1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox. 4 */ 5 6 #include <sys/queue.h> 7 #include <string.h> 8 9 /* Verbs header. */ 10 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */ 11 #ifdef PEDANTIC 12 #pragma GCC diagnostic ignored "-Wpedantic" 13 #endif 14 #include <infiniband/verbs.h> 15 #ifdef PEDANTIC 16 #pragma GCC diagnostic error "-Wpedantic" 17 #endif 18 19 #include <rte_ethdev_driver.h> 20 #include <rte_flow.h> 21 #include <rte_flow_driver.h> 22 #include <rte_malloc.h> 23 #include <rte_ip.h> 24 25 #include "mlx5.h" 26 #include "mlx5_defs.h" 27 #include "mlx5_prm.h" 28 #include "mlx5_glue.h" 29 30 /* Define minimal priority for control plane flows. */ 31 #define MLX5_CTRL_FLOW_PRIORITY 4 32 33 /* Internet Protocol versions. */ 34 #define MLX5_IPV4 4 35 #define MLX5_IPV6 6 36 37 #ifndef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 38 struct ibv_flow_spec_counter_action { 39 int dummy; 40 }; 41 #endif 42 43 /* Dev ops structure defined in mlx5.c */ 44 extern const struct eth_dev_ops mlx5_dev_ops; 45 extern const struct eth_dev_ops mlx5_dev_ops_isolate; 46 47 static int 48 mlx5_flow_create_eth(const struct rte_flow_item *item, 49 const void *default_mask, 50 void *data); 51 52 static int 53 mlx5_flow_create_vlan(const struct rte_flow_item *item, 54 const void *default_mask, 55 void *data); 56 57 static int 58 mlx5_flow_create_ipv4(const struct rte_flow_item *item, 59 const void *default_mask, 60 void *data); 61 62 static int 63 mlx5_flow_create_ipv6(const struct rte_flow_item *item, 64 const void *default_mask, 65 void *data); 66 67 static int 68 mlx5_flow_create_udp(const struct rte_flow_item *item, 69 const void *default_mask, 70 void *data); 71 72 static int 73 mlx5_flow_create_tcp(const struct rte_flow_item *item, 74 const void *default_mask, 75 void *data); 76 77 static int 78 mlx5_flow_create_vxlan(const struct rte_flow_item *item, 79 const void *default_mask, 80 void *data); 81 82 struct mlx5_flow_parse; 83 84 static void 85 mlx5_flow_create_copy(struct mlx5_flow_parse *parser, void *src, 86 unsigned int size); 87 88 static int 89 mlx5_flow_create_flag_mark(struct mlx5_flow_parse *parser, uint32_t mark_id); 90 91 static int 92 mlx5_flow_create_count(struct priv *priv, struct mlx5_flow_parse *parser); 93 94 /* Hash RX queue types. */ 95 enum hash_rxq_type { 96 HASH_RXQ_TCPV4, 97 HASH_RXQ_UDPV4, 98 HASH_RXQ_IPV4, 99 HASH_RXQ_TCPV6, 100 HASH_RXQ_UDPV6, 101 HASH_RXQ_IPV6, 102 HASH_RXQ_ETH, 103 }; 104 105 /* Initialization data for hash RX queue. */ 106 struct hash_rxq_init { 107 uint64_t hash_fields; /* Fields that participate in the hash. */ 108 uint64_t dpdk_rss_hf; /* Matching DPDK RSS hash fields. */ 109 unsigned int flow_priority; /* Flow priority to use. */ 110 unsigned int ip_version; /* Internet protocol. */ 111 }; 112 113 /* Initialization data for hash RX queues. */ 114 const struct hash_rxq_init hash_rxq_init[] = { 115 [HASH_RXQ_TCPV4] = { 116 .hash_fields = (IBV_RX_HASH_SRC_IPV4 | 117 IBV_RX_HASH_DST_IPV4 | 118 IBV_RX_HASH_SRC_PORT_TCP | 119 IBV_RX_HASH_DST_PORT_TCP), 120 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV4_TCP, 121 .flow_priority = 0, 122 .ip_version = MLX5_IPV4, 123 }, 124 [HASH_RXQ_UDPV4] = { 125 .hash_fields = (IBV_RX_HASH_SRC_IPV4 | 126 IBV_RX_HASH_DST_IPV4 | 127 IBV_RX_HASH_SRC_PORT_UDP | 128 IBV_RX_HASH_DST_PORT_UDP), 129 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV4_UDP, 130 .flow_priority = 0, 131 .ip_version = MLX5_IPV4, 132 }, 133 [HASH_RXQ_IPV4] = { 134 .hash_fields = (IBV_RX_HASH_SRC_IPV4 | 135 IBV_RX_HASH_DST_IPV4), 136 .dpdk_rss_hf = (ETH_RSS_IPV4 | 137 ETH_RSS_FRAG_IPV4), 138 .flow_priority = 1, 139 .ip_version = MLX5_IPV4, 140 }, 141 [HASH_RXQ_TCPV6] = { 142 .hash_fields = (IBV_RX_HASH_SRC_IPV6 | 143 IBV_RX_HASH_DST_IPV6 | 144 IBV_RX_HASH_SRC_PORT_TCP | 145 IBV_RX_HASH_DST_PORT_TCP), 146 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV6_TCP, 147 .flow_priority = 0, 148 .ip_version = MLX5_IPV6, 149 }, 150 [HASH_RXQ_UDPV6] = { 151 .hash_fields = (IBV_RX_HASH_SRC_IPV6 | 152 IBV_RX_HASH_DST_IPV6 | 153 IBV_RX_HASH_SRC_PORT_UDP | 154 IBV_RX_HASH_DST_PORT_UDP), 155 .dpdk_rss_hf = ETH_RSS_NONFRAG_IPV6_UDP, 156 .flow_priority = 0, 157 .ip_version = MLX5_IPV6, 158 }, 159 [HASH_RXQ_IPV6] = { 160 .hash_fields = (IBV_RX_HASH_SRC_IPV6 | 161 IBV_RX_HASH_DST_IPV6), 162 .dpdk_rss_hf = (ETH_RSS_IPV6 | 163 ETH_RSS_FRAG_IPV6), 164 .flow_priority = 1, 165 .ip_version = MLX5_IPV6, 166 }, 167 [HASH_RXQ_ETH] = { 168 .hash_fields = 0, 169 .dpdk_rss_hf = 0, 170 .flow_priority = 2, 171 }, 172 }; 173 174 /* Number of entries in hash_rxq_init[]. */ 175 const unsigned int hash_rxq_init_n = RTE_DIM(hash_rxq_init); 176 177 /** Structure for holding counter stats. */ 178 struct mlx5_flow_counter_stats { 179 uint64_t hits; /**< Number of packets matched by the rule. */ 180 uint64_t bytes; /**< Number of bytes matched by the rule. */ 181 }; 182 183 /** Structure for Drop queue. */ 184 struct mlx5_hrxq_drop { 185 struct ibv_rwq_ind_table *ind_table; /**< Indirection table. */ 186 struct ibv_qp *qp; /**< Verbs queue pair. */ 187 struct ibv_wq *wq; /**< Verbs work queue. */ 188 struct ibv_cq *cq; /**< Verbs completion queue. */ 189 }; 190 191 /* Flows structures. */ 192 struct mlx5_flow { 193 uint64_t hash_fields; /**< Fields that participate in the hash. */ 194 struct ibv_flow_attr *ibv_attr; /**< Pointer to Verbs attributes. */ 195 struct ibv_flow *ibv_flow; /**< Verbs flow. */ 196 struct mlx5_hrxq *hrxq; /**< Hash Rx queues. */ 197 }; 198 199 /* Drop flows structures. */ 200 struct mlx5_flow_drop { 201 struct ibv_flow_attr *ibv_attr; /**< Pointer to Verbs attributes. */ 202 struct ibv_flow *ibv_flow; /**< Verbs flow. */ 203 }; 204 205 struct rte_flow { 206 TAILQ_ENTRY(rte_flow) next; /**< Pointer to the next flow structure. */ 207 uint32_t mark:1; /**< Set if the flow is marked. */ 208 uint32_t drop:1; /**< Drop queue. */ 209 uint16_t queues_n; /**< Number of entries in queue[]. */ 210 uint16_t (*queues)[]; /**< Queues indexes to use. */ 211 struct rte_eth_rss_conf rss_conf; /**< RSS configuration */ 212 uint8_t rss_key[40]; /**< copy of the RSS key. */ 213 struct ibv_counter_set *cs; /**< Holds the counters for the rule. */ 214 struct mlx5_flow_counter_stats counter_stats;/**<The counter stats. */ 215 struct mlx5_flow frxq[RTE_DIM(hash_rxq_init)]; 216 /**< Flow with Rx queue. */ 217 }; 218 219 /** Static initializer for items. */ 220 #define ITEMS(...) \ 221 (const enum rte_flow_item_type []){ \ 222 __VA_ARGS__, RTE_FLOW_ITEM_TYPE_END, \ 223 } 224 225 /** Structure to generate a simple graph of layers supported by the NIC. */ 226 struct mlx5_flow_items { 227 /** List of possible actions for these items. */ 228 const enum rte_flow_action_type *const actions; 229 /** Bit-masks corresponding to the possibilities for the item. */ 230 const void *mask; 231 /** 232 * Default bit-masks to use when item->mask is not provided. When 233 * \default_mask is also NULL, the full supported bit-mask (\mask) is 234 * used instead. 235 */ 236 const void *default_mask; 237 /** Bit-masks size in bytes. */ 238 const unsigned int mask_sz; 239 /** 240 * Conversion function from rte_flow to NIC specific flow. 241 * 242 * @param item 243 * rte_flow item to convert. 244 * @param default_mask 245 * Default bit-masks to use when item->mask is not provided. 246 * @param data 247 * Internal structure to store the conversion. 248 * 249 * @return 250 * 0 on success, negative value otherwise. 251 */ 252 int (*convert)(const struct rte_flow_item *item, 253 const void *default_mask, 254 void *data); 255 /** Size in bytes of the destination structure. */ 256 const unsigned int dst_sz; 257 /** List of possible following items. */ 258 const enum rte_flow_item_type *const items; 259 }; 260 261 /** Valid action for this PMD. */ 262 static const enum rte_flow_action_type valid_actions[] = { 263 RTE_FLOW_ACTION_TYPE_DROP, 264 RTE_FLOW_ACTION_TYPE_QUEUE, 265 RTE_FLOW_ACTION_TYPE_MARK, 266 RTE_FLOW_ACTION_TYPE_FLAG, 267 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 268 RTE_FLOW_ACTION_TYPE_COUNT, 269 #endif 270 RTE_FLOW_ACTION_TYPE_END, 271 }; 272 273 /** Graph of supported items and associated actions. */ 274 static const struct mlx5_flow_items mlx5_flow_items[] = { 275 [RTE_FLOW_ITEM_TYPE_END] = { 276 .items = ITEMS(RTE_FLOW_ITEM_TYPE_ETH, 277 RTE_FLOW_ITEM_TYPE_VXLAN), 278 }, 279 [RTE_FLOW_ITEM_TYPE_ETH] = { 280 .items = ITEMS(RTE_FLOW_ITEM_TYPE_VLAN, 281 RTE_FLOW_ITEM_TYPE_IPV4, 282 RTE_FLOW_ITEM_TYPE_IPV6), 283 .actions = valid_actions, 284 .mask = &(const struct rte_flow_item_eth){ 285 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 286 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 287 .type = -1, 288 }, 289 .default_mask = &rte_flow_item_eth_mask, 290 .mask_sz = sizeof(struct rte_flow_item_eth), 291 .convert = mlx5_flow_create_eth, 292 .dst_sz = sizeof(struct ibv_flow_spec_eth), 293 }, 294 [RTE_FLOW_ITEM_TYPE_VLAN] = { 295 .items = ITEMS(RTE_FLOW_ITEM_TYPE_IPV4, 296 RTE_FLOW_ITEM_TYPE_IPV6), 297 .actions = valid_actions, 298 .mask = &(const struct rte_flow_item_vlan){ 299 .tci = -1, 300 }, 301 .default_mask = &rte_flow_item_vlan_mask, 302 .mask_sz = sizeof(struct rte_flow_item_vlan), 303 .convert = mlx5_flow_create_vlan, 304 .dst_sz = 0, 305 }, 306 [RTE_FLOW_ITEM_TYPE_IPV4] = { 307 .items = ITEMS(RTE_FLOW_ITEM_TYPE_UDP, 308 RTE_FLOW_ITEM_TYPE_TCP), 309 .actions = valid_actions, 310 .mask = &(const struct rte_flow_item_ipv4){ 311 .hdr = { 312 .src_addr = -1, 313 .dst_addr = -1, 314 .type_of_service = -1, 315 .next_proto_id = -1, 316 .time_to_live = -1, 317 }, 318 }, 319 .default_mask = &rte_flow_item_ipv4_mask, 320 .mask_sz = sizeof(struct rte_flow_item_ipv4), 321 .convert = mlx5_flow_create_ipv4, 322 .dst_sz = sizeof(struct ibv_flow_spec_ipv4_ext), 323 }, 324 [RTE_FLOW_ITEM_TYPE_IPV6] = { 325 .items = ITEMS(RTE_FLOW_ITEM_TYPE_UDP, 326 RTE_FLOW_ITEM_TYPE_TCP), 327 .actions = valid_actions, 328 .mask = &(const struct rte_flow_item_ipv6){ 329 .hdr = { 330 .src_addr = { 331 0xff, 0xff, 0xff, 0xff, 332 0xff, 0xff, 0xff, 0xff, 333 0xff, 0xff, 0xff, 0xff, 334 0xff, 0xff, 0xff, 0xff, 335 }, 336 .dst_addr = { 337 0xff, 0xff, 0xff, 0xff, 338 0xff, 0xff, 0xff, 0xff, 339 0xff, 0xff, 0xff, 0xff, 340 0xff, 0xff, 0xff, 0xff, 341 }, 342 .vtc_flow = -1, 343 .proto = -1, 344 .hop_limits = -1, 345 }, 346 }, 347 .default_mask = &rte_flow_item_ipv6_mask, 348 .mask_sz = sizeof(struct rte_flow_item_ipv6), 349 .convert = mlx5_flow_create_ipv6, 350 .dst_sz = sizeof(struct ibv_flow_spec_ipv6), 351 }, 352 [RTE_FLOW_ITEM_TYPE_UDP] = { 353 .items = ITEMS(RTE_FLOW_ITEM_TYPE_VXLAN), 354 .actions = valid_actions, 355 .mask = &(const struct rte_flow_item_udp){ 356 .hdr = { 357 .src_port = -1, 358 .dst_port = -1, 359 }, 360 }, 361 .default_mask = &rte_flow_item_udp_mask, 362 .mask_sz = sizeof(struct rte_flow_item_udp), 363 .convert = mlx5_flow_create_udp, 364 .dst_sz = sizeof(struct ibv_flow_spec_tcp_udp), 365 }, 366 [RTE_FLOW_ITEM_TYPE_TCP] = { 367 .actions = valid_actions, 368 .mask = &(const struct rte_flow_item_tcp){ 369 .hdr = { 370 .src_port = -1, 371 .dst_port = -1, 372 }, 373 }, 374 .default_mask = &rte_flow_item_tcp_mask, 375 .mask_sz = sizeof(struct rte_flow_item_tcp), 376 .convert = mlx5_flow_create_tcp, 377 .dst_sz = sizeof(struct ibv_flow_spec_tcp_udp), 378 }, 379 [RTE_FLOW_ITEM_TYPE_VXLAN] = { 380 .items = ITEMS(RTE_FLOW_ITEM_TYPE_ETH), 381 .actions = valid_actions, 382 .mask = &(const struct rte_flow_item_vxlan){ 383 .vni = "\xff\xff\xff", 384 }, 385 .default_mask = &rte_flow_item_vxlan_mask, 386 .mask_sz = sizeof(struct rte_flow_item_vxlan), 387 .convert = mlx5_flow_create_vxlan, 388 .dst_sz = sizeof(struct ibv_flow_spec_tunnel), 389 }, 390 }; 391 392 /** Structure to pass to the conversion function. */ 393 struct mlx5_flow_parse { 394 uint32_t inner; /**< Set once VXLAN is encountered. */ 395 uint32_t allmulti:1; /**< Set once allmulti dst MAC is encountered. */ 396 uint32_t create:1; 397 /**< Whether resources should remain after a validate. */ 398 uint32_t drop:1; /**< Target is a drop queue. */ 399 uint32_t mark:1; /**< Mark is present in the flow. */ 400 uint32_t count:1; /**< Count is present in the flow. */ 401 uint32_t mark_id; /**< Mark identifier. */ 402 uint16_t queues[RTE_MAX_QUEUES_PER_PORT]; /**< Queues indexes to use. */ 403 uint16_t queues_n; /**< Number of entries in queue[]. */ 404 struct rte_eth_rss_conf rss_conf; /**< RSS configuration */ 405 uint8_t rss_key[40]; /**< copy of the RSS key. */ 406 enum hash_rxq_type layer; /**< Last pattern layer detected. */ 407 struct ibv_counter_set *cs; /**< Holds the counter set for the rule */ 408 struct { 409 struct ibv_flow_attr *ibv_attr; 410 /**< Pointer to Verbs attributes. */ 411 unsigned int offset; 412 /**< Current position or total size of the attribute. */ 413 } queue[RTE_DIM(hash_rxq_init)]; 414 }; 415 416 static const struct rte_flow_ops mlx5_flow_ops = { 417 .validate = mlx5_flow_validate, 418 .create = mlx5_flow_create, 419 .destroy = mlx5_flow_destroy, 420 .flush = mlx5_flow_flush, 421 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 422 .query = mlx5_flow_query, 423 #else 424 .query = NULL, 425 #endif 426 .isolate = mlx5_flow_isolate, 427 }; 428 429 /* Convert FDIR request to Generic flow. */ 430 struct mlx5_fdir { 431 struct rte_flow_attr attr; 432 struct rte_flow_action actions[2]; 433 struct rte_flow_item items[4]; 434 struct rte_flow_item_eth l2; 435 struct rte_flow_item_eth l2_mask; 436 union { 437 struct rte_flow_item_ipv4 ipv4; 438 struct rte_flow_item_ipv6 ipv6; 439 } l3; 440 union { 441 struct rte_flow_item_udp udp; 442 struct rte_flow_item_tcp tcp; 443 } l4; 444 struct rte_flow_action_queue queue; 445 }; 446 447 /* Verbs specification header. */ 448 struct ibv_spec_header { 449 enum ibv_flow_spec_type type; 450 uint16_t size; 451 }; 452 453 /** 454 * Check support for a given item. 455 * 456 * @param item[in] 457 * Item specification. 458 * @param mask[in] 459 * Bit-masks covering supported fields to compare with spec, last and mask in 460 * \item. 461 * @param size 462 * Bit-Mask size in bytes. 463 * 464 * @return 465 * 0 on success. 466 */ 467 static int 468 mlx5_flow_item_validate(const struct rte_flow_item *item, 469 const uint8_t *mask, unsigned int size) 470 { 471 int ret = 0; 472 473 if (!item->spec && (item->mask || item->last)) 474 return -1; 475 if (item->spec && !item->mask) { 476 unsigned int i; 477 const uint8_t *spec = item->spec; 478 479 for (i = 0; i < size; ++i) 480 if ((spec[i] | mask[i]) != mask[i]) 481 return -1; 482 } 483 if (item->last && !item->mask) { 484 unsigned int i; 485 const uint8_t *spec = item->last; 486 487 for (i = 0; i < size; ++i) 488 if ((spec[i] | mask[i]) != mask[i]) 489 return -1; 490 } 491 if (item->mask) { 492 unsigned int i; 493 const uint8_t *spec = item->spec; 494 495 for (i = 0; i < size; ++i) 496 if ((spec[i] | mask[i]) != mask[i]) 497 return -1; 498 } 499 if (item->spec && item->last) { 500 uint8_t spec[size]; 501 uint8_t last[size]; 502 const uint8_t *apply = mask; 503 unsigned int i; 504 505 if (item->mask) 506 apply = item->mask; 507 for (i = 0; i < size; ++i) { 508 spec[i] = ((const uint8_t *)item->spec)[i] & apply[i]; 509 last[i] = ((const uint8_t *)item->last)[i] & apply[i]; 510 } 511 ret = memcmp(spec, last, size); 512 } 513 return ret; 514 } 515 516 /** 517 * Copy the RSS configuration from the user ones. 518 * 519 * @param priv 520 * Pointer to private structure. 521 * @param parser 522 * Internal parser structure. 523 * @param rss_conf 524 * User RSS configuration to save. 525 * 526 * @return 527 * 0 on success, errno value on failure. 528 */ 529 static int 530 priv_flow_convert_rss_conf(struct priv *priv, 531 struct mlx5_flow_parse *parser, 532 const struct rte_eth_rss_conf *rss_conf) 533 { 534 const struct rte_eth_rss_conf *rss; 535 536 if (rss_conf) { 537 if (rss_conf->rss_hf & MLX5_RSS_HF_MASK) 538 return EINVAL; 539 rss = rss_conf; 540 } else { 541 rss = &priv->rss_conf; 542 } 543 if (rss->rss_key_len > 40) 544 return EINVAL; 545 parser->rss_conf.rss_key_len = rss->rss_key_len; 546 parser->rss_conf.rss_hf = rss->rss_hf; 547 memcpy(parser->rss_key, rss->rss_key, rss->rss_key_len); 548 parser->rss_conf.rss_key = parser->rss_key; 549 return 0; 550 } 551 552 /** 553 * Extract attribute to the parser. 554 * 555 * @param priv 556 * Pointer to private structure. 557 * @param[in] attr 558 * Flow rule attributes. 559 * @param[out] error 560 * Perform verbose error reporting if not NULL. 561 * @param[in, out] parser 562 * Internal parser structure. 563 * 564 * @return 565 * 0 on success, a negative errno value otherwise and rte_errno is set. 566 */ 567 static int 568 priv_flow_convert_attributes(struct priv *priv, 569 const struct rte_flow_attr *attr, 570 struct rte_flow_error *error, 571 struct mlx5_flow_parse *parser) 572 { 573 (void)priv; 574 (void)parser; 575 if (attr->group) { 576 rte_flow_error_set(error, ENOTSUP, 577 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 578 NULL, 579 "groups are not supported"); 580 return -rte_errno; 581 } 582 if (attr->priority && attr->priority != MLX5_CTRL_FLOW_PRIORITY) { 583 rte_flow_error_set(error, ENOTSUP, 584 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 585 NULL, 586 "priorities are not supported"); 587 return -rte_errno; 588 } 589 if (attr->egress) { 590 rte_flow_error_set(error, ENOTSUP, 591 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, 592 NULL, 593 "egress is not supported"); 594 return -rte_errno; 595 } 596 if (!attr->ingress) { 597 rte_flow_error_set(error, ENOTSUP, 598 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 599 NULL, 600 "only ingress is supported"); 601 return -rte_errno; 602 } 603 return 0; 604 } 605 606 /** 607 * Extract actions request to the parser. 608 * 609 * @param priv 610 * Pointer to private structure. 611 * @param[in] actions 612 * Associated actions (list terminated by the END action). 613 * @param[out] error 614 * Perform verbose error reporting if not NULL. 615 * @param[in, out] parser 616 * Internal parser structure. 617 * 618 * @return 619 * 0 on success, a negative errno value otherwise and rte_errno is set. 620 */ 621 static int 622 priv_flow_convert_actions(struct priv *priv, 623 const struct rte_flow_action actions[], 624 struct rte_flow_error *error, 625 struct mlx5_flow_parse *parser) 626 { 627 /* 628 * Add default RSS configuration necessary for Verbs to create QP even 629 * if no RSS is necessary. 630 */ 631 priv_flow_convert_rss_conf(priv, parser, 632 (const struct rte_eth_rss_conf *) 633 &priv->rss_conf); 634 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; ++actions) { 635 if (actions->type == RTE_FLOW_ACTION_TYPE_VOID) { 636 continue; 637 } else if (actions->type == RTE_FLOW_ACTION_TYPE_DROP) { 638 parser->drop = 1; 639 } else if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE) { 640 const struct rte_flow_action_queue *queue = 641 (const struct rte_flow_action_queue *) 642 actions->conf; 643 uint16_t n; 644 uint16_t found = 0; 645 646 if (!queue || (queue->index > (priv->rxqs_n - 1))) 647 goto exit_action_not_supported; 648 for (n = 0; n < parser->queues_n; ++n) { 649 if (parser->queues[n] == queue->index) { 650 found = 1; 651 break; 652 } 653 } 654 if (parser->queues_n > 1 && !found) { 655 rte_flow_error_set(error, ENOTSUP, 656 RTE_FLOW_ERROR_TYPE_ACTION, 657 actions, 658 "queue action not in RSS queues"); 659 return -rte_errno; 660 } 661 if (!found) { 662 parser->queues_n = 1; 663 parser->queues[0] = queue->index; 664 } 665 } else if (actions->type == RTE_FLOW_ACTION_TYPE_RSS) { 666 const struct rte_flow_action_rss *rss = 667 (const struct rte_flow_action_rss *) 668 actions->conf; 669 uint16_t n; 670 671 if (!rss || !rss->num) { 672 rte_flow_error_set(error, EINVAL, 673 RTE_FLOW_ERROR_TYPE_ACTION, 674 actions, 675 "no valid queues"); 676 return -rte_errno; 677 } 678 if (parser->queues_n == 1) { 679 uint16_t found = 0; 680 681 assert(parser->queues_n); 682 for (n = 0; n < rss->num; ++n) { 683 if (parser->queues[0] == 684 rss->queue[n]) { 685 found = 1; 686 break; 687 } 688 } 689 if (!found) { 690 rte_flow_error_set(error, ENOTSUP, 691 RTE_FLOW_ERROR_TYPE_ACTION, 692 actions, 693 "queue action not in RSS" 694 " queues"); 695 return -rte_errno; 696 } 697 } 698 for (n = 0; n < rss->num; ++n) { 699 if (rss->queue[n] >= priv->rxqs_n) { 700 rte_flow_error_set(error, EINVAL, 701 RTE_FLOW_ERROR_TYPE_ACTION, 702 actions, 703 "queue id > number of" 704 " queues"); 705 return -rte_errno; 706 } 707 } 708 for (n = 0; n < rss->num; ++n) 709 parser->queues[n] = rss->queue[n]; 710 parser->queues_n = rss->num; 711 if (priv_flow_convert_rss_conf(priv, parser, 712 rss->rss_conf)) { 713 rte_flow_error_set(error, EINVAL, 714 RTE_FLOW_ERROR_TYPE_ACTION, 715 actions, 716 "wrong RSS configuration"); 717 return -rte_errno; 718 } 719 } else if (actions->type == RTE_FLOW_ACTION_TYPE_MARK) { 720 const struct rte_flow_action_mark *mark = 721 (const struct rte_flow_action_mark *) 722 actions->conf; 723 724 if (!mark) { 725 rte_flow_error_set(error, EINVAL, 726 RTE_FLOW_ERROR_TYPE_ACTION, 727 actions, 728 "mark must be defined"); 729 return -rte_errno; 730 } else if (mark->id >= MLX5_FLOW_MARK_MAX) { 731 rte_flow_error_set(error, ENOTSUP, 732 RTE_FLOW_ERROR_TYPE_ACTION, 733 actions, 734 "mark must be between 0" 735 " and 16777199"); 736 return -rte_errno; 737 } 738 parser->mark = 1; 739 parser->mark_id = mark->id; 740 } else if (actions->type == RTE_FLOW_ACTION_TYPE_FLAG) { 741 parser->mark = 1; 742 } else if (actions->type == RTE_FLOW_ACTION_TYPE_COUNT && 743 priv->config.flow_counter_en) { 744 parser->count = 1; 745 } else { 746 goto exit_action_not_supported; 747 } 748 } 749 if (parser->drop && parser->mark) 750 parser->mark = 0; 751 if (!parser->queues_n && !parser->drop) { 752 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE, 753 NULL, "no valid action"); 754 return -rte_errno; 755 } 756 return 0; 757 exit_action_not_supported: 758 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 759 actions, "action not supported"); 760 return -rte_errno; 761 } 762 763 /** 764 * Validate items. 765 * 766 * @param priv 767 * Pointer to private structure. 768 * @param[in] items 769 * Pattern specification (list terminated by the END pattern item). 770 * @param[out] error 771 * Perform verbose error reporting if not NULL. 772 * @param[in, out] parser 773 * Internal parser structure. 774 * 775 * @return 776 * 0 on success, a negative errno value otherwise and rte_errno is set. 777 */ 778 static int 779 priv_flow_convert_items_validate(struct priv *priv, 780 const struct rte_flow_item items[], 781 struct rte_flow_error *error, 782 struct mlx5_flow_parse *parser) 783 { 784 const struct mlx5_flow_items *cur_item = mlx5_flow_items; 785 unsigned int i; 786 787 (void)priv; 788 /* Initialise the offsets to start after verbs attribute. */ 789 for (i = 0; i != hash_rxq_init_n; ++i) 790 parser->queue[i].offset = sizeof(struct ibv_flow_attr); 791 for (; items->type != RTE_FLOW_ITEM_TYPE_END; ++items) { 792 const struct mlx5_flow_items *token = NULL; 793 unsigned int n; 794 int err; 795 796 if (items->type == RTE_FLOW_ITEM_TYPE_VOID) 797 continue; 798 for (i = 0; 799 cur_item->items && 800 cur_item->items[i] != RTE_FLOW_ITEM_TYPE_END; 801 ++i) { 802 if (cur_item->items[i] == items->type) { 803 token = &mlx5_flow_items[items->type]; 804 break; 805 } 806 } 807 if (!token) 808 goto exit_item_not_supported; 809 cur_item = token; 810 err = mlx5_flow_item_validate(items, 811 (const uint8_t *)cur_item->mask, 812 cur_item->mask_sz); 813 if (err) 814 goto exit_item_not_supported; 815 if (items->type == RTE_FLOW_ITEM_TYPE_VXLAN) { 816 if (parser->inner) { 817 rte_flow_error_set(error, ENOTSUP, 818 RTE_FLOW_ERROR_TYPE_ITEM, 819 items, 820 "cannot recognize multiple" 821 " VXLAN encapsulations"); 822 return -rte_errno; 823 } 824 parser->inner = IBV_FLOW_SPEC_INNER; 825 } 826 if (parser->drop || parser->queues_n == 1) { 827 parser->queue[HASH_RXQ_ETH].offset += cur_item->dst_sz; 828 } else { 829 for (n = 0; n != hash_rxq_init_n; ++n) 830 parser->queue[n].offset += cur_item->dst_sz; 831 } 832 } 833 if (parser->drop) { 834 parser->queue[HASH_RXQ_ETH].offset += 835 sizeof(struct ibv_flow_spec_action_drop); 836 } 837 if (parser->mark) { 838 for (i = 0; i != hash_rxq_init_n; ++i) 839 parser->queue[i].offset += 840 sizeof(struct ibv_flow_spec_action_tag); 841 } 842 if (parser->count) { 843 unsigned int size = sizeof(struct ibv_flow_spec_counter_action); 844 845 for (i = 0; i != hash_rxq_init_n; ++i) 846 parser->queue[i].offset += size; 847 } 848 return 0; 849 exit_item_not_supported: 850 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, 851 items, "item not supported"); 852 return -rte_errno; 853 } 854 855 /** 856 * Allocate memory space to store verbs flow attributes. 857 * 858 * @param priv 859 * Pointer to private structure. 860 * @param[in] priority 861 * Flow priority. 862 * @param[in] size 863 * Amount of byte to allocate. 864 * @param[out] error 865 * Perform verbose error reporting if not NULL. 866 * 867 * @return 868 * A verbs flow attribute on success, NULL otherwise. 869 */ 870 static struct ibv_flow_attr* 871 priv_flow_convert_allocate(struct priv *priv, 872 unsigned int priority, 873 unsigned int size, 874 struct rte_flow_error *error) 875 { 876 struct ibv_flow_attr *ibv_attr; 877 878 (void)priv; 879 ibv_attr = rte_calloc(__func__, 1, size, 0); 880 if (!ibv_attr) { 881 rte_flow_error_set(error, ENOMEM, 882 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 883 NULL, 884 "cannot allocate verbs spec attributes."); 885 return NULL; 886 } 887 ibv_attr->priority = priority; 888 return ibv_attr; 889 } 890 891 /** 892 * Finalise verbs flow attributes. 893 * 894 * @param priv 895 * Pointer to private structure. 896 * @param[in, out] parser 897 * Internal parser structure. 898 */ 899 static void 900 priv_flow_convert_finalise(struct priv *priv, struct mlx5_flow_parse *parser) 901 { 902 const unsigned int ipv4 = 903 hash_rxq_init[parser->layer].ip_version == MLX5_IPV4; 904 const enum hash_rxq_type hmin = ipv4 ? HASH_RXQ_TCPV4 : HASH_RXQ_TCPV6; 905 const enum hash_rxq_type hmax = ipv4 ? HASH_RXQ_IPV4 : HASH_RXQ_IPV6; 906 const enum hash_rxq_type ohmin = ipv4 ? HASH_RXQ_TCPV6 : HASH_RXQ_TCPV4; 907 const enum hash_rxq_type ohmax = ipv4 ? HASH_RXQ_IPV6 : HASH_RXQ_IPV4; 908 const enum hash_rxq_type ip = ipv4 ? HASH_RXQ_IPV4 : HASH_RXQ_IPV6; 909 unsigned int i; 910 911 (void)priv; 912 if (parser->layer == HASH_RXQ_ETH) { 913 goto fill; 914 } else { 915 /* 916 * This layer becomes useless as the pattern define under 917 * layers. 918 */ 919 rte_free(parser->queue[HASH_RXQ_ETH].ibv_attr); 920 parser->queue[HASH_RXQ_ETH].ibv_attr = NULL; 921 } 922 /* Remove opposite kind of layer e.g. IPv6 if the pattern is IPv4. */ 923 for (i = ohmin; i != (ohmax + 1); ++i) { 924 if (!parser->queue[i].ibv_attr) 925 continue; 926 rte_free(parser->queue[i].ibv_attr); 927 parser->queue[i].ibv_attr = NULL; 928 } 929 /* Remove impossible flow according to the RSS configuration. */ 930 if (hash_rxq_init[parser->layer].dpdk_rss_hf & 931 parser->rss_conf.rss_hf) { 932 /* Remove any other flow. */ 933 for (i = hmin; i != (hmax + 1); ++i) { 934 if ((i == parser->layer) || 935 (!parser->queue[i].ibv_attr)) 936 continue; 937 rte_free(parser->queue[i].ibv_attr); 938 parser->queue[i].ibv_attr = NULL; 939 } 940 } else if (!parser->queue[ip].ibv_attr) { 941 /* no RSS possible with the current configuration. */ 942 parser->queues_n = 1; 943 return; 944 } 945 fill: 946 /* 947 * Fill missing layers in verbs specifications, or compute the correct 948 * offset to allocate the memory space for the attributes and 949 * specifications. 950 */ 951 for (i = 0; i != hash_rxq_init_n - 1; ++i) { 952 union { 953 struct ibv_flow_spec_ipv4_ext ipv4; 954 struct ibv_flow_spec_ipv6 ipv6; 955 struct ibv_flow_spec_tcp_udp udp_tcp; 956 } specs; 957 void *dst; 958 uint16_t size; 959 960 if (i == parser->layer) 961 continue; 962 if (parser->layer == HASH_RXQ_ETH) { 963 if (hash_rxq_init[i].ip_version == MLX5_IPV4) { 964 size = sizeof(struct ibv_flow_spec_ipv4_ext); 965 specs.ipv4 = (struct ibv_flow_spec_ipv4_ext){ 966 .type = IBV_FLOW_SPEC_IPV4_EXT, 967 .size = size, 968 }; 969 } else { 970 size = sizeof(struct ibv_flow_spec_ipv6); 971 specs.ipv6 = (struct ibv_flow_spec_ipv6){ 972 .type = IBV_FLOW_SPEC_IPV6, 973 .size = size, 974 }; 975 } 976 if (parser->queue[i].ibv_attr) { 977 dst = (void *)((uintptr_t) 978 parser->queue[i].ibv_attr + 979 parser->queue[i].offset); 980 memcpy(dst, &specs, size); 981 ++parser->queue[i].ibv_attr->num_of_specs; 982 } 983 parser->queue[i].offset += size; 984 } 985 if ((i == HASH_RXQ_UDPV4) || (i == HASH_RXQ_TCPV4) || 986 (i == HASH_RXQ_UDPV6) || (i == HASH_RXQ_TCPV6)) { 987 size = sizeof(struct ibv_flow_spec_tcp_udp); 988 specs.udp_tcp = (struct ibv_flow_spec_tcp_udp) { 989 .type = ((i == HASH_RXQ_UDPV4 || 990 i == HASH_RXQ_UDPV6) ? 991 IBV_FLOW_SPEC_UDP : 992 IBV_FLOW_SPEC_TCP), 993 .size = size, 994 }; 995 if (parser->queue[i].ibv_attr) { 996 dst = (void *)((uintptr_t) 997 parser->queue[i].ibv_attr + 998 parser->queue[i].offset); 999 memcpy(dst, &specs, size); 1000 ++parser->queue[i].ibv_attr->num_of_specs; 1001 } 1002 parser->queue[i].offset += size; 1003 } 1004 } 1005 } 1006 1007 /** 1008 * Validate and convert a flow supported by the NIC. 1009 * 1010 * @param priv 1011 * Pointer to private structure. 1012 * @param[in] attr 1013 * Flow rule attributes. 1014 * @param[in] pattern 1015 * Pattern specification (list terminated by the END pattern item). 1016 * @param[in] actions 1017 * Associated actions (list terminated by the END action). 1018 * @param[out] error 1019 * Perform verbose error reporting if not NULL. 1020 * @param[in, out] parser 1021 * Internal parser structure. 1022 * 1023 * @return 1024 * 0 on success, a negative errno value otherwise and rte_errno is set. 1025 */ 1026 static int 1027 priv_flow_convert(struct priv *priv, 1028 const struct rte_flow_attr *attr, 1029 const struct rte_flow_item items[], 1030 const struct rte_flow_action actions[], 1031 struct rte_flow_error *error, 1032 struct mlx5_flow_parse *parser) 1033 { 1034 const struct mlx5_flow_items *cur_item = mlx5_flow_items; 1035 unsigned int i; 1036 int ret; 1037 1038 /* First step. Validate the attributes, items and actions. */ 1039 *parser = (struct mlx5_flow_parse){ 1040 .create = parser->create, 1041 .layer = HASH_RXQ_ETH, 1042 .mark_id = MLX5_FLOW_MARK_DEFAULT, 1043 }; 1044 ret = priv_flow_convert_attributes(priv, attr, error, parser); 1045 if (ret) 1046 return ret; 1047 ret = priv_flow_convert_actions(priv, actions, error, parser); 1048 if (ret) 1049 return ret; 1050 ret = priv_flow_convert_items_validate(priv, items, error, parser); 1051 if (ret) 1052 return ret; 1053 priv_flow_convert_finalise(priv, parser); 1054 /* 1055 * Second step. 1056 * Allocate the memory space to store verbs specifications. 1057 */ 1058 if (parser->drop || parser->queues_n == 1) { 1059 unsigned int priority = 1060 attr->priority + 1061 hash_rxq_init[HASH_RXQ_ETH].flow_priority; 1062 unsigned int offset = parser->queue[HASH_RXQ_ETH].offset; 1063 1064 parser->queue[HASH_RXQ_ETH].ibv_attr = 1065 priv_flow_convert_allocate(priv, priority, 1066 offset, error); 1067 if (!parser->queue[HASH_RXQ_ETH].ibv_attr) 1068 return ENOMEM; 1069 parser->queue[HASH_RXQ_ETH].offset = 1070 sizeof(struct ibv_flow_attr); 1071 } else { 1072 for (i = 0; i != hash_rxq_init_n; ++i) { 1073 unsigned int priority = 1074 attr->priority + 1075 hash_rxq_init[i].flow_priority; 1076 unsigned int offset; 1077 1078 if (!(parser->rss_conf.rss_hf & 1079 hash_rxq_init[i].dpdk_rss_hf) && 1080 (i != HASH_RXQ_ETH)) 1081 continue; 1082 offset = parser->queue[i].offset; 1083 parser->queue[i].ibv_attr = 1084 priv_flow_convert_allocate(priv, priority, 1085 offset, error); 1086 if (!parser->queue[i].ibv_attr) 1087 goto exit_enomem; 1088 parser->queue[i].offset = sizeof(struct ibv_flow_attr); 1089 } 1090 } 1091 /* Third step. Conversion parse, fill the specifications. */ 1092 parser->inner = 0; 1093 for (; items->type != RTE_FLOW_ITEM_TYPE_END; ++items) { 1094 if (items->type == RTE_FLOW_ITEM_TYPE_VOID) 1095 continue; 1096 cur_item = &mlx5_flow_items[items->type]; 1097 ret = cur_item->convert(items, 1098 (cur_item->default_mask ? 1099 cur_item->default_mask : 1100 cur_item->mask), 1101 parser); 1102 if (ret) { 1103 rte_flow_error_set(error, ret, 1104 RTE_FLOW_ERROR_TYPE_ITEM, 1105 items, "item not supported"); 1106 goto exit_free; 1107 } 1108 } 1109 if (parser->mark) 1110 mlx5_flow_create_flag_mark(parser, parser->mark_id); 1111 if (parser->count && parser->create) { 1112 mlx5_flow_create_count(priv, parser); 1113 if (!parser->cs) 1114 goto exit_count_error; 1115 } 1116 /* 1117 * Last step. Complete missing specification to reach the RSS 1118 * configuration. 1119 */ 1120 if (parser->queues_n > 1) { 1121 priv_flow_convert_finalise(priv, parser); 1122 } else { 1123 /* 1124 * Action queue have their priority overridden with 1125 * Ethernet priority, this priority needs to be adjusted to 1126 * their most specific layer priority. 1127 */ 1128 parser->queue[HASH_RXQ_ETH].ibv_attr->priority = 1129 attr->priority + 1130 hash_rxq_init[parser->layer].flow_priority; 1131 } 1132 if (parser->allmulti && 1133 parser->layer == HASH_RXQ_ETH) { 1134 for (i = 0; i != hash_rxq_init_n; ++i) { 1135 if (!parser->queue[i].ibv_attr) 1136 continue; 1137 if (parser->queue[i].ibv_attr->num_of_specs != 1) 1138 break; 1139 parser->queue[i].ibv_attr->type = 1140 IBV_FLOW_ATTR_MC_DEFAULT; 1141 } 1142 } 1143 exit_free: 1144 /* Only verification is expected, all resources should be released. */ 1145 if (!parser->create) { 1146 for (i = 0; i != hash_rxq_init_n; ++i) { 1147 if (parser->queue[i].ibv_attr) { 1148 rte_free(parser->queue[i].ibv_attr); 1149 parser->queue[i].ibv_attr = NULL; 1150 } 1151 } 1152 } 1153 return ret; 1154 exit_enomem: 1155 for (i = 0; i != hash_rxq_init_n; ++i) { 1156 if (parser->queue[i].ibv_attr) { 1157 rte_free(parser->queue[i].ibv_attr); 1158 parser->queue[i].ibv_attr = NULL; 1159 } 1160 } 1161 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1162 NULL, "cannot allocate verbs spec attributes."); 1163 return ret; 1164 exit_count_error: 1165 rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1166 NULL, "cannot create counter."); 1167 return rte_errno; 1168 } 1169 1170 /** 1171 * Copy the specification created into the flow. 1172 * 1173 * @param parser 1174 * Internal parser structure. 1175 * @param src 1176 * Create specification. 1177 * @param size 1178 * Size in bytes of the specification to copy. 1179 */ 1180 static void 1181 mlx5_flow_create_copy(struct mlx5_flow_parse *parser, void *src, 1182 unsigned int size) 1183 { 1184 unsigned int i; 1185 void *dst; 1186 1187 for (i = 0; i != hash_rxq_init_n; ++i) { 1188 if (!parser->queue[i].ibv_attr) 1189 continue; 1190 /* Specification must be the same l3 type or none. */ 1191 if (parser->layer == HASH_RXQ_ETH || 1192 (hash_rxq_init[parser->layer].ip_version == 1193 hash_rxq_init[i].ip_version) || 1194 (hash_rxq_init[i].ip_version == 0)) { 1195 dst = (void *)((uintptr_t)parser->queue[i].ibv_attr + 1196 parser->queue[i].offset); 1197 memcpy(dst, src, size); 1198 ++parser->queue[i].ibv_attr->num_of_specs; 1199 parser->queue[i].offset += size; 1200 } 1201 } 1202 } 1203 1204 /** 1205 * Convert Ethernet item to Verbs specification. 1206 * 1207 * @param item[in] 1208 * Item specification. 1209 * @param default_mask[in] 1210 * Default bit-masks to use when item->mask is not provided. 1211 * @param data[in, out] 1212 * User structure. 1213 */ 1214 static int 1215 mlx5_flow_create_eth(const struct rte_flow_item *item, 1216 const void *default_mask, 1217 void *data) 1218 { 1219 const struct rte_flow_item_eth *spec = item->spec; 1220 const struct rte_flow_item_eth *mask = item->mask; 1221 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1222 const unsigned int eth_size = sizeof(struct ibv_flow_spec_eth); 1223 struct ibv_flow_spec_eth eth = { 1224 .type = parser->inner | IBV_FLOW_SPEC_ETH, 1225 .size = eth_size, 1226 }; 1227 1228 /* Don't update layer for the inner pattern. */ 1229 if (!parser->inner) 1230 parser->layer = HASH_RXQ_ETH; 1231 if (spec) { 1232 unsigned int i; 1233 1234 if (!mask) 1235 mask = default_mask; 1236 memcpy(ð.val.dst_mac, spec->dst.addr_bytes, ETHER_ADDR_LEN); 1237 memcpy(ð.val.src_mac, spec->src.addr_bytes, ETHER_ADDR_LEN); 1238 eth.val.ether_type = spec->type; 1239 memcpy(ð.mask.dst_mac, mask->dst.addr_bytes, ETHER_ADDR_LEN); 1240 memcpy(ð.mask.src_mac, mask->src.addr_bytes, ETHER_ADDR_LEN); 1241 eth.mask.ether_type = mask->type; 1242 /* Remove unwanted bits from values. */ 1243 for (i = 0; i < ETHER_ADDR_LEN; ++i) { 1244 eth.val.dst_mac[i] &= eth.mask.dst_mac[i]; 1245 eth.val.src_mac[i] &= eth.mask.src_mac[i]; 1246 } 1247 eth.val.ether_type &= eth.mask.ether_type; 1248 } 1249 mlx5_flow_create_copy(parser, ð, eth_size); 1250 parser->allmulti = eth.val.dst_mac[0] & 1; 1251 return 0; 1252 } 1253 1254 /** 1255 * Convert VLAN item to Verbs specification. 1256 * 1257 * @param item[in] 1258 * Item specification. 1259 * @param default_mask[in] 1260 * Default bit-masks to use when item->mask is not provided. 1261 * @param data[in, out] 1262 * User structure. 1263 */ 1264 static int 1265 mlx5_flow_create_vlan(const struct rte_flow_item *item, 1266 const void *default_mask, 1267 void *data) 1268 { 1269 const struct rte_flow_item_vlan *spec = item->spec; 1270 const struct rte_flow_item_vlan *mask = item->mask; 1271 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1272 struct ibv_flow_spec_eth *eth; 1273 const unsigned int eth_size = sizeof(struct ibv_flow_spec_eth); 1274 1275 if (spec) { 1276 unsigned int i; 1277 if (!mask) 1278 mask = default_mask; 1279 1280 for (i = 0; i != hash_rxq_init_n; ++i) { 1281 if (!parser->queue[i].ibv_attr) 1282 continue; 1283 1284 eth = (void *)((uintptr_t)parser->queue[i].ibv_attr + 1285 parser->queue[i].offset - eth_size); 1286 eth->val.vlan_tag = spec->tci; 1287 eth->mask.vlan_tag = mask->tci; 1288 eth->val.vlan_tag &= eth->mask.vlan_tag; 1289 } 1290 } 1291 return 0; 1292 } 1293 1294 /** 1295 * Convert IPv4 item to Verbs specification. 1296 * 1297 * @param item[in] 1298 * Item specification. 1299 * @param default_mask[in] 1300 * Default bit-masks to use when item->mask is not provided. 1301 * @param data[in, out] 1302 * User structure. 1303 */ 1304 static int 1305 mlx5_flow_create_ipv4(const struct rte_flow_item *item, 1306 const void *default_mask, 1307 void *data) 1308 { 1309 const struct rte_flow_item_ipv4 *spec = item->spec; 1310 const struct rte_flow_item_ipv4 *mask = item->mask; 1311 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1312 unsigned int ipv4_size = sizeof(struct ibv_flow_spec_ipv4_ext); 1313 struct ibv_flow_spec_ipv4_ext ipv4 = { 1314 .type = parser->inner | IBV_FLOW_SPEC_IPV4_EXT, 1315 .size = ipv4_size, 1316 }; 1317 1318 /* Don't update layer for the inner pattern. */ 1319 if (!parser->inner) 1320 parser->layer = HASH_RXQ_IPV4; 1321 if (spec) { 1322 if (!mask) 1323 mask = default_mask; 1324 ipv4.val = (struct ibv_flow_ipv4_ext_filter){ 1325 .src_ip = spec->hdr.src_addr, 1326 .dst_ip = spec->hdr.dst_addr, 1327 .proto = spec->hdr.next_proto_id, 1328 .tos = spec->hdr.type_of_service, 1329 }; 1330 ipv4.mask = (struct ibv_flow_ipv4_ext_filter){ 1331 .src_ip = mask->hdr.src_addr, 1332 .dst_ip = mask->hdr.dst_addr, 1333 .proto = mask->hdr.next_proto_id, 1334 .tos = mask->hdr.type_of_service, 1335 }; 1336 /* Remove unwanted bits from values. */ 1337 ipv4.val.src_ip &= ipv4.mask.src_ip; 1338 ipv4.val.dst_ip &= ipv4.mask.dst_ip; 1339 ipv4.val.proto &= ipv4.mask.proto; 1340 ipv4.val.tos &= ipv4.mask.tos; 1341 } 1342 mlx5_flow_create_copy(parser, &ipv4, ipv4_size); 1343 return 0; 1344 } 1345 1346 /** 1347 * Convert IPv6 item to Verbs specification. 1348 * 1349 * @param item[in] 1350 * Item specification. 1351 * @param default_mask[in] 1352 * Default bit-masks to use when item->mask is not provided. 1353 * @param data[in, out] 1354 * User structure. 1355 */ 1356 static int 1357 mlx5_flow_create_ipv6(const struct rte_flow_item *item, 1358 const void *default_mask, 1359 void *data) 1360 { 1361 const struct rte_flow_item_ipv6 *spec = item->spec; 1362 const struct rte_flow_item_ipv6 *mask = item->mask; 1363 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1364 unsigned int ipv6_size = sizeof(struct ibv_flow_spec_ipv6); 1365 struct ibv_flow_spec_ipv6 ipv6 = { 1366 .type = parser->inner | IBV_FLOW_SPEC_IPV6, 1367 .size = ipv6_size, 1368 }; 1369 1370 /* Don't update layer for the inner pattern. */ 1371 if (!parser->inner) 1372 parser->layer = HASH_RXQ_IPV6; 1373 if (spec) { 1374 unsigned int i; 1375 uint32_t vtc_flow_val; 1376 uint32_t vtc_flow_mask; 1377 1378 if (!mask) 1379 mask = default_mask; 1380 memcpy(&ipv6.val.src_ip, spec->hdr.src_addr, 1381 RTE_DIM(ipv6.val.src_ip)); 1382 memcpy(&ipv6.val.dst_ip, spec->hdr.dst_addr, 1383 RTE_DIM(ipv6.val.dst_ip)); 1384 memcpy(&ipv6.mask.src_ip, mask->hdr.src_addr, 1385 RTE_DIM(ipv6.mask.src_ip)); 1386 memcpy(&ipv6.mask.dst_ip, mask->hdr.dst_addr, 1387 RTE_DIM(ipv6.mask.dst_ip)); 1388 vtc_flow_val = rte_be_to_cpu_32(spec->hdr.vtc_flow); 1389 vtc_flow_mask = rte_be_to_cpu_32(mask->hdr.vtc_flow); 1390 ipv6.val.flow_label = 1391 rte_cpu_to_be_32((vtc_flow_val & IPV6_HDR_FL_MASK) >> 1392 IPV6_HDR_FL_SHIFT); 1393 ipv6.val.traffic_class = (vtc_flow_val & IPV6_HDR_TC_MASK) >> 1394 IPV6_HDR_TC_SHIFT; 1395 ipv6.val.next_hdr = spec->hdr.proto; 1396 ipv6.val.hop_limit = spec->hdr.hop_limits; 1397 ipv6.mask.flow_label = 1398 rte_cpu_to_be_32((vtc_flow_mask & IPV6_HDR_FL_MASK) >> 1399 IPV6_HDR_FL_SHIFT); 1400 ipv6.mask.traffic_class = (vtc_flow_mask & IPV6_HDR_TC_MASK) >> 1401 IPV6_HDR_TC_SHIFT; 1402 ipv6.mask.next_hdr = mask->hdr.proto; 1403 ipv6.mask.hop_limit = mask->hdr.hop_limits; 1404 /* Remove unwanted bits from values. */ 1405 for (i = 0; i < RTE_DIM(ipv6.val.src_ip); ++i) { 1406 ipv6.val.src_ip[i] &= ipv6.mask.src_ip[i]; 1407 ipv6.val.dst_ip[i] &= ipv6.mask.dst_ip[i]; 1408 } 1409 ipv6.val.flow_label &= ipv6.mask.flow_label; 1410 ipv6.val.traffic_class &= ipv6.mask.traffic_class; 1411 ipv6.val.next_hdr &= ipv6.mask.next_hdr; 1412 ipv6.val.hop_limit &= ipv6.mask.hop_limit; 1413 } 1414 mlx5_flow_create_copy(parser, &ipv6, ipv6_size); 1415 return 0; 1416 } 1417 1418 /** 1419 * Convert UDP item to Verbs specification. 1420 * 1421 * @param item[in] 1422 * Item specification. 1423 * @param default_mask[in] 1424 * Default bit-masks to use when item->mask is not provided. 1425 * @param data[in, out] 1426 * User structure. 1427 */ 1428 static int 1429 mlx5_flow_create_udp(const struct rte_flow_item *item, 1430 const void *default_mask, 1431 void *data) 1432 { 1433 const struct rte_flow_item_udp *spec = item->spec; 1434 const struct rte_flow_item_udp *mask = item->mask; 1435 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1436 unsigned int udp_size = sizeof(struct ibv_flow_spec_tcp_udp); 1437 struct ibv_flow_spec_tcp_udp udp = { 1438 .type = parser->inner | IBV_FLOW_SPEC_UDP, 1439 .size = udp_size, 1440 }; 1441 1442 /* Don't update layer for the inner pattern. */ 1443 if (!parser->inner) { 1444 if (parser->layer == HASH_RXQ_IPV4) 1445 parser->layer = HASH_RXQ_UDPV4; 1446 else 1447 parser->layer = HASH_RXQ_UDPV6; 1448 } 1449 if (spec) { 1450 if (!mask) 1451 mask = default_mask; 1452 udp.val.dst_port = spec->hdr.dst_port; 1453 udp.val.src_port = spec->hdr.src_port; 1454 udp.mask.dst_port = mask->hdr.dst_port; 1455 udp.mask.src_port = mask->hdr.src_port; 1456 /* Remove unwanted bits from values. */ 1457 udp.val.src_port &= udp.mask.src_port; 1458 udp.val.dst_port &= udp.mask.dst_port; 1459 } 1460 mlx5_flow_create_copy(parser, &udp, udp_size); 1461 return 0; 1462 } 1463 1464 /** 1465 * Convert TCP item to Verbs specification. 1466 * 1467 * @param item[in] 1468 * Item specification. 1469 * @param default_mask[in] 1470 * Default bit-masks to use when item->mask is not provided. 1471 * @param data[in, out] 1472 * User structure. 1473 */ 1474 static int 1475 mlx5_flow_create_tcp(const struct rte_flow_item *item, 1476 const void *default_mask, 1477 void *data) 1478 { 1479 const struct rte_flow_item_tcp *spec = item->spec; 1480 const struct rte_flow_item_tcp *mask = item->mask; 1481 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1482 unsigned int tcp_size = sizeof(struct ibv_flow_spec_tcp_udp); 1483 struct ibv_flow_spec_tcp_udp tcp = { 1484 .type = parser->inner | IBV_FLOW_SPEC_TCP, 1485 .size = tcp_size, 1486 }; 1487 1488 /* Don't update layer for the inner pattern. */ 1489 if (!parser->inner) { 1490 if (parser->layer == HASH_RXQ_IPV4) 1491 parser->layer = HASH_RXQ_TCPV4; 1492 else 1493 parser->layer = HASH_RXQ_TCPV6; 1494 } 1495 if (spec) { 1496 if (!mask) 1497 mask = default_mask; 1498 tcp.val.dst_port = spec->hdr.dst_port; 1499 tcp.val.src_port = spec->hdr.src_port; 1500 tcp.mask.dst_port = mask->hdr.dst_port; 1501 tcp.mask.src_port = mask->hdr.src_port; 1502 /* Remove unwanted bits from values. */ 1503 tcp.val.src_port &= tcp.mask.src_port; 1504 tcp.val.dst_port &= tcp.mask.dst_port; 1505 } 1506 mlx5_flow_create_copy(parser, &tcp, tcp_size); 1507 return 0; 1508 } 1509 1510 /** 1511 * Convert VXLAN item to Verbs specification. 1512 * 1513 * @param item[in] 1514 * Item specification. 1515 * @param default_mask[in] 1516 * Default bit-masks to use when item->mask is not provided. 1517 * @param data[in, out] 1518 * User structure. 1519 */ 1520 static int 1521 mlx5_flow_create_vxlan(const struct rte_flow_item *item, 1522 const void *default_mask, 1523 void *data) 1524 { 1525 const struct rte_flow_item_vxlan *spec = item->spec; 1526 const struct rte_flow_item_vxlan *mask = item->mask; 1527 struct mlx5_flow_parse *parser = (struct mlx5_flow_parse *)data; 1528 unsigned int size = sizeof(struct ibv_flow_spec_tunnel); 1529 struct ibv_flow_spec_tunnel vxlan = { 1530 .type = parser->inner | IBV_FLOW_SPEC_VXLAN_TUNNEL, 1531 .size = size, 1532 }; 1533 union vni { 1534 uint32_t vlan_id; 1535 uint8_t vni[4]; 1536 } id; 1537 1538 id.vni[0] = 0; 1539 parser->inner = IBV_FLOW_SPEC_INNER; 1540 if (spec) { 1541 if (!mask) 1542 mask = default_mask; 1543 memcpy(&id.vni[1], spec->vni, 3); 1544 vxlan.val.tunnel_id = id.vlan_id; 1545 memcpy(&id.vni[1], mask->vni, 3); 1546 vxlan.mask.tunnel_id = id.vlan_id; 1547 /* Remove unwanted bits from values. */ 1548 vxlan.val.tunnel_id &= vxlan.mask.tunnel_id; 1549 } 1550 /* 1551 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this 1552 * layer is defined in the Verbs specification it is interpreted as 1553 * wildcard and all packets will match this rule, if it follows a full 1554 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers 1555 * before will also match this rule. 1556 * To avoid such situation, VNI 0 is currently refused. 1557 */ 1558 if (!vxlan.val.tunnel_id) 1559 return EINVAL; 1560 mlx5_flow_create_copy(parser, &vxlan, size); 1561 return 0; 1562 } 1563 1564 /** 1565 * Convert mark/flag action to Verbs specification. 1566 * 1567 * @param parser 1568 * Internal parser structure. 1569 * @param mark_id 1570 * Mark identifier. 1571 */ 1572 static int 1573 mlx5_flow_create_flag_mark(struct mlx5_flow_parse *parser, uint32_t mark_id) 1574 { 1575 unsigned int size = sizeof(struct ibv_flow_spec_action_tag); 1576 struct ibv_flow_spec_action_tag tag = { 1577 .type = IBV_FLOW_SPEC_ACTION_TAG, 1578 .size = size, 1579 .tag_id = mlx5_flow_mark_set(mark_id), 1580 }; 1581 1582 assert(parser->mark); 1583 mlx5_flow_create_copy(parser, &tag, size); 1584 return 0; 1585 } 1586 1587 /** 1588 * Convert count action to Verbs specification. 1589 * 1590 * @param priv 1591 * Pointer to private structure. 1592 * @param parser 1593 * Pointer to MLX5 flow parser structure. 1594 * 1595 * @return 1596 * 0 on success, errno value on failure. 1597 */ 1598 static int 1599 mlx5_flow_create_count(struct priv *priv __rte_unused, 1600 struct mlx5_flow_parse *parser __rte_unused) 1601 { 1602 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 1603 unsigned int size = sizeof(struct ibv_flow_spec_counter_action); 1604 struct ibv_counter_set_init_attr init_attr = {0}; 1605 struct ibv_flow_spec_counter_action counter = { 1606 .type = IBV_FLOW_SPEC_ACTION_COUNT, 1607 .size = size, 1608 .counter_set_handle = 0, 1609 }; 1610 1611 init_attr.counter_set_id = 0; 1612 parser->cs = mlx5_glue->create_counter_set(priv->ctx, &init_attr); 1613 if (!parser->cs) 1614 return EINVAL; 1615 counter.counter_set_handle = parser->cs->handle; 1616 mlx5_flow_create_copy(parser, &counter, size); 1617 #endif 1618 return 0; 1619 } 1620 1621 /** 1622 * Complete flow rule creation with a drop queue. 1623 * 1624 * @param priv 1625 * Pointer to private structure. 1626 * @param parser 1627 * Internal parser structure. 1628 * @param flow 1629 * Pointer to the rte_flow. 1630 * @param[out] error 1631 * Perform verbose error reporting if not NULL. 1632 * 1633 * @return 1634 * 0 on success, errno value on failure. 1635 */ 1636 static int 1637 priv_flow_create_action_queue_drop(struct priv *priv, 1638 struct mlx5_flow_parse *parser, 1639 struct rte_flow *flow, 1640 struct rte_flow_error *error) 1641 { 1642 struct ibv_flow_spec_action_drop *drop; 1643 unsigned int size = sizeof(struct ibv_flow_spec_action_drop); 1644 int err = 0; 1645 1646 assert(priv->pd); 1647 assert(priv->ctx); 1648 flow->drop = 1; 1649 drop = (void *)((uintptr_t)parser->queue[HASH_RXQ_ETH].ibv_attr + 1650 parser->queue[HASH_RXQ_ETH].offset); 1651 *drop = (struct ibv_flow_spec_action_drop){ 1652 .type = IBV_FLOW_SPEC_ACTION_DROP, 1653 .size = size, 1654 }; 1655 ++parser->queue[HASH_RXQ_ETH].ibv_attr->num_of_specs; 1656 parser->queue[HASH_RXQ_ETH].offset += size; 1657 flow->frxq[HASH_RXQ_ETH].ibv_attr = 1658 parser->queue[HASH_RXQ_ETH].ibv_attr; 1659 if (parser->count) 1660 flow->cs = parser->cs; 1661 if (!priv->dev->data->dev_started) 1662 return 0; 1663 parser->queue[HASH_RXQ_ETH].ibv_attr = NULL; 1664 flow->frxq[HASH_RXQ_ETH].ibv_flow = 1665 mlx5_glue->create_flow(priv->flow_drop_queue->qp, 1666 flow->frxq[HASH_RXQ_ETH].ibv_attr); 1667 if (!flow->frxq[HASH_RXQ_ETH].ibv_flow) { 1668 rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, 1669 NULL, "flow rule creation failure"); 1670 err = ENOMEM; 1671 goto error; 1672 } 1673 return 0; 1674 error: 1675 assert(flow); 1676 if (flow->frxq[HASH_RXQ_ETH].ibv_flow) { 1677 claim_zero(mlx5_glue->destroy_flow 1678 (flow->frxq[HASH_RXQ_ETH].ibv_flow)); 1679 flow->frxq[HASH_RXQ_ETH].ibv_flow = NULL; 1680 } 1681 if (flow->frxq[HASH_RXQ_ETH].ibv_attr) { 1682 rte_free(flow->frxq[HASH_RXQ_ETH].ibv_attr); 1683 flow->frxq[HASH_RXQ_ETH].ibv_attr = NULL; 1684 } 1685 if (flow->cs) { 1686 claim_zero(mlx5_glue->destroy_counter_set(flow->cs)); 1687 flow->cs = NULL; 1688 parser->cs = NULL; 1689 } 1690 return err; 1691 } 1692 1693 /** 1694 * Create hash Rx queues when RSS is enabled. 1695 * 1696 * @param priv 1697 * Pointer to private structure. 1698 * @param parser 1699 * Internal parser structure. 1700 * @param flow 1701 * Pointer to the rte_flow. 1702 * @param[out] error 1703 * Perform verbose error reporting if not NULL. 1704 * 1705 * @return 1706 * 0 on success, a errno value otherwise and rte_errno is set. 1707 */ 1708 static int 1709 priv_flow_create_action_queue_rss(struct priv *priv, 1710 struct mlx5_flow_parse *parser, 1711 struct rte_flow *flow, 1712 struct rte_flow_error *error) 1713 { 1714 unsigned int i; 1715 1716 for (i = 0; i != hash_rxq_init_n; ++i) { 1717 uint64_t hash_fields; 1718 1719 if (!parser->queue[i].ibv_attr) 1720 continue; 1721 flow->frxq[i].ibv_attr = parser->queue[i].ibv_attr; 1722 parser->queue[i].ibv_attr = NULL; 1723 hash_fields = hash_rxq_init[i].hash_fields; 1724 if (!priv->dev->data->dev_started) 1725 continue; 1726 flow->frxq[i].hrxq = 1727 mlx5_priv_hrxq_get(priv, 1728 parser->rss_conf.rss_key, 1729 parser->rss_conf.rss_key_len, 1730 hash_fields, 1731 parser->queues, 1732 parser->queues_n); 1733 if (flow->frxq[i].hrxq) 1734 continue; 1735 flow->frxq[i].hrxq = 1736 mlx5_priv_hrxq_new(priv, 1737 parser->rss_conf.rss_key, 1738 parser->rss_conf.rss_key_len, 1739 hash_fields, 1740 parser->queues, 1741 parser->queues_n); 1742 if (!flow->frxq[i].hrxq) { 1743 rte_flow_error_set(error, ENOMEM, 1744 RTE_FLOW_ERROR_TYPE_HANDLE, 1745 NULL, "cannot create hash rxq"); 1746 return ENOMEM; 1747 } 1748 } 1749 return 0; 1750 } 1751 1752 /** 1753 * Complete flow rule creation. 1754 * 1755 * @param priv 1756 * Pointer to private structure. 1757 * @param parser 1758 * Internal parser structure. 1759 * @param flow 1760 * Pointer to the rte_flow. 1761 * @param[out] error 1762 * Perform verbose error reporting if not NULL. 1763 * 1764 * @return 1765 * 0 on success, a errno value otherwise and rte_errno is set. 1766 */ 1767 static int 1768 priv_flow_create_action_queue(struct priv *priv, 1769 struct mlx5_flow_parse *parser, 1770 struct rte_flow *flow, 1771 struct rte_flow_error *error) 1772 { 1773 int err = 0; 1774 unsigned int i; 1775 1776 assert(priv->pd); 1777 assert(priv->ctx); 1778 assert(!parser->drop); 1779 err = priv_flow_create_action_queue_rss(priv, parser, flow, error); 1780 if (err) 1781 goto error; 1782 if (parser->count) 1783 flow->cs = parser->cs; 1784 if (!priv->dev->data->dev_started) 1785 return 0; 1786 for (i = 0; i != hash_rxq_init_n; ++i) { 1787 if (!flow->frxq[i].hrxq) 1788 continue; 1789 flow->frxq[i].ibv_flow = 1790 mlx5_glue->create_flow(flow->frxq[i].hrxq->qp, 1791 flow->frxq[i].ibv_attr); 1792 if (!flow->frxq[i].ibv_flow) { 1793 rte_flow_error_set(error, ENOMEM, 1794 RTE_FLOW_ERROR_TYPE_HANDLE, 1795 NULL, "flow rule creation failure"); 1796 err = ENOMEM; 1797 goto error; 1798 } 1799 DEBUG("%p type %d QP %p ibv_flow %p", 1800 (void *)flow, i, 1801 (void *)flow->frxq[i].hrxq, 1802 (void *)flow->frxq[i].ibv_flow); 1803 } 1804 for (i = 0; i != parser->queues_n; ++i) { 1805 struct mlx5_rxq_data *q = 1806 (*priv->rxqs)[parser->queues[i]]; 1807 1808 q->mark |= parser->mark; 1809 } 1810 return 0; 1811 error: 1812 assert(flow); 1813 for (i = 0; i != hash_rxq_init_n; ++i) { 1814 if (flow->frxq[i].ibv_flow) { 1815 struct ibv_flow *ibv_flow = flow->frxq[i].ibv_flow; 1816 1817 claim_zero(mlx5_glue->destroy_flow(ibv_flow)); 1818 } 1819 if (flow->frxq[i].hrxq) 1820 mlx5_priv_hrxq_release(priv, flow->frxq[i].hrxq); 1821 if (flow->frxq[i].ibv_attr) 1822 rte_free(flow->frxq[i].ibv_attr); 1823 } 1824 if (flow->cs) { 1825 claim_zero(mlx5_glue->destroy_counter_set(flow->cs)); 1826 flow->cs = NULL; 1827 parser->cs = NULL; 1828 } 1829 return err; 1830 } 1831 1832 /** 1833 * Convert a flow. 1834 * 1835 * @param priv 1836 * Pointer to private structure. 1837 * @param list 1838 * Pointer to a TAILQ flow list. 1839 * @param[in] attr 1840 * Flow rule attributes. 1841 * @param[in] pattern 1842 * Pattern specification (list terminated by the END pattern item). 1843 * @param[in] actions 1844 * Associated actions (list terminated by the END action). 1845 * @param[out] error 1846 * Perform verbose error reporting if not NULL. 1847 * 1848 * @return 1849 * A flow on success, NULL otherwise. 1850 */ 1851 static struct rte_flow * 1852 priv_flow_create(struct priv *priv, 1853 struct mlx5_flows *list, 1854 const struct rte_flow_attr *attr, 1855 const struct rte_flow_item items[], 1856 const struct rte_flow_action actions[], 1857 struct rte_flow_error *error) 1858 { 1859 struct mlx5_flow_parse parser = { .create = 1, }; 1860 struct rte_flow *flow = NULL; 1861 unsigned int i; 1862 int err; 1863 1864 err = priv_flow_convert(priv, attr, items, actions, error, &parser); 1865 if (err) 1866 goto exit; 1867 flow = rte_calloc(__func__, 1, 1868 sizeof(*flow) + parser.queues_n * sizeof(uint16_t), 1869 0); 1870 if (!flow) { 1871 rte_flow_error_set(error, ENOMEM, 1872 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 1873 NULL, 1874 "cannot allocate flow memory"); 1875 return NULL; 1876 } 1877 /* Copy queues configuration. */ 1878 flow->queues = (uint16_t (*)[])(flow + 1); 1879 memcpy(flow->queues, parser.queues, parser.queues_n * sizeof(uint16_t)); 1880 flow->queues_n = parser.queues_n; 1881 flow->mark = parser.mark; 1882 /* Copy RSS configuration. */ 1883 flow->rss_conf = parser.rss_conf; 1884 flow->rss_conf.rss_key = flow->rss_key; 1885 memcpy(flow->rss_key, parser.rss_key, parser.rss_conf.rss_key_len); 1886 /* finalise the flow. */ 1887 if (parser.drop) 1888 err = priv_flow_create_action_queue_drop(priv, &parser, flow, 1889 error); 1890 else 1891 err = priv_flow_create_action_queue(priv, &parser, flow, error); 1892 if (err) 1893 goto exit; 1894 TAILQ_INSERT_TAIL(list, flow, next); 1895 DEBUG("Flow created %p", (void *)flow); 1896 return flow; 1897 exit: 1898 for (i = 0; i != hash_rxq_init_n; ++i) { 1899 if (parser.queue[i].ibv_attr) 1900 rte_free(parser.queue[i].ibv_attr); 1901 } 1902 rte_free(flow); 1903 return NULL; 1904 } 1905 1906 /** 1907 * Validate a flow supported by the NIC. 1908 * 1909 * @see rte_flow_validate() 1910 * @see rte_flow_ops 1911 */ 1912 int 1913 mlx5_flow_validate(struct rte_eth_dev *dev, 1914 const struct rte_flow_attr *attr, 1915 const struct rte_flow_item items[], 1916 const struct rte_flow_action actions[], 1917 struct rte_flow_error *error) 1918 { 1919 struct priv *priv = dev->data->dev_private; 1920 int ret; 1921 struct mlx5_flow_parse parser = { .create = 0, }; 1922 1923 priv_lock(priv); 1924 ret = priv_flow_convert(priv, attr, items, actions, error, &parser); 1925 priv_unlock(priv); 1926 return ret; 1927 } 1928 1929 /** 1930 * Create a flow. 1931 * 1932 * @see rte_flow_create() 1933 * @see rte_flow_ops 1934 */ 1935 struct rte_flow * 1936 mlx5_flow_create(struct rte_eth_dev *dev, 1937 const struct rte_flow_attr *attr, 1938 const struct rte_flow_item items[], 1939 const struct rte_flow_action actions[], 1940 struct rte_flow_error *error) 1941 { 1942 struct priv *priv = dev->data->dev_private; 1943 struct rte_flow *flow; 1944 1945 priv_lock(priv); 1946 flow = priv_flow_create(priv, &priv->flows, attr, items, actions, 1947 error); 1948 priv_unlock(priv); 1949 return flow; 1950 } 1951 1952 /** 1953 * Destroy a flow. 1954 * 1955 * @param priv 1956 * Pointer to private structure. 1957 * @param list 1958 * Pointer to a TAILQ flow list. 1959 * @param[in] flow 1960 * Flow to destroy. 1961 */ 1962 static void 1963 priv_flow_destroy(struct priv *priv, 1964 struct mlx5_flows *list, 1965 struct rte_flow *flow) 1966 { 1967 unsigned int i; 1968 1969 if (flow->drop || !flow->mark) 1970 goto free; 1971 for (i = 0; i != flow->queues_n; ++i) { 1972 struct rte_flow *tmp; 1973 int mark = 0; 1974 1975 /* 1976 * To remove the mark from the queue, the queue must not be 1977 * present in any other marked flow (RSS or not). 1978 */ 1979 TAILQ_FOREACH(tmp, list, next) { 1980 unsigned int j; 1981 uint16_t *tqs = NULL; 1982 uint16_t tq_n = 0; 1983 1984 if (!tmp->mark) 1985 continue; 1986 for (j = 0; j != hash_rxq_init_n; ++j) { 1987 if (!tmp->frxq[j].hrxq) 1988 continue; 1989 tqs = tmp->frxq[j].hrxq->ind_table->queues; 1990 tq_n = tmp->frxq[j].hrxq->ind_table->queues_n; 1991 } 1992 if (!tq_n) 1993 continue; 1994 for (j = 0; (j != tq_n) && !mark; j++) 1995 if (tqs[j] == (*flow->queues)[i]) 1996 mark = 1; 1997 } 1998 (*priv->rxqs)[(*flow->queues)[i]]->mark = mark; 1999 } 2000 free: 2001 if (flow->drop) { 2002 if (flow->frxq[HASH_RXQ_ETH].ibv_flow) 2003 claim_zero(mlx5_glue->destroy_flow 2004 (flow->frxq[HASH_RXQ_ETH].ibv_flow)); 2005 rte_free(flow->frxq[HASH_RXQ_ETH].ibv_attr); 2006 } else { 2007 for (i = 0; i != hash_rxq_init_n; ++i) { 2008 struct mlx5_flow *frxq = &flow->frxq[i]; 2009 2010 if (frxq->ibv_flow) 2011 claim_zero(mlx5_glue->destroy_flow 2012 (frxq->ibv_flow)); 2013 if (frxq->hrxq) 2014 mlx5_priv_hrxq_release(priv, frxq->hrxq); 2015 if (frxq->ibv_attr) 2016 rte_free(frxq->ibv_attr); 2017 } 2018 } 2019 if (flow->cs) { 2020 claim_zero(mlx5_glue->destroy_counter_set(flow->cs)); 2021 flow->cs = NULL; 2022 } 2023 TAILQ_REMOVE(list, flow, next); 2024 DEBUG("Flow destroyed %p", (void *)flow); 2025 rte_free(flow); 2026 } 2027 2028 /** 2029 * Destroy all flows. 2030 * 2031 * @param priv 2032 * Pointer to private structure. 2033 * @param list 2034 * Pointer to a TAILQ flow list. 2035 */ 2036 void 2037 priv_flow_flush(struct priv *priv, struct mlx5_flows *list) 2038 { 2039 while (!TAILQ_EMPTY(list)) { 2040 struct rte_flow *flow; 2041 2042 flow = TAILQ_FIRST(list); 2043 priv_flow_destroy(priv, list, flow); 2044 } 2045 } 2046 2047 /** 2048 * Create drop queue. 2049 * 2050 * @param priv 2051 * Pointer to private structure. 2052 * 2053 * @return 2054 * 0 on success. 2055 */ 2056 int 2057 priv_flow_create_drop_queue(struct priv *priv) 2058 { 2059 struct mlx5_hrxq_drop *fdq = NULL; 2060 2061 assert(priv->pd); 2062 assert(priv->ctx); 2063 fdq = rte_calloc(__func__, 1, sizeof(*fdq), 0); 2064 if (!fdq) { 2065 WARN("cannot allocate memory for drop queue"); 2066 goto error; 2067 } 2068 fdq->cq = mlx5_glue->create_cq(priv->ctx, 1, NULL, NULL, 0); 2069 if (!fdq->cq) { 2070 WARN("cannot allocate CQ for drop queue"); 2071 goto error; 2072 } 2073 fdq->wq = mlx5_glue->create_wq 2074 (priv->ctx, 2075 &(struct ibv_wq_init_attr){ 2076 .wq_type = IBV_WQT_RQ, 2077 .max_wr = 1, 2078 .max_sge = 1, 2079 .pd = priv->pd, 2080 .cq = fdq->cq, 2081 }); 2082 if (!fdq->wq) { 2083 WARN("cannot allocate WQ for drop queue"); 2084 goto error; 2085 } 2086 fdq->ind_table = mlx5_glue->create_rwq_ind_table 2087 (priv->ctx, 2088 &(struct ibv_rwq_ind_table_init_attr){ 2089 .log_ind_tbl_size = 0, 2090 .ind_tbl = &fdq->wq, 2091 .comp_mask = 0, 2092 }); 2093 if (!fdq->ind_table) { 2094 WARN("cannot allocate indirection table for drop queue"); 2095 goto error; 2096 } 2097 fdq->qp = mlx5_glue->create_qp_ex 2098 (priv->ctx, 2099 &(struct ibv_qp_init_attr_ex){ 2100 .qp_type = IBV_QPT_RAW_PACKET, 2101 .comp_mask = 2102 IBV_QP_INIT_ATTR_PD | 2103 IBV_QP_INIT_ATTR_IND_TABLE | 2104 IBV_QP_INIT_ATTR_RX_HASH, 2105 .rx_hash_conf = (struct ibv_rx_hash_conf){ 2106 .rx_hash_function = 2107 IBV_RX_HASH_FUNC_TOEPLITZ, 2108 .rx_hash_key_len = rss_hash_default_key_len, 2109 .rx_hash_key = rss_hash_default_key, 2110 .rx_hash_fields_mask = 0, 2111 }, 2112 .rwq_ind_tbl = fdq->ind_table, 2113 .pd = priv->pd 2114 }); 2115 if (!fdq->qp) { 2116 WARN("cannot allocate QP for drop queue"); 2117 goto error; 2118 } 2119 priv->flow_drop_queue = fdq; 2120 return 0; 2121 error: 2122 if (fdq->qp) 2123 claim_zero(mlx5_glue->destroy_qp(fdq->qp)); 2124 if (fdq->ind_table) 2125 claim_zero(mlx5_glue->destroy_rwq_ind_table(fdq->ind_table)); 2126 if (fdq->wq) 2127 claim_zero(mlx5_glue->destroy_wq(fdq->wq)); 2128 if (fdq->cq) 2129 claim_zero(mlx5_glue->destroy_cq(fdq->cq)); 2130 if (fdq) 2131 rte_free(fdq); 2132 priv->flow_drop_queue = NULL; 2133 return -1; 2134 } 2135 2136 /** 2137 * Delete drop queue. 2138 * 2139 * @param priv 2140 * Pointer to private structure. 2141 */ 2142 void 2143 priv_flow_delete_drop_queue(struct priv *priv) 2144 { 2145 struct mlx5_hrxq_drop *fdq = priv->flow_drop_queue; 2146 2147 if (!fdq) 2148 return; 2149 if (fdq->qp) 2150 claim_zero(mlx5_glue->destroy_qp(fdq->qp)); 2151 if (fdq->ind_table) 2152 claim_zero(mlx5_glue->destroy_rwq_ind_table(fdq->ind_table)); 2153 if (fdq->wq) 2154 claim_zero(mlx5_glue->destroy_wq(fdq->wq)); 2155 if (fdq->cq) 2156 claim_zero(mlx5_glue->destroy_cq(fdq->cq)); 2157 rte_free(fdq); 2158 priv->flow_drop_queue = NULL; 2159 } 2160 2161 /** 2162 * Remove all flows. 2163 * 2164 * @param priv 2165 * Pointer to private structure. 2166 * @param list 2167 * Pointer to a TAILQ flow list. 2168 */ 2169 void 2170 priv_flow_stop(struct priv *priv, struct mlx5_flows *list) 2171 { 2172 struct rte_flow *flow; 2173 2174 TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next) { 2175 unsigned int i; 2176 2177 if (flow->drop) { 2178 if (!flow->frxq[HASH_RXQ_ETH].ibv_flow) 2179 continue; 2180 claim_zero(mlx5_glue->destroy_flow 2181 (flow->frxq[HASH_RXQ_ETH].ibv_flow)); 2182 flow->frxq[HASH_RXQ_ETH].ibv_flow = NULL; 2183 /* Next flow. */ 2184 continue; 2185 } 2186 if (flow->mark) { 2187 struct mlx5_ind_table_ibv *ind_tbl = NULL; 2188 2189 for (i = 0; i != hash_rxq_init_n; ++i) { 2190 if (!flow->frxq[i].hrxq) 2191 continue; 2192 ind_tbl = flow->frxq[i].hrxq->ind_table; 2193 } 2194 assert(ind_tbl); 2195 for (i = 0; i != ind_tbl->queues_n; ++i) 2196 (*priv->rxqs)[ind_tbl->queues[i]]->mark = 0; 2197 } 2198 for (i = 0; i != hash_rxq_init_n; ++i) { 2199 if (!flow->frxq[i].ibv_flow) 2200 continue; 2201 claim_zero(mlx5_glue->destroy_flow 2202 (flow->frxq[i].ibv_flow)); 2203 flow->frxq[i].ibv_flow = NULL; 2204 mlx5_priv_hrxq_release(priv, flow->frxq[i].hrxq); 2205 flow->frxq[i].hrxq = NULL; 2206 } 2207 DEBUG("Flow %p removed", (void *)flow); 2208 } 2209 } 2210 2211 /** 2212 * Add all flows. 2213 * 2214 * @param priv 2215 * Pointer to private structure. 2216 * @param list 2217 * Pointer to a TAILQ flow list. 2218 * 2219 * @return 2220 * 0 on success, a errno value otherwise and rte_errno is set. 2221 */ 2222 int 2223 priv_flow_start(struct priv *priv, struct mlx5_flows *list) 2224 { 2225 struct rte_flow *flow; 2226 2227 TAILQ_FOREACH(flow, list, next) { 2228 unsigned int i; 2229 2230 if (flow->drop) { 2231 flow->frxq[HASH_RXQ_ETH].ibv_flow = 2232 mlx5_glue->create_flow 2233 (priv->flow_drop_queue->qp, 2234 flow->frxq[HASH_RXQ_ETH].ibv_attr); 2235 if (!flow->frxq[HASH_RXQ_ETH].ibv_flow) { 2236 DEBUG("Flow %p cannot be applied", 2237 (void *)flow); 2238 rte_errno = EINVAL; 2239 return rte_errno; 2240 } 2241 DEBUG("Flow %p applied", (void *)flow); 2242 /* Next flow. */ 2243 continue; 2244 } 2245 for (i = 0; i != hash_rxq_init_n; ++i) { 2246 if (!flow->frxq[i].ibv_attr) 2247 continue; 2248 flow->frxq[i].hrxq = 2249 mlx5_priv_hrxq_get(priv, flow->rss_conf.rss_key, 2250 flow->rss_conf.rss_key_len, 2251 hash_rxq_init[i].hash_fields, 2252 (*flow->queues), 2253 flow->queues_n); 2254 if (flow->frxq[i].hrxq) 2255 goto flow_create; 2256 flow->frxq[i].hrxq = 2257 mlx5_priv_hrxq_new(priv, flow->rss_conf.rss_key, 2258 flow->rss_conf.rss_key_len, 2259 hash_rxq_init[i].hash_fields, 2260 (*flow->queues), 2261 flow->queues_n); 2262 if (!flow->frxq[i].hrxq) { 2263 DEBUG("Flow %p cannot be applied", 2264 (void *)flow); 2265 rte_errno = EINVAL; 2266 return rte_errno; 2267 } 2268 flow_create: 2269 flow->frxq[i].ibv_flow = 2270 mlx5_glue->create_flow(flow->frxq[i].hrxq->qp, 2271 flow->frxq[i].ibv_attr); 2272 if (!flow->frxq[i].ibv_flow) { 2273 DEBUG("Flow %p cannot be applied", 2274 (void *)flow); 2275 rte_errno = EINVAL; 2276 return rte_errno; 2277 } 2278 DEBUG("Flow %p applied", (void *)flow); 2279 } 2280 if (!flow->mark) 2281 continue; 2282 for (i = 0; i != flow->queues_n; ++i) 2283 (*priv->rxqs)[(*flow->queues)[i]]->mark = 1; 2284 } 2285 return 0; 2286 } 2287 2288 /** 2289 * Verify the flow list is empty 2290 * 2291 * @param priv 2292 * Pointer to private structure. 2293 * 2294 * @return the number of flows not released. 2295 */ 2296 int 2297 priv_flow_verify(struct priv *priv) 2298 { 2299 struct rte_flow *flow; 2300 int ret = 0; 2301 2302 TAILQ_FOREACH(flow, &priv->flows, next) { 2303 DEBUG("%p: flow %p still referenced", (void *)priv, 2304 (void *)flow); 2305 ++ret; 2306 } 2307 return ret; 2308 } 2309 2310 /** 2311 * Enable a control flow configured from the control plane. 2312 * 2313 * @param dev 2314 * Pointer to Ethernet device. 2315 * @param eth_spec 2316 * An Ethernet flow spec to apply. 2317 * @param eth_mask 2318 * An Ethernet flow mask to apply. 2319 * @param vlan_spec 2320 * A VLAN flow spec to apply. 2321 * @param vlan_mask 2322 * A VLAN flow mask to apply. 2323 * 2324 * @return 2325 * 0 on success. 2326 */ 2327 int 2328 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 2329 struct rte_flow_item_eth *eth_spec, 2330 struct rte_flow_item_eth *eth_mask, 2331 struct rte_flow_item_vlan *vlan_spec, 2332 struct rte_flow_item_vlan *vlan_mask) 2333 { 2334 struct priv *priv = dev->data->dev_private; 2335 const struct rte_flow_attr attr = { 2336 .ingress = 1, 2337 .priority = MLX5_CTRL_FLOW_PRIORITY, 2338 }; 2339 struct rte_flow_item items[] = { 2340 { 2341 .type = RTE_FLOW_ITEM_TYPE_ETH, 2342 .spec = eth_spec, 2343 .last = NULL, 2344 .mask = eth_mask, 2345 }, 2346 { 2347 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 2348 RTE_FLOW_ITEM_TYPE_END, 2349 .spec = vlan_spec, 2350 .last = NULL, 2351 .mask = vlan_mask, 2352 }, 2353 { 2354 .type = RTE_FLOW_ITEM_TYPE_END, 2355 }, 2356 }; 2357 struct rte_flow_action actions[] = { 2358 { 2359 .type = RTE_FLOW_ACTION_TYPE_RSS, 2360 }, 2361 { 2362 .type = RTE_FLOW_ACTION_TYPE_END, 2363 }, 2364 }; 2365 struct rte_flow *flow; 2366 struct rte_flow_error error; 2367 unsigned int i; 2368 union { 2369 struct rte_flow_action_rss rss; 2370 struct { 2371 const struct rte_eth_rss_conf *rss_conf; 2372 uint16_t num; 2373 uint16_t queue[RTE_MAX_QUEUES_PER_PORT]; 2374 } local; 2375 } action_rss; 2376 2377 if (!priv->reta_idx_n) 2378 return EINVAL; 2379 for (i = 0; i != priv->reta_idx_n; ++i) 2380 action_rss.local.queue[i] = (*priv->reta_idx)[i]; 2381 action_rss.local.rss_conf = &priv->rss_conf; 2382 action_rss.local.num = priv->reta_idx_n; 2383 actions[0].conf = (const void *)&action_rss.rss; 2384 flow = priv_flow_create(priv, &priv->ctrl_flows, &attr, items, actions, 2385 &error); 2386 if (!flow) 2387 return rte_errno; 2388 return 0; 2389 } 2390 2391 /** 2392 * Enable a flow control configured from the control plane. 2393 * 2394 * @param dev 2395 * Pointer to Ethernet device. 2396 * @param eth_spec 2397 * An Ethernet flow spec to apply. 2398 * @param eth_mask 2399 * An Ethernet flow mask to apply. 2400 * 2401 * @return 2402 * 0 on success. 2403 */ 2404 int 2405 mlx5_ctrl_flow(struct rte_eth_dev *dev, 2406 struct rte_flow_item_eth *eth_spec, 2407 struct rte_flow_item_eth *eth_mask) 2408 { 2409 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 2410 } 2411 2412 /** 2413 * Destroy a flow. 2414 * 2415 * @see rte_flow_destroy() 2416 * @see rte_flow_ops 2417 */ 2418 int 2419 mlx5_flow_destroy(struct rte_eth_dev *dev, 2420 struct rte_flow *flow, 2421 struct rte_flow_error *error) 2422 { 2423 struct priv *priv = dev->data->dev_private; 2424 2425 (void)error; 2426 priv_lock(priv); 2427 priv_flow_destroy(priv, &priv->flows, flow); 2428 priv_unlock(priv); 2429 return 0; 2430 } 2431 2432 /** 2433 * Destroy all flows. 2434 * 2435 * @see rte_flow_flush() 2436 * @see rte_flow_ops 2437 */ 2438 int 2439 mlx5_flow_flush(struct rte_eth_dev *dev, 2440 struct rte_flow_error *error) 2441 { 2442 struct priv *priv = dev->data->dev_private; 2443 2444 (void)error; 2445 priv_lock(priv); 2446 priv_flow_flush(priv, &priv->flows); 2447 priv_unlock(priv); 2448 return 0; 2449 } 2450 2451 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT 2452 /** 2453 * Query flow counter. 2454 * 2455 * @param cs 2456 * the counter set. 2457 * @param counter_value 2458 * returned data from the counter. 2459 * 2460 * @return 2461 * 0 on success, a errno value otherwise and rte_errno is set. 2462 */ 2463 static int 2464 priv_flow_query_count(struct ibv_counter_set *cs, 2465 struct mlx5_flow_counter_stats *counter_stats, 2466 struct rte_flow_query_count *query_count, 2467 struct rte_flow_error *error) 2468 { 2469 uint64_t counters[2]; 2470 struct ibv_query_counter_set_attr query_cs_attr = { 2471 .cs = cs, 2472 .query_flags = IBV_COUNTER_SET_FORCE_UPDATE, 2473 }; 2474 struct ibv_counter_set_data query_out = { 2475 .out = counters, 2476 .outlen = 2 * sizeof(uint64_t), 2477 }; 2478 int res = mlx5_glue->query_counter_set(&query_cs_attr, &query_out); 2479 2480 if (res) { 2481 rte_flow_error_set(error, -res, 2482 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2483 NULL, 2484 "cannot read counter"); 2485 return -res; 2486 } 2487 query_count->hits_set = 1; 2488 query_count->bytes_set = 1; 2489 query_count->hits = counters[0] - counter_stats->hits; 2490 query_count->bytes = counters[1] - counter_stats->bytes; 2491 if (query_count->reset) { 2492 counter_stats->hits = counters[0]; 2493 counter_stats->bytes = counters[1]; 2494 } 2495 return 0; 2496 } 2497 2498 /** 2499 * Query a flows. 2500 * 2501 * @see rte_flow_query() 2502 * @see rte_flow_ops 2503 */ 2504 int 2505 mlx5_flow_query(struct rte_eth_dev *dev, 2506 struct rte_flow *flow, 2507 enum rte_flow_action_type action __rte_unused, 2508 void *data, 2509 struct rte_flow_error *error) 2510 { 2511 struct priv *priv = dev->data->dev_private; 2512 int res = EINVAL; 2513 2514 priv_lock(priv); 2515 if (flow->cs) { 2516 res = priv_flow_query_count(flow->cs, 2517 &flow->counter_stats, 2518 (struct rte_flow_query_count *)data, 2519 error); 2520 } else { 2521 rte_flow_error_set(error, res, 2522 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2523 NULL, 2524 "no counter found for flow"); 2525 } 2526 priv_unlock(priv); 2527 return -res; 2528 } 2529 #endif 2530 2531 /** 2532 * Isolated mode. 2533 * 2534 * @see rte_flow_isolate() 2535 * @see rte_flow_ops 2536 */ 2537 int 2538 mlx5_flow_isolate(struct rte_eth_dev *dev, 2539 int enable, 2540 struct rte_flow_error *error) 2541 { 2542 struct priv *priv = dev->data->dev_private; 2543 2544 priv_lock(priv); 2545 if (dev->data->dev_started) { 2546 rte_flow_error_set(error, EBUSY, 2547 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2548 NULL, 2549 "port must be stopped first"); 2550 priv_unlock(priv); 2551 return -rte_errno; 2552 } 2553 priv->isolated = !!enable; 2554 if (enable) 2555 priv->dev->dev_ops = &mlx5_dev_ops_isolate; 2556 else 2557 priv->dev->dev_ops = &mlx5_dev_ops; 2558 priv_unlock(priv); 2559 return 0; 2560 } 2561 2562 /** 2563 * Convert a flow director filter to a generic flow. 2564 * 2565 * @param priv 2566 * Private structure. 2567 * @param fdir_filter 2568 * Flow director filter to add. 2569 * @param attributes 2570 * Generic flow parameters structure. 2571 * 2572 * @return 2573 * 0 on success, errno value on error. 2574 */ 2575 static int 2576 priv_fdir_filter_convert(struct priv *priv, 2577 const struct rte_eth_fdir_filter *fdir_filter, 2578 struct mlx5_fdir *attributes) 2579 { 2580 const struct rte_eth_fdir_input *input = &fdir_filter->input; 2581 2582 /* Validate queue number. */ 2583 if (fdir_filter->action.rx_queue >= priv->rxqs_n) { 2584 ERROR("invalid queue number %d", fdir_filter->action.rx_queue); 2585 return EINVAL; 2586 } 2587 attributes->attr.ingress = 1; 2588 attributes->items[0] = (struct rte_flow_item) { 2589 .type = RTE_FLOW_ITEM_TYPE_ETH, 2590 .spec = &attributes->l2, 2591 .mask = &attributes->l2_mask, 2592 }; 2593 switch (fdir_filter->action.behavior) { 2594 case RTE_ETH_FDIR_ACCEPT: 2595 attributes->actions[0] = (struct rte_flow_action){ 2596 .type = RTE_FLOW_ACTION_TYPE_QUEUE, 2597 .conf = &attributes->queue, 2598 }; 2599 break; 2600 case RTE_ETH_FDIR_REJECT: 2601 attributes->actions[0] = (struct rte_flow_action){ 2602 .type = RTE_FLOW_ACTION_TYPE_DROP, 2603 }; 2604 break; 2605 default: 2606 ERROR("invalid behavior %d", fdir_filter->action.behavior); 2607 return ENOTSUP; 2608 } 2609 attributes->queue.index = fdir_filter->action.rx_queue; 2610 switch (fdir_filter->input.flow_type) { 2611 case RTE_ETH_FLOW_NONFRAG_IPV4_UDP: 2612 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2613 .src_addr = input->flow.udp4_flow.ip.src_ip, 2614 .dst_addr = input->flow.udp4_flow.ip.dst_ip, 2615 .time_to_live = input->flow.udp4_flow.ip.ttl, 2616 .type_of_service = input->flow.udp4_flow.ip.tos, 2617 .next_proto_id = input->flow.udp4_flow.ip.proto, 2618 }; 2619 attributes->l4.udp.hdr = (struct udp_hdr){ 2620 .src_port = input->flow.udp4_flow.src_port, 2621 .dst_port = input->flow.udp4_flow.dst_port, 2622 }; 2623 attributes->items[1] = (struct rte_flow_item){ 2624 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2625 .spec = &attributes->l3, 2626 .mask = &attributes->l3, 2627 }; 2628 attributes->items[2] = (struct rte_flow_item){ 2629 .type = RTE_FLOW_ITEM_TYPE_UDP, 2630 .spec = &attributes->l4, 2631 .mask = &attributes->l4, 2632 }; 2633 break; 2634 case RTE_ETH_FLOW_NONFRAG_IPV4_TCP: 2635 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2636 .src_addr = input->flow.tcp4_flow.ip.src_ip, 2637 .dst_addr = input->flow.tcp4_flow.ip.dst_ip, 2638 .time_to_live = input->flow.tcp4_flow.ip.ttl, 2639 .type_of_service = input->flow.tcp4_flow.ip.tos, 2640 .next_proto_id = input->flow.tcp4_flow.ip.proto, 2641 }; 2642 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2643 .src_port = input->flow.tcp4_flow.src_port, 2644 .dst_port = input->flow.tcp4_flow.dst_port, 2645 }; 2646 attributes->items[1] = (struct rte_flow_item){ 2647 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2648 .spec = &attributes->l3, 2649 .mask = &attributes->l3, 2650 }; 2651 attributes->items[2] = (struct rte_flow_item){ 2652 .type = RTE_FLOW_ITEM_TYPE_TCP, 2653 .spec = &attributes->l4, 2654 .mask = &attributes->l4, 2655 }; 2656 break; 2657 case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER: 2658 attributes->l3.ipv4.hdr = (struct ipv4_hdr){ 2659 .src_addr = input->flow.ip4_flow.src_ip, 2660 .dst_addr = input->flow.ip4_flow.dst_ip, 2661 .time_to_live = input->flow.ip4_flow.ttl, 2662 .type_of_service = input->flow.ip4_flow.tos, 2663 .next_proto_id = input->flow.ip4_flow.proto, 2664 }; 2665 attributes->items[1] = (struct rte_flow_item){ 2666 .type = RTE_FLOW_ITEM_TYPE_IPV4, 2667 .spec = &attributes->l3, 2668 .mask = &attributes->l3, 2669 }; 2670 break; 2671 case RTE_ETH_FLOW_NONFRAG_IPV6_UDP: 2672 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2673 .hop_limits = input->flow.udp6_flow.ip.hop_limits, 2674 .proto = input->flow.udp6_flow.ip.proto, 2675 }; 2676 memcpy(attributes->l3.ipv6.hdr.src_addr, 2677 input->flow.udp6_flow.ip.src_ip, 2678 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2679 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2680 input->flow.udp6_flow.ip.dst_ip, 2681 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2682 attributes->l4.udp.hdr = (struct udp_hdr){ 2683 .src_port = input->flow.udp6_flow.src_port, 2684 .dst_port = input->flow.udp6_flow.dst_port, 2685 }; 2686 attributes->items[1] = (struct rte_flow_item){ 2687 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2688 .spec = &attributes->l3, 2689 .mask = &attributes->l3, 2690 }; 2691 attributes->items[2] = (struct rte_flow_item){ 2692 .type = RTE_FLOW_ITEM_TYPE_UDP, 2693 .spec = &attributes->l4, 2694 .mask = &attributes->l4, 2695 }; 2696 break; 2697 case RTE_ETH_FLOW_NONFRAG_IPV6_TCP: 2698 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2699 .hop_limits = input->flow.tcp6_flow.ip.hop_limits, 2700 .proto = input->flow.tcp6_flow.ip.proto, 2701 }; 2702 memcpy(attributes->l3.ipv6.hdr.src_addr, 2703 input->flow.tcp6_flow.ip.src_ip, 2704 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2705 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2706 input->flow.tcp6_flow.ip.dst_ip, 2707 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2708 attributes->l4.tcp.hdr = (struct tcp_hdr){ 2709 .src_port = input->flow.tcp6_flow.src_port, 2710 .dst_port = input->flow.tcp6_flow.dst_port, 2711 }; 2712 attributes->items[1] = (struct rte_flow_item){ 2713 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2714 .spec = &attributes->l3, 2715 .mask = &attributes->l3, 2716 }; 2717 attributes->items[2] = (struct rte_flow_item){ 2718 .type = RTE_FLOW_ITEM_TYPE_TCP, 2719 .spec = &attributes->l4, 2720 .mask = &attributes->l4, 2721 }; 2722 break; 2723 case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER: 2724 attributes->l3.ipv6.hdr = (struct ipv6_hdr){ 2725 .hop_limits = input->flow.ipv6_flow.hop_limits, 2726 .proto = input->flow.ipv6_flow.proto, 2727 }; 2728 memcpy(attributes->l3.ipv6.hdr.src_addr, 2729 input->flow.ipv6_flow.src_ip, 2730 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2731 memcpy(attributes->l3.ipv6.hdr.dst_addr, 2732 input->flow.ipv6_flow.dst_ip, 2733 RTE_DIM(attributes->l3.ipv6.hdr.src_addr)); 2734 attributes->items[1] = (struct rte_flow_item){ 2735 .type = RTE_FLOW_ITEM_TYPE_IPV6, 2736 .spec = &attributes->l3, 2737 .mask = &attributes->l3, 2738 }; 2739 break; 2740 default: 2741 ERROR("invalid flow type%d", 2742 fdir_filter->input.flow_type); 2743 return ENOTSUP; 2744 } 2745 return 0; 2746 } 2747 2748 /** 2749 * Add new flow director filter and store it in list. 2750 * 2751 * @param priv 2752 * Private structure. 2753 * @param fdir_filter 2754 * Flow director filter to add. 2755 * 2756 * @return 2757 * 0 on success, errno value on failure. 2758 */ 2759 static int 2760 priv_fdir_filter_add(struct priv *priv, 2761 const struct rte_eth_fdir_filter *fdir_filter) 2762 { 2763 struct mlx5_fdir attributes = { 2764 .attr.group = 0, 2765 .l2_mask = { 2766 .dst.addr_bytes = "\x00\x00\x00\x00\x00\x00", 2767 .src.addr_bytes = "\x00\x00\x00\x00\x00\x00", 2768 .type = 0, 2769 }, 2770 }; 2771 struct mlx5_flow_parse parser = { 2772 .layer = HASH_RXQ_ETH, 2773 }; 2774 struct rte_flow_error error; 2775 struct rte_flow *flow; 2776 int ret; 2777 2778 ret = priv_fdir_filter_convert(priv, fdir_filter, &attributes); 2779 if (ret) 2780 return -ret; 2781 ret = priv_flow_convert(priv, &attributes.attr, attributes.items, 2782 attributes.actions, &error, &parser); 2783 if (ret) 2784 return -ret; 2785 flow = priv_flow_create(priv, 2786 &priv->flows, 2787 &attributes.attr, 2788 attributes.items, 2789 attributes.actions, 2790 &error); 2791 if (flow) { 2792 DEBUG("FDIR created %p", (void *)flow); 2793 return 0; 2794 } 2795 return ENOTSUP; 2796 } 2797 2798 /** 2799 * Delete specific filter. 2800 * 2801 * @param priv 2802 * Private structure. 2803 * @param fdir_filter 2804 * Filter to be deleted. 2805 * 2806 * @return 2807 * 0 on success, errno value on failure. 2808 */ 2809 static int 2810 priv_fdir_filter_delete(struct priv *priv, 2811 const struct rte_eth_fdir_filter *fdir_filter) 2812 { 2813 struct mlx5_fdir attributes = { 2814 .attr.group = 0, 2815 }; 2816 struct mlx5_flow_parse parser = { 2817 .create = 1, 2818 .layer = HASH_RXQ_ETH, 2819 }; 2820 struct rte_flow_error error; 2821 struct rte_flow *flow; 2822 unsigned int i; 2823 int ret; 2824 2825 ret = priv_fdir_filter_convert(priv, fdir_filter, &attributes); 2826 if (ret) 2827 return -ret; 2828 ret = priv_flow_convert(priv, &attributes.attr, attributes.items, 2829 attributes.actions, &error, &parser); 2830 if (ret) 2831 goto exit; 2832 /* 2833 * Special case for drop action which is only set in the 2834 * specifications when the flow is created. In this situation the 2835 * drop specification is missing. 2836 */ 2837 if (parser.drop) { 2838 struct ibv_flow_spec_action_drop *drop; 2839 2840 drop = (void *)((uintptr_t)parser.queue[HASH_RXQ_ETH].ibv_attr + 2841 parser.queue[HASH_RXQ_ETH].offset); 2842 *drop = (struct ibv_flow_spec_action_drop){ 2843 .type = IBV_FLOW_SPEC_ACTION_DROP, 2844 .size = sizeof(struct ibv_flow_spec_action_drop), 2845 }; 2846 parser.queue[HASH_RXQ_ETH].ibv_attr->num_of_specs++; 2847 } 2848 TAILQ_FOREACH(flow, &priv->flows, next) { 2849 struct ibv_flow_attr *attr; 2850 struct ibv_spec_header *attr_h; 2851 void *spec; 2852 struct ibv_flow_attr *flow_attr; 2853 struct ibv_spec_header *flow_h; 2854 void *flow_spec; 2855 unsigned int specs_n; 2856 2857 attr = parser.queue[HASH_RXQ_ETH].ibv_attr; 2858 flow_attr = flow->frxq[HASH_RXQ_ETH].ibv_attr; 2859 /* Compare first the attributes. */ 2860 if (memcmp(attr, flow_attr, sizeof(struct ibv_flow_attr))) 2861 continue; 2862 if (attr->num_of_specs == 0) 2863 continue; 2864 spec = (void *)((uintptr_t)attr + 2865 sizeof(struct ibv_flow_attr)); 2866 flow_spec = (void *)((uintptr_t)flow_attr + 2867 sizeof(struct ibv_flow_attr)); 2868 specs_n = RTE_MIN(attr->num_of_specs, flow_attr->num_of_specs); 2869 for (i = 0; i != specs_n; ++i) { 2870 attr_h = spec; 2871 flow_h = flow_spec; 2872 if (memcmp(spec, flow_spec, 2873 RTE_MIN(attr_h->size, flow_h->size))) 2874 goto wrong_flow; 2875 spec = (void *)((uintptr_t)spec + attr_h->size); 2876 flow_spec = (void *)((uintptr_t)flow_spec + 2877 flow_h->size); 2878 } 2879 /* At this point, the flow match. */ 2880 break; 2881 wrong_flow: 2882 /* The flow does not match. */ 2883 continue; 2884 } 2885 if (flow) 2886 priv_flow_destroy(priv, &priv->flows, flow); 2887 exit: 2888 for (i = 0; i != hash_rxq_init_n; ++i) { 2889 if (parser.queue[i].ibv_attr) 2890 rte_free(parser.queue[i].ibv_attr); 2891 } 2892 return -ret; 2893 } 2894 2895 /** 2896 * Update queue for specific filter. 2897 * 2898 * @param priv 2899 * Private structure. 2900 * @param fdir_filter 2901 * Filter to be updated. 2902 * 2903 * @return 2904 * 0 on success, errno value on failure. 2905 */ 2906 static int 2907 priv_fdir_filter_update(struct priv *priv, 2908 const struct rte_eth_fdir_filter *fdir_filter) 2909 { 2910 int ret; 2911 2912 ret = priv_fdir_filter_delete(priv, fdir_filter); 2913 if (ret) 2914 return ret; 2915 ret = priv_fdir_filter_add(priv, fdir_filter); 2916 return ret; 2917 } 2918 2919 /** 2920 * Flush all filters. 2921 * 2922 * @param priv 2923 * Private structure. 2924 */ 2925 static void 2926 priv_fdir_filter_flush(struct priv *priv) 2927 { 2928 priv_flow_flush(priv, &priv->flows); 2929 } 2930 2931 /** 2932 * Get flow director information. 2933 * 2934 * @param priv 2935 * Private structure. 2936 * @param[out] fdir_info 2937 * Resulting flow director information. 2938 */ 2939 static void 2940 priv_fdir_info_get(struct priv *priv, struct rte_eth_fdir_info *fdir_info) 2941 { 2942 struct rte_eth_fdir_masks *mask = 2943 &priv->dev->data->dev_conf.fdir_conf.mask; 2944 2945 fdir_info->mode = priv->dev->data->dev_conf.fdir_conf.mode; 2946 fdir_info->guarant_spc = 0; 2947 rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask)); 2948 fdir_info->max_flexpayload = 0; 2949 fdir_info->flow_types_mask[0] = 0; 2950 fdir_info->flex_payload_unit = 0; 2951 fdir_info->max_flex_payload_segment_num = 0; 2952 fdir_info->flex_payload_limit = 0; 2953 memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf)); 2954 } 2955 2956 /** 2957 * Deal with flow director operations. 2958 * 2959 * @param priv 2960 * Pointer to private structure. 2961 * @param filter_op 2962 * Operation to perform. 2963 * @param arg 2964 * Pointer to operation-specific structure. 2965 * 2966 * @return 2967 * 0 on success, errno value on failure. 2968 */ 2969 static int 2970 priv_fdir_ctrl_func(struct priv *priv, enum rte_filter_op filter_op, void *arg) 2971 { 2972 enum rte_fdir_mode fdir_mode = 2973 priv->dev->data->dev_conf.fdir_conf.mode; 2974 int ret = 0; 2975 2976 if (filter_op == RTE_ETH_FILTER_NOP) 2977 return 0; 2978 if (fdir_mode != RTE_FDIR_MODE_PERFECT && 2979 fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) { 2980 ERROR("%p: flow director mode %d not supported", 2981 (void *)priv, fdir_mode); 2982 return EINVAL; 2983 } 2984 switch (filter_op) { 2985 case RTE_ETH_FILTER_ADD: 2986 ret = priv_fdir_filter_add(priv, arg); 2987 break; 2988 case RTE_ETH_FILTER_UPDATE: 2989 ret = priv_fdir_filter_update(priv, arg); 2990 break; 2991 case RTE_ETH_FILTER_DELETE: 2992 ret = priv_fdir_filter_delete(priv, arg); 2993 break; 2994 case RTE_ETH_FILTER_FLUSH: 2995 priv_fdir_filter_flush(priv); 2996 break; 2997 case RTE_ETH_FILTER_INFO: 2998 priv_fdir_info_get(priv, arg); 2999 break; 3000 default: 3001 DEBUG("%p: unknown operation %u", (void *)priv, 3002 filter_op); 3003 ret = EINVAL; 3004 break; 3005 } 3006 return ret; 3007 } 3008 3009 /** 3010 * Manage filter operations. 3011 * 3012 * @param dev 3013 * Pointer to Ethernet device structure. 3014 * @param filter_type 3015 * Filter type. 3016 * @param filter_op 3017 * Operation to perform. 3018 * @param arg 3019 * Pointer to operation-specific structure. 3020 * 3021 * @return 3022 * 0 on success, negative errno value on failure. 3023 */ 3024 int 3025 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 3026 enum rte_filter_type filter_type, 3027 enum rte_filter_op filter_op, 3028 void *arg) 3029 { 3030 int ret = EINVAL; 3031 struct priv *priv = dev->data->dev_private; 3032 3033 switch (filter_type) { 3034 case RTE_ETH_FILTER_GENERIC: 3035 if (filter_op != RTE_ETH_FILTER_GET) 3036 return -EINVAL; 3037 *(const void **)arg = &mlx5_flow_ops; 3038 return 0; 3039 case RTE_ETH_FILTER_FDIR: 3040 priv_lock(priv); 3041 ret = priv_fdir_ctrl_func(priv, filter_op, arg); 3042 priv_unlock(priv); 3043 break; 3044 default: 3045 ERROR("%p: filter type (%d) not supported", 3046 (void *)dev, filter_type); 3047 break; 3048 } 3049 return -ret; 3050 } 3051