xref: /dpdk/drivers/net/mlx5/mlx5_flow.c (revision 09a5e9777e7eb0179e0f9a3b6830c89702df0bd7)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdbool.h>
12 
13 #include <rte_common.h>
14 #include <rte_ether.h>
15 #include <rte_ethdev_driver.h>
16 #include <rte_eal_paging.h>
17 #include <rte_flow.h>
18 #include <rte_cycles.h>
19 #include <rte_flow_driver.h>
20 #include <rte_malloc.h>
21 #include <rte_ip.h>
22 
23 #include <mlx5_glue.h>
24 #include <mlx5_devx_cmds.h>
25 #include <mlx5_prm.h>
26 #include <mlx5_malloc.h>
27 
28 #include "mlx5_defs.h"
29 #include "mlx5.h"
30 #include "mlx5_flow.h"
31 #include "mlx5_flow_os.h"
32 #include "mlx5_rxtx.h"
33 #include "mlx5_common_os.h"
34 #include "rte_pmd_mlx5.h"
35 
36 struct tunnel_default_miss_ctx {
37 	uint16_t *queue;
38 	__extension__
39 	union {
40 		struct rte_flow_action_rss action_rss;
41 		struct rte_flow_action_queue miss_queue;
42 		struct rte_flow_action_jump miss_jump;
43 		uint8_t raw[0];
44 	};
45 };
46 
47 static int
48 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
49 			     struct rte_flow *flow,
50 			     const struct rte_flow_attr *attr,
51 			     const struct rte_flow_action *app_actions,
52 			     uint32_t flow_idx,
53 			     struct tunnel_default_miss_ctx *ctx,
54 			     struct rte_flow_error *error);
55 static struct mlx5_flow_tunnel *
56 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id);
57 static void
58 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel);
59 static uint32_t
60 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
61 				const struct mlx5_flow_tunnel *tunnel,
62 				uint32_t group, uint32_t *table,
63 				struct rte_flow_error *error);
64 
65 static struct mlx5_flow_workspace *mlx5_flow_push_thread_workspace(void);
66 static void mlx5_flow_pop_thread_workspace(void);
67 
68 
69 /** Device flow drivers. */
70 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
71 
72 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
73 
74 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
75 	[MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
76 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
77 	[MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
78 #endif
79 	[MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
80 	[MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
81 };
82 
83 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
84 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
85 	(const int []){ \
86 		__VA_ARGS__, 0, \
87 	}
88 
89 /** Node object of input graph for mlx5_flow_expand_rss(). */
90 struct mlx5_flow_expand_node {
91 	const int *const next;
92 	/**<
93 	 * List of next node indexes. Index 0 is interpreted as a terminator.
94 	 */
95 	const enum rte_flow_item_type type;
96 	/**< Pattern item type of current node. */
97 	uint64_t rss_types;
98 	/**<
99 	 * RSS types bit-field associated with this node
100 	 * (see ETH_RSS_* definitions).
101 	 */
102 };
103 
104 /** Object returned by mlx5_flow_expand_rss(). */
105 struct mlx5_flow_expand_rss {
106 	uint32_t entries;
107 	/**< Number of entries @p patterns and @p priorities. */
108 	struct {
109 		struct rte_flow_item *pattern; /**< Expanded pattern array. */
110 		uint32_t priority; /**< Priority offset for each expansion. */
111 	} entry[];
112 };
113 
114 static enum rte_flow_item_type
115 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
116 {
117 	enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
118 	uint16_t ether_type = 0;
119 	uint16_t ether_type_m;
120 	uint8_t ip_next_proto = 0;
121 	uint8_t ip_next_proto_m;
122 
123 	if (item == NULL || item->spec == NULL)
124 		return ret;
125 	switch (item->type) {
126 	case RTE_FLOW_ITEM_TYPE_ETH:
127 		if (item->mask)
128 			ether_type_m = ((const struct rte_flow_item_eth *)
129 						(item->mask))->type;
130 		else
131 			ether_type_m = rte_flow_item_eth_mask.type;
132 		if (ether_type_m != RTE_BE16(0xFFFF))
133 			break;
134 		ether_type = ((const struct rte_flow_item_eth *)
135 				(item->spec))->type;
136 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
137 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
138 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
139 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
140 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
141 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
142 		else
143 			ret = RTE_FLOW_ITEM_TYPE_END;
144 		break;
145 	case RTE_FLOW_ITEM_TYPE_VLAN:
146 		if (item->mask)
147 			ether_type_m = ((const struct rte_flow_item_vlan *)
148 						(item->mask))->inner_type;
149 		else
150 			ether_type_m = rte_flow_item_vlan_mask.inner_type;
151 		if (ether_type_m != RTE_BE16(0xFFFF))
152 			break;
153 		ether_type = ((const struct rte_flow_item_vlan *)
154 				(item->spec))->inner_type;
155 		if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
156 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
157 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
158 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
159 		else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
160 			ret = RTE_FLOW_ITEM_TYPE_VLAN;
161 		else
162 			ret = RTE_FLOW_ITEM_TYPE_END;
163 		break;
164 	case RTE_FLOW_ITEM_TYPE_IPV4:
165 		if (item->mask)
166 			ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
167 					(item->mask))->hdr.next_proto_id;
168 		else
169 			ip_next_proto_m =
170 				rte_flow_item_ipv4_mask.hdr.next_proto_id;
171 		if (ip_next_proto_m != 0xFF)
172 			break;
173 		ip_next_proto = ((const struct rte_flow_item_ipv4 *)
174 				(item->spec))->hdr.next_proto_id;
175 		if (ip_next_proto == IPPROTO_UDP)
176 			ret = RTE_FLOW_ITEM_TYPE_UDP;
177 		else if (ip_next_proto == IPPROTO_TCP)
178 			ret = RTE_FLOW_ITEM_TYPE_TCP;
179 		else if (ip_next_proto == IPPROTO_IP)
180 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
181 		else if (ip_next_proto == IPPROTO_IPV6)
182 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
183 		else
184 			ret = RTE_FLOW_ITEM_TYPE_END;
185 		break;
186 	case RTE_FLOW_ITEM_TYPE_IPV6:
187 		if (item->mask)
188 			ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
189 						(item->mask))->hdr.proto;
190 		else
191 			ip_next_proto_m =
192 				rte_flow_item_ipv6_mask.hdr.proto;
193 		if (ip_next_proto_m != 0xFF)
194 			break;
195 		ip_next_proto = ((const struct rte_flow_item_ipv6 *)
196 				(item->spec))->hdr.proto;
197 		if (ip_next_proto == IPPROTO_UDP)
198 			ret = RTE_FLOW_ITEM_TYPE_UDP;
199 		else if (ip_next_proto == IPPROTO_TCP)
200 			ret = RTE_FLOW_ITEM_TYPE_TCP;
201 		else if (ip_next_proto == IPPROTO_IP)
202 			ret = RTE_FLOW_ITEM_TYPE_IPV4;
203 		else if (ip_next_proto == IPPROTO_IPV6)
204 			ret = RTE_FLOW_ITEM_TYPE_IPV6;
205 		else
206 			ret = RTE_FLOW_ITEM_TYPE_END;
207 		break;
208 	default:
209 		ret = RTE_FLOW_ITEM_TYPE_VOID;
210 		break;
211 	}
212 	return ret;
213 }
214 
215 #define MLX5_RSS_EXP_ELT_N 8
216 
217 /**
218  * Expand RSS flows into several possible flows according to the RSS hash
219  * fields requested and the driver capabilities.
220  *
221  * @param[out] buf
222  *   Buffer to store the result expansion.
223  * @param[in] size
224  *   Buffer size in bytes. If 0, @p buf can be NULL.
225  * @param[in] pattern
226  *   User flow pattern.
227  * @param[in] types
228  *   RSS types to expand (see ETH_RSS_* definitions).
229  * @param[in] graph
230  *   Input graph to expand @p pattern according to @p types.
231  * @param[in] graph_root_index
232  *   Index of root node in @p graph, typically 0.
233  *
234  * @return
235  *   A positive value representing the size of @p buf in bytes regardless of
236  *   @p size on success, a negative errno value otherwise and rte_errno is
237  *   set, the following errors are defined:
238  *
239  *   -E2BIG: graph-depth @p graph is too deep.
240  */
241 static int
242 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
243 		     const struct rte_flow_item *pattern, uint64_t types,
244 		     const struct mlx5_flow_expand_node graph[],
245 		     int graph_root_index)
246 {
247 	const struct rte_flow_item *item;
248 	const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
249 	const int *next_node;
250 	const int *stack[MLX5_RSS_EXP_ELT_N];
251 	int stack_pos = 0;
252 	struct rte_flow_item flow_items[MLX5_RSS_EXP_ELT_N];
253 	unsigned int i;
254 	size_t lsize;
255 	size_t user_pattern_size = 0;
256 	void *addr = NULL;
257 	const struct mlx5_flow_expand_node *next = NULL;
258 	struct rte_flow_item missed_item;
259 	int missed = 0;
260 	int elt = 0;
261 	const struct rte_flow_item *last_item = NULL;
262 
263 	memset(&missed_item, 0, sizeof(missed_item));
264 	lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
265 		MLX5_RSS_EXP_ELT_N * sizeof(buf->entry[0]);
266 	if (lsize <= size) {
267 		buf->entry[0].priority = 0;
268 		buf->entry[0].pattern = (void *)&buf->entry[MLX5_RSS_EXP_ELT_N];
269 		buf->entries = 0;
270 		addr = buf->entry[0].pattern;
271 	}
272 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
273 		if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
274 			last_item = item;
275 		for (i = 0; node->next && node->next[i]; ++i) {
276 			next = &graph[node->next[i]];
277 			if (next->type == item->type)
278 				break;
279 		}
280 		if (next)
281 			node = next;
282 		user_pattern_size += sizeof(*item);
283 	}
284 	user_pattern_size += sizeof(*item); /* Handle END item. */
285 	lsize += user_pattern_size;
286 	/* Copy the user pattern in the first entry of the buffer. */
287 	if (lsize <= size) {
288 		rte_memcpy(addr, pattern, user_pattern_size);
289 		addr = (void *)(((uintptr_t)addr) + user_pattern_size);
290 		buf->entries = 1;
291 	}
292 	/* Start expanding. */
293 	memset(flow_items, 0, sizeof(flow_items));
294 	user_pattern_size -= sizeof(*item);
295 	/*
296 	 * Check if the last valid item has spec set, need complete pattern,
297 	 * and the pattern can be used for expansion.
298 	 */
299 	missed_item.type = mlx5_flow_expand_rss_item_complete(last_item);
300 	if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
301 		/* Item type END indicates expansion is not required. */
302 		return lsize;
303 	}
304 	if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
305 		next = NULL;
306 		missed = 1;
307 		for (i = 0; node->next && node->next[i]; ++i) {
308 			next = &graph[node->next[i]];
309 			if (next->type == missed_item.type) {
310 				flow_items[0].type = missed_item.type;
311 				flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
312 				break;
313 			}
314 			next = NULL;
315 		}
316 	}
317 	if (next && missed) {
318 		elt = 2; /* missed item + item end. */
319 		node = next;
320 		lsize += elt * sizeof(*item) + user_pattern_size;
321 		if ((node->rss_types & types) && lsize <= size) {
322 			buf->entry[buf->entries].priority = 1;
323 			buf->entry[buf->entries].pattern = addr;
324 			buf->entries++;
325 			rte_memcpy(addr, buf->entry[0].pattern,
326 				   user_pattern_size);
327 			addr = (void *)(((uintptr_t)addr) + user_pattern_size);
328 			rte_memcpy(addr, flow_items, elt * sizeof(*item));
329 			addr = (void *)(((uintptr_t)addr) +
330 					elt * sizeof(*item));
331 		}
332 	}
333 	memset(flow_items, 0, sizeof(flow_items));
334 	next_node = node->next;
335 	stack[stack_pos] = next_node;
336 	node = next_node ? &graph[*next_node] : NULL;
337 	while (node) {
338 		flow_items[stack_pos].type = node->type;
339 		if (node->rss_types & types) {
340 			/*
341 			 * compute the number of items to copy from the
342 			 * expansion and copy it.
343 			 * When the stack_pos is 0, there are 1 element in it,
344 			 * plus the addition END item.
345 			 */
346 			elt = stack_pos + 2;
347 			flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
348 			lsize += elt * sizeof(*item) + user_pattern_size;
349 			if (lsize <= size) {
350 				size_t n = elt * sizeof(*item);
351 
352 				buf->entry[buf->entries].priority =
353 					stack_pos + 1 + missed;
354 				buf->entry[buf->entries].pattern = addr;
355 				buf->entries++;
356 				rte_memcpy(addr, buf->entry[0].pattern,
357 					   user_pattern_size);
358 				addr = (void *)(((uintptr_t)addr) +
359 						user_pattern_size);
360 				rte_memcpy(addr, &missed_item,
361 					   missed * sizeof(*item));
362 				addr = (void *)(((uintptr_t)addr) +
363 					missed * sizeof(*item));
364 				rte_memcpy(addr, flow_items, n);
365 				addr = (void *)(((uintptr_t)addr) + n);
366 			}
367 		}
368 		/* Go deeper. */
369 		if (node->next) {
370 			next_node = node->next;
371 			if (stack_pos++ == MLX5_RSS_EXP_ELT_N) {
372 				rte_errno = E2BIG;
373 				return -rte_errno;
374 			}
375 			stack[stack_pos] = next_node;
376 		} else if (*(next_node + 1)) {
377 			/* Follow up with the next possibility. */
378 			++next_node;
379 		} else {
380 			/* Move to the next path. */
381 			if (stack_pos)
382 				next_node = stack[--stack_pos];
383 			next_node++;
384 			stack[stack_pos] = next_node;
385 		}
386 		node = *next_node ? &graph[*next_node] : NULL;
387 	};
388 	/* no expanded flows but we have missed item, create one rule for it */
389 	if (buf->entries == 1 && missed != 0) {
390 		elt = 2;
391 		lsize += elt * sizeof(*item) + user_pattern_size;
392 		if (lsize <= size) {
393 			buf->entry[buf->entries].priority = 1;
394 			buf->entry[buf->entries].pattern = addr;
395 			buf->entries++;
396 			flow_items[0].type = missed_item.type;
397 			flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
398 			rte_memcpy(addr, buf->entry[0].pattern,
399 				   user_pattern_size);
400 			addr = (void *)(((uintptr_t)addr) + user_pattern_size);
401 			rte_memcpy(addr, flow_items, elt * sizeof(*item));
402 		}
403 	}
404 	return lsize;
405 }
406 
407 enum mlx5_expansion {
408 	MLX5_EXPANSION_ROOT,
409 	MLX5_EXPANSION_ROOT_OUTER,
410 	MLX5_EXPANSION_ROOT_ETH_VLAN,
411 	MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
412 	MLX5_EXPANSION_OUTER_ETH,
413 	MLX5_EXPANSION_OUTER_ETH_VLAN,
414 	MLX5_EXPANSION_OUTER_VLAN,
415 	MLX5_EXPANSION_OUTER_IPV4,
416 	MLX5_EXPANSION_OUTER_IPV4_UDP,
417 	MLX5_EXPANSION_OUTER_IPV4_TCP,
418 	MLX5_EXPANSION_OUTER_IPV6,
419 	MLX5_EXPANSION_OUTER_IPV6_UDP,
420 	MLX5_EXPANSION_OUTER_IPV6_TCP,
421 	MLX5_EXPANSION_VXLAN,
422 	MLX5_EXPANSION_VXLAN_GPE,
423 	MLX5_EXPANSION_GRE,
424 	MLX5_EXPANSION_MPLS,
425 	MLX5_EXPANSION_ETH,
426 	MLX5_EXPANSION_ETH_VLAN,
427 	MLX5_EXPANSION_VLAN,
428 	MLX5_EXPANSION_IPV4,
429 	MLX5_EXPANSION_IPV4_UDP,
430 	MLX5_EXPANSION_IPV4_TCP,
431 	MLX5_EXPANSION_IPV6,
432 	MLX5_EXPANSION_IPV6_UDP,
433 	MLX5_EXPANSION_IPV6_TCP,
434 };
435 
436 /** Supported expansion of items. */
437 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
438 	[MLX5_EXPANSION_ROOT] = {
439 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
440 						  MLX5_EXPANSION_IPV4,
441 						  MLX5_EXPANSION_IPV6),
442 		.type = RTE_FLOW_ITEM_TYPE_END,
443 	},
444 	[MLX5_EXPANSION_ROOT_OUTER] = {
445 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
446 						  MLX5_EXPANSION_OUTER_IPV4,
447 						  MLX5_EXPANSION_OUTER_IPV6),
448 		.type = RTE_FLOW_ITEM_TYPE_END,
449 	},
450 	[MLX5_EXPANSION_ROOT_ETH_VLAN] = {
451 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
452 		.type = RTE_FLOW_ITEM_TYPE_END,
453 	},
454 	[MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
455 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
456 						(MLX5_EXPANSION_OUTER_ETH_VLAN),
457 		.type = RTE_FLOW_ITEM_TYPE_END,
458 	},
459 	[MLX5_EXPANSION_OUTER_ETH] = {
460 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
461 						  MLX5_EXPANSION_OUTER_IPV6,
462 						  MLX5_EXPANSION_MPLS),
463 		.type = RTE_FLOW_ITEM_TYPE_ETH,
464 		.rss_types = 0,
465 	},
466 	[MLX5_EXPANSION_OUTER_ETH_VLAN] = {
467 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
468 		.type = RTE_FLOW_ITEM_TYPE_ETH,
469 		.rss_types = 0,
470 	},
471 	[MLX5_EXPANSION_OUTER_VLAN] = {
472 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
473 						  MLX5_EXPANSION_OUTER_IPV6),
474 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
475 	},
476 	[MLX5_EXPANSION_OUTER_IPV4] = {
477 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
478 			(MLX5_EXPANSION_OUTER_IPV4_UDP,
479 			 MLX5_EXPANSION_OUTER_IPV4_TCP,
480 			 MLX5_EXPANSION_GRE,
481 			 MLX5_EXPANSION_IPV4,
482 			 MLX5_EXPANSION_IPV6),
483 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
484 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
485 			ETH_RSS_NONFRAG_IPV4_OTHER,
486 	},
487 	[MLX5_EXPANSION_OUTER_IPV4_UDP] = {
488 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
489 						  MLX5_EXPANSION_VXLAN_GPE),
490 		.type = RTE_FLOW_ITEM_TYPE_UDP,
491 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
492 	},
493 	[MLX5_EXPANSION_OUTER_IPV4_TCP] = {
494 		.type = RTE_FLOW_ITEM_TYPE_TCP,
495 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
496 	},
497 	[MLX5_EXPANSION_OUTER_IPV6] = {
498 		.next = MLX5_FLOW_EXPAND_RSS_NEXT
499 			(MLX5_EXPANSION_OUTER_IPV6_UDP,
500 			 MLX5_EXPANSION_OUTER_IPV6_TCP,
501 			 MLX5_EXPANSION_IPV4,
502 			 MLX5_EXPANSION_IPV6),
503 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
504 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
505 			ETH_RSS_NONFRAG_IPV6_OTHER,
506 	},
507 	[MLX5_EXPANSION_OUTER_IPV6_UDP] = {
508 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
509 						  MLX5_EXPANSION_VXLAN_GPE),
510 		.type = RTE_FLOW_ITEM_TYPE_UDP,
511 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
512 	},
513 	[MLX5_EXPANSION_OUTER_IPV6_TCP] = {
514 		.type = RTE_FLOW_ITEM_TYPE_TCP,
515 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
516 	},
517 	[MLX5_EXPANSION_VXLAN] = {
518 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
519 						  MLX5_EXPANSION_IPV4,
520 						  MLX5_EXPANSION_IPV6),
521 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
522 	},
523 	[MLX5_EXPANSION_VXLAN_GPE] = {
524 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
525 						  MLX5_EXPANSION_IPV4,
526 						  MLX5_EXPANSION_IPV6),
527 		.type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
528 	},
529 	[MLX5_EXPANSION_GRE] = {
530 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
531 		.type = RTE_FLOW_ITEM_TYPE_GRE,
532 	},
533 	[MLX5_EXPANSION_MPLS] = {
534 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
535 						  MLX5_EXPANSION_IPV6),
536 		.type = RTE_FLOW_ITEM_TYPE_MPLS,
537 	},
538 	[MLX5_EXPANSION_ETH] = {
539 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
540 						  MLX5_EXPANSION_IPV6),
541 		.type = RTE_FLOW_ITEM_TYPE_ETH,
542 	},
543 	[MLX5_EXPANSION_ETH_VLAN] = {
544 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
545 		.type = RTE_FLOW_ITEM_TYPE_ETH,
546 	},
547 	[MLX5_EXPANSION_VLAN] = {
548 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
549 						  MLX5_EXPANSION_IPV6),
550 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
551 	},
552 	[MLX5_EXPANSION_IPV4] = {
553 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
554 						  MLX5_EXPANSION_IPV4_TCP),
555 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
556 		.rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
557 			ETH_RSS_NONFRAG_IPV4_OTHER,
558 	},
559 	[MLX5_EXPANSION_IPV4_UDP] = {
560 		.type = RTE_FLOW_ITEM_TYPE_UDP,
561 		.rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
562 	},
563 	[MLX5_EXPANSION_IPV4_TCP] = {
564 		.type = RTE_FLOW_ITEM_TYPE_TCP,
565 		.rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
566 	},
567 	[MLX5_EXPANSION_IPV6] = {
568 		.next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
569 						  MLX5_EXPANSION_IPV6_TCP),
570 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
571 		.rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
572 			ETH_RSS_NONFRAG_IPV6_OTHER,
573 	},
574 	[MLX5_EXPANSION_IPV6_UDP] = {
575 		.type = RTE_FLOW_ITEM_TYPE_UDP,
576 		.rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
577 	},
578 	[MLX5_EXPANSION_IPV6_TCP] = {
579 		.type = RTE_FLOW_ITEM_TYPE_TCP,
580 		.rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
581 	},
582 };
583 
584 static struct rte_flow_shared_action *
585 mlx5_shared_action_create(struct rte_eth_dev *dev,
586 			  const struct rte_flow_shared_action_conf *conf,
587 			  const struct rte_flow_action *action,
588 			  struct rte_flow_error *error);
589 static int mlx5_shared_action_destroy
590 				(struct rte_eth_dev *dev,
591 				 struct rte_flow_shared_action *shared_action,
592 				 struct rte_flow_error *error);
593 static int mlx5_shared_action_update
594 				(struct rte_eth_dev *dev,
595 				 struct rte_flow_shared_action *shared_action,
596 				 const struct rte_flow_action *action,
597 				 struct rte_flow_error *error);
598 static int mlx5_shared_action_query
599 				(struct rte_eth_dev *dev,
600 				 const struct rte_flow_shared_action *action,
601 				 void *data,
602 				 struct rte_flow_error *error);
603 static int
604 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
605 		    struct rte_flow_tunnel *app_tunnel,
606 		    struct rte_flow_action **actions,
607 		    uint32_t *num_of_actions,
608 		    struct rte_flow_error *error);
609 static int
610 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
611 		       struct rte_flow_tunnel *app_tunnel,
612 		       struct rte_flow_item **items,
613 		       uint32_t *num_of_items,
614 		       struct rte_flow_error *error);
615 static int
616 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
617 			      struct rte_flow_item *pmd_items,
618 			      uint32_t num_items, struct rte_flow_error *err);
619 static int
620 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
621 				struct rte_flow_action *pmd_actions,
622 				uint32_t num_actions,
623 				struct rte_flow_error *err);
624 static int
625 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
626 				  struct rte_mbuf *m,
627 				  struct rte_flow_restore_info *info,
628 				  struct rte_flow_error *err);
629 
630 static const struct rte_flow_ops mlx5_flow_ops = {
631 	.validate = mlx5_flow_validate,
632 	.create = mlx5_flow_create,
633 	.destroy = mlx5_flow_destroy,
634 	.flush = mlx5_flow_flush,
635 	.isolate = mlx5_flow_isolate,
636 	.query = mlx5_flow_query,
637 	.dev_dump = mlx5_flow_dev_dump,
638 	.get_aged_flows = mlx5_flow_get_aged_flows,
639 	.shared_action_create = mlx5_shared_action_create,
640 	.shared_action_destroy = mlx5_shared_action_destroy,
641 	.shared_action_update = mlx5_shared_action_update,
642 	.shared_action_query = mlx5_shared_action_query,
643 	.tunnel_decap_set = mlx5_flow_tunnel_decap_set,
644 	.tunnel_match = mlx5_flow_tunnel_match,
645 	.tunnel_action_decap_release = mlx5_flow_tunnel_action_release,
646 	.tunnel_item_release = mlx5_flow_tunnel_item_release,
647 	.get_restore_info = mlx5_flow_tunnel_get_restore_info,
648 };
649 
650 /* Tunnel information. */
651 struct mlx5_flow_tunnel_info {
652 	uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
653 	uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
654 };
655 
656 static struct mlx5_flow_tunnel_info tunnels_info[] = {
657 	{
658 		.tunnel = MLX5_FLOW_LAYER_VXLAN,
659 		.ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
660 	},
661 	{
662 		.tunnel = MLX5_FLOW_LAYER_GENEVE,
663 		.ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
664 	},
665 	{
666 		.tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
667 		.ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
668 	},
669 	{
670 		.tunnel = MLX5_FLOW_LAYER_GRE,
671 		.ptype = RTE_PTYPE_TUNNEL_GRE,
672 	},
673 	{
674 		.tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
675 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
676 	},
677 	{
678 		.tunnel = MLX5_FLOW_LAYER_MPLS,
679 		.ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
680 	},
681 	{
682 		.tunnel = MLX5_FLOW_LAYER_NVGRE,
683 		.ptype = RTE_PTYPE_TUNNEL_NVGRE,
684 	},
685 	{
686 		.tunnel = MLX5_FLOW_LAYER_IPIP,
687 		.ptype = RTE_PTYPE_TUNNEL_IP,
688 	},
689 	{
690 		.tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
691 		.ptype = RTE_PTYPE_TUNNEL_IP,
692 	},
693 	{
694 		.tunnel = MLX5_FLOW_LAYER_GTP,
695 		.ptype = RTE_PTYPE_TUNNEL_GTPU,
696 	},
697 };
698 
699 /* Key of thread specific flow workspace data. */
700 static pthread_key_t key_workspace;
701 
702 /* Thread specific flow workspace data once initialization data. */
703 static pthread_once_t key_workspace_init;
704 
705 
706 /**
707  * Translate tag ID to register.
708  *
709  * @param[in] dev
710  *   Pointer to the Ethernet device structure.
711  * @param[in] feature
712  *   The feature that request the register.
713  * @param[in] id
714  *   The request register ID.
715  * @param[out] error
716  *   Error description in case of any.
717  *
718  * @return
719  *   The request register on success, a negative errno
720  *   value otherwise and rte_errno is set.
721  */
722 int
723 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
724 		     enum mlx5_feature_name feature,
725 		     uint32_t id,
726 		     struct rte_flow_error *error)
727 {
728 	struct mlx5_priv *priv = dev->data->dev_private;
729 	struct mlx5_dev_config *config = &priv->config;
730 	enum modify_reg start_reg;
731 	bool skip_mtr_reg = false;
732 
733 	switch (feature) {
734 	case MLX5_HAIRPIN_RX:
735 		return REG_B;
736 	case MLX5_HAIRPIN_TX:
737 		return REG_A;
738 	case MLX5_METADATA_RX:
739 		switch (config->dv_xmeta_en) {
740 		case MLX5_XMETA_MODE_LEGACY:
741 			return REG_B;
742 		case MLX5_XMETA_MODE_META16:
743 			return REG_C_0;
744 		case MLX5_XMETA_MODE_META32:
745 			return REG_C_1;
746 		}
747 		break;
748 	case MLX5_METADATA_TX:
749 		return REG_A;
750 	case MLX5_METADATA_FDB:
751 		switch (config->dv_xmeta_en) {
752 		case MLX5_XMETA_MODE_LEGACY:
753 			return REG_NON;
754 		case MLX5_XMETA_MODE_META16:
755 			return REG_C_0;
756 		case MLX5_XMETA_MODE_META32:
757 			return REG_C_1;
758 		}
759 		break;
760 	case MLX5_FLOW_MARK:
761 		switch (config->dv_xmeta_en) {
762 		case MLX5_XMETA_MODE_LEGACY:
763 			return REG_NON;
764 		case MLX5_XMETA_MODE_META16:
765 			return REG_C_1;
766 		case MLX5_XMETA_MODE_META32:
767 			return REG_C_0;
768 		}
769 		break;
770 	case MLX5_MTR_SFX:
771 		/*
772 		 * If meter color and flow match share one register, flow match
773 		 * should use the meter color register for match.
774 		 */
775 		if (priv->mtr_reg_share)
776 			return priv->mtr_color_reg;
777 		else
778 			return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
779 			       REG_C_3;
780 	case MLX5_MTR_COLOR:
781 	case MLX5_ASO_FLOW_HIT: /* Both features use the same REG_C. */
782 		MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
783 		return priv->mtr_color_reg;
784 	case MLX5_COPY_MARK:
785 		/*
786 		 * Metadata COPY_MARK register using is in meter suffix sub
787 		 * flow while with meter. It's safe to share the same register.
788 		 */
789 		return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
790 	case MLX5_APP_TAG:
791 		/*
792 		 * If meter is enable, it will engage the register for color
793 		 * match and flow match. If meter color match is not using the
794 		 * REG_C_2, need to skip the REG_C_x be used by meter color
795 		 * match.
796 		 * If meter is disable, free to use all available registers.
797 		 */
798 		start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
799 			    (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
800 		skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
801 		if (id > (REG_C_7 - start_reg))
802 			return rte_flow_error_set(error, EINVAL,
803 						  RTE_FLOW_ERROR_TYPE_ITEM,
804 						  NULL, "invalid tag id");
805 		if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
806 			return rte_flow_error_set(error, ENOTSUP,
807 						  RTE_FLOW_ERROR_TYPE_ITEM,
808 						  NULL, "unsupported tag id");
809 		/*
810 		 * This case means meter is using the REG_C_x great than 2.
811 		 * Take care not to conflict with meter color REG_C_x.
812 		 * If the available index REG_C_y >= REG_C_x, skip the
813 		 * color register.
814 		 */
815 		if (skip_mtr_reg && config->flow_mreg_c
816 		    [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
817 			if (id >= (REG_C_7 - start_reg))
818 				return rte_flow_error_set(error, EINVAL,
819 						       RTE_FLOW_ERROR_TYPE_ITEM,
820 							NULL, "invalid tag id");
821 			if (config->flow_mreg_c
822 			    [id + 1 + start_reg - REG_C_0] != REG_NON)
823 				return config->flow_mreg_c
824 					       [id + 1 + start_reg - REG_C_0];
825 			return rte_flow_error_set(error, ENOTSUP,
826 						  RTE_FLOW_ERROR_TYPE_ITEM,
827 						  NULL, "unsupported tag id");
828 		}
829 		return config->flow_mreg_c[id + start_reg - REG_C_0];
830 	}
831 	MLX5_ASSERT(false);
832 	return rte_flow_error_set(error, EINVAL,
833 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
834 				  NULL, "invalid feature name");
835 }
836 
837 /**
838  * Check extensive flow metadata register support.
839  *
840  * @param dev
841  *   Pointer to rte_eth_dev structure.
842  *
843  * @return
844  *   True if device supports extensive flow metadata register, otherwise false.
845  */
846 bool
847 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
848 {
849 	struct mlx5_priv *priv = dev->data->dev_private;
850 	struct mlx5_dev_config *config = &priv->config;
851 
852 	/*
853 	 * Having available reg_c can be regarded inclusively as supporting
854 	 * extensive flow metadata register, which could mean,
855 	 * - metadata register copy action by modify header.
856 	 * - 16 modify header actions is supported.
857 	 * - reg_c's are preserved across different domain (FDB and NIC) on
858 	 *   packet loopback by flow lookup miss.
859 	 */
860 	return config->flow_mreg_c[2] != REG_NON;
861 }
862 
863 /**
864  * Verify the @p item specifications (spec, last, mask) are compatible with the
865  * NIC capabilities.
866  *
867  * @param[in] item
868  *   Item specification.
869  * @param[in] mask
870  *   @p item->mask or flow default bit-masks.
871  * @param[in] nic_mask
872  *   Bit-masks covering supported fields by the NIC to compare with user mask.
873  * @param[in] size
874  *   Bit-masks size in bytes.
875  * @param[in] range_accepted
876  *   True if range of values is accepted for specific fields, false otherwise.
877  * @param[out] error
878  *   Pointer to error structure.
879  *
880  * @return
881  *   0 on success, a negative errno value otherwise and rte_errno is set.
882  */
883 int
884 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
885 			  const uint8_t *mask,
886 			  const uint8_t *nic_mask,
887 			  unsigned int size,
888 			  bool range_accepted,
889 			  struct rte_flow_error *error)
890 {
891 	unsigned int i;
892 
893 	MLX5_ASSERT(nic_mask);
894 	for (i = 0; i < size; ++i)
895 		if ((nic_mask[i] | mask[i]) != nic_mask[i])
896 			return rte_flow_error_set(error, ENOTSUP,
897 						  RTE_FLOW_ERROR_TYPE_ITEM,
898 						  item,
899 						  "mask enables non supported"
900 						  " bits");
901 	if (!item->spec && (item->mask || item->last))
902 		return rte_flow_error_set(error, EINVAL,
903 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
904 					  "mask/last without a spec is not"
905 					  " supported");
906 	if (item->spec && item->last && !range_accepted) {
907 		uint8_t spec[size];
908 		uint8_t last[size];
909 		unsigned int i;
910 		int ret;
911 
912 		for (i = 0; i < size; ++i) {
913 			spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
914 			last[i] = ((const uint8_t *)item->last)[i] & mask[i];
915 		}
916 		ret = memcmp(spec, last, size);
917 		if (ret != 0)
918 			return rte_flow_error_set(error, EINVAL,
919 						  RTE_FLOW_ERROR_TYPE_ITEM,
920 						  item,
921 						  "range is not valid");
922 	}
923 	return 0;
924 }
925 
926 /**
927  * Adjust the hash fields according to the @p flow information.
928  *
929  * @param[in] dev_flow.
930  *   Pointer to the mlx5_flow.
931  * @param[in] tunnel
932  *   1 when the hash field is for a tunnel item.
933  * @param[in] layer_types
934  *   ETH_RSS_* types.
935  * @param[in] hash_fields
936  *   Item hash fields.
937  *
938  * @return
939  *   The hash fields that should be used.
940  */
941 uint64_t
942 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
943 			    int tunnel __rte_unused, uint64_t layer_types,
944 			    uint64_t hash_fields)
945 {
946 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
947 	int rss_request_inner = rss_desc->level >= 2;
948 
949 	/* Check RSS hash level for tunnel. */
950 	if (tunnel && rss_request_inner)
951 		hash_fields |= IBV_RX_HASH_INNER;
952 	else if (tunnel || rss_request_inner)
953 		return 0;
954 #endif
955 	/* Check if requested layer matches RSS hash fields. */
956 	if (!(rss_desc->types & layer_types))
957 		return 0;
958 	return hash_fields;
959 }
960 
961 /**
962  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
963  * if several tunnel rules are used on this queue, the tunnel ptype will be
964  * cleared.
965  *
966  * @param rxq_ctrl
967  *   Rx queue to update.
968  */
969 static void
970 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
971 {
972 	unsigned int i;
973 	uint32_t tunnel_ptype = 0;
974 
975 	/* Look up for the ptype to use. */
976 	for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
977 		if (!rxq_ctrl->flow_tunnels_n[i])
978 			continue;
979 		if (!tunnel_ptype) {
980 			tunnel_ptype = tunnels_info[i].ptype;
981 		} else {
982 			tunnel_ptype = 0;
983 			break;
984 		}
985 	}
986 	rxq_ctrl->rxq.tunnel = tunnel_ptype;
987 }
988 
989 /**
990  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
991  * flow.
992  *
993  * @param[in] dev
994  *   Pointer to the Ethernet device structure.
995  * @param[in] dev_handle
996  *   Pointer to device flow handle structure.
997  */
998 static void
999 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
1000 		       struct mlx5_flow_handle *dev_handle)
1001 {
1002 	struct mlx5_priv *priv = dev->data->dev_private;
1003 	const int mark = dev_handle->mark;
1004 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1005 	struct mlx5_hrxq *hrxq;
1006 	unsigned int i;
1007 
1008 	if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE)
1009 		return;
1010 	hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1011 			      dev_handle->rix_hrxq);
1012 	if (!hrxq)
1013 		return;
1014 	for (i = 0; i != hrxq->ind_table->queues_n; ++i) {
1015 		int idx = hrxq->ind_table->queues[i];
1016 		struct mlx5_rxq_ctrl *rxq_ctrl =
1017 			container_of((*priv->rxqs)[idx],
1018 				     struct mlx5_rxq_ctrl, rxq);
1019 
1020 		/*
1021 		 * To support metadata register copy on Tx loopback,
1022 		 * this must be always enabled (metadata may arive
1023 		 * from other port - not from local flows only.
1024 		 */
1025 		if (priv->config.dv_flow_en &&
1026 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1027 		    mlx5_flow_ext_mreg_supported(dev)) {
1028 			rxq_ctrl->rxq.mark = 1;
1029 			rxq_ctrl->flow_mark_n = 1;
1030 		} else if (mark) {
1031 			rxq_ctrl->rxq.mark = 1;
1032 			rxq_ctrl->flow_mark_n++;
1033 		}
1034 		if (tunnel) {
1035 			unsigned int j;
1036 
1037 			/* Increase the counter matching the flow. */
1038 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1039 				if ((tunnels_info[j].tunnel &
1040 				     dev_handle->layers) ==
1041 				    tunnels_info[j].tunnel) {
1042 					rxq_ctrl->flow_tunnels_n[j]++;
1043 					break;
1044 				}
1045 			}
1046 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1047 		}
1048 	}
1049 }
1050 
1051 /**
1052  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
1053  *
1054  * @param[in] dev
1055  *   Pointer to the Ethernet device structure.
1056  * @param[in] flow
1057  *   Pointer to flow structure.
1058  */
1059 static void
1060 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
1061 {
1062 	struct mlx5_priv *priv = dev->data->dev_private;
1063 	uint32_t handle_idx;
1064 	struct mlx5_flow_handle *dev_handle;
1065 
1066 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1067 		       handle_idx, dev_handle, next)
1068 		flow_drv_rxq_flags_set(dev, dev_handle);
1069 }
1070 
1071 /**
1072  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1073  * device flow if no other flow uses it with the same kind of request.
1074  *
1075  * @param dev
1076  *   Pointer to Ethernet device.
1077  * @param[in] dev_handle
1078  *   Pointer to the device flow handle structure.
1079  */
1080 static void
1081 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1082 			struct mlx5_flow_handle *dev_handle)
1083 {
1084 	struct mlx5_priv *priv = dev->data->dev_private;
1085 	const int mark = dev_handle->mark;
1086 	const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1087 	struct mlx5_hrxq *hrxq;
1088 	unsigned int i;
1089 
1090 	if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE)
1091 		return;
1092 	hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1093 			      dev_handle->rix_hrxq);
1094 	if (!hrxq)
1095 		return;
1096 	MLX5_ASSERT(dev->data->dev_started);
1097 	for (i = 0; i != hrxq->ind_table->queues_n; ++i) {
1098 		int idx = hrxq->ind_table->queues[i];
1099 		struct mlx5_rxq_ctrl *rxq_ctrl =
1100 			container_of((*priv->rxqs)[idx],
1101 				     struct mlx5_rxq_ctrl, rxq);
1102 
1103 		if (priv->config.dv_flow_en &&
1104 		    priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1105 		    mlx5_flow_ext_mreg_supported(dev)) {
1106 			rxq_ctrl->rxq.mark = 1;
1107 			rxq_ctrl->flow_mark_n = 1;
1108 		} else if (mark) {
1109 			rxq_ctrl->flow_mark_n--;
1110 			rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
1111 		}
1112 		if (tunnel) {
1113 			unsigned int j;
1114 
1115 			/* Decrease the counter matching the flow. */
1116 			for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1117 				if ((tunnels_info[j].tunnel &
1118 				     dev_handle->layers) ==
1119 				    tunnels_info[j].tunnel) {
1120 					rxq_ctrl->flow_tunnels_n[j]--;
1121 					break;
1122 				}
1123 			}
1124 			flow_rxq_tunnel_ptype_update(rxq_ctrl);
1125 		}
1126 	}
1127 }
1128 
1129 /**
1130  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1131  * @p flow if no other flow uses it with the same kind of request.
1132  *
1133  * @param dev
1134  *   Pointer to Ethernet device.
1135  * @param[in] flow
1136  *   Pointer to the flow.
1137  */
1138 static void
1139 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1140 {
1141 	struct mlx5_priv *priv = dev->data->dev_private;
1142 	uint32_t handle_idx;
1143 	struct mlx5_flow_handle *dev_handle;
1144 
1145 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1146 		       handle_idx, dev_handle, next)
1147 		flow_drv_rxq_flags_trim(dev, dev_handle);
1148 }
1149 
1150 /**
1151  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1152  *
1153  * @param dev
1154  *   Pointer to Ethernet device.
1155  */
1156 static void
1157 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1158 {
1159 	struct mlx5_priv *priv = dev->data->dev_private;
1160 	unsigned int i;
1161 
1162 	for (i = 0; i != priv->rxqs_n; ++i) {
1163 		struct mlx5_rxq_ctrl *rxq_ctrl;
1164 		unsigned int j;
1165 
1166 		if (!(*priv->rxqs)[i])
1167 			continue;
1168 		rxq_ctrl = container_of((*priv->rxqs)[i],
1169 					struct mlx5_rxq_ctrl, rxq);
1170 		rxq_ctrl->flow_mark_n = 0;
1171 		rxq_ctrl->rxq.mark = 0;
1172 		for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1173 			rxq_ctrl->flow_tunnels_n[j] = 0;
1174 		rxq_ctrl->rxq.tunnel = 0;
1175 	}
1176 }
1177 
1178 /**
1179  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1180  *
1181  * @param[in] dev
1182  *   Pointer to the Ethernet device structure.
1183  */
1184 void
1185 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1186 {
1187 	struct mlx5_priv *priv = dev->data->dev_private;
1188 	struct mlx5_rxq_data *data;
1189 	unsigned int i;
1190 
1191 	for (i = 0; i != priv->rxqs_n; ++i) {
1192 		if (!(*priv->rxqs)[i])
1193 			continue;
1194 		data = (*priv->rxqs)[i];
1195 		if (!rte_flow_dynf_metadata_avail()) {
1196 			data->dynf_meta = 0;
1197 			data->flow_meta_mask = 0;
1198 			data->flow_meta_offset = -1;
1199 		} else {
1200 			data->dynf_meta = 1;
1201 			data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1202 			data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1203 		}
1204 	}
1205 }
1206 
1207 /*
1208  * return a pointer to the desired action in the list of actions.
1209  *
1210  * @param[in] actions
1211  *   The list of actions to search the action in.
1212  * @param[in] action
1213  *   The action to find.
1214  *
1215  * @return
1216  *   Pointer to the action in the list, if found. NULL otherwise.
1217  */
1218 const struct rte_flow_action *
1219 mlx5_flow_find_action(const struct rte_flow_action *actions,
1220 		      enum rte_flow_action_type action)
1221 {
1222 	if (actions == NULL)
1223 		return NULL;
1224 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1225 		if (actions->type == action)
1226 			return actions;
1227 	return NULL;
1228 }
1229 
1230 /*
1231  * Validate the flag action.
1232  *
1233  * @param[in] action_flags
1234  *   Bit-fields that holds the actions detected until now.
1235  * @param[in] attr
1236  *   Attributes of flow that includes this action.
1237  * @param[out] error
1238  *   Pointer to error structure.
1239  *
1240  * @return
1241  *   0 on success, a negative errno value otherwise and rte_errno is set.
1242  */
1243 int
1244 mlx5_flow_validate_action_flag(uint64_t action_flags,
1245 			       const struct rte_flow_attr *attr,
1246 			       struct rte_flow_error *error)
1247 {
1248 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1249 		return rte_flow_error_set(error, EINVAL,
1250 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1251 					  "can't mark and flag in same flow");
1252 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1253 		return rte_flow_error_set(error, EINVAL,
1254 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1255 					  "can't have 2 flag"
1256 					  " actions in same flow");
1257 	if (attr->egress)
1258 		return rte_flow_error_set(error, ENOTSUP,
1259 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1260 					  "flag action not supported for "
1261 					  "egress");
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Validate the mark action.
1267  *
1268  * @param[in] action
1269  *   Pointer to the queue action.
1270  * @param[in] action_flags
1271  *   Bit-fields that holds the actions detected until now.
1272  * @param[in] attr
1273  *   Attributes of flow that includes this action.
1274  * @param[out] error
1275  *   Pointer to error structure.
1276  *
1277  * @return
1278  *   0 on success, a negative errno value otherwise and rte_errno is set.
1279  */
1280 int
1281 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1282 			       uint64_t action_flags,
1283 			       const struct rte_flow_attr *attr,
1284 			       struct rte_flow_error *error)
1285 {
1286 	const struct rte_flow_action_mark *mark = action->conf;
1287 
1288 	if (!mark)
1289 		return rte_flow_error_set(error, EINVAL,
1290 					  RTE_FLOW_ERROR_TYPE_ACTION,
1291 					  action,
1292 					  "configuration cannot be null");
1293 	if (mark->id >= MLX5_FLOW_MARK_MAX)
1294 		return rte_flow_error_set(error, EINVAL,
1295 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1296 					  &mark->id,
1297 					  "mark id must in 0 <= id < "
1298 					  RTE_STR(MLX5_FLOW_MARK_MAX));
1299 	if (action_flags & MLX5_FLOW_ACTION_FLAG)
1300 		return rte_flow_error_set(error, EINVAL,
1301 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1302 					  "can't flag and mark in same flow");
1303 	if (action_flags & MLX5_FLOW_ACTION_MARK)
1304 		return rte_flow_error_set(error, EINVAL,
1305 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1306 					  "can't have 2 mark actions in same"
1307 					  " flow");
1308 	if (attr->egress)
1309 		return rte_flow_error_set(error, ENOTSUP,
1310 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1311 					  "mark action not supported for "
1312 					  "egress");
1313 	return 0;
1314 }
1315 
1316 /*
1317  * Validate the drop action.
1318  *
1319  * @param[in] action_flags
1320  *   Bit-fields that holds the actions detected until now.
1321  * @param[in] attr
1322  *   Attributes of flow that includes this action.
1323  * @param[out] error
1324  *   Pointer to error structure.
1325  *
1326  * @return
1327  *   0 on success, a negative errno value otherwise and rte_errno is set.
1328  */
1329 int
1330 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1331 			       const struct rte_flow_attr *attr,
1332 			       struct rte_flow_error *error)
1333 {
1334 	if (attr->egress)
1335 		return rte_flow_error_set(error, ENOTSUP,
1336 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1337 					  "drop action not supported for "
1338 					  "egress");
1339 	return 0;
1340 }
1341 
1342 /*
1343  * Validate the queue action.
1344  *
1345  * @param[in] action
1346  *   Pointer to the queue action.
1347  * @param[in] action_flags
1348  *   Bit-fields that holds the actions detected until now.
1349  * @param[in] dev
1350  *   Pointer to the Ethernet device structure.
1351  * @param[in] attr
1352  *   Attributes of flow that includes this action.
1353  * @param[out] error
1354  *   Pointer to error structure.
1355  *
1356  * @return
1357  *   0 on success, a negative errno value otherwise and rte_errno is set.
1358  */
1359 int
1360 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1361 				uint64_t action_flags,
1362 				struct rte_eth_dev *dev,
1363 				const struct rte_flow_attr *attr,
1364 				struct rte_flow_error *error)
1365 {
1366 	struct mlx5_priv *priv = dev->data->dev_private;
1367 	const struct rte_flow_action_queue *queue = action->conf;
1368 
1369 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1370 		return rte_flow_error_set(error, EINVAL,
1371 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1372 					  "can't have 2 fate actions in"
1373 					  " same flow");
1374 	if (!priv->rxqs_n)
1375 		return rte_flow_error_set(error, EINVAL,
1376 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1377 					  NULL, "No Rx queues configured");
1378 	if (queue->index >= priv->rxqs_n)
1379 		return rte_flow_error_set(error, EINVAL,
1380 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1381 					  &queue->index,
1382 					  "queue index out of range");
1383 	if (!(*priv->rxqs)[queue->index])
1384 		return rte_flow_error_set(error, EINVAL,
1385 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1386 					  &queue->index,
1387 					  "queue is not configured");
1388 	if (attr->egress)
1389 		return rte_flow_error_set(error, ENOTSUP,
1390 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1391 					  "queue action not supported for "
1392 					  "egress");
1393 	return 0;
1394 }
1395 
1396 /*
1397  * Validate the rss action.
1398  *
1399  * @param[in] dev
1400  *   Pointer to the Ethernet device structure.
1401  * @param[in] action
1402  *   Pointer to the queue action.
1403  * @param[out] error
1404  *   Pointer to error structure.
1405  *
1406  * @return
1407  *   0 on success, a negative errno value otherwise and rte_errno is set.
1408  */
1409 int
1410 mlx5_validate_action_rss(struct rte_eth_dev *dev,
1411 			 const struct rte_flow_action *action,
1412 			 struct rte_flow_error *error)
1413 {
1414 	struct mlx5_priv *priv = dev->data->dev_private;
1415 	const struct rte_flow_action_rss *rss = action->conf;
1416 	enum mlx5_rxq_type rxq_type = MLX5_RXQ_TYPE_UNDEFINED;
1417 	unsigned int i;
1418 
1419 	if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1420 	    rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1421 		return rte_flow_error_set(error, ENOTSUP,
1422 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1423 					  &rss->func,
1424 					  "RSS hash function not supported");
1425 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1426 	if (rss->level > 2)
1427 #else
1428 	if (rss->level > 1)
1429 #endif
1430 		return rte_flow_error_set(error, ENOTSUP,
1431 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1432 					  &rss->level,
1433 					  "tunnel RSS is not supported");
1434 	/* allow RSS key_len 0 in case of NULL (default) RSS key. */
1435 	if (rss->key_len == 0 && rss->key != NULL)
1436 		return rte_flow_error_set(error, ENOTSUP,
1437 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1438 					  &rss->key_len,
1439 					  "RSS hash key length 0");
1440 	if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1441 		return rte_flow_error_set(error, ENOTSUP,
1442 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1443 					  &rss->key_len,
1444 					  "RSS hash key too small");
1445 	if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1446 		return rte_flow_error_set(error, ENOTSUP,
1447 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1448 					  &rss->key_len,
1449 					  "RSS hash key too large");
1450 	if (rss->queue_num > priv->config.ind_table_max_size)
1451 		return rte_flow_error_set(error, ENOTSUP,
1452 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1453 					  &rss->queue_num,
1454 					  "number of queues too large");
1455 	if (rss->types & MLX5_RSS_HF_MASK)
1456 		return rte_flow_error_set(error, ENOTSUP,
1457 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1458 					  &rss->types,
1459 					  "some RSS protocols are not"
1460 					  " supported");
1461 	if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) &&
1462 	    !(rss->types & ETH_RSS_IP))
1463 		return rte_flow_error_set(error, EINVAL,
1464 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1465 					  "L3 partial RSS requested but L3 RSS"
1466 					  " type not specified");
1467 	if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) &&
1468 	    !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP)))
1469 		return rte_flow_error_set(error, EINVAL,
1470 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1471 					  "L4 partial RSS requested but L4 RSS"
1472 					  " type not specified");
1473 	if (!priv->rxqs_n)
1474 		return rte_flow_error_set(error, EINVAL,
1475 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1476 					  NULL, "No Rx queues configured");
1477 	if (!rss->queue_num)
1478 		return rte_flow_error_set(error, EINVAL,
1479 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1480 					  NULL, "No queues configured");
1481 	for (i = 0; i != rss->queue_num; ++i) {
1482 		struct mlx5_rxq_ctrl *rxq_ctrl;
1483 
1484 		if (rss->queue[i] >= priv->rxqs_n)
1485 			return rte_flow_error_set
1486 				(error, EINVAL,
1487 				 RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1488 				 &rss->queue[i], "queue index out of range");
1489 		if (!(*priv->rxqs)[rss->queue[i]])
1490 			return rte_flow_error_set
1491 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1492 				 &rss->queue[i], "queue is not configured");
1493 		rxq_ctrl = container_of((*priv->rxqs)[rss->queue[i]],
1494 					struct mlx5_rxq_ctrl, rxq);
1495 		if (i == 0)
1496 			rxq_type = rxq_ctrl->type;
1497 		if (rxq_type != rxq_ctrl->type)
1498 			return rte_flow_error_set
1499 				(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1500 				 &rss->queue[i],
1501 				 "combining hairpin and regular RSS queues is not supported");
1502 	}
1503 	return 0;
1504 }
1505 
1506 /*
1507  * Validate the rss action.
1508  *
1509  * @param[in] action
1510  *   Pointer to the queue action.
1511  * @param[in] action_flags
1512  *   Bit-fields that holds the actions detected until now.
1513  * @param[in] dev
1514  *   Pointer to the Ethernet device structure.
1515  * @param[in] attr
1516  *   Attributes of flow that includes this action.
1517  * @param[in] item_flags
1518  *   Items that were detected.
1519  * @param[out] error
1520  *   Pointer to error structure.
1521  *
1522  * @return
1523  *   0 on success, a negative errno value otherwise and rte_errno is set.
1524  */
1525 int
1526 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1527 			      uint64_t action_flags,
1528 			      struct rte_eth_dev *dev,
1529 			      const struct rte_flow_attr *attr,
1530 			      uint64_t item_flags,
1531 			      struct rte_flow_error *error)
1532 {
1533 	const struct rte_flow_action_rss *rss = action->conf;
1534 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1535 	int ret;
1536 
1537 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1538 		return rte_flow_error_set(error, EINVAL,
1539 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1540 					  "can't have 2 fate actions"
1541 					  " in same flow");
1542 	ret = mlx5_validate_action_rss(dev, action, error);
1543 	if (ret)
1544 		return ret;
1545 	if (attr->egress)
1546 		return rte_flow_error_set(error, ENOTSUP,
1547 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1548 					  "rss action not supported for "
1549 					  "egress");
1550 	if (rss->level > 1 && !tunnel)
1551 		return rte_flow_error_set(error, EINVAL,
1552 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1553 					  "inner RSS is not supported for "
1554 					  "non-tunnel flows");
1555 	if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1556 	    !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1557 		return rte_flow_error_set(error, EINVAL,
1558 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1559 					  "RSS on eCPRI is not supported now");
1560 	}
1561 	return 0;
1562 }
1563 
1564 /*
1565  * Validate the default miss action.
1566  *
1567  * @param[in] action_flags
1568  *   Bit-fields that holds the actions detected until now.
1569  * @param[out] error
1570  *   Pointer to error structure.
1571  *
1572  * @return
1573  *   0 on success, a negative errno value otherwise and rte_errno is set.
1574  */
1575 int
1576 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
1577 				const struct rte_flow_attr *attr,
1578 				struct rte_flow_error *error)
1579 {
1580 	if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1581 		return rte_flow_error_set(error, EINVAL,
1582 					  RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1583 					  "can't have 2 fate actions in"
1584 					  " same flow");
1585 	if (attr->egress)
1586 		return rte_flow_error_set(error, ENOTSUP,
1587 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1588 					  "default miss action not supported "
1589 					  "for egress");
1590 	if (attr->group)
1591 		return rte_flow_error_set(error, ENOTSUP,
1592 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
1593 					  "only group 0 is supported");
1594 	if (attr->transfer)
1595 		return rte_flow_error_set(error, ENOTSUP,
1596 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1597 					  NULL, "transfer is not supported");
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Validate the count action.
1603  *
1604  * @param[in] dev
1605  *   Pointer to the Ethernet device structure.
1606  * @param[in] attr
1607  *   Attributes of flow that includes this action.
1608  * @param[out] error
1609  *   Pointer to error structure.
1610  *
1611  * @return
1612  *   0 on success, a negative errno value otherwise and rte_errno is set.
1613  */
1614 int
1615 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1616 				const struct rte_flow_attr *attr,
1617 				struct rte_flow_error *error)
1618 {
1619 	if (attr->egress)
1620 		return rte_flow_error_set(error, ENOTSUP,
1621 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1622 					  "count action not supported for "
1623 					  "egress");
1624 	return 0;
1625 }
1626 
1627 /**
1628  * Verify the @p attributes will be correctly understood by the NIC and store
1629  * them in the @p flow if everything is correct.
1630  *
1631  * @param[in] dev
1632  *   Pointer to the Ethernet device structure.
1633  * @param[in] attributes
1634  *   Pointer to flow attributes
1635  * @param[out] error
1636  *   Pointer to error structure.
1637  *
1638  * @return
1639  *   0 on success, a negative errno value otherwise and rte_errno is set.
1640  */
1641 int
1642 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1643 			      const struct rte_flow_attr *attributes,
1644 			      struct rte_flow_error *error)
1645 {
1646 	struct mlx5_priv *priv = dev->data->dev_private;
1647 	uint32_t priority_max = priv->config.flow_prio - 1;
1648 
1649 	if (attributes->group)
1650 		return rte_flow_error_set(error, ENOTSUP,
1651 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1652 					  NULL, "groups is not supported");
1653 	if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1654 	    attributes->priority >= priority_max)
1655 		return rte_flow_error_set(error, ENOTSUP,
1656 					  RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1657 					  NULL, "priority out of range");
1658 	if (attributes->egress)
1659 		return rte_flow_error_set(error, ENOTSUP,
1660 					  RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1661 					  "egress is not supported");
1662 	if (attributes->transfer && !priv->config.dv_esw_en)
1663 		return rte_flow_error_set(error, ENOTSUP,
1664 					  RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1665 					  NULL, "transfer is not supported");
1666 	if (!attributes->ingress)
1667 		return rte_flow_error_set(error, EINVAL,
1668 					  RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1669 					  NULL,
1670 					  "ingress attribute is mandatory");
1671 	return 0;
1672 }
1673 
1674 /**
1675  * Validate ICMP6 item.
1676  *
1677  * @param[in] item
1678  *   Item specification.
1679  * @param[in] item_flags
1680  *   Bit-fields that holds the items detected until now.
1681  * @param[in] ext_vlan_sup
1682  *   Whether extended VLAN features are supported or not.
1683  * @param[out] error
1684  *   Pointer to error structure.
1685  *
1686  * @return
1687  *   0 on success, a negative errno value otherwise and rte_errno is set.
1688  */
1689 int
1690 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1691 			       uint64_t item_flags,
1692 			       uint8_t target_protocol,
1693 			       struct rte_flow_error *error)
1694 {
1695 	const struct rte_flow_item_icmp6 *mask = item->mask;
1696 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1697 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1698 				      MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1699 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1700 				      MLX5_FLOW_LAYER_OUTER_L4;
1701 	int ret;
1702 
1703 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1704 		return rte_flow_error_set(error, EINVAL,
1705 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1706 					  "protocol filtering not compatible"
1707 					  " with ICMP6 layer");
1708 	if (!(item_flags & l3m))
1709 		return rte_flow_error_set(error, EINVAL,
1710 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1711 					  "IPv6 is mandatory to filter on"
1712 					  " ICMP6");
1713 	if (item_flags & l4m)
1714 		return rte_flow_error_set(error, EINVAL,
1715 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1716 					  "multiple L4 layers not supported");
1717 	if (!mask)
1718 		mask = &rte_flow_item_icmp6_mask;
1719 	ret = mlx5_flow_item_acceptable
1720 		(item, (const uint8_t *)mask,
1721 		 (const uint8_t *)&rte_flow_item_icmp6_mask,
1722 		 sizeof(struct rte_flow_item_icmp6),
1723 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1724 	if (ret < 0)
1725 		return ret;
1726 	return 0;
1727 }
1728 
1729 /**
1730  * Validate ICMP item.
1731  *
1732  * @param[in] item
1733  *   Item specification.
1734  * @param[in] item_flags
1735  *   Bit-fields that holds the items detected until now.
1736  * @param[out] error
1737  *   Pointer to error structure.
1738  *
1739  * @return
1740  *   0 on success, a negative errno value otherwise and rte_errno is set.
1741  */
1742 int
1743 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1744 			     uint64_t item_flags,
1745 			     uint8_t target_protocol,
1746 			     struct rte_flow_error *error)
1747 {
1748 	const struct rte_flow_item_icmp *mask = item->mask;
1749 	const struct rte_flow_item_icmp nic_mask = {
1750 		.hdr.icmp_type = 0xff,
1751 		.hdr.icmp_code = 0xff,
1752 		.hdr.icmp_ident = RTE_BE16(0xffff),
1753 		.hdr.icmp_seq_nb = RTE_BE16(0xffff),
1754 	};
1755 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1756 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1757 				      MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1758 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1759 				      MLX5_FLOW_LAYER_OUTER_L4;
1760 	int ret;
1761 
1762 	if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1763 		return rte_flow_error_set(error, EINVAL,
1764 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1765 					  "protocol filtering not compatible"
1766 					  " with ICMP layer");
1767 	if (!(item_flags & l3m))
1768 		return rte_flow_error_set(error, EINVAL,
1769 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1770 					  "IPv4 is mandatory to filter"
1771 					  " on ICMP");
1772 	if (item_flags & l4m)
1773 		return rte_flow_error_set(error, EINVAL,
1774 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1775 					  "multiple L4 layers not supported");
1776 	if (!mask)
1777 		mask = &nic_mask;
1778 	ret = mlx5_flow_item_acceptable
1779 		(item, (const uint8_t *)mask,
1780 		 (const uint8_t *)&nic_mask,
1781 		 sizeof(struct rte_flow_item_icmp),
1782 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1783 	if (ret < 0)
1784 		return ret;
1785 	return 0;
1786 }
1787 
1788 /**
1789  * Validate Ethernet item.
1790  *
1791  * @param[in] item
1792  *   Item specification.
1793  * @param[in] item_flags
1794  *   Bit-fields that holds the items detected until now.
1795  * @param[out] error
1796  *   Pointer to error structure.
1797  *
1798  * @return
1799  *   0 on success, a negative errno value otherwise and rte_errno is set.
1800  */
1801 int
1802 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1803 			    uint64_t item_flags, bool ext_vlan_sup,
1804 			    struct rte_flow_error *error)
1805 {
1806 	const struct rte_flow_item_eth *mask = item->mask;
1807 	const struct rte_flow_item_eth nic_mask = {
1808 		.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1809 		.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1810 		.type = RTE_BE16(0xffff),
1811 		.has_vlan = ext_vlan_sup ? 1 : 0,
1812 	};
1813 	int ret;
1814 	int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1815 	const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2	:
1816 				       MLX5_FLOW_LAYER_OUTER_L2;
1817 
1818 	if (item_flags & ethm)
1819 		return rte_flow_error_set(error, ENOTSUP,
1820 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1821 					  "multiple L2 layers not supported");
1822 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
1823 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
1824 		return rte_flow_error_set(error, EINVAL,
1825 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1826 					  "L2 layer should not follow "
1827 					  "L3 layers");
1828 	if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
1829 	    (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
1830 		return rte_flow_error_set(error, EINVAL,
1831 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1832 					  "L2 layer should not follow VLAN");
1833 	if (!mask)
1834 		mask = &rte_flow_item_eth_mask;
1835 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1836 					(const uint8_t *)&nic_mask,
1837 					sizeof(struct rte_flow_item_eth),
1838 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1839 	return ret;
1840 }
1841 
1842 /**
1843  * Validate VLAN item.
1844  *
1845  * @param[in] item
1846  *   Item specification.
1847  * @param[in] item_flags
1848  *   Bit-fields that holds the items detected until now.
1849  * @param[in] dev
1850  *   Ethernet device flow is being created on.
1851  * @param[out] error
1852  *   Pointer to error structure.
1853  *
1854  * @return
1855  *   0 on success, a negative errno value otherwise and rte_errno is set.
1856  */
1857 int
1858 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1859 			     uint64_t item_flags,
1860 			     struct rte_eth_dev *dev,
1861 			     struct rte_flow_error *error)
1862 {
1863 	const struct rte_flow_item_vlan *spec = item->spec;
1864 	const struct rte_flow_item_vlan *mask = item->mask;
1865 	const struct rte_flow_item_vlan nic_mask = {
1866 		.tci = RTE_BE16(UINT16_MAX),
1867 		.inner_type = RTE_BE16(UINT16_MAX),
1868 	};
1869 	uint16_t vlan_tag = 0;
1870 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1871 	int ret;
1872 	const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1873 					MLX5_FLOW_LAYER_INNER_L4) :
1874 				       (MLX5_FLOW_LAYER_OUTER_L3 |
1875 					MLX5_FLOW_LAYER_OUTER_L4);
1876 	const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1877 					MLX5_FLOW_LAYER_OUTER_VLAN;
1878 
1879 	if (item_flags & vlanm)
1880 		return rte_flow_error_set(error, EINVAL,
1881 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1882 					  "multiple VLAN layers not supported");
1883 	else if ((item_flags & l34m) != 0)
1884 		return rte_flow_error_set(error, EINVAL,
1885 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1886 					  "VLAN cannot follow L3/L4 layer");
1887 	if (!mask)
1888 		mask = &rte_flow_item_vlan_mask;
1889 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1890 					(const uint8_t *)&nic_mask,
1891 					sizeof(struct rte_flow_item_vlan),
1892 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
1893 	if (ret)
1894 		return ret;
1895 	if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1896 		struct mlx5_priv *priv = dev->data->dev_private;
1897 
1898 		if (priv->vmwa_context) {
1899 			/*
1900 			 * Non-NULL context means we have a virtual machine
1901 			 * and SR-IOV enabled, we have to create VLAN interface
1902 			 * to make hypervisor to setup E-Switch vport
1903 			 * context correctly. We avoid creating the multiple
1904 			 * VLAN interfaces, so we cannot support VLAN tag mask.
1905 			 */
1906 			return rte_flow_error_set(error, EINVAL,
1907 						  RTE_FLOW_ERROR_TYPE_ITEM,
1908 						  item,
1909 						  "VLAN tag mask is not"
1910 						  " supported in virtual"
1911 						  " environment");
1912 		}
1913 	}
1914 	if (spec) {
1915 		vlan_tag = spec->tci;
1916 		vlan_tag &= mask->tci;
1917 	}
1918 	/*
1919 	 * From verbs perspective an empty VLAN is equivalent
1920 	 * to a packet without VLAN layer.
1921 	 */
1922 	if (!vlan_tag)
1923 		return rte_flow_error_set(error, EINVAL,
1924 					  RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1925 					  item->spec,
1926 					  "VLAN cannot be empty");
1927 	return 0;
1928 }
1929 
1930 /**
1931  * Validate IPV4 item.
1932  *
1933  * @param[in] item
1934  *   Item specification.
1935  * @param[in] item_flags
1936  *   Bit-fields that holds the items detected until now.
1937  * @param[in] last_item
1938  *   Previous validated item in the pattern items.
1939  * @param[in] ether_type
1940  *   Type in the ethernet layer header (including dot1q).
1941  * @param[in] acc_mask
1942  *   Acceptable mask, if NULL default internal default mask
1943  *   will be used to check whether item fields are supported.
1944  * @param[in] range_accepted
1945  *   True if range of values is accepted for specific fields, false otherwise.
1946  * @param[out] error
1947  *   Pointer to error structure.
1948  *
1949  * @return
1950  *   0 on success, a negative errno value otherwise and rte_errno is set.
1951  */
1952 int
1953 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1954 			     uint64_t item_flags,
1955 			     uint64_t last_item,
1956 			     uint16_t ether_type,
1957 			     const struct rte_flow_item_ipv4 *acc_mask,
1958 			     bool range_accepted,
1959 			     struct rte_flow_error *error)
1960 {
1961 	const struct rte_flow_item_ipv4 *mask = item->mask;
1962 	const struct rte_flow_item_ipv4 *spec = item->spec;
1963 	const struct rte_flow_item_ipv4 nic_mask = {
1964 		.hdr = {
1965 			.src_addr = RTE_BE32(0xffffffff),
1966 			.dst_addr = RTE_BE32(0xffffffff),
1967 			.type_of_service = 0xff,
1968 			.next_proto_id = 0xff,
1969 		},
1970 	};
1971 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1972 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1973 				      MLX5_FLOW_LAYER_OUTER_L3;
1974 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1975 				      MLX5_FLOW_LAYER_OUTER_L4;
1976 	int ret;
1977 	uint8_t next_proto = 0xFF;
1978 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1979 				  MLX5_FLOW_LAYER_OUTER_VLAN |
1980 				  MLX5_FLOW_LAYER_INNER_VLAN);
1981 
1982 	if ((last_item & l2_vlan) && ether_type &&
1983 	    ether_type != RTE_ETHER_TYPE_IPV4)
1984 		return rte_flow_error_set(error, EINVAL,
1985 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
1986 					  "IPv4 cannot follow L2/VLAN layer "
1987 					  "which ether type is not IPv4");
1988 	if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1989 		if (mask && spec)
1990 			next_proto = mask->hdr.next_proto_id &
1991 				     spec->hdr.next_proto_id;
1992 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1993 			return rte_flow_error_set(error, EINVAL,
1994 						  RTE_FLOW_ERROR_TYPE_ITEM,
1995 						  item,
1996 						  "multiple tunnel "
1997 						  "not supported");
1998 	}
1999 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
2000 		return rte_flow_error_set(error, EINVAL,
2001 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2002 					  "wrong tunnel type - IPv6 specified "
2003 					  "but IPv4 item provided");
2004 	if (item_flags & l3m)
2005 		return rte_flow_error_set(error, ENOTSUP,
2006 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2007 					  "multiple L3 layers not supported");
2008 	else if (item_flags & l4m)
2009 		return rte_flow_error_set(error, EINVAL,
2010 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2011 					  "L3 cannot follow an L4 layer.");
2012 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2013 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2014 		return rte_flow_error_set(error, EINVAL,
2015 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2016 					  "L3 cannot follow an NVGRE layer.");
2017 	if (!mask)
2018 		mask = &rte_flow_item_ipv4_mask;
2019 	else if (mask->hdr.next_proto_id != 0 &&
2020 		 mask->hdr.next_proto_id != 0xff)
2021 		return rte_flow_error_set(error, EINVAL,
2022 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2023 					  "partial mask is not supported"
2024 					  " for protocol");
2025 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2026 					acc_mask ? (const uint8_t *)acc_mask
2027 						 : (const uint8_t *)&nic_mask,
2028 					sizeof(struct rte_flow_item_ipv4),
2029 					range_accepted, error);
2030 	if (ret < 0)
2031 		return ret;
2032 	return 0;
2033 }
2034 
2035 /**
2036  * Validate IPV6 item.
2037  *
2038  * @param[in] item
2039  *   Item specification.
2040  * @param[in] item_flags
2041  *   Bit-fields that holds the items detected until now.
2042  * @param[in] last_item
2043  *   Previous validated item in the pattern items.
2044  * @param[in] ether_type
2045  *   Type in the ethernet layer header (including dot1q).
2046  * @param[in] acc_mask
2047  *   Acceptable mask, if NULL default internal default mask
2048  *   will be used to check whether item fields are supported.
2049  * @param[out] error
2050  *   Pointer to error structure.
2051  *
2052  * @return
2053  *   0 on success, a negative errno value otherwise and rte_errno is set.
2054  */
2055 int
2056 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
2057 			     uint64_t item_flags,
2058 			     uint64_t last_item,
2059 			     uint16_t ether_type,
2060 			     const struct rte_flow_item_ipv6 *acc_mask,
2061 			     struct rte_flow_error *error)
2062 {
2063 	const struct rte_flow_item_ipv6 *mask = item->mask;
2064 	const struct rte_flow_item_ipv6 *spec = item->spec;
2065 	const struct rte_flow_item_ipv6 nic_mask = {
2066 		.hdr = {
2067 			.src_addr =
2068 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2069 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2070 			.dst_addr =
2071 				"\xff\xff\xff\xff\xff\xff\xff\xff"
2072 				"\xff\xff\xff\xff\xff\xff\xff\xff",
2073 			.vtc_flow = RTE_BE32(0xffffffff),
2074 			.proto = 0xff,
2075 		},
2076 	};
2077 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2078 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2079 				      MLX5_FLOW_LAYER_OUTER_L3;
2080 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2081 				      MLX5_FLOW_LAYER_OUTER_L4;
2082 	int ret;
2083 	uint8_t next_proto = 0xFF;
2084 	const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
2085 				  MLX5_FLOW_LAYER_OUTER_VLAN |
2086 				  MLX5_FLOW_LAYER_INNER_VLAN);
2087 
2088 	if ((last_item & l2_vlan) && ether_type &&
2089 	    ether_type != RTE_ETHER_TYPE_IPV6)
2090 		return rte_flow_error_set(error, EINVAL,
2091 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2092 					  "IPv6 cannot follow L2/VLAN layer "
2093 					  "which ether type is not IPv6");
2094 	if (mask && mask->hdr.proto == UINT8_MAX && spec)
2095 		next_proto = spec->hdr.proto;
2096 	if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
2097 		if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
2098 			return rte_flow_error_set(error, EINVAL,
2099 						  RTE_FLOW_ERROR_TYPE_ITEM,
2100 						  item,
2101 						  "multiple tunnel "
2102 						  "not supported");
2103 	}
2104 	if (next_proto == IPPROTO_HOPOPTS  ||
2105 	    next_proto == IPPROTO_ROUTING  ||
2106 	    next_proto == IPPROTO_FRAGMENT ||
2107 	    next_proto == IPPROTO_ESP	   ||
2108 	    next_proto == IPPROTO_AH	   ||
2109 	    next_proto == IPPROTO_DSTOPTS)
2110 		return rte_flow_error_set(error, EINVAL,
2111 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2112 					  "IPv6 proto (next header) should "
2113 					  "not be set as extension header");
2114 	if (item_flags & MLX5_FLOW_LAYER_IPIP)
2115 		return rte_flow_error_set(error, EINVAL,
2116 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2117 					  "wrong tunnel type - IPv4 specified "
2118 					  "but IPv6 item provided");
2119 	if (item_flags & l3m)
2120 		return rte_flow_error_set(error, ENOTSUP,
2121 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2122 					  "multiple L3 layers not supported");
2123 	else if (item_flags & l4m)
2124 		return rte_flow_error_set(error, EINVAL,
2125 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2126 					  "L3 cannot follow an L4 layer.");
2127 	else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
2128 		  !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
2129 		return rte_flow_error_set(error, EINVAL,
2130 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2131 					  "L3 cannot follow an NVGRE layer.");
2132 	if (!mask)
2133 		mask = &rte_flow_item_ipv6_mask;
2134 	ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2135 					acc_mask ? (const uint8_t *)acc_mask
2136 						 : (const uint8_t *)&nic_mask,
2137 					sizeof(struct rte_flow_item_ipv6),
2138 					MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2139 	if (ret < 0)
2140 		return ret;
2141 	return 0;
2142 }
2143 
2144 /**
2145  * Validate UDP item.
2146  *
2147  * @param[in] item
2148  *   Item specification.
2149  * @param[in] item_flags
2150  *   Bit-fields that holds the items detected until now.
2151  * @param[in] target_protocol
2152  *   The next protocol in the previous item.
2153  * @param[in] flow_mask
2154  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2155  * @param[out] error
2156  *   Pointer to error structure.
2157  *
2158  * @return
2159  *   0 on success, a negative errno value otherwise and rte_errno is set.
2160  */
2161 int
2162 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2163 			    uint64_t item_flags,
2164 			    uint8_t target_protocol,
2165 			    struct rte_flow_error *error)
2166 {
2167 	const struct rte_flow_item_udp *mask = item->mask;
2168 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2169 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2170 				      MLX5_FLOW_LAYER_OUTER_L3;
2171 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2172 				      MLX5_FLOW_LAYER_OUTER_L4;
2173 	int ret;
2174 
2175 	if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2176 		return rte_flow_error_set(error, EINVAL,
2177 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2178 					  "protocol filtering not compatible"
2179 					  " with UDP layer");
2180 	if (!(item_flags & l3m))
2181 		return rte_flow_error_set(error, EINVAL,
2182 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2183 					  "L3 is mandatory to filter on L4");
2184 	if (item_flags & l4m)
2185 		return rte_flow_error_set(error, EINVAL,
2186 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2187 					  "multiple L4 layers not supported");
2188 	if (!mask)
2189 		mask = &rte_flow_item_udp_mask;
2190 	ret = mlx5_flow_item_acceptable
2191 		(item, (const uint8_t *)mask,
2192 		 (const uint8_t *)&rte_flow_item_udp_mask,
2193 		 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2194 		 error);
2195 	if (ret < 0)
2196 		return ret;
2197 	return 0;
2198 }
2199 
2200 /**
2201  * Validate TCP item.
2202  *
2203  * @param[in] item
2204  *   Item specification.
2205  * @param[in] item_flags
2206  *   Bit-fields that holds the items detected until now.
2207  * @param[in] target_protocol
2208  *   The next protocol in the previous item.
2209  * @param[out] error
2210  *   Pointer to error structure.
2211  *
2212  * @return
2213  *   0 on success, a negative errno value otherwise and rte_errno is set.
2214  */
2215 int
2216 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2217 			    uint64_t item_flags,
2218 			    uint8_t target_protocol,
2219 			    const struct rte_flow_item_tcp *flow_mask,
2220 			    struct rte_flow_error *error)
2221 {
2222 	const struct rte_flow_item_tcp *mask = item->mask;
2223 	const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2224 	const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2225 				      MLX5_FLOW_LAYER_OUTER_L3;
2226 	const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2227 				      MLX5_FLOW_LAYER_OUTER_L4;
2228 	int ret;
2229 
2230 	MLX5_ASSERT(flow_mask);
2231 	if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2232 		return rte_flow_error_set(error, EINVAL,
2233 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2234 					  "protocol filtering not compatible"
2235 					  " with TCP layer");
2236 	if (!(item_flags & l3m))
2237 		return rte_flow_error_set(error, EINVAL,
2238 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2239 					  "L3 is mandatory to filter on L4");
2240 	if (item_flags & l4m)
2241 		return rte_flow_error_set(error, EINVAL,
2242 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2243 					  "multiple L4 layers not supported");
2244 	if (!mask)
2245 		mask = &rte_flow_item_tcp_mask;
2246 	ret = mlx5_flow_item_acceptable
2247 		(item, (const uint8_t *)mask,
2248 		 (const uint8_t *)flow_mask,
2249 		 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2250 		 error);
2251 	if (ret < 0)
2252 		return ret;
2253 	return 0;
2254 }
2255 
2256 /**
2257  * Validate VXLAN item.
2258  *
2259  * @param[in] item
2260  *   Item specification.
2261  * @param[in] item_flags
2262  *   Bit-fields that holds the items detected until now.
2263  * @param[in] target_protocol
2264  *   The next protocol in the previous item.
2265  * @param[out] error
2266  *   Pointer to error structure.
2267  *
2268  * @return
2269  *   0 on success, a negative errno value otherwise and rte_errno is set.
2270  */
2271 int
2272 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
2273 			      uint64_t item_flags,
2274 			      struct rte_flow_error *error)
2275 {
2276 	const struct rte_flow_item_vxlan *spec = item->spec;
2277 	const struct rte_flow_item_vxlan *mask = item->mask;
2278 	int ret;
2279 	union vni {
2280 		uint32_t vlan_id;
2281 		uint8_t vni[4];
2282 	} id = { .vlan_id = 0, };
2283 
2284 
2285 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2286 		return rte_flow_error_set(error, ENOTSUP,
2287 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2288 					  "multiple tunnel layers not"
2289 					  " supported");
2290 	/*
2291 	 * Verify only UDPv4 is present as defined in
2292 	 * https://tools.ietf.org/html/rfc7348
2293 	 */
2294 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2295 		return rte_flow_error_set(error, EINVAL,
2296 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2297 					  "no outer UDP layer found");
2298 	if (!mask)
2299 		mask = &rte_flow_item_vxlan_mask;
2300 	ret = mlx5_flow_item_acceptable
2301 		(item, (const uint8_t *)mask,
2302 		 (const uint8_t *)&rte_flow_item_vxlan_mask,
2303 		 sizeof(struct rte_flow_item_vxlan),
2304 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2305 	if (ret < 0)
2306 		return ret;
2307 	if (spec) {
2308 		memcpy(&id.vni[1], spec->vni, 3);
2309 		memcpy(&id.vni[1], mask->vni, 3);
2310 	}
2311 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2312 		return rte_flow_error_set(error, ENOTSUP,
2313 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2314 					  "VXLAN tunnel must be fully defined");
2315 	return 0;
2316 }
2317 
2318 /**
2319  * Validate VXLAN_GPE item.
2320  *
2321  * @param[in] item
2322  *   Item specification.
2323  * @param[in] item_flags
2324  *   Bit-fields that holds the items detected until now.
2325  * @param[in] priv
2326  *   Pointer to the private data structure.
2327  * @param[in] target_protocol
2328  *   The next protocol in the previous item.
2329  * @param[out] error
2330  *   Pointer to error structure.
2331  *
2332  * @return
2333  *   0 on success, a negative errno value otherwise and rte_errno is set.
2334  */
2335 int
2336 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2337 				  uint64_t item_flags,
2338 				  struct rte_eth_dev *dev,
2339 				  struct rte_flow_error *error)
2340 {
2341 	struct mlx5_priv *priv = dev->data->dev_private;
2342 	const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2343 	const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2344 	int ret;
2345 	union vni {
2346 		uint32_t vlan_id;
2347 		uint8_t vni[4];
2348 	} id = { .vlan_id = 0, };
2349 
2350 	if (!priv->config.l3_vxlan_en)
2351 		return rte_flow_error_set(error, ENOTSUP,
2352 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2353 					  "L3 VXLAN is not enabled by device"
2354 					  " parameter and/or not configured in"
2355 					  " firmware");
2356 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2357 		return rte_flow_error_set(error, ENOTSUP,
2358 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2359 					  "multiple tunnel layers not"
2360 					  " supported");
2361 	/*
2362 	 * Verify only UDPv4 is present as defined in
2363 	 * https://tools.ietf.org/html/rfc7348
2364 	 */
2365 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2366 		return rte_flow_error_set(error, EINVAL,
2367 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2368 					  "no outer UDP layer found");
2369 	if (!mask)
2370 		mask = &rte_flow_item_vxlan_gpe_mask;
2371 	ret = mlx5_flow_item_acceptable
2372 		(item, (const uint8_t *)mask,
2373 		 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2374 		 sizeof(struct rte_flow_item_vxlan_gpe),
2375 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2376 	if (ret < 0)
2377 		return ret;
2378 	if (spec) {
2379 		if (spec->protocol)
2380 			return rte_flow_error_set(error, ENOTSUP,
2381 						  RTE_FLOW_ERROR_TYPE_ITEM,
2382 						  item,
2383 						  "VxLAN-GPE protocol"
2384 						  " not supported");
2385 		memcpy(&id.vni[1], spec->vni, 3);
2386 		memcpy(&id.vni[1], mask->vni, 3);
2387 	}
2388 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2389 		return rte_flow_error_set(error, ENOTSUP,
2390 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2391 					  "VXLAN-GPE tunnel must be fully"
2392 					  " defined");
2393 	return 0;
2394 }
2395 /**
2396  * Validate GRE Key item.
2397  *
2398  * @param[in] item
2399  *   Item specification.
2400  * @param[in] item_flags
2401  *   Bit flags to mark detected items.
2402  * @param[in] gre_item
2403  *   Pointer to gre_item
2404  * @param[out] error
2405  *   Pointer to error structure.
2406  *
2407  * @return
2408  *   0 on success, a negative errno value otherwise and rte_errno is set.
2409  */
2410 int
2411 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2412 				uint64_t item_flags,
2413 				const struct rte_flow_item *gre_item,
2414 				struct rte_flow_error *error)
2415 {
2416 	const rte_be32_t *mask = item->mask;
2417 	int ret = 0;
2418 	rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2419 	const struct rte_flow_item_gre *gre_spec;
2420 	const struct rte_flow_item_gre *gre_mask;
2421 
2422 	if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2423 		return rte_flow_error_set(error, ENOTSUP,
2424 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2425 					  "Multiple GRE key not support");
2426 	if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2427 		return rte_flow_error_set(error, ENOTSUP,
2428 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2429 					  "No preceding GRE header");
2430 	if (item_flags & MLX5_FLOW_LAYER_INNER)
2431 		return rte_flow_error_set(error, ENOTSUP,
2432 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2433 					  "GRE key following a wrong item");
2434 	gre_mask = gre_item->mask;
2435 	if (!gre_mask)
2436 		gre_mask = &rte_flow_item_gre_mask;
2437 	gre_spec = gre_item->spec;
2438 	if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2439 			 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2440 		return rte_flow_error_set(error, EINVAL,
2441 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2442 					  "Key bit must be on");
2443 
2444 	if (!mask)
2445 		mask = &gre_key_default_mask;
2446 	ret = mlx5_flow_item_acceptable
2447 		(item, (const uint8_t *)mask,
2448 		 (const uint8_t *)&gre_key_default_mask,
2449 		 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2450 	return ret;
2451 }
2452 
2453 /**
2454  * Validate GRE item.
2455  *
2456  * @param[in] item
2457  *   Item specification.
2458  * @param[in] item_flags
2459  *   Bit flags to mark detected items.
2460  * @param[in] target_protocol
2461  *   The next protocol in the previous item.
2462  * @param[out] error
2463  *   Pointer to error structure.
2464  *
2465  * @return
2466  *   0 on success, a negative errno value otherwise and rte_errno is set.
2467  */
2468 int
2469 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
2470 			    uint64_t item_flags,
2471 			    uint8_t target_protocol,
2472 			    struct rte_flow_error *error)
2473 {
2474 	const struct rte_flow_item_gre *spec __rte_unused = item->spec;
2475 	const struct rte_flow_item_gre *mask = item->mask;
2476 	int ret;
2477 	const struct rte_flow_item_gre nic_mask = {
2478 		.c_rsvd0_ver = RTE_BE16(0xB000),
2479 		.protocol = RTE_BE16(UINT16_MAX),
2480 	};
2481 
2482 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2483 		return rte_flow_error_set(error, EINVAL,
2484 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2485 					  "protocol filtering not compatible"
2486 					  " with this GRE layer");
2487 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2488 		return rte_flow_error_set(error, ENOTSUP,
2489 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2490 					  "multiple tunnel layers not"
2491 					  " supported");
2492 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2493 		return rte_flow_error_set(error, ENOTSUP,
2494 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2495 					  "L3 Layer is missing");
2496 	if (!mask)
2497 		mask = &rte_flow_item_gre_mask;
2498 	ret = mlx5_flow_item_acceptable
2499 		(item, (const uint8_t *)mask,
2500 		 (const uint8_t *)&nic_mask,
2501 		 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED,
2502 		 error);
2503 	if (ret < 0)
2504 		return ret;
2505 #ifndef HAVE_MLX5DV_DR
2506 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
2507 	if (spec && (spec->protocol & mask->protocol))
2508 		return rte_flow_error_set(error, ENOTSUP,
2509 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2510 					  "without MPLS support the"
2511 					  " specification cannot be used for"
2512 					  " filtering");
2513 #endif
2514 #endif
2515 	return 0;
2516 }
2517 
2518 /**
2519  * Validate Geneve item.
2520  *
2521  * @param[in] item
2522  *   Item specification.
2523  * @param[in] itemFlags
2524  *   Bit-fields that holds the items detected until now.
2525  * @param[in] enPriv
2526  *   Pointer to the private data structure.
2527  * @param[out] error
2528  *   Pointer to error structure.
2529  *
2530  * @return
2531  *   0 on success, a negative errno value otherwise and rte_errno is set.
2532  */
2533 
2534 int
2535 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
2536 			       uint64_t item_flags,
2537 			       struct rte_eth_dev *dev,
2538 			       struct rte_flow_error *error)
2539 {
2540 	struct mlx5_priv *priv = dev->data->dev_private;
2541 	const struct rte_flow_item_geneve *spec = item->spec;
2542 	const struct rte_flow_item_geneve *mask = item->mask;
2543 	int ret;
2544 	uint16_t gbhdr;
2545 	uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2546 			  MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2547 	const struct rte_flow_item_geneve nic_mask = {
2548 		.ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2549 		.vni = "\xff\xff\xff",
2550 		.protocol = RTE_BE16(UINT16_MAX),
2551 	};
2552 
2553 	if (!priv->config.hca_attr.tunnel_stateless_geneve_rx)
2554 		return rte_flow_error_set(error, ENOTSUP,
2555 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2556 					  "L3 Geneve is not enabled by device"
2557 					  " parameter and/or not configured in"
2558 					  " firmware");
2559 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2560 		return rte_flow_error_set(error, ENOTSUP,
2561 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2562 					  "multiple tunnel layers not"
2563 					  " supported");
2564 	/*
2565 	 * Verify only UDPv4 is present as defined in
2566 	 * https://tools.ietf.org/html/rfc7348
2567 	 */
2568 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2569 		return rte_flow_error_set(error, EINVAL,
2570 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2571 					  "no outer UDP layer found");
2572 	if (!mask)
2573 		mask = &rte_flow_item_geneve_mask;
2574 	ret = mlx5_flow_item_acceptable
2575 				  (item, (const uint8_t *)mask,
2576 				   (const uint8_t *)&nic_mask,
2577 				   sizeof(struct rte_flow_item_geneve),
2578 				   MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2579 	if (ret)
2580 		return ret;
2581 	if (spec) {
2582 		gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2583 		if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2584 		     MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2585 		     MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2586 			return rte_flow_error_set(error, ENOTSUP,
2587 						  RTE_FLOW_ERROR_TYPE_ITEM,
2588 						  item,
2589 						  "Geneve protocol unsupported"
2590 						  " fields are being used");
2591 		if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2592 			return rte_flow_error_set
2593 					(error, ENOTSUP,
2594 					 RTE_FLOW_ERROR_TYPE_ITEM,
2595 					 item,
2596 					 "Unsupported Geneve options length");
2597 	}
2598 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2599 		return rte_flow_error_set
2600 				    (error, ENOTSUP,
2601 				     RTE_FLOW_ERROR_TYPE_ITEM, item,
2602 				     "Geneve tunnel must be fully defined");
2603 	return 0;
2604 }
2605 
2606 /**
2607  * Validate MPLS item.
2608  *
2609  * @param[in] dev
2610  *   Pointer to the rte_eth_dev structure.
2611  * @param[in] item
2612  *   Item specification.
2613  * @param[in] item_flags
2614  *   Bit-fields that holds the items detected until now.
2615  * @param[in] prev_layer
2616  *   The protocol layer indicated in previous item.
2617  * @param[out] error
2618  *   Pointer to error structure.
2619  *
2620  * @return
2621  *   0 on success, a negative errno value otherwise and rte_errno is set.
2622  */
2623 int
2624 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2625 			     const struct rte_flow_item *item __rte_unused,
2626 			     uint64_t item_flags __rte_unused,
2627 			     uint64_t prev_layer __rte_unused,
2628 			     struct rte_flow_error *error)
2629 {
2630 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2631 	const struct rte_flow_item_mpls *mask = item->mask;
2632 	struct mlx5_priv *priv = dev->data->dev_private;
2633 	int ret;
2634 
2635 	if (!priv->config.mpls_en)
2636 		return rte_flow_error_set(error, ENOTSUP,
2637 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2638 					  "MPLS not supported or"
2639 					  " disabled in firmware"
2640 					  " configuration.");
2641 	/* MPLS over IP, UDP, GRE is allowed */
2642 	if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2643 			    MLX5_FLOW_LAYER_OUTER_L4_UDP |
2644 			    MLX5_FLOW_LAYER_GRE |
2645 			    MLX5_FLOW_LAYER_GRE_KEY)))
2646 		return rte_flow_error_set(error, EINVAL,
2647 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2648 					  "protocol filtering not compatible"
2649 					  " with MPLS layer");
2650 	/* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2651 	if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2652 	    !(item_flags & MLX5_FLOW_LAYER_GRE))
2653 		return rte_flow_error_set(error, ENOTSUP,
2654 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2655 					  "multiple tunnel layers not"
2656 					  " supported");
2657 	if (!mask)
2658 		mask = &rte_flow_item_mpls_mask;
2659 	ret = mlx5_flow_item_acceptable
2660 		(item, (const uint8_t *)mask,
2661 		 (const uint8_t *)&rte_flow_item_mpls_mask,
2662 		 sizeof(struct rte_flow_item_mpls),
2663 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2664 	if (ret < 0)
2665 		return ret;
2666 	return 0;
2667 #else
2668 	return rte_flow_error_set(error, ENOTSUP,
2669 				  RTE_FLOW_ERROR_TYPE_ITEM, item,
2670 				  "MPLS is not supported by Verbs, please"
2671 				  " update.");
2672 #endif
2673 }
2674 
2675 /**
2676  * Validate NVGRE item.
2677  *
2678  * @param[in] item
2679  *   Item specification.
2680  * @param[in] item_flags
2681  *   Bit flags to mark detected items.
2682  * @param[in] target_protocol
2683  *   The next protocol in the previous item.
2684  * @param[out] error
2685  *   Pointer to error structure.
2686  *
2687  * @return
2688  *   0 on success, a negative errno value otherwise and rte_errno is set.
2689  */
2690 int
2691 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2692 			      uint64_t item_flags,
2693 			      uint8_t target_protocol,
2694 			      struct rte_flow_error *error)
2695 {
2696 	const struct rte_flow_item_nvgre *mask = item->mask;
2697 	int ret;
2698 
2699 	if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2700 		return rte_flow_error_set(error, EINVAL,
2701 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2702 					  "protocol filtering not compatible"
2703 					  " with this GRE layer");
2704 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2705 		return rte_flow_error_set(error, ENOTSUP,
2706 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2707 					  "multiple tunnel layers not"
2708 					  " supported");
2709 	if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2710 		return rte_flow_error_set(error, ENOTSUP,
2711 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2712 					  "L3 Layer is missing");
2713 	if (!mask)
2714 		mask = &rte_flow_item_nvgre_mask;
2715 	ret = mlx5_flow_item_acceptable
2716 		(item, (const uint8_t *)mask,
2717 		 (const uint8_t *)&rte_flow_item_nvgre_mask,
2718 		 sizeof(struct rte_flow_item_nvgre),
2719 		 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2720 	if (ret < 0)
2721 		return ret;
2722 	return 0;
2723 }
2724 
2725 /**
2726  * Validate eCPRI item.
2727  *
2728  * @param[in] item
2729  *   Item specification.
2730  * @param[in] item_flags
2731  *   Bit-fields that holds the items detected until now.
2732  * @param[in] last_item
2733  *   Previous validated item in the pattern items.
2734  * @param[in] ether_type
2735  *   Type in the ethernet layer header (including dot1q).
2736  * @param[in] acc_mask
2737  *   Acceptable mask, if NULL default internal default mask
2738  *   will be used to check whether item fields are supported.
2739  * @param[out] error
2740  *   Pointer to error structure.
2741  *
2742  * @return
2743  *   0 on success, a negative errno value otherwise and rte_errno is set.
2744  */
2745 int
2746 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
2747 			      uint64_t item_flags,
2748 			      uint64_t last_item,
2749 			      uint16_t ether_type,
2750 			      const struct rte_flow_item_ecpri *acc_mask,
2751 			      struct rte_flow_error *error)
2752 {
2753 	const struct rte_flow_item_ecpri *mask = item->mask;
2754 	const struct rte_flow_item_ecpri nic_mask = {
2755 		.hdr = {
2756 			.common = {
2757 				.u32 =
2758 				RTE_BE32(((const struct rte_ecpri_common_hdr) {
2759 					.type = 0xFF,
2760 					}).u32),
2761 			},
2762 			.dummy[0] = 0xFFFFFFFF,
2763 		},
2764 	};
2765 	const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
2766 					MLX5_FLOW_LAYER_OUTER_VLAN);
2767 	struct rte_flow_item_ecpri mask_lo;
2768 
2769 	if (!(last_item & outer_l2_vlan) &&
2770 	    last_item != MLX5_FLOW_LAYER_OUTER_L4_UDP)
2771 		return rte_flow_error_set(error, EINVAL,
2772 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2773 					  "eCPRI can only follow L2/VLAN layer or UDP layer");
2774 	if ((last_item & outer_l2_vlan) && ether_type &&
2775 	    ether_type != RTE_ETHER_TYPE_ECPRI)
2776 		return rte_flow_error_set(error, EINVAL,
2777 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2778 					  "eCPRI cannot follow L2/VLAN layer which ether type is not 0xAEFE");
2779 	if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2780 		return rte_flow_error_set(error, EINVAL,
2781 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2782 					  "eCPRI with tunnel is not supported right now");
2783 	if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
2784 		return rte_flow_error_set(error, ENOTSUP,
2785 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2786 					  "multiple L3 layers not supported");
2787 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
2788 		return rte_flow_error_set(error, EINVAL,
2789 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2790 					  "eCPRI cannot coexist with a TCP layer");
2791 	/* In specification, eCPRI could be over UDP layer. */
2792 	else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
2793 		return rte_flow_error_set(error, EINVAL,
2794 					  RTE_FLOW_ERROR_TYPE_ITEM, item,
2795 					  "eCPRI over UDP layer is not yet supported right now");
2796 	/* Mask for type field in common header could be zero. */
2797 	if (!mask)
2798 		mask = &rte_flow_item_ecpri_mask;
2799 	mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
2800 	/* Input mask is in big-endian format. */
2801 	if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
2802 		return rte_flow_error_set(error, EINVAL,
2803 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2804 					  "partial mask is not supported for protocol");
2805 	else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
2806 		return rte_flow_error_set(error, EINVAL,
2807 					  RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2808 					  "message header mask must be after a type mask");
2809 	return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2810 					 acc_mask ? (const uint8_t *)acc_mask
2811 						  : (const uint8_t *)&nic_mask,
2812 					 sizeof(struct rte_flow_item_ecpri),
2813 					 MLX5_ITEM_RANGE_NOT_ACCEPTED, error);
2814 }
2815 
2816 /**
2817  * Release resource related QUEUE/RSS action split.
2818  *
2819  * @param dev
2820  *   Pointer to Ethernet device.
2821  * @param flow
2822  *   Flow to release id's from.
2823  */
2824 static void
2825 flow_mreg_split_qrss_release(struct rte_eth_dev *dev,
2826 			     struct rte_flow *flow)
2827 {
2828 	struct mlx5_priv *priv = dev->data->dev_private;
2829 	uint32_t handle_idx;
2830 	struct mlx5_flow_handle *dev_handle;
2831 
2832 	SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
2833 		       handle_idx, dev_handle, next)
2834 		if (dev_handle->split_flow_id)
2835 			mlx5_ipool_free(priv->sh->ipool
2836 					[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
2837 					dev_handle->split_flow_id);
2838 }
2839 
2840 static int
2841 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2842 		   const struct rte_flow_attr *attr __rte_unused,
2843 		   const struct rte_flow_item items[] __rte_unused,
2844 		   const struct rte_flow_action actions[] __rte_unused,
2845 		   bool external __rte_unused,
2846 		   int hairpin __rte_unused,
2847 		   struct rte_flow_error *error)
2848 {
2849 	return rte_flow_error_set(error, ENOTSUP,
2850 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2851 }
2852 
2853 static struct mlx5_flow *
2854 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
2855 		  const struct rte_flow_attr *attr __rte_unused,
2856 		  const struct rte_flow_item items[] __rte_unused,
2857 		  const struct rte_flow_action actions[] __rte_unused,
2858 		  struct rte_flow_error *error)
2859 {
2860 	rte_flow_error_set(error, ENOTSUP,
2861 			   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2862 	return NULL;
2863 }
2864 
2865 static int
2866 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2867 		    struct mlx5_flow *dev_flow __rte_unused,
2868 		    const struct rte_flow_attr *attr __rte_unused,
2869 		    const struct rte_flow_item items[] __rte_unused,
2870 		    const struct rte_flow_action actions[] __rte_unused,
2871 		    struct rte_flow_error *error)
2872 {
2873 	return rte_flow_error_set(error, ENOTSUP,
2874 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2875 }
2876 
2877 static int
2878 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2879 		struct rte_flow *flow __rte_unused,
2880 		struct rte_flow_error *error)
2881 {
2882 	return rte_flow_error_set(error, ENOTSUP,
2883 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2884 }
2885 
2886 static void
2887 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2888 		 struct rte_flow *flow __rte_unused)
2889 {
2890 }
2891 
2892 static void
2893 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2894 		  struct rte_flow *flow __rte_unused)
2895 {
2896 }
2897 
2898 static int
2899 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2900 		struct rte_flow *flow __rte_unused,
2901 		const struct rte_flow_action *actions __rte_unused,
2902 		void *data __rte_unused,
2903 		struct rte_flow_error *error)
2904 {
2905 	return rte_flow_error_set(error, ENOTSUP,
2906 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2907 }
2908 
2909 static int
2910 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused,
2911 		      uint32_t domains __rte_unused,
2912 		      uint32_t flags __rte_unused)
2913 {
2914 	return 0;
2915 }
2916 
2917 /* Void driver to protect from null pointer reference. */
2918 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2919 	.validate = flow_null_validate,
2920 	.prepare = flow_null_prepare,
2921 	.translate = flow_null_translate,
2922 	.apply = flow_null_apply,
2923 	.remove = flow_null_remove,
2924 	.destroy = flow_null_destroy,
2925 	.query = flow_null_query,
2926 	.sync_domain = flow_null_sync_domain,
2927 };
2928 
2929 /**
2930  * Select flow driver type according to flow attributes and device
2931  * configuration.
2932  *
2933  * @param[in] dev
2934  *   Pointer to the dev structure.
2935  * @param[in] attr
2936  *   Pointer to the flow attributes.
2937  *
2938  * @return
2939  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2940  */
2941 static enum mlx5_flow_drv_type
2942 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2943 {
2944 	struct mlx5_priv *priv = dev->data->dev_private;
2945 	/* The OS can determine first a specific flow type (DV, VERBS) */
2946 	enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
2947 
2948 	if (type != MLX5_FLOW_TYPE_MAX)
2949 		return type;
2950 	/* If no OS specific type - continue with DV/VERBS selection */
2951 	if (attr->transfer && priv->config.dv_esw_en)
2952 		type = MLX5_FLOW_TYPE_DV;
2953 	if (!attr->transfer)
2954 		type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2955 						 MLX5_FLOW_TYPE_VERBS;
2956 	return type;
2957 }
2958 
2959 #define flow_get_drv_ops(type) flow_drv_ops[type]
2960 
2961 /**
2962  * Flow driver validation API. This abstracts calling driver specific functions.
2963  * The type of flow driver is determined according to flow attributes.
2964  *
2965  * @param[in] dev
2966  *   Pointer to the dev structure.
2967  * @param[in] attr
2968  *   Pointer to the flow attributes.
2969  * @param[in] items
2970  *   Pointer to the list of items.
2971  * @param[in] actions
2972  *   Pointer to the list of actions.
2973  * @param[in] external
2974  *   This flow rule is created by request external to PMD.
2975  * @param[in] hairpin
2976  *   Number of hairpin TX actions, 0 means classic flow.
2977  * @param[out] error
2978  *   Pointer to the error structure.
2979  *
2980  * @return
2981  *   0 on success, a negative errno value otherwise and rte_errno is set.
2982  */
2983 static inline int
2984 flow_drv_validate(struct rte_eth_dev *dev,
2985 		  const struct rte_flow_attr *attr,
2986 		  const struct rte_flow_item items[],
2987 		  const struct rte_flow_action actions[],
2988 		  bool external, int hairpin, struct rte_flow_error *error)
2989 {
2990 	const struct mlx5_flow_driver_ops *fops;
2991 	enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2992 
2993 	fops = flow_get_drv_ops(type);
2994 	return fops->validate(dev, attr, items, actions, external,
2995 			      hairpin, error);
2996 }
2997 
2998 /**
2999  * Flow driver preparation API. This abstracts calling driver specific
3000  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3001  * calculates the size of memory required for device flow, allocates the memory,
3002  * initializes the device flow and returns the pointer.
3003  *
3004  * @note
3005  *   This function initializes device flow structure such as dv or verbs in
3006  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
3007  *   rest. For example, adding returning device flow to flow->dev_flow list and
3008  *   setting backward reference to the flow should be done out of this function.
3009  *   layers field is not filled either.
3010  *
3011  * @param[in] dev
3012  *   Pointer to the dev structure.
3013  * @param[in] attr
3014  *   Pointer to the flow attributes.
3015  * @param[in] items
3016  *   Pointer to the list of items.
3017  * @param[in] actions
3018  *   Pointer to the list of actions.
3019  * @param[in] flow_idx
3020  *   This memory pool index to the flow.
3021  * @param[out] error
3022  *   Pointer to the error structure.
3023  *
3024  * @return
3025  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
3026  */
3027 static inline struct mlx5_flow *
3028 flow_drv_prepare(struct rte_eth_dev *dev,
3029 		 const struct rte_flow *flow,
3030 		 const struct rte_flow_attr *attr,
3031 		 const struct rte_flow_item items[],
3032 		 const struct rte_flow_action actions[],
3033 		 uint32_t flow_idx,
3034 		 struct rte_flow_error *error)
3035 {
3036 	const struct mlx5_flow_driver_ops *fops;
3037 	enum mlx5_flow_drv_type type = flow->drv_type;
3038 	struct mlx5_flow *mlx5_flow = NULL;
3039 
3040 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3041 	fops = flow_get_drv_ops(type);
3042 	mlx5_flow = fops->prepare(dev, attr, items, actions, error);
3043 	if (mlx5_flow)
3044 		mlx5_flow->flow_idx = flow_idx;
3045 	return mlx5_flow;
3046 }
3047 
3048 /**
3049  * Flow driver translation API. This abstracts calling driver specific
3050  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
3051  * translates a generic flow into a driver flow. flow_drv_prepare() must
3052  * precede.
3053  *
3054  * @note
3055  *   dev_flow->layers could be filled as a result of parsing during translation
3056  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
3057  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
3058  *   flow->actions could be overwritten even though all the expanded dev_flows
3059  *   have the same actions.
3060  *
3061  * @param[in] dev
3062  *   Pointer to the rte dev structure.
3063  * @param[in, out] dev_flow
3064  *   Pointer to the mlx5 flow.
3065  * @param[in] attr
3066  *   Pointer to the flow attributes.
3067  * @param[in] items
3068  *   Pointer to the list of items.
3069  * @param[in] actions
3070  *   Pointer to the list of actions.
3071  * @param[out] error
3072  *   Pointer to the error structure.
3073  *
3074  * @return
3075  *   0 on success, a negative errno value otherwise and rte_errno is set.
3076  */
3077 static inline int
3078 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
3079 		   const struct rte_flow_attr *attr,
3080 		   const struct rte_flow_item items[],
3081 		   const struct rte_flow_action actions[],
3082 		   struct rte_flow_error *error)
3083 {
3084 	const struct mlx5_flow_driver_ops *fops;
3085 	enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
3086 
3087 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3088 	fops = flow_get_drv_ops(type);
3089 	return fops->translate(dev, dev_flow, attr, items, actions, error);
3090 }
3091 
3092 /**
3093  * Flow driver apply API. This abstracts calling driver specific functions.
3094  * Parent flow (rte_flow) should have driver type (drv_type). It applies
3095  * translated driver flows on to device. flow_drv_translate() must precede.
3096  *
3097  * @param[in] dev
3098  *   Pointer to Ethernet device structure.
3099  * @param[in, out] flow
3100  *   Pointer to flow structure.
3101  * @param[out] error
3102  *   Pointer to error structure.
3103  *
3104  * @return
3105  *   0 on success, a negative errno value otherwise and rte_errno is set.
3106  */
3107 static inline int
3108 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
3109 	       struct rte_flow_error *error)
3110 {
3111 	const struct mlx5_flow_driver_ops *fops;
3112 	enum mlx5_flow_drv_type type = flow->drv_type;
3113 
3114 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3115 	fops = flow_get_drv_ops(type);
3116 	return fops->apply(dev, flow, error);
3117 }
3118 
3119 /**
3120  * Flow driver destroy API. This abstracts calling driver specific functions.
3121  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3122  * on device and releases resources of the flow.
3123  *
3124  * @param[in] dev
3125  *   Pointer to Ethernet device.
3126  * @param[in, out] flow
3127  *   Pointer to flow structure.
3128  */
3129 static inline void
3130 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3131 {
3132 	const struct mlx5_flow_driver_ops *fops;
3133 	enum mlx5_flow_drv_type type = flow->drv_type;
3134 
3135 	flow_mreg_split_qrss_release(dev, flow);
3136 	MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3137 	fops = flow_get_drv_ops(type);
3138 	fops->destroy(dev, flow);
3139 }
3140 
3141 /**
3142  * Get RSS action from the action list.
3143  *
3144  * @param[in] actions
3145  *   Pointer to the list of actions.
3146  *
3147  * @return
3148  *   Pointer to the RSS action if exist, else return NULL.
3149  */
3150 static const struct rte_flow_action_rss*
3151 flow_get_rss_action(const struct rte_flow_action actions[])
3152 {
3153 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3154 		switch (actions->type) {
3155 		case RTE_FLOW_ACTION_TYPE_RSS:
3156 			return (const struct rte_flow_action_rss *)
3157 			       actions->conf;
3158 		default:
3159 			break;
3160 		}
3161 	}
3162 	return NULL;
3163 }
3164 
3165 /**
3166  * Get ASO age action by index.
3167  *
3168  * @param[in] dev
3169  *   Pointer to the Ethernet device structure.
3170  * @param[in] age_idx
3171  *   Index to the ASO age action.
3172  *
3173  * @return
3174  *   The specified ASO age action.
3175  */
3176 struct mlx5_aso_age_action*
3177 flow_aso_age_get_by_idx(struct rte_eth_dev *dev, uint32_t age_idx)
3178 {
3179 	uint16_t pool_idx = age_idx & UINT16_MAX;
3180 	uint16_t offset = (age_idx >> 16) & UINT16_MAX;
3181 	struct mlx5_priv *priv = dev->data->dev_private;
3182 	struct mlx5_aso_age_mng *mng = priv->sh->aso_age_mng;
3183 	struct mlx5_aso_age_pool *pool = mng->pools[pool_idx];
3184 
3185 	return &pool->actions[offset - 1];
3186 }
3187 
3188 /* maps shared action to translated non shared in some actions array */
3189 struct mlx5_translated_shared_action {
3190 	struct rte_flow_shared_action *action; /**< Shared action */
3191 	int index; /**< Index in related array of rte_flow_action */
3192 };
3193 
3194 /**
3195  * Translates actions of type RTE_FLOW_ACTION_TYPE_SHARED to related
3196  * non shared action if translation possible.
3197  * This functionality used to run same execution path for both shared & non
3198  * shared actions on flow create. All necessary preparations for shared
3199  * action handling should be preformed on *shared* actions list returned
3200  * from this call.
3201  *
3202  * @param[in] dev
3203  *   Pointer to Ethernet device.
3204  * @param[in] actions
3205  *   List of actions to translate.
3206  * @param[out] shared
3207  *   List to store translated shared actions.
3208  * @param[in, out] shared_n
3209  *   Size of *shared* array. On return should be updated with number of shared
3210  *   actions retrieved from the *actions* list.
3211  * @param[out] translated_actions
3212  *   List of actions where all shared actions were translated to non shared
3213  *   if possible. NULL if no translation took place.
3214  * @param[out] error
3215  *   Pointer to the error structure.
3216  *
3217  * @return
3218  *   0 on success, a negative errno value otherwise and rte_errno is set.
3219  */
3220 static int
3221 flow_shared_actions_translate(struct rte_eth_dev *dev,
3222 			      const struct rte_flow_action actions[],
3223 			      struct mlx5_translated_shared_action *shared,
3224 			      int *shared_n,
3225 			      struct rte_flow_action **translated_actions,
3226 			      struct rte_flow_error *error)
3227 {
3228 	struct mlx5_priv *priv = dev->data->dev_private;
3229 	struct rte_flow_action *translated = NULL;
3230 	size_t actions_size;
3231 	int n;
3232 	int copied_n = 0;
3233 	struct mlx5_translated_shared_action *shared_end = NULL;
3234 
3235 	for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) {
3236 		if (actions[n].type != RTE_FLOW_ACTION_TYPE_SHARED)
3237 			continue;
3238 		if (copied_n == *shared_n) {
3239 			return rte_flow_error_set
3240 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM,
3241 				 NULL, "too many shared actions");
3242 		}
3243 		rte_memcpy(&shared[copied_n].action, &actions[n].conf,
3244 			   sizeof(actions[n].conf));
3245 		shared[copied_n].index = n;
3246 		copied_n++;
3247 	}
3248 	n++;
3249 	*shared_n = copied_n;
3250 	if (!copied_n)
3251 		return 0;
3252 	actions_size = sizeof(struct rte_flow_action) * n;
3253 	translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY);
3254 	if (!translated) {
3255 		rte_errno = ENOMEM;
3256 		return -ENOMEM;
3257 	}
3258 	memcpy(translated, actions, actions_size);
3259 	for (shared_end = shared + copied_n; shared < shared_end; shared++) {
3260 		struct mlx5_shared_action_rss *shared_rss;
3261 		uint32_t act_idx = (uint32_t)(uintptr_t)shared->action;
3262 		uint32_t type = act_idx >> MLX5_SHARED_ACTION_TYPE_OFFSET;
3263 		uint32_t idx = act_idx & ((1u << MLX5_SHARED_ACTION_TYPE_OFFSET)
3264 									   - 1);
3265 
3266 		switch (type) {
3267 		case MLX5_SHARED_ACTION_TYPE_RSS:
3268 			shared_rss = mlx5_ipool_get
3269 			  (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], idx);
3270 			translated[shared->index].type =
3271 				RTE_FLOW_ACTION_TYPE_RSS;
3272 			translated[shared->index].conf =
3273 				&shared_rss->origin;
3274 			break;
3275 		case MLX5_SHARED_ACTION_TYPE_AGE:
3276 			if (priv->sh->flow_hit_aso_en) {
3277 				translated[shared->index].type =
3278 					(enum rte_flow_action_type)
3279 					MLX5_RTE_FLOW_ACTION_TYPE_AGE;
3280 				translated[shared->index].conf =
3281 							 (void *)(uintptr_t)idx;
3282 				break;
3283 			}
3284 			/* Fall-through */
3285 		default:
3286 			mlx5_free(translated);
3287 			return rte_flow_error_set
3288 				(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION,
3289 				 NULL, "invalid shared action type");
3290 		}
3291 	}
3292 	*translated_actions = translated;
3293 	return 0;
3294 }
3295 
3296 /**
3297  * Get Shared RSS action from the action list.
3298  *
3299  * @param[in] dev
3300  *   Pointer to Ethernet device.
3301  * @param[in] shared
3302  *   Pointer to the list of actions.
3303  * @param[in] shared_n
3304  *   Actions list length.
3305  *
3306  * @return
3307  *   The MLX5 RSS action ID if exists, otherwise return 0.
3308  */
3309 static uint32_t
3310 flow_get_shared_rss_action(struct rte_eth_dev *dev,
3311 			   struct mlx5_translated_shared_action *shared,
3312 			   int shared_n)
3313 {
3314 	struct mlx5_translated_shared_action *shared_end;
3315 	struct mlx5_priv *priv = dev->data->dev_private;
3316 	struct mlx5_shared_action_rss *shared_rss;
3317 
3318 
3319 	for (shared_end = shared + shared_n; shared < shared_end; shared++) {
3320 		uint32_t act_idx = (uint32_t)(uintptr_t)shared->action;
3321 		uint32_t type = act_idx >> MLX5_SHARED_ACTION_TYPE_OFFSET;
3322 		uint32_t idx = act_idx &
3323 				   ((1u << MLX5_SHARED_ACTION_TYPE_OFFSET) - 1);
3324 		switch (type) {
3325 		case MLX5_SHARED_ACTION_TYPE_RSS:
3326 			shared_rss = mlx5_ipool_get
3327 				(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
3328 									   idx);
3329 			__atomic_add_fetch(&shared_rss->refcnt, 1,
3330 					   __ATOMIC_RELAXED);
3331 			return idx;
3332 		default:
3333 			break;
3334 		}
3335 	}
3336 	return 0;
3337 }
3338 
3339 static unsigned int
3340 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
3341 {
3342 	const struct rte_flow_item *item;
3343 	unsigned int has_vlan = 0;
3344 
3345 	for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
3346 		if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
3347 			has_vlan = 1;
3348 			break;
3349 		}
3350 	}
3351 	if (has_vlan)
3352 		return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
3353 				       MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
3354 	return rss_level < 2 ? MLX5_EXPANSION_ROOT :
3355 			       MLX5_EXPANSION_ROOT_OUTER;
3356 }
3357 
3358 /**
3359  *  Get layer flags from the prefix flow.
3360  *
3361  *  Some flows may be split to several subflows, the prefix subflow gets the
3362  *  match items and the suffix sub flow gets the actions.
3363  *  Some actions need the user defined match item flags to get the detail for
3364  *  the action.
3365  *  This function helps the suffix flow to get the item layer flags from prefix
3366  *  subflow.
3367  *
3368  * @param[in] dev_flow
3369  *   Pointer the created preifx subflow.
3370  *
3371  * @return
3372  *   The layers get from prefix subflow.
3373  */
3374 static inline uint64_t
3375 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
3376 {
3377 	uint64_t layers = 0;
3378 
3379 	/*
3380 	 * Layers bits could be localization, but usually the compiler will
3381 	 * help to do the optimization work for source code.
3382 	 * If no decap actions, use the layers directly.
3383 	 */
3384 	if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
3385 		return dev_flow->handle->layers;
3386 	/* Convert L3 layers with decap action. */
3387 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
3388 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
3389 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
3390 		layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
3391 	/* Convert L4 layers with decap action.  */
3392 	if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
3393 		layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
3394 	else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
3395 		layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
3396 	return layers;
3397 }
3398 
3399 /**
3400  * Get metadata split action information.
3401  *
3402  * @param[in] actions
3403  *   Pointer to the list of actions.
3404  * @param[out] qrss
3405  *   Pointer to the return pointer.
3406  * @param[out] qrss_type
3407  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
3408  *   if no QUEUE/RSS is found.
3409  * @param[out] encap_idx
3410  *   Pointer to the index of the encap action if exists, otherwise the last
3411  *   action index.
3412  *
3413  * @return
3414  *   Total number of actions.
3415  */
3416 static int
3417 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
3418 				       const struct rte_flow_action **qrss,
3419 				       int *encap_idx)
3420 {
3421 	const struct rte_flow_action_raw_encap *raw_encap;
3422 	int actions_n = 0;
3423 	int raw_decap_idx = -1;
3424 
3425 	*encap_idx = -1;
3426 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3427 		switch (actions->type) {
3428 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3429 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3430 			*encap_idx = actions_n;
3431 			break;
3432 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3433 			raw_decap_idx = actions_n;
3434 			break;
3435 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3436 			raw_encap = actions->conf;
3437 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3438 				*encap_idx = raw_decap_idx != -1 ?
3439 						      raw_decap_idx : actions_n;
3440 			break;
3441 		case RTE_FLOW_ACTION_TYPE_QUEUE:
3442 		case RTE_FLOW_ACTION_TYPE_RSS:
3443 			*qrss = actions;
3444 			break;
3445 		default:
3446 			break;
3447 		}
3448 		actions_n++;
3449 	}
3450 	if (*encap_idx == -1)
3451 		*encap_idx = actions_n;
3452 	/* Count RTE_FLOW_ACTION_TYPE_END. */
3453 	return actions_n + 1;
3454 }
3455 
3456 /**
3457  * Check meter action from the action list.
3458  *
3459  * @param[in] actions
3460  *   Pointer to the list of actions.
3461  * @param[out] mtr
3462  *   Pointer to the meter exist flag.
3463  *
3464  * @return
3465  *   Total number of actions.
3466  */
3467 static int
3468 flow_check_meter_action(const struct rte_flow_action actions[], uint32_t *mtr)
3469 {
3470 	int actions_n = 0;
3471 
3472 	MLX5_ASSERT(mtr);
3473 	*mtr = 0;
3474 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3475 		switch (actions->type) {
3476 		case RTE_FLOW_ACTION_TYPE_METER:
3477 			*mtr = 1;
3478 			break;
3479 		default:
3480 			break;
3481 		}
3482 		actions_n++;
3483 	}
3484 	/* Count RTE_FLOW_ACTION_TYPE_END. */
3485 	return actions_n + 1;
3486 }
3487 
3488 /**
3489  * Check if the flow should be split due to hairpin.
3490  * The reason for the split is that in current HW we can't
3491  * support encap and push-vlan on Rx, so if a flow contains
3492  * these actions we move it to Tx.
3493  *
3494  * @param dev
3495  *   Pointer to Ethernet device.
3496  * @param[in] attr
3497  *   Flow rule attributes.
3498  * @param[in] actions
3499  *   Associated actions (list terminated by the END action).
3500  *
3501  * @return
3502  *   > 0 the number of actions and the flow should be split,
3503  *   0 when no split required.
3504  */
3505 static int
3506 flow_check_hairpin_split(struct rte_eth_dev *dev,
3507 			 const struct rte_flow_attr *attr,
3508 			 const struct rte_flow_action actions[])
3509 {
3510 	int queue_action = 0;
3511 	int action_n = 0;
3512 	int split = 0;
3513 	const struct rte_flow_action_queue *queue;
3514 	const struct rte_flow_action_rss *rss;
3515 	const struct rte_flow_action_raw_encap *raw_encap;
3516 	const struct rte_eth_hairpin_conf *conf;
3517 
3518 	if (!attr->ingress)
3519 		return 0;
3520 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3521 		switch (actions->type) {
3522 		case RTE_FLOW_ACTION_TYPE_QUEUE:
3523 			queue = actions->conf;
3524 			if (queue == NULL)
3525 				return 0;
3526 			conf = mlx5_rxq_get_hairpin_conf(dev, queue->index);
3527 			if (conf != NULL && !!conf->tx_explicit)
3528 				return 0;
3529 			queue_action = 1;
3530 			action_n++;
3531 			break;
3532 		case RTE_FLOW_ACTION_TYPE_RSS:
3533 			rss = actions->conf;
3534 			if (rss == NULL || rss->queue_num == 0)
3535 				return 0;
3536 			conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]);
3537 			if (conf != NULL && !!conf->tx_explicit)
3538 				return 0;
3539 			queue_action = 1;
3540 			action_n++;
3541 			break;
3542 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3543 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3544 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3545 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3546 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3547 			split++;
3548 			action_n++;
3549 			break;
3550 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3551 			raw_encap = actions->conf;
3552 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3553 				split++;
3554 			action_n++;
3555 			break;
3556 		default:
3557 			action_n++;
3558 			break;
3559 		}
3560 	}
3561 	if (split && queue_action)
3562 		return action_n;
3563 	return 0;
3564 }
3565 
3566 /* Declare flow create/destroy prototype in advance. */
3567 static uint32_t
3568 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
3569 		 const struct rte_flow_attr *attr,
3570 		 const struct rte_flow_item items[],
3571 		 const struct rte_flow_action actions[],
3572 		 bool external, struct rte_flow_error *error);
3573 
3574 static void
3575 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
3576 		  uint32_t flow_idx);
3577 
3578 int
3579 flow_dv_mreg_match_cb(struct mlx5_hlist *list __rte_unused,
3580 		      struct mlx5_hlist_entry *entry,
3581 		      uint64_t key, void *cb_ctx __rte_unused)
3582 {
3583 	struct mlx5_flow_mreg_copy_resource *mcp_res =
3584 		container_of(entry, typeof(*mcp_res), hlist_ent);
3585 
3586 	return mcp_res->mark_id != key;
3587 }
3588 
3589 struct mlx5_hlist_entry *
3590 flow_dv_mreg_create_cb(struct mlx5_hlist *list, uint64_t key,
3591 		       void *cb_ctx)
3592 {
3593 	struct rte_eth_dev *dev = list->ctx;
3594 	struct mlx5_priv *priv = dev->data->dev_private;
3595 	struct mlx5_flow_cb_ctx *ctx = cb_ctx;
3596 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3597 	struct rte_flow_error *error = ctx->error;
3598 	uint32_t idx = 0;
3599 	int ret;
3600 	uint32_t mark_id = key;
3601 	struct rte_flow_attr attr = {
3602 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
3603 		.ingress = 1,
3604 	};
3605 	struct mlx5_rte_flow_item_tag tag_spec = {
3606 		.data = mark_id,
3607 	};
3608 	struct rte_flow_item items[] = {
3609 		[1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
3610 	};
3611 	struct rte_flow_action_mark ftag = {
3612 		.id = mark_id,
3613 	};
3614 	struct mlx5_flow_action_copy_mreg cp_mreg = {
3615 		.dst = REG_B,
3616 		.src = REG_NON,
3617 	};
3618 	struct rte_flow_action_jump jump = {
3619 		.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
3620 	};
3621 	struct rte_flow_action actions[] = {
3622 		[3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
3623 	};
3624 
3625 	/* Fill the register fileds in the flow. */
3626 	ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
3627 	if (ret < 0)
3628 		return NULL;
3629 	tag_spec.id = ret;
3630 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
3631 	if (ret < 0)
3632 		return NULL;
3633 	cp_mreg.src = ret;
3634 	/* Provide the full width of FLAG specific value. */
3635 	if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
3636 		tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
3637 	/* Build a new flow. */
3638 	if (mark_id != MLX5_DEFAULT_COPY_ID) {
3639 		items[0] = (struct rte_flow_item){
3640 			.type = (enum rte_flow_item_type)
3641 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
3642 			.spec = &tag_spec,
3643 		};
3644 		items[1] = (struct rte_flow_item){
3645 			.type = RTE_FLOW_ITEM_TYPE_END,
3646 		};
3647 		actions[0] = (struct rte_flow_action){
3648 			.type = (enum rte_flow_action_type)
3649 				MLX5_RTE_FLOW_ACTION_TYPE_MARK,
3650 			.conf = &ftag,
3651 		};
3652 		actions[1] = (struct rte_flow_action){
3653 			.type = (enum rte_flow_action_type)
3654 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3655 			.conf = &cp_mreg,
3656 		};
3657 		actions[2] = (struct rte_flow_action){
3658 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
3659 			.conf = &jump,
3660 		};
3661 		actions[3] = (struct rte_flow_action){
3662 			.type = RTE_FLOW_ACTION_TYPE_END,
3663 		};
3664 	} else {
3665 		/* Default rule, wildcard match. */
3666 		attr.priority = MLX5_FLOW_PRIO_RSVD;
3667 		items[0] = (struct rte_flow_item){
3668 			.type = RTE_FLOW_ITEM_TYPE_END,
3669 		};
3670 		actions[0] = (struct rte_flow_action){
3671 			.type = (enum rte_flow_action_type)
3672 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3673 			.conf = &cp_mreg,
3674 		};
3675 		actions[1] = (struct rte_flow_action){
3676 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
3677 			.conf = &jump,
3678 		};
3679 		actions[2] = (struct rte_flow_action){
3680 			.type = RTE_FLOW_ACTION_TYPE_END,
3681 		};
3682 	}
3683 	/* Build a new entry. */
3684 	mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
3685 	if (!mcp_res) {
3686 		rte_errno = ENOMEM;
3687 		return NULL;
3688 	}
3689 	mcp_res->idx = idx;
3690 	mcp_res->mark_id = mark_id;
3691 	/*
3692 	 * The copy Flows are not included in any list. There
3693 	 * ones are referenced from other Flows and can not
3694 	 * be applied, removed, deleted in ardbitrary order
3695 	 * by list traversing.
3696 	 */
3697 	mcp_res->rix_flow = flow_list_create(dev, NULL, &attr, items,
3698 					 actions, false, error);
3699 	if (!mcp_res->rix_flow) {
3700 		mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], idx);
3701 		return NULL;
3702 	}
3703 	return &mcp_res->hlist_ent;
3704 }
3705 
3706 /**
3707  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3708  *
3709  * As mark_id is unique, if there's already a registered flow for the mark_id,
3710  * return by increasing the reference counter of the resource. Otherwise, create
3711  * the resource (mcp_res) and flow.
3712  *
3713  * Flow looks like,
3714  *   - If ingress port is ANY and reg_c[1] is mark_id,
3715  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3716  *
3717  * For default flow (zero mark_id), flow is like,
3718  *   - If ingress port is ANY,
3719  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
3720  *
3721  * @param dev
3722  *   Pointer to Ethernet device.
3723  * @param mark_id
3724  *   ID of MARK action, zero means default flow for META.
3725  * @param[out] error
3726  *   Perform verbose error reporting if not NULL.
3727  *
3728  * @return
3729  *   Associated resource on success, NULL otherwise and rte_errno is set.
3730  */
3731 static struct mlx5_flow_mreg_copy_resource *
3732 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
3733 			  struct rte_flow_error *error)
3734 {
3735 	struct mlx5_priv *priv = dev->data->dev_private;
3736 	struct mlx5_hlist_entry *entry;
3737 	struct mlx5_flow_cb_ctx ctx = {
3738 		.dev = dev,
3739 		.error = error,
3740 	};
3741 
3742 	/* Check if already registered. */
3743 	MLX5_ASSERT(priv->mreg_cp_tbl);
3744 	entry = mlx5_hlist_register(priv->mreg_cp_tbl, mark_id, &ctx);
3745 	if (!entry)
3746 		return NULL;
3747 	return container_of(entry, struct mlx5_flow_mreg_copy_resource,
3748 			    hlist_ent);
3749 }
3750 
3751 void
3752 flow_dv_mreg_remove_cb(struct mlx5_hlist *list, struct mlx5_hlist_entry *entry)
3753 {
3754 	struct mlx5_flow_mreg_copy_resource *mcp_res =
3755 		container_of(entry, typeof(*mcp_res), hlist_ent);
3756 	struct rte_eth_dev *dev = list->ctx;
3757 	struct mlx5_priv *priv = dev->data->dev_private;
3758 
3759 	MLX5_ASSERT(mcp_res->rix_flow);
3760 	flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3761 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3762 }
3763 
3764 /**
3765  * Release flow in RX_CP_TBL.
3766  *
3767  * @param dev
3768  *   Pointer to Ethernet device.
3769  * @flow
3770  *   Parent flow for wich copying is provided.
3771  */
3772 static void
3773 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
3774 			  struct rte_flow *flow)
3775 {
3776 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3777 	struct mlx5_priv *priv = dev->data->dev_private;
3778 
3779 	if (!flow->rix_mreg_copy)
3780 		return;
3781 	mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3782 				 flow->rix_mreg_copy);
3783 	if (!mcp_res || !priv->mreg_cp_tbl)
3784 		return;
3785 	MLX5_ASSERT(mcp_res->rix_flow);
3786 	mlx5_hlist_unregister(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
3787 	flow->rix_mreg_copy = 0;
3788 }
3789 
3790 /**
3791  * Remove the default copy action from RX_CP_TBL.
3792  *
3793  * This functions is called in the mlx5_dev_start(). No thread safe
3794  * is guaranteed.
3795  *
3796  * @param dev
3797  *   Pointer to Ethernet device.
3798  */
3799 static void
3800 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
3801 {
3802 	struct mlx5_hlist_entry *entry;
3803 	struct mlx5_priv *priv = dev->data->dev_private;
3804 
3805 	/* Check if default flow is registered. */
3806 	if (!priv->mreg_cp_tbl)
3807 		return;
3808 	entry = mlx5_hlist_lookup(priv->mreg_cp_tbl,
3809 				  MLX5_DEFAULT_COPY_ID, NULL);
3810 	if (!entry)
3811 		return;
3812 	mlx5_hlist_unregister(priv->mreg_cp_tbl, entry);
3813 }
3814 
3815 /**
3816  * Add the default copy action in in RX_CP_TBL.
3817  *
3818  * This functions is called in the mlx5_dev_start(). No thread safe
3819  * is guaranteed.
3820  *
3821  * @param dev
3822  *   Pointer to Ethernet device.
3823  * @param[out] error
3824  *   Perform verbose error reporting if not NULL.
3825  *
3826  * @return
3827  *   0 for success, negative value otherwise and rte_errno is set.
3828  */
3829 static int
3830 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
3831 				  struct rte_flow_error *error)
3832 {
3833 	struct mlx5_priv *priv = dev->data->dev_private;
3834 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3835 
3836 	/* Check whether extensive metadata feature is engaged. */
3837 	if (!priv->config.dv_flow_en ||
3838 	    priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3839 	    !mlx5_flow_ext_mreg_supported(dev) ||
3840 	    !priv->sh->dv_regc0_mask)
3841 		return 0;
3842 	/*
3843 	 * Add default mreg copy flow may be called multiple time, but
3844 	 * only be called once in stop. Avoid register it twice.
3845 	 */
3846 	if (mlx5_hlist_lookup(priv->mreg_cp_tbl, MLX5_DEFAULT_COPY_ID, NULL))
3847 		return 0;
3848 	mcp_res = flow_mreg_add_copy_action(dev, MLX5_DEFAULT_COPY_ID, error);
3849 	if (!mcp_res)
3850 		return -rte_errno;
3851 	return 0;
3852 }
3853 
3854 /**
3855  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3856  *
3857  * All the flow having Q/RSS action should be split by
3858  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
3859  * performs the following,
3860  *   - CQE->flow_tag := reg_c[1] (MARK)
3861  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
3862  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
3863  * but there should be a flow per each MARK ID set by MARK action.
3864  *
3865  * For the aforementioned reason, if there's a MARK action in flow's action
3866  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
3867  * the MARK ID to CQE's flow_tag like,
3868  *   - If reg_c[1] is mark_id,
3869  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3870  *
3871  * For SET_META action which stores value in reg_c[0], as the destination is
3872  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
3873  * MARK ID means the default flow. The default flow looks like,
3874  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3875  *
3876  * @param dev
3877  *   Pointer to Ethernet device.
3878  * @param flow
3879  *   Pointer to flow structure.
3880  * @param[in] actions
3881  *   Pointer to the list of actions.
3882  * @param[out] error
3883  *   Perform verbose error reporting if not NULL.
3884  *
3885  * @return
3886  *   0 on success, negative value otherwise and rte_errno is set.
3887  */
3888 static int
3889 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
3890 			    struct rte_flow *flow,
3891 			    const struct rte_flow_action *actions,
3892 			    struct rte_flow_error *error)
3893 {
3894 	struct mlx5_priv *priv = dev->data->dev_private;
3895 	struct mlx5_dev_config *config = &priv->config;
3896 	struct mlx5_flow_mreg_copy_resource *mcp_res;
3897 	const struct rte_flow_action_mark *mark;
3898 
3899 	/* Check whether extensive metadata feature is engaged. */
3900 	if (!config->dv_flow_en ||
3901 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3902 	    !mlx5_flow_ext_mreg_supported(dev) ||
3903 	    !priv->sh->dv_regc0_mask)
3904 		return 0;
3905 	/* Find MARK action. */
3906 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3907 		switch (actions->type) {
3908 		case RTE_FLOW_ACTION_TYPE_FLAG:
3909 			mcp_res = flow_mreg_add_copy_action
3910 				(dev, MLX5_FLOW_MARK_DEFAULT, error);
3911 			if (!mcp_res)
3912 				return -rte_errno;
3913 			flow->rix_mreg_copy = mcp_res->idx;
3914 			return 0;
3915 		case RTE_FLOW_ACTION_TYPE_MARK:
3916 			mark = (const struct rte_flow_action_mark *)
3917 				actions->conf;
3918 			mcp_res =
3919 				flow_mreg_add_copy_action(dev, mark->id, error);
3920 			if (!mcp_res)
3921 				return -rte_errno;
3922 			flow->rix_mreg_copy = mcp_res->idx;
3923 			return 0;
3924 		default:
3925 			break;
3926 		}
3927 	}
3928 	return 0;
3929 }
3930 
3931 #define MLX5_MAX_SPLIT_ACTIONS 24
3932 #define MLX5_MAX_SPLIT_ITEMS 24
3933 
3934 /**
3935  * Split the hairpin flow.
3936  * Since HW can't support encap and push-vlan on Rx, we move these
3937  * actions to Tx.
3938  * If the count action is after the encap then we also
3939  * move the count action. in this case the count will also measure
3940  * the outer bytes.
3941  *
3942  * @param dev
3943  *   Pointer to Ethernet device.
3944  * @param[in] actions
3945  *   Associated actions (list terminated by the END action).
3946  * @param[out] actions_rx
3947  *   Rx flow actions.
3948  * @param[out] actions_tx
3949  *   Tx flow actions..
3950  * @param[out] pattern_tx
3951  *   The pattern items for the Tx flow.
3952  * @param[out] flow_id
3953  *   The flow ID connected to this flow.
3954  *
3955  * @return
3956  *   0 on success.
3957  */
3958 static int
3959 flow_hairpin_split(struct rte_eth_dev *dev,
3960 		   const struct rte_flow_action actions[],
3961 		   struct rte_flow_action actions_rx[],
3962 		   struct rte_flow_action actions_tx[],
3963 		   struct rte_flow_item pattern_tx[],
3964 		   uint32_t flow_id)
3965 {
3966 	const struct rte_flow_action_raw_encap *raw_encap;
3967 	const struct rte_flow_action_raw_decap *raw_decap;
3968 	struct mlx5_rte_flow_action_set_tag *set_tag;
3969 	struct rte_flow_action *tag_action;
3970 	struct mlx5_rte_flow_item_tag *tag_item;
3971 	struct rte_flow_item *item;
3972 	char *addr;
3973 	int encap = 0;
3974 
3975 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3976 		switch (actions->type) {
3977 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3978 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3979 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3980 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3981 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3982 			rte_memcpy(actions_tx, actions,
3983 			       sizeof(struct rte_flow_action));
3984 			actions_tx++;
3985 			break;
3986 		case RTE_FLOW_ACTION_TYPE_COUNT:
3987 			if (encap) {
3988 				rte_memcpy(actions_tx, actions,
3989 					   sizeof(struct rte_flow_action));
3990 				actions_tx++;
3991 			} else {
3992 				rte_memcpy(actions_rx, actions,
3993 					   sizeof(struct rte_flow_action));
3994 				actions_rx++;
3995 			}
3996 			break;
3997 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3998 			raw_encap = actions->conf;
3999 			if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) {
4000 				memcpy(actions_tx, actions,
4001 				       sizeof(struct rte_flow_action));
4002 				actions_tx++;
4003 				encap = 1;
4004 			} else {
4005 				rte_memcpy(actions_rx, actions,
4006 					   sizeof(struct rte_flow_action));
4007 				actions_rx++;
4008 			}
4009 			break;
4010 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4011 			raw_decap = actions->conf;
4012 			if (raw_decap->size < MLX5_ENCAPSULATION_DECISION_SIZE) {
4013 				memcpy(actions_tx, actions,
4014 				       sizeof(struct rte_flow_action));
4015 				actions_tx++;
4016 			} else {
4017 				rte_memcpy(actions_rx, actions,
4018 					   sizeof(struct rte_flow_action));
4019 				actions_rx++;
4020 			}
4021 			break;
4022 		default:
4023 			rte_memcpy(actions_rx, actions,
4024 				   sizeof(struct rte_flow_action));
4025 			actions_rx++;
4026 			break;
4027 		}
4028 	}
4029 	/* Add set meta action and end action for the Rx flow. */
4030 	tag_action = actions_rx;
4031 	tag_action->type = (enum rte_flow_action_type)
4032 			   MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4033 	actions_rx++;
4034 	rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
4035 	actions_rx++;
4036 	set_tag = (void *)actions_rx;
4037 	set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL);
4038 	MLX5_ASSERT(set_tag->id > REG_NON);
4039 	set_tag->data = flow_id;
4040 	tag_action->conf = set_tag;
4041 	/* Create Tx item list. */
4042 	rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
4043 	addr = (void *)&pattern_tx[2];
4044 	item = pattern_tx;
4045 	item->type = (enum rte_flow_item_type)
4046 		     MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4047 	tag_item = (void *)addr;
4048 	tag_item->data = flow_id;
4049 	tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
4050 	MLX5_ASSERT(set_tag->id > REG_NON);
4051 	item->spec = tag_item;
4052 	addr += sizeof(struct mlx5_rte_flow_item_tag);
4053 	tag_item = (void *)addr;
4054 	tag_item->data = UINT32_MAX;
4055 	tag_item->id = UINT16_MAX;
4056 	item->mask = tag_item;
4057 	item->last = NULL;
4058 	item++;
4059 	item->type = RTE_FLOW_ITEM_TYPE_END;
4060 	return 0;
4061 }
4062 
4063 /**
4064  * The last stage of splitting chain, just creates the subflow
4065  * without any modification.
4066  *
4067  * @param[in] dev
4068  *   Pointer to Ethernet device.
4069  * @param[in] flow
4070  *   Parent flow structure pointer.
4071  * @param[in, out] sub_flow
4072  *   Pointer to return the created subflow, may be NULL.
4073  * @param[in] attr
4074  *   Flow rule attributes.
4075  * @param[in] items
4076  *   Pattern specification (list terminated by the END pattern item).
4077  * @param[in] actions
4078  *   Associated actions (list terminated by the END action).
4079  * @param[in] flow_split_info
4080  *   Pointer to flow split info structure.
4081  * @param[out] error
4082  *   Perform verbose error reporting if not NULL.
4083  * @return
4084  *   0 on success, negative value otherwise
4085  */
4086 static int
4087 flow_create_split_inner(struct rte_eth_dev *dev,
4088 			struct rte_flow *flow,
4089 			struct mlx5_flow **sub_flow,
4090 			const struct rte_flow_attr *attr,
4091 			const struct rte_flow_item items[],
4092 			const struct rte_flow_action actions[],
4093 			struct mlx5_flow_split_info *flow_split_info,
4094 			struct rte_flow_error *error)
4095 {
4096 	struct mlx5_flow *dev_flow;
4097 
4098 	dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
4099 				    flow_split_info->flow_idx, error);
4100 	if (!dev_flow)
4101 		return -rte_errno;
4102 	dev_flow->flow = flow;
4103 	dev_flow->external = flow_split_info->external;
4104 	dev_flow->skip_scale = flow_split_info->skip_scale;
4105 	/* Subflow object was created, we must include one in the list. */
4106 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
4107 		      dev_flow->handle, next);
4108 	/*
4109 	 * If dev_flow is as one of the suffix flow, some actions in suffix
4110 	 * flow may need some user defined item layer flags, and pass the
4111 	 * Metadate rxq mark flag to suffix flow as well.
4112 	 */
4113 	if (flow_split_info->prefix_layers)
4114 		dev_flow->handle->layers = flow_split_info->prefix_layers;
4115 	if (flow_split_info->prefix_mark)
4116 		dev_flow->handle->mark = 1;
4117 	if (sub_flow)
4118 		*sub_flow = dev_flow;
4119 	return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
4120 }
4121 
4122 /**
4123  * Split the meter flow.
4124  *
4125  * As meter flow will split to three sub flow, other than meter
4126  * action, the other actions make sense to only meter accepts
4127  * the packet. If it need to be dropped, no other additional
4128  * actions should be take.
4129  *
4130  * One kind of special action which decapsulates the L3 tunnel
4131  * header will be in the prefix sub flow, as not to take the
4132  * L3 tunnel header into account.
4133  *
4134  * @param dev
4135  *   Pointer to Ethernet device.
4136  * @param[in] items
4137  *   Pattern specification (list terminated by the END pattern item).
4138  * @param[out] sfx_items
4139  *   Suffix flow match items (list terminated by the END pattern item).
4140  * @param[in] actions
4141  *   Associated actions (list terminated by the END action).
4142  * @param[out] actions_sfx
4143  *   Suffix flow actions.
4144  * @param[out] actions_pre
4145  *   Prefix flow actions.
4146  * @param[out] pattern_sfx
4147  *   The pattern items for the suffix flow.
4148  * @param[out] tag_sfx
4149  *   Pointer to suffix flow tag.
4150  *
4151  * @return
4152  *   0 on success.
4153  */
4154 static int
4155 flow_meter_split_prep(struct rte_eth_dev *dev,
4156 		 const struct rte_flow_item items[],
4157 		 struct rte_flow_item sfx_items[],
4158 		 const struct rte_flow_action actions[],
4159 		 struct rte_flow_action actions_sfx[],
4160 		 struct rte_flow_action actions_pre[])
4161 {
4162 	struct mlx5_priv *priv = dev->data->dev_private;
4163 	struct rte_flow_action *tag_action = NULL;
4164 	struct rte_flow_item *tag_item;
4165 	struct mlx5_rte_flow_action_set_tag *set_tag;
4166 	struct rte_flow_error error;
4167 	const struct rte_flow_action_raw_encap *raw_encap;
4168 	const struct rte_flow_action_raw_decap *raw_decap;
4169 	struct mlx5_rte_flow_item_tag *tag_spec;
4170 	struct mlx5_rte_flow_item_tag *tag_mask;
4171 	uint32_t tag_id = 0;
4172 	bool copy_vlan = false;
4173 
4174 	/* Prepare the actions for prefix and suffix flow. */
4175 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4176 		struct rte_flow_action **action_cur = NULL;
4177 
4178 		switch (actions->type) {
4179 		case RTE_FLOW_ACTION_TYPE_METER:
4180 			/* Add the extra tag action first. */
4181 			tag_action = actions_pre;
4182 			tag_action->type = (enum rte_flow_action_type)
4183 					   MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4184 			actions_pre++;
4185 			action_cur = &actions_pre;
4186 			break;
4187 		case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
4188 		case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
4189 			action_cur = &actions_pre;
4190 			break;
4191 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
4192 			raw_encap = actions->conf;
4193 			if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
4194 				action_cur = &actions_pre;
4195 			break;
4196 		case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
4197 			raw_decap = actions->conf;
4198 			if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
4199 				action_cur = &actions_pre;
4200 			break;
4201 		case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
4202 		case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
4203 			copy_vlan = true;
4204 			break;
4205 		default:
4206 			break;
4207 		}
4208 		if (!action_cur)
4209 			action_cur = &actions_sfx;
4210 		memcpy(*action_cur, actions, sizeof(struct rte_flow_action));
4211 		(*action_cur)++;
4212 	}
4213 	/* Add end action to the actions. */
4214 	actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
4215 	actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
4216 	actions_pre++;
4217 	/* Set the tag. */
4218 	set_tag = (void *)actions_pre;
4219 	set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4220 	mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
4221 			  &tag_id);
4222 	if (tag_id >= (1 << (sizeof(tag_id) * 8 - MLX5_MTR_COLOR_BITS))) {
4223 		DRV_LOG(ERR, "Port %u meter flow id exceed max limit.",
4224 			dev->data->port_id);
4225 		mlx5_ipool_free(priv->sh->ipool
4226 				[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], tag_id);
4227 		return 0;
4228 	} else if (!tag_id) {
4229 		return 0;
4230 	}
4231 	set_tag->data = tag_id << MLX5_MTR_COLOR_BITS;
4232 	assert(tag_action);
4233 	tag_action->conf = set_tag;
4234 	/* Prepare the suffix subflow items. */
4235 	tag_item = sfx_items++;
4236 	for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
4237 		int item_type = items->type;
4238 
4239 		switch (item_type) {
4240 		case RTE_FLOW_ITEM_TYPE_PORT_ID:
4241 			memcpy(sfx_items, items, sizeof(*sfx_items));
4242 			sfx_items++;
4243 			break;
4244 		case RTE_FLOW_ITEM_TYPE_VLAN:
4245 			if (copy_vlan) {
4246 				memcpy(sfx_items, items, sizeof(*sfx_items));
4247 				/*
4248 				 * Convert to internal match item, it is used
4249 				 * for vlan push and set vid.
4250 				 */
4251 				sfx_items->type = (enum rte_flow_item_type)
4252 						  MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
4253 				sfx_items++;
4254 			}
4255 			break;
4256 		default:
4257 			break;
4258 		}
4259 	}
4260 	sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
4261 	sfx_items++;
4262 	tag_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
4263 	tag_spec->data = tag_id << MLX5_MTR_COLOR_BITS;
4264 	tag_spec->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4265 	tag_mask = tag_spec + 1;
4266 	tag_mask->data = 0xffffff00;
4267 	tag_item->type = (enum rte_flow_item_type)
4268 			 MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4269 	tag_item->spec = tag_spec;
4270 	tag_item->last = NULL;
4271 	tag_item->mask = tag_mask;
4272 	return tag_id;
4273 }
4274 
4275 /**
4276  * Split action list having QUEUE/RSS for metadata register copy.
4277  *
4278  * Once Q/RSS action is detected in user's action list, the flow action
4279  * should be split in order to copy metadata registers, which will happen in
4280  * RX_CP_TBL like,
4281  *   - CQE->flow_tag := reg_c[1] (MARK)
4282  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4283  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
4284  * This is because the last action of each flow must be a terminal action
4285  * (QUEUE, RSS or DROP).
4286  *
4287  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
4288  * stored and kept in the mlx5_flow structure per each sub_flow.
4289  *
4290  * The Q/RSS action is replaced with,
4291  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
4292  * And the following JUMP action is added at the end,
4293  *   - JUMP, to RX_CP_TBL.
4294  *
4295  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
4296  * flow_create_split_metadata() routine. The flow will look like,
4297  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
4298  *
4299  * @param dev
4300  *   Pointer to Ethernet device.
4301  * @param[out] split_actions
4302  *   Pointer to store split actions to jump to CP_TBL.
4303  * @param[in] actions
4304  *   Pointer to the list of original flow actions.
4305  * @param[in] qrss
4306  *   Pointer to the Q/RSS action.
4307  * @param[in] actions_n
4308  *   Number of original actions.
4309  * @param[out] error
4310  *   Perform verbose error reporting if not NULL.
4311  *
4312  * @return
4313  *   non-zero unique flow_id on success, otherwise 0 and
4314  *   error/rte_error are set.
4315  */
4316 static uint32_t
4317 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
4318 			  struct rte_flow_action *split_actions,
4319 			  const struct rte_flow_action *actions,
4320 			  const struct rte_flow_action *qrss,
4321 			  int actions_n, struct rte_flow_error *error)
4322 {
4323 	struct mlx5_priv *priv = dev->data->dev_private;
4324 	struct mlx5_rte_flow_action_set_tag *set_tag;
4325 	struct rte_flow_action_jump *jump;
4326 	const int qrss_idx = qrss - actions;
4327 	uint32_t flow_id = 0;
4328 	int ret = 0;
4329 
4330 	/*
4331 	 * Given actions will be split
4332 	 * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
4333 	 * - Add jump to mreg CP_TBL.
4334 	 * As a result, there will be one more action.
4335 	 */
4336 	++actions_n;
4337 	memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
4338 	set_tag = (void *)(split_actions + actions_n);
4339 	/*
4340 	 * If tag action is not set to void(it means we are not the meter
4341 	 * suffix flow), add the tag action. Since meter suffix flow already
4342 	 * has the tag added.
4343 	 */
4344 	if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) {
4345 		/*
4346 		 * Allocate the new subflow ID. This one is unique within
4347 		 * device and not shared with representors. Otherwise,
4348 		 * we would have to resolve multi-thread access synch
4349 		 * issue. Each flow on the shared device is appended
4350 		 * with source vport identifier, so the resulting
4351 		 * flows will be unique in the shared (by master and
4352 		 * representors) domain even if they have coinciding
4353 		 * IDs.
4354 		 */
4355 		mlx5_ipool_malloc(priv->sh->ipool
4356 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id);
4357 		if (!flow_id)
4358 			return rte_flow_error_set(error, ENOMEM,
4359 						  RTE_FLOW_ERROR_TYPE_ACTION,
4360 						  NULL, "can't allocate id "
4361 						  "for split Q/RSS subflow");
4362 		/* Internal SET_TAG action to set flow ID. */
4363 		*set_tag = (struct mlx5_rte_flow_action_set_tag){
4364 			.data = flow_id,
4365 		};
4366 		ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
4367 		if (ret < 0)
4368 			return ret;
4369 		set_tag->id = ret;
4370 		/* Construct new actions array. */
4371 		/* Replace QUEUE/RSS action. */
4372 		split_actions[qrss_idx] = (struct rte_flow_action){
4373 			.type = (enum rte_flow_action_type)
4374 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4375 			.conf = set_tag,
4376 		};
4377 	}
4378 	/* JUMP action to jump to mreg copy table (CP_TBL). */
4379 	jump = (void *)(set_tag + 1);
4380 	*jump = (struct rte_flow_action_jump){
4381 		.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4382 	};
4383 	split_actions[actions_n - 2] = (struct rte_flow_action){
4384 		.type = RTE_FLOW_ACTION_TYPE_JUMP,
4385 		.conf = jump,
4386 	};
4387 	split_actions[actions_n - 1] = (struct rte_flow_action){
4388 		.type = RTE_FLOW_ACTION_TYPE_END,
4389 	};
4390 	return flow_id;
4391 }
4392 
4393 /**
4394  * Extend the given action list for Tx metadata copy.
4395  *
4396  * Copy the given action list to the ext_actions and add flow metadata register
4397  * copy action in order to copy reg_a set by WQE to reg_c[0].
4398  *
4399  * @param[out] ext_actions
4400  *   Pointer to the extended action list.
4401  * @param[in] actions
4402  *   Pointer to the list of actions.
4403  * @param[in] actions_n
4404  *   Number of actions in the list.
4405  * @param[out] error
4406  *   Perform verbose error reporting if not NULL.
4407  * @param[in] encap_idx
4408  *   The encap action inndex.
4409  *
4410  * @return
4411  *   0 on success, negative value otherwise
4412  */
4413 static int
4414 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
4415 		       struct rte_flow_action *ext_actions,
4416 		       const struct rte_flow_action *actions,
4417 		       int actions_n, struct rte_flow_error *error,
4418 		       int encap_idx)
4419 {
4420 	struct mlx5_flow_action_copy_mreg *cp_mreg =
4421 		(struct mlx5_flow_action_copy_mreg *)
4422 			(ext_actions + actions_n + 1);
4423 	int ret;
4424 
4425 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4426 	if (ret < 0)
4427 		return ret;
4428 	cp_mreg->dst = ret;
4429 	ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
4430 	if (ret < 0)
4431 		return ret;
4432 	cp_mreg->src = ret;
4433 	if (encap_idx != 0)
4434 		memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
4435 	if (encap_idx == actions_n - 1) {
4436 		ext_actions[actions_n - 1] = (struct rte_flow_action){
4437 			.type = (enum rte_flow_action_type)
4438 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4439 			.conf = cp_mreg,
4440 		};
4441 		ext_actions[actions_n] = (struct rte_flow_action){
4442 			.type = RTE_FLOW_ACTION_TYPE_END,
4443 		};
4444 	} else {
4445 		ext_actions[encap_idx] = (struct rte_flow_action){
4446 			.type = (enum rte_flow_action_type)
4447 				MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4448 			.conf = cp_mreg,
4449 		};
4450 		memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
4451 				sizeof(*ext_actions) * (actions_n - encap_idx));
4452 	}
4453 	return 0;
4454 }
4455 
4456 /**
4457  * Check the match action from the action list.
4458  *
4459  * @param[in] actions
4460  *   Pointer to the list of actions.
4461  * @param[in] attr
4462  *   Flow rule attributes.
4463  * @param[in] action
4464  *   The action to be check if exist.
4465  * @param[out] match_action_pos
4466  *   Pointer to the position of the matched action if exists, otherwise is -1.
4467  * @param[out] qrss_action_pos
4468  *   Pointer to the position of the Queue/RSS action if exists, otherwise is -1.
4469  *
4470  * @return
4471  *   > 0 the total number of actions.
4472  *   0 if not found match action in action list.
4473  */
4474 static int
4475 flow_check_match_action(const struct rte_flow_action actions[],
4476 			const struct rte_flow_attr *attr,
4477 			enum rte_flow_action_type action,
4478 			int *match_action_pos, int *qrss_action_pos)
4479 {
4480 	const struct rte_flow_action_sample *sample;
4481 	int actions_n = 0;
4482 	int jump_flag = 0;
4483 	uint32_t ratio = 0;
4484 	int sub_type = 0;
4485 	int flag = 0;
4486 
4487 	*match_action_pos = -1;
4488 	*qrss_action_pos = -1;
4489 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
4490 		if (actions->type == action) {
4491 			flag = 1;
4492 			*match_action_pos = actions_n;
4493 		}
4494 		if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE ||
4495 		    actions->type == RTE_FLOW_ACTION_TYPE_RSS)
4496 			*qrss_action_pos = actions_n;
4497 		if (actions->type == RTE_FLOW_ACTION_TYPE_JUMP)
4498 			jump_flag = 1;
4499 		if (actions->type == RTE_FLOW_ACTION_TYPE_SAMPLE) {
4500 			sample = actions->conf;
4501 			ratio = sample->ratio;
4502 			sub_type = ((const struct rte_flow_action *)
4503 					(sample->actions))->type;
4504 		}
4505 		actions_n++;
4506 	}
4507 	if (flag && action == RTE_FLOW_ACTION_TYPE_SAMPLE && attr->transfer) {
4508 		if (ratio == 1) {
4509 			/* JUMP Action not support for Mirroring;
4510 			 * Mirroring support multi-destination;
4511 			 */
4512 			if (!jump_flag && sub_type != RTE_FLOW_ACTION_TYPE_END)
4513 				flag = 0;
4514 		}
4515 	}
4516 	/* Count RTE_FLOW_ACTION_TYPE_END. */
4517 	return flag ? actions_n + 1 : 0;
4518 }
4519 
4520 #define SAMPLE_SUFFIX_ITEM 2
4521 
4522 /**
4523  * Split the sample flow.
4524  *
4525  * As sample flow will split to two sub flow, sample flow with
4526  * sample action, the other actions will move to new suffix flow.
4527  *
4528  * Also add unique tag id with tag action in the sample flow,
4529  * the same tag id will be as match in the suffix flow.
4530  *
4531  * @param dev
4532  *   Pointer to Ethernet device.
4533  * @param[in] fdb_tx
4534  *   FDB egress flow flag.
4535  * @param[out] sfx_items
4536  *   Suffix flow match items (list terminated by the END pattern item).
4537  * @param[in] actions
4538  *   Associated actions (list terminated by the END action).
4539  * @param[out] actions_sfx
4540  *   Suffix flow actions.
4541  * @param[out] actions_pre
4542  *   Prefix flow actions.
4543  * @param[in] actions_n
4544  *  The total number of actions.
4545  * @param[in] sample_action_pos
4546  *   The sample action position.
4547  * @param[in] qrss_action_pos
4548  *   The Queue/RSS action position.
4549  * @param[out] error
4550  *   Perform verbose error reporting if not NULL.
4551  *
4552  * @return
4553  *   0 on success, or unique flow_id, a negative errno value
4554  *   otherwise and rte_errno is set.
4555  */
4556 static int
4557 flow_sample_split_prep(struct rte_eth_dev *dev,
4558 		       uint32_t fdb_tx,
4559 		       struct rte_flow_item sfx_items[],
4560 		       const struct rte_flow_action actions[],
4561 		       struct rte_flow_action actions_sfx[],
4562 		       struct rte_flow_action actions_pre[],
4563 		       int actions_n,
4564 		       int sample_action_pos,
4565 		       int qrss_action_pos,
4566 		       struct rte_flow_error *error)
4567 {
4568 	struct mlx5_priv *priv = dev->data->dev_private;
4569 	struct mlx5_rte_flow_action_set_tag *set_tag;
4570 	struct mlx5_rte_flow_item_tag *tag_spec;
4571 	struct mlx5_rte_flow_item_tag *tag_mask;
4572 	uint32_t tag_id = 0;
4573 	int index;
4574 	int ret;
4575 
4576 	if (sample_action_pos < 0)
4577 		return rte_flow_error_set(error, EINVAL,
4578 					  RTE_FLOW_ERROR_TYPE_ACTION,
4579 					  NULL, "invalid position of sample "
4580 					  "action in list");
4581 	if (!fdb_tx) {
4582 		/* Prepare the prefix tag action. */
4583 		set_tag = (void *)(actions_pre + actions_n + 1);
4584 		ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error);
4585 		if (ret < 0)
4586 			return ret;
4587 		set_tag->id = ret;
4588 		mlx5_ipool_malloc(priv->sh->ipool
4589 				  [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id);
4590 		set_tag->data = tag_id;
4591 		/* Prepare the suffix subflow items. */
4592 		tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM);
4593 		tag_spec->data = tag_id;
4594 		tag_spec->id = set_tag->id;
4595 		tag_mask = tag_spec + 1;
4596 		tag_mask->data = UINT32_MAX;
4597 		sfx_items[0] = (struct rte_flow_item){
4598 			.type = (enum rte_flow_item_type)
4599 				MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4600 			.spec = tag_spec,
4601 			.last = NULL,
4602 			.mask = tag_mask,
4603 		};
4604 		sfx_items[1] = (struct rte_flow_item){
4605 			.type = (enum rte_flow_item_type)
4606 				RTE_FLOW_ITEM_TYPE_END,
4607 		};
4608 	}
4609 	/* Prepare the actions for prefix and suffix flow. */
4610 	if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) {
4611 		index = qrss_action_pos;
4612 		/* Put the preceding the Queue/RSS action into prefix flow. */
4613 		if (index != 0)
4614 			memcpy(actions_pre, actions,
4615 			       sizeof(struct rte_flow_action) * index);
4616 		/* Put others preceding the sample action into prefix flow. */
4617 		if (sample_action_pos > index + 1)
4618 			memcpy(actions_pre + index, actions + index + 1,
4619 			       sizeof(struct rte_flow_action) *
4620 			       (sample_action_pos - index - 1));
4621 		index = sample_action_pos - 1;
4622 		/* Put Queue/RSS action into Suffix flow. */
4623 		memcpy(actions_sfx, actions + qrss_action_pos,
4624 		       sizeof(struct rte_flow_action));
4625 		actions_sfx++;
4626 	} else {
4627 		index = sample_action_pos;
4628 		if (index != 0)
4629 			memcpy(actions_pre, actions,
4630 			       sizeof(struct rte_flow_action) * index);
4631 	}
4632 	/* Add the extra tag action for NIC-RX and E-Switch ingress. */
4633 	if (!fdb_tx) {
4634 		actions_pre[index++] =
4635 			(struct rte_flow_action){
4636 			.type = (enum rte_flow_action_type)
4637 				MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4638 			.conf = set_tag,
4639 		};
4640 	}
4641 	memcpy(actions_pre + index, actions + sample_action_pos,
4642 	       sizeof(struct rte_flow_action));
4643 	index += 1;
4644 	actions_pre[index] = (struct rte_flow_action){
4645 		.type = (enum rte_flow_action_type)
4646 			RTE_FLOW_ACTION_TYPE_END,
4647 	};
4648 	/* Put the actions after sample into Suffix flow. */
4649 	memcpy(actions_sfx, actions + sample_action_pos + 1,
4650 	       sizeof(struct rte_flow_action) *
4651 	       (actions_n - sample_action_pos - 1));
4652 	return tag_id;
4653 }
4654 
4655 /**
4656  * The splitting for metadata feature.
4657  *
4658  * - Q/RSS action on NIC Rx should be split in order to pass by
4659  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
4660  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
4661  *
4662  * - All the actions on NIC Tx should have a mreg copy action to
4663  *   copy reg_a from WQE to reg_c[0].
4664  *
4665  * @param dev
4666  *   Pointer to Ethernet device.
4667  * @param[in] flow
4668  *   Parent flow structure pointer.
4669  * @param[in] attr
4670  *   Flow rule attributes.
4671  * @param[in] items
4672  *   Pattern specification (list terminated by the END pattern item).
4673  * @param[in] actions
4674  *   Associated actions (list terminated by the END action).
4675  * @param[in] flow_split_info
4676  *   Pointer to flow split info structure.
4677  * @param[out] error
4678  *   Perform verbose error reporting if not NULL.
4679  * @return
4680  *   0 on success, negative value otherwise
4681  */
4682 static int
4683 flow_create_split_metadata(struct rte_eth_dev *dev,
4684 			   struct rte_flow *flow,
4685 			   const struct rte_flow_attr *attr,
4686 			   const struct rte_flow_item items[],
4687 			   const struct rte_flow_action actions[],
4688 			   struct mlx5_flow_split_info *flow_split_info,
4689 			   struct rte_flow_error *error)
4690 {
4691 	struct mlx5_priv *priv = dev->data->dev_private;
4692 	struct mlx5_dev_config *config = &priv->config;
4693 	const struct rte_flow_action *qrss = NULL;
4694 	struct rte_flow_action *ext_actions = NULL;
4695 	struct mlx5_flow *dev_flow = NULL;
4696 	uint32_t qrss_id = 0;
4697 	int mtr_sfx = 0;
4698 	size_t act_size;
4699 	int actions_n;
4700 	int encap_idx;
4701 	int ret;
4702 
4703 	/* Check whether extensive metadata feature is engaged. */
4704 	if (!config->dv_flow_en ||
4705 	    config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4706 	    !mlx5_flow_ext_mreg_supported(dev))
4707 		return flow_create_split_inner(dev, flow, NULL, attr, items,
4708 					       actions, flow_split_info, error);
4709 	actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
4710 							   &encap_idx);
4711 	if (qrss) {
4712 		/* Exclude hairpin flows from splitting. */
4713 		if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
4714 			const struct rte_flow_action_queue *queue;
4715 
4716 			queue = qrss->conf;
4717 			if (mlx5_rxq_get_type(dev, queue->index) ==
4718 			    MLX5_RXQ_TYPE_HAIRPIN)
4719 				qrss = NULL;
4720 		} else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
4721 			const struct rte_flow_action_rss *rss;
4722 
4723 			rss = qrss->conf;
4724 			if (mlx5_rxq_get_type(dev, rss->queue[0]) ==
4725 			    MLX5_RXQ_TYPE_HAIRPIN)
4726 				qrss = NULL;
4727 		}
4728 	}
4729 	if (qrss) {
4730 		/* Check if it is in meter suffix table. */
4731 		mtr_sfx = attr->group == (attr->transfer ?
4732 			  (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4733 			  MLX5_FLOW_TABLE_LEVEL_SUFFIX);
4734 		/*
4735 		 * Q/RSS action on NIC Rx should be split in order to pass by
4736 		 * the mreg copy table (RX_CP_TBL) and then it jumps to the
4737 		 * action table (RX_ACT_TBL) which has the split Q/RSS action.
4738 		 */
4739 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4740 			   sizeof(struct rte_flow_action_set_tag) +
4741 			   sizeof(struct rte_flow_action_jump);
4742 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4743 					  SOCKET_ID_ANY);
4744 		if (!ext_actions)
4745 			return rte_flow_error_set(error, ENOMEM,
4746 						  RTE_FLOW_ERROR_TYPE_ACTION,
4747 						  NULL, "no memory to split "
4748 						  "metadata flow");
4749 		/*
4750 		 * If we are the suffix flow of meter, tag already exist.
4751 		 * Set the tag action to void.
4752 		 */
4753 		if (mtr_sfx)
4754 			ext_actions[qrss - actions].type =
4755 						RTE_FLOW_ACTION_TYPE_VOID;
4756 		else
4757 			ext_actions[qrss - actions].type =
4758 						(enum rte_flow_action_type)
4759 						MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4760 		/*
4761 		 * Create the new actions list with removed Q/RSS action
4762 		 * and appended set tag and jump to register copy table
4763 		 * (RX_CP_TBL). We should preallocate unique tag ID here
4764 		 * in advance, because it is needed for set tag action.
4765 		 */
4766 		qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
4767 						    qrss, actions_n, error);
4768 		if (!mtr_sfx && !qrss_id) {
4769 			ret = -rte_errno;
4770 			goto exit;
4771 		}
4772 	} else if (attr->egress && !attr->transfer) {
4773 		/*
4774 		 * All the actions on NIC Tx should have a metadata register
4775 		 * copy action to copy reg_a from WQE to reg_c[meta]
4776 		 */
4777 		act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4778 			   sizeof(struct mlx5_flow_action_copy_mreg);
4779 		ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4780 					  SOCKET_ID_ANY);
4781 		if (!ext_actions)
4782 			return rte_flow_error_set(error, ENOMEM,
4783 						  RTE_FLOW_ERROR_TYPE_ACTION,
4784 						  NULL, "no memory to split "
4785 						  "metadata flow");
4786 		/* Create the action list appended with copy register. */
4787 		ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
4788 					     actions_n, error, encap_idx);
4789 		if (ret < 0)
4790 			goto exit;
4791 	}
4792 	/* Add the unmodified original or prefix subflow. */
4793 	ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
4794 				      items, ext_actions ? ext_actions :
4795 				      actions, flow_split_info, error);
4796 	if (ret < 0)
4797 		goto exit;
4798 	MLX5_ASSERT(dev_flow);
4799 	if (qrss) {
4800 		const struct rte_flow_attr q_attr = {
4801 			.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4802 			.ingress = 1,
4803 		};
4804 		/* Internal PMD action to set register. */
4805 		struct mlx5_rte_flow_item_tag q_tag_spec = {
4806 			.data = qrss_id,
4807 			.id = REG_NON,
4808 		};
4809 		struct rte_flow_item q_items[] = {
4810 			{
4811 				.type = (enum rte_flow_item_type)
4812 					MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4813 				.spec = &q_tag_spec,
4814 				.last = NULL,
4815 				.mask = NULL,
4816 			},
4817 			{
4818 				.type = RTE_FLOW_ITEM_TYPE_END,
4819 			},
4820 		};
4821 		struct rte_flow_action q_actions[] = {
4822 			{
4823 				.type = qrss->type,
4824 				.conf = qrss->conf,
4825 			},
4826 			{
4827 				.type = RTE_FLOW_ACTION_TYPE_END,
4828 			},
4829 		};
4830 		uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
4831 
4832 		/*
4833 		 * Configure the tag item only if there is no meter subflow.
4834 		 * Since tag is already marked in the meter suffix subflow
4835 		 * we can just use the meter suffix items as is.
4836 		 */
4837 		if (qrss_id) {
4838 			/* Not meter subflow. */
4839 			MLX5_ASSERT(!mtr_sfx);
4840 			/*
4841 			 * Put unique id in prefix flow due to it is destroyed
4842 			 * after suffix flow and id will be freed after there
4843 			 * is no actual flows with this id and identifier
4844 			 * reallocation becomes possible (for example, for
4845 			 * other flows in other threads).
4846 			 */
4847 			dev_flow->handle->split_flow_id = qrss_id;
4848 			ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
4849 						   error);
4850 			if (ret < 0)
4851 				goto exit;
4852 			q_tag_spec.id = ret;
4853 		}
4854 		dev_flow = NULL;
4855 		/* Add suffix subflow to execute Q/RSS. */
4856 		flow_split_info->prefix_layers = layers;
4857 		flow_split_info->prefix_mark = 0;
4858 		ret = flow_create_split_inner(dev, flow, &dev_flow,
4859 					      &q_attr, mtr_sfx ? items :
4860 					      q_items, q_actions,
4861 					      flow_split_info, error);
4862 		if (ret < 0)
4863 			goto exit;
4864 		/* qrss ID should be freed if failed. */
4865 		qrss_id = 0;
4866 		MLX5_ASSERT(dev_flow);
4867 	}
4868 
4869 exit:
4870 	/*
4871 	 * We do not destroy the partially created sub_flows in case of error.
4872 	 * These ones are included into parent flow list and will be destroyed
4873 	 * by flow_drv_destroy.
4874 	 */
4875 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID],
4876 			qrss_id);
4877 	mlx5_free(ext_actions);
4878 	return ret;
4879 }
4880 
4881 /**
4882  * The splitting for meter feature.
4883  *
4884  * - The meter flow will be split to two flows as prefix and
4885  *   suffix flow. The packets make sense only it pass the prefix
4886  *   meter action.
4887  *
4888  * - Reg_C_5 is used for the packet to match betweend prefix and
4889  *   suffix flow.
4890  *
4891  * @param dev
4892  *   Pointer to Ethernet device.
4893  * @param[in] flow
4894  *   Parent flow structure pointer.
4895  * @param[in] attr
4896  *   Flow rule attributes.
4897  * @param[in] items
4898  *   Pattern specification (list terminated by the END pattern item).
4899  * @param[in] actions
4900  *   Associated actions (list terminated by the END action).
4901  * @param[in] flow_split_info
4902  *   Pointer to flow split info structure.
4903  * @param[out] error
4904  *   Perform verbose error reporting if not NULL.
4905  * @return
4906  *   0 on success, negative value otherwise
4907  */
4908 static int
4909 flow_create_split_meter(struct rte_eth_dev *dev,
4910 			struct rte_flow *flow,
4911 			const struct rte_flow_attr *attr,
4912 			const struct rte_flow_item items[],
4913 			const struct rte_flow_action actions[],
4914 			struct mlx5_flow_split_info *flow_split_info,
4915 			struct rte_flow_error *error)
4916 {
4917 	struct mlx5_priv *priv = dev->data->dev_private;
4918 	struct rte_flow_action *sfx_actions = NULL;
4919 	struct rte_flow_action *pre_actions = NULL;
4920 	struct rte_flow_item *sfx_items = NULL;
4921 	struct mlx5_flow *dev_flow = NULL;
4922 	struct rte_flow_attr sfx_attr = *attr;
4923 	uint32_t mtr = 0;
4924 	uint32_t mtr_tag_id = 0;
4925 	size_t act_size;
4926 	size_t item_size;
4927 	int actions_n = 0;
4928 	int ret;
4929 
4930 	if (priv->mtr_en)
4931 		actions_n = flow_check_meter_action(actions, &mtr);
4932 	if (mtr) {
4933 		/* The five prefix actions: meter, decap, encap, tag, end. */
4934 		act_size = sizeof(struct rte_flow_action) * (actions_n + 5) +
4935 			   sizeof(struct mlx5_rte_flow_action_set_tag);
4936 		/* tag, vlan, port id, end. */
4937 #define METER_SUFFIX_ITEM 4
4938 		item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
4939 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
4940 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
4941 					  0, SOCKET_ID_ANY);
4942 		if (!sfx_actions)
4943 			return rte_flow_error_set(error, ENOMEM,
4944 						  RTE_FLOW_ERROR_TYPE_ACTION,
4945 						  NULL, "no memory to split "
4946 						  "meter flow");
4947 		sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
4948 			     act_size);
4949 		pre_actions = sfx_actions + actions_n;
4950 		mtr_tag_id = flow_meter_split_prep(dev, items, sfx_items,
4951 						   actions, sfx_actions,
4952 						   pre_actions);
4953 		if (!mtr_tag_id) {
4954 			ret = -rte_errno;
4955 			goto exit;
4956 		}
4957 		/* Add the prefix subflow. */
4958 		flow_split_info->prefix_mark = 0;
4959 		ret = flow_create_split_inner(dev, flow, &dev_flow,
4960 					      attr, items, pre_actions,
4961 					      flow_split_info, error);
4962 		if (ret) {
4963 			ret = -rte_errno;
4964 			goto exit;
4965 		}
4966 		dev_flow->handle->split_flow_id = mtr_tag_id;
4967 		/* Setting the sfx group atrr. */
4968 		sfx_attr.group = sfx_attr.transfer ?
4969 				(MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4970 				 MLX5_FLOW_TABLE_LEVEL_SUFFIX;
4971 		flow_split_info->prefix_layers =
4972 				flow_get_prefix_layer_flags(dev_flow);
4973 		flow_split_info->prefix_mark = dev_flow->handle->mark;
4974 	}
4975 	/* Add the prefix subflow. */
4976 	ret = flow_create_split_metadata(dev, flow,
4977 					 &sfx_attr, sfx_items ?
4978 					 sfx_items : items,
4979 					 sfx_actions ? sfx_actions : actions,
4980 					 flow_split_info, error);
4981 exit:
4982 	if (sfx_actions)
4983 		mlx5_free(sfx_actions);
4984 	return ret;
4985 }
4986 
4987 /**
4988  * The splitting for sample feature.
4989  *
4990  * Once Sample action is detected in the action list, the flow actions should
4991  * be split into prefix sub flow and suffix sub flow.
4992  *
4993  * The original items remain in the prefix sub flow, all actions preceding the
4994  * sample action and the sample action itself will be copied to the prefix
4995  * sub flow, the actions following the sample action will be copied to the
4996  * suffix sub flow, Queue action always be located in the suffix sub flow.
4997  *
4998  * In order to make the packet from prefix sub flow matches with suffix sub
4999  * flow, an extra tag action be added into prefix sub flow, and the suffix sub
5000  * flow uses tag item with the unique flow id.
5001  *
5002  * @param dev
5003  *   Pointer to Ethernet device.
5004  * @param[in] flow
5005  *   Parent flow structure pointer.
5006  * @param[in] attr
5007  *   Flow rule attributes.
5008  * @param[in] items
5009  *   Pattern specification (list terminated by the END pattern item).
5010  * @param[in] actions
5011  *   Associated actions (list terminated by the END action).
5012  * @param[in] flow_split_info
5013  *   Pointer to flow split info structure.
5014  * @param[out] error
5015  *   Perform verbose error reporting if not NULL.
5016  * @return
5017  *   0 on success, negative value otherwise
5018  */
5019 static int
5020 flow_create_split_sample(struct rte_eth_dev *dev,
5021 			 struct rte_flow *flow,
5022 			 const struct rte_flow_attr *attr,
5023 			 const struct rte_flow_item items[],
5024 			 const struct rte_flow_action actions[],
5025 			 struct mlx5_flow_split_info *flow_split_info,
5026 			 struct rte_flow_error *error)
5027 {
5028 	struct mlx5_priv *priv = dev->data->dev_private;
5029 	struct rte_flow_action *sfx_actions = NULL;
5030 	struct rte_flow_action *pre_actions = NULL;
5031 	struct rte_flow_item *sfx_items = NULL;
5032 	struct mlx5_flow *dev_flow = NULL;
5033 	struct rte_flow_attr sfx_attr = *attr;
5034 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5035 	struct mlx5_flow_dv_sample_resource *sample_res;
5036 	struct mlx5_flow_tbl_data_entry *sfx_tbl_data;
5037 	struct mlx5_flow_tbl_resource *sfx_tbl;
5038 #endif
5039 	size_t act_size;
5040 	size_t item_size;
5041 	uint32_t fdb_tx = 0;
5042 	int32_t tag_id = 0;
5043 	int actions_n = 0;
5044 	int sample_action_pos;
5045 	int qrss_action_pos;
5046 	int ret = 0;
5047 
5048 	if (priv->sampler_en)
5049 		actions_n = flow_check_match_action(actions, attr,
5050 					RTE_FLOW_ACTION_TYPE_SAMPLE,
5051 					&sample_action_pos, &qrss_action_pos);
5052 	if (actions_n) {
5053 		/* The prefix actions must includes sample, tag, end. */
5054 		act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1)
5055 			   + sizeof(struct mlx5_rte_flow_action_set_tag);
5056 		item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM +
5057 			    sizeof(struct mlx5_rte_flow_item_tag) * 2;
5058 		sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size +
5059 					  item_size), 0, SOCKET_ID_ANY);
5060 		if (!sfx_actions)
5061 			return rte_flow_error_set(error, ENOMEM,
5062 						  RTE_FLOW_ERROR_TYPE_ACTION,
5063 						  NULL, "no memory to split "
5064 						  "sample flow");
5065 		/* The representor_id is -1 for uplink. */
5066 		fdb_tx = (attr->transfer && priv->representor_id != -1);
5067 		if (!fdb_tx)
5068 			sfx_items = (struct rte_flow_item *)((char *)sfx_actions
5069 					+ act_size);
5070 		pre_actions = sfx_actions + actions_n;
5071 		tag_id = flow_sample_split_prep(dev, fdb_tx, sfx_items,
5072 						actions, sfx_actions,
5073 						pre_actions, actions_n,
5074 						sample_action_pos,
5075 						qrss_action_pos, error);
5076 		if (tag_id < 0 || (!fdb_tx && !tag_id)) {
5077 			ret = -rte_errno;
5078 			goto exit;
5079 		}
5080 		/* Add the prefix subflow. */
5081 		ret = flow_create_split_inner(dev, flow, &dev_flow, attr,
5082 					      items, pre_actions,
5083 					      flow_split_info, error);
5084 		if (ret) {
5085 			ret = -rte_errno;
5086 			goto exit;
5087 		}
5088 		dev_flow->handle->split_flow_id = tag_id;
5089 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
5090 		/* Set the sfx group attr. */
5091 		sample_res = (struct mlx5_flow_dv_sample_resource *)
5092 					dev_flow->dv.sample_res;
5093 		sfx_tbl = (struct mlx5_flow_tbl_resource *)
5094 					sample_res->normal_path_tbl;
5095 		sfx_tbl_data = container_of(sfx_tbl,
5096 					struct mlx5_flow_tbl_data_entry, tbl);
5097 		sfx_attr.group = sfx_attr.transfer ?
5098 					(sfx_tbl_data->table_id - 1) :
5099 					 sfx_tbl_data->table_id;
5100 		flow_split_info->prefix_layers =
5101 				flow_get_prefix_layer_flags(dev_flow);
5102 		flow_split_info->prefix_mark = dev_flow->handle->mark;
5103 		/* Suffix group level already be scaled with factor, set
5104 		 * skip_scale to 1 to avoid scale again in translation.
5105 		 */
5106 		flow_split_info->skip_scale = 1;
5107 #endif
5108 	}
5109 	/* Add the suffix subflow. */
5110 	ret = flow_create_split_meter(dev, flow, &sfx_attr,
5111 				      sfx_items ? sfx_items : items,
5112 				      sfx_actions ? sfx_actions : actions,
5113 				      flow_split_info, error);
5114 exit:
5115 	if (sfx_actions)
5116 		mlx5_free(sfx_actions);
5117 	return ret;
5118 }
5119 
5120 /**
5121  * Split the flow to subflow set. The splitters might be linked
5122  * in the chain, like this:
5123  * flow_create_split_outer() calls:
5124  *   flow_create_split_meter() calls:
5125  *     flow_create_split_metadata(meter_subflow_0) calls:
5126  *       flow_create_split_inner(metadata_subflow_0)
5127  *       flow_create_split_inner(metadata_subflow_1)
5128  *       flow_create_split_inner(metadata_subflow_2)
5129  *     flow_create_split_metadata(meter_subflow_1) calls:
5130  *       flow_create_split_inner(metadata_subflow_0)
5131  *       flow_create_split_inner(metadata_subflow_1)
5132  *       flow_create_split_inner(metadata_subflow_2)
5133  *
5134  * This provide flexible way to add new levels of flow splitting.
5135  * The all of successfully created subflows are included to the
5136  * parent flow dev_flow list.
5137  *
5138  * @param dev
5139  *   Pointer to Ethernet device.
5140  * @param[in] flow
5141  *   Parent flow structure pointer.
5142  * @param[in] attr
5143  *   Flow rule attributes.
5144  * @param[in] items
5145  *   Pattern specification (list terminated by the END pattern item).
5146  * @param[in] actions
5147  *   Associated actions (list terminated by the END action).
5148  * @param[in] flow_split_info
5149  *   Pointer to flow split info structure.
5150  * @param[out] error
5151  *   Perform verbose error reporting if not NULL.
5152  * @return
5153  *   0 on success, negative value otherwise
5154  */
5155 static int
5156 flow_create_split_outer(struct rte_eth_dev *dev,
5157 			struct rte_flow *flow,
5158 			const struct rte_flow_attr *attr,
5159 			const struct rte_flow_item items[],
5160 			const struct rte_flow_action actions[],
5161 			struct mlx5_flow_split_info *flow_split_info,
5162 			struct rte_flow_error *error)
5163 {
5164 	int ret;
5165 
5166 	ret = flow_create_split_sample(dev, flow, attr, items,
5167 				       actions, flow_split_info, error);
5168 	MLX5_ASSERT(ret <= 0);
5169 	return ret;
5170 }
5171 
5172 static struct mlx5_flow_tunnel *
5173 flow_tunnel_from_rule(struct rte_eth_dev *dev,
5174 		      const struct rte_flow_attr *attr,
5175 		      const struct rte_flow_item items[],
5176 		      const struct rte_flow_action actions[])
5177 {
5178 	struct mlx5_flow_tunnel *tunnel;
5179 
5180 #pragma GCC diagnostic push
5181 #pragma GCC diagnostic ignored "-Wcast-qual"
5182 	if (is_flow_tunnel_match_rule(dev, attr, items, actions))
5183 		tunnel = (struct mlx5_flow_tunnel *)items[0].spec;
5184 	else if (is_flow_tunnel_steer_rule(dev, attr, items, actions))
5185 		tunnel = (struct mlx5_flow_tunnel *)actions[0].conf;
5186 	else
5187 		tunnel = NULL;
5188 #pragma GCC diagnostic pop
5189 
5190 	return tunnel;
5191 }
5192 
5193 /**
5194  * Adjust flow RSS workspace if needed.
5195  *
5196  * @param wks
5197  *   Pointer to thread flow work space.
5198  * @param rss_desc
5199  *   Pointer to RSS descriptor.
5200  * @param[in] nrssq_num
5201  *   New RSS queue number.
5202  *
5203  * @return
5204  *   0 on success, -1 otherwise and rte_errno is set.
5205  */
5206 static int
5207 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks,
5208 			  struct mlx5_flow_rss_desc *rss_desc,
5209 			  uint32_t nrssq_num)
5210 {
5211 	if (likely(nrssq_num <= wks->rssq_num))
5212 		return 0;
5213 	rss_desc->queue = realloc(rss_desc->queue,
5214 			  sizeof(*rss_desc->queue) * RTE_ALIGN(nrssq_num, 2));
5215 	if (!rss_desc->queue) {
5216 		rte_errno = ENOMEM;
5217 		return -1;
5218 	}
5219 	wks->rssq_num = RTE_ALIGN(nrssq_num, 2);
5220 	return 0;
5221 }
5222 
5223 /**
5224  * Create a flow and add it to @p list.
5225  *
5226  * @param dev
5227  *   Pointer to Ethernet device.
5228  * @param list
5229  *   Pointer to a TAILQ flow list. If this parameter NULL,
5230  *   no list insertion occurred, flow is just created,
5231  *   this is caller's responsibility to track the
5232  *   created flow.
5233  * @param[in] attr
5234  *   Flow rule attributes.
5235  * @param[in] items
5236  *   Pattern specification (list terminated by the END pattern item).
5237  * @param[in] actions
5238  *   Associated actions (list terminated by the END action).
5239  * @param[in] external
5240  *   This flow rule is created by request external to PMD.
5241  * @param[out] error
5242  *   Perform verbose error reporting if not NULL.
5243  *
5244  * @return
5245  *   A flow index on success, 0 otherwise and rte_errno is set.
5246  */
5247 static uint32_t
5248 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
5249 		 const struct rte_flow_attr *attr,
5250 		 const struct rte_flow_item items[],
5251 		 const struct rte_flow_action original_actions[],
5252 		 bool external, struct rte_flow_error *error)
5253 {
5254 	struct mlx5_priv *priv = dev->data->dev_private;
5255 	struct rte_flow *flow = NULL;
5256 	struct mlx5_flow *dev_flow;
5257 	const struct rte_flow_action_rss *rss;
5258 	struct mlx5_translated_shared_action
5259 		shared_actions[MLX5_MAX_SHARED_ACTIONS];
5260 	int shared_actions_n = MLX5_MAX_SHARED_ACTIONS;
5261 	union {
5262 		struct mlx5_flow_expand_rss buf;
5263 		uint8_t buffer[2048];
5264 	} expand_buffer;
5265 	union {
5266 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
5267 		uint8_t buffer[2048];
5268 	} actions_rx;
5269 	union {
5270 		struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
5271 		uint8_t buffer[2048];
5272 	} actions_hairpin_tx;
5273 	union {
5274 		struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
5275 		uint8_t buffer[2048];
5276 	} items_tx;
5277 	struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
5278 	struct mlx5_flow_rss_desc *rss_desc;
5279 	const struct rte_flow_action *p_actions_rx;
5280 	uint32_t i;
5281 	uint32_t idx = 0;
5282 	int hairpin_flow;
5283 	struct rte_flow_attr attr_tx = { .priority = 0 };
5284 	const struct rte_flow_action *actions;
5285 	struct rte_flow_action *translated_actions = NULL;
5286 	struct mlx5_flow_tunnel *tunnel;
5287 	struct tunnel_default_miss_ctx default_miss_ctx = { 0, };
5288 	struct mlx5_flow_workspace *wks = mlx5_flow_push_thread_workspace();
5289 	struct mlx5_flow_split_info flow_split_info = {
5290 		.external = !!external,
5291 		.skip_scale = 0,
5292 		.flow_idx = 0,
5293 		.prefix_mark = 0,
5294 		.prefix_layers = 0
5295 	};
5296 	int ret;
5297 
5298 	MLX5_ASSERT(wks);
5299 	rss_desc = &wks->rss_desc;
5300 	ret = flow_shared_actions_translate(dev, original_actions,
5301 					    shared_actions,
5302 					    &shared_actions_n,
5303 					    &translated_actions, error);
5304 	if (ret < 0) {
5305 		MLX5_ASSERT(translated_actions == NULL);
5306 		return 0;
5307 	}
5308 	actions = translated_actions ? translated_actions : original_actions;
5309 	p_actions_rx = actions;
5310 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
5311 	ret = flow_drv_validate(dev, attr, items, p_actions_rx,
5312 				external, hairpin_flow, error);
5313 	if (ret < 0)
5314 		goto error_before_hairpin_split;
5315 	flow = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], &idx);
5316 	if (!flow) {
5317 		rte_errno = ENOMEM;
5318 		goto error_before_hairpin_split;
5319 	}
5320 	if (hairpin_flow > 0) {
5321 		if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
5322 			rte_errno = EINVAL;
5323 			goto error_before_hairpin_split;
5324 		}
5325 		flow_hairpin_split(dev, actions, actions_rx.actions,
5326 				   actions_hairpin_tx.actions, items_tx.items,
5327 				   idx);
5328 		p_actions_rx = actions_rx.actions;
5329 	}
5330 	flow_split_info.flow_idx = idx;
5331 	flow->drv_type = flow_get_drv_type(dev, attr);
5332 	MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
5333 		    flow->drv_type < MLX5_FLOW_TYPE_MAX);
5334 	memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue));
5335 	rss = flow_get_rss_action(p_actions_rx);
5336 	if (rss) {
5337 		if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num))
5338 			return 0;
5339 		/*
5340 		 * The following information is required by
5341 		 * mlx5_flow_hashfields_adjust() in advance.
5342 		 */
5343 		rss_desc->level = rss->level;
5344 		/* RSS type 0 indicates default RSS type (ETH_RSS_IP). */
5345 		rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types;
5346 	}
5347 	flow->dev_handles = 0;
5348 	if (rss && rss->types) {
5349 		unsigned int graph_root;
5350 
5351 		graph_root = find_graph_root(items, rss->level);
5352 		ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
5353 					   items, rss->types,
5354 					   mlx5_support_expansion, graph_root);
5355 		MLX5_ASSERT(ret > 0 &&
5356 		       (unsigned int)ret < sizeof(expand_buffer.buffer));
5357 	} else {
5358 		buf->entries = 1;
5359 		buf->entry[0].pattern = (void *)(uintptr_t)items;
5360 	}
5361 	rss_desc->shared_rss = flow_get_shared_rss_action(dev, shared_actions,
5362 						      shared_actions_n);
5363 	for (i = 0; i < buf->entries; ++i) {
5364 		/* Initialize flow split data. */
5365 		flow_split_info.prefix_layers = 0;
5366 		flow_split_info.prefix_mark = 0;
5367 		flow_split_info.skip_scale = 0;
5368 		/*
5369 		 * The splitter may create multiple dev_flows,
5370 		 * depending on configuration. In the simplest
5371 		 * case it just creates unmodified original flow.
5372 		 */
5373 		ret = flow_create_split_outer(dev, flow, attr,
5374 					      buf->entry[i].pattern,
5375 					      p_actions_rx, &flow_split_info,
5376 					      error);
5377 		if (ret < 0)
5378 			goto error;
5379 		if (is_flow_tunnel_steer_rule(dev, attr,
5380 					      buf->entry[i].pattern,
5381 					      p_actions_rx)) {
5382 			ret = flow_tunnel_add_default_miss(dev, flow, attr,
5383 							   p_actions_rx,
5384 							   idx,
5385 							   &default_miss_ctx,
5386 							   error);
5387 			if (ret < 0) {
5388 				mlx5_free(default_miss_ctx.queue);
5389 				goto error;
5390 			}
5391 		}
5392 	}
5393 	/* Create the tx flow. */
5394 	if (hairpin_flow) {
5395 		attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
5396 		attr_tx.ingress = 0;
5397 		attr_tx.egress = 1;
5398 		dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
5399 					 actions_hairpin_tx.actions,
5400 					 idx, error);
5401 		if (!dev_flow)
5402 			goto error;
5403 		dev_flow->flow = flow;
5404 		dev_flow->external = 0;
5405 		SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
5406 			      dev_flow->handle, next);
5407 		ret = flow_drv_translate(dev, dev_flow, &attr_tx,
5408 					 items_tx.items,
5409 					 actions_hairpin_tx.actions, error);
5410 		if (ret < 0)
5411 			goto error;
5412 	}
5413 	/*
5414 	 * Update the metadata register copy table. If extensive
5415 	 * metadata feature is enabled and registers are supported
5416 	 * we might create the extra rte_flow for each unique
5417 	 * MARK/FLAG action ID.
5418 	 *
5419 	 * The table is updated for ingress Flows only, because
5420 	 * the egress Flows belong to the different device and
5421 	 * copy table should be updated in peer NIC Rx domain.
5422 	 */
5423 	if (attr->ingress &&
5424 	    (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
5425 		ret = flow_mreg_update_copy_table(dev, flow, actions, error);
5426 		if (ret)
5427 			goto error;
5428 	}
5429 	/*
5430 	 * If the flow is external (from application) OR device is started,
5431 	 * OR mreg discover, then apply immediately.
5432 	 */
5433 	if (external || dev->data->dev_started ||
5434 	    (attr->group == MLX5_FLOW_MREG_CP_TABLE_GROUP &&
5435 	     attr->priority == MLX5_FLOW_PRIO_RSVD)) {
5436 		ret = flow_drv_apply(dev, flow, error);
5437 		if (ret < 0)
5438 			goto error;
5439 	}
5440 	if (list) {
5441 		rte_spinlock_lock(&priv->flow_list_lock);
5442 		ILIST_INSERT(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, idx,
5443 			     flow, next);
5444 		rte_spinlock_unlock(&priv->flow_list_lock);
5445 	}
5446 	flow_rxq_flags_set(dev, flow);
5447 	rte_free(translated_actions);
5448 	tunnel = flow_tunnel_from_rule(dev, attr, items, actions);
5449 	if (tunnel) {
5450 		flow->tunnel = 1;
5451 		flow->tunnel_id = tunnel->tunnel_id;
5452 		__atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED);
5453 		mlx5_free(default_miss_ctx.queue);
5454 	}
5455 	mlx5_flow_pop_thread_workspace();
5456 	return idx;
5457 error:
5458 	MLX5_ASSERT(flow);
5459 	ret = rte_errno; /* Save rte_errno before cleanup. */
5460 	flow_mreg_del_copy_action(dev, flow);
5461 	flow_drv_destroy(dev, flow);
5462 	if (rss_desc->shared_rss)
5463 		__atomic_sub_fetch(&((struct mlx5_shared_action_rss *)
5464 			mlx5_ipool_get
5465 			(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
5466 			rss_desc->shared_rss))->refcnt, 1, __ATOMIC_RELAXED);
5467 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], idx);
5468 	rte_errno = ret; /* Restore rte_errno. */
5469 	ret = rte_errno;
5470 	rte_errno = ret;
5471 	mlx5_flow_pop_thread_workspace();
5472 error_before_hairpin_split:
5473 	rte_free(translated_actions);
5474 	return 0;
5475 }
5476 
5477 /**
5478  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
5479  * incoming packets to table 1.
5480  *
5481  * Other flow rules, requested for group n, will be created in
5482  * e-switch table n+1.
5483  * Jump action to e-switch group n will be created to group n+1.
5484  *
5485  * Used when working in switchdev mode, to utilise advantages of table 1
5486  * and above.
5487  *
5488  * @param dev
5489  *   Pointer to Ethernet device.
5490  *
5491  * @return
5492  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
5493  */
5494 struct rte_flow *
5495 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
5496 {
5497 	const struct rte_flow_attr attr = {
5498 		.group = 0,
5499 		.priority = 0,
5500 		.ingress = 1,
5501 		.egress = 0,
5502 		.transfer = 1,
5503 	};
5504 	const struct rte_flow_item pattern = {
5505 		.type = RTE_FLOW_ITEM_TYPE_END,
5506 	};
5507 	struct rte_flow_action_jump jump = {
5508 		.group = 1,
5509 	};
5510 	const struct rte_flow_action actions[] = {
5511 		{
5512 			.type = RTE_FLOW_ACTION_TYPE_JUMP,
5513 			.conf = &jump,
5514 		},
5515 		{
5516 			.type = RTE_FLOW_ACTION_TYPE_END,
5517 		},
5518 	};
5519 	struct mlx5_priv *priv = dev->data->dev_private;
5520 	struct rte_flow_error error;
5521 
5522 	return (void *)(uintptr_t)flow_list_create(dev, &priv->ctrl_flows,
5523 						   &attr, &pattern,
5524 						   actions, false, &error);
5525 }
5526 
5527 /**
5528  * Validate a flow supported by the NIC.
5529  *
5530  * @see rte_flow_validate()
5531  * @see rte_flow_ops
5532  */
5533 int
5534 mlx5_flow_validate(struct rte_eth_dev *dev,
5535 		   const struct rte_flow_attr *attr,
5536 		   const struct rte_flow_item items[],
5537 		   const struct rte_flow_action original_actions[],
5538 		   struct rte_flow_error *error)
5539 {
5540 	int hairpin_flow;
5541 	struct mlx5_translated_shared_action
5542 		shared_actions[MLX5_MAX_SHARED_ACTIONS];
5543 	int shared_actions_n = MLX5_MAX_SHARED_ACTIONS;
5544 	const struct rte_flow_action *actions;
5545 	struct rte_flow_action *translated_actions = NULL;
5546 	int ret = flow_shared_actions_translate(dev, original_actions,
5547 						shared_actions,
5548 						&shared_actions_n,
5549 						&translated_actions, error);
5550 
5551 	if (ret)
5552 		return ret;
5553 	actions = translated_actions ? translated_actions : original_actions;
5554 	hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
5555 	ret = flow_drv_validate(dev, attr, items, actions,
5556 				true, hairpin_flow, error);
5557 	rte_free(translated_actions);
5558 	return ret;
5559 }
5560 
5561 /**
5562  * Create a flow.
5563  *
5564  * @see rte_flow_create()
5565  * @see rte_flow_ops
5566  */
5567 struct rte_flow *
5568 mlx5_flow_create(struct rte_eth_dev *dev,
5569 		 const struct rte_flow_attr *attr,
5570 		 const struct rte_flow_item items[],
5571 		 const struct rte_flow_action actions[],
5572 		 struct rte_flow_error *error)
5573 {
5574 	struct mlx5_priv *priv = dev->data->dev_private;
5575 
5576 	/*
5577 	 * If the device is not started yet, it is not allowed to created a
5578 	 * flow from application. PMD default flows and traffic control flows
5579 	 * are not affected.
5580 	 */
5581 	if (unlikely(!dev->data->dev_started)) {
5582 		DRV_LOG(DEBUG, "port %u is not started when "
5583 			"inserting a flow", dev->data->port_id);
5584 		rte_flow_error_set(error, ENODEV,
5585 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5586 				   NULL,
5587 				   "port not started");
5588 		return NULL;
5589 	}
5590 
5591 	return (void *)(uintptr_t)flow_list_create(dev, &priv->flows,
5592 				  attr, items, actions, true, error);
5593 }
5594 
5595 /**
5596  * Destroy a flow in a list.
5597  *
5598  * @param dev
5599  *   Pointer to Ethernet device.
5600  * @param list
5601  *   Pointer to the Indexed flow list. If this parameter NULL,
5602  *   there is no flow removal from the list. Be noted that as
5603  *   flow is add to the indexed list, memory of the indexed
5604  *   list points to maybe changed as flow destroyed.
5605  * @param[in] flow_idx
5606  *   Index of flow to destroy.
5607  */
5608 static void
5609 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
5610 		  uint32_t flow_idx)
5611 {
5612 	struct mlx5_priv *priv = dev->data->dev_private;
5613 	struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
5614 					       [MLX5_IPOOL_RTE_FLOW], flow_idx);
5615 
5616 	if (!flow)
5617 		return;
5618 	/*
5619 	 * Update RX queue flags only if port is started, otherwise it is
5620 	 * already clean.
5621 	 */
5622 	if (dev->data->dev_started)
5623 		flow_rxq_flags_trim(dev, flow);
5624 	flow_drv_destroy(dev, flow);
5625 	if (list) {
5626 		rte_spinlock_lock(&priv->flow_list_lock);
5627 		ILIST_REMOVE(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list,
5628 			     flow_idx, flow, next);
5629 		rte_spinlock_unlock(&priv->flow_list_lock);
5630 	}
5631 	if (flow->tunnel) {
5632 		struct mlx5_flow_tunnel *tunnel;
5633 
5634 		tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id);
5635 		RTE_VERIFY(tunnel);
5636 		if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
5637 			mlx5_flow_tunnel_free(dev, tunnel);
5638 	}
5639 	flow_mreg_del_copy_action(dev, flow);
5640 	mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
5641 }
5642 
5643 /**
5644  * Destroy all flows.
5645  *
5646  * @param dev
5647  *   Pointer to Ethernet device.
5648  * @param list
5649  *   Pointer to the Indexed flow list.
5650  * @param active
5651  *   If flushing is called avtively.
5652  */
5653 void
5654 mlx5_flow_list_flush(struct rte_eth_dev *dev, uint32_t *list, bool active)
5655 {
5656 	uint32_t num_flushed = 0;
5657 
5658 	while (*list) {
5659 		flow_list_destroy(dev, list, *list);
5660 		num_flushed++;
5661 	}
5662 	if (active) {
5663 		DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
5664 			dev->data->port_id, num_flushed);
5665 	}
5666 }
5667 
5668 /**
5669  * Stop all default actions for flows.
5670  *
5671  * @param dev
5672  *   Pointer to Ethernet device.
5673  */
5674 void
5675 mlx5_flow_stop_default(struct rte_eth_dev *dev)
5676 {
5677 	flow_mreg_del_default_copy_action(dev);
5678 	flow_rxq_flags_clear(dev);
5679 }
5680 
5681 /**
5682  * Start all default actions for flows.
5683  *
5684  * @param dev
5685  *   Pointer to Ethernet device.
5686  * @return
5687  *   0 on success, a negative errno value otherwise and rte_errno is set.
5688  */
5689 int
5690 mlx5_flow_start_default(struct rte_eth_dev *dev)
5691 {
5692 	struct rte_flow_error error;
5693 
5694 	/* Make sure default copy action (reg_c[0] -> reg_b) is created. */
5695 	return flow_mreg_add_default_copy_action(dev, &error);
5696 }
5697 
5698 /**
5699  * Release key of thread specific flow workspace data.
5700  */
5701 static void
5702 flow_release_workspace(void *data)
5703 {
5704 	struct mlx5_flow_workspace *wks = data;
5705 	struct mlx5_flow_workspace *next;
5706 
5707 	while (wks) {
5708 		next = wks->next;
5709 		free(wks->rss_desc.queue);
5710 		free(wks);
5711 		wks = next;
5712 	}
5713 }
5714 
5715 /**
5716  * Initialize key of thread specific flow workspace data.
5717  */
5718 static void
5719 flow_alloc_workspace(void)
5720 {
5721 	if (pthread_key_create(&key_workspace, flow_release_workspace))
5722 		DRV_LOG(ERR, "Can't create flow workspace data thread key.");
5723 }
5724 
5725 /**
5726  * Get thread specific current flow workspace.
5727  *
5728  * @return pointer to thread specific flow workspace data, NULL on error.
5729  */
5730 struct mlx5_flow_workspace*
5731 mlx5_flow_get_thread_workspace(void)
5732 {
5733 	struct mlx5_flow_workspace *data;
5734 
5735 	data = pthread_getspecific(key_workspace);
5736 	MLX5_ASSERT(data && data->inuse);
5737 	if (!data || !data->inuse)
5738 		DRV_LOG(ERR, "flow workspace not initialized.");
5739 	return data;
5740 }
5741 
5742 /**
5743  * Allocate and init new flow workspace.
5744  *
5745  * @return pointer to flow workspace data, NULL on error.
5746  */
5747 static struct mlx5_flow_workspace*
5748 flow_alloc_thread_workspace(void)
5749 {
5750 	struct mlx5_flow_workspace *data = calloc(1, sizeof(*data));
5751 
5752 	if (!data) {
5753 		DRV_LOG(ERR, "Failed to allocate flow workspace "
5754 			"memory.");
5755 		return NULL;
5756 	}
5757 	data->rss_desc.queue = calloc(1,
5758 			sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM);
5759 	if (!data->rss_desc.queue)
5760 		goto err;
5761 	data->rssq_num = MLX5_RSSQ_DEFAULT_NUM;
5762 	return data;
5763 err:
5764 	if (data->rss_desc.queue)
5765 		free(data->rss_desc.queue);
5766 	free(data);
5767 	return NULL;
5768 }
5769 
5770 /**
5771  * Get new thread specific flow workspace.
5772  *
5773  * If current workspace inuse, create new one and set as current.
5774  *
5775  * @return pointer to thread specific flow workspace data, NULL on error.
5776  */
5777 static struct mlx5_flow_workspace*
5778 mlx5_flow_push_thread_workspace(void)
5779 {
5780 	struct mlx5_flow_workspace *curr;
5781 	struct mlx5_flow_workspace *data;
5782 
5783 	if (pthread_once(&key_workspace_init, flow_alloc_workspace)) {
5784 		DRV_LOG(ERR, "Failed to init flow workspace data thread key.");
5785 		return NULL;
5786 	}
5787 	curr = pthread_getspecific(key_workspace);
5788 	if (!curr) {
5789 		data = flow_alloc_thread_workspace();
5790 		if (!data)
5791 			return NULL;
5792 	} else if (!curr->inuse) {
5793 		data = curr;
5794 	} else if (curr->next) {
5795 		data = curr->next;
5796 	} else {
5797 		data = flow_alloc_thread_workspace();
5798 		if (!data)
5799 			return NULL;
5800 		curr->next = data;
5801 		data->prev = curr;
5802 	}
5803 	data->inuse = 1;
5804 	data->flow_idx = 0;
5805 	/* Set as current workspace */
5806 	if (pthread_setspecific(key_workspace, data))
5807 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
5808 	return data;
5809 }
5810 
5811 /**
5812  * Close current thread specific flow workspace.
5813  *
5814  * If previous workspace available, set it as current.
5815  *
5816  * @return pointer to thread specific flow workspace data, NULL on error.
5817  */
5818 static void
5819 mlx5_flow_pop_thread_workspace(void)
5820 {
5821 	struct mlx5_flow_workspace *data = mlx5_flow_get_thread_workspace();
5822 
5823 	if (!data)
5824 		return;
5825 	if (!data->inuse) {
5826 		DRV_LOG(ERR, "Failed to close unused flow workspace.");
5827 		return;
5828 	}
5829 	data->inuse = 0;
5830 	if (!data->prev)
5831 		return;
5832 	if (pthread_setspecific(key_workspace, data->prev))
5833 		DRV_LOG(ERR, "Failed to set flow workspace to thread.");
5834 }
5835 
5836 /**
5837  * Verify the flow list is empty
5838  *
5839  * @param dev
5840  *  Pointer to Ethernet device.
5841  *
5842  * @return the number of flows not released.
5843  */
5844 int
5845 mlx5_flow_verify(struct rte_eth_dev *dev)
5846 {
5847 	struct mlx5_priv *priv = dev->data->dev_private;
5848 	struct rte_flow *flow;
5849 	uint32_t idx;
5850 	int ret = 0;
5851 
5852 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], priv->flows, idx,
5853 		      flow, next) {
5854 		DRV_LOG(DEBUG, "port %u flow %p still referenced",
5855 			dev->data->port_id, (void *)flow);
5856 		++ret;
5857 	}
5858 	return ret;
5859 }
5860 
5861 /**
5862  * Enable default hairpin egress flow.
5863  *
5864  * @param dev
5865  *   Pointer to Ethernet device.
5866  * @param queue
5867  *   The queue index.
5868  *
5869  * @return
5870  *   0 on success, a negative errno value otherwise and rte_errno is set.
5871  */
5872 int
5873 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
5874 			    uint32_t queue)
5875 {
5876 	struct mlx5_priv *priv = dev->data->dev_private;
5877 	const struct rte_flow_attr attr = {
5878 		.egress = 1,
5879 		.priority = 0,
5880 	};
5881 	struct mlx5_rte_flow_item_tx_queue queue_spec = {
5882 		.queue = queue,
5883 	};
5884 	struct mlx5_rte_flow_item_tx_queue queue_mask = {
5885 		.queue = UINT32_MAX,
5886 	};
5887 	struct rte_flow_item items[] = {
5888 		{
5889 			.type = (enum rte_flow_item_type)
5890 				MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
5891 			.spec = &queue_spec,
5892 			.last = NULL,
5893 			.mask = &queue_mask,
5894 		},
5895 		{
5896 			.type = RTE_FLOW_ITEM_TYPE_END,
5897 		},
5898 	};
5899 	struct rte_flow_action_jump jump = {
5900 		.group = MLX5_HAIRPIN_TX_TABLE,
5901 	};
5902 	struct rte_flow_action actions[2];
5903 	uint32_t flow_idx;
5904 	struct rte_flow_error error;
5905 
5906 	actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
5907 	actions[0].conf = &jump;
5908 	actions[1].type = RTE_FLOW_ACTION_TYPE_END;
5909 	flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5910 				&attr, items, actions, false, &error);
5911 	if (!flow_idx) {
5912 		DRV_LOG(DEBUG,
5913 			"Failed to create ctrl flow: rte_errno(%d),"
5914 			" type(%d), message(%s)",
5915 			rte_errno, error.type,
5916 			error.message ? error.message : " (no stated reason)");
5917 		return -rte_errno;
5918 	}
5919 	return 0;
5920 }
5921 
5922 /**
5923  * Enable a control flow configured from the control plane.
5924  *
5925  * @param dev
5926  *   Pointer to Ethernet device.
5927  * @param eth_spec
5928  *   An Ethernet flow spec to apply.
5929  * @param eth_mask
5930  *   An Ethernet flow mask to apply.
5931  * @param vlan_spec
5932  *   A VLAN flow spec to apply.
5933  * @param vlan_mask
5934  *   A VLAN flow mask to apply.
5935  *
5936  * @return
5937  *   0 on success, a negative errno value otherwise and rte_errno is set.
5938  */
5939 int
5940 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
5941 		    struct rte_flow_item_eth *eth_spec,
5942 		    struct rte_flow_item_eth *eth_mask,
5943 		    struct rte_flow_item_vlan *vlan_spec,
5944 		    struct rte_flow_item_vlan *vlan_mask)
5945 {
5946 	struct mlx5_priv *priv = dev->data->dev_private;
5947 	const struct rte_flow_attr attr = {
5948 		.ingress = 1,
5949 		.priority = MLX5_FLOW_PRIO_RSVD,
5950 	};
5951 	struct rte_flow_item items[] = {
5952 		{
5953 			.type = RTE_FLOW_ITEM_TYPE_ETH,
5954 			.spec = eth_spec,
5955 			.last = NULL,
5956 			.mask = eth_mask,
5957 		},
5958 		{
5959 			.type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
5960 					      RTE_FLOW_ITEM_TYPE_END,
5961 			.spec = vlan_spec,
5962 			.last = NULL,
5963 			.mask = vlan_mask,
5964 		},
5965 		{
5966 			.type = RTE_FLOW_ITEM_TYPE_END,
5967 		},
5968 	};
5969 	uint16_t queue[priv->reta_idx_n];
5970 	struct rte_flow_action_rss action_rss = {
5971 		.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
5972 		.level = 0,
5973 		.types = priv->rss_conf.rss_hf,
5974 		.key_len = priv->rss_conf.rss_key_len,
5975 		.queue_num = priv->reta_idx_n,
5976 		.key = priv->rss_conf.rss_key,
5977 		.queue = queue,
5978 	};
5979 	struct rte_flow_action actions[] = {
5980 		{
5981 			.type = RTE_FLOW_ACTION_TYPE_RSS,
5982 			.conf = &action_rss,
5983 		},
5984 		{
5985 			.type = RTE_FLOW_ACTION_TYPE_END,
5986 		},
5987 	};
5988 	uint32_t flow_idx;
5989 	struct rte_flow_error error;
5990 	unsigned int i;
5991 
5992 	if (!priv->reta_idx_n || !priv->rxqs_n) {
5993 		return 0;
5994 	}
5995 	if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
5996 		action_rss.types = 0;
5997 	for (i = 0; i != priv->reta_idx_n; ++i)
5998 		queue[i] = (*priv->reta_idx)[i];
5999 	flow_idx = flow_list_create(dev, &priv->ctrl_flows,
6000 				&attr, items, actions, false, &error);
6001 	if (!flow_idx)
6002 		return -rte_errno;
6003 	return 0;
6004 }
6005 
6006 /**
6007  * Enable a flow control configured from the control plane.
6008  *
6009  * @param dev
6010  *   Pointer to Ethernet device.
6011  * @param eth_spec
6012  *   An Ethernet flow spec to apply.
6013  * @param eth_mask
6014  *   An Ethernet flow mask to apply.
6015  *
6016  * @return
6017  *   0 on success, a negative errno value otherwise and rte_errno is set.
6018  */
6019 int
6020 mlx5_ctrl_flow(struct rte_eth_dev *dev,
6021 	       struct rte_flow_item_eth *eth_spec,
6022 	       struct rte_flow_item_eth *eth_mask)
6023 {
6024 	return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
6025 }
6026 
6027 /**
6028  * Create default miss flow rule matching lacp traffic
6029  *
6030  * @param dev
6031  *   Pointer to Ethernet device.
6032  * @param eth_spec
6033  *   An Ethernet flow spec to apply.
6034  *
6035  * @return
6036  *   0 on success, a negative errno value otherwise and rte_errno is set.
6037  */
6038 int
6039 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
6040 {
6041 	struct mlx5_priv *priv = dev->data->dev_private;
6042 	/*
6043 	 * The LACP matching is done by only using ether type since using
6044 	 * a multicast dst mac causes kernel to give low priority to this flow.
6045 	 */
6046 	static const struct rte_flow_item_eth lacp_spec = {
6047 		.type = RTE_BE16(0x8809),
6048 	};
6049 	static const struct rte_flow_item_eth lacp_mask = {
6050 		.type = 0xffff,
6051 	};
6052 	const struct rte_flow_attr attr = {
6053 		.ingress = 1,
6054 	};
6055 	struct rte_flow_item items[] = {
6056 		{
6057 			.type = RTE_FLOW_ITEM_TYPE_ETH,
6058 			.spec = &lacp_spec,
6059 			.mask = &lacp_mask,
6060 		},
6061 		{
6062 			.type = RTE_FLOW_ITEM_TYPE_END,
6063 		},
6064 	};
6065 	struct rte_flow_action actions[] = {
6066 		{
6067 			.type = (enum rte_flow_action_type)
6068 				MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
6069 		},
6070 		{
6071 			.type = RTE_FLOW_ACTION_TYPE_END,
6072 		},
6073 	};
6074 	struct rte_flow_error error;
6075 	uint32_t flow_idx = flow_list_create(dev, &priv->ctrl_flows,
6076 				&attr, items, actions, false, &error);
6077 
6078 	if (!flow_idx)
6079 		return -rte_errno;
6080 	return 0;
6081 }
6082 
6083 /**
6084  * Destroy a flow.
6085  *
6086  * @see rte_flow_destroy()
6087  * @see rte_flow_ops
6088  */
6089 int
6090 mlx5_flow_destroy(struct rte_eth_dev *dev,
6091 		  struct rte_flow *flow,
6092 		  struct rte_flow_error *error __rte_unused)
6093 {
6094 	struct mlx5_priv *priv = dev->data->dev_private;
6095 
6096 	flow_list_destroy(dev, &priv->flows, (uintptr_t)(void *)flow);
6097 	return 0;
6098 }
6099 
6100 /**
6101  * Destroy all flows.
6102  *
6103  * @see rte_flow_flush()
6104  * @see rte_flow_ops
6105  */
6106 int
6107 mlx5_flow_flush(struct rte_eth_dev *dev,
6108 		struct rte_flow_error *error __rte_unused)
6109 {
6110 	struct mlx5_priv *priv = dev->data->dev_private;
6111 
6112 	mlx5_flow_list_flush(dev, &priv->flows, false);
6113 	return 0;
6114 }
6115 
6116 /**
6117  * Isolated mode.
6118  *
6119  * @see rte_flow_isolate()
6120  * @see rte_flow_ops
6121  */
6122 int
6123 mlx5_flow_isolate(struct rte_eth_dev *dev,
6124 		  int enable,
6125 		  struct rte_flow_error *error)
6126 {
6127 	struct mlx5_priv *priv = dev->data->dev_private;
6128 
6129 	if (dev->data->dev_started) {
6130 		rte_flow_error_set(error, EBUSY,
6131 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6132 				   NULL,
6133 				   "port must be stopped first");
6134 		return -rte_errno;
6135 	}
6136 	priv->isolated = !!enable;
6137 	if (enable)
6138 		dev->dev_ops = &mlx5_os_dev_ops_isolate;
6139 	else
6140 		dev->dev_ops = &mlx5_os_dev_ops;
6141 
6142 	dev->rx_descriptor_status = mlx5_rx_descriptor_status;
6143 	dev->tx_descriptor_status = mlx5_tx_descriptor_status;
6144 
6145 	return 0;
6146 }
6147 
6148 /**
6149  * Query a flow.
6150  *
6151  * @see rte_flow_query()
6152  * @see rte_flow_ops
6153  */
6154 static int
6155 flow_drv_query(struct rte_eth_dev *dev,
6156 	       uint32_t flow_idx,
6157 	       const struct rte_flow_action *actions,
6158 	       void *data,
6159 	       struct rte_flow_error *error)
6160 {
6161 	struct mlx5_priv *priv = dev->data->dev_private;
6162 	const struct mlx5_flow_driver_ops *fops;
6163 	struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
6164 					       [MLX5_IPOOL_RTE_FLOW],
6165 					       flow_idx);
6166 	enum mlx5_flow_drv_type ftype;
6167 
6168 	if (!flow) {
6169 		return rte_flow_error_set(error, ENOENT,
6170 			  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
6171 			  NULL,
6172 			  "invalid flow handle");
6173 	}
6174 	ftype = flow->drv_type;
6175 	MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
6176 	fops = flow_get_drv_ops(ftype);
6177 
6178 	return fops->query(dev, flow, actions, data, error);
6179 }
6180 
6181 /**
6182  * Query a flow.
6183  *
6184  * @see rte_flow_query()
6185  * @see rte_flow_ops
6186  */
6187 int
6188 mlx5_flow_query(struct rte_eth_dev *dev,
6189 		struct rte_flow *flow,
6190 		const struct rte_flow_action *actions,
6191 		void *data,
6192 		struct rte_flow_error *error)
6193 {
6194 	int ret;
6195 
6196 	ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
6197 			     error);
6198 	if (ret < 0)
6199 		return ret;
6200 	return 0;
6201 }
6202 
6203 /**
6204  * Manage filter operations.
6205  *
6206  * @param dev
6207  *   Pointer to Ethernet device structure.
6208  * @param filter_type
6209  *   Filter type.
6210  * @param filter_op
6211  *   Operation to perform.
6212  * @param arg
6213  *   Pointer to operation-specific structure.
6214  *
6215  * @return
6216  *   0 on success, a negative errno value otherwise and rte_errno is set.
6217  */
6218 int
6219 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
6220 		     enum rte_filter_type filter_type,
6221 		     enum rte_filter_op filter_op,
6222 		     void *arg)
6223 {
6224 	switch (filter_type) {
6225 	case RTE_ETH_FILTER_GENERIC:
6226 		if (filter_op != RTE_ETH_FILTER_GET) {
6227 			rte_errno = EINVAL;
6228 			return -rte_errno;
6229 		}
6230 		*(const void **)arg = &mlx5_flow_ops;
6231 		return 0;
6232 	default:
6233 		DRV_LOG(ERR, "port %u filter type (%d) not supported",
6234 			dev->data->port_id, filter_type);
6235 		rte_errno = ENOTSUP;
6236 		return -rte_errno;
6237 	}
6238 	return 0;
6239 }
6240 
6241 /**
6242  * Create the needed meter and suffix tables.
6243  *
6244  * @param[in] dev
6245  *   Pointer to Ethernet device.
6246  * @param[in] fm
6247  *   Pointer to the flow meter.
6248  *
6249  * @return
6250  *   Pointer to table set on success, NULL otherwise.
6251  */
6252 struct mlx5_meter_domains_infos *
6253 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
6254 			  const struct mlx5_flow_meter *fm)
6255 {
6256 	const struct mlx5_flow_driver_ops *fops;
6257 
6258 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6259 	return fops->create_mtr_tbls(dev, fm);
6260 }
6261 
6262 /**
6263  * Destroy the meter table set.
6264  *
6265  * @param[in] dev
6266  *   Pointer to Ethernet device.
6267  * @param[in] tbl
6268  *   Pointer to the meter table set.
6269  *
6270  * @return
6271  *   0 on success.
6272  */
6273 int
6274 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
6275 			   struct mlx5_meter_domains_infos *tbls)
6276 {
6277 	const struct mlx5_flow_driver_ops *fops;
6278 
6279 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6280 	return fops->destroy_mtr_tbls(dev, tbls);
6281 }
6282 
6283 /**
6284  * Create policer rules.
6285  *
6286  * @param[in] dev
6287  *   Pointer to Ethernet device.
6288  * @param[in] fm
6289  *   Pointer to flow meter structure.
6290  * @param[in] attr
6291  *   Pointer to flow attributes.
6292  *
6293  * @return
6294  *   0 on success, -1 otherwise.
6295  */
6296 int
6297 mlx5_flow_create_policer_rules(struct rte_eth_dev *dev,
6298 			       struct mlx5_flow_meter *fm,
6299 			       const struct rte_flow_attr *attr)
6300 {
6301 	const struct mlx5_flow_driver_ops *fops;
6302 
6303 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6304 	return fops->create_policer_rules(dev, fm, attr);
6305 }
6306 
6307 /**
6308  * Destroy policer rules.
6309  *
6310  * @param[in] fm
6311  *   Pointer to flow meter structure.
6312  * @param[in] attr
6313  *   Pointer to flow attributes.
6314  *
6315  * @return
6316  *   0 on success, -1 otherwise.
6317  */
6318 int
6319 mlx5_flow_destroy_policer_rules(struct rte_eth_dev *dev,
6320 				struct mlx5_flow_meter *fm,
6321 				const struct rte_flow_attr *attr)
6322 {
6323 	const struct mlx5_flow_driver_ops *fops;
6324 
6325 	fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6326 	return fops->destroy_policer_rules(dev, fm, attr);
6327 }
6328 
6329 /**
6330  * Allocate a counter.
6331  *
6332  * @param[in] dev
6333  *   Pointer to Ethernet device structure.
6334  *
6335  * @return
6336  *   Index to allocated counter  on success, 0 otherwise.
6337  */
6338 uint32_t
6339 mlx5_counter_alloc(struct rte_eth_dev *dev)
6340 {
6341 	const struct mlx5_flow_driver_ops *fops;
6342 	struct rte_flow_attr attr = { .transfer = 0 };
6343 
6344 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6345 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6346 		return fops->counter_alloc(dev);
6347 	}
6348 	DRV_LOG(ERR,
6349 		"port %u counter allocate is not supported.",
6350 		 dev->data->port_id);
6351 	return 0;
6352 }
6353 
6354 /**
6355  * Free a counter.
6356  *
6357  * @param[in] dev
6358  *   Pointer to Ethernet device structure.
6359  * @param[in] cnt
6360  *   Index to counter to be free.
6361  */
6362 void
6363 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
6364 {
6365 	const struct mlx5_flow_driver_ops *fops;
6366 	struct rte_flow_attr attr = { .transfer = 0 };
6367 
6368 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6369 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6370 		fops->counter_free(dev, cnt);
6371 		return;
6372 	}
6373 	DRV_LOG(ERR,
6374 		"port %u counter free is not supported.",
6375 		 dev->data->port_id);
6376 }
6377 
6378 /**
6379  * Query counter statistics.
6380  *
6381  * @param[in] dev
6382  *   Pointer to Ethernet device structure.
6383  * @param[in] cnt
6384  *   Index to counter to query.
6385  * @param[in] clear
6386  *   Set to clear counter statistics.
6387  * @param[out] pkts
6388  *   The counter hits packets number to save.
6389  * @param[out] bytes
6390  *   The counter hits bytes number to save.
6391  *
6392  * @return
6393  *   0 on success, a negative errno value otherwise.
6394  */
6395 int
6396 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
6397 		   bool clear, uint64_t *pkts, uint64_t *bytes)
6398 {
6399 	const struct mlx5_flow_driver_ops *fops;
6400 	struct rte_flow_attr attr = { .transfer = 0 };
6401 
6402 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6403 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6404 		return fops->counter_query(dev, cnt, clear, pkts, bytes);
6405 	}
6406 	DRV_LOG(ERR,
6407 		"port %u counter query is not supported.",
6408 		 dev->data->port_id);
6409 	return -ENOTSUP;
6410 }
6411 
6412 /**
6413  * Allocate a new memory for the counter values wrapped by all the needed
6414  * management.
6415  *
6416  * @param[in] sh
6417  *   Pointer to mlx5_dev_ctx_shared object.
6418  *
6419  * @return
6420  *   0 on success, a negative errno value otherwise.
6421  */
6422 static int
6423 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh)
6424 {
6425 	struct mlx5_devx_mkey_attr mkey_attr;
6426 	struct mlx5_counter_stats_mem_mng *mem_mng;
6427 	volatile struct flow_counter_stats *raw_data;
6428 	int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES;
6429 	int size = (sizeof(struct flow_counter_stats) *
6430 			MLX5_COUNTERS_PER_POOL +
6431 			sizeof(struct mlx5_counter_stats_raw)) * raws_n +
6432 			sizeof(struct mlx5_counter_stats_mem_mng);
6433 	size_t pgsize = rte_mem_page_size();
6434 	uint8_t *mem;
6435 	int i;
6436 
6437 	if (pgsize == (size_t)-1) {
6438 		DRV_LOG(ERR, "Failed to get mem page size");
6439 		rte_errno = ENOMEM;
6440 		return -ENOMEM;
6441 	}
6442 	mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY);
6443 	if (!mem) {
6444 		rte_errno = ENOMEM;
6445 		return -ENOMEM;
6446 	}
6447 	mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1;
6448 	size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n;
6449 	mem_mng->umem = mlx5_glue->devx_umem_reg(sh->ctx, mem, size,
6450 						 IBV_ACCESS_LOCAL_WRITE);
6451 	if (!mem_mng->umem) {
6452 		rte_errno = errno;
6453 		mlx5_free(mem);
6454 		return -rte_errno;
6455 	}
6456 	mkey_attr.addr = (uintptr_t)mem;
6457 	mkey_attr.size = size;
6458 	mkey_attr.umem_id = mlx5_os_get_umem_id(mem_mng->umem);
6459 	mkey_attr.pd = sh->pdn;
6460 	mkey_attr.log_entity_size = 0;
6461 	mkey_attr.pg_access = 0;
6462 	mkey_attr.klm_array = NULL;
6463 	mkey_attr.klm_num = 0;
6464 	mkey_attr.relaxed_ordering_write = sh->cmng.relaxed_ordering_write;
6465 	mkey_attr.relaxed_ordering_read = sh->cmng.relaxed_ordering_read;
6466 	mem_mng->dm = mlx5_devx_cmd_mkey_create(sh->ctx, &mkey_attr);
6467 	if (!mem_mng->dm) {
6468 		mlx5_glue->devx_umem_dereg(mem_mng->umem);
6469 		rte_errno = errno;
6470 		mlx5_free(mem);
6471 		return -rte_errno;
6472 	}
6473 	mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size);
6474 	raw_data = (volatile struct flow_counter_stats *)mem;
6475 	for (i = 0; i < raws_n; ++i) {
6476 		mem_mng->raws[i].mem_mng = mem_mng;
6477 		mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL;
6478 	}
6479 	for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i)
6480 		LIST_INSERT_HEAD(&sh->cmng.free_stat_raws,
6481 				 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i,
6482 				 next);
6483 	LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next);
6484 	sh->cmng.mem_mng = mem_mng;
6485 	return 0;
6486 }
6487 
6488 /**
6489  * Set the statistic memory to the new counter pool.
6490  *
6491  * @param[in] sh
6492  *   Pointer to mlx5_dev_ctx_shared object.
6493  * @param[in] pool
6494  *   Pointer to the pool to set the statistic memory.
6495  *
6496  * @return
6497  *   0 on success, a negative errno value otherwise.
6498  */
6499 static int
6500 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh,
6501 			       struct mlx5_flow_counter_pool *pool)
6502 {
6503 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6504 	/* Resize statistic memory once used out. */
6505 	if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) &&
6506 	    mlx5_flow_create_counter_stat_mem_mng(sh)) {
6507 		DRV_LOG(ERR, "Cannot resize counter stat mem.");
6508 		return -1;
6509 	}
6510 	rte_spinlock_lock(&pool->sl);
6511 	pool->raw = cmng->mem_mng->raws + pool->index %
6512 		    MLX5_CNT_CONTAINER_RESIZE;
6513 	rte_spinlock_unlock(&pool->sl);
6514 	pool->raw_hw = NULL;
6515 	return 0;
6516 }
6517 
6518 #define MLX5_POOL_QUERY_FREQ_US 1000000
6519 
6520 /**
6521  * Set the periodic procedure for triggering asynchronous batch queries for all
6522  * the counter pools.
6523  *
6524  * @param[in] sh
6525  *   Pointer to mlx5_dev_ctx_shared object.
6526  */
6527 void
6528 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
6529 {
6530 	uint32_t pools_n, us;
6531 
6532 	pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED);
6533 	us = MLX5_POOL_QUERY_FREQ_US / pools_n;
6534 	DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
6535 	if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
6536 		sh->cmng.query_thread_on = 0;
6537 		DRV_LOG(ERR, "Cannot reinitialize query alarm");
6538 	} else {
6539 		sh->cmng.query_thread_on = 1;
6540 	}
6541 }
6542 
6543 /**
6544  * The periodic procedure for triggering asynchronous batch queries for all the
6545  * counter pools. This function is probably called by the host thread.
6546  *
6547  * @param[in] arg
6548  *   The parameter for the alarm process.
6549  */
6550 void
6551 mlx5_flow_query_alarm(void *arg)
6552 {
6553 	struct mlx5_dev_ctx_shared *sh = arg;
6554 	int ret;
6555 	uint16_t pool_index = sh->cmng.pool_index;
6556 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6557 	struct mlx5_flow_counter_pool *pool;
6558 	uint16_t n_valid;
6559 
6560 	if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
6561 		goto set_alarm;
6562 	rte_spinlock_lock(&cmng->pool_update_sl);
6563 	pool = cmng->pools[pool_index];
6564 	n_valid = cmng->n_valid;
6565 	rte_spinlock_unlock(&cmng->pool_update_sl);
6566 	/* Set the statistic memory to the new created pool. */
6567 	if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool)))
6568 		goto set_alarm;
6569 	if (pool->raw_hw)
6570 		/* There is a pool query in progress. */
6571 		goto set_alarm;
6572 	pool->raw_hw =
6573 		LIST_FIRST(&sh->cmng.free_stat_raws);
6574 	if (!pool->raw_hw)
6575 		/* No free counter statistics raw memory. */
6576 		goto set_alarm;
6577 	/*
6578 	 * Identify the counters released between query trigger and query
6579 	 * handle more efficiently. The counter released in this gap period
6580 	 * should wait for a new round of query as the new arrived packets
6581 	 * will not be taken into account.
6582 	 */
6583 	pool->query_gen++;
6584 	ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0,
6585 					       MLX5_COUNTERS_PER_POOL,
6586 					       NULL, NULL,
6587 					       pool->raw_hw->mem_mng->dm->id,
6588 					       (void *)(uintptr_t)
6589 					       pool->raw_hw->data,
6590 					       sh->devx_comp,
6591 					       (uint64_t)(uintptr_t)pool);
6592 	if (ret) {
6593 		DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
6594 			" %d", pool->min_dcs->id);
6595 		pool->raw_hw = NULL;
6596 		goto set_alarm;
6597 	}
6598 	LIST_REMOVE(pool->raw_hw, next);
6599 	sh->cmng.pending_queries++;
6600 	pool_index++;
6601 	if (pool_index >= n_valid)
6602 		pool_index = 0;
6603 set_alarm:
6604 	sh->cmng.pool_index = pool_index;
6605 	mlx5_set_query_alarm(sh);
6606 }
6607 
6608 /**
6609  * Check and callback event for new aged flow in the counter pool
6610  *
6611  * @param[in] sh
6612  *   Pointer to mlx5_dev_ctx_shared object.
6613  * @param[in] pool
6614  *   Pointer to Current counter pool.
6615  */
6616 static void
6617 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
6618 		   struct mlx5_flow_counter_pool *pool)
6619 {
6620 	struct mlx5_priv *priv;
6621 	struct mlx5_flow_counter *cnt;
6622 	struct mlx5_age_info *age_info;
6623 	struct mlx5_age_param *age_param;
6624 	struct mlx5_counter_stats_raw *cur = pool->raw_hw;
6625 	struct mlx5_counter_stats_raw *prev = pool->raw;
6626 	const uint64_t curr_time = MLX5_CURR_TIME_SEC;
6627 	const uint32_t time_delta = curr_time - pool->time_of_last_age_check;
6628 	uint16_t expected = AGE_CANDIDATE;
6629 	uint32_t i;
6630 
6631 	pool->time_of_last_age_check = curr_time;
6632 	for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
6633 		cnt = MLX5_POOL_GET_CNT(pool, i);
6634 		age_param = MLX5_CNT_TO_AGE(cnt);
6635 		if (__atomic_load_n(&age_param->state,
6636 				    __ATOMIC_RELAXED) != AGE_CANDIDATE)
6637 			continue;
6638 		if (cur->data[i].hits != prev->data[i].hits) {
6639 			__atomic_store_n(&age_param->sec_since_last_hit, 0,
6640 					 __ATOMIC_RELAXED);
6641 			continue;
6642 		}
6643 		if (__atomic_add_fetch(&age_param->sec_since_last_hit,
6644 				       time_delta,
6645 				       __ATOMIC_RELAXED) <= age_param->timeout)
6646 			continue;
6647 		/**
6648 		 * Hold the lock first, or if between the
6649 		 * state AGE_TMOUT and tailq operation the
6650 		 * release happened, the release procedure
6651 		 * may delete a non-existent tailq node.
6652 		 */
6653 		priv = rte_eth_devices[age_param->port_id].data->dev_private;
6654 		age_info = GET_PORT_AGE_INFO(priv);
6655 		rte_spinlock_lock(&age_info->aged_sl);
6656 		if (__atomic_compare_exchange_n(&age_param->state, &expected,
6657 						AGE_TMOUT, false,
6658 						__ATOMIC_RELAXED,
6659 						__ATOMIC_RELAXED)) {
6660 			TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
6661 			MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
6662 		}
6663 		rte_spinlock_unlock(&age_info->aged_sl);
6664 	}
6665 	mlx5_age_event_prepare(sh);
6666 }
6667 
6668 /**
6669  * Handler for the HW respond about ready values from an asynchronous batch
6670  * query. This function is probably called by the host thread.
6671  *
6672  * @param[in] sh
6673  *   The pointer to the shared device context.
6674  * @param[in] async_id
6675  *   The Devx async ID.
6676  * @param[in] status
6677  *   The status of the completion.
6678  */
6679 void
6680 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
6681 				  uint64_t async_id, int status)
6682 {
6683 	struct mlx5_flow_counter_pool *pool =
6684 		(struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
6685 	struct mlx5_counter_stats_raw *raw_to_free;
6686 	uint8_t query_gen = pool->query_gen ^ 1;
6687 	struct mlx5_flow_counter_mng *cmng = &sh->cmng;
6688 	enum mlx5_counter_type cnt_type =
6689 		pool->is_aged ? MLX5_COUNTER_TYPE_AGE :
6690 				MLX5_COUNTER_TYPE_ORIGIN;
6691 
6692 	if (unlikely(status)) {
6693 		raw_to_free = pool->raw_hw;
6694 	} else {
6695 		raw_to_free = pool->raw;
6696 		if (pool->is_aged)
6697 			mlx5_flow_aging_check(sh, pool);
6698 		rte_spinlock_lock(&pool->sl);
6699 		pool->raw = pool->raw_hw;
6700 		rte_spinlock_unlock(&pool->sl);
6701 		/* Be sure the new raw counters data is updated in memory. */
6702 		rte_io_wmb();
6703 		if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
6704 			rte_spinlock_lock(&cmng->csl[cnt_type]);
6705 			TAILQ_CONCAT(&cmng->counters[cnt_type],
6706 				     &pool->counters[query_gen], next);
6707 			rte_spinlock_unlock(&cmng->csl[cnt_type]);
6708 		}
6709 	}
6710 	LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
6711 	pool->raw_hw = NULL;
6712 	sh->cmng.pending_queries--;
6713 }
6714 
6715 static int
6716 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table,
6717 		    const struct flow_grp_info *grp_info,
6718 		    struct rte_flow_error *error)
6719 {
6720 	if (grp_info->transfer && grp_info->external &&
6721 	    grp_info->fdb_def_rule) {
6722 		if (group == UINT32_MAX)
6723 			return rte_flow_error_set
6724 						(error, EINVAL,
6725 						 RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
6726 						 NULL,
6727 						 "group index not supported");
6728 		*table = group + 1;
6729 	} else {
6730 		*table = group;
6731 	}
6732 	DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table);
6733 	return 0;
6734 }
6735 
6736 /**
6737  * Translate the rte_flow group index to HW table value.
6738  *
6739  * If tunnel offload is disabled, all group ids converted to flow table
6740  * id using the standard method.
6741  * If tunnel offload is enabled, group id can be converted using the
6742  * standard or tunnel conversion method. Group conversion method
6743  * selection depends on flags in `grp_info` parameter:
6744  * - Internal (grp_info.external == 0) groups conversion uses the
6745  *   standard method.
6746  * - Group ids in JUMP action converted with the tunnel conversion.
6747  * - Group id in rule attribute conversion depends on a rule type and
6748  *   group id value:
6749  *   ** non zero group attributes converted with the tunnel method
6750  *   ** zero group attribute in non-tunnel rule is converted using the
6751  *      standard method - there's only one root table
6752  *   ** zero group attribute in steer tunnel rule is converted with the
6753  *      standard method - single root table
6754  *   ** zero group attribute in match tunnel rule is a special OvS
6755  *      case: that value is used for portability reasons. That group
6756  *      id is converted with the tunnel conversion method.
6757  *
6758  * @param[in] dev
6759  *   Port device
6760  * @param[in] tunnel
6761  *   PMD tunnel offload object
6762  * @param[in] group
6763  *   rte_flow group index value.
6764  * @param[out] table
6765  *   HW table value.
6766  * @param[in] grp_info
6767  *   flags used for conversion
6768  * @param[out] error
6769  *   Pointer to error structure.
6770  *
6771  * @return
6772  *   0 on success, a negative errno value otherwise and rte_errno is set.
6773  */
6774 int
6775 mlx5_flow_group_to_table(struct rte_eth_dev *dev,
6776 			 const struct mlx5_flow_tunnel *tunnel,
6777 			 uint32_t group, uint32_t *table,
6778 			 const struct flow_grp_info *grp_info,
6779 			 struct rte_flow_error *error)
6780 {
6781 	int ret;
6782 	bool standard_translation;
6783 
6784 	if (!grp_info->skip_scale && grp_info->external &&
6785 	    group < MLX5_MAX_TABLES_EXTERNAL)
6786 		group *= MLX5_FLOW_TABLE_FACTOR;
6787 	if (is_tunnel_offload_active(dev)) {
6788 		standard_translation = !grp_info->external ||
6789 					grp_info->std_tbl_fix;
6790 	} else {
6791 		standard_translation = true;
6792 	}
6793 	DRV_LOG(DEBUG,
6794 		"port %u group=%u transfer=%d external=%d fdb_def_rule=%d translate=%s",
6795 		dev->data->port_id, group, grp_info->transfer,
6796 		grp_info->external, grp_info->fdb_def_rule,
6797 		standard_translation ? "STANDARD" : "TUNNEL");
6798 	if (standard_translation)
6799 		ret = flow_group_to_table(dev->data->port_id, group, table,
6800 					  grp_info, error);
6801 	else
6802 		ret = tunnel_flow_group_to_flow_table(dev, tunnel, group,
6803 						      table, error);
6804 
6805 	return ret;
6806 }
6807 
6808 /**
6809  * Discover availability of metadata reg_c's.
6810  *
6811  * Iteratively use test flows to check availability.
6812  *
6813  * @param[in] dev
6814  *   Pointer to the Ethernet device structure.
6815  *
6816  * @return
6817  *   0 on success, a negative errno value otherwise and rte_errno is set.
6818  */
6819 int
6820 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
6821 {
6822 	struct mlx5_priv *priv = dev->data->dev_private;
6823 	struct mlx5_dev_config *config = &priv->config;
6824 	enum modify_reg idx;
6825 	int n = 0;
6826 
6827 	/* reg_c[0] and reg_c[1] are reserved. */
6828 	config->flow_mreg_c[n++] = REG_C_0;
6829 	config->flow_mreg_c[n++] = REG_C_1;
6830 	/* Discover availability of other reg_c's. */
6831 	for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
6832 		struct rte_flow_attr attr = {
6833 			.group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
6834 			.priority = MLX5_FLOW_PRIO_RSVD,
6835 			.ingress = 1,
6836 		};
6837 		struct rte_flow_item items[] = {
6838 			[0] = {
6839 				.type = RTE_FLOW_ITEM_TYPE_END,
6840 			},
6841 		};
6842 		struct rte_flow_action actions[] = {
6843 			[0] = {
6844 				.type = (enum rte_flow_action_type)
6845 					MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
6846 				.conf = &(struct mlx5_flow_action_copy_mreg){
6847 					.src = REG_C_1,
6848 					.dst = idx,
6849 				},
6850 			},
6851 			[1] = {
6852 				.type = RTE_FLOW_ACTION_TYPE_JUMP,
6853 				.conf = &(struct rte_flow_action_jump){
6854 					.group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
6855 				},
6856 			},
6857 			[2] = {
6858 				.type = RTE_FLOW_ACTION_TYPE_END,
6859 			},
6860 		};
6861 		uint32_t flow_idx;
6862 		struct rte_flow *flow;
6863 		struct rte_flow_error error;
6864 
6865 		if (!config->dv_flow_en)
6866 			break;
6867 		/* Create internal flow, validation skips copy action. */
6868 		flow_idx = flow_list_create(dev, NULL, &attr, items,
6869 					    actions, false, &error);
6870 		flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
6871 				      flow_idx);
6872 		if (!flow)
6873 			continue;
6874 		config->flow_mreg_c[n++] = idx;
6875 		flow_list_destroy(dev, NULL, flow_idx);
6876 	}
6877 	for (; n < MLX5_MREG_C_NUM; ++n)
6878 		config->flow_mreg_c[n] = REG_NON;
6879 	return 0;
6880 }
6881 
6882 /**
6883  * Dump flow raw hw data to file
6884  *
6885  * @param[in] dev
6886  *    The pointer to Ethernet device.
6887  * @param[in] file
6888  *   A pointer to a file for output.
6889  * @param[out] error
6890  *   Perform verbose error reporting if not NULL. PMDs initialize this
6891  *   structure in case of error only.
6892  * @return
6893  *   0 on success, a nagative value otherwise.
6894  */
6895 int
6896 mlx5_flow_dev_dump(struct rte_eth_dev *dev,
6897 		   FILE *file,
6898 		   struct rte_flow_error *error __rte_unused)
6899 {
6900 	struct mlx5_priv *priv = dev->data->dev_private;
6901 	struct mlx5_dev_ctx_shared *sh = priv->sh;
6902 
6903 	if (!priv->config.dv_flow_en) {
6904 		if (fputs("device dv flow disabled\n", file) <= 0)
6905 			return -errno;
6906 		return -ENOTSUP;
6907 	}
6908 	return mlx5_devx_cmd_flow_dump(sh->fdb_domain, sh->rx_domain,
6909 				       sh->tx_domain, file);
6910 }
6911 
6912 /**
6913  * Get aged-out flows.
6914  *
6915  * @param[in] dev
6916  *   Pointer to the Ethernet device structure.
6917  * @param[in] context
6918  *   The address of an array of pointers to the aged-out flows contexts.
6919  * @param[in] nb_countexts
6920  *   The length of context array pointers.
6921  * @param[out] error
6922  *   Perform verbose error reporting if not NULL. Initialized in case of
6923  *   error only.
6924  *
6925  * @return
6926  *   how many contexts get in success, otherwise negative errno value.
6927  *   if nb_contexts is 0, return the amount of all aged contexts.
6928  *   if nb_contexts is not 0 , return the amount of aged flows reported
6929  *   in the context array.
6930  */
6931 int
6932 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
6933 			uint32_t nb_contexts, struct rte_flow_error *error)
6934 {
6935 	const struct mlx5_flow_driver_ops *fops;
6936 	struct rte_flow_attr attr = { .transfer = 0 };
6937 
6938 	if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6939 		fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6940 		return fops->get_aged_flows(dev, contexts, nb_contexts,
6941 						    error);
6942 	}
6943 	DRV_LOG(ERR,
6944 		"port %u get aged flows is not supported.",
6945 		 dev->data->port_id);
6946 	return -ENOTSUP;
6947 }
6948 
6949 /* Wrapper for driver action_validate op callback */
6950 static int
6951 flow_drv_action_validate(struct rte_eth_dev *dev,
6952 			 const struct rte_flow_shared_action_conf *conf,
6953 			 const struct rte_flow_action *action,
6954 			 const struct mlx5_flow_driver_ops *fops,
6955 			 struct rte_flow_error *error)
6956 {
6957 	static const char err_msg[] = "shared action validation unsupported";
6958 
6959 	if (!fops->action_validate) {
6960 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
6961 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
6962 				   NULL, err_msg);
6963 		return -rte_errno;
6964 	}
6965 	return fops->action_validate(dev, conf, action, error);
6966 }
6967 
6968 /**
6969  * Destroys the shared action by handle.
6970  *
6971  * @param dev
6972  *   Pointer to Ethernet device structure.
6973  * @param[in] action
6974  *   Handle for the shared action to be destroyed.
6975  * @param[out] error
6976  *   Perform verbose error reporting if not NULL. PMDs initialize this
6977  *   structure in case of error only.
6978  *
6979  * @return
6980  *   0 on success, a negative errno value otherwise and rte_errno is set.
6981  *
6982  * @note: wrapper for driver action_create op callback.
6983  */
6984 static int
6985 mlx5_shared_action_destroy(struct rte_eth_dev *dev,
6986 			   struct rte_flow_shared_action *action,
6987 			   struct rte_flow_error *error)
6988 {
6989 	static const char err_msg[] = "shared action destruction unsupported";
6990 	struct rte_flow_attr attr = { .transfer = 0 };
6991 	const struct mlx5_flow_driver_ops *fops =
6992 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
6993 
6994 	if (!fops->action_destroy) {
6995 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
6996 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
6997 				   NULL, err_msg);
6998 		return -rte_errno;
6999 	}
7000 	return fops->action_destroy(dev, action, error);
7001 }
7002 
7003 /* Wrapper for driver action_destroy op callback */
7004 static int
7005 flow_drv_action_update(struct rte_eth_dev *dev,
7006 		       struct rte_flow_shared_action *action,
7007 		       const void *action_conf,
7008 		       const struct mlx5_flow_driver_ops *fops,
7009 		       struct rte_flow_error *error)
7010 {
7011 	static const char err_msg[] = "shared action update unsupported";
7012 
7013 	if (!fops->action_update) {
7014 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7015 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7016 				   NULL, err_msg);
7017 		return -rte_errno;
7018 	}
7019 	return fops->action_update(dev, action, action_conf, error);
7020 }
7021 
7022 /* Wrapper for driver action_destroy op callback */
7023 static int
7024 flow_drv_action_query(struct rte_eth_dev *dev,
7025 		      const struct rte_flow_shared_action *action,
7026 		      void *data,
7027 		      const struct mlx5_flow_driver_ops *fops,
7028 		      struct rte_flow_error *error)
7029 {
7030 	static const char err_msg[] = "shared action query unsupported";
7031 
7032 	if (!fops->action_query) {
7033 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7034 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7035 				   NULL, err_msg);
7036 		return -rte_errno;
7037 	}
7038 	return fops->action_query(dev, action, data, error);
7039 }
7040 
7041 /**
7042  * Create shared action for reuse in multiple flow rules.
7043  *
7044  * @param dev
7045  *   Pointer to Ethernet device structure.
7046  * @param[in] action
7047  *   Action configuration for shared action creation.
7048  * @param[out] error
7049  *   Perform verbose error reporting if not NULL. PMDs initialize this
7050  *   structure in case of error only.
7051  * @return
7052  *   A valid handle in case of success, NULL otherwise and rte_errno is set.
7053  */
7054 static struct rte_flow_shared_action *
7055 mlx5_shared_action_create(struct rte_eth_dev *dev,
7056 			  const struct rte_flow_shared_action_conf *conf,
7057 			  const struct rte_flow_action *action,
7058 			  struct rte_flow_error *error)
7059 {
7060 	static const char err_msg[] = "shared action creation unsupported";
7061 	struct rte_flow_attr attr = { .transfer = 0 };
7062 	const struct mlx5_flow_driver_ops *fops =
7063 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7064 
7065 	if (flow_drv_action_validate(dev, conf, action, fops, error))
7066 		return NULL;
7067 	if (!fops->action_create) {
7068 		DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg);
7069 		rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
7070 				   NULL, err_msg);
7071 		return NULL;
7072 	}
7073 	return fops->action_create(dev, conf, action, error);
7074 }
7075 
7076 /**
7077  * Updates inplace the shared action configuration pointed by *action* handle
7078  * with the configuration provided as *action* argument.
7079  * The update of the shared action configuration effects all flow rules reusing
7080  * the action via handle.
7081  *
7082  * @param dev
7083  *   Pointer to Ethernet device structure.
7084  * @param[in] shared_action
7085  *   Handle for the shared action to be updated.
7086  * @param[in] action
7087  *   Action specification used to modify the action pointed by handle.
7088  *   *action* should be of same type with the action pointed by the *action*
7089  *   handle argument, otherwise considered as invalid.
7090  * @param[out] error
7091  *   Perform verbose error reporting if not NULL. PMDs initialize this
7092  *   structure in case of error only.
7093  *
7094  * @return
7095  *   0 on success, a negative errno value otherwise and rte_errno is set.
7096  */
7097 static int
7098 mlx5_shared_action_update(struct rte_eth_dev *dev,
7099 		struct rte_flow_shared_action *shared_action,
7100 		const struct rte_flow_action *action,
7101 		struct rte_flow_error *error)
7102 {
7103 	struct rte_flow_attr attr = { .transfer = 0 };
7104 	const struct mlx5_flow_driver_ops *fops =
7105 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7106 	int ret;
7107 
7108 	ret = flow_drv_action_validate(dev, NULL, action, fops, error);
7109 	if (ret)
7110 		return ret;
7111 	return flow_drv_action_update(dev, shared_action, action->conf, fops,
7112 				      error);
7113 }
7114 
7115 /**
7116  * Query the shared action by handle.
7117  *
7118  * This function allows retrieving action-specific data such as counters.
7119  * Data is gathered by special action which may be present/referenced in
7120  * more than one flow rule definition.
7121  *
7122  * \see RTE_FLOW_ACTION_TYPE_COUNT
7123  *
7124  * @param dev
7125  *   Pointer to Ethernet device structure.
7126  * @param[in] action
7127  *   Handle for the shared action to query.
7128  * @param[in, out] data
7129  *   Pointer to storage for the associated query data type.
7130  * @param[out] error
7131  *   Perform verbose error reporting if not NULL. PMDs initialize this
7132  *   structure in case of error only.
7133  *
7134  * @return
7135  *   0 on success, a negative errno value otherwise and rte_errno is set.
7136  */
7137 static int
7138 mlx5_shared_action_query(struct rte_eth_dev *dev,
7139 			 const struct rte_flow_shared_action *action,
7140 			 void *data,
7141 			 struct rte_flow_error *error)
7142 {
7143 	struct rte_flow_attr attr = { .transfer = 0 };
7144 	const struct mlx5_flow_driver_ops *fops =
7145 			flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7146 
7147 	return flow_drv_action_query(dev, action, data, fops, error);
7148 }
7149 
7150 /**
7151  * Destroy all shared actions.
7152  *
7153  * @param dev
7154  *   Pointer to Ethernet device.
7155  *
7156  * @return
7157  *   0 on success, a negative errno value otherwise and rte_errno is set.
7158  */
7159 int
7160 mlx5_shared_action_flush(struct rte_eth_dev *dev)
7161 {
7162 	struct rte_flow_error error;
7163 	struct mlx5_priv *priv = dev->data->dev_private;
7164 	struct mlx5_shared_action_rss *action;
7165 	int ret = 0;
7166 	uint32_t idx;
7167 
7168 	ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS],
7169 		      priv->rss_shared_actions, idx, action, next) {
7170 		ret |= mlx5_shared_action_destroy(dev,
7171 		       (struct rte_flow_shared_action *)(uintptr_t)idx, &error);
7172 	}
7173 	return ret;
7174 }
7175 
7176 #ifndef HAVE_MLX5DV_DR
7177 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1))
7178 #else
7179 #define MLX5_DOMAIN_SYNC_FLOW \
7180 	(MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW)
7181 #endif
7182 
7183 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains)
7184 {
7185 	struct rte_eth_dev *dev = &rte_eth_devices[port_id];
7186 	const struct mlx5_flow_driver_ops *fops;
7187 	int ret;
7188 	struct rte_flow_attr attr = { .transfer = 0 };
7189 
7190 	fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr));
7191 	ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW);
7192 	if (ret > 0)
7193 		ret = -ret;
7194 	return ret;
7195 }
7196 
7197 /**
7198  * tunnel offload functionalilty is defined for DV environment only
7199  */
7200 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
7201 __extension__
7202 union tunnel_offload_mark {
7203 	uint32_t val;
7204 	struct {
7205 		uint32_t app_reserve:8;
7206 		uint32_t table_id:15;
7207 		uint32_t transfer:1;
7208 		uint32_t _unused_:8;
7209 	};
7210 };
7211 
7212 static bool
7213 mlx5_access_tunnel_offload_db
7214 	(struct rte_eth_dev *dev,
7215 	 bool (*match)(struct rte_eth_dev *,
7216 		       struct mlx5_flow_tunnel *, const void *),
7217 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
7218 	 void (*miss)(struct rte_eth_dev *, void *),
7219 	 void *ctx, bool lock_op);
7220 
7221 static int
7222 flow_tunnel_add_default_miss(struct rte_eth_dev *dev,
7223 			     struct rte_flow *flow,
7224 			     const struct rte_flow_attr *attr,
7225 			     const struct rte_flow_action *app_actions,
7226 			     uint32_t flow_idx,
7227 			     struct tunnel_default_miss_ctx *ctx,
7228 			     struct rte_flow_error *error)
7229 {
7230 	struct mlx5_priv *priv = dev->data->dev_private;
7231 	struct mlx5_flow *dev_flow;
7232 	struct rte_flow_attr miss_attr = *attr;
7233 	const struct mlx5_flow_tunnel *tunnel = app_actions[0].conf;
7234 	const struct rte_flow_item miss_items[2] = {
7235 		{
7236 			.type = RTE_FLOW_ITEM_TYPE_ETH,
7237 			.spec = NULL,
7238 			.last = NULL,
7239 			.mask = NULL
7240 		},
7241 		{
7242 			.type = RTE_FLOW_ITEM_TYPE_END,
7243 			.spec = NULL,
7244 			.last = NULL,
7245 			.mask = NULL
7246 		}
7247 	};
7248 	union tunnel_offload_mark mark_id;
7249 	struct rte_flow_action_mark miss_mark;
7250 	struct rte_flow_action miss_actions[3] = {
7251 		[0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark },
7252 		[2] = { .type = RTE_FLOW_ACTION_TYPE_END,  .conf = NULL }
7253 	};
7254 	const struct rte_flow_action_jump *jump_data;
7255 	uint32_t i, flow_table = 0; /* prevent compilation warning */
7256 	struct flow_grp_info grp_info = {
7257 		.external = 1,
7258 		.transfer = attr->transfer,
7259 		.fdb_def_rule = !!priv->fdb_def_rule,
7260 		.std_tbl_fix = 0,
7261 	};
7262 	int ret;
7263 
7264 	if (!attr->transfer) {
7265 		uint32_t q_size;
7266 
7267 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS;
7268 		q_size = priv->reta_idx_n * sizeof(ctx->queue[0]);
7269 		ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size,
7270 					 0, SOCKET_ID_ANY);
7271 		if (!ctx->queue)
7272 			return rte_flow_error_set
7273 				(error, ENOMEM,
7274 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
7275 				NULL, "invalid default miss RSS");
7276 		ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
7277 		ctx->action_rss.level = 0,
7278 		ctx->action_rss.types = priv->rss_conf.rss_hf,
7279 		ctx->action_rss.key_len = priv->rss_conf.rss_key_len,
7280 		ctx->action_rss.queue_num = priv->reta_idx_n,
7281 		ctx->action_rss.key = priv->rss_conf.rss_key,
7282 		ctx->action_rss.queue = ctx->queue;
7283 		if (!priv->reta_idx_n || !priv->rxqs_n)
7284 			return rte_flow_error_set
7285 				(error, EINVAL,
7286 				RTE_FLOW_ERROR_TYPE_ACTION_CONF,
7287 				NULL, "invalid port configuration");
7288 		if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
7289 			ctx->action_rss.types = 0;
7290 		for (i = 0; i != priv->reta_idx_n; ++i)
7291 			ctx->queue[i] = (*priv->reta_idx)[i];
7292 	} else {
7293 		miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP;
7294 		ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP;
7295 	}
7296 	miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw;
7297 	for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++);
7298 	jump_data = app_actions->conf;
7299 	miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY;
7300 	miss_attr.group = jump_data->group;
7301 	ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group,
7302 				       &flow_table, &grp_info, error);
7303 	if (ret)
7304 		return rte_flow_error_set(error, EINVAL,
7305 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
7306 					  NULL, "invalid tunnel id");
7307 	mark_id.app_reserve = 0;
7308 	mark_id.table_id = tunnel_flow_tbl_to_id(flow_table);
7309 	mark_id.transfer = !!attr->transfer;
7310 	mark_id._unused_ = 0;
7311 	miss_mark.id = mark_id.val;
7312 	dev_flow = flow_drv_prepare(dev, flow, &miss_attr,
7313 				    miss_items, miss_actions, flow_idx, error);
7314 	if (!dev_flow)
7315 		return -rte_errno;
7316 	dev_flow->flow = flow;
7317 	dev_flow->external = true;
7318 	dev_flow->tunnel = tunnel;
7319 	/* Subflow object was created, we must include one in the list. */
7320 	SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
7321 		      dev_flow->handle, next);
7322 	DRV_LOG(DEBUG,
7323 		"port %u tunnel type=%d id=%u miss rule priority=%u group=%u",
7324 		dev->data->port_id, tunnel->app_tunnel.type,
7325 		tunnel->tunnel_id, miss_attr.priority, miss_attr.group);
7326 	ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items,
7327 				  miss_actions, error);
7328 	if (!ret)
7329 		ret = flow_mreg_update_copy_table(dev, flow, miss_actions,
7330 						  error);
7331 
7332 	return ret;
7333 }
7334 
7335 static const struct mlx5_flow_tbl_data_entry  *
7336 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark)
7337 {
7338 	struct mlx5_priv *priv = dev->data->dev_private;
7339 	struct mlx5_dev_ctx_shared *sh = priv->sh;
7340 	struct mlx5_hlist_entry *he;
7341 	union tunnel_offload_mark mbits = { .val = mark };
7342 	union mlx5_flow_tbl_key table_key = {
7343 		{
7344 			.table_id = tunnel_id_to_flow_tbl(mbits.table_id),
7345 			.dummy = 0,
7346 			.domain = !!mbits.transfer,
7347 			.direction = 0,
7348 		}
7349 	};
7350 	he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, NULL);
7351 	return he ?
7352 	       container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL;
7353 }
7354 
7355 static void
7356 mlx5_flow_tunnel_grp2tbl_remove_cb(struct mlx5_hlist *list,
7357 				   struct mlx5_hlist_entry *entry)
7358 {
7359 	struct mlx5_dev_ctx_shared *sh = list->ctx;
7360 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
7361 
7362 	mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
7363 			tunnel_flow_tbl_to_id(tte->flow_table));
7364 	mlx5_free(tte);
7365 }
7366 
7367 static int
7368 mlx5_flow_tunnel_grp2tbl_match_cb(struct mlx5_hlist *list __rte_unused,
7369 				  struct mlx5_hlist_entry *entry,
7370 				  uint64_t key, void *cb_ctx __rte_unused)
7371 {
7372 	union tunnel_tbl_key tbl = {
7373 		.val = key,
7374 	};
7375 	struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash);
7376 
7377 	return tbl.tunnel_id != tte->tunnel_id || tbl.group != tte->group;
7378 }
7379 
7380 static struct mlx5_hlist_entry *
7381 mlx5_flow_tunnel_grp2tbl_create_cb(struct mlx5_hlist *list, uint64_t key,
7382 				   void *ctx __rte_unused)
7383 {
7384 	struct mlx5_dev_ctx_shared *sh = list->ctx;
7385 	struct tunnel_tbl_entry *tte;
7386 	union tunnel_tbl_key tbl = {
7387 		.val = key,
7388 	};
7389 
7390 	tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO,
7391 			  sizeof(*tte), 0,
7392 			  SOCKET_ID_ANY);
7393 	if (!tte)
7394 		goto err;
7395 	mlx5_ipool_malloc(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
7396 			  &tte->flow_table);
7397 	if (tte->flow_table >= MLX5_MAX_TABLES) {
7398 		DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.",
7399 			tte->flow_table);
7400 		mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID],
7401 				tte->flow_table);
7402 		goto err;
7403 	} else if (!tte->flow_table) {
7404 		goto err;
7405 	}
7406 	tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table);
7407 	tte->tunnel_id = tbl.tunnel_id;
7408 	tte->group = tbl.group;
7409 	return &tte->hash;
7410 err:
7411 	if (tte)
7412 		mlx5_free(tte);
7413 	return NULL;
7414 }
7415 
7416 static uint32_t
7417 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev,
7418 				const struct mlx5_flow_tunnel *tunnel,
7419 				uint32_t group, uint32_t *table,
7420 				struct rte_flow_error *error)
7421 {
7422 	struct mlx5_hlist_entry *he;
7423 	struct tunnel_tbl_entry *tte;
7424 	union tunnel_tbl_key key = {
7425 		.tunnel_id = tunnel ? tunnel->tunnel_id : 0,
7426 		.group = group
7427 	};
7428 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
7429 	struct mlx5_hlist *group_hash;
7430 
7431 	group_hash = tunnel ? tunnel->groups : thub->groups;
7432 	he = mlx5_hlist_register(group_hash, key.val, NULL);
7433 	if (!he)
7434 		return rte_flow_error_set(error, EINVAL,
7435 					  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
7436 					  NULL,
7437 					  "tunnel group index not supported");
7438 	tte = container_of(he, typeof(*tte), hash);
7439 	*table = tte->flow_table;
7440 	DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x",
7441 		dev->data->port_id, key.tunnel_id, group, *table);
7442 	return 0;
7443 }
7444 
7445 static void
7446 mlx5_flow_tunnel_free(struct rte_eth_dev *dev,
7447 		      struct mlx5_flow_tunnel *tunnel)
7448 {
7449 	struct mlx5_priv *priv = dev->data->dev_private;
7450 	struct mlx5_indexed_pool *ipool;
7451 
7452 	DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x",
7453 		dev->data->port_id, tunnel->tunnel_id);
7454 	LIST_REMOVE(tunnel, chain);
7455 	mlx5_hlist_destroy(tunnel->groups);
7456 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
7457 	mlx5_ipool_free(ipool, tunnel->tunnel_id);
7458 }
7459 
7460 static bool
7461 mlx5_access_tunnel_offload_db
7462 	(struct rte_eth_dev *dev,
7463 	 bool (*match)(struct rte_eth_dev *,
7464 		       struct mlx5_flow_tunnel *, const void *),
7465 	 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *),
7466 	 void (*miss)(struct rte_eth_dev *, void *),
7467 	 void *ctx, bool lock_op)
7468 {
7469 	bool verdict = false;
7470 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
7471 	struct mlx5_flow_tunnel *tunnel;
7472 
7473 	rte_spinlock_lock(&thub->sl);
7474 	LIST_FOREACH(tunnel, &thub->tunnels, chain) {
7475 		verdict = match(dev, tunnel, (const void *)ctx);
7476 		if (verdict)
7477 			break;
7478 	}
7479 	if (!lock_op)
7480 		rte_spinlock_unlock(&thub->sl);
7481 	if (verdict && hit)
7482 		hit(dev, tunnel, ctx);
7483 	if (!verdict && miss)
7484 		miss(dev, ctx);
7485 	if (lock_op)
7486 		rte_spinlock_unlock(&thub->sl);
7487 
7488 	return verdict;
7489 }
7490 
7491 struct tunnel_db_find_tunnel_id_ctx {
7492 	uint32_t tunnel_id;
7493 	struct mlx5_flow_tunnel *tunnel;
7494 };
7495 
7496 static bool
7497 find_tunnel_id_match(struct rte_eth_dev *dev,
7498 		     struct mlx5_flow_tunnel *tunnel, const void *x)
7499 {
7500 	const struct tunnel_db_find_tunnel_id_ctx *ctx = x;
7501 
7502 	RTE_SET_USED(dev);
7503 	return tunnel->tunnel_id == ctx->tunnel_id;
7504 }
7505 
7506 static void
7507 find_tunnel_id_hit(struct rte_eth_dev *dev,
7508 		   struct mlx5_flow_tunnel *tunnel, void *x)
7509 {
7510 	struct tunnel_db_find_tunnel_id_ctx *ctx = x;
7511 	RTE_SET_USED(dev);
7512 	ctx->tunnel = tunnel;
7513 }
7514 
7515 static struct mlx5_flow_tunnel *
7516 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id)
7517 {
7518 	struct tunnel_db_find_tunnel_id_ctx ctx = {
7519 		.tunnel_id = id,
7520 	};
7521 
7522 	mlx5_access_tunnel_offload_db(dev, find_tunnel_id_match,
7523 				      find_tunnel_id_hit, NULL, &ctx, true);
7524 
7525 	return ctx.tunnel;
7526 }
7527 
7528 static struct mlx5_flow_tunnel *
7529 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev,
7530 			  const struct rte_flow_tunnel *app_tunnel)
7531 {
7532 	struct mlx5_priv *priv = dev->data->dev_private;
7533 	struct mlx5_indexed_pool *ipool;
7534 	struct mlx5_flow_tunnel *tunnel;
7535 	uint32_t id;
7536 
7537 	ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID];
7538 	tunnel = mlx5_ipool_zmalloc(ipool, &id);
7539 	if (!tunnel)
7540 		return NULL;
7541 	if (id >= MLX5_MAX_TUNNELS) {
7542 		mlx5_ipool_free(ipool, id);
7543 		DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id);
7544 		return NULL;
7545 	}
7546 	tunnel->groups = mlx5_hlist_create("tunnel groups", 1024, 0, 0,
7547 					   mlx5_flow_tunnel_grp2tbl_create_cb,
7548 					   mlx5_flow_tunnel_grp2tbl_match_cb,
7549 					   mlx5_flow_tunnel_grp2tbl_remove_cb);
7550 	if (!tunnel->groups) {
7551 		mlx5_ipool_free(ipool, id);
7552 		return NULL;
7553 	}
7554 	tunnel->groups->ctx = priv->sh;
7555 	/* initiate new PMD tunnel */
7556 	memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel));
7557 	tunnel->tunnel_id = id;
7558 	tunnel->action.type = (typeof(tunnel->action.type))
7559 			      MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET;
7560 	tunnel->action.conf = tunnel;
7561 	tunnel->item.type = (typeof(tunnel->item.type))
7562 			    MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL;
7563 	tunnel->item.spec = tunnel;
7564 	tunnel->item.last = NULL;
7565 	tunnel->item.mask = NULL;
7566 
7567 	DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x",
7568 		dev->data->port_id, tunnel->tunnel_id);
7569 
7570 	return tunnel;
7571 }
7572 
7573 struct tunnel_db_get_tunnel_ctx {
7574 	const struct rte_flow_tunnel *app_tunnel;
7575 	struct mlx5_flow_tunnel *tunnel;
7576 };
7577 
7578 static bool get_tunnel_match(struct rte_eth_dev *dev,
7579 			     struct mlx5_flow_tunnel *tunnel, const void *x)
7580 {
7581 	const struct tunnel_db_get_tunnel_ctx *ctx = x;
7582 
7583 	RTE_SET_USED(dev);
7584 	return !memcmp(ctx->app_tunnel, &tunnel->app_tunnel,
7585 		       sizeof(*ctx->app_tunnel));
7586 }
7587 
7588 static void get_tunnel_hit(struct rte_eth_dev *dev,
7589 			   struct mlx5_flow_tunnel *tunnel, void *x)
7590 {
7591 	/* called under tunnel spinlock protection */
7592 	struct tunnel_db_get_tunnel_ctx *ctx = x;
7593 
7594 	RTE_SET_USED(dev);
7595 	tunnel->refctn++;
7596 	ctx->tunnel = tunnel;
7597 }
7598 
7599 static void get_tunnel_miss(struct rte_eth_dev *dev, void *x)
7600 {
7601 	/* called under tunnel spinlock protection */
7602 	struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev);
7603 	struct tunnel_db_get_tunnel_ctx *ctx = x;
7604 
7605 	rte_spinlock_unlock(&thub->sl);
7606 	ctx->tunnel = mlx5_flow_tunnel_allocate(dev, ctx->app_tunnel);
7607 	ctx->tunnel->refctn = 1;
7608 	rte_spinlock_lock(&thub->sl);
7609 	if (ctx->tunnel)
7610 		LIST_INSERT_HEAD(&thub->tunnels, ctx->tunnel, chain);
7611 }
7612 
7613 
7614 static int
7615 mlx5_get_flow_tunnel(struct rte_eth_dev *dev,
7616 		     const struct rte_flow_tunnel *app_tunnel,
7617 		     struct mlx5_flow_tunnel **tunnel)
7618 {
7619 	struct tunnel_db_get_tunnel_ctx ctx = {
7620 		.app_tunnel = app_tunnel,
7621 	};
7622 
7623 	mlx5_access_tunnel_offload_db(dev, get_tunnel_match, get_tunnel_hit,
7624 				      get_tunnel_miss, &ctx, true);
7625 	*tunnel = ctx.tunnel;
7626 	return ctx.tunnel ? 0 : -ENOMEM;
7627 }
7628 
7629 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id)
7630 {
7631 	struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub;
7632 
7633 	if (!thub)
7634 		return;
7635 	if (!LIST_EMPTY(&thub->tunnels))
7636 		DRV_LOG(WARNING, "port %u tunnels present\n", port_id);
7637 	mlx5_hlist_destroy(thub->groups);
7638 	mlx5_free(thub);
7639 }
7640 
7641 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh)
7642 {
7643 	int err;
7644 	struct mlx5_flow_tunnel_hub *thub;
7645 
7646 	thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub),
7647 			   0, SOCKET_ID_ANY);
7648 	if (!thub)
7649 		return -ENOMEM;
7650 	LIST_INIT(&thub->tunnels);
7651 	rte_spinlock_init(&thub->sl);
7652 	thub->groups = mlx5_hlist_create("flow groups", MLX5_MAX_TABLES, 0,
7653 					 0, mlx5_flow_tunnel_grp2tbl_create_cb,
7654 					 mlx5_flow_tunnel_grp2tbl_match_cb,
7655 					 mlx5_flow_tunnel_grp2tbl_remove_cb);
7656 	if (!thub->groups) {
7657 		err = -rte_errno;
7658 		goto err;
7659 	}
7660 	thub->groups->ctx = sh;
7661 	sh->tunnel_hub = thub;
7662 
7663 	return 0;
7664 
7665 err:
7666 	if (thub->groups)
7667 		mlx5_hlist_destroy(thub->groups);
7668 	if (thub)
7669 		mlx5_free(thub);
7670 	return err;
7671 }
7672 
7673 static inline bool
7674 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev,
7675 			  struct rte_flow_tunnel *tunnel,
7676 			  const char *err_msg)
7677 {
7678 	err_msg = NULL;
7679 	if (!is_tunnel_offload_active(dev)) {
7680 		err_msg = "tunnel offload was not activated";
7681 		goto out;
7682 	} else if (!tunnel) {
7683 		err_msg = "no application tunnel";
7684 		goto out;
7685 	}
7686 
7687 	switch (tunnel->type) {
7688 	default:
7689 		err_msg = "unsupported tunnel type";
7690 		goto out;
7691 	case RTE_FLOW_ITEM_TYPE_VXLAN:
7692 		break;
7693 	}
7694 
7695 out:
7696 	return !err_msg;
7697 }
7698 
7699 static int
7700 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev,
7701 		    struct rte_flow_tunnel *app_tunnel,
7702 		    struct rte_flow_action **actions,
7703 		    uint32_t *num_of_actions,
7704 		    struct rte_flow_error *error)
7705 {
7706 	int ret;
7707 	struct mlx5_flow_tunnel *tunnel;
7708 	const char *err_msg = NULL;
7709 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
7710 
7711 	if (!verdict)
7712 		return rte_flow_error_set(error, EINVAL,
7713 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
7714 					  err_msg);
7715 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
7716 	if (ret < 0) {
7717 		return rte_flow_error_set(error, ret,
7718 					  RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
7719 					  "failed to initialize pmd tunnel");
7720 	}
7721 	*actions = &tunnel->action;
7722 	*num_of_actions = 1;
7723 	return 0;
7724 }
7725 
7726 static int
7727 mlx5_flow_tunnel_match(struct rte_eth_dev *dev,
7728 		       struct rte_flow_tunnel *app_tunnel,
7729 		       struct rte_flow_item **items,
7730 		       uint32_t *num_of_items,
7731 		       struct rte_flow_error *error)
7732 {
7733 	int ret;
7734 	struct mlx5_flow_tunnel *tunnel;
7735 	const char *err_msg = NULL;
7736 	bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg);
7737 
7738 	if (!verdict)
7739 		return rte_flow_error_set(error, EINVAL,
7740 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
7741 					  err_msg);
7742 	ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel);
7743 	if (ret < 0) {
7744 		return rte_flow_error_set(error, ret,
7745 					  RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
7746 					  "failed to initialize pmd tunnel");
7747 	}
7748 	*items = &tunnel->item;
7749 	*num_of_items = 1;
7750 	return 0;
7751 }
7752 
7753 struct tunnel_db_element_release_ctx {
7754 	struct rte_flow_item *items;
7755 	struct rte_flow_action *actions;
7756 	uint32_t num_elements;
7757 	struct rte_flow_error *error;
7758 	int ret;
7759 };
7760 
7761 static bool
7762 tunnel_element_release_match(struct rte_eth_dev *dev,
7763 			     struct mlx5_flow_tunnel *tunnel, const void *x)
7764 {
7765 	const struct tunnel_db_element_release_ctx *ctx = x;
7766 
7767 	RTE_SET_USED(dev);
7768 	if (ctx->num_elements != 1)
7769 		return false;
7770 	else if (ctx->items)
7771 		return ctx->items == &tunnel->item;
7772 	else if (ctx->actions)
7773 		return ctx->actions == &tunnel->action;
7774 
7775 	return false;
7776 }
7777 
7778 static void
7779 tunnel_element_release_hit(struct rte_eth_dev *dev,
7780 			   struct mlx5_flow_tunnel *tunnel, void *x)
7781 {
7782 	struct tunnel_db_element_release_ctx *ctx = x;
7783 	ctx->ret = 0;
7784 	if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED))
7785 		mlx5_flow_tunnel_free(dev, tunnel);
7786 }
7787 
7788 static void
7789 tunnel_element_release_miss(struct rte_eth_dev *dev, void *x)
7790 {
7791 	struct tunnel_db_element_release_ctx *ctx = x;
7792 	RTE_SET_USED(dev);
7793 	ctx->ret = rte_flow_error_set(ctx->error, EINVAL,
7794 				      RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
7795 				      "invalid argument");
7796 }
7797 
7798 static int
7799 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev,
7800 		       struct rte_flow_item *pmd_items,
7801 		       uint32_t num_items, struct rte_flow_error *err)
7802 {
7803 	struct tunnel_db_element_release_ctx ctx = {
7804 		.items = pmd_items,
7805 		.actions = NULL,
7806 		.num_elements = num_items,
7807 		.error = err,
7808 	};
7809 
7810 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
7811 				      tunnel_element_release_hit,
7812 				      tunnel_element_release_miss, &ctx, false);
7813 
7814 	return ctx.ret;
7815 }
7816 
7817 static int
7818 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev,
7819 			 struct rte_flow_action *pmd_actions,
7820 			 uint32_t num_actions, struct rte_flow_error *err)
7821 {
7822 	struct tunnel_db_element_release_ctx ctx = {
7823 		.items = NULL,
7824 		.actions = pmd_actions,
7825 		.num_elements = num_actions,
7826 		.error = err,
7827 	};
7828 
7829 	mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match,
7830 				      tunnel_element_release_hit,
7831 				      tunnel_element_release_miss, &ctx, false);
7832 
7833 	return ctx.ret;
7834 }
7835 
7836 static int
7837 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev,
7838 				  struct rte_mbuf *m,
7839 				  struct rte_flow_restore_info *info,
7840 				  struct rte_flow_error *err)
7841 {
7842 	uint64_t ol_flags = m->ol_flags;
7843 	const struct mlx5_flow_tbl_data_entry *tble;
7844 	const uint64_t mask = PKT_RX_FDIR | PKT_RX_FDIR_ID;
7845 
7846 	if (!is_tunnel_offload_active(dev)) {
7847 		info->flags = 0;
7848 		return 0;
7849 	}
7850 
7851 	if ((ol_flags & mask) != mask)
7852 		goto err;
7853 	tble = tunnel_mark_decode(dev, m->hash.fdir.hi);
7854 	if (!tble) {
7855 		DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x",
7856 			dev->data->port_id, m->hash.fdir.hi);
7857 		goto err;
7858 	}
7859 	MLX5_ASSERT(tble->tunnel);
7860 	memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel));
7861 	info->group_id = tble->group_id;
7862 	info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL |
7863 		      RTE_FLOW_RESTORE_INFO_GROUP_ID |
7864 		      RTE_FLOW_RESTORE_INFO_ENCAPSULATED;
7865 
7866 	return 0;
7867 
7868 err:
7869 	return rte_flow_error_set(err, EINVAL,
7870 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
7871 				  "failed to get restore info");
7872 }
7873 
7874 #else /* HAVE_IBV_FLOW_DV_SUPPORT */
7875 static int
7876 mlx5_flow_tunnel_decap_set(__rte_unused struct rte_eth_dev *dev,
7877 			   __rte_unused struct rte_flow_tunnel *app_tunnel,
7878 			   __rte_unused struct rte_flow_action **actions,
7879 			   __rte_unused uint32_t *num_of_actions,
7880 			   __rte_unused struct rte_flow_error *error)
7881 {
7882 	return -ENOTSUP;
7883 }
7884 
7885 static int
7886 mlx5_flow_tunnel_match(__rte_unused struct rte_eth_dev *dev,
7887 		       __rte_unused struct rte_flow_tunnel *app_tunnel,
7888 		       __rte_unused struct rte_flow_item **items,
7889 		       __rte_unused uint32_t *num_of_items,
7890 		       __rte_unused struct rte_flow_error *error)
7891 {
7892 	return -ENOTSUP;
7893 }
7894 
7895 static int
7896 mlx5_flow_tunnel_item_release(__rte_unused struct rte_eth_dev *dev,
7897 			      __rte_unused struct rte_flow_item *pmd_items,
7898 			      __rte_unused uint32_t num_items,
7899 			      __rte_unused struct rte_flow_error *err)
7900 {
7901 	return -ENOTSUP;
7902 }
7903 
7904 static int
7905 mlx5_flow_tunnel_action_release(__rte_unused struct rte_eth_dev *dev,
7906 				__rte_unused struct rte_flow_action *pmd_action,
7907 				__rte_unused uint32_t num_actions,
7908 				__rte_unused struct rte_flow_error *err)
7909 {
7910 	return -ENOTSUP;
7911 }
7912 
7913 static int
7914 mlx5_flow_tunnel_get_restore_info(__rte_unused struct rte_eth_dev *dev,
7915 				  __rte_unused struct rte_mbuf *m,
7916 				  __rte_unused struct rte_flow_restore_info *i,
7917 				  __rte_unused struct rte_flow_error *err)
7918 {
7919 	return -ENOTSUP;
7920 }
7921 
7922 static int
7923 flow_tunnel_add_default_miss(__rte_unused struct rte_eth_dev *dev,
7924 			     __rte_unused struct rte_flow *flow,
7925 			     __rte_unused const struct rte_flow_attr *attr,
7926 			     __rte_unused const struct rte_flow_action *actions,
7927 			     __rte_unused uint32_t flow_idx,
7928 			     __rte_unused struct tunnel_default_miss_ctx *ctx,
7929 			     __rte_unused struct rte_flow_error *error)
7930 {
7931 	return -ENOTSUP;
7932 }
7933 
7934 static struct mlx5_flow_tunnel *
7935 mlx5_find_tunnel_id(__rte_unused struct rte_eth_dev *dev,
7936 		    __rte_unused uint32_t id)
7937 {
7938 	return NULL;
7939 }
7940 
7941 static void
7942 mlx5_flow_tunnel_free(__rte_unused struct rte_eth_dev *dev,
7943 		      __rte_unused struct mlx5_flow_tunnel *tunnel)
7944 {
7945 }
7946 
7947 static uint32_t
7948 tunnel_flow_group_to_flow_table(__rte_unused struct rte_eth_dev *dev,
7949 				__rte_unused const struct mlx5_flow_tunnel *t,
7950 				__rte_unused uint32_t group,
7951 				__rte_unused uint32_t *table,
7952 				struct rte_flow_error *error)
7953 {
7954 	return rte_flow_error_set(error, ENOTSUP,
7955 				  RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
7956 				  "tunnel offload requires DV support");
7957 }
7958 
7959 void
7960 mlx5_release_tunnel_hub(__rte_unused struct mlx5_dev_ctx_shared *sh,
7961 			__rte_unused  uint16_t port_id)
7962 {
7963 }
7964 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */
7965 
7966