv->config.ind_table_max_size)
932 		return rte_flow_error_set(error, ENOTSUP,
933 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
934 					  &rss->queue_num,
935 					  "number of queues too large");
936 	if (rss->types & MLX5_RSS_HF_MASK)
937 		return rte_flow_error_set(error, ENOTSUP,
938 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
939 					  &rss->types,
940 					  "some RSS protocols are not"
941 					  " supported");
942 	for (i = 0; i != rss->queue_num; ++i) {
943 		if (!(*priv->rxqs)[rss->queue[i]])
944 			return rte_flow_error_set
945 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
946 				 &rss->queue[i], "queue is not configured");
947 	}
948 	if (attr->egress)
949 		return rte_flow_error_set(error, ENOTSUP,
950 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
951 					  "rss action not supported for "
952 					  "egress");
953 	return 0;
954 }
955 
956 /*
957  * Validate the count action.
958  *
959  * @param[in] dev
960  *   Pointer to the Ethernet device structure.
961  * @param[in] attr
962  *   Attributes of flow that includes this action.
963  * @param[out] error
964  *   Pointer to error structure.
965  *
966  * @return
967  *   0 on success, a negative errno value otherwise and rte_ernno is set.
968  */
969 int
970 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
971 				const struct rte_flow_attr *attr,
972 				struct rte_flow_error *error)
973 {
974 	if (attr->egress)
975 		return rte_flow_error_set(error, ENOTSUP,
976 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
977 					  "count action not supported for "
978 					  "egress");
979 	return 0;
980 }
981 
982 /**
983  * Verify the @p attributes will be correctly understood by the NIC and store
984  * them in the @p flow if everything is correct.
985  *
986  * @param[in] dev
987  *   Pointer to the Ethernet device structure.
988  * @param[in] attributes
989  *   Pointer to flow attributes
990  * @param[out] error
991  *   Pointer to error structure.
992  *
993  * @return
994  *   0 on success, a negative errno value otherwise and rte_errno is set.
995  */
996 int
997 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
998 			      const struct rte_flow_attr *attributes,
999 			      struct rte_flow_error *error)
1000 {
1001 	struct priv *priv = dev->data->dev_private;
1002 	uint32_t priority_max = priv->config.flow_prio - 1;
1003 
1004 	if (attributes->group)
1005 		return rte_flow_error_set(error, ENOTSUP,
1006 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1007 					  NULL, "groups is not supported");
1008 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1009 	    attributes->priority >= priority_max)
1010 		return rte_flow_error_set(error, ENOTSUP,
1011 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1012 					  NULL, "priority out of range");
1013 	if (attributes->egress)
1014 		return rte_flow_error_set(error, ENOTSUP,
1015 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1016 					  "egress is not supported");
1017 	if (attributes->transfer)
1018 		return rte_flow_error_set(error, ENOTSUP,
1019 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1020 					  NULL, "transfer is not supported");
1021 	if (!attributes->ingress)
1022 		return rte_flow_error_set(error, EINVAL,
1023 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1024 					  NULL,
1025 					  "ingress attribute is mandatory");
1026 	return 0;
1027 }
1028 
1029 /**
1030  * Validate Ethernet item.
1031  *
1032  * @param[in] item
1033  *   Item specification.
1034  * @param[in] item_flags
1035  *   Bit-fields that holds the items detected until now.
1036  * @param[out] error
1037  *   Pointer to error structure.
1038  *
1039  * @return
1040  *   0 on success, a negative errno value otherwise and rte_errno is set.
1041  */
1042 int
1043 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1044 			    uint64_t item_flags,
1045 			    struct rte_flow_error *error)
1046 {
1047 	const struct rte_flow_item_eth *mask = item->mask;
1048 	const struct rte_flow_item_eth nic_mask = {
1049 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1050 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1051 		.type = RTE_BE16(0xffff),
1052 	};
1053 	int ret;
1054 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1055 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1056 				       MLX5_FLOW_LAYER_OUTER_L2;
1057 
1058 	if (item_flags & ethm)
1059 		return rte_flow_error_set(error, ENOTSUP,
1060 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1061 					  "multiple L2 layers not supported");
1062 	if (!mask)
1063 		mask = &rte_flow_item_eth_mask;
1064 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1065 					(const uint8_t *)&nic_mask,
1066 					sizeof(struct rte_flow_item_eth),
1067 					error);
1068 	return ret;
1069 }
1070 
1071 /**
1072  * Validate VLAN item.
1073  *
1074  * @param[in] item
1075  *   Item specification.
1076  * @param[in] item_flags
1077  *   Bit-fields that holds the items detected until now.
1078  * @param[out] error
1079  *   Pointer to error structure.
1080  *
1081  * @return
1082  *   0 on success, a negative errno value otherwise and rte_errno is set.
1083  */
1084 int
1085 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1086 			     uint64_t item_flags,
1087 			     struct rte_flow_error *error)
1088 {
1089 	const struct rte_flow_item_vlan *spec = item->spec;
1090 	const struct rte_flow_item_vlan *mask = item->mask;
1091 	const struct rte_flow_item_vlan nic_mask = {
1092 		.tci = RTE_BE16(0x0fff),
1093 		.inner_type = RTE_BE16(0xffff),
1094 	};
1095 	uint16_t vlan_tag = 0;
1096 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1097 	int ret;
1098 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1099 					MLX5_FLOW_LAYER_INNER_L4) :
1100 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1101 					MLX5_FLOW_LAYER_OUTER_L4);
1102 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1103 					MLX5_FLOW_LAYER_OUTER_VLAN;
1104 
1105 	if (item_flags & vlanm)
1106 		return rte_flow_error_set(error, EINVAL,
1107 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1108 					  "multiple VLAN layers not supported");
1109 	else if ((item_flags & l34m) != 0)
1110 		return rte_flow_error_set(error, EINVAL,
1111 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1112 					  "L2 layer cannot follow L3/L4 layer");
1113 	if (!mask)
1114 		mask = &rte_flow_item_vlan_mask;
1115 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1116 					(const uint8_t *)&nic_mask,
1117 					sizeof(struct rte_flow_item_vlan),
1118 					error);
1119 	if (ret)
1120 		return ret;
1121 	if (spec) {
1122 		vlan_tag = spec->tci;
1123 		vlan_tag &= mask->tci;
1124 	}
1125 	/*
1126 	 * From verbs perspective an empty VLAN is equivalent
1127 	 * to a packet without VLAN layer.
1128 	 */
1129 	if (!vlan_tag)
1130 		return rte_flow_error_set(error, EINVAL,
1131 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1132 					  item->spec,
1133 					  "VLAN cannot be empty");
1134 	return 0;
1135 }
1136 
1137 /**
1138  * Validate IPV4 item.
1139  *
1140  * @param[in] item
1141  *   Item specification.
1142  * @param[in] item_flags
1143  *   Bit-fields that holds the items detected until now.
1144  * @param[in] acc_mask
1145  *   Acceptable mask, if NULL default internal default mask
1146  *   will be used to check whether item fields are supported.
1147  * @param[out] error
1148  *   Pointer to error structure.
1149  *
1150  * @return
1151  *   0 on success, a negative errno value otherwise and rte_errno is set.
1152  */
1153 int
1154 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1155 			     uint64_t item_flags,
1156 			     const struct rte_flow_item_ipv4 *acc_mask,
1157 			     struct rte_flow_error *error)
1158 {
1159 	const struct rte_flow_item_ipv4 *mask = item->mask;
1160 	const struct rte_flow_item_ipv4 nic_mask = {
1161 		.hdr = {
1162 			.src_addr = RTE_BE32(0xffffffff),
1163 			.dst_addr = RTE_BE32(0xffffffff),
1164 			.type_of_service = 0xff,
1165 			.next_proto_id = 0xff,
1166 		},
1167 	};
1168 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1169 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1170 				      MLX5_FLOW_LAYER_OUTER_L3;
1171 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1172 				      MLX5_FLOW_LAYER_OUTER_L4;
1173 	int ret;
1174 
1175 	if (item_flags & l3m)
1176 		return rte_flow_error_set(error, ENOTSUP,
1177 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1178 					  "multiple L3 layers not supported");
1179 	else if (item_flags & l4m)
1180 		return rte_flow_error_set(error, EINVAL,
1181 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1182 					  "L3 cannot follow an L4 layer.");
1183 	if (!mask)
1184 		mask = &rte_flow_item_ipv4_mask;
1185 	else if (mask->hdr.next_proto_id != 0 &&
1186 		 mask->hdr.next_proto_id != 0xff)
1187 		return rte_flow_error_set(error, EINVAL,
1188 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1189 					  "partial mask is not supported"
1190 					  " for protocol");
1191 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1192 					acc_mask ? (const uint8_t *)acc_mask
1193 						 : (const uint8_t *)&nic_mask,
1194 					sizeof(struct rte_flow_item_ipv4),
1195 					error);
1196 	if (ret < 0)
1197 		return ret;
1198 	return 0;
1199 }
1200 
1201 /**
1202  * Validate IPV6 item.
1203  *
1204  * @param[in] item
1205  *   Item specification.
1206  * @param[in] item_flags
1207  *   Bit-fields that holds the items detected until now.
1208  * @param[in] acc_mask
1209  *   Acceptable mask, if NULL default internal default mask
1210  *   will be used to check whether item fields are supported.
1211  * @param[out] error
1212  *   Pointer to error structure.
1213  *
1214  * @return
1215  *   0 on success, a negative errno value otherwise and rte_errno is set.
1216  */
1217 int
1218 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1219 			     uint64_t item_flags,
1220 			     const struct rte_flow_item_ipv6 *acc_mask,
1221 			     struct rte_flow_error *error)
1222 {
1223 	const struct rte_flow_item_ipv6 *mask = item->mask;
1224 	const struct rte_flow_item_ipv6 nic_mask = {
1225 		.hdr = {
1226 			.src_addr =
1227 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1228 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1229 			.dst_addr =
1230 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1231 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1232 			.vtc_flow = RTE_BE32(0xffffffff),
1233 			.proto = 0xff,
1234 			.hop_limits = 0xff,
1235 		},
1236 	};
1237 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1238 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1239 				      MLX5_FLOW_LAYER_OUTER_L3;
1240 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1241 				      MLX5_FLOW_LAYER_OUTER_L4;
1242 	int ret;
1243 
1244 	if (item_flags & l3m)
1245 		return rte_flow_error_set(error, ENOTSUP,
1246 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1247 					  "multiple L3 layers not supported");
1248 	else if (item_flags & l4m)
1249 		return rte_flow_error_set(error, EINVAL,
1250 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1251 					  "L3 cannot follow an L4 layer.");
1252 	if (!mask)
1253 		mask = &rte_flow_item_ipv6_mask;
1254 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1255 					acc_mask ? (const uint8_t *)acc_mask
1256 						 : (const uint8_t *)&nic_mask,
1257 					sizeof(struct rte_flow_item_ipv6),
1258 					error);
1259 	if (ret < 0)
1260 		return ret;
1261 	return 0;
1262 }
1263 
1264 /**
1265  * Validate UDP item.
1266  *
1267  * @param[in] item
1268  *   Item specification.
1269  * @param[in] item_flags
1270  *   Bit-fields that holds the items detected until now.
1271  * @param[in] target_protocol
1272  *   The next protocol in the previous item.
1273  * @param[in] flow_mask
1274  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1275  * @param[out] error
1276  *   Pointer to error structure.
1277  *
1278  * @return
1279  *   0 on success, a negative errno value otherwise and rte_errno is set.
1280  */
1281 int
1282 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1283 			    uint64_t item_flags,
1284 			    uint8_t target_protocol,
1285 			    struct rte_flow_error *error)
1286 {
1287 	const struct rte_flow_item_udp *mask = item->mask;
1288 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1289 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1290 				      MLX5_FLOW_LAYER_OUTER_L3;
1291 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1292 				      MLX5_FLOW_LAYER_OUTER_L4;
1293 	int ret;
1294 
1295 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1296 		return rte_flow_error_set(error, EINVAL,
1297 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1298 					  "protocol filtering not compatible"
1299 					  " with UDP layer");
1300 	if (!(item_flags & l3m))
1301 		return rte_flow_error_set(error, EINVAL,
1302 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1303 					  "L3 is mandatory to filter on L4");
1304 	if (item_flags & l4m)
1305 		return rte_flow_error_set(error, EINVAL,
1306 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1307 					  "multiple L4 layers not supported");
1308 	if (!mask)
1309 		mask = &rte_flow_item_udp_mask;
1310 	ret = mlx5_flow_item_acceptable
1311 		(item, (const uint8_t *)mask,
1312 		 (const uint8_t *)&rte_flow_item_udp_mask,
1313 		 sizeof(struct rte_flow_item_udp), error);
1314 	if (ret < 0)
1315 		return ret;
1316 	return 0;
1317 }
1318 
1319 /**
1320  * Validate TCP item.
1321  *
1322  * @param[in] item
1323  *   Item specification.
1324  * @param[in] item_flags
1325  *   Bit-fields that holds the items detected until now.
1326  * @param[in] target_protocol
1327  *   The next protocol in the previous item.
1328  * @param[out] error
1329  *   Pointer to error structure.
1330  *
1331  * @return
1332  *   0 on success, a negative errno value otherwise and rte_errno is set.
1333  */
1334 int
1335 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1336 			    uint64_t item_flags,
1337 			    uint8_t target_protocol,
1338 			    const struct rte_flow_item_tcp *flow_mask,
1339 			    struct rte_flow_error *error)
1340 {
1341 	const struct rte_flow_item_tcp *mask = item->mask;
1342 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1343 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1344 				      MLX5_FLOW_LAYER_OUTER_L3;
1345 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1346 				      MLX5_FLOW_LAYER_OUTER_L4;
1347 	int ret;
1348 
1349 	assert(flow_mask);
1350 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1351 		return rte_flow_error_set(error, EINVAL,
1352 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1353 					  "protocol filtering not compatible"
1354 					  " with TCP layer");
1355 	if (!(item_flags & l3m))
1356 		return rte_flow_error_set(error, EINVAL,
1357 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1358 					  "L3 is mandatory to filter on L4");
1359 	if (item_flags & l4m)
1360 		return rte_flow_error_set(error, EINVAL,
1361 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1362 					  "multiple L4 layers not supported");
1363 	if (!mask)
1364 		mask = &rte_flow_item_tcp_mask;
1365 	ret = mlx5_flow_item_acceptable
1366 		(item, (const uint8_t *)mask,
1367 		 (const uint8_t *)flow_mask,
1368 		 sizeof(struct rte_flow_item_tcp), error);
1369 	if (ret < 0)
1370 		return ret;
1371 	return 0;
1372 }
1373 
1374 /**
1375  * Validate VXLAN item.
1376  *
1377  * @param[in] item
1378  *   Item specification.
1379  * @param[in] item_flags
1380  *   Bit-fields that holds the items detected until now.
1381  * @param[in] target_protocol
1382  *   The next protocol in the previous item.
1383  * @param[out] error
1384  *   Pointer to error structure.
1385  *
1386  * @return
1387  *   0 on success, a negative errno value otherwise and rte_errno is set.
1388  */
1389 int
1390 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1391 			      uint64_t item_flags,
1392 			      struct rte_flow_error *error)
1393 {
1394 	const struct rte_flow_item_vxlan *spec = item->spec;
1395 	const struct rte_flow_item_vxlan *mask = item->mask;
1396 	int ret;
1397 	union vni {
1398 		uint32_t vlan_id;
1399 		uint8_t vni[4];
1400 	} id = { .vlan_id = 0, };
1401 	uint32_t vlan_id = 0;
1402 
1403 
1404 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1405 		return rte_flow_error_set(error, ENOTSUP,
1406 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1407 					  "multiple tunnel layers not"
1408 					  " supported");
1409 	/*
1410 	 * Verify only UDPv4 is present as defined in
1411 	 * https://tools.ietf.org/html/rfc7348
1412 	 */
1413 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1414 		return rte_flow_error_set(error, EINVAL,
1415 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1416 					  "no outer UDP layer found");
1417 	if (!mask)
1418 		mask = &rte_flow_item_vxlan_mask;
1419 	ret = mlx5_flow_item_acceptable
1420 		(item, (const uint8_t *)mask,
1421 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1422 		 sizeof(struct rte_flow_item_vxlan),
1423 		 error);
1424 	if (ret < 0)
1425 		return ret;
1426 	if (spec) {
1427 		memcpy(&id.vni[1], spec->vni, 3);
1428 		vlan_id = id.vlan_id;
1429 		memcpy(&id.vni[1], mask->vni, 3);
1430 		vlan_id &= id.vlan_id;
1431 	}
1432 	/*
1433 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1434 	 * only this layer is defined in the Verbs specification it is
1435 	 * interpreted as wildcard and all packets will match this
1436 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1437 	 * udp), all packets matching the layers before will also
1438 	 * match this rule.  To avoid such situation, VNI 0 is
1439 	 * currently refused.
1440 	 */
1441 	if (!vlan_id)
1442 		return rte_flow_error_set(error, ENOTSUP,
1443 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1444 					  "VXLAN vni cannot be 0");
1445 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1446 		return rte_flow_error_set(error, ENOTSUP,
1447 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1448 					  "VXLAN tunnel must be fully defined");
1449 	return 0;
1450 }
1451 
1452 /**
1453  * Validate VXLAN_GPE item.
1454  *
1455  * @param[in] item
1456  *   Item specification.
1457  * @param[in] item_flags
1458  *   Bit-fields that holds the items detected until now.
1459  * @param[in] priv
1460  *   Pointer to the private data structure.
1461  * @param[in] target_protocol
1462  *   The next protocol in the previous item.
1463  * @param[out] error
1464  *   Pointer to error structure.
1465  *
1466  * @return
1467  *   0 on success, a negative errno value otherwise and rte_errno is set.
1468  */
1469 int
1470 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1471 				  uint64_t item_flags,
1472 				  struct rte_eth_dev *dev,
1473 				  struct rte_flow_error *error)
1474 {
1475 	struct priv *priv = dev->data->dev_private;
1476 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1477 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1478 	int ret;
1479 	union vni {
1480 		uint32_t vlan_id;
1481 		uint8_t vni[4];
1482 	} id = { .vlan_id = 0, };
1483 	uint32_t vlan_id = 0;
1484 
1485 	if (!priv->config.l3_vxlan_en)
1486 		return rte_flow_error_set(error, ENOTSUP,
1487 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1488 					  "L3 VXLAN is not enabled by device"
1489 					  " parameter and/or not configured in"
1490 					  " firmware");
1491 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1492 		return rte_flow_error_set(error, ENOTSUP,
1493 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1494 					  "multiple tunnel layers not"
1495 					  " supported");
1496 	/*
1497 	 * Verify only UDPv4 is present as defined in
1498 	 * https://tools.ietf.org/html/rfc7348
1499 	 */
1500 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1501 		return rte_flow_error_set(error, EINVAL,
1502 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1503 					  "no outer UDP layer found");
1504 	if (!mask)
1505 		mask = &rte_flow_item_vxlan_gpe_mask;
1506 	ret = mlx5_flow_item_acceptable
1507 		(item, (const uint8_t *)mask,
1508 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1509 		 sizeof(struct rte_flow_item_vxlan_gpe),
1510 		 error);
1511 	if (ret < 0)
1512 		return ret;
1513 	if (spec) {
1514 		if (spec->protocol)
1515 			return rte_flow_error_set(error, ENOTSUP,
1516 						  RTE_FLOW_ERROR_TYPE_ITEM,
1517 						  item,
1518 						  "VxLAN-GPE protocol"
1519 						  " not supported");
1520 		memcpy(&id.vni[1], spec->vni, 3);
1521 		vlan_id = id.vlan_id;
1522 		memcpy(&id.vni[1], mask->vni, 3);
1523 		vlan_id &= id.vlan_id;
1524 	}
1525 	/*
1526 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1527 	 * layer is defined in the Verbs specification it is interpreted as
1528 	 * wildcard and all packets will match this rule, if it follows a full
1529 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1530 	 * before will also match this rule.  To avoid such situation, VNI 0
1531 	 * is currently refused.
1532 	 */
1533 	if (!vlan_id)
1534 		return rte_flow_error_set(error, ENOTSUP,
1535 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1536 					  "VXLAN-GPE vni cannot be 0");
1537 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1538 		return rte_flow_error_set(error, ENOTSUP,
1539 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1540 					  "VXLAN-GPE tunnel must be fully"
1541 					  " defined");
1542 	return 0;
1543 }
1544 
1545 /**
1546  * Validate GRE item.
1547  *
1548  * @param[in] item
1549  *   Item specification.
1550  * @param[in] item_flags
1551  *   Bit flags to mark detected items.
1552  * @param[in] target_protocol
1553  *   The next protocol in the previous item.
1554  * @param[out] error
1555  *   Pointer to error structure.
1556  *
1557  * @return
1558  *   0 on success, a negative errno value otherwise and rte_errno is set.
1559  */
1560 int
1561 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1562 			    uint64_t item_flags,
1563 			    uint8_t target_protocol,
1564 			    struct rte_flow_error *error)
1565 {
1566 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1567 	const struct rte_flow_item_gre *mask = item->mask;
1568 	int ret;
1569 
1570 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1571 		return rte_flow_error_set(error, EINVAL,
1572 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1573 					  "protocol filtering not compatible"
1574 					  " with this GRE layer");
1575 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1576 		return rte_flow_error_set(error, ENOTSUP,
1577 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1578 					  "multiple tunnel layers not"
1579 					  " supported");
1580 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1581 		return rte_flow_error_set(error, ENOTSUP,
1582 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1583 					  "L3 Layer is missing");
1584 	if (!mask)
1585 		mask = &rte_flow_item_gre_mask;
1586 	ret = mlx5_flow_item_acceptable
1587 		(item, (const uint8_t *)mask,
1588 		 (const uint8_t *)&rte_flow_item_gre_mask,
1589 		 sizeof(struct rte_flow_item_gre), error);
1590 	if (ret < 0)
1591 		return ret;
1592 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1593 	if (spec && (spec->protocol & mask->protocol))
1594 		return rte_flow_error_set(error, ENOTSUP,
1595 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1596 					  "without MPLS support the"
1597 					  " specification cannot be used for"
1598 					  " filtering");
1599 #endif
1600 	return 0;
1601 }
1602 
1603 /**
1604  * Validate MPLS item.
1605  *
1606  * @param[in] dev
1607  *   Pointer to the rte_eth_dev structure.
1608  * @param[in] item
1609  *   Item specification.
1610  * @param[in] item_flags
1611  *   Bit-fields that holds the items detected until now.
1612  * @param[in] prev_layer
1613  *   The protocol layer indicated in previous item.
1614  * @param[out] error
1615  *   Pointer to error structure.
1616  *
1617  * @return
1618  *   0 on success, a negative errno value otherwise and rte_errno is set.
1619  */
1620 int
1621 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1622 			     const struct rte_flow_item *item __rte_unused,
1623 			     uint64_t item_flags __rte_unused,
1624 			     uint64_t prev_layer __rte_unused,
1625 			     struct rte_flow_error *error)
1626 {
1627 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1628 	const struct rte_flow_item_mpls *mask = item->mask;
1629 	struct priv *priv = dev->data->dev_private;
1630 	int ret;
1631 
1632 	if (!priv->config.mpls_en)
1633 		return rte_flow_error_set(error, ENOTSUP,
1634 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1635 					  "MPLS not supported or"
1636 					  " disabled in firmware"
1637 					  " configuration.");
1638 	/* MPLS over IP, UDP, GRE is allowed */
1639 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1640 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
1641 			    MLX5_FLOW_LAYER_GRE)))
1642 		return rte_flow_error_set(error, EINVAL,
1643 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1644 					  "protocol filtering not compatible"
1645 					  " with MPLS layer");
1646 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1647 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1648 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
1649 		return rte_flow_error_set(error, ENOTSUP,
1650 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1651 					  "multiple tunnel layers not"
1652 					  " supported");
1653 	if (!mask)
1654 		mask = &rte_flow_item_mpls_mask;
1655 	ret = mlx5_flow_item_acceptable
1656 		(item, (const uint8_t *)mask,
1657 		 (const uint8_t *)&rte_flow_item_mpls_mask,
1658 		 sizeof(struct rte_flow_item_mpls), error);
1659 	if (ret < 0)
1660 		return ret;
1661 	return 0;
1662 #endif
1663 	return rte_flow_error_set(error, ENOTSUP,
1664 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
1665 				  "MPLS is not supported by Verbs, please"
1666 				  " update.");
1667 }
1668 
1669 static int
1670 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1671 		   const struct rte_flow_attr *attr __rte_unused,
1672 		   const struct rte_flow_item items[] __rte_unused,
1673 		   const struct rte_flow_action actions[] __rte_unused,
1674 		   struct rte_flow_error *error __rte_unused)
1675 {
1676 	rte_errno = ENOTSUP;
1677 	return -rte_errno;
1678 }
1679 
1680 static struct mlx5_flow *
1681 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1682 		  const struct rte_flow_item items[] __rte_unused,
1683 		  const struct rte_flow_action actions[] __rte_unused,
1684 		  struct rte_flow_error *error __rte_unused)
1685 {
1686 	rte_errno = ENOTSUP;
1687 	return NULL;
1688 }
1689 
1690 static int
1691 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1692 		    struct mlx5_flow *dev_flow __rte_unused,
1693 		    const struct rte_flow_attr *attr __rte_unused,
1694 		    const struct rte_flow_item items[] __rte_unused,
1695 		    const struct rte_flow_action actions[] __rte_unused,
1696 		    struct rte_flow_error *error __rte_unused)
1697 {
1698 	rte_errno = ENOTSUP;
1699 	return -rte_errno;
1700 }
1701 
1702 static int
1703 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1704 		struct rte_flow *flow __rte_unused,
1705 		struct rte_flow_error *error __rte_unused)
1706 {
1707 	rte_errno = ENOTSUP;
1708 	return -rte_errno;
1709 }
1710 
1711 static void
1712 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1713 		 struct rte_flow *flow __rte_unused)
1714 {
1715 }
1716 
1717 static void
1718 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1719 		  struct rte_flow *flow __rte_unused)
1720 {
1721 }
1722 
1723 static int
1724 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1725 		struct rte_flow *flow __rte_unused,
1726 		const struct rte_flow_action *actions __rte_unused,
1727 		void *data __rte_unused,
1728 		struct rte_flow_error *error __rte_unused)
1729 {
1730 	rte_errno = ENOTSUP;
1731 	return -rte_errno;
1732 }
1733 
1734 /* Void driver to protect from null pointer reference. */
1735 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1736 	.validate = flow_null_validate,
1737 	.prepare = flow_null_prepare,
1738 	.translate = flow_null_translate,
1739 	.apply = flow_null_apply,
1740 	.remove = flow_null_remove,
1741 	.destroy = flow_null_destroy,
1742 	.query = flow_null_query,
1743 };
1744 
1745 /**
1746  * Select flow driver type according to flow attributes and device
1747  * configuration.
1748  *
1749  * @param[in] dev
1750  *   Pointer to the dev structure.
1751  * @param[in] attr
1752  *   Pointer to the flow attributes.
1753  *
1754  * @return
1755  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1756  */
1757 static enum mlx5_flow_drv_type
1758 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1759 {
1760 	struct priv *priv = dev->data->dev_private;
1761 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1762 
1763 	if (attr->transfer)
1764 		type = MLX5_FLOW_TYPE_TCF;
1765 	else
1766 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1767 						 MLX5_FLOW_TYPE_VERBS;
1768 	return type;
1769 }
1770 
1771 #define flow_get_drv_ops(type) flow_drv_ops[type]
1772 
1773 /**
1774  * Flow driver validation API. This abstracts calling driver specific functions.
1775  * The type of flow driver is determined according to flow attributes.
1776  *
1777  * @param[in] dev
1778  *   Pointer to the dev structure.
1779  * @param[in] attr
1780  *   Pointer to the flow attributes.
1781  * @param[in] items
1782  *   Pointer to the list of items.
1783  * @param[in] actions
1784  *   Pointer to the list of actions.
1785  * @param[out] error
1786  *   Pointer to the error structure.
1787  *
1788  * @return
1789  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1790  */
1791 static inline int
1792 flow_drv_validate(struct rte_eth_dev *dev,
1793 		  const struct rte_flow_attr *attr,
1794 		  const struct rte_flow_item items[],
1795 		  const struct rte_flow_action actions[],
1796 		  struct rte_flow_error *error)
1797 {
1798 	const struct mlx5_flow_driver_ops *fops;
1799 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1800 
1801 	fops = flow_get_drv_ops(type);
1802 	return fops->validate(dev, attr, items, actions, error);
1803 }
1804 
1805 /**
1806  * Flow driver preparation API. This abstracts calling driver specific
1807  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1808  * calculates the size of memory required for device flow, allocates the memory,
1809  * initializes the device flow and returns the pointer.
1810  *
1811  * @note
1812  *   This function initializes device flow structure such as dv, tcf or verbs in
1813  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1814  *   rest. For example, adding returning device flow to flow->dev_flow list and
1815  *   setting backward reference to the flow should be done out of this function.
1816  *   layers field is not filled either.
1817  *
1818  * @param[in] attr
1819  *   Pointer to the flow attributes.
1820  * @param[in] items
1821  *   Pointer to the list of items.
1822  * @param[in] actions
1823  *   Pointer to the list of actions.
1824  * @param[out] error
1825  *   Pointer to the error structure.
1826  *
1827  * @return
1828  *   Pointer to device flow on success, otherwise NULL and rte_ernno is set.
1829  */
1830 static inline struct mlx5_flow *
1831 flow_drv_prepare(const struct rte_flow *flow,
1832 		 const struct rte_flow_attr *attr,
1833 		 const struct rte_flow_item items[],
1834 		 const struct rte_flow_action actions[],
1835 		 struct rte_flow_error *error)
1836 {
1837 	const struct mlx5_flow_driver_ops *fops;
1838 	enum mlx5_flow_drv_type type = flow->drv_type;
1839 
1840 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1841 	fops = flow_get_drv_ops(type);
1842 	return fops->prepare(attr, items, actions, error);
1843 }
1844 
1845 /**
1846  * Flow driver translation API. This abstracts calling driver specific
1847  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1848  * translates a generic flow into a driver flow. flow_drv_prepare() must
1849  * precede.
1850  *
1851  * @note
1852  *   dev_flow->layers could be filled as a result of parsing during translation
1853  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1854  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1855  *   flow->actions could be overwritten even though all the expanded dev_flows
1856  *   have the same actions.
1857  *
1858  * @param[in] dev
1859  *   Pointer to the rte dev structure.
1860  * @param[in, out] dev_flow
1861  *   Pointer to the mlx5 flow.
1862  * @param[in] attr
1863  *   Pointer to the flow attributes.
1864  * @param[in] items
1865  *   Pointer to the list of items.
1866  * @param[in] actions
1867  *   Pointer to the list of actions.
1868  * @param[out] error
1869  *   Pointer to the error structure.
1870  *
1871  * @return
1872  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1873  */
1874 static inline int
1875 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1876 		   const struct rte_flow_attr *attr,
1877 		   const struct rte_flow_item items[],
1878 		   const struct rte_flow_action actions[],
1879 		   struct rte_flow_error *error)
1880 {
1881 	const struct mlx5_flow_driver_ops *fops;
1882 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1883 
1884 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1885 	fops = flow_get_drv_ops(type);
1886 	return fops->translate(dev, dev_flow, attr, items, actions, error);
1887 }
1888 
1889 /**
1890  * Flow driver apply API. This abstracts calling driver specific functions.
1891  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1892  * translated driver flows on to device. flow_drv_translate() must precede.
1893  *
1894  * @param[in] dev
1895  *   Pointer to Ethernet device structure.
1896  * @param[in, out] flow
1897  *   Pointer to flow structure.
1898  * @param[out] error
1899  *   Pointer to error structure.
1900  *
1901  * @return
1902  *   0 on success, a negative errno value otherwise and rte_errno is set.
1903  */
1904 static inline int
1905 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1906 	       struct rte_flow_error *error)
1907 {
1908 	const struct mlx5_flow_driver_ops *fops;
1909 	enum mlx5_flow_drv_type type = flow->drv_type;
1910 
1911 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1912 	fops = flow_get_drv_ops(type);
1913 	return fops->apply(dev, flow, error);
1914 }
1915 
1916 /**
1917  * Flow driver remove API. This abstracts calling driver specific functions.
1918  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1919  * on device. All the resources of the flow should be freed by calling
1920  * flow_drv_destroy().
1921  *
1922  * @param[in] dev
1923  *   Pointer to Ethernet device.
1924  * @param[in, out] flow
1925  *   Pointer to flow structure.
1926  */
1927 static inline void
1928 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1929 {
1930 	const struct mlx5_flow_driver_ops *fops;
1931 	enum mlx5_flow_drv_type type = flow->drv_type;
1932 
1933 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1934 	fops = flow_get_drv_ops(type);
1935 	fops->remove(dev, flow);
1936 }
1937 
1938 /**
1939  * Flow driver destroy API. This abstracts calling driver specific functions.
1940  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1941  * on device and releases resources of the flow.
1942  *
1943  * @param[in] dev
1944  *   Pointer to Ethernet device.
1945  * @param[in, out] flow
1946  *   Pointer to flow structure.
1947  */
1948 static inline void
1949 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1950 {
1951 	const struct mlx5_flow_driver_ops *fops;
1952 	enum mlx5_flow_drv_type type = flow->drv_type;
1953 
1954 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1955 	fops = flow_get_drv_ops(type);
1956 	fops->destroy(dev, flow);
1957 }
1958 
1959 /**
1960  * Validate a flow supported by the NIC.
1961  *
1962  * @see rte_flow_validate()
1963  * @see rte_flow_ops
1964  */
1965 int
1966 mlx5_flow_validate(struct rte_eth_dev *dev,
1967 		   const struct rte_flow_attr *attr,
1968 		   const struct rte_flow_item items[],
1969 		   const struct rte_flow_action actions[],
1970 		   struct rte_flow_error *error)
1971 {
1972 	int ret;
1973 
1974 	ret = flow_drv_validate(dev, attr, items, actions, error);
1975 	if (ret < 0)
1976 		return ret;
1977 	return 0;
1978 }
1979 
1980 /**
1981  * Get RSS action from the action list.
1982  *
1983  * @param[in] actions
1984  *   Pointer to the list of actions.
1985  *
1986  * @return
1987  *   Pointer to the RSS action if exist, else return NULL.
1988  */
1989 static const struct rte_flow_action_rss*
1990 flow_get_rss_action(const struct rte_flow_action actions[])
1991 {
1992 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1993 		switch (actions->type) {
1994 		case RTE_FLOW_ACTION_TYPE_RSS:
1995 			return (const struct rte_flow_action_rss *)
1996 			       actions->conf;
1997 		default:
1998 			break;
1999 		}
2000 	}
2001 	return NULL;
2002 }
2003 
2004 static unsigned int
2005 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2006 {
2007 	const struct rte_flow_item *item;
2008 	unsigned int has_vlan = 0;
2009 
2010 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2011 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2012 			has_vlan = 1;
2013 			break;
2014 		}
2015 	}
2016 	if (has_vlan)
2017 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2018 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2019 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2020 			       MLX5_EXPANSION_ROOT_OUTER;
2021 }
2022 
2023 /**
2024  * Create a flow and add it to @p list.
2025  *
2026  * @param dev
2027  *   Pointer to Ethernet device.
2028  * @param list
2029  *   Pointer to a TAILQ flow list.
2030  * @param[in] attr
2031  *   Flow rule attributes.
2032  * @param[in] items
2033  *   Pattern specification (list terminated by the END pattern item).
2034  * @param[in] actions
2035  *   Associated actions (list terminated by the END action).
2036  * @param[out] error
2037  *   Perform verbose error reporting if not NULL.
2038  *
2039  * @return
2040  *   A flow on success, NULL otherwise and rte_errno is set.
2041  */
2042 static struct rte_flow *
2043 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2044 		 const struct rte_flow_attr *attr,
2045 		 const struct rte_flow_item items[],
2046 		 const struct rte_flow_action actions[],
2047 		 struct rte_flow_error *error)
2048 {
2049 	struct rte_flow *flow = NULL;
2050 	struct mlx5_flow *dev_flow;
2051 	const struct rte_flow_action_rss *rss;
2052 	union {
2053 		struct rte_flow_expand_rss buf;
2054 		uint8_t buffer[2048];
2055 	} expand_buffer;
2056 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2057 	int ret;
2058 	uint32_t i;
2059 	uint32_t flow_size;
2060 
2061 	ret = flow_drv_validate(dev, attr, items, actions, error);
2062 	if (ret < 0)
2063 		return NULL;
2064 	flow_size = sizeof(struct rte_flow);
2065 	rss = flow_get_rss_action(actions);
2066 	if (rss)
2067 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2068 					    sizeof(void *));
2069 	else
2070 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2071 	flow = rte_calloc(__func__, 1, flow_size, 0);
2072 	flow->drv_type = flow_get_drv_type(dev, attr);
2073 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2074 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2075 	flow->queue = (void *)(flow + 1);
2076 	LIST_INIT(&flow->dev_flows);
2077 	if (rss && rss->types) {
2078 		unsigned int graph_root;
2079 
2080 		graph_root = find_graph_root(items, rss->level);
2081 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2082 					  items, rss->types,
2083 					  mlx5_support_expansion,
2084 					  graph_root);
2085 		assert(ret > 0 &&
2086 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2087 	} else {
2088 		buf->entries = 1;
2089 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2090 	}
2091 	for (i = 0; i < buf->entries; ++i) {
2092 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2093 					    actions, error);
2094 		if (!dev_flow)
2095 			goto error;
2096 		dev_flow->flow = flow;
2097 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2098 		ret = flow_drv_translate(dev, dev_flow, attr,
2099 					 buf->entry[i].pattern,
2100 					 actions, error);
2101 		if (ret < 0)
2102 			goto error;
2103 	}
2104 	if (dev->data->dev_started) {
2105 		ret = flow_drv_apply(dev, flow, error);
2106 		if (ret < 0)
2107 			goto error;
2108 	}
2109 	TAILQ_INSERT_TAIL(list, flow, next);
2110 	flow_rxq_flags_set(dev, flow);
2111 	return flow;
2112 error:
2113 	ret = rte_errno; /* Save rte_errno before cleanup. */
2114 	assert(flow);
2115 	flow_drv_destroy(dev, flow);
2116 	rte_free(flow);
2117 	rte_errno = ret; /* Restore rte_errno. */
2118 	return NULL;
2119 }
2120 
2121 /**
2122  * Create a flow.
2123  *
2124  * @see rte_flow_create()
2125  * @see rte_flow_ops
2126  */
2127 struct rte_flow *
2128 mlx5_flow_create(struct rte_eth_dev *dev,
2129 		 const struct rte_flow_attr *attr,
2130 		 const struct rte_flow_item items[],
2131 		 const struct rte_flow_action actions[],
2132 		 struct rte_flow_error *error)
2133 {
2134 	return flow_list_create(dev,
2135 				&((struct priv *)dev->data->dev_private)->flows,
2136 				attr, items, actions, error);
2137 }
2138 
2139 /**
2140  * Destroy a flow in a list.
2141  *
2142  * @param dev
2143  *   Pointer to Ethernet device.
2144  * @param list
2145  *   Pointer to a TAILQ flow list.
2146  * @param[in] flow
2147  *   Flow to destroy.
2148  */
2149 static void
2150 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2151 		  struct rte_flow *flow)
2152 {
2153 	/*
2154 	 * Update RX queue flags only if port is started, otherwise it is
2155 	 * already clean.
2156 	 */
2157 	if (dev->data->dev_started)
2158 		flow_rxq_flags_trim(dev, flow);
2159 	flow_drv_destroy(dev, flow);
2160 	TAILQ_REMOVE(list, flow, next);
2161 	rte_free(flow->fdir);
2162 	rte_free(flow);
2163 }
2164 
2165 /**
2166  * Destroy all flows.
2167  *
2168  * @param dev
2169  *   Pointer to Ethernet device.
2170  * @param list
2171  *   Pointer to a TAILQ flow list.
2172  */
2173 void
2174 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2175 {
2176 	while (!TAILQ_EMPTY(list)) {
2177 		struct rte_flow *flow;
2178 
2179 		flow = TAILQ_FIRST(list);
2180 		flow_list_destroy(dev, list, flow);
2181 	}
2182 }
2183 
2184 /**
2185  * Remove all flows.
2186  *
2187  * @param dev
2188  *   Pointer to Ethernet device.
2189  * @param list
2190  *   Pointer to a TAILQ flow list.
2191  */
2192 void
2193 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2194 {
2195 	struct rte_flow *flow;
2196 
2197 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2198 		flow_drv_remove(dev, flow);
2199 	flow_rxq_flags_clear(dev);
2200 }
2201 
2202 /**
2203  * Add all flows.
2204  *
2205  * @param dev
2206  *   Pointer to Ethernet device.
2207  * @param list
2208  *   Pointer to a TAILQ flow list.
2209  *
2210  * @return
2211  *   0 on success, a negative errno value otherwise and rte_errno is set.
2212  */
2213 int
2214 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2215 {
2216 	struct rte_flow *flow;
2217 	struct rte_flow_error error;
2218 	int ret = 0;
2219 
2220 	TAILQ_FOREACH(flow, list, next) {
2221 		ret = flow_drv_apply(dev, flow, &error);
2222 		if (ret < 0)
2223 			goto error;
2224 		flow_rxq_flags_set(dev, flow);
2225 	}
2226 	return 0;
2227 error:
2228 	ret = rte_errno; /* Save rte_errno before cleanup. */
2229 	mlx5_flow_stop(dev, list);
2230 	rte_errno = ret; /* Restore rte_errno. */
2231 	return -rte_errno;
2232 }
2233 
2234 /**
2235  * Verify the flow list is empty
2236  *
2237  * @param dev
2238  *  Pointer to Ethernet device.
2239  *
2240  * @return the number of flows not released.
2241  */
2242 int
2243 mlx5_flow_verify(struct rte_eth_dev *dev)
2244 {
2245 	struct priv *priv = dev->data->dev_private;
2246 	struct rte_flow *flow;
2247 	int ret = 0;
2248 
2249 	TAILQ_FOREACH(flow, &priv->flows, next) {
2250 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
2251 			dev->data->port_id, (void *)flow);
2252 		++ret;
2253 	}
2254 	return ret;
2255 }
2256 
2257 /**
2258  * Enable a control flow configured from the control plane.
2259  *
2260  * @param dev
2261  *   Pointer to Ethernet device.
2262  * @param eth_spec
2263  *   An Ethernet flow spec to apply.
2264  * @param eth_mask
2265  *   An Ethernet flow mask to apply.
2266  * @param vlan_spec
2267  *   A VLAN flow spec to apply.
2268  * @param vlan_mask
2269  *   A VLAN flow mask to apply.
2270  *
2271  * @return
2272  *   0 on success, a negative errno value otherwise and rte_errno is set.
2273  */
2274 int
2275 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2276 		    struct rte_flow_item_eth *eth_spec,
2277 		    struct rte_flow_item_eth *eth_mask,
2278 		    struct rte_flow_item_vlan *vlan_spec,
2279 		    struct rte_flow_item_vlan *vlan_mask)
2280 {
2281 	struct priv *priv = dev->data->dev_private;
2282 	const struct rte_flow_attr attr = {
2283 		.ingress = 1,
2284 		.priority = MLX5_FLOW_PRIO_RSVD,
2285 	};
2286 	struct rte_flow_item items[] = {
2287 		{
2288 			.type = RTE_FLOW_ITEM_TYPE_ETH,
2289 			.spec = eth_spec,
2290 			.last = NULL,
2291 			.mask = eth_mask,
2292 		},
2293 		{
2294 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2295 					      RTE_FLOW_ITEM_TYPE_END,
2296 			.spec = vlan_spec,
2297 			.last = NULL,
2298 			.mask = vlan_mask,
2299 		},
2300 		{
2301 			.type = RTE_FLOW_ITEM_TYPE_END,
2302 		},
2303 	};
2304 	uint16_t queue[priv->reta_idx_n];
2305 	struct rte_flow_action_rss action_rss = {
2306 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2307 		.level = 0,
2308 		.types = priv->rss_conf.rss_hf,
2309 		.key_len = priv->rss_conf.rss_key_len,
2310 		.queue_num = priv->reta_idx_n,
2311 		.key = priv->rss_conf.rss_key,
2312 		.queue = queue,
2313 	};
2314 	struct rte_flow_action actions[] = {
2315 		{
2316 			.type = RTE_FLOW_ACTION_TYPE_RSS,
2317 			.conf = &action_rss,
2318 		},
2319 		{
2320 			.type = RTE_FLOW_ACTION_TYPE_END,
2321 		},
2322 	};
2323 	struct rte_flow *flow;
2324 	struct rte_flow_error error;
2325 	unsigned int i;
2326 
2327 	if (!priv->reta_idx_n || !priv->rxqs_n) {
2328 		rte_errno = EINVAL;
2329 		return -rte_errno;
2330 	}
2331 	for (i = 0; i != priv->reta_idx_n; ++i)
2332 		queue[i] = (*priv->reta_idx)[i];
2333 	flow = flow_list_create(dev, &priv->ctrl_flows,
2334 				&attr, items, actions, &error);
2335 	if (!flow)
2336 		return -rte_errno;
2337 	return 0;
2338 }
2339 
2340 /**
2341  * Enable a flow control configured from the control plane.
2342  *
2343  * @param dev
2344  *   Pointer to Ethernet device.
2345  * @param eth_spec
2346  *   An Ethernet flow spec to apply.
2347  * @param eth_mask
2348  *   An Ethernet flow mask to apply.
2349  *
2350  * @return
2351  *   0 on success, a negative errno value otherwise and rte_errno is set.
2352  */
2353 int
2354 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2355 	       struct rte_flow_item_eth *eth_spec,
2356 	       struct rte_flow_item_eth *eth_mask)
2357 {
2358 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2359 }
2360 
2361 /**
2362  * Destroy a flow.
2363  *
2364  * @see rte_flow_destroy()
2365  * @see rte_flow_ops
2366  */
2367 int
2368 mlx5_flow_destroy(struct rte_eth_dev *dev,
2369 		  struct rte_flow *flow,
2370 		  struct rte_flow_error *error __rte_unused)
2371 {
2372 	struct priv *priv = dev->data->dev_private;
2373 
2374 	flow_list_destroy(dev, &priv->flows, flow);
2375 	return 0;
2376 }
2377 
2378 /**
2379  * Destroy all flows.
2380  *
2381  * @see rte_flow_flush()
2382  * @see rte_flow_ops
2383  */
2384 int
2385 mlx5_flow_flush(struct rte_eth_dev *dev,
2386 		struct rte_flow_error *error __rte_unused)
2387 {
2388 	struct priv *priv = dev->data->dev_private;
2389 
2390 	mlx5_flow_list_flush(dev, &priv->flows);
2391 	return 0;
2392 }
2393 
2394 /**
2395  * Isolated mode.
2396  *
2397  * @see rte_flow_isolate()
2398  * @see rte_flow_ops
2399  */
2400 int
2401 mlx5_flow_isolate(struct rte_eth_dev *dev,
2402 		  int enable,
2403 		  struct rte_flow_error *error)
2404 {
2405 	struct priv *priv = dev->data->dev_private;
2406 
2407 	if (dev->data->dev_started) {
2408 		rte_flow_error_set(error, EBUSY,
2409 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2410 				   NULL,
2411 				   "port must be stopped first");
2412 		return -rte_errno;
2413 	}
2414 	priv->isolated = !!enable;
2415 	if (enable)
2416 		dev->dev_ops = &mlx5_dev_ops_isolate;
2417 	else
2418 		dev->dev_ops = &mlx5_dev_ops;
2419 	return 0;
2420 }
2421 
2422 /**
2423  * Query a flow.
2424  *
2425  * @see rte_flow_query()
2426  * @see rte_flow_ops
2427  */
2428 static int
2429 flow_drv_query(struct rte_eth_dev *dev,
2430 	       struct rte_flow *flow,
2431 	       const struct rte_flow_action *actions,
2432 	       void *data,
2433 	       struct rte_flow_error *error)
2434 {
2435 	const struct mlx5_flow_driver_ops *fops;
2436 	enum mlx5_flow_drv_type ftype = flow->drv_type;
2437 
2438 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2439 	fops = flow_get_drv_ops(ftype);
2440 
2441 	return fops->query(dev, flow, actions, data, error);
2442 }
2443 
2444 /**
2445  * Query a flow.
2446  *
2447  * @see rte_flow_query()
2448  * @see rte_flow_ops
2449  */
2450 int
2451 mlx5_flow_query(struct rte_eth_dev *dev,
2452 		struct rte_flow *flow,
2453 		const struct rte_flow_action *actions,
2454 		void *data,
2455 		struct rte_flow_error *error)
2456 {
2457 	int ret;
2458 
2459 	ret = flow_drv_query(dev, flow, actions, data, error);
2460 	if (ret < 0)
2461 		return ret;
2462 	return 0;
2463 }
2464 
2465 /**
2466  * Convert a flow director filter to a generic flow.
2467  *
2468  * @param dev
2469  *   Pointer to Ethernet device.
2470  * @param fdir_filter
2471  *   Flow director filter to add.
2472  * @param attributes
2473  *   Generic flow parameters structure.
2474  *
2475  * @return
2476  *   0 on success, a negative errno value otherwise and rte_errno is set.
2477  */
2478 static int
2479 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2480 			 const struct rte_eth_fdir_filter *fdir_filter,
2481 			 struct mlx5_fdir *attributes)
2482 {
2483 	struct priv *priv = dev->data->dev_private;
2484 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
2485 	const struct rte_eth_fdir_masks *mask =
2486 		&dev->data->dev_conf.fdir_conf.mask;
2487 
2488 	/* Validate queue number. */
2489 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2490 		DRV_LOG(ERR, "port %u invalid queue number %d",
2491 			dev->data->port_id, fdir_filter->action.rx_queue);
2492 		rte_errno = EINVAL;
2493 		return -rte_errno;
2494 	}
2495 	attributes->attr.ingress = 1;
2496 	attributes->items[0] = (struct rte_flow_item) {
2497 		.type = RTE_FLOW_ITEM_TYPE_ETH,
2498 		.spec = &attributes->l2,
2499 		.mask = &attributes->l2_mask,
2500 	};
2501 	switch (fdir_filter->action.behavior) {
2502 	case RTE_ETH_FDIR_ACCEPT:
2503 		attributes->actions[0] = (struct rte_flow_action){
2504 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
2505 			.conf = &attributes->queue,
2506 		};
2507 		break;
2508 	case RTE_ETH_FDIR_REJECT:
2509 		attributes->actions[0] = (struct rte_flow_action){
2510 			.type = RTE_FLOW_ACTION_TYPE_DROP,
2511 		};
2512 		break;
2513 	default:
2514 		DRV_LOG(ERR, "port %u invalid behavior %d",
2515 			dev->data->port_id,
2516 			fdir_filter->action.behavior);
2517 		rte_errno = ENOTSUP;
2518 		return -rte_errno;
2519 	}
2520 	attributes->queue.index = fdir_filter->action.rx_queue;
2521 	/* Handle L3. */
2522 	switch (fdir_filter->input.flow_type) {
2523 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2524 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2525 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2526 		attributes->l3.ipv4.hdr = (struct ipv4_hdr){
2527 			.src_addr = input->flow.ip4_flow.src_ip,
2528 			.dst_addr = input->flow.ip4_flow.dst_ip,
2529 			.time_to_live = input->flow.ip4_flow.ttl,
2530 			.type_of_service = input->flow.ip4_flow.tos,
2531 		};
2532 		attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
2533 			.src_addr = mask->ipv4_mask.src_ip,
2534 			.dst_addr = mask->ipv4_mask.dst_ip,
2535 			.time_to_live = mask->ipv4_mask.ttl,
2536 			.type_of_service = mask->ipv4_mask.tos,
2537 			.next_proto_id = mask->ipv4_mask.proto,
2538 		};
2539 		attributes->items[1] = (struct rte_flow_item){
2540 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
2541 			.spec = &attributes->l3,
2542 			.mask = &attributes->l3_mask,
2543 		};
2544 		break;
2545 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2546 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2547 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2548 		attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2549 			.hop_limits = input->flow.ipv6_flow.hop_limits,
2550 			.proto = input->flow.ipv6_flow.proto,
2551 		};
2552 
2553 		memcpy(attributes->l3.ipv6.hdr.src_addr,
2554 		       input->flow.ipv6_flow.src_ip,
2555 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2556 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
2557 		       input->flow.ipv6_flow.dst_ip,
2558 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2559 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2560 		       mask->ipv6_mask.src_ip,
2561 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2562 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2563 		       mask->ipv6_mask.dst_ip,
2564 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2565 		attributes->items[1] = (struct rte_flow_item){
2566 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
2567 			.spec = &attributes->l3,
2568 			.mask = &attributes->l3_mask,
2569 		};
2570 		break;
2571 	default:
2572 		DRV_LOG(ERR, "port %u invalid flow type%d",
2573 			dev->data->port_id, fdir_filter->input.flow_type);
2574 		rte_errno = ENOTSUP;
2575 		return -rte_errno;
2576 	}
2577 	/* Handle L4. */
2578 	switch (fdir_filter->input.flow_type) {
2579 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2580 		attributes->l4.udp.hdr = (struct udp_hdr){
2581 			.src_port = input->flow.udp4_flow.src_port,
2582 			.dst_port = input->flow.udp4_flow.dst_port,
2583 		};
2584 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2585 			.src_port = mask->src_port_mask,
2586 			.dst_port = mask->dst_port_mask,
2587 		};
2588 		attributes->items[2] = (struct rte_flow_item){
2589 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2590 			.spec = &attributes->l4,
2591 			.mask = &attributes->l4_mask,
2592 		};
2593 		break;
2594 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2595 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2596 			.src_port = input->flow.tcp4_flow.src_port,
2597 			.dst_port = input->flow.tcp4_flow.dst_port,
2598 		};
2599 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2600 			.src_port = mask->src_port_mask,
2601 			.dst_port = mask->dst_port_mask,
2602 		};
2603 		attributes->items[2] = (struct rte_flow_item){
2604 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2605 			.spec = &attributes->l4,
2606 			.mask = &attributes->l4_mask,
2607 		};
2608 		break;
2609 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2610 		attributes->l4.udp.hdr = (struct udp_hdr){
2611 			.src_port = input->flow.udp6_flow.src_port,
2612 			.dst_port = input->flow.udp6_flow.dst_port,
2613 		};
2614 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2615 			.src_port = mask->src_port_mask,
2616 			.dst_port = mask->dst_port_mask,
2617 		};
2618 		attributes->items[2] = (struct rte_flow_item){
2619 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2620 			.spec = &attributes->l4,
2621 			.mask = &attributes->l4_mask,
2622 		};
2623 		break;
2624 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2625 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2626 			.src_port = input->flow.tcp6_flow.src_port,
2627 			.dst_port = input->flow.tcp6_flow.dst_port,
2628 		};
2629 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2630 			.src_port = mask->src_port_mask,
2631 			.dst_port = mask->dst_port_mask,
2632 		};
2633 		attributes->items[2] = (struct rte_flow_item){
2634 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2635 			.spec = &attributes->l4,
2636 			.mask = &attributes->l4_mask,
2637 		};
2638 		break;
2639 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2640 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2641 		break;
2642 	default:
2643 		DRV_LOG(ERR, "port %u invalid flow type%d",
2644 			dev->data->port_id, fdir_filter->input.flow_type);
2645 		rte_errno = ENOTSUP;
2646 		return -rte_errno;
2647 	}
2648 	return 0;
2649 }
2650 
2651 #define FLOW_FDIR_CMP(f1, f2, fld) \
2652 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2653 
2654 /**
2655  * Compare two FDIR flows. If items and actions are identical, the two flows are
2656  * regarded as same.
2657  *
2658  * @param dev
2659  *   Pointer to Ethernet device.
2660  * @param f1
2661  *   FDIR flow to compare.
2662  * @param f2
2663  *   FDIR flow to compare.
2664  *
2665  * @return
2666  *   Zero on match, 1 otherwise.
2667  */
2668 static int
2669 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2670 {
2671 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
2672 	    FLOW_FDIR_CMP(f1, f2, l2) ||
2673 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2674 	    FLOW_FDIR_CMP(f1, f2, l3) ||
2675 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2676 	    FLOW_FDIR_CMP(f1, f2, l4) ||
2677 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2678 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
2679 		return 1;
2680 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2681 	    FLOW_FDIR_CMP(f1, f2, queue))
2682 		return 1;
2683 	return 0;
2684 }
2685 
2686 /**
2687  * Search device flow list to find out a matched FDIR flow.
2688  *
2689  * @param dev
2690  *   Pointer to Ethernet device.
2691  * @param fdir_flow
2692  *   FDIR flow to lookup.
2693  *
2694  * @return
2695  *   Pointer of flow if found, NULL otherwise.
2696  */
2697 static struct rte_flow *
2698 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2699 {
2700 	struct priv *priv = dev->data->dev_private;
2701 	struct rte_flow *flow = NULL;
2702 
2703 	assert(fdir_flow);
2704 	TAILQ_FOREACH(flow, &priv->flows, next) {
2705 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2706 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2707 				dev->data->port_id, (void *)flow);
2708 			break;
2709 		}
2710 	}
2711 	return flow;
2712 }
2713 
2714 /**
2715  * Add new flow director filter and store it in list.
2716  *
2717  * @param dev
2718  *   Pointer to Ethernet device.
2719  * @param fdir_filter
2720  *   Flow director filter to add.
2721  *
2722  * @return
2723  *   0 on success, a negative errno value otherwise and rte_errno is set.
2724  */
2725 static int
2726 flow_fdir_filter_add(struct rte_eth_dev *dev,
2727 		     const struct rte_eth_fdir_filter *fdir_filter)
2728 {
2729 	struct priv *priv = dev->data->dev_private;
2730 	struct mlx5_fdir *fdir_flow;
2731 	struct rte_flow *flow;
2732 	int ret;
2733 
2734 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2735 	if (!fdir_flow) {
2736 		rte_errno = ENOMEM;
2737 		return -rte_errno;
2738 	}
2739 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2740 	if (ret)
2741 		goto error;
2742 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
2743 	if (flow) {
2744 		rte_errno = EEXIST;
2745 		goto error;
2746 	}
2747 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2748 				fdir_flow->items, fdir_flow->actions, NULL);
2749 	if (!flow)
2750 		goto error;
2751 	assert(!flow->fdir);
2752 	flow->fdir = fdir_flow;
2753 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2754 		dev->data->port_id, (void *)flow);
2755 	return 0;
2756 error:
2757 	rte_free(fdir_flow);
2758 	return -rte_errno;
2759 }
2760 
2761 /**
2762  * Delete specific filter.
2763  *
2764  * @param dev
2765  *   Pointer to Ethernet device.
2766  * @param fdir_filter
2767  *   Filter to be deleted.
2768  *
2769  * @return
2770  *   0 on success, a negative errno value otherwise and rte_errno is set.
2771  */
2772 static int
2773 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2774 			const struct rte_eth_fdir_filter *fdir_filter)
2775 {
2776 	struct priv *priv = dev->data->dev_private;
2777 	struct rte_flow *flow;
2778 	struct mlx5_fdir fdir_flow = {
2779 		.attr.group = 0,
2780 	};
2781 	int ret;
2782 
2783 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2784 	if (ret)
2785 		return -rte_errno;
2786 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2787 	if (!flow) {
2788 		rte_errno = ENOENT;
2789 		return -rte_errno;
2790 	}
2791 	flow_list_destroy(dev, &priv->flows, flow);
2792 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2793 		dev->data->port_id, (void *)flow);
2794 	return 0;
2795 }
2796 
2797 /**
2798  * Update queue for specific filter.
2799  *
2800  * @param dev
2801  *   Pointer to Ethernet device.
2802  * @param fdir_filter
2803  *   Filter to be updated.
2804  *
2805  * @return
2806  *   0 on success, a negative errno value otherwise and rte_errno is set.
2807  */
2808 static int
2809 flow_fdir_filter_update(struct rte_eth_dev *dev,
2810 			const struct rte_eth_fdir_filter *fdir_filter)
2811 {
2812 	int ret;
2813 
2814 	ret = flow_fdir_filter_delete(dev, fdir_filter);
2815 	if (ret)
2816 		return ret;
2817 	return flow_fdir_filter_add(dev, fdir_filter);
2818 }
2819 
2820 /**
2821  * Flush all filters.
2822  *
2823  * @param dev
2824  *   Pointer to Ethernet device.
2825  */
2826 static void
2827 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2828 {
2829 	struct priv *priv = dev->data->dev_private;
2830 
2831 	mlx5_flow_list_flush(dev, &priv->flows);
2832 }
2833 
2834 /**
2835  * Get flow director information.
2836  *
2837  * @param dev
2838  *   Pointer to Ethernet device.
2839  * @param[out] fdir_info
2840  *   Resulting flow director information.
2841  */
2842 static void
2843 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2844 {
2845 	struct rte_eth_fdir_masks *mask =
2846 		&dev->data->dev_conf.fdir_conf.mask;
2847 
2848 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2849 	fdir_info->guarant_spc = 0;
2850 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2851 	fdir_info->max_flexpayload = 0;
2852 	fdir_info->flow_types_mask[0] = 0;
2853 	fdir_info->flex_payload_unit = 0;
2854 	fdir_info->max_flex_payload_segment_num = 0;
2855 	fdir_info->flex_payload_limit = 0;
2856 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2857 }
2858 
2859 /**
2860  * Deal with flow director operations.
2861  *
2862  * @param dev
2863  *   Pointer to Ethernet device.
2864  * @param filter_op
2865  *   Operation to perform.
2866  * @param arg
2867  *   Pointer to operation-specific structure.
2868  *
2869  * @return
2870  *   0 on success, a negative errno value otherwise and rte_errno is set.
2871  */
2872 static int
2873 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2874 		    void *arg)
2875 {
2876 	enum rte_fdir_mode fdir_mode =
2877 		dev->data->dev_conf.fdir_conf.mode;
2878 
2879 	if (filter_op == RTE_ETH_FILTER_NOP)
2880 		return 0;
2881 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2882 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2883 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
2884 			dev->data->port_id, fdir_mode);
2885 		rte_errno = EINVAL;
2886 		return -rte_errno;
2887 	}
2888 	switch (filter_op) {
2889 	case RTE_ETH_FILTER_ADD:
2890 		return flow_fdir_filter_add(dev, arg);
2891 	case RTE_ETH_FILTER_UPDATE:
2892 		return flow_fdir_filter_update(dev, arg);
2893 	case RTE_ETH_FILTER_DELETE:
2894 		return flow_fdir_filter_delete(dev, arg);
2895 	case RTE_ETH_FILTER_FLUSH:
2896 		flow_fdir_filter_flush(dev);
2897 		break;
2898 	case RTE_ETH_FILTER_INFO:
2899 		flow_fdir_info_get(dev, arg);
2900 		break;
2901 	default:
2902 		DRV_LOG(DEBUG, "port %u unknown operation %u",
2903 			dev->data->port_id, filter_op);
2904 		rte_errno = EINVAL;
2905 		return -rte_errno;
2906 	}
2907 	return 0;
2908 }
2909 
2910 /**
2911  * Manage filter operations.
2912  *
2913  * @param dev
2914  *   Pointer to Ethernet device structure.
2915  * @param filter_type
2916  *   Filter type.
2917  * @param filter_op
2918  *   Operation to perform.
2919  * @param arg
2920  *   Pointer to operation-specific structure.
2921  *
2922  * @return
2923  *   0 on success, a negative errno value otherwise and rte_errno is set.
2924  */
2925 int
2926 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2927 		     enum rte_filter_type filter_type,
2928 		     enum rte_filter_op filter_op,
2929 		     void *arg)
2930 {
2931 	switch (filter_type) {
2932 	case RTE_ETH_FILTER_GENERIC:
2933 		if (filter_op != RTE_ETH_FILTER_GET) {
2934 			rte_errno = EINVAL;
2935 			return -rte_errno;
2936 		}
2937 		*(const void **)arg = &mlx5_flow_ops;
2938 		return 0;
2939 	case RTE_ETH_FILTER_FDIR:
2940 		return flow_fdir_ctrl_func(dev, filter_op, arg);
2941 	default:
2942 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
2943 			dev->data->port_id, filter_type);
2944 		rte_errno = ENOTSUP;
2945 		return -rte_errno;
2946 	}
2947 	return 0;
2948 }
2949