xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 0be2fba2f07d91aa7436fcf452aaff05ff5c6a62)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21 
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29 
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36 
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40 
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46 
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48 
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57 
58 enum mlx5_expansion {
59 	MLX5_EXPANSION_ROOT,
60 	MLX5_EXPANSION_ROOT_OUTER,
61 	MLX5_EXPANSION_ROOT_ETH_VLAN,
62 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63 	MLX5_EXPANSION_OUTER_ETH,
64 	MLX5_EXPANSION_OUTER_ETH_VLAN,
65 	MLX5_EXPANSION_OUTER_VLAN,
66 	MLX5_EXPANSION_OUTER_IPV4,
67 	MLX5_EXPANSION_OUTER_IPV4_UDP,
68 	MLX5_EXPANSION_OUTER_IPV4_TCP,
69 	MLX5_EXPANSION_OUTER_IPV6,
70 	MLX5_EXPANSION_OUTER_IPV6_UDP,
71 	MLX5_EXPANSION_OUTER_IPV6_TCP,
72 	MLX5_EXPANSION_VXLAN,
73 	MLX5_EXPANSION_VXLAN_GPE,
74 	MLX5_EXPANSION_GRE,
75 	MLX5_EXPANSION_MPLS,
76 	MLX5_EXPANSION_ETH,
77 	MLX5_EXPANSION_ETH_VLAN,
78 	MLX5_EXPANSION_VLAN,
79 	MLX5_EXPANSION_IPV4,
80 	MLX5_EXPANSION_IPV4_UDP,
81 	MLX5_EXPANSION_IPV4_TCP,
82 	MLX5_EXPANSION_IPV6,
83 	MLX5_EXPANSION_IPV6_UDP,
84 	MLX5_EXPANSION_IPV6_TCP,
85 };
86 
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89 	[MLX5_EXPANSION_ROOT] = {
90 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91 						 MLX5_EXPANSION_IPV4,
92 						 MLX5_EXPANSION_IPV6),
93 		.type = RTE_FLOW_ITEM_TYPE_END,
94 	},
95 	[MLX5_EXPANSION_ROOT_OUTER] = {
96 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97 						 MLX5_EXPANSION_OUTER_IPV4,
98 						 MLX5_EXPANSION_OUTER_IPV6),
99 		.type = RTE_FLOW_ITEM_TYPE_END,
100 	},
101 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103 		.type = RTE_FLOW_ITEM_TYPE_END,
104 	},
105 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107 		.type = RTE_FLOW_ITEM_TYPE_END,
108 	},
109 	[MLX5_EXPANSION_OUTER_ETH] = {
110 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111 						 MLX5_EXPANSION_OUTER_IPV6,
112 						 MLX5_EXPANSION_MPLS),
113 		.type = RTE_FLOW_ITEM_TYPE_ETH,
114 		.rss_types = 0,
115 	},
116 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118 		.type = RTE_FLOW_ITEM_TYPE_ETH,
119 		.rss_types = 0,
120 	},
121 	[MLX5_EXPANSION_OUTER_VLAN] = {
122 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123 						 MLX5_EXPANSION_OUTER_IPV6),
124 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
125 	},
126 	[MLX5_EXPANSION_OUTER_IPV4] = {
127 		.next = RTE_FLOW_EXPAND_RSS_NEXT
128 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
129 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
130 			 MLX5_EXPANSION_GRE,
131 			 MLX5_EXPANSION_IPV4,
132 			 MLX5_EXPANSION_IPV6),
133 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
134 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135 			ETH_RSS_NONFRAG_IPV4_OTHER,
136 	},
137 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139 						 MLX5_EXPANSION_VXLAN_GPE),
140 		.type = RTE_FLOW_ITEM_TYPE_UDP,
141 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142 	},
143 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144 		.type = RTE_FLOW_ITEM_TYPE_TCP,
145 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146 	},
147 	[MLX5_EXPANSION_OUTER_IPV6] = {
148 		.next = RTE_FLOW_EXPAND_RSS_NEXT
149 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
150 			 MLX5_EXPANSION_OUTER_IPV6_TCP,
151 			 MLX5_EXPANSION_IPV4,
152 			 MLX5_EXPANSION_IPV6),
153 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
154 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
155 			ETH_RSS_NONFRAG_IPV6_OTHER,
156 	},
157 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
158 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
159 						 MLX5_EXPANSION_VXLAN_GPE),
160 		.type = RTE_FLOW_ITEM_TYPE_UDP,
161 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
162 	},
163 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
164 		.type = RTE_FLOW_ITEM_TYPE_TCP,
165 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
166 	},
167 	[MLX5_EXPANSION_VXLAN] = {
168 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
169 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
170 	},
171 	[MLX5_EXPANSION_VXLAN_GPE] = {
172 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
173 						 MLX5_EXPANSION_IPV4,
174 						 MLX5_EXPANSION_IPV6),
175 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
176 	},
177 	[MLX5_EXPANSION_GRE] = {
178 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
179 		.type = RTE_FLOW_ITEM_TYPE_GRE,
180 	},
181 	[MLX5_EXPANSION_MPLS] = {
182 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
183 						 MLX5_EXPANSION_IPV6),
184 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
185 	},
186 	[MLX5_EXPANSION_ETH] = {
187 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
188 						 MLX5_EXPANSION_IPV6),
189 		.type = RTE_FLOW_ITEM_TYPE_ETH,
190 	},
191 	[MLX5_EXPANSION_ETH_VLAN] = {
192 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
193 		.type = RTE_FLOW_ITEM_TYPE_ETH,
194 	},
195 	[MLX5_EXPANSION_VLAN] = {
196 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
197 						 MLX5_EXPANSION_IPV6),
198 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
199 	},
200 	[MLX5_EXPANSION_IPV4] = {
201 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
202 						 MLX5_EXPANSION_IPV4_TCP),
203 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
204 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
205 			ETH_RSS_NONFRAG_IPV4_OTHER,
206 	},
207 	[MLX5_EXPANSION_IPV4_UDP] = {
208 		.type = RTE_FLOW_ITEM_TYPE_UDP,
209 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
210 	},
211 	[MLX5_EXPANSION_IPV4_TCP] = {
212 		.type = RTE_FLOW_ITEM_TYPE_TCP,
213 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
214 	},
215 	[MLX5_EXPANSION_IPV6] = {
216 		.next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
217 						 MLX5_EXPANSION_IPV6_TCP),
218 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
219 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
220 			ETH_RSS_NONFRAG_IPV6_OTHER,
221 	},
222 	[MLX5_EXPANSION_IPV6_UDP] = {
223 		.type = RTE_FLOW_ITEM_TYPE_UDP,
224 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
225 	},
226 	[MLX5_EXPANSION_IPV6_TCP] = {
227 		.type = RTE_FLOW_ITEM_TYPE_TCP,
228 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
229 	},
230 };
231 
232 static const struct rte_flow_ops mlx5_flow_ops = {
233 	.validate = mlx5_flow_validate,
234 	.create = mlx5_flow_create,
235 	.destroy = mlx5_flow_destroy,
236 	.flush = mlx5_flow_flush,
237 	.isolate = mlx5_flow_isolate,
238 	.query = mlx5_flow_query,
239 };
240 
241 /* Convert FDIR request to Generic flow. */
242 struct mlx5_fdir {
243 	struct rte_flow_attr attr;
244 	struct rte_flow_item items[4];
245 	struct rte_flow_item_eth l2;
246 	struct rte_flow_item_eth l2_mask;
247 	union {
248 		struct rte_flow_item_ipv4 ipv4;
249 		struct rte_flow_item_ipv6 ipv6;
250 	} l3;
251 	union {
252 		struct rte_flow_item_ipv4 ipv4;
253 		struct rte_flow_item_ipv6 ipv6;
254 	} l3_mask;
255 	union {
256 		struct rte_flow_item_udp udp;
257 		struct rte_flow_item_tcp tcp;
258 	} l4;
259 	union {
260 		struct rte_flow_item_udp udp;
261 		struct rte_flow_item_tcp tcp;
262 	} l4_mask;
263 	struct rte_flow_action actions[2];
264 	struct rte_flow_action_queue queue;
265 };
266 
267 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
268 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
269 	{ 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
270 };
271 
272 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
273 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
274 	{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
275 	{ 9, 10, 11 }, { 12, 13, 14 },
276 };
277 
278 /* Tunnel information. */
279 struct mlx5_flow_tunnel_info {
280 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
281 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
282 };
283 
284 static struct mlx5_flow_tunnel_info tunnels_info[] = {
285 	{
286 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
287 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
288 	},
289 	{
290 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
291 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
292 	},
293 	{
294 		.tunnel = MLX5_FLOW_LAYER_GRE,
295 		.ptype = RTE_PTYPE_TUNNEL_GRE,
296 	},
297 	{
298 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
299 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
300 	},
301 	{
302 		.tunnel = MLX5_FLOW_LAYER_MPLS,
303 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
304 	},
305 	{
306 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
307 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
308 	},
309 	{
310 		.tunnel = MLX5_FLOW_LAYER_IPIP,
311 		.ptype = RTE_PTYPE_TUNNEL_IP,
312 	},
313 	{
314 		.tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
315 		.ptype = RTE_PTYPE_TUNNEL_IP,
316 	},
317 };
318 
319 enum mlx5_feature_name {
320 	MLX5_HAIRPIN_RX,
321 	MLX5_HAIRPIN_TX,
322 	MLX5_APPLICATION,
323 };
324 
325 /**
326  * Translate tag ID to register.
327  *
328  * @param[in] dev
329  *   Pointer to the Ethernet device structure.
330  * @param[in] feature
331  *   The feature that request the register.
332  * @param[in] id
333  *   The request register ID.
334  * @param[out] error
335  *   Error description in case of any.
336  *
337  * @return
338  *   The request register on success, a negative errno
339  *   value otherwise and rte_errno is set.
340  */
341 __rte_unused
342 static enum modify_reg flow_get_reg_id(struct rte_eth_dev *dev,
343 				       enum mlx5_feature_name feature,
344 				       uint32_t id,
345 				       struct rte_flow_error *error)
346 {
347 	static enum modify_reg id2reg[] = {
348 		[0] = REG_A,
349 		[1] = REG_C_2,
350 		[2] = REG_C_3,
351 		[3] = REG_C_4,
352 		[4] = REG_B,};
353 
354 	dev = (void *)dev;
355 	switch (feature) {
356 	case MLX5_HAIRPIN_RX:
357 		return REG_B;
358 	case MLX5_HAIRPIN_TX:
359 		return REG_A;
360 	case MLX5_APPLICATION:
361 		if (id > 4)
362 			return rte_flow_error_set(error, EINVAL,
363 						  RTE_FLOW_ERROR_TYPE_ITEM,
364 						  NULL, "invalid tag id");
365 		return id2reg[id];
366 	}
367 	return rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
368 				  NULL, "invalid feature name");
369 }
370 
371 /**
372  * Discover the maximum number of priority available.
373  *
374  * @param[in] dev
375  *   Pointer to the Ethernet device structure.
376  *
377  * @return
378  *   number of supported flow priority on success, a negative errno
379  *   value otherwise and rte_errno is set.
380  */
381 int
382 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
383 {
384 	struct mlx5_priv *priv = dev->data->dev_private;
385 	struct {
386 		struct ibv_flow_attr attr;
387 		struct ibv_flow_spec_eth eth;
388 		struct ibv_flow_spec_action_drop drop;
389 	} flow_attr = {
390 		.attr = {
391 			.num_of_specs = 2,
392 			.port = (uint8_t)priv->ibv_port,
393 		},
394 		.eth = {
395 			.type = IBV_FLOW_SPEC_ETH,
396 			.size = sizeof(struct ibv_flow_spec_eth),
397 		},
398 		.drop = {
399 			.size = sizeof(struct ibv_flow_spec_action_drop),
400 			.type = IBV_FLOW_SPEC_ACTION_DROP,
401 		},
402 	};
403 	struct ibv_flow *flow;
404 	struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
405 	uint16_t vprio[] = { 8, 16 };
406 	int i;
407 	int priority = 0;
408 
409 	if (!drop) {
410 		rte_errno = ENOTSUP;
411 		return -rte_errno;
412 	}
413 	for (i = 0; i != RTE_DIM(vprio); i++) {
414 		flow_attr.attr.priority = vprio[i] - 1;
415 		flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
416 		if (!flow)
417 			break;
418 		claim_zero(mlx5_glue->destroy_flow(flow));
419 		priority = vprio[i];
420 	}
421 	mlx5_hrxq_drop_release(dev);
422 	switch (priority) {
423 	case 8:
424 		priority = RTE_DIM(priority_map_3);
425 		break;
426 	case 16:
427 		priority = RTE_DIM(priority_map_5);
428 		break;
429 	default:
430 		rte_errno = ENOTSUP;
431 		DRV_LOG(ERR,
432 			"port %u verbs maximum priority: %d expected 8/16",
433 			dev->data->port_id, priority);
434 		return -rte_errno;
435 	}
436 	DRV_LOG(INFO, "port %u flow maximum priority: %d",
437 		dev->data->port_id, priority);
438 	return priority;
439 }
440 
441 /**
442  * Adjust flow priority based on the highest layer and the request priority.
443  *
444  * @param[in] dev
445  *   Pointer to the Ethernet device structure.
446  * @param[in] priority
447  *   The rule base priority.
448  * @param[in] subpriority
449  *   The priority based on the items.
450  *
451  * @return
452  *   The new priority.
453  */
454 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
455 				   uint32_t subpriority)
456 {
457 	uint32_t res = 0;
458 	struct mlx5_priv *priv = dev->data->dev_private;
459 
460 	switch (priv->config.flow_prio) {
461 	case RTE_DIM(priority_map_3):
462 		res = priority_map_3[priority][subpriority];
463 		break;
464 	case RTE_DIM(priority_map_5):
465 		res = priority_map_5[priority][subpriority];
466 		break;
467 	}
468 	return  res;
469 }
470 
471 /**
472  * Verify the @p item specifications (spec, last, mask) are compatible with the
473  * NIC capabilities.
474  *
475  * @param[in] item
476  *   Item specification.
477  * @param[in] mask
478  *   @p item->mask or flow default bit-masks.
479  * @param[in] nic_mask
480  *   Bit-masks covering supported fields by the NIC to compare with user mask.
481  * @param[in] size
482  *   Bit-masks size in bytes.
483  * @param[out] error
484  *   Pointer to error structure.
485  *
486  * @return
487  *   0 on success, a negative errno value otherwise and rte_errno is set.
488  */
489 int
490 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
491 			  const uint8_t *mask,
492 			  const uint8_t *nic_mask,
493 			  unsigned int size,
494 			  struct rte_flow_error *error)
495 {
496 	unsigned int i;
497 
498 	assert(nic_mask);
499 	for (i = 0; i < size; ++i)
500 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
501 			return rte_flow_error_set(error, ENOTSUP,
502 						  RTE_FLOW_ERROR_TYPE_ITEM,
503 						  item,
504 						  "mask enables non supported"
505 						  " bits");
506 	if (!item->spec && (item->mask || item->last))
507 		return rte_flow_error_set(error, EINVAL,
508 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
509 					  "mask/last without a spec is not"
510 					  " supported");
511 	if (item->spec && item->last) {
512 		uint8_t spec[size];
513 		uint8_t last[size];
514 		unsigned int i;
515 		int ret;
516 
517 		for (i = 0; i < size; ++i) {
518 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
519 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
520 		}
521 		ret = memcmp(spec, last, size);
522 		if (ret != 0)
523 			return rte_flow_error_set(error, EINVAL,
524 						  RTE_FLOW_ERROR_TYPE_ITEM,
525 						  item,
526 						  "range is not valid");
527 	}
528 	return 0;
529 }
530 
531 /**
532  * Adjust the hash fields according to the @p flow information.
533  *
534  * @param[in] dev_flow.
535  *   Pointer to the mlx5_flow.
536  * @param[in] tunnel
537  *   1 when the hash field is for a tunnel item.
538  * @param[in] layer_types
539  *   ETH_RSS_* types.
540  * @param[in] hash_fields
541  *   Item hash fields.
542  *
543  * @return
544  *   The hash fields that should be used.
545  */
546 uint64_t
547 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
548 			    int tunnel __rte_unused, uint64_t layer_types,
549 			    uint64_t hash_fields)
550 {
551 	struct rte_flow *flow = dev_flow->flow;
552 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
553 	int rss_request_inner = flow->rss.level >= 2;
554 
555 	/* Check RSS hash level for tunnel. */
556 	if (tunnel && rss_request_inner)
557 		hash_fields |= IBV_RX_HASH_INNER;
558 	else if (tunnel || rss_request_inner)
559 		return 0;
560 #endif
561 	/* Check if requested layer matches RSS hash fields. */
562 	if (!(flow->rss.types & layer_types))
563 		return 0;
564 	return hash_fields;
565 }
566 
567 /**
568  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
569  * if several tunnel rules are used on this queue, the tunnel ptype will be
570  * cleared.
571  *
572  * @param rxq_ctrl
573  *   Rx queue to update.
574  */
575 static void
576 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
577 {
578 	unsigned int i;
579 	uint32_t tunnel_ptype = 0;
580 
581 	/* Look up for the ptype to use. */
582 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
583 		if (!rxq_ctrl->flow_tunnels_n[i])
584 			continue;
585 		if (!tunnel_ptype) {
586 			tunnel_ptype = tunnels_info[i].ptype;
587 		} else {
588 			tunnel_ptype = 0;
589 			break;
590 		}
591 	}
592 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
593 }
594 
595 /**
596  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
597  * flow.
598  *
599  * @param[in] dev
600  *   Pointer to the Ethernet device structure.
601  * @param[in] dev_flow
602  *   Pointer to device flow structure.
603  */
604 static void
605 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
606 {
607 	struct mlx5_priv *priv = dev->data->dev_private;
608 	struct rte_flow *flow = dev_flow->flow;
609 	const int mark = !!(dev_flow->actions &
610 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
611 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
612 	unsigned int i;
613 
614 	for (i = 0; i != flow->rss.queue_num; ++i) {
615 		int idx = (*flow->queue)[i];
616 		struct mlx5_rxq_ctrl *rxq_ctrl =
617 			container_of((*priv->rxqs)[idx],
618 				     struct mlx5_rxq_ctrl, rxq);
619 
620 		if (mark) {
621 			rxq_ctrl->rxq.mark = 1;
622 			rxq_ctrl->flow_mark_n++;
623 		}
624 		if (tunnel) {
625 			unsigned int j;
626 
627 			/* Increase the counter matching the flow. */
628 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
629 				if ((tunnels_info[j].tunnel &
630 				     dev_flow->layers) ==
631 				    tunnels_info[j].tunnel) {
632 					rxq_ctrl->flow_tunnels_n[j]++;
633 					break;
634 				}
635 			}
636 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
637 		}
638 	}
639 }
640 
641 /**
642  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
643  *
644  * @param[in] dev
645  *   Pointer to the Ethernet device structure.
646  * @param[in] flow
647  *   Pointer to flow structure.
648  */
649 static void
650 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
651 {
652 	struct mlx5_flow *dev_flow;
653 
654 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
655 		flow_drv_rxq_flags_set(dev, dev_flow);
656 }
657 
658 /**
659  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
660  * device flow if no other flow uses it with the same kind of request.
661  *
662  * @param dev
663  *   Pointer to Ethernet device.
664  * @param[in] dev_flow
665  *   Pointer to the device flow.
666  */
667 static void
668 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
669 {
670 	struct mlx5_priv *priv = dev->data->dev_private;
671 	struct rte_flow *flow = dev_flow->flow;
672 	const int mark = !!(dev_flow->actions &
673 			    (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
674 	const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
675 	unsigned int i;
676 
677 	assert(dev->data->dev_started);
678 	for (i = 0; i != flow->rss.queue_num; ++i) {
679 		int idx = (*flow->queue)[i];
680 		struct mlx5_rxq_ctrl *rxq_ctrl =
681 			container_of((*priv->rxqs)[idx],
682 				     struct mlx5_rxq_ctrl, rxq);
683 
684 		if (mark) {
685 			rxq_ctrl->flow_mark_n--;
686 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
687 		}
688 		if (tunnel) {
689 			unsigned int j;
690 
691 			/* Decrease the counter matching the flow. */
692 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
693 				if ((tunnels_info[j].tunnel &
694 				     dev_flow->layers) ==
695 				    tunnels_info[j].tunnel) {
696 					rxq_ctrl->flow_tunnels_n[j]--;
697 					break;
698 				}
699 			}
700 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
701 		}
702 	}
703 }
704 
705 /**
706  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
707  * @p flow if no other flow uses it with the same kind of request.
708  *
709  * @param dev
710  *   Pointer to Ethernet device.
711  * @param[in] flow
712  *   Pointer to the flow.
713  */
714 static void
715 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
716 {
717 	struct mlx5_flow *dev_flow;
718 
719 	LIST_FOREACH(dev_flow, &flow->dev_flows, next)
720 		flow_drv_rxq_flags_trim(dev, dev_flow);
721 }
722 
723 /**
724  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
725  *
726  * @param dev
727  *   Pointer to Ethernet device.
728  */
729 static void
730 flow_rxq_flags_clear(struct rte_eth_dev *dev)
731 {
732 	struct mlx5_priv *priv = dev->data->dev_private;
733 	unsigned int i;
734 
735 	for (i = 0; i != priv->rxqs_n; ++i) {
736 		struct mlx5_rxq_ctrl *rxq_ctrl;
737 		unsigned int j;
738 
739 		if (!(*priv->rxqs)[i])
740 			continue;
741 		rxq_ctrl = container_of((*priv->rxqs)[i],
742 					struct mlx5_rxq_ctrl, rxq);
743 		rxq_ctrl->flow_mark_n = 0;
744 		rxq_ctrl->rxq.mark = 0;
745 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
746 			rxq_ctrl->flow_tunnels_n[j] = 0;
747 		rxq_ctrl->rxq.tunnel = 0;
748 	}
749 }
750 
751 /*
752  * return a pointer to the desired action in the list of actions.
753  *
754  * @param[in] actions
755  *   The list of actions to search the action in.
756  * @param[in] action
757  *   The action to find.
758  *
759  * @return
760  *   Pointer to the action in the list, if found. NULL otherwise.
761  */
762 const struct rte_flow_action *
763 mlx5_flow_find_action(const struct rte_flow_action *actions,
764 		      enum rte_flow_action_type action)
765 {
766 	if (actions == NULL)
767 		return NULL;
768 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
769 		if (actions->type == action)
770 			return actions;
771 	return NULL;
772 }
773 
774 /*
775  * Validate the flag action.
776  *
777  * @param[in] action_flags
778  *   Bit-fields that holds the actions detected until now.
779  * @param[in] attr
780  *   Attributes of flow that includes this action.
781  * @param[out] error
782  *   Pointer to error structure.
783  *
784  * @return
785  *   0 on success, a negative errno value otherwise and rte_errno is set.
786  */
787 int
788 mlx5_flow_validate_action_flag(uint64_t action_flags,
789 			       const struct rte_flow_attr *attr,
790 			       struct rte_flow_error *error)
791 {
792 
793 	if (action_flags & MLX5_FLOW_ACTION_DROP)
794 		return rte_flow_error_set(error, EINVAL,
795 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
796 					  "can't drop and flag in same flow");
797 	if (action_flags & MLX5_FLOW_ACTION_MARK)
798 		return rte_flow_error_set(error, EINVAL,
799 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
800 					  "can't mark and flag in same flow");
801 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
802 		return rte_flow_error_set(error, EINVAL,
803 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
804 					  "can't have 2 flag"
805 					  " actions in same flow");
806 	if (attr->egress)
807 		return rte_flow_error_set(error, ENOTSUP,
808 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
809 					  "flag action not supported for "
810 					  "egress");
811 	return 0;
812 }
813 
814 /*
815  * Validate the mark action.
816  *
817  * @param[in] action
818  *   Pointer to the queue action.
819  * @param[in] action_flags
820  *   Bit-fields that holds the actions detected until now.
821  * @param[in] attr
822  *   Attributes of flow that includes this action.
823  * @param[out] error
824  *   Pointer to error structure.
825  *
826  * @return
827  *   0 on success, a negative errno value otherwise and rte_errno is set.
828  */
829 int
830 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
831 			       uint64_t action_flags,
832 			       const struct rte_flow_attr *attr,
833 			       struct rte_flow_error *error)
834 {
835 	const struct rte_flow_action_mark *mark = action->conf;
836 
837 	if (!mark)
838 		return rte_flow_error_set(error, EINVAL,
839 					  RTE_FLOW_ERROR_TYPE_ACTION,
840 					  action,
841 					  "configuration cannot be null");
842 	if (mark->id >= MLX5_FLOW_MARK_MAX)
843 		return rte_flow_error_set(error, EINVAL,
844 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
845 					  &mark->id,
846 					  "mark id must in 0 <= id < "
847 					  RTE_STR(MLX5_FLOW_MARK_MAX));
848 	if (action_flags & MLX5_FLOW_ACTION_DROP)
849 		return rte_flow_error_set(error, EINVAL,
850 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
851 					  "can't drop and mark in same flow");
852 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
853 		return rte_flow_error_set(error, EINVAL,
854 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
855 					  "can't flag and mark in same flow");
856 	if (action_flags & MLX5_FLOW_ACTION_MARK)
857 		return rte_flow_error_set(error, EINVAL,
858 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
859 					  "can't have 2 mark actions in same"
860 					  " flow");
861 	if (attr->egress)
862 		return rte_flow_error_set(error, ENOTSUP,
863 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
864 					  "mark action not supported for "
865 					  "egress");
866 	return 0;
867 }
868 
869 /*
870  * Validate the drop action.
871  *
872  * @param[in] action_flags
873  *   Bit-fields that holds the actions detected until now.
874  * @param[in] attr
875  *   Attributes of flow that includes this action.
876  * @param[out] error
877  *   Pointer to error structure.
878  *
879  * @return
880  *   0 on success, a negative errno value otherwise and rte_errno is set.
881  */
882 int
883 mlx5_flow_validate_action_drop(uint64_t action_flags,
884 			       const struct rte_flow_attr *attr,
885 			       struct rte_flow_error *error)
886 {
887 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
888 		return rte_flow_error_set(error, EINVAL,
889 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
890 					  "can't drop and flag in same flow");
891 	if (action_flags & MLX5_FLOW_ACTION_MARK)
892 		return rte_flow_error_set(error, EINVAL,
893 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
894 					  "can't drop and mark in same flow");
895 	if (action_flags & (MLX5_FLOW_FATE_ACTIONS |
896 			    MLX5_FLOW_FATE_ESWITCH_ACTIONS))
897 		return rte_flow_error_set(error, EINVAL,
898 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
899 					  "can't have 2 fate actions in"
900 					  " same flow");
901 	if (attr->egress)
902 		return rte_flow_error_set(error, ENOTSUP,
903 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
904 					  "drop action not supported for "
905 					  "egress");
906 	return 0;
907 }
908 
909 /*
910  * Validate the queue action.
911  *
912  * @param[in] action
913  *   Pointer to the queue action.
914  * @param[in] action_flags
915  *   Bit-fields that holds the actions detected until now.
916  * @param[in] dev
917  *   Pointer to the Ethernet device structure.
918  * @param[in] attr
919  *   Attributes of flow that includes this action.
920  * @param[out] error
921  *   Pointer to error structure.
922  *
923  * @return
924  *   0 on success, a negative errno value otherwise and rte_errno is set.
925  */
926 int
927 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
928 				uint64_t action_flags,
929 				struct rte_eth_dev *dev,
930 				const struct rte_flow_attr *attr,
931 				struct rte_flow_error *error)
932 {
933 	struct mlx5_priv *priv = dev->data->dev_private;
934 	const struct rte_flow_action_queue *queue = action->conf;
935 
936 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
937 		return rte_flow_error_set(error, EINVAL,
938 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
939 					  "can't have 2 fate actions in"
940 					  " same flow");
941 	if (!priv->rxqs_n)
942 		return rte_flow_error_set(error, EINVAL,
943 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
944 					  NULL, "No Rx queues configured");
945 	if (queue->index >= priv->rxqs_n)
946 		return rte_flow_error_set(error, EINVAL,
947 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
948 					  &queue->index,
949 					  "queue index out of range");
950 	if (!(*priv->rxqs)[queue->index])
951 		return rte_flow_error_set(error, EINVAL,
952 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
953 					  &queue->index,
954 					  "queue is not configured");
955 	if (attr->egress)
956 		return rte_flow_error_set(error, ENOTSUP,
957 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
958 					  "queue action not supported for "
959 					  "egress");
960 	return 0;
961 }
962 
963 /*
964  * Validate the rss action.
965  *
966  * @param[in] action
967  *   Pointer to the queue action.
968  * @param[in] action_flags
969  *   Bit-fields that holds the actions detected until now.
970  * @param[in] dev
971  *   Pointer to the Ethernet device structure.
972  * @param[in] attr
973  *   Attributes of flow that includes this action.
974  * @param[in] item_flags
975  *   Items that were detected.
976  * @param[out] error
977  *   Pointer to error structure.
978  *
979  * @return
980  *   0 on success, a negative errno value otherwise and rte_errno is set.
981  */
982 int
983 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
984 			      uint64_t action_flags,
985 			      struct rte_eth_dev *dev,
986 			      const struct rte_flow_attr *attr,
987 			      uint64_t item_flags,
988 			      struct rte_flow_error *error)
989 {
990 	struct mlx5_priv *priv = dev->data->dev_private;
991 	const struct rte_flow_action_rss *rss = action->conf;
992 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
993 	unsigned int i;
994 
995 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
996 		return rte_flow_error_set(error, EINVAL,
997 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
998 					  "can't have 2 fate actions"
999 					  " in same flow");
1000 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1001 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1002 		return rte_flow_error_set(error, ENOTSUP,
1003 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1004 					  &rss->func,
1005 					  "RSS hash function not supported");
1006 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1007 	if (rss->level > 2)
1008 #else
1009 	if (rss->level > 1)
1010 #endif
1011 		return rte_flow_error_set(error, ENOTSUP,
1012 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1013 					  &rss->level,
1014 					  "tunnel RSS is not supported");
1015 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
1016 	if (rss->key_len == 0 && rss->key != NULL)
1017 		return rte_flow_error_set(error, ENOTSUP,
1018 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1019 					  &rss->key_len,
1020 					  "RSS hash key length 0");
1021 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1022 		return rte_flow_error_set(error, ENOTSUP,
1023 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1024 					  &rss->key_len,
1025 					  "RSS hash key too small");
1026 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1027 		return rte_flow_error_set(error, ENOTSUP,
1028 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1029 					  &rss->key_len,
1030 					  "RSS hash key too large");
1031 	if (rss->queue_num > priv->config.ind_table_max_size)
1032 		return rte_flow_error_set(error, ENOTSUP,
1033 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1034 					  &rss->queue_num,
1035 					  "number of queues too large");
1036 	if (rss->types & MLX5_RSS_HF_MASK)
1037 		return rte_flow_error_set(error, ENOTSUP,
1038 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1039 					  &rss->types,
1040 					  "some RSS protocols are not"
1041 					  " supported");
1042 	if (!priv->rxqs_n)
1043 		return rte_flow_error_set(error, EINVAL,
1044 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1045 					  NULL, "No Rx queues configured");
1046 	if (!rss->queue_num)
1047 		return rte_flow_error_set(error, EINVAL,
1048 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1049 					  NULL, "No queues configured");
1050 	for (i = 0; i != rss->queue_num; ++i) {
1051 		if (!(*priv->rxqs)[rss->queue[i]])
1052 			return rte_flow_error_set
1053 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1054 				 &rss->queue[i], "queue is not configured");
1055 	}
1056 	if (attr->egress)
1057 		return rte_flow_error_set(error, ENOTSUP,
1058 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1059 					  "rss action not supported for "
1060 					  "egress");
1061 	if (rss->level > 1 &&  !tunnel)
1062 		return rte_flow_error_set(error, EINVAL,
1063 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1064 					  "inner RSS is not supported for "
1065 					  "non-tunnel flows");
1066 	return 0;
1067 }
1068 
1069 /*
1070  * Validate the count action.
1071  *
1072  * @param[in] dev
1073  *   Pointer to the Ethernet device structure.
1074  * @param[in] attr
1075  *   Attributes of flow that includes this action.
1076  * @param[out] error
1077  *   Pointer to error structure.
1078  *
1079  * @return
1080  *   0 on success, a negative errno value otherwise and rte_errno is set.
1081  */
1082 int
1083 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1084 				const struct rte_flow_attr *attr,
1085 				struct rte_flow_error *error)
1086 {
1087 	if (attr->egress)
1088 		return rte_flow_error_set(error, ENOTSUP,
1089 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1090 					  "count action not supported for "
1091 					  "egress");
1092 	return 0;
1093 }
1094 
1095 /**
1096  * Verify the @p attributes will be correctly understood by the NIC and store
1097  * them in the @p flow if everything is correct.
1098  *
1099  * @param[in] dev
1100  *   Pointer to the Ethernet device structure.
1101  * @param[in] attributes
1102  *   Pointer to flow attributes
1103  * @param[out] error
1104  *   Pointer to error structure.
1105  *
1106  * @return
1107  *   0 on success, a negative errno value otherwise and rte_errno is set.
1108  */
1109 int
1110 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1111 			      const struct rte_flow_attr *attributes,
1112 			      struct rte_flow_error *error)
1113 {
1114 	struct mlx5_priv *priv = dev->data->dev_private;
1115 	uint32_t priority_max = priv->config.flow_prio - 1;
1116 
1117 	if (attributes->group)
1118 		return rte_flow_error_set(error, ENOTSUP,
1119 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1120 					  NULL, "groups is not supported");
1121 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1122 	    attributes->priority >= priority_max)
1123 		return rte_flow_error_set(error, ENOTSUP,
1124 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1125 					  NULL, "priority out of range");
1126 	if (attributes->egress)
1127 		return rte_flow_error_set(error, ENOTSUP,
1128 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1129 					  "egress is not supported");
1130 	if (attributes->transfer && !priv->config.dv_esw_en)
1131 		return rte_flow_error_set(error, ENOTSUP,
1132 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1133 					  NULL, "transfer is not supported");
1134 	if (!attributes->ingress)
1135 		return rte_flow_error_set(error, EINVAL,
1136 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1137 					  NULL,
1138 					  "ingress attribute is mandatory");
1139 	return 0;
1140 }
1141 
1142 /**
1143  * Validate ICMP6 item.
1144  *
1145  * @param[in] item
1146  *   Item specification.
1147  * @param[in] item_flags
1148  *   Bit-fields that holds the items detected until now.
1149  * @param[out] error
1150  *   Pointer to error structure.
1151  *
1152  * @return
1153  *   0 on success, a negative errno value otherwise and rte_errno is set.
1154  */
1155 int
1156 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1157 			       uint64_t item_flags,
1158 			       uint8_t target_protocol,
1159 			       struct rte_flow_error *error)
1160 {
1161 	const struct rte_flow_item_icmp6 *mask = item->mask;
1162 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1163 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1164 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1165 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1166 				      MLX5_FLOW_LAYER_OUTER_L4;
1167 	int ret;
1168 
1169 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1170 		return rte_flow_error_set(error, EINVAL,
1171 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1172 					  "protocol filtering not compatible"
1173 					  " with ICMP6 layer");
1174 	if (!(item_flags & l3m))
1175 		return rte_flow_error_set(error, EINVAL,
1176 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1177 					  "IPv6 is mandatory to filter on"
1178 					  " ICMP6");
1179 	if (item_flags & l4m)
1180 		return rte_flow_error_set(error, EINVAL,
1181 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1182 					  "multiple L4 layers not supported");
1183 	if (!mask)
1184 		mask = &rte_flow_item_icmp6_mask;
1185 	ret = mlx5_flow_item_acceptable
1186 		(item, (const uint8_t *)mask,
1187 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
1188 		 sizeof(struct rte_flow_item_icmp6), error);
1189 	if (ret < 0)
1190 		return ret;
1191 	return 0;
1192 }
1193 
1194 /**
1195  * Validate ICMP item.
1196  *
1197  * @param[in] item
1198  *   Item specification.
1199  * @param[in] item_flags
1200  *   Bit-fields that holds the items detected until now.
1201  * @param[out] error
1202  *   Pointer to error structure.
1203  *
1204  * @return
1205  *   0 on success, a negative errno value otherwise and rte_errno is set.
1206  */
1207 int
1208 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1209 			     uint64_t item_flags,
1210 			     uint8_t target_protocol,
1211 			     struct rte_flow_error *error)
1212 {
1213 	const struct rte_flow_item_icmp *mask = item->mask;
1214 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1215 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1216 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1217 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1218 				      MLX5_FLOW_LAYER_OUTER_L4;
1219 	int ret;
1220 
1221 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1222 		return rte_flow_error_set(error, EINVAL,
1223 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1224 					  "protocol filtering not compatible"
1225 					  " with ICMP layer");
1226 	if (!(item_flags & l3m))
1227 		return rte_flow_error_set(error, EINVAL,
1228 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1229 					  "IPv4 is mandatory to filter"
1230 					  " on ICMP");
1231 	if (item_flags & l4m)
1232 		return rte_flow_error_set(error, EINVAL,
1233 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1234 					  "multiple L4 layers not supported");
1235 	if (!mask)
1236 		mask = &rte_flow_item_icmp_mask;
1237 	ret = mlx5_flow_item_acceptable
1238 		(item, (const uint8_t *)mask,
1239 		 (const uint8_t *)&rte_flow_item_icmp_mask,
1240 		 sizeof(struct rte_flow_item_icmp), error);
1241 	if (ret < 0)
1242 		return ret;
1243 	return 0;
1244 }
1245 
1246 /**
1247  * Validate Ethernet item.
1248  *
1249  * @param[in] item
1250  *   Item specification.
1251  * @param[in] item_flags
1252  *   Bit-fields that holds the items detected until now.
1253  * @param[out] error
1254  *   Pointer to error structure.
1255  *
1256  * @return
1257  *   0 on success, a negative errno value otherwise and rte_errno is set.
1258  */
1259 int
1260 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1261 			    uint64_t item_flags,
1262 			    struct rte_flow_error *error)
1263 {
1264 	const struct rte_flow_item_eth *mask = item->mask;
1265 	const struct rte_flow_item_eth nic_mask = {
1266 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1267 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1268 		.type = RTE_BE16(0xffff),
1269 	};
1270 	int ret;
1271 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1272 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1273 				       MLX5_FLOW_LAYER_OUTER_L2;
1274 
1275 	if (item_flags & ethm)
1276 		return rte_flow_error_set(error, ENOTSUP,
1277 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1278 					  "multiple L2 layers not supported");
1279 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
1280 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
1281 		return rte_flow_error_set(error, EINVAL,
1282 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1283 					  "L2 layer should not follow "
1284 					  "L3 layers");
1285 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
1286 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
1287 		return rte_flow_error_set(error, EINVAL,
1288 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1289 					  "L2 layer should not follow VLAN");
1290 	if (!mask)
1291 		mask = &rte_flow_item_eth_mask;
1292 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1293 					(const uint8_t *)&nic_mask,
1294 					sizeof(struct rte_flow_item_eth),
1295 					error);
1296 	return ret;
1297 }
1298 
1299 /**
1300  * Validate VLAN item.
1301  *
1302  * @param[in] item
1303  *   Item specification.
1304  * @param[in] item_flags
1305  *   Bit-fields that holds the items detected until now.
1306  * @param[in] dev
1307  *   Ethernet device flow is being created on.
1308  * @param[out] error
1309  *   Pointer to error structure.
1310  *
1311  * @return
1312  *   0 on success, a negative errno value otherwise and rte_errno is set.
1313  */
1314 int
1315 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1316 			     uint64_t item_flags,
1317 			     struct rte_eth_dev *dev,
1318 			     struct rte_flow_error *error)
1319 {
1320 	const struct rte_flow_item_vlan *spec = item->spec;
1321 	const struct rte_flow_item_vlan *mask = item->mask;
1322 	const struct rte_flow_item_vlan nic_mask = {
1323 		.tci = RTE_BE16(UINT16_MAX),
1324 		.inner_type = RTE_BE16(UINT16_MAX),
1325 	};
1326 	uint16_t vlan_tag = 0;
1327 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1328 	int ret;
1329 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1330 					MLX5_FLOW_LAYER_INNER_L4) :
1331 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1332 					MLX5_FLOW_LAYER_OUTER_L4);
1333 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1334 					MLX5_FLOW_LAYER_OUTER_VLAN;
1335 
1336 	if (item_flags & vlanm)
1337 		return rte_flow_error_set(error, EINVAL,
1338 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1339 					  "multiple VLAN layers not supported");
1340 	else if ((item_flags & l34m) != 0)
1341 		return rte_flow_error_set(error, EINVAL,
1342 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1343 					  "VLAN cannot follow L3/L4 layer");
1344 	if (!mask)
1345 		mask = &rte_flow_item_vlan_mask;
1346 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1347 					(const uint8_t *)&nic_mask,
1348 					sizeof(struct rte_flow_item_vlan),
1349 					error);
1350 	if (ret)
1351 		return ret;
1352 	if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1353 		struct mlx5_priv *priv = dev->data->dev_private;
1354 
1355 		if (priv->vmwa_context) {
1356 			/*
1357 			 * Non-NULL context means we have a virtual machine
1358 			 * and SR-IOV enabled, we have to create VLAN interface
1359 			 * to make hypervisor to setup E-Switch vport
1360 			 * context correctly. We avoid creating the multiple
1361 			 * VLAN interfaces, so we cannot support VLAN tag mask.
1362 			 */
1363 			return rte_flow_error_set(error, EINVAL,
1364 						  RTE_FLOW_ERROR_TYPE_ITEM,
1365 						  item,
1366 						  "VLAN tag mask is not"
1367 						  " supported in virtual"
1368 						  " environment");
1369 		}
1370 	}
1371 	if (spec) {
1372 		vlan_tag = spec->tci;
1373 		vlan_tag &= mask->tci;
1374 	}
1375 	/*
1376 	 * From verbs perspective an empty VLAN is equivalent
1377 	 * to a packet without VLAN layer.
1378 	 */
1379 	if (!vlan_tag)
1380 		return rte_flow_error_set(error, EINVAL,
1381 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1382 					  item->spec,
1383 					  "VLAN cannot be empty");
1384 	return 0;
1385 }
1386 
1387 /**
1388  * Validate IPV4 item.
1389  *
1390  * @param[in] item
1391  *   Item specification.
1392  * @param[in] item_flags
1393  *   Bit-fields that holds the items detected until now.
1394  * @param[in] acc_mask
1395  *   Acceptable mask, if NULL default internal default mask
1396  *   will be used to check whether item fields are supported.
1397  * @param[out] error
1398  *   Pointer to error structure.
1399  *
1400  * @return
1401  *   0 on success, a negative errno value otherwise and rte_errno is set.
1402  */
1403 int
1404 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1405 			     uint64_t item_flags,
1406 			     uint64_t last_item,
1407 			     uint16_t ether_type,
1408 			     const struct rte_flow_item_ipv4 *acc_mask,
1409 			     struct rte_flow_error *error)
1410 {
1411 	const struct rte_flow_item_ipv4 *mask = item->mask;
1412 	const struct rte_flow_item_ipv4 *spec = item->spec;
1413 	const struct rte_flow_item_ipv4 nic_mask = {
1414 		.hdr = {
1415 			.src_addr = RTE_BE32(0xffffffff),
1416 			.dst_addr = RTE_BE32(0xffffffff),
1417 			.type_of_service = 0xff,
1418 			.next_proto_id = 0xff,
1419 		},
1420 	};
1421 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1422 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1423 				      MLX5_FLOW_LAYER_OUTER_L3;
1424 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1425 				      MLX5_FLOW_LAYER_OUTER_L4;
1426 	int ret;
1427 	uint8_t next_proto = 0xFF;
1428 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1429 				  MLX5_FLOW_LAYER_OUTER_VLAN |
1430 				  MLX5_FLOW_LAYER_INNER_VLAN);
1431 
1432 	if ((last_item & l2_vlan) && ether_type &&
1433 	    ether_type != RTE_ETHER_TYPE_IPV4)
1434 		return rte_flow_error_set(error, EINVAL,
1435 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1436 					  "IPv4 cannot follow L2/VLAN layer "
1437 					  "which ether type is not IPv4");
1438 	if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1439 		if (mask && spec)
1440 			next_proto = mask->hdr.next_proto_id &
1441 				     spec->hdr.next_proto_id;
1442 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1443 			return rte_flow_error_set(error, EINVAL,
1444 						  RTE_FLOW_ERROR_TYPE_ITEM,
1445 						  item,
1446 						  "multiple tunnel "
1447 						  "not supported");
1448 	}
1449 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1450 		return rte_flow_error_set(error, EINVAL,
1451 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1452 					  "wrong tunnel type - IPv6 specified "
1453 					  "but IPv4 item provided");
1454 	if (item_flags & l3m)
1455 		return rte_flow_error_set(error, ENOTSUP,
1456 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1457 					  "multiple L3 layers not supported");
1458 	else if (item_flags & l4m)
1459 		return rte_flow_error_set(error, EINVAL,
1460 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1461 					  "L3 cannot follow an L4 layer.");
1462 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1463 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1464 		return rte_flow_error_set(error, EINVAL,
1465 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1466 					  "L3 cannot follow an NVGRE layer.");
1467 	if (!mask)
1468 		mask = &rte_flow_item_ipv4_mask;
1469 	else if (mask->hdr.next_proto_id != 0 &&
1470 		 mask->hdr.next_proto_id != 0xff)
1471 		return rte_flow_error_set(error, EINVAL,
1472 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1473 					  "partial mask is not supported"
1474 					  " for protocol");
1475 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1476 					acc_mask ? (const uint8_t *)acc_mask
1477 						 : (const uint8_t *)&nic_mask,
1478 					sizeof(struct rte_flow_item_ipv4),
1479 					error);
1480 	if (ret < 0)
1481 		return ret;
1482 	return 0;
1483 }
1484 
1485 /**
1486  * Validate IPV6 item.
1487  *
1488  * @param[in] item
1489  *   Item specification.
1490  * @param[in] item_flags
1491  *   Bit-fields that holds the items detected until now.
1492  * @param[in] acc_mask
1493  *   Acceptable mask, if NULL default internal default mask
1494  *   will be used to check whether item fields are supported.
1495  * @param[out] error
1496  *   Pointer to error structure.
1497  *
1498  * @return
1499  *   0 on success, a negative errno value otherwise and rte_errno is set.
1500  */
1501 int
1502 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1503 			     uint64_t item_flags,
1504 			     uint64_t last_item,
1505 			     uint16_t ether_type,
1506 			     const struct rte_flow_item_ipv6 *acc_mask,
1507 			     struct rte_flow_error *error)
1508 {
1509 	const struct rte_flow_item_ipv6 *mask = item->mask;
1510 	const struct rte_flow_item_ipv6 *spec = item->spec;
1511 	const struct rte_flow_item_ipv6 nic_mask = {
1512 		.hdr = {
1513 			.src_addr =
1514 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1515 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1516 			.dst_addr =
1517 				"\xff\xff\xff\xff\xff\xff\xff\xff"
1518 				"\xff\xff\xff\xff\xff\xff\xff\xff",
1519 			.vtc_flow = RTE_BE32(0xffffffff),
1520 			.proto = 0xff,
1521 			.hop_limits = 0xff,
1522 		},
1523 	};
1524 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1525 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1526 				      MLX5_FLOW_LAYER_OUTER_L3;
1527 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1528 				      MLX5_FLOW_LAYER_OUTER_L4;
1529 	int ret;
1530 	uint8_t next_proto = 0xFF;
1531 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1532 				  MLX5_FLOW_LAYER_OUTER_VLAN |
1533 				  MLX5_FLOW_LAYER_INNER_VLAN);
1534 
1535 	if ((last_item & l2_vlan) && ether_type &&
1536 	    ether_type != RTE_ETHER_TYPE_IPV6)
1537 		return rte_flow_error_set(error, EINVAL,
1538 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1539 					  "IPv6 cannot follow L2/VLAN layer "
1540 					  "which ether type is not IPv6");
1541 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1542 		if (mask && spec)
1543 			next_proto = mask->hdr.proto & spec->hdr.proto;
1544 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1545 			return rte_flow_error_set(error, EINVAL,
1546 						  RTE_FLOW_ERROR_TYPE_ITEM,
1547 						  item,
1548 						  "multiple tunnel "
1549 						  "not supported");
1550 	}
1551 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
1552 		return rte_flow_error_set(error, EINVAL,
1553 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1554 					  "wrong tunnel type - IPv4 specified "
1555 					  "but IPv6 item provided");
1556 	if (item_flags & l3m)
1557 		return rte_flow_error_set(error, ENOTSUP,
1558 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1559 					  "multiple L3 layers not supported");
1560 	else if (item_flags & l4m)
1561 		return rte_flow_error_set(error, EINVAL,
1562 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1563 					  "L3 cannot follow an L4 layer.");
1564 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1565 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1566 		return rte_flow_error_set(error, EINVAL,
1567 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1568 					  "L3 cannot follow an NVGRE layer.");
1569 	if (!mask)
1570 		mask = &rte_flow_item_ipv6_mask;
1571 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1572 					acc_mask ? (const uint8_t *)acc_mask
1573 						 : (const uint8_t *)&nic_mask,
1574 					sizeof(struct rte_flow_item_ipv6),
1575 					error);
1576 	if (ret < 0)
1577 		return ret;
1578 	return 0;
1579 }
1580 
1581 /**
1582  * Validate UDP item.
1583  *
1584  * @param[in] item
1585  *   Item specification.
1586  * @param[in] item_flags
1587  *   Bit-fields that holds the items detected until now.
1588  * @param[in] target_protocol
1589  *   The next protocol in the previous item.
1590  * @param[in] flow_mask
1591  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1592  * @param[out] error
1593  *   Pointer to error structure.
1594  *
1595  * @return
1596  *   0 on success, a negative errno value otherwise and rte_errno is set.
1597  */
1598 int
1599 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1600 			    uint64_t item_flags,
1601 			    uint8_t target_protocol,
1602 			    struct rte_flow_error *error)
1603 {
1604 	const struct rte_flow_item_udp *mask = item->mask;
1605 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1606 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1607 				      MLX5_FLOW_LAYER_OUTER_L3;
1608 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1609 				      MLX5_FLOW_LAYER_OUTER_L4;
1610 	int ret;
1611 
1612 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1613 		return rte_flow_error_set(error, EINVAL,
1614 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1615 					  "protocol filtering not compatible"
1616 					  " with UDP layer");
1617 	if (!(item_flags & l3m))
1618 		return rte_flow_error_set(error, EINVAL,
1619 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1620 					  "L3 is mandatory to filter on L4");
1621 	if (item_flags & l4m)
1622 		return rte_flow_error_set(error, EINVAL,
1623 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1624 					  "multiple L4 layers not supported");
1625 	if (!mask)
1626 		mask = &rte_flow_item_udp_mask;
1627 	ret = mlx5_flow_item_acceptable
1628 		(item, (const uint8_t *)mask,
1629 		 (const uint8_t *)&rte_flow_item_udp_mask,
1630 		 sizeof(struct rte_flow_item_udp), error);
1631 	if (ret < 0)
1632 		return ret;
1633 	return 0;
1634 }
1635 
1636 /**
1637  * Validate TCP item.
1638  *
1639  * @param[in] item
1640  *   Item specification.
1641  * @param[in] item_flags
1642  *   Bit-fields that holds the items detected until now.
1643  * @param[in] target_protocol
1644  *   The next protocol in the previous item.
1645  * @param[out] error
1646  *   Pointer to error structure.
1647  *
1648  * @return
1649  *   0 on success, a negative errno value otherwise and rte_errno is set.
1650  */
1651 int
1652 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1653 			    uint64_t item_flags,
1654 			    uint8_t target_protocol,
1655 			    const struct rte_flow_item_tcp *flow_mask,
1656 			    struct rte_flow_error *error)
1657 {
1658 	const struct rte_flow_item_tcp *mask = item->mask;
1659 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1660 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1661 				      MLX5_FLOW_LAYER_OUTER_L3;
1662 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1663 				      MLX5_FLOW_LAYER_OUTER_L4;
1664 	int ret;
1665 
1666 	assert(flow_mask);
1667 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1668 		return rte_flow_error_set(error, EINVAL,
1669 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1670 					  "protocol filtering not compatible"
1671 					  " with TCP layer");
1672 	if (!(item_flags & l3m))
1673 		return rte_flow_error_set(error, EINVAL,
1674 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1675 					  "L3 is mandatory to filter on L4");
1676 	if (item_flags & l4m)
1677 		return rte_flow_error_set(error, EINVAL,
1678 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1679 					  "multiple L4 layers not supported");
1680 	if (!mask)
1681 		mask = &rte_flow_item_tcp_mask;
1682 	ret = mlx5_flow_item_acceptable
1683 		(item, (const uint8_t *)mask,
1684 		 (const uint8_t *)flow_mask,
1685 		 sizeof(struct rte_flow_item_tcp), error);
1686 	if (ret < 0)
1687 		return ret;
1688 	return 0;
1689 }
1690 
1691 /**
1692  * Validate VXLAN item.
1693  *
1694  * @param[in] item
1695  *   Item specification.
1696  * @param[in] item_flags
1697  *   Bit-fields that holds the items detected until now.
1698  * @param[in] target_protocol
1699  *   The next protocol in the previous item.
1700  * @param[out] error
1701  *   Pointer to error structure.
1702  *
1703  * @return
1704  *   0 on success, a negative errno value otherwise and rte_errno is set.
1705  */
1706 int
1707 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1708 			      uint64_t item_flags,
1709 			      struct rte_flow_error *error)
1710 {
1711 	const struct rte_flow_item_vxlan *spec = item->spec;
1712 	const struct rte_flow_item_vxlan *mask = item->mask;
1713 	int ret;
1714 	union vni {
1715 		uint32_t vlan_id;
1716 		uint8_t vni[4];
1717 	} id = { .vlan_id = 0, };
1718 	uint32_t vlan_id = 0;
1719 
1720 
1721 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1722 		return rte_flow_error_set(error, ENOTSUP,
1723 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1724 					  "multiple tunnel layers not"
1725 					  " supported");
1726 	/*
1727 	 * Verify only UDPv4 is present as defined in
1728 	 * https://tools.ietf.org/html/rfc7348
1729 	 */
1730 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1731 		return rte_flow_error_set(error, EINVAL,
1732 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1733 					  "no outer UDP layer found");
1734 	if (!mask)
1735 		mask = &rte_flow_item_vxlan_mask;
1736 	ret = mlx5_flow_item_acceptable
1737 		(item, (const uint8_t *)mask,
1738 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
1739 		 sizeof(struct rte_flow_item_vxlan),
1740 		 error);
1741 	if (ret < 0)
1742 		return ret;
1743 	if (spec) {
1744 		memcpy(&id.vni[1], spec->vni, 3);
1745 		vlan_id = id.vlan_id;
1746 		memcpy(&id.vni[1], mask->vni, 3);
1747 		vlan_id &= id.vlan_id;
1748 	}
1749 	/*
1750 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1751 	 * only this layer is defined in the Verbs specification it is
1752 	 * interpreted as wildcard and all packets will match this
1753 	 * rule, if it follows a full stack layer (ex: eth / ipv4 /
1754 	 * udp), all packets matching the layers before will also
1755 	 * match this rule.  To avoid such situation, VNI 0 is
1756 	 * currently refused.
1757 	 */
1758 	if (!vlan_id)
1759 		return rte_flow_error_set(error, ENOTSUP,
1760 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1761 					  "VXLAN vni cannot be 0");
1762 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1763 		return rte_flow_error_set(error, ENOTSUP,
1764 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1765 					  "VXLAN tunnel must be fully defined");
1766 	return 0;
1767 }
1768 
1769 /**
1770  * Validate VXLAN_GPE item.
1771  *
1772  * @param[in] item
1773  *   Item specification.
1774  * @param[in] item_flags
1775  *   Bit-fields that holds the items detected until now.
1776  * @param[in] priv
1777  *   Pointer to the private data structure.
1778  * @param[in] target_protocol
1779  *   The next protocol in the previous item.
1780  * @param[out] error
1781  *   Pointer to error structure.
1782  *
1783  * @return
1784  *   0 on success, a negative errno value otherwise and rte_errno is set.
1785  */
1786 int
1787 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1788 				  uint64_t item_flags,
1789 				  struct rte_eth_dev *dev,
1790 				  struct rte_flow_error *error)
1791 {
1792 	struct mlx5_priv *priv = dev->data->dev_private;
1793 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1794 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1795 	int ret;
1796 	union vni {
1797 		uint32_t vlan_id;
1798 		uint8_t vni[4];
1799 	} id = { .vlan_id = 0, };
1800 	uint32_t vlan_id = 0;
1801 
1802 	if (!priv->config.l3_vxlan_en)
1803 		return rte_flow_error_set(error, ENOTSUP,
1804 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1805 					  "L3 VXLAN is not enabled by device"
1806 					  " parameter and/or not configured in"
1807 					  " firmware");
1808 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1809 		return rte_flow_error_set(error, ENOTSUP,
1810 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1811 					  "multiple tunnel layers not"
1812 					  " supported");
1813 	/*
1814 	 * Verify only UDPv4 is present as defined in
1815 	 * https://tools.ietf.org/html/rfc7348
1816 	 */
1817 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1818 		return rte_flow_error_set(error, EINVAL,
1819 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1820 					  "no outer UDP layer found");
1821 	if (!mask)
1822 		mask = &rte_flow_item_vxlan_gpe_mask;
1823 	ret = mlx5_flow_item_acceptable
1824 		(item, (const uint8_t *)mask,
1825 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1826 		 sizeof(struct rte_flow_item_vxlan_gpe),
1827 		 error);
1828 	if (ret < 0)
1829 		return ret;
1830 	if (spec) {
1831 		if (spec->protocol)
1832 			return rte_flow_error_set(error, ENOTSUP,
1833 						  RTE_FLOW_ERROR_TYPE_ITEM,
1834 						  item,
1835 						  "VxLAN-GPE protocol"
1836 						  " not supported");
1837 		memcpy(&id.vni[1], spec->vni, 3);
1838 		vlan_id = id.vlan_id;
1839 		memcpy(&id.vni[1], mask->vni, 3);
1840 		vlan_id &= id.vlan_id;
1841 	}
1842 	/*
1843 	 * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1844 	 * layer is defined in the Verbs specification it is interpreted as
1845 	 * wildcard and all packets will match this rule, if it follows a full
1846 	 * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1847 	 * before will also match this rule.  To avoid such situation, VNI 0
1848 	 * is currently refused.
1849 	 */
1850 	if (!vlan_id)
1851 		return rte_flow_error_set(error, ENOTSUP,
1852 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1853 					  "VXLAN-GPE vni cannot be 0");
1854 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1855 		return rte_flow_error_set(error, ENOTSUP,
1856 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1857 					  "VXLAN-GPE tunnel must be fully"
1858 					  " defined");
1859 	return 0;
1860 }
1861 /**
1862  * Validate GRE Key item.
1863  *
1864  * @param[in] item
1865  *   Item specification.
1866  * @param[in] item_flags
1867  *   Bit flags to mark detected items.
1868  * @param[in] gre_item
1869  *   Pointer to gre_item
1870  * @param[out] error
1871  *   Pointer to error structure.
1872  *
1873  * @return
1874  *   0 on success, a negative errno value otherwise and rte_errno is set.
1875  */
1876 int
1877 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
1878 				uint64_t item_flags,
1879 				const struct rte_flow_item *gre_item,
1880 				struct rte_flow_error *error)
1881 {
1882 	const rte_be32_t *mask = item->mask;
1883 	int ret = 0;
1884 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
1885 	const struct rte_flow_item_gre *gre_spec = gre_item->spec;
1886 	const struct rte_flow_item_gre *gre_mask = gre_item->mask;
1887 
1888 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
1889 		return rte_flow_error_set(error, ENOTSUP,
1890 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1891 					  "Multiple GRE key not support");
1892 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
1893 		return rte_flow_error_set(error, ENOTSUP,
1894 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1895 					  "No preceding GRE header");
1896 	if (item_flags & MLX5_FLOW_LAYER_INNER)
1897 		return rte_flow_error_set(error, ENOTSUP,
1898 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1899 					  "GRE key following a wrong item");
1900 	if (!gre_mask)
1901 		gre_mask = &rte_flow_item_gre_mask;
1902 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
1903 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
1904 		return rte_flow_error_set(error, EINVAL,
1905 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1906 					  "Key bit must be on");
1907 
1908 	if (!mask)
1909 		mask = &gre_key_default_mask;
1910 	ret = mlx5_flow_item_acceptable
1911 		(item, (const uint8_t *)mask,
1912 		 (const uint8_t *)&gre_key_default_mask,
1913 		 sizeof(rte_be32_t), error);
1914 	return ret;
1915 }
1916 
1917 /**
1918  * Validate GRE item.
1919  *
1920  * @param[in] item
1921  *   Item specification.
1922  * @param[in] item_flags
1923  *   Bit flags to mark detected items.
1924  * @param[in] target_protocol
1925  *   The next protocol in the previous item.
1926  * @param[out] error
1927  *   Pointer to error structure.
1928  *
1929  * @return
1930  *   0 on success, a negative errno value otherwise and rte_errno is set.
1931  */
1932 int
1933 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1934 			    uint64_t item_flags,
1935 			    uint8_t target_protocol,
1936 			    struct rte_flow_error *error)
1937 {
1938 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1939 	const struct rte_flow_item_gre *mask = item->mask;
1940 	int ret;
1941 	const struct rte_flow_item_gre nic_mask = {
1942 		.c_rsvd0_ver = RTE_BE16(0xB000),
1943 		.protocol = RTE_BE16(UINT16_MAX),
1944 	};
1945 
1946 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1947 		return rte_flow_error_set(error, EINVAL,
1948 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1949 					  "protocol filtering not compatible"
1950 					  " with this GRE layer");
1951 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1952 		return rte_flow_error_set(error, ENOTSUP,
1953 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1954 					  "multiple tunnel layers not"
1955 					  " supported");
1956 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1957 		return rte_flow_error_set(error, ENOTSUP,
1958 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1959 					  "L3 Layer is missing");
1960 	if (!mask)
1961 		mask = &rte_flow_item_gre_mask;
1962 	ret = mlx5_flow_item_acceptable
1963 		(item, (const uint8_t *)mask,
1964 		 (const uint8_t *)&nic_mask,
1965 		 sizeof(struct rte_flow_item_gre), error);
1966 	if (ret < 0)
1967 		return ret;
1968 #ifndef HAVE_MLX5DV_DR
1969 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1970 	if (spec && (spec->protocol & mask->protocol))
1971 		return rte_flow_error_set(error, ENOTSUP,
1972 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1973 					  "without MPLS support the"
1974 					  " specification cannot be used for"
1975 					  " filtering");
1976 #endif
1977 #endif
1978 	return 0;
1979 }
1980 
1981 /**
1982  * Validate Geneve item.
1983  *
1984  * @param[in] item
1985  *   Item specification.
1986  * @param[in] itemFlags
1987  *   Bit-fields that holds the items detected until now.
1988  * @param[in] enPriv
1989  *   Pointer to the private data structure.
1990  * @param[out] error
1991  *   Pointer to error structure.
1992  *
1993  * @return
1994  *   0 on success, a negative errno value otherwise and rte_errno is set.
1995  */
1996 
1997 int
1998 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
1999 			       uint64_t item_flags,
2000 			       struct rte_eth_dev *dev,
2001 			       struct rte_flow_error *error)
2002 {
2003 	struct mlx5_priv *priv = dev->data->dev_private;
2004 	const struct rte_flow_item_geneve *spec = item->spec;
2005 	const struct rte_flow_item_geneve *mask = item->mask;
2006 	int ret;
2007 	uint16_t gbhdr;
2008 	uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2009 			  MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2010 	const struct rte_flow_item_geneve nic_mask = {
2011 		.ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2012 		.vni = "\xff\xff\xff",
2013 		.protocol = RTE_BE16(UINT16_MAX),
2014 	};
2015 
2016 	if (!(priv->config.hca_attr.flex_parser_protocols &
2017 	      MLX5_HCA_FLEX_GENEVE_ENABLED) ||
2018 	    !priv->config.hca_attr.tunnel_stateless_geneve_rx)
2019 		return rte_flow_error_set(error, ENOTSUP,
2020 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2021 					  "L3 Geneve is not enabled by device"
2022 					  " parameter and/or not configured in"
2023 					  " firmware");
2024 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2025 		return rte_flow_error_set(error, ENOTSUP,
2026 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2027 					  "multiple tunnel layers not"
2028 					  " supported");
2029 	/*
2030 	 * Verify only UDPv4 is present as defined in
2031 	 * https://tools.ietf.org/html/rfc7348
2032 	 */
2033 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2034 		return rte_flow_error_set(error, EINVAL,
2035 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2036 					  "no outer UDP layer found");
2037 	if (!mask)
2038 		mask = &rte_flow_item_geneve_mask;
2039 	ret = mlx5_flow_item_acceptable
2040 				  (item, (const uint8_t *)mask,
2041 				   (const uint8_t *)&nic_mask,
2042 				   sizeof(struct rte_flow_item_geneve), error);
2043 	if (ret)
2044 		return ret;
2045 	if (spec) {
2046 		gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2047 		if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2048 		     MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2049 		     MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2050 			return rte_flow_error_set(error, ENOTSUP,
2051 						  RTE_FLOW_ERROR_TYPE_ITEM,
2052 						  item,
2053 						  "Geneve protocol unsupported"
2054 						  " fields are being used");
2055 		if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2056 			return rte_flow_error_set
2057 					(error, ENOTSUP,
2058 					 RTE_FLOW_ERROR_TYPE_ITEM,
2059 					 item,
2060 					 "Unsupported Geneve options length");
2061 	}
2062 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2063 		return rte_flow_error_set
2064 				    (error, ENOTSUP,
2065 				     RTE_FLOW_ERROR_TYPE_ITEM, item,
2066 				     "Geneve tunnel must be fully defined");
2067 	return 0;
2068 }
2069 
2070 /**
2071  * Validate MPLS item.
2072  *
2073  * @param[in] dev
2074  *   Pointer to the rte_eth_dev structure.
2075  * @param[in] item
2076  *   Item specification.
2077  * @param[in] item_flags
2078  *   Bit-fields that holds the items detected until now.
2079  * @param[in] prev_layer
2080  *   The protocol layer indicated in previous item.
2081  * @param[out] error
2082  *   Pointer to error structure.
2083  *
2084  * @return
2085  *   0 on success, a negative errno value otherwise and rte_errno is set.
2086  */
2087 int
2088 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2089 			     const struct rte_flow_item *item __rte_unused,
2090 			     uint64_t item_flags __rte_unused,
2091 			     uint64_t prev_layer __rte_unused,
2092 			     struct rte_flow_error *error)
2093 {
2094 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2095 	const struct rte_flow_item_mpls *mask = item->mask;
2096 	struct mlx5_priv *priv = dev->data->dev_private;
2097 	int ret;
2098 
2099 	if (!priv->config.mpls_en)
2100 		return rte_flow_error_set(error, ENOTSUP,
2101 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2102 					  "MPLS not supported or"
2103 					  " disabled in firmware"
2104 					  " configuration.");
2105 	/* MPLS over IP, UDP, GRE is allowed */
2106 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2107 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
2108 			    MLX5_FLOW_LAYER_GRE)))
2109 		return rte_flow_error_set(error, EINVAL,
2110 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2111 					  "protocol filtering not compatible"
2112 					  " with MPLS layer");
2113 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2114 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2115 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
2116 		return rte_flow_error_set(error, ENOTSUP,
2117 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2118 					  "multiple tunnel layers not"
2119 					  " supported");
2120 	if (!mask)
2121 		mask = &rte_flow_item_mpls_mask;
2122 	ret = mlx5_flow_item_acceptable
2123 		(item, (const uint8_t *)mask,
2124 		 (const uint8_t *)&rte_flow_item_mpls_mask,
2125 		 sizeof(struct rte_flow_item_mpls), error);
2126 	if (ret < 0)
2127 		return ret;
2128 	return 0;
2129 #endif
2130 	return rte_flow_error_set(error, ENOTSUP,
2131 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
2132 				  "MPLS is not supported by Verbs, please"
2133 				  " update.");
2134 }
2135 
2136 /**
2137  * Validate NVGRE item.
2138  *
2139  * @param[in] item
2140  *   Item specification.
2141  * @param[in] item_flags
2142  *   Bit flags to mark detected items.
2143  * @param[in] target_protocol
2144  *   The next protocol in the previous item.
2145  * @param[out] error
2146  *   Pointer to error structure.
2147  *
2148  * @return
2149  *   0 on success, a negative errno value otherwise and rte_errno is set.
2150  */
2151 int
2152 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2153 			      uint64_t item_flags,
2154 			      uint8_t target_protocol,
2155 			      struct rte_flow_error *error)
2156 {
2157 	const struct rte_flow_item_nvgre *mask = item->mask;
2158 	int ret;
2159 
2160 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2161 		return rte_flow_error_set(error, EINVAL,
2162 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2163 					  "protocol filtering not compatible"
2164 					  " with this GRE layer");
2165 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2166 		return rte_flow_error_set(error, ENOTSUP,
2167 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2168 					  "multiple tunnel layers not"
2169 					  " supported");
2170 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2171 		return rte_flow_error_set(error, ENOTSUP,
2172 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2173 					  "L3 Layer is missing");
2174 	if (!mask)
2175 		mask = &rte_flow_item_nvgre_mask;
2176 	ret = mlx5_flow_item_acceptable
2177 		(item, (const uint8_t *)mask,
2178 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
2179 		 sizeof(struct rte_flow_item_nvgre), error);
2180 	if (ret < 0)
2181 		return ret;
2182 	return 0;
2183 }
2184 
2185 static int
2186 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2187 		   const struct rte_flow_attr *attr __rte_unused,
2188 		   const struct rte_flow_item items[] __rte_unused,
2189 		   const struct rte_flow_action actions[] __rte_unused,
2190 		   bool external __rte_unused,
2191 		   struct rte_flow_error *error)
2192 {
2193 	return rte_flow_error_set(error, ENOTSUP,
2194 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2195 }
2196 
2197 static struct mlx5_flow *
2198 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
2199 		  const struct rte_flow_item items[] __rte_unused,
2200 		  const struct rte_flow_action actions[] __rte_unused,
2201 		  struct rte_flow_error *error)
2202 {
2203 	rte_flow_error_set(error, ENOTSUP,
2204 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2205 	return NULL;
2206 }
2207 
2208 static int
2209 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2210 		    struct mlx5_flow *dev_flow __rte_unused,
2211 		    const struct rte_flow_attr *attr __rte_unused,
2212 		    const struct rte_flow_item items[] __rte_unused,
2213 		    const struct rte_flow_action actions[] __rte_unused,
2214 		    struct rte_flow_error *error)
2215 {
2216 	return rte_flow_error_set(error, ENOTSUP,
2217 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2218 }
2219 
2220 static int
2221 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2222 		struct rte_flow *flow __rte_unused,
2223 		struct rte_flow_error *error)
2224 {
2225 	return rte_flow_error_set(error, ENOTSUP,
2226 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2227 }
2228 
2229 static void
2230 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2231 		 struct rte_flow *flow __rte_unused)
2232 {
2233 }
2234 
2235 static void
2236 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2237 		  struct rte_flow *flow __rte_unused)
2238 {
2239 }
2240 
2241 static int
2242 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2243 		struct rte_flow *flow __rte_unused,
2244 		const struct rte_flow_action *actions __rte_unused,
2245 		void *data __rte_unused,
2246 		struct rte_flow_error *error)
2247 {
2248 	return rte_flow_error_set(error, ENOTSUP,
2249 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2250 }
2251 
2252 /* Void driver to protect from null pointer reference. */
2253 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2254 	.validate = flow_null_validate,
2255 	.prepare = flow_null_prepare,
2256 	.translate = flow_null_translate,
2257 	.apply = flow_null_apply,
2258 	.remove = flow_null_remove,
2259 	.destroy = flow_null_destroy,
2260 	.query = flow_null_query,
2261 };
2262 
2263 /**
2264  * Select flow driver type according to flow attributes and device
2265  * configuration.
2266  *
2267  * @param[in] dev
2268  *   Pointer to the dev structure.
2269  * @param[in] attr
2270  *   Pointer to the flow attributes.
2271  *
2272  * @return
2273  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2274  */
2275 static enum mlx5_flow_drv_type
2276 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2277 {
2278 	struct mlx5_priv *priv = dev->data->dev_private;
2279 	enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
2280 
2281 	if (attr->transfer && priv->config.dv_esw_en)
2282 		type = MLX5_FLOW_TYPE_DV;
2283 	if (!attr->transfer)
2284 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2285 						 MLX5_FLOW_TYPE_VERBS;
2286 	return type;
2287 }
2288 
2289 #define flow_get_drv_ops(type) flow_drv_ops[type]
2290 
2291 /**
2292  * Flow driver validation API. This abstracts calling driver specific functions.
2293  * The type of flow driver is determined according to flow attributes.
2294  *
2295  * @param[in] dev
2296  *   Pointer to the dev structure.
2297  * @param[in] attr
2298  *   Pointer to the flow attributes.
2299  * @param[in] items
2300  *   Pointer to the list of items.
2301  * @param[in] actions
2302  *   Pointer to the list of actions.
2303  * @param[in] external
2304  *   This flow rule is created by request external to PMD.
2305  * @param[out] error
2306  *   Pointer to the error structure.
2307  *
2308  * @return
2309  *   0 on success, a negative errno value otherwise and rte_errno is set.
2310  */
2311 static inline int
2312 flow_drv_validate(struct rte_eth_dev *dev,
2313 		  const struct rte_flow_attr *attr,
2314 		  const struct rte_flow_item items[],
2315 		  const struct rte_flow_action actions[],
2316 		  bool external, struct rte_flow_error *error)
2317 {
2318 	const struct mlx5_flow_driver_ops *fops;
2319 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2320 
2321 	fops = flow_get_drv_ops(type);
2322 	return fops->validate(dev, attr, items, actions, external, error);
2323 }
2324 
2325 /**
2326  * Flow driver preparation API. This abstracts calling driver specific
2327  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2328  * calculates the size of memory required for device flow, allocates the memory,
2329  * initializes the device flow and returns the pointer.
2330  *
2331  * @note
2332  *   This function initializes device flow structure such as dv or verbs in
2333  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2334  *   rest. For example, adding returning device flow to flow->dev_flow list and
2335  *   setting backward reference to the flow should be done out of this function.
2336  *   layers field is not filled either.
2337  *
2338  * @param[in] attr
2339  *   Pointer to the flow attributes.
2340  * @param[in] items
2341  *   Pointer to the list of items.
2342  * @param[in] actions
2343  *   Pointer to the list of actions.
2344  * @param[out] error
2345  *   Pointer to the error structure.
2346  *
2347  * @return
2348  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2349  */
2350 static inline struct mlx5_flow *
2351 flow_drv_prepare(const struct rte_flow *flow,
2352 		 const struct rte_flow_attr *attr,
2353 		 const struct rte_flow_item items[],
2354 		 const struct rte_flow_action actions[],
2355 		 struct rte_flow_error *error)
2356 {
2357 	const struct mlx5_flow_driver_ops *fops;
2358 	enum mlx5_flow_drv_type type = flow->drv_type;
2359 
2360 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2361 	fops = flow_get_drv_ops(type);
2362 	return fops->prepare(attr, items, actions, error);
2363 }
2364 
2365 /**
2366  * Flow driver translation API. This abstracts calling driver specific
2367  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2368  * translates a generic flow into a driver flow. flow_drv_prepare() must
2369  * precede.
2370  *
2371  * @note
2372  *   dev_flow->layers could be filled as a result of parsing during translation
2373  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2374  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2375  *   flow->actions could be overwritten even though all the expanded dev_flows
2376  *   have the same actions.
2377  *
2378  * @param[in] dev
2379  *   Pointer to the rte dev structure.
2380  * @param[in, out] dev_flow
2381  *   Pointer to the mlx5 flow.
2382  * @param[in] attr
2383  *   Pointer to the flow attributes.
2384  * @param[in] items
2385  *   Pointer to the list of items.
2386  * @param[in] actions
2387  *   Pointer to the list of actions.
2388  * @param[out] error
2389  *   Pointer to the error structure.
2390  *
2391  * @return
2392  *   0 on success, a negative errno value otherwise and rte_errno is set.
2393  */
2394 static inline int
2395 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2396 		   const struct rte_flow_attr *attr,
2397 		   const struct rte_flow_item items[],
2398 		   const struct rte_flow_action actions[],
2399 		   struct rte_flow_error *error)
2400 {
2401 	const struct mlx5_flow_driver_ops *fops;
2402 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2403 
2404 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2405 	fops = flow_get_drv_ops(type);
2406 	return fops->translate(dev, dev_flow, attr, items, actions, error);
2407 }
2408 
2409 /**
2410  * Flow driver apply API. This abstracts calling driver specific functions.
2411  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2412  * translated driver flows on to device. flow_drv_translate() must precede.
2413  *
2414  * @param[in] dev
2415  *   Pointer to Ethernet device structure.
2416  * @param[in, out] flow
2417  *   Pointer to flow structure.
2418  * @param[out] error
2419  *   Pointer to error structure.
2420  *
2421  * @return
2422  *   0 on success, a negative errno value otherwise and rte_errno is set.
2423  */
2424 static inline int
2425 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2426 	       struct rte_flow_error *error)
2427 {
2428 	const struct mlx5_flow_driver_ops *fops;
2429 	enum mlx5_flow_drv_type type = flow->drv_type;
2430 
2431 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2432 	fops = flow_get_drv_ops(type);
2433 	return fops->apply(dev, flow, error);
2434 }
2435 
2436 /**
2437  * Flow driver remove API. This abstracts calling driver specific functions.
2438  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2439  * on device. All the resources of the flow should be freed by calling
2440  * flow_drv_destroy().
2441  *
2442  * @param[in] dev
2443  *   Pointer to Ethernet device.
2444  * @param[in, out] flow
2445  *   Pointer to flow structure.
2446  */
2447 static inline void
2448 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2449 {
2450 	const struct mlx5_flow_driver_ops *fops;
2451 	enum mlx5_flow_drv_type type = flow->drv_type;
2452 
2453 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2454 	fops = flow_get_drv_ops(type);
2455 	fops->remove(dev, flow);
2456 }
2457 
2458 /**
2459  * Flow driver destroy API. This abstracts calling driver specific functions.
2460  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2461  * on device and releases resources of the flow.
2462  *
2463  * @param[in] dev
2464  *   Pointer to Ethernet device.
2465  * @param[in, out] flow
2466  *   Pointer to flow structure.
2467  */
2468 static inline void
2469 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2470 {
2471 	const struct mlx5_flow_driver_ops *fops;
2472 	enum mlx5_flow_drv_type type = flow->drv_type;
2473 
2474 	assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2475 	fops = flow_get_drv_ops(type);
2476 	fops->destroy(dev, flow);
2477 }
2478 
2479 /**
2480  * Validate a flow supported by the NIC.
2481  *
2482  * @see rte_flow_validate()
2483  * @see rte_flow_ops
2484  */
2485 int
2486 mlx5_flow_validate(struct rte_eth_dev *dev,
2487 		   const struct rte_flow_attr *attr,
2488 		   const struct rte_flow_item items[],
2489 		   const struct rte_flow_action actions[],
2490 		   struct rte_flow_error *error)
2491 {
2492 	int ret;
2493 
2494 	ret = flow_drv_validate(dev, attr, items, actions, true, error);
2495 	if (ret < 0)
2496 		return ret;
2497 	return 0;
2498 }
2499 
2500 /**
2501  * Get RSS action from the action list.
2502  *
2503  * @param[in] actions
2504  *   Pointer to the list of actions.
2505  *
2506  * @return
2507  *   Pointer to the RSS action if exist, else return NULL.
2508  */
2509 static const struct rte_flow_action_rss*
2510 flow_get_rss_action(const struct rte_flow_action actions[])
2511 {
2512 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2513 		switch (actions->type) {
2514 		case RTE_FLOW_ACTION_TYPE_RSS:
2515 			return (const struct rte_flow_action_rss *)
2516 			       actions->conf;
2517 		default:
2518 			break;
2519 		}
2520 	}
2521 	return NULL;
2522 }
2523 
2524 static unsigned int
2525 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2526 {
2527 	const struct rte_flow_item *item;
2528 	unsigned int has_vlan = 0;
2529 
2530 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2531 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2532 			has_vlan = 1;
2533 			break;
2534 		}
2535 	}
2536 	if (has_vlan)
2537 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2538 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2539 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2540 			       MLX5_EXPANSION_ROOT_OUTER;
2541 }
2542 
2543 /**
2544  * Check if the flow should be splited due to hairpin.
2545  * The reason for the split is that in current HW we can't
2546  * support encap on Rx, so if a flow have encap we move it
2547  * to Tx.
2548  *
2549  * @param dev
2550  *   Pointer to Ethernet device.
2551  * @param[in] attr
2552  *   Flow rule attributes.
2553  * @param[in] actions
2554  *   Associated actions (list terminated by the END action).
2555  *
2556  * @return
2557  *   > 0 the number of actions and the flow should be split,
2558  *   0 when no split required.
2559  */
2560 static int
2561 flow_check_hairpin_split(struct rte_eth_dev *dev,
2562 			 const struct rte_flow_attr *attr,
2563 			 const struct rte_flow_action actions[])
2564 {
2565 	int queue_action = 0;
2566 	int action_n = 0;
2567 	int encap = 0;
2568 	const struct rte_flow_action_queue *queue;
2569 	const struct rte_flow_action_rss *rss;
2570 	const struct rte_flow_action_raw_encap *raw_encap;
2571 
2572 	if (!attr->ingress)
2573 		return 0;
2574 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2575 		switch (actions->type) {
2576 		case RTE_FLOW_ACTION_TYPE_QUEUE:
2577 			queue = actions->conf;
2578 			if (mlx5_rxq_get_type(dev, queue->index) !=
2579 			    MLX5_RXQ_TYPE_HAIRPIN)
2580 				return 0;
2581 			queue_action = 1;
2582 			action_n++;
2583 			break;
2584 		case RTE_FLOW_ACTION_TYPE_RSS:
2585 			rss = actions->conf;
2586 			if (mlx5_rxq_get_type(dev, rss->queue[0]) !=
2587 			    MLX5_RXQ_TYPE_HAIRPIN)
2588 				return 0;
2589 			queue_action = 1;
2590 			action_n++;
2591 			break;
2592 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
2593 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
2594 			encap = 1;
2595 			action_n++;
2596 			break;
2597 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
2598 			raw_encap = actions->conf;
2599 			if (raw_encap->size >
2600 			    (sizeof(struct rte_flow_item_eth) +
2601 			     sizeof(struct rte_flow_item_ipv4)))
2602 				encap = 1;
2603 			action_n++;
2604 			break;
2605 		default:
2606 			action_n++;
2607 			break;
2608 		}
2609 	}
2610 	if (encap == 1 && queue_action)
2611 		return action_n;
2612 	return 0;
2613 }
2614 
2615 #define MLX5_MAX_SPLIT_ACTIONS 24
2616 #define MLX5_MAX_SPLIT_ITEMS 24
2617 
2618 /**
2619  * Split the hairpin flow.
2620  * Since HW can't support encap on Rx we move the encap to Tx.
2621  * If the count action is after the encap then we also
2622  * move the count action. in this case the count will also measure
2623  * the outer bytes.
2624  *
2625  * @param dev
2626  *   Pointer to Ethernet device.
2627  * @param[in] actions
2628  *   Associated actions (list terminated by the END action).
2629  * @param[out] actions_rx
2630  *   Rx flow actions.
2631  * @param[out] actions_tx
2632  *   Tx flow actions..
2633  * @param[out] pattern_tx
2634  *   The pattern items for the Tx flow.
2635  * @param[out] flow_id
2636  *   The flow ID connected to this flow.
2637  *
2638  * @return
2639  *   0 on success.
2640  */
2641 static int
2642 flow_hairpin_split(struct rte_eth_dev *dev,
2643 		   const struct rte_flow_action actions[],
2644 		   struct rte_flow_action actions_rx[],
2645 		   struct rte_flow_action actions_tx[],
2646 		   struct rte_flow_item pattern_tx[],
2647 		   uint32_t *flow_id)
2648 {
2649 	struct mlx5_priv *priv = dev->data->dev_private;
2650 	const struct rte_flow_action_raw_encap *raw_encap;
2651 	const struct rte_flow_action_raw_decap *raw_decap;
2652 	struct mlx5_rte_flow_action_set_tag *set_tag;
2653 	struct rte_flow_action *tag_action;
2654 	struct mlx5_rte_flow_item_tag *tag_item;
2655 	struct rte_flow_item *item;
2656 	char *addr;
2657 	struct rte_flow_error error;
2658 	int encap = 0;
2659 
2660 	mlx5_flow_id_get(priv->sh->flow_id_pool, flow_id);
2661 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2662 		switch (actions->type) {
2663 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
2664 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
2665 			rte_memcpy(actions_tx, actions,
2666 			       sizeof(struct rte_flow_action));
2667 			actions_tx++;
2668 			break;
2669 		case RTE_FLOW_ACTION_TYPE_COUNT:
2670 			if (encap) {
2671 				rte_memcpy(actions_tx, actions,
2672 					   sizeof(struct rte_flow_action));
2673 				actions_tx++;
2674 			} else {
2675 				rte_memcpy(actions_rx, actions,
2676 					   sizeof(struct rte_flow_action));
2677 				actions_rx++;
2678 			}
2679 			break;
2680 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
2681 			raw_encap = actions->conf;
2682 			if (raw_encap->size >
2683 			    (sizeof(struct rte_flow_item_eth) +
2684 			     sizeof(struct rte_flow_item_ipv4))) {
2685 				memcpy(actions_tx, actions,
2686 				       sizeof(struct rte_flow_action));
2687 				actions_tx++;
2688 				encap = 1;
2689 			} else {
2690 				rte_memcpy(actions_rx, actions,
2691 					   sizeof(struct rte_flow_action));
2692 				actions_rx++;
2693 			}
2694 			break;
2695 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
2696 			raw_decap = actions->conf;
2697 			if (raw_decap->size <
2698 			    (sizeof(struct rte_flow_item_eth) +
2699 			     sizeof(struct rte_flow_item_ipv4))) {
2700 				memcpy(actions_tx, actions,
2701 				       sizeof(struct rte_flow_action));
2702 				actions_tx++;
2703 			} else {
2704 				rte_memcpy(actions_rx, actions,
2705 					   sizeof(struct rte_flow_action));
2706 				actions_rx++;
2707 			}
2708 			break;
2709 		default:
2710 			rte_memcpy(actions_rx, actions,
2711 				   sizeof(struct rte_flow_action));
2712 			actions_rx++;
2713 			break;
2714 		}
2715 	}
2716 	/* Add set meta action and end action for the Rx flow. */
2717 	tag_action = actions_rx;
2718 	tag_action->type = MLX5_RTE_FLOW_ACTION_TYPE_TAG;
2719 	actions_rx++;
2720 	rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
2721 	actions_rx++;
2722 	set_tag = (void *)actions_rx;
2723 	set_tag->id = flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, &error);
2724 	set_tag->data = rte_cpu_to_be_32(*flow_id);
2725 	tag_action->conf = set_tag;
2726 	/* Create Tx item list. */
2727 	rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
2728 	addr = (void *)&pattern_tx[2];
2729 	item = pattern_tx;
2730 	item->type = MLX5_RTE_FLOW_ITEM_TYPE_TAG;
2731 	tag_item = (void *)addr;
2732 	tag_item->data = rte_cpu_to_be_32(*flow_id);
2733 	tag_item->id = flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, &error);
2734 	item->spec = tag_item;
2735 	addr += sizeof(struct mlx5_rte_flow_item_tag);
2736 	tag_item = (void *)addr;
2737 	tag_item->data = UINT32_MAX;
2738 	tag_item->id = UINT16_MAX;
2739 	item->mask = tag_item;
2740 	addr += sizeof(struct mlx5_rte_flow_item_tag);
2741 	item->last = NULL;
2742 	item++;
2743 	item->type = RTE_FLOW_ITEM_TYPE_END;
2744 	return 0;
2745 }
2746 
2747 /**
2748  * Create a flow and add it to @p list.
2749  *
2750  * @param dev
2751  *   Pointer to Ethernet device.
2752  * @param list
2753  *   Pointer to a TAILQ flow list.
2754  * @param[in] attr
2755  *   Flow rule attributes.
2756  * @param[in] items
2757  *   Pattern specification (list terminated by the END pattern item).
2758  * @param[in] actions
2759  *   Associated actions (list terminated by the END action).
2760  * @param[in] external
2761  *   This flow rule is created by request external to PMD.
2762  * @param[out] error
2763  *   Perform verbose error reporting if not NULL.
2764  *
2765  * @return
2766  *   A flow on success, NULL otherwise and rte_errno is set.
2767  */
2768 static struct rte_flow *
2769 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2770 		 const struct rte_flow_attr *attr,
2771 		 const struct rte_flow_item items[],
2772 		 const struct rte_flow_action actions[],
2773 		 bool external, struct rte_flow_error *error)
2774 {
2775 	struct mlx5_priv *priv = dev->data->dev_private;
2776 	struct rte_flow *flow = NULL;
2777 	struct mlx5_flow *dev_flow;
2778 	const struct rte_flow_action_rss *rss;
2779 	union {
2780 		struct rte_flow_expand_rss buf;
2781 		uint8_t buffer[2048];
2782 	} expand_buffer;
2783 	union {
2784 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
2785 		uint8_t buffer[2048];
2786 	} actions_rx;
2787 	union {
2788 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
2789 		uint8_t buffer[2048];
2790 	} actions_hairpin_tx;
2791 	union {
2792 		struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
2793 		uint8_t buffer[2048];
2794 	} items_tx;
2795 	struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2796 	const struct rte_flow_action *p_actions_rx = actions;
2797 	int ret;
2798 	uint32_t i;
2799 	uint32_t flow_size;
2800 	int hairpin_flow = 0;
2801 	uint32_t hairpin_id = 0;
2802 	struct rte_flow_attr attr_tx = { .priority = 0 };
2803 
2804 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
2805 	if (hairpin_flow > 0) {
2806 		if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
2807 			rte_errno = EINVAL;
2808 			return NULL;
2809 		}
2810 		flow_hairpin_split(dev, actions, actions_rx.actions,
2811 				   actions_hairpin_tx.actions, items_tx.items,
2812 				   &hairpin_id);
2813 		p_actions_rx = actions_rx.actions;
2814 	}
2815 	ret = flow_drv_validate(dev, attr, items, p_actions_rx, external,
2816 				error);
2817 	if (ret < 0)
2818 		goto error_before_flow;
2819 	flow_size = sizeof(struct rte_flow);
2820 	rss = flow_get_rss_action(p_actions_rx);
2821 	if (rss)
2822 		flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2823 					    sizeof(void *));
2824 	else
2825 		flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2826 	flow = rte_calloc(__func__, 1, flow_size, 0);
2827 	if (!flow) {
2828 		rte_errno = ENOMEM;
2829 		goto error_before_flow;
2830 	}
2831 	flow->drv_type = flow_get_drv_type(dev, attr);
2832 	flow->ingress = attr->ingress;
2833 	flow->transfer = attr->transfer;
2834 	if (hairpin_id != 0)
2835 		flow->hairpin_flow_id = hairpin_id;
2836 	assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2837 	       flow->drv_type < MLX5_FLOW_TYPE_MAX);
2838 	flow->queue = (void *)(flow + 1);
2839 	LIST_INIT(&flow->dev_flows);
2840 	if (rss && rss->types) {
2841 		unsigned int graph_root;
2842 
2843 		graph_root = find_graph_root(items, rss->level);
2844 		ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2845 					  items, rss->types,
2846 					  mlx5_support_expansion,
2847 					  graph_root);
2848 		assert(ret > 0 &&
2849 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
2850 	} else {
2851 		buf->entries = 1;
2852 		buf->entry[0].pattern = (void *)(uintptr_t)items;
2853 	}
2854 	for (i = 0; i < buf->entries; ++i) {
2855 		dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2856 					    p_actions_rx, error);
2857 		if (!dev_flow)
2858 			goto error;
2859 		dev_flow->flow = flow;
2860 		dev_flow->external = external;
2861 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2862 		ret = flow_drv_translate(dev, dev_flow, attr,
2863 					 buf->entry[i].pattern,
2864 					 p_actions_rx, error);
2865 		if (ret < 0)
2866 			goto error;
2867 	}
2868 	/* Create the tx flow. */
2869 	if (hairpin_flow) {
2870 		attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
2871 		attr_tx.ingress = 0;
2872 		attr_tx.egress = 1;
2873 		dev_flow = flow_drv_prepare(flow, &attr_tx, items_tx.items,
2874 					    actions_hairpin_tx.actions, error);
2875 		if (!dev_flow)
2876 			goto error;
2877 		dev_flow->flow = flow;
2878 		LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2879 		ret = flow_drv_translate(dev, dev_flow, &attr_tx,
2880 					 items_tx.items,
2881 					 actions_hairpin_tx.actions, error);
2882 		if (ret < 0)
2883 			goto error;
2884 	}
2885 	if (dev->data->dev_started) {
2886 		ret = flow_drv_apply(dev, flow, error);
2887 		if (ret < 0)
2888 			goto error;
2889 	}
2890 	TAILQ_INSERT_TAIL(list, flow, next);
2891 	flow_rxq_flags_set(dev, flow);
2892 	return flow;
2893 error_before_flow:
2894 	if (hairpin_id)
2895 		mlx5_flow_id_release(priv->sh->flow_id_pool,
2896 				     hairpin_id);
2897 	return NULL;
2898 error:
2899 	ret = rte_errno; /* Save rte_errno before cleanup. */
2900 	if (flow->hairpin_flow_id)
2901 		mlx5_flow_id_release(priv->sh->flow_id_pool,
2902 				     flow->hairpin_flow_id);
2903 	assert(flow);
2904 	flow_drv_destroy(dev, flow);
2905 	rte_free(flow);
2906 	rte_errno = ret; /* Restore rte_errno. */
2907 	return NULL;
2908 }
2909 
2910 /**
2911  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
2912  * incoming packets to table 1.
2913  *
2914  * Other flow rules, requested for group n, will be created in
2915  * e-switch table n+1.
2916  * Jump action to e-switch group n will be created to group n+1.
2917  *
2918  * Used when working in switchdev mode, to utilise advantages of table 1
2919  * and above.
2920  *
2921  * @param dev
2922  *   Pointer to Ethernet device.
2923  *
2924  * @return
2925  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
2926  */
2927 struct rte_flow *
2928 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
2929 {
2930 	const struct rte_flow_attr attr = {
2931 		.group = 0,
2932 		.priority = 0,
2933 		.ingress = 1,
2934 		.egress = 0,
2935 		.transfer = 1,
2936 	};
2937 	const struct rte_flow_item pattern = {
2938 		.type = RTE_FLOW_ITEM_TYPE_END,
2939 	};
2940 	struct rte_flow_action_jump jump = {
2941 		.group = 1,
2942 	};
2943 	const struct rte_flow_action actions[] = {
2944 		{
2945 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
2946 			.conf = &jump,
2947 		},
2948 		{
2949 			.type = RTE_FLOW_ACTION_TYPE_END,
2950 		},
2951 	};
2952 	struct mlx5_priv *priv = dev->data->dev_private;
2953 	struct rte_flow_error error;
2954 
2955 	return flow_list_create(dev, &priv->ctrl_flows, &attr, &pattern,
2956 				actions, false, &error);
2957 }
2958 
2959 /**
2960  * Create a flow.
2961  *
2962  * @see rte_flow_create()
2963  * @see rte_flow_ops
2964  */
2965 struct rte_flow *
2966 mlx5_flow_create(struct rte_eth_dev *dev,
2967 		 const struct rte_flow_attr *attr,
2968 		 const struct rte_flow_item items[],
2969 		 const struct rte_flow_action actions[],
2970 		 struct rte_flow_error *error)
2971 {
2972 	struct mlx5_priv *priv = dev->data->dev_private;
2973 
2974 	return flow_list_create(dev, &priv->flows,
2975 				attr, items, actions, true, error);
2976 }
2977 
2978 /**
2979  * Destroy a flow in a list.
2980  *
2981  * @param dev
2982  *   Pointer to Ethernet device.
2983  * @param list
2984  *   Pointer to a TAILQ flow list.
2985  * @param[in] flow
2986  *   Flow to destroy.
2987  */
2988 static void
2989 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2990 		  struct rte_flow *flow)
2991 {
2992 	struct mlx5_priv *priv = dev->data->dev_private;
2993 
2994 	/*
2995 	 * Update RX queue flags only if port is started, otherwise it is
2996 	 * already clean.
2997 	 */
2998 	if (dev->data->dev_started)
2999 		flow_rxq_flags_trim(dev, flow);
3000 	if (flow->hairpin_flow_id)
3001 		mlx5_flow_id_release(priv->sh->flow_id_pool,
3002 				     flow->hairpin_flow_id);
3003 	flow_drv_destroy(dev, flow);
3004 	TAILQ_REMOVE(list, flow, next);
3005 	rte_free(flow->fdir);
3006 	rte_free(flow);
3007 }
3008 
3009 /**
3010  * Destroy all flows.
3011  *
3012  * @param dev
3013  *   Pointer to Ethernet device.
3014  * @param list
3015  *   Pointer to a TAILQ flow list.
3016  */
3017 void
3018 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
3019 {
3020 	while (!TAILQ_EMPTY(list)) {
3021 		struct rte_flow *flow;
3022 
3023 		flow = TAILQ_FIRST(list);
3024 		flow_list_destroy(dev, list, flow);
3025 	}
3026 }
3027 
3028 /**
3029  * Remove all flows.
3030  *
3031  * @param dev
3032  *   Pointer to Ethernet device.
3033  * @param list
3034  *   Pointer to a TAILQ flow list.
3035  */
3036 void
3037 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
3038 {
3039 	struct rte_flow *flow;
3040 
3041 	TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
3042 		flow_drv_remove(dev, flow);
3043 	flow_rxq_flags_clear(dev);
3044 }
3045 
3046 /**
3047  * Add all flows.
3048  *
3049  * @param dev
3050  *   Pointer to Ethernet device.
3051  * @param list
3052  *   Pointer to a TAILQ flow list.
3053  *
3054  * @return
3055  *   0 on success, a negative errno value otherwise and rte_errno is set.
3056  */
3057 int
3058 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
3059 {
3060 	struct rte_flow *flow;
3061 	struct rte_flow_error error;
3062 	int ret = 0;
3063 
3064 	TAILQ_FOREACH(flow, list, next) {
3065 		ret = flow_drv_apply(dev, flow, &error);
3066 		if (ret < 0)
3067 			goto error;
3068 		flow_rxq_flags_set(dev, flow);
3069 	}
3070 	return 0;
3071 error:
3072 	ret = rte_errno; /* Save rte_errno before cleanup. */
3073 	mlx5_flow_stop(dev, list);
3074 	rte_errno = ret; /* Restore rte_errno. */
3075 	return -rte_errno;
3076 }
3077 
3078 /**
3079  * Verify the flow list is empty
3080  *
3081  * @param dev
3082  *  Pointer to Ethernet device.
3083  *
3084  * @return the number of flows not released.
3085  */
3086 int
3087 mlx5_flow_verify(struct rte_eth_dev *dev)
3088 {
3089 	struct mlx5_priv *priv = dev->data->dev_private;
3090 	struct rte_flow *flow;
3091 	int ret = 0;
3092 
3093 	TAILQ_FOREACH(flow, &priv->flows, next) {
3094 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
3095 			dev->data->port_id, (void *)flow);
3096 		++ret;
3097 	}
3098 	return ret;
3099 }
3100 
3101 /**
3102  * Enable default hairpin egress flow.
3103  *
3104  * @param dev
3105  *   Pointer to Ethernet device.
3106  * @param queue
3107  *   The queue index.
3108  *
3109  * @return
3110  *   0 on success, a negative errno value otherwise and rte_errno is set.
3111  */
3112 int
3113 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
3114 			    uint32_t queue)
3115 {
3116 	struct mlx5_priv *priv = dev->data->dev_private;
3117 	const struct rte_flow_attr attr = {
3118 		.egress = 1,
3119 		.priority = 0,
3120 	};
3121 	struct mlx5_rte_flow_item_tx_queue queue_spec = {
3122 		.queue = queue,
3123 	};
3124 	struct mlx5_rte_flow_item_tx_queue queue_mask = {
3125 		.queue = UINT32_MAX,
3126 	};
3127 	struct rte_flow_item items[] = {
3128 		{
3129 			.type = MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
3130 			.spec = &queue_spec,
3131 			.last = NULL,
3132 			.mask = &queue_mask,
3133 		},
3134 		{
3135 			.type = RTE_FLOW_ITEM_TYPE_END,
3136 		},
3137 	};
3138 	struct rte_flow_action_jump jump = {
3139 		.group = MLX5_HAIRPIN_TX_TABLE,
3140 	};
3141 	struct rte_flow_action actions[2];
3142 	struct rte_flow *flow;
3143 	struct rte_flow_error error;
3144 
3145 	actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
3146 	actions[0].conf = &jump;
3147 	actions[1].type = RTE_FLOW_ACTION_TYPE_END;
3148 	flow = flow_list_create(dev, &priv->ctrl_flows,
3149 				&attr, items, actions, false, &error);
3150 	if (!flow) {
3151 		DRV_LOG(DEBUG,
3152 			"Failed to create ctrl flow: rte_errno(%d),"
3153 			" type(%d), message(%s)",
3154 			rte_errno, error.type,
3155 			error.message ? error.message : " (no stated reason)");
3156 		return -rte_errno;
3157 	}
3158 	return 0;
3159 }
3160 
3161 /**
3162  * Enable a control flow configured from the control plane.
3163  *
3164  * @param dev
3165  *   Pointer to Ethernet device.
3166  * @param eth_spec
3167  *   An Ethernet flow spec to apply.
3168  * @param eth_mask
3169  *   An Ethernet flow mask to apply.
3170  * @param vlan_spec
3171  *   A VLAN flow spec to apply.
3172  * @param vlan_mask
3173  *   A VLAN flow mask to apply.
3174  *
3175  * @return
3176  *   0 on success, a negative errno value otherwise and rte_errno is set.
3177  */
3178 int
3179 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
3180 		    struct rte_flow_item_eth *eth_spec,
3181 		    struct rte_flow_item_eth *eth_mask,
3182 		    struct rte_flow_item_vlan *vlan_spec,
3183 		    struct rte_flow_item_vlan *vlan_mask)
3184 {
3185 	struct mlx5_priv *priv = dev->data->dev_private;
3186 	const struct rte_flow_attr attr = {
3187 		.ingress = 1,
3188 		.priority = MLX5_FLOW_PRIO_RSVD,
3189 	};
3190 	struct rte_flow_item items[] = {
3191 		{
3192 			.type = RTE_FLOW_ITEM_TYPE_ETH,
3193 			.spec = eth_spec,
3194 			.last = NULL,
3195 			.mask = eth_mask,
3196 		},
3197 		{
3198 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
3199 					      RTE_FLOW_ITEM_TYPE_END,
3200 			.spec = vlan_spec,
3201 			.last = NULL,
3202 			.mask = vlan_mask,
3203 		},
3204 		{
3205 			.type = RTE_FLOW_ITEM_TYPE_END,
3206 		},
3207 	};
3208 	uint16_t queue[priv->reta_idx_n];
3209 	struct rte_flow_action_rss action_rss = {
3210 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3211 		.level = 0,
3212 		.types = priv->rss_conf.rss_hf,
3213 		.key_len = priv->rss_conf.rss_key_len,
3214 		.queue_num = priv->reta_idx_n,
3215 		.key = priv->rss_conf.rss_key,
3216 		.queue = queue,
3217 	};
3218 	struct rte_flow_action actions[] = {
3219 		{
3220 			.type = RTE_FLOW_ACTION_TYPE_RSS,
3221 			.conf = &action_rss,
3222 		},
3223 		{
3224 			.type = RTE_FLOW_ACTION_TYPE_END,
3225 		},
3226 	};
3227 	struct rte_flow *flow;
3228 	struct rte_flow_error error;
3229 	unsigned int i;
3230 
3231 	if (!priv->reta_idx_n || !priv->rxqs_n) {
3232 		return 0;
3233 	}
3234 	for (i = 0; i != priv->reta_idx_n; ++i)
3235 		queue[i] = (*priv->reta_idx)[i];
3236 	flow = flow_list_create(dev, &priv->ctrl_flows,
3237 				&attr, items, actions, false, &error);
3238 	if (!flow)
3239 		return -rte_errno;
3240 	return 0;
3241 }
3242 
3243 /**
3244  * Enable a flow control configured from the control plane.
3245  *
3246  * @param dev
3247  *   Pointer to Ethernet device.
3248  * @param eth_spec
3249  *   An Ethernet flow spec to apply.
3250  * @param eth_mask
3251  *   An Ethernet flow mask to apply.
3252  *
3253  * @return
3254  *   0 on success, a negative errno value otherwise and rte_errno is set.
3255  */
3256 int
3257 mlx5_ctrl_flow(struct rte_eth_dev *dev,
3258 	       struct rte_flow_item_eth *eth_spec,
3259 	       struct rte_flow_item_eth *eth_mask)
3260 {
3261 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
3262 }
3263 
3264 /**
3265  * Destroy a flow.
3266  *
3267  * @see rte_flow_destroy()
3268  * @see rte_flow_ops
3269  */
3270 int
3271 mlx5_flow_destroy(struct rte_eth_dev *dev,
3272 		  struct rte_flow *flow,
3273 		  struct rte_flow_error *error __rte_unused)
3274 {
3275 	struct mlx5_priv *priv = dev->data->dev_private;
3276 
3277 	flow_list_destroy(dev, &priv->flows, flow);
3278 	return 0;
3279 }
3280 
3281 /**
3282  * Destroy all flows.
3283  *
3284  * @see rte_flow_flush()
3285  * @see rte_flow_ops
3286  */
3287 int
3288 mlx5_flow_flush(struct rte_eth_dev *dev,
3289 		struct rte_flow_error *error __rte_unused)
3290 {
3291 	struct mlx5_priv *priv = dev->data->dev_private;
3292 
3293 	mlx5_flow_list_flush(dev, &priv->flows);
3294 	return 0;
3295 }
3296 
3297 /**
3298  * Isolated mode.
3299  *
3300  * @see rte_flow_isolate()
3301  * @see rte_flow_ops
3302  */
3303 int
3304 mlx5_flow_isolate(struct rte_eth_dev *dev,
3305 		  int enable,
3306 		  struct rte_flow_error *error)
3307 {
3308 	struct mlx5_priv *priv = dev->data->dev_private;
3309 
3310 	if (dev->data->dev_started) {
3311 		rte_flow_error_set(error, EBUSY,
3312 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3313 				   NULL,
3314 				   "port must be stopped first");
3315 		return -rte_errno;
3316 	}
3317 	priv->isolated = !!enable;
3318 	if (enable)
3319 		dev->dev_ops = &mlx5_dev_ops_isolate;
3320 	else
3321 		dev->dev_ops = &mlx5_dev_ops;
3322 	return 0;
3323 }
3324 
3325 /**
3326  * Query a flow.
3327  *
3328  * @see rte_flow_query()
3329  * @see rte_flow_ops
3330  */
3331 static int
3332 flow_drv_query(struct rte_eth_dev *dev,
3333 	       struct rte_flow *flow,
3334 	       const struct rte_flow_action *actions,
3335 	       void *data,
3336 	       struct rte_flow_error *error)
3337 {
3338 	const struct mlx5_flow_driver_ops *fops;
3339 	enum mlx5_flow_drv_type ftype = flow->drv_type;
3340 
3341 	assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
3342 	fops = flow_get_drv_ops(ftype);
3343 
3344 	return fops->query(dev, flow, actions, data, error);
3345 }
3346 
3347 /**
3348  * Query a flow.
3349  *
3350  * @see rte_flow_query()
3351  * @see rte_flow_ops
3352  */
3353 int
3354 mlx5_flow_query(struct rte_eth_dev *dev,
3355 		struct rte_flow *flow,
3356 		const struct rte_flow_action *actions,
3357 		void *data,
3358 		struct rte_flow_error *error)
3359 {
3360 	int ret;
3361 
3362 	ret = flow_drv_query(dev, flow, actions, data, error);
3363 	if (ret < 0)
3364 		return ret;
3365 	return 0;
3366 }
3367 
3368 /**
3369  * Convert a flow director filter to a generic flow.
3370  *
3371  * @param dev
3372  *   Pointer to Ethernet device.
3373  * @param fdir_filter
3374  *   Flow director filter to add.
3375  * @param attributes
3376  *   Generic flow parameters structure.
3377  *
3378  * @return
3379  *   0 on success, a negative errno value otherwise and rte_errno is set.
3380  */
3381 static int
3382 flow_fdir_filter_convert(struct rte_eth_dev *dev,
3383 			 const struct rte_eth_fdir_filter *fdir_filter,
3384 			 struct mlx5_fdir *attributes)
3385 {
3386 	struct mlx5_priv *priv = dev->data->dev_private;
3387 	const struct rte_eth_fdir_input *input = &fdir_filter->input;
3388 	const struct rte_eth_fdir_masks *mask =
3389 		&dev->data->dev_conf.fdir_conf.mask;
3390 
3391 	/* Validate queue number. */
3392 	if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
3393 		DRV_LOG(ERR, "port %u invalid queue number %d",
3394 			dev->data->port_id, fdir_filter->action.rx_queue);
3395 		rte_errno = EINVAL;
3396 		return -rte_errno;
3397 	}
3398 	attributes->attr.ingress = 1;
3399 	attributes->items[0] = (struct rte_flow_item) {
3400 		.type = RTE_FLOW_ITEM_TYPE_ETH,
3401 		.spec = &attributes->l2,
3402 		.mask = &attributes->l2_mask,
3403 	};
3404 	switch (fdir_filter->action.behavior) {
3405 	case RTE_ETH_FDIR_ACCEPT:
3406 		attributes->actions[0] = (struct rte_flow_action){
3407 			.type = RTE_FLOW_ACTION_TYPE_QUEUE,
3408 			.conf = &attributes->queue,
3409 		};
3410 		break;
3411 	case RTE_ETH_FDIR_REJECT:
3412 		attributes->actions[0] = (struct rte_flow_action){
3413 			.type = RTE_FLOW_ACTION_TYPE_DROP,
3414 		};
3415 		break;
3416 	default:
3417 		DRV_LOG(ERR, "port %u invalid behavior %d",
3418 			dev->data->port_id,
3419 			fdir_filter->action.behavior);
3420 		rte_errno = ENOTSUP;
3421 		return -rte_errno;
3422 	}
3423 	attributes->queue.index = fdir_filter->action.rx_queue;
3424 	/* Handle L3. */
3425 	switch (fdir_filter->input.flow_type) {
3426 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3427 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3428 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3429 		attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
3430 			.src_addr = input->flow.ip4_flow.src_ip,
3431 			.dst_addr = input->flow.ip4_flow.dst_ip,
3432 			.time_to_live = input->flow.ip4_flow.ttl,
3433 			.type_of_service = input->flow.ip4_flow.tos,
3434 		};
3435 		attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
3436 			.src_addr = mask->ipv4_mask.src_ip,
3437 			.dst_addr = mask->ipv4_mask.dst_ip,
3438 			.time_to_live = mask->ipv4_mask.ttl,
3439 			.type_of_service = mask->ipv4_mask.tos,
3440 			.next_proto_id = mask->ipv4_mask.proto,
3441 		};
3442 		attributes->items[1] = (struct rte_flow_item){
3443 			.type = RTE_FLOW_ITEM_TYPE_IPV4,
3444 			.spec = &attributes->l3,
3445 			.mask = &attributes->l3_mask,
3446 		};
3447 		break;
3448 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3449 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3450 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3451 		attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
3452 			.hop_limits = input->flow.ipv6_flow.hop_limits,
3453 			.proto = input->flow.ipv6_flow.proto,
3454 		};
3455 
3456 		memcpy(attributes->l3.ipv6.hdr.src_addr,
3457 		       input->flow.ipv6_flow.src_ip,
3458 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3459 		memcpy(attributes->l3.ipv6.hdr.dst_addr,
3460 		       input->flow.ipv6_flow.dst_ip,
3461 		       RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3462 		memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
3463 		       mask->ipv6_mask.src_ip,
3464 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3465 		memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
3466 		       mask->ipv6_mask.dst_ip,
3467 		       RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3468 		attributes->items[1] = (struct rte_flow_item){
3469 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3470 			.spec = &attributes->l3,
3471 			.mask = &attributes->l3_mask,
3472 		};
3473 		break;
3474 	default:
3475 		DRV_LOG(ERR, "port %u invalid flow type%d",
3476 			dev->data->port_id, fdir_filter->input.flow_type);
3477 		rte_errno = ENOTSUP;
3478 		return -rte_errno;
3479 	}
3480 	/* Handle L4. */
3481 	switch (fdir_filter->input.flow_type) {
3482 	case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3483 		attributes->l4.udp.hdr = (struct rte_udp_hdr){
3484 			.src_port = input->flow.udp4_flow.src_port,
3485 			.dst_port = input->flow.udp4_flow.dst_port,
3486 		};
3487 		attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3488 			.src_port = mask->src_port_mask,
3489 			.dst_port = mask->dst_port_mask,
3490 		};
3491 		attributes->items[2] = (struct rte_flow_item){
3492 			.type = RTE_FLOW_ITEM_TYPE_UDP,
3493 			.spec = &attributes->l4,
3494 			.mask = &attributes->l4_mask,
3495 		};
3496 		break;
3497 	case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3498 		attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3499 			.src_port = input->flow.tcp4_flow.src_port,
3500 			.dst_port = input->flow.tcp4_flow.dst_port,
3501 		};
3502 		attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3503 			.src_port = mask->src_port_mask,
3504 			.dst_port = mask->dst_port_mask,
3505 		};
3506 		attributes->items[2] = (struct rte_flow_item){
3507 			.type = RTE_FLOW_ITEM_TYPE_TCP,
3508 			.spec = &attributes->l4,
3509 			.mask = &attributes->l4_mask,
3510 		};
3511 		break;
3512 	case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3513 		attributes->l4.udp.hdr = (struct rte_udp_hdr){
3514 			.src_port = input->flow.udp6_flow.src_port,
3515 			.dst_port = input->flow.udp6_flow.dst_port,
3516 		};
3517 		attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3518 			.src_port = mask->src_port_mask,
3519 			.dst_port = mask->dst_port_mask,
3520 		};
3521 		attributes->items[2] = (struct rte_flow_item){
3522 			.type = RTE_FLOW_ITEM_TYPE_UDP,
3523 			.spec = &attributes->l4,
3524 			.mask = &attributes->l4_mask,
3525 		};
3526 		break;
3527 	case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3528 		attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3529 			.src_port = input->flow.tcp6_flow.src_port,
3530 			.dst_port = input->flow.tcp6_flow.dst_port,
3531 		};
3532 		attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3533 			.src_port = mask->src_port_mask,
3534 			.dst_port = mask->dst_port_mask,
3535 		};
3536 		attributes->items[2] = (struct rte_flow_item){
3537 			.type = RTE_FLOW_ITEM_TYPE_TCP,
3538 			.spec = &attributes->l4,
3539 			.mask = &attributes->l4_mask,
3540 		};
3541 		break;
3542 	case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3543 	case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3544 		break;
3545 	default:
3546 		DRV_LOG(ERR, "port %u invalid flow type%d",
3547 			dev->data->port_id, fdir_filter->input.flow_type);
3548 		rte_errno = ENOTSUP;
3549 		return -rte_errno;
3550 	}
3551 	return 0;
3552 }
3553 
3554 #define FLOW_FDIR_CMP(f1, f2, fld) \
3555 	memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
3556 
3557 /**
3558  * Compare two FDIR flows. If items and actions are identical, the two flows are
3559  * regarded as same.
3560  *
3561  * @param dev
3562  *   Pointer to Ethernet device.
3563  * @param f1
3564  *   FDIR flow to compare.
3565  * @param f2
3566  *   FDIR flow to compare.
3567  *
3568  * @return
3569  *   Zero on match, 1 otherwise.
3570  */
3571 static int
3572 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
3573 {
3574 	if (FLOW_FDIR_CMP(f1, f2, attr) ||
3575 	    FLOW_FDIR_CMP(f1, f2, l2) ||
3576 	    FLOW_FDIR_CMP(f1, f2, l2_mask) ||
3577 	    FLOW_FDIR_CMP(f1, f2, l3) ||
3578 	    FLOW_FDIR_CMP(f1, f2, l3_mask) ||
3579 	    FLOW_FDIR_CMP(f1, f2, l4) ||
3580 	    FLOW_FDIR_CMP(f1, f2, l4_mask) ||
3581 	    FLOW_FDIR_CMP(f1, f2, actions[0].type))
3582 		return 1;
3583 	if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
3584 	    FLOW_FDIR_CMP(f1, f2, queue))
3585 		return 1;
3586 	return 0;
3587 }
3588 
3589 /**
3590  * Search device flow list to find out a matched FDIR flow.
3591  *
3592  * @param dev
3593  *   Pointer to Ethernet device.
3594  * @param fdir_flow
3595  *   FDIR flow to lookup.
3596  *
3597  * @return
3598  *   Pointer of flow if found, NULL otherwise.
3599  */
3600 static struct rte_flow *
3601 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
3602 {
3603 	struct mlx5_priv *priv = dev->data->dev_private;
3604 	struct rte_flow *flow = NULL;
3605 
3606 	assert(fdir_flow);
3607 	TAILQ_FOREACH(flow, &priv->flows, next) {
3608 		if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
3609 			DRV_LOG(DEBUG, "port %u found FDIR flow %p",
3610 				dev->data->port_id, (void *)flow);
3611 			break;
3612 		}
3613 	}
3614 	return flow;
3615 }
3616 
3617 /**
3618  * Add new flow director filter and store it in list.
3619  *
3620  * @param dev
3621  *   Pointer to Ethernet device.
3622  * @param fdir_filter
3623  *   Flow director filter to add.
3624  *
3625  * @return
3626  *   0 on success, a negative errno value otherwise and rte_errno is set.
3627  */
3628 static int
3629 flow_fdir_filter_add(struct rte_eth_dev *dev,
3630 		     const struct rte_eth_fdir_filter *fdir_filter)
3631 {
3632 	struct mlx5_priv *priv = dev->data->dev_private;
3633 	struct mlx5_fdir *fdir_flow;
3634 	struct rte_flow *flow;
3635 	int ret;
3636 
3637 	fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
3638 	if (!fdir_flow) {
3639 		rte_errno = ENOMEM;
3640 		return -rte_errno;
3641 	}
3642 	ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
3643 	if (ret)
3644 		goto error;
3645 	flow = flow_fdir_filter_lookup(dev, fdir_flow);
3646 	if (flow) {
3647 		rte_errno = EEXIST;
3648 		goto error;
3649 	}
3650 	flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
3651 				fdir_flow->items, fdir_flow->actions, true,
3652 				NULL);
3653 	if (!flow)
3654 		goto error;
3655 	assert(!flow->fdir);
3656 	flow->fdir = fdir_flow;
3657 	DRV_LOG(DEBUG, "port %u created FDIR flow %p",
3658 		dev->data->port_id, (void *)flow);
3659 	return 0;
3660 error:
3661 	rte_free(fdir_flow);
3662 	return -rte_errno;
3663 }
3664 
3665 /**
3666  * Delete specific filter.
3667  *
3668  * @param dev
3669  *   Pointer to Ethernet device.
3670  * @param fdir_filter
3671  *   Filter to be deleted.
3672  *
3673  * @return
3674  *   0 on success, a negative errno value otherwise and rte_errno is set.
3675  */
3676 static int
3677 flow_fdir_filter_delete(struct rte_eth_dev *dev,
3678 			const struct rte_eth_fdir_filter *fdir_filter)
3679 {
3680 	struct mlx5_priv *priv = dev->data->dev_private;
3681 	struct rte_flow *flow;
3682 	struct mlx5_fdir fdir_flow = {
3683 		.attr.group = 0,
3684 	};
3685 	int ret;
3686 
3687 	ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
3688 	if (ret)
3689 		return -rte_errno;
3690 	flow = flow_fdir_filter_lookup(dev, &fdir_flow);
3691 	if (!flow) {
3692 		rte_errno = ENOENT;
3693 		return -rte_errno;
3694 	}
3695 	flow_list_destroy(dev, &priv->flows, flow);
3696 	DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
3697 		dev->data->port_id, (void *)flow);
3698 	return 0;
3699 }
3700 
3701 /**
3702  * Update queue for specific filter.
3703  *
3704  * @param dev
3705  *   Pointer to Ethernet device.
3706  * @param fdir_filter
3707  *   Filter to be updated.
3708  *
3709  * @return
3710  *   0 on success, a negative errno value otherwise and rte_errno is set.
3711  */
3712 static int
3713 flow_fdir_filter_update(struct rte_eth_dev *dev,
3714 			const struct rte_eth_fdir_filter *fdir_filter)
3715 {
3716 	int ret;
3717 
3718 	ret = flow_fdir_filter_delete(dev, fdir_filter);
3719 	if (ret)
3720 		return ret;
3721 	return flow_fdir_filter_add(dev, fdir_filter);
3722 }
3723 
3724 /**
3725  * Flush all filters.
3726  *
3727  * @param dev
3728  *   Pointer to Ethernet device.
3729  */
3730 static void
3731 flow_fdir_filter_flush(struct rte_eth_dev *dev)
3732 {
3733 	struct mlx5_priv *priv = dev->data->dev_private;
3734 
3735 	mlx5_flow_list_flush(dev, &priv->flows);
3736 }
3737 
3738 /**
3739  * Get flow director information.
3740  *
3741  * @param dev
3742  *   Pointer to Ethernet device.
3743  * @param[out] fdir_info
3744  *   Resulting flow director information.
3745  */
3746 static void
3747 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3748 {
3749 	struct rte_eth_fdir_masks *mask =
3750 		&dev->data->dev_conf.fdir_conf.mask;
3751 
3752 	fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3753 	fdir_info->guarant_spc = 0;
3754 	rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3755 	fdir_info->max_flexpayload = 0;
3756 	fdir_info->flow_types_mask[0] = 0;
3757 	fdir_info->flex_payload_unit = 0;
3758 	fdir_info->max_flex_payload_segment_num = 0;
3759 	fdir_info->flex_payload_limit = 0;
3760 	memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3761 }
3762 
3763 /**
3764  * Deal with flow director operations.
3765  *
3766  * @param dev
3767  *   Pointer to Ethernet device.
3768  * @param filter_op
3769  *   Operation to perform.
3770  * @param arg
3771  *   Pointer to operation-specific structure.
3772  *
3773  * @return
3774  *   0 on success, a negative errno value otherwise and rte_errno is set.
3775  */
3776 static int
3777 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3778 		    void *arg)
3779 {
3780 	enum rte_fdir_mode fdir_mode =
3781 		dev->data->dev_conf.fdir_conf.mode;
3782 
3783 	if (filter_op == RTE_ETH_FILTER_NOP)
3784 		return 0;
3785 	if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3786 	    fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3787 		DRV_LOG(ERR, "port %u flow director mode %d not supported",
3788 			dev->data->port_id, fdir_mode);
3789 		rte_errno = EINVAL;
3790 		return -rte_errno;
3791 	}
3792 	switch (filter_op) {
3793 	case RTE_ETH_FILTER_ADD:
3794 		return flow_fdir_filter_add(dev, arg);
3795 	case RTE_ETH_FILTER_UPDATE:
3796 		return flow_fdir_filter_update(dev, arg);
3797 	case RTE_ETH_FILTER_DELETE:
3798 		return flow_fdir_filter_delete(dev, arg);
3799 	case RTE_ETH_FILTER_FLUSH:
3800 		flow_fdir_filter_flush(dev);
3801 		break;
3802 	case RTE_ETH_FILTER_INFO:
3803 		flow_fdir_info_get(dev, arg);
3804 		break;
3805 	default:
3806 		DRV_LOG(DEBUG, "port %u unknown operation %u",
3807 			dev->data->port_id, filter_op);
3808 		rte_errno = EINVAL;
3809 		return -rte_errno;
3810 	}
3811 	return 0;
3812 }
3813 
3814 /**
3815  * Manage filter operations.
3816  *
3817  * @param dev
3818  *   Pointer to Ethernet device structure.
3819  * @param filter_type
3820  *   Filter type.
3821  * @param filter_op
3822  *   Operation to perform.
3823  * @param arg
3824  *   Pointer to operation-specific structure.
3825  *
3826  * @return
3827  *   0 on success, a negative errno value otherwise and rte_errno is set.
3828  */
3829 int
3830 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3831 		     enum rte_filter_type filter_type,
3832 		     enum rte_filter_op filter_op,
3833 		     void *arg)
3834 {
3835 	switch (filter_type) {
3836 	case RTE_ETH_FILTER_GENERIC:
3837 		if (filter_op != RTE_ETH_FILTER_GET) {
3838 			rte_errno = EINVAL;
3839 			return -rte_errno;
3840 		}
3841 		*(const void **)arg = &mlx5_flow_ops;
3842 		return 0;
3843 	case RTE_ETH_FILTER_FDIR:
3844 		return flow_fdir_ctrl_func(dev, filter_op, arg);
3845 	default:
3846 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
3847 			dev->data->port_id, filter_type);
3848 		rte_errno = ENOTSUP;
3849 		return -rte_errno;
3850 	}
3851 	return 0;
3852 }
3853 
3854 #define MLX5_POOL_QUERY_FREQ_US 1000000
3855 
3856 /**
3857  * Set the periodic procedure for triggering asynchronous batch queries for all
3858  * the counter pools.
3859  *
3860  * @param[in] sh
3861  *   Pointer to mlx5_ibv_shared object.
3862  */
3863 void
3864 mlx5_set_query_alarm(struct mlx5_ibv_shared *sh)
3865 {
3866 	struct mlx5_pools_container *cont = MLX5_CNT_CONTAINER(sh, 0, 0);
3867 	uint32_t pools_n = rte_atomic16_read(&cont->n_valid);
3868 	uint32_t us;
3869 
3870 	cont = MLX5_CNT_CONTAINER(sh, 1, 0);
3871 	pools_n += rte_atomic16_read(&cont->n_valid);
3872 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
3873 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
3874 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
3875 		sh->cmng.query_thread_on = 0;
3876 		DRV_LOG(ERR, "Cannot reinitialize query alarm");
3877 	} else {
3878 		sh->cmng.query_thread_on = 1;
3879 	}
3880 }
3881 
3882 /**
3883  * The periodic procedure for triggering asynchronous batch queries for all the
3884  * counter pools. This function is probably called by the host thread.
3885  *
3886  * @param[in] arg
3887  *   The parameter for the alarm process.
3888  */
3889 void
3890 mlx5_flow_query_alarm(void *arg)
3891 {
3892 	struct mlx5_ibv_shared *sh = arg;
3893 	struct mlx5_devx_obj *dcs;
3894 	uint16_t offset;
3895 	int ret;
3896 	uint8_t batch = sh->cmng.batch;
3897 	uint16_t pool_index = sh->cmng.pool_index;
3898 	struct mlx5_pools_container *cont;
3899 	struct mlx5_pools_container *mcont;
3900 	struct mlx5_flow_counter_pool *pool;
3901 
3902 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
3903 		goto set_alarm;
3904 next_container:
3905 	cont = MLX5_CNT_CONTAINER(sh, batch, 1);
3906 	mcont = MLX5_CNT_CONTAINER(sh, batch, 0);
3907 	/* Check if resize was done and need to flip a container. */
3908 	if (cont != mcont) {
3909 		if (cont->pools) {
3910 			/* Clean the old container. */
3911 			rte_free(cont->pools);
3912 			memset(cont, 0, sizeof(*cont));
3913 		}
3914 		rte_cio_wmb();
3915 		 /* Flip the host container. */
3916 		sh->cmng.mhi[batch] ^= (uint8_t)2;
3917 		cont = mcont;
3918 	}
3919 	if (!cont->pools) {
3920 		/* 2 empty containers case is unexpected. */
3921 		if (unlikely(batch != sh->cmng.batch))
3922 			goto set_alarm;
3923 		batch ^= 0x1;
3924 		pool_index = 0;
3925 		goto next_container;
3926 	}
3927 	pool = cont->pools[pool_index];
3928 	if (pool->raw_hw)
3929 		/* There is a pool query in progress. */
3930 		goto set_alarm;
3931 	pool->raw_hw =
3932 		LIST_FIRST(&sh->cmng.free_stat_raws);
3933 	if (!pool->raw_hw)
3934 		/* No free counter statistics raw memory. */
3935 		goto set_alarm;
3936 	dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
3937 							      (&pool->a64_dcs);
3938 	offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
3939 	ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
3940 					       offset, NULL, NULL,
3941 					       pool->raw_hw->mem_mng->dm->id,
3942 					       (void *)(uintptr_t)
3943 					       (pool->raw_hw->data + offset),
3944 					       sh->devx_comp,
3945 					       (uint64_t)(uintptr_t)pool);
3946 	if (ret) {
3947 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
3948 			" %d", pool->min_dcs->id);
3949 		pool->raw_hw = NULL;
3950 		goto set_alarm;
3951 	}
3952 	pool->raw_hw->min_dcs_id = dcs->id;
3953 	LIST_REMOVE(pool->raw_hw, next);
3954 	sh->cmng.pending_queries++;
3955 	pool_index++;
3956 	if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
3957 		batch ^= 0x1;
3958 		pool_index = 0;
3959 	}
3960 set_alarm:
3961 	sh->cmng.batch = batch;
3962 	sh->cmng.pool_index = pool_index;
3963 	mlx5_set_query_alarm(sh);
3964 }
3965 
3966 /**
3967  * Handler for the HW respond about ready values from an asynchronous batch
3968  * query. This function is probably called by the host thread.
3969  *
3970  * @param[in] sh
3971  *   The pointer to the shared IB device context.
3972  * @param[in] async_id
3973  *   The Devx async ID.
3974  * @param[in] status
3975  *   The status of the completion.
3976  */
3977 void
3978 mlx5_flow_async_pool_query_handle(struct mlx5_ibv_shared *sh,
3979 				  uint64_t async_id, int status)
3980 {
3981 	struct mlx5_flow_counter_pool *pool =
3982 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
3983 	struct mlx5_counter_stats_raw *raw_to_free;
3984 
3985 	if (unlikely(status)) {
3986 		raw_to_free = pool->raw_hw;
3987 	} else {
3988 		raw_to_free = pool->raw;
3989 		rte_spinlock_lock(&pool->sl);
3990 		pool->raw = pool->raw_hw;
3991 		rte_spinlock_unlock(&pool->sl);
3992 		rte_atomic64_add(&pool->query_gen, 1);
3993 		/* Be sure the new raw counters data is updated in memory. */
3994 		rte_cio_wmb();
3995 	}
3996 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
3997 	pool->raw_hw = NULL;
3998 	sh->cmng.pending_queries--;
3999 }
4000 
4001 /**
4002  * Translate the rte_flow group index to HW table value.
4003  *
4004  * @param[in] attributes
4005  *   Pointer to flow attributes
4006  * @param[in] external
4007  *   Value is part of flow rule created by request external to PMD.
4008  * @param[in] group
4009  *   rte_flow group index value.
4010  * @param[out] table
4011  *   HW table value.
4012  * @param[out] error
4013  *   Pointer to error structure.
4014  *
4015  * @return
4016  *   0 on success, a negative errno value otherwise and rte_errno is set.
4017  */
4018 int
4019 mlx5_flow_group_to_table(const struct rte_flow_attr *attributes, bool external,
4020 			 uint32_t group, uint32_t *table,
4021 			 struct rte_flow_error *error)
4022 {
4023 	if (attributes->transfer && external) {
4024 		if (group == UINT32_MAX)
4025 			return rte_flow_error_set
4026 						(error, EINVAL,
4027 						 RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
4028 						 NULL,
4029 						 "group index not supported");
4030 		*table = group + 1;
4031 	} else {
4032 		*table = group;
4033 	}
4034 	return 0;
4035 }
4036