xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 10ad83d0f0ae2b01618c673055f2cf6901eaec7b)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_eth_ctrl.h>
25 #include <rte_ethdev_driver.h>
26 #include <rte_flow.h>
27 #include <rte_flow_driver.h>
28 #include <rte_malloc.h>
29 #include <rte_ip.h>
30 
31 #include "mlx5.h"
32 #include "mlx5_defs.h"
33 #include "mlx5_prm.h"
34 #include "mlx5_glue.h"
35 #include "mlx5_flow.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47 
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49 
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55 	[MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59 
60 enum mlx5_expansion {
61 	MLX5_EXPANSION_ROOT,
62 	MLX5_EXPANSION_ROOT_OUTER,
63 	MLX5_EXPANSION_ROOT_ETH_VLAN,
64 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_ETH,
66 	MLX5_EXPANSION_OUTER_ETH_VLAN,
67 	MLX5_EXPANSION_OUTER_VLAN,
68 	MLX5_EXPANSION_OUTER_IPV4,
69 	MLX5_EXPANSION_OUTER_IPV4_UDP,
70 	MLX5_EXPANSION_OUTER_IPV4_TCP,
71 	MLX5_EXPANSION_OUTER_IPV6,
72 	MLX5_EXPANSION_OUTER_IPV6_UDP,
73 	MLX5_EXPANSION_OUTER_IPV6_TCP,
74 	MLX5_EXPANSION_VXLAN,
75 	MLX5_EXPANSION_VXLAN_GPE,
76 	MLX5_EXPANSION_GRE,
77 	MLX5_EXPANSION_MPLS,
78 	MLX5_EXPANSION_ETH,
79 	MLX5_EXPANSION_ETH_VLAN,
80 	MLX5_EXPANSION_VLAN,
81 	MLX5_EXPANSION_IPV4,
82 	MLX5_EXPANSION_IPV4_UDP,
83 	MLX5_EXPANSION_IPV4_TCP,
84 	MLX5_EXPANSION_IPV6,
85 	MLX5_EXPANSION_IPV6_UDP,
86 	MLX5_EXPANSION_IPV6_TCP,
87 };
88 
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91 	[MLX5_EXPANSION_ROOT] = {
92 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93 						 MLX5_EXPANSION_IPV4,
94 						 MLX5_EXPANSION_IPV6),
95 		.type = RTE_FLOW_ITEM_TYPE_END,
96 	},
97 	[MLX5_EXPANSION_ROOT_OUTER] = {
98 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99 						 MLX5_EXPANSION_OUTER_IPV4,
100 						 MLX5_EXPANSION_OUTER_IPV6),
101 		.type = RTE_FLOW_ITEM_TYPE_END,
102 	},
103 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105 		.type = RTE_FLOW_ITEM_TYPE_END,
106 	},
107 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109 		.type = RTE_FLOW_ITEM_TYPE_END,
110 	},
111 	[MLX5_EXPANSION_OUTER_ETH] = {
112 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113 						 MLX5_EXPANSION_OUTER_IPV6,
114 						 MLX5_EXPANSION_MPLS),
115 		.type = RTE_FLOW_ITEM_TYPE_ETH,
116 		.rss_types = 0,
117 	},
118 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120 		.type = RTE_FLOW_ITEM_TYPE_ETH,
121 		.rss_types = 0,
122 	},
123 	[MLX5_EXPANSION_OUTER_VLAN] = {
124 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125 						 MLX5_EXPANSION_OUTER_IPV6),
126 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
127 	},
128 	[MLX5_EXPANSION_OUTER_IPV4] = {
129 		.next = RTE_FLOW_EXPAND_RSS_NEXT
130 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
131 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
132 			 MLX5_EXPANSION_GRE),
133 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
134 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135 			ETH_RSS_NONFRAG_IPV4_OTHER,
136 	},
137 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139 						 MLX5_EXPANSION_VXLAN_GPE),
140 		.type = RTE_FLOW_ITEM_TYPE_UDP,
141 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142 	},
143 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144 		.type = RTE_FLOW_ITEM_TYPE_TCP,
145 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146 	},
147 	[MLX5_EXPANSION_OUTER_IPV6] = {
148 		.next = RTE_FLOW_EXPAND_RSS_NEXT
149 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
150 			 MLX5_EXPANSION_OUTER_IPV6_TCP),
151 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
152 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153 			ETH_RSS_NONFRAG_IPV6_OTHER,
154 	},
155 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157 						 MLX5_EXPANSION_VXLAN_GPE),
158 		.type = RTE_FLOW_ITEM_TYPE_UDP,
159 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160 	},
161 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162 		.type = RTE_FLOW_ITEM_TYPE_TCP,
163 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164 	},
165 	[MLX5_EXPANSION_VXLAN] = {
166 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
168 	},
169 	[MLX5_EXPANSION_VXLAN_GPE] = {
170 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171 						 MLX5_EXPANSION_IPV4,
172 						 MLX5_EXPANSION_IPV6),
173 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174 	},
175 	[MLX5_EXPANSION_GRE] = {
176 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177 		.type = RTE_FLOW_ITEM_TYPE_GRE,
178 	},
179 	[MLX5_EXPANSION_MPLS] = {
180 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181 						 MLX5_EXPANSION_IPV6),
182 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
183 	},
184 	[MLX5_EXPANSION_ETH] = {
185 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186 						 MLX5_EXPANSION_IPV6),
187 		.type = RTE_FLOW_ITEM_TYPE_ETH,
188 	},
189 	[MLX5_EXPANSION_ETH_VLAN] = {
190 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191 		.type = RTE_FLOW_ITEM_TYPE_ETH,
192 	},
193 	[MLX5_EXPANSION_VLAN] = {
194 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195 						 MLX5_EXPANSION_IPV6),
196 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
197 	},
198 	[MLX5_EXPANSION_IPV4] = {
199 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200 						 MLX5_EXPANSION_IPV4_TCP),
201 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
202 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203 			ETH_RSS_NONFRAG_IPV4_OTHER,
204 	},
205 	[MLX5_EXPANSION_IPV4_UDP] = {
206 		.type = RTE_FLOW_ITEM_TYPE_UDP,
207 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208 	},
209 	[MLX5_EXPANSION_IPV4_TCP] = {
210 		.type = RTE_FLOW_ITEM_TYPE_TCP,
211 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212 	},
213 	[MLX5_EXPANSION_IPV6] = {
214 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215 						 MLX5_EXPANSION_IPV6_TCP),
216 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
217 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218 			ETH_RSS_NONFRAG_IPV6_OTHER,
219 	},
220 	[MLX5_EXPANSION_IPV6_UDP] = {
221 		.type = RTE_FLOW_ITEM_TYPE_UDP,
222 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223 	},
224 	[MLX5_EXPANSION_IPV6_TCP] = {
225 		.type = RTE_FLOW_ITEM_TYPE_TCP,
226 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227 	},
228 };
229 
230 static const struct rte_flow_ops mlx5_flow_ops = {
231 	.validate = mlx5_flow_validate,
232 	.create = mlx5_flow_create,
233 	.destroy = mlx5_flow_destroy,
234 	.flush = mlx5_flow_flush,
235 	.isolate = mlx5_flow_isolate,
236 	.query = mlx5_flow_query,
237 };
238 
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241 	struct rte_flow_attr attr;
242 	struct rte_flow_item items[4];
243 	struct rte_flow_item_eth l2;
244 	struct rte_flow_item_eth l2_mask;
245 	union {
246 		struct rte_flow_item_ipv4 ipv4;
247 		struct rte_flow_item_ipv6 ipv6;
248 	} l3;
249 	union {
250 		struct rte_flow_item_ipv4 ipv4;
251 		struct rte_flow_item_ipv6 ipv6;
252 	} l3_mask;
253 	union {
254 		struct rte_flow_item_udp udp;
255 		struct rte_flow_item_tcp tcp;
256 	} l4;
257 	union {
258 		struct rte_flow_item_udp udp;
259 		struct rte_flow_item_tcp tcp;
260 	} l4_mask;
261 	struct rte_flow_action actions[2];
262 	struct rte_flow_action_queue queue;
263 };
264 
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269 
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273 	{ 9, 10, 11 }, { 12, 13, 14 },
274 };
275 
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281 
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283 	{
284 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
285 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286 	},
287 	{
288 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290 	},
291 	{
292 		.tunnel = MLX5_FLOW_LAYER_GRE,
293 		.ptype = RTE_PTYPE_TUNNEL_GRE,
294 	},
295 	{
296 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
298 	},
299 	{
300 		.tunnel = MLX5_FLOW_LAYER_MPLS,
301 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302 	},
303 };
304 
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318 	struct {
319 		struct ibv_flow_attr attr;
320 		struct ibv_flow_spec_eth eth;
321 		struct ibv_flow_spec_action_drop drop;
322 	} flow_attr = {
323 		.attr = {
324 			.num_of_specs = 2,
325 		},
326 		.eth = {
327 			.type = IBV_FLOW_SPEC_ETH,
328 			.size = sizeof(struct ibv_flow_spec_eth),
329 		},
330 		.drop = {
331 			.size = sizeof(struct ibv_flow_spec_action_drop),
332 			.type = IBV_FLOW_SPEC_ACTION_DROP,
333 		},
334 	};
335 	struct ibv_flow *flow;
336 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337 	uint16_t vprio[] = { 8, 16 };
338 	int i;
339 	int priority = 0;
340 
341 	if (!drop) {
342 		rte_errno = ENOTSUP;
343 		return -rte_errno;
344 	}
345 	for (i = 0; i != RTE_DIM(vprio); i++) {
346 		flow_attr.attr.priority = vprio[i] - 1;
347 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348 		if (!flow)
349 			break;
350 		claim_zero(mlx5_glue->destroy_flow(flow));
351 		priority = vprio[i];
352 	}
353 	switch (priority) {
354 	case 8:
355 		priority = RTE_DIM(priority_map_3);
356 		break;
357 	case 16:
358 		priority = RTE_DIM(priority_map_5);
359 		break;
360 	default:
361 		rte_errno = ENOTSUP;
362 		DRV_LOG(ERR,
363 			"port %u verbs maximum priority: %d expected 8/16",
364 			dev->data->port_id, vprio[i]);
365 		return -rte_errno;
366 	}
367 	mlx5_hrxq_drop_release(dev);
368 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
369 		dev->data->port_id, priority);
370 	return priority;
371 }
372 
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387 				   uint32_t subpriority)
388 {
389 	uint32_t res = 0;
390 	struct priv *priv = dev->data->dev_private;
391 
392 	switch (priv->config.flow_prio) {
393 	case RTE_DIM(priority_map_3):
394 		res = priority_map_3[priority][subpriority];
395 		break;
396 	case RTE_DIM(priority_map_5):
397 		res = priority_map_5[priority][subpriority];
398 		break;
399 	}
400 	return  res;
401 }
402 
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423 			  const uint8_t *mask,
424 			  const uint8_t *nic_mask,
425 			  unsigned int size,
426 			  struct rte_flow_error *error)
427 {
428 	unsigned int i;
429 
430 	assert(nic_mask);
431 	for (i = 0; i < size; ++i)
432 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
433 			return rte_flow_error_set(error, ENOTSUP,
434 						  RTE_FLOW_ERROR_TYPE_ITEM,
435 						  item,
436 						  "mask enables non supported"
437 						  " bits");
438 	if (!item->spec && (item->mask || item->last))
439 		return rte_flow_error_set(error, EINVAL,
440 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
441 					  "mask/last without a spec is not"
442 					  " supported");
443 	if (item->spec && item->last) {
444 		uint8_t spec[size];
445 		uint8_t last[size];
446 		unsigned int i;
447 		int ret;
448 
449 		for (i = 0; i < size; ++i) {
450 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452 		}
453 		ret = memcmp(spec, last, size);
454 		if (ret != 0)
455 			return rte_flow_error_set(error, EINVAL,
456 						  RTE_FLOW_ERROR_TYPE_ITEM,
457 						  item,
458 						  "range is not valid");
459 	}
460 	return 0;
461 }
462 
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480 			    int tunnel __rte_unused, uint64_t layer_types,
481 			    uint64_t hash_fields)
482 {
483 	struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485 	int rss_request_inner = flow->rss.level >= 2;
486 
487 	/* Check RSS hash level for tunnel. */
488 	if (tunnel && rss_request_inner)
489 		hash_fields |= IBV_RX_HASH_INNER;
490 	else if (tunnel || rss_request_inner)
491 		return 0;
492 #endif
493 	/* Check if requested layer matches RSS hash fields. */
494 	if (!(flow->rss.types & layer_types))
495 		return 0;
496 	return hash_fields;
497 }
498 
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510 	unsigned int i;
511 	uint32_t tunnel_ptype = 0;
512 
513 	/* Look up for the ptype to use. */
514 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515 		if (!rxq_ctrl->flow_tunnels_n[i])
516 			continue;
517 		if (!tunnel_ptype) {
518 			tunnel_ptype = tunnels_info[i].ptype;
519 		} else {
520 			tunnel_ptype = 0;
521 			break;
522 		}
523 	}
524 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526 
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
529  * flow.
530  *
531  * @param[in] dev
532  *   Pointer to the Ethernet device structure.
533  * @param[in] dev_flow
534  *   Pointer to device flow structure.
535  */
536 static void
537 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
538 {
539 	struct priv *priv = dev->data->dev_private;
540 	struct rte_flow *flow = dev_flow->flow;
541 	const int mark = !!(flow->actions &
542 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
543 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
544 	unsigned int i;
545 
546 	for (i = 0; i != flow->rss.queue_num; ++i) {
547 		int idx = (*flow->queue)[i];
548 		struct mlx5_rxq_ctrl *rxq_ctrl =
549 			container_of((*priv->rxqs)[idx],
550 				     struct mlx5_rxq_ctrl, rxq);
551 
552 		if (mark) {
553 			rxq_ctrl->rxq.mark = 1;
554 			rxq_ctrl->flow_mark_n++;
555 		}
556 		if (tunnel) {
557 			unsigned int j;
558 
559 			/* Increase the counter matching the flow. */
560 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
561 				if ((tunnels_info[j].tunnel &
562 				     dev_flow->layers) ==
563 				    tunnels_info[j].tunnel) {
564 					rxq_ctrl->flow_tunnels_n[j]++;
565 					break;
566 				}
567 			}
568 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
569 		}
570 	}
571 }
572 
573 /**
574  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
575  *
576  * @param[in] dev
577  *   Pointer to the Ethernet device structure.
578  * @param[in] flow
579  *   Pointer to flow structure.
580  */
581 static void
582 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
583 {
584 	struct mlx5_flow *dev_flow;
585 
586 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
587 		flow_drv_rxq_flags_set(dev, dev_flow);
588 }
589 
590 /**
591  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
592  * device flow if no other flow uses it with the same kind of request.
593  *
594  * @param dev
595  *   Pointer to Ethernet device.
596  * @param[in] dev_flow
597  *   Pointer to the device flow.
598  */
599 static void
600 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
601 {
602 	struct priv *priv = dev->data->dev_private;
603 	struct rte_flow *flow = dev_flow->flow;
604 	const int mark = !!(flow->actions &
605 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
606 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
607 	unsigned int i;
608 
609 	assert(dev->data->dev_started);
610 	for (i = 0; i != flow->rss.queue_num; ++i) {
611 		int idx = (*flow->queue)[i];
612 		struct mlx5_rxq_ctrl *rxq_ctrl =
613 			container_of((*priv->rxqs)[idx],
614 				     struct mlx5_rxq_ctrl, rxq);
615 
616 		if (mark) {
617 			rxq_ctrl->flow_mark_n--;
618 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
619 		}
620 		if (tunnel) {
621 			unsigned int j;
622 
623 			/* Decrease the counter matching the flow. */
624 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
625 				if ((tunnels_info[j].tunnel &
626 				     dev_flow->layers) ==
627 				    tunnels_info[j].tunnel) {
628 					rxq_ctrl->flow_tunnels_n[j]--;
629 					break;
630 				}
631 			}
632 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
633 		}
634 	}
635 }
636 
637 /**
638  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
639  * @p flow if no other flow uses it with the same kind of request.
640  *
641  * @param dev
642  *   Pointer to Ethernet device.
643  * @param[in] flow
644  *   Pointer to the flow.
645  */
646 static void
647 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
648 {
649 	struct mlx5_flow *dev_flow;
650 
651 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
652 		flow_drv_rxq_flags_trim(dev, dev_flow);
653 }
654 
655 /**
656  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
657  *
658  * @param dev
659  *   Pointer to Ethernet device.
660  */
661 static void
662 flow_rxq_flags_clear(struct rte_eth_dev *dev)
663 {
664 	struct priv *priv = dev->data->dev_private;
665 	unsigned int i;
666 
667 	for (i = 0; i != priv->rxqs_n; ++i) {
668 		struct mlx5_rxq_ctrl *rxq_ctrl;
669 		unsigned int j;
670 
671 		if (!(*priv->rxqs)[i])
672 			continue;
673 		rxq_ctrl = container_of((*priv->rxqs)[i],
674 					struct mlx5_rxq_ctrl, rxq);
675 		rxq_ctrl->flow_mark_n = 0;
676 		rxq_ctrl->rxq.mark = 0;
677 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
678 			rxq_ctrl->flow_tunnels_n[j] = 0;
679 		rxq_ctrl->rxq.tunnel = 0;
680 	}
681 }
682 
683 /*
684  * Validate the flag action.
685  *
686  * @param[in] action_flags
687  *   Bit-fields that holds the actions detected until now.
688  * @param[in] attr
689  *   Attributes of flow that includes this action.
690  * @param[out] error
691  *   Pointer to error structure.
692  *
693  * @return
694  *   0 on success, a negative errno value otherwise and rte_errno is set.
695  */
696 int
697 mlx5_flow_validate_action_flag(uint64_t action_flags,
698 			       const struct rte_flow_attr *attr,
699 			       struct rte_flow_error *error)
700 {
701 
702 	if (action_flags & MLX5_FLOW_ACTION_DROP)
703 		return rte_flow_error_set(error, EINVAL,
704 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
705 					  "can't drop and flag in same flow");
706 	if (action_flags & MLX5_FLOW_ACTION_MARK)
707 		return rte_flow_error_set(error, EINVAL,
708 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
709 					  "can't mark and flag in same flow");
710 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
711 		return rte_flow_error_set(error, EINVAL,
712 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713 					  "can't have 2 flag"
714 					  " actions in same flow");
715 	if (attr->egress)
716 		return rte_flow_error_set(error, ENOTSUP,
717 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
718 					  "flag action not supported for "
719 					  "egress");
720 	return 0;
721 }
722 
723 /*
724  * Validate the mark action.
725  *
726  * @param[in] action
727  *   Pointer to the queue action.
728  * @param[in] action_flags
729  *   Bit-fields that holds the actions detected until now.
730  * @param[in] attr
731  *   Attributes of flow that includes this action.
732  * @param[out] error
733  *   Pointer to error structure.
734  *
735  * @return
736  *   0 on success, a negative errno value otherwise and rte_errno is set.
737  */
738 int
739 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
740 			       uint64_t action_flags,
741 			       const struct rte_flow_attr *attr,
742 			       struct rte_flow_error *error)
743 {
744 	const struct rte_flow_action_mark *mark = action->conf;
745 
746 	if (!mark)
747 		return rte_flow_error_set(error, EINVAL,
748 					  RTE_FLOW_ERROR_TYPE_ACTION,
749 					  action,
750 					  "configuration cannot be null");
751 	if (mark->id >= MLX5_FLOW_MARK_MAX)
752 		return rte_flow_error_set(error, EINVAL,
753 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
754 					  &mark->id,
755 					  "mark id must in 0 <= id < "
756 					  RTE_STR(MLX5_FLOW_MARK_MAX));
757 	if (action_flags & MLX5_FLOW_ACTION_DROP)
758 		return rte_flow_error_set(error, EINVAL,
759 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
760 					  "can't drop and mark in same flow");
761 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
762 		return rte_flow_error_set(error, EINVAL,
763 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
764 					  "can't flag and mark in same flow");
765 	if (action_flags & MLX5_FLOW_ACTION_MARK)
766 		return rte_flow_error_set(error, EINVAL,
767 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768 					  "can't have 2 mark actions in same"
769 					  " flow");
770 	if (attr->egress)
771 		return rte_flow_error_set(error, ENOTSUP,
772 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
773 					  "mark action not supported for "
774 					  "egress");
775 	return 0;
776 }
777 
778 /*
779  * Validate the drop action.
780  *
781  * @param[in] action_flags
782  *   Bit-fields that holds the actions detected until now.
783  * @param[in] attr
784  *   Attributes of flow that includes this action.
785  * @param[out] error
786  *   Pointer to error structure.
787  *
788  * @return
789  *   0 on success, a negative errno value otherwise and rte_ernno is set.
790  */
791 int
792 mlx5_flow_validate_action_drop(uint64_t action_flags,
793 			       const struct rte_flow_attr *attr,
794 			       struct rte_flow_error *error)
795 {
796 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
797 		return rte_flow_error_set(error, EINVAL,
798 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799 					  "can't drop and flag in same flow");
800 	if (action_flags & MLX5_FLOW_ACTION_MARK)
801 		return rte_flow_error_set(error, EINVAL,
802 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803 					  "can't drop and mark in same flow");
804 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805 		return rte_flow_error_set(error, EINVAL,
806 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807 					  "can't have 2 fate actions in"
808 					  " same flow");
809 	if (attr->egress)
810 		return rte_flow_error_set(error, ENOTSUP,
811 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812 					  "drop action not supported for "
813 					  "egress");
814 	return 0;
815 }
816 
817 /*
818  * Validate the queue action.
819  *
820  * @param[in] action
821  *   Pointer to the queue action.
822  * @param[in] action_flags
823  *   Bit-fields that holds the actions detected until now.
824  * @param[in] dev
825  *   Pointer to the Ethernet device structure.
826  * @param[in] attr
827  *   Attributes of flow that includes this action.
828  * @param[out] error
829  *   Pointer to error structure.
830  *
831  * @return
832  *   0 on success, a negative errno value otherwise and rte_ernno is set.
833  */
834 int
835 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
836 				uint64_t action_flags,
837 				struct rte_eth_dev *dev,
838 				const struct rte_flow_attr *attr,
839 				struct rte_flow_error *error)
840 {
841 	struct priv *priv = dev->data->dev_private;
842 	const struct rte_flow_action_queue *queue = action->conf;
843 
844 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
845 		return rte_flow_error_set(error, EINVAL,
846 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847 					  "can't have 2 fate actions in"
848 					  " same flow");
849 	if (queue->index >= priv->rxqs_n)
850 		return rte_flow_error_set(error, EINVAL,
851 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
852 					  &queue->index,
853 					  "queue index out of range");
854 	if (!(*priv->rxqs)[queue->index])
855 		return rte_flow_error_set(error, EINVAL,
856 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
857 					  &queue->index,
858 					  "queue is not configured");
859 	if (attr->egress)
860 		return rte_flow_error_set(error, ENOTSUP,
861 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
862 					  "queue action not supported for "
863 					  "egress");
864 	return 0;
865 }
866 
867 /*
868  * Validate the rss action.
869  *
870  * @param[in] action
871  *   Pointer to the queue action.
872  * @param[in] action_flags
873  *   Bit-fields that holds the actions detected until now.
874  * @param[in] dev
875  *   Pointer to the Ethernet device structure.
876  * @param[in] attr
877  *   Attributes of flow that includes this action.
878  * @param[out] error
879  *   Pointer to error structure.
880  *
881  * @return
882  *   0 on success, a negative errno value otherwise and rte_ernno is set.
883  */
884 int
885 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
886 			      uint64_t action_flags,
887 			      struct rte_eth_dev *dev,
888 			      const struct rte_flow_attr *attr,
889 			      struct rte_flow_error *error)
890 {
891 	struct priv *priv = dev->data->dev_private;
892 	const struct rte_flow_action_rss *rss = action->conf;
893 	unsigned int i;
894 
895 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
896 		return rte_flow_error_set(error, EINVAL,
897 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
898 					  "can't have 2 fate actions"
899 					  " in same flow");
900 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
901 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
902 		return rte_flow_error_set(error, ENOTSUP,
903 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
904 					  &rss->func,
905 					  "RSS hash function not supported");
906 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
907 	if (rss->level > 2)
908 #else
909 	if (rss->level > 1)
910 #endif
911 		return rte_flow_error_set(error, ENOTSUP,
912 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
913 					  &rss->level,
914 					  "tunnel RSS is not supported");
915 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
916 	if (rss->key_len == 0 && rss->key != NULL)
917 		return rte_flow_error_set(error, ENOTSUP,
918 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
919 					  &rss->key_len,
920 					  "RSS hash key length 0");
921 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
922 		return rte_flow_error_set(error, ENOTSUP,
923 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
924 					  &rss->key_len,
925 					  "RSS hash key too small");
926 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
927 		return rte_flow_error_set(error, ENOTSUP,
928 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
929 					  &rss->key_len,
930 					  "RSS hash key too large");
931 	if (rss->queue_num > priv->config.ind_table_max_size)
932 		return rte_flow_error_set(error, ENOTSUP,
933 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
934 					  &rss->queue_num,
935 					  "number of queues too large");
936 	if (rss->types & MLX5_RSS_HF_MASK)
937 		return rte_flow_error_set(error, ENOTSUP,
938 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
939 					  &rss->types,
940 					  "some RSS protocols are not"
941 					  " supported");
942 	for (i = 0; i != rss->queue_num; ++i) {
943 		if (!(*priv->rxqs)[rss->queue[i]])
944 			return rte_flow_error_set
945 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
946 				 &rss->queue[i], "queue is not configured");
947 	}
948 	if (attr->egress)
949 		return rte_flow_error_set(error, ENOTSUP,
950 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
951 					  "rss action not supported for "
952 					  "egress");
953 	return 0;
954 }
955 
956 /*
957  * Validate the count action.
958  *
959  * @param[in] dev
960  *   Pointer to the Ethernet device structure.
961  * @param[in] attr
962  *   Attributes of flow that includes this action.
963  * @param[out] error
964  *   Pointer to error structure.
965  *
966  * @return
967  *   0 on success, a negative errno value otherwise and rte_ernno is set.
968  */
969 int
970 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
971 				const struct rte_flow_attr *attr,
972 				struct rte_flow_error *error)
973 {
974 	if (attr->egress)
975 		return rte_flow_error_set(error, ENOTSUP,
976 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
977 					  "count action not supported for "
978 					  "egress");
979 	return 0;
980 }
981 
982 /**
983  * Verify the @p attributes will be correctly understood by the NIC and store
984  * them in the @p flow if everything is correct.
985  *
986  * @param[in] dev
987  *   Pointer to the Ethernet device structure.
988  * @param[in] attributes
989  *   Pointer to flow attributes
990  * @param[out] error
991  *   Pointer to error structure.
992  *
993  * @return
994  *   0 on success, a negative errno value otherwise and rte_errno is set.
995  */
996 int
997 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
998 			      const struct rte_flow_attr *attributes,
999 			      struct rte_flow_error *error)
1000 {
1001 	struct priv *priv = dev->data->dev_private;
1002 	uint32_t priority_max = priv->config.flow_prio - 1;
1003 
1004 	if (attributes->group)
1005 		return rte_flow_error_set(error, ENOTSUP,
1006 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1007 					  NULL, "groups is not supported");
1008 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1009 	    attributes->priority >= priority_max)
1010 		return rte_flow_error_set(error, ENOTSUP,
1011 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1012 					  NULL, "priority out of range");
1013 	if (attributes->egress)
1014 		return rte_flow_error_set(error, ENOTSUP,
1015 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1016 					  "egress is not supported");
1017 	if (attributes->transfer)
1018 		return rte_flow_error_set(error, ENOTSUP,
1019 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1020 					  NULL, "transfer is not supported");
1021 	if (!attributes->ingress)
1022 		return rte_flow_error_set(error, EINVAL,
1023 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1024 					  NULL,
1025 					  "ingress attribute is mandatory");
1026 	return 0;
1027 }
1028 
1029 /**
1030  * Validate Ethernet item.
1031  *
1032  * @param[in] item
1033  *   Item specification.
1034  * @param[in] item_flags
1035  *   Bit-fields that holds the items detected until now.
1036  * @param[out] error
1037  *   Pointer to error structure.
1038  *
1039  * @return
1040  *   0 on success, a negative errno value otherwise and rte_errno is set.
1041  */
1042 int
1043 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1044 			    uint64_t item_flags,
1045 			    struct rte_flow_error *error)
1046 {
1047 	const struct rte_flow_item_eth *mask = item->mask;
1048 	const struct rte_flow_item_eth nic_mask = {
1049 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1050 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1051 		.type = RTE_BE16(0xffff),
1052 	};
1053 	int ret;
1054 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1055 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1056 				       MLX5_FLOW_LAYER_OUTER_L2;
1057 
1058 	if (item_flags & ethm)
1059 		return rte_flow_error_set(error, ENOTSUP,
1060 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1061 					  "multiple L2 layers not supported");
1062 	if (!mask)
1063 		mask = &rte_flow_item_eth_mask;
1064 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1065 					(const uint8_t *)&nic_mask,
1066 					sizeof(struct rte_flow_item_eth),
1067 					error);
1068 	return ret;
1069 }
1070 
1071 /**
1072  * Validate VLAN item.
1073  *
1074  * @param[in] item
1075  *   Item specification.
1076  * @param[in] item_flags
1077  *   Bit-fields that holds the items detected until now.
1078  * @param[out] error
1079  *   Pointer to error structure.
1080  *
1081  * @return
1082  *   0 on success, a negative errno value otherwise and rte_errno is set.
1083  */
1084 int
1085 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1086 			     uint64_t item_flags,
1087 			     struct rte_flow_error *error)
1088 {
1089 	const struct rte_flow_item_vlan *spec = item->spec;
1090 	const struct rte_flow_item_vlan *mask = item->mask;
1091 	const struct rte_flow_item_vlan nic_mask = {
1092 		.tci = RTE_BE16(0x0fff),
1093 		.inner_type = RTE_BE16(0xffff),
1094 	};
1095 	uint16_t vlan_tag = 0;
1096 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1097 	int ret;
1098 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1099 					MLX5_FLOW_LAYER_INNER_L4) :
1100 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1101 					MLX5_FLOW_LAYER_OUTER_L4);
1102 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1103 					MLX5_FLOW_LAYER_OUTER_VLAN;
1104 
1105 	if (item_flags & vlanm)
1106 		return rte_flow_error_set(error, EINVAL,
1107 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1108 					  "multiple VLAN layers not supported");
1109 	else if ((item_flags & l34m) != 0)
1110 		return rte_flow_error_set(error, EINVAL,
1111 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1112 					  "L2 layer cannot follow L3/L4 layer");
1113 	if (!mask)
1114 		mask = &rte_flow_item_vlan_mask;
1115 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1116 					(const uint8_t *)&nic_mask,
1117 					sizeof(struct rte_flow_item_vlan),
1118 					error);
1119 	if (ret)
1120 		return ret;
1121 	if (spec) {
1122 		vlan_tag = spec->tci;
1123 		vlan_tag &= mask->tci;
1124 	}
1125 	/*
1126 	 * From verbs perspective an empty VLAN is equivalent
1127 	 * to a packet without VLAN layer.
1128 	 */
1129 	if (!vlan_tag)
1130 		return rte_flow_error_set(error, EINVAL,
1131 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1132 					  item->spec,
1133 					  "VLAN cannot be empty");
1134 	return 0;
1135 }
1136 
1137 /**
1138  * Validate IPV4 item.
1139  *
1140  * @param[in] item
1141  *   Item specification.
1142  * @param[in] item_flags
1143  *   Bit-fields that holds the items detected until now.
1144  * @param[out] error
1145  *   Pointer to error structure.
1146  *
1147  * @return
1148  *   0 on success, a negative errno value otherwise and rte_errno is set.
1149  */
1150 int
1151 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1152 			     uint64_t item_flags,
1153 			     struct rte_flow_error *error)
1154 {
1155 	const struct rte_flow_item_ipv4 *mask = item->mask;
1156 	const struct rte_flow_item_ipv4 nic_mask = {
1157 		.hdr = {
1158 			.src_addr = RTE_BE32(0xffffffff),
1159 			.dst_addr = RTE_BE32(0xffffffff),
1160 			.type_of_service = 0xff,
1161 			.next_proto_id = 0xff,
1162 		},
1163 	};
1164 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1165 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1166 				      MLX5_FLOW_LAYER_OUTER_L3;
1167 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1168 				      MLX5_FLOW_LAYER_OUTER_L4;
1169 	int ret;
1170 
1171 	if (item_flags & l3m)
1172 		return rte_flow_error_set(error, ENOTSUP,
1173 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1174 					  "multiple L3 layers not supported");
1175 	else if (item_flags & l4m)
1176 		return rte_flow_error_set(error, EINVAL,
1177 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1178 					  "L3 cannot follow an L4 layer.");
1179 	if (!mask)
1180 		mask = &rte_flow_item_ipv4_mask;
1181 	else if (mask->hdr.next_proto_id != 0 &&
1182 		 mask->hdr.next_proto_id != 0xff)
1183 		return rte_flow_error_set(error, EINVAL,
1184 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1185 					  "partial mask is not supported"
1186 					  " for protocol");
1187 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1188 					(const uint8_t *)&nic_mask,
1189 					sizeof(struct rte_flow_item_ipv4),
1190 					error);
1191 	if (ret < 0)
1192 		return ret;
1193 	return 0;
1194 }
1195 
1196 /**
1197  * Validate IPV6 item.
1198  *
1199  * @param[in] item
1200  *   Item specification.
1201  * @param[in] item_flags
1202  *   Bit-fields that holds the items detected until now.
1203  * @param[out] error
1204  *   Pointer to error structure.
1205  *
1206  * @return
1207  *   0 on success, a negative errno value otherwise and rte_errno is set.
1208  */
1209 int
1210 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1211 			     uint64_t item_flags,
1212 			     struct rte_flow_error *error)
1213 {
1214 	const struct rte_flow_item_ipv6 *mask = item->mask;
1215 	const struct rte_flow_item_ipv6 nic_mask = {
1216 		.hdr = {
1217 			.src_addr =
1218 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1219 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1220 			.dst_addr =
1221 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1222 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1223 			.vtc_flow = RTE_BE32(0xffffffff),
1224 			.proto = 0xff,
1225 			.hop_limits = 0xff,
1226 		},
1227 	};
1228 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1229 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1230 				      MLX5_FLOW_LAYER_OUTER_L3;
1231 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1232 				      MLX5_FLOW_LAYER_OUTER_L4;
1233 	int ret;
1234 
1235 	if (item_flags & l3m)
1236 		return rte_flow_error_set(error, ENOTSUP,
1237 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1238 					  "multiple L3 layers not supported");
1239 	else if (item_flags & l4m)
1240 		return rte_flow_error_set(error, EINVAL,
1241 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1242 					  "L3 cannot follow an L4 layer.");
1243 	if (!mask)
1244 		mask = &rte_flow_item_ipv6_mask;
1245 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1246 					(const uint8_t *)&nic_mask,
1247 					sizeof(struct rte_flow_item_ipv6),
1248 					error);
1249 	if (ret < 0)
1250 		return ret;
1251 	return 0;
1252 }
1253 
1254 /**
1255  * Validate UDP item.
1256  *
1257  * @param[in] item
1258  *   Item specification.
1259  * @param[in] item_flags
1260  *   Bit-fields that holds the items detected until now.
1261  * @param[in] target_protocol
1262  *   The next protocol in the previous item.
1263  * @param[in] flow_mask
1264  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1265  * @param[out] error
1266  *   Pointer to error structure.
1267  *
1268  * @return
1269  *   0 on success, a negative errno value otherwise and rte_errno is set.
1270  */
1271 int
1272 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1273 			    uint64_t item_flags,
1274 			    uint8_t target_protocol,
1275 			    struct rte_flow_error *error)
1276 {
1277 	const struct rte_flow_item_udp *mask = item->mask;
1278 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1279 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1280 				      MLX5_FLOW_LAYER_OUTER_L3;
1281 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1282 				      MLX5_FLOW_LAYER_OUTER_L4;
1283 	int ret;
1284 
1285 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1286 		return rte_flow_error_set(error, EINVAL,
1287 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1288 					  "protocol filtering not compatible"
1289 					  " with UDP layer");
1290 	if (!(item_flags & l3m))
1291 		return rte_flow_error_set(error, EINVAL,
1292 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1293 					  "L3 is mandatory to filter on L4");
1294 	if (item_flags & l4m)
1295 		return rte_flow_error_set(error, EINVAL,
1296 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1297 					  "multiple L4 layers not supported");
1298 	if (!mask)
1299 		mask = &rte_flow_item_udp_mask;
1300 	ret = mlx5_flow_item_acceptable
1301 		(item, (const uint8_t *)mask,
1302 		 (const uint8_t *)&rte_flow_item_udp_mask,
1303 		 sizeof(struct rte_flow_item_udp), error);
1304 	if (ret < 0)
1305 		return ret;
1306 	return 0;
1307 }
1308 
1309 /**
1310  * Validate TCP item.
1311  *
1312  * @param[in] item
1313  *   Item specification.
1314  * @param[in] item_flags
1315  *   Bit-fields that holds the items detected until now.
1316  * @param[in] target_protocol
1317  *   The next protocol in the previous item.
1318  * @param[out] error
1319  *   Pointer to error structure.
1320  *
1321  * @return
1322  *   0 on success, a negative errno value otherwise and rte_errno is set.
1323  */
1324 int
1325 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1326 			    uint64_t item_flags,
1327 			    uint8_t target_protocol,
1328 			    const struct rte_flow_item_tcp *flow_mask,
1329 			    struct rte_flow_error *error)
1330 {
1331 	const struct rte_flow_item_tcp *mask = item->mask;
1332 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1333 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1334 				      MLX5_FLOW_LAYER_OUTER_L3;
1335 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1336 				      MLX5_FLOW_LAYER_OUTER_L4;
1337 	int ret;
1338 
1339 	assert(flow_mask);
1340 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1341 		return rte_flow_error_set(error, EINVAL,
1342 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1343 					  "protocol filtering not compatible"
1344 					  " with TCP layer");
1345 	if (!(item_flags & l3m))
1346 		return rte_flow_error_set(error, EINVAL,
1347 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1348 					  "L3 is mandatory to filter on L4");
1349 	if (item_flags & l4m)
1350 		return rte_flow_error_set(error, EINVAL,
1351 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1352 					  "multiple L4 layers not supported");
1353 	if (!mask)
1354 		mask = &rte_flow_item_tcp_mask;
1355 	ret = mlx5_flow_item_acceptable
1356 		(item, (const uint8_t *)mask,
1357 		 (const uint8_t *)flow_mask,
1358 		 sizeof(struct rte_flow_item_tcp), error);
1359 	if (ret < 0)
1360 		return ret;
1361 	return 0;
1362 }
1363 
1364 /**
1365  * Validate VXLAN item.
1366  *
1367  * @param[in] item
1368  *   Item specification.
1369  * @param[in] item_flags
1370  *   Bit-fields that holds the items detected until now.
1371  * @param[in] target_protocol
1372  *   The next protocol in the previous item.
1373  * @param[out] error
1374  *   Pointer to error structure.
1375  *
1376  * @return
1377  *   0 on success, a negative errno value otherwise and rte_errno is set.
1378  */
1379 int
1380 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1381 			      uint64_t item_flags,
1382 			      struct rte_flow_error *error)
1383 {
1384 	const struct rte_flow_item_vxlan *spec = item->spec;
1385 	const struct rte_flow_item_vxlan *mask = item->mask;
1386 	int ret;
1387 	union vni {
1388 		uint32_t vlan_id;
1389 		uint8_t vni[4];
1390 	} id = { .vlan_id = 0, };
1391 	uint32_t vlan_id = 0;
1392 
1393 
1394 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1395 		return rte_flow_error_set(error, ENOTSUP,
1396 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1397 					  "multiple tunnel layers not"
1398 					  " supported");
1399 	/*
1400 	 * Verify only UDPv4 is present as defined in
1401 	 * https://tools.ietf.org/html/rfc7348
1402 	 */
1403 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1404 		return rte_flow_error_set(error, EINVAL,
1405 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1406 					  "no outer UDP layer found");
1407 	if (!mask)
1408 		mask = &rte_flow_item_vxlan_mask;
1409 	ret = mlx5_flow_item_acceptable
1410 		(item, (const uint8_t *)mask,
1411 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1412 		 sizeof(struct rte_flow_item_vxlan),
1413 		 error);
1414 	if (ret < 0)
1415 		return ret;
1416 	if (spec) {
1417 		memcpy(&id.vni[1], spec->vni, 3);
1418 		vlan_id = id.vlan_id;
1419 		memcpy(&id.vni[1], mask->vni, 3);
1420 		vlan_id &= id.vlan_id;
1421 	}
1422 	/*
1423 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1424 	 * only this layer is defined in the Verbs specification it is
1425 	 * interpreted as wildcard and all packets will match this
1426 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1427 	 * udp), all packets matching the layers before will also
1428 	 * match this rule.  To avoid such situation, VNI 0 is
1429 	 * currently refused.
1430 	 */
1431 	if (!vlan_id)
1432 		return rte_flow_error_set(error, ENOTSUP,
1433 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1434 					  "VXLAN vni cannot be 0");
1435 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1436 		return rte_flow_error_set(error, ENOTSUP,
1437 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1438 					  "VXLAN tunnel must be fully defined");
1439 	return 0;
1440 }
1441 
1442 /**
1443  * Validate VXLAN_GPE item.
1444  *
1445  * @param[in] item
1446  *   Item specification.
1447  * @param[in] item_flags
1448  *   Bit-fields that holds the items detected until now.
1449  * @param[in] priv
1450  *   Pointer to the private data structure.
1451  * @param[in] target_protocol
1452  *   The next protocol in the previous item.
1453  * @param[out] error
1454  *   Pointer to error structure.
1455  *
1456  * @return
1457  *   0 on success, a negative errno value otherwise and rte_errno is set.
1458  */
1459 int
1460 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1461 				  uint64_t item_flags,
1462 				  struct rte_eth_dev *dev,
1463 				  struct rte_flow_error *error)
1464 {
1465 	struct priv *priv = dev->data->dev_private;
1466 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1467 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1468 	int ret;
1469 	union vni {
1470 		uint32_t vlan_id;
1471 		uint8_t vni[4];
1472 	} id = { .vlan_id = 0, };
1473 	uint32_t vlan_id = 0;
1474 
1475 	if (!priv->config.l3_vxlan_en)
1476 		return rte_flow_error_set(error, ENOTSUP,
1477 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1478 					  "L3 VXLAN is not enabled by device"
1479 					  " parameter and/or not configured in"
1480 					  " firmware");
1481 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1482 		return rte_flow_error_set(error, ENOTSUP,
1483 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1484 					  "multiple tunnel layers not"
1485 					  " supported");
1486 	/*
1487 	 * Verify only UDPv4 is present as defined in
1488 	 * https://tools.ietf.org/html/rfc7348
1489 	 */
1490 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1491 		return rte_flow_error_set(error, EINVAL,
1492 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1493 					  "no outer UDP layer found");
1494 	if (!mask)
1495 		mask = &rte_flow_item_vxlan_gpe_mask;
1496 	ret = mlx5_flow_item_acceptable
1497 		(item, (const uint8_t *)mask,
1498 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1499 		 sizeof(struct rte_flow_item_vxlan_gpe),
1500 		 error);
1501 	if (ret < 0)
1502 		return ret;
1503 	if (spec) {
1504 		if (spec->protocol)
1505 			return rte_flow_error_set(error, ENOTSUP,
1506 						  RTE_FLOW_ERROR_TYPE_ITEM,
1507 						  item,
1508 						  "VxLAN-GPE protocol"
1509 						  " not supported");
1510 		memcpy(&id.vni[1], spec->vni, 3);
1511 		vlan_id = id.vlan_id;
1512 		memcpy(&id.vni[1], mask->vni, 3);
1513 		vlan_id &= id.vlan_id;
1514 	}
1515 	/*
1516 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1517 	 * layer is defined in the Verbs specification it is interpreted as
1518 	 * wildcard and all packets will match this rule, if it follows a full
1519 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1520 	 * before will also match this rule.  To avoid such situation, VNI 0
1521 	 * is currently refused.
1522 	 */
1523 	if (!vlan_id)
1524 		return rte_flow_error_set(error, ENOTSUP,
1525 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1526 					  "VXLAN-GPE vni cannot be 0");
1527 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1528 		return rte_flow_error_set(error, ENOTSUP,
1529 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1530 					  "VXLAN-GPE tunnel must be fully"
1531 					  " defined");
1532 	return 0;
1533 }
1534 
1535 /**
1536  * Validate GRE item.
1537  *
1538  * @param[in] item
1539  *   Item specification.
1540  * @param[in] item_flags
1541  *   Bit flags to mark detected items.
1542  * @param[in] target_protocol
1543  *   The next protocol in the previous item.
1544  * @param[out] error
1545  *   Pointer to error structure.
1546  *
1547  * @return
1548  *   0 on success, a negative errno value otherwise and rte_errno is set.
1549  */
1550 int
1551 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1552 			    uint64_t item_flags,
1553 			    uint8_t target_protocol,
1554 			    struct rte_flow_error *error)
1555 {
1556 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1557 	const struct rte_flow_item_gre *mask = item->mask;
1558 	int ret;
1559 
1560 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1561 		return rte_flow_error_set(error, EINVAL,
1562 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1563 					  "protocol filtering not compatible"
1564 					  " with this GRE layer");
1565 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1566 		return rte_flow_error_set(error, ENOTSUP,
1567 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1568 					  "multiple tunnel layers not"
1569 					  " supported");
1570 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1571 		return rte_flow_error_set(error, ENOTSUP,
1572 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1573 					  "L3 Layer is missing");
1574 	if (!mask)
1575 		mask = &rte_flow_item_gre_mask;
1576 	ret = mlx5_flow_item_acceptable
1577 		(item, (const uint8_t *)mask,
1578 		 (const uint8_t *)&rte_flow_item_gre_mask,
1579 		 sizeof(struct rte_flow_item_gre), error);
1580 	if (ret < 0)
1581 		return ret;
1582 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1583 	if (spec && (spec->protocol & mask->protocol))
1584 		return rte_flow_error_set(error, ENOTSUP,
1585 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1586 					  "without MPLS support the"
1587 					  " specification cannot be used for"
1588 					  " filtering");
1589 #endif
1590 	return 0;
1591 }
1592 
1593 /**
1594  * Validate MPLS item.
1595  *
1596  * @param[in] dev
1597  *   Pointer to the rte_eth_dev structure.
1598  * @param[in] item
1599  *   Item specification.
1600  * @param[in] item_flags
1601  *   Bit-fields that holds the items detected until now.
1602  * @param[in] prev_layer
1603  *   The protocol layer indicated in previous item.
1604  * @param[out] error
1605  *   Pointer to error structure.
1606  *
1607  * @return
1608  *   0 on success, a negative errno value otherwise and rte_errno is set.
1609  */
1610 int
1611 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1612 			     const struct rte_flow_item *item __rte_unused,
1613 			     uint64_t item_flags __rte_unused,
1614 			     uint64_t prev_layer __rte_unused,
1615 			     struct rte_flow_error *error)
1616 {
1617 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1618 	const struct rte_flow_item_mpls *mask = item->mask;
1619 	struct priv *priv = dev->data->dev_private;
1620 	int ret;
1621 
1622 	if (!priv->config.mpls_en)
1623 		return rte_flow_error_set(error, ENOTSUP,
1624 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1625 					  "MPLS not supported or"
1626 					  " disabled in firmware"
1627 					  " configuration.");
1628 	/* MPLS over IP, UDP, GRE is allowed */
1629 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1630 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
1631 			    MLX5_FLOW_LAYER_GRE)))
1632 		return rte_flow_error_set(error, EINVAL,
1633 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1634 					  "protocol filtering not compatible"
1635 					  " with MPLS layer");
1636 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1637 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1638 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
1639 		return rte_flow_error_set(error, ENOTSUP,
1640 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1641 					  "multiple tunnel layers not"
1642 					  " supported");
1643 	if (!mask)
1644 		mask = &rte_flow_item_mpls_mask;
1645 	ret = mlx5_flow_item_acceptable
1646 		(item, (const uint8_t *)mask,
1647 		 (const uint8_t *)&rte_flow_item_mpls_mask,
1648 		 sizeof(struct rte_flow_item_mpls), error);
1649 	if (ret < 0)
1650 		return ret;
1651 	return 0;
1652 #endif
1653 	return rte_flow_error_set(error, ENOTSUP,
1654 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
1655 				  "MPLS is not supported by Verbs, please"
1656 				  " update.");
1657 }
1658 
1659 static int
1660 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1661 		   const struct rte_flow_attr *attr __rte_unused,
1662 		   const struct rte_flow_item items[] __rte_unused,
1663 		   const struct rte_flow_action actions[] __rte_unused,
1664 		   struct rte_flow_error *error __rte_unused)
1665 {
1666 	rte_errno = ENOTSUP;
1667 	return -rte_errno;
1668 }
1669 
1670 static struct mlx5_flow *
1671 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1672 		  const struct rte_flow_item items[] __rte_unused,
1673 		  const struct rte_flow_action actions[] __rte_unused,
1674 		  struct rte_flow_error *error __rte_unused)
1675 {
1676 	rte_errno = ENOTSUP;
1677 	return NULL;
1678 }
1679 
1680 static int
1681 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1682 		    struct mlx5_flow *dev_flow __rte_unused,
1683 		    const struct rte_flow_attr *attr __rte_unused,
1684 		    const struct rte_flow_item items[] __rte_unused,
1685 		    const struct rte_flow_action actions[] __rte_unused,
1686 		    struct rte_flow_error *error __rte_unused)
1687 {
1688 	rte_errno = ENOTSUP;
1689 	return -rte_errno;
1690 }
1691 
1692 static int
1693 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1694 		struct rte_flow *flow __rte_unused,
1695 		struct rte_flow_error *error __rte_unused)
1696 {
1697 	rte_errno = ENOTSUP;
1698 	return -rte_errno;
1699 }
1700 
1701 static void
1702 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1703 		 struct rte_flow *flow __rte_unused)
1704 {
1705 }
1706 
1707 static void
1708 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1709 		  struct rte_flow *flow __rte_unused)
1710 {
1711 }
1712 
1713 static int
1714 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1715 		struct rte_flow *flow __rte_unused,
1716 		const struct rte_flow_action *actions __rte_unused,
1717 		void *data __rte_unused,
1718 		struct rte_flow_error *error __rte_unused)
1719 {
1720 	rte_errno = ENOTSUP;
1721 	return -rte_errno;
1722 }
1723 
1724 /* Void driver to protect from null pointer reference. */
1725 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1726 	.validate = flow_null_validate,
1727 	.prepare = flow_null_prepare,
1728 	.translate = flow_null_translate,
1729 	.apply = flow_null_apply,
1730 	.remove = flow_null_remove,
1731 	.destroy = flow_null_destroy,
1732 	.query = flow_null_query,
1733 };
1734 
1735 /**
1736  * Select flow driver type according to flow attributes and device
1737  * configuration.
1738  *
1739  * @param[in] dev
1740  *   Pointer to the dev structure.
1741  * @param[in] attr
1742  *   Pointer to the flow attributes.
1743  *
1744  * @return
1745  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1746  */
1747 static enum mlx5_flow_drv_type
1748 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1749 {
1750 	struct priv *priv = dev->data->dev_private;
1751 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1752 
1753 	if (attr->transfer)
1754 		type = MLX5_FLOW_TYPE_TCF;
1755 	else
1756 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1757 						 MLX5_FLOW_TYPE_VERBS;
1758 	return type;
1759 }
1760 
1761 #define flow_get_drv_ops(type) flow_drv_ops[type]
1762 
1763 /**
1764  * Flow driver validation API. This abstracts calling driver specific functions.
1765  * The type of flow driver is determined according to flow attributes.
1766  *
1767  * @param[in] dev
1768  *   Pointer to the dev structure.
1769  * @param[in] attr
1770  *   Pointer to the flow attributes.
1771  * @param[in] items
1772  *   Pointer to the list of items.
1773  * @param[in] actions
1774  *   Pointer to the list of actions.
1775  * @param[out] error
1776  *   Pointer to the error structure.
1777  *
1778  * @return
1779  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1780  */
1781 static inline int
1782 flow_drv_validate(struct rte_eth_dev *dev,
1783 		  const struct rte_flow_attr *attr,
1784 		  const struct rte_flow_item items[],
1785 		  const struct rte_flow_action actions[],
1786 		  struct rte_flow_error *error)
1787 {
1788 	const struct mlx5_flow_driver_ops *fops;
1789 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1790 
1791 	fops = flow_get_drv_ops(type);
1792 	return fops->validate(dev, attr, items, actions, error);
1793 }
1794 
1795 /**
1796  * Flow driver preparation API. This abstracts calling driver specific
1797  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1798  * calculates the size of memory required for device flow, allocates the memory,
1799  * initializes the device flow and returns the pointer.
1800  *
1801  * @note
1802  *   This function initializes device flow structure such as dv, tcf or verbs in
1803  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1804  *   rest. For example, adding returning device flow to flow->dev_flow list and
1805  *   setting backward reference to the flow should be done out of this function.
1806  *   layers field is not filled either.
1807  *
1808  * @param[in] attr
1809  *   Pointer to the flow attributes.
1810  * @param[in] items
1811  *   Pointer to the list of items.
1812  * @param[in] actions
1813  *   Pointer to the list of actions.
1814  * @param[out] error
1815  *   Pointer to the error structure.
1816  *
1817  * @return
1818  *   Pointer to device flow on success, otherwise NULL and rte_ernno is set.
1819  */
1820 static inline struct mlx5_flow *
1821 flow_drv_prepare(const struct rte_flow *flow,
1822 		 const struct rte_flow_attr *attr,
1823 		 const struct rte_flow_item items[],
1824 		 const struct rte_flow_action actions[],
1825 		 struct rte_flow_error *error)
1826 {
1827 	const struct mlx5_flow_driver_ops *fops;
1828 	enum mlx5_flow_drv_type type = flow->drv_type;
1829 
1830 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1831 	fops = flow_get_drv_ops(type);
1832 	return fops->prepare(attr, items, actions, error);
1833 }
1834 
1835 /**
1836  * Flow driver translation API. This abstracts calling driver specific
1837  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1838  * translates a generic flow into a driver flow. flow_drv_prepare() must
1839  * precede.
1840  *
1841  * @note
1842  *   dev_flow->layers could be filled as a result of parsing during translation
1843  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1844  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1845  *   flow->actions could be overwritten even though all the expanded dev_flows
1846  *   have the same actions.
1847  *
1848  * @param[in] dev
1849  *   Pointer to the rte dev structure.
1850  * @param[in, out] dev_flow
1851  *   Pointer to the mlx5 flow.
1852  * @param[in] attr
1853  *   Pointer to the flow attributes.
1854  * @param[in] items
1855  *   Pointer to the list of items.
1856  * @param[in] actions
1857  *   Pointer to the list of actions.
1858  * @param[out] error
1859  *   Pointer to the error structure.
1860  *
1861  * @return
1862  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1863  */
1864 static inline int
1865 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1866 		   const struct rte_flow_attr *attr,
1867 		   const struct rte_flow_item items[],
1868 		   const struct rte_flow_action actions[],
1869 		   struct rte_flow_error *error)
1870 {
1871 	const struct mlx5_flow_driver_ops *fops;
1872 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1873 
1874 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1875 	fops = flow_get_drv_ops(type);
1876 	return fops->translate(dev, dev_flow, attr, items, actions, error);
1877 }
1878 
1879 /**
1880  * Flow driver apply API. This abstracts calling driver specific functions.
1881  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1882  * translated driver flows on to device. flow_drv_translate() must precede.
1883  *
1884  * @param[in] dev
1885  *   Pointer to Ethernet device structure.
1886  * @param[in, out] flow
1887  *   Pointer to flow structure.
1888  * @param[out] error
1889  *   Pointer to error structure.
1890  *
1891  * @return
1892  *   0 on success, a negative errno value otherwise and rte_errno is set.
1893  */
1894 static inline int
1895 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1896 	       struct rte_flow_error *error)
1897 {
1898 	const struct mlx5_flow_driver_ops *fops;
1899 	enum mlx5_flow_drv_type type = flow->drv_type;
1900 
1901 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1902 	fops = flow_get_drv_ops(type);
1903 	return fops->apply(dev, flow, error);
1904 }
1905 
1906 /**
1907  * Flow driver remove API. This abstracts calling driver specific functions.
1908  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1909  * on device. All the resources of the flow should be freed by calling
1910  * flow_drv_destroy().
1911  *
1912  * @param[in] dev
1913  *   Pointer to Ethernet device.
1914  * @param[in, out] flow
1915  *   Pointer to flow structure.
1916  */
1917 static inline void
1918 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1919 {
1920 	const struct mlx5_flow_driver_ops *fops;
1921 	enum mlx5_flow_drv_type type = flow->drv_type;
1922 
1923 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1924 	fops = flow_get_drv_ops(type);
1925 	fops->remove(dev, flow);
1926 }
1927 
1928 /**
1929  * Flow driver destroy API. This abstracts calling driver specific functions.
1930  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1931  * on device and releases resources of the flow.
1932  *
1933  * @param[in] dev
1934  *   Pointer to Ethernet device.
1935  * @param[in, out] flow
1936  *   Pointer to flow structure.
1937  */
1938 static inline void
1939 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1940 {
1941 	const struct mlx5_flow_driver_ops *fops;
1942 	enum mlx5_flow_drv_type type = flow->drv_type;
1943 
1944 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1945 	fops = flow_get_drv_ops(type);
1946 	fops->destroy(dev, flow);
1947 }
1948 
1949 /**
1950  * Validate a flow supported by the NIC.
1951  *
1952  * @see rte_flow_validate()
1953  * @see rte_flow_ops
1954  */
1955 int
1956 mlx5_flow_validate(struct rte_eth_dev *dev,
1957 		   const struct rte_flow_attr *attr,
1958 		   const struct rte_flow_item items[],
1959 		   const struct rte_flow_action actions[],
1960 		   struct rte_flow_error *error)
1961 {
1962 	int ret;
1963 
1964 	ret = flow_drv_validate(dev, attr, items, actions, error);
1965 	if (ret < 0)
1966 		return ret;
1967 	return 0;
1968 }
1969 
1970 /**
1971  * Get RSS action from the action list.
1972  *
1973  * @param[in] actions
1974  *   Pointer to the list of actions.
1975  *
1976  * @return
1977  *   Pointer to the RSS action if exist, else return NULL.
1978  */
1979 static const struct rte_flow_action_rss*
1980 flow_get_rss_action(const struct rte_flow_action actions[])
1981 {
1982 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1983 		switch (actions->type) {
1984 		case RTE_FLOW_ACTION_TYPE_RSS:
1985 			return (const struct rte_flow_action_rss *)
1986 			       actions->conf;
1987 		default:
1988 			break;
1989 		}
1990 	}
1991 	return NULL;
1992 }
1993 
1994 static unsigned int
1995 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
1996 {
1997 	const struct rte_flow_item *item;
1998 	unsigned int has_vlan = 0;
1999 
2000 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2001 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2002 			has_vlan = 1;
2003 			break;
2004 		}
2005 	}
2006 	if (has_vlan)
2007 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2008 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2009 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2010 			       MLX5_EXPANSION_ROOT_OUTER;
2011 }
2012 
2013 /**
2014  * Create a flow and add it to @p list.
2015  *
2016  * @param dev
2017  *   Pointer to Ethernet device.
2018  * @param list
2019  *   Pointer to a TAILQ flow list.
2020  * @param[in] attr
2021  *   Flow rule attributes.
2022  * @param[in] items
2023  *   Pattern specification (list terminated by the END pattern item).
2024  * @param[in] actions
2025  *   Associated actions (list terminated by the END action).
2026  * @param[out] error
2027  *   Perform verbose error reporting if not NULL.
2028  *
2029  * @return
2030  *   A flow on success, NULL otherwise and rte_errno is set.
2031  */
2032 static struct rte_flow *
2033 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2034 		 const struct rte_flow_attr *attr,
2035 		 const struct rte_flow_item items[],
2036 		 const struct rte_flow_action actions[],
2037 		 struct rte_flow_error *error)
2038 {
2039 	struct rte_flow *flow = NULL;
2040 	struct mlx5_flow *dev_flow;
2041 	const struct rte_flow_action_rss *rss;
2042 	union {
2043 		struct rte_flow_expand_rss buf;
2044 		uint8_t buffer[2048];
2045 	} expand_buffer;
2046 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2047 	int ret;
2048 	uint32_t i;
2049 	uint32_t flow_size;
2050 
2051 	ret = flow_drv_validate(dev, attr, items, actions, error);
2052 	if (ret < 0)
2053 		return NULL;
2054 	flow_size = sizeof(struct rte_flow);
2055 	rss = flow_get_rss_action(actions);
2056 	if (rss)
2057 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2058 					    sizeof(void *));
2059 	else
2060 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2061 	flow = rte_calloc(__func__, 1, flow_size, 0);
2062 	flow->drv_type = flow_get_drv_type(dev, attr);
2063 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2064 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2065 	flow->queue = (void *)(flow + 1);
2066 	LIST_INIT(&flow->dev_flows);
2067 	if (rss && rss->types) {
2068 		unsigned int graph_root;
2069 
2070 		graph_root = find_graph_root(items, rss->level);
2071 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2072 					  items, rss->types,
2073 					  mlx5_support_expansion,
2074 					  graph_root);
2075 		assert(ret > 0 &&
2076 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2077 	} else {
2078 		buf->entries = 1;
2079 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2080 	}
2081 	for (i = 0; i < buf->entries; ++i) {
2082 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2083 					    actions, error);
2084 		if (!dev_flow)
2085 			goto error;
2086 		dev_flow->flow = flow;
2087 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2088 		ret = flow_drv_translate(dev, dev_flow, attr,
2089 					 buf->entry[i].pattern,
2090 					 actions, error);
2091 		if (ret < 0)
2092 			goto error;
2093 	}
2094 	if (dev->data->dev_started) {
2095 		ret = flow_drv_apply(dev, flow, error);
2096 		if (ret < 0)
2097 			goto error;
2098 	}
2099 	TAILQ_INSERT_TAIL(list, flow, next);
2100 	flow_rxq_flags_set(dev, flow);
2101 	return flow;
2102 error:
2103 	ret = rte_errno; /* Save rte_errno before cleanup. */
2104 	assert(flow);
2105 	flow_drv_destroy(dev, flow);
2106 	rte_free(flow);
2107 	rte_errno = ret; /* Restore rte_errno. */
2108 	return NULL;
2109 }
2110 
2111 /**
2112  * Create a flow.
2113  *
2114  * @see rte_flow_create()
2115  * @see rte_flow_ops
2116  */
2117 struct rte_flow *
2118 mlx5_flow_create(struct rte_eth_dev *dev,
2119 		 const struct rte_flow_attr *attr,
2120 		 const struct rte_flow_item items[],
2121 		 const struct rte_flow_action actions[],
2122 		 struct rte_flow_error *error)
2123 {
2124 	return flow_list_create(dev,
2125 				&((struct priv *)dev->data->dev_private)->flows,
2126 				attr, items, actions, error);
2127 }
2128 
2129 /**
2130  * Destroy a flow in a list.
2131  *
2132  * @param dev
2133  *   Pointer to Ethernet device.
2134  * @param list
2135  *   Pointer to a TAILQ flow list.
2136  * @param[in] flow
2137  *   Flow to destroy.
2138  */
2139 static void
2140 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2141 		  struct rte_flow *flow)
2142 {
2143 	/*
2144 	 * Update RX queue flags only if port is started, otherwise it is
2145 	 * already clean.
2146 	 */
2147 	if (dev->data->dev_started)
2148 		flow_rxq_flags_trim(dev, flow);
2149 	flow_drv_destroy(dev, flow);
2150 	TAILQ_REMOVE(list, flow, next);
2151 	rte_free(flow->fdir);
2152 	rte_free(flow);
2153 }
2154 
2155 /**
2156  * Destroy all flows.
2157  *
2158  * @param dev
2159  *   Pointer to Ethernet device.
2160  * @param list
2161  *   Pointer to a TAILQ flow list.
2162  */
2163 void
2164 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2165 {
2166 	while (!TAILQ_EMPTY(list)) {
2167 		struct rte_flow *flow;
2168 
2169 		flow = TAILQ_FIRST(list);
2170 		flow_list_destroy(dev, list, flow);
2171 	}
2172 }
2173 
2174 /**
2175  * Remove all flows.
2176  *
2177  * @param dev
2178  *   Pointer to Ethernet device.
2179  * @param list
2180  *   Pointer to a TAILQ flow list.
2181  */
2182 void
2183 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2184 {
2185 	struct rte_flow *flow;
2186 
2187 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2188 		flow_drv_remove(dev, flow);
2189 	flow_rxq_flags_clear(dev);
2190 }
2191 
2192 /**
2193  * Add all flows.
2194  *
2195  * @param dev
2196  *   Pointer to Ethernet device.
2197  * @param list
2198  *   Pointer to a TAILQ flow list.
2199  *
2200  * @return
2201  *   0 on success, a negative errno value otherwise and rte_errno is set.
2202  */
2203 int
2204 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2205 {
2206 	struct rte_flow *flow;
2207 	struct rte_flow_error error;
2208 	int ret = 0;
2209 
2210 	TAILQ_FOREACH(flow, list, next) {
2211 		ret = flow_drv_apply(dev, flow, &error);
2212 		if (ret < 0)
2213 			goto error;
2214 		flow_rxq_flags_set(dev, flow);
2215 	}
2216 	return 0;
2217 error:
2218 	ret = rte_errno; /* Save rte_errno before cleanup. */
2219 	mlx5_flow_stop(dev, list);
2220 	rte_errno = ret; /* Restore rte_errno. */
2221 	return -rte_errno;
2222 }
2223 
2224 /**
2225  * Verify the flow list is empty
2226  *
2227  * @param dev
2228  *  Pointer to Ethernet device.
2229  *
2230  * @return the number of flows not released.
2231  */
2232 int
2233 mlx5_flow_verify(struct rte_eth_dev *dev)
2234 {
2235 	struct priv *priv = dev->data->dev_private;
2236 	struct rte_flow *flow;
2237 	int ret = 0;
2238 
2239 	TAILQ_FOREACH(flow, &priv->flows, next) {
2240 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
2241 			dev->data->port_id, (void *)flow);
2242 		++ret;
2243 	}
2244 	return ret;
2245 }
2246 
2247 /**
2248  * Enable a control flow configured from the control plane.
2249  *
2250  * @param dev
2251  *   Pointer to Ethernet device.
2252  * @param eth_spec
2253  *   An Ethernet flow spec to apply.
2254  * @param eth_mask
2255  *   An Ethernet flow mask to apply.
2256  * @param vlan_spec
2257  *   A VLAN flow spec to apply.
2258  * @param vlan_mask
2259  *   A VLAN flow mask to apply.
2260  *
2261  * @return
2262  *   0 on success, a negative errno value otherwise and rte_errno is set.
2263  */
2264 int
2265 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2266 		    struct rte_flow_item_eth *eth_spec,
2267 		    struct rte_flow_item_eth *eth_mask,
2268 		    struct rte_flow_item_vlan *vlan_spec,
2269 		    struct rte_flow_item_vlan *vlan_mask)
2270 {
2271 	struct priv *priv = dev->data->dev_private;
2272 	const struct rte_flow_attr attr = {
2273 		.ingress = 1,
2274 		.priority = MLX5_FLOW_PRIO_RSVD,
2275 	};
2276 	struct rte_flow_item items[] = {
2277 		{
2278 			.type = RTE_FLOW_ITEM_TYPE_ETH,
2279 			.spec = eth_spec,
2280 			.last = NULL,
2281 			.mask = eth_mask,
2282 		},
2283 		{
2284 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2285 					      RTE_FLOW_ITEM_TYPE_END,
2286 			.spec = vlan_spec,
2287 			.last = NULL,
2288 			.mask = vlan_mask,
2289 		},
2290 		{
2291 			.type = RTE_FLOW_ITEM_TYPE_END,
2292 		},
2293 	};
2294 	uint16_t queue[priv->reta_idx_n];
2295 	struct rte_flow_action_rss action_rss = {
2296 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2297 		.level = 0,
2298 		.types = priv->rss_conf.rss_hf,
2299 		.key_len = priv->rss_conf.rss_key_len,
2300 		.queue_num = priv->reta_idx_n,
2301 		.key = priv->rss_conf.rss_key,
2302 		.queue = queue,
2303 	};
2304 	struct rte_flow_action actions[] = {
2305 		{
2306 			.type = RTE_FLOW_ACTION_TYPE_RSS,
2307 			.conf = &action_rss,
2308 		},
2309 		{
2310 			.type = RTE_FLOW_ACTION_TYPE_END,
2311 		},
2312 	};
2313 	struct rte_flow *flow;
2314 	struct rte_flow_error error;
2315 	unsigned int i;
2316 
2317 	if (!priv->reta_idx_n || !priv->rxqs_n) {
2318 		rte_errno = EINVAL;
2319 		return -rte_errno;
2320 	}
2321 	for (i = 0; i != priv->reta_idx_n; ++i)
2322 		queue[i] = (*priv->reta_idx)[i];
2323 	flow = flow_list_create(dev, &priv->ctrl_flows,
2324 				&attr, items, actions, &error);
2325 	if (!flow)
2326 		return -rte_errno;
2327 	return 0;
2328 }
2329 
2330 /**
2331  * Enable a flow control configured from the control plane.
2332  *
2333  * @param dev
2334  *   Pointer to Ethernet device.
2335  * @param eth_spec
2336  *   An Ethernet flow spec to apply.
2337  * @param eth_mask
2338  *   An Ethernet flow mask to apply.
2339  *
2340  * @return
2341  *   0 on success, a negative errno value otherwise and rte_errno is set.
2342  */
2343 int
2344 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2345 	       struct rte_flow_item_eth *eth_spec,
2346 	       struct rte_flow_item_eth *eth_mask)
2347 {
2348 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2349 }
2350 
2351 /**
2352  * Destroy a flow.
2353  *
2354  * @see rte_flow_destroy()
2355  * @see rte_flow_ops
2356  */
2357 int
2358 mlx5_flow_destroy(struct rte_eth_dev *dev,
2359 		  struct rte_flow *flow,
2360 		  struct rte_flow_error *error __rte_unused)
2361 {
2362 	struct priv *priv = dev->data->dev_private;
2363 
2364 	flow_list_destroy(dev, &priv->flows, flow);
2365 	return 0;
2366 }
2367 
2368 /**
2369  * Destroy all flows.
2370  *
2371  * @see rte_flow_flush()
2372  * @see rte_flow_ops
2373  */
2374 int
2375 mlx5_flow_flush(struct rte_eth_dev *dev,
2376 		struct rte_flow_error *error __rte_unused)
2377 {
2378 	struct priv *priv = dev->data->dev_private;
2379 
2380 	mlx5_flow_list_flush(dev, &priv->flows);
2381 	return 0;
2382 }
2383 
2384 /**
2385  * Isolated mode.
2386  *
2387  * @see rte_flow_isolate()
2388  * @see rte_flow_ops
2389  */
2390 int
2391 mlx5_flow_isolate(struct rte_eth_dev *dev,
2392 		  int enable,
2393 		  struct rte_flow_error *error)
2394 {
2395 	struct priv *priv = dev->data->dev_private;
2396 
2397 	if (dev->data->dev_started) {
2398 		rte_flow_error_set(error, EBUSY,
2399 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2400 				   NULL,
2401 				   "port must be stopped first");
2402 		return -rte_errno;
2403 	}
2404 	priv->isolated = !!enable;
2405 	if (enable)
2406 		dev->dev_ops = &mlx5_dev_ops_isolate;
2407 	else
2408 		dev->dev_ops = &mlx5_dev_ops;
2409 	return 0;
2410 }
2411 
2412 /**
2413  * Query a flow.
2414  *
2415  * @see rte_flow_query()
2416  * @see rte_flow_ops
2417  */
2418 static int
2419 flow_drv_query(struct rte_eth_dev *dev,
2420 	       struct rte_flow *flow,
2421 	       const struct rte_flow_action *actions,
2422 	       void *data,
2423 	       struct rte_flow_error *error)
2424 {
2425 	const struct mlx5_flow_driver_ops *fops;
2426 	enum mlx5_flow_drv_type ftype = flow->drv_type;
2427 
2428 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2429 	fops = flow_get_drv_ops(ftype);
2430 
2431 	return fops->query(dev, flow, actions, data, error);
2432 }
2433 
2434 /**
2435  * Query a flow.
2436  *
2437  * @see rte_flow_query()
2438  * @see rte_flow_ops
2439  */
2440 int
2441 mlx5_flow_query(struct rte_eth_dev *dev,
2442 		struct rte_flow *flow,
2443 		const struct rte_flow_action *actions,
2444 		void *data,
2445 		struct rte_flow_error *error)
2446 {
2447 	int ret;
2448 
2449 	ret = flow_drv_query(dev, flow, actions, data, error);
2450 	if (ret < 0)
2451 		return ret;
2452 	return 0;
2453 }
2454 
2455 /**
2456  * Convert a flow director filter to a generic flow.
2457  *
2458  * @param dev
2459  *   Pointer to Ethernet device.
2460  * @param fdir_filter
2461  *   Flow director filter to add.
2462  * @param attributes
2463  *   Generic flow parameters structure.
2464  *
2465  * @return
2466  *   0 on success, a negative errno value otherwise and rte_errno is set.
2467  */
2468 static int
2469 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2470 			 const struct rte_eth_fdir_filter *fdir_filter,
2471 			 struct mlx5_fdir *attributes)
2472 {
2473 	struct priv *priv = dev->data->dev_private;
2474 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
2475 	const struct rte_eth_fdir_masks *mask =
2476 		&dev->data->dev_conf.fdir_conf.mask;
2477 
2478 	/* Validate queue number. */
2479 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2480 		DRV_LOG(ERR, "port %u invalid queue number %d",
2481 			dev->data->port_id, fdir_filter->action.rx_queue);
2482 		rte_errno = EINVAL;
2483 		return -rte_errno;
2484 	}
2485 	attributes->attr.ingress = 1;
2486 	attributes->items[0] = (struct rte_flow_item) {
2487 		.type = RTE_FLOW_ITEM_TYPE_ETH,
2488 		.spec = &attributes->l2,
2489 		.mask = &attributes->l2_mask,
2490 	};
2491 	switch (fdir_filter->action.behavior) {
2492 	case RTE_ETH_FDIR_ACCEPT:
2493 		attributes->actions[0] = (struct rte_flow_action){
2494 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
2495 			.conf = &attributes->queue,
2496 		};
2497 		break;
2498 	case RTE_ETH_FDIR_REJECT:
2499 		attributes->actions[0] = (struct rte_flow_action){
2500 			.type = RTE_FLOW_ACTION_TYPE_DROP,
2501 		};
2502 		break;
2503 	default:
2504 		DRV_LOG(ERR, "port %u invalid behavior %d",
2505 			dev->data->port_id,
2506 			fdir_filter->action.behavior);
2507 		rte_errno = ENOTSUP;
2508 		return -rte_errno;
2509 	}
2510 	attributes->queue.index = fdir_filter->action.rx_queue;
2511 	/* Handle L3. */
2512 	switch (fdir_filter->input.flow_type) {
2513 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2514 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2515 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2516 		attributes->l3.ipv4.hdr = (struct ipv4_hdr){
2517 			.src_addr = input->flow.ip4_flow.src_ip,
2518 			.dst_addr = input->flow.ip4_flow.dst_ip,
2519 			.time_to_live = input->flow.ip4_flow.ttl,
2520 			.type_of_service = input->flow.ip4_flow.tos,
2521 		};
2522 		attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
2523 			.src_addr = mask->ipv4_mask.src_ip,
2524 			.dst_addr = mask->ipv4_mask.dst_ip,
2525 			.time_to_live = mask->ipv4_mask.ttl,
2526 			.type_of_service = mask->ipv4_mask.tos,
2527 			.next_proto_id = mask->ipv4_mask.proto,
2528 		};
2529 		attributes->items[1] = (struct rte_flow_item){
2530 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
2531 			.spec = &attributes->l3,
2532 			.mask = &attributes->l3_mask,
2533 		};
2534 		break;
2535 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2536 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2537 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2538 		attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2539 			.hop_limits = input->flow.ipv6_flow.hop_limits,
2540 			.proto = input->flow.ipv6_flow.proto,
2541 		};
2542 
2543 		memcpy(attributes->l3.ipv6.hdr.src_addr,
2544 		       input->flow.ipv6_flow.src_ip,
2545 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2546 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
2547 		       input->flow.ipv6_flow.dst_ip,
2548 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2549 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2550 		       mask->ipv6_mask.src_ip,
2551 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2552 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2553 		       mask->ipv6_mask.dst_ip,
2554 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2555 		attributes->items[1] = (struct rte_flow_item){
2556 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
2557 			.spec = &attributes->l3,
2558 			.mask = &attributes->l3_mask,
2559 		};
2560 		break;
2561 	default:
2562 		DRV_LOG(ERR, "port %u invalid flow type%d",
2563 			dev->data->port_id, fdir_filter->input.flow_type);
2564 		rte_errno = ENOTSUP;
2565 		return -rte_errno;
2566 	}
2567 	/* Handle L4. */
2568 	switch (fdir_filter->input.flow_type) {
2569 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2570 		attributes->l4.udp.hdr = (struct udp_hdr){
2571 			.src_port = input->flow.udp4_flow.src_port,
2572 			.dst_port = input->flow.udp4_flow.dst_port,
2573 		};
2574 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2575 			.src_port = mask->src_port_mask,
2576 			.dst_port = mask->dst_port_mask,
2577 		};
2578 		attributes->items[2] = (struct rte_flow_item){
2579 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2580 			.spec = &attributes->l4,
2581 			.mask = &attributes->l4_mask,
2582 		};
2583 		break;
2584 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2585 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2586 			.src_port = input->flow.tcp4_flow.src_port,
2587 			.dst_port = input->flow.tcp4_flow.dst_port,
2588 		};
2589 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2590 			.src_port = mask->src_port_mask,
2591 			.dst_port = mask->dst_port_mask,
2592 		};
2593 		attributes->items[2] = (struct rte_flow_item){
2594 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2595 			.spec = &attributes->l4,
2596 			.mask = &attributes->l4_mask,
2597 		};
2598 		break;
2599 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2600 		attributes->l4.udp.hdr = (struct udp_hdr){
2601 			.src_port = input->flow.udp6_flow.src_port,
2602 			.dst_port = input->flow.udp6_flow.dst_port,
2603 		};
2604 		attributes->l4_mask.udp.hdr = (struct udp_hdr){
2605 			.src_port = mask->src_port_mask,
2606 			.dst_port = mask->dst_port_mask,
2607 		};
2608 		attributes->items[2] = (struct rte_flow_item){
2609 			.type = RTE_FLOW_ITEM_TYPE_UDP,
2610 			.spec = &attributes->l4,
2611 			.mask = &attributes->l4_mask,
2612 		};
2613 		break;
2614 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2615 		attributes->l4.tcp.hdr = (struct tcp_hdr){
2616 			.src_port = input->flow.tcp6_flow.src_port,
2617 			.dst_port = input->flow.tcp6_flow.dst_port,
2618 		};
2619 		attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2620 			.src_port = mask->src_port_mask,
2621 			.dst_port = mask->dst_port_mask,
2622 		};
2623 		attributes->items[2] = (struct rte_flow_item){
2624 			.type = RTE_FLOW_ITEM_TYPE_TCP,
2625 			.spec = &attributes->l4,
2626 			.mask = &attributes->l4_mask,
2627 		};
2628 		break;
2629 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2630 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2631 		break;
2632 	default:
2633 		DRV_LOG(ERR, "port %u invalid flow type%d",
2634 			dev->data->port_id, fdir_filter->input.flow_type);
2635 		rte_errno = ENOTSUP;
2636 		return -rte_errno;
2637 	}
2638 	return 0;
2639 }
2640 
2641 #define FLOW_FDIR_CMP(f1, f2, fld) \
2642 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2643 
2644 /**
2645  * Compare two FDIR flows. If items and actions are identical, the two flows are
2646  * regarded as same.
2647  *
2648  * @param dev
2649  *   Pointer to Ethernet device.
2650  * @param f1
2651  *   FDIR flow to compare.
2652  * @param f2
2653  *   FDIR flow to compare.
2654  *
2655  * @return
2656  *   Zero on match, 1 otherwise.
2657  */
2658 static int
2659 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2660 {
2661 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
2662 	    FLOW_FDIR_CMP(f1, f2, l2) ||
2663 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2664 	    FLOW_FDIR_CMP(f1, f2, l3) ||
2665 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2666 	    FLOW_FDIR_CMP(f1, f2, l4) ||
2667 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2668 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
2669 		return 1;
2670 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2671 	    FLOW_FDIR_CMP(f1, f2, queue))
2672 		return 1;
2673 	return 0;
2674 }
2675 
2676 /**
2677  * Search device flow list to find out a matched FDIR flow.
2678  *
2679  * @param dev
2680  *   Pointer to Ethernet device.
2681  * @param fdir_flow
2682  *   FDIR flow to lookup.
2683  *
2684  * @return
2685  *   Pointer of flow if found, NULL otherwise.
2686  */
2687 static struct rte_flow *
2688 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2689 {
2690 	struct priv *priv = dev->data->dev_private;
2691 	struct rte_flow *flow = NULL;
2692 
2693 	assert(fdir_flow);
2694 	TAILQ_FOREACH(flow, &priv->flows, next) {
2695 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2696 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2697 				dev->data->port_id, (void *)flow);
2698 			break;
2699 		}
2700 	}
2701 	return flow;
2702 }
2703 
2704 /**
2705  * Add new flow director filter and store it in list.
2706  *
2707  * @param dev
2708  *   Pointer to Ethernet device.
2709  * @param fdir_filter
2710  *   Flow director filter to add.
2711  *
2712  * @return
2713  *   0 on success, a negative errno value otherwise and rte_errno is set.
2714  */
2715 static int
2716 flow_fdir_filter_add(struct rte_eth_dev *dev,
2717 		     const struct rte_eth_fdir_filter *fdir_filter)
2718 {
2719 	struct priv *priv = dev->data->dev_private;
2720 	struct mlx5_fdir *fdir_flow;
2721 	struct rte_flow *flow;
2722 	int ret;
2723 
2724 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2725 	if (!fdir_flow) {
2726 		rte_errno = ENOMEM;
2727 		return -rte_errno;
2728 	}
2729 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2730 	if (ret)
2731 		goto error;
2732 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
2733 	if (flow) {
2734 		rte_errno = EEXIST;
2735 		goto error;
2736 	}
2737 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2738 				fdir_flow->items, fdir_flow->actions, NULL);
2739 	if (!flow)
2740 		goto error;
2741 	assert(!flow->fdir);
2742 	flow->fdir = fdir_flow;
2743 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2744 		dev->data->port_id, (void *)flow);
2745 	return 0;
2746 error:
2747 	rte_free(fdir_flow);
2748 	return -rte_errno;
2749 }
2750 
2751 /**
2752  * Delete specific filter.
2753  *
2754  * @param dev
2755  *   Pointer to Ethernet device.
2756  * @param fdir_filter
2757  *   Filter to be deleted.
2758  *
2759  * @return
2760  *   0 on success, a negative errno value otherwise and rte_errno is set.
2761  */
2762 static int
2763 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2764 			const struct rte_eth_fdir_filter *fdir_filter)
2765 {
2766 	struct priv *priv = dev->data->dev_private;
2767 	struct rte_flow *flow;
2768 	struct mlx5_fdir fdir_flow = {
2769 		.attr.group = 0,
2770 	};
2771 	int ret;
2772 
2773 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2774 	if (ret)
2775 		return -rte_errno;
2776 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2777 	if (!flow) {
2778 		rte_errno = ENOENT;
2779 		return -rte_errno;
2780 	}
2781 	flow_list_destroy(dev, &priv->flows, flow);
2782 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2783 		dev->data->port_id, (void *)flow);
2784 	return 0;
2785 }
2786 
2787 /**
2788  * Update queue for specific filter.
2789  *
2790  * @param dev
2791  *   Pointer to Ethernet device.
2792  * @param fdir_filter
2793  *   Filter to be updated.
2794  *
2795  * @return
2796  *   0 on success, a negative errno value otherwise and rte_errno is set.
2797  */
2798 static int
2799 flow_fdir_filter_update(struct rte_eth_dev *dev,
2800 			const struct rte_eth_fdir_filter *fdir_filter)
2801 {
2802 	int ret;
2803 
2804 	ret = flow_fdir_filter_delete(dev, fdir_filter);
2805 	if (ret)
2806 		return ret;
2807 	return flow_fdir_filter_add(dev, fdir_filter);
2808 }
2809 
2810 /**
2811  * Flush all filters.
2812  *
2813  * @param dev
2814  *   Pointer to Ethernet device.
2815  */
2816 static void
2817 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2818 {
2819 	struct priv *priv = dev->data->dev_private;
2820 
2821 	mlx5_flow_list_flush(dev, &priv->flows);
2822 }
2823 
2824 /**
2825  * Get flow director information.
2826  *
2827  * @param dev
2828  *   Pointer to Ethernet device.
2829  * @param[out] fdir_info
2830  *   Resulting flow director information.
2831  */
2832 static void
2833 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2834 {
2835 	struct rte_eth_fdir_masks *mask =
2836 		&dev->data->dev_conf.fdir_conf.mask;
2837 
2838 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2839 	fdir_info->guarant_spc = 0;
2840 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2841 	fdir_info->max_flexpayload = 0;
2842 	fdir_info->flow_types_mask[0] = 0;
2843 	fdir_info->flex_payload_unit = 0;
2844 	fdir_info->max_flex_payload_segment_num = 0;
2845 	fdir_info->flex_payload_limit = 0;
2846 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2847 }
2848 
2849 /**
2850  * Deal with flow director operations.
2851  *
2852  * @param dev
2853  *   Pointer to Ethernet device.
2854  * @param filter_op
2855  *   Operation to perform.
2856  * @param arg
2857  *   Pointer to operation-specific structure.
2858  *
2859  * @return
2860  *   0 on success, a negative errno value otherwise and rte_errno is set.
2861  */
2862 static int
2863 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2864 		    void *arg)
2865 {
2866 	enum rte_fdir_mode fdir_mode =
2867 		dev->data->dev_conf.fdir_conf.mode;
2868 
2869 	if (filter_op == RTE_ETH_FILTER_NOP)
2870 		return 0;
2871 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2872 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2873 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
2874 			dev->data->port_id, fdir_mode);
2875 		rte_errno = EINVAL;
2876 		return -rte_errno;
2877 	}
2878 	switch (filter_op) {
2879 	case RTE_ETH_FILTER_ADD:
2880 		return flow_fdir_filter_add(dev, arg);
2881 	case RTE_ETH_FILTER_UPDATE:
2882 		return flow_fdir_filter_update(dev, arg);
2883 	case RTE_ETH_FILTER_DELETE:
2884 		return flow_fdir_filter_delete(dev, arg);
2885 	case RTE_ETH_FILTER_FLUSH:
2886 		flow_fdir_filter_flush(dev);
2887 		break;
2888 	case RTE_ETH_FILTER_INFO:
2889 		flow_fdir_info_get(dev, arg);
2890 		break;
2891 	default:
2892 		DRV_LOG(DEBUG, "port %u unknown operation %u",
2893 			dev->data->port_id, filter_op);
2894 		rte_errno = EINVAL;
2895 		return -rte_errno;
2896 	}
2897 	return 0;
2898 }
2899 
2900 /**
2901  * Manage filter operations.
2902  *
2903  * @param dev
2904  *   Pointer to Ethernet device structure.
2905  * @param filter_type
2906  *   Filter type.
2907  * @param filter_op
2908  *   Operation to perform.
2909  * @param arg
2910  *   Pointer to operation-specific structure.
2911  *
2912  * @return
2913  *   0 on success, a negative errno value otherwise and rte_errno is set.
2914  */
2915 int
2916 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2917 		     enum rte_filter_type filter_type,
2918 		     enum rte_filter_op filter_op,
2919 		     void *arg)
2920 {
2921 	switch (filter_type) {
2922 	case RTE_ETH_FILTER_GENERIC:
2923 		if (filter_op != RTE_ETH_FILTER_GET) {
2924 			rte_errno = EINVAL;
2925 			return -rte_errno;
2926 		}
2927 		*(const void **)arg = &mlx5_flow_ops;
2928 		return 0;
2929 	case RTE_ETH_FILTER_FDIR:
2930 		return flow_fdir_ctrl_func(dev, filter_op, arg);
2931 	default:
2932 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
2933 			dev->data->port_id, filter_type);
2934 		rte_errno = ENOTSUP;
2935 		return -rte_errno;
2936 	}
2937 	return 0;
2938 }
2939