1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox Technologies, Ltd 4 */ 5 6 #include <netinet/in.h> 7 #include <sys/queue.h> 8 #include <stdalign.h> 9 #include <stdint.h> 10 #include <string.h> 11 12 /* Verbs header. */ 13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ 14 #ifdef PEDANTIC 15 #pragma GCC diagnostic ignored "-Wpedantic" 16 #endif 17 #include <infiniband/verbs.h> 18 #ifdef PEDANTIC 19 #pragma GCC diagnostic error "-Wpedantic" 20 #endif 21 22 #include <rte_common.h> 23 #include <rte_ether.h> 24 #include <rte_eth_ctrl.h> 25 #include <rte_ethdev_driver.h> 26 #include <rte_flow.h> 27 #include <rte_flow_driver.h> 28 #include <rte_malloc.h> 29 #include <rte_ip.h> 30 31 #include "mlx5.h" 32 #include "mlx5_defs.h" 33 #include "mlx5_prm.h" 34 #include "mlx5_glue.h" 35 #include "mlx5_flow.h" 36 37 /* Dev ops structure defined in mlx5.c */ 38 extern const struct eth_dev_ops mlx5_dev_ops; 39 extern const struct eth_dev_ops mlx5_dev_ops_isolate; 40 41 /** Device flow drivers. */ 42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops; 44 #endif 45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops; 46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops; 47 48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops; 49 50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = { 51 [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops, 52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 53 [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops, 54 #endif 55 [MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops, 56 [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops, 57 [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops 58 }; 59 60 enum mlx5_expansion { 61 MLX5_EXPANSION_ROOT, 62 MLX5_EXPANSION_ROOT_OUTER, 63 MLX5_EXPANSION_ROOT_ETH_VLAN, 64 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN, 65 MLX5_EXPANSION_OUTER_ETH, 66 MLX5_EXPANSION_OUTER_ETH_VLAN, 67 MLX5_EXPANSION_OUTER_VLAN, 68 MLX5_EXPANSION_OUTER_IPV4, 69 MLX5_EXPANSION_OUTER_IPV4_UDP, 70 MLX5_EXPANSION_OUTER_IPV4_TCP, 71 MLX5_EXPANSION_OUTER_IPV6, 72 MLX5_EXPANSION_OUTER_IPV6_UDP, 73 MLX5_EXPANSION_OUTER_IPV6_TCP, 74 MLX5_EXPANSION_VXLAN, 75 MLX5_EXPANSION_VXLAN_GPE, 76 MLX5_EXPANSION_GRE, 77 MLX5_EXPANSION_MPLS, 78 MLX5_EXPANSION_ETH, 79 MLX5_EXPANSION_ETH_VLAN, 80 MLX5_EXPANSION_VLAN, 81 MLX5_EXPANSION_IPV4, 82 MLX5_EXPANSION_IPV4_UDP, 83 MLX5_EXPANSION_IPV4_TCP, 84 MLX5_EXPANSION_IPV6, 85 MLX5_EXPANSION_IPV6_UDP, 86 MLX5_EXPANSION_IPV6_TCP, 87 }; 88 89 /** Supported expansion of items. */ 90 static const struct rte_flow_expand_node mlx5_support_expansion[] = { 91 [MLX5_EXPANSION_ROOT] = { 92 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 93 MLX5_EXPANSION_IPV4, 94 MLX5_EXPANSION_IPV6), 95 .type = RTE_FLOW_ITEM_TYPE_END, 96 }, 97 [MLX5_EXPANSION_ROOT_OUTER] = { 98 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH, 99 MLX5_EXPANSION_OUTER_IPV4, 100 MLX5_EXPANSION_OUTER_IPV6), 101 .type = RTE_FLOW_ITEM_TYPE_END, 102 }, 103 [MLX5_EXPANSION_ROOT_ETH_VLAN] = { 104 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN), 105 .type = RTE_FLOW_ITEM_TYPE_END, 106 }, 107 [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = { 108 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN), 109 .type = RTE_FLOW_ITEM_TYPE_END, 110 }, 111 [MLX5_EXPANSION_OUTER_ETH] = { 112 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 113 MLX5_EXPANSION_OUTER_IPV6, 114 MLX5_EXPANSION_MPLS), 115 .type = RTE_FLOW_ITEM_TYPE_ETH, 116 .rss_types = 0, 117 }, 118 [MLX5_EXPANSION_OUTER_ETH_VLAN] = { 119 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN), 120 .type = RTE_FLOW_ITEM_TYPE_ETH, 121 .rss_types = 0, 122 }, 123 [MLX5_EXPANSION_OUTER_VLAN] = { 124 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 125 MLX5_EXPANSION_OUTER_IPV6), 126 .type = RTE_FLOW_ITEM_TYPE_VLAN, 127 }, 128 [MLX5_EXPANSION_OUTER_IPV4] = { 129 .next = RTE_FLOW_EXPAND_RSS_NEXT 130 (MLX5_EXPANSION_OUTER_IPV4_UDP, 131 MLX5_EXPANSION_OUTER_IPV4_TCP, 132 MLX5_EXPANSION_GRE), 133 .type = RTE_FLOW_ITEM_TYPE_IPV4, 134 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 135 ETH_RSS_NONFRAG_IPV4_OTHER, 136 }, 137 [MLX5_EXPANSION_OUTER_IPV4_UDP] = { 138 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 139 MLX5_EXPANSION_VXLAN_GPE), 140 .type = RTE_FLOW_ITEM_TYPE_UDP, 141 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 142 }, 143 [MLX5_EXPANSION_OUTER_IPV4_TCP] = { 144 .type = RTE_FLOW_ITEM_TYPE_TCP, 145 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 146 }, 147 [MLX5_EXPANSION_OUTER_IPV6] = { 148 .next = RTE_FLOW_EXPAND_RSS_NEXT 149 (MLX5_EXPANSION_OUTER_IPV6_UDP, 150 MLX5_EXPANSION_OUTER_IPV6_TCP), 151 .type = RTE_FLOW_ITEM_TYPE_IPV6, 152 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 153 ETH_RSS_NONFRAG_IPV6_OTHER, 154 }, 155 [MLX5_EXPANSION_OUTER_IPV6_UDP] = { 156 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 157 MLX5_EXPANSION_VXLAN_GPE), 158 .type = RTE_FLOW_ITEM_TYPE_UDP, 159 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 160 }, 161 [MLX5_EXPANSION_OUTER_IPV6_TCP] = { 162 .type = RTE_FLOW_ITEM_TYPE_TCP, 163 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 164 }, 165 [MLX5_EXPANSION_VXLAN] = { 166 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH), 167 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 168 }, 169 [MLX5_EXPANSION_VXLAN_GPE] = { 170 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 171 MLX5_EXPANSION_IPV4, 172 MLX5_EXPANSION_IPV6), 173 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE, 174 }, 175 [MLX5_EXPANSION_GRE] = { 176 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4), 177 .type = RTE_FLOW_ITEM_TYPE_GRE, 178 }, 179 [MLX5_EXPANSION_MPLS] = { 180 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 181 MLX5_EXPANSION_IPV6), 182 .type = RTE_FLOW_ITEM_TYPE_MPLS, 183 }, 184 [MLX5_EXPANSION_ETH] = { 185 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 186 MLX5_EXPANSION_IPV6), 187 .type = RTE_FLOW_ITEM_TYPE_ETH, 188 }, 189 [MLX5_EXPANSION_ETH_VLAN] = { 190 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN), 191 .type = RTE_FLOW_ITEM_TYPE_ETH, 192 }, 193 [MLX5_EXPANSION_VLAN] = { 194 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 195 MLX5_EXPANSION_IPV6), 196 .type = RTE_FLOW_ITEM_TYPE_VLAN, 197 }, 198 [MLX5_EXPANSION_IPV4] = { 199 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP, 200 MLX5_EXPANSION_IPV4_TCP), 201 .type = RTE_FLOW_ITEM_TYPE_IPV4, 202 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 203 ETH_RSS_NONFRAG_IPV4_OTHER, 204 }, 205 [MLX5_EXPANSION_IPV4_UDP] = { 206 .type = RTE_FLOW_ITEM_TYPE_UDP, 207 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 208 }, 209 [MLX5_EXPANSION_IPV4_TCP] = { 210 .type = RTE_FLOW_ITEM_TYPE_TCP, 211 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 212 }, 213 [MLX5_EXPANSION_IPV6] = { 214 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP, 215 MLX5_EXPANSION_IPV6_TCP), 216 .type = RTE_FLOW_ITEM_TYPE_IPV6, 217 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 218 ETH_RSS_NONFRAG_IPV6_OTHER, 219 }, 220 [MLX5_EXPANSION_IPV6_UDP] = { 221 .type = RTE_FLOW_ITEM_TYPE_UDP, 222 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 223 }, 224 [MLX5_EXPANSION_IPV6_TCP] = { 225 .type = RTE_FLOW_ITEM_TYPE_TCP, 226 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 227 }, 228 }; 229 230 static const struct rte_flow_ops mlx5_flow_ops = { 231 .validate = mlx5_flow_validate, 232 .create = mlx5_flow_create, 233 .destroy = mlx5_flow_destroy, 234 .flush = mlx5_flow_flush, 235 .isolate = mlx5_flow_isolate, 236 .query = mlx5_flow_query, 237 }; 238 239 /* Convert FDIR request to Generic flow. */ 240 struct mlx5_fdir { 241 struct rte_flow_attr attr; 242 struct rte_flow_item items[4]; 243 struct rte_flow_item_eth l2; 244 struct rte_flow_item_eth l2_mask; 245 union { 246 struct rte_flow_item_ipv4 ipv4; 247 struct rte_flow_item_ipv6 ipv6; 248 } l3; 249 union { 250 struct rte_flow_item_ipv4 ipv4; 251 struct rte_flow_item_ipv6 ipv6; 252 } l3_mask; 253 union { 254 struct rte_flow_item_udp udp; 255 struct rte_flow_item_tcp tcp; 256 } l4; 257 union { 258 struct rte_flow_item_udp udp; 259 struct rte_flow_item_tcp tcp; 260 } l4_mask; 261 struct rte_flow_action actions[2]; 262 struct rte_flow_action_queue queue; 263 }; 264 265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */ 266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = { 267 { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 }, 268 }; 269 270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */ 271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = { 272 { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 }, 273 { 9, 10, 11 }, { 12, 13, 14 }, 274 }; 275 276 /* Tunnel information. */ 277 struct mlx5_flow_tunnel_info { 278 uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */ 279 uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */ 280 }; 281 282 static struct mlx5_flow_tunnel_info tunnels_info[] = { 283 { 284 .tunnel = MLX5_FLOW_LAYER_VXLAN, 285 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP, 286 }, 287 { 288 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE, 289 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP, 290 }, 291 { 292 .tunnel = MLX5_FLOW_LAYER_GRE, 293 .ptype = RTE_PTYPE_TUNNEL_GRE, 294 }, 295 { 296 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP, 297 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP, 298 }, 299 { 300 .tunnel = MLX5_FLOW_LAYER_MPLS, 301 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE, 302 }, 303 }; 304 305 /** 306 * Discover the maximum number of priority available. 307 * 308 * @param[in] dev 309 * Pointer to the Ethernet device structure. 310 * 311 * @return 312 * number of supported flow priority on success, a negative errno 313 * value otherwise and rte_errno is set. 314 */ 315 int 316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev) 317 { 318 struct { 319 struct ibv_flow_attr attr; 320 struct ibv_flow_spec_eth eth; 321 struct ibv_flow_spec_action_drop drop; 322 } flow_attr = { 323 .attr = { 324 .num_of_specs = 2, 325 }, 326 .eth = { 327 .type = IBV_FLOW_SPEC_ETH, 328 .size = sizeof(struct ibv_flow_spec_eth), 329 }, 330 .drop = { 331 .size = sizeof(struct ibv_flow_spec_action_drop), 332 .type = IBV_FLOW_SPEC_ACTION_DROP, 333 }, 334 }; 335 struct ibv_flow *flow; 336 struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev); 337 uint16_t vprio[] = { 8, 16 }; 338 int i; 339 int priority = 0; 340 341 if (!drop) { 342 rte_errno = ENOTSUP; 343 return -rte_errno; 344 } 345 for (i = 0; i != RTE_DIM(vprio); i++) { 346 flow_attr.attr.priority = vprio[i] - 1; 347 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr); 348 if (!flow) 349 break; 350 claim_zero(mlx5_glue->destroy_flow(flow)); 351 priority = vprio[i]; 352 } 353 switch (priority) { 354 case 8: 355 priority = RTE_DIM(priority_map_3); 356 break; 357 case 16: 358 priority = RTE_DIM(priority_map_5); 359 break; 360 default: 361 rte_errno = ENOTSUP; 362 DRV_LOG(ERR, 363 "port %u verbs maximum priority: %d expected 8/16", 364 dev->data->port_id, vprio[i]); 365 return -rte_errno; 366 } 367 mlx5_hrxq_drop_release(dev); 368 DRV_LOG(INFO, "port %u flow maximum priority: %d", 369 dev->data->port_id, priority); 370 return priority; 371 } 372 373 /** 374 * Adjust flow priority based on the highest layer and the request priority. 375 * 376 * @param[in] dev 377 * Pointer to the Ethernet device structure. 378 * @param[in] priority 379 * The rule base priority. 380 * @param[in] subpriority 381 * The priority based on the items. 382 * 383 * @return 384 * The new priority. 385 */ 386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority, 387 uint32_t subpriority) 388 { 389 uint32_t res = 0; 390 struct priv *priv = dev->data->dev_private; 391 392 switch (priv->config.flow_prio) { 393 case RTE_DIM(priority_map_3): 394 res = priority_map_3[priority][subpriority]; 395 break; 396 case RTE_DIM(priority_map_5): 397 res = priority_map_5[priority][subpriority]; 398 break; 399 } 400 return res; 401 } 402 403 /** 404 * Verify the @p item specifications (spec, last, mask) are compatible with the 405 * NIC capabilities. 406 * 407 * @param[in] item 408 * Item specification. 409 * @param[in] mask 410 * @p item->mask or flow default bit-masks. 411 * @param[in] nic_mask 412 * Bit-masks covering supported fields by the NIC to compare with user mask. 413 * @param[in] size 414 * Bit-masks size in bytes. 415 * @param[out] error 416 * Pointer to error structure. 417 * 418 * @return 419 * 0 on success, a negative errno value otherwise and rte_errno is set. 420 */ 421 int 422 mlx5_flow_item_acceptable(const struct rte_flow_item *item, 423 const uint8_t *mask, 424 const uint8_t *nic_mask, 425 unsigned int size, 426 struct rte_flow_error *error) 427 { 428 unsigned int i; 429 430 assert(nic_mask); 431 for (i = 0; i < size; ++i) 432 if ((nic_mask[i] | mask[i]) != nic_mask[i]) 433 return rte_flow_error_set(error, ENOTSUP, 434 RTE_FLOW_ERROR_TYPE_ITEM, 435 item, 436 "mask enables non supported" 437 " bits"); 438 if (!item->spec && (item->mask || item->last)) 439 return rte_flow_error_set(error, EINVAL, 440 RTE_FLOW_ERROR_TYPE_ITEM, item, 441 "mask/last without a spec is not" 442 " supported"); 443 if (item->spec && item->last) { 444 uint8_t spec[size]; 445 uint8_t last[size]; 446 unsigned int i; 447 int ret; 448 449 for (i = 0; i < size; ++i) { 450 spec[i] = ((const uint8_t *)item->spec)[i] & mask[i]; 451 last[i] = ((const uint8_t *)item->last)[i] & mask[i]; 452 } 453 ret = memcmp(spec, last, size); 454 if (ret != 0) 455 return rte_flow_error_set(error, EINVAL, 456 RTE_FLOW_ERROR_TYPE_ITEM, 457 item, 458 "range is not valid"); 459 } 460 return 0; 461 } 462 463 /** 464 * Adjust the hash fields according to the @p flow information. 465 * 466 * @param[in] dev_flow. 467 * Pointer to the mlx5_flow. 468 * @param[in] tunnel 469 * 1 when the hash field is for a tunnel item. 470 * @param[in] layer_types 471 * ETH_RSS_* types. 472 * @param[in] hash_fields 473 * Item hash fields. 474 * 475 * @return 476 * The hash fileds that should be used. 477 */ 478 uint64_t 479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow, 480 int tunnel __rte_unused, uint64_t layer_types, 481 uint64_t hash_fields) 482 { 483 struct rte_flow *flow = dev_flow->flow; 484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 485 int rss_request_inner = flow->rss.level >= 2; 486 487 /* Check RSS hash level for tunnel. */ 488 if (tunnel && rss_request_inner) 489 hash_fields |= IBV_RX_HASH_INNER; 490 else if (tunnel || rss_request_inner) 491 return 0; 492 #endif 493 /* Check if requested layer matches RSS hash fields. */ 494 if (!(flow->rss.types & layer_types)) 495 return 0; 496 return hash_fields; 497 } 498 499 /** 500 * Lookup and set the ptype in the data Rx part. A single Ptype can be used, 501 * if several tunnel rules are used on this queue, the tunnel ptype will be 502 * cleared. 503 * 504 * @param rxq_ctrl 505 * Rx queue to update. 506 */ 507 static void 508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl) 509 { 510 unsigned int i; 511 uint32_t tunnel_ptype = 0; 512 513 /* Look up for the ptype to use. */ 514 for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) { 515 if (!rxq_ctrl->flow_tunnels_n[i]) 516 continue; 517 if (!tunnel_ptype) { 518 tunnel_ptype = tunnels_info[i].ptype; 519 } else { 520 tunnel_ptype = 0; 521 break; 522 } 523 } 524 rxq_ctrl->rxq.tunnel = tunnel_ptype; 525 } 526 527 /** 528 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive 529 * flow. 530 * 531 * @param[in] dev 532 * Pointer to the Ethernet device structure. 533 * @param[in] dev_flow 534 * Pointer to device flow structure. 535 */ 536 static void 537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow) 538 { 539 struct priv *priv = dev->data->dev_private; 540 struct rte_flow *flow = dev_flow->flow; 541 const int mark = !!(flow->actions & 542 (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK)); 543 const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL); 544 unsigned int i; 545 546 for (i = 0; i != flow->rss.queue_num; ++i) { 547 int idx = (*flow->queue)[i]; 548 struct mlx5_rxq_ctrl *rxq_ctrl = 549 container_of((*priv->rxqs)[idx], 550 struct mlx5_rxq_ctrl, rxq); 551 552 if (mark) { 553 rxq_ctrl->rxq.mark = 1; 554 rxq_ctrl->flow_mark_n++; 555 } 556 if (tunnel) { 557 unsigned int j; 558 559 /* Increase the counter matching the flow. */ 560 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 561 if ((tunnels_info[j].tunnel & 562 dev_flow->layers) == 563 tunnels_info[j].tunnel) { 564 rxq_ctrl->flow_tunnels_n[j]++; 565 break; 566 } 567 } 568 flow_rxq_tunnel_ptype_update(rxq_ctrl); 569 } 570 } 571 } 572 573 /** 574 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow 575 * 576 * @param[in] dev 577 * Pointer to the Ethernet device structure. 578 * @param[in] flow 579 * Pointer to flow structure. 580 */ 581 static void 582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow) 583 { 584 struct mlx5_flow *dev_flow; 585 586 LIST_FOREACH(dev_flow, &flow->dev_flows, next) 587 flow_drv_rxq_flags_set(dev, dev_flow); 588 } 589 590 /** 591 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 592 * device flow if no other flow uses it with the same kind of request. 593 * 594 * @param dev 595 * Pointer to Ethernet device. 596 * @param[in] dev_flow 597 * Pointer to the device flow. 598 */ 599 static void 600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow) 601 { 602 struct priv *priv = dev->data->dev_private; 603 struct rte_flow *flow = dev_flow->flow; 604 const int mark = !!(flow->actions & 605 (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK)); 606 const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL); 607 unsigned int i; 608 609 assert(dev->data->dev_started); 610 for (i = 0; i != flow->rss.queue_num; ++i) { 611 int idx = (*flow->queue)[i]; 612 struct mlx5_rxq_ctrl *rxq_ctrl = 613 container_of((*priv->rxqs)[idx], 614 struct mlx5_rxq_ctrl, rxq); 615 616 if (mark) { 617 rxq_ctrl->flow_mark_n--; 618 rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n; 619 } 620 if (tunnel) { 621 unsigned int j; 622 623 /* Decrease the counter matching the flow. */ 624 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 625 if ((tunnels_info[j].tunnel & 626 dev_flow->layers) == 627 tunnels_info[j].tunnel) { 628 rxq_ctrl->flow_tunnels_n[j]--; 629 break; 630 } 631 } 632 flow_rxq_tunnel_ptype_update(rxq_ctrl); 633 } 634 } 635 } 636 637 /** 638 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 639 * @p flow if no other flow uses it with the same kind of request. 640 * 641 * @param dev 642 * Pointer to Ethernet device. 643 * @param[in] flow 644 * Pointer to the flow. 645 */ 646 static void 647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow) 648 { 649 struct mlx5_flow *dev_flow; 650 651 LIST_FOREACH(dev_flow, &flow->dev_flows, next) 652 flow_drv_rxq_flags_trim(dev, dev_flow); 653 } 654 655 /** 656 * Clear the Mark/Flag and Tunnel ptype information in all Rx queues. 657 * 658 * @param dev 659 * Pointer to Ethernet device. 660 */ 661 static void 662 flow_rxq_flags_clear(struct rte_eth_dev *dev) 663 { 664 struct priv *priv = dev->data->dev_private; 665 unsigned int i; 666 667 for (i = 0; i != priv->rxqs_n; ++i) { 668 struct mlx5_rxq_ctrl *rxq_ctrl; 669 unsigned int j; 670 671 if (!(*priv->rxqs)[i]) 672 continue; 673 rxq_ctrl = container_of((*priv->rxqs)[i], 674 struct mlx5_rxq_ctrl, rxq); 675 rxq_ctrl->flow_mark_n = 0; 676 rxq_ctrl->rxq.mark = 0; 677 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) 678 rxq_ctrl->flow_tunnels_n[j] = 0; 679 rxq_ctrl->rxq.tunnel = 0; 680 } 681 } 682 683 /* 684 * Validate the flag action. 685 * 686 * @param[in] action_flags 687 * Bit-fields that holds the actions detected until now. 688 * @param[in] attr 689 * Attributes of flow that includes this action. 690 * @param[out] error 691 * Pointer to error structure. 692 * 693 * @return 694 * 0 on success, a negative errno value otherwise and rte_errno is set. 695 */ 696 int 697 mlx5_flow_validate_action_flag(uint64_t action_flags, 698 const struct rte_flow_attr *attr, 699 struct rte_flow_error *error) 700 { 701 702 if (action_flags & MLX5_FLOW_ACTION_DROP) 703 return rte_flow_error_set(error, EINVAL, 704 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 705 "can't drop and flag in same flow"); 706 if (action_flags & MLX5_FLOW_ACTION_MARK) 707 return rte_flow_error_set(error, EINVAL, 708 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 709 "can't mark and flag in same flow"); 710 if (action_flags & MLX5_FLOW_ACTION_FLAG) 711 return rte_flow_error_set(error, EINVAL, 712 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 713 "can't have 2 flag" 714 " actions in same flow"); 715 if (attr->egress) 716 return rte_flow_error_set(error, ENOTSUP, 717 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 718 "flag action not supported for " 719 "egress"); 720 return 0; 721 } 722 723 /* 724 * Validate the mark action. 725 * 726 * @param[in] action 727 * Pointer to the queue action. 728 * @param[in] action_flags 729 * Bit-fields that holds the actions detected until now. 730 * @param[in] attr 731 * Attributes of flow that includes this action. 732 * @param[out] error 733 * Pointer to error structure. 734 * 735 * @return 736 * 0 on success, a negative errno value otherwise and rte_errno is set. 737 */ 738 int 739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action, 740 uint64_t action_flags, 741 const struct rte_flow_attr *attr, 742 struct rte_flow_error *error) 743 { 744 const struct rte_flow_action_mark *mark = action->conf; 745 746 if (!mark) 747 return rte_flow_error_set(error, EINVAL, 748 RTE_FLOW_ERROR_TYPE_ACTION, 749 action, 750 "configuration cannot be null"); 751 if (mark->id >= MLX5_FLOW_MARK_MAX) 752 return rte_flow_error_set(error, EINVAL, 753 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 754 &mark->id, 755 "mark id must in 0 <= id < " 756 RTE_STR(MLX5_FLOW_MARK_MAX)); 757 if (action_flags & MLX5_FLOW_ACTION_DROP) 758 return rte_flow_error_set(error, EINVAL, 759 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 760 "can't drop and mark in same flow"); 761 if (action_flags & MLX5_FLOW_ACTION_FLAG) 762 return rte_flow_error_set(error, EINVAL, 763 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 764 "can't flag and mark in same flow"); 765 if (action_flags & MLX5_FLOW_ACTION_MARK) 766 return rte_flow_error_set(error, EINVAL, 767 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 768 "can't have 2 mark actions in same" 769 " flow"); 770 if (attr->egress) 771 return rte_flow_error_set(error, ENOTSUP, 772 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 773 "mark action not supported for " 774 "egress"); 775 return 0; 776 } 777 778 /* 779 * Validate the drop action. 780 * 781 * @param[in] action_flags 782 * Bit-fields that holds the actions detected until now. 783 * @param[in] attr 784 * Attributes of flow that includes this action. 785 * @param[out] error 786 * Pointer to error structure. 787 * 788 * @return 789 * 0 on success, a negative errno value otherwise and rte_ernno is set. 790 */ 791 int 792 mlx5_flow_validate_action_drop(uint64_t action_flags, 793 const struct rte_flow_attr *attr, 794 struct rte_flow_error *error) 795 { 796 if (action_flags & MLX5_FLOW_ACTION_FLAG) 797 return rte_flow_error_set(error, EINVAL, 798 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 799 "can't drop and flag in same flow"); 800 if (action_flags & MLX5_FLOW_ACTION_MARK) 801 return rte_flow_error_set(error, EINVAL, 802 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 803 "can't drop and mark in same flow"); 804 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 805 return rte_flow_error_set(error, EINVAL, 806 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 807 "can't have 2 fate actions in" 808 " same flow"); 809 if (attr->egress) 810 return rte_flow_error_set(error, ENOTSUP, 811 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 812 "drop action not supported for " 813 "egress"); 814 return 0; 815 } 816 817 /* 818 * Validate the queue action. 819 * 820 * @param[in] action 821 * Pointer to the queue action. 822 * @param[in] action_flags 823 * Bit-fields that holds the actions detected until now. 824 * @param[in] dev 825 * Pointer to the Ethernet device structure. 826 * @param[in] attr 827 * Attributes of flow that includes this action. 828 * @param[out] error 829 * Pointer to error structure. 830 * 831 * @return 832 * 0 on success, a negative errno value otherwise and rte_ernno is set. 833 */ 834 int 835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action, 836 uint64_t action_flags, 837 struct rte_eth_dev *dev, 838 const struct rte_flow_attr *attr, 839 struct rte_flow_error *error) 840 { 841 struct priv *priv = dev->data->dev_private; 842 const struct rte_flow_action_queue *queue = action->conf; 843 844 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 845 return rte_flow_error_set(error, EINVAL, 846 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 847 "can't have 2 fate actions in" 848 " same flow"); 849 if (!priv->rxqs_n) 850 return rte_flow_error_set(error, EINVAL, 851 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 852 NULL, "No Rx queues configured"); 853 if (queue->index >= priv->rxqs_n) 854 return rte_flow_error_set(error, EINVAL, 855 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 856 &queue->index, 857 "queue index out of range"); 858 if (!(*priv->rxqs)[queue->index]) 859 return rte_flow_error_set(error, EINVAL, 860 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 861 &queue->index, 862 "queue is not configured"); 863 if (attr->egress) 864 return rte_flow_error_set(error, ENOTSUP, 865 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 866 "queue action not supported for " 867 "egress"); 868 return 0; 869 } 870 871 /* 872 * Validate the rss action. 873 * 874 * @param[in] action 875 * Pointer to the queue action. 876 * @param[in] action_flags 877 * Bit-fields that holds the actions detected until now. 878 * @param[in] dev 879 * Pointer to the Ethernet device structure. 880 * @param[in] attr 881 * Attributes of flow that includes this action. 882 * @param[out] error 883 * Pointer to error structure. 884 * 885 * @return 886 * 0 on success, a negative errno value otherwise and rte_ernno is set. 887 */ 888 int 889 mlx5_flow_validate_action_rss(const struct rte_flow_action *action, 890 uint64_t action_flags, 891 struct rte_eth_dev *dev, 892 const struct rte_flow_attr *attr, 893 struct rte_flow_error *error) 894 { 895 struct priv *priv = dev->data->dev_private; 896 const struct rte_flow_action_rss *rss = action->conf; 897 unsigned int i; 898 899 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 900 return rte_flow_error_set(error, EINVAL, 901 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 902 "can't have 2 fate actions" 903 " in same flow"); 904 if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT && 905 rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ) 906 return rte_flow_error_set(error, ENOTSUP, 907 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 908 &rss->func, 909 "RSS hash function not supported"); 910 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 911 if (rss->level > 2) 912 #else 913 if (rss->level > 1) 914 #endif 915 return rte_flow_error_set(error, ENOTSUP, 916 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 917 &rss->level, 918 "tunnel RSS is not supported"); 919 /* allow RSS key_len 0 in case of NULL (default) RSS key. */ 920 if (rss->key_len == 0 && rss->key != NULL) 921 return rte_flow_error_set(error, ENOTSUP, 922 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 923 &rss->key_len, 924 "RSS hash key length 0"); 925 if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN) 926 return rte_flow_error_set(error, ENOTSUP, 927 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 928 &rss->key_len, 929 "RSS hash key too small"); 930 if (rss->key_len > MLX5_RSS_HASH_KEY_LEN) 931 return rte_flow_error_set(error, ENOTSUP, 932 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 933 &rss->key_len, 934 "RSS hash key too large"); 935 if (rss->queue_num > priv->config.ind_table_max_size) 936 return rte_flow_error_set(error, ENOTSUP, 937 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 938 &rss->queue_num, 939 "number of queues too large"); 940 if (rss->types & MLX5_RSS_HF_MASK) 941 return rte_flow_error_set(error, ENOTSUP, 942 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 943 &rss->types, 944 "some RSS protocols are not" 945 " supported"); 946 if (!priv->rxqs_n) 947 return rte_flow_error_set(error, EINVAL, 948 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 949 NULL, "No Rx queues configured"); 950 if (!rss->queue_num) 951 return rte_flow_error_set(error, EINVAL, 952 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 953 NULL, "No queues configured"); 954 for (i = 0; i != rss->queue_num; ++i) { 955 if (!(*priv->rxqs)[rss->queue[i]]) 956 return rte_flow_error_set 957 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, 958 &rss->queue[i], "queue is not configured"); 959 } 960 if (attr->egress) 961 return rte_flow_error_set(error, ENOTSUP, 962 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 963 "rss action not supported for " 964 "egress"); 965 return 0; 966 } 967 968 /* 969 * Validate the count action. 970 * 971 * @param[in] dev 972 * Pointer to the Ethernet device structure. 973 * @param[in] attr 974 * Attributes of flow that includes this action. 975 * @param[out] error 976 * Pointer to error structure. 977 * 978 * @return 979 * 0 on success, a negative errno value otherwise and rte_ernno is set. 980 */ 981 int 982 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused, 983 const struct rte_flow_attr *attr, 984 struct rte_flow_error *error) 985 { 986 if (attr->egress) 987 return rte_flow_error_set(error, ENOTSUP, 988 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 989 "count action not supported for " 990 "egress"); 991 return 0; 992 } 993 994 /** 995 * Verify the @p attributes will be correctly understood by the NIC and store 996 * them in the @p flow if everything is correct. 997 * 998 * @param[in] dev 999 * Pointer to the Ethernet device structure. 1000 * @param[in] attributes 1001 * Pointer to flow attributes 1002 * @param[out] error 1003 * Pointer to error structure. 1004 * 1005 * @return 1006 * 0 on success, a negative errno value otherwise and rte_errno is set. 1007 */ 1008 int 1009 mlx5_flow_validate_attributes(struct rte_eth_dev *dev, 1010 const struct rte_flow_attr *attributes, 1011 struct rte_flow_error *error) 1012 { 1013 struct priv *priv = dev->data->dev_private; 1014 uint32_t priority_max = priv->config.flow_prio - 1; 1015 1016 if (attributes->group) 1017 return rte_flow_error_set(error, ENOTSUP, 1018 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 1019 NULL, "groups is not supported"); 1020 if (attributes->priority != MLX5_FLOW_PRIO_RSVD && 1021 attributes->priority >= priority_max) 1022 return rte_flow_error_set(error, ENOTSUP, 1023 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1024 NULL, "priority out of range"); 1025 if (attributes->egress) 1026 return rte_flow_error_set(error, ENOTSUP, 1027 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1028 "egress is not supported"); 1029 if (attributes->transfer) 1030 return rte_flow_error_set(error, ENOTSUP, 1031 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1032 NULL, "transfer is not supported"); 1033 if (!attributes->ingress) 1034 return rte_flow_error_set(error, EINVAL, 1035 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 1036 NULL, 1037 "ingress attribute is mandatory"); 1038 return 0; 1039 } 1040 1041 /** 1042 * Validate Ethernet item. 1043 * 1044 * @param[in] item 1045 * Item specification. 1046 * @param[in] item_flags 1047 * Bit-fields that holds the items detected until now. 1048 * @param[out] error 1049 * Pointer to error structure. 1050 * 1051 * @return 1052 * 0 on success, a negative errno value otherwise and rte_errno is set. 1053 */ 1054 int 1055 mlx5_flow_validate_item_eth(const struct rte_flow_item *item, 1056 uint64_t item_flags, 1057 struct rte_flow_error *error) 1058 { 1059 const struct rte_flow_item_eth *mask = item->mask; 1060 const struct rte_flow_item_eth nic_mask = { 1061 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1062 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1063 .type = RTE_BE16(0xffff), 1064 }; 1065 int ret; 1066 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1067 const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 : 1068 MLX5_FLOW_LAYER_OUTER_L2; 1069 1070 if (item_flags & ethm) 1071 return rte_flow_error_set(error, ENOTSUP, 1072 RTE_FLOW_ERROR_TYPE_ITEM, item, 1073 "multiple L2 layers not supported"); 1074 if (!mask) 1075 mask = &rte_flow_item_eth_mask; 1076 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1077 (const uint8_t *)&nic_mask, 1078 sizeof(struct rte_flow_item_eth), 1079 error); 1080 return ret; 1081 } 1082 1083 /** 1084 * Validate VLAN item. 1085 * 1086 * @param[in] item 1087 * Item specification. 1088 * @param[in] item_flags 1089 * Bit-fields that holds the items detected until now. 1090 * @param[out] error 1091 * Pointer to error structure. 1092 * 1093 * @return 1094 * 0 on success, a negative errno value otherwise and rte_errno is set. 1095 */ 1096 int 1097 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item, 1098 uint64_t item_flags, 1099 struct rte_flow_error *error) 1100 { 1101 const struct rte_flow_item_vlan *spec = item->spec; 1102 const struct rte_flow_item_vlan *mask = item->mask; 1103 const struct rte_flow_item_vlan nic_mask = { 1104 .tci = RTE_BE16(0x0fff), 1105 .inner_type = RTE_BE16(0xffff), 1106 }; 1107 uint16_t vlan_tag = 0; 1108 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1109 int ret; 1110 const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 | 1111 MLX5_FLOW_LAYER_INNER_L4) : 1112 (MLX5_FLOW_LAYER_OUTER_L3 | 1113 MLX5_FLOW_LAYER_OUTER_L4); 1114 const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN : 1115 MLX5_FLOW_LAYER_OUTER_VLAN; 1116 1117 if (item_flags & vlanm) 1118 return rte_flow_error_set(error, EINVAL, 1119 RTE_FLOW_ERROR_TYPE_ITEM, item, 1120 "multiple VLAN layers not supported"); 1121 else if ((item_flags & l34m) != 0) 1122 return rte_flow_error_set(error, EINVAL, 1123 RTE_FLOW_ERROR_TYPE_ITEM, item, 1124 "L2 layer cannot follow L3/L4 layer"); 1125 if (!mask) 1126 mask = &rte_flow_item_vlan_mask; 1127 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1128 (const uint8_t *)&nic_mask, 1129 sizeof(struct rte_flow_item_vlan), 1130 error); 1131 if (ret) 1132 return ret; 1133 if (spec) { 1134 vlan_tag = spec->tci; 1135 vlan_tag &= mask->tci; 1136 } 1137 /* 1138 * From verbs perspective an empty VLAN is equivalent 1139 * to a packet without VLAN layer. 1140 */ 1141 if (!vlan_tag) 1142 return rte_flow_error_set(error, EINVAL, 1143 RTE_FLOW_ERROR_TYPE_ITEM_SPEC, 1144 item->spec, 1145 "VLAN cannot be empty"); 1146 return 0; 1147 } 1148 1149 /** 1150 * Validate IPV4 item. 1151 * 1152 * @param[in] item 1153 * Item specification. 1154 * @param[in] item_flags 1155 * Bit-fields that holds the items detected until now. 1156 * @param[in] acc_mask 1157 * Acceptable mask, if NULL default internal default mask 1158 * will be used to check whether item fields are supported. 1159 * @param[out] error 1160 * Pointer to error structure. 1161 * 1162 * @return 1163 * 0 on success, a negative errno value otherwise and rte_errno is set. 1164 */ 1165 int 1166 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item, 1167 uint64_t item_flags, 1168 const struct rte_flow_item_ipv4 *acc_mask, 1169 struct rte_flow_error *error) 1170 { 1171 const struct rte_flow_item_ipv4 *mask = item->mask; 1172 const struct rte_flow_item_ipv4 nic_mask = { 1173 .hdr = { 1174 .src_addr = RTE_BE32(0xffffffff), 1175 .dst_addr = RTE_BE32(0xffffffff), 1176 .type_of_service = 0xff, 1177 .next_proto_id = 0xff, 1178 }, 1179 }; 1180 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1181 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1182 MLX5_FLOW_LAYER_OUTER_L3; 1183 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1184 MLX5_FLOW_LAYER_OUTER_L4; 1185 int ret; 1186 1187 if (item_flags & l3m) 1188 return rte_flow_error_set(error, ENOTSUP, 1189 RTE_FLOW_ERROR_TYPE_ITEM, item, 1190 "multiple L3 layers not supported"); 1191 else if (item_flags & l4m) 1192 return rte_flow_error_set(error, EINVAL, 1193 RTE_FLOW_ERROR_TYPE_ITEM, item, 1194 "L3 cannot follow an L4 layer."); 1195 if (!mask) 1196 mask = &rte_flow_item_ipv4_mask; 1197 else if (mask->hdr.next_proto_id != 0 && 1198 mask->hdr.next_proto_id != 0xff) 1199 return rte_flow_error_set(error, EINVAL, 1200 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 1201 "partial mask is not supported" 1202 " for protocol"); 1203 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1204 acc_mask ? (const uint8_t *)acc_mask 1205 : (const uint8_t *)&nic_mask, 1206 sizeof(struct rte_flow_item_ipv4), 1207 error); 1208 if (ret < 0) 1209 return ret; 1210 return 0; 1211 } 1212 1213 /** 1214 * Validate IPV6 item. 1215 * 1216 * @param[in] item 1217 * Item specification. 1218 * @param[in] item_flags 1219 * Bit-fields that holds the items detected until now. 1220 * @param[in] acc_mask 1221 * Acceptable mask, if NULL default internal default mask 1222 * will be used to check whether item fields are supported. 1223 * @param[out] error 1224 * Pointer to error structure. 1225 * 1226 * @return 1227 * 0 on success, a negative errno value otherwise and rte_errno is set. 1228 */ 1229 int 1230 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item, 1231 uint64_t item_flags, 1232 const struct rte_flow_item_ipv6 *acc_mask, 1233 struct rte_flow_error *error) 1234 { 1235 const struct rte_flow_item_ipv6 *mask = item->mask; 1236 const struct rte_flow_item_ipv6 nic_mask = { 1237 .hdr = { 1238 .src_addr = 1239 "\xff\xff\xff\xff\xff\xff\xff\xff" 1240 "\xff\xff\xff\xff\xff\xff\xff\xff", 1241 .dst_addr = 1242 "\xff\xff\xff\xff\xff\xff\xff\xff" 1243 "\xff\xff\xff\xff\xff\xff\xff\xff", 1244 .vtc_flow = RTE_BE32(0xffffffff), 1245 .proto = 0xff, 1246 .hop_limits = 0xff, 1247 }, 1248 }; 1249 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1250 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1251 MLX5_FLOW_LAYER_OUTER_L3; 1252 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1253 MLX5_FLOW_LAYER_OUTER_L4; 1254 int ret; 1255 1256 if (item_flags & l3m) 1257 return rte_flow_error_set(error, ENOTSUP, 1258 RTE_FLOW_ERROR_TYPE_ITEM, item, 1259 "multiple L3 layers not supported"); 1260 else if (item_flags & l4m) 1261 return rte_flow_error_set(error, EINVAL, 1262 RTE_FLOW_ERROR_TYPE_ITEM, item, 1263 "L3 cannot follow an L4 layer."); 1264 if (!mask) 1265 mask = &rte_flow_item_ipv6_mask; 1266 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1267 acc_mask ? (const uint8_t *)acc_mask 1268 : (const uint8_t *)&nic_mask, 1269 sizeof(struct rte_flow_item_ipv6), 1270 error); 1271 if (ret < 0) 1272 return ret; 1273 return 0; 1274 } 1275 1276 /** 1277 * Validate UDP item. 1278 * 1279 * @param[in] item 1280 * Item specification. 1281 * @param[in] item_flags 1282 * Bit-fields that holds the items detected until now. 1283 * @param[in] target_protocol 1284 * The next protocol in the previous item. 1285 * @param[in] flow_mask 1286 * mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask. 1287 * @param[out] error 1288 * Pointer to error structure. 1289 * 1290 * @return 1291 * 0 on success, a negative errno value otherwise and rte_errno is set. 1292 */ 1293 int 1294 mlx5_flow_validate_item_udp(const struct rte_flow_item *item, 1295 uint64_t item_flags, 1296 uint8_t target_protocol, 1297 struct rte_flow_error *error) 1298 { 1299 const struct rte_flow_item_udp *mask = item->mask; 1300 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1301 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1302 MLX5_FLOW_LAYER_OUTER_L3; 1303 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1304 MLX5_FLOW_LAYER_OUTER_L4; 1305 int ret; 1306 1307 if (target_protocol != 0xff && target_protocol != IPPROTO_UDP) 1308 return rte_flow_error_set(error, EINVAL, 1309 RTE_FLOW_ERROR_TYPE_ITEM, item, 1310 "protocol filtering not compatible" 1311 " with UDP layer"); 1312 if (!(item_flags & l3m)) 1313 return rte_flow_error_set(error, EINVAL, 1314 RTE_FLOW_ERROR_TYPE_ITEM, item, 1315 "L3 is mandatory to filter on L4"); 1316 if (item_flags & l4m) 1317 return rte_flow_error_set(error, EINVAL, 1318 RTE_FLOW_ERROR_TYPE_ITEM, item, 1319 "multiple L4 layers not supported"); 1320 if (!mask) 1321 mask = &rte_flow_item_udp_mask; 1322 ret = mlx5_flow_item_acceptable 1323 (item, (const uint8_t *)mask, 1324 (const uint8_t *)&rte_flow_item_udp_mask, 1325 sizeof(struct rte_flow_item_udp), error); 1326 if (ret < 0) 1327 return ret; 1328 return 0; 1329 } 1330 1331 /** 1332 * Validate TCP item. 1333 * 1334 * @param[in] item 1335 * Item specification. 1336 * @param[in] item_flags 1337 * Bit-fields that holds the items detected until now. 1338 * @param[in] target_protocol 1339 * The next protocol in the previous item. 1340 * @param[out] error 1341 * Pointer to error structure. 1342 * 1343 * @return 1344 * 0 on success, a negative errno value otherwise and rte_errno is set. 1345 */ 1346 int 1347 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item, 1348 uint64_t item_flags, 1349 uint8_t target_protocol, 1350 const struct rte_flow_item_tcp *flow_mask, 1351 struct rte_flow_error *error) 1352 { 1353 const struct rte_flow_item_tcp *mask = item->mask; 1354 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1355 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1356 MLX5_FLOW_LAYER_OUTER_L3; 1357 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1358 MLX5_FLOW_LAYER_OUTER_L4; 1359 int ret; 1360 1361 assert(flow_mask); 1362 if (target_protocol != 0xff && target_protocol != IPPROTO_TCP) 1363 return rte_flow_error_set(error, EINVAL, 1364 RTE_FLOW_ERROR_TYPE_ITEM, item, 1365 "protocol filtering not compatible" 1366 " with TCP layer"); 1367 if (!(item_flags & l3m)) 1368 return rte_flow_error_set(error, EINVAL, 1369 RTE_FLOW_ERROR_TYPE_ITEM, item, 1370 "L3 is mandatory to filter on L4"); 1371 if (item_flags & l4m) 1372 return rte_flow_error_set(error, EINVAL, 1373 RTE_FLOW_ERROR_TYPE_ITEM, item, 1374 "multiple L4 layers not supported"); 1375 if (!mask) 1376 mask = &rte_flow_item_tcp_mask; 1377 ret = mlx5_flow_item_acceptable 1378 (item, (const uint8_t *)mask, 1379 (const uint8_t *)flow_mask, 1380 sizeof(struct rte_flow_item_tcp), error); 1381 if (ret < 0) 1382 return ret; 1383 return 0; 1384 } 1385 1386 /** 1387 * Validate VXLAN item. 1388 * 1389 * @param[in] item 1390 * Item specification. 1391 * @param[in] item_flags 1392 * Bit-fields that holds the items detected until now. 1393 * @param[in] target_protocol 1394 * The next protocol in the previous item. 1395 * @param[out] error 1396 * Pointer to error structure. 1397 * 1398 * @return 1399 * 0 on success, a negative errno value otherwise and rte_errno is set. 1400 */ 1401 int 1402 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item, 1403 uint64_t item_flags, 1404 struct rte_flow_error *error) 1405 { 1406 const struct rte_flow_item_vxlan *spec = item->spec; 1407 const struct rte_flow_item_vxlan *mask = item->mask; 1408 int ret; 1409 union vni { 1410 uint32_t vlan_id; 1411 uint8_t vni[4]; 1412 } id = { .vlan_id = 0, }; 1413 uint32_t vlan_id = 0; 1414 1415 1416 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1417 return rte_flow_error_set(error, ENOTSUP, 1418 RTE_FLOW_ERROR_TYPE_ITEM, item, 1419 "multiple tunnel layers not" 1420 " supported"); 1421 /* 1422 * Verify only UDPv4 is present as defined in 1423 * https://tools.ietf.org/html/rfc7348 1424 */ 1425 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 1426 return rte_flow_error_set(error, EINVAL, 1427 RTE_FLOW_ERROR_TYPE_ITEM, item, 1428 "no outer UDP layer found"); 1429 if (!mask) 1430 mask = &rte_flow_item_vxlan_mask; 1431 ret = mlx5_flow_item_acceptable 1432 (item, (const uint8_t *)mask, 1433 (const uint8_t *)&rte_flow_item_vxlan_mask, 1434 sizeof(struct rte_flow_item_vxlan), 1435 error); 1436 if (ret < 0) 1437 return ret; 1438 if (spec) { 1439 memcpy(&id.vni[1], spec->vni, 3); 1440 vlan_id = id.vlan_id; 1441 memcpy(&id.vni[1], mask->vni, 3); 1442 vlan_id &= id.vlan_id; 1443 } 1444 /* 1445 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if 1446 * only this layer is defined in the Verbs specification it is 1447 * interpreted as wildcard and all packets will match this 1448 * rule, if it follows a full stack layer (ex: eth / ipv4 / 1449 * udp), all packets matching the layers before will also 1450 * match this rule. To avoid such situation, VNI 0 is 1451 * currently refused. 1452 */ 1453 if (!vlan_id) 1454 return rte_flow_error_set(error, ENOTSUP, 1455 RTE_FLOW_ERROR_TYPE_ITEM, item, 1456 "VXLAN vni cannot be 0"); 1457 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 1458 return rte_flow_error_set(error, ENOTSUP, 1459 RTE_FLOW_ERROR_TYPE_ITEM, item, 1460 "VXLAN tunnel must be fully defined"); 1461 return 0; 1462 } 1463 1464 /** 1465 * Validate VXLAN_GPE item. 1466 * 1467 * @param[in] item 1468 * Item specification. 1469 * @param[in] item_flags 1470 * Bit-fields that holds the items detected until now. 1471 * @param[in] priv 1472 * Pointer to the private data structure. 1473 * @param[in] target_protocol 1474 * The next protocol in the previous item. 1475 * @param[out] error 1476 * Pointer to error structure. 1477 * 1478 * @return 1479 * 0 on success, a negative errno value otherwise and rte_errno is set. 1480 */ 1481 int 1482 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item, 1483 uint64_t item_flags, 1484 struct rte_eth_dev *dev, 1485 struct rte_flow_error *error) 1486 { 1487 struct priv *priv = dev->data->dev_private; 1488 const struct rte_flow_item_vxlan_gpe *spec = item->spec; 1489 const struct rte_flow_item_vxlan_gpe *mask = item->mask; 1490 int ret; 1491 union vni { 1492 uint32_t vlan_id; 1493 uint8_t vni[4]; 1494 } id = { .vlan_id = 0, }; 1495 uint32_t vlan_id = 0; 1496 1497 if (!priv->config.l3_vxlan_en) 1498 return rte_flow_error_set(error, ENOTSUP, 1499 RTE_FLOW_ERROR_TYPE_ITEM, item, 1500 "L3 VXLAN is not enabled by device" 1501 " parameter and/or not configured in" 1502 " firmware"); 1503 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1504 return rte_flow_error_set(error, ENOTSUP, 1505 RTE_FLOW_ERROR_TYPE_ITEM, item, 1506 "multiple tunnel layers not" 1507 " supported"); 1508 /* 1509 * Verify only UDPv4 is present as defined in 1510 * https://tools.ietf.org/html/rfc7348 1511 */ 1512 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 1513 return rte_flow_error_set(error, EINVAL, 1514 RTE_FLOW_ERROR_TYPE_ITEM, item, 1515 "no outer UDP layer found"); 1516 if (!mask) 1517 mask = &rte_flow_item_vxlan_gpe_mask; 1518 ret = mlx5_flow_item_acceptable 1519 (item, (const uint8_t *)mask, 1520 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask, 1521 sizeof(struct rte_flow_item_vxlan_gpe), 1522 error); 1523 if (ret < 0) 1524 return ret; 1525 if (spec) { 1526 if (spec->protocol) 1527 return rte_flow_error_set(error, ENOTSUP, 1528 RTE_FLOW_ERROR_TYPE_ITEM, 1529 item, 1530 "VxLAN-GPE protocol" 1531 " not supported"); 1532 memcpy(&id.vni[1], spec->vni, 3); 1533 vlan_id = id.vlan_id; 1534 memcpy(&id.vni[1], mask->vni, 3); 1535 vlan_id &= id.vlan_id; 1536 } 1537 /* 1538 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this 1539 * layer is defined in the Verbs specification it is interpreted as 1540 * wildcard and all packets will match this rule, if it follows a full 1541 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers 1542 * before will also match this rule. To avoid such situation, VNI 0 1543 * is currently refused. 1544 */ 1545 if (!vlan_id) 1546 return rte_flow_error_set(error, ENOTSUP, 1547 RTE_FLOW_ERROR_TYPE_ITEM, item, 1548 "VXLAN-GPE vni cannot be 0"); 1549 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 1550 return rte_flow_error_set(error, ENOTSUP, 1551 RTE_FLOW_ERROR_TYPE_ITEM, item, 1552 "VXLAN-GPE tunnel must be fully" 1553 " defined"); 1554 return 0; 1555 } 1556 1557 /** 1558 * Validate GRE item. 1559 * 1560 * @param[in] item 1561 * Item specification. 1562 * @param[in] item_flags 1563 * Bit flags to mark detected items. 1564 * @param[in] target_protocol 1565 * The next protocol in the previous item. 1566 * @param[out] error 1567 * Pointer to error structure. 1568 * 1569 * @return 1570 * 0 on success, a negative errno value otherwise and rte_errno is set. 1571 */ 1572 int 1573 mlx5_flow_validate_item_gre(const struct rte_flow_item *item, 1574 uint64_t item_flags, 1575 uint8_t target_protocol, 1576 struct rte_flow_error *error) 1577 { 1578 const struct rte_flow_item_gre *spec __rte_unused = item->spec; 1579 const struct rte_flow_item_gre *mask = item->mask; 1580 int ret; 1581 1582 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 1583 return rte_flow_error_set(error, EINVAL, 1584 RTE_FLOW_ERROR_TYPE_ITEM, item, 1585 "protocol filtering not compatible" 1586 " with this GRE layer"); 1587 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 1588 return rte_flow_error_set(error, ENOTSUP, 1589 RTE_FLOW_ERROR_TYPE_ITEM, item, 1590 "multiple tunnel layers not" 1591 " supported"); 1592 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 1593 return rte_flow_error_set(error, ENOTSUP, 1594 RTE_FLOW_ERROR_TYPE_ITEM, item, 1595 "L3 Layer is missing"); 1596 if (!mask) 1597 mask = &rte_flow_item_gre_mask; 1598 ret = mlx5_flow_item_acceptable 1599 (item, (const uint8_t *)mask, 1600 (const uint8_t *)&rte_flow_item_gre_mask, 1601 sizeof(struct rte_flow_item_gre), error); 1602 if (ret < 0) 1603 return ret; 1604 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT 1605 if (spec && (spec->protocol & mask->protocol)) 1606 return rte_flow_error_set(error, ENOTSUP, 1607 RTE_FLOW_ERROR_TYPE_ITEM, item, 1608 "without MPLS support the" 1609 " specification cannot be used for" 1610 " filtering"); 1611 #endif 1612 return 0; 1613 } 1614 1615 /** 1616 * Validate MPLS item. 1617 * 1618 * @param[in] dev 1619 * Pointer to the rte_eth_dev structure. 1620 * @param[in] item 1621 * Item specification. 1622 * @param[in] item_flags 1623 * Bit-fields that holds the items detected until now. 1624 * @param[in] prev_layer 1625 * The protocol layer indicated in previous item. 1626 * @param[out] error 1627 * Pointer to error structure. 1628 * 1629 * @return 1630 * 0 on success, a negative errno value otherwise and rte_errno is set. 1631 */ 1632 int 1633 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused, 1634 const struct rte_flow_item *item __rte_unused, 1635 uint64_t item_flags __rte_unused, 1636 uint64_t prev_layer __rte_unused, 1637 struct rte_flow_error *error) 1638 { 1639 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT 1640 const struct rte_flow_item_mpls *mask = item->mask; 1641 struct priv *priv = dev->data->dev_private; 1642 int ret; 1643 1644 if (!priv->config.mpls_en) 1645 return rte_flow_error_set(error, ENOTSUP, 1646 RTE_FLOW_ERROR_TYPE_ITEM, item, 1647 "MPLS not supported or" 1648 " disabled in firmware" 1649 " configuration."); 1650 /* MPLS over IP, UDP, GRE is allowed */ 1651 if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 | 1652 MLX5_FLOW_LAYER_OUTER_L4_UDP | 1653 MLX5_FLOW_LAYER_GRE))) 1654 return rte_flow_error_set(error, EINVAL, 1655 RTE_FLOW_ERROR_TYPE_ITEM, item, 1656 "protocol filtering not compatible" 1657 " with MPLS layer"); 1658 /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */ 1659 if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) && 1660 !(item_flags & MLX5_FLOW_LAYER_GRE)) 1661 return rte_flow_error_set(error, ENOTSUP, 1662 RTE_FLOW_ERROR_TYPE_ITEM, item, 1663 "multiple tunnel layers not" 1664 " supported"); 1665 if (!mask) 1666 mask = &rte_flow_item_mpls_mask; 1667 ret = mlx5_flow_item_acceptable 1668 (item, (const uint8_t *)mask, 1669 (const uint8_t *)&rte_flow_item_mpls_mask, 1670 sizeof(struct rte_flow_item_mpls), error); 1671 if (ret < 0) 1672 return ret; 1673 return 0; 1674 #endif 1675 return rte_flow_error_set(error, ENOTSUP, 1676 RTE_FLOW_ERROR_TYPE_ITEM, item, 1677 "MPLS is not supported by Verbs, please" 1678 " update."); 1679 } 1680 1681 static int 1682 flow_null_validate(struct rte_eth_dev *dev __rte_unused, 1683 const struct rte_flow_attr *attr __rte_unused, 1684 const struct rte_flow_item items[] __rte_unused, 1685 const struct rte_flow_action actions[] __rte_unused, 1686 struct rte_flow_error *error __rte_unused) 1687 { 1688 rte_errno = ENOTSUP; 1689 return -rte_errno; 1690 } 1691 1692 static struct mlx5_flow * 1693 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused, 1694 const struct rte_flow_item items[] __rte_unused, 1695 const struct rte_flow_action actions[] __rte_unused, 1696 struct rte_flow_error *error __rte_unused) 1697 { 1698 rte_errno = ENOTSUP; 1699 return NULL; 1700 } 1701 1702 static int 1703 flow_null_translate(struct rte_eth_dev *dev __rte_unused, 1704 struct mlx5_flow *dev_flow __rte_unused, 1705 const struct rte_flow_attr *attr __rte_unused, 1706 const struct rte_flow_item items[] __rte_unused, 1707 const struct rte_flow_action actions[] __rte_unused, 1708 struct rte_flow_error *error __rte_unused) 1709 { 1710 rte_errno = ENOTSUP; 1711 return -rte_errno; 1712 } 1713 1714 static int 1715 flow_null_apply(struct rte_eth_dev *dev __rte_unused, 1716 struct rte_flow *flow __rte_unused, 1717 struct rte_flow_error *error __rte_unused) 1718 { 1719 rte_errno = ENOTSUP; 1720 return -rte_errno; 1721 } 1722 1723 static void 1724 flow_null_remove(struct rte_eth_dev *dev __rte_unused, 1725 struct rte_flow *flow __rte_unused) 1726 { 1727 } 1728 1729 static void 1730 flow_null_destroy(struct rte_eth_dev *dev __rte_unused, 1731 struct rte_flow *flow __rte_unused) 1732 { 1733 } 1734 1735 static int 1736 flow_null_query(struct rte_eth_dev *dev __rte_unused, 1737 struct rte_flow *flow __rte_unused, 1738 const struct rte_flow_action *actions __rte_unused, 1739 void *data __rte_unused, 1740 struct rte_flow_error *error __rte_unused) 1741 { 1742 rte_errno = ENOTSUP; 1743 return -rte_errno; 1744 } 1745 1746 /* Void driver to protect from null pointer reference. */ 1747 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = { 1748 .validate = flow_null_validate, 1749 .prepare = flow_null_prepare, 1750 .translate = flow_null_translate, 1751 .apply = flow_null_apply, 1752 .remove = flow_null_remove, 1753 .destroy = flow_null_destroy, 1754 .query = flow_null_query, 1755 }; 1756 1757 /** 1758 * Select flow driver type according to flow attributes and device 1759 * configuration. 1760 * 1761 * @param[in] dev 1762 * Pointer to the dev structure. 1763 * @param[in] attr 1764 * Pointer to the flow attributes. 1765 * 1766 * @return 1767 * flow driver type, MLX5_FLOW_TYPE_MAX otherwise. 1768 */ 1769 static enum mlx5_flow_drv_type 1770 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr) 1771 { 1772 struct priv *priv = dev->data->dev_private; 1773 enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX; 1774 1775 if (attr->transfer) 1776 type = MLX5_FLOW_TYPE_TCF; 1777 else 1778 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV : 1779 MLX5_FLOW_TYPE_VERBS; 1780 return type; 1781 } 1782 1783 #define flow_get_drv_ops(type) flow_drv_ops[type] 1784 1785 /** 1786 * Flow driver validation API. This abstracts calling driver specific functions. 1787 * The type of flow driver is determined according to flow attributes. 1788 * 1789 * @param[in] dev 1790 * Pointer to the dev structure. 1791 * @param[in] attr 1792 * Pointer to the flow attributes. 1793 * @param[in] items 1794 * Pointer to the list of items. 1795 * @param[in] actions 1796 * Pointer to the list of actions. 1797 * @param[out] error 1798 * Pointer to the error structure. 1799 * 1800 * @return 1801 * 0 on success, a negative errno value otherwise and rte_ernno is set. 1802 */ 1803 static inline int 1804 flow_drv_validate(struct rte_eth_dev *dev, 1805 const struct rte_flow_attr *attr, 1806 const struct rte_flow_item items[], 1807 const struct rte_flow_action actions[], 1808 struct rte_flow_error *error) 1809 { 1810 const struct mlx5_flow_driver_ops *fops; 1811 enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr); 1812 1813 fops = flow_get_drv_ops(type); 1814 return fops->validate(dev, attr, items, actions, error); 1815 } 1816 1817 /** 1818 * Flow driver preparation API. This abstracts calling driver specific 1819 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 1820 * calculates the size of memory required for device flow, allocates the memory, 1821 * initializes the device flow and returns the pointer. 1822 * 1823 * @note 1824 * This function initializes device flow structure such as dv, tcf or verbs in 1825 * struct mlx5_flow. However, it is caller's responsibility to initialize the 1826 * rest. For example, adding returning device flow to flow->dev_flow list and 1827 * setting backward reference to the flow should be done out of this function. 1828 * layers field is not filled either. 1829 * 1830 * @param[in] attr 1831 * Pointer to the flow attributes. 1832 * @param[in] items 1833 * Pointer to the list of items. 1834 * @param[in] actions 1835 * Pointer to the list of actions. 1836 * @param[out] error 1837 * Pointer to the error structure. 1838 * 1839 * @return 1840 * Pointer to device flow on success, otherwise NULL and rte_ernno is set. 1841 */ 1842 static inline struct mlx5_flow * 1843 flow_drv_prepare(const struct rte_flow *flow, 1844 const struct rte_flow_attr *attr, 1845 const struct rte_flow_item items[], 1846 const struct rte_flow_action actions[], 1847 struct rte_flow_error *error) 1848 { 1849 const struct mlx5_flow_driver_ops *fops; 1850 enum mlx5_flow_drv_type type = flow->drv_type; 1851 1852 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1853 fops = flow_get_drv_ops(type); 1854 return fops->prepare(attr, items, actions, error); 1855 } 1856 1857 /** 1858 * Flow driver translation API. This abstracts calling driver specific 1859 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 1860 * translates a generic flow into a driver flow. flow_drv_prepare() must 1861 * precede. 1862 * 1863 * @note 1864 * dev_flow->layers could be filled as a result of parsing during translation 1865 * if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled 1866 * if necessary. As a flow can have multiple dev_flows by RSS flow expansion, 1867 * flow->actions could be overwritten even though all the expanded dev_flows 1868 * have the same actions. 1869 * 1870 * @param[in] dev 1871 * Pointer to the rte dev structure. 1872 * @param[in, out] dev_flow 1873 * Pointer to the mlx5 flow. 1874 * @param[in] attr 1875 * Pointer to the flow attributes. 1876 * @param[in] items 1877 * Pointer to the list of items. 1878 * @param[in] actions 1879 * Pointer to the list of actions. 1880 * @param[out] error 1881 * Pointer to the error structure. 1882 * 1883 * @return 1884 * 0 on success, a negative errno value otherwise and rte_ernno is set. 1885 */ 1886 static inline int 1887 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow, 1888 const struct rte_flow_attr *attr, 1889 const struct rte_flow_item items[], 1890 const struct rte_flow_action actions[], 1891 struct rte_flow_error *error) 1892 { 1893 const struct mlx5_flow_driver_ops *fops; 1894 enum mlx5_flow_drv_type type = dev_flow->flow->drv_type; 1895 1896 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1897 fops = flow_get_drv_ops(type); 1898 return fops->translate(dev, dev_flow, attr, items, actions, error); 1899 } 1900 1901 /** 1902 * Flow driver apply API. This abstracts calling driver specific functions. 1903 * Parent flow (rte_flow) should have driver type (drv_type). It applies 1904 * translated driver flows on to device. flow_drv_translate() must precede. 1905 * 1906 * @param[in] dev 1907 * Pointer to Ethernet device structure. 1908 * @param[in, out] flow 1909 * Pointer to flow structure. 1910 * @param[out] error 1911 * Pointer to error structure. 1912 * 1913 * @return 1914 * 0 on success, a negative errno value otherwise and rte_errno is set. 1915 */ 1916 static inline int 1917 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow, 1918 struct rte_flow_error *error) 1919 { 1920 const struct mlx5_flow_driver_ops *fops; 1921 enum mlx5_flow_drv_type type = flow->drv_type; 1922 1923 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1924 fops = flow_get_drv_ops(type); 1925 return fops->apply(dev, flow, error); 1926 } 1927 1928 /** 1929 * Flow driver remove API. This abstracts calling driver specific functions. 1930 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 1931 * on device. All the resources of the flow should be freed by calling 1932 * flow_drv_destroy(). 1933 * 1934 * @param[in] dev 1935 * Pointer to Ethernet device. 1936 * @param[in, out] flow 1937 * Pointer to flow structure. 1938 */ 1939 static inline void 1940 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow) 1941 { 1942 const struct mlx5_flow_driver_ops *fops; 1943 enum mlx5_flow_drv_type type = flow->drv_type; 1944 1945 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1946 fops = flow_get_drv_ops(type); 1947 fops->remove(dev, flow); 1948 } 1949 1950 /** 1951 * Flow driver destroy API. This abstracts calling driver specific functions. 1952 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 1953 * on device and releases resources of the flow. 1954 * 1955 * @param[in] dev 1956 * Pointer to Ethernet device. 1957 * @param[in, out] flow 1958 * Pointer to flow structure. 1959 */ 1960 static inline void 1961 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow) 1962 { 1963 const struct mlx5_flow_driver_ops *fops; 1964 enum mlx5_flow_drv_type type = flow->drv_type; 1965 1966 assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 1967 fops = flow_get_drv_ops(type); 1968 fops->destroy(dev, flow); 1969 } 1970 1971 /** 1972 * Validate a flow supported by the NIC. 1973 * 1974 * @see rte_flow_validate() 1975 * @see rte_flow_ops 1976 */ 1977 int 1978 mlx5_flow_validate(struct rte_eth_dev *dev, 1979 const struct rte_flow_attr *attr, 1980 const struct rte_flow_item items[], 1981 const struct rte_flow_action actions[], 1982 struct rte_flow_error *error) 1983 { 1984 int ret; 1985 1986 ret = flow_drv_validate(dev, attr, items, actions, error); 1987 if (ret < 0) 1988 return ret; 1989 return 0; 1990 } 1991 1992 /** 1993 * Get RSS action from the action list. 1994 * 1995 * @param[in] actions 1996 * Pointer to the list of actions. 1997 * 1998 * @return 1999 * Pointer to the RSS action if exist, else return NULL. 2000 */ 2001 static const struct rte_flow_action_rss* 2002 flow_get_rss_action(const struct rte_flow_action actions[]) 2003 { 2004 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 2005 switch (actions->type) { 2006 case RTE_FLOW_ACTION_TYPE_RSS: 2007 return (const struct rte_flow_action_rss *) 2008 actions->conf; 2009 default: 2010 break; 2011 } 2012 } 2013 return NULL; 2014 } 2015 2016 static unsigned int 2017 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level) 2018 { 2019 const struct rte_flow_item *item; 2020 unsigned int has_vlan = 0; 2021 2022 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 2023 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) { 2024 has_vlan = 1; 2025 break; 2026 } 2027 } 2028 if (has_vlan) 2029 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN : 2030 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN; 2031 return rss_level < 2 ? MLX5_EXPANSION_ROOT : 2032 MLX5_EXPANSION_ROOT_OUTER; 2033 } 2034 2035 /** 2036 * Create a flow and add it to @p list. 2037 * 2038 * @param dev 2039 * Pointer to Ethernet device. 2040 * @param list 2041 * Pointer to a TAILQ flow list. 2042 * @param[in] attr 2043 * Flow rule attributes. 2044 * @param[in] items 2045 * Pattern specification (list terminated by the END pattern item). 2046 * @param[in] actions 2047 * Associated actions (list terminated by the END action). 2048 * @param[out] error 2049 * Perform verbose error reporting if not NULL. 2050 * 2051 * @return 2052 * A flow on success, NULL otherwise and rte_errno is set. 2053 */ 2054 static struct rte_flow * 2055 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list, 2056 const struct rte_flow_attr *attr, 2057 const struct rte_flow_item items[], 2058 const struct rte_flow_action actions[], 2059 struct rte_flow_error *error) 2060 { 2061 struct rte_flow *flow = NULL; 2062 struct mlx5_flow *dev_flow; 2063 const struct rte_flow_action_rss *rss; 2064 union { 2065 struct rte_flow_expand_rss buf; 2066 uint8_t buffer[2048]; 2067 } expand_buffer; 2068 struct rte_flow_expand_rss *buf = &expand_buffer.buf; 2069 int ret; 2070 uint32_t i; 2071 uint32_t flow_size; 2072 2073 ret = flow_drv_validate(dev, attr, items, actions, error); 2074 if (ret < 0) 2075 return NULL; 2076 flow_size = sizeof(struct rte_flow); 2077 rss = flow_get_rss_action(actions); 2078 if (rss) 2079 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t), 2080 sizeof(void *)); 2081 else 2082 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *)); 2083 flow = rte_calloc(__func__, 1, flow_size, 0); 2084 flow->drv_type = flow_get_drv_type(dev, attr); 2085 assert(flow->drv_type > MLX5_FLOW_TYPE_MIN && 2086 flow->drv_type < MLX5_FLOW_TYPE_MAX); 2087 flow->queue = (void *)(flow + 1); 2088 LIST_INIT(&flow->dev_flows); 2089 if (rss && rss->types) { 2090 unsigned int graph_root; 2091 2092 graph_root = find_graph_root(items, rss->level); 2093 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer), 2094 items, rss->types, 2095 mlx5_support_expansion, 2096 graph_root); 2097 assert(ret > 0 && 2098 (unsigned int)ret < sizeof(expand_buffer.buffer)); 2099 } else { 2100 buf->entries = 1; 2101 buf->entry[0].pattern = (void *)(uintptr_t)items; 2102 } 2103 for (i = 0; i < buf->entries; ++i) { 2104 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern, 2105 actions, error); 2106 if (!dev_flow) 2107 goto error; 2108 dev_flow->flow = flow; 2109 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next); 2110 ret = flow_drv_translate(dev, dev_flow, attr, 2111 buf->entry[i].pattern, 2112 actions, error); 2113 if (ret < 0) 2114 goto error; 2115 } 2116 if (dev->data->dev_started) { 2117 ret = flow_drv_apply(dev, flow, error); 2118 if (ret < 0) 2119 goto error; 2120 } 2121 TAILQ_INSERT_TAIL(list, flow, next); 2122 flow_rxq_flags_set(dev, flow); 2123 return flow; 2124 error: 2125 ret = rte_errno; /* Save rte_errno before cleanup. */ 2126 assert(flow); 2127 flow_drv_destroy(dev, flow); 2128 rte_free(flow); 2129 rte_errno = ret; /* Restore rte_errno. */ 2130 return NULL; 2131 } 2132 2133 /** 2134 * Create a flow. 2135 * 2136 * @see rte_flow_create() 2137 * @see rte_flow_ops 2138 */ 2139 struct rte_flow * 2140 mlx5_flow_create(struct rte_eth_dev *dev, 2141 const struct rte_flow_attr *attr, 2142 const struct rte_flow_item items[], 2143 const struct rte_flow_action actions[], 2144 struct rte_flow_error *error) 2145 { 2146 return flow_list_create(dev, 2147 &((struct priv *)dev->data->dev_private)->flows, 2148 attr, items, actions, error); 2149 } 2150 2151 /** 2152 * Destroy a flow in a list. 2153 * 2154 * @param dev 2155 * Pointer to Ethernet device. 2156 * @param list 2157 * Pointer to a TAILQ flow list. 2158 * @param[in] flow 2159 * Flow to destroy. 2160 */ 2161 static void 2162 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list, 2163 struct rte_flow *flow) 2164 { 2165 /* 2166 * Update RX queue flags only if port is started, otherwise it is 2167 * already clean. 2168 */ 2169 if (dev->data->dev_started) 2170 flow_rxq_flags_trim(dev, flow); 2171 flow_drv_destroy(dev, flow); 2172 TAILQ_REMOVE(list, flow, next); 2173 rte_free(flow->fdir); 2174 rte_free(flow); 2175 } 2176 2177 /** 2178 * Destroy all flows. 2179 * 2180 * @param dev 2181 * Pointer to Ethernet device. 2182 * @param list 2183 * Pointer to a TAILQ flow list. 2184 */ 2185 void 2186 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list) 2187 { 2188 while (!TAILQ_EMPTY(list)) { 2189 struct rte_flow *flow; 2190 2191 flow = TAILQ_FIRST(list); 2192 flow_list_destroy(dev, list, flow); 2193 } 2194 } 2195 2196 /** 2197 * Remove all flows. 2198 * 2199 * @param dev 2200 * Pointer to Ethernet device. 2201 * @param list 2202 * Pointer to a TAILQ flow list. 2203 */ 2204 void 2205 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list) 2206 { 2207 struct rte_flow *flow; 2208 2209 TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next) 2210 flow_drv_remove(dev, flow); 2211 flow_rxq_flags_clear(dev); 2212 } 2213 2214 /** 2215 * Add all flows. 2216 * 2217 * @param dev 2218 * Pointer to Ethernet device. 2219 * @param list 2220 * Pointer to a TAILQ flow list. 2221 * 2222 * @return 2223 * 0 on success, a negative errno value otherwise and rte_errno is set. 2224 */ 2225 int 2226 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list) 2227 { 2228 struct rte_flow *flow; 2229 struct rte_flow_error error; 2230 int ret = 0; 2231 2232 TAILQ_FOREACH(flow, list, next) { 2233 ret = flow_drv_apply(dev, flow, &error); 2234 if (ret < 0) 2235 goto error; 2236 flow_rxq_flags_set(dev, flow); 2237 } 2238 return 0; 2239 error: 2240 ret = rte_errno; /* Save rte_errno before cleanup. */ 2241 mlx5_flow_stop(dev, list); 2242 rte_errno = ret; /* Restore rte_errno. */ 2243 return -rte_errno; 2244 } 2245 2246 /** 2247 * Verify the flow list is empty 2248 * 2249 * @param dev 2250 * Pointer to Ethernet device. 2251 * 2252 * @return the number of flows not released. 2253 */ 2254 int 2255 mlx5_flow_verify(struct rte_eth_dev *dev) 2256 { 2257 struct priv *priv = dev->data->dev_private; 2258 struct rte_flow *flow; 2259 int ret = 0; 2260 2261 TAILQ_FOREACH(flow, &priv->flows, next) { 2262 DRV_LOG(DEBUG, "port %u flow %p still referenced", 2263 dev->data->port_id, (void *)flow); 2264 ++ret; 2265 } 2266 return ret; 2267 } 2268 2269 /** 2270 * Enable a control flow configured from the control plane. 2271 * 2272 * @param dev 2273 * Pointer to Ethernet device. 2274 * @param eth_spec 2275 * An Ethernet flow spec to apply. 2276 * @param eth_mask 2277 * An Ethernet flow mask to apply. 2278 * @param vlan_spec 2279 * A VLAN flow spec to apply. 2280 * @param vlan_mask 2281 * A VLAN flow mask to apply. 2282 * 2283 * @return 2284 * 0 on success, a negative errno value otherwise and rte_errno is set. 2285 */ 2286 int 2287 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 2288 struct rte_flow_item_eth *eth_spec, 2289 struct rte_flow_item_eth *eth_mask, 2290 struct rte_flow_item_vlan *vlan_spec, 2291 struct rte_flow_item_vlan *vlan_mask) 2292 { 2293 struct priv *priv = dev->data->dev_private; 2294 const struct rte_flow_attr attr = { 2295 .ingress = 1, 2296 .priority = MLX5_FLOW_PRIO_RSVD, 2297 }; 2298 struct rte_flow_item items[] = { 2299 { 2300 .type = RTE_FLOW_ITEM_TYPE_ETH, 2301 .spec = eth_spec, 2302 .last = NULL, 2303 .mask = eth_mask, 2304 }, 2305 { 2306 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 2307 RTE_FLOW_ITEM_TYPE_END, 2308 .spec = vlan_spec, 2309 .last = NULL, 2310 .mask = vlan_mask, 2311 }, 2312 { 2313 .type = RTE_FLOW_ITEM_TYPE_END, 2314 }, 2315 }; 2316 uint16_t queue[priv->reta_idx_n]; 2317 struct rte_flow_action_rss action_rss = { 2318 .func = RTE_ETH_HASH_FUNCTION_DEFAULT, 2319 .level = 0, 2320 .types = priv->rss_conf.rss_hf, 2321 .key_len = priv->rss_conf.rss_key_len, 2322 .queue_num = priv->reta_idx_n, 2323 .key = priv->rss_conf.rss_key, 2324 .queue = queue, 2325 }; 2326 struct rte_flow_action actions[] = { 2327 { 2328 .type = RTE_FLOW_ACTION_TYPE_RSS, 2329 .conf = &action_rss, 2330 }, 2331 { 2332 .type = RTE_FLOW_ACTION_TYPE_END, 2333 }, 2334 }; 2335 struct rte_flow *flow; 2336 struct rte_flow_error error; 2337 unsigned int i; 2338 2339 if (!priv->reta_idx_n || !priv->rxqs_n) { 2340 return 0; 2341 } 2342 for (i = 0; i != priv->reta_idx_n; ++i) 2343 queue[i] = (*priv->reta_idx)[i]; 2344 flow = flow_list_create(dev, &priv->ctrl_flows, 2345 &attr, items, actions, &error); 2346 if (!flow) 2347 return -rte_errno; 2348 return 0; 2349 } 2350 2351 /** 2352 * Enable a flow control configured from the control plane. 2353 * 2354 * @param dev 2355 * Pointer to Ethernet device. 2356 * @param eth_spec 2357 * An Ethernet flow spec to apply. 2358 * @param eth_mask 2359 * An Ethernet flow mask to apply. 2360 * 2361 * @return 2362 * 0 on success, a negative errno value otherwise and rte_errno is set. 2363 */ 2364 int 2365 mlx5_ctrl_flow(struct rte_eth_dev *dev, 2366 struct rte_flow_item_eth *eth_spec, 2367 struct rte_flow_item_eth *eth_mask) 2368 { 2369 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 2370 } 2371 2372 /** 2373 * Destroy a flow. 2374 * 2375 * @see rte_flow_destroy() 2376 * @see rte_flow_ops 2377 */ 2378 int 2379 mlx5_flow_destroy(struct rte_eth_dev *dev, 2380 struct rte_flow *flow, 2381 struct rte_flow_error *error __rte_unused) 2382 { 2383 struct priv *priv = dev->data->dev_private; 2384 2385 flow_list_destroy(dev, &priv->flows, flow); 2386 return 0; 2387 } 2388 2389 /** 2390 * Destroy all flows. 2391 * 2392 * @see rte_flow_flush() 2393 * @see rte_flow_ops 2394 */ 2395 int 2396 mlx5_flow_flush(struct rte_eth_dev *dev, 2397 struct rte_flow_error *error __rte_unused) 2398 { 2399 struct priv *priv = dev->data->dev_private; 2400 2401 mlx5_flow_list_flush(dev, &priv->flows); 2402 return 0; 2403 } 2404 2405 /** 2406 * Isolated mode. 2407 * 2408 * @see rte_flow_isolate() 2409 * @see rte_flow_ops 2410 */ 2411 int 2412 mlx5_flow_isolate(struct rte_eth_dev *dev, 2413 int enable, 2414 struct rte_flow_error *error) 2415 { 2416 struct priv *priv = dev->data->dev_private; 2417 2418 if (dev->data->dev_started) { 2419 rte_flow_error_set(error, EBUSY, 2420 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2421 NULL, 2422 "port must be stopped first"); 2423 return -rte_errno; 2424 } 2425 priv->isolated = !!enable; 2426 if (enable) 2427 dev->dev_ops = &mlx5_dev_ops_isolate; 2428 else 2429 dev->dev_ops = &mlx5_dev_ops; 2430 return 0; 2431 } 2432 2433 /** 2434 * Query a flow. 2435 * 2436 * @see rte_flow_query() 2437 * @see rte_flow_ops 2438 */ 2439 static int 2440 flow_drv_query(struct rte_eth_dev *dev, 2441 struct rte_flow *flow, 2442 const struct rte_flow_action *actions, 2443 void *data, 2444 struct rte_flow_error *error) 2445 { 2446 const struct mlx5_flow_driver_ops *fops; 2447 enum mlx5_flow_drv_type ftype = flow->drv_type; 2448 2449 assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX); 2450 fops = flow_get_drv_ops(ftype); 2451 2452 return fops->query(dev, flow, actions, data, error); 2453 } 2454 2455 /** 2456 * Query a flow. 2457 * 2458 * @see rte_flow_query() 2459 * @see rte_flow_ops 2460 */ 2461 int 2462 mlx5_flow_query(struct rte_eth_dev *dev, 2463 struct rte_flow *flow, 2464 const struct rte_flow_action *actions, 2465 void *data, 2466 struct rte_flow_error *error) 2467 { 2468 int ret; 2469 2470 ret = flow_drv_query(dev, flow, actions, data, error); 2471 if (ret < 0) 2472 return ret; 2473 return 0; 2474 } 2475 2476 /** 2477 * Convert a flow director filter to a generic flow. 2478 * 2479 * @param dev 2480 * Pointer to Ethernet device. 2481 * @param fdir_filter 2482 * Flow director filter to add. 2483 * @param attributes 2484 * Generic flow parameters structure. 2485 * 2486 * @return 2487 * 0 on success, a negative errno value otherwise and rte_errno is set. 2488 */ 2489 static int 2490 flow_fdir_filter_convert(struct rte_eth_dev *dev, 2491 const struct rte_eth_fdir_filter *fdir_filter, 2492 struct mlx5_fdir *attributes) 2493 { 2494 struct priv *priv = dev->data->dev_private; 2495 const struct rte_eth_fdir_input *input = &fdir_filter->input; 2496 const struct rte_eth_fdir_masks *mask = 2497 &dev->data->dev_conf.fdir_conf.mask; 2498 2499 /* Validate queue number. */ 2500 if (fdir_filter->action.rx_queue >= priv->rxqs_n) { 2501 DRV_LOG(ERR, "port %u invalid queue number %d", 2502 dev->data->port_id, fdir_filter->action.rx_queue); 2503 rte_errno = EINVAL; 2504 return -rte_errno; 2505 } 2506 attributes->attr.ingress = 1; 2507 attributes->items[0] = (struct rte_flow_item) { 2508 .type = RTE_FLOW_ITEM_TYPE_ETH, 2509 .spec = &attributes->l2, 2510 .mask = &attributes->l2_mask, 2511 }; 2512 switch (fdir_filter->action.behavior) { 2513 case RTE_ETH_FDIR_ACCEPT: 2514 attributes->actions[0] = (struct rte_flow_action){ 2515 .type = RTE_FLOW_ACTION_TYPE_QUEUE, 2516 .conf = &attributes->queue, 2517 }; 2518 break; 2519 case RTE_ETH_FDIR_REJECT: 2520 attributes->actions[0] = (struct rte_flow_action){ 2521 .type = RTE_FLOW_ACTION_TYPE_DROP, 2522 }; 2523 break; 2524 default: 2525 DRV_LOG(ERR, "port %u invalid behavior %d", 2526 dev->data->port_id, 2527 fdir_filter->action.behavior); 2528 rte_errno = ENOTSUP; 2529 return -rte_errno; 2530 } 2531 attributes->queue.index = fdir_filter->action.rx_queue; 2532 /* Handle L3. */ 2533 switch (fdir_filter->input.flow_type) { 2534 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2535 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2536 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2537 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2538 .src_addr = input->flow.ip4_flow.src_ip, 2539 .dst_addr = input->flow.ip4_flow.dst_ip, 2540 .time_to_live = input->flow.ip4_flow.ttl, 2541 .type_of_service = input->flow.ip4_flow.tos, 2542 }; 2543 attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){ 2544 .src_addr = mask->ipv4_mask.src_ip, 2545 .dst_addr = mask->ipv4_mask.dst_ip, 2546 .time_to_live = mask->ipv4_mask.ttl, 2547 .type_of_service = mask->ipv4_mask.tos, 2548 .next_proto_id = mask->ipv4_mask.proto, 2549 }; 2550 attributes->items[1] = (struct rte_flow_item){ 2551 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2552 .spec = &attributes->l3, 2553 .mask = &attributes->l3_mask, 2554 }; 2555 break; 2556 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2557 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2558 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2559 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2560 .hop_limits = input->flow.ipv6_flow.hop_limits, 2561 .proto = input->flow.ipv6_flow.proto, 2562 }; 2563 2564 memcpy(attributes->l3.ipv6.hdr.src_addr, 2565 input->flow.ipv6_flow.src_ip, 2566 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2567 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2568 input->flow.ipv6_flow.dst_ip, 2569 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2570 memcpy(attributes->l3_mask.ipv6.hdr.src_addr, 2571 mask->ipv6_mask.src_ip, 2572 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 2573 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr, 2574 mask->ipv6_mask.dst_ip, 2575 RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr)); 2576 attributes->items[1] = (struct rte_flow_item){ 2577 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2578 .spec = &attributes->l3, 2579 .mask = &attributes->l3_mask, 2580 }; 2581 break; 2582 default: 2583 DRV_LOG(ERR, "port %u invalid flow type%d", 2584 dev->data->port_id, fdir_filter->input.flow_type); 2585 rte_errno = ENOTSUP; 2586 return -rte_errno; 2587 } 2588 /* Handle L4. */ 2589 switch (fdir_filter->input.flow_type) { 2590 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2591 attributes->l4.udp.hdr = (struct udp_hdr){ 2592 .src_port = input->flow.udp4_flow.src_port, 2593 .dst_port = input->flow.udp4_flow.dst_port, 2594 }; 2595 attributes->l4_mask.udp.hdr = (struct udp_hdr){ 2596 .src_port = mask->src_port_mask, 2597 .dst_port = mask->dst_port_mask, 2598 }; 2599 attributes->items[2] = (struct rte_flow_item){ 2600 .type = RTE_FLOW_ITEM_TYPE_UDP, 2601 .spec = &attributes->l4, 2602 .mask = &attributes->l4_mask, 2603 }; 2604 break; 2605 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2606 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2607 .src_port = input->flow.tcp4_flow.src_port, 2608 .dst_port = input->flow.tcp4_flow.dst_port, 2609 }; 2610 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){ 2611 .src_port = mask->src_port_mask, 2612 .dst_port = mask->dst_port_mask, 2613 }; 2614 attributes->items[2] = (struct rte_flow_item){ 2615 .type = RTE_FLOW_ITEM_TYPE_TCP, 2616 .spec = &attributes->l4, 2617 .mask = &attributes->l4_mask, 2618 }; 2619 break; 2620 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2621 attributes->l4.udp.hdr = (struct udp_hdr){ 2622 .src_port = input->flow.udp6_flow.src_port, 2623 .dst_port = input->flow.udp6_flow.dst_port, 2624 }; 2625 attributes->l4_mask.udp.hdr = (struct udp_hdr){ 2626 .src_port = mask->src_port_mask, 2627 .dst_port = mask->dst_port_mask, 2628 }; 2629 attributes->items[2] = (struct rte_flow_item){ 2630 .type = RTE_FLOW_ITEM_TYPE_UDP, 2631 .spec = &attributes->l4, 2632 .mask = &attributes->l4_mask, 2633 }; 2634 break; 2635 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2636 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2637 .src_port = input->flow.tcp6_flow.src_port, 2638 .dst_port = input->flow.tcp6_flow.dst_port, 2639 }; 2640 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){ 2641 .src_port = mask->src_port_mask, 2642 .dst_port = mask->dst_port_mask, 2643 }; 2644 attributes->items[2] = (struct rte_flow_item){ 2645 .type = RTE_FLOW_ITEM_TYPE_TCP, 2646 .spec = &attributes->l4, 2647 .mask = &attributes->l4_mask, 2648 }; 2649 break; 2650 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2651 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2652 break; 2653 default: 2654 DRV_LOG(ERR, "port %u invalid flow type%d", 2655 dev->data->port_id, fdir_filter->input.flow_type); 2656 rte_errno = ENOTSUP; 2657 return -rte_errno; 2658 } 2659 return 0; 2660 } 2661 2662 #define FLOW_FDIR_CMP(f1, f2, fld) \ 2663 memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld)) 2664 2665 /** 2666 * Compare two FDIR flows. If items and actions are identical, the two flows are 2667 * regarded as same. 2668 * 2669 * @param dev 2670 * Pointer to Ethernet device. 2671 * @param f1 2672 * FDIR flow to compare. 2673 * @param f2 2674 * FDIR flow to compare. 2675 * 2676 * @return 2677 * Zero on match, 1 otherwise. 2678 */ 2679 static int 2680 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2) 2681 { 2682 if (FLOW_FDIR_CMP(f1, f2, attr) || 2683 FLOW_FDIR_CMP(f1, f2, l2) || 2684 FLOW_FDIR_CMP(f1, f2, l2_mask) || 2685 FLOW_FDIR_CMP(f1, f2, l3) || 2686 FLOW_FDIR_CMP(f1, f2, l3_mask) || 2687 FLOW_FDIR_CMP(f1, f2, l4) || 2688 FLOW_FDIR_CMP(f1, f2, l4_mask) || 2689 FLOW_FDIR_CMP(f1, f2, actions[0].type)) 2690 return 1; 2691 if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE && 2692 FLOW_FDIR_CMP(f1, f2, queue)) 2693 return 1; 2694 return 0; 2695 } 2696 2697 /** 2698 * Search device flow list to find out a matched FDIR flow. 2699 * 2700 * @param dev 2701 * Pointer to Ethernet device. 2702 * @param fdir_flow 2703 * FDIR flow to lookup. 2704 * 2705 * @return 2706 * Pointer of flow if found, NULL otherwise. 2707 */ 2708 static struct rte_flow * 2709 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow) 2710 { 2711 struct priv *priv = dev->data->dev_private; 2712 struct rte_flow *flow = NULL; 2713 2714 assert(fdir_flow); 2715 TAILQ_FOREACH(flow, &priv->flows, next) { 2716 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) { 2717 DRV_LOG(DEBUG, "port %u found FDIR flow %p", 2718 dev->data->port_id, (void *)flow); 2719 break; 2720 } 2721 } 2722 return flow; 2723 } 2724 2725 /** 2726 * Add new flow director filter and store it in list. 2727 * 2728 * @param dev 2729 * Pointer to Ethernet device. 2730 * @param fdir_filter 2731 * Flow director filter to add. 2732 * 2733 * @return 2734 * 0 on success, a negative errno value otherwise and rte_errno is set. 2735 */ 2736 static int 2737 flow_fdir_filter_add(struct rte_eth_dev *dev, 2738 const struct rte_eth_fdir_filter *fdir_filter) 2739 { 2740 struct priv *priv = dev->data->dev_private; 2741 struct mlx5_fdir *fdir_flow; 2742 struct rte_flow *flow; 2743 int ret; 2744 2745 fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0); 2746 if (!fdir_flow) { 2747 rte_errno = ENOMEM; 2748 return -rte_errno; 2749 } 2750 ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow); 2751 if (ret) 2752 goto error; 2753 flow = flow_fdir_filter_lookup(dev, fdir_flow); 2754 if (flow) { 2755 rte_errno = EEXIST; 2756 goto error; 2757 } 2758 flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr, 2759 fdir_flow->items, fdir_flow->actions, NULL); 2760 if (!flow) 2761 goto error; 2762 assert(!flow->fdir); 2763 flow->fdir = fdir_flow; 2764 DRV_LOG(DEBUG, "port %u created FDIR flow %p", 2765 dev->data->port_id, (void *)flow); 2766 return 0; 2767 error: 2768 rte_free(fdir_flow); 2769 return -rte_errno; 2770 } 2771 2772 /** 2773 * Delete specific filter. 2774 * 2775 * @param dev 2776 * Pointer to Ethernet device. 2777 * @param fdir_filter 2778 * Filter to be deleted. 2779 * 2780 * @return 2781 * 0 on success, a negative errno value otherwise and rte_errno is set. 2782 */ 2783 static int 2784 flow_fdir_filter_delete(struct rte_eth_dev *dev, 2785 const struct rte_eth_fdir_filter *fdir_filter) 2786 { 2787 struct priv *priv = dev->data->dev_private; 2788 struct rte_flow *flow; 2789 struct mlx5_fdir fdir_flow = { 2790 .attr.group = 0, 2791 }; 2792 int ret; 2793 2794 ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow); 2795 if (ret) 2796 return -rte_errno; 2797 flow = flow_fdir_filter_lookup(dev, &fdir_flow); 2798 if (!flow) { 2799 rte_errno = ENOENT; 2800 return -rte_errno; 2801 } 2802 flow_list_destroy(dev, &priv->flows, flow); 2803 DRV_LOG(DEBUG, "port %u deleted FDIR flow %p", 2804 dev->data->port_id, (void *)flow); 2805 return 0; 2806 } 2807 2808 /** 2809 * Update queue for specific filter. 2810 * 2811 * @param dev 2812 * Pointer to Ethernet device. 2813 * @param fdir_filter 2814 * Filter to be updated. 2815 * 2816 * @return 2817 * 0 on success, a negative errno value otherwise and rte_errno is set. 2818 */ 2819 static int 2820 flow_fdir_filter_update(struct rte_eth_dev *dev, 2821 const struct rte_eth_fdir_filter *fdir_filter) 2822 { 2823 int ret; 2824 2825 ret = flow_fdir_filter_delete(dev, fdir_filter); 2826 if (ret) 2827 return ret; 2828 return flow_fdir_filter_add(dev, fdir_filter); 2829 } 2830 2831 /** 2832 * Flush all filters. 2833 * 2834 * @param dev 2835 * Pointer to Ethernet device. 2836 */ 2837 static void 2838 flow_fdir_filter_flush(struct rte_eth_dev *dev) 2839 { 2840 struct priv *priv = dev->data->dev_private; 2841 2842 mlx5_flow_list_flush(dev, &priv->flows); 2843 } 2844 2845 /** 2846 * Get flow director information. 2847 * 2848 * @param dev 2849 * Pointer to Ethernet device. 2850 * @param[out] fdir_info 2851 * Resulting flow director information. 2852 */ 2853 static void 2854 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info) 2855 { 2856 struct rte_eth_fdir_masks *mask = 2857 &dev->data->dev_conf.fdir_conf.mask; 2858 2859 fdir_info->mode = dev->data->dev_conf.fdir_conf.mode; 2860 fdir_info->guarant_spc = 0; 2861 rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask)); 2862 fdir_info->max_flexpayload = 0; 2863 fdir_info->flow_types_mask[0] = 0; 2864 fdir_info->flex_payload_unit = 0; 2865 fdir_info->max_flex_payload_segment_num = 0; 2866 fdir_info->flex_payload_limit = 0; 2867 memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf)); 2868 } 2869 2870 /** 2871 * Deal with flow director operations. 2872 * 2873 * @param dev 2874 * Pointer to Ethernet device. 2875 * @param filter_op 2876 * Operation to perform. 2877 * @param arg 2878 * Pointer to operation-specific structure. 2879 * 2880 * @return 2881 * 0 on success, a negative errno value otherwise and rte_errno is set. 2882 */ 2883 static int 2884 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op, 2885 void *arg) 2886 { 2887 enum rte_fdir_mode fdir_mode = 2888 dev->data->dev_conf.fdir_conf.mode; 2889 2890 if (filter_op == RTE_ETH_FILTER_NOP) 2891 return 0; 2892 if (fdir_mode != RTE_FDIR_MODE_PERFECT && 2893 fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2894 DRV_LOG(ERR, "port %u flow director mode %d not supported", 2895 dev->data->port_id, fdir_mode); 2896 rte_errno = EINVAL; 2897 return -rte_errno; 2898 } 2899 switch (filter_op) { 2900 case RTE_ETH_FILTER_ADD: 2901 return flow_fdir_filter_add(dev, arg); 2902 case RTE_ETH_FILTER_UPDATE: 2903 return flow_fdir_filter_update(dev, arg); 2904 case RTE_ETH_FILTER_DELETE: 2905 return flow_fdir_filter_delete(dev, arg); 2906 case RTE_ETH_FILTER_FLUSH: 2907 flow_fdir_filter_flush(dev); 2908 break; 2909 case RTE_ETH_FILTER_INFO: 2910 flow_fdir_info_get(dev, arg); 2911 break; 2912 default: 2913 DRV_LOG(DEBUG, "port %u unknown operation %u", 2914 dev->data->port_id, filter_op); 2915 rte_errno = EINVAL; 2916 return -rte_errno; 2917 } 2918 return 0; 2919 } 2920 2921 /** 2922 * Manage filter operations. 2923 * 2924 * @param dev 2925 * Pointer to Ethernet device structure. 2926 * @param filter_type 2927 * Filter type. 2928 * @param filter_op 2929 * Operation to perform. 2930 * @param arg 2931 * Pointer to operation-specific structure. 2932 * 2933 * @return 2934 * 0 on success, a negative errno value otherwise and rte_errno is set. 2935 */ 2936 int 2937 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 2938 enum rte_filter_type filter_type, 2939 enum rte_filter_op filter_op, 2940 void *arg) 2941 { 2942 switch (filter_type) { 2943 case RTE_ETH_FILTER_GENERIC: 2944 if (filter_op != RTE_ETH_FILTER_GET) { 2945 rte_errno = EINVAL; 2946 return -rte_errno; 2947 } 2948 *(const void **)arg = &mlx5_flow_ops; 2949 return 0; 2950 case RTE_ETH_FILTER_FDIR: 2951 return flow_fdir_ctrl_func(dev, filter_op, arg); 2952 default: 2953 DRV_LOG(ERR, "port %u filter type (%d) not supported", 2954 dev->data->port_id, filter_type); 2955 rte_errno = ENOTSUP; 2956 return -rte_errno; 2957 } 2958 return 0; 2959 } 2960