1 /*- 2 * BSD LICENSE 3 * 4 * Copyright 2016 6WIND S.A. 5 * Copyright 2016 Mellanox. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of 6WIND S.A. nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/queue.h> 35 #include <string.h> 36 37 /* Verbs header. */ 38 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ 39 #ifdef PEDANTIC 40 #pragma GCC diagnostic ignored "-Wpedantic" 41 #endif 42 #include <infiniband/verbs.h> 43 #ifdef PEDANTIC 44 #pragma GCC diagnostic error "-Wpedantic" 45 #endif 46 47 #include <rte_ethdev.h> 48 #include <rte_flow.h> 49 #include <rte_flow_driver.h> 50 #include <rte_malloc.h> 51 52 #include "mlx5.h" 53 #include "mlx5_prm.h" 54 55 /* Define minimal priority for control plane flows. */ 56 #define MLX5_CTRL_FLOW_PRIORITY 4 57 58 /* Internet Protocol versions. */ 59 #define MLX5_IPV4 4 60 #define MLX5_IPV6 6 61 62 #ifndef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 63 struct ibv_counter_set_init_attr { 64 int dummy; 65 }; 66 struct ibv_flow_spec_counter_action { 67 int dummy; 68 }; 69 struct ibv_counter_set { 70 int dummy; 71 }; 72 73 static inline int 74 ibv_destroy_counter_set(struct ibv_counter_set *cs) 75 { 76 (void)cs; 77 return -ENOTSUP; 78 } 79 #endif 80 81 /* Dev ops structure defined in mlx5.c */ 82 extern const struct eth_dev_ops mlx5_dev_ops; 83 extern const struct eth_dev_ops mlx5_dev_ops_isolate; 84 85 static int 86 mlx5_flow_create_eth(const struct rte_flow_item *item, 87 const void *default_mask, 88 void *data); 89 90 static int 91 mlx5_flow_create_vlan(const struct rte_flow_item *item, 92 const void *default_mask, 93 void *data); 94 95 static int 96 mlx5_flow_create_ipv4(const struct rte_flow_item *item, 97 const void *default_mask, 98 void *data); 99 100 static int 101 mlx5_flow_create_ipv6(const struct rte_flow_item *item, 102 const void *default_mask, 103 void *data); 104 105 static int 106 mlx5_flow_create_udp(const struct rte_flow_item *item, 107 const void *default_mask, 108 void *data); 109 110 static int 111 mlx5_flow_create_tcp(const struct rte_flow_item *item, 112 const void *default_mask, 113 void *data); 114 115 static int 116 mlx5_flow_create_vxlan(const struct rte_flow_item *item, 117 const void *default_mask, 118 void *data); 119 120 struct mlx5_flow_parse; 121 122 static void 123 mlx5_flow_create_copy(struct mlx5_flow_parse *parser, void *src, 124 unsigned int size); 125 126 static int 127 mlx5_flow_create_flag_mark(struct mlx5_flow_parse *parser, uint32_t mark_id); 128 129 static int 130 mlx5_flow_create_count(struct priv *priv, struct mlx5_flow_parse *parser); 131 132 /* Hash RX queue types. */ 133 enum hash_rxq_type { 134 HASH_RXQ_TCPV4, 135 HASH_RXQ_UDPV4, 136 HASH_RXQ_IPV4, 137 HASH_RXQ_TCPV6, 138 HASH_RXQ_UDPV6, 139 HASH_RXQ_IPV6, 140 HASH_RXQ_ETH, 141 }; 142 143 /* Initialization data for hash RX queue. */ 144 struct hash_rxq_init { 145 uint64_t hash_fields; /* Fields that participate in the hash. */ 146 uint64_t dpdk_rss_hf; /* Matching DPDK RSS hash fields. */ 147 unsigned int flow_priority; /* Flow priority to use. */ 148 unsigned int ip_version; /* Internet protocol. */ 149 }; 150 151 /* Initialization data for hash RX queues. */ 152 const struct hash_rxq_init hash_rxq_init[] = { 153 [HASH_RXQ_TCPV4] = { 154 .hash_fields = (IBV_RX_HASH_SRC_IPV4 | 155 IBV_RX_HASH_DST_IPV4 | 156 IBV_RX_HASH_SRC_PORT_TCP | 157 IBV_RX_HASH_DST_PORT_TCP), 158 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV4_TCP, 159 .flow_priority = 0, 160 .ip_version = MLX5_IPV4, 161 }, 162 [HASH_RXQ_UDPV4] = { 163 .hash_fields = (IBV_RX_HASH_SRC_IPV4 | 164 IBV_RX_HASH_DST_IPV4 | 165 IBV_RX_HASH_SRC_PORT_UDP | 166 IBV_RX_HASH_DST_PORT_UDP), 167 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV4_UDP, 168 .flow_priority = 0, 169 .ip_version = MLX5_IPV4, 170 }, 171 [HASH_RXQ_IPV4] = { 172 .hash_fields = (IBV_RX_HASH_SRC_IPV4 | 173 IBV_RX_HASH_DST_IPV4), 174 .dpdk_rss_hf = (ETH_RSS_IPV4 | 175 ETH_RSS_FRAG_IPV4), 176 .flow_priority = 1, 177 .ip_version = MLX5_IPV4, 178 }, 179 [HASH_RXQ_TCPV6] = { 180 .hash_fields = (IBV_RX_HASH_SRC_IPV6 | 181 IBV_RX_HASH_DST_IPV6 | 182 IBV_RX_HASH_SRC_PORT_TCP | 183 IBV_RX_HASH_DST_PORT_TCP), 184 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV6_TCP, 185 .flow_priority = 0, 186 .ip_version = MLX5_IPV6, 187 }, 188 [HASH_RXQ_UDPV6] = { 189 .hash_fields = (IBV_RX_HASH_SRC_IPV6 | 190 IBV_RX_HASH_DST_IPV6 | 191 IBV_RX_HASH_SRC_PORT_UDP | 192 IBV_RX_HASH_DST_PORT_UDP), 193 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV6_UDP, 194 .flow_priority = 0, 195 .ip_version = MLX5_IPV6, 196 }, 197 [HASH_RXQ_IPV6] = { 198 .hash_fields = (IBV_RX_HASH_SRC_IPV6 | 199 IBV_RX_HASH_DST_IPV6), 200 .dpdk_rss_hf = (ETH_RSS_IPV6 | 201 ETH_RSS_FRAG_IPV6), 202 .flow_priority = 1, 203 .ip_version = MLX5_IPV6, 204 }, 205 [HASH_RXQ_ETH] = { 206 .hash_fields = 0, 207 .dpdk_rss_hf = 0, 208 .flow_priority = 2, 209 }, 210 }; 211 212 /* Number of entries in hash_rxq_init[]. */ 213 const unsigned int hash_rxq_init_n = RTE_DIM(hash_rxq_init); 214 215 /** Structure for holding counter stats. */ 216 struct mlx5_flow_counter_stats { 217 uint64_t hits; /**< Number of packets matched by the rule. */ 218 uint64_t bytes; /**< Number of bytes matched by the rule. */ 219 }; 220 221 /** Structure for Drop queue. */ 222 struct mlx5_hrxq_drop { 223 struct ibv_rwq_ind_table *ind_table; /**< Indirection table. */ 224 struct ibv_qp *qp; /**< Verbs queue pair. */ 225 struct ibv_wq *wq; /**< Verbs work queue. */ 226 struct ibv_cq *cq; /**< Verbs completion queue. */ 227 }; 228 229 /* Flows structures. */ 230 struct mlx5_flow { 231 uint64_t hash_fields; /**< Fields that participate in the hash. */ 232 struct ibv_flow_attr *ibv_attr; /**< Pointer to Verbs attributes. */ 233 struct ibv_flow *ibv_flow; /**< Verbs flow. */ 234 struct mlx5_hrxq *hrxq; /**< Hash Rx queues. */ 235 }; 236 237 /* Drop flows structures. */ 238 struct mlx5_flow_drop { 239 struct ibv_flow_attr *ibv_attr; /**< Pointer to Verbs attributes. */ 240 struct ibv_flow *ibv_flow; /**< Verbs flow. */ 241 }; 242 243 struct rte_flow { 244 TAILQ_ENTRY(rte_flow) next; /**< Pointer to the next flow structure. */ 245 uint32_t mark:1; /**< Set if the flow is marked. */ 246 uint32_t drop:1; /**< Drop queue. */ 247 uint16_t queues_n; /**< Number of entries in queue[]. */ 248 uint16_t (*queues)[]; /**< Queues indexes to use. */ 249 struct rte_eth_rss_conf rss_conf; /**< RSS configuration */ 250 uint8_t rss_key[40]; /**< copy of the RSS key. */ 251 struct ibv_counter_set *cs; /**< Holds the counters for the rule. */ 252 struct mlx5_flow_counter_stats counter_stats;/**<The counter stats. */ 253 union { 254 struct mlx5_flow frxq[RTE_DIM(hash_rxq_init)]; 255 /**< Flow with Rx queue. */ 256 struct mlx5_flow_drop drxq; /**< Flow with drop Rx queue. */ 257 }; 258 }; 259 260 /** Static initializer for items. */ 261 #define ITEMS(...) \ 262 (const enum rte_flow_item_type []){ \ 263 __VA_ARGS__, RTE_FLOW_ITEM_TYPE_END, \ 264 } 265 266 /** Structure to generate a simple graph of layers supported by the NIC. */ 267 struct mlx5_flow_items { 268 /** List of possible actions for these items. */ 269 const enum rte_flow_action_type *const actions; 270 /** Bit-masks corresponding to the possibilities for the item. */ 271 const void *mask; 272 /** 273 * Default bit-masks to use when item->mask is not provided. When 274 * \default_mask is also NULL, the full supported bit-mask (\mask) is 275 * used instead. 276 */ 277 const void *default_mask; 278 /** Bit-masks size in bytes. */ 279 const unsigned int mask_sz; 280 /** 281 * Conversion function from rte_flow to NIC specific flow. 282 * 283 * @param item 284 * rte_flow item to convert. 285 * @param default_mask 286 * Default bit-masks to use when item->mask is not provided. 287 * @param data 288 * Internal structure to store the conversion. 289 * 290 * @return 291 * 0 on success, negative value otherwise. 292 */ 293 int (*convert)(const struct rte_flow_item *item, 294 const void *default_mask, 295 void *data); 296 /** Size in bytes of the destination structure. */ 297 const unsigned int dst_sz; 298 /** List of possible following items. */ 299 const enum rte_flow_item_type *const items; 300 }; 301 302 /** Valid action for this PMD. */ 303 static const enum rte_flow_action_type valid_actions[] = { 304 RTE_FLOW_ACTION_TYPE_DROP, 305 RTE_FLOW_ACTION_TYPE_QUEUE, 306 RTE_FLOW_ACTION_TYPE_MARK, 307 RTE_FLOW_ACTION_TYPE_FLAG, 308 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 309 RTE_FLOW_ACTION_TYPE_COUNT, 310 #endif 311 RTE_FLOW_ACTION_TYPE_END, 312 }; 313 314 /** Graph of supported items and associated actions. */ 315 static const struct mlx5_flow_items mlx5_flow_items[] = { 316 [RTE_FLOW_ITEM_TYPE_END] = { 317 .items = ITEMS(RTE_FLOW_ITEM_TYPE_ETH, 318 RTE_FLOW_ITEM_TYPE_VXLAN), 319 }, 320 [RTE_FLOW_ITEM_TYPE_ETH] = { 321 .items = ITEMS(RTE_FLOW_ITEM_TYPE_VLAN, 322 RTE_FLOW_ITEM_TYPE_IPV4, 323 RTE_FLOW_ITEM_TYPE_IPV6), 324 .actions = valid_actions, 325 .mask = &(const struct rte_flow_item_eth){ 326 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 327 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 328 .type = -1, 329 }, 330 .default_mask = &rte_flow_item_eth_mask, 331 .mask_sz = sizeof(struct rte_flow_item_eth), 332 .convert = mlx5_flow_create_eth, 333 .dst_sz = sizeof(struct ibv_flow_spec_eth), 334 }, 335 [RTE_FLOW_ITEM_TYPE_VLAN] = { 336 .items = ITEMS(RTE_FLOW_ITEM_TYPE_IPV4, 337 RTE_FLOW_ITEM_TYPE_IPV6), 338 .actions = valid_actions, 339 .mask = &(const struct rte_flow_item_vlan){ 340 .tci = -1, 341 }, 342 .default_mask = &rte_flow_item_vlan_mask, 343 .mask_sz = sizeof(struct rte_flow_item_vlan), 344 .convert = mlx5_flow_create_vlan, 345 .dst_sz = 0, 346 }, 347 [RTE_FLOW_ITEM_TYPE_IPV4] = { 348 .items = ITEMS(RTE_FLOW_ITEM_TYPE_UDP, 349 RTE_FLOW_ITEM_TYPE_TCP), 350 .actions = valid_actions, 351 .mask = &(const struct rte_flow_item_ipv4){ 352 .hdr = { 353 .src_addr = -1, 354 .dst_addr = -1, 355 .type_of_service = -1, 356 .next_proto_id = -1, 357 }, 358 }, 359 .default_mask = &rte_flow_item_ipv4_mask, 360 .mask_sz = sizeof(struct rte_flow_item_ipv4), 361 .convert = mlx5_flow_create_ipv4, 362 .dst_sz = sizeof(struct ibv_flow_spec_ipv4_ext), 363 }, 364 [RTE_FLOW_ITEM_TYPE_IPV6] = { 365 .items = ITEMS(RTE_FLOW_ITEM_TYPE_UDP, 366 RTE_FLOW_ITEM_TYPE_TCP), 367 .actions = valid_actions, 368 .mask = &(const struct rte_flow_item_ipv6){ 369 .hdr = { 370 .src_addr = { 371 0xff, 0xff, 0xff, 0xff, 372 0xff, 0xff, 0xff, 0xff, 373 0xff, 0xff, 0xff, 0xff, 374 0xff, 0xff, 0xff, 0xff, 375 }, 376 .dst_addr = { 377 0xff, 0xff, 0xff, 0xff, 378 0xff, 0xff, 0xff, 0xff, 379 0xff, 0xff, 0xff, 0xff, 380 0xff, 0xff, 0xff, 0xff, 381 }, 382 .vtc_flow = -1, 383 .proto = -1, 384 .hop_limits = -1, 385 }, 386 }, 387 .default_mask = &rte_flow_item_ipv6_mask, 388 .mask_sz = sizeof(struct rte_flow_item_ipv6), 389 .convert = mlx5_flow_create_ipv6, 390 .dst_sz = sizeof(struct ibv_flow_spec_ipv6), 391 }, 392 [RTE_FLOW_ITEM_TYPE_UDP] = { 393 .items = ITEMS(RTE_FLOW_ITEM_TYPE_VXLAN), 394 .actions = valid_actions, 395 .mask = &(const struct rte_flow_item_udp){ 396 .hdr = { 397 .src_port = -1, 398 .dst_port = -1, 399 }, 400 }, 401 .default_mask = &rte_flow_item_udp_mask, 402 .mask_sz = sizeof(struct rte_flow_item_udp), 403 .convert = mlx5_flow_create_udp, 404 .dst_sz = sizeof(struct ibv_flow_spec_tcp_udp), 405 }, 406 [RTE_FLOW_ITEM_TYPE_TCP] = { 407 .actions = valid_actions, 408 .mask = &(const struct rte_flow_item_tcp){ 409 .hdr = { 410 .src_port = -1, 411 .dst_port = -1, 412 }, 413 }, 414 .default_mask = &rte_flow_item_tcp_mask, 415 .mask_sz = sizeof(struct rte_flow_item_tcp), 416 .convert = mlx5_flow_create_tcp, 417 .dst_sz = sizeof(struct ibv_flow_spec_tcp_udp), 418 }, 419 [RTE_FLOW_ITEM_TYPE_VXLAN] = { 420 .items = ITEMS(RTE_FLOW_ITEM_TYPE_ETH), 421 .actions = valid_actions, 422 .mask = &(const struct rte_flow_item_vxlan){ 423 .vni = "\xff\xff\xff", 424 }, 425 .default_mask = &rte_flow_item_vxlan_mask, 426 .mask_sz = sizeof(struct rte_flow_item_vxlan), 427 .convert = mlx5_flow_create_vxlan, 428 .dst_sz = sizeof(struct ibv_flow_spec_tunnel), 429 }, 430 }; 431 432 /** Structure to pass to the conversion function. */ 433 struct mlx5_flow_parse { 434 uint32_t inner; /**< Set once VXLAN is encountered. */ 435 uint32_t create:1; 436 /**< Whether resources should remain after a validate. */ 437 uint32_t drop:1; /**< Target is a drop queue. */ 438 uint32_t mark:1; /**< Mark is present in the flow. */ 439 uint32_t count:1; /**< Count is present in the flow. */ 440 uint32_t mark_id; /**< Mark identifier. */ 441 uint16_t queues[RTE_MAX_QUEUES_PER_PORT]; /**< Queues indexes to use. */ 442 uint16_t queues_n; /**< Number of entries in queue[]. */ 443 struct rte_eth_rss_conf rss_conf; /**< RSS configuration */ 444 uint8_t rss_key[40]; /**< copy of the RSS key. */ 445 enum hash_rxq_type layer; /**< Last pattern layer detected. */ 446 struct ibv_counter_set *cs; /**< Holds the counter set for the rule */ 447 union { 448 struct { 449 struct ibv_flow_attr *ibv_attr; 450 /**< Pointer to Verbs attributes. */ 451 unsigned int offset; 452 /**< Current position or total size of the attribute. */ 453 } queue[RTE_DIM(hash_rxq_init)]; 454 struct { 455 struct ibv_flow_attr *ibv_attr; 456 /**< Pointer to Verbs attributes. */ 457 unsigned int offset; 458 /**< Current position or total size of the attribute. */ 459 } drop_q; 460 }; 461 }; 462 463 static const struct rte_flow_ops mlx5_flow_ops = { 464 .validate = mlx5_flow_validate, 465 .create = mlx5_flow_create, 466 .destroy = mlx5_flow_destroy, 467 .flush = mlx5_flow_flush, 468 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 469 .query = mlx5_flow_query, 470 #else 471 .query = NULL, 472 #endif 473 .isolate = mlx5_flow_isolate, 474 }; 475 476 /* Convert FDIR request to Generic flow. */ 477 struct mlx5_fdir { 478 struct rte_flow_attr attr; 479 struct rte_flow_action actions[2]; 480 struct rte_flow_item items[4]; 481 struct rte_flow_item_eth l2; 482 union { 483 struct rte_flow_item_ipv4 ipv4; 484 struct rte_flow_item_ipv6 ipv6; 485 } l3; 486 union { 487 struct rte_flow_item_udp udp; 488 struct rte_flow_item_tcp tcp; 489 } l4; 490 struct rte_flow_action_queue queue; 491 }; 492 493 /* Verbs specification header. */ 494 struct ibv_spec_header { 495 enum ibv_flow_spec_type type; 496 uint16_t size; 497 }; 498 499 /** 500 * Check support for a given item. 501 * 502 * @param item[in] 503 * Item specification. 504 * @param mask[in] 505 * Bit-masks covering supported fields to compare with spec, last and mask in 506 * \item. 507 * @param size 508 * Bit-Mask size in bytes. 509 * 510 * @return 511 * 0 on success. 512 */ 513 static int 514 mlx5_flow_item_validate(const struct rte_flow_item *item, 515 const uint8_t *mask, unsigned int size) 516 { 517 int ret = 0; 518 519 if (!item->spec && (item->mask || item->last)) 520 return -1; 521 if (item->spec && !item->mask) { 522 unsigned int i; 523 const uint8_t *spec = item->spec; 524 525 for (i = 0; i < size; ++i) 526 if ((spec[i] | mask[i]) != mask[i]) 527 return -1; 528 } 529 if (item->last && !item->mask) { 530 unsigned int i; 531 const uint8_t *spec = item->last; 532 533 for (i = 0; i < size; ++i) 534 if ((spec[i] | mask[i]) != mask[i]) 535 return -1; 536 } 537 if (item->mask) { 538 unsigned int i; 539 const uint8_t *spec = item->mask; 540 541 for (i = 0; i < size; ++i) 542 if ((spec[i] | mask[i]) != mask[i]) 543 return -1; 544 } 545 if (item->spec && item->last) { 546 uint8_t spec[size]; 547 uint8_t last[size]; 548 const uint8_t *apply = mask; 549 unsigned int i; 550 551 if (item->mask) 552 apply = item->mask; 553 for (i = 0; i < size; ++i) { 554 spec[i] = ((const uint8_t *)item->spec)[i] & apply[i]; 555 last[i] = ((const uint8_t *)item->last)[i] & apply[i]; 556 } 557 ret = memcmp(spec, last, size); 558 } 559 return ret; 560 } 561 562 /** 563 * Copy the RSS configuration from the user ones. 564 * 565 * @param priv 566 * Pointer to private structure. 567 * @param parser 568 * Internal parser structure. 569 * @param rss_conf 570 * User RSS configuration to save. 571 * 572 * @return 573 * 0 on success, errno value on failure. 574 */ 575 static int 576 priv_flow_convert_rss_conf(struct priv *priv, 577 struct mlx5_flow_parse *parser, 578 const struct rte_eth_rss_conf *rss_conf) 579 { 580 const struct rte_eth_rss_conf *rss = 581 rss_conf ? rss_conf : &priv->rss_conf; 582 583 if (rss->rss_key_len > 40) 584 return EINVAL; 585 parser->rss_conf.rss_key_len = rss->rss_key_len; 586 parser->rss_conf.rss_hf = rss->rss_hf; 587 memcpy(parser->rss_key, rss->rss_key, rss->rss_key_len); 588 parser->rss_conf.rss_key = parser->rss_key; 589 return 0; 590 } 591 592 /** 593 * Extract attribute to the parser. 594 * 595 * @param priv 596 * Pointer to private structure. 597 * @param[in] attr 598 * Flow rule attributes. 599 * @param[out] error 600 * Perform verbose error reporting if not NULL. 601 * @param[in, out] parser 602 * Internal parser structure. 603 * 604 * @return 605 * 0 on success, a negative errno value otherwise and rte_errno is set. 606 */ 607 static int 608 priv_flow_convert_attributes(struct priv *priv, 609 const struct rte_flow_attr *attr, 610 struct rte_flow_error *error, 611 struct mlx5_flow_parse *parser) 612 { 613 (void)priv; 614 (void)parser; 615 if (attr->group) { 616 rte_flow_error_set(error, ENOTSUP, 617 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 618 NULL, 619 "groups are not supported"); 620 return -rte_errno; 621 } 622 if (attr->priority && attr->priority != MLX5_CTRL_FLOW_PRIORITY) { 623 rte_flow_error_set(error, ENOTSUP, 624 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 625 NULL, 626 "priorities are not supported"); 627 return -rte_errno; 628 } 629 if (attr->egress) { 630 rte_flow_error_set(error, ENOTSUP, 631 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, 632 NULL, 633 "egress is not supported"); 634 return -rte_errno; 635 } 636 if (!attr->ingress) { 637 rte_flow_error_set(error, ENOTSUP, 638 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 639 NULL, 640 "only ingress is supported"); 641 return -rte_errno; 642 } 643 return 0; 644 } 645 646 /** 647 * Extract actions request to the parser. 648 * 649 * @param priv 650 * Pointer to private structure. 651 * @param[in] actions 652 * Associated actions (list terminated by the END action). 653 * @param[out] error 654 * Perform verbose error reporting if not NULL. 655 * @param[in, out] parser 656 * Internal parser structure. 657 * 658 * @return 659 * 0 on success, a negative errno value otherwise and rte_errno is set. 660 */ 661 static int 662 priv_flow_convert_actions(struct priv *priv, 663 const struct rte_flow_action actions[], 664 struct rte_flow_error *error, 665 struct mlx5_flow_parse *parser) 666 { 667 /* 668 * Add default RSS configuration necessary for Verbs to create QP even 669 * if no RSS is necessary. 670 */ 671 priv_flow_convert_rss_conf(priv, parser, 672 (const struct rte_eth_rss_conf *) 673 &priv->rss_conf); 674 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; ++actions) { 675 if (actions->type == RTE_FLOW_ACTION_TYPE_VOID) { 676 continue; 677 } else if (actions->type == RTE_FLOW_ACTION_TYPE_DROP) { 678 parser->drop = 1; 679 } else if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE) { 680 const struct rte_flow_action_queue *queue = 681 (const struct rte_flow_action_queue *) 682 actions->conf; 683 uint16_t n; 684 uint16_t found = 0; 685 686 if (!queue || (queue->index > (priv->rxqs_n - 1))) 687 goto exit_action_not_supported; 688 for (n = 0; n < parser->queues_n; ++n) { 689 if (parser->queues[n] == queue->index) { 690 found = 1; 691 break; 692 } 693 } 694 if (parser->queues_n > 1 && !found) { 695 rte_flow_error_set(error, ENOTSUP, 696 RTE_FLOW_ERROR_TYPE_ACTION, 697 actions, 698 "queue action not in RSS queues"); 699 return -rte_errno; 700 } 701 if (!found) { 702 parser->queues_n = 1; 703 parser->queues[0] = queue->index; 704 } 705 } else if (actions->type == RTE_FLOW_ACTION_TYPE_RSS) { 706 const struct rte_flow_action_rss *rss = 707 (const struct rte_flow_action_rss *) 708 actions->conf; 709 uint16_t n; 710 711 if (!rss || !rss->num) { 712 rte_flow_error_set(error, EINVAL, 713 RTE_FLOW_ERROR_TYPE_ACTION, 714 actions, 715 "no valid queues"); 716 return -rte_errno; 717 } 718 if (parser->queues_n == 1) { 719 uint16_t found = 0; 720 721 assert(parser->queues_n); 722 for (n = 0; n < rss->num; ++n) { 723 if (parser->queues[0] == 724 rss->queue[n]) { 725 found = 1; 726 break; 727 } 728 } 729 if (!found) { 730 rte_flow_error_set(error, ENOTSUP, 731 RTE_FLOW_ERROR_TYPE_ACTION, 732 actions, 733 "queue action not in RSS" 734 " queues"); 735 return -rte_errno; 736 } 737 } 738 for (n = 0; n < rss->num; ++n) { 739 if (rss->queue[n] >= priv->rxqs_n) { 740 rte_flow_error_set(error, EINVAL, 741 RTE_FLOW_ERROR_TYPE_ACTION, 742 actions, 743 "queue id > number of" 744 " queues"); 745 return -rte_errno; 746 } 747 } 748 for (n = 0; n < rss->num; ++n) 749 parser->queues[n] = rss->queue[n]; 750 parser->queues_n = rss->num; 751 if (priv_flow_convert_rss_conf(priv, parser, 752 rss->rss_conf)) { 753 rte_flow_error_set(error, EINVAL, 754 RTE_FLOW_ERROR_TYPE_ACTION, 755 actions, 756 "wrong RSS configuration"); 757 return -rte_errno; 758 } 759 } else if (actions->type == RTE_FLOW_ACTION_TYPE_MARK) { 760 const struct rte_flow_action_mark *mark = 761 (const struct rte_flow_action_mark *) 762 actions->conf; 763 764 if (!mark) { 765 rte_flow_error_set(error, EINVAL, 766 RTE_FLOW_ERROR_TYPE_ACTION, 767 actions, 768 "mark must be defined"); 769 return -rte_errno; 770 } else if (mark->id >= MLX5_FLOW_MARK_MAX) { 771 rte_flow_error_set(error, ENOTSUP, 772 RTE_FLOW_ERROR_TYPE_ACTION, 773 actions, 774 "mark must be between 0" 775 " and 16777199"); 776 return -rte_errno; 777 } 778 parser->mark = 1; 779 parser->mark_id = mark->id; 780 } else if (actions->type == RTE_FLOW_ACTION_TYPE_FLAG) { 781 parser->mark = 1; 782 } else if (actions->type == RTE_FLOW_ACTION_TYPE_COUNT && 783 priv->counter_set_supported) { 784 parser->count = 1; 785 } else { 786 goto exit_action_not_supported; 787 } 788 } 789 if (parser->drop && parser->mark) 790 parser->mark = 0; 791 if (!parser->queues_n && !parser->drop) { 792 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE, 793 NULL, "no valid action"); 794 return -rte_errno; 795 } 796 return 0; 797 exit_action_not_supported: 798 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 799 actions, "action not supported"); 800 return -rte_errno; 801 } 802 803 /** 804 * Validate items. 805 * 806 * @param priv 807 * Pointer to private structure. 808 * @param[in] items 809 * Pattern specification (list terminated by the END pattern item). 810 * @param[out] error 811 * Perform verbose error reporting if not NULL. 812 * @param[in, out] parser 813 * Internal parser structure. 814 * 815 * @return 816 * 0 on success, a negative errno value otherwise and rte_errno is set. 817 */ 818 static int 819 priv_flow_convert_items_validate(struct priv *priv, 820 const struct rte_flow_item items[], 821 struct rte_flow_error *error, 822 struct mlx5_flow_parse *parser) 823 { 824 const struct mlx5_flow_items *cur_item = mlx5_flow_items; 825 unsigned int i; 826 827 (void)priv; 828 /* Initialise the offsets to start after verbs attribute. */ 829 if (parser->drop) { 830 parser->drop_q.offset = sizeof(struct ibv_flow_attr); 831 } else { 832 for (i = 0; i != hash_rxq_init_n; ++i) 833 parser->queue[i].offset = sizeof(struct ibv_flow_attr); 834 } 835 for (; items->type != RTE_FLOW_ITEM_TYPE_END; ++items) { 836 const struct mlx5_flow_items *token = NULL; 837 unsigned int n; 838 int err; 839 840 if (items->type == RTE_FLOW_ITEM_TYPE_VOID) 841 continue; 842 for (i = 0; 843 cur_item->items && 844 cur_item->items[i] != RTE_FLOW_ITEM_TYPE_END; 845 ++i) { 846 if (cur_item->items[i] == items->type) { 847 token = &mlx5_flow_items[items->type]; 848 break; 849 } 850 } 851 if (!token) 852 goto exit_item_not_supported; 853 cur_item = token; 854 err = mlx5_flow_item_validate(items, 855 (const uint8_t *)cur_item->mask, 856 cur_item->mask_sz); 857 if (err) 858 goto exit_item_not_supported; 859 if (items->type == RTE_FLOW_ITEM_TYPE_VXLAN) { 860 if (parser->inner) { 861 rte_flow_error_set(error, ENOTSUP, 862 RTE_FLOW_ERROR_TYPE_ITEM, 863 items, 864 "cannot recognize multiple" 865 " VXLAN encapsulations"); 866 return -rte_errno; 867 } 868 parser->inner = 1; 869 } 870 if (parser->drop) { 871 parser->drop_q.offset += cur_item->dst_sz; 872 } else if (parser->queues_n == 1) { 873 parser->queue[HASH_RXQ_ETH].offset += cur_item->dst_sz; 874 } else { 875 for (n = 0; n != hash_rxq_init_n; ++n) 876 parser->queue[n].offset += cur_item->dst_sz; 877 } 878 } 879 if (parser->mark) { 880 for (i = 0; i != hash_rxq_init_n; ++i) 881 parser->queue[i].offset += 882 sizeof(struct ibv_flow_spec_action_tag); 883 } 884 if (parser->count) { 885 unsigned int size = sizeof(struct ibv_flow_spec_counter_action); 886 887 if (parser->drop) { 888 parser->drop_q.offset += size; 889 } else { 890 for (i = 0; i != hash_rxq_init_n; ++i) 891 parser->queue[i].offset += size; 892 } 893 } 894 return 0; 895 exit_item_not_supported: 896 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, 897 items, "item not supported"); 898 return -rte_errno; 899 } 900 901 /** 902 * Allocate memory space to store verbs flow attributes. 903 * 904 * @param priv 905 * Pointer to private structure. 906 * @param[in] priority 907 * Flow priority. 908 * @param[in] size 909 * Amount of byte to allocate. 910 * @param[out] error 911 * Perform verbose error reporting if not NULL. 912 * 913 * @return 914 * A verbs flow attribute on success, NULL otherwise. 915 */ 916 static struct ibv_flow_attr* 917 priv_flow_convert_allocate(struct priv *priv, 918 unsigned int priority, 919 unsigned int size, 920 struct rte_flow_error *error) 921 { 922 struct ibv_flow_attr *ibv_attr; 923 924 (void)priv; 925 ibv_attr = rte_calloc(__func__, 1, size, 0); 926 if (!ibv_attr) { 927 rte_flow_error_set(error, ENOMEM, 928 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 929 NULL, 930 "cannot allocate verbs spec attributes."); 931 return NULL; 932 } 933 ibv_attr->priority = priority; 934 return ibv_attr; 935 } 936 937 /** 938 * Finalise verbs flow attributes. 939 * 940 * @param priv 941 * Pointer to private structure. 942 * @param[in, out] parser 943 * Internal parser structure. 944 */ 945 static void 946 priv_flow_convert_finalise(struct priv *priv, struct mlx5_flow_parse *parser) 947 { 948 const unsigned int ipv4 = 949 hash_rxq_init[parser->layer].ip_version == MLX5_IPV4; 950 const enum hash_rxq_type hmin = ipv4 ? HASH_RXQ_TCPV4 : HASH_RXQ_TCPV6; 951 const enum hash_rxq_type hmax = ipv4 ? HASH_RXQ_IPV4 : HASH_RXQ_IPV6; 952 const enum hash_rxq_type ohmin = ipv4 ? HASH_RXQ_TCPV6 : HASH_RXQ_TCPV4; 953 const enum hash_rxq_type ohmax = ipv4 ? HASH_RXQ_IPV6 : HASH_RXQ_IPV4; 954 const enum hash_rxq_type ip = ipv4 ? HASH_RXQ_IPV4 : HASH_RXQ_IPV6; 955 unsigned int i; 956 957 (void)priv; 958 if (parser->layer == HASH_RXQ_ETH) { 959 goto fill; 960 } else { 961 /* 962 * This layer becomes useless as the pattern define under 963 * layers. 964 */ 965 rte_free(parser->queue[HASH_RXQ_ETH].ibv_attr); 966 parser->queue[HASH_RXQ_ETH].ibv_attr = NULL; 967 } 968 /* Remove opposite kind of layer e.g. IPv6 if the pattern is IPv4. */ 969 for (i = ohmin; i != (ohmax + 1); ++i) { 970 if (!parser->queue[i].ibv_attr) 971 continue; 972 rte_free(parser->queue[i].ibv_attr); 973 parser->queue[i].ibv_attr = NULL; 974 } 975 /* Remove impossible flow according to the RSS configuration. */ 976 if (hash_rxq_init[parser->layer].dpdk_rss_hf & 977 parser->rss_conf.rss_hf) { 978 /* Remove any other flow. */ 979 for (i = hmin; i != (hmax + 1); ++i) { 980 if ((i == parser->layer) || 981 (!parser->queue[i].ibv_attr)) 982 continue; 983 rte_free(parser->queue[i].ibv_attr); 984 parser->queue[i].ibv_attr = NULL; 985 } 986 } else if (!parser->queue[ip].ibv_attr) { 987 /* no RSS possible with the current configuration. */ 988 parser->queues_n = 1; 989 return; 990 } 991 fill: 992 /* 993 * Fill missing layers in verbs specifications, or compute the correct 994 * offset to allocate the memory space for the attributes and 995 * specifications. 996 */ 997 for (i = 0; i != hash_rxq_init_n - 1; ++i) { 998 union { 999 struct ibv_flow_spec_ipv4_ext ipv4; 1000 struct ibv_flow_spec_ipv6 ipv6; 1001 struct ibv_flow_spec_tcp_udp udp_tcp; 1002 } specs; 1003 void *dst; 1004 uint16_t size; 1005 1006 if (i == parser->layer) 1007 continue; 1008 if (parser->layer == HASH_RXQ_ETH) { 1009 if (hash_rxq_init[i].ip_version == MLX5_IPV4) { 1010 size = sizeof(struct ibv_flow_spec_ipv4_ext); 1011 specs.ipv4 = (struct ibv_flow_spec_ipv4_ext){ 1012 .type = IBV_FLOW_SPEC_IPV4_EXT | 1013 parser->inner, 1014 .size = size, 1015 }; 1016 } else { 1017 size = sizeof(struct ibv_flow_spec_ipv6); 1018 specs.ipv6 = (struct ibv_flow_spec_ipv6){ 1019 .type = IBV_FLOW_SPEC_IPV6 | 1020 parser->inner, 1021 .size = size, 1022 }; 1023 } 1024 if (parser->queue[i].ibv_attr) { 1025 dst = (void *)((uintptr_t) 1026 parser->queue[i].ibv_attr + 1027 parser->queue[i].offset); 1028 memcpy(dst, &specs, size); 1029 ++parser->queue[i].ibv_attr->num_of_specs; 1030 } 1031 parser->queue[i].offset += size; 1032 } 1033 if ((i == HASH_RXQ_UDPV4) || (i == HASH_RXQ_TCPV4) || 1034 (i == HASH_RXQ_UDPV6) || (i == HASH_RXQ_TCPV6)) { 1035 size = sizeof(struct ibv_flow_spec_tcp_udp); 1036 specs.udp_tcp = (struct ibv_flow_spec_tcp_udp) { 1037 .type = ((i == HASH_RXQ_UDPV4 || 1038 i == HASH_RXQ_UDPV6) ? 1039 IBV_FLOW_SPEC_UDP : 1040 IBV_FLOW_SPEC_TCP) | 1041 parser->inner, 1042 .size = size, 1043 }; 1044 if (parser->queue[i].ibv_attr) { 1045 dst = (void *)((uintptr_t) 1046 parser->queue[i].ibv_attr + 1047 parser->queue[i].offset); 1048 memcpy(dst, &specs, size); 1049 ++parser->queue[i].ibv_attr->num_of_specs; 1050 } 1051 parser->queue[i].offset += size; 1052 } 1053 } 1054 } 1055 1056 /** 1057 * Validate and convert a flow supported by the NIC. 1058 * 1059 * @param priv 1060 * Pointer to private structure. 1061 * @param[in] attr 1062 * Flow rule attributes. 1063 * @param[in] pattern 1064 * Pattern specification (list terminated by the END pattern item). 1065 * @param[in] actions 1066 * Associated actions (list terminated by the END action). 1067 * @param[out] error 1068 * Perform verbose error reporting if not NULL. 1069 * @param[in, out] parser 1070 * Internal parser structure. 1071 * 1072 * @return 1073 * 0 on success, a negative errno value otherwise and rte_errno is set. 1074 */ 1075 static int 1076 priv_flow_convert(struct priv *priv, 1077 const struct rte_flow_attr *attr, 1078 const struct rte_flow_item items[], 1079 const struct rte_flow_action actions[], 1080 struct rte_flow_error *error, 1081 struct mlx5_flow_parse *parser) 1082 { 1083 const struct mlx5_flow_items *cur_item = mlx5_flow_items; 1084 unsigned int i; 1085 int ret; 1086 1087 /* First step. Validate the attributes, items and actions. */ 1088 *parser = (struct mlx5_flow_parse){ 1089 .create = parser->create, 1090 .layer = HASH_RXQ_ETH, 1091 .mark_id = MLX5_FLOW_MARK_DEFAULT, 1092 }; 1093 ret = priv_flow_convert_attributes(priv, attr, error, parser); 1094 if (ret) 1095 return ret; 1096 ret = priv_flow_convert_actions(priv, actions, error, parser); 1097 if (ret) 1098 return ret; 1099 ret = priv_flow_convert_items_validate(priv, items, error, parser); 1100 if (ret) 1101 return ret; 1102 priv_flow_convert_finalise(priv, parser); 1103 /* 1104 * Second step. 1105 * Allocate the memory space to store verbs specifications. 1106 */ 1107 if (parser->drop) { 1108 parser->drop_q.ibv_attr = 1109 priv_flow_convert_allocate(priv, attr->priority, 1110 parser->drop_q.offset, 1111 error); 1112 if (!parser->drop_q.ibv_attr) 1113 return ENOMEM; 1114 parser->drop_q.offset = sizeof(struct ibv_flow_attr); 1115 } else if (parser->queues_n == 1) { 1116 unsigned int priority = 1117 attr->priority + 1118 hash_rxq_init[HASH_RXQ_ETH].flow_priority; 1119 unsigned int offset = parser->queue[HASH_RXQ_ETH].offset; 1120 1121 parser->queue[HASH_RXQ_ETH].ibv_attr = 1122 priv_flow_convert_allocate(priv, priority, 1123 offset, error); 1124 if (!parser->queue[HASH_RXQ_ETH].ibv_attr) 1125 return ENOMEM; 1126 parser->queue[HASH_RXQ_ETH].offset = 1127 sizeof(struct ibv_flow_attr); 1128 } else { 1129 for (i = 0; i != hash_rxq_init_n; ++i) { 1130 unsigned int priority = 1131 attr->priority + 1132 hash_rxq_init[i].flow_priority; 1133 unsigned int offset; 1134 1135 if (!(parser->rss_conf.rss_hf & 1136 hash_rxq_init[i].dpdk_rss_hf) && 1137 (i != HASH_RXQ_ETH)) 1138 continue; 1139 offset = parser->queue[i].offset; 1140 parser->queue[i].ibv_attr = 1141 priv_flow_convert_allocate(priv, priority, 1142 offset, error); 1143 if (!parser->queue[i].ibv_attr) 1144 goto exit_enomem; 1145 parser->queue[i].offset = sizeof(struct ibv_flow_attr); 1146 } 1147 } 1148 /* Third step. Conversion parse, fill the specifications. */ 1149 parser->inner = 0; 1150 for (; items->type != RTE_FLOW_ITEM_TYPE_END; ++items) { 1151 if (items->type == RTE_FLOW_ITEM_TYPE_VOID) 1152 continue; 1153 cur_item = &mlx5_flow_items[items->type]; 1154 ret = cur_item->convert(items, 1155 (cur_item->default_mask ? 1156 cur_item->default_mask : 1157 cur_item->mask), 1158 parser); 1159 if (ret) { 1160 rte_flow_error_set(error, ENOTSUP, 1161 RTE_FLOW_ERROR_TYPE_ITEM, 1162 items, "item not supported"); 1163 goto exit_free; 1164 } 1165 } 1166 if (parser->mark) 1167 mlx5_flow_create_flag_mark(parser, parser->mark_id); 1168 if (parser->count && parser->create) { 1169 mlx5_flow_create_count(priv, parser); 1170 if (!parser->cs) 1171 goto exit_count_error; 1172 } 1173 /* 1174 * Last step. Complete missing specification to reach the RSS 1175 * configuration. 1176 */ 1177 if (parser->drop) { 1178 /* 1179 * Drop queue priority needs to be adjusted to 1180 * their most specific layer priority. 1181 */ 1182 parser->drop_q.ibv_attr->priority = 1183 attr->priority + 1184 hash_rxq_init[parser->layer].flow_priority; 1185 } else if (parser->queues_n > 1) { 1186 priv_flow_convert_finalise(priv, parser); 1187 } else { 1188 /* 1189 * Action queue have their priority overridden with 1190 * Ethernet priority, this priority needs to be adjusted to 1191 * their most specific layer priority. 1192 */ 1193 parser->queue[HASH_RXQ_ETH].ibv_attr->priority = 1194 attr->priority + 1195 hash_rxq_init[parser->layer].flow_priority; 1196 } 1197 exit_free: 1198 /* Only verification is expected, all resources should be released. */ 1199 if (!parser->create) { 1200 if (parser->drop) { 1201 rte_free(parser->drop_q.ibv_attr); 1202 parser->drop_q.ibv_attr = NULL; 1203 } 1204 for (i = 0; i != hash_rxq_init_n; ++i) { 1205 if (parser->queue[i].ibv_attr) { 1206 rte_free(parser->queue[i].ibv_attr); 1207 parser->queue[i].ibv_attr = NULL; 1208 } 1209 } 1210 } 1211 return ret; 1212 exit_enomem: 1213 for (i = 0; i != hash_rxq_init_n; ++i) { 1214 if (parser->queue[i].ibv_attr) { 1215 rte_free(parser->queue[i].ibv_attr); 1216 parser->queue[i].ibv_attr = NULL; 1217 } 1218 } 1219 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1220 NULL, "cannot allocate verbs spec attributes."); 1221 return ret; 1222 exit_count_error: 1223 rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1224 NULL, "cannot create counter."); 1225 return rte_errno; 1226 } 1227 1228 /** 1229 * Copy the specification created into the flow. 1230 * 1231 * @param parser 1232 * Internal parser structure. 1233 * @param src 1234 * Create specification. 1235 * @param size 1236 * Size in bytes of the specification to copy. 1237 */ 1238 static void 1239 mlx5_flow_create_copy(struct mlx5_flow_parse *parser, void *src, 1240 unsigned int size) 1241 { 1242 unsigned int i; 1243 void *dst; 1244 1245 if (parser->drop) { 1246 dst = (void *)((uintptr_t)parser->drop_q.ibv_attr + 1247 parser->drop_q.offset); 1248 memcpy(dst, src, size); 1249 ++parser->drop_q.ibv_attr->num_of_specs; 1250 parser->drop_q.offset += size; 1251 return; 1252 } 1253 for (i = 0; i != hash_rxq_init_n; ++i) { 1254 if (!parser->queue[i].ibv_attr) 1255 continue; 1256 /* Specification must be the same l3 type or none. */ 1257 if (parser->layer == HASH_RXQ_ETH || 1258 (hash_rxq_init[parser->layer].ip_version == 1259 hash_rxq_init[i].ip_version) || 1260 (hash_rxq_init[i].ip_version == 0)) { 1261 dst = (void *)((uintptr_t)parser->queue[i].ibv_attr + 1262 parser->queue[i].offset); 1263 memcpy(dst, src, size); 1264 ++parser->queue[i].ibv_attr->num_of_specs; 1265 parser->queue[i].offset += size; 1266 } 1267 } 1268 } 1269 1270 /** 1271 * Convert Ethernet item to Verbs specification. 1272 * 1273 * @param item[in] 1274 * Item specification. 1275 * @param default_mask[in] 1276 * Default bit-masks to use when item->mask is not provided. 1277 * @param data[in, out] 1278 * User structure. 1279 */ 1280 static int 1281 mlx5_flow_create_eth(const struct rte_flow_item *item, 1282 const void *default_mask, 1283 void *data) 1284 { 1285 const struct rte_flow_item_eth *spec = item->spec; 1286 const struct rte_flow_item_eth *mask = item->mask; 1287 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1288 const unsigned int eth_size = sizeof(struct ibv_flow_spec_eth); 1289 struct ibv_flow_spec_eth eth = { 1290 .type = parser->inner | IBV_FLOW_SPEC_ETH, 1291 .size = eth_size, 1292 }; 1293 1294 parser->layer = HASH_RXQ_ETH; 1295 if (spec) { 1296 unsigned int i; 1297 1298 if (!mask) 1299 mask = default_mask; 1300 memcpy(ð.val.dst_mac, spec->dst.addr_bytes, ETHER_ADDR_LEN); 1301 memcpy(ð.val.src_mac, spec->src.addr_bytes, ETHER_ADDR_LEN); 1302 eth.val.ether_type = spec->type; 1303 memcpy(ð.mask.dst_mac, mask->dst.addr_bytes, ETHER_ADDR_LEN); 1304 memcpy(ð.mask.src_mac, mask->src.addr_bytes, ETHER_ADDR_LEN); 1305 eth.mask.ether_type = mask->type; 1306 /* Remove unwanted bits from values. */ 1307 for (i = 0; i < ETHER_ADDR_LEN; ++i) { 1308 eth.val.dst_mac[i] &= eth.mask.dst_mac[i]; 1309 eth.val.src_mac[i] &= eth.mask.src_mac[i]; 1310 } 1311 eth.val.ether_type &= eth.mask.ether_type; 1312 } 1313 mlx5_flow_create_copy(parser, ð, eth_size); 1314 return 0; 1315 } 1316 1317 /** 1318 * Convert VLAN item to Verbs specification. 1319 * 1320 * @param item[in] 1321 * Item specification. 1322 * @param default_mask[in] 1323 * Default bit-masks to use when item->mask is not provided. 1324 * @param data[in, out] 1325 * User structure. 1326 */ 1327 static int 1328 mlx5_flow_create_vlan(const struct rte_flow_item *item, 1329 const void *default_mask, 1330 void *data) 1331 { 1332 const struct rte_flow_item_vlan *spec = item->spec; 1333 const struct rte_flow_item_vlan *mask = item->mask; 1334 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1335 struct ibv_flow_spec_eth *eth; 1336 const unsigned int eth_size = sizeof(struct ibv_flow_spec_eth); 1337 1338 if (spec) { 1339 unsigned int i; 1340 if (!mask) 1341 mask = default_mask; 1342 1343 if (parser->drop) { 1344 eth = (void *)((uintptr_t)parser->drop_q.ibv_attr + 1345 parser->drop_q.offset - eth_size); 1346 eth->val.vlan_tag = spec->tci; 1347 eth->mask.vlan_tag = mask->tci; 1348 eth->val.vlan_tag &= eth->mask.vlan_tag; 1349 return 0; 1350 } 1351 for (i = 0; i != hash_rxq_init_n; ++i) { 1352 if (!parser->queue[i].ibv_attr) 1353 continue; 1354 1355 eth = (void *)((uintptr_t)parser->queue[i].ibv_attr + 1356 parser->queue[i].offset - eth_size); 1357 eth->val.vlan_tag = spec->tci; 1358 eth->mask.vlan_tag = mask->tci; 1359 eth->val.vlan_tag &= eth->mask.vlan_tag; 1360 } 1361 } 1362 return 0; 1363 } 1364 1365 /** 1366 * Convert IPv4 item to Verbs specification. 1367 * 1368 * @param item[in] 1369 * Item specification. 1370 * @param default_mask[in] 1371 * Default bit-masks to use when item->mask is not provided. 1372 * @param data[in, out] 1373 * User structure. 1374 */ 1375 static int 1376 mlx5_flow_create_ipv4(const struct rte_flow_item *item, 1377 const void *default_mask, 1378 void *data) 1379 { 1380 const struct rte_flow_item_ipv4 *spec = item->spec; 1381 const struct rte_flow_item_ipv4 *mask = item->mask; 1382 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1383 unsigned int ipv4_size = sizeof(struct ibv_flow_spec_ipv4_ext); 1384 struct ibv_flow_spec_ipv4_ext ipv4 = { 1385 .type = parser->inner | IBV_FLOW_SPEC_IPV4_EXT, 1386 .size = ipv4_size, 1387 }; 1388 1389 parser->layer = HASH_RXQ_IPV4; 1390 if (spec) { 1391 if (!mask) 1392 mask = default_mask; 1393 ipv4.val = (struct ibv_flow_ipv4_ext_filter){ 1394 .src_ip = spec->hdr.src_addr, 1395 .dst_ip = spec->hdr.dst_addr, 1396 .proto = spec->hdr.next_proto_id, 1397 .tos = spec->hdr.type_of_service, 1398 }; 1399 ipv4.mask = (struct ibv_flow_ipv4_ext_filter){ 1400 .src_ip = mask->hdr.src_addr, 1401 .dst_ip = mask->hdr.dst_addr, 1402 .proto = mask->hdr.next_proto_id, 1403 .tos = mask->hdr.type_of_service, 1404 }; 1405 /* Remove unwanted bits from values. */ 1406 ipv4.val.src_ip &= ipv4.mask.src_ip; 1407 ipv4.val.dst_ip &= ipv4.mask.dst_ip; 1408 ipv4.val.proto &= ipv4.mask.proto; 1409 ipv4.val.tos &= ipv4.mask.tos; 1410 } 1411 mlx5_flow_create_copy(parser, &ipv4, ipv4_size); 1412 return 0; 1413 } 1414 1415 /** 1416 * Convert IPv6 item to Verbs specification. 1417 * 1418 * @param item[in] 1419 * Item specification. 1420 * @param default_mask[in] 1421 * Default bit-masks to use when item->mask is not provided. 1422 * @param data[in, out] 1423 * User structure. 1424 */ 1425 static int 1426 mlx5_flow_create_ipv6(const struct rte_flow_item *item, 1427 const void *default_mask, 1428 void *data) 1429 { 1430 const struct rte_flow_item_ipv6 *spec = item->spec; 1431 const struct rte_flow_item_ipv6 *mask = item->mask; 1432 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1433 unsigned int ipv6_size = sizeof(struct ibv_flow_spec_ipv6); 1434 struct ibv_flow_spec_ipv6 ipv6 = { 1435 .type = parser->inner | IBV_FLOW_SPEC_IPV6, 1436 .size = ipv6_size, 1437 }; 1438 1439 parser->layer = HASH_RXQ_IPV6; 1440 if (spec) { 1441 unsigned int i; 1442 1443 if (!mask) 1444 mask = default_mask; 1445 memcpy(&ipv6.val.src_ip, spec->hdr.src_addr, 1446 RTE_DIM(ipv6.val.src_ip)); 1447 memcpy(&ipv6.val.dst_ip, spec->hdr.dst_addr, 1448 RTE_DIM(ipv6.val.dst_ip)); 1449 memcpy(&ipv6.mask.src_ip, mask->hdr.src_addr, 1450 RTE_DIM(ipv6.mask.src_ip)); 1451 memcpy(&ipv6.mask.dst_ip, mask->hdr.dst_addr, 1452 RTE_DIM(ipv6.mask.dst_ip)); 1453 ipv6.mask.flow_label = mask->hdr.vtc_flow; 1454 ipv6.mask.next_hdr = mask->hdr.proto; 1455 ipv6.mask.hop_limit = mask->hdr.hop_limits; 1456 /* Remove unwanted bits from values. */ 1457 for (i = 0; i < RTE_DIM(ipv6.val.src_ip); ++i) { 1458 ipv6.val.src_ip[i] &= ipv6.mask.src_ip[i]; 1459 ipv6.val.dst_ip[i] &= ipv6.mask.dst_ip[i]; 1460 } 1461 ipv6.val.flow_label &= ipv6.mask.flow_label; 1462 ipv6.val.next_hdr &= ipv6.mask.next_hdr; 1463 ipv6.val.hop_limit &= ipv6.mask.hop_limit; 1464 } 1465 mlx5_flow_create_copy(parser, &ipv6, ipv6_size); 1466 return 0; 1467 } 1468 1469 /** 1470 * Convert UDP item to Verbs specification. 1471 * 1472 * @param item[in] 1473 * Item specification. 1474 * @param default_mask[in] 1475 * Default bit-masks to use when item->mask is not provided. 1476 * @param data[in, out] 1477 * User structure. 1478 */ 1479 static int 1480 mlx5_flow_create_udp(const struct rte_flow_item *item, 1481 const void *default_mask, 1482 void *data) 1483 { 1484 const struct rte_flow_item_udp *spec = item->spec; 1485 const struct rte_flow_item_udp *mask = item->mask; 1486 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1487 unsigned int udp_size = sizeof(struct ibv_flow_spec_tcp_udp); 1488 struct ibv_flow_spec_tcp_udp udp = { 1489 .type = parser->inner | IBV_FLOW_SPEC_UDP, 1490 .size = udp_size, 1491 }; 1492 1493 if (parser->layer == HASH_RXQ_IPV4) 1494 parser->layer = HASH_RXQ_UDPV4; 1495 else 1496 parser->layer = HASH_RXQ_UDPV6; 1497 if (spec) { 1498 if (!mask) 1499 mask = default_mask; 1500 udp.val.dst_port = spec->hdr.dst_port; 1501 udp.val.src_port = spec->hdr.src_port; 1502 udp.mask.dst_port = mask->hdr.dst_port; 1503 udp.mask.src_port = mask->hdr.src_port; 1504 /* Remove unwanted bits from values. */ 1505 udp.val.src_port &= udp.mask.src_port; 1506 udp.val.dst_port &= udp.mask.dst_port; 1507 } 1508 mlx5_flow_create_copy(parser, &udp, udp_size); 1509 return 0; 1510 } 1511 1512 /** 1513 * Convert TCP item to Verbs specification. 1514 * 1515 * @param item[in] 1516 * Item specification. 1517 * @param default_mask[in] 1518 * Default bit-masks to use when item->mask is not provided. 1519 * @param data[in, out] 1520 * User structure. 1521 */ 1522 static int 1523 mlx5_flow_create_tcp(const struct rte_flow_item *item, 1524 const void *default_mask, 1525 void *data) 1526 { 1527 const struct rte_flow_item_tcp *spec = item->spec; 1528 const struct rte_flow_item_tcp *mask = item->mask; 1529 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1530 unsigned int tcp_size = sizeof(struct ibv_flow_spec_tcp_udp); 1531 struct ibv_flow_spec_tcp_udp tcp = { 1532 .type = parser->inner | IBV_FLOW_SPEC_TCP, 1533 .size = tcp_size, 1534 }; 1535 1536 if (parser->layer == HASH_RXQ_IPV4) 1537 parser->layer = HASH_RXQ_TCPV4; 1538 else 1539 parser->layer = HASH_RXQ_TCPV6; 1540 if (spec) { 1541 if (!mask) 1542 mask = default_mask; 1543 tcp.val.dst_port = spec->hdr.dst_port; 1544 tcp.val.src_port = spec->hdr.src_port; 1545 tcp.mask.dst_port = mask->hdr.dst_port; 1546 tcp.mask.src_port = mask->hdr.src_port; 1547 /* Remove unwanted bits from values. */ 1548 tcp.val.src_port &= tcp.mask.src_port; 1549 tcp.val.dst_port &= tcp.mask.dst_port; 1550 } 1551 mlx5_flow_create_copy(parser, &tcp, tcp_size); 1552 return 0; 1553 } 1554 1555 /** 1556 * Convert VXLAN item to Verbs specification. 1557 * 1558 * @param item[in] 1559 * Item specification. 1560 * @param default_mask[in] 1561 * Default bit-masks to use when item->mask is not provided. 1562 * @param data[in, out] 1563 * User structure. 1564 */ 1565 static int 1566 mlx5_flow_create_vxlan(const struct rte_flow_item *item, 1567 const void *default_mask, 1568 void *data) 1569 { 1570 const struct rte_flow_item_vxlan *spec = item->spec; 1571 const struct rte_flow_item_vxlan *mask = item->mask; 1572 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1573 unsigned int size = sizeof(struct ibv_flow_spec_tunnel); 1574 struct ibv_flow_spec_tunnel vxlan = { 1575 .type = parser->inner | IBV_FLOW_SPEC_VXLAN_TUNNEL, 1576 .size = size, 1577 }; 1578 union vni { 1579 uint32_t vlan_id; 1580 uint8_t vni[4]; 1581 } id; 1582 1583 id.vni[0] = 0; 1584 parser->inner = IBV_FLOW_SPEC_INNER; 1585 if (spec) { 1586 if (!mask) 1587 mask = default_mask; 1588 memcpy(&id.vni[1], spec->vni, 3); 1589 vxlan.val.tunnel_id = id.vlan_id; 1590 memcpy(&id.vni[1], mask->vni, 3); 1591 vxlan.mask.tunnel_id = id.vlan_id; 1592 /* Remove unwanted bits from values. */ 1593 vxlan.val.tunnel_id &= vxlan.mask.tunnel_id; 1594 } 1595 mlx5_flow_create_copy(parser, &vxlan, size); 1596 return 0; 1597 } 1598 1599 /** 1600 * Convert mark/flag action to Verbs specification. 1601 * 1602 * @param parser 1603 * Internal parser structure. 1604 * @param mark_id 1605 * Mark identifier. 1606 */ 1607 static int 1608 mlx5_flow_create_flag_mark(struct mlx5_flow_parse *parser, uint32_t mark_id) 1609 { 1610 unsigned int size = sizeof(struct ibv_flow_spec_action_tag); 1611 struct ibv_flow_spec_action_tag tag = { 1612 .type = IBV_FLOW_SPEC_ACTION_TAG, 1613 .size = size, 1614 .tag_id = mlx5_flow_mark_set(mark_id), 1615 }; 1616 1617 assert(parser->mark); 1618 mlx5_flow_create_copy(parser, &tag, size); 1619 return 0; 1620 } 1621 1622 /** 1623 * Convert count action to Verbs specification. 1624 * 1625 * @param priv 1626 * Pointer to private structure. 1627 * @param parser 1628 * Pointer to MLX5 flow parser structure. 1629 * 1630 * @return 1631 * 0 on success, errno value on failure. 1632 */ 1633 static int 1634 mlx5_flow_create_count(struct priv *priv __rte_unused, 1635 struct mlx5_flow_parse *parser __rte_unused) 1636 { 1637 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 1638 unsigned int size = sizeof(struct ibv_flow_spec_counter_action); 1639 struct ibv_counter_set_init_attr init_attr = {0}; 1640 struct ibv_flow_spec_counter_action counter = { 1641 .type = IBV_FLOW_SPEC_ACTION_COUNT, 1642 .size = size, 1643 .counter_set_handle = 0, 1644 }; 1645 1646 init_attr.counter_set_id = 0; 1647 parser->cs = ibv_create_counter_set(priv->ctx, &init_attr); 1648 if (!parser->cs) 1649 return EINVAL; 1650 counter.counter_set_handle = parser->cs->handle; 1651 mlx5_flow_create_copy(parser, &counter, size); 1652 #endif 1653 return 0; 1654 } 1655 1656 /** 1657 * Complete flow rule creation with a drop queue. 1658 * 1659 * @param priv 1660 * Pointer to private structure. 1661 * @param parser 1662 * Internal parser structure. 1663 * @param flow 1664 * Pointer to the rte_flow. 1665 * @param[out] error 1666 * Perform verbose error reporting if not NULL. 1667 * 1668 * @return 1669 * 0 on success, errno value on failure. 1670 */ 1671 static int 1672 priv_flow_create_action_queue_drop(struct priv *priv, 1673 struct mlx5_flow_parse *parser, 1674 struct rte_flow *flow, 1675 struct rte_flow_error *error) 1676 { 1677 struct ibv_flow_spec_action_drop *drop; 1678 unsigned int size = sizeof(struct ibv_flow_spec_action_drop); 1679 int err = 0; 1680 1681 assert(priv->pd); 1682 assert(priv->ctx); 1683 flow->drop = 1; 1684 drop = (void *)((uintptr_t)parser->drop_q.ibv_attr + 1685 parser->drop_q.offset); 1686 *drop = (struct ibv_flow_spec_action_drop){ 1687 .type = IBV_FLOW_SPEC_ACTION_DROP, 1688 .size = size, 1689 }; 1690 ++parser->drop_q.ibv_attr->num_of_specs; 1691 parser->drop_q.offset += size; 1692 flow->drxq.ibv_attr = parser->drop_q.ibv_attr; 1693 if (!priv->dev->data->dev_started) 1694 return 0; 1695 parser->drop_q.ibv_attr = NULL; 1696 flow->drxq.ibv_flow = ibv_create_flow(priv->flow_drop_queue->qp, 1697 flow->drxq.ibv_attr); 1698 if (parser->count) 1699 flow->cs = parser->cs; 1700 if (!flow->drxq.ibv_flow) { 1701 rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, 1702 NULL, "flow rule creation failure"); 1703 err = ENOMEM; 1704 goto error; 1705 } 1706 return 0; 1707 error: 1708 assert(flow); 1709 if (flow->drxq.ibv_flow) { 1710 claim_zero(ibv_destroy_flow(flow->drxq.ibv_flow)); 1711 flow->drxq.ibv_flow = NULL; 1712 } 1713 if (flow->drxq.ibv_attr) { 1714 rte_free(flow->drxq.ibv_attr); 1715 flow->drxq.ibv_attr = NULL; 1716 } 1717 if (flow->cs) { 1718 claim_zero(ibv_destroy_counter_set(flow->cs)); 1719 flow->cs = NULL; 1720 parser->cs = NULL; 1721 } 1722 return err; 1723 } 1724 1725 /** 1726 * Create hash Rx queues when RSS is enabled. 1727 * 1728 * @param priv 1729 * Pointer to private structure. 1730 * @param parser 1731 * Internal parser structure. 1732 * @param flow 1733 * Pointer to the rte_flow. 1734 * @param[out] error 1735 * Perform verbose error reporting if not NULL. 1736 * 1737 * @return 1738 * 0 on success, a errno value otherwise and rte_errno is set. 1739 */ 1740 static int 1741 priv_flow_create_action_queue_rss(struct priv *priv, 1742 struct mlx5_flow_parse *parser, 1743 struct rte_flow *flow, 1744 struct rte_flow_error *error) 1745 { 1746 unsigned int i; 1747 1748 for (i = 0; i != hash_rxq_init_n; ++i) { 1749 uint64_t hash_fields; 1750 1751 if (!parser->queue[i].ibv_attr) 1752 continue; 1753 flow->frxq[i].ibv_attr = parser->queue[i].ibv_attr; 1754 parser->queue[i].ibv_attr = NULL; 1755 hash_fields = hash_rxq_init[i].hash_fields; 1756 if (!priv->dev->data->dev_started) 1757 continue; 1758 flow->frxq[i].hrxq = 1759 mlx5_priv_hrxq_get(priv, 1760 parser->rss_conf.rss_key, 1761 parser->rss_conf.rss_key_len, 1762 hash_fields, 1763 parser->queues, 1764 hash_fields ? parser->queues_n : 1); 1765 if (flow->frxq[i].hrxq) 1766 continue; 1767 flow->frxq[i].hrxq = 1768 mlx5_priv_hrxq_new(priv, 1769 parser->rss_conf.rss_key, 1770 parser->rss_conf.rss_key_len, 1771 hash_fields, 1772 parser->queues, 1773 hash_fields ? parser->queues_n : 1); 1774 if (!flow->frxq[i].hrxq) { 1775 rte_flow_error_set(error, ENOMEM, 1776 RTE_FLOW_ERROR_TYPE_HANDLE, 1777 NULL, "cannot create hash rxq"); 1778 return ENOMEM; 1779 } 1780 } 1781 return 0; 1782 } 1783 1784 /** 1785 * Complete flow rule creation. 1786 * 1787 * @param priv 1788 * Pointer to private structure. 1789 * @param parser 1790 * Internal parser structure. 1791 * @param flow 1792 * Pointer to the rte_flow. 1793 * @param[out] error 1794 * Perform verbose error reporting if not NULL. 1795 * 1796 * @return 1797 * 0 on success, a errno value otherwise and rte_errno is set. 1798 */ 1799 static int 1800 priv_flow_create_action_queue(struct priv *priv, 1801 struct mlx5_flow_parse *parser, 1802 struct rte_flow *flow, 1803 struct rte_flow_error *error) 1804 { 1805 int err = 0; 1806 unsigned int i; 1807 1808 assert(priv->pd); 1809 assert(priv->ctx); 1810 assert(!parser->drop); 1811 err = priv_flow_create_action_queue_rss(priv, parser, flow, error); 1812 if (err) 1813 goto error; 1814 if (parser->count) 1815 flow->cs = parser->cs; 1816 if (!priv->dev->data->dev_started) 1817 return 0; 1818 for (i = 0; i != hash_rxq_init_n; ++i) { 1819 if (!flow->frxq[i].hrxq) 1820 continue; 1821 flow->frxq[i].ibv_flow = 1822 ibv_create_flow(flow->frxq[i].hrxq->qp, 1823 flow->frxq[i].ibv_attr); 1824 if (!flow->frxq[i].ibv_flow) { 1825 rte_flow_error_set(error, ENOMEM, 1826 RTE_FLOW_ERROR_TYPE_HANDLE, 1827 NULL, "flow rule creation failure"); 1828 err = ENOMEM; 1829 goto error; 1830 } 1831 DEBUG("%p type %d QP %p ibv_flow %p", 1832 (void *)flow, i, 1833 (void *)flow->frxq[i].hrxq, 1834 (void *)flow->frxq[i].ibv_flow); 1835 } 1836 for (i = 0; i != parser->queues_n; ++i) { 1837 struct mlx5_rxq_data *q = 1838 (*priv->rxqs)[parser->queues[i]]; 1839 1840 q->mark |= parser->mark; 1841 } 1842 return 0; 1843 error: 1844 assert(flow); 1845 for (i = 0; i != hash_rxq_init_n; ++i) { 1846 if (flow->frxq[i].ibv_flow) { 1847 struct ibv_flow *ibv_flow = flow->frxq[i].ibv_flow; 1848 1849 claim_zero(ibv_destroy_flow(ibv_flow)); 1850 } 1851 if (flow->frxq[i].hrxq) 1852 mlx5_priv_hrxq_release(priv, flow->frxq[i].hrxq); 1853 if (flow->frxq[i].ibv_attr) 1854 rte_free(flow->frxq[i].ibv_attr); 1855 } 1856 if (flow->cs) { 1857 claim_zero(ibv_destroy_counter_set(flow->cs)); 1858 flow->cs = NULL; 1859 parser->cs = NULL; 1860 } 1861 return err; 1862 } 1863 1864 /** 1865 * Convert a flow. 1866 * 1867 * @param priv 1868 * Pointer to private structure. 1869 * @param list 1870 * Pointer to a TAILQ flow list. 1871 * @param[in] attr 1872 * Flow rule attributes. 1873 * @param[in] pattern 1874 * Pattern specification (list terminated by the END pattern item). 1875 * @param[in] actions 1876 * Associated actions (list terminated by the END action). 1877 * @param[out] error 1878 * Perform verbose error reporting if not NULL. 1879 * 1880 * @return 1881 * A flow on success, NULL otherwise. 1882 */ 1883 static struct rte_flow * 1884 priv_flow_create(struct priv *priv, 1885 struct mlx5_flows *list, 1886 const struct rte_flow_attr *attr, 1887 const struct rte_flow_item items[], 1888 const struct rte_flow_action actions[], 1889 struct rte_flow_error *error) 1890 { 1891 struct mlx5_flow_parse parser = { .create = 1, }; 1892 struct rte_flow *flow = NULL; 1893 unsigned int i; 1894 int err; 1895 1896 err = priv_flow_convert(priv, attr, items, actions, error, &parser); 1897 if (err) 1898 goto exit; 1899 flow = rte_calloc(__func__, 1, 1900 sizeof(*flow) + parser.queues_n * sizeof(uint16_t), 1901 0); 1902 if (!flow) { 1903 rte_flow_error_set(error, ENOMEM, 1904 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1905 NULL, 1906 "cannot allocate flow memory"); 1907 return NULL; 1908 } 1909 /* Copy queues configuration. */ 1910 flow->queues = (uint16_t (*)[])(flow + 1); 1911 memcpy(flow->queues, parser.queues, parser.queues_n * sizeof(uint16_t)); 1912 flow->queues_n = parser.queues_n; 1913 /* Copy RSS configuration. */ 1914 flow->rss_conf = parser.rss_conf; 1915 flow->rss_conf.rss_key = flow->rss_key; 1916 memcpy(flow->rss_key, parser.rss_key, parser.rss_conf.rss_key_len); 1917 /* finalise the flow. */ 1918 if (parser.drop) 1919 err = priv_flow_create_action_queue_drop(priv, &parser, flow, 1920 error); 1921 else 1922 err = priv_flow_create_action_queue(priv, &parser, flow, error); 1923 if (err) 1924 goto exit; 1925 TAILQ_INSERT_TAIL(list, flow, next); 1926 DEBUG("Flow created %p", (void *)flow); 1927 return flow; 1928 exit: 1929 if (parser.drop) { 1930 rte_free(parser.drop_q.ibv_attr); 1931 } else { 1932 for (i = 0; i != hash_rxq_init_n; ++i) { 1933 if (parser.queue[i].ibv_attr) 1934 rte_free(parser.queue[i].ibv_attr); 1935 } 1936 } 1937 rte_free(flow); 1938 return NULL; 1939 } 1940 1941 /** 1942 * Validate a flow supported by the NIC. 1943 * 1944 * @see rte_flow_validate() 1945 * @see rte_flow_ops 1946 */ 1947 int 1948 mlx5_flow_validate(struct rte_eth_dev *dev, 1949 const struct rte_flow_attr *attr, 1950 const struct rte_flow_item items[], 1951 const struct rte_flow_action actions[], 1952 struct rte_flow_error *error) 1953 { 1954 struct priv *priv = dev->data->dev_private; 1955 int ret; 1956 struct mlx5_flow_parse parser = { .create = 0, }; 1957 1958 priv_lock(priv); 1959 ret = priv_flow_convert(priv, attr, items, actions, error, &parser); 1960 priv_unlock(priv); 1961 return ret; 1962 } 1963 1964 /** 1965 * Create a flow. 1966 * 1967 * @see rte_flow_create() 1968 * @see rte_flow_ops 1969 */ 1970 struct rte_flow * 1971 mlx5_flow_create(struct rte_eth_dev *dev, 1972 const struct rte_flow_attr *attr, 1973 const struct rte_flow_item items[], 1974 const struct rte_flow_action actions[], 1975 struct rte_flow_error *error) 1976 { 1977 struct priv *priv = dev->data->dev_private; 1978 struct rte_flow *flow; 1979 1980 priv_lock(priv); 1981 flow = priv_flow_create(priv, &priv->flows, attr, items, actions, 1982 error); 1983 priv_unlock(priv); 1984 return flow; 1985 } 1986 1987 /** 1988 * Destroy a flow. 1989 * 1990 * @param priv 1991 * Pointer to private structure. 1992 * @param list 1993 * Pointer to a TAILQ flow list. 1994 * @param[in] flow 1995 * Flow to destroy. 1996 */ 1997 static void 1998 priv_flow_destroy(struct priv *priv, 1999 struct mlx5_flows *list, 2000 struct rte_flow *flow) 2001 { 2002 unsigned int i; 2003 2004 if (flow->cs) { 2005 claim_zero(ibv_destroy_counter_set(flow->cs)); 2006 flow->cs = NULL; 2007 } 2008 if (flow->drop || !flow->mark) 2009 goto free; 2010 for (i = 0; i != flow->queues_n; ++i) { 2011 struct rte_flow *tmp; 2012 int mark = 0; 2013 2014 /* 2015 * To remove the mark from the queue, the queue must not be 2016 * present in any other marked flow (RSS or not). 2017 */ 2018 TAILQ_FOREACH(tmp, list, next) { 2019 unsigned int j; 2020 uint16_t *tqs = NULL; 2021 uint16_t tq_n = 0; 2022 2023 if (!tmp->mark) 2024 continue; 2025 for (j = 0; j != hash_rxq_init_n; ++j) { 2026 if (!tmp->frxq[j].hrxq) 2027 continue; 2028 tqs = tmp->frxq[j].hrxq->ind_table->queues; 2029 tq_n = tmp->frxq[j].hrxq->ind_table->queues_n; 2030 } 2031 if (!tq_n) 2032 continue; 2033 for (j = 0; (j != tq_n) && !mark; j++) 2034 if (tqs[j] == (*flow->queues)[i]) 2035 mark = 1; 2036 } 2037 (*priv->rxqs)[(*flow->queues)[i]]->mark = mark; 2038 } 2039 free: 2040 if (flow->drop) { 2041 if (flow->drxq.ibv_flow) 2042 claim_zero(ibv_destroy_flow(flow->drxq.ibv_flow)); 2043 rte_free(flow->drxq.ibv_attr); 2044 } else { 2045 for (i = 0; i != hash_rxq_init_n; ++i) { 2046 struct mlx5_flow *frxq = &flow->frxq[i]; 2047 2048 if (frxq->ibv_flow) 2049 claim_zero(ibv_destroy_flow(frxq->ibv_flow)); 2050 if (frxq->hrxq) 2051 mlx5_priv_hrxq_release(priv, frxq->hrxq); 2052 if (frxq->ibv_attr) 2053 rte_free(frxq->ibv_attr); 2054 } 2055 } 2056 TAILQ_REMOVE(list, flow, next); 2057 DEBUG("Flow destroyed %p", (void *)flow); 2058 rte_free(flow); 2059 } 2060 2061 /** 2062 * Destroy all flows. 2063 * 2064 * @param priv 2065 * Pointer to private structure. 2066 * @param list 2067 * Pointer to a TAILQ flow list. 2068 */ 2069 void 2070 priv_flow_flush(struct priv *priv, struct mlx5_flows *list) 2071 { 2072 while (!TAILQ_EMPTY(list)) { 2073 struct rte_flow *flow; 2074 2075 flow = TAILQ_FIRST(list); 2076 priv_flow_destroy(priv, list, flow); 2077 } 2078 } 2079 2080 /** 2081 * Create drop queue. 2082 * 2083 * @param priv 2084 * Pointer to private structure. 2085 * 2086 * @return 2087 * 0 on success. 2088 */ 2089 int 2090 priv_flow_create_drop_queue(struct priv *priv) 2091 { 2092 struct mlx5_hrxq_drop *fdq = NULL; 2093 2094 assert(priv->pd); 2095 assert(priv->ctx); 2096 fdq = rte_calloc(__func__, 1, sizeof(*fdq), 0); 2097 if (!fdq) { 2098 WARN("cannot allocate memory for drop queue"); 2099 goto error; 2100 } 2101 fdq->cq = ibv_create_cq(priv->ctx, 1, NULL, NULL, 0); 2102 if (!fdq->cq) { 2103 WARN("cannot allocate CQ for drop queue"); 2104 goto error; 2105 } 2106 fdq->wq = ibv_create_wq(priv->ctx, 2107 &(struct ibv_wq_init_attr){ 2108 .wq_type = IBV_WQT_RQ, 2109 .max_wr = 1, 2110 .max_sge = 1, 2111 .pd = priv->pd, 2112 .cq = fdq->cq, 2113 }); 2114 if (!fdq->wq) { 2115 WARN("cannot allocate WQ for drop queue"); 2116 goto error; 2117 } 2118 fdq->ind_table = ibv_create_rwq_ind_table(priv->ctx, 2119 &(struct ibv_rwq_ind_table_init_attr){ 2120 .log_ind_tbl_size = 0, 2121 .ind_tbl = &fdq->wq, 2122 .comp_mask = 0, 2123 }); 2124 if (!fdq->ind_table) { 2125 WARN("cannot allocate indirection table for drop queue"); 2126 goto error; 2127 } 2128 fdq->qp = ibv_create_qp_ex(priv->ctx, 2129 &(struct ibv_qp_init_attr_ex){ 2130 .qp_type = IBV_QPT_RAW_PACKET, 2131 .comp_mask = 2132 IBV_QP_INIT_ATTR_PD | 2133 IBV_QP_INIT_ATTR_IND_TABLE | 2134 IBV_QP_INIT_ATTR_RX_HASH, 2135 .rx_hash_conf = (struct ibv_rx_hash_conf){ 2136 .rx_hash_function = 2137 IBV_RX_HASH_FUNC_TOEPLITZ, 2138 .rx_hash_key_len = rss_hash_default_key_len, 2139 .rx_hash_key = rss_hash_default_key, 2140 .rx_hash_fields_mask = 0, 2141 }, 2142 .rwq_ind_tbl = fdq->ind_table, 2143 .pd = priv->pd 2144 }); 2145 if (!fdq->qp) { 2146 WARN("cannot allocate QP for drop queue"); 2147 goto error; 2148 } 2149 priv->flow_drop_queue = fdq; 2150 return 0; 2151 error: 2152 if (fdq->qp) 2153 claim_zero(ibv_destroy_qp(fdq->qp)); 2154 if (fdq->ind_table) 2155 claim_zero(ibv_destroy_rwq_ind_table(fdq->ind_table)); 2156 if (fdq->wq) 2157 claim_zero(ibv_destroy_wq(fdq->wq)); 2158 if (fdq->cq) 2159 claim_zero(ibv_destroy_cq(fdq->cq)); 2160 if (fdq) 2161 rte_free(fdq); 2162 priv->flow_drop_queue = NULL; 2163 return -1; 2164 } 2165 2166 /** 2167 * Delete drop queue. 2168 * 2169 * @param priv 2170 * Pointer to private structure. 2171 */ 2172 void 2173 priv_flow_delete_drop_queue(struct priv *priv) 2174 { 2175 struct mlx5_hrxq_drop *fdq = priv->flow_drop_queue; 2176 2177 if (!fdq) 2178 return; 2179 if (fdq->qp) 2180 claim_zero(ibv_destroy_qp(fdq->qp)); 2181 if (fdq->ind_table) 2182 claim_zero(ibv_destroy_rwq_ind_table(fdq->ind_table)); 2183 if (fdq->wq) 2184 claim_zero(ibv_destroy_wq(fdq->wq)); 2185 if (fdq->cq) 2186 claim_zero(ibv_destroy_cq(fdq->cq)); 2187 rte_free(fdq); 2188 priv->flow_drop_queue = NULL; 2189 } 2190 2191 /** 2192 * Remove all flows. 2193 * 2194 * @param priv 2195 * Pointer to private structure. 2196 * @param list 2197 * Pointer to a TAILQ flow list. 2198 */ 2199 void 2200 priv_flow_stop(struct priv *priv, struct mlx5_flows *list) 2201 { 2202 struct rte_flow *flow; 2203 2204 TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next) { 2205 unsigned int i; 2206 2207 if (flow->drop) { 2208 if (!flow->drxq.ibv_flow) 2209 continue; 2210 claim_zero(ibv_destroy_flow(flow->drxq.ibv_flow)); 2211 flow->drxq.ibv_flow = NULL; 2212 /* Next flow. */ 2213 continue; 2214 } 2215 if (flow->mark) { 2216 struct mlx5_ind_table_ibv *ind_tbl = NULL; 2217 2218 for (i = 0; i != hash_rxq_init_n; ++i) { 2219 if (!flow->frxq[i].hrxq) 2220 continue; 2221 ind_tbl = flow->frxq[i].hrxq->ind_table; 2222 } 2223 assert(ind_tbl); 2224 for (i = 0; i != ind_tbl->queues_n; ++i) 2225 (*priv->rxqs)[ind_tbl->queues[i]]->mark = 0; 2226 } 2227 for (i = 0; i != hash_rxq_init_n; ++i) { 2228 if (!flow->frxq[i].ibv_flow) 2229 continue; 2230 claim_zero(ibv_destroy_flow(flow->frxq[i].ibv_flow)); 2231 flow->frxq[i].ibv_flow = NULL; 2232 mlx5_priv_hrxq_release(priv, flow->frxq[i].hrxq); 2233 flow->frxq[i].hrxq = NULL; 2234 } 2235 DEBUG("Flow %p removed", (void *)flow); 2236 } 2237 } 2238 2239 /** 2240 * Add all flows. 2241 * 2242 * @param priv 2243 * Pointer to private structure. 2244 * @param list 2245 * Pointer to a TAILQ flow list. 2246 * 2247 * @return 2248 * 0 on success, a errno value otherwise and rte_errno is set. 2249 */ 2250 int 2251 priv_flow_start(struct priv *priv, struct mlx5_flows *list) 2252 { 2253 struct rte_flow *flow; 2254 2255 TAILQ_FOREACH(flow, list, next) { 2256 unsigned int i; 2257 2258 if (flow->drop) { 2259 flow->drxq.ibv_flow = 2260 ibv_create_flow(priv->flow_drop_queue->qp, 2261 flow->drxq.ibv_attr); 2262 if (!flow->drxq.ibv_flow) { 2263 DEBUG("Flow %p cannot be applied", 2264 (void *)flow); 2265 rte_errno = EINVAL; 2266 return rte_errno; 2267 } 2268 DEBUG("Flow %p applied", (void *)flow); 2269 /* Next flow. */ 2270 continue; 2271 } 2272 for (i = 0; i != hash_rxq_init_n; ++i) { 2273 if (!flow->frxq[i].ibv_attr) 2274 continue; 2275 flow->frxq[i].hrxq = 2276 mlx5_priv_hrxq_get(priv, flow->rss_conf.rss_key, 2277 flow->rss_conf.rss_key_len, 2278 hash_rxq_init[i].hash_fields, 2279 (*flow->queues), 2280 flow->queues_n); 2281 if (flow->frxq[i].hrxq) 2282 goto flow_create; 2283 flow->frxq[i].hrxq = 2284 mlx5_priv_hrxq_new(priv, flow->rss_conf.rss_key, 2285 flow->rss_conf.rss_key_len, 2286 hash_rxq_init[i].hash_fields, 2287 (*flow->queues), 2288 flow->queues_n); 2289 if (!flow->frxq[i].hrxq) { 2290 DEBUG("Flow %p cannot be applied", 2291 (void *)flow); 2292 rte_errno = EINVAL; 2293 return rte_errno; 2294 } 2295 flow_create: 2296 flow->frxq[i].ibv_flow = 2297 ibv_create_flow(flow->frxq[i].hrxq->qp, 2298 flow->frxq[i].ibv_attr); 2299 if (!flow->frxq[i].ibv_flow) { 2300 DEBUG("Flow %p cannot be applied", 2301 (void *)flow); 2302 rte_errno = EINVAL; 2303 return rte_errno; 2304 } 2305 DEBUG("Flow %p applied", (void *)flow); 2306 } 2307 if (!flow->mark) 2308 continue; 2309 for (i = 0; i != flow->queues_n; ++i) 2310 (*priv->rxqs)[(*flow->queues)[i]]->mark = 1; 2311 } 2312 return 0; 2313 } 2314 2315 /** 2316 * Verify the flow list is empty 2317 * 2318 * @param priv 2319 * Pointer to private structure. 2320 * 2321 * @return the number of flows not released. 2322 */ 2323 int 2324 priv_flow_verify(struct priv *priv) 2325 { 2326 struct rte_flow *flow; 2327 int ret = 0; 2328 2329 TAILQ_FOREACH(flow, &priv->flows, next) { 2330 DEBUG("%p: flow %p still referenced", (void *)priv, 2331 (void *)flow); 2332 ++ret; 2333 } 2334 return ret; 2335 } 2336 2337 /** 2338 * Enable a control flow configured from the control plane. 2339 * 2340 * @param dev 2341 * Pointer to Ethernet device. 2342 * @param eth_spec 2343 * An Ethernet flow spec to apply. 2344 * @param eth_mask 2345 * An Ethernet flow mask to apply. 2346 * @param vlan_spec 2347 * A VLAN flow spec to apply. 2348 * @param vlan_mask 2349 * A VLAN flow mask to apply. 2350 * 2351 * @return 2352 * 0 on success. 2353 */ 2354 int 2355 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 2356 struct rte_flow_item_eth *eth_spec, 2357 struct rte_flow_item_eth *eth_mask, 2358 struct rte_flow_item_vlan *vlan_spec, 2359 struct rte_flow_item_vlan *vlan_mask) 2360 { 2361 struct priv *priv = dev->data->dev_private; 2362 const struct rte_flow_attr attr = { 2363 .ingress = 1, 2364 .priority = MLX5_CTRL_FLOW_PRIORITY, 2365 }; 2366 struct rte_flow_item items[] = { 2367 { 2368 .type = RTE_FLOW_ITEM_TYPE_ETH, 2369 .spec = eth_spec, 2370 .last = NULL, 2371 .mask = eth_mask, 2372 }, 2373 { 2374 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 2375 RTE_FLOW_ITEM_TYPE_END, 2376 .spec = vlan_spec, 2377 .last = NULL, 2378 .mask = vlan_mask, 2379 }, 2380 { 2381 .type = RTE_FLOW_ITEM_TYPE_END, 2382 }, 2383 }; 2384 struct rte_flow_action actions[] = { 2385 { 2386 .type = RTE_FLOW_ACTION_TYPE_RSS, 2387 }, 2388 { 2389 .type = RTE_FLOW_ACTION_TYPE_END, 2390 }, 2391 }; 2392 struct rte_flow *flow; 2393 struct rte_flow_error error; 2394 unsigned int i; 2395 union { 2396 struct rte_flow_action_rss rss; 2397 struct { 2398 const struct rte_eth_rss_conf *rss_conf; 2399 uint16_t num; 2400 uint16_t queue[RTE_MAX_QUEUES_PER_PORT]; 2401 } local; 2402 } action_rss; 2403 2404 if (!priv->reta_idx_n) 2405 return EINVAL; 2406 for (i = 0; i != priv->reta_idx_n; ++i) 2407 action_rss.local.queue[i] = (*priv->reta_idx)[i]; 2408 action_rss.local.rss_conf = &priv->rss_conf; 2409 action_rss.local.num = priv->reta_idx_n; 2410 actions[0].conf = (const void *)&action_rss.rss; 2411 flow = priv_flow_create(priv, &priv->ctrl_flows, &attr, items, actions, 2412 &error); 2413 if (!flow) 2414 return rte_errno; 2415 return 0; 2416 } 2417 2418 /** 2419 * Enable a flow control configured from the control plane. 2420 * 2421 * @param dev 2422 * Pointer to Ethernet device. 2423 * @param eth_spec 2424 * An Ethernet flow spec to apply. 2425 * @param eth_mask 2426 * An Ethernet flow mask to apply. 2427 * 2428 * @return 2429 * 0 on success. 2430 */ 2431 int 2432 mlx5_ctrl_flow(struct rte_eth_dev *dev, 2433 struct rte_flow_item_eth *eth_spec, 2434 struct rte_flow_item_eth *eth_mask) 2435 { 2436 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 2437 } 2438 2439 /** 2440 * Destroy a flow. 2441 * 2442 * @see rte_flow_destroy() 2443 * @see rte_flow_ops 2444 */ 2445 int 2446 mlx5_flow_destroy(struct rte_eth_dev *dev, 2447 struct rte_flow *flow, 2448 struct rte_flow_error *error) 2449 { 2450 struct priv *priv = dev->data->dev_private; 2451 2452 (void)error; 2453 priv_lock(priv); 2454 priv_flow_destroy(priv, &priv->flows, flow); 2455 priv_unlock(priv); 2456 return 0; 2457 } 2458 2459 /** 2460 * Destroy all flows. 2461 * 2462 * @see rte_flow_flush() 2463 * @see rte_flow_ops 2464 */ 2465 int 2466 mlx5_flow_flush(struct rte_eth_dev *dev, 2467 struct rte_flow_error *error) 2468 { 2469 struct priv *priv = dev->data->dev_private; 2470 2471 (void)error; 2472 priv_lock(priv); 2473 priv_flow_flush(priv, &priv->flows); 2474 priv_unlock(priv); 2475 return 0; 2476 } 2477 2478 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 2479 /** 2480 * Query flow counter. 2481 * 2482 * @param cs 2483 * the counter set. 2484 * @param counter_value 2485 * returned data from the counter. 2486 * 2487 * @return 2488 * 0 on success, a errno value otherwise and rte_errno is set. 2489 */ 2490 static int 2491 priv_flow_query_count(struct ibv_counter_set *cs, 2492 struct mlx5_flow_counter_stats *counter_stats, 2493 struct rte_flow_query_count *query_count, 2494 struct rte_flow_error *error) 2495 { 2496 uint64_t counters[2]; 2497 struct ibv_query_counter_set_attr query_cs_attr = { 2498 .cs = cs, 2499 .query_flags = IBV_COUNTER_SET_FORCE_UPDATE, 2500 }; 2501 struct ibv_counter_set_data query_out = { 2502 .out = counters, 2503 .outlen = 2 * sizeof(uint64_t), 2504 }; 2505 int res = ibv_query_counter_set(&query_cs_attr, &query_out); 2506 2507 if (res) { 2508 rte_flow_error_set(error, -res, 2509 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2510 NULL, 2511 "cannot read counter"); 2512 return -res; 2513 } 2514 query_count->hits_set = 1; 2515 query_count->bytes_set = 1; 2516 query_count->hits = counters[0] - counter_stats->hits; 2517 query_count->bytes = counters[1] - counter_stats->bytes; 2518 if (query_count->reset) { 2519 counter_stats->hits = counters[0]; 2520 counter_stats->bytes = counters[1]; 2521 } 2522 return 0; 2523 } 2524 2525 /** 2526 * Query a flows. 2527 * 2528 * @see rte_flow_query() 2529 * @see rte_flow_ops 2530 */ 2531 int 2532 mlx5_flow_query(struct rte_eth_dev *dev, 2533 struct rte_flow *flow, 2534 enum rte_flow_action_type action __rte_unused, 2535 void *data, 2536 struct rte_flow_error *error) 2537 { 2538 struct priv *priv = dev->data->dev_private; 2539 int res = EINVAL; 2540 2541 priv_lock(priv); 2542 if (flow->cs) { 2543 res = priv_flow_query_count(flow->cs, 2544 &flow->counter_stats, 2545 (struct rte_flow_query_count *)data, 2546 error); 2547 } else { 2548 rte_flow_error_set(error, res, 2549 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2550 NULL, 2551 "no counter found for flow"); 2552 } 2553 priv_unlock(priv); 2554 return -res; 2555 } 2556 #endif 2557 2558 /** 2559 * Isolated mode. 2560 * 2561 * @see rte_flow_isolate() 2562 * @see rte_flow_ops 2563 */ 2564 int 2565 mlx5_flow_isolate(struct rte_eth_dev *dev, 2566 int enable, 2567 struct rte_flow_error *error) 2568 { 2569 struct priv *priv = dev->data->dev_private; 2570 2571 priv_lock(priv); 2572 if (dev->data->dev_started) { 2573 rte_flow_error_set(error, EBUSY, 2574 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2575 NULL, 2576 "port must be stopped first"); 2577 priv_unlock(priv); 2578 return -rte_errno; 2579 } 2580 priv->isolated = !!enable; 2581 if (enable) 2582 priv->dev->dev_ops = &mlx5_dev_ops_isolate; 2583 else 2584 priv->dev->dev_ops = &mlx5_dev_ops; 2585 priv_unlock(priv); 2586 return 0; 2587 } 2588 2589 /** 2590 * Convert a flow director filter to a generic flow. 2591 * 2592 * @param priv 2593 * Private structure. 2594 * @param fdir_filter 2595 * Flow director filter to add. 2596 * @param attributes 2597 * Generic flow parameters structure. 2598 * 2599 * @return 2600 * 0 on success, errno value on error. 2601 */ 2602 static int 2603 priv_fdir_filter_convert(struct priv *priv, 2604 const struct rte_eth_fdir_filter *fdir_filter, 2605 struct mlx5_fdir *attributes) 2606 { 2607 const struct rte_eth_fdir_input *input = &fdir_filter->input; 2608 2609 /* Validate queue number. */ 2610 if (fdir_filter->action.rx_queue >= priv->rxqs_n) { 2611 ERROR("invalid queue number %d", fdir_filter->action.rx_queue); 2612 return EINVAL; 2613 } 2614 attributes->attr.ingress = 1; 2615 attributes->items[0] = (struct rte_flow_item) { 2616 .type = RTE_FLOW_ITEM_TYPE_ETH, 2617 .spec = &attributes->l2, 2618 }; 2619 switch (fdir_filter->action.behavior) { 2620 case RTE_ETH_FDIR_ACCEPT: 2621 attributes->actions[0] = (struct rte_flow_action){ 2622 .type = RTE_FLOW_ACTION_TYPE_QUEUE, 2623 .conf = &attributes->queue, 2624 }; 2625 break; 2626 case RTE_ETH_FDIR_REJECT: 2627 attributes->actions[0] = (struct rte_flow_action){ 2628 .type = RTE_FLOW_ACTION_TYPE_DROP, 2629 }; 2630 break; 2631 default: 2632 ERROR("invalid behavior %d", fdir_filter->action.behavior); 2633 return ENOTSUP; 2634 } 2635 attributes->queue.index = fdir_filter->action.rx_queue; 2636 switch (fdir_filter->input.flow_type) { 2637 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2638 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2639 .src_addr = input->flow.udp4_flow.ip.src_ip, 2640 .dst_addr = input->flow.udp4_flow.ip.dst_ip, 2641 .time_to_live = input->flow.udp4_flow.ip.ttl, 2642 .type_of_service = input->flow.udp4_flow.ip.tos, 2643 .next_proto_id = input->flow.udp4_flow.ip.proto, 2644 }; 2645 attributes->l4.udp.hdr = (struct udp_hdr){ 2646 .src_port = input->flow.udp4_flow.src_port, 2647 .dst_port = input->flow.udp4_flow.dst_port, 2648 }; 2649 attributes->items[1] = (struct rte_flow_item){ 2650 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2651 .spec = &attributes->l3, 2652 }; 2653 attributes->items[2] = (struct rte_flow_item){ 2654 .type = RTE_FLOW_ITEM_TYPE_UDP, 2655 .spec = &attributes->l4, 2656 }; 2657 break; 2658 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2659 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2660 .src_addr = input->flow.tcp4_flow.ip.src_ip, 2661 .dst_addr = input->flow.tcp4_flow.ip.dst_ip, 2662 .time_to_live = input->flow.tcp4_flow.ip.ttl, 2663 .type_of_service = input->flow.tcp4_flow.ip.tos, 2664 .next_proto_id = input->flow.tcp4_flow.ip.proto, 2665 }; 2666 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2667 .src_port = input->flow.tcp4_flow.src_port, 2668 .dst_port = input->flow.tcp4_flow.dst_port, 2669 }; 2670 attributes->items[1] = (struct rte_flow_item){ 2671 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2672 .spec = &attributes->l3, 2673 }; 2674 attributes->items[2] = (struct rte_flow_item){ 2675 .type = RTE_FLOW_ITEM_TYPE_TCP, 2676 .spec = &attributes->l4, 2677 }; 2678 break; 2679 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2680 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2681 .src_addr = input->flow.ip4_flow.src_ip, 2682 .dst_addr = input->flow.ip4_flow.dst_ip, 2683 .time_to_live = input->flow.ip4_flow.ttl, 2684 .type_of_service = input->flow.ip4_flow.tos, 2685 .next_proto_id = input->flow.ip4_flow.proto, 2686 }; 2687 attributes->items[1] = (struct rte_flow_item){ 2688 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2689 .spec = &attributes->l3, 2690 }; 2691 break; 2692 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2693 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2694 .hop_limits = input->flow.udp6_flow.ip.hop_limits, 2695 .proto = input->flow.udp6_flow.ip.proto, 2696 }; 2697 memcpy(attributes->l3.ipv6.hdr.src_addr, 2698 input->flow.udp6_flow.ip.src_ip, 2699 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2700 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2701 input->flow.udp6_flow.ip.dst_ip, 2702 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2703 attributes->l4.udp.hdr = (struct udp_hdr){ 2704 .src_port = input->flow.udp6_flow.src_port, 2705 .dst_port = input->flow.udp6_flow.dst_port, 2706 }; 2707 attributes->items[1] = (struct rte_flow_item){ 2708 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2709 .spec = &attributes->l3, 2710 }; 2711 attributes->items[2] = (struct rte_flow_item){ 2712 .type = RTE_FLOW_ITEM_TYPE_UDP, 2713 .spec = &attributes->l4, 2714 }; 2715 break; 2716 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2717 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2718 .hop_limits = input->flow.tcp6_flow.ip.hop_limits, 2719 .proto = input->flow.tcp6_flow.ip.proto, 2720 }; 2721 memcpy(attributes->l3.ipv6.hdr.src_addr, 2722 input->flow.tcp6_flow.ip.src_ip, 2723 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2724 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2725 input->flow.tcp6_flow.ip.dst_ip, 2726 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2727 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2728 .src_port = input->flow.tcp6_flow.src_port, 2729 .dst_port = input->flow.tcp6_flow.dst_port, 2730 }; 2731 attributes->items[1] = (struct rte_flow_item){ 2732 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2733 .spec = &attributes->l3, 2734 }; 2735 attributes->items[2] = (struct rte_flow_item){ 2736 .type = RTE_FLOW_ITEM_TYPE_UDP, 2737 .spec = &attributes->l4, 2738 }; 2739 break; 2740 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2741 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2742 .hop_limits = input->flow.ipv6_flow.hop_limits, 2743 .proto = input->flow.ipv6_flow.proto, 2744 }; 2745 memcpy(attributes->l3.ipv6.hdr.src_addr, 2746 input->flow.ipv6_flow.src_ip, 2747 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2748 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2749 input->flow.ipv6_flow.dst_ip, 2750 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2751 attributes->items[1] = (struct rte_flow_item){ 2752 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2753 .spec = &attributes->l3, 2754 }; 2755 break; 2756 default: 2757 ERROR("invalid flow type%d", 2758 fdir_filter->input.flow_type); 2759 return ENOTSUP; 2760 } 2761 return 0; 2762 } 2763 2764 /** 2765 * Add new flow director filter and store it in list. 2766 * 2767 * @param priv 2768 * Private structure. 2769 * @param fdir_filter 2770 * Flow director filter to add. 2771 * 2772 * @return 2773 * 0 on success, errno value on failure. 2774 */ 2775 static int 2776 priv_fdir_filter_add(struct priv *priv, 2777 const struct rte_eth_fdir_filter *fdir_filter) 2778 { 2779 struct mlx5_fdir attributes = { 2780 .attr.group = 0, 2781 }; 2782 struct mlx5_flow_parse parser = { 2783 .layer = HASH_RXQ_ETH, 2784 }; 2785 struct rte_flow_error error; 2786 struct rte_flow *flow; 2787 int ret; 2788 2789 ret = priv_fdir_filter_convert(priv, fdir_filter, &attributes); 2790 if (ret) 2791 return -ret; 2792 ret = priv_flow_convert(priv, &attributes.attr, attributes.items, 2793 attributes.actions, &error, &parser); 2794 if (ret) 2795 return -ret; 2796 flow = priv_flow_create(priv, 2797 &priv->flows, 2798 &attributes.attr, 2799 attributes.items, 2800 attributes.actions, 2801 &error); 2802 if (flow) { 2803 DEBUG("FDIR created %p", (void *)flow); 2804 return 0; 2805 } 2806 return ENOTSUP; 2807 } 2808 2809 /** 2810 * Delete specific filter. 2811 * 2812 * @param priv 2813 * Private structure. 2814 * @param fdir_filter 2815 * Filter to be deleted. 2816 * 2817 * @return 2818 * 0 on success, errno value on failure. 2819 */ 2820 static int 2821 priv_fdir_filter_delete(struct priv *priv, 2822 const struct rte_eth_fdir_filter *fdir_filter) 2823 { 2824 struct mlx5_fdir attributes; 2825 struct mlx5_flow_parse parser = { 2826 .create = 1, 2827 .layer = HASH_RXQ_ETH, 2828 }; 2829 struct rte_flow_error error; 2830 struct rte_flow *flow; 2831 unsigned int i; 2832 int ret; 2833 2834 ret = priv_fdir_filter_convert(priv, fdir_filter, &attributes); 2835 if (ret) 2836 return -ret; 2837 ret = priv_flow_convert(priv, &attributes.attr, attributes.items, 2838 attributes.actions, &error, &parser); 2839 if (ret) 2840 goto exit; 2841 TAILQ_FOREACH(flow, &priv->flows, next) { 2842 struct ibv_flow_attr *attr; 2843 struct ibv_spec_header *attr_h; 2844 void *spec; 2845 struct ibv_flow_attr *flow_attr; 2846 struct ibv_spec_header *flow_h; 2847 void *flow_spec; 2848 unsigned int specs_n; 2849 2850 if (parser.drop) 2851 attr = parser.drop_q.ibv_attr; 2852 else 2853 attr = parser.queue[HASH_RXQ_ETH].ibv_attr; 2854 if (flow->drop) 2855 flow_attr = flow->drxq.ibv_attr; 2856 else 2857 flow_attr = flow->frxq[HASH_RXQ_ETH].ibv_attr; 2858 /* Compare first the attributes. */ 2859 if (memcmp(attr, flow_attr, sizeof(struct ibv_flow_attr))) 2860 continue; 2861 if (attr->num_of_specs == 0) 2862 continue; 2863 spec = (void *)((uintptr_t)attr + 2864 sizeof(struct ibv_flow_attr)); 2865 flow_spec = (void *)((uintptr_t)flow_attr + 2866 sizeof(struct ibv_flow_attr)); 2867 specs_n = RTE_MIN(attr->num_of_specs, flow_attr->num_of_specs); 2868 for (i = 0; i != specs_n; ++i) { 2869 attr_h = spec; 2870 flow_h = flow_spec; 2871 if (memcmp(spec, flow_spec, 2872 RTE_MIN(attr_h->size, flow_h->size))) 2873 continue; 2874 spec = (void *)((uintptr_t)attr + attr_h->size); 2875 flow_spec = (void *)((uintptr_t)flow_attr + 2876 flow_h->size); 2877 } 2878 /* At this point, the flow match. */ 2879 break; 2880 } 2881 if (flow) 2882 priv_flow_destroy(priv, &priv->flows, flow); 2883 exit: 2884 if (parser.drop) { 2885 rte_free(parser.drop_q.ibv_attr); 2886 } else { 2887 for (i = 0; i != hash_rxq_init_n; ++i) { 2888 if (parser.queue[i].ibv_attr) 2889 rte_free(parser.queue[i].ibv_attr); 2890 } 2891 } 2892 return -ret; 2893 } 2894 2895 /** 2896 * Update queue for specific filter. 2897 * 2898 * @param priv 2899 * Private structure. 2900 * @param fdir_filter 2901 * Filter to be updated. 2902 * 2903 * @return 2904 * 0 on success, errno value on failure. 2905 */ 2906 static int 2907 priv_fdir_filter_update(struct priv *priv, 2908 const struct rte_eth_fdir_filter *fdir_filter) 2909 { 2910 int ret; 2911 2912 ret = priv_fdir_filter_delete(priv, fdir_filter); 2913 if (ret) 2914 return ret; 2915 ret = priv_fdir_filter_add(priv, fdir_filter); 2916 return ret; 2917 } 2918 2919 /** 2920 * Flush all filters. 2921 * 2922 * @param priv 2923 * Private structure. 2924 */ 2925 static void 2926 priv_fdir_filter_flush(struct priv *priv) 2927 { 2928 priv_flow_flush(priv, &priv->flows); 2929 } 2930 2931 /** 2932 * Get flow director information. 2933 * 2934 * @param priv 2935 * Private structure. 2936 * @param[out] fdir_info 2937 * Resulting flow director information. 2938 */ 2939 static void 2940 priv_fdir_info_get(struct priv *priv, struct rte_eth_fdir_info *fdir_info) 2941 { 2942 struct rte_eth_fdir_masks *mask = 2943 &priv->dev->data->dev_conf.fdir_conf.mask; 2944 2945 fdir_info->mode = priv->dev->data->dev_conf.fdir_conf.mode; 2946 fdir_info->guarant_spc = 0; 2947 rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask)); 2948 fdir_info->max_flexpayload = 0; 2949 fdir_info->flow_types_mask[0] = 0; 2950 fdir_info->flex_payload_unit = 0; 2951 fdir_info->max_flex_payload_segment_num = 0; 2952 fdir_info->flex_payload_limit = 0; 2953 memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf)); 2954 } 2955 2956 /** 2957 * Deal with flow director operations. 2958 * 2959 * @param priv 2960 * Pointer to private structure. 2961 * @param filter_op 2962 * Operation to perform. 2963 * @param arg 2964 * Pointer to operation-specific structure. 2965 * 2966 * @return 2967 * 0 on success, errno value on failure. 2968 */ 2969 static int 2970 priv_fdir_ctrl_func(struct priv *priv, enum rte_filter_op filter_op, void *arg) 2971 { 2972 enum rte_fdir_mode fdir_mode = 2973 priv->dev->data->dev_conf.fdir_conf.mode; 2974 int ret = 0; 2975 2976 if (filter_op == RTE_ETH_FILTER_NOP) 2977 return 0; 2978 if (fdir_mode != RTE_FDIR_MODE_PERFECT && 2979 fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2980 ERROR("%p: flow director mode %d not supported", 2981 (void *)priv, fdir_mode); 2982 return EINVAL; 2983 } 2984 switch (filter_op) { 2985 case RTE_ETH_FILTER_ADD: 2986 ret = priv_fdir_filter_add(priv, arg); 2987 break; 2988 case RTE_ETH_FILTER_UPDATE: 2989 ret = priv_fdir_filter_update(priv, arg); 2990 break; 2991 case RTE_ETH_FILTER_DELETE: 2992 ret = priv_fdir_filter_delete(priv, arg); 2993 break; 2994 case RTE_ETH_FILTER_FLUSH: 2995 priv_fdir_filter_flush(priv); 2996 break; 2997 case RTE_ETH_FILTER_INFO: 2998 priv_fdir_info_get(priv, arg); 2999 break; 3000 default: 3001 DEBUG("%p: unknown operation %u", (void *)priv, 3002 filter_op); 3003 ret = EINVAL; 3004 break; 3005 } 3006 return ret; 3007 } 3008 3009 /** 3010 * Manage filter operations. 3011 * 3012 * @param dev 3013 * Pointer to Ethernet device structure. 3014 * @param filter_type 3015 * Filter type. 3016 * @param filter_op 3017 * Operation to perform. 3018 * @param arg 3019 * Pointer to operation-specific structure. 3020 * 3021 * @return 3022 * 0 on success, negative errno value on failure. 3023 */ 3024 int 3025 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 3026 enum rte_filter_type filter_type, 3027 enum rte_filter_op filter_op, 3028 void *arg) 3029 { 3030 int ret = EINVAL; 3031 struct priv *priv = dev->data->dev_private; 3032 3033 switch (filter_type) { 3034 case RTE_ETH_FILTER_GENERIC: 3035 if (filter_op != RTE_ETH_FILTER_GET) 3036 return -EINVAL; 3037 *(const void **)arg = &mlx5_flow_ops; 3038 return 0; 3039 case RTE_ETH_FILTER_FDIR: 3040 priv_lock(priv); 3041 ret = priv_fdir_ctrl_func(priv, filter_op, arg); 3042 priv_unlock(priv); 3043 break; 3044 default: 3045 ERROR("%p: filter type (%d) not supported", 3046 (void *)dev, filter_type); 3047 break; 3048 } 3049 return -ret; 3050 } 3051