xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 25d11a86c56d50947af33d0b79ede622809bd8b9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_eth_ctrl.h>
25 #include <rte_ethdev_driver.h>
26 #include <rte_flow.h>
27 #include <rte_flow_driver.h>
28 #include <rte_malloc.h>
29 #include <rte_ip.h>
30 
31 #include "mlx5.h"
32 #include "mlx5_defs.h"
33 #include "mlx5_prm.h"
34 #include "mlx5_glue.h"
35 #include "mlx5_flow.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47 
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49 
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55 	[MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59 
60 enum mlx5_expansion {
61 	MLX5_EXPANSION_ROOT,
62 	MLX5_EXPANSION_ROOT_OUTER,
63 	MLX5_EXPANSION_ROOT_ETH_VLAN,
64 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_ETH,
66 	MLX5_EXPANSION_OUTER_ETH_VLAN,
67 	MLX5_EXPANSION_OUTER_VLAN,
68 	MLX5_EXPANSION_OUTER_IPV4,
69 	MLX5_EXPANSION_OUTER_IPV4_UDP,
70 	MLX5_EXPANSION_OUTER_IPV4_TCP,
71 	MLX5_EXPANSION_OUTER_IPV6,
72 	MLX5_EXPANSION_OUTER_IPV6_UDP,
73 	MLX5_EXPANSION_OUTER_IPV6_TCP,
74 	MLX5_EXPANSION_VXLAN,
75 	MLX5_EXPANSION_VXLAN_GPE,
76 	MLX5_EXPANSION_GRE,
77 	MLX5_EXPANSION_MPLS,
78 	MLX5_EXPANSION_ETH,
79 	MLX5_EXPANSION_ETH_VLAN,
80 	MLX5_EXPANSION_VLAN,
81 	MLX5_EXPANSION_IPV4,
82 	MLX5_EXPANSION_IPV4_UDP,
83 	MLX5_EXPANSION_IPV4_TCP,
84 	MLX5_EXPANSION_IPV6,
85 	MLX5_EXPANSION_IPV6_UDP,
86 	MLX5_EXPANSION_IPV6_TCP,
87 };
88 
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91 	[MLX5_EXPANSION_ROOT] = {
92 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93 						 MLX5_EXPANSION_IPV4,
94 						 MLX5_EXPANSION_IPV6),
95 		.type = RTE_FLOW_ITEM_TYPE_END,
96 	},
97 	[MLX5_EXPANSION_ROOT_OUTER] = {
98 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99 						 MLX5_EXPANSION_OUTER_IPV4,
100 						 MLX5_EXPANSION_OUTER_IPV6),
101 		.type = RTE_FLOW_ITEM_TYPE_END,
102 	},
103 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105 		.type = RTE_FLOW_ITEM_TYPE_END,
106 	},
107 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109 		.type = RTE_FLOW_ITEM_TYPE_END,
110 	},
111 	[MLX5_EXPANSION_OUTER_ETH] = {
112 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113 						 MLX5_EXPANSION_OUTER_IPV6,
114 						 MLX5_EXPANSION_MPLS),
115 		.type = RTE_FLOW_ITEM_TYPE_ETH,
116 		.rss_types = 0,
117 	},
118 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120 		.type = RTE_FLOW_ITEM_TYPE_ETH,
121 		.rss_types = 0,
122 	},
123 	[MLX5_EXPANSION_OUTER_VLAN] = {
124 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125 						 MLX5_EXPANSION_OUTER_IPV6),
126 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
127 	},
128 	[MLX5_EXPANSION_OUTER_IPV4] = {
129 		.next = RTE_FLOW_EXPAND_RSS_NEXT
130 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
131 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
132 			 MLX5_EXPANSION_GRE),
133 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
134 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135 			ETH_RSS_NONFRAG_IPV4_OTHER,
136 	},
137 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139 						 MLX5_EXPANSION_VXLAN_GPE),
140 		.type = RTE_FLOW_ITEM_TYPE_UDP,
141 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142 	},
143 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144 		.type = RTE_FLOW_ITEM_TYPE_TCP,
145 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146 	},
147 	[MLX5_EXPANSION_OUTER_IPV6] = {
148 		.next = RTE_FLOW_EXPAND_RSS_NEXT
149 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
150 			 MLX5_EXPANSION_OUTER_IPV6_TCP),
151 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
152 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153 			ETH_RSS_NONFRAG_IPV6_OTHER,
154 	},
155 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157 						 MLX5_EXPANSION_VXLAN_GPE),
158 		.type = RTE_FLOW_ITEM_TYPE_UDP,
159 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160 	},
161 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162 		.type = RTE_FLOW_ITEM_TYPE_TCP,
163 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164 	},
165 	[MLX5_EXPANSION_VXLAN] = {
166 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
168 	},
169 	[MLX5_EXPANSION_VXLAN_GPE] = {
170 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171 						 MLX5_EXPANSION_IPV4,
172 						 MLX5_EXPANSION_IPV6),
173 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174 	},
175 	[MLX5_EXPANSION_GRE] = {
176 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177 		.type = RTE_FLOW_ITEM_TYPE_GRE,
178 	},
179 	[MLX5_EXPANSION_MPLS] = {
180 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181 						 MLX5_EXPANSION_IPV6),
182 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
183 	},
184 	[MLX5_EXPANSION_ETH] = {
185 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186 						 MLX5_EXPANSION_IPV6),
187 		.type = RTE_FLOW_ITEM_TYPE_ETH,
188 	},
189 	[MLX5_EXPANSION_ETH_VLAN] = {
190 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191 		.type = RTE_FLOW_ITEM_TYPE_ETH,
192 	},
193 	[MLX5_EXPANSION_VLAN] = {
194 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195 						 MLX5_EXPANSION_IPV6),
196 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
197 	},
198 	[MLX5_EXPANSION_IPV4] = {
199 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200 						 MLX5_EXPANSION_IPV4_TCP),
201 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
202 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203 			ETH_RSS_NONFRAG_IPV4_OTHER,
204 	},
205 	[MLX5_EXPANSION_IPV4_UDP] = {
206 		.type = RTE_FLOW_ITEM_TYPE_UDP,
207 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208 	},
209 	[MLX5_EXPANSION_IPV4_TCP] = {
210 		.type = RTE_FLOW_ITEM_TYPE_TCP,
211 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212 	},
213 	[MLX5_EXPANSION_IPV6] = {
214 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215 						 MLX5_EXPANSION_IPV6_TCP),
216 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
217 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218 			ETH_RSS_NONFRAG_IPV6_OTHER,
219 	},
220 	[MLX5_EXPANSION_IPV6_UDP] = {
221 		.type = RTE_FLOW_ITEM_TYPE_UDP,
222 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223 	},
224 	[MLX5_EXPANSION_IPV6_TCP] = {
225 		.type = RTE_FLOW_ITEM_TYPE_TCP,
226 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227 	},
228 };
229 
230 static const struct rte_flow_ops mlx5_flow_ops = {
231 	.validate = mlx5_flow_validate,
232 	.create = mlx5_flow_create,
233 	.destroy = mlx5_flow_destroy,
234 	.flush = mlx5_flow_flush,
235 	.isolate = mlx5_flow_isolate,
236 	.query = mlx5_flow_query,
237 };
238 
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241 	struct rte_flow_attr attr;
242 	struct rte_flow_item items[4];
243 	struct rte_flow_item_eth l2;
244 	struct rte_flow_item_eth l2_mask;
245 	union {
246 		struct rte_flow_item_ipv4 ipv4;
247 		struct rte_flow_item_ipv6 ipv6;
248 	} l3;
249 	union {
250 		struct rte_flow_item_ipv4 ipv4;
251 		struct rte_flow_item_ipv6 ipv6;
252 	} l3_mask;
253 	union {
254 		struct rte_flow_item_udp udp;
255 		struct rte_flow_item_tcp tcp;
256 	} l4;
257 	union {
258 		struct rte_flow_item_udp udp;
259 		struct rte_flow_item_tcp tcp;
260 	} l4_mask;
261 	struct rte_flow_action actions[2];
262 	struct rte_flow_action_queue queue;
263 };
264 
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269 
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273 	{ 9, 10, 11 }, { 12, 13, 14 },
274 };
275 
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281 
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283 	{
284 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
285 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286 	},
287 	{
288 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290 	},
291 	{
292 		.tunnel = MLX5_FLOW_LAYER_GRE,
293 		.ptype = RTE_PTYPE_TUNNEL_GRE,
294 	},
295 	{
296 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
298 	},
299 	{
300 		.tunnel = MLX5_FLOW_LAYER_MPLS,
301 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302 	},
303 };
304 
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318 	struct {
319 		struct ibv_flow_attr attr;
320 		struct ibv_flow_spec_eth eth;
321 		struct ibv_flow_spec_action_drop drop;
322 	} flow_attr = {
323 		.attr = {
324 			.num_of_specs = 2,
325 		},
326 		.eth = {
327 			.type = IBV_FLOW_SPEC_ETH,
328 			.size = sizeof(struct ibv_flow_spec_eth),
329 		},
330 		.drop = {
331 			.size = sizeof(struct ibv_flow_spec_action_drop),
332 			.type = IBV_FLOW_SPEC_ACTION_DROP,
333 		},
334 	};
335 	struct ibv_flow *flow;
336 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337 	uint16_t vprio[] = { 8, 16 };
338 	int i;
339 	int priority = 0;
340 
341 	if (!drop) {
342 		rte_errno = ENOTSUP;
343 		return -rte_errno;
344 	}
345 	for (i = 0; i != RTE_DIM(vprio); i++) {
346 		flow_attr.attr.priority = vprio[i] - 1;
347 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348 		if (!flow)
349 			break;
350 		claim_zero(mlx5_glue->destroy_flow(flow));
351 		priority = vprio[i];
352 	}
353 	switch (priority) {
354 	case 8:
355 		priority = RTE_DIM(priority_map_3);
356 		break;
357 	case 16:
358 		priority = RTE_DIM(priority_map_5);
359 		break;
360 	default:
361 		rte_errno = ENOTSUP;
362 		DRV_LOG(ERR,
363 			"port %u verbs maximum priority: %d expected 8/16",
364 			dev->data->port_id, vprio[i]);
365 		return -rte_errno;
366 	}
367 	mlx5_hrxq_drop_release(dev);
368 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
369 		dev->data->port_id, priority);
370 	return priority;
371 }
372 
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387 				   uint32_t subpriority)
388 {
389 	uint32_t res = 0;
390 	struct priv *priv = dev->data->dev_private;
391 
392 	switch (priv->config.flow_prio) {
393 	case RTE_DIM(priority_map_3):
394 		res = priority_map_3[priority][subpriority];
395 		break;
396 	case RTE_DIM(priority_map_5):
397 		res = priority_map_5[priority][subpriority];
398 		break;
399 	}
400 	return  res;
401 }
402 
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423 			  const uint8_t *mask,
424 			  const uint8_t *nic_mask,
425 			  unsigned int size,
426 			  struct rte_flow_error *error)
427 {
428 	unsigned int i;
429 
430 	assert(nic_mask);
431 	for (i = 0; i < size; ++i)
432 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
433 			return rte_flow_error_set(error, ENOTSUP,
434 						  RTE_FLOW_ERROR_TYPE_ITEM,
435 						  item,
436 						  "mask enables non supported"
437 						  " bits");
438 	if (!item->spec && (item->mask || item->last))
439 		return rte_flow_error_set(error, EINVAL,
440 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
441 					  "mask/last without a spec is not"
442 					  " supported");
443 	if (item->spec && item->last) {
444 		uint8_t spec[size];
445 		uint8_t last[size];
446 		unsigned int i;
447 		int ret;
448 
449 		for (i = 0; i < size; ++i) {
450 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452 		}
453 		ret = memcmp(spec, last, size);
454 		if (ret != 0)
455 			return rte_flow_error_set(error, EINVAL,
456 						  RTE_FLOW_ERROR_TYPE_ITEM,
457 						  item,
458 						  "range is not valid");
459 	}
460 	return 0;
461 }
462 
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480 			    int tunnel __rte_unused, uint64_t layer_types,
481 			    uint64_t hash_fields)
482 {
483 	struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485 	int rss_request_inner = flow->rss.level >= 2;
486 
487 	/* Check RSS hash level for tunnel. */
488 	if (tunnel && rss_request_inner)
489 		hash_fields |= IBV_RX_HASH_INNER;
490 	else if (tunnel || rss_request_inner)
491 		return 0;
492 #endif
493 	/* Check if requested layer matches RSS hash fields. */
494 	if (!(flow->rss.types & layer_types))
495 		return 0;
496 	return hash_fields;
497 }
498 
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510 	unsigned int i;
511 	uint32_t tunnel_ptype = 0;
512 
513 	/* Look up for the ptype to use. */
514 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515 		if (!rxq_ctrl->flow_tunnels_n[i])
516 			continue;
517 		if (!tunnel_ptype) {
518 			tunnel_ptype = tunnels_info[i].ptype;
519 		} else {
520 			tunnel_ptype = 0;
521 			break;
522 		}
523 	}
524 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526 
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539 	struct priv *priv = dev->data->dev_private;
540 	struct rte_flow *flow = dev_flow->flow;
541 	const int mark = !!(flow->actions &
542 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544 	unsigned int i;
545 
546 	for (i = 0; i != flow->rss.queue_num; ++i) {
547 		int idx = (*flow->queue)[i];
548 		struct mlx5_rxq_ctrl *rxq_ctrl =
549 			container_of((*priv->rxqs)[idx],
550 				     struct mlx5_rxq_ctrl, rxq);
551 
552 		if (mark) {
553 			rxq_ctrl->rxq.mark = 1;
554 			rxq_ctrl->flow_mark_n++;
555 		}
556 		if (tunnel) {
557 			unsigned int j;
558 
559 			/* Increase the counter matching the flow. */
560 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561 				if ((tunnels_info[j].tunnel &
562 				     dev_flow->layers) ==
563 				    tunnels_info[j].tunnel) {
564 					rxq_ctrl->flow_tunnels_n[j]++;
565 					break;
566 				}
567 			}
568 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
569 		}
570 	}
571 }
572 
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584 	struct mlx5_flow *dev_flow;
585 
586 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587 		flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589 
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602 	struct priv *priv = dev->data->dev_private;
603 	struct rte_flow *flow = dev_flow->flow;
604 	const int mark = !!(flow->actions &
605 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607 	unsigned int i;
608 
609 	assert(dev->data->dev_started);
610 	for (i = 0; i != flow->rss.queue_num; ++i) {
611 		int idx = (*flow->queue)[i];
612 		struct mlx5_rxq_ctrl *rxq_ctrl =
613 			container_of((*priv->rxqs)[idx],
614 				     struct mlx5_rxq_ctrl, rxq);
615 
616 		if (mark) {
617 			rxq_ctrl->flow_mark_n--;
618 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619 		}
620 		if (tunnel) {
621 			unsigned int j;
622 
623 			/* Decrease the counter matching the flow. */
624 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625 				if ((tunnels_info[j].tunnel &
626 				     dev_flow->layers) ==
627 				    tunnels_info[j].tunnel) {
628 					rxq_ctrl->flow_tunnels_n[j]--;
629 					break;
630 				}
631 			}
632 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
633 		}
634 	}
635 }
636 
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649 	struct mlx5_flow *dev_flow;
650 
651 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652 		flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654 
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664 	struct priv *priv = dev->data->dev_private;
665 	unsigned int i;
666 
667 	for (i = 0; i != priv->rxqs_n; ++i) {
668 		struct mlx5_rxq_ctrl *rxq_ctrl;
669 		unsigned int j;
670 
671 		if (!(*priv->rxqs)[i])
672 			continue;
673 		rxq_ctrl = container_of((*priv->rxqs)[i],
674 					struct mlx5_rxq_ctrl, rxq);
675 		rxq_ctrl->flow_mark_n = 0;
676 		rxq_ctrl->rxq.mark = 0;
677 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678 			rxq_ctrl->flow_tunnels_n[j] = 0;
679 		rxq_ctrl->rxq.tunnel = 0;
680 	}
681 }
682 
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698 			       const struct rte_flow_attr *attr,
699 			       struct rte_flow_error *error)
700 {
701 
702 	if (action_flags & MLX5_FLOW_ACTION_DROP)
703 		return rte_flow_error_set(error, EINVAL,
704 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705 					  "can't drop and flag in same flow");
706 	if (action_flags & MLX5_FLOW_ACTION_MARK)
707 		return rte_flow_error_set(error, EINVAL,
708 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709 					  "can't mark and flag in same flow");
710 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
711 		return rte_flow_error_set(error, EINVAL,
712 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713 					  "can't have 2 flag"
714 					  " actions in same flow");
715 	if (attr->egress)
716 		return rte_flow_error_set(error, ENOTSUP,
717 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718 					  "flag action not supported for "
719 					  "egress");
720 	return 0;
721 }
722 
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740 			       uint64_t action_flags,
741 			       const struct rte_flow_attr *attr,
742 			       struct rte_flow_error *error)
743 {
744 	const struct rte_flow_action_mark *mark = action->conf;
745 
746 	if (!mark)
747 		return rte_flow_error_set(error, EINVAL,
748 					  RTE_FLOW_ERROR_TYPE_ACTION,
749 					  action,
750 					  "configuration cannot be null");
751 	if (mark->id >= MLX5_FLOW_MARK_MAX)
752 		return rte_flow_error_set(error, EINVAL,
753 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754 					  &mark->id,
755 					  "mark id must in 0 <= id < "
756 					  RTE_STR(MLX5_FLOW_MARK_MAX));
757 	if (action_flags & MLX5_FLOW_ACTION_DROP)
758 		return rte_flow_error_set(error, EINVAL,
759 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760 					  "can't drop and mark in same flow");
761 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
762 		return rte_flow_error_set(error, EINVAL,
763 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764 					  "can't flag and mark in same flow");
765 	if (action_flags & MLX5_FLOW_ACTION_MARK)
766 		return rte_flow_error_set(error, EINVAL,
767 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768 					  "can't have 2 mark actions in same"
769 					  " flow");
770 	if (attr->egress)
771 		return rte_flow_error_set(error, ENOTSUP,
772 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773 					  "mark action not supported for "
774 					  "egress");
775 	return 0;
776 }
777 
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_ernno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793 			       const struct rte_flow_attr *attr,
794 			       struct rte_flow_error *error)
795 {
796 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
797 		return rte_flow_error_set(error, EINVAL,
798 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799 					  "can't drop and flag in same flow");
800 	if (action_flags & MLX5_FLOW_ACTION_MARK)
801 		return rte_flow_error_set(error, EINVAL,
802 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803 					  "can't drop and mark in same flow");
804 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805 		return rte_flow_error_set(error, EINVAL,
806 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807 					  "can't have 2 fate actions in"
808 					  " same flow");
809 	if (attr->egress)
810 		return rte_flow_error_set(error, ENOTSUP,
811 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812 					  "drop action not supported for "
813 					  "egress");
814 	return 0;
815 }
816 
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_ernno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836 				uint64_t action_flags,
837 				struct rte_eth_dev *dev,
838 				const struct rte_flow_attr *attr,
839 				struct rte_flow_error *error)
840 {
841 	struct priv *priv = dev->data->dev_private;
842 	const struct rte_flow_action_queue *queue = action->conf;
843 
844 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845 		return rte_flow_error_set(error, EINVAL,
846 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847 					  "can't have 2 fate actions in"
848 					  " same flow");
849 	if (!priv->rxqs_n)
850 		return rte_flow_error_set(error, EINVAL,
851 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852 					  NULL, "No Rx queues configured");
853 	if (queue->index >= priv->rxqs_n)
854 		return rte_flow_error_set(error, EINVAL,
855 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
856 					  &queue->index,
857 					  "queue index out of range");
858 	if (!(*priv->rxqs)[queue->index])
859 		return rte_flow_error_set(error, EINVAL,
860 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
861 					  &queue->index,
862 					  "queue is not configured");
863 	if (attr->egress)
864 		return rte_flow_error_set(error, ENOTSUP,
865 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
866 					  "queue action not supported for "
867 					  "egress");
868 	return 0;
869 }
870 
871 /*
872  * Validate the rss action.
873  *
874  * @param[in] action
875  *   Pointer to the queue action.
876  * @param[in] action_flags
877  *   Bit-fields that holds the actions detected until now.
878  * @param[in] dev
879  *   Pointer to the Ethernet device structure.
880  * @param[in] attr
881  *   Attributes of flow that includes this action.
882  * @param[out] error
883  *   Pointer to error structure.
884  *
885  * @return
886  *   0 on success, a negative errno value otherwise and rte_ernno is set.
887  */
888 int
889 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
890 			      uint64_t action_flags,
891 			      struct rte_eth_dev *dev,
892 			      const struct rte_flow_attr *attr,
893 			      struct rte_flow_error *error)
894 {
895 	struct priv *priv = dev->data->dev_private;
896 	const struct rte_flow_action_rss *rss = action->conf;
897 	unsigned int i;
898 
899 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
900 		return rte_flow_error_set(error, EINVAL,
901 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
902 					  "can't have 2 fate actions"
903 					  " in same flow");
904 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
905 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
906 		return rte_flow_error_set(error, ENOTSUP,
907 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
908 					  &rss->func,
909 					  "RSS hash function not supported");
910 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
911 	if (rss->level > 2)
912 #else
913 	if (rss->level > 1)
914 #endif
915 		return rte_flow_error_set(error, ENOTSUP,
916 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
917 					  &rss->level,
918 					  "tunnel RSS is not supported");
919 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
920 	if (rss->key_len == 0 && rss->key != NULL)
921 		return rte_flow_error_set(error, ENOTSUP,
922 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
923 					  &rss->key_len,
924 					  "RSS hash key length 0");
925 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
926 		return rte_flow_error_set(error, ENOTSUP,
927 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
928 					  &rss->key_len,
929 					  "RSS hash key too small");
930 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
931 		return rte_flow_error_set(error, ENOTSUP,
932 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
933 					  &rss->key_len,
934 					  "RSS hash key too large");
935 	if (rss->queue_num > priv->config.ind_table_max_size)
936 		return rte_flow_error_set(error, ENOTSUP,
937 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
938 					  &rss->queue_num,
939 					  "number of queues too large");
940 	if (rss->types & MLX5_RSS_HF_MASK)
941 		return rte_flow_error_set(error, ENOTSUP,
942 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
943 					  &rss->types,
944 					  "some RSS protocols are not"
945 					  " supported");
946 	if (!priv->rxqs_n)
947 		return rte_flow_error_set(error, EINVAL,
948 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
949 					  NULL, "No Rx queues configured");
950 	if (!rss->queue_num)
951 		return rte_flow_error_set(error, EINVAL,
952 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
953 					  NULL, "No queues configured");
954 	for (i = 0; i != rss->queue_num; ++i) {
955 		if (!(*priv->rxqs)[rss->queue[i]])
956 			return rte_flow_error_set
957 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
958 				 &rss->queue[i], "queue is not configured");
959 	}
960 	if (attr->egress)
961 		return rte_flow_error_set(error, ENOTSUP,
962 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
963 					  "rss action not supported for "
964 					  "egress");
965 	return 0;
966 }
967 
968 /*
969  * Validate the count action.
970  *
971  * @param[in] dev
972  *   Pointer to the Ethernet device structure.
973  * @param[in] attr
974  *   Attributes of flow that includes this action.
975  * @param[out] error
976  *   Pointer to error structure.
977  *
978  * @return
979  *   0 on success, a negative errno value otherwise and rte_ernno is set.
980  */
981 int
982 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
983 				const struct rte_flow_attr *attr,
984 				struct rte_flow_error *error)
985 {
986 	if (attr->egress)
987 		return rte_flow_error_set(error, ENOTSUP,
988 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
989 					  "count action not supported for "
990 					  "egress");
991 	return 0;
992 }
993 
994 /**
995  * Verify the @p attributes will be correctly understood by the NIC and store
996  * them in the @p flow if everything is correct.
997  *
998  * @param[in] dev
999  *   Pointer to the Ethernet device structure.
1000  * @param[in] attributes
1001  *   Pointer to flow attributes
1002  * @param[out] error
1003  *   Pointer to error structure.
1004  *
1005  * @return
1006  *   0 on success, a negative errno value otherwise and rte_errno is set.
1007  */
1008 int
1009 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1010 			      const struct rte_flow_attr *attributes,
1011 			      struct rte_flow_error *error)
1012 {
1013 	struct priv *priv = dev->data->dev_private;
1014 	uint32_t priority_max = priv->config.flow_prio - 1;
1015 
1016 	if (attributes->group)
1017 		return rte_flow_error_set(error, ENOTSUP,
1018 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1019 					  NULL, "groups is not supported");
1020 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1021 	    attributes->priority >= priority_max)
1022 		return rte_flow_error_set(error, ENOTSUP,
1023 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1024 					  NULL, "priority out of range");
1025 	if (attributes->egress)
1026 		return rte_flow_error_set(error, ENOTSUP,
1027 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1028 					  "egress is not supported");
1029 	if (attributes->transfer)
1030 		return rte_flow_error_set(error, ENOTSUP,
1031 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1032 					  NULL, "transfer is not supported");
1033 	if (!attributes->ingress)
1034 		return rte_flow_error_set(error, EINVAL,
1035 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1036 					  NULL,
1037 					  "ingress attribute is mandatory");
1038 	return 0;
1039 }
1040 
1041 /**
1042  * Validate Ethernet item.
1043  *
1044  * @param[in] item
1045  *   Item specification.
1046  * @param[in] item_flags
1047  *   Bit-fields that holds the items detected until now.
1048  * @param[out] error
1049  *   Pointer to error structure.
1050  *
1051  * @return
1052  *   0 on success, a negative errno value otherwise and rte_errno is set.
1053  */
1054 int
1055 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1056 			    uint64_t item_flags,
1057 			    struct rte_flow_error *error)
1058 {
1059 	const struct rte_flow_item_eth *mask = item->mask;
1060 	const struct rte_flow_item_eth nic_mask = {
1061 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1062 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1063 		.type = RTE_BE16(0xffff),
1064 	};
1065 	int ret;
1066 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1067 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1068 				       MLX5_FLOW_LAYER_OUTER_L2;
1069 
1070 	if (item_flags & ethm)
1071 		return rte_flow_error_set(error, ENOTSUP,
1072 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1073 					  "multiple L2 layers not supported");
1074 	if (!mask)
1075 		mask = &rte_flow_item_eth_mask;
1076 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1077 					(const uint8_t *)&nic_mask,
1078 					sizeof(struct rte_flow_item_eth),
1079 					error);
1080 	return ret;
1081 }
1082 
1083 /**
1084  * Validate VLAN item.
1085  *
1086  * @param[in] item
1087  *   Item specification.
1088  * @param[in] item_flags
1089  *   Bit-fields that holds the items detected until now.
1090  * @param[out] error
1091  *   Pointer to error structure.
1092  *
1093  * @return
1094  *   0 on success, a negative errno value otherwise and rte_errno is set.
1095  */
1096 int
1097 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1098 			     uint64_t item_flags,
1099 			     struct rte_flow_error *error)
1100 {
1101 	const struct rte_flow_item_vlan *spec = item->spec;
1102 	const struct rte_flow_item_vlan *mask = item->mask;
1103 	const struct rte_flow_item_vlan nic_mask = {
1104 		.tci = RTE_BE16(0x0fff),
1105 		.inner_type = RTE_BE16(0xffff),
1106 	};
1107 	uint16_t vlan_tag = 0;
1108 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1109 	int ret;
1110 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1111 					MLX5_FLOW_LAYER_INNER_L4) :
1112 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1113 					MLX5_FLOW_LAYER_OUTER_L4);
1114 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1115 					MLX5_FLOW_LAYER_OUTER_VLAN;
1116 
1117 	if (item_flags & vlanm)
1118 		return rte_flow_error_set(error, EINVAL,
1119 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1120 					  "multiple VLAN layers not supported");
1121 	else if ((item_flags & l34m) != 0)
1122 		return rte_flow_error_set(error, EINVAL,
1123 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1124 					  "L2 layer cannot follow L3/L4 layer");
1125 	if (!mask)
1126 		mask = &rte_flow_item_vlan_mask;
1127 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1128 					(const uint8_t *)&nic_mask,
1129 					sizeof(struct rte_flow_item_vlan),
1130 					error);
1131 	if (ret)
1132 		return ret;
1133 	if (spec) {
1134 		vlan_tag = spec->tci;
1135 		vlan_tag &= mask->tci;
1136 	}
1137 	/*
1138 	 * From verbs perspective an empty VLAN is equivalent
1139 	 * to a packet without VLAN layer.
1140 	 */
1141 	if (!vlan_tag)
1142 		return rte_flow_error_set(error, EINVAL,
1143 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1144 					  item->spec,
1145 					  "VLAN cannot be empty");
1146 	return 0;
1147 }
1148 
1149 /**
1150  * Validate IPV4 item.
1151  *
1152  * @param[in] item
1153  *   Item specification.
1154  * @param[in] item_flags
1155  *   Bit-fields that holds the items detected until now.
1156  * @param[in] acc_mask
1157  *   Acceptable mask, if NULL default internal default mask
1158  *   will be used to check whether item fields are supported.
1159  * @param[out] error
1160  *   Pointer to error structure.
1161  *
1162  * @return
1163  *   0 on success, a negative errno value otherwise and rte_errno is set.
1164  */
1165 int
1166 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1167 			     uint64_t item_flags,
1168 			     const struct rte_flow_item_ipv4 *acc_mask,
1169 			     struct rte_flow_error *error)
1170 {
1171 	const struct rte_flow_item_ipv4 *mask = item->mask;
1172 	const struct rte_flow_item_ipv4 nic_mask = {
1173 		.hdr = {
1174 			.src_addr = RTE_BE32(0xffffffff),
1175 			.dst_addr = RTE_BE32(0xffffffff),
1176 			.type_of_service = 0xff,
1177 			.next_proto_id = 0xff,
1178 		},
1179 	};
1180 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1181 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1182 				      MLX5_FLOW_LAYER_OUTER_L3;
1183 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1184 				      MLX5_FLOW_LAYER_OUTER_L4;
1185 	int ret;
1186 
1187 	if (item_flags & l3m)
1188 		return rte_flow_error_set(error, ENOTSUP,
1189 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1190 					  "multiple L3 layers not supported");
1191 	else if (item_flags & l4m)
1192 		return rte_flow_error_set(error, EINVAL,
1193 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1194 					  "L3 cannot follow an L4 layer.");
1195 	if (!mask)
1196 		mask = &rte_flow_item_ipv4_mask;
1197 	else if (mask->hdr.next_proto_id != 0 &&
1198 		 mask->hdr.next_proto_id != 0xff)
1199 		return rte_flow_error_set(error, EINVAL,
1200 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1201 					  "partial mask is not supported"
1202 					  " for protocol");
1203 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1204 					acc_mask ? (const uint8_t *)acc_mask
1205 						 : (const uint8_t *)&nic_mask,
1206 					sizeof(struct rte_flow_item_ipv4),
1207 					error);
1208 	if (ret < 0)
1209 		return ret;
1210 	return 0;
1211 }
1212 
1213 /**
1214  * Validate IPV6 item.
1215  *
1216  * @param[in] item
1217  *   Item specification.
1218  * @param[in] item_flags
1219  *   Bit-fields that holds the items detected until now.
1220  * @param[in] acc_mask
1221  *   Acceptable mask, if NULL default internal default mask
1222  *   will be used to check whether item fields are supported.
1223  * @param[out] error
1224  *   Pointer to error structure.
1225  *
1226  * @return
1227  *   0 on success, a negative errno value otherwise and rte_errno is set.
1228  */
1229 int
1230 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1231 			     uint64_t item_flags,
1232 			     const struct rte_flow_item_ipv6 *acc_mask,
1233 			     struct rte_flow_error *error)
1234 {
1235 	const struct rte_flow_item_ipv6 *mask = item->mask;
1236 	const struct rte_flow_item_ipv6 nic_mask = {
1237 		.hdr = {
1238 			.src_addr =
1239 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1240 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1241 			.dst_addr =
1242 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1243 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1244 			.vtc_flow = RTE_BE32(0xffffffff),
1245 			.proto = 0xff,
1246 			.hop_limits = 0xff,
1247 		},
1248 	};
1249 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1250 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1251 				      MLX5_FLOW_LAYER_OUTER_L3;
1252 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1253 				      MLX5_FLOW_LAYER_OUTER_L4;
1254 	int ret;
1255 
1256 	if (item_flags & l3m)
1257 		return rte_flow_error_set(error, ENOTSUP,
1258 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1259 					  "multiple L3 layers not supported");
1260 	else if (item_flags & l4m)
1261 		return rte_flow_error_set(error, EINVAL,
1262 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1263 					  "L3 cannot follow an L4 layer.");
1264 	if (!mask)
1265 		mask = &rte_flow_item_ipv6_mask;
1266 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1267 					acc_mask ? (const uint8_t *)acc_mask
1268 						 : (const uint8_t *)&nic_mask,
1269 					sizeof(struct rte_flow_item_ipv6),
1270 					error);
1271 	if (ret < 0)
1272 		return ret;
1273 	return 0;
1274 }
1275 
1276 /**
1277  * Validate UDP item.
1278  *
1279  * @param[in] item
1280  *   Item specification.
1281  * @param[in] item_flags
1282  *   Bit-fields that holds the items detected until now.
1283  * @param[in] target_protocol
1284  *   The next protocol in the previous item.
1285  * @param[in] flow_mask
1286  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1287  * @param[out] error
1288  *   Pointer to error structure.
1289  *
1290  * @return
1291  *   0 on success, a negative errno value otherwise and rte_errno is set.
1292  */
1293 int
1294 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1295 			    uint64_t item_flags,
1296 			    uint8_t target_protocol,
1297 			    struct rte_flow_error *error)
1298 {
1299 	const struct rte_flow_item_udp *mask = item->mask;
1300 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1301 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1302 				      MLX5_FLOW_LAYER_OUTER_L3;
1303 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1304 				      MLX5_FLOW_LAYER_OUTER_L4;
1305 	int ret;
1306 
1307 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1308 		return rte_flow_error_set(error, EINVAL,
1309 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1310 					  "protocol filtering not compatible"
1311 					  " with UDP layer");
1312 	if (!(item_flags & l3m))
1313 		return rte_flow_error_set(error, EINVAL,
1314 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1315 					  "L3 is mandatory to filter on L4");
1316 	if (item_flags & l4m)
1317 		return rte_flow_error_set(error, EINVAL,
1318 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1319 					  "multiple L4 layers not supported");
1320 	if (!mask)
1321 		mask = &rte_flow_item_udp_mask;
1322 	ret = mlx5_flow_item_acceptable
1323 		(item, (const uint8_t *)mask,
1324 		 (const uint8_t *)&rte_flow_item_udp_mask,
1325 		 sizeof(struct rte_flow_item_udp), error);
1326 	if (ret < 0)
1327 		return ret;
1328 	return 0;
1329 }
1330 
1331 /**
1332  * Validate TCP item.
1333  *
1334  * @param[in] item
1335  *   Item specification.
1336  * @param[in] item_flags
1337  *   Bit-fields that holds the items detected until now.
1338  * @param[in] target_protocol
1339  *   The next protocol in the previous item.
1340  * @param[out] error
1341  *   Pointer to error structure.
1342  *
1343  * @return
1344  *   0 on success, a negative errno value otherwise and rte_errno is set.
1345  */
1346 int
1347 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1348 			    uint64_t item_flags,
1349 			    uint8_t target_protocol,
1350 			    const struct rte_flow_item_tcp *flow_mask,
1351 			    struct rte_flow_error *error)
1352 {
1353 	const struct rte_flow_item_tcp *mask = item->mask;
1354 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1355 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1356 				      MLX5_FLOW_LAYER_OUTER_L3;
1357 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1358 				      MLX5_FLOW_LAYER_OUTER_L4;
1359 	int ret;
1360 
1361 	assert(flow_mask);
1362 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1363 		return rte_flow_error_set(error, EINVAL,
1364 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1365 					  "protocol filtering not compatible"
1366 					  " with TCP layer");
1367 	if (!(item_flags & l3m))
1368 		return rte_flow_error_set(error, EINVAL,
1369 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1370 					  "L3 is mandatory to filter on L4");
1371 	if (item_flags & l4m)
1372 		return rte_flow_error_set(error, EINVAL,
1373 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1374 					  "multiple L4 layers not supported");
1375 	if (!mask)
1376 		mask = &rte_flow_item_tcp_mask;
1377 	ret = mlx5_flow_item_acceptable
1378 		(item, (const uint8_t *)mask,
1379 		 (const uint8_t *)flow_mask,
1380 		 sizeof(struct rte_flow_item_tcp), error);
1381 	if (ret < 0)
1382 		return ret;
1383 	return 0;
1384 }
1385 
1386 /**
1387  * Validate VXLAN item.
1388  *
1389  * @param[in] item
1390  *   Item specification.
1391  * @param[in] item_flags
1392  *   Bit-fields that holds the items detected until now.
1393  * @param[in] target_protocol
1394  *   The next protocol in the previous item.
1395  * @param[out] error
1396  *   Pointer to error structure.
1397  *
1398  * @return
1399  *   0 on success, a negative errno value otherwise and rte_errno is set.
1400  */
1401 int
1402 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1403 			      uint64_t item_flags,
1404 			      struct rte_flow_error *error)
1405 {
1406 	const struct rte_flow_item_vxlan *spec = item->spec;
1407 	const struct rte_flow_item_vxlan *mask = item->mask;
1408 	int ret;
1409 	union vni {
1410 		uint32_t vlan_id;
1411 		uint8_t vni[4];
1412 	} id = { .vlan_id = 0, };
1413 	uint32_t vlan_id = 0;
1414 
1415 
1416 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1417 		return rte_flow_error_set(error, ENOTSUP,
1418 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1419 					  "multiple tunnel layers not"
1420 					  " supported");
1421 	/*
1422 	 * Verify only UDPv4 is present as defined in
1423 	 * https://tools.ietf.org/html/rfc7348
1424 	 */
1425 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1426 		return rte_flow_error_set(error, EINVAL,
1427 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1428 					  "no outer UDP layer found");
1429 	if (!mask)
1430 		mask = &rte_flow_item_vxlan_mask;
1431 	ret = mlx5_flow_item_acceptable
1432 		(item, (const uint8_t *)mask,
1433 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1434 		 sizeof(struct rte_flow_item_vxlan),
1435 		 error);
1436 	if (ret < 0)
1437 		return ret;
1438 	if (spec) {
1439 		memcpy(&id.vni[1], spec->vni, 3);
1440 		vlan_id = id.vlan_id;
1441 		memcpy(&id.vni[1], mask->vni, 3);
1442 		vlan_id &= id.vlan_id;
1443 	}
1444 	/*
1445 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1446 	 * only this layer is defined in the Verbs specification it is
1447 	 * interpreted as wildcard and all packets will match this
1448 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1449 	 * udp), all packets matching the layers before will also
1450 	 * match this rule.  To avoid such situation, VNI 0 is
1451 	 * currently refused.
1452 	 */
1453 	if (!vlan_id)
1454 		return rte_flow_error_set(error, ENOTSUP,
1455 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1456 					  "VXLAN vni cannot be 0");
1457 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1458 		return rte_flow_error_set(error, ENOTSUP,
1459 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1460 					  "VXLAN tunnel must be fully defined");
1461 	return 0;
1462 }
1463 
1464 /**
1465  * Validate VXLAN_GPE item.
1466  *
1467  * @param[in] item
1468  *   Item specification.
1469  * @param[in] item_flags
1470  *   Bit-fields that holds the items detected until now.
1471  * @param[in] priv
1472  *   Pointer to the private data structure.
1473  * @param[in] target_protocol
1474  *   The next protocol in the previous item.
1475  * @param[out] error
1476  *   Pointer to error structure.
1477  *
1478  * @return
1479  *   0 on success, a negative errno value otherwise and rte_errno is set.
1480  */
1481 int
1482 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1483 				  uint64_t item_flags,
1484 				  struct rte_eth_dev *dev,
1485 				  struct rte_flow_error *error)
1486 {
1487 	struct priv *priv = dev->data->dev_private;
1488 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1489 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1490 	int ret;
1491 	union vni {
1492 		uint32_t vlan_id;
1493 		uint8_t vni[4];
1494 	} id = { .vlan_id = 0, };
1495 	uint32_t vlan_id = 0;
1496 
1497 	if (!priv->config.l3_vxlan_en)
1498 		return rte_flow_error_set(error, ENOTSUP,
1499 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1500 					  "L3 VXLAN is not enabled by device"
1501 					  " parameter and/or not configured in"
1502 					  " firmware");
1503 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1504 		return rte_flow_error_set(error, ENOTSUP,
1505 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1506 					  "multiple tunnel layers not"
1507 					  " supported");
1508 	/*
1509 	 * Verify only UDPv4 is present as defined in
1510 	 * https://tools.ietf.org/html/rfc7348
1511 	 */
1512 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1513 		return rte_flow_error_set(error, EINVAL,
1514 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1515 					  "no outer UDP layer found");
1516 	if (!mask)
1517 		mask = &rte_flow_item_vxlan_gpe_mask;
1518 	ret = mlx5_flow_item_acceptable
1519 		(item, (const uint8_t *)mask,
1520 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1521 		 sizeof(struct rte_flow_item_vxlan_gpe),
1522 		 error);
1523 	if (ret < 0)
1524 		return ret;
1525 	if (spec) {
1526 		if (spec->protocol)
1527 			return rte_flow_error_set(error, ENOTSUP,
1528 						  RTE_FLOW_ERROR_TYPE_ITEM,
1529 						  item,
1530 						  "VxLAN-GPE protocol"
1531 						  " not supported");
1532 		memcpy(&id.vni[1], spec->vni, 3);
1533 		vlan_id = id.vlan_id;
1534 		memcpy(&id.vni[1], mask->vni, 3);
1535 		vlan_id &= id.vlan_id;
1536 	}
1537 	/*
1538 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1539 	 * layer is defined in the Verbs specification it is interpreted as
1540 	 * wildcard and all packets will match this rule, if it follows a full
1541 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1542 	 * before will also match this rule.  To avoid such situation, VNI 0
1543 	 * is currently refused.
1544 	 */
1545 	if (!vlan_id)
1546 		return rte_flow_error_set(error, ENOTSUP,
1547 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1548 					  "VXLAN-GPE vni cannot be 0");
1549 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1550 		return rte_flow_error_set(error, ENOTSUP,
1551 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1552 					  "VXLAN-GPE tunnel must be fully"
1553 					  " defined");
1554 	return 0;
1555 }
1556 
1557 /**
1558  * Validate GRE item.
1559  *
1560  * @param[in] item
1561  *   Item specification.
1562  * @param[in] item_flags
1563  *   Bit flags to mark detected items.
1564  * @param[in] target_protocol
1565  *   The next protocol in the previous item.
1566  * @param[out] error
1567  *   Pointer to error structure.
1568  *
1569  * @return
1570  *   0 on success, a negative errno value otherwise and rte_errno is set.
1571  */
1572 int
1573 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1574 			    uint64_t item_flags,
1575 			    uint8_t target_protocol,
1576 			    struct rte_flow_error *error)
1577 {
1578 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1579 	const struct rte_flow_item_gre *mask = item->mask;
1580 	int ret;
1581 
1582 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1583 		return rte_flow_error_set(error, EINVAL,
1584 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1585 					  "protocol filtering not compatible"
1586 					  " with this GRE layer");
1587 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1588 		return rte_flow_error_set(error, ENOTSUP,
1589 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1590 					  "multiple tunnel layers not"
1591 					  " supported");
1592 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1593 		return rte_flow_error_set(error, ENOTSUP,
1594 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1595 					  "L3 Layer is missing");
1596 	if (!mask)
1597 		mask = &rte_flow_item_gre_mask;
1598 	ret = mlx5_flow_item_acceptable
1599 		(item, (const uint8_t *)mask,
1600 		 (const uint8_t *)&rte_flow_item_gre_mask,
1601 		 sizeof(struct rte_flow_item_gre), error);
1602 	if (ret < 0)
1603 		return ret;
1604 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1605 	if (spec && (spec->protocol & mask->protocol))
1606 		return rte_flow_error_set(error, ENOTSUP,
1607 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1608 					  "without MPLS support the"
1609 					  " specification cannot be used for"
1610 					  " filtering");
1611 #endif
1612 	return 0;
1613 }
1614 
1615 /**
1616  * Validate MPLS item.
1617  *
1618  * @param[in] dev
1619  *   Pointer to the rte_eth_dev structure.
1620  * @param[in] item
1621  *   Item specification.
1622  * @param[in] item_flags
1623  *   Bit-fields that holds the items detected until now.
1624  * @param[in] prev_layer
1625  *   The protocol layer indicated in previous item.
1626  * @param[out] error
1627  *   Pointer to error structure.
1628  *
1629  * @return
1630  *   0 on success, a negative errno value otherwise and rte_errno is set.
1631  */
1632 int
1633 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1634 			     const struct rte_flow_item *item __rte_unused,
1635 			     uint64_t item_flags __rte_unused,
1636 			     uint64_t prev_layer __rte_unused,
1637 			     struct rte_flow_error *error)
1638 {
1639 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1640 	const struct rte_flow_item_mpls *mask = item->mask;
1641 	struct priv *priv = dev->data->dev_private;
1642 	int ret;
1643 
1644 	if (!priv->config.mpls_en)
1645 		return rte_flow_error_set(error, ENOTSUP,
1646 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1647 					  "MPLS not supported or"
1648 					  " disabled in firmware"
1649 					  " configuration.");
1650 	/* MPLS over IP, UDP, GRE is allowed */
1651 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1652 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
1653 			    MLX5_FLOW_LAYER_GRE)))
1654 		return rte_flow_error_set(error, EINVAL,
1655 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1656 					  "protocol filtering not compatible"
1657 					  " with MPLS layer");
1658 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1659 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1660 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
1661 		return rte_flow_error_set(error, ENOTSUP,
1662 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1663 					  "multiple tunnel layers not"
1664 					  " supported");
1665 	if (!mask)
1666 		mask = &rte_flow_item_mpls_mask;
1667 	ret = mlx5_flow_item_acceptable
1668 		(item, (const uint8_t *)mask,
1669 		 (const uint8_t *)&rte_flow_item_mpls_mask,
1670 		 sizeof(struct rte_flow_item_mpls), error);
1671 	if (ret < 0)
1672 		return ret;
1673 	return 0;
1674 #endif
1675 	return rte_flow_error_set(error, ENOTSUP,
1676 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
1677 				  "MPLS is not supported by Verbs, please"
1678 				  " update.");
1679 }
1680 
1681 static int
1682 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1683 		   const struct rte_flow_attr *attr __rte_unused,
1684 		   const struct rte_flow_item items[] __rte_unused,
1685 		   const struct rte_flow_action actions[] __rte_unused,
1686 		   struct rte_flow_error *error __rte_unused)
1687 {
1688 	rte_errno = ENOTSUP;
1689 	return -rte_errno;
1690 }
1691 
1692 static struct mlx5_flow *
1693 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1694 		  const struct rte_flow_item items[] __rte_unused,
1695 		  const struct rte_flow_action actions[] __rte_unused,
1696 		  struct rte_flow_error *error __rte_unused)
1697 {
1698 	rte_errno = ENOTSUP;
1699 	return NULL;
1700 }
1701 
1702 static int
1703 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1704 		    struct mlx5_flow *dev_flow __rte_unused,
1705 		    const struct rte_flow_attr *attr __rte_unused,
1706 		    const struct rte_flow_item items[] __rte_unused,
1707 		    const struct rte_flow_action actions[] __rte_unused,
1708 		    struct rte_flow_error *error __rte_unused)
1709 {
1710 	rte_errno = ENOTSUP;
1711 	return -rte_errno;
1712 }
1713 
1714 static int
1715 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1716 		struct rte_flow *flow __rte_unused,
1717 		struct rte_flow_error *error __rte_unused)
1718 {
1719 	rte_errno = ENOTSUP;
1720 	return -rte_errno;
1721 }
1722 
1723 static void
1724 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1725 		 struct rte_flow *flow __rte_unused)
1726 {
1727 }
1728 
1729 static void
1730 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1731 		  struct rte_flow *flow __rte_unused)
1732 {
1733 }
1734 
1735 static int
1736 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1737 		struct rte_flow *flow __rte_unused,
1738 		const struct rte_flow_action *actions __rte_unused,
1739 		void *data __rte_unused,
1740 		struct rte_flow_error *error __rte_unused)
1741 {
1742 	rte_errno = ENOTSUP;
1743 	return -rte_errno;
1744 }
1745 
1746 /* Void driver to protect from null pointer reference. */
1747 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1748 	.validate = flow_null_validate,
1749 	.prepare = flow_null_prepare,
1750 	.translate = flow_null_translate,
1751 	.apply = flow_null_apply,
1752 	.remove = flow_null_remove,
1753 	.destroy = flow_null_destroy,
1754 	.query = flow_null_query,
1755 };
1756 
1757 /**
1758  * Select flow driver type according to flow attributes and device
1759  * configuration.
1760  *
1761  * @param[in] dev
1762  *   Pointer to the dev structure.
1763  * @param[in] attr
1764  *   Pointer to the flow attributes.
1765  *
1766  * @return
1767  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1768  */
1769 static enum mlx5_flow_drv_type
1770 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1771 {
1772 	struct priv *priv = dev->data->dev_private;
1773 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1774 
1775 	if (attr->transfer)
1776 		type = MLX5_FLOW_TYPE_TCF;
1777 	else
1778 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1779 						 MLX5_FLOW_TYPE_VERBS;
1780 	return type;
1781 }
1782 
1783 #define flow_get_drv_ops(type) flow_drv_ops[type]
1784 
1785 /**
1786  * Flow driver validation API. This abstracts calling driver specific functions.
1787  * The type of flow driver is determined according to flow attributes.
1788  *
1789  * @param[in] dev
1790  *   Pointer to the dev structure.
1791  * @param[in] attr
1792  *   Pointer to the flow attributes.
1793  * @param[in] items
1794  *   Pointer to the list of items.
1795  * @param[in] actions
1796  *   Pointer to the list of actions.
1797  * @param[out] error
1798  *   Pointer to the error structure.
1799  *
1800  * @return
1801  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1802  */
1803 static inline int
1804 flow_drv_validate(struct rte_eth_dev *dev,
1805 		  const struct rte_flow_attr *attr,
1806 		  const struct rte_flow_item items[],
1807 		  const struct rte_flow_action actions[],
1808 		  struct rte_flow_error *error)
1809 {
1810 	const struct mlx5_flow_driver_ops *fops;
1811 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1812 
1813 	fops = flow_get_drv_ops(type);
1814 	return fops->validate(dev, attr, items, actions, error);
1815 }
1816 
1817 /**
1818  * Flow driver preparation API. This abstracts calling driver specific
1819  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1820  * calculates the size of memory required for device flow, allocates the memory,
1821  * initializes the device flow and returns the pointer.
1822  *
1823  * @note
1824  *   This function initializes device flow structure such as dv, tcf or verbs in
1825  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1826  *   rest. For example, adding returning device flow to flow->dev_flow list and
1827  *   setting backward reference to the flow should be done out of this function.
1828  *   layers field is not filled either.
1829  *
1830  * @param[in] attr
1831  *   Pointer to the flow attributes.
1832  * @param[in] items
1833  *   Pointer to the list of items.
1834  * @param[in] actions
1835  *   Pointer to the list of actions.
1836  * @param[out] error
1837  *   Pointer to the error structure.
1838  *
1839  * @return
1840  *   Pointer to device flow on success, otherwise NULL and rte_ernno is set.
1841  */
1842 static inline struct mlx5_flow *
1843 flow_drv_prepare(const struct rte_flow *flow,
1844 		 const struct rte_flow_attr *attr,
1845 		 const struct rte_flow_item items[],
1846 		 const struct rte_flow_action actions[],
1847 		 struct rte_flow_error *error)
1848 {
1849 	const struct mlx5_flow_driver_ops *fops;
1850 	enum mlx5_flow_drv_type type = flow->drv_type;
1851 
1852 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1853 	fops = flow_get_drv_ops(type);
1854 	return fops->prepare(attr, items, actions, error);
1855 }
1856 
1857 /**
1858  * Flow driver translation API. This abstracts calling driver specific
1859  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1860  * translates a generic flow into a driver flow. flow_drv_prepare() must
1861  * precede.
1862  *
1863  * @note
1864  *   dev_flow->layers could be filled as a result of parsing during translation
1865  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1866  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1867  *   flow->actions could be overwritten even though all the expanded dev_flows
1868  *   have the same actions.
1869  *
1870  * @param[in] dev
1871  *   Pointer to the rte dev structure.
1872  * @param[in, out] dev_flow
1873  *   Pointer to the mlx5 flow.
1874  * @param[in] attr
1875  *   Pointer to the flow attributes.
1876  * @param[in] items
1877  *   Pointer to the list of items.
1878  * @param[in] actions
1879  *   Pointer to the list of actions.
1880  * @param[out] error
1881  *   Pointer to the error structure.
1882  *
1883  * @return
1884  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1885  */
1886 static inline int
1887 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1888 		   const struct rte_flow_attr *attr,
1889 		   const struct rte_flow_item items[],
1890 		   const struct rte_flow_action actions[],
1891 		   struct rte_flow_error *error)
1892 {
1893 	const struct mlx5_flow_driver_ops *fops;
1894 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1895 
1896 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1897 	fops = flow_get_drv_ops(type);
1898 	return fops->translate(dev, dev_flow, attr, items, actions, error);
1899 }
1900 
1901 /**
1902  * Flow driver apply API. This abstracts calling driver specific functions.
1903  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1904  * translated driver flows on to device. flow_drv_translate() must precede.
1905  *
1906  * @param[in] dev
1907  *   Pointer to Ethernet device structure.
1908  * @param[in, out] flow
1909  *   Pointer to flow structure.
1910  * @param[out] error
1911  *   Pointer to error structure.
1912  *
1913  * @return
1914  *   0 on success, a negative errno value otherwise and rte_errno is set.
1915  */
1916 static inline int
1917 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1918 	       struct rte_flow_error *error)
1919 {
1920 	const struct mlx5_flow_driver_ops *fops;
1921 	enum mlx5_flow_drv_type type = flow->drv_type;
1922 
1923 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1924 	fops = flow_get_drv_ops(type);
1925 	return fops->apply(dev, flow, error);
1926 }
1927 
1928 /**
1929  * Flow driver remove API. This abstracts calling driver specific functions.
1930  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1931  * on device. All the resources of the flow should be freed by calling
1932  * flow_drv_destroy().
1933  *
1934  * @param[in] dev
1935  *   Pointer to Ethernet device.
1936  * @param[in, out] flow
1937  *   Pointer to flow structure.
1938  */
1939 static inline void
1940 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1941 {
1942 	const struct mlx5_flow_driver_ops *fops;
1943 	enum mlx5_flow_drv_type type = flow->drv_type;
1944 
1945 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1946 	fops = flow_get_drv_ops(type);
1947 	fops->remove(dev, flow);
1948 }
1949 
1950 /**
1951  * Flow driver destroy API. This abstracts calling driver specific functions.
1952  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1953  * on device and releases resources of the flow.
1954  *
1955  * @param[in] dev
1956  *   Pointer to Ethernet device.
1957  * @param[in, out] flow
1958  *   Pointer to flow structure.
1959  */
1960 static inline void
1961 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1962 {
1963 	const struct mlx5_flow_driver_ops *fops;
1964 	enum mlx5_flow_drv_type type = flow->drv_type;
1965 
1966 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1967 	fops = flow_get_drv_ops(type);
1968 	fops->destroy(dev, flow);
1969 }
1970 
1971 /**
1972  * Validate a flow supported by the NIC.
1973  *
1974  * @see rte_flow_validate()
1975  * @see rte_flow_ops
1976  */
1977 int
1978 mlx5_flow_validate(struct rte_eth_dev *dev,
1979 		   const struct rte_flow_attr *attr,
1980 		   const struct rte_flow_item items[],
1981 		   const struct rte_flow_action actions[],
1982 		   struct rte_flow_error *error)
1983 {
1984 	int ret;
1985 
1986 	ret = flow_drv_validate(dev, attr, items, actions, error);
1987 	if (ret < 0)
1988 		return ret;
1989 	return 0;
1990 }
1991 
1992 /**
1993  * Get RSS action from the action list.
1994  *
1995  * @param[in] actions
1996  *   Pointer to the list of actions.
1997  *
1998  * @return
1999  *   Pointer to the RSS action if exist, else return NULL.
2000  */
2001 static const struct rte_flow_action_rss*
2002 flow_get_rss_action(const struct rte_flow_action actions[])
2003 {
2004 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2005 		switch (actions->type) {
2006 		case RTE_FLOW_ACTION_TYPE_RSS:
2007 			return (const struct rte_flow_action_rss *)
2008 			       actions->conf;
2009 		default:
2010 			break;
2011 		}
2012 	}
2013 	return NULL;
2014 }
2015 
2016 static unsigned int
2017 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2018 {
2019 	const struct rte_flow_item *item;
2020 	unsigned int has_vlan = 0;
2021 
2022 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2023 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2024 			has_vlan = 1;
2025 			break;
2026 		}
2027 	}
2028 	if (has_vlan)
2029 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2030 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2031 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2032 			       MLX5_EXPANSION_ROOT_OUTER;
2033 }
2034 
2035 /**
2036  * Create a flow and add it to @p list.
2037  *
2038  * @param dev
2039  *   Pointer to Ethernet device.
2040  * @param list
2041  *   Pointer to a TAILQ flow list.
2042  * @param[in] attr
2043  *   Flow rule attributes.
2044  * @param[in] items
2045  *   Pattern specification (list terminated by the END pattern item).
2046  * @param[in] actions
2047  *   Associated actions (list terminated by the END action).
2048  * @param[out] error
2049  *   Perform verbose error reporting if not NULL.
2050  *
2051  * @return
2052  *   A flow on success, NULL otherwise and rte_errno is set.
2053  */
2054 static struct rte_flow *
2055 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2056 		 const struct rte_flow_attr *attr,
2057 		 const struct rte_flow_item items[],
2058 		 const struct rte_flow_action actions[],
2059 		 struct rte_flow_error *error)
2060 {
2061 	struct rte_flow *flow = NULL;
2062 	struct mlx5_flow *dev_flow;
2063 	const struct rte_flow_action_rss *rss;
2064 	union {
2065 		struct rte_flow_expand_rss buf;
2066 		uint8_t buffer[2048];
2067 	} expand_buffer;
2068 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2069 	int ret;
2070 	uint32_t i;
2071 	uint32_t flow_size;
2072 
2073 	ret = flow_drv_validate(dev, attr, items, actions, error);
2074 	if (ret < 0)
2075 		return NULL;
2076 	flow_size = sizeof(struct rte_flow);
2077 	rss = flow_get_rss_action(actions);
2078 	if (rss)
2079 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2080 					    sizeof(void *));
2081 	else
2082 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2083 	flow = rte_calloc(__func__, 1, flow_size, 0);
2084 	flow->drv_type = flow_get_drv_type(dev, attr);
2085 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2086 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2087 	flow->queue = (void *)(flow + 1);
2088 	LIST_INIT(&flow->dev_flows);
2089 	if (rss && rss->types) {
2090 		unsigned int graph_root;
2091 
2092 		graph_root = find_graph_root(items, rss->level);
2093 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2094 					  items, rss->types,
2095 					  mlx5_support_expansion,
2096 					  graph_root);
2097 		assert(ret > 0 &&
2098 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2099 	} else {
2100 		buf->entries = 1;
2101 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2102 	}
2103 	for (i = 0; i < buf->entries; ++i) {
2104 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2105 					    actions, error);
2106 		if (!dev_flow)
2107 			goto error;
2108 		dev_flow->flow = flow;
2109 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2110 		ret = flow_drv_translate(dev, dev_flow, attr,
2111 					 buf->entry[i].pattern,
2112 					 actions, error);
2113 		if (ret < 0)
2114 			goto error;
2115 	}
2116 	if (dev->data->dev_started) {
2117 		ret = flow_drv_apply(dev, flow, error);
2118 		if (ret < 0)
2119 			goto error;
2120 	}
2121 	TAILQ_INSERT_TAIL(list, flow, next);
2122 	flow_rxq_flags_set(dev, flow);
2123 	return flow;
2124 error:
2125 	ret = rte_errno; /* Save rte_errno before cleanup. */
2126 	assert(flow);
2127 	flow_drv_destroy(dev, flow);
2128 	rte_free(flow);
2129 	rte_errno = ret; /* Restore rte_errno. */
2130 	return NULL;
2131 }
2132 
2133 /**
2134  * Create a flow.
2135  *
2136  * @see rte_flow_create()
2137  * @see rte_flow_ops
2138  */
2139 struct rte_flow *
2140 mlx5_flow_create(struct rte_eth_dev *dev,
2141 		 const struct rte_flow_attr *attr,
2142 		 const struct rte_flow_item items[],
2143 		 const struct rte_flow_action actions[],
2144 		 struct rte_flow_error *error)
2145 {
2146 	return flow_list_create(dev,
2147 				&((struct priv *)dev->data->dev_private)->flows,
2148 				attr, items, actions, error);
2149 }
2150 
2151 /**
2152  * Destroy a flow in a list.
2153  *
2154  * @param dev
2155  *   Pointer to Ethernet device.
2156  * @param list
2157  *   Pointer to a TAILQ flow list.
2158  * @param[in] flow
2159  *   Flow to destroy.
2160  */
2161 static void
2162 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2163 		  struct rte_flow *flow)
2164 {
2165 	/*
2166 	 * Update RX queue flags only if port is started, otherwise it is
2167 	 * already clean.
2168 	 */
2169 	if (dev->data->dev_started)
2170 		flow_rxq_flags_trim(dev, flow);
2171 	flow_drv_destroy(dev, flow);
2172 	TAILQ_REMOVE(list, flow, next);
2173 	rte_free(flow->fdir);
2174 	rte_free(flow);
2175 }
2176 
2177 /**
2178  * Destroy all flows.
2179  *
2180  * @param dev
2181  *   Pointer to Ethernet device.
2182  * @param list
2183  *   Pointer to a TAILQ flow list.
2184  */
2185 void
2186 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2187 {
2188 	while (!TAILQ_EMPTY(list)) {
2189 		struct rte_flow *flow;
2190 
2191 		flow = TAILQ_FIRST(list);
2192 		flow_list_destroy(dev, list, flow);
2193 	}
2194 }
2195 
2196 /**
2197  * Remove all flows.
2198  *
2199  * @param dev
2200  *   Pointer to Ethernet device.
2201  * @param list
2202  *   Pointer to a TAILQ flow list.
2203  */
2204 void
2205 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2206 {
2207 	struct rte_flow *flow;
2208 
2209 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2210 		flow_drv_remove(dev, flow);
2211 	flow_rxq_flags_clear(dev);
2212 }
2213 
2214 /**
2215  * Add all flows.
2216  *
2217  * @param dev
2218  *   Pointer to Ethernet device.
2219  * @param list
2220  *   Pointer to a TAILQ flow list.
2221  *
2222  * @return
2223  *   0 on success, a negative errno value otherwise and rte_errno is set.
2224  */
2225 int
2226 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2227 {
2228 	struct rte_flow *flow;
2229 	struct rte_flow_error error;
2230 	int ret = 0;
2231 
2232 	TAILQ_FOREACH(flow, list, next) {
2233 		ret = flow_drv_apply(dev, flow, &error);
2234 		if (ret < 0)
2235 			goto error;
2236 		flow_rxq_flags_set(dev, flow);
2237 	}
2238 	return 0;
2239 error:
2240 	ret = rte_errno; /* Save rte_errno before cleanup. */
2241 	mlx5_flow_stop(dev, list);
2242 	rte_errno = ret; /* Restore rte_errno. */
2243 	return -rte_errno;
2244 }
2245 
2246 /**
2247  * Verify the flow list is empty
2248  *
2249  * @param dev
2250  *  Pointer to Ethernet device.
2251  *
2252  * @return the number of flows not released.
2253  */
2254 int
2255 mlx5_flow_verify(struct rte_eth_dev *dev)
2256 {
2257 	struct priv *priv = dev->data->dev_private;
2258 	struct rte_flow *flow;
2259 	int ret = 0;
2260 
2261 	TAILQ_FOREACH(flow, &priv->flows, next) {
2262 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
2263 			dev->data->port_id, (void *)flow);
2264 		++ret;
2265 	}
2266 	return ret;
2267 }
2268 
2269 /**
2270  * Enable a control flow configured from the control plane.
2271  *
2272  * @param dev
2273  *   Pointer to Ethernet device.
2274  * @param eth_spec
2275  *   An Ethernet flow spec to apply.
2276  * @param eth_mask
2277  *   An Ethernet flow mask to apply.
2278  * @param vlan_spec
2279  *   A VLAN flow spec to apply.
2280  * @param vlan_mask
2281  *   A VLAN flow mask to apply.
2282  *
2283  * @return
2284  *   0 on success, a negative errno value otherwise and rte_errno is set.
2285  */
2286 int
2287 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2288 		    struct rte_flow_item_eth *eth_spec,
2289 		    struct rte_flow_item_eth *eth_mask,
2290 		    struct rte_flow_item_vlan *vlan_spec,
2291 		    struct rte_flow_item_vlan *vlan_mask)
2292 {
2293 	struct priv *priv = dev->data->dev_private;
2294 	const struct rte_flow_attr attr = {
2295 		.ingress = 1,
2296 		.priority = MLX5_FLOW_PRIO_RSVD,
2297 	};
2298 	struct rte_flow_item items[] = {
2299 		{
2300 			.type = RTE_FLOW_ITEM_TYPE_ETH,
2301 			.spec = eth_spec,
2302 			.last = NULL,
2303 			.mask = eth_mask,
2304 		},
2305 		{
2306 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2307 					      RTE_FLOW_ITEM_TYPE_END,
2308 			.spec = vlan_spec,
2309 			.last = NULL,
2310 			.mask = vlan_mask,
2311 		},
2312 		{
2313 			.type = RTE_FLOW_ITEM_TYPE_END,
2314 		},
2315 	};
2316 	uint16_t queue[priv->reta_idx_n];
2317 	struct rte_flow_action_rss action_rss = {
2318 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2319 		.level = 0,
2320 		.types = priv->rss_conf.rss_hf,
2321 		.key_len = priv->rss_conf.rss_key_len,
2322 		.queue_num = priv->reta_idx_n,
2323 		.key = priv->rss_conf.rss_key,
2324 		.queue = queue,
2325 	};
2326 	struct rte_flow_action actions[] = {
2327 		{
2328 			.type = RTE_FLOW_ACTION_TYPE_RSS,
2329 			.conf = &action_rss,
2330 		},
2331 		{
2332 			.type = RTE_FLOW_ACTION_TYPE_END,
2333 		},
2334 	};
2335 	struct rte_flow *flow;
2336 	struct rte_flow_error error;
2337 	unsigned int i;
2338 
2339 	if (!priv->reta_idx_n || !priv->rxqs_n) {
2340 		return 0;
2341 	}
2342 	for (i = 0; i != priv->reta_idx_n; ++i)
2343 		queue[i] = (*priv->reta_idx)[i];
2344 	flow = flow_list_create(dev, &priv->ctrl_flows,
2345 				&attr, items, actions, &error);
2346 	if (!flow)
2347 		return -rte_errno;
2348 	return 0;
2349 }
2350 
2351 /**
2352  * Enable a flow control configured from the control plane.
2353  *
2354  * @param dev
2355  *   Pointer to Ethernet device.
2356  * @param eth_spec
2357  *   An Ethernet flow spec to apply.
2358  * @param eth_mask
2359  *   An Ethernet flow mask to apply.
2360  *
2361  * @return
2362  *   0 on success, a negative errno value otherwise and rte_errno is set.
2363  */
2364 int
2365 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2366 	       struct rte_flow_item_eth *eth_spec,
2367 	       struct rte_flow_item_eth *eth_mask)
2368 {
2369 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2370 }
2371 
2372 /**
2373  * Destroy a flow.
2374  *
2375  * @see rte_flow_destroy()
2376  * @see rte_flow_ops
2377  */
2378 int
2379 mlx5_flow_destroy(struct rte_eth_dev *dev,
2380 		  struct rte_flow *flow,
2381 		  struct rte_flow_error *error __rte_unused)
2382 {
2383 	struct priv *priv = dev->data->dev_private;
2384 
2385 	flow_list_destroy(dev, &priv->flows, flow);
2386 	return 0;
2387 }
2388 
2389 /**
2390  * Destroy all flows.
2391  *
2392  * @see rte_flow_flush()
2393  * @see rte_flow_ops
2394  */
2395 int
2396 mlx5_flow_flush(struct rte_eth_dev *dev,
2397 		struct rte_flow_error *error __rte_unused)
2398 {
2399 	struct priv *priv = dev->data->dev_private;
2400 
2401 	mlx5_flow_list_flush(dev, &priv->flows);
2402 	return 0;
2403 }
2404 
2405 /**
2406  * Isolated mode.
2407  *
2408  * @see rte_flow_isolate()
2409  * @see rte_flow_ops
2410  */
2411 int
2412 mlx5_flow_isolate(struct rte_eth_dev *dev,
2413 		  int enable,
2414 		  struct rte_flow_error *error)
2415 {
2416 	struct priv *priv = dev->data->dev_private;
2417 
2418 	if (dev->data->dev_started) {
2419 		rte_flow_error_set(error, EBUSY,
2420 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2421 				   NULL,
2422 				   "port must be stopped first");
2423 		return -rte_errno;
2424 	}
2425 	priv->isolated = !!enable;
2426 	if (enable)
2427 		dev->dev_ops = &mlx5_dev_ops_isolate;
2428 	else
2429 		dev->dev_ops = &mlx5_dev_ops;
2430 	return 0;
2431 }
2432 
2433 /**
2434  * Query a flow.
2435  *
2436  * @see rte_flow_query()
2437  * @see rte_flow_ops
2438  */
2439 static int
2440 flow_drv_query(struct rte_eth_dev *dev,
2441 	       struct rte_flow *flow,
2442 	       const struct rte_flow_action *actions,
2443 	       void *data,
2444 	       struct rte_flow_error *error)
2445 {
2446 	const struct mlx5_flow_driver_ops *fops;
2447 	enum mlx5_flow_drv_type ftype = flow->drv_type;
2448 
2449 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2450 	fops = flow_get_drv_ops(ftype);
2451 
2452 	return fops->query(dev, flow, actions, data, error);
2453 }
2454 
2455 /**
2456  * Query a flow.
2457  *
2458  * @see rte_flow_query()
2459  * @see rte_flow_ops
2460  */
2461 int
2462 mlx5_flow_query(struct rte_eth_dev *dev,
2463 		struct rte_flow *flow,
2464 		const struct rte_flow_action *actions,
2465 		void *data,
2466 		struct rte_flow_error *error)
2467 {
2468 	int ret;
2469 
2470 	ret = flow_drv_query(dev, flow, actions, data, error);
2471 	if (ret < 0)
2472 		return ret;
2473 	return 0;
2474 }
2475 
2476 /**
2477  * Convert a flow director filter to a generic flow.
2478  *
2479  * @param dev
2480  *   Pointer to Ethernet device.
2481  * @param fdir_filter
2482  *   Flow director filter to add.
2483  * @param attributes
2484  *   Generic flow parameters structure.
2485  *
2486  * @return
2487  *   0 on success, a negative errno value otherwise and rte_errno is set.
2488  */
2489 static int
2490 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2491 			 const struct rte_eth_fdir_filter *fdir_filter,
2492 			 struct mlx5_fdir *attributes)
2493 {
2494 	struct priv *priv = dev->data->dev_private;
2495 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
2496 	const struct rte_eth_fdir_masks *mask =
2497 		&dev->data->dev_conf.fdir_conf.mask;
2498 
2499 	/* Validate queue number. */
2500 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2501 		DRV_LOG(ERR, "port %u invalid queue number %d",
2502 			dev->data->port_id, fdir_filter->action.rx_queue);
2503 		rte_errno = EINVAL;
2504 		return -rte_errno;
2505 	}
2506 	attributes->attr.ingress = 1;
2507 	attributes->items[0] = (struct rte_flow_item) {
2508 		.type = RTE_FLOW_ITEM_TYPE_ETH,
2509 		.spec = &attributes->l2,
2510 		.mask = &attributes->l2_mask,
2511 	};
2512 	switch (fdir_filter->action.behavior) {
2513 	case RTE_ETH_FDIR_ACCEPT:
2514 		attributes->actions[0] = (struct rte_flow_action){
2515 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
2516 			.conf = &attributes->queue,
2517 		};
2518 		break;
2519 	case RTE_ETH_FDIR_REJECT:
2520 		attributes->actions[0] = (struct rte_flow_action){
2521 			.type = RTE_FLOW_ACTION_TYPE_DROP,
2522 		};
2523 		break;
2524 	default:
2525 		DRV_LOG(ERR, "port %u invalid behavior %d",
2526 			dev->data->port_id,
2527 			fdir_filter->action.behavior);
2528 		rte_errno = ENOTSUP;
2529 		return -rte_errno;
2530 	}
2531 	attributes->queue.index = fdir_filter->action.rx_queue;
2532 	/* Handle L3. */
2533 	switch (fdir_filter->input.flow_type) {
2534 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2535 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2536 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2537 		attributes->l3.ipv4.hdr = (struct ipv4_hdr){
2538 			.src_addr = input->flow.ip4_flow.src_ip,
2539 			.dst_addr = input->flow.ip4_flow.dst_ip,
2540 			.time_to_live = input->flow.ip4_flow.ttl,
2541 			.type_of_service = input->flow.ip4_flow.tos,
2542 		};
2543 		attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
2544 			.src_addr = mask->ipv4_mask.src_ip,
2545 			.dst_addr = mask->ipv4_mask.dst_ip,
2546 			.time_to_live = mask->ipv4_mask.ttl,
2547 			.type_of_service = mask->ipv4_mask.tos,
2548 			.next_proto_id = mask->ipv4_mask.proto,
2549 		};
2550 		attributes->items[1] = (struct rte_flow_item){
2551 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
2552 			.spec = &attributes->l3,
2553 			.mask = &attributes->l3_mask,
2554 		};
2555 		break;
2556 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2557 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2558 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2559 		attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2560 			.hop_limits = input->flow.ipv6_flow.hop_limits,
2561 			.proto = input->flow.ipv6_flow.proto,
2562 		};
2563 
2564 		memcpy(attributes->l3.ipv6.hdr.src_addr,
2565 		       input->flow.ipv6_flow.src_ip,
2566 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2567 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
2568 		       input->flow.ipv6_flow.dst_ip,
2569 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2570 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2571 		       mask->ipv6_mask.src_ip,
2572 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2573 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2574 		       mask->ipv6_mask.dst_ip,
2575 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2576 		attributes->items[1] = (struct rte_flow_item){
2577 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
2578 			.spec = &attributes->l3,
2579 			.mask = &attributes->l3_mask,
2580 		};
2581 		break;
2582 	default:
2583 		DRV_LOG(ERR, "port %u invalid flow type%d",
2584 			dev->data->port_id, fdir_filter->input.flow_type);
2585 		rte_errno = ENOTSUP;
2586 		return -rte_errno;
2587 	}
2588 	/* Handle L4. */
2589 	switch (fdir_filter->input.flow_type) {
2590 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2591 		attributes->l4.udp.hdr = (struct udp_hdr){
2592 			.src_port = input->flow.udp4_flow.src_port,
2593 			.dst_port = input->flow.udp4_flow.dst_port,
2594 		};
2595 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2596 			.src_port = mask->src_port_mask,
2597 			.dst_port = mask->dst_port_mask,
2598 		};
2599 		attributes->items[2] = (struct rte_flow_item){
2600 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2601 			.spec = &attributes->l4,
2602 			.mask = &attributes->l4_mask,
2603 		};
2604 		break;
2605 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2606 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2607 			.src_port = input->flow.tcp4_flow.src_port,
2608 			.dst_port = input->flow.tcp4_flow.dst_port,
2609 		};
2610 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2611 			.src_port = mask->src_port_mask,
2612 			.dst_port = mask->dst_port_mask,
2613 		};
2614 		attributes->items[2] = (struct rte_flow_item){
2615 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2616 			.spec = &attributes->l4,
2617 			.mask = &attributes->l4_mask,
2618 		};
2619 		break;
2620 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2621 		attributes->l4.udp.hdr = (struct udp_hdr){
2622 			.src_port = input->flow.udp6_flow.src_port,
2623 			.dst_port = input->flow.udp6_flow.dst_port,
2624 		};
2625 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2626 			.src_port = mask->src_port_mask,
2627 			.dst_port = mask->dst_port_mask,
2628 		};
2629 		attributes->items[2] = (struct rte_flow_item){
2630 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2631 			.spec = &attributes->l4,
2632 			.mask = &attributes->l4_mask,
2633 		};
2634 		break;
2635 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2636 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2637 			.src_port = input->flow.tcp6_flow.src_port,
2638 			.dst_port = input->flow.tcp6_flow.dst_port,
2639 		};
2640 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2641 			.src_port = mask->src_port_mask,
2642 			.dst_port = mask->dst_port_mask,
2643 		};
2644 		attributes->items[2] = (struct rte_flow_item){
2645 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2646 			.spec = &attributes->l4,
2647 			.mask = &attributes->l4_mask,
2648 		};
2649 		break;
2650 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2651 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2652 		break;
2653 	default:
2654 		DRV_LOG(ERR, "port %u invalid flow type%d",
2655 			dev->data->port_id, fdir_filter->input.flow_type);
2656 		rte_errno = ENOTSUP;
2657 		return -rte_errno;
2658 	}
2659 	return 0;
2660 }
2661 
2662 #define FLOW_FDIR_CMP(f1, f2, fld) \
2663 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2664 
2665 /**
2666  * Compare two FDIR flows. If items and actions are identical, the two flows are
2667  * regarded as same.
2668  *
2669  * @param dev
2670  *   Pointer to Ethernet device.
2671  * @param f1
2672  *   FDIR flow to compare.
2673  * @param f2
2674  *   FDIR flow to compare.
2675  *
2676  * @return
2677  *   Zero on match, 1 otherwise.
2678  */
2679 static int
2680 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2681 {
2682 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
2683 	    FLOW_FDIR_CMP(f1, f2, l2) ||
2684 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2685 	    FLOW_FDIR_CMP(f1, f2, l3) ||
2686 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2687 	    FLOW_FDIR_CMP(f1, f2, l4) ||
2688 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2689 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
2690 		return 1;
2691 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2692 	    FLOW_FDIR_CMP(f1, f2, queue))
2693 		return 1;
2694 	return 0;
2695 }
2696 
2697 /**
2698  * Search device flow list to find out a matched FDIR flow.
2699  *
2700  * @param dev
2701  *   Pointer to Ethernet device.
2702  * @param fdir_flow
2703  *   FDIR flow to lookup.
2704  *
2705  * @return
2706  *   Pointer of flow if found, NULL otherwise.
2707  */
2708 static struct rte_flow *
2709 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2710 {
2711 	struct priv *priv = dev->data->dev_private;
2712 	struct rte_flow *flow = NULL;
2713 
2714 	assert(fdir_flow);
2715 	TAILQ_FOREACH(flow, &priv->flows, next) {
2716 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2717 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2718 				dev->data->port_id, (void *)flow);
2719 			break;
2720 		}
2721 	}
2722 	return flow;
2723 }
2724 
2725 /**
2726  * Add new flow director filter and store it in list.
2727  *
2728  * @param dev
2729  *   Pointer to Ethernet device.
2730  * @param fdir_filter
2731  *   Flow director filter to add.
2732  *
2733  * @return
2734  *   0 on success, a negative errno value otherwise and rte_errno is set.
2735  */
2736 static int
2737 flow_fdir_filter_add(struct rte_eth_dev *dev,
2738 		     const struct rte_eth_fdir_filter *fdir_filter)
2739 {
2740 	struct priv *priv = dev->data->dev_private;
2741 	struct mlx5_fdir *fdir_flow;
2742 	struct rte_flow *flow;
2743 	int ret;
2744 
2745 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2746 	if (!fdir_flow) {
2747 		rte_errno = ENOMEM;
2748 		return -rte_errno;
2749 	}
2750 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2751 	if (ret)
2752 		goto error;
2753 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
2754 	if (flow) {
2755 		rte_errno = EEXIST;
2756 		goto error;
2757 	}
2758 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2759 				fdir_flow->items, fdir_flow->actions, NULL);
2760 	if (!flow)
2761 		goto error;
2762 	assert(!flow->fdir);
2763 	flow->fdir = fdir_flow;
2764 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2765 		dev->data->port_id, (void *)flow);
2766 	return 0;
2767 error:
2768 	rte_free(fdir_flow);
2769 	return -rte_errno;
2770 }
2771 
2772 /**
2773  * Delete specific filter.
2774  *
2775  * @param dev
2776  *   Pointer to Ethernet device.
2777  * @param fdir_filter
2778  *   Filter to be deleted.
2779  *
2780  * @return
2781  *   0 on success, a negative errno value otherwise and rte_errno is set.
2782  */
2783 static int
2784 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2785 			const struct rte_eth_fdir_filter *fdir_filter)
2786 {
2787 	struct priv *priv = dev->data->dev_private;
2788 	struct rte_flow *flow;
2789 	struct mlx5_fdir fdir_flow = {
2790 		.attr.group = 0,
2791 	};
2792 	int ret;
2793 
2794 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2795 	if (ret)
2796 		return -rte_errno;
2797 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2798 	if (!flow) {
2799 		rte_errno = ENOENT;
2800 		return -rte_errno;
2801 	}
2802 	flow_list_destroy(dev, &priv->flows, flow);
2803 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2804 		dev->data->port_id, (void *)flow);
2805 	return 0;
2806 }
2807 
2808 /**
2809  * Update queue for specific filter.
2810  *
2811  * @param dev
2812  *   Pointer to Ethernet device.
2813  * @param fdir_filter
2814  *   Filter to be updated.
2815  *
2816  * @return
2817  *   0 on success, a negative errno value otherwise and rte_errno is set.
2818  */
2819 static int
2820 flow_fdir_filter_update(struct rte_eth_dev *dev,
2821 			const struct rte_eth_fdir_filter *fdir_filter)
2822 {
2823 	int ret;
2824 
2825 	ret = flow_fdir_filter_delete(dev, fdir_filter);
2826 	if (ret)
2827 		return ret;
2828 	return flow_fdir_filter_add(dev, fdir_filter);
2829 }
2830 
2831 /**
2832  * Flush all filters.
2833  *
2834  * @param dev
2835  *   Pointer to Ethernet device.
2836  */
2837 static void
2838 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2839 {
2840 	struct priv *priv = dev->data->dev_private;
2841 
2842 	mlx5_flow_list_flush(dev, &priv->flows);
2843 }
2844 
2845 /**
2846  * Get flow director information.
2847  *
2848  * @param dev
2849  *   Pointer to Ethernet device.
2850  * @param[out] fdir_info
2851  *   Resulting flow director information.
2852  */
2853 static void
2854 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2855 {
2856 	struct rte_eth_fdir_masks *mask =
2857 		&dev->data->dev_conf.fdir_conf.mask;
2858 
2859 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2860 	fdir_info->guarant_spc = 0;
2861 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2862 	fdir_info->max_flexpayload = 0;
2863 	fdir_info->flow_types_mask[0] = 0;
2864 	fdir_info->flex_payload_unit = 0;
2865 	fdir_info->max_flex_payload_segment_num = 0;
2866 	fdir_info->flex_payload_limit = 0;
2867 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2868 }
2869 
2870 /**
2871  * Deal with flow director operations.
2872  *
2873  * @param dev
2874  *   Pointer to Ethernet device.
2875  * @param filter_op
2876  *   Operation to perform.
2877  * @param arg
2878  *   Pointer to operation-specific structure.
2879  *
2880  * @return
2881  *   0 on success, a negative errno value otherwise and rte_errno is set.
2882  */
2883 static int
2884 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2885 		    void *arg)
2886 {
2887 	enum rte_fdir_mode fdir_mode =
2888 		dev->data->dev_conf.fdir_conf.mode;
2889 
2890 	if (filter_op == RTE_ETH_FILTER_NOP)
2891 		return 0;
2892 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2893 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2894 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
2895 			dev->data->port_id, fdir_mode);
2896 		rte_errno = EINVAL;
2897 		return -rte_errno;
2898 	}
2899 	switch (filter_op) {
2900 	case RTE_ETH_FILTER_ADD:
2901 		return flow_fdir_filter_add(dev, arg);
2902 	case RTE_ETH_FILTER_UPDATE:
2903 		return flow_fdir_filter_update(dev, arg);
2904 	case RTE_ETH_FILTER_DELETE:
2905 		return flow_fdir_filter_delete(dev, arg);
2906 	case RTE_ETH_FILTER_FLUSH:
2907 		flow_fdir_filter_flush(dev);
2908 		break;
2909 	case RTE_ETH_FILTER_INFO:
2910 		flow_fdir_info_get(dev, arg);
2911 		break;
2912 	default:
2913 		DRV_LOG(DEBUG, "port %u unknown operation %u",
2914 			dev->data->port_id, filter_op);
2915 		rte_errno = EINVAL;
2916 		return -rte_errno;
2917 	}
2918 	return 0;
2919 }
2920 
2921 /**
2922  * Manage filter operations.
2923  *
2924  * @param dev
2925  *   Pointer to Ethernet device structure.
2926  * @param filter_type
2927  *   Filter type.
2928  * @param filter_op
2929  *   Operation to perform.
2930  * @param arg
2931  *   Pointer to operation-specific structure.
2932  *
2933  * @return
2934  *   0 on success, a negative errno value otherwise and rte_errno is set.
2935  */
2936 int
2937 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2938 		     enum rte_filter_type filter_type,
2939 		     enum rte_filter_op filter_op,
2940 		     void *arg)
2941 {
2942 	switch (filter_type) {
2943 	case RTE_ETH_FILTER_GENERIC:
2944 		if (filter_op != RTE_ETH_FILTER_GET) {
2945 			rte_errno = EINVAL;
2946 			return -rte_errno;
2947 		}
2948 		*(const void **)arg = &mlx5_flow_ops;
2949 		return 0;
2950 	case RTE_ETH_FILTER_FDIR:
2951 		return flow_fdir_ctrl_func(dev, filter_op, arg);
2952 	default:
2953 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
2954 			dev->data->port_id, filter_type);
2955 		rte_errno = ENOTSUP;
2956 		return -rte_errno;
2957 	}
2958 	return 0;
2959 }
2960