1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2016 6WIND S.A. 3 * Copyright 2016 Mellanox Technologies, Ltd 4 */ 5 6 #include <netinet/in.h> 7 #include <sys/queue.h> 8 #include <stdalign.h> 9 #include <stdint.h> 10 #include <string.h> 11 #include <stdbool.h> 12 13 #include <rte_common.h> 14 #include <rte_ether.h> 15 #include <ethdev_driver.h> 16 #include <rte_eal_paging.h> 17 #include <rte_flow.h> 18 #include <rte_cycles.h> 19 #include <rte_flow_driver.h> 20 #include <rte_malloc.h> 21 #include <rte_ip.h> 22 23 #include <mlx5_glue.h> 24 #include <mlx5_devx_cmds.h> 25 #include <mlx5_prm.h> 26 #include <mlx5_malloc.h> 27 28 #include "mlx5_defs.h" 29 #include "mlx5.h" 30 #include "mlx5_flow.h" 31 #include "mlx5_flow_os.h" 32 #include "mlx5_rxtx.h" 33 #include "mlx5_common_os.h" 34 #include "rte_pmd_mlx5.h" 35 36 struct tunnel_default_miss_ctx { 37 uint16_t *queue; 38 __extension__ 39 union { 40 struct rte_flow_action_rss action_rss; 41 struct rte_flow_action_queue miss_queue; 42 struct rte_flow_action_jump miss_jump; 43 uint8_t raw[0]; 44 }; 45 }; 46 47 static int 48 flow_tunnel_add_default_miss(struct rte_eth_dev *dev, 49 struct rte_flow *flow, 50 const struct rte_flow_attr *attr, 51 const struct rte_flow_action *app_actions, 52 uint32_t flow_idx, 53 struct tunnel_default_miss_ctx *ctx, 54 struct rte_flow_error *error); 55 static struct mlx5_flow_tunnel * 56 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id); 57 static void 58 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, struct mlx5_flow_tunnel *tunnel); 59 static uint32_t 60 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev, 61 const struct mlx5_flow_tunnel *tunnel, 62 uint32_t group, uint32_t *table, 63 struct rte_flow_error *error); 64 65 static struct mlx5_flow_workspace *mlx5_flow_push_thread_workspace(void); 66 static void mlx5_flow_pop_thread_workspace(void); 67 68 69 /** Device flow drivers. */ 70 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops; 71 72 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops; 73 74 const struct mlx5_flow_driver_ops *flow_drv_ops[] = { 75 [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops, 76 #if defined(HAVE_IBV_FLOW_DV_SUPPORT) || !defined(HAVE_INFINIBAND_VERBS_H) 77 [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops, 78 #endif 79 [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops, 80 [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops 81 }; 82 83 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */ 84 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \ 85 (const int []){ \ 86 __VA_ARGS__, 0, \ 87 } 88 89 /** Node object of input graph for mlx5_flow_expand_rss(). */ 90 struct mlx5_flow_expand_node { 91 const int *const next; 92 /**< 93 * List of next node indexes. Index 0 is interpreted as a terminator. 94 */ 95 const enum rte_flow_item_type type; 96 /**< Pattern item type of current node. */ 97 uint64_t rss_types; 98 /**< 99 * RSS types bit-field associated with this node 100 * (see ETH_RSS_* definitions). 101 */ 102 }; 103 104 /** Object returned by mlx5_flow_expand_rss(). */ 105 struct mlx5_flow_expand_rss { 106 uint32_t entries; 107 /**< Number of entries @p patterns and @p priorities. */ 108 struct { 109 struct rte_flow_item *pattern; /**< Expanded pattern array. */ 110 uint32_t priority; /**< Priority offset for each expansion. */ 111 } entry[]; 112 }; 113 114 static enum rte_flow_item_type 115 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item) 116 { 117 enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID; 118 uint16_t ether_type = 0; 119 uint16_t ether_type_m; 120 uint8_t ip_next_proto = 0; 121 uint8_t ip_next_proto_m; 122 123 if (item == NULL || item->spec == NULL) 124 return ret; 125 switch (item->type) { 126 case RTE_FLOW_ITEM_TYPE_ETH: 127 if (item->mask) 128 ether_type_m = ((const struct rte_flow_item_eth *) 129 (item->mask))->type; 130 else 131 ether_type_m = rte_flow_item_eth_mask.type; 132 if (ether_type_m != RTE_BE16(0xFFFF)) 133 break; 134 ether_type = ((const struct rte_flow_item_eth *) 135 (item->spec))->type; 136 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4) 137 ret = RTE_FLOW_ITEM_TYPE_IPV4; 138 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6) 139 ret = RTE_FLOW_ITEM_TYPE_IPV6; 140 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN) 141 ret = RTE_FLOW_ITEM_TYPE_VLAN; 142 else 143 ret = RTE_FLOW_ITEM_TYPE_END; 144 break; 145 case RTE_FLOW_ITEM_TYPE_VLAN: 146 if (item->mask) 147 ether_type_m = ((const struct rte_flow_item_vlan *) 148 (item->mask))->inner_type; 149 else 150 ether_type_m = rte_flow_item_vlan_mask.inner_type; 151 if (ether_type_m != RTE_BE16(0xFFFF)) 152 break; 153 ether_type = ((const struct rte_flow_item_vlan *) 154 (item->spec))->inner_type; 155 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4) 156 ret = RTE_FLOW_ITEM_TYPE_IPV4; 157 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6) 158 ret = RTE_FLOW_ITEM_TYPE_IPV6; 159 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN) 160 ret = RTE_FLOW_ITEM_TYPE_VLAN; 161 else 162 ret = RTE_FLOW_ITEM_TYPE_END; 163 break; 164 case RTE_FLOW_ITEM_TYPE_IPV4: 165 if (item->mask) 166 ip_next_proto_m = ((const struct rte_flow_item_ipv4 *) 167 (item->mask))->hdr.next_proto_id; 168 else 169 ip_next_proto_m = 170 rte_flow_item_ipv4_mask.hdr.next_proto_id; 171 if (ip_next_proto_m != 0xFF) 172 break; 173 ip_next_proto = ((const struct rte_flow_item_ipv4 *) 174 (item->spec))->hdr.next_proto_id; 175 if (ip_next_proto == IPPROTO_UDP) 176 ret = RTE_FLOW_ITEM_TYPE_UDP; 177 else if (ip_next_proto == IPPROTO_TCP) 178 ret = RTE_FLOW_ITEM_TYPE_TCP; 179 else if (ip_next_proto == IPPROTO_IP) 180 ret = RTE_FLOW_ITEM_TYPE_IPV4; 181 else if (ip_next_proto == IPPROTO_IPV6) 182 ret = RTE_FLOW_ITEM_TYPE_IPV6; 183 else 184 ret = RTE_FLOW_ITEM_TYPE_END; 185 break; 186 case RTE_FLOW_ITEM_TYPE_IPV6: 187 if (item->mask) 188 ip_next_proto_m = ((const struct rte_flow_item_ipv6 *) 189 (item->mask))->hdr.proto; 190 else 191 ip_next_proto_m = 192 rte_flow_item_ipv6_mask.hdr.proto; 193 if (ip_next_proto_m != 0xFF) 194 break; 195 ip_next_proto = ((const struct rte_flow_item_ipv6 *) 196 (item->spec))->hdr.proto; 197 if (ip_next_proto == IPPROTO_UDP) 198 ret = RTE_FLOW_ITEM_TYPE_UDP; 199 else if (ip_next_proto == IPPROTO_TCP) 200 ret = RTE_FLOW_ITEM_TYPE_TCP; 201 else if (ip_next_proto == IPPROTO_IP) 202 ret = RTE_FLOW_ITEM_TYPE_IPV4; 203 else if (ip_next_proto == IPPROTO_IPV6) 204 ret = RTE_FLOW_ITEM_TYPE_IPV6; 205 else 206 ret = RTE_FLOW_ITEM_TYPE_END; 207 break; 208 default: 209 ret = RTE_FLOW_ITEM_TYPE_VOID; 210 break; 211 } 212 return ret; 213 } 214 215 #define MLX5_RSS_EXP_ELT_N 8 216 217 /** 218 * Expand RSS flows into several possible flows according to the RSS hash 219 * fields requested and the driver capabilities. 220 * 221 * @param[out] buf 222 * Buffer to store the result expansion. 223 * @param[in] size 224 * Buffer size in bytes. If 0, @p buf can be NULL. 225 * @param[in] pattern 226 * User flow pattern. 227 * @param[in] types 228 * RSS types to expand (see ETH_RSS_* definitions). 229 * @param[in] graph 230 * Input graph to expand @p pattern according to @p types. 231 * @param[in] graph_root_index 232 * Index of root node in @p graph, typically 0. 233 * 234 * @return 235 * A positive value representing the size of @p buf in bytes regardless of 236 * @p size on success, a negative errno value otherwise and rte_errno is 237 * set, the following errors are defined: 238 * 239 * -E2BIG: graph-depth @p graph is too deep. 240 */ 241 static int 242 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size, 243 const struct rte_flow_item *pattern, uint64_t types, 244 const struct mlx5_flow_expand_node graph[], 245 int graph_root_index) 246 { 247 const struct rte_flow_item *item; 248 const struct mlx5_flow_expand_node *node = &graph[graph_root_index]; 249 const int *next_node; 250 const int *stack[MLX5_RSS_EXP_ELT_N]; 251 int stack_pos = 0; 252 struct rte_flow_item flow_items[MLX5_RSS_EXP_ELT_N]; 253 unsigned int i; 254 size_t lsize; 255 size_t user_pattern_size = 0; 256 void *addr = NULL; 257 const struct mlx5_flow_expand_node *next = NULL; 258 struct rte_flow_item missed_item; 259 int missed = 0; 260 int elt = 0; 261 const struct rte_flow_item *last_item = NULL; 262 263 memset(&missed_item, 0, sizeof(missed_item)); 264 lsize = offsetof(struct mlx5_flow_expand_rss, entry) + 265 MLX5_RSS_EXP_ELT_N * sizeof(buf->entry[0]); 266 if (lsize <= size) { 267 buf->entry[0].priority = 0; 268 buf->entry[0].pattern = (void *)&buf->entry[MLX5_RSS_EXP_ELT_N]; 269 buf->entries = 0; 270 addr = buf->entry[0].pattern; 271 } 272 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 273 if (item->type != RTE_FLOW_ITEM_TYPE_VOID) 274 last_item = item; 275 for (i = 0; node->next && node->next[i]; ++i) { 276 next = &graph[node->next[i]]; 277 if (next->type == item->type) 278 break; 279 } 280 if (next) 281 node = next; 282 user_pattern_size += sizeof(*item); 283 } 284 user_pattern_size += sizeof(*item); /* Handle END item. */ 285 lsize += user_pattern_size; 286 /* Copy the user pattern in the first entry of the buffer. */ 287 if (lsize <= size) { 288 rte_memcpy(addr, pattern, user_pattern_size); 289 addr = (void *)(((uintptr_t)addr) + user_pattern_size); 290 buf->entries = 1; 291 } 292 /* Start expanding. */ 293 memset(flow_items, 0, sizeof(flow_items)); 294 user_pattern_size -= sizeof(*item); 295 /* 296 * Check if the last valid item has spec set, need complete pattern, 297 * and the pattern can be used for expansion. 298 */ 299 missed_item.type = mlx5_flow_expand_rss_item_complete(last_item); 300 if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) { 301 /* Item type END indicates expansion is not required. */ 302 return lsize; 303 } 304 if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) { 305 next = NULL; 306 missed = 1; 307 for (i = 0; node->next && node->next[i]; ++i) { 308 next = &graph[node->next[i]]; 309 if (next->type == missed_item.type) { 310 flow_items[0].type = missed_item.type; 311 flow_items[1].type = RTE_FLOW_ITEM_TYPE_END; 312 break; 313 } 314 next = NULL; 315 } 316 } 317 if (next && missed) { 318 elt = 2; /* missed item + item end. */ 319 node = next; 320 lsize += elt * sizeof(*item) + user_pattern_size; 321 if ((node->rss_types & types) && lsize <= size) { 322 buf->entry[buf->entries].priority = 1; 323 buf->entry[buf->entries].pattern = addr; 324 buf->entries++; 325 rte_memcpy(addr, buf->entry[0].pattern, 326 user_pattern_size); 327 addr = (void *)(((uintptr_t)addr) + user_pattern_size); 328 rte_memcpy(addr, flow_items, elt * sizeof(*item)); 329 addr = (void *)(((uintptr_t)addr) + 330 elt * sizeof(*item)); 331 } 332 } 333 memset(flow_items, 0, sizeof(flow_items)); 334 next_node = node->next; 335 stack[stack_pos] = next_node; 336 node = next_node ? &graph[*next_node] : NULL; 337 while (node) { 338 flow_items[stack_pos].type = node->type; 339 if (node->rss_types & types) { 340 /* 341 * compute the number of items to copy from the 342 * expansion and copy it. 343 * When the stack_pos is 0, there are 1 element in it, 344 * plus the addition END item. 345 */ 346 elt = stack_pos + 2; 347 flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END; 348 lsize += elt * sizeof(*item) + user_pattern_size; 349 if (lsize <= size) { 350 size_t n = elt * sizeof(*item); 351 352 buf->entry[buf->entries].priority = 353 stack_pos + 1 + missed; 354 buf->entry[buf->entries].pattern = addr; 355 buf->entries++; 356 rte_memcpy(addr, buf->entry[0].pattern, 357 user_pattern_size); 358 addr = (void *)(((uintptr_t)addr) + 359 user_pattern_size); 360 rte_memcpy(addr, &missed_item, 361 missed * sizeof(*item)); 362 addr = (void *)(((uintptr_t)addr) + 363 missed * sizeof(*item)); 364 rte_memcpy(addr, flow_items, n); 365 addr = (void *)(((uintptr_t)addr) + n); 366 } 367 } 368 /* Go deeper. */ 369 if (node->next) { 370 next_node = node->next; 371 if (stack_pos++ == MLX5_RSS_EXP_ELT_N) { 372 rte_errno = E2BIG; 373 return -rte_errno; 374 } 375 stack[stack_pos] = next_node; 376 } else if (*(next_node + 1)) { 377 /* Follow up with the next possibility. */ 378 ++next_node; 379 } else { 380 /* Move to the next path. */ 381 if (stack_pos) 382 next_node = stack[--stack_pos]; 383 next_node++; 384 stack[stack_pos] = next_node; 385 } 386 node = *next_node ? &graph[*next_node] : NULL; 387 }; 388 /* no expanded flows but we have missed item, create one rule for it */ 389 if (buf->entries == 1 && missed != 0) { 390 elt = 2; 391 lsize += elt * sizeof(*item) + user_pattern_size; 392 if (lsize <= size) { 393 buf->entry[buf->entries].priority = 1; 394 buf->entry[buf->entries].pattern = addr; 395 buf->entries++; 396 flow_items[0].type = missed_item.type; 397 flow_items[1].type = RTE_FLOW_ITEM_TYPE_END; 398 rte_memcpy(addr, buf->entry[0].pattern, 399 user_pattern_size); 400 addr = (void *)(((uintptr_t)addr) + user_pattern_size); 401 rte_memcpy(addr, flow_items, elt * sizeof(*item)); 402 } 403 } 404 return lsize; 405 } 406 407 enum mlx5_expansion { 408 MLX5_EXPANSION_ROOT, 409 MLX5_EXPANSION_ROOT_OUTER, 410 MLX5_EXPANSION_ROOT_ETH_VLAN, 411 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN, 412 MLX5_EXPANSION_OUTER_ETH, 413 MLX5_EXPANSION_OUTER_ETH_VLAN, 414 MLX5_EXPANSION_OUTER_VLAN, 415 MLX5_EXPANSION_OUTER_IPV4, 416 MLX5_EXPANSION_OUTER_IPV4_UDP, 417 MLX5_EXPANSION_OUTER_IPV4_TCP, 418 MLX5_EXPANSION_OUTER_IPV6, 419 MLX5_EXPANSION_OUTER_IPV6_UDP, 420 MLX5_EXPANSION_OUTER_IPV6_TCP, 421 MLX5_EXPANSION_VXLAN, 422 MLX5_EXPANSION_VXLAN_GPE, 423 MLX5_EXPANSION_GRE, 424 MLX5_EXPANSION_MPLS, 425 MLX5_EXPANSION_ETH, 426 MLX5_EXPANSION_ETH_VLAN, 427 MLX5_EXPANSION_VLAN, 428 MLX5_EXPANSION_IPV4, 429 MLX5_EXPANSION_IPV4_UDP, 430 MLX5_EXPANSION_IPV4_TCP, 431 MLX5_EXPANSION_IPV6, 432 MLX5_EXPANSION_IPV6_UDP, 433 MLX5_EXPANSION_IPV6_TCP, 434 }; 435 436 /** Supported expansion of items. */ 437 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = { 438 [MLX5_EXPANSION_ROOT] = { 439 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 440 MLX5_EXPANSION_IPV4, 441 MLX5_EXPANSION_IPV6), 442 .type = RTE_FLOW_ITEM_TYPE_END, 443 }, 444 [MLX5_EXPANSION_ROOT_OUTER] = { 445 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH, 446 MLX5_EXPANSION_OUTER_IPV4, 447 MLX5_EXPANSION_OUTER_IPV6), 448 .type = RTE_FLOW_ITEM_TYPE_END, 449 }, 450 [MLX5_EXPANSION_ROOT_ETH_VLAN] = { 451 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN), 452 .type = RTE_FLOW_ITEM_TYPE_END, 453 }, 454 [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = { 455 .next = MLX5_FLOW_EXPAND_RSS_NEXT 456 (MLX5_EXPANSION_OUTER_ETH_VLAN), 457 .type = RTE_FLOW_ITEM_TYPE_END, 458 }, 459 [MLX5_EXPANSION_OUTER_ETH] = { 460 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 461 MLX5_EXPANSION_OUTER_IPV6, 462 MLX5_EXPANSION_MPLS), 463 .type = RTE_FLOW_ITEM_TYPE_ETH, 464 .rss_types = 0, 465 }, 466 [MLX5_EXPANSION_OUTER_ETH_VLAN] = { 467 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN), 468 .type = RTE_FLOW_ITEM_TYPE_ETH, 469 .rss_types = 0, 470 }, 471 [MLX5_EXPANSION_OUTER_VLAN] = { 472 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4, 473 MLX5_EXPANSION_OUTER_IPV6), 474 .type = RTE_FLOW_ITEM_TYPE_VLAN, 475 }, 476 [MLX5_EXPANSION_OUTER_IPV4] = { 477 .next = MLX5_FLOW_EXPAND_RSS_NEXT 478 (MLX5_EXPANSION_OUTER_IPV4_UDP, 479 MLX5_EXPANSION_OUTER_IPV4_TCP, 480 MLX5_EXPANSION_GRE, 481 MLX5_EXPANSION_IPV4, 482 MLX5_EXPANSION_IPV6), 483 .type = RTE_FLOW_ITEM_TYPE_IPV4, 484 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 485 ETH_RSS_NONFRAG_IPV4_OTHER, 486 }, 487 [MLX5_EXPANSION_OUTER_IPV4_UDP] = { 488 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 489 MLX5_EXPANSION_VXLAN_GPE), 490 .type = RTE_FLOW_ITEM_TYPE_UDP, 491 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 492 }, 493 [MLX5_EXPANSION_OUTER_IPV4_TCP] = { 494 .type = RTE_FLOW_ITEM_TYPE_TCP, 495 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 496 }, 497 [MLX5_EXPANSION_OUTER_IPV6] = { 498 .next = MLX5_FLOW_EXPAND_RSS_NEXT 499 (MLX5_EXPANSION_OUTER_IPV6_UDP, 500 MLX5_EXPANSION_OUTER_IPV6_TCP, 501 MLX5_EXPANSION_IPV4, 502 MLX5_EXPANSION_IPV6), 503 .type = RTE_FLOW_ITEM_TYPE_IPV6, 504 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 505 ETH_RSS_NONFRAG_IPV6_OTHER, 506 }, 507 [MLX5_EXPANSION_OUTER_IPV6_UDP] = { 508 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN, 509 MLX5_EXPANSION_VXLAN_GPE), 510 .type = RTE_FLOW_ITEM_TYPE_UDP, 511 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 512 }, 513 [MLX5_EXPANSION_OUTER_IPV6_TCP] = { 514 .type = RTE_FLOW_ITEM_TYPE_TCP, 515 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 516 }, 517 [MLX5_EXPANSION_VXLAN] = { 518 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 519 MLX5_EXPANSION_IPV4, 520 MLX5_EXPANSION_IPV6), 521 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 522 }, 523 [MLX5_EXPANSION_VXLAN_GPE] = { 524 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH, 525 MLX5_EXPANSION_IPV4, 526 MLX5_EXPANSION_IPV6), 527 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE, 528 }, 529 [MLX5_EXPANSION_GRE] = { 530 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4), 531 .type = RTE_FLOW_ITEM_TYPE_GRE, 532 }, 533 [MLX5_EXPANSION_MPLS] = { 534 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 535 MLX5_EXPANSION_IPV6), 536 .type = RTE_FLOW_ITEM_TYPE_MPLS, 537 }, 538 [MLX5_EXPANSION_ETH] = { 539 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 540 MLX5_EXPANSION_IPV6), 541 .type = RTE_FLOW_ITEM_TYPE_ETH, 542 }, 543 [MLX5_EXPANSION_ETH_VLAN] = { 544 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN), 545 .type = RTE_FLOW_ITEM_TYPE_ETH, 546 }, 547 [MLX5_EXPANSION_VLAN] = { 548 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4, 549 MLX5_EXPANSION_IPV6), 550 .type = RTE_FLOW_ITEM_TYPE_VLAN, 551 }, 552 [MLX5_EXPANSION_IPV4] = { 553 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP, 554 MLX5_EXPANSION_IPV4_TCP), 555 .type = RTE_FLOW_ITEM_TYPE_IPV4, 556 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | 557 ETH_RSS_NONFRAG_IPV4_OTHER, 558 }, 559 [MLX5_EXPANSION_IPV4_UDP] = { 560 .type = RTE_FLOW_ITEM_TYPE_UDP, 561 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP, 562 }, 563 [MLX5_EXPANSION_IPV4_TCP] = { 564 .type = RTE_FLOW_ITEM_TYPE_TCP, 565 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP, 566 }, 567 [MLX5_EXPANSION_IPV6] = { 568 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP, 569 MLX5_EXPANSION_IPV6_TCP), 570 .type = RTE_FLOW_ITEM_TYPE_IPV6, 571 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | 572 ETH_RSS_NONFRAG_IPV6_OTHER, 573 }, 574 [MLX5_EXPANSION_IPV6_UDP] = { 575 .type = RTE_FLOW_ITEM_TYPE_UDP, 576 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP, 577 }, 578 [MLX5_EXPANSION_IPV6_TCP] = { 579 .type = RTE_FLOW_ITEM_TYPE_TCP, 580 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP, 581 }, 582 }; 583 584 static struct rte_flow_shared_action * 585 mlx5_shared_action_create(struct rte_eth_dev *dev, 586 const struct rte_flow_shared_action_conf *conf, 587 const struct rte_flow_action *action, 588 struct rte_flow_error *error); 589 static int mlx5_shared_action_destroy 590 (struct rte_eth_dev *dev, 591 struct rte_flow_shared_action *shared_action, 592 struct rte_flow_error *error); 593 static int mlx5_shared_action_update 594 (struct rte_eth_dev *dev, 595 struct rte_flow_shared_action *shared_action, 596 const struct rte_flow_action *action, 597 struct rte_flow_error *error); 598 static int mlx5_shared_action_query 599 (struct rte_eth_dev *dev, 600 const struct rte_flow_shared_action *action, 601 void *data, 602 struct rte_flow_error *error); 603 static int 604 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev, 605 struct rte_flow_tunnel *app_tunnel, 606 struct rte_flow_action **actions, 607 uint32_t *num_of_actions, 608 struct rte_flow_error *error); 609 static int 610 mlx5_flow_tunnel_match(struct rte_eth_dev *dev, 611 struct rte_flow_tunnel *app_tunnel, 612 struct rte_flow_item **items, 613 uint32_t *num_of_items, 614 struct rte_flow_error *error); 615 static int 616 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev, 617 struct rte_flow_item *pmd_items, 618 uint32_t num_items, struct rte_flow_error *err); 619 static int 620 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev, 621 struct rte_flow_action *pmd_actions, 622 uint32_t num_actions, 623 struct rte_flow_error *err); 624 static int 625 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev, 626 struct rte_mbuf *m, 627 struct rte_flow_restore_info *info, 628 struct rte_flow_error *err); 629 630 static const struct rte_flow_ops mlx5_flow_ops = { 631 .validate = mlx5_flow_validate, 632 .create = mlx5_flow_create, 633 .destroy = mlx5_flow_destroy, 634 .flush = mlx5_flow_flush, 635 .isolate = mlx5_flow_isolate, 636 .query = mlx5_flow_query, 637 .dev_dump = mlx5_flow_dev_dump, 638 .get_aged_flows = mlx5_flow_get_aged_flows, 639 .shared_action_create = mlx5_shared_action_create, 640 .shared_action_destroy = mlx5_shared_action_destroy, 641 .shared_action_update = mlx5_shared_action_update, 642 .shared_action_query = mlx5_shared_action_query, 643 .tunnel_decap_set = mlx5_flow_tunnel_decap_set, 644 .tunnel_match = mlx5_flow_tunnel_match, 645 .tunnel_action_decap_release = mlx5_flow_tunnel_action_release, 646 .tunnel_item_release = mlx5_flow_tunnel_item_release, 647 .get_restore_info = mlx5_flow_tunnel_get_restore_info, 648 }; 649 650 /* Tunnel information. */ 651 struct mlx5_flow_tunnel_info { 652 uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */ 653 uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */ 654 }; 655 656 static struct mlx5_flow_tunnel_info tunnels_info[] = { 657 { 658 .tunnel = MLX5_FLOW_LAYER_VXLAN, 659 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP, 660 }, 661 { 662 .tunnel = MLX5_FLOW_LAYER_GENEVE, 663 .ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP, 664 }, 665 { 666 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE, 667 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP, 668 }, 669 { 670 .tunnel = MLX5_FLOW_LAYER_GRE, 671 .ptype = RTE_PTYPE_TUNNEL_GRE, 672 }, 673 { 674 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP, 675 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP, 676 }, 677 { 678 .tunnel = MLX5_FLOW_LAYER_MPLS, 679 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE, 680 }, 681 { 682 .tunnel = MLX5_FLOW_LAYER_NVGRE, 683 .ptype = RTE_PTYPE_TUNNEL_NVGRE, 684 }, 685 { 686 .tunnel = MLX5_FLOW_LAYER_IPIP, 687 .ptype = RTE_PTYPE_TUNNEL_IP, 688 }, 689 { 690 .tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP, 691 .ptype = RTE_PTYPE_TUNNEL_IP, 692 }, 693 { 694 .tunnel = MLX5_FLOW_LAYER_GTP, 695 .ptype = RTE_PTYPE_TUNNEL_GTPU, 696 }, 697 }; 698 699 700 701 /** 702 * Translate tag ID to register. 703 * 704 * @param[in] dev 705 * Pointer to the Ethernet device structure. 706 * @param[in] feature 707 * The feature that request the register. 708 * @param[in] id 709 * The request register ID. 710 * @param[out] error 711 * Error description in case of any. 712 * 713 * @return 714 * The request register on success, a negative errno 715 * value otherwise and rte_errno is set. 716 */ 717 int 718 mlx5_flow_get_reg_id(struct rte_eth_dev *dev, 719 enum mlx5_feature_name feature, 720 uint32_t id, 721 struct rte_flow_error *error) 722 { 723 struct mlx5_priv *priv = dev->data->dev_private; 724 struct mlx5_dev_config *config = &priv->config; 725 enum modify_reg start_reg; 726 bool skip_mtr_reg = false; 727 728 switch (feature) { 729 case MLX5_HAIRPIN_RX: 730 return REG_B; 731 case MLX5_HAIRPIN_TX: 732 return REG_A; 733 case MLX5_METADATA_RX: 734 switch (config->dv_xmeta_en) { 735 case MLX5_XMETA_MODE_LEGACY: 736 return REG_B; 737 case MLX5_XMETA_MODE_META16: 738 return REG_C_0; 739 case MLX5_XMETA_MODE_META32: 740 return REG_C_1; 741 } 742 break; 743 case MLX5_METADATA_TX: 744 return REG_A; 745 case MLX5_METADATA_FDB: 746 switch (config->dv_xmeta_en) { 747 case MLX5_XMETA_MODE_LEGACY: 748 return REG_NON; 749 case MLX5_XMETA_MODE_META16: 750 return REG_C_0; 751 case MLX5_XMETA_MODE_META32: 752 return REG_C_1; 753 } 754 break; 755 case MLX5_FLOW_MARK: 756 switch (config->dv_xmeta_en) { 757 case MLX5_XMETA_MODE_LEGACY: 758 return REG_NON; 759 case MLX5_XMETA_MODE_META16: 760 return REG_C_1; 761 case MLX5_XMETA_MODE_META32: 762 return REG_C_0; 763 } 764 break; 765 case MLX5_MTR_SFX: 766 /* 767 * If meter color and flow match share one register, flow match 768 * should use the meter color register for match. 769 */ 770 if (priv->mtr_reg_share) 771 return priv->mtr_color_reg; 772 else 773 return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : 774 REG_C_3; 775 case MLX5_MTR_COLOR: 776 case MLX5_ASO_FLOW_HIT: /* Both features use the same REG_C. */ 777 MLX5_ASSERT(priv->mtr_color_reg != REG_NON); 778 return priv->mtr_color_reg; 779 case MLX5_COPY_MARK: 780 /* 781 * Metadata COPY_MARK register using is in meter suffix sub 782 * flow while with meter. It's safe to share the same register. 783 */ 784 return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3; 785 case MLX5_APP_TAG: 786 /* 787 * If meter is enable, it will engage the register for color 788 * match and flow match. If meter color match is not using the 789 * REG_C_2, need to skip the REG_C_x be used by meter color 790 * match. 791 * If meter is disable, free to use all available registers. 792 */ 793 start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 : 794 (priv->mtr_reg_share ? REG_C_3 : REG_C_4); 795 skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2); 796 if (id > (uint32_t)(REG_C_7 - start_reg)) 797 return rte_flow_error_set(error, EINVAL, 798 RTE_FLOW_ERROR_TYPE_ITEM, 799 NULL, "invalid tag id"); 800 if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON) 801 return rte_flow_error_set(error, ENOTSUP, 802 RTE_FLOW_ERROR_TYPE_ITEM, 803 NULL, "unsupported tag id"); 804 /* 805 * This case means meter is using the REG_C_x great than 2. 806 * Take care not to conflict with meter color REG_C_x. 807 * If the available index REG_C_y >= REG_C_x, skip the 808 * color register. 809 */ 810 if (skip_mtr_reg && config->flow_mreg_c 811 [id + start_reg - REG_C_0] >= priv->mtr_color_reg) { 812 if (id >= (uint32_t)(REG_C_7 - start_reg)) 813 return rte_flow_error_set(error, EINVAL, 814 RTE_FLOW_ERROR_TYPE_ITEM, 815 NULL, "invalid tag id"); 816 if (config->flow_mreg_c 817 [id + 1 + start_reg - REG_C_0] != REG_NON) 818 return config->flow_mreg_c 819 [id + 1 + start_reg - REG_C_0]; 820 return rte_flow_error_set(error, ENOTSUP, 821 RTE_FLOW_ERROR_TYPE_ITEM, 822 NULL, "unsupported tag id"); 823 } 824 return config->flow_mreg_c[id + start_reg - REG_C_0]; 825 } 826 MLX5_ASSERT(false); 827 return rte_flow_error_set(error, EINVAL, 828 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 829 NULL, "invalid feature name"); 830 } 831 832 /** 833 * Check extensive flow metadata register support. 834 * 835 * @param dev 836 * Pointer to rte_eth_dev structure. 837 * 838 * @return 839 * True if device supports extensive flow metadata register, otherwise false. 840 */ 841 bool 842 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev) 843 { 844 struct mlx5_priv *priv = dev->data->dev_private; 845 struct mlx5_dev_config *config = &priv->config; 846 847 /* 848 * Having available reg_c can be regarded inclusively as supporting 849 * extensive flow metadata register, which could mean, 850 * - metadata register copy action by modify header. 851 * - 16 modify header actions is supported. 852 * - reg_c's are preserved across different domain (FDB and NIC) on 853 * packet loopback by flow lookup miss. 854 */ 855 return config->flow_mreg_c[2] != REG_NON; 856 } 857 858 /** 859 * Verify the @p item specifications (spec, last, mask) are compatible with the 860 * NIC capabilities. 861 * 862 * @param[in] item 863 * Item specification. 864 * @param[in] mask 865 * @p item->mask or flow default bit-masks. 866 * @param[in] nic_mask 867 * Bit-masks covering supported fields by the NIC to compare with user mask. 868 * @param[in] size 869 * Bit-masks size in bytes. 870 * @param[in] range_accepted 871 * True if range of values is accepted for specific fields, false otherwise. 872 * @param[out] error 873 * Pointer to error structure. 874 * 875 * @return 876 * 0 on success, a negative errno value otherwise and rte_errno is set. 877 */ 878 int 879 mlx5_flow_item_acceptable(const struct rte_flow_item *item, 880 const uint8_t *mask, 881 const uint8_t *nic_mask, 882 unsigned int size, 883 bool range_accepted, 884 struct rte_flow_error *error) 885 { 886 unsigned int i; 887 888 MLX5_ASSERT(nic_mask); 889 for (i = 0; i < size; ++i) 890 if ((nic_mask[i] | mask[i]) != nic_mask[i]) 891 return rte_flow_error_set(error, ENOTSUP, 892 RTE_FLOW_ERROR_TYPE_ITEM, 893 item, 894 "mask enables non supported" 895 " bits"); 896 if (!item->spec && (item->mask || item->last)) 897 return rte_flow_error_set(error, EINVAL, 898 RTE_FLOW_ERROR_TYPE_ITEM, item, 899 "mask/last without a spec is not" 900 " supported"); 901 if (item->spec && item->last && !range_accepted) { 902 uint8_t spec[size]; 903 uint8_t last[size]; 904 unsigned int i; 905 int ret; 906 907 for (i = 0; i < size; ++i) { 908 spec[i] = ((const uint8_t *)item->spec)[i] & mask[i]; 909 last[i] = ((const uint8_t *)item->last)[i] & mask[i]; 910 } 911 ret = memcmp(spec, last, size); 912 if (ret != 0) 913 return rte_flow_error_set(error, EINVAL, 914 RTE_FLOW_ERROR_TYPE_ITEM, 915 item, 916 "range is not valid"); 917 } 918 return 0; 919 } 920 921 /** 922 * Adjust the hash fields according to the @p flow information. 923 * 924 * @param[in] dev_flow. 925 * Pointer to the mlx5_flow. 926 * @param[in] tunnel 927 * 1 when the hash field is for a tunnel item. 928 * @param[in] layer_types 929 * ETH_RSS_* types. 930 * @param[in] hash_fields 931 * Item hash fields. 932 * 933 * @return 934 * The hash fields that should be used. 935 */ 936 uint64_t 937 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc, 938 int tunnel __rte_unused, uint64_t layer_types, 939 uint64_t hash_fields) 940 { 941 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 942 int rss_request_inner = rss_desc->level >= 2; 943 944 /* Check RSS hash level for tunnel. */ 945 if (tunnel && rss_request_inner) 946 hash_fields |= IBV_RX_HASH_INNER; 947 else if (tunnel || rss_request_inner) 948 return 0; 949 #endif 950 /* Check if requested layer matches RSS hash fields. */ 951 if (!(rss_desc->types & layer_types)) 952 return 0; 953 return hash_fields; 954 } 955 956 /** 957 * Lookup and set the ptype in the data Rx part. A single Ptype can be used, 958 * if several tunnel rules are used on this queue, the tunnel ptype will be 959 * cleared. 960 * 961 * @param rxq_ctrl 962 * Rx queue to update. 963 */ 964 static void 965 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl) 966 { 967 unsigned int i; 968 uint32_t tunnel_ptype = 0; 969 970 /* Look up for the ptype to use. */ 971 for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) { 972 if (!rxq_ctrl->flow_tunnels_n[i]) 973 continue; 974 if (!tunnel_ptype) { 975 tunnel_ptype = tunnels_info[i].ptype; 976 } else { 977 tunnel_ptype = 0; 978 break; 979 } 980 } 981 rxq_ctrl->rxq.tunnel = tunnel_ptype; 982 } 983 984 /** 985 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive 986 * flow. 987 * 988 * @param[in] dev 989 * Pointer to the Ethernet device structure. 990 * @param[in] dev_handle 991 * Pointer to device flow handle structure. 992 */ 993 static void 994 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, 995 struct mlx5_flow_handle *dev_handle) 996 { 997 struct mlx5_priv *priv = dev->data->dev_private; 998 const int mark = dev_handle->mark; 999 const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL); 1000 struct mlx5_ind_table_obj *ind_tbl = NULL; 1001 unsigned int i; 1002 1003 if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) { 1004 struct mlx5_hrxq *hrxq; 1005 1006 hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], 1007 dev_handle->rix_hrxq); 1008 if (hrxq) 1009 ind_tbl = hrxq->ind_table; 1010 } else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) { 1011 struct mlx5_shared_action_rss *shared_rss; 1012 1013 shared_rss = mlx5_ipool_get 1014 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 1015 dev_handle->rix_srss); 1016 if (shared_rss) 1017 ind_tbl = shared_rss->ind_tbl; 1018 } 1019 if (!ind_tbl) 1020 return; 1021 for (i = 0; i != ind_tbl->queues_n; ++i) { 1022 int idx = ind_tbl->queues[i]; 1023 struct mlx5_rxq_ctrl *rxq_ctrl = 1024 container_of((*priv->rxqs)[idx], 1025 struct mlx5_rxq_ctrl, rxq); 1026 1027 /* 1028 * To support metadata register copy on Tx loopback, 1029 * this must be always enabled (metadata may arive 1030 * from other port - not from local flows only. 1031 */ 1032 if (priv->config.dv_flow_en && 1033 priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY && 1034 mlx5_flow_ext_mreg_supported(dev)) { 1035 rxq_ctrl->rxq.mark = 1; 1036 rxq_ctrl->flow_mark_n = 1; 1037 } else if (mark) { 1038 rxq_ctrl->rxq.mark = 1; 1039 rxq_ctrl->flow_mark_n++; 1040 } 1041 if (tunnel) { 1042 unsigned int j; 1043 1044 /* Increase the counter matching the flow. */ 1045 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 1046 if ((tunnels_info[j].tunnel & 1047 dev_handle->layers) == 1048 tunnels_info[j].tunnel) { 1049 rxq_ctrl->flow_tunnels_n[j]++; 1050 break; 1051 } 1052 } 1053 flow_rxq_tunnel_ptype_update(rxq_ctrl); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow 1060 * 1061 * @param[in] dev 1062 * Pointer to the Ethernet device structure. 1063 * @param[in] flow 1064 * Pointer to flow structure. 1065 */ 1066 static void 1067 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow) 1068 { 1069 struct mlx5_priv *priv = dev->data->dev_private; 1070 uint32_t handle_idx; 1071 struct mlx5_flow_handle *dev_handle; 1072 1073 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 1074 handle_idx, dev_handle, next) 1075 flow_drv_rxq_flags_set(dev, dev_handle); 1076 } 1077 1078 /** 1079 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 1080 * device flow if no other flow uses it with the same kind of request. 1081 * 1082 * @param dev 1083 * Pointer to Ethernet device. 1084 * @param[in] dev_handle 1085 * Pointer to the device flow handle structure. 1086 */ 1087 static void 1088 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, 1089 struct mlx5_flow_handle *dev_handle) 1090 { 1091 struct mlx5_priv *priv = dev->data->dev_private; 1092 const int mark = dev_handle->mark; 1093 const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL); 1094 struct mlx5_ind_table_obj *ind_tbl = NULL; 1095 unsigned int i; 1096 1097 if (dev_handle->fate_action == MLX5_FLOW_FATE_QUEUE) { 1098 struct mlx5_hrxq *hrxq; 1099 1100 hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ], 1101 dev_handle->rix_hrxq); 1102 if (hrxq) 1103 ind_tbl = hrxq->ind_table; 1104 } else if (dev_handle->fate_action == MLX5_FLOW_FATE_SHARED_RSS) { 1105 struct mlx5_shared_action_rss *shared_rss; 1106 1107 shared_rss = mlx5_ipool_get 1108 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 1109 dev_handle->rix_srss); 1110 if (shared_rss) 1111 ind_tbl = shared_rss->ind_tbl; 1112 } 1113 if (!ind_tbl) 1114 return; 1115 MLX5_ASSERT(dev->data->dev_started); 1116 for (i = 0; i != ind_tbl->queues_n; ++i) { 1117 int idx = ind_tbl->queues[i]; 1118 struct mlx5_rxq_ctrl *rxq_ctrl = 1119 container_of((*priv->rxqs)[idx], 1120 struct mlx5_rxq_ctrl, rxq); 1121 1122 if (priv->config.dv_flow_en && 1123 priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY && 1124 mlx5_flow_ext_mreg_supported(dev)) { 1125 rxq_ctrl->rxq.mark = 1; 1126 rxq_ctrl->flow_mark_n = 1; 1127 } else if (mark) { 1128 rxq_ctrl->flow_mark_n--; 1129 rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n; 1130 } 1131 if (tunnel) { 1132 unsigned int j; 1133 1134 /* Decrease the counter matching the flow. */ 1135 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) { 1136 if ((tunnels_info[j].tunnel & 1137 dev_handle->layers) == 1138 tunnels_info[j].tunnel) { 1139 rxq_ctrl->flow_tunnels_n[j]--; 1140 break; 1141 } 1142 } 1143 flow_rxq_tunnel_ptype_update(rxq_ctrl); 1144 } 1145 } 1146 } 1147 1148 /** 1149 * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the 1150 * @p flow if no other flow uses it with the same kind of request. 1151 * 1152 * @param dev 1153 * Pointer to Ethernet device. 1154 * @param[in] flow 1155 * Pointer to the flow. 1156 */ 1157 static void 1158 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow) 1159 { 1160 struct mlx5_priv *priv = dev->data->dev_private; 1161 uint32_t handle_idx; 1162 struct mlx5_flow_handle *dev_handle; 1163 1164 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 1165 handle_idx, dev_handle, next) 1166 flow_drv_rxq_flags_trim(dev, dev_handle); 1167 } 1168 1169 /** 1170 * Clear the Mark/Flag and Tunnel ptype information in all Rx queues. 1171 * 1172 * @param dev 1173 * Pointer to Ethernet device. 1174 */ 1175 static void 1176 flow_rxq_flags_clear(struct rte_eth_dev *dev) 1177 { 1178 struct mlx5_priv *priv = dev->data->dev_private; 1179 unsigned int i; 1180 1181 for (i = 0; i != priv->rxqs_n; ++i) { 1182 struct mlx5_rxq_ctrl *rxq_ctrl; 1183 unsigned int j; 1184 1185 if (!(*priv->rxqs)[i]) 1186 continue; 1187 rxq_ctrl = container_of((*priv->rxqs)[i], 1188 struct mlx5_rxq_ctrl, rxq); 1189 rxq_ctrl->flow_mark_n = 0; 1190 rxq_ctrl->rxq.mark = 0; 1191 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) 1192 rxq_ctrl->flow_tunnels_n[j] = 0; 1193 rxq_ctrl->rxq.tunnel = 0; 1194 } 1195 } 1196 1197 /** 1198 * Set the Rx queue dynamic metadata (mask and offset) for a flow 1199 * 1200 * @param[in] dev 1201 * Pointer to the Ethernet device structure. 1202 */ 1203 void 1204 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev) 1205 { 1206 struct mlx5_priv *priv = dev->data->dev_private; 1207 struct mlx5_rxq_data *data; 1208 unsigned int i; 1209 1210 for (i = 0; i != priv->rxqs_n; ++i) { 1211 if (!(*priv->rxqs)[i]) 1212 continue; 1213 data = (*priv->rxqs)[i]; 1214 if (!rte_flow_dynf_metadata_avail()) { 1215 data->dynf_meta = 0; 1216 data->flow_meta_mask = 0; 1217 data->flow_meta_offset = -1; 1218 } else { 1219 data->dynf_meta = 1; 1220 data->flow_meta_mask = rte_flow_dynf_metadata_mask; 1221 data->flow_meta_offset = rte_flow_dynf_metadata_offs; 1222 } 1223 } 1224 } 1225 1226 /* 1227 * return a pointer to the desired action in the list of actions. 1228 * 1229 * @param[in] actions 1230 * The list of actions to search the action in. 1231 * @param[in] action 1232 * The action to find. 1233 * 1234 * @return 1235 * Pointer to the action in the list, if found. NULL otherwise. 1236 */ 1237 const struct rte_flow_action * 1238 mlx5_flow_find_action(const struct rte_flow_action *actions, 1239 enum rte_flow_action_type action) 1240 { 1241 if (actions == NULL) 1242 return NULL; 1243 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) 1244 if (actions->type == action) 1245 return actions; 1246 return NULL; 1247 } 1248 1249 /* 1250 * Validate the flag action. 1251 * 1252 * @param[in] action_flags 1253 * Bit-fields that holds the actions detected until now. 1254 * @param[in] attr 1255 * Attributes of flow that includes this action. 1256 * @param[out] error 1257 * Pointer to error structure. 1258 * 1259 * @return 1260 * 0 on success, a negative errno value otherwise and rte_errno is set. 1261 */ 1262 int 1263 mlx5_flow_validate_action_flag(uint64_t action_flags, 1264 const struct rte_flow_attr *attr, 1265 struct rte_flow_error *error) 1266 { 1267 if (action_flags & MLX5_FLOW_ACTION_MARK) 1268 return rte_flow_error_set(error, EINVAL, 1269 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1270 "can't mark and flag in same flow"); 1271 if (action_flags & MLX5_FLOW_ACTION_FLAG) 1272 return rte_flow_error_set(error, EINVAL, 1273 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1274 "can't have 2 flag" 1275 " actions in same flow"); 1276 if (attr->egress) 1277 return rte_flow_error_set(error, ENOTSUP, 1278 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1279 "flag action not supported for " 1280 "egress"); 1281 return 0; 1282 } 1283 1284 /* 1285 * Validate the mark action. 1286 * 1287 * @param[in] action 1288 * Pointer to the queue action. 1289 * @param[in] action_flags 1290 * Bit-fields that holds the actions detected until now. 1291 * @param[in] attr 1292 * Attributes of flow that includes this action. 1293 * @param[out] error 1294 * Pointer to error structure. 1295 * 1296 * @return 1297 * 0 on success, a negative errno value otherwise and rte_errno is set. 1298 */ 1299 int 1300 mlx5_flow_validate_action_mark(const struct rte_flow_action *action, 1301 uint64_t action_flags, 1302 const struct rte_flow_attr *attr, 1303 struct rte_flow_error *error) 1304 { 1305 const struct rte_flow_action_mark *mark = action->conf; 1306 1307 if (!mark) 1308 return rte_flow_error_set(error, EINVAL, 1309 RTE_FLOW_ERROR_TYPE_ACTION, 1310 action, 1311 "configuration cannot be null"); 1312 if (mark->id >= MLX5_FLOW_MARK_MAX) 1313 return rte_flow_error_set(error, EINVAL, 1314 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1315 &mark->id, 1316 "mark id must in 0 <= id < " 1317 RTE_STR(MLX5_FLOW_MARK_MAX)); 1318 if (action_flags & MLX5_FLOW_ACTION_FLAG) 1319 return rte_flow_error_set(error, EINVAL, 1320 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1321 "can't flag and mark in same flow"); 1322 if (action_flags & MLX5_FLOW_ACTION_MARK) 1323 return rte_flow_error_set(error, EINVAL, 1324 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1325 "can't have 2 mark actions in same" 1326 " flow"); 1327 if (attr->egress) 1328 return rte_flow_error_set(error, ENOTSUP, 1329 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1330 "mark action not supported for " 1331 "egress"); 1332 return 0; 1333 } 1334 1335 /* 1336 * Validate the drop action. 1337 * 1338 * @param[in] action_flags 1339 * Bit-fields that holds the actions detected until now. 1340 * @param[in] attr 1341 * Attributes of flow that includes this action. 1342 * @param[out] error 1343 * Pointer to error structure. 1344 * 1345 * @return 1346 * 0 on success, a negative errno value otherwise and rte_errno is set. 1347 */ 1348 int 1349 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused, 1350 const struct rte_flow_attr *attr, 1351 struct rte_flow_error *error) 1352 { 1353 if (attr->egress) 1354 return rte_flow_error_set(error, ENOTSUP, 1355 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1356 "drop action not supported for " 1357 "egress"); 1358 return 0; 1359 } 1360 1361 /* 1362 * Validate the queue action. 1363 * 1364 * @param[in] action 1365 * Pointer to the queue action. 1366 * @param[in] action_flags 1367 * Bit-fields that holds the actions detected until now. 1368 * @param[in] dev 1369 * Pointer to the Ethernet device structure. 1370 * @param[in] attr 1371 * Attributes of flow that includes this action. 1372 * @param[out] error 1373 * Pointer to error structure. 1374 * 1375 * @return 1376 * 0 on success, a negative errno value otherwise and rte_errno is set. 1377 */ 1378 int 1379 mlx5_flow_validate_action_queue(const struct rte_flow_action *action, 1380 uint64_t action_flags, 1381 struct rte_eth_dev *dev, 1382 const struct rte_flow_attr *attr, 1383 struct rte_flow_error *error) 1384 { 1385 struct mlx5_priv *priv = dev->data->dev_private; 1386 const struct rte_flow_action_queue *queue = action->conf; 1387 1388 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 1389 return rte_flow_error_set(error, EINVAL, 1390 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1391 "can't have 2 fate actions in" 1392 " same flow"); 1393 if (!priv->rxqs_n) 1394 return rte_flow_error_set(error, EINVAL, 1395 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1396 NULL, "No Rx queues configured"); 1397 if (queue->index >= priv->rxqs_n) 1398 return rte_flow_error_set(error, EINVAL, 1399 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1400 &queue->index, 1401 "queue index out of range"); 1402 if (!(*priv->rxqs)[queue->index]) 1403 return rte_flow_error_set(error, EINVAL, 1404 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1405 &queue->index, 1406 "queue is not configured"); 1407 if (attr->egress) 1408 return rte_flow_error_set(error, ENOTSUP, 1409 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1410 "queue action not supported for " 1411 "egress"); 1412 return 0; 1413 } 1414 1415 /* 1416 * Validate the rss action. 1417 * 1418 * @param[in] dev 1419 * Pointer to the Ethernet device structure. 1420 * @param[in] action 1421 * Pointer to the queue action. 1422 * @param[out] error 1423 * Pointer to error structure. 1424 * 1425 * @return 1426 * 0 on success, a negative errno value otherwise and rte_errno is set. 1427 */ 1428 int 1429 mlx5_validate_action_rss(struct rte_eth_dev *dev, 1430 const struct rte_flow_action *action, 1431 struct rte_flow_error *error) 1432 { 1433 struct mlx5_priv *priv = dev->data->dev_private; 1434 const struct rte_flow_action_rss *rss = action->conf; 1435 enum mlx5_rxq_type rxq_type = MLX5_RXQ_TYPE_UNDEFINED; 1436 unsigned int i; 1437 1438 if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT && 1439 rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ) 1440 return rte_flow_error_set(error, ENOTSUP, 1441 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1442 &rss->func, 1443 "RSS hash function not supported"); 1444 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT 1445 if (rss->level > 2) 1446 #else 1447 if (rss->level > 1) 1448 #endif 1449 return rte_flow_error_set(error, ENOTSUP, 1450 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1451 &rss->level, 1452 "tunnel RSS is not supported"); 1453 /* allow RSS key_len 0 in case of NULL (default) RSS key. */ 1454 if (rss->key_len == 0 && rss->key != NULL) 1455 return rte_flow_error_set(error, ENOTSUP, 1456 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1457 &rss->key_len, 1458 "RSS hash key length 0"); 1459 if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN) 1460 return rte_flow_error_set(error, ENOTSUP, 1461 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1462 &rss->key_len, 1463 "RSS hash key too small"); 1464 if (rss->key_len > MLX5_RSS_HASH_KEY_LEN) 1465 return rte_flow_error_set(error, ENOTSUP, 1466 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1467 &rss->key_len, 1468 "RSS hash key too large"); 1469 if (rss->queue_num > priv->config.ind_table_max_size) 1470 return rte_flow_error_set(error, ENOTSUP, 1471 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1472 &rss->queue_num, 1473 "number of queues too large"); 1474 if (rss->types & MLX5_RSS_HF_MASK) 1475 return rte_flow_error_set(error, ENOTSUP, 1476 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1477 &rss->types, 1478 "some RSS protocols are not" 1479 " supported"); 1480 if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) && 1481 !(rss->types & ETH_RSS_IP)) 1482 return rte_flow_error_set(error, EINVAL, 1483 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 1484 "L3 partial RSS requested but L3 RSS" 1485 " type not specified"); 1486 if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) && 1487 !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP))) 1488 return rte_flow_error_set(error, EINVAL, 1489 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 1490 "L4 partial RSS requested but L4 RSS" 1491 " type not specified"); 1492 if (!priv->rxqs_n) 1493 return rte_flow_error_set(error, EINVAL, 1494 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1495 NULL, "No Rx queues configured"); 1496 if (!rss->queue_num) 1497 return rte_flow_error_set(error, EINVAL, 1498 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1499 NULL, "No queues configured"); 1500 for (i = 0; i != rss->queue_num; ++i) { 1501 struct mlx5_rxq_ctrl *rxq_ctrl; 1502 1503 if (rss->queue[i] >= priv->rxqs_n) 1504 return rte_flow_error_set 1505 (error, EINVAL, 1506 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1507 &rss->queue[i], "queue index out of range"); 1508 if (!(*priv->rxqs)[rss->queue[i]]) 1509 return rte_flow_error_set 1510 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1511 &rss->queue[i], "queue is not configured"); 1512 rxq_ctrl = container_of((*priv->rxqs)[rss->queue[i]], 1513 struct mlx5_rxq_ctrl, rxq); 1514 if (i == 0) 1515 rxq_type = rxq_ctrl->type; 1516 if (rxq_type != rxq_ctrl->type) 1517 return rte_flow_error_set 1518 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION_CONF, 1519 &rss->queue[i], 1520 "combining hairpin and regular RSS queues is not supported"); 1521 } 1522 return 0; 1523 } 1524 1525 /* 1526 * Validate the rss action. 1527 * 1528 * @param[in] action 1529 * Pointer to the queue action. 1530 * @param[in] action_flags 1531 * Bit-fields that holds the actions detected until now. 1532 * @param[in] dev 1533 * Pointer to the Ethernet device structure. 1534 * @param[in] attr 1535 * Attributes of flow that includes this action. 1536 * @param[in] item_flags 1537 * Items that were detected. 1538 * @param[out] error 1539 * Pointer to error structure. 1540 * 1541 * @return 1542 * 0 on success, a negative errno value otherwise and rte_errno is set. 1543 */ 1544 int 1545 mlx5_flow_validate_action_rss(const struct rte_flow_action *action, 1546 uint64_t action_flags, 1547 struct rte_eth_dev *dev, 1548 const struct rte_flow_attr *attr, 1549 uint64_t item_flags, 1550 struct rte_flow_error *error) 1551 { 1552 const struct rte_flow_action_rss *rss = action->conf; 1553 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1554 int ret; 1555 1556 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 1557 return rte_flow_error_set(error, EINVAL, 1558 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1559 "can't have 2 fate actions" 1560 " in same flow"); 1561 ret = mlx5_validate_action_rss(dev, action, error); 1562 if (ret) 1563 return ret; 1564 if (attr->egress) 1565 return rte_flow_error_set(error, ENOTSUP, 1566 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1567 "rss action not supported for " 1568 "egress"); 1569 if (rss->level > 1 && !tunnel) 1570 return rte_flow_error_set(error, EINVAL, 1571 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 1572 "inner RSS is not supported for " 1573 "non-tunnel flows"); 1574 if ((item_flags & MLX5_FLOW_LAYER_ECPRI) && 1575 !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) { 1576 return rte_flow_error_set(error, EINVAL, 1577 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 1578 "RSS on eCPRI is not supported now"); 1579 } 1580 return 0; 1581 } 1582 1583 /* 1584 * Validate the default miss action. 1585 * 1586 * @param[in] action_flags 1587 * Bit-fields that holds the actions detected until now. 1588 * @param[out] error 1589 * Pointer to error structure. 1590 * 1591 * @return 1592 * 0 on success, a negative errno value otherwise and rte_errno is set. 1593 */ 1594 int 1595 mlx5_flow_validate_action_default_miss(uint64_t action_flags, 1596 const struct rte_flow_attr *attr, 1597 struct rte_flow_error *error) 1598 { 1599 if (action_flags & MLX5_FLOW_FATE_ACTIONS) 1600 return rte_flow_error_set(error, EINVAL, 1601 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1602 "can't have 2 fate actions in" 1603 " same flow"); 1604 if (attr->egress) 1605 return rte_flow_error_set(error, ENOTSUP, 1606 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1607 "default miss action not supported " 1608 "for egress"); 1609 if (attr->group) 1610 return rte_flow_error_set(error, ENOTSUP, 1611 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL, 1612 "only group 0 is supported"); 1613 if (attr->transfer) 1614 return rte_flow_error_set(error, ENOTSUP, 1615 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1616 NULL, "transfer is not supported"); 1617 return 0; 1618 } 1619 1620 /* 1621 * Validate the count action. 1622 * 1623 * @param[in] dev 1624 * Pointer to the Ethernet device structure. 1625 * @param[in] attr 1626 * Attributes of flow that includes this action. 1627 * @param[out] error 1628 * Pointer to error structure. 1629 * 1630 * @return 1631 * 0 on success, a negative errno value otherwise and rte_errno is set. 1632 */ 1633 int 1634 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused, 1635 const struct rte_flow_attr *attr, 1636 struct rte_flow_error *error) 1637 { 1638 if (attr->egress) 1639 return rte_flow_error_set(error, ENOTSUP, 1640 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1641 "count action not supported for " 1642 "egress"); 1643 return 0; 1644 } 1645 1646 /** 1647 * Verify the @p attributes will be correctly understood by the NIC and store 1648 * them in the @p flow if everything is correct. 1649 * 1650 * @param[in] dev 1651 * Pointer to the Ethernet device structure. 1652 * @param[in] attributes 1653 * Pointer to flow attributes 1654 * @param[out] error 1655 * Pointer to error structure. 1656 * 1657 * @return 1658 * 0 on success, a negative errno value otherwise and rte_errno is set. 1659 */ 1660 int 1661 mlx5_flow_validate_attributes(struct rte_eth_dev *dev, 1662 const struct rte_flow_attr *attributes, 1663 struct rte_flow_error *error) 1664 { 1665 struct mlx5_priv *priv = dev->data->dev_private; 1666 uint32_t priority_max = priv->config.flow_prio - 1; 1667 1668 if (attributes->group) 1669 return rte_flow_error_set(error, ENOTSUP, 1670 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 1671 NULL, "groups is not supported"); 1672 if (attributes->priority != MLX5_FLOW_PRIO_RSVD && 1673 attributes->priority >= priority_max) 1674 return rte_flow_error_set(error, ENOTSUP, 1675 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1676 NULL, "priority out of range"); 1677 if (attributes->egress) 1678 return rte_flow_error_set(error, ENOTSUP, 1679 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL, 1680 "egress is not supported"); 1681 if (attributes->transfer && !priv->config.dv_esw_en) 1682 return rte_flow_error_set(error, ENOTSUP, 1683 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1684 NULL, "transfer is not supported"); 1685 if (!attributes->ingress) 1686 return rte_flow_error_set(error, EINVAL, 1687 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, 1688 NULL, 1689 "ingress attribute is mandatory"); 1690 return 0; 1691 } 1692 1693 /** 1694 * Validate ICMP6 item. 1695 * 1696 * @param[in] item 1697 * Item specification. 1698 * @param[in] item_flags 1699 * Bit-fields that holds the items detected until now. 1700 * @param[in] ext_vlan_sup 1701 * Whether extended VLAN features are supported or not. 1702 * @param[out] error 1703 * Pointer to error structure. 1704 * 1705 * @return 1706 * 0 on success, a negative errno value otherwise and rte_errno is set. 1707 */ 1708 int 1709 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item, 1710 uint64_t item_flags, 1711 uint8_t target_protocol, 1712 struct rte_flow_error *error) 1713 { 1714 const struct rte_flow_item_icmp6 *mask = item->mask; 1715 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1716 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 : 1717 MLX5_FLOW_LAYER_OUTER_L3_IPV6; 1718 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1719 MLX5_FLOW_LAYER_OUTER_L4; 1720 int ret; 1721 1722 if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6) 1723 return rte_flow_error_set(error, EINVAL, 1724 RTE_FLOW_ERROR_TYPE_ITEM, item, 1725 "protocol filtering not compatible" 1726 " with ICMP6 layer"); 1727 if (!(item_flags & l3m)) 1728 return rte_flow_error_set(error, EINVAL, 1729 RTE_FLOW_ERROR_TYPE_ITEM, item, 1730 "IPv6 is mandatory to filter on" 1731 " ICMP6"); 1732 if (item_flags & l4m) 1733 return rte_flow_error_set(error, EINVAL, 1734 RTE_FLOW_ERROR_TYPE_ITEM, item, 1735 "multiple L4 layers not supported"); 1736 if (!mask) 1737 mask = &rte_flow_item_icmp6_mask; 1738 ret = mlx5_flow_item_acceptable 1739 (item, (const uint8_t *)mask, 1740 (const uint8_t *)&rte_flow_item_icmp6_mask, 1741 sizeof(struct rte_flow_item_icmp6), 1742 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 1743 if (ret < 0) 1744 return ret; 1745 return 0; 1746 } 1747 1748 /** 1749 * Validate ICMP item. 1750 * 1751 * @param[in] item 1752 * Item specification. 1753 * @param[in] item_flags 1754 * Bit-fields that holds the items detected until now. 1755 * @param[out] error 1756 * Pointer to error structure. 1757 * 1758 * @return 1759 * 0 on success, a negative errno value otherwise and rte_errno is set. 1760 */ 1761 int 1762 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item, 1763 uint64_t item_flags, 1764 uint8_t target_protocol, 1765 struct rte_flow_error *error) 1766 { 1767 const struct rte_flow_item_icmp *mask = item->mask; 1768 const struct rte_flow_item_icmp nic_mask = { 1769 .hdr.icmp_type = 0xff, 1770 .hdr.icmp_code = 0xff, 1771 .hdr.icmp_ident = RTE_BE16(0xffff), 1772 .hdr.icmp_seq_nb = RTE_BE16(0xffff), 1773 }; 1774 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1775 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 : 1776 MLX5_FLOW_LAYER_OUTER_L3_IPV4; 1777 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1778 MLX5_FLOW_LAYER_OUTER_L4; 1779 int ret; 1780 1781 if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP) 1782 return rte_flow_error_set(error, EINVAL, 1783 RTE_FLOW_ERROR_TYPE_ITEM, item, 1784 "protocol filtering not compatible" 1785 " with ICMP layer"); 1786 if (!(item_flags & l3m)) 1787 return rte_flow_error_set(error, EINVAL, 1788 RTE_FLOW_ERROR_TYPE_ITEM, item, 1789 "IPv4 is mandatory to filter" 1790 " on ICMP"); 1791 if (item_flags & l4m) 1792 return rte_flow_error_set(error, EINVAL, 1793 RTE_FLOW_ERROR_TYPE_ITEM, item, 1794 "multiple L4 layers not supported"); 1795 if (!mask) 1796 mask = &nic_mask; 1797 ret = mlx5_flow_item_acceptable 1798 (item, (const uint8_t *)mask, 1799 (const uint8_t *)&nic_mask, 1800 sizeof(struct rte_flow_item_icmp), 1801 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 1802 if (ret < 0) 1803 return ret; 1804 return 0; 1805 } 1806 1807 /** 1808 * Validate Ethernet item. 1809 * 1810 * @param[in] item 1811 * Item specification. 1812 * @param[in] item_flags 1813 * Bit-fields that holds the items detected until now. 1814 * @param[out] error 1815 * Pointer to error structure. 1816 * 1817 * @return 1818 * 0 on success, a negative errno value otherwise and rte_errno is set. 1819 */ 1820 int 1821 mlx5_flow_validate_item_eth(const struct rte_flow_item *item, 1822 uint64_t item_flags, bool ext_vlan_sup, 1823 struct rte_flow_error *error) 1824 { 1825 const struct rte_flow_item_eth *mask = item->mask; 1826 const struct rte_flow_item_eth nic_mask = { 1827 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1828 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 1829 .type = RTE_BE16(0xffff), 1830 .has_vlan = ext_vlan_sup ? 1 : 0, 1831 }; 1832 int ret; 1833 int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1834 const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 : 1835 MLX5_FLOW_LAYER_OUTER_L2; 1836 1837 if (item_flags & ethm) 1838 return rte_flow_error_set(error, ENOTSUP, 1839 RTE_FLOW_ERROR_TYPE_ITEM, item, 1840 "multiple L2 layers not supported"); 1841 if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) || 1842 (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3))) 1843 return rte_flow_error_set(error, EINVAL, 1844 RTE_FLOW_ERROR_TYPE_ITEM, item, 1845 "L2 layer should not follow " 1846 "L3 layers"); 1847 if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) || 1848 (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN))) 1849 return rte_flow_error_set(error, EINVAL, 1850 RTE_FLOW_ERROR_TYPE_ITEM, item, 1851 "L2 layer should not follow VLAN"); 1852 if (!mask) 1853 mask = &rte_flow_item_eth_mask; 1854 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1855 (const uint8_t *)&nic_mask, 1856 sizeof(struct rte_flow_item_eth), 1857 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 1858 return ret; 1859 } 1860 1861 /** 1862 * Validate VLAN item. 1863 * 1864 * @param[in] item 1865 * Item specification. 1866 * @param[in] item_flags 1867 * Bit-fields that holds the items detected until now. 1868 * @param[in] dev 1869 * Ethernet device flow is being created on. 1870 * @param[out] error 1871 * Pointer to error structure. 1872 * 1873 * @return 1874 * 0 on success, a negative errno value otherwise and rte_errno is set. 1875 */ 1876 int 1877 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item, 1878 uint64_t item_flags, 1879 struct rte_eth_dev *dev, 1880 struct rte_flow_error *error) 1881 { 1882 const struct rte_flow_item_vlan *spec = item->spec; 1883 const struct rte_flow_item_vlan *mask = item->mask; 1884 const struct rte_flow_item_vlan nic_mask = { 1885 .tci = RTE_BE16(UINT16_MAX), 1886 .inner_type = RTE_BE16(UINT16_MAX), 1887 }; 1888 uint16_t vlan_tag = 0; 1889 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1890 int ret; 1891 const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 | 1892 MLX5_FLOW_LAYER_INNER_L4) : 1893 (MLX5_FLOW_LAYER_OUTER_L3 | 1894 MLX5_FLOW_LAYER_OUTER_L4); 1895 const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN : 1896 MLX5_FLOW_LAYER_OUTER_VLAN; 1897 1898 if (item_flags & vlanm) 1899 return rte_flow_error_set(error, EINVAL, 1900 RTE_FLOW_ERROR_TYPE_ITEM, item, 1901 "multiple VLAN layers not supported"); 1902 else if ((item_flags & l34m) != 0) 1903 return rte_flow_error_set(error, EINVAL, 1904 RTE_FLOW_ERROR_TYPE_ITEM, item, 1905 "VLAN cannot follow L3/L4 layer"); 1906 if (!mask) 1907 mask = &rte_flow_item_vlan_mask; 1908 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 1909 (const uint8_t *)&nic_mask, 1910 sizeof(struct rte_flow_item_vlan), 1911 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 1912 if (ret) 1913 return ret; 1914 if (!tunnel && mask->tci != RTE_BE16(0x0fff)) { 1915 struct mlx5_priv *priv = dev->data->dev_private; 1916 1917 if (priv->vmwa_context) { 1918 /* 1919 * Non-NULL context means we have a virtual machine 1920 * and SR-IOV enabled, we have to create VLAN interface 1921 * to make hypervisor to setup E-Switch vport 1922 * context correctly. We avoid creating the multiple 1923 * VLAN interfaces, so we cannot support VLAN tag mask. 1924 */ 1925 return rte_flow_error_set(error, EINVAL, 1926 RTE_FLOW_ERROR_TYPE_ITEM, 1927 item, 1928 "VLAN tag mask is not" 1929 " supported in virtual" 1930 " environment"); 1931 } 1932 } 1933 if (spec) { 1934 vlan_tag = spec->tci; 1935 vlan_tag &= mask->tci; 1936 } 1937 /* 1938 * From verbs perspective an empty VLAN is equivalent 1939 * to a packet without VLAN layer. 1940 */ 1941 if (!vlan_tag) 1942 return rte_flow_error_set(error, EINVAL, 1943 RTE_FLOW_ERROR_TYPE_ITEM_SPEC, 1944 item->spec, 1945 "VLAN cannot be empty"); 1946 return 0; 1947 } 1948 1949 /** 1950 * Validate IPV4 item. 1951 * 1952 * @param[in] item 1953 * Item specification. 1954 * @param[in] item_flags 1955 * Bit-fields that holds the items detected until now. 1956 * @param[in] last_item 1957 * Previous validated item in the pattern items. 1958 * @param[in] ether_type 1959 * Type in the ethernet layer header (including dot1q). 1960 * @param[in] acc_mask 1961 * Acceptable mask, if NULL default internal default mask 1962 * will be used to check whether item fields are supported. 1963 * @param[in] range_accepted 1964 * True if range of values is accepted for specific fields, false otherwise. 1965 * @param[out] error 1966 * Pointer to error structure. 1967 * 1968 * @return 1969 * 0 on success, a negative errno value otherwise and rte_errno is set. 1970 */ 1971 int 1972 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item, 1973 uint64_t item_flags, 1974 uint64_t last_item, 1975 uint16_t ether_type, 1976 const struct rte_flow_item_ipv4 *acc_mask, 1977 bool range_accepted, 1978 struct rte_flow_error *error) 1979 { 1980 const struct rte_flow_item_ipv4 *mask = item->mask; 1981 const struct rte_flow_item_ipv4 *spec = item->spec; 1982 const struct rte_flow_item_ipv4 nic_mask = { 1983 .hdr = { 1984 .src_addr = RTE_BE32(0xffffffff), 1985 .dst_addr = RTE_BE32(0xffffffff), 1986 .type_of_service = 0xff, 1987 .next_proto_id = 0xff, 1988 }, 1989 }; 1990 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 1991 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 1992 MLX5_FLOW_LAYER_OUTER_L3; 1993 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 1994 MLX5_FLOW_LAYER_OUTER_L4; 1995 int ret; 1996 uint8_t next_proto = 0xFF; 1997 const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 | 1998 MLX5_FLOW_LAYER_OUTER_VLAN | 1999 MLX5_FLOW_LAYER_INNER_VLAN); 2000 2001 if ((last_item & l2_vlan) && ether_type && 2002 ether_type != RTE_ETHER_TYPE_IPV4) 2003 return rte_flow_error_set(error, EINVAL, 2004 RTE_FLOW_ERROR_TYPE_ITEM, item, 2005 "IPv4 cannot follow L2/VLAN layer " 2006 "which ether type is not IPv4"); 2007 if (item_flags & MLX5_FLOW_LAYER_IPIP) { 2008 if (mask && spec) 2009 next_proto = mask->hdr.next_proto_id & 2010 spec->hdr.next_proto_id; 2011 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6) 2012 return rte_flow_error_set(error, EINVAL, 2013 RTE_FLOW_ERROR_TYPE_ITEM, 2014 item, 2015 "multiple tunnel " 2016 "not supported"); 2017 } 2018 if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) 2019 return rte_flow_error_set(error, EINVAL, 2020 RTE_FLOW_ERROR_TYPE_ITEM, item, 2021 "wrong tunnel type - IPv6 specified " 2022 "but IPv4 item provided"); 2023 if (item_flags & l3m) 2024 return rte_flow_error_set(error, ENOTSUP, 2025 RTE_FLOW_ERROR_TYPE_ITEM, item, 2026 "multiple L3 layers not supported"); 2027 else if (item_flags & l4m) 2028 return rte_flow_error_set(error, EINVAL, 2029 RTE_FLOW_ERROR_TYPE_ITEM, item, 2030 "L3 cannot follow an L4 layer."); 2031 else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) && 2032 !(item_flags & MLX5_FLOW_LAYER_INNER_L2)) 2033 return rte_flow_error_set(error, EINVAL, 2034 RTE_FLOW_ERROR_TYPE_ITEM, item, 2035 "L3 cannot follow an NVGRE layer."); 2036 if (!mask) 2037 mask = &rte_flow_item_ipv4_mask; 2038 else if (mask->hdr.next_proto_id != 0 && 2039 mask->hdr.next_proto_id != 0xff) 2040 return rte_flow_error_set(error, EINVAL, 2041 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 2042 "partial mask is not supported" 2043 " for protocol"); 2044 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2045 acc_mask ? (const uint8_t *)acc_mask 2046 : (const uint8_t *)&nic_mask, 2047 sizeof(struct rte_flow_item_ipv4), 2048 range_accepted, error); 2049 if (ret < 0) 2050 return ret; 2051 return 0; 2052 } 2053 2054 /** 2055 * Validate IPV6 item. 2056 * 2057 * @param[in] item 2058 * Item specification. 2059 * @param[in] item_flags 2060 * Bit-fields that holds the items detected until now. 2061 * @param[in] last_item 2062 * Previous validated item in the pattern items. 2063 * @param[in] ether_type 2064 * Type in the ethernet layer header (including dot1q). 2065 * @param[in] acc_mask 2066 * Acceptable mask, if NULL default internal default mask 2067 * will be used to check whether item fields are supported. 2068 * @param[out] error 2069 * Pointer to error structure. 2070 * 2071 * @return 2072 * 0 on success, a negative errno value otherwise and rte_errno is set. 2073 */ 2074 int 2075 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item, 2076 uint64_t item_flags, 2077 uint64_t last_item, 2078 uint16_t ether_type, 2079 const struct rte_flow_item_ipv6 *acc_mask, 2080 struct rte_flow_error *error) 2081 { 2082 const struct rte_flow_item_ipv6 *mask = item->mask; 2083 const struct rte_flow_item_ipv6 *spec = item->spec; 2084 const struct rte_flow_item_ipv6 nic_mask = { 2085 .hdr = { 2086 .src_addr = 2087 "\xff\xff\xff\xff\xff\xff\xff\xff" 2088 "\xff\xff\xff\xff\xff\xff\xff\xff", 2089 .dst_addr = 2090 "\xff\xff\xff\xff\xff\xff\xff\xff" 2091 "\xff\xff\xff\xff\xff\xff\xff\xff", 2092 .vtc_flow = RTE_BE32(0xffffffff), 2093 .proto = 0xff, 2094 }, 2095 }; 2096 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2097 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2098 MLX5_FLOW_LAYER_OUTER_L3; 2099 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2100 MLX5_FLOW_LAYER_OUTER_L4; 2101 int ret; 2102 uint8_t next_proto = 0xFF; 2103 const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 | 2104 MLX5_FLOW_LAYER_OUTER_VLAN | 2105 MLX5_FLOW_LAYER_INNER_VLAN); 2106 2107 if ((last_item & l2_vlan) && ether_type && 2108 ether_type != RTE_ETHER_TYPE_IPV6) 2109 return rte_flow_error_set(error, EINVAL, 2110 RTE_FLOW_ERROR_TYPE_ITEM, item, 2111 "IPv6 cannot follow L2/VLAN layer " 2112 "which ether type is not IPv6"); 2113 if (mask && mask->hdr.proto == UINT8_MAX && spec) 2114 next_proto = spec->hdr.proto; 2115 if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) { 2116 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6) 2117 return rte_flow_error_set(error, EINVAL, 2118 RTE_FLOW_ERROR_TYPE_ITEM, 2119 item, 2120 "multiple tunnel " 2121 "not supported"); 2122 } 2123 if (next_proto == IPPROTO_HOPOPTS || 2124 next_proto == IPPROTO_ROUTING || 2125 next_proto == IPPROTO_FRAGMENT || 2126 next_proto == IPPROTO_ESP || 2127 next_proto == IPPROTO_AH || 2128 next_proto == IPPROTO_DSTOPTS) 2129 return rte_flow_error_set(error, EINVAL, 2130 RTE_FLOW_ERROR_TYPE_ITEM, item, 2131 "IPv6 proto (next header) should " 2132 "not be set as extension header"); 2133 if (item_flags & MLX5_FLOW_LAYER_IPIP) 2134 return rte_flow_error_set(error, EINVAL, 2135 RTE_FLOW_ERROR_TYPE_ITEM, item, 2136 "wrong tunnel type - IPv4 specified " 2137 "but IPv6 item provided"); 2138 if (item_flags & l3m) 2139 return rte_flow_error_set(error, ENOTSUP, 2140 RTE_FLOW_ERROR_TYPE_ITEM, item, 2141 "multiple L3 layers not supported"); 2142 else if (item_flags & l4m) 2143 return rte_flow_error_set(error, EINVAL, 2144 RTE_FLOW_ERROR_TYPE_ITEM, item, 2145 "L3 cannot follow an L4 layer."); 2146 else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) && 2147 !(item_flags & MLX5_FLOW_LAYER_INNER_L2)) 2148 return rte_flow_error_set(error, EINVAL, 2149 RTE_FLOW_ERROR_TYPE_ITEM, item, 2150 "L3 cannot follow an NVGRE layer."); 2151 if (!mask) 2152 mask = &rte_flow_item_ipv6_mask; 2153 ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2154 acc_mask ? (const uint8_t *)acc_mask 2155 : (const uint8_t *)&nic_mask, 2156 sizeof(struct rte_flow_item_ipv6), 2157 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2158 if (ret < 0) 2159 return ret; 2160 return 0; 2161 } 2162 2163 /** 2164 * Validate UDP item. 2165 * 2166 * @param[in] item 2167 * Item specification. 2168 * @param[in] item_flags 2169 * Bit-fields that holds the items detected until now. 2170 * @param[in] target_protocol 2171 * The next protocol in the previous item. 2172 * @param[in] flow_mask 2173 * mlx5 flow-specific (DV, verbs, etc.) supported header fields mask. 2174 * @param[out] error 2175 * Pointer to error structure. 2176 * 2177 * @return 2178 * 0 on success, a negative errno value otherwise and rte_errno is set. 2179 */ 2180 int 2181 mlx5_flow_validate_item_udp(const struct rte_flow_item *item, 2182 uint64_t item_flags, 2183 uint8_t target_protocol, 2184 struct rte_flow_error *error) 2185 { 2186 const struct rte_flow_item_udp *mask = item->mask; 2187 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2188 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2189 MLX5_FLOW_LAYER_OUTER_L3; 2190 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2191 MLX5_FLOW_LAYER_OUTER_L4; 2192 int ret; 2193 2194 if (target_protocol != 0xff && target_protocol != IPPROTO_UDP) 2195 return rte_flow_error_set(error, EINVAL, 2196 RTE_FLOW_ERROR_TYPE_ITEM, item, 2197 "protocol filtering not compatible" 2198 " with UDP layer"); 2199 if (!(item_flags & l3m)) 2200 return rte_flow_error_set(error, EINVAL, 2201 RTE_FLOW_ERROR_TYPE_ITEM, item, 2202 "L3 is mandatory to filter on L4"); 2203 if (item_flags & l4m) 2204 return rte_flow_error_set(error, EINVAL, 2205 RTE_FLOW_ERROR_TYPE_ITEM, item, 2206 "multiple L4 layers not supported"); 2207 if (!mask) 2208 mask = &rte_flow_item_udp_mask; 2209 ret = mlx5_flow_item_acceptable 2210 (item, (const uint8_t *)mask, 2211 (const uint8_t *)&rte_flow_item_udp_mask, 2212 sizeof(struct rte_flow_item_udp), MLX5_ITEM_RANGE_NOT_ACCEPTED, 2213 error); 2214 if (ret < 0) 2215 return ret; 2216 return 0; 2217 } 2218 2219 /** 2220 * Validate TCP item. 2221 * 2222 * @param[in] item 2223 * Item specification. 2224 * @param[in] item_flags 2225 * Bit-fields that holds the items detected until now. 2226 * @param[in] target_protocol 2227 * The next protocol in the previous item. 2228 * @param[out] error 2229 * Pointer to error structure. 2230 * 2231 * @return 2232 * 0 on success, a negative errno value otherwise and rte_errno is set. 2233 */ 2234 int 2235 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item, 2236 uint64_t item_flags, 2237 uint8_t target_protocol, 2238 const struct rte_flow_item_tcp *flow_mask, 2239 struct rte_flow_error *error) 2240 { 2241 const struct rte_flow_item_tcp *mask = item->mask; 2242 const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL); 2243 const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 : 2244 MLX5_FLOW_LAYER_OUTER_L3; 2245 const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 : 2246 MLX5_FLOW_LAYER_OUTER_L4; 2247 int ret; 2248 2249 MLX5_ASSERT(flow_mask); 2250 if (target_protocol != 0xff && target_protocol != IPPROTO_TCP) 2251 return rte_flow_error_set(error, EINVAL, 2252 RTE_FLOW_ERROR_TYPE_ITEM, item, 2253 "protocol filtering not compatible" 2254 " with TCP layer"); 2255 if (!(item_flags & l3m)) 2256 return rte_flow_error_set(error, EINVAL, 2257 RTE_FLOW_ERROR_TYPE_ITEM, item, 2258 "L3 is mandatory to filter on L4"); 2259 if (item_flags & l4m) 2260 return rte_flow_error_set(error, EINVAL, 2261 RTE_FLOW_ERROR_TYPE_ITEM, item, 2262 "multiple L4 layers not supported"); 2263 if (!mask) 2264 mask = &rte_flow_item_tcp_mask; 2265 ret = mlx5_flow_item_acceptable 2266 (item, (const uint8_t *)mask, 2267 (const uint8_t *)flow_mask, 2268 sizeof(struct rte_flow_item_tcp), MLX5_ITEM_RANGE_NOT_ACCEPTED, 2269 error); 2270 if (ret < 0) 2271 return ret; 2272 return 0; 2273 } 2274 2275 /** 2276 * Validate VXLAN item. 2277 * 2278 * @param[in] item 2279 * Item specification. 2280 * @param[in] item_flags 2281 * Bit-fields that holds the items detected until now. 2282 * @param[in] target_protocol 2283 * The next protocol in the previous item. 2284 * @param[out] error 2285 * Pointer to error structure. 2286 * 2287 * @return 2288 * 0 on success, a negative errno value otherwise and rte_errno is set. 2289 */ 2290 int 2291 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item, 2292 uint64_t item_flags, 2293 struct rte_flow_error *error) 2294 { 2295 const struct rte_flow_item_vxlan *spec = item->spec; 2296 const struct rte_flow_item_vxlan *mask = item->mask; 2297 int ret; 2298 union vni { 2299 uint32_t vlan_id; 2300 uint8_t vni[4]; 2301 } id = { .vlan_id = 0, }; 2302 2303 2304 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2305 return rte_flow_error_set(error, ENOTSUP, 2306 RTE_FLOW_ERROR_TYPE_ITEM, item, 2307 "multiple tunnel layers not" 2308 " supported"); 2309 /* 2310 * Verify only UDPv4 is present as defined in 2311 * https://tools.ietf.org/html/rfc7348 2312 */ 2313 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 2314 return rte_flow_error_set(error, EINVAL, 2315 RTE_FLOW_ERROR_TYPE_ITEM, item, 2316 "no outer UDP layer found"); 2317 if (!mask) 2318 mask = &rte_flow_item_vxlan_mask; 2319 ret = mlx5_flow_item_acceptable 2320 (item, (const uint8_t *)mask, 2321 (const uint8_t *)&rte_flow_item_vxlan_mask, 2322 sizeof(struct rte_flow_item_vxlan), 2323 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2324 if (ret < 0) 2325 return ret; 2326 if (spec) { 2327 memcpy(&id.vni[1], spec->vni, 3); 2328 memcpy(&id.vni[1], mask->vni, 3); 2329 } 2330 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 2331 return rte_flow_error_set(error, ENOTSUP, 2332 RTE_FLOW_ERROR_TYPE_ITEM, item, 2333 "VXLAN tunnel must be fully defined"); 2334 return 0; 2335 } 2336 2337 /** 2338 * Validate VXLAN_GPE item. 2339 * 2340 * @param[in] item 2341 * Item specification. 2342 * @param[in] item_flags 2343 * Bit-fields that holds the items detected until now. 2344 * @param[in] priv 2345 * Pointer to the private data structure. 2346 * @param[in] target_protocol 2347 * The next protocol in the previous item. 2348 * @param[out] error 2349 * Pointer to error structure. 2350 * 2351 * @return 2352 * 0 on success, a negative errno value otherwise and rte_errno is set. 2353 */ 2354 int 2355 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item, 2356 uint64_t item_flags, 2357 struct rte_eth_dev *dev, 2358 struct rte_flow_error *error) 2359 { 2360 struct mlx5_priv *priv = dev->data->dev_private; 2361 const struct rte_flow_item_vxlan_gpe *spec = item->spec; 2362 const struct rte_flow_item_vxlan_gpe *mask = item->mask; 2363 int ret; 2364 union vni { 2365 uint32_t vlan_id; 2366 uint8_t vni[4]; 2367 } id = { .vlan_id = 0, }; 2368 2369 if (!priv->config.l3_vxlan_en) 2370 return rte_flow_error_set(error, ENOTSUP, 2371 RTE_FLOW_ERROR_TYPE_ITEM, item, 2372 "L3 VXLAN is not enabled by device" 2373 " parameter and/or not configured in" 2374 " firmware"); 2375 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2376 return rte_flow_error_set(error, ENOTSUP, 2377 RTE_FLOW_ERROR_TYPE_ITEM, item, 2378 "multiple tunnel layers not" 2379 " supported"); 2380 /* 2381 * Verify only UDPv4 is present as defined in 2382 * https://tools.ietf.org/html/rfc7348 2383 */ 2384 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 2385 return rte_flow_error_set(error, EINVAL, 2386 RTE_FLOW_ERROR_TYPE_ITEM, item, 2387 "no outer UDP layer found"); 2388 if (!mask) 2389 mask = &rte_flow_item_vxlan_gpe_mask; 2390 ret = mlx5_flow_item_acceptable 2391 (item, (const uint8_t *)mask, 2392 (const uint8_t *)&rte_flow_item_vxlan_gpe_mask, 2393 sizeof(struct rte_flow_item_vxlan_gpe), 2394 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2395 if (ret < 0) 2396 return ret; 2397 if (spec) { 2398 if (spec->protocol) 2399 return rte_flow_error_set(error, ENOTSUP, 2400 RTE_FLOW_ERROR_TYPE_ITEM, 2401 item, 2402 "VxLAN-GPE protocol" 2403 " not supported"); 2404 memcpy(&id.vni[1], spec->vni, 3); 2405 memcpy(&id.vni[1], mask->vni, 3); 2406 } 2407 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 2408 return rte_flow_error_set(error, ENOTSUP, 2409 RTE_FLOW_ERROR_TYPE_ITEM, item, 2410 "VXLAN-GPE tunnel must be fully" 2411 " defined"); 2412 return 0; 2413 } 2414 /** 2415 * Validate GRE Key item. 2416 * 2417 * @param[in] item 2418 * Item specification. 2419 * @param[in] item_flags 2420 * Bit flags to mark detected items. 2421 * @param[in] gre_item 2422 * Pointer to gre_item 2423 * @param[out] error 2424 * Pointer to error structure. 2425 * 2426 * @return 2427 * 0 on success, a negative errno value otherwise and rte_errno is set. 2428 */ 2429 int 2430 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item, 2431 uint64_t item_flags, 2432 const struct rte_flow_item *gre_item, 2433 struct rte_flow_error *error) 2434 { 2435 const rte_be32_t *mask = item->mask; 2436 int ret = 0; 2437 rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX); 2438 const struct rte_flow_item_gre *gre_spec; 2439 const struct rte_flow_item_gre *gre_mask; 2440 2441 if (item_flags & MLX5_FLOW_LAYER_GRE_KEY) 2442 return rte_flow_error_set(error, ENOTSUP, 2443 RTE_FLOW_ERROR_TYPE_ITEM, item, 2444 "Multiple GRE key not support"); 2445 if (!(item_flags & MLX5_FLOW_LAYER_GRE)) 2446 return rte_flow_error_set(error, ENOTSUP, 2447 RTE_FLOW_ERROR_TYPE_ITEM, item, 2448 "No preceding GRE header"); 2449 if (item_flags & MLX5_FLOW_LAYER_INNER) 2450 return rte_flow_error_set(error, ENOTSUP, 2451 RTE_FLOW_ERROR_TYPE_ITEM, item, 2452 "GRE key following a wrong item"); 2453 gre_mask = gre_item->mask; 2454 if (!gre_mask) 2455 gre_mask = &rte_flow_item_gre_mask; 2456 gre_spec = gre_item->spec; 2457 if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) && 2458 !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000))) 2459 return rte_flow_error_set(error, EINVAL, 2460 RTE_FLOW_ERROR_TYPE_ITEM, item, 2461 "Key bit must be on"); 2462 2463 if (!mask) 2464 mask = &gre_key_default_mask; 2465 ret = mlx5_flow_item_acceptable 2466 (item, (const uint8_t *)mask, 2467 (const uint8_t *)&gre_key_default_mask, 2468 sizeof(rte_be32_t), MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2469 return ret; 2470 } 2471 2472 /** 2473 * Validate GRE item. 2474 * 2475 * @param[in] item 2476 * Item specification. 2477 * @param[in] item_flags 2478 * Bit flags to mark detected items. 2479 * @param[in] target_protocol 2480 * The next protocol in the previous item. 2481 * @param[out] error 2482 * Pointer to error structure. 2483 * 2484 * @return 2485 * 0 on success, a negative errno value otherwise and rte_errno is set. 2486 */ 2487 int 2488 mlx5_flow_validate_item_gre(const struct rte_flow_item *item, 2489 uint64_t item_flags, 2490 uint8_t target_protocol, 2491 struct rte_flow_error *error) 2492 { 2493 const struct rte_flow_item_gre *spec __rte_unused = item->spec; 2494 const struct rte_flow_item_gre *mask = item->mask; 2495 int ret; 2496 const struct rte_flow_item_gre nic_mask = { 2497 .c_rsvd0_ver = RTE_BE16(0xB000), 2498 .protocol = RTE_BE16(UINT16_MAX), 2499 }; 2500 2501 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 2502 return rte_flow_error_set(error, EINVAL, 2503 RTE_FLOW_ERROR_TYPE_ITEM, item, 2504 "protocol filtering not compatible" 2505 " with this GRE layer"); 2506 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2507 return rte_flow_error_set(error, ENOTSUP, 2508 RTE_FLOW_ERROR_TYPE_ITEM, item, 2509 "multiple tunnel layers not" 2510 " supported"); 2511 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 2512 return rte_flow_error_set(error, ENOTSUP, 2513 RTE_FLOW_ERROR_TYPE_ITEM, item, 2514 "L3 Layer is missing"); 2515 if (!mask) 2516 mask = &rte_flow_item_gre_mask; 2517 ret = mlx5_flow_item_acceptable 2518 (item, (const uint8_t *)mask, 2519 (const uint8_t *)&nic_mask, 2520 sizeof(struct rte_flow_item_gre), MLX5_ITEM_RANGE_NOT_ACCEPTED, 2521 error); 2522 if (ret < 0) 2523 return ret; 2524 #ifndef HAVE_MLX5DV_DR 2525 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT 2526 if (spec && (spec->protocol & mask->protocol)) 2527 return rte_flow_error_set(error, ENOTSUP, 2528 RTE_FLOW_ERROR_TYPE_ITEM, item, 2529 "without MPLS support the" 2530 " specification cannot be used for" 2531 " filtering"); 2532 #endif 2533 #endif 2534 return 0; 2535 } 2536 2537 /** 2538 * Validate Geneve item. 2539 * 2540 * @param[in] item 2541 * Item specification. 2542 * @param[in] itemFlags 2543 * Bit-fields that holds the items detected until now. 2544 * @param[in] enPriv 2545 * Pointer to the private data structure. 2546 * @param[out] error 2547 * Pointer to error structure. 2548 * 2549 * @return 2550 * 0 on success, a negative errno value otherwise and rte_errno is set. 2551 */ 2552 2553 int 2554 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item, 2555 uint64_t item_flags, 2556 struct rte_eth_dev *dev, 2557 struct rte_flow_error *error) 2558 { 2559 struct mlx5_priv *priv = dev->data->dev_private; 2560 const struct rte_flow_item_geneve *spec = item->spec; 2561 const struct rte_flow_item_geneve *mask = item->mask; 2562 int ret; 2563 uint16_t gbhdr; 2564 uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ? 2565 MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0; 2566 const struct rte_flow_item_geneve nic_mask = { 2567 .ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80), 2568 .vni = "\xff\xff\xff", 2569 .protocol = RTE_BE16(UINT16_MAX), 2570 }; 2571 2572 if (!priv->config.hca_attr.tunnel_stateless_geneve_rx) 2573 return rte_flow_error_set(error, ENOTSUP, 2574 RTE_FLOW_ERROR_TYPE_ITEM, item, 2575 "L3 Geneve is not enabled by device" 2576 " parameter and/or not configured in" 2577 " firmware"); 2578 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2579 return rte_flow_error_set(error, ENOTSUP, 2580 RTE_FLOW_ERROR_TYPE_ITEM, item, 2581 "multiple tunnel layers not" 2582 " supported"); 2583 /* 2584 * Verify only UDPv4 is present as defined in 2585 * https://tools.ietf.org/html/rfc7348 2586 */ 2587 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)) 2588 return rte_flow_error_set(error, EINVAL, 2589 RTE_FLOW_ERROR_TYPE_ITEM, item, 2590 "no outer UDP layer found"); 2591 if (!mask) 2592 mask = &rte_flow_item_geneve_mask; 2593 ret = mlx5_flow_item_acceptable 2594 (item, (const uint8_t *)mask, 2595 (const uint8_t *)&nic_mask, 2596 sizeof(struct rte_flow_item_geneve), 2597 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2598 if (ret) 2599 return ret; 2600 if (spec) { 2601 gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0); 2602 if (MLX5_GENEVE_VER_VAL(gbhdr) || 2603 MLX5_GENEVE_CRITO_VAL(gbhdr) || 2604 MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1) 2605 return rte_flow_error_set(error, ENOTSUP, 2606 RTE_FLOW_ERROR_TYPE_ITEM, 2607 item, 2608 "Geneve protocol unsupported" 2609 " fields are being used"); 2610 if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len) 2611 return rte_flow_error_set 2612 (error, ENOTSUP, 2613 RTE_FLOW_ERROR_TYPE_ITEM, 2614 item, 2615 "Unsupported Geneve options length"); 2616 } 2617 if (!(item_flags & MLX5_FLOW_LAYER_OUTER)) 2618 return rte_flow_error_set 2619 (error, ENOTSUP, 2620 RTE_FLOW_ERROR_TYPE_ITEM, item, 2621 "Geneve tunnel must be fully defined"); 2622 return 0; 2623 } 2624 2625 /** 2626 * Validate Geneve TLV option item. 2627 * 2628 * @param[in] item 2629 * Item specification. 2630 * @param[in] last_item 2631 * Previous validated item in the pattern items. 2632 * @param[in] geneve_item 2633 * Previous GENEVE item specification. 2634 * @param[in] dev 2635 * Pointer to the rte_eth_dev structure. 2636 * @param[out] error 2637 * Pointer to error structure. 2638 * 2639 * @return 2640 * 0 on success, a negative errno value otherwise and rte_errno is set. 2641 */ 2642 int 2643 mlx5_flow_validate_item_geneve_opt(const struct rte_flow_item *item, 2644 uint64_t last_item, 2645 const struct rte_flow_item *geneve_item, 2646 struct rte_eth_dev *dev, 2647 struct rte_flow_error *error) 2648 { 2649 struct mlx5_priv *priv = dev->data->dev_private; 2650 struct mlx5_dev_ctx_shared *sh = priv->sh; 2651 struct mlx5_geneve_tlv_option_resource *geneve_opt_resource; 2652 struct mlx5_hca_attr *hca_attr = &priv->config.hca_attr; 2653 uint8_t data_max_supported = 2654 hca_attr->max_geneve_tlv_option_data_len * 4; 2655 struct mlx5_dev_config *config = &priv->config; 2656 const struct rte_flow_item_geneve *geneve_spec; 2657 const struct rte_flow_item_geneve *geneve_mask; 2658 const struct rte_flow_item_geneve_opt *spec = item->spec; 2659 const struct rte_flow_item_geneve_opt *mask = item->mask; 2660 unsigned int i; 2661 unsigned int data_len; 2662 uint8_t tlv_option_len; 2663 uint16_t optlen_m, optlen_v; 2664 const struct rte_flow_item_geneve_opt full_mask = { 2665 .option_class = RTE_BE16(0xffff), 2666 .option_type = 0xff, 2667 .option_len = 0x1f, 2668 }; 2669 2670 if (!mask) 2671 mask = &rte_flow_item_geneve_opt_mask; 2672 if (!spec) 2673 return rte_flow_error_set 2674 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 2675 "Geneve TLV opt class/type/length must be specified"); 2676 if ((uint32_t)spec->option_len > MLX5_GENEVE_OPTLEN_MASK) 2677 return rte_flow_error_set 2678 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 2679 "Geneve TLV opt length exceeeds the limit (31)"); 2680 /* Check if class type and length masks are full. */ 2681 if (full_mask.option_class != mask->option_class || 2682 full_mask.option_type != mask->option_type || 2683 full_mask.option_len != (mask->option_len & full_mask.option_len)) 2684 return rte_flow_error_set 2685 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 2686 "Geneve TLV opt class/type/length masks must be full"); 2687 /* Check if length is supported */ 2688 if ((uint32_t)spec->option_len > 2689 config->hca_attr.max_geneve_tlv_option_data_len) 2690 return rte_flow_error_set 2691 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 2692 "Geneve TLV opt length not supported"); 2693 if (config->hca_attr.max_geneve_tlv_options > 1) 2694 DRV_LOG(DEBUG, 2695 "max_geneve_tlv_options supports more than 1 option"); 2696 /* Check GENEVE item preceding. */ 2697 if (!geneve_item || !(last_item & MLX5_FLOW_LAYER_GENEVE)) 2698 return rte_flow_error_set 2699 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 2700 "Geneve opt item must be preceded with Geneve item"); 2701 geneve_spec = geneve_item->spec; 2702 geneve_mask = geneve_item->mask ? geneve_item->mask : 2703 &rte_flow_item_geneve_mask; 2704 /* Check if GENEVE TLV option size doesn't exceed option length */ 2705 if (geneve_spec && (geneve_mask->ver_opt_len_o_c_rsvd0 || 2706 geneve_spec->ver_opt_len_o_c_rsvd0)) { 2707 tlv_option_len = spec->option_len & mask->option_len; 2708 optlen_v = rte_be_to_cpu_16(geneve_spec->ver_opt_len_o_c_rsvd0); 2709 optlen_v = MLX5_GENEVE_OPTLEN_VAL(optlen_v); 2710 optlen_m = rte_be_to_cpu_16(geneve_mask->ver_opt_len_o_c_rsvd0); 2711 optlen_m = MLX5_GENEVE_OPTLEN_VAL(optlen_m); 2712 if ((optlen_v & optlen_m) <= tlv_option_len) 2713 return rte_flow_error_set 2714 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 2715 "GENEVE TLV option length exceeds optlen"); 2716 } 2717 /* Check if length is 0 or data is 0. */ 2718 if (spec->data == NULL || spec->option_len == 0) 2719 return rte_flow_error_set 2720 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 2721 "Geneve TLV opt with zero data/length not supported"); 2722 /* Check not all data & mask are 0. */ 2723 data_len = spec->option_len * 4; 2724 if (mask->data == NULL) { 2725 for (i = 0; i < data_len; i++) 2726 if (spec->data[i]) 2727 break; 2728 if (i == data_len) 2729 return rte_flow_error_set(error, ENOTSUP, 2730 RTE_FLOW_ERROR_TYPE_ITEM, item, 2731 "Can't match on Geneve option data 0"); 2732 } else { 2733 for (i = 0; i < data_len; i++) 2734 if (spec->data[i] & mask->data[i]) 2735 break; 2736 if (i == data_len) 2737 return rte_flow_error_set(error, ENOTSUP, 2738 RTE_FLOW_ERROR_TYPE_ITEM, item, 2739 "Can't match on Geneve option data and mask 0"); 2740 /* Check data mask supported. */ 2741 for (i = data_max_supported; i < data_len ; i++) 2742 if (mask->data[i]) 2743 return rte_flow_error_set(error, ENOTSUP, 2744 RTE_FLOW_ERROR_TYPE_ITEM, item, 2745 "Data mask is of unsupported size"); 2746 } 2747 /* Check GENEVE option is supported in NIC. */ 2748 if (!config->hca_attr.geneve_tlv_opt) 2749 return rte_flow_error_set 2750 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, item, 2751 "Geneve TLV opt not supported"); 2752 /* Check if we already have geneve option with different type/class. */ 2753 rte_spinlock_lock(&sh->geneve_tlv_opt_sl); 2754 geneve_opt_resource = sh->geneve_tlv_option_resource; 2755 if (geneve_opt_resource != NULL) 2756 if (geneve_opt_resource->option_class != spec->option_class || 2757 geneve_opt_resource->option_type != spec->option_type || 2758 geneve_opt_resource->length != spec->option_len) { 2759 rte_spinlock_unlock(&sh->geneve_tlv_opt_sl); 2760 return rte_flow_error_set(error, ENOTSUP, 2761 RTE_FLOW_ERROR_TYPE_ITEM, item, 2762 "Only one Geneve TLV option supported"); 2763 } 2764 rte_spinlock_unlock(&sh->geneve_tlv_opt_sl); 2765 return 0; 2766 } 2767 2768 /** 2769 * Validate MPLS item. 2770 * 2771 * @param[in] dev 2772 * Pointer to the rte_eth_dev structure. 2773 * @param[in] item 2774 * Item specification. 2775 * @param[in] item_flags 2776 * Bit-fields that holds the items detected until now. 2777 * @param[in] prev_layer 2778 * The protocol layer indicated in previous item. 2779 * @param[out] error 2780 * Pointer to error structure. 2781 * 2782 * @return 2783 * 0 on success, a negative errno value otherwise and rte_errno is set. 2784 */ 2785 int 2786 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused, 2787 const struct rte_flow_item *item __rte_unused, 2788 uint64_t item_flags __rte_unused, 2789 uint64_t prev_layer __rte_unused, 2790 struct rte_flow_error *error) 2791 { 2792 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT 2793 const struct rte_flow_item_mpls *mask = item->mask; 2794 struct mlx5_priv *priv = dev->data->dev_private; 2795 int ret; 2796 2797 if (!priv->config.mpls_en) 2798 return rte_flow_error_set(error, ENOTSUP, 2799 RTE_FLOW_ERROR_TYPE_ITEM, item, 2800 "MPLS not supported or" 2801 " disabled in firmware" 2802 " configuration."); 2803 /* MPLS over IP, UDP, GRE is allowed */ 2804 if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 | 2805 MLX5_FLOW_LAYER_OUTER_L4_UDP | 2806 MLX5_FLOW_LAYER_GRE | 2807 MLX5_FLOW_LAYER_GRE_KEY))) 2808 return rte_flow_error_set(error, EINVAL, 2809 RTE_FLOW_ERROR_TYPE_ITEM, item, 2810 "protocol filtering not compatible" 2811 " with MPLS layer"); 2812 /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */ 2813 if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) && 2814 !(item_flags & MLX5_FLOW_LAYER_GRE)) 2815 return rte_flow_error_set(error, ENOTSUP, 2816 RTE_FLOW_ERROR_TYPE_ITEM, item, 2817 "multiple tunnel layers not" 2818 " supported"); 2819 if (!mask) 2820 mask = &rte_flow_item_mpls_mask; 2821 ret = mlx5_flow_item_acceptable 2822 (item, (const uint8_t *)mask, 2823 (const uint8_t *)&rte_flow_item_mpls_mask, 2824 sizeof(struct rte_flow_item_mpls), 2825 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2826 if (ret < 0) 2827 return ret; 2828 return 0; 2829 #else 2830 return rte_flow_error_set(error, ENOTSUP, 2831 RTE_FLOW_ERROR_TYPE_ITEM, item, 2832 "MPLS is not supported by Verbs, please" 2833 " update."); 2834 #endif 2835 } 2836 2837 /** 2838 * Validate NVGRE item. 2839 * 2840 * @param[in] item 2841 * Item specification. 2842 * @param[in] item_flags 2843 * Bit flags to mark detected items. 2844 * @param[in] target_protocol 2845 * The next protocol in the previous item. 2846 * @param[out] error 2847 * Pointer to error structure. 2848 * 2849 * @return 2850 * 0 on success, a negative errno value otherwise and rte_errno is set. 2851 */ 2852 int 2853 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item, 2854 uint64_t item_flags, 2855 uint8_t target_protocol, 2856 struct rte_flow_error *error) 2857 { 2858 const struct rte_flow_item_nvgre *mask = item->mask; 2859 int ret; 2860 2861 if (target_protocol != 0xff && target_protocol != IPPROTO_GRE) 2862 return rte_flow_error_set(error, EINVAL, 2863 RTE_FLOW_ERROR_TYPE_ITEM, item, 2864 "protocol filtering not compatible" 2865 " with this GRE layer"); 2866 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2867 return rte_flow_error_set(error, ENOTSUP, 2868 RTE_FLOW_ERROR_TYPE_ITEM, item, 2869 "multiple tunnel layers not" 2870 " supported"); 2871 if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3)) 2872 return rte_flow_error_set(error, ENOTSUP, 2873 RTE_FLOW_ERROR_TYPE_ITEM, item, 2874 "L3 Layer is missing"); 2875 if (!mask) 2876 mask = &rte_flow_item_nvgre_mask; 2877 ret = mlx5_flow_item_acceptable 2878 (item, (const uint8_t *)mask, 2879 (const uint8_t *)&rte_flow_item_nvgre_mask, 2880 sizeof(struct rte_flow_item_nvgre), 2881 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2882 if (ret < 0) 2883 return ret; 2884 return 0; 2885 } 2886 2887 /** 2888 * Validate eCPRI item. 2889 * 2890 * @param[in] item 2891 * Item specification. 2892 * @param[in] item_flags 2893 * Bit-fields that holds the items detected until now. 2894 * @param[in] last_item 2895 * Previous validated item in the pattern items. 2896 * @param[in] ether_type 2897 * Type in the ethernet layer header (including dot1q). 2898 * @param[in] acc_mask 2899 * Acceptable mask, if NULL default internal default mask 2900 * will be used to check whether item fields are supported. 2901 * @param[out] error 2902 * Pointer to error structure. 2903 * 2904 * @return 2905 * 0 on success, a negative errno value otherwise and rte_errno is set. 2906 */ 2907 int 2908 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item, 2909 uint64_t item_flags, 2910 uint64_t last_item, 2911 uint16_t ether_type, 2912 const struct rte_flow_item_ecpri *acc_mask, 2913 struct rte_flow_error *error) 2914 { 2915 const struct rte_flow_item_ecpri *mask = item->mask; 2916 const struct rte_flow_item_ecpri nic_mask = { 2917 .hdr = { 2918 .common = { 2919 .u32 = 2920 RTE_BE32(((const struct rte_ecpri_common_hdr) { 2921 .type = 0xFF, 2922 }).u32), 2923 }, 2924 .dummy[0] = 0xFFFFFFFF, 2925 }, 2926 }; 2927 const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 | 2928 MLX5_FLOW_LAYER_OUTER_VLAN); 2929 struct rte_flow_item_ecpri mask_lo; 2930 2931 if (!(last_item & outer_l2_vlan) && 2932 last_item != MLX5_FLOW_LAYER_OUTER_L4_UDP) 2933 return rte_flow_error_set(error, EINVAL, 2934 RTE_FLOW_ERROR_TYPE_ITEM, item, 2935 "eCPRI can only follow L2/VLAN layer or UDP layer"); 2936 if ((last_item & outer_l2_vlan) && ether_type && 2937 ether_type != RTE_ETHER_TYPE_ECPRI) 2938 return rte_flow_error_set(error, EINVAL, 2939 RTE_FLOW_ERROR_TYPE_ITEM, item, 2940 "eCPRI cannot follow L2/VLAN layer which ether type is not 0xAEFE"); 2941 if (item_flags & MLX5_FLOW_LAYER_TUNNEL) 2942 return rte_flow_error_set(error, EINVAL, 2943 RTE_FLOW_ERROR_TYPE_ITEM, item, 2944 "eCPRI with tunnel is not supported right now"); 2945 if (item_flags & MLX5_FLOW_LAYER_OUTER_L3) 2946 return rte_flow_error_set(error, ENOTSUP, 2947 RTE_FLOW_ERROR_TYPE_ITEM, item, 2948 "multiple L3 layers not supported"); 2949 else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP) 2950 return rte_flow_error_set(error, EINVAL, 2951 RTE_FLOW_ERROR_TYPE_ITEM, item, 2952 "eCPRI cannot coexist with a TCP layer"); 2953 /* In specification, eCPRI could be over UDP layer. */ 2954 else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP) 2955 return rte_flow_error_set(error, EINVAL, 2956 RTE_FLOW_ERROR_TYPE_ITEM, item, 2957 "eCPRI over UDP layer is not yet supported right now"); 2958 /* Mask for type field in common header could be zero. */ 2959 if (!mask) 2960 mask = &rte_flow_item_ecpri_mask; 2961 mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32); 2962 /* Input mask is in big-endian format. */ 2963 if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff) 2964 return rte_flow_error_set(error, EINVAL, 2965 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 2966 "partial mask is not supported for protocol"); 2967 else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0) 2968 return rte_flow_error_set(error, EINVAL, 2969 RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask, 2970 "message header mask must be after a type mask"); 2971 return mlx5_flow_item_acceptable(item, (const uint8_t *)mask, 2972 acc_mask ? (const uint8_t *)acc_mask 2973 : (const uint8_t *)&nic_mask, 2974 sizeof(struct rte_flow_item_ecpri), 2975 MLX5_ITEM_RANGE_NOT_ACCEPTED, error); 2976 } 2977 2978 /** 2979 * Release resource related QUEUE/RSS action split. 2980 * 2981 * @param dev 2982 * Pointer to Ethernet device. 2983 * @param flow 2984 * Flow to release id's from. 2985 */ 2986 static void 2987 flow_mreg_split_qrss_release(struct rte_eth_dev *dev, 2988 struct rte_flow *flow) 2989 { 2990 struct mlx5_priv *priv = dev->data->dev_private; 2991 uint32_t handle_idx; 2992 struct mlx5_flow_handle *dev_handle; 2993 2994 SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles, 2995 handle_idx, dev_handle, next) 2996 if (dev_handle->split_flow_id) 2997 mlx5_ipool_free(priv->sh->ipool 2998 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], 2999 dev_handle->split_flow_id); 3000 } 3001 3002 static int 3003 flow_null_validate(struct rte_eth_dev *dev __rte_unused, 3004 const struct rte_flow_attr *attr __rte_unused, 3005 const struct rte_flow_item items[] __rte_unused, 3006 const struct rte_flow_action actions[] __rte_unused, 3007 bool external __rte_unused, 3008 int hairpin __rte_unused, 3009 struct rte_flow_error *error) 3010 { 3011 return rte_flow_error_set(error, ENOTSUP, 3012 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 3013 } 3014 3015 static struct mlx5_flow * 3016 flow_null_prepare(struct rte_eth_dev *dev __rte_unused, 3017 const struct rte_flow_attr *attr __rte_unused, 3018 const struct rte_flow_item items[] __rte_unused, 3019 const struct rte_flow_action actions[] __rte_unused, 3020 struct rte_flow_error *error) 3021 { 3022 rte_flow_error_set(error, ENOTSUP, 3023 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 3024 return NULL; 3025 } 3026 3027 static int 3028 flow_null_translate(struct rte_eth_dev *dev __rte_unused, 3029 struct mlx5_flow *dev_flow __rte_unused, 3030 const struct rte_flow_attr *attr __rte_unused, 3031 const struct rte_flow_item items[] __rte_unused, 3032 const struct rte_flow_action actions[] __rte_unused, 3033 struct rte_flow_error *error) 3034 { 3035 return rte_flow_error_set(error, ENOTSUP, 3036 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 3037 } 3038 3039 static int 3040 flow_null_apply(struct rte_eth_dev *dev __rte_unused, 3041 struct rte_flow *flow __rte_unused, 3042 struct rte_flow_error *error) 3043 { 3044 return rte_flow_error_set(error, ENOTSUP, 3045 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 3046 } 3047 3048 static void 3049 flow_null_remove(struct rte_eth_dev *dev __rte_unused, 3050 struct rte_flow *flow __rte_unused) 3051 { 3052 } 3053 3054 static void 3055 flow_null_destroy(struct rte_eth_dev *dev __rte_unused, 3056 struct rte_flow *flow __rte_unused) 3057 { 3058 } 3059 3060 static int 3061 flow_null_query(struct rte_eth_dev *dev __rte_unused, 3062 struct rte_flow *flow __rte_unused, 3063 const struct rte_flow_action *actions __rte_unused, 3064 void *data __rte_unused, 3065 struct rte_flow_error *error) 3066 { 3067 return rte_flow_error_set(error, ENOTSUP, 3068 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL); 3069 } 3070 3071 static int 3072 flow_null_sync_domain(struct rte_eth_dev *dev __rte_unused, 3073 uint32_t domains __rte_unused, 3074 uint32_t flags __rte_unused) 3075 { 3076 return 0; 3077 } 3078 3079 /* Void driver to protect from null pointer reference. */ 3080 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = { 3081 .validate = flow_null_validate, 3082 .prepare = flow_null_prepare, 3083 .translate = flow_null_translate, 3084 .apply = flow_null_apply, 3085 .remove = flow_null_remove, 3086 .destroy = flow_null_destroy, 3087 .query = flow_null_query, 3088 .sync_domain = flow_null_sync_domain, 3089 }; 3090 3091 /** 3092 * Select flow driver type according to flow attributes and device 3093 * configuration. 3094 * 3095 * @param[in] dev 3096 * Pointer to the dev structure. 3097 * @param[in] attr 3098 * Pointer to the flow attributes. 3099 * 3100 * @return 3101 * flow driver type, MLX5_FLOW_TYPE_MAX otherwise. 3102 */ 3103 static enum mlx5_flow_drv_type 3104 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr) 3105 { 3106 struct mlx5_priv *priv = dev->data->dev_private; 3107 /* The OS can determine first a specific flow type (DV, VERBS) */ 3108 enum mlx5_flow_drv_type type = mlx5_flow_os_get_type(); 3109 3110 if (type != MLX5_FLOW_TYPE_MAX) 3111 return type; 3112 /* If no OS specific type - continue with DV/VERBS selection */ 3113 if (attr->transfer && priv->config.dv_esw_en) 3114 type = MLX5_FLOW_TYPE_DV; 3115 if (!attr->transfer) 3116 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV : 3117 MLX5_FLOW_TYPE_VERBS; 3118 return type; 3119 } 3120 3121 #define flow_get_drv_ops(type) flow_drv_ops[type] 3122 3123 /** 3124 * Flow driver validation API. This abstracts calling driver specific functions. 3125 * The type of flow driver is determined according to flow attributes. 3126 * 3127 * @param[in] dev 3128 * Pointer to the dev structure. 3129 * @param[in] attr 3130 * Pointer to the flow attributes. 3131 * @param[in] items 3132 * Pointer to the list of items. 3133 * @param[in] actions 3134 * Pointer to the list of actions. 3135 * @param[in] external 3136 * This flow rule is created by request external to PMD. 3137 * @param[in] hairpin 3138 * Number of hairpin TX actions, 0 means classic flow. 3139 * @param[out] error 3140 * Pointer to the error structure. 3141 * 3142 * @return 3143 * 0 on success, a negative errno value otherwise and rte_errno is set. 3144 */ 3145 static inline int 3146 flow_drv_validate(struct rte_eth_dev *dev, 3147 const struct rte_flow_attr *attr, 3148 const struct rte_flow_item items[], 3149 const struct rte_flow_action actions[], 3150 bool external, int hairpin, struct rte_flow_error *error) 3151 { 3152 const struct mlx5_flow_driver_ops *fops; 3153 enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr); 3154 3155 fops = flow_get_drv_ops(type); 3156 return fops->validate(dev, attr, items, actions, external, 3157 hairpin, error); 3158 } 3159 3160 /** 3161 * Flow driver preparation API. This abstracts calling driver specific 3162 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 3163 * calculates the size of memory required for device flow, allocates the memory, 3164 * initializes the device flow and returns the pointer. 3165 * 3166 * @note 3167 * This function initializes device flow structure such as dv or verbs in 3168 * struct mlx5_flow. However, it is caller's responsibility to initialize the 3169 * rest. For example, adding returning device flow to flow->dev_flow list and 3170 * setting backward reference to the flow should be done out of this function. 3171 * layers field is not filled either. 3172 * 3173 * @param[in] dev 3174 * Pointer to the dev structure. 3175 * @param[in] attr 3176 * Pointer to the flow attributes. 3177 * @param[in] items 3178 * Pointer to the list of items. 3179 * @param[in] actions 3180 * Pointer to the list of actions. 3181 * @param[in] flow_idx 3182 * This memory pool index to the flow. 3183 * @param[out] error 3184 * Pointer to the error structure. 3185 * 3186 * @return 3187 * Pointer to device flow on success, otherwise NULL and rte_errno is set. 3188 */ 3189 static inline struct mlx5_flow * 3190 flow_drv_prepare(struct rte_eth_dev *dev, 3191 const struct rte_flow *flow, 3192 const struct rte_flow_attr *attr, 3193 const struct rte_flow_item items[], 3194 const struct rte_flow_action actions[], 3195 uint32_t flow_idx, 3196 struct rte_flow_error *error) 3197 { 3198 const struct mlx5_flow_driver_ops *fops; 3199 enum mlx5_flow_drv_type type = flow->drv_type; 3200 struct mlx5_flow *mlx5_flow = NULL; 3201 3202 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3203 fops = flow_get_drv_ops(type); 3204 mlx5_flow = fops->prepare(dev, attr, items, actions, error); 3205 if (mlx5_flow) 3206 mlx5_flow->flow_idx = flow_idx; 3207 return mlx5_flow; 3208 } 3209 3210 /** 3211 * Flow driver translation API. This abstracts calling driver specific 3212 * functions. Parent flow (rte_flow) should have driver type (drv_type). It 3213 * translates a generic flow into a driver flow. flow_drv_prepare() must 3214 * precede. 3215 * 3216 * @note 3217 * dev_flow->layers could be filled as a result of parsing during translation 3218 * if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled 3219 * if necessary. As a flow can have multiple dev_flows by RSS flow expansion, 3220 * flow->actions could be overwritten even though all the expanded dev_flows 3221 * have the same actions. 3222 * 3223 * @param[in] dev 3224 * Pointer to the rte dev structure. 3225 * @param[in, out] dev_flow 3226 * Pointer to the mlx5 flow. 3227 * @param[in] attr 3228 * Pointer to the flow attributes. 3229 * @param[in] items 3230 * Pointer to the list of items. 3231 * @param[in] actions 3232 * Pointer to the list of actions. 3233 * @param[out] error 3234 * Pointer to the error structure. 3235 * 3236 * @return 3237 * 0 on success, a negative errno value otherwise and rte_errno is set. 3238 */ 3239 static inline int 3240 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow, 3241 const struct rte_flow_attr *attr, 3242 const struct rte_flow_item items[], 3243 const struct rte_flow_action actions[], 3244 struct rte_flow_error *error) 3245 { 3246 const struct mlx5_flow_driver_ops *fops; 3247 enum mlx5_flow_drv_type type = dev_flow->flow->drv_type; 3248 3249 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3250 fops = flow_get_drv_ops(type); 3251 return fops->translate(dev, dev_flow, attr, items, actions, error); 3252 } 3253 3254 /** 3255 * Flow driver apply API. This abstracts calling driver specific functions. 3256 * Parent flow (rte_flow) should have driver type (drv_type). It applies 3257 * translated driver flows on to device. flow_drv_translate() must precede. 3258 * 3259 * @param[in] dev 3260 * Pointer to Ethernet device structure. 3261 * @param[in, out] flow 3262 * Pointer to flow structure. 3263 * @param[out] error 3264 * Pointer to error structure. 3265 * 3266 * @return 3267 * 0 on success, a negative errno value otherwise and rte_errno is set. 3268 */ 3269 static inline int 3270 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow, 3271 struct rte_flow_error *error) 3272 { 3273 const struct mlx5_flow_driver_ops *fops; 3274 enum mlx5_flow_drv_type type = flow->drv_type; 3275 3276 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3277 fops = flow_get_drv_ops(type); 3278 return fops->apply(dev, flow, error); 3279 } 3280 3281 /** 3282 * Flow driver destroy API. This abstracts calling driver specific functions. 3283 * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow 3284 * on device and releases resources of the flow. 3285 * 3286 * @param[in] dev 3287 * Pointer to Ethernet device. 3288 * @param[in, out] flow 3289 * Pointer to flow structure. 3290 */ 3291 static inline void 3292 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow) 3293 { 3294 const struct mlx5_flow_driver_ops *fops; 3295 enum mlx5_flow_drv_type type = flow->drv_type; 3296 3297 flow_mreg_split_qrss_release(dev, flow); 3298 MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX); 3299 fops = flow_get_drv_ops(type); 3300 fops->destroy(dev, flow); 3301 } 3302 3303 /** 3304 * Get RSS action from the action list. 3305 * 3306 * @param[in] actions 3307 * Pointer to the list of actions. 3308 * 3309 * @return 3310 * Pointer to the RSS action if exist, else return NULL. 3311 */ 3312 static const struct rte_flow_action_rss* 3313 flow_get_rss_action(const struct rte_flow_action actions[]) 3314 { 3315 const struct rte_flow_action_rss *rss = NULL; 3316 3317 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3318 switch (actions->type) { 3319 case RTE_FLOW_ACTION_TYPE_RSS: 3320 rss = actions->conf; 3321 break; 3322 case RTE_FLOW_ACTION_TYPE_SAMPLE: 3323 { 3324 const struct rte_flow_action_sample *sample = 3325 actions->conf; 3326 const struct rte_flow_action *act = sample->actions; 3327 for (; act->type != RTE_FLOW_ACTION_TYPE_END; act++) 3328 if (act->type == RTE_FLOW_ACTION_TYPE_RSS) 3329 rss = act->conf; 3330 break; 3331 } 3332 default: 3333 break; 3334 } 3335 } 3336 return rss; 3337 } 3338 3339 /** 3340 * Get ASO age action by index. 3341 * 3342 * @param[in] dev 3343 * Pointer to the Ethernet device structure. 3344 * @param[in] age_idx 3345 * Index to the ASO age action. 3346 * 3347 * @return 3348 * The specified ASO age action. 3349 */ 3350 struct mlx5_aso_age_action* 3351 flow_aso_age_get_by_idx(struct rte_eth_dev *dev, uint32_t age_idx) 3352 { 3353 uint16_t pool_idx = age_idx & UINT16_MAX; 3354 uint16_t offset = (age_idx >> 16) & UINT16_MAX; 3355 struct mlx5_priv *priv = dev->data->dev_private; 3356 struct mlx5_aso_age_mng *mng = priv->sh->aso_age_mng; 3357 struct mlx5_aso_age_pool *pool = mng->pools[pool_idx]; 3358 3359 return &pool->actions[offset - 1]; 3360 } 3361 3362 /* maps shared action to translated non shared in some actions array */ 3363 struct mlx5_translated_shared_action { 3364 struct rte_flow_shared_action *action; /**< Shared action */ 3365 int index; /**< Index in related array of rte_flow_action */ 3366 }; 3367 3368 /** 3369 * Translates actions of type RTE_FLOW_ACTION_TYPE_SHARED to related 3370 * non shared action if translation possible. 3371 * This functionality used to run same execution path for both shared & non 3372 * shared actions on flow create. All necessary preparations for shared 3373 * action handling should be preformed on *shared* actions list returned 3374 * from this call. 3375 * 3376 * @param[in] dev 3377 * Pointer to Ethernet device. 3378 * @param[in] actions 3379 * List of actions to translate. 3380 * @param[out] shared 3381 * List to store translated shared actions. 3382 * @param[in, out] shared_n 3383 * Size of *shared* array. On return should be updated with number of shared 3384 * actions retrieved from the *actions* list. 3385 * @param[out] translated_actions 3386 * List of actions where all shared actions were translated to non shared 3387 * if possible. NULL if no translation took place. 3388 * @param[out] error 3389 * Pointer to the error structure. 3390 * 3391 * @return 3392 * 0 on success, a negative errno value otherwise and rte_errno is set. 3393 */ 3394 static int 3395 flow_shared_actions_translate(struct rte_eth_dev *dev, 3396 const struct rte_flow_action actions[], 3397 struct mlx5_translated_shared_action *shared, 3398 int *shared_n, 3399 struct rte_flow_action **translated_actions, 3400 struct rte_flow_error *error) 3401 { 3402 struct mlx5_priv *priv = dev->data->dev_private; 3403 struct rte_flow_action *translated = NULL; 3404 size_t actions_size; 3405 int n; 3406 int copied_n = 0; 3407 struct mlx5_translated_shared_action *shared_end = NULL; 3408 3409 for (n = 0; actions[n].type != RTE_FLOW_ACTION_TYPE_END; n++) { 3410 if (actions[n].type != RTE_FLOW_ACTION_TYPE_SHARED) 3411 continue; 3412 if (copied_n == *shared_n) { 3413 return rte_flow_error_set 3414 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_NUM, 3415 NULL, "too many shared actions"); 3416 } 3417 rte_memcpy(&shared[copied_n].action, &actions[n].conf, 3418 sizeof(actions[n].conf)); 3419 shared[copied_n].index = n; 3420 copied_n++; 3421 } 3422 n++; 3423 *shared_n = copied_n; 3424 if (!copied_n) 3425 return 0; 3426 actions_size = sizeof(struct rte_flow_action) * n; 3427 translated = mlx5_malloc(MLX5_MEM_ZERO, actions_size, 0, SOCKET_ID_ANY); 3428 if (!translated) { 3429 rte_errno = ENOMEM; 3430 return -ENOMEM; 3431 } 3432 memcpy(translated, actions, actions_size); 3433 for (shared_end = shared + copied_n; shared < shared_end; shared++) { 3434 struct mlx5_shared_action_rss *shared_rss; 3435 uint32_t act_idx = (uint32_t)(uintptr_t)shared->action; 3436 uint32_t type = act_idx >> MLX5_SHARED_ACTION_TYPE_OFFSET; 3437 uint32_t idx = act_idx & ((1u << MLX5_SHARED_ACTION_TYPE_OFFSET) 3438 - 1); 3439 3440 switch (type) { 3441 case MLX5_SHARED_ACTION_TYPE_RSS: 3442 shared_rss = mlx5_ipool_get 3443 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], idx); 3444 translated[shared->index].type = 3445 RTE_FLOW_ACTION_TYPE_RSS; 3446 translated[shared->index].conf = 3447 &shared_rss->origin; 3448 break; 3449 case MLX5_SHARED_ACTION_TYPE_AGE: 3450 if (priv->sh->flow_hit_aso_en) { 3451 translated[shared->index].type = 3452 (enum rte_flow_action_type) 3453 MLX5_RTE_FLOW_ACTION_TYPE_AGE; 3454 translated[shared->index].conf = 3455 (void *)(uintptr_t)idx; 3456 break; 3457 } 3458 /* Fall-through */ 3459 default: 3460 mlx5_free(translated); 3461 return rte_flow_error_set 3462 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, 3463 NULL, "invalid shared action type"); 3464 } 3465 } 3466 *translated_actions = translated; 3467 return 0; 3468 } 3469 3470 /** 3471 * Get Shared RSS action from the action list. 3472 * 3473 * @param[in] dev 3474 * Pointer to Ethernet device. 3475 * @param[in] shared 3476 * Pointer to the list of actions. 3477 * @param[in] shared_n 3478 * Actions list length. 3479 * 3480 * @return 3481 * The MLX5 RSS action ID if exists, otherwise return 0. 3482 */ 3483 static uint32_t 3484 flow_get_shared_rss_action(struct rte_eth_dev *dev, 3485 struct mlx5_translated_shared_action *shared, 3486 int shared_n) 3487 { 3488 struct mlx5_translated_shared_action *shared_end; 3489 struct mlx5_priv *priv = dev->data->dev_private; 3490 struct mlx5_shared_action_rss *shared_rss; 3491 3492 3493 for (shared_end = shared + shared_n; shared < shared_end; shared++) { 3494 uint32_t act_idx = (uint32_t)(uintptr_t)shared->action; 3495 uint32_t type = act_idx >> MLX5_SHARED_ACTION_TYPE_OFFSET; 3496 uint32_t idx = act_idx & 3497 ((1u << MLX5_SHARED_ACTION_TYPE_OFFSET) - 1); 3498 switch (type) { 3499 case MLX5_SHARED_ACTION_TYPE_RSS: 3500 shared_rss = mlx5_ipool_get 3501 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 3502 idx); 3503 __atomic_add_fetch(&shared_rss->refcnt, 1, 3504 __ATOMIC_RELAXED); 3505 return idx; 3506 default: 3507 break; 3508 } 3509 } 3510 return 0; 3511 } 3512 3513 static unsigned int 3514 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level) 3515 { 3516 const struct rte_flow_item *item; 3517 unsigned int has_vlan = 0; 3518 3519 for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) { 3520 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) { 3521 has_vlan = 1; 3522 break; 3523 } 3524 } 3525 if (has_vlan) 3526 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN : 3527 MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN; 3528 return rss_level < 2 ? MLX5_EXPANSION_ROOT : 3529 MLX5_EXPANSION_ROOT_OUTER; 3530 } 3531 3532 /** 3533 * Get layer flags from the prefix flow. 3534 * 3535 * Some flows may be split to several subflows, the prefix subflow gets the 3536 * match items and the suffix sub flow gets the actions. 3537 * Some actions need the user defined match item flags to get the detail for 3538 * the action. 3539 * This function helps the suffix flow to get the item layer flags from prefix 3540 * subflow. 3541 * 3542 * @param[in] dev_flow 3543 * Pointer the created preifx subflow. 3544 * 3545 * @return 3546 * The layers get from prefix subflow. 3547 */ 3548 static inline uint64_t 3549 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow) 3550 { 3551 uint64_t layers = 0; 3552 3553 /* 3554 * Layers bits could be localization, but usually the compiler will 3555 * help to do the optimization work for source code. 3556 * If no decap actions, use the layers directly. 3557 */ 3558 if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP)) 3559 return dev_flow->handle->layers; 3560 /* Convert L3 layers with decap action. */ 3561 if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4) 3562 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4; 3563 else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6) 3564 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6; 3565 /* Convert L4 layers with decap action. */ 3566 if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP) 3567 layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP; 3568 else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP) 3569 layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP; 3570 return layers; 3571 } 3572 3573 /** 3574 * Get metadata split action information. 3575 * 3576 * @param[in] actions 3577 * Pointer to the list of actions. 3578 * @param[out] qrss 3579 * Pointer to the return pointer. 3580 * @param[out] qrss_type 3581 * Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned 3582 * if no QUEUE/RSS is found. 3583 * @param[out] encap_idx 3584 * Pointer to the index of the encap action if exists, otherwise the last 3585 * action index. 3586 * 3587 * @return 3588 * Total number of actions. 3589 */ 3590 static int 3591 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[], 3592 const struct rte_flow_action **qrss, 3593 int *encap_idx) 3594 { 3595 const struct rte_flow_action_raw_encap *raw_encap; 3596 int actions_n = 0; 3597 int raw_decap_idx = -1; 3598 3599 *encap_idx = -1; 3600 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3601 switch (actions->type) { 3602 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 3603 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 3604 *encap_idx = actions_n; 3605 break; 3606 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 3607 raw_decap_idx = actions_n; 3608 break; 3609 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 3610 raw_encap = actions->conf; 3611 if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) 3612 *encap_idx = raw_decap_idx != -1 ? 3613 raw_decap_idx : actions_n; 3614 break; 3615 case RTE_FLOW_ACTION_TYPE_QUEUE: 3616 case RTE_FLOW_ACTION_TYPE_RSS: 3617 *qrss = actions; 3618 break; 3619 default: 3620 break; 3621 } 3622 actions_n++; 3623 } 3624 if (*encap_idx == -1) 3625 *encap_idx = actions_n; 3626 /* Count RTE_FLOW_ACTION_TYPE_END. */ 3627 return actions_n + 1; 3628 } 3629 3630 /** 3631 * Check meter action from the action list. 3632 * 3633 * @param[in] actions 3634 * Pointer to the list of actions. 3635 * @param[out] mtr 3636 * Pointer to the meter exist flag. 3637 * 3638 * @return 3639 * Total number of actions. 3640 */ 3641 static int 3642 flow_check_meter_action(const struct rte_flow_action actions[], uint32_t *mtr) 3643 { 3644 int actions_n = 0; 3645 3646 MLX5_ASSERT(mtr); 3647 *mtr = 0; 3648 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3649 switch (actions->type) { 3650 case RTE_FLOW_ACTION_TYPE_METER: 3651 *mtr = 1; 3652 break; 3653 default: 3654 break; 3655 } 3656 actions_n++; 3657 } 3658 /* Count RTE_FLOW_ACTION_TYPE_END. */ 3659 return actions_n + 1; 3660 } 3661 3662 /** 3663 * Check if the flow should be split due to hairpin. 3664 * The reason for the split is that in current HW we can't 3665 * support encap and push-vlan on Rx, so if a flow contains 3666 * these actions we move it to Tx. 3667 * 3668 * @param dev 3669 * Pointer to Ethernet device. 3670 * @param[in] attr 3671 * Flow rule attributes. 3672 * @param[in] actions 3673 * Associated actions (list terminated by the END action). 3674 * 3675 * @return 3676 * > 0 the number of actions and the flow should be split, 3677 * 0 when no split required. 3678 */ 3679 static int 3680 flow_check_hairpin_split(struct rte_eth_dev *dev, 3681 const struct rte_flow_attr *attr, 3682 const struct rte_flow_action actions[]) 3683 { 3684 int queue_action = 0; 3685 int action_n = 0; 3686 int split = 0; 3687 const struct rte_flow_action_queue *queue; 3688 const struct rte_flow_action_rss *rss; 3689 const struct rte_flow_action_raw_encap *raw_encap; 3690 const struct rte_eth_hairpin_conf *conf; 3691 3692 if (!attr->ingress) 3693 return 0; 3694 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 3695 switch (actions->type) { 3696 case RTE_FLOW_ACTION_TYPE_QUEUE: 3697 queue = actions->conf; 3698 if (queue == NULL) 3699 return 0; 3700 conf = mlx5_rxq_get_hairpin_conf(dev, queue->index); 3701 if (conf == NULL || conf->tx_explicit != 0) 3702 return 0; 3703 queue_action = 1; 3704 action_n++; 3705 break; 3706 case RTE_FLOW_ACTION_TYPE_RSS: 3707 rss = actions->conf; 3708 if (rss == NULL || rss->queue_num == 0) 3709 return 0; 3710 conf = mlx5_rxq_get_hairpin_conf(dev, rss->queue[0]); 3711 if (conf == NULL || conf->tx_explicit != 0) 3712 return 0; 3713 queue_action = 1; 3714 action_n++; 3715 break; 3716 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 3717 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 3718 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 3719 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 3720 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: 3721 split++; 3722 action_n++; 3723 break; 3724 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 3725 raw_encap = actions->conf; 3726 if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) 3727 split++; 3728 action_n++; 3729 break; 3730 default: 3731 action_n++; 3732 break; 3733 } 3734 } 3735 if (split && queue_action) 3736 return action_n; 3737 return 0; 3738 } 3739 3740 /* Declare flow create/destroy prototype in advance. */ 3741 static uint32_t 3742 flow_list_create(struct rte_eth_dev *dev, uint32_t *list, 3743 const struct rte_flow_attr *attr, 3744 const struct rte_flow_item items[], 3745 const struct rte_flow_action actions[], 3746 bool external, struct rte_flow_error *error); 3747 3748 static void 3749 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list, 3750 uint32_t flow_idx); 3751 3752 int 3753 flow_dv_mreg_match_cb(struct mlx5_hlist *list __rte_unused, 3754 struct mlx5_hlist_entry *entry, 3755 uint64_t key, void *cb_ctx __rte_unused) 3756 { 3757 struct mlx5_flow_mreg_copy_resource *mcp_res = 3758 container_of(entry, typeof(*mcp_res), hlist_ent); 3759 3760 return mcp_res->mark_id != key; 3761 } 3762 3763 struct mlx5_hlist_entry * 3764 flow_dv_mreg_create_cb(struct mlx5_hlist *list, uint64_t key, 3765 void *cb_ctx) 3766 { 3767 struct rte_eth_dev *dev = list->ctx; 3768 struct mlx5_priv *priv = dev->data->dev_private; 3769 struct mlx5_flow_cb_ctx *ctx = cb_ctx; 3770 struct mlx5_flow_mreg_copy_resource *mcp_res; 3771 struct rte_flow_error *error = ctx->error; 3772 uint32_t idx = 0; 3773 int ret; 3774 uint32_t mark_id = key; 3775 struct rte_flow_attr attr = { 3776 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP, 3777 .ingress = 1, 3778 }; 3779 struct mlx5_rte_flow_item_tag tag_spec = { 3780 .data = mark_id, 3781 }; 3782 struct rte_flow_item items[] = { 3783 [1] = { .type = RTE_FLOW_ITEM_TYPE_END, }, 3784 }; 3785 struct rte_flow_action_mark ftag = { 3786 .id = mark_id, 3787 }; 3788 struct mlx5_flow_action_copy_mreg cp_mreg = { 3789 .dst = REG_B, 3790 .src = REG_NON, 3791 }; 3792 struct rte_flow_action_jump jump = { 3793 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP, 3794 }; 3795 struct rte_flow_action actions[] = { 3796 [3] = { .type = RTE_FLOW_ACTION_TYPE_END, }, 3797 }; 3798 3799 /* Fill the register fileds in the flow. */ 3800 ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error); 3801 if (ret < 0) 3802 return NULL; 3803 tag_spec.id = ret; 3804 ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error); 3805 if (ret < 0) 3806 return NULL; 3807 cp_mreg.src = ret; 3808 /* Provide the full width of FLAG specific value. */ 3809 if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT)) 3810 tag_spec.data = MLX5_FLOW_MARK_DEFAULT; 3811 /* Build a new flow. */ 3812 if (mark_id != MLX5_DEFAULT_COPY_ID) { 3813 items[0] = (struct rte_flow_item){ 3814 .type = (enum rte_flow_item_type) 3815 MLX5_RTE_FLOW_ITEM_TYPE_TAG, 3816 .spec = &tag_spec, 3817 }; 3818 items[1] = (struct rte_flow_item){ 3819 .type = RTE_FLOW_ITEM_TYPE_END, 3820 }; 3821 actions[0] = (struct rte_flow_action){ 3822 .type = (enum rte_flow_action_type) 3823 MLX5_RTE_FLOW_ACTION_TYPE_MARK, 3824 .conf = &ftag, 3825 }; 3826 actions[1] = (struct rte_flow_action){ 3827 .type = (enum rte_flow_action_type) 3828 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 3829 .conf = &cp_mreg, 3830 }; 3831 actions[2] = (struct rte_flow_action){ 3832 .type = RTE_FLOW_ACTION_TYPE_JUMP, 3833 .conf = &jump, 3834 }; 3835 actions[3] = (struct rte_flow_action){ 3836 .type = RTE_FLOW_ACTION_TYPE_END, 3837 }; 3838 } else { 3839 /* Default rule, wildcard match. */ 3840 attr.priority = MLX5_FLOW_PRIO_RSVD; 3841 items[0] = (struct rte_flow_item){ 3842 .type = RTE_FLOW_ITEM_TYPE_END, 3843 }; 3844 actions[0] = (struct rte_flow_action){ 3845 .type = (enum rte_flow_action_type) 3846 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 3847 .conf = &cp_mreg, 3848 }; 3849 actions[1] = (struct rte_flow_action){ 3850 .type = RTE_FLOW_ACTION_TYPE_JUMP, 3851 .conf = &jump, 3852 }; 3853 actions[2] = (struct rte_flow_action){ 3854 .type = RTE_FLOW_ACTION_TYPE_END, 3855 }; 3856 } 3857 /* Build a new entry. */ 3858 mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx); 3859 if (!mcp_res) { 3860 rte_errno = ENOMEM; 3861 return NULL; 3862 } 3863 mcp_res->idx = idx; 3864 mcp_res->mark_id = mark_id; 3865 /* 3866 * The copy Flows are not included in any list. There 3867 * ones are referenced from other Flows and can not 3868 * be applied, removed, deleted in ardbitrary order 3869 * by list traversing. 3870 */ 3871 mcp_res->rix_flow = flow_list_create(dev, NULL, &attr, items, 3872 actions, false, error); 3873 if (!mcp_res->rix_flow) { 3874 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], idx); 3875 return NULL; 3876 } 3877 return &mcp_res->hlist_ent; 3878 } 3879 3880 /** 3881 * Add a flow of copying flow metadata registers in RX_CP_TBL. 3882 * 3883 * As mark_id is unique, if there's already a registered flow for the mark_id, 3884 * return by increasing the reference counter of the resource. Otherwise, create 3885 * the resource (mcp_res) and flow. 3886 * 3887 * Flow looks like, 3888 * - If ingress port is ANY and reg_c[1] is mark_id, 3889 * flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL. 3890 * 3891 * For default flow (zero mark_id), flow is like, 3892 * - If ingress port is ANY, 3893 * reg_b := reg_c[0] and jump to RX_ACT_TBL. 3894 * 3895 * @param dev 3896 * Pointer to Ethernet device. 3897 * @param mark_id 3898 * ID of MARK action, zero means default flow for META. 3899 * @param[out] error 3900 * Perform verbose error reporting if not NULL. 3901 * 3902 * @return 3903 * Associated resource on success, NULL otherwise and rte_errno is set. 3904 */ 3905 static struct mlx5_flow_mreg_copy_resource * 3906 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id, 3907 struct rte_flow_error *error) 3908 { 3909 struct mlx5_priv *priv = dev->data->dev_private; 3910 struct mlx5_hlist_entry *entry; 3911 struct mlx5_flow_cb_ctx ctx = { 3912 .dev = dev, 3913 .error = error, 3914 }; 3915 3916 /* Check if already registered. */ 3917 MLX5_ASSERT(priv->mreg_cp_tbl); 3918 entry = mlx5_hlist_register(priv->mreg_cp_tbl, mark_id, &ctx); 3919 if (!entry) 3920 return NULL; 3921 return container_of(entry, struct mlx5_flow_mreg_copy_resource, 3922 hlist_ent); 3923 } 3924 3925 void 3926 flow_dv_mreg_remove_cb(struct mlx5_hlist *list, struct mlx5_hlist_entry *entry) 3927 { 3928 struct mlx5_flow_mreg_copy_resource *mcp_res = 3929 container_of(entry, typeof(*mcp_res), hlist_ent); 3930 struct rte_eth_dev *dev = list->ctx; 3931 struct mlx5_priv *priv = dev->data->dev_private; 3932 3933 MLX5_ASSERT(mcp_res->rix_flow); 3934 flow_list_destroy(dev, NULL, mcp_res->rix_flow); 3935 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx); 3936 } 3937 3938 /** 3939 * Release flow in RX_CP_TBL. 3940 * 3941 * @param dev 3942 * Pointer to Ethernet device. 3943 * @flow 3944 * Parent flow for wich copying is provided. 3945 */ 3946 static void 3947 flow_mreg_del_copy_action(struct rte_eth_dev *dev, 3948 struct rte_flow *flow) 3949 { 3950 struct mlx5_flow_mreg_copy_resource *mcp_res; 3951 struct mlx5_priv *priv = dev->data->dev_private; 3952 3953 if (!flow->rix_mreg_copy) 3954 return; 3955 mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP], 3956 flow->rix_mreg_copy); 3957 if (!mcp_res || !priv->mreg_cp_tbl) 3958 return; 3959 MLX5_ASSERT(mcp_res->rix_flow); 3960 mlx5_hlist_unregister(priv->mreg_cp_tbl, &mcp_res->hlist_ent); 3961 flow->rix_mreg_copy = 0; 3962 } 3963 3964 /** 3965 * Remove the default copy action from RX_CP_TBL. 3966 * 3967 * This functions is called in the mlx5_dev_start(). No thread safe 3968 * is guaranteed. 3969 * 3970 * @param dev 3971 * Pointer to Ethernet device. 3972 */ 3973 static void 3974 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev) 3975 { 3976 struct mlx5_hlist_entry *entry; 3977 struct mlx5_priv *priv = dev->data->dev_private; 3978 3979 /* Check if default flow is registered. */ 3980 if (!priv->mreg_cp_tbl) 3981 return; 3982 entry = mlx5_hlist_lookup(priv->mreg_cp_tbl, 3983 MLX5_DEFAULT_COPY_ID, NULL); 3984 if (!entry) 3985 return; 3986 mlx5_hlist_unregister(priv->mreg_cp_tbl, entry); 3987 } 3988 3989 /** 3990 * Add the default copy action in in RX_CP_TBL. 3991 * 3992 * This functions is called in the mlx5_dev_start(). No thread safe 3993 * is guaranteed. 3994 * 3995 * @param dev 3996 * Pointer to Ethernet device. 3997 * @param[out] error 3998 * Perform verbose error reporting if not NULL. 3999 * 4000 * @return 4001 * 0 for success, negative value otherwise and rte_errno is set. 4002 */ 4003 static int 4004 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev, 4005 struct rte_flow_error *error) 4006 { 4007 struct mlx5_priv *priv = dev->data->dev_private; 4008 struct mlx5_flow_mreg_copy_resource *mcp_res; 4009 4010 /* Check whether extensive metadata feature is engaged. */ 4011 if (!priv->config.dv_flow_en || 4012 priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY || 4013 !mlx5_flow_ext_mreg_supported(dev) || 4014 !priv->sh->dv_regc0_mask) 4015 return 0; 4016 /* 4017 * Add default mreg copy flow may be called multiple time, but 4018 * only be called once in stop. Avoid register it twice. 4019 */ 4020 if (mlx5_hlist_lookup(priv->mreg_cp_tbl, MLX5_DEFAULT_COPY_ID, NULL)) 4021 return 0; 4022 mcp_res = flow_mreg_add_copy_action(dev, MLX5_DEFAULT_COPY_ID, error); 4023 if (!mcp_res) 4024 return -rte_errno; 4025 return 0; 4026 } 4027 4028 /** 4029 * Add a flow of copying flow metadata registers in RX_CP_TBL. 4030 * 4031 * All the flow having Q/RSS action should be split by 4032 * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL 4033 * performs the following, 4034 * - CQE->flow_tag := reg_c[1] (MARK) 4035 * - CQE->flow_table_metadata (reg_b) := reg_c[0] (META) 4036 * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1] 4037 * but there should be a flow per each MARK ID set by MARK action. 4038 * 4039 * For the aforementioned reason, if there's a MARK action in flow's action 4040 * list, a corresponding flow should be added to the RX_CP_TBL in order to copy 4041 * the MARK ID to CQE's flow_tag like, 4042 * - If reg_c[1] is mark_id, 4043 * flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL. 4044 * 4045 * For SET_META action which stores value in reg_c[0], as the destination is 4046 * also a flow metadata register (reg_b), adding a default flow is enough. Zero 4047 * MARK ID means the default flow. The default flow looks like, 4048 * - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL. 4049 * 4050 * @param dev 4051 * Pointer to Ethernet device. 4052 * @param flow 4053 * Pointer to flow structure. 4054 * @param[in] actions 4055 * Pointer to the list of actions. 4056 * @param[out] error 4057 * Perform verbose error reporting if not NULL. 4058 * 4059 * @return 4060 * 0 on success, negative value otherwise and rte_errno is set. 4061 */ 4062 static int 4063 flow_mreg_update_copy_table(struct rte_eth_dev *dev, 4064 struct rte_flow *flow, 4065 const struct rte_flow_action *actions, 4066 struct rte_flow_error *error) 4067 { 4068 struct mlx5_priv *priv = dev->data->dev_private; 4069 struct mlx5_dev_config *config = &priv->config; 4070 struct mlx5_flow_mreg_copy_resource *mcp_res; 4071 const struct rte_flow_action_mark *mark; 4072 4073 /* Check whether extensive metadata feature is engaged. */ 4074 if (!config->dv_flow_en || 4075 config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY || 4076 !mlx5_flow_ext_mreg_supported(dev) || 4077 !priv->sh->dv_regc0_mask) 4078 return 0; 4079 /* Find MARK action. */ 4080 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4081 switch (actions->type) { 4082 case RTE_FLOW_ACTION_TYPE_FLAG: 4083 mcp_res = flow_mreg_add_copy_action 4084 (dev, MLX5_FLOW_MARK_DEFAULT, error); 4085 if (!mcp_res) 4086 return -rte_errno; 4087 flow->rix_mreg_copy = mcp_res->idx; 4088 return 0; 4089 case RTE_FLOW_ACTION_TYPE_MARK: 4090 mark = (const struct rte_flow_action_mark *) 4091 actions->conf; 4092 mcp_res = 4093 flow_mreg_add_copy_action(dev, mark->id, error); 4094 if (!mcp_res) 4095 return -rte_errno; 4096 flow->rix_mreg_copy = mcp_res->idx; 4097 return 0; 4098 default: 4099 break; 4100 } 4101 } 4102 return 0; 4103 } 4104 4105 #define MLX5_MAX_SPLIT_ACTIONS 24 4106 #define MLX5_MAX_SPLIT_ITEMS 24 4107 4108 /** 4109 * Split the hairpin flow. 4110 * Since HW can't support encap and push-vlan on Rx, we move these 4111 * actions to Tx. 4112 * If the count action is after the encap then we also 4113 * move the count action. in this case the count will also measure 4114 * the outer bytes. 4115 * 4116 * @param dev 4117 * Pointer to Ethernet device. 4118 * @param[in] actions 4119 * Associated actions (list terminated by the END action). 4120 * @param[out] actions_rx 4121 * Rx flow actions. 4122 * @param[out] actions_tx 4123 * Tx flow actions.. 4124 * @param[out] pattern_tx 4125 * The pattern items for the Tx flow. 4126 * @param[out] flow_id 4127 * The flow ID connected to this flow. 4128 * 4129 * @return 4130 * 0 on success. 4131 */ 4132 static int 4133 flow_hairpin_split(struct rte_eth_dev *dev, 4134 const struct rte_flow_action actions[], 4135 struct rte_flow_action actions_rx[], 4136 struct rte_flow_action actions_tx[], 4137 struct rte_flow_item pattern_tx[], 4138 uint32_t flow_id) 4139 { 4140 const struct rte_flow_action_raw_encap *raw_encap; 4141 const struct rte_flow_action_raw_decap *raw_decap; 4142 struct mlx5_rte_flow_action_set_tag *set_tag; 4143 struct rte_flow_action *tag_action; 4144 struct mlx5_rte_flow_item_tag *tag_item; 4145 struct rte_flow_item *item; 4146 char *addr; 4147 int encap = 0; 4148 4149 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4150 switch (actions->type) { 4151 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP: 4152 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP: 4153 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 4154 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 4155 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP: 4156 rte_memcpy(actions_tx, actions, 4157 sizeof(struct rte_flow_action)); 4158 actions_tx++; 4159 break; 4160 case RTE_FLOW_ACTION_TYPE_COUNT: 4161 if (encap) { 4162 rte_memcpy(actions_tx, actions, 4163 sizeof(struct rte_flow_action)); 4164 actions_tx++; 4165 } else { 4166 rte_memcpy(actions_rx, actions, 4167 sizeof(struct rte_flow_action)); 4168 actions_rx++; 4169 } 4170 break; 4171 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 4172 raw_encap = actions->conf; 4173 if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE) { 4174 memcpy(actions_tx, actions, 4175 sizeof(struct rte_flow_action)); 4176 actions_tx++; 4177 encap = 1; 4178 } else { 4179 rte_memcpy(actions_rx, actions, 4180 sizeof(struct rte_flow_action)); 4181 actions_rx++; 4182 } 4183 break; 4184 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 4185 raw_decap = actions->conf; 4186 if (raw_decap->size < MLX5_ENCAPSULATION_DECISION_SIZE) { 4187 memcpy(actions_tx, actions, 4188 sizeof(struct rte_flow_action)); 4189 actions_tx++; 4190 } else { 4191 rte_memcpy(actions_rx, actions, 4192 sizeof(struct rte_flow_action)); 4193 actions_rx++; 4194 } 4195 break; 4196 default: 4197 rte_memcpy(actions_rx, actions, 4198 sizeof(struct rte_flow_action)); 4199 actions_rx++; 4200 break; 4201 } 4202 } 4203 /* Add set meta action and end action for the Rx flow. */ 4204 tag_action = actions_rx; 4205 tag_action->type = (enum rte_flow_action_type) 4206 MLX5_RTE_FLOW_ACTION_TYPE_TAG; 4207 actions_rx++; 4208 rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action)); 4209 actions_rx++; 4210 set_tag = (void *)actions_rx; 4211 set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL); 4212 MLX5_ASSERT(set_tag->id > REG_NON); 4213 set_tag->data = flow_id; 4214 tag_action->conf = set_tag; 4215 /* Create Tx item list. */ 4216 rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action)); 4217 addr = (void *)&pattern_tx[2]; 4218 item = pattern_tx; 4219 item->type = (enum rte_flow_item_type) 4220 MLX5_RTE_FLOW_ITEM_TYPE_TAG; 4221 tag_item = (void *)addr; 4222 tag_item->data = flow_id; 4223 tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL); 4224 MLX5_ASSERT(set_tag->id > REG_NON); 4225 item->spec = tag_item; 4226 addr += sizeof(struct mlx5_rte_flow_item_tag); 4227 tag_item = (void *)addr; 4228 tag_item->data = UINT32_MAX; 4229 tag_item->id = UINT16_MAX; 4230 item->mask = tag_item; 4231 item->last = NULL; 4232 item++; 4233 item->type = RTE_FLOW_ITEM_TYPE_END; 4234 return 0; 4235 } 4236 4237 /** 4238 * The last stage of splitting chain, just creates the subflow 4239 * without any modification. 4240 * 4241 * @param[in] dev 4242 * Pointer to Ethernet device. 4243 * @param[in] flow 4244 * Parent flow structure pointer. 4245 * @param[in, out] sub_flow 4246 * Pointer to return the created subflow, may be NULL. 4247 * @param[in] attr 4248 * Flow rule attributes. 4249 * @param[in] items 4250 * Pattern specification (list terminated by the END pattern item). 4251 * @param[in] actions 4252 * Associated actions (list terminated by the END action). 4253 * @param[in] flow_split_info 4254 * Pointer to flow split info structure. 4255 * @param[out] error 4256 * Perform verbose error reporting if not NULL. 4257 * @return 4258 * 0 on success, negative value otherwise 4259 */ 4260 static int 4261 flow_create_split_inner(struct rte_eth_dev *dev, 4262 struct rte_flow *flow, 4263 struct mlx5_flow **sub_flow, 4264 const struct rte_flow_attr *attr, 4265 const struct rte_flow_item items[], 4266 const struct rte_flow_action actions[], 4267 struct mlx5_flow_split_info *flow_split_info, 4268 struct rte_flow_error *error) 4269 { 4270 struct mlx5_flow *dev_flow; 4271 4272 dev_flow = flow_drv_prepare(dev, flow, attr, items, actions, 4273 flow_split_info->flow_idx, error); 4274 if (!dev_flow) 4275 return -rte_errno; 4276 dev_flow->flow = flow; 4277 dev_flow->external = flow_split_info->external; 4278 dev_flow->skip_scale = flow_split_info->skip_scale; 4279 /* Subflow object was created, we must include one in the list. */ 4280 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx, 4281 dev_flow->handle, next); 4282 /* 4283 * If dev_flow is as one of the suffix flow, some actions in suffix 4284 * flow may need some user defined item layer flags, and pass the 4285 * Metadate rxq mark flag to suffix flow as well. 4286 */ 4287 if (flow_split_info->prefix_layers) 4288 dev_flow->handle->layers = flow_split_info->prefix_layers; 4289 if (flow_split_info->prefix_mark) 4290 dev_flow->handle->mark = 1; 4291 if (sub_flow) 4292 *sub_flow = dev_flow; 4293 return flow_drv_translate(dev, dev_flow, attr, items, actions, error); 4294 } 4295 4296 /** 4297 * Split the meter flow. 4298 * 4299 * As meter flow will split to three sub flow, other than meter 4300 * action, the other actions make sense to only meter accepts 4301 * the packet. If it need to be dropped, no other additional 4302 * actions should be take. 4303 * 4304 * One kind of special action which decapsulates the L3 tunnel 4305 * header will be in the prefix sub flow, as not to take the 4306 * L3 tunnel header into account. 4307 * 4308 * @param dev 4309 * Pointer to Ethernet device. 4310 * @param[in] items 4311 * Pattern specification (list terminated by the END pattern item). 4312 * @param[out] sfx_items 4313 * Suffix flow match items (list terminated by the END pattern item). 4314 * @param[in] actions 4315 * Associated actions (list terminated by the END action). 4316 * @param[out] actions_sfx 4317 * Suffix flow actions. 4318 * @param[out] actions_pre 4319 * Prefix flow actions. 4320 * @param[out] pattern_sfx 4321 * The pattern items for the suffix flow. 4322 * @param[out] tag_sfx 4323 * Pointer to suffix flow tag. 4324 * 4325 * @return 4326 * 0 on success. 4327 */ 4328 static int 4329 flow_meter_split_prep(struct rte_eth_dev *dev, 4330 const struct rte_flow_item items[], 4331 struct rte_flow_item sfx_items[], 4332 const struct rte_flow_action actions[], 4333 struct rte_flow_action actions_sfx[], 4334 struct rte_flow_action actions_pre[]) 4335 { 4336 struct mlx5_priv *priv = dev->data->dev_private; 4337 struct rte_flow_action *tag_action = NULL; 4338 struct rte_flow_item *tag_item; 4339 struct mlx5_rte_flow_action_set_tag *set_tag; 4340 struct rte_flow_error error; 4341 const struct rte_flow_action_raw_encap *raw_encap; 4342 const struct rte_flow_action_raw_decap *raw_decap; 4343 struct mlx5_rte_flow_item_tag *tag_spec; 4344 struct mlx5_rte_flow_item_tag *tag_mask; 4345 uint32_t tag_id = 0; 4346 bool copy_vlan = false; 4347 4348 /* Prepare the actions for prefix and suffix flow. */ 4349 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4350 struct rte_flow_action **action_cur = NULL; 4351 4352 switch (actions->type) { 4353 case RTE_FLOW_ACTION_TYPE_METER: 4354 /* Add the extra tag action first. */ 4355 tag_action = actions_pre; 4356 tag_action->type = (enum rte_flow_action_type) 4357 MLX5_RTE_FLOW_ACTION_TYPE_TAG; 4358 actions_pre++; 4359 action_cur = &actions_pre; 4360 break; 4361 case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP: 4362 case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP: 4363 action_cur = &actions_pre; 4364 break; 4365 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP: 4366 raw_encap = actions->conf; 4367 if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE) 4368 action_cur = &actions_pre; 4369 break; 4370 case RTE_FLOW_ACTION_TYPE_RAW_DECAP: 4371 raw_decap = actions->conf; 4372 if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE) 4373 action_cur = &actions_pre; 4374 break; 4375 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN: 4376 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID: 4377 copy_vlan = true; 4378 break; 4379 default: 4380 break; 4381 } 4382 if (!action_cur) 4383 action_cur = &actions_sfx; 4384 memcpy(*action_cur, actions, sizeof(struct rte_flow_action)); 4385 (*action_cur)++; 4386 } 4387 /* Add end action to the actions. */ 4388 actions_sfx->type = RTE_FLOW_ACTION_TYPE_END; 4389 actions_pre->type = RTE_FLOW_ACTION_TYPE_END; 4390 actions_pre++; 4391 /* Set the tag. */ 4392 set_tag = (void *)actions_pre; 4393 set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error); 4394 mlx5_ipool_malloc(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], 4395 &tag_id); 4396 if (tag_id >= (1 << (sizeof(tag_id) * 8 - MLX5_MTR_COLOR_BITS))) { 4397 DRV_LOG(ERR, "Port %u meter flow id exceed max limit.", 4398 dev->data->port_id); 4399 mlx5_ipool_free(priv->sh->ipool 4400 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], tag_id); 4401 return 0; 4402 } else if (!tag_id) { 4403 return 0; 4404 } 4405 set_tag->data = tag_id << MLX5_MTR_COLOR_BITS; 4406 assert(tag_action); 4407 tag_action->conf = set_tag; 4408 /* Prepare the suffix subflow items. */ 4409 tag_item = sfx_items++; 4410 for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) { 4411 int item_type = items->type; 4412 4413 switch (item_type) { 4414 case RTE_FLOW_ITEM_TYPE_PORT_ID: 4415 memcpy(sfx_items, items, sizeof(*sfx_items)); 4416 sfx_items++; 4417 break; 4418 case RTE_FLOW_ITEM_TYPE_VLAN: 4419 if (copy_vlan) { 4420 memcpy(sfx_items, items, sizeof(*sfx_items)); 4421 /* 4422 * Convert to internal match item, it is used 4423 * for vlan push and set vid. 4424 */ 4425 sfx_items->type = (enum rte_flow_item_type) 4426 MLX5_RTE_FLOW_ITEM_TYPE_VLAN; 4427 sfx_items++; 4428 } 4429 break; 4430 default: 4431 break; 4432 } 4433 } 4434 sfx_items->type = RTE_FLOW_ITEM_TYPE_END; 4435 sfx_items++; 4436 tag_spec = (struct mlx5_rte_flow_item_tag *)sfx_items; 4437 tag_spec->data = tag_id << MLX5_MTR_COLOR_BITS; 4438 tag_spec->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error); 4439 tag_mask = tag_spec + 1; 4440 tag_mask->data = 0xffffff00; 4441 tag_item->type = (enum rte_flow_item_type) 4442 MLX5_RTE_FLOW_ITEM_TYPE_TAG; 4443 tag_item->spec = tag_spec; 4444 tag_item->last = NULL; 4445 tag_item->mask = tag_mask; 4446 return tag_id; 4447 } 4448 4449 /** 4450 * Split action list having QUEUE/RSS for metadata register copy. 4451 * 4452 * Once Q/RSS action is detected in user's action list, the flow action 4453 * should be split in order to copy metadata registers, which will happen in 4454 * RX_CP_TBL like, 4455 * - CQE->flow_tag := reg_c[1] (MARK) 4456 * - CQE->flow_table_metadata (reg_b) := reg_c[0] (META) 4457 * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL. 4458 * This is because the last action of each flow must be a terminal action 4459 * (QUEUE, RSS or DROP). 4460 * 4461 * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is 4462 * stored and kept in the mlx5_flow structure per each sub_flow. 4463 * 4464 * The Q/RSS action is replaced with, 4465 * - SET_TAG, setting the allocated flow ID to reg_c[2]. 4466 * And the following JUMP action is added at the end, 4467 * - JUMP, to RX_CP_TBL. 4468 * 4469 * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by 4470 * flow_create_split_metadata() routine. The flow will look like, 4471 * - If flow ID matches (reg_c[2]), perform Q/RSS. 4472 * 4473 * @param dev 4474 * Pointer to Ethernet device. 4475 * @param[out] split_actions 4476 * Pointer to store split actions to jump to CP_TBL. 4477 * @param[in] actions 4478 * Pointer to the list of original flow actions. 4479 * @param[in] qrss 4480 * Pointer to the Q/RSS action. 4481 * @param[in] actions_n 4482 * Number of original actions. 4483 * @param[out] error 4484 * Perform verbose error reporting if not NULL. 4485 * 4486 * @return 4487 * non-zero unique flow_id on success, otherwise 0 and 4488 * error/rte_error are set. 4489 */ 4490 static uint32_t 4491 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev, 4492 struct rte_flow_action *split_actions, 4493 const struct rte_flow_action *actions, 4494 const struct rte_flow_action *qrss, 4495 int actions_n, struct rte_flow_error *error) 4496 { 4497 struct mlx5_priv *priv = dev->data->dev_private; 4498 struct mlx5_rte_flow_action_set_tag *set_tag; 4499 struct rte_flow_action_jump *jump; 4500 const int qrss_idx = qrss - actions; 4501 uint32_t flow_id = 0; 4502 int ret = 0; 4503 4504 /* 4505 * Given actions will be split 4506 * - Replace QUEUE/RSS action with SET_TAG to set flow ID. 4507 * - Add jump to mreg CP_TBL. 4508 * As a result, there will be one more action. 4509 */ 4510 ++actions_n; 4511 memcpy(split_actions, actions, sizeof(*split_actions) * actions_n); 4512 set_tag = (void *)(split_actions + actions_n); 4513 /* 4514 * If tag action is not set to void(it means we are not the meter 4515 * suffix flow), add the tag action. Since meter suffix flow already 4516 * has the tag added. 4517 */ 4518 if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) { 4519 /* 4520 * Allocate the new subflow ID. This one is unique within 4521 * device and not shared with representors. Otherwise, 4522 * we would have to resolve multi-thread access synch 4523 * issue. Each flow on the shared device is appended 4524 * with source vport identifier, so the resulting 4525 * flows will be unique in the shared (by master and 4526 * representors) domain even if they have coinciding 4527 * IDs. 4528 */ 4529 mlx5_ipool_malloc(priv->sh->ipool 4530 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &flow_id); 4531 if (!flow_id) 4532 return rte_flow_error_set(error, ENOMEM, 4533 RTE_FLOW_ERROR_TYPE_ACTION, 4534 NULL, "can't allocate id " 4535 "for split Q/RSS subflow"); 4536 /* Internal SET_TAG action to set flow ID. */ 4537 *set_tag = (struct mlx5_rte_flow_action_set_tag){ 4538 .data = flow_id, 4539 }; 4540 ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error); 4541 if (ret < 0) 4542 return ret; 4543 set_tag->id = ret; 4544 /* Construct new actions array. */ 4545 /* Replace QUEUE/RSS action. */ 4546 split_actions[qrss_idx] = (struct rte_flow_action){ 4547 .type = (enum rte_flow_action_type) 4548 MLX5_RTE_FLOW_ACTION_TYPE_TAG, 4549 .conf = set_tag, 4550 }; 4551 } 4552 /* JUMP action to jump to mreg copy table (CP_TBL). */ 4553 jump = (void *)(set_tag + 1); 4554 *jump = (struct rte_flow_action_jump){ 4555 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP, 4556 }; 4557 split_actions[actions_n - 2] = (struct rte_flow_action){ 4558 .type = RTE_FLOW_ACTION_TYPE_JUMP, 4559 .conf = jump, 4560 }; 4561 split_actions[actions_n - 1] = (struct rte_flow_action){ 4562 .type = RTE_FLOW_ACTION_TYPE_END, 4563 }; 4564 return flow_id; 4565 } 4566 4567 /** 4568 * Extend the given action list for Tx metadata copy. 4569 * 4570 * Copy the given action list to the ext_actions and add flow metadata register 4571 * copy action in order to copy reg_a set by WQE to reg_c[0]. 4572 * 4573 * @param[out] ext_actions 4574 * Pointer to the extended action list. 4575 * @param[in] actions 4576 * Pointer to the list of actions. 4577 * @param[in] actions_n 4578 * Number of actions in the list. 4579 * @param[out] error 4580 * Perform verbose error reporting if not NULL. 4581 * @param[in] encap_idx 4582 * The encap action inndex. 4583 * 4584 * @return 4585 * 0 on success, negative value otherwise 4586 */ 4587 static int 4588 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev, 4589 struct rte_flow_action *ext_actions, 4590 const struct rte_flow_action *actions, 4591 int actions_n, struct rte_flow_error *error, 4592 int encap_idx) 4593 { 4594 struct mlx5_flow_action_copy_mreg *cp_mreg = 4595 (struct mlx5_flow_action_copy_mreg *) 4596 (ext_actions + actions_n + 1); 4597 int ret; 4598 4599 ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error); 4600 if (ret < 0) 4601 return ret; 4602 cp_mreg->dst = ret; 4603 ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error); 4604 if (ret < 0) 4605 return ret; 4606 cp_mreg->src = ret; 4607 if (encap_idx != 0) 4608 memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx); 4609 if (encap_idx == actions_n - 1) { 4610 ext_actions[actions_n - 1] = (struct rte_flow_action){ 4611 .type = (enum rte_flow_action_type) 4612 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 4613 .conf = cp_mreg, 4614 }; 4615 ext_actions[actions_n] = (struct rte_flow_action){ 4616 .type = RTE_FLOW_ACTION_TYPE_END, 4617 }; 4618 } else { 4619 ext_actions[encap_idx] = (struct rte_flow_action){ 4620 .type = (enum rte_flow_action_type) 4621 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 4622 .conf = cp_mreg, 4623 }; 4624 memcpy(ext_actions + encap_idx + 1, actions + encap_idx, 4625 sizeof(*ext_actions) * (actions_n - encap_idx)); 4626 } 4627 return 0; 4628 } 4629 4630 /** 4631 * Check the match action from the action list. 4632 * 4633 * @param[in] actions 4634 * Pointer to the list of actions. 4635 * @param[in] attr 4636 * Flow rule attributes. 4637 * @param[in] action 4638 * The action to be check if exist. 4639 * @param[out] match_action_pos 4640 * Pointer to the position of the matched action if exists, otherwise is -1. 4641 * @param[out] qrss_action_pos 4642 * Pointer to the position of the Queue/RSS action if exists, otherwise is -1. 4643 * @param[out] modify_after_mirror 4644 * Pointer to the flag of modify action after FDB mirroring. 4645 * 4646 * @return 4647 * > 0 the total number of actions. 4648 * 0 if not found match action in action list. 4649 */ 4650 static int 4651 flow_check_match_action(const struct rte_flow_action actions[], 4652 const struct rte_flow_attr *attr, 4653 enum rte_flow_action_type action, 4654 int *match_action_pos, int *qrss_action_pos, 4655 int *modify_after_mirror) 4656 { 4657 const struct rte_flow_action_sample *sample; 4658 int actions_n = 0; 4659 uint32_t ratio = 0; 4660 int sub_type = 0; 4661 int flag = 0; 4662 int fdb_mirror = 0; 4663 4664 *match_action_pos = -1; 4665 *qrss_action_pos = -1; 4666 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 4667 if (actions->type == action) { 4668 flag = 1; 4669 *match_action_pos = actions_n; 4670 } 4671 switch (actions->type) { 4672 case RTE_FLOW_ACTION_TYPE_QUEUE: 4673 case RTE_FLOW_ACTION_TYPE_RSS: 4674 *qrss_action_pos = actions_n; 4675 break; 4676 case RTE_FLOW_ACTION_TYPE_SAMPLE: 4677 sample = actions->conf; 4678 ratio = sample->ratio; 4679 sub_type = ((const struct rte_flow_action *) 4680 (sample->actions))->type; 4681 if (ratio == 1 && attr->transfer) 4682 fdb_mirror = 1; 4683 break; 4684 case RTE_FLOW_ACTION_TYPE_SET_MAC_SRC: 4685 case RTE_FLOW_ACTION_TYPE_SET_MAC_DST: 4686 case RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC: 4687 case RTE_FLOW_ACTION_TYPE_SET_IPV4_DST: 4688 case RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC: 4689 case RTE_FLOW_ACTION_TYPE_SET_IPV6_DST: 4690 case RTE_FLOW_ACTION_TYPE_SET_TP_SRC: 4691 case RTE_FLOW_ACTION_TYPE_SET_TP_DST: 4692 case RTE_FLOW_ACTION_TYPE_DEC_TTL: 4693 case RTE_FLOW_ACTION_TYPE_SET_TTL: 4694 case RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ: 4695 case RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ: 4696 case RTE_FLOW_ACTION_TYPE_INC_TCP_ACK: 4697 case RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK: 4698 case RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP: 4699 case RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP: 4700 case RTE_FLOW_ACTION_TYPE_FLAG: 4701 case RTE_FLOW_ACTION_TYPE_MARK: 4702 case RTE_FLOW_ACTION_TYPE_SET_META: 4703 case RTE_FLOW_ACTION_TYPE_SET_TAG: 4704 if (fdb_mirror) 4705 *modify_after_mirror = 1; 4706 break; 4707 default: 4708 break; 4709 } 4710 actions_n++; 4711 } 4712 if (flag && fdb_mirror && !*modify_after_mirror) { 4713 /* FDB mirroring uses the destination array to implement 4714 * instead of FLOW_SAMPLER object. 4715 */ 4716 if (sub_type != RTE_FLOW_ACTION_TYPE_END) 4717 flag = 0; 4718 } 4719 /* Count RTE_FLOW_ACTION_TYPE_END. */ 4720 return flag ? actions_n + 1 : 0; 4721 } 4722 4723 #define SAMPLE_SUFFIX_ITEM 2 4724 4725 /** 4726 * Split the sample flow. 4727 * 4728 * As sample flow will split to two sub flow, sample flow with 4729 * sample action, the other actions will move to new suffix flow. 4730 * 4731 * Also add unique tag id with tag action in the sample flow, 4732 * the same tag id will be as match in the suffix flow. 4733 * 4734 * @param dev 4735 * Pointer to Ethernet device. 4736 * @param[in] add_tag 4737 * Add extra tag action flag. 4738 * @param[out] sfx_items 4739 * Suffix flow match items (list terminated by the END pattern item). 4740 * @param[in] actions 4741 * Associated actions (list terminated by the END action). 4742 * @param[out] actions_sfx 4743 * Suffix flow actions. 4744 * @param[out] actions_pre 4745 * Prefix flow actions. 4746 * @param[in] actions_n 4747 * The total number of actions. 4748 * @param[in] sample_action_pos 4749 * The sample action position. 4750 * @param[in] qrss_action_pos 4751 * The Queue/RSS action position. 4752 * @param[in] jump_table 4753 * Add extra jump action flag. 4754 * @param[out] error 4755 * Perform verbose error reporting if not NULL. 4756 * 4757 * @return 4758 * 0 on success, or unique flow_id, a negative errno value 4759 * otherwise and rte_errno is set. 4760 */ 4761 static int 4762 flow_sample_split_prep(struct rte_eth_dev *dev, 4763 int add_tag, 4764 struct rte_flow_item sfx_items[], 4765 const struct rte_flow_action actions[], 4766 struct rte_flow_action actions_sfx[], 4767 struct rte_flow_action actions_pre[], 4768 int actions_n, 4769 int sample_action_pos, 4770 int qrss_action_pos, 4771 int jump_table, 4772 struct rte_flow_error *error) 4773 { 4774 struct mlx5_priv *priv = dev->data->dev_private; 4775 struct mlx5_rte_flow_action_set_tag *set_tag; 4776 struct mlx5_rte_flow_item_tag *tag_spec; 4777 struct mlx5_rte_flow_item_tag *tag_mask; 4778 struct rte_flow_action_jump *jump_action; 4779 uint32_t tag_id = 0; 4780 int index; 4781 int append_index = 0; 4782 int ret; 4783 4784 if (sample_action_pos < 0) 4785 return rte_flow_error_set(error, EINVAL, 4786 RTE_FLOW_ERROR_TYPE_ACTION, 4787 NULL, "invalid position of sample " 4788 "action in list"); 4789 /* Prepare the actions for prefix and suffix flow. */ 4790 if (qrss_action_pos >= 0 && qrss_action_pos < sample_action_pos) { 4791 index = qrss_action_pos; 4792 /* Put the preceding the Queue/RSS action into prefix flow. */ 4793 if (index != 0) 4794 memcpy(actions_pre, actions, 4795 sizeof(struct rte_flow_action) * index); 4796 /* Put others preceding the sample action into prefix flow. */ 4797 if (sample_action_pos > index + 1) 4798 memcpy(actions_pre + index, actions + index + 1, 4799 sizeof(struct rte_flow_action) * 4800 (sample_action_pos - index - 1)); 4801 index = sample_action_pos - 1; 4802 /* Put Queue/RSS action into Suffix flow. */ 4803 memcpy(actions_sfx, actions + qrss_action_pos, 4804 sizeof(struct rte_flow_action)); 4805 actions_sfx++; 4806 } else { 4807 index = sample_action_pos; 4808 if (index != 0) 4809 memcpy(actions_pre, actions, 4810 sizeof(struct rte_flow_action) * index); 4811 } 4812 /* For CX5, add an extra tag action for NIC-RX and E-Switch ingress. 4813 * For CX6DX and above, metadata registers Cx preserve their value, 4814 * add an extra tag action for NIC-RX and E-Switch Domain. 4815 */ 4816 if (add_tag) { 4817 /* Prepare the prefix tag action. */ 4818 append_index++; 4819 set_tag = (void *)(actions_pre + actions_n + append_index); 4820 ret = mlx5_flow_get_reg_id(dev, MLX5_APP_TAG, 0, error); 4821 if (ret < 0) 4822 return ret; 4823 set_tag->id = ret; 4824 mlx5_ipool_malloc(priv->sh->ipool 4825 [MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], &tag_id); 4826 set_tag->data = tag_id; 4827 /* Prepare the suffix subflow items. */ 4828 tag_spec = (void *)(sfx_items + SAMPLE_SUFFIX_ITEM); 4829 tag_spec->data = tag_id; 4830 tag_spec->id = set_tag->id; 4831 tag_mask = tag_spec + 1; 4832 tag_mask->data = UINT32_MAX; 4833 sfx_items[0] = (struct rte_flow_item){ 4834 .type = (enum rte_flow_item_type) 4835 MLX5_RTE_FLOW_ITEM_TYPE_TAG, 4836 .spec = tag_spec, 4837 .last = NULL, 4838 .mask = tag_mask, 4839 }; 4840 sfx_items[1] = (struct rte_flow_item){ 4841 .type = (enum rte_flow_item_type) 4842 RTE_FLOW_ITEM_TYPE_END, 4843 }; 4844 /* Prepare the tag action in prefix subflow. */ 4845 actions_pre[index++] = 4846 (struct rte_flow_action){ 4847 .type = (enum rte_flow_action_type) 4848 MLX5_RTE_FLOW_ACTION_TYPE_TAG, 4849 .conf = set_tag, 4850 }; 4851 } 4852 memcpy(actions_pre + index, actions + sample_action_pos, 4853 sizeof(struct rte_flow_action)); 4854 index += 1; 4855 /* For the modify action after the sample action in E-Switch mirroring, 4856 * Add the extra jump action in prefix subflow and jump into the next 4857 * table, then do the modify action in the new table. 4858 */ 4859 if (jump_table) { 4860 /* Prepare the prefix jump action. */ 4861 append_index++; 4862 jump_action = (void *)(actions_pre + actions_n + append_index); 4863 jump_action->group = jump_table; 4864 actions_pre[index++] = 4865 (struct rte_flow_action){ 4866 .type = (enum rte_flow_action_type) 4867 RTE_FLOW_ACTION_TYPE_JUMP, 4868 .conf = jump_action, 4869 }; 4870 } 4871 actions_pre[index] = (struct rte_flow_action){ 4872 .type = (enum rte_flow_action_type) 4873 RTE_FLOW_ACTION_TYPE_END, 4874 }; 4875 /* Put the actions after sample into Suffix flow. */ 4876 memcpy(actions_sfx, actions + sample_action_pos + 1, 4877 sizeof(struct rte_flow_action) * 4878 (actions_n - sample_action_pos - 1)); 4879 return tag_id; 4880 } 4881 4882 /** 4883 * The splitting for metadata feature. 4884 * 4885 * - Q/RSS action on NIC Rx should be split in order to pass by 4886 * the mreg copy table (RX_CP_TBL) and then it jumps to the 4887 * action table (RX_ACT_TBL) which has the split Q/RSS action. 4888 * 4889 * - All the actions on NIC Tx should have a mreg copy action to 4890 * copy reg_a from WQE to reg_c[0]. 4891 * 4892 * @param dev 4893 * Pointer to Ethernet device. 4894 * @param[in] flow 4895 * Parent flow structure pointer. 4896 * @param[in] attr 4897 * Flow rule attributes. 4898 * @param[in] items 4899 * Pattern specification (list terminated by the END pattern item). 4900 * @param[in] actions 4901 * Associated actions (list terminated by the END action). 4902 * @param[in] flow_split_info 4903 * Pointer to flow split info structure. 4904 * @param[out] error 4905 * Perform verbose error reporting if not NULL. 4906 * @return 4907 * 0 on success, negative value otherwise 4908 */ 4909 static int 4910 flow_create_split_metadata(struct rte_eth_dev *dev, 4911 struct rte_flow *flow, 4912 const struct rte_flow_attr *attr, 4913 const struct rte_flow_item items[], 4914 const struct rte_flow_action actions[], 4915 struct mlx5_flow_split_info *flow_split_info, 4916 struct rte_flow_error *error) 4917 { 4918 struct mlx5_priv *priv = dev->data->dev_private; 4919 struct mlx5_dev_config *config = &priv->config; 4920 const struct rte_flow_action *qrss = NULL; 4921 struct rte_flow_action *ext_actions = NULL; 4922 struct mlx5_flow *dev_flow = NULL; 4923 uint32_t qrss_id = 0; 4924 int mtr_sfx = 0; 4925 size_t act_size; 4926 int actions_n; 4927 int encap_idx; 4928 int ret; 4929 4930 /* Check whether extensive metadata feature is engaged. */ 4931 if (!config->dv_flow_en || 4932 config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY || 4933 !mlx5_flow_ext_mreg_supported(dev)) 4934 return flow_create_split_inner(dev, flow, NULL, attr, items, 4935 actions, flow_split_info, error); 4936 actions_n = flow_parse_metadata_split_actions_info(actions, &qrss, 4937 &encap_idx); 4938 if (qrss) { 4939 /* Exclude hairpin flows from splitting. */ 4940 if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) { 4941 const struct rte_flow_action_queue *queue; 4942 4943 queue = qrss->conf; 4944 if (mlx5_rxq_get_type(dev, queue->index) == 4945 MLX5_RXQ_TYPE_HAIRPIN) 4946 qrss = NULL; 4947 } else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) { 4948 const struct rte_flow_action_rss *rss; 4949 4950 rss = qrss->conf; 4951 if (mlx5_rxq_get_type(dev, rss->queue[0]) == 4952 MLX5_RXQ_TYPE_HAIRPIN) 4953 qrss = NULL; 4954 } 4955 } 4956 if (qrss) { 4957 /* Check if it is in meter suffix table. */ 4958 mtr_sfx = attr->group == (attr->transfer ? 4959 (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) : 4960 MLX5_FLOW_TABLE_LEVEL_SUFFIX); 4961 /* 4962 * Q/RSS action on NIC Rx should be split in order to pass by 4963 * the mreg copy table (RX_CP_TBL) and then it jumps to the 4964 * action table (RX_ACT_TBL) which has the split Q/RSS action. 4965 */ 4966 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) + 4967 sizeof(struct rte_flow_action_set_tag) + 4968 sizeof(struct rte_flow_action_jump); 4969 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0, 4970 SOCKET_ID_ANY); 4971 if (!ext_actions) 4972 return rte_flow_error_set(error, ENOMEM, 4973 RTE_FLOW_ERROR_TYPE_ACTION, 4974 NULL, "no memory to split " 4975 "metadata flow"); 4976 /* 4977 * If we are the suffix flow of meter, tag already exist. 4978 * Set the tag action to void. 4979 */ 4980 if (mtr_sfx) 4981 ext_actions[qrss - actions].type = 4982 RTE_FLOW_ACTION_TYPE_VOID; 4983 else 4984 ext_actions[qrss - actions].type = 4985 (enum rte_flow_action_type) 4986 MLX5_RTE_FLOW_ACTION_TYPE_TAG; 4987 /* 4988 * Create the new actions list with removed Q/RSS action 4989 * and appended set tag and jump to register copy table 4990 * (RX_CP_TBL). We should preallocate unique tag ID here 4991 * in advance, because it is needed for set tag action. 4992 */ 4993 qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions, 4994 qrss, actions_n, error); 4995 if (!mtr_sfx && !qrss_id) { 4996 ret = -rte_errno; 4997 goto exit; 4998 } 4999 } else if (attr->egress && !attr->transfer) { 5000 /* 5001 * All the actions on NIC Tx should have a metadata register 5002 * copy action to copy reg_a from WQE to reg_c[meta] 5003 */ 5004 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) + 5005 sizeof(struct mlx5_flow_action_copy_mreg); 5006 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0, 5007 SOCKET_ID_ANY); 5008 if (!ext_actions) 5009 return rte_flow_error_set(error, ENOMEM, 5010 RTE_FLOW_ERROR_TYPE_ACTION, 5011 NULL, "no memory to split " 5012 "metadata flow"); 5013 /* Create the action list appended with copy register. */ 5014 ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions, 5015 actions_n, error, encap_idx); 5016 if (ret < 0) 5017 goto exit; 5018 } 5019 /* Add the unmodified original or prefix subflow. */ 5020 ret = flow_create_split_inner(dev, flow, &dev_flow, attr, 5021 items, ext_actions ? ext_actions : 5022 actions, flow_split_info, error); 5023 if (ret < 0) 5024 goto exit; 5025 MLX5_ASSERT(dev_flow); 5026 if (qrss) { 5027 const struct rte_flow_attr q_attr = { 5028 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP, 5029 .ingress = 1, 5030 }; 5031 /* Internal PMD action to set register. */ 5032 struct mlx5_rte_flow_item_tag q_tag_spec = { 5033 .data = qrss_id, 5034 .id = REG_NON, 5035 }; 5036 struct rte_flow_item q_items[] = { 5037 { 5038 .type = (enum rte_flow_item_type) 5039 MLX5_RTE_FLOW_ITEM_TYPE_TAG, 5040 .spec = &q_tag_spec, 5041 .last = NULL, 5042 .mask = NULL, 5043 }, 5044 { 5045 .type = RTE_FLOW_ITEM_TYPE_END, 5046 }, 5047 }; 5048 struct rte_flow_action q_actions[] = { 5049 { 5050 .type = qrss->type, 5051 .conf = qrss->conf, 5052 }, 5053 { 5054 .type = RTE_FLOW_ACTION_TYPE_END, 5055 }, 5056 }; 5057 uint64_t layers = flow_get_prefix_layer_flags(dev_flow); 5058 5059 /* 5060 * Configure the tag item only if there is no meter subflow. 5061 * Since tag is already marked in the meter suffix subflow 5062 * we can just use the meter suffix items as is. 5063 */ 5064 if (qrss_id) { 5065 /* Not meter subflow. */ 5066 MLX5_ASSERT(!mtr_sfx); 5067 /* 5068 * Put unique id in prefix flow due to it is destroyed 5069 * after suffix flow and id will be freed after there 5070 * is no actual flows with this id and identifier 5071 * reallocation becomes possible (for example, for 5072 * other flows in other threads). 5073 */ 5074 dev_flow->handle->split_flow_id = qrss_id; 5075 ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, 5076 error); 5077 if (ret < 0) 5078 goto exit; 5079 q_tag_spec.id = ret; 5080 } 5081 dev_flow = NULL; 5082 /* Add suffix subflow to execute Q/RSS. */ 5083 flow_split_info->prefix_layers = layers; 5084 flow_split_info->prefix_mark = 0; 5085 ret = flow_create_split_inner(dev, flow, &dev_flow, 5086 &q_attr, mtr_sfx ? items : 5087 q_items, q_actions, 5088 flow_split_info, error); 5089 if (ret < 0) 5090 goto exit; 5091 /* qrss ID should be freed if failed. */ 5092 qrss_id = 0; 5093 MLX5_ASSERT(dev_flow); 5094 } 5095 5096 exit: 5097 /* 5098 * We do not destroy the partially created sub_flows in case of error. 5099 * These ones are included into parent flow list and will be destroyed 5100 * by flow_drv_destroy. 5101 */ 5102 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RSS_EXPANTION_FLOW_ID], 5103 qrss_id); 5104 mlx5_free(ext_actions); 5105 return ret; 5106 } 5107 5108 /** 5109 * The splitting for meter feature. 5110 * 5111 * - The meter flow will be split to two flows as prefix and 5112 * suffix flow. The packets make sense only it pass the prefix 5113 * meter action. 5114 * 5115 * - Reg_C_5 is used for the packet to match betweend prefix and 5116 * suffix flow. 5117 * 5118 * @param dev 5119 * Pointer to Ethernet device. 5120 * @param[in] flow 5121 * Parent flow structure pointer. 5122 * @param[in] attr 5123 * Flow rule attributes. 5124 * @param[in] items 5125 * Pattern specification (list terminated by the END pattern item). 5126 * @param[in] actions 5127 * Associated actions (list terminated by the END action). 5128 * @param[in] flow_split_info 5129 * Pointer to flow split info structure. 5130 * @param[out] error 5131 * Perform verbose error reporting if not NULL. 5132 * @return 5133 * 0 on success, negative value otherwise 5134 */ 5135 static int 5136 flow_create_split_meter(struct rte_eth_dev *dev, 5137 struct rte_flow *flow, 5138 const struct rte_flow_attr *attr, 5139 const struct rte_flow_item items[], 5140 const struct rte_flow_action actions[], 5141 struct mlx5_flow_split_info *flow_split_info, 5142 struct rte_flow_error *error) 5143 { 5144 struct mlx5_priv *priv = dev->data->dev_private; 5145 struct rte_flow_action *sfx_actions = NULL; 5146 struct rte_flow_action *pre_actions = NULL; 5147 struct rte_flow_item *sfx_items = NULL; 5148 struct mlx5_flow *dev_flow = NULL; 5149 struct rte_flow_attr sfx_attr = *attr; 5150 uint32_t mtr = 0; 5151 uint32_t mtr_tag_id = 0; 5152 size_t act_size; 5153 size_t item_size; 5154 int actions_n = 0; 5155 int ret; 5156 5157 if (priv->mtr_en) 5158 actions_n = flow_check_meter_action(actions, &mtr); 5159 if (mtr) { 5160 /* The five prefix actions: meter, decap, encap, tag, end. */ 5161 act_size = sizeof(struct rte_flow_action) * (actions_n + 5) + 5162 sizeof(struct mlx5_rte_flow_action_set_tag); 5163 /* tag, vlan, port id, end. */ 5164 #define METER_SUFFIX_ITEM 4 5165 item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM + 5166 sizeof(struct mlx5_rte_flow_item_tag) * 2; 5167 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size), 5168 0, SOCKET_ID_ANY); 5169 if (!sfx_actions) 5170 return rte_flow_error_set(error, ENOMEM, 5171 RTE_FLOW_ERROR_TYPE_ACTION, 5172 NULL, "no memory to split " 5173 "meter flow"); 5174 sfx_items = (struct rte_flow_item *)((char *)sfx_actions + 5175 act_size); 5176 pre_actions = sfx_actions + actions_n; 5177 mtr_tag_id = flow_meter_split_prep(dev, items, sfx_items, 5178 actions, sfx_actions, 5179 pre_actions); 5180 if (!mtr_tag_id) { 5181 ret = -rte_errno; 5182 goto exit; 5183 } 5184 /* Add the prefix subflow. */ 5185 flow_split_info->prefix_mark = 0; 5186 ret = flow_create_split_inner(dev, flow, &dev_flow, 5187 attr, items, pre_actions, 5188 flow_split_info, error); 5189 if (ret) { 5190 ret = -rte_errno; 5191 goto exit; 5192 } 5193 dev_flow->handle->split_flow_id = mtr_tag_id; 5194 /* Setting the sfx group atrr. */ 5195 sfx_attr.group = sfx_attr.transfer ? 5196 (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) : 5197 MLX5_FLOW_TABLE_LEVEL_SUFFIX; 5198 flow_split_info->prefix_layers = 5199 flow_get_prefix_layer_flags(dev_flow); 5200 flow_split_info->prefix_mark = dev_flow->handle->mark; 5201 } 5202 /* Add the prefix subflow. */ 5203 ret = flow_create_split_metadata(dev, flow, 5204 &sfx_attr, sfx_items ? 5205 sfx_items : items, 5206 sfx_actions ? sfx_actions : actions, 5207 flow_split_info, error); 5208 exit: 5209 if (sfx_actions) 5210 mlx5_free(sfx_actions); 5211 return ret; 5212 } 5213 5214 /** 5215 * The splitting for sample feature. 5216 * 5217 * Once Sample action is detected in the action list, the flow actions should 5218 * be split into prefix sub flow and suffix sub flow. 5219 * 5220 * The original items remain in the prefix sub flow, all actions preceding the 5221 * sample action and the sample action itself will be copied to the prefix 5222 * sub flow, the actions following the sample action will be copied to the 5223 * suffix sub flow, Queue action always be located in the suffix sub flow. 5224 * 5225 * In order to make the packet from prefix sub flow matches with suffix sub 5226 * flow, an extra tag action be added into prefix sub flow, and the suffix sub 5227 * flow uses tag item with the unique flow id. 5228 * 5229 * @param dev 5230 * Pointer to Ethernet device. 5231 * @param[in] flow 5232 * Parent flow structure pointer. 5233 * @param[in] attr 5234 * Flow rule attributes. 5235 * @param[in] items 5236 * Pattern specification (list terminated by the END pattern item). 5237 * @param[in] actions 5238 * Associated actions (list terminated by the END action). 5239 * @param[in] flow_split_info 5240 * Pointer to flow split info structure. 5241 * @param[out] error 5242 * Perform verbose error reporting if not NULL. 5243 * @return 5244 * 0 on success, negative value otherwise 5245 */ 5246 static int 5247 flow_create_split_sample(struct rte_eth_dev *dev, 5248 struct rte_flow *flow, 5249 const struct rte_flow_attr *attr, 5250 const struct rte_flow_item items[], 5251 const struct rte_flow_action actions[], 5252 struct mlx5_flow_split_info *flow_split_info, 5253 struct rte_flow_error *error) 5254 { 5255 struct mlx5_priv *priv = dev->data->dev_private; 5256 struct rte_flow_action *sfx_actions = NULL; 5257 struct rte_flow_action *pre_actions = NULL; 5258 struct rte_flow_item *sfx_items = NULL; 5259 struct mlx5_flow *dev_flow = NULL; 5260 struct rte_flow_attr sfx_attr = *attr; 5261 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 5262 struct mlx5_flow_dv_sample_resource *sample_res; 5263 struct mlx5_flow_tbl_data_entry *sfx_tbl_data; 5264 struct mlx5_flow_tbl_resource *sfx_tbl; 5265 #endif 5266 size_t act_size; 5267 size_t item_size; 5268 uint32_t fdb_tx = 0; 5269 int32_t tag_id = 0; 5270 int actions_n = 0; 5271 int sample_action_pos; 5272 int qrss_action_pos; 5273 int add_tag = 0; 5274 int modify_after_mirror = 0; 5275 uint16_t jump_table = 0; 5276 const uint32_t next_ft_step = 1; 5277 int ret = 0; 5278 5279 if (priv->sampler_en) 5280 actions_n = flow_check_match_action(actions, attr, 5281 RTE_FLOW_ACTION_TYPE_SAMPLE, 5282 &sample_action_pos, &qrss_action_pos, 5283 &modify_after_mirror); 5284 if (actions_n) { 5285 /* The prefix actions must includes sample, tag, end. */ 5286 act_size = sizeof(struct rte_flow_action) * (actions_n * 2 + 1) 5287 + sizeof(struct mlx5_rte_flow_action_set_tag); 5288 item_size = sizeof(struct rte_flow_item) * SAMPLE_SUFFIX_ITEM + 5289 sizeof(struct mlx5_rte_flow_item_tag) * 2; 5290 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + 5291 item_size), 0, SOCKET_ID_ANY); 5292 if (!sfx_actions) 5293 return rte_flow_error_set(error, ENOMEM, 5294 RTE_FLOW_ERROR_TYPE_ACTION, 5295 NULL, "no memory to split " 5296 "sample flow"); 5297 /* The representor_id is -1 for uplink. */ 5298 fdb_tx = (attr->transfer && priv->representor_id != -1); 5299 /* 5300 * When reg_c_preserve is set, metadata registers Cx preserve 5301 * their value even through packet duplication. 5302 */ 5303 add_tag = (!fdb_tx || priv->config.hca_attr.reg_c_preserve); 5304 if (add_tag) 5305 sfx_items = (struct rte_flow_item *)((char *)sfx_actions 5306 + act_size); 5307 if (modify_after_mirror) 5308 jump_table = attr->group * MLX5_FLOW_TABLE_FACTOR + 5309 next_ft_step; 5310 pre_actions = sfx_actions + actions_n; 5311 tag_id = flow_sample_split_prep(dev, add_tag, sfx_items, 5312 actions, sfx_actions, 5313 pre_actions, actions_n, 5314 sample_action_pos, 5315 qrss_action_pos, jump_table, 5316 error); 5317 if (tag_id < 0 || (add_tag && !tag_id)) { 5318 ret = -rte_errno; 5319 goto exit; 5320 } 5321 if (modify_after_mirror) 5322 flow_split_info->skip_scale = 5323 1 << MLX5_SCALE_JUMP_FLOW_GROUP_BIT; 5324 /* Add the prefix subflow. */ 5325 ret = flow_create_split_inner(dev, flow, &dev_flow, attr, 5326 items, pre_actions, 5327 flow_split_info, error); 5328 if (ret) { 5329 ret = -rte_errno; 5330 goto exit; 5331 } 5332 dev_flow->handle->split_flow_id = tag_id; 5333 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 5334 if (!modify_after_mirror) { 5335 /* Set the sfx group attr. */ 5336 sample_res = (struct mlx5_flow_dv_sample_resource *) 5337 dev_flow->dv.sample_res; 5338 sfx_tbl = (struct mlx5_flow_tbl_resource *) 5339 sample_res->normal_path_tbl; 5340 sfx_tbl_data = container_of(sfx_tbl, 5341 struct mlx5_flow_tbl_data_entry, 5342 tbl); 5343 sfx_attr.group = sfx_attr.transfer ? 5344 (sfx_tbl_data->table_id - 1) : 5345 sfx_tbl_data->table_id; 5346 } else { 5347 MLX5_ASSERT(attr->transfer); 5348 sfx_attr.group = jump_table; 5349 } 5350 flow_split_info->prefix_layers = 5351 flow_get_prefix_layer_flags(dev_flow); 5352 flow_split_info->prefix_mark = dev_flow->handle->mark; 5353 /* Suffix group level already be scaled with factor, set 5354 * MLX5_SCALE_FLOW_GROUP_BIT of skip_scale to 1 to avoid scale 5355 * again in translation. 5356 */ 5357 flow_split_info->skip_scale = 1 << MLX5_SCALE_FLOW_GROUP_BIT; 5358 #endif 5359 } 5360 /* Add the suffix subflow. */ 5361 ret = flow_create_split_meter(dev, flow, &sfx_attr, 5362 sfx_items ? sfx_items : items, 5363 sfx_actions ? sfx_actions : actions, 5364 flow_split_info, error); 5365 exit: 5366 if (sfx_actions) 5367 mlx5_free(sfx_actions); 5368 return ret; 5369 } 5370 5371 /** 5372 * Split the flow to subflow set. The splitters might be linked 5373 * in the chain, like this: 5374 * flow_create_split_outer() calls: 5375 * flow_create_split_meter() calls: 5376 * flow_create_split_metadata(meter_subflow_0) calls: 5377 * flow_create_split_inner(metadata_subflow_0) 5378 * flow_create_split_inner(metadata_subflow_1) 5379 * flow_create_split_inner(metadata_subflow_2) 5380 * flow_create_split_metadata(meter_subflow_1) calls: 5381 * flow_create_split_inner(metadata_subflow_0) 5382 * flow_create_split_inner(metadata_subflow_1) 5383 * flow_create_split_inner(metadata_subflow_2) 5384 * 5385 * This provide flexible way to add new levels of flow splitting. 5386 * The all of successfully created subflows are included to the 5387 * parent flow dev_flow list. 5388 * 5389 * @param dev 5390 * Pointer to Ethernet device. 5391 * @param[in] flow 5392 * Parent flow structure pointer. 5393 * @param[in] attr 5394 * Flow rule attributes. 5395 * @param[in] items 5396 * Pattern specification (list terminated by the END pattern item). 5397 * @param[in] actions 5398 * Associated actions (list terminated by the END action). 5399 * @param[in] flow_split_info 5400 * Pointer to flow split info structure. 5401 * @param[out] error 5402 * Perform verbose error reporting if not NULL. 5403 * @return 5404 * 0 on success, negative value otherwise 5405 */ 5406 static int 5407 flow_create_split_outer(struct rte_eth_dev *dev, 5408 struct rte_flow *flow, 5409 const struct rte_flow_attr *attr, 5410 const struct rte_flow_item items[], 5411 const struct rte_flow_action actions[], 5412 struct mlx5_flow_split_info *flow_split_info, 5413 struct rte_flow_error *error) 5414 { 5415 int ret; 5416 5417 ret = flow_create_split_sample(dev, flow, attr, items, 5418 actions, flow_split_info, error); 5419 MLX5_ASSERT(ret <= 0); 5420 return ret; 5421 } 5422 5423 static struct mlx5_flow_tunnel * 5424 flow_tunnel_from_rule(struct rte_eth_dev *dev, 5425 const struct rte_flow_attr *attr, 5426 const struct rte_flow_item items[], 5427 const struct rte_flow_action actions[]) 5428 { 5429 struct mlx5_flow_tunnel *tunnel; 5430 5431 #pragma GCC diagnostic push 5432 #pragma GCC diagnostic ignored "-Wcast-qual" 5433 if (is_flow_tunnel_match_rule(dev, attr, items, actions)) 5434 tunnel = (struct mlx5_flow_tunnel *)items[0].spec; 5435 else if (is_flow_tunnel_steer_rule(dev, attr, items, actions)) 5436 tunnel = (struct mlx5_flow_tunnel *)actions[0].conf; 5437 else 5438 tunnel = NULL; 5439 #pragma GCC diagnostic pop 5440 5441 return tunnel; 5442 } 5443 5444 /** 5445 * Adjust flow RSS workspace if needed. 5446 * 5447 * @param wks 5448 * Pointer to thread flow work space. 5449 * @param rss_desc 5450 * Pointer to RSS descriptor. 5451 * @param[in] nrssq_num 5452 * New RSS queue number. 5453 * 5454 * @return 5455 * 0 on success, -1 otherwise and rte_errno is set. 5456 */ 5457 static int 5458 flow_rss_workspace_adjust(struct mlx5_flow_workspace *wks, 5459 struct mlx5_flow_rss_desc *rss_desc, 5460 uint32_t nrssq_num) 5461 { 5462 if (likely(nrssq_num <= wks->rssq_num)) 5463 return 0; 5464 rss_desc->queue = realloc(rss_desc->queue, 5465 sizeof(*rss_desc->queue) * RTE_ALIGN(nrssq_num, 2)); 5466 if (!rss_desc->queue) { 5467 rte_errno = ENOMEM; 5468 return -1; 5469 } 5470 wks->rssq_num = RTE_ALIGN(nrssq_num, 2); 5471 return 0; 5472 } 5473 5474 /** 5475 * Create a flow and add it to @p list. 5476 * 5477 * @param dev 5478 * Pointer to Ethernet device. 5479 * @param list 5480 * Pointer to a TAILQ flow list. If this parameter NULL, 5481 * no list insertion occurred, flow is just created, 5482 * this is caller's responsibility to track the 5483 * created flow. 5484 * @param[in] attr 5485 * Flow rule attributes. 5486 * @param[in] items 5487 * Pattern specification (list terminated by the END pattern item). 5488 * @param[in] actions 5489 * Associated actions (list terminated by the END action). 5490 * @param[in] external 5491 * This flow rule is created by request external to PMD. 5492 * @param[out] error 5493 * Perform verbose error reporting if not NULL. 5494 * 5495 * @return 5496 * A flow index on success, 0 otherwise and rte_errno is set. 5497 */ 5498 static uint32_t 5499 flow_list_create(struct rte_eth_dev *dev, uint32_t *list, 5500 const struct rte_flow_attr *attr, 5501 const struct rte_flow_item items[], 5502 const struct rte_flow_action original_actions[], 5503 bool external, struct rte_flow_error *error) 5504 { 5505 struct mlx5_priv *priv = dev->data->dev_private; 5506 struct rte_flow *flow = NULL; 5507 struct mlx5_flow *dev_flow; 5508 const struct rte_flow_action_rss *rss = NULL; 5509 struct mlx5_translated_shared_action 5510 shared_actions[MLX5_MAX_SHARED_ACTIONS]; 5511 int shared_actions_n = MLX5_MAX_SHARED_ACTIONS; 5512 union { 5513 struct mlx5_flow_expand_rss buf; 5514 uint8_t buffer[2048]; 5515 } expand_buffer; 5516 union { 5517 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS]; 5518 uint8_t buffer[2048]; 5519 } actions_rx; 5520 union { 5521 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS]; 5522 uint8_t buffer[2048]; 5523 } actions_hairpin_tx; 5524 union { 5525 struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS]; 5526 uint8_t buffer[2048]; 5527 } items_tx; 5528 struct mlx5_flow_expand_rss *buf = &expand_buffer.buf; 5529 struct mlx5_flow_rss_desc *rss_desc; 5530 const struct rte_flow_action *p_actions_rx; 5531 uint32_t i; 5532 uint32_t idx = 0; 5533 int hairpin_flow; 5534 struct rte_flow_attr attr_tx = { .priority = 0 }; 5535 const struct rte_flow_action *actions; 5536 struct rte_flow_action *translated_actions = NULL; 5537 struct mlx5_flow_tunnel *tunnel; 5538 struct tunnel_default_miss_ctx default_miss_ctx = { 0, }; 5539 struct mlx5_flow_workspace *wks = mlx5_flow_push_thread_workspace(); 5540 struct mlx5_flow_split_info flow_split_info = { 5541 .external = !!external, 5542 .skip_scale = 0, 5543 .flow_idx = 0, 5544 .prefix_mark = 0, 5545 .prefix_layers = 0 5546 }; 5547 int ret; 5548 5549 MLX5_ASSERT(wks); 5550 rss_desc = &wks->rss_desc; 5551 ret = flow_shared_actions_translate(dev, original_actions, 5552 shared_actions, 5553 &shared_actions_n, 5554 &translated_actions, error); 5555 if (ret < 0) { 5556 MLX5_ASSERT(translated_actions == NULL); 5557 return 0; 5558 } 5559 actions = translated_actions ? translated_actions : original_actions; 5560 p_actions_rx = actions; 5561 hairpin_flow = flow_check_hairpin_split(dev, attr, actions); 5562 ret = flow_drv_validate(dev, attr, items, p_actions_rx, 5563 external, hairpin_flow, error); 5564 if (ret < 0) 5565 goto error_before_hairpin_split; 5566 flow = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], &idx); 5567 if (!flow) { 5568 rte_errno = ENOMEM; 5569 goto error_before_hairpin_split; 5570 } 5571 if (hairpin_flow > 0) { 5572 if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) { 5573 rte_errno = EINVAL; 5574 goto error_before_hairpin_split; 5575 } 5576 flow_hairpin_split(dev, actions, actions_rx.actions, 5577 actions_hairpin_tx.actions, items_tx.items, 5578 idx); 5579 p_actions_rx = actions_rx.actions; 5580 } 5581 flow_split_info.flow_idx = idx; 5582 flow->drv_type = flow_get_drv_type(dev, attr); 5583 MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN && 5584 flow->drv_type < MLX5_FLOW_TYPE_MAX); 5585 memset(rss_desc, 0, offsetof(struct mlx5_flow_rss_desc, queue)); 5586 /* RSS Action only works on NIC RX domain */ 5587 if (attr->ingress && !attr->transfer) 5588 rss = flow_get_rss_action(p_actions_rx); 5589 if (rss) { 5590 if (flow_rss_workspace_adjust(wks, rss_desc, rss->queue_num)) 5591 return 0; 5592 /* 5593 * The following information is required by 5594 * mlx5_flow_hashfields_adjust() in advance. 5595 */ 5596 rss_desc->level = rss->level; 5597 /* RSS type 0 indicates default RSS type (ETH_RSS_IP). */ 5598 rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types; 5599 } 5600 flow->dev_handles = 0; 5601 if (rss && rss->types) { 5602 unsigned int graph_root; 5603 5604 graph_root = find_graph_root(items, rss->level); 5605 ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer), 5606 items, rss->types, 5607 mlx5_support_expansion, graph_root); 5608 MLX5_ASSERT(ret > 0 && 5609 (unsigned int)ret < sizeof(expand_buffer.buffer)); 5610 } else { 5611 buf->entries = 1; 5612 buf->entry[0].pattern = (void *)(uintptr_t)items; 5613 } 5614 rss_desc->shared_rss = flow_get_shared_rss_action(dev, shared_actions, 5615 shared_actions_n); 5616 for (i = 0; i < buf->entries; ++i) { 5617 /* Initialize flow split data. */ 5618 flow_split_info.prefix_layers = 0; 5619 flow_split_info.prefix_mark = 0; 5620 flow_split_info.skip_scale = 0; 5621 /* 5622 * The splitter may create multiple dev_flows, 5623 * depending on configuration. In the simplest 5624 * case it just creates unmodified original flow. 5625 */ 5626 ret = flow_create_split_outer(dev, flow, attr, 5627 buf->entry[i].pattern, 5628 p_actions_rx, &flow_split_info, 5629 error); 5630 if (ret < 0) 5631 goto error; 5632 if (is_flow_tunnel_steer_rule(dev, attr, 5633 buf->entry[i].pattern, 5634 p_actions_rx)) { 5635 ret = flow_tunnel_add_default_miss(dev, flow, attr, 5636 p_actions_rx, 5637 idx, 5638 &default_miss_ctx, 5639 error); 5640 if (ret < 0) { 5641 mlx5_free(default_miss_ctx.queue); 5642 goto error; 5643 } 5644 } 5645 } 5646 /* Create the tx flow. */ 5647 if (hairpin_flow) { 5648 attr_tx.group = MLX5_HAIRPIN_TX_TABLE; 5649 attr_tx.ingress = 0; 5650 attr_tx.egress = 1; 5651 dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items, 5652 actions_hairpin_tx.actions, 5653 idx, error); 5654 if (!dev_flow) 5655 goto error; 5656 dev_flow->flow = flow; 5657 dev_flow->external = 0; 5658 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx, 5659 dev_flow->handle, next); 5660 ret = flow_drv_translate(dev, dev_flow, &attr_tx, 5661 items_tx.items, 5662 actions_hairpin_tx.actions, error); 5663 if (ret < 0) 5664 goto error; 5665 } 5666 /* 5667 * Update the metadata register copy table. If extensive 5668 * metadata feature is enabled and registers are supported 5669 * we might create the extra rte_flow for each unique 5670 * MARK/FLAG action ID. 5671 * 5672 * The table is updated for ingress Flows only, because 5673 * the egress Flows belong to the different device and 5674 * copy table should be updated in peer NIC Rx domain. 5675 */ 5676 if (attr->ingress && 5677 (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) { 5678 ret = flow_mreg_update_copy_table(dev, flow, actions, error); 5679 if (ret) 5680 goto error; 5681 } 5682 /* 5683 * If the flow is external (from application) OR device is started, 5684 * OR mreg discover, then apply immediately. 5685 */ 5686 if (external || dev->data->dev_started || 5687 (attr->group == MLX5_FLOW_MREG_CP_TABLE_GROUP && 5688 attr->priority == MLX5_FLOW_PRIO_RSVD)) { 5689 ret = flow_drv_apply(dev, flow, error); 5690 if (ret < 0) 5691 goto error; 5692 } 5693 if (list) { 5694 rte_spinlock_lock(&priv->flow_list_lock); 5695 ILIST_INSERT(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, idx, 5696 flow, next); 5697 rte_spinlock_unlock(&priv->flow_list_lock); 5698 } 5699 flow_rxq_flags_set(dev, flow); 5700 rte_free(translated_actions); 5701 tunnel = flow_tunnel_from_rule(dev, attr, items, actions); 5702 if (tunnel) { 5703 flow->tunnel = 1; 5704 flow->tunnel_id = tunnel->tunnel_id; 5705 __atomic_add_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED); 5706 mlx5_free(default_miss_ctx.queue); 5707 } 5708 mlx5_flow_pop_thread_workspace(); 5709 return idx; 5710 error: 5711 MLX5_ASSERT(flow); 5712 ret = rte_errno; /* Save rte_errno before cleanup. */ 5713 flow_mreg_del_copy_action(dev, flow); 5714 flow_drv_destroy(dev, flow); 5715 if (rss_desc->shared_rss) 5716 __atomic_sub_fetch(&((struct mlx5_shared_action_rss *) 5717 mlx5_ipool_get 5718 (priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 5719 rss_desc->shared_rss))->refcnt, 1, __ATOMIC_RELAXED); 5720 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], idx); 5721 rte_errno = ret; /* Restore rte_errno. */ 5722 ret = rte_errno; 5723 rte_errno = ret; 5724 mlx5_flow_pop_thread_workspace(); 5725 error_before_hairpin_split: 5726 rte_free(translated_actions); 5727 return 0; 5728 } 5729 5730 /** 5731 * Create a dedicated flow rule on e-switch table 0 (root table), to direct all 5732 * incoming packets to table 1. 5733 * 5734 * Other flow rules, requested for group n, will be created in 5735 * e-switch table n+1. 5736 * Jump action to e-switch group n will be created to group n+1. 5737 * 5738 * Used when working in switchdev mode, to utilise advantages of table 1 5739 * and above. 5740 * 5741 * @param dev 5742 * Pointer to Ethernet device. 5743 * 5744 * @return 5745 * Pointer to flow on success, NULL otherwise and rte_errno is set. 5746 */ 5747 struct rte_flow * 5748 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev) 5749 { 5750 const struct rte_flow_attr attr = { 5751 .group = 0, 5752 .priority = 0, 5753 .ingress = 1, 5754 .egress = 0, 5755 .transfer = 1, 5756 }; 5757 const struct rte_flow_item pattern = { 5758 .type = RTE_FLOW_ITEM_TYPE_END, 5759 }; 5760 struct rte_flow_action_jump jump = { 5761 .group = 1, 5762 }; 5763 const struct rte_flow_action actions[] = { 5764 { 5765 .type = RTE_FLOW_ACTION_TYPE_JUMP, 5766 .conf = &jump, 5767 }, 5768 { 5769 .type = RTE_FLOW_ACTION_TYPE_END, 5770 }, 5771 }; 5772 struct mlx5_priv *priv = dev->data->dev_private; 5773 struct rte_flow_error error; 5774 5775 return (void *)(uintptr_t)flow_list_create(dev, &priv->ctrl_flows, 5776 &attr, &pattern, 5777 actions, false, &error); 5778 } 5779 5780 /** 5781 * Validate a flow supported by the NIC. 5782 * 5783 * @see rte_flow_validate() 5784 * @see rte_flow_ops 5785 */ 5786 int 5787 mlx5_flow_validate(struct rte_eth_dev *dev, 5788 const struct rte_flow_attr *attr, 5789 const struct rte_flow_item items[], 5790 const struct rte_flow_action original_actions[], 5791 struct rte_flow_error *error) 5792 { 5793 int hairpin_flow; 5794 struct mlx5_translated_shared_action 5795 shared_actions[MLX5_MAX_SHARED_ACTIONS]; 5796 int shared_actions_n = MLX5_MAX_SHARED_ACTIONS; 5797 const struct rte_flow_action *actions; 5798 struct rte_flow_action *translated_actions = NULL; 5799 int ret = flow_shared_actions_translate(dev, original_actions, 5800 shared_actions, 5801 &shared_actions_n, 5802 &translated_actions, error); 5803 5804 if (ret) 5805 return ret; 5806 actions = translated_actions ? translated_actions : original_actions; 5807 hairpin_flow = flow_check_hairpin_split(dev, attr, actions); 5808 ret = flow_drv_validate(dev, attr, items, actions, 5809 true, hairpin_flow, error); 5810 rte_free(translated_actions); 5811 return ret; 5812 } 5813 5814 /** 5815 * Create a flow. 5816 * 5817 * @see rte_flow_create() 5818 * @see rte_flow_ops 5819 */ 5820 struct rte_flow * 5821 mlx5_flow_create(struct rte_eth_dev *dev, 5822 const struct rte_flow_attr *attr, 5823 const struct rte_flow_item items[], 5824 const struct rte_flow_action actions[], 5825 struct rte_flow_error *error) 5826 { 5827 struct mlx5_priv *priv = dev->data->dev_private; 5828 5829 /* 5830 * If the device is not started yet, it is not allowed to created a 5831 * flow from application. PMD default flows and traffic control flows 5832 * are not affected. 5833 */ 5834 if (unlikely(!dev->data->dev_started)) { 5835 DRV_LOG(DEBUG, "port %u is not started when " 5836 "inserting a flow", dev->data->port_id); 5837 rte_flow_error_set(error, ENODEV, 5838 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 5839 NULL, 5840 "port not started"); 5841 return NULL; 5842 } 5843 5844 return (void *)(uintptr_t)flow_list_create(dev, &priv->flows, 5845 attr, items, actions, true, error); 5846 } 5847 5848 /** 5849 * Destroy a flow in a list. 5850 * 5851 * @param dev 5852 * Pointer to Ethernet device. 5853 * @param list 5854 * Pointer to the Indexed flow list. If this parameter NULL, 5855 * there is no flow removal from the list. Be noted that as 5856 * flow is add to the indexed list, memory of the indexed 5857 * list points to maybe changed as flow destroyed. 5858 * @param[in] flow_idx 5859 * Index of flow to destroy. 5860 */ 5861 static void 5862 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list, 5863 uint32_t flow_idx) 5864 { 5865 struct mlx5_priv *priv = dev->data->dev_private; 5866 struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool 5867 [MLX5_IPOOL_RTE_FLOW], flow_idx); 5868 5869 if (!flow) 5870 return; 5871 /* 5872 * Update RX queue flags only if port is started, otherwise it is 5873 * already clean. 5874 */ 5875 if (dev->data->dev_started) 5876 flow_rxq_flags_trim(dev, flow); 5877 flow_drv_destroy(dev, flow); 5878 if (list) { 5879 rte_spinlock_lock(&priv->flow_list_lock); 5880 ILIST_REMOVE(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, 5881 flow_idx, flow, next); 5882 rte_spinlock_unlock(&priv->flow_list_lock); 5883 } 5884 if (flow->tunnel) { 5885 struct mlx5_flow_tunnel *tunnel; 5886 5887 tunnel = mlx5_find_tunnel_id(dev, flow->tunnel_id); 5888 RTE_VERIFY(tunnel); 5889 if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED)) 5890 mlx5_flow_tunnel_free(dev, tunnel); 5891 } 5892 flow_mreg_del_copy_action(dev, flow); 5893 mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx); 5894 } 5895 5896 /** 5897 * Destroy all flows. 5898 * 5899 * @param dev 5900 * Pointer to Ethernet device. 5901 * @param list 5902 * Pointer to the Indexed flow list. 5903 * @param active 5904 * If flushing is called avtively. 5905 */ 5906 void 5907 mlx5_flow_list_flush(struct rte_eth_dev *dev, uint32_t *list, bool active) 5908 { 5909 uint32_t num_flushed = 0; 5910 5911 while (*list) { 5912 flow_list_destroy(dev, list, *list); 5913 num_flushed++; 5914 } 5915 if (active) { 5916 DRV_LOG(INFO, "port %u: %u flows flushed before stopping", 5917 dev->data->port_id, num_flushed); 5918 } 5919 } 5920 5921 /** 5922 * Stop all default actions for flows. 5923 * 5924 * @param dev 5925 * Pointer to Ethernet device. 5926 */ 5927 void 5928 mlx5_flow_stop_default(struct rte_eth_dev *dev) 5929 { 5930 flow_mreg_del_default_copy_action(dev); 5931 flow_rxq_flags_clear(dev); 5932 } 5933 5934 /** 5935 * Start all default actions for flows. 5936 * 5937 * @param dev 5938 * Pointer to Ethernet device. 5939 * @return 5940 * 0 on success, a negative errno value otherwise and rte_errno is set. 5941 */ 5942 int 5943 mlx5_flow_start_default(struct rte_eth_dev *dev) 5944 { 5945 struct rte_flow_error error; 5946 5947 /* Make sure default copy action (reg_c[0] -> reg_b) is created. */ 5948 return flow_mreg_add_default_copy_action(dev, &error); 5949 } 5950 5951 /** 5952 * Release key of thread specific flow workspace data. 5953 */ 5954 void 5955 flow_release_workspace(void *data) 5956 { 5957 struct mlx5_flow_workspace *wks = data; 5958 struct mlx5_flow_workspace *next; 5959 5960 while (wks) { 5961 next = wks->next; 5962 free(wks->rss_desc.queue); 5963 free(wks); 5964 wks = next; 5965 } 5966 } 5967 5968 /** 5969 * Get thread specific current flow workspace. 5970 * 5971 * @return pointer to thread specific flow workspace data, NULL on error. 5972 */ 5973 struct mlx5_flow_workspace* 5974 mlx5_flow_get_thread_workspace(void) 5975 { 5976 struct mlx5_flow_workspace *data; 5977 5978 data = mlx5_flow_os_get_specific_workspace(); 5979 MLX5_ASSERT(data && data->inuse); 5980 if (!data || !data->inuse) 5981 DRV_LOG(ERR, "flow workspace not initialized."); 5982 return data; 5983 } 5984 5985 /** 5986 * Allocate and init new flow workspace. 5987 * 5988 * @return pointer to flow workspace data, NULL on error. 5989 */ 5990 static struct mlx5_flow_workspace* 5991 flow_alloc_thread_workspace(void) 5992 { 5993 struct mlx5_flow_workspace *data = calloc(1, sizeof(*data)); 5994 5995 if (!data) { 5996 DRV_LOG(ERR, "Failed to allocate flow workspace " 5997 "memory."); 5998 return NULL; 5999 } 6000 data->rss_desc.queue = calloc(1, 6001 sizeof(uint16_t) * MLX5_RSSQ_DEFAULT_NUM); 6002 if (!data->rss_desc.queue) 6003 goto err; 6004 data->rssq_num = MLX5_RSSQ_DEFAULT_NUM; 6005 return data; 6006 err: 6007 if (data->rss_desc.queue) 6008 free(data->rss_desc.queue); 6009 free(data); 6010 return NULL; 6011 } 6012 6013 /** 6014 * Get new thread specific flow workspace. 6015 * 6016 * If current workspace inuse, create new one and set as current. 6017 * 6018 * @return pointer to thread specific flow workspace data, NULL on error. 6019 */ 6020 static struct mlx5_flow_workspace* 6021 mlx5_flow_push_thread_workspace(void) 6022 { 6023 struct mlx5_flow_workspace *curr; 6024 struct mlx5_flow_workspace *data; 6025 6026 curr = mlx5_flow_os_get_specific_workspace(); 6027 if (!curr) { 6028 data = flow_alloc_thread_workspace(); 6029 if (!data) 6030 return NULL; 6031 } else if (!curr->inuse) { 6032 data = curr; 6033 } else if (curr->next) { 6034 data = curr->next; 6035 } else { 6036 data = flow_alloc_thread_workspace(); 6037 if (!data) 6038 return NULL; 6039 curr->next = data; 6040 data->prev = curr; 6041 } 6042 data->inuse = 1; 6043 data->flow_idx = 0; 6044 /* Set as current workspace */ 6045 if (mlx5_flow_os_set_specific_workspace(data)) 6046 DRV_LOG(ERR, "Failed to set flow workspace to thread."); 6047 return data; 6048 } 6049 6050 /** 6051 * Close current thread specific flow workspace. 6052 * 6053 * If previous workspace available, set it as current. 6054 * 6055 * @return pointer to thread specific flow workspace data, NULL on error. 6056 */ 6057 static void 6058 mlx5_flow_pop_thread_workspace(void) 6059 { 6060 struct mlx5_flow_workspace *data = mlx5_flow_get_thread_workspace(); 6061 6062 if (!data) 6063 return; 6064 if (!data->inuse) { 6065 DRV_LOG(ERR, "Failed to close unused flow workspace."); 6066 return; 6067 } 6068 data->inuse = 0; 6069 if (!data->prev) 6070 return; 6071 if (mlx5_flow_os_set_specific_workspace(data->prev)) 6072 DRV_LOG(ERR, "Failed to set flow workspace to thread."); 6073 } 6074 6075 /** 6076 * Verify the flow list is empty 6077 * 6078 * @param dev 6079 * Pointer to Ethernet device. 6080 * 6081 * @return the number of flows not released. 6082 */ 6083 int 6084 mlx5_flow_verify(struct rte_eth_dev *dev) 6085 { 6086 struct mlx5_priv *priv = dev->data->dev_private; 6087 struct rte_flow *flow; 6088 uint32_t idx; 6089 int ret = 0; 6090 6091 ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], priv->flows, idx, 6092 flow, next) { 6093 DRV_LOG(DEBUG, "port %u flow %p still referenced", 6094 dev->data->port_id, (void *)flow); 6095 ++ret; 6096 } 6097 return ret; 6098 } 6099 6100 /** 6101 * Enable default hairpin egress flow. 6102 * 6103 * @param dev 6104 * Pointer to Ethernet device. 6105 * @param queue 6106 * The queue index. 6107 * 6108 * @return 6109 * 0 on success, a negative errno value otherwise and rte_errno is set. 6110 */ 6111 int 6112 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev, 6113 uint32_t queue) 6114 { 6115 struct mlx5_priv *priv = dev->data->dev_private; 6116 const struct rte_flow_attr attr = { 6117 .egress = 1, 6118 .priority = 0, 6119 }; 6120 struct mlx5_rte_flow_item_tx_queue queue_spec = { 6121 .queue = queue, 6122 }; 6123 struct mlx5_rte_flow_item_tx_queue queue_mask = { 6124 .queue = UINT32_MAX, 6125 }; 6126 struct rte_flow_item items[] = { 6127 { 6128 .type = (enum rte_flow_item_type) 6129 MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE, 6130 .spec = &queue_spec, 6131 .last = NULL, 6132 .mask = &queue_mask, 6133 }, 6134 { 6135 .type = RTE_FLOW_ITEM_TYPE_END, 6136 }, 6137 }; 6138 struct rte_flow_action_jump jump = { 6139 .group = MLX5_HAIRPIN_TX_TABLE, 6140 }; 6141 struct rte_flow_action actions[2]; 6142 uint32_t flow_idx; 6143 struct rte_flow_error error; 6144 6145 actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP; 6146 actions[0].conf = &jump; 6147 actions[1].type = RTE_FLOW_ACTION_TYPE_END; 6148 flow_idx = flow_list_create(dev, &priv->ctrl_flows, 6149 &attr, items, actions, false, &error); 6150 if (!flow_idx) { 6151 DRV_LOG(DEBUG, 6152 "Failed to create ctrl flow: rte_errno(%d)," 6153 " type(%d), message(%s)", 6154 rte_errno, error.type, 6155 error.message ? error.message : " (no stated reason)"); 6156 return -rte_errno; 6157 } 6158 return 0; 6159 } 6160 6161 /** 6162 * Enable a control flow configured from the control plane. 6163 * 6164 * @param dev 6165 * Pointer to Ethernet device. 6166 * @param eth_spec 6167 * An Ethernet flow spec to apply. 6168 * @param eth_mask 6169 * An Ethernet flow mask to apply. 6170 * @param vlan_spec 6171 * A VLAN flow spec to apply. 6172 * @param vlan_mask 6173 * A VLAN flow mask to apply. 6174 * 6175 * @return 6176 * 0 on success, a negative errno value otherwise and rte_errno is set. 6177 */ 6178 int 6179 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev, 6180 struct rte_flow_item_eth *eth_spec, 6181 struct rte_flow_item_eth *eth_mask, 6182 struct rte_flow_item_vlan *vlan_spec, 6183 struct rte_flow_item_vlan *vlan_mask) 6184 { 6185 struct mlx5_priv *priv = dev->data->dev_private; 6186 const struct rte_flow_attr attr = { 6187 .ingress = 1, 6188 .priority = MLX5_FLOW_PRIO_RSVD, 6189 }; 6190 struct rte_flow_item items[] = { 6191 { 6192 .type = RTE_FLOW_ITEM_TYPE_ETH, 6193 .spec = eth_spec, 6194 .last = NULL, 6195 .mask = eth_mask, 6196 }, 6197 { 6198 .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN : 6199 RTE_FLOW_ITEM_TYPE_END, 6200 .spec = vlan_spec, 6201 .last = NULL, 6202 .mask = vlan_mask, 6203 }, 6204 { 6205 .type = RTE_FLOW_ITEM_TYPE_END, 6206 }, 6207 }; 6208 uint16_t queue[priv->reta_idx_n]; 6209 struct rte_flow_action_rss action_rss = { 6210 .func = RTE_ETH_HASH_FUNCTION_DEFAULT, 6211 .level = 0, 6212 .types = priv->rss_conf.rss_hf, 6213 .key_len = priv->rss_conf.rss_key_len, 6214 .queue_num = priv->reta_idx_n, 6215 .key = priv->rss_conf.rss_key, 6216 .queue = queue, 6217 }; 6218 struct rte_flow_action actions[] = { 6219 { 6220 .type = RTE_FLOW_ACTION_TYPE_RSS, 6221 .conf = &action_rss, 6222 }, 6223 { 6224 .type = RTE_FLOW_ACTION_TYPE_END, 6225 }, 6226 }; 6227 uint32_t flow_idx; 6228 struct rte_flow_error error; 6229 unsigned int i; 6230 6231 if (!priv->reta_idx_n || !priv->rxqs_n) { 6232 return 0; 6233 } 6234 if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)) 6235 action_rss.types = 0; 6236 for (i = 0; i != priv->reta_idx_n; ++i) 6237 queue[i] = (*priv->reta_idx)[i]; 6238 flow_idx = flow_list_create(dev, &priv->ctrl_flows, 6239 &attr, items, actions, false, &error); 6240 if (!flow_idx) 6241 return -rte_errno; 6242 return 0; 6243 } 6244 6245 /** 6246 * Enable a flow control configured from the control plane. 6247 * 6248 * @param dev 6249 * Pointer to Ethernet device. 6250 * @param eth_spec 6251 * An Ethernet flow spec to apply. 6252 * @param eth_mask 6253 * An Ethernet flow mask to apply. 6254 * 6255 * @return 6256 * 0 on success, a negative errno value otherwise and rte_errno is set. 6257 */ 6258 int 6259 mlx5_ctrl_flow(struct rte_eth_dev *dev, 6260 struct rte_flow_item_eth *eth_spec, 6261 struct rte_flow_item_eth *eth_mask) 6262 { 6263 return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL); 6264 } 6265 6266 /** 6267 * Create default miss flow rule matching lacp traffic 6268 * 6269 * @param dev 6270 * Pointer to Ethernet device. 6271 * @param eth_spec 6272 * An Ethernet flow spec to apply. 6273 * 6274 * @return 6275 * 0 on success, a negative errno value otherwise and rte_errno is set. 6276 */ 6277 int 6278 mlx5_flow_lacp_miss(struct rte_eth_dev *dev) 6279 { 6280 struct mlx5_priv *priv = dev->data->dev_private; 6281 /* 6282 * The LACP matching is done by only using ether type since using 6283 * a multicast dst mac causes kernel to give low priority to this flow. 6284 */ 6285 static const struct rte_flow_item_eth lacp_spec = { 6286 .type = RTE_BE16(0x8809), 6287 }; 6288 static const struct rte_flow_item_eth lacp_mask = { 6289 .type = 0xffff, 6290 }; 6291 const struct rte_flow_attr attr = { 6292 .ingress = 1, 6293 }; 6294 struct rte_flow_item items[] = { 6295 { 6296 .type = RTE_FLOW_ITEM_TYPE_ETH, 6297 .spec = &lacp_spec, 6298 .mask = &lacp_mask, 6299 }, 6300 { 6301 .type = RTE_FLOW_ITEM_TYPE_END, 6302 }, 6303 }; 6304 struct rte_flow_action actions[] = { 6305 { 6306 .type = (enum rte_flow_action_type) 6307 MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS, 6308 }, 6309 { 6310 .type = RTE_FLOW_ACTION_TYPE_END, 6311 }, 6312 }; 6313 struct rte_flow_error error; 6314 uint32_t flow_idx = flow_list_create(dev, &priv->ctrl_flows, 6315 &attr, items, actions, false, &error); 6316 6317 if (!flow_idx) 6318 return -rte_errno; 6319 return 0; 6320 } 6321 6322 /** 6323 * Destroy a flow. 6324 * 6325 * @see rte_flow_destroy() 6326 * @see rte_flow_ops 6327 */ 6328 int 6329 mlx5_flow_destroy(struct rte_eth_dev *dev, 6330 struct rte_flow *flow, 6331 struct rte_flow_error *error __rte_unused) 6332 { 6333 struct mlx5_priv *priv = dev->data->dev_private; 6334 6335 flow_list_destroy(dev, &priv->flows, (uintptr_t)(void *)flow); 6336 return 0; 6337 } 6338 6339 /** 6340 * Destroy all flows. 6341 * 6342 * @see rte_flow_flush() 6343 * @see rte_flow_ops 6344 */ 6345 int 6346 mlx5_flow_flush(struct rte_eth_dev *dev, 6347 struct rte_flow_error *error __rte_unused) 6348 { 6349 struct mlx5_priv *priv = dev->data->dev_private; 6350 6351 mlx5_flow_list_flush(dev, &priv->flows, false); 6352 return 0; 6353 } 6354 6355 /** 6356 * Isolated mode. 6357 * 6358 * @see rte_flow_isolate() 6359 * @see rte_flow_ops 6360 */ 6361 int 6362 mlx5_flow_isolate(struct rte_eth_dev *dev, 6363 int enable, 6364 struct rte_flow_error *error) 6365 { 6366 struct mlx5_priv *priv = dev->data->dev_private; 6367 6368 if (dev->data->dev_started) { 6369 rte_flow_error_set(error, EBUSY, 6370 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 6371 NULL, 6372 "port must be stopped first"); 6373 return -rte_errno; 6374 } 6375 priv->isolated = !!enable; 6376 if (enable) 6377 dev->dev_ops = &mlx5_dev_ops_isolate; 6378 else 6379 dev->dev_ops = &mlx5_dev_ops; 6380 6381 dev->rx_descriptor_status = mlx5_rx_descriptor_status; 6382 dev->tx_descriptor_status = mlx5_tx_descriptor_status; 6383 6384 return 0; 6385 } 6386 6387 /** 6388 * Query a flow. 6389 * 6390 * @see rte_flow_query() 6391 * @see rte_flow_ops 6392 */ 6393 static int 6394 flow_drv_query(struct rte_eth_dev *dev, 6395 uint32_t flow_idx, 6396 const struct rte_flow_action *actions, 6397 void *data, 6398 struct rte_flow_error *error) 6399 { 6400 struct mlx5_priv *priv = dev->data->dev_private; 6401 const struct mlx5_flow_driver_ops *fops; 6402 struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool 6403 [MLX5_IPOOL_RTE_FLOW], 6404 flow_idx); 6405 enum mlx5_flow_drv_type ftype; 6406 6407 if (!flow) { 6408 return rte_flow_error_set(error, ENOENT, 6409 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 6410 NULL, 6411 "invalid flow handle"); 6412 } 6413 ftype = flow->drv_type; 6414 MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX); 6415 fops = flow_get_drv_ops(ftype); 6416 6417 return fops->query(dev, flow, actions, data, error); 6418 } 6419 6420 /** 6421 * Query a flow. 6422 * 6423 * @see rte_flow_query() 6424 * @see rte_flow_ops 6425 */ 6426 int 6427 mlx5_flow_query(struct rte_eth_dev *dev, 6428 struct rte_flow *flow, 6429 const struct rte_flow_action *actions, 6430 void *data, 6431 struct rte_flow_error *error) 6432 { 6433 int ret; 6434 6435 ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data, 6436 error); 6437 if (ret < 0) 6438 return ret; 6439 return 0; 6440 } 6441 6442 /** 6443 * Manage filter operations. 6444 * 6445 * @param dev 6446 * Pointer to Ethernet device structure. 6447 * @param filter_type 6448 * Filter type. 6449 * @param filter_op 6450 * Operation to perform. 6451 * @param arg 6452 * Pointer to operation-specific structure. 6453 * 6454 * @return 6455 * 0 on success, a negative errno value otherwise and rte_errno is set. 6456 */ 6457 int 6458 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev, 6459 enum rte_filter_type filter_type, 6460 enum rte_filter_op filter_op, 6461 void *arg) 6462 { 6463 switch (filter_type) { 6464 case RTE_ETH_FILTER_GENERIC: 6465 if (filter_op != RTE_ETH_FILTER_GET) { 6466 rte_errno = EINVAL; 6467 return -rte_errno; 6468 } 6469 *(const void **)arg = &mlx5_flow_ops; 6470 return 0; 6471 default: 6472 DRV_LOG(ERR, "port %u filter type (%d) not supported", 6473 dev->data->port_id, filter_type); 6474 rte_errno = ENOTSUP; 6475 return -rte_errno; 6476 } 6477 return 0; 6478 } 6479 6480 /** 6481 * Create the needed meter and suffix tables. 6482 * 6483 * @param[in] dev 6484 * Pointer to Ethernet device. 6485 * @param[in] fm 6486 * Pointer to the flow meter. 6487 * 6488 * @return 6489 * Pointer to table set on success, NULL otherwise. 6490 */ 6491 struct mlx5_meter_domains_infos * 6492 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev, 6493 const struct mlx5_flow_meter *fm) 6494 { 6495 const struct mlx5_flow_driver_ops *fops; 6496 6497 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6498 return fops->create_mtr_tbls(dev, fm); 6499 } 6500 6501 /** 6502 * Destroy the meter table set. 6503 * 6504 * @param[in] dev 6505 * Pointer to Ethernet device. 6506 * @param[in] tbl 6507 * Pointer to the meter table set. 6508 * 6509 * @return 6510 * 0 on success. 6511 */ 6512 int 6513 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev, 6514 struct mlx5_meter_domains_infos *tbls) 6515 { 6516 const struct mlx5_flow_driver_ops *fops; 6517 6518 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6519 return fops->destroy_mtr_tbls(dev, tbls); 6520 } 6521 6522 /** 6523 * Create policer rules. 6524 * 6525 * @param[in] dev 6526 * Pointer to Ethernet device. 6527 * @param[in] fm 6528 * Pointer to flow meter structure. 6529 * @param[in] attr 6530 * Pointer to flow attributes. 6531 * 6532 * @return 6533 * 0 on success, -1 otherwise. 6534 */ 6535 int 6536 mlx5_flow_create_policer_rules(struct rte_eth_dev *dev, 6537 struct mlx5_flow_meter *fm, 6538 const struct rte_flow_attr *attr) 6539 { 6540 const struct mlx5_flow_driver_ops *fops; 6541 6542 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6543 return fops->create_policer_rules(dev, fm, attr); 6544 } 6545 6546 /** 6547 * Destroy policer rules. 6548 * 6549 * @param[in] fm 6550 * Pointer to flow meter structure. 6551 * @param[in] attr 6552 * Pointer to flow attributes. 6553 * 6554 * @return 6555 * 0 on success, -1 otherwise. 6556 */ 6557 int 6558 mlx5_flow_destroy_policer_rules(struct rte_eth_dev *dev, 6559 struct mlx5_flow_meter *fm, 6560 const struct rte_flow_attr *attr) 6561 { 6562 const struct mlx5_flow_driver_ops *fops; 6563 6564 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6565 return fops->destroy_policer_rules(dev, fm, attr); 6566 } 6567 6568 /** 6569 * Allocate a counter. 6570 * 6571 * @param[in] dev 6572 * Pointer to Ethernet device structure. 6573 * 6574 * @return 6575 * Index to allocated counter on success, 0 otherwise. 6576 */ 6577 uint32_t 6578 mlx5_counter_alloc(struct rte_eth_dev *dev) 6579 { 6580 const struct mlx5_flow_driver_ops *fops; 6581 struct rte_flow_attr attr = { .transfer = 0 }; 6582 6583 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 6584 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6585 return fops->counter_alloc(dev); 6586 } 6587 DRV_LOG(ERR, 6588 "port %u counter allocate is not supported.", 6589 dev->data->port_id); 6590 return 0; 6591 } 6592 6593 /** 6594 * Free a counter. 6595 * 6596 * @param[in] dev 6597 * Pointer to Ethernet device structure. 6598 * @param[in] cnt 6599 * Index to counter to be free. 6600 */ 6601 void 6602 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt) 6603 { 6604 const struct mlx5_flow_driver_ops *fops; 6605 struct rte_flow_attr attr = { .transfer = 0 }; 6606 6607 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 6608 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6609 fops->counter_free(dev, cnt); 6610 return; 6611 } 6612 DRV_LOG(ERR, 6613 "port %u counter free is not supported.", 6614 dev->data->port_id); 6615 } 6616 6617 /** 6618 * Query counter statistics. 6619 * 6620 * @param[in] dev 6621 * Pointer to Ethernet device structure. 6622 * @param[in] cnt 6623 * Index to counter to query. 6624 * @param[in] clear 6625 * Set to clear counter statistics. 6626 * @param[out] pkts 6627 * The counter hits packets number to save. 6628 * @param[out] bytes 6629 * The counter hits bytes number to save. 6630 * 6631 * @return 6632 * 0 on success, a negative errno value otherwise. 6633 */ 6634 int 6635 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt, 6636 bool clear, uint64_t *pkts, uint64_t *bytes) 6637 { 6638 const struct mlx5_flow_driver_ops *fops; 6639 struct rte_flow_attr attr = { .transfer = 0 }; 6640 6641 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 6642 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 6643 return fops->counter_query(dev, cnt, clear, pkts, bytes); 6644 } 6645 DRV_LOG(ERR, 6646 "port %u counter query is not supported.", 6647 dev->data->port_id); 6648 return -ENOTSUP; 6649 } 6650 6651 /** 6652 * Allocate a new memory for the counter values wrapped by all the needed 6653 * management. 6654 * 6655 * @param[in] sh 6656 * Pointer to mlx5_dev_ctx_shared object. 6657 * 6658 * @return 6659 * 0 on success, a negative errno value otherwise. 6660 */ 6661 static int 6662 mlx5_flow_create_counter_stat_mem_mng(struct mlx5_dev_ctx_shared *sh) 6663 { 6664 struct mlx5_devx_mkey_attr mkey_attr; 6665 struct mlx5_counter_stats_mem_mng *mem_mng; 6666 volatile struct flow_counter_stats *raw_data; 6667 int raws_n = MLX5_CNT_CONTAINER_RESIZE + MLX5_MAX_PENDING_QUERIES; 6668 int size = (sizeof(struct flow_counter_stats) * 6669 MLX5_COUNTERS_PER_POOL + 6670 sizeof(struct mlx5_counter_stats_raw)) * raws_n + 6671 sizeof(struct mlx5_counter_stats_mem_mng); 6672 size_t pgsize = rte_mem_page_size(); 6673 uint8_t *mem; 6674 int i; 6675 6676 if (pgsize == (size_t)-1) { 6677 DRV_LOG(ERR, "Failed to get mem page size"); 6678 rte_errno = ENOMEM; 6679 return -ENOMEM; 6680 } 6681 mem = mlx5_malloc(MLX5_MEM_ZERO, size, pgsize, SOCKET_ID_ANY); 6682 if (!mem) { 6683 rte_errno = ENOMEM; 6684 return -ENOMEM; 6685 } 6686 mem_mng = (struct mlx5_counter_stats_mem_mng *)(mem + size) - 1; 6687 size = sizeof(*raw_data) * MLX5_COUNTERS_PER_POOL * raws_n; 6688 mem_mng->umem = mlx5_os_umem_reg(sh->ctx, mem, size, 6689 IBV_ACCESS_LOCAL_WRITE); 6690 if (!mem_mng->umem) { 6691 rte_errno = errno; 6692 mlx5_free(mem); 6693 return -rte_errno; 6694 } 6695 mkey_attr.addr = (uintptr_t)mem; 6696 mkey_attr.size = size; 6697 mkey_attr.umem_id = mlx5_os_get_umem_id(mem_mng->umem); 6698 mkey_attr.pd = sh->pdn; 6699 mkey_attr.log_entity_size = 0; 6700 mkey_attr.pg_access = 0; 6701 mkey_attr.klm_array = NULL; 6702 mkey_attr.klm_num = 0; 6703 mkey_attr.relaxed_ordering_write = sh->cmng.relaxed_ordering_write; 6704 mkey_attr.relaxed_ordering_read = sh->cmng.relaxed_ordering_read; 6705 mem_mng->dm = mlx5_devx_cmd_mkey_create(sh->ctx, &mkey_attr); 6706 if (!mem_mng->dm) { 6707 mlx5_os_umem_dereg(mem_mng->umem); 6708 rte_errno = errno; 6709 mlx5_free(mem); 6710 return -rte_errno; 6711 } 6712 mem_mng->raws = (struct mlx5_counter_stats_raw *)(mem + size); 6713 raw_data = (volatile struct flow_counter_stats *)mem; 6714 for (i = 0; i < raws_n; ++i) { 6715 mem_mng->raws[i].mem_mng = mem_mng; 6716 mem_mng->raws[i].data = raw_data + i * MLX5_COUNTERS_PER_POOL; 6717 } 6718 for (i = 0; i < MLX5_MAX_PENDING_QUERIES; ++i) 6719 LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, 6720 mem_mng->raws + MLX5_CNT_CONTAINER_RESIZE + i, 6721 next); 6722 LIST_INSERT_HEAD(&sh->cmng.mem_mngs, mem_mng, next); 6723 sh->cmng.mem_mng = mem_mng; 6724 return 0; 6725 } 6726 6727 /** 6728 * Set the statistic memory to the new counter pool. 6729 * 6730 * @param[in] sh 6731 * Pointer to mlx5_dev_ctx_shared object. 6732 * @param[in] pool 6733 * Pointer to the pool to set the statistic memory. 6734 * 6735 * @return 6736 * 0 on success, a negative errno value otherwise. 6737 */ 6738 static int 6739 mlx5_flow_set_counter_stat_mem(struct mlx5_dev_ctx_shared *sh, 6740 struct mlx5_flow_counter_pool *pool) 6741 { 6742 struct mlx5_flow_counter_mng *cmng = &sh->cmng; 6743 /* Resize statistic memory once used out. */ 6744 if (!(pool->index % MLX5_CNT_CONTAINER_RESIZE) && 6745 mlx5_flow_create_counter_stat_mem_mng(sh)) { 6746 DRV_LOG(ERR, "Cannot resize counter stat mem."); 6747 return -1; 6748 } 6749 rte_spinlock_lock(&pool->sl); 6750 pool->raw = cmng->mem_mng->raws + pool->index % 6751 MLX5_CNT_CONTAINER_RESIZE; 6752 rte_spinlock_unlock(&pool->sl); 6753 pool->raw_hw = NULL; 6754 return 0; 6755 } 6756 6757 #define MLX5_POOL_QUERY_FREQ_US 1000000 6758 6759 /** 6760 * Set the periodic procedure for triggering asynchronous batch queries for all 6761 * the counter pools. 6762 * 6763 * @param[in] sh 6764 * Pointer to mlx5_dev_ctx_shared object. 6765 */ 6766 void 6767 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh) 6768 { 6769 uint32_t pools_n, us; 6770 6771 pools_n = __atomic_load_n(&sh->cmng.n_valid, __ATOMIC_RELAXED); 6772 us = MLX5_POOL_QUERY_FREQ_US / pools_n; 6773 DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us); 6774 if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) { 6775 sh->cmng.query_thread_on = 0; 6776 DRV_LOG(ERR, "Cannot reinitialize query alarm"); 6777 } else { 6778 sh->cmng.query_thread_on = 1; 6779 } 6780 } 6781 6782 /** 6783 * The periodic procedure for triggering asynchronous batch queries for all the 6784 * counter pools. This function is probably called by the host thread. 6785 * 6786 * @param[in] arg 6787 * The parameter for the alarm process. 6788 */ 6789 void 6790 mlx5_flow_query_alarm(void *arg) 6791 { 6792 struct mlx5_dev_ctx_shared *sh = arg; 6793 int ret; 6794 uint16_t pool_index = sh->cmng.pool_index; 6795 struct mlx5_flow_counter_mng *cmng = &sh->cmng; 6796 struct mlx5_flow_counter_pool *pool; 6797 uint16_t n_valid; 6798 6799 if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES) 6800 goto set_alarm; 6801 rte_spinlock_lock(&cmng->pool_update_sl); 6802 pool = cmng->pools[pool_index]; 6803 n_valid = cmng->n_valid; 6804 rte_spinlock_unlock(&cmng->pool_update_sl); 6805 /* Set the statistic memory to the new created pool. */ 6806 if ((!pool->raw && mlx5_flow_set_counter_stat_mem(sh, pool))) 6807 goto set_alarm; 6808 if (pool->raw_hw) 6809 /* There is a pool query in progress. */ 6810 goto set_alarm; 6811 pool->raw_hw = 6812 LIST_FIRST(&sh->cmng.free_stat_raws); 6813 if (!pool->raw_hw) 6814 /* No free counter statistics raw memory. */ 6815 goto set_alarm; 6816 /* 6817 * Identify the counters released between query trigger and query 6818 * handle more efficiently. The counter released in this gap period 6819 * should wait for a new round of query as the new arrived packets 6820 * will not be taken into account. 6821 */ 6822 pool->query_gen++; 6823 ret = mlx5_devx_cmd_flow_counter_query(pool->min_dcs, 0, 6824 MLX5_COUNTERS_PER_POOL, 6825 NULL, NULL, 6826 pool->raw_hw->mem_mng->dm->id, 6827 (void *)(uintptr_t) 6828 pool->raw_hw->data, 6829 sh->devx_comp, 6830 (uint64_t)(uintptr_t)pool); 6831 if (ret) { 6832 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID" 6833 " %d", pool->min_dcs->id); 6834 pool->raw_hw = NULL; 6835 goto set_alarm; 6836 } 6837 LIST_REMOVE(pool->raw_hw, next); 6838 sh->cmng.pending_queries++; 6839 pool_index++; 6840 if (pool_index >= n_valid) 6841 pool_index = 0; 6842 set_alarm: 6843 sh->cmng.pool_index = pool_index; 6844 mlx5_set_query_alarm(sh); 6845 } 6846 6847 /** 6848 * Check and callback event for new aged flow in the counter pool 6849 * 6850 * @param[in] sh 6851 * Pointer to mlx5_dev_ctx_shared object. 6852 * @param[in] pool 6853 * Pointer to Current counter pool. 6854 */ 6855 static void 6856 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh, 6857 struct mlx5_flow_counter_pool *pool) 6858 { 6859 struct mlx5_priv *priv; 6860 struct mlx5_flow_counter *cnt; 6861 struct mlx5_age_info *age_info; 6862 struct mlx5_age_param *age_param; 6863 struct mlx5_counter_stats_raw *cur = pool->raw_hw; 6864 struct mlx5_counter_stats_raw *prev = pool->raw; 6865 const uint64_t curr_time = MLX5_CURR_TIME_SEC; 6866 const uint32_t time_delta = curr_time - pool->time_of_last_age_check; 6867 uint16_t expected = AGE_CANDIDATE; 6868 uint32_t i; 6869 6870 pool->time_of_last_age_check = curr_time; 6871 for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) { 6872 cnt = MLX5_POOL_GET_CNT(pool, i); 6873 age_param = MLX5_CNT_TO_AGE(cnt); 6874 if (__atomic_load_n(&age_param->state, 6875 __ATOMIC_RELAXED) != AGE_CANDIDATE) 6876 continue; 6877 if (cur->data[i].hits != prev->data[i].hits) { 6878 __atomic_store_n(&age_param->sec_since_last_hit, 0, 6879 __ATOMIC_RELAXED); 6880 continue; 6881 } 6882 if (__atomic_add_fetch(&age_param->sec_since_last_hit, 6883 time_delta, 6884 __ATOMIC_RELAXED) <= age_param->timeout) 6885 continue; 6886 /** 6887 * Hold the lock first, or if between the 6888 * state AGE_TMOUT and tailq operation the 6889 * release happened, the release procedure 6890 * may delete a non-existent tailq node. 6891 */ 6892 priv = rte_eth_devices[age_param->port_id].data->dev_private; 6893 age_info = GET_PORT_AGE_INFO(priv); 6894 rte_spinlock_lock(&age_info->aged_sl); 6895 if (__atomic_compare_exchange_n(&age_param->state, &expected, 6896 AGE_TMOUT, false, 6897 __ATOMIC_RELAXED, 6898 __ATOMIC_RELAXED)) { 6899 TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next); 6900 MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW); 6901 } 6902 rte_spinlock_unlock(&age_info->aged_sl); 6903 } 6904 mlx5_age_event_prepare(sh); 6905 } 6906 6907 /** 6908 * Handler for the HW respond about ready values from an asynchronous batch 6909 * query. This function is probably called by the host thread. 6910 * 6911 * @param[in] sh 6912 * The pointer to the shared device context. 6913 * @param[in] async_id 6914 * The Devx async ID. 6915 * @param[in] status 6916 * The status of the completion. 6917 */ 6918 void 6919 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh, 6920 uint64_t async_id, int status) 6921 { 6922 struct mlx5_flow_counter_pool *pool = 6923 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id; 6924 struct mlx5_counter_stats_raw *raw_to_free; 6925 uint8_t query_gen = pool->query_gen ^ 1; 6926 struct mlx5_flow_counter_mng *cmng = &sh->cmng; 6927 enum mlx5_counter_type cnt_type = 6928 pool->is_aged ? MLX5_COUNTER_TYPE_AGE : 6929 MLX5_COUNTER_TYPE_ORIGIN; 6930 6931 if (unlikely(status)) { 6932 raw_to_free = pool->raw_hw; 6933 } else { 6934 raw_to_free = pool->raw; 6935 if (pool->is_aged) 6936 mlx5_flow_aging_check(sh, pool); 6937 rte_spinlock_lock(&pool->sl); 6938 pool->raw = pool->raw_hw; 6939 rte_spinlock_unlock(&pool->sl); 6940 /* Be sure the new raw counters data is updated in memory. */ 6941 rte_io_wmb(); 6942 if (!TAILQ_EMPTY(&pool->counters[query_gen])) { 6943 rte_spinlock_lock(&cmng->csl[cnt_type]); 6944 TAILQ_CONCAT(&cmng->counters[cnt_type], 6945 &pool->counters[query_gen], next); 6946 rte_spinlock_unlock(&cmng->csl[cnt_type]); 6947 } 6948 } 6949 LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next); 6950 pool->raw_hw = NULL; 6951 sh->cmng.pending_queries--; 6952 } 6953 6954 static int 6955 flow_group_to_table(uint32_t port_id, uint32_t group, uint32_t *table, 6956 const struct flow_grp_info *grp_info, 6957 struct rte_flow_error *error) 6958 { 6959 if (grp_info->transfer && grp_info->external && 6960 grp_info->fdb_def_rule) { 6961 if (group == UINT32_MAX) 6962 return rte_flow_error_set 6963 (error, EINVAL, 6964 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 6965 NULL, 6966 "group index not supported"); 6967 *table = group + 1; 6968 } else { 6969 *table = group; 6970 } 6971 DRV_LOG(DEBUG, "port %u group=%#x table=%#x", port_id, group, *table); 6972 return 0; 6973 } 6974 6975 /** 6976 * Translate the rte_flow group index to HW table value. 6977 * 6978 * If tunnel offload is disabled, all group ids converted to flow table 6979 * id using the standard method. 6980 * If tunnel offload is enabled, group id can be converted using the 6981 * standard or tunnel conversion method. Group conversion method 6982 * selection depends on flags in `grp_info` parameter: 6983 * - Internal (grp_info.external == 0) groups conversion uses the 6984 * standard method. 6985 * - Group ids in JUMP action converted with the tunnel conversion. 6986 * - Group id in rule attribute conversion depends on a rule type and 6987 * group id value: 6988 * ** non zero group attributes converted with the tunnel method 6989 * ** zero group attribute in non-tunnel rule is converted using the 6990 * standard method - there's only one root table 6991 * ** zero group attribute in steer tunnel rule is converted with the 6992 * standard method - single root table 6993 * ** zero group attribute in match tunnel rule is a special OvS 6994 * case: that value is used for portability reasons. That group 6995 * id is converted with the tunnel conversion method. 6996 * 6997 * @param[in] dev 6998 * Port device 6999 * @param[in] tunnel 7000 * PMD tunnel offload object 7001 * @param[in] group 7002 * rte_flow group index value. 7003 * @param[out] table 7004 * HW table value. 7005 * @param[in] grp_info 7006 * flags used for conversion 7007 * @param[out] error 7008 * Pointer to error structure. 7009 * 7010 * @return 7011 * 0 on success, a negative errno value otherwise and rte_errno is set. 7012 */ 7013 int 7014 mlx5_flow_group_to_table(struct rte_eth_dev *dev, 7015 const struct mlx5_flow_tunnel *tunnel, 7016 uint32_t group, uint32_t *table, 7017 const struct flow_grp_info *grp_info, 7018 struct rte_flow_error *error) 7019 { 7020 int ret; 7021 bool standard_translation; 7022 7023 if (!grp_info->skip_scale && grp_info->external && 7024 group < MLX5_MAX_TABLES_EXTERNAL) 7025 group *= MLX5_FLOW_TABLE_FACTOR; 7026 if (is_tunnel_offload_active(dev)) { 7027 standard_translation = !grp_info->external || 7028 grp_info->std_tbl_fix; 7029 } else { 7030 standard_translation = true; 7031 } 7032 DRV_LOG(DEBUG, 7033 "port %u group=%u transfer=%d external=%d fdb_def_rule=%d translate=%s", 7034 dev->data->port_id, group, grp_info->transfer, 7035 grp_info->external, grp_info->fdb_def_rule, 7036 standard_translation ? "STANDARD" : "TUNNEL"); 7037 if (standard_translation) 7038 ret = flow_group_to_table(dev->data->port_id, group, table, 7039 grp_info, error); 7040 else 7041 ret = tunnel_flow_group_to_flow_table(dev, tunnel, group, 7042 table, error); 7043 7044 return ret; 7045 } 7046 7047 /** 7048 * Discover availability of metadata reg_c's. 7049 * 7050 * Iteratively use test flows to check availability. 7051 * 7052 * @param[in] dev 7053 * Pointer to the Ethernet device structure. 7054 * 7055 * @return 7056 * 0 on success, a negative errno value otherwise and rte_errno is set. 7057 */ 7058 int 7059 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev) 7060 { 7061 struct mlx5_priv *priv = dev->data->dev_private; 7062 struct mlx5_dev_config *config = &priv->config; 7063 enum modify_reg idx; 7064 int n = 0; 7065 7066 /* reg_c[0] and reg_c[1] are reserved. */ 7067 config->flow_mreg_c[n++] = REG_C_0; 7068 config->flow_mreg_c[n++] = REG_C_1; 7069 /* Discover availability of other reg_c's. */ 7070 for (idx = REG_C_2; idx <= REG_C_7; ++idx) { 7071 struct rte_flow_attr attr = { 7072 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP, 7073 .priority = MLX5_FLOW_PRIO_RSVD, 7074 .ingress = 1, 7075 }; 7076 struct rte_flow_item items[] = { 7077 [0] = { 7078 .type = RTE_FLOW_ITEM_TYPE_END, 7079 }, 7080 }; 7081 struct rte_flow_action actions[] = { 7082 [0] = { 7083 .type = (enum rte_flow_action_type) 7084 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG, 7085 .conf = &(struct mlx5_flow_action_copy_mreg){ 7086 .src = REG_C_1, 7087 .dst = idx, 7088 }, 7089 }, 7090 [1] = { 7091 .type = RTE_FLOW_ACTION_TYPE_JUMP, 7092 .conf = &(struct rte_flow_action_jump){ 7093 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP, 7094 }, 7095 }, 7096 [2] = { 7097 .type = RTE_FLOW_ACTION_TYPE_END, 7098 }, 7099 }; 7100 uint32_t flow_idx; 7101 struct rte_flow *flow; 7102 struct rte_flow_error error; 7103 7104 if (!config->dv_flow_en) 7105 break; 7106 /* Create internal flow, validation skips copy action. */ 7107 flow_idx = flow_list_create(dev, NULL, &attr, items, 7108 actions, false, &error); 7109 flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], 7110 flow_idx); 7111 if (!flow) 7112 continue; 7113 config->flow_mreg_c[n++] = idx; 7114 flow_list_destroy(dev, NULL, flow_idx); 7115 } 7116 for (; n < MLX5_MREG_C_NUM; ++n) 7117 config->flow_mreg_c[n] = REG_NON; 7118 return 0; 7119 } 7120 7121 /** 7122 * Dump flow raw hw data to file 7123 * 7124 * @param[in] dev 7125 * The pointer to Ethernet device. 7126 * @param[in] file 7127 * A pointer to a file for output. 7128 * @param[out] error 7129 * Perform verbose error reporting if not NULL. PMDs initialize this 7130 * structure in case of error only. 7131 * @return 7132 * 0 on success, a nagative value otherwise. 7133 */ 7134 int 7135 mlx5_flow_dev_dump(struct rte_eth_dev *dev, 7136 FILE *file, 7137 struct rte_flow_error *error __rte_unused) 7138 { 7139 struct mlx5_priv *priv = dev->data->dev_private; 7140 struct mlx5_dev_ctx_shared *sh = priv->sh; 7141 7142 if (!priv->config.dv_flow_en) { 7143 if (fputs("device dv flow disabled\n", file) <= 0) 7144 return -errno; 7145 return -ENOTSUP; 7146 } 7147 return mlx5_devx_cmd_flow_dump(sh->fdb_domain, sh->rx_domain, 7148 sh->tx_domain, file); 7149 } 7150 7151 /** 7152 * Get aged-out flows. 7153 * 7154 * @param[in] dev 7155 * Pointer to the Ethernet device structure. 7156 * @param[in] context 7157 * The address of an array of pointers to the aged-out flows contexts. 7158 * @param[in] nb_countexts 7159 * The length of context array pointers. 7160 * @param[out] error 7161 * Perform verbose error reporting if not NULL. Initialized in case of 7162 * error only. 7163 * 7164 * @return 7165 * how many contexts get in success, otherwise negative errno value. 7166 * if nb_contexts is 0, return the amount of all aged contexts. 7167 * if nb_contexts is not 0 , return the amount of aged flows reported 7168 * in the context array. 7169 */ 7170 int 7171 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts, 7172 uint32_t nb_contexts, struct rte_flow_error *error) 7173 { 7174 const struct mlx5_flow_driver_ops *fops; 7175 struct rte_flow_attr attr = { .transfer = 0 }; 7176 7177 if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) { 7178 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV); 7179 return fops->get_aged_flows(dev, contexts, nb_contexts, 7180 error); 7181 } 7182 DRV_LOG(ERR, 7183 "port %u get aged flows is not supported.", 7184 dev->data->port_id); 7185 return -ENOTSUP; 7186 } 7187 7188 /* Wrapper for driver action_validate op callback */ 7189 static int 7190 flow_drv_action_validate(struct rte_eth_dev *dev, 7191 const struct rte_flow_shared_action_conf *conf, 7192 const struct rte_flow_action *action, 7193 const struct mlx5_flow_driver_ops *fops, 7194 struct rte_flow_error *error) 7195 { 7196 static const char err_msg[] = "shared action validation unsupported"; 7197 7198 if (!fops->action_validate) { 7199 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 7200 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 7201 NULL, err_msg); 7202 return -rte_errno; 7203 } 7204 return fops->action_validate(dev, conf, action, error); 7205 } 7206 7207 /** 7208 * Destroys the shared action by handle. 7209 * 7210 * @param dev 7211 * Pointer to Ethernet device structure. 7212 * @param[in] action 7213 * Handle for the shared action to be destroyed. 7214 * @param[out] error 7215 * Perform verbose error reporting if not NULL. PMDs initialize this 7216 * structure in case of error only. 7217 * 7218 * @return 7219 * 0 on success, a negative errno value otherwise and rte_errno is set. 7220 * 7221 * @note: wrapper for driver action_create op callback. 7222 */ 7223 static int 7224 mlx5_shared_action_destroy(struct rte_eth_dev *dev, 7225 struct rte_flow_shared_action *action, 7226 struct rte_flow_error *error) 7227 { 7228 static const char err_msg[] = "shared action destruction unsupported"; 7229 struct rte_flow_attr attr = { .transfer = 0 }; 7230 const struct mlx5_flow_driver_ops *fops = 7231 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 7232 7233 if (!fops->action_destroy) { 7234 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 7235 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 7236 NULL, err_msg); 7237 return -rte_errno; 7238 } 7239 return fops->action_destroy(dev, action, error); 7240 } 7241 7242 /* Wrapper for driver action_destroy op callback */ 7243 static int 7244 flow_drv_action_update(struct rte_eth_dev *dev, 7245 struct rte_flow_shared_action *action, 7246 const void *action_conf, 7247 const struct mlx5_flow_driver_ops *fops, 7248 struct rte_flow_error *error) 7249 { 7250 static const char err_msg[] = "shared action update unsupported"; 7251 7252 if (!fops->action_update) { 7253 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 7254 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 7255 NULL, err_msg); 7256 return -rte_errno; 7257 } 7258 return fops->action_update(dev, action, action_conf, error); 7259 } 7260 7261 /* Wrapper for driver action_destroy op callback */ 7262 static int 7263 flow_drv_action_query(struct rte_eth_dev *dev, 7264 const struct rte_flow_shared_action *action, 7265 void *data, 7266 const struct mlx5_flow_driver_ops *fops, 7267 struct rte_flow_error *error) 7268 { 7269 static const char err_msg[] = "shared action query unsupported"; 7270 7271 if (!fops->action_query) { 7272 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 7273 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 7274 NULL, err_msg); 7275 return -rte_errno; 7276 } 7277 return fops->action_query(dev, action, data, error); 7278 } 7279 7280 /** 7281 * Create shared action for reuse in multiple flow rules. 7282 * 7283 * @param dev 7284 * Pointer to Ethernet device structure. 7285 * @param[in] action 7286 * Action configuration for shared action creation. 7287 * @param[out] error 7288 * Perform verbose error reporting if not NULL. PMDs initialize this 7289 * structure in case of error only. 7290 * @return 7291 * A valid handle in case of success, NULL otherwise and rte_errno is set. 7292 */ 7293 static struct rte_flow_shared_action * 7294 mlx5_shared_action_create(struct rte_eth_dev *dev, 7295 const struct rte_flow_shared_action_conf *conf, 7296 const struct rte_flow_action *action, 7297 struct rte_flow_error *error) 7298 { 7299 static const char err_msg[] = "shared action creation unsupported"; 7300 struct rte_flow_attr attr = { .transfer = 0 }; 7301 const struct mlx5_flow_driver_ops *fops = 7302 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 7303 7304 if (flow_drv_action_validate(dev, conf, action, fops, error)) 7305 return NULL; 7306 if (!fops->action_create) { 7307 DRV_LOG(ERR, "port %u %s.", dev->data->port_id, err_msg); 7308 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 7309 NULL, err_msg); 7310 return NULL; 7311 } 7312 return fops->action_create(dev, conf, action, error); 7313 } 7314 7315 /** 7316 * Updates inplace the shared action configuration pointed by *action* handle 7317 * with the configuration provided as *action* argument. 7318 * The update of the shared action configuration effects all flow rules reusing 7319 * the action via handle. 7320 * 7321 * @param dev 7322 * Pointer to Ethernet device structure. 7323 * @param[in] shared_action 7324 * Handle for the shared action to be updated. 7325 * @param[in] action 7326 * Action specification used to modify the action pointed by handle. 7327 * *action* should be of same type with the action pointed by the *action* 7328 * handle argument, otherwise considered as invalid. 7329 * @param[out] error 7330 * Perform verbose error reporting if not NULL. PMDs initialize this 7331 * structure in case of error only. 7332 * 7333 * @return 7334 * 0 on success, a negative errno value otherwise and rte_errno is set. 7335 */ 7336 static int 7337 mlx5_shared_action_update(struct rte_eth_dev *dev, 7338 struct rte_flow_shared_action *shared_action, 7339 const struct rte_flow_action *action, 7340 struct rte_flow_error *error) 7341 { 7342 struct rte_flow_attr attr = { .transfer = 0 }; 7343 const struct mlx5_flow_driver_ops *fops = 7344 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 7345 int ret; 7346 7347 ret = flow_drv_action_validate(dev, NULL, action, fops, error); 7348 if (ret) 7349 return ret; 7350 return flow_drv_action_update(dev, shared_action, action->conf, fops, 7351 error); 7352 } 7353 7354 /** 7355 * Query the shared action by handle. 7356 * 7357 * This function allows retrieving action-specific data such as counters. 7358 * Data is gathered by special action which may be present/referenced in 7359 * more than one flow rule definition. 7360 * 7361 * \see RTE_FLOW_ACTION_TYPE_COUNT 7362 * 7363 * @param dev 7364 * Pointer to Ethernet device structure. 7365 * @param[in] action 7366 * Handle for the shared action to query. 7367 * @param[in, out] data 7368 * Pointer to storage for the associated query data type. 7369 * @param[out] error 7370 * Perform verbose error reporting if not NULL. PMDs initialize this 7371 * structure in case of error only. 7372 * 7373 * @return 7374 * 0 on success, a negative errno value otherwise and rte_errno is set. 7375 */ 7376 static int 7377 mlx5_shared_action_query(struct rte_eth_dev *dev, 7378 const struct rte_flow_shared_action *action, 7379 void *data, 7380 struct rte_flow_error *error) 7381 { 7382 struct rte_flow_attr attr = { .transfer = 0 }; 7383 const struct mlx5_flow_driver_ops *fops = 7384 flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 7385 7386 return flow_drv_action_query(dev, action, data, fops, error); 7387 } 7388 7389 /** 7390 * Destroy all shared actions. 7391 * 7392 * @param dev 7393 * Pointer to Ethernet device. 7394 * 7395 * @return 7396 * 0 on success, a negative errno value otherwise and rte_errno is set. 7397 */ 7398 int 7399 mlx5_shared_action_flush(struct rte_eth_dev *dev) 7400 { 7401 struct rte_flow_error error; 7402 struct mlx5_priv *priv = dev->data->dev_private; 7403 struct mlx5_shared_action_rss *action; 7404 int ret = 0; 7405 uint32_t idx; 7406 7407 ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RSS_SHARED_ACTIONS], 7408 priv->rss_shared_actions, idx, action, next) { 7409 ret |= mlx5_shared_action_destroy(dev, 7410 (struct rte_flow_shared_action *)(uintptr_t)idx, &error); 7411 } 7412 return ret; 7413 } 7414 7415 #ifndef HAVE_MLX5DV_DR 7416 #define MLX5_DOMAIN_SYNC_FLOW ((1 << 0) | (1 << 1)) 7417 #else 7418 #define MLX5_DOMAIN_SYNC_FLOW \ 7419 (MLX5DV_DR_DOMAIN_SYNC_FLAGS_SW | MLX5DV_DR_DOMAIN_SYNC_FLAGS_HW) 7420 #endif 7421 7422 int rte_pmd_mlx5_sync_flow(uint16_t port_id, uint32_t domains) 7423 { 7424 struct rte_eth_dev *dev = &rte_eth_devices[port_id]; 7425 const struct mlx5_flow_driver_ops *fops; 7426 int ret; 7427 struct rte_flow_attr attr = { .transfer = 0 }; 7428 7429 fops = flow_get_drv_ops(flow_get_drv_type(dev, &attr)); 7430 ret = fops->sync_domain(dev, domains, MLX5_DOMAIN_SYNC_FLOW); 7431 if (ret > 0) 7432 ret = -ret; 7433 return ret; 7434 } 7435 7436 /** 7437 * tunnel offload functionalilty is defined for DV environment only 7438 */ 7439 #ifdef HAVE_IBV_FLOW_DV_SUPPORT 7440 __extension__ 7441 union tunnel_offload_mark { 7442 uint32_t val; 7443 struct { 7444 uint32_t app_reserve:8; 7445 uint32_t table_id:15; 7446 uint32_t transfer:1; 7447 uint32_t _unused_:8; 7448 }; 7449 }; 7450 7451 static bool 7452 mlx5_access_tunnel_offload_db 7453 (struct rte_eth_dev *dev, 7454 bool (*match)(struct rte_eth_dev *, 7455 struct mlx5_flow_tunnel *, const void *), 7456 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *), 7457 void (*miss)(struct rte_eth_dev *, void *), 7458 void *ctx, bool lock_op); 7459 7460 static int 7461 flow_tunnel_add_default_miss(struct rte_eth_dev *dev, 7462 struct rte_flow *flow, 7463 const struct rte_flow_attr *attr, 7464 const struct rte_flow_action *app_actions, 7465 uint32_t flow_idx, 7466 struct tunnel_default_miss_ctx *ctx, 7467 struct rte_flow_error *error) 7468 { 7469 struct mlx5_priv *priv = dev->data->dev_private; 7470 struct mlx5_flow *dev_flow; 7471 struct rte_flow_attr miss_attr = *attr; 7472 const struct mlx5_flow_tunnel *tunnel = app_actions[0].conf; 7473 const struct rte_flow_item miss_items[2] = { 7474 { 7475 .type = RTE_FLOW_ITEM_TYPE_ETH, 7476 .spec = NULL, 7477 .last = NULL, 7478 .mask = NULL 7479 }, 7480 { 7481 .type = RTE_FLOW_ITEM_TYPE_END, 7482 .spec = NULL, 7483 .last = NULL, 7484 .mask = NULL 7485 } 7486 }; 7487 union tunnel_offload_mark mark_id; 7488 struct rte_flow_action_mark miss_mark; 7489 struct rte_flow_action miss_actions[3] = { 7490 [0] = { .type = RTE_FLOW_ACTION_TYPE_MARK, .conf = &miss_mark }, 7491 [2] = { .type = RTE_FLOW_ACTION_TYPE_END, .conf = NULL } 7492 }; 7493 const struct rte_flow_action_jump *jump_data; 7494 uint32_t i, flow_table = 0; /* prevent compilation warning */ 7495 struct flow_grp_info grp_info = { 7496 .external = 1, 7497 .transfer = attr->transfer, 7498 .fdb_def_rule = !!priv->fdb_def_rule, 7499 .std_tbl_fix = 0, 7500 }; 7501 int ret; 7502 7503 if (!attr->transfer) { 7504 uint32_t q_size; 7505 7506 miss_actions[1].type = RTE_FLOW_ACTION_TYPE_RSS; 7507 q_size = priv->reta_idx_n * sizeof(ctx->queue[0]); 7508 ctx->queue = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, q_size, 7509 0, SOCKET_ID_ANY); 7510 if (!ctx->queue) 7511 return rte_flow_error_set 7512 (error, ENOMEM, 7513 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 7514 NULL, "invalid default miss RSS"); 7515 ctx->action_rss.func = RTE_ETH_HASH_FUNCTION_DEFAULT, 7516 ctx->action_rss.level = 0, 7517 ctx->action_rss.types = priv->rss_conf.rss_hf, 7518 ctx->action_rss.key_len = priv->rss_conf.rss_key_len, 7519 ctx->action_rss.queue_num = priv->reta_idx_n, 7520 ctx->action_rss.key = priv->rss_conf.rss_key, 7521 ctx->action_rss.queue = ctx->queue; 7522 if (!priv->reta_idx_n || !priv->rxqs_n) 7523 return rte_flow_error_set 7524 (error, EINVAL, 7525 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 7526 NULL, "invalid port configuration"); 7527 if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)) 7528 ctx->action_rss.types = 0; 7529 for (i = 0; i != priv->reta_idx_n; ++i) 7530 ctx->queue[i] = (*priv->reta_idx)[i]; 7531 } else { 7532 miss_actions[1].type = RTE_FLOW_ACTION_TYPE_JUMP; 7533 ctx->miss_jump.group = MLX5_TNL_MISS_FDB_JUMP_GRP; 7534 } 7535 miss_actions[1].conf = (typeof(miss_actions[1].conf))ctx->raw; 7536 for (; app_actions->type != RTE_FLOW_ACTION_TYPE_JUMP; app_actions++); 7537 jump_data = app_actions->conf; 7538 miss_attr.priority = MLX5_TNL_MISS_RULE_PRIORITY; 7539 miss_attr.group = jump_data->group; 7540 ret = mlx5_flow_group_to_table(dev, tunnel, jump_data->group, 7541 &flow_table, &grp_info, error); 7542 if (ret) 7543 return rte_flow_error_set(error, EINVAL, 7544 RTE_FLOW_ERROR_TYPE_ACTION_CONF, 7545 NULL, "invalid tunnel id"); 7546 mark_id.app_reserve = 0; 7547 mark_id.table_id = tunnel_flow_tbl_to_id(flow_table); 7548 mark_id.transfer = !!attr->transfer; 7549 mark_id._unused_ = 0; 7550 miss_mark.id = mark_id.val; 7551 dev_flow = flow_drv_prepare(dev, flow, &miss_attr, 7552 miss_items, miss_actions, flow_idx, error); 7553 if (!dev_flow) 7554 return -rte_errno; 7555 dev_flow->flow = flow; 7556 dev_flow->external = true; 7557 dev_flow->tunnel = tunnel; 7558 /* Subflow object was created, we must include one in the list. */ 7559 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx, 7560 dev_flow->handle, next); 7561 DRV_LOG(DEBUG, 7562 "port %u tunnel type=%d id=%u miss rule priority=%u group=%u", 7563 dev->data->port_id, tunnel->app_tunnel.type, 7564 tunnel->tunnel_id, miss_attr.priority, miss_attr.group); 7565 ret = flow_drv_translate(dev, dev_flow, &miss_attr, miss_items, 7566 miss_actions, error); 7567 if (!ret) 7568 ret = flow_mreg_update_copy_table(dev, flow, miss_actions, 7569 error); 7570 7571 return ret; 7572 } 7573 7574 static const struct mlx5_flow_tbl_data_entry * 7575 tunnel_mark_decode(struct rte_eth_dev *dev, uint32_t mark) 7576 { 7577 struct mlx5_priv *priv = dev->data->dev_private; 7578 struct mlx5_dev_ctx_shared *sh = priv->sh; 7579 struct mlx5_hlist_entry *he; 7580 union tunnel_offload_mark mbits = { .val = mark }; 7581 union mlx5_flow_tbl_key table_key = { 7582 { 7583 .table_id = tunnel_id_to_flow_tbl(mbits.table_id), 7584 .dummy = 0, 7585 .domain = !!mbits.transfer, 7586 .direction = 0, 7587 } 7588 }; 7589 he = mlx5_hlist_lookup(sh->flow_tbls, table_key.v64, NULL); 7590 return he ? 7591 container_of(he, struct mlx5_flow_tbl_data_entry, entry) : NULL; 7592 } 7593 7594 static void 7595 mlx5_flow_tunnel_grp2tbl_remove_cb(struct mlx5_hlist *list, 7596 struct mlx5_hlist_entry *entry) 7597 { 7598 struct mlx5_dev_ctx_shared *sh = list->ctx; 7599 struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash); 7600 7601 mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID], 7602 tunnel_flow_tbl_to_id(tte->flow_table)); 7603 mlx5_free(tte); 7604 } 7605 7606 static int 7607 mlx5_flow_tunnel_grp2tbl_match_cb(struct mlx5_hlist *list __rte_unused, 7608 struct mlx5_hlist_entry *entry, 7609 uint64_t key, void *cb_ctx __rte_unused) 7610 { 7611 union tunnel_tbl_key tbl = { 7612 .val = key, 7613 }; 7614 struct tunnel_tbl_entry *tte = container_of(entry, typeof(*tte), hash); 7615 7616 return tbl.tunnel_id != tte->tunnel_id || tbl.group != tte->group; 7617 } 7618 7619 static struct mlx5_hlist_entry * 7620 mlx5_flow_tunnel_grp2tbl_create_cb(struct mlx5_hlist *list, uint64_t key, 7621 void *ctx __rte_unused) 7622 { 7623 struct mlx5_dev_ctx_shared *sh = list->ctx; 7624 struct tunnel_tbl_entry *tte; 7625 union tunnel_tbl_key tbl = { 7626 .val = key, 7627 }; 7628 7629 tte = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, 7630 sizeof(*tte), 0, 7631 SOCKET_ID_ANY); 7632 if (!tte) 7633 goto err; 7634 mlx5_ipool_malloc(sh->ipool[MLX5_IPOOL_TNL_TBL_ID], 7635 &tte->flow_table); 7636 if (tte->flow_table >= MLX5_MAX_TABLES) { 7637 DRV_LOG(ERR, "Tunnel TBL ID %d exceed max limit.", 7638 tte->flow_table); 7639 mlx5_ipool_free(sh->ipool[MLX5_IPOOL_TNL_TBL_ID], 7640 tte->flow_table); 7641 goto err; 7642 } else if (!tte->flow_table) { 7643 goto err; 7644 } 7645 tte->flow_table = tunnel_id_to_flow_tbl(tte->flow_table); 7646 tte->tunnel_id = tbl.tunnel_id; 7647 tte->group = tbl.group; 7648 return &tte->hash; 7649 err: 7650 if (tte) 7651 mlx5_free(tte); 7652 return NULL; 7653 } 7654 7655 static uint32_t 7656 tunnel_flow_group_to_flow_table(struct rte_eth_dev *dev, 7657 const struct mlx5_flow_tunnel *tunnel, 7658 uint32_t group, uint32_t *table, 7659 struct rte_flow_error *error) 7660 { 7661 struct mlx5_hlist_entry *he; 7662 struct tunnel_tbl_entry *tte; 7663 union tunnel_tbl_key key = { 7664 .tunnel_id = tunnel ? tunnel->tunnel_id : 0, 7665 .group = group 7666 }; 7667 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 7668 struct mlx5_hlist *group_hash; 7669 7670 group_hash = tunnel ? tunnel->groups : thub->groups; 7671 he = mlx5_hlist_register(group_hash, key.val, NULL); 7672 if (!he) 7673 return rte_flow_error_set(error, EINVAL, 7674 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 7675 NULL, 7676 "tunnel group index not supported"); 7677 tte = container_of(he, typeof(*tte), hash); 7678 *table = tte->flow_table; 7679 DRV_LOG(DEBUG, "port %u tunnel %u group=%#x table=%#x", 7680 dev->data->port_id, key.tunnel_id, group, *table); 7681 return 0; 7682 } 7683 7684 static void 7685 mlx5_flow_tunnel_free(struct rte_eth_dev *dev, 7686 struct mlx5_flow_tunnel *tunnel) 7687 { 7688 struct mlx5_priv *priv = dev->data->dev_private; 7689 struct mlx5_indexed_pool *ipool; 7690 7691 DRV_LOG(DEBUG, "port %u release pmd tunnel id=0x%x", 7692 dev->data->port_id, tunnel->tunnel_id); 7693 LIST_REMOVE(tunnel, chain); 7694 mlx5_hlist_destroy(tunnel->groups); 7695 ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID]; 7696 mlx5_ipool_free(ipool, tunnel->tunnel_id); 7697 } 7698 7699 static bool 7700 mlx5_access_tunnel_offload_db 7701 (struct rte_eth_dev *dev, 7702 bool (*match)(struct rte_eth_dev *, 7703 struct mlx5_flow_tunnel *, const void *), 7704 void (*hit)(struct rte_eth_dev *, struct mlx5_flow_tunnel *, void *), 7705 void (*miss)(struct rte_eth_dev *, void *), 7706 void *ctx, bool lock_op) 7707 { 7708 bool verdict = false; 7709 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 7710 struct mlx5_flow_tunnel *tunnel; 7711 7712 rte_spinlock_lock(&thub->sl); 7713 LIST_FOREACH(tunnel, &thub->tunnels, chain) { 7714 verdict = match(dev, tunnel, (const void *)ctx); 7715 if (verdict) 7716 break; 7717 } 7718 if (!lock_op) 7719 rte_spinlock_unlock(&thub->sl); 7720 if (verdict && hit) 7721 hit(dev, tunnel, ctx); 7722 if (!verdict && miss) 7723 miss(dev, ctx); 7724 if (lock_op) 7725 rte_spinlock_unlock(&thub->sl); 7726 7727 return verdict; 7728 } 7729 7730 struct tunnel_db_find_tunnel_id_ctx { 7731 uint32_t tunnel_id; 7732 struct mlx5_flow_tunnel *tunnel; 7733 }; 7734 7735 static bool 7736 find_tunnel_id_match(struct rte_eth_dev *dev, 7737 struct mlx5_flow_tunnel *tunnel, const void *x) 7738 { 7739 const struct tunnel_db_find_tunnel_id_ctx *ctx = x; 7740 7741 RTE_SET_USED(dev); 7742 return tunnel->tunnel_id == ctx->tunnel_id; 7743 } 7744 7745 static void 7746 find_tunnel_id_hit(struct rte_eth_dev *dev, 7747 struct mlx5_flow_tunnel *tunnel, void *x) 7748 { 7749 struct tunnel_db_find_tunnel_id_ctx *ctx = x; 7750 RTE_SET_USED(dev); 7751 ctx->tunnel = tunnel; 7752 } 7753 7754 static struct mlx5_flow_tunnel * 7755 mlx5_find_tunnel_id(struct rte_eth_dev *dev, uint32_t id) 7756 { 7757 struct tunnel_db_find_tunnel_id_ctx ctx = { 7758 .tunnel_id = id, 7759 }; 7760 7761 mlx5_access_tunnel_offload_db(dev, find_tunnel_id_match, 7762 find_tunnel_id_hit, NULL, &ctx, true); 7763 7764 return ctx.tunnel; 7765 } 7766 7767 static struct mlx5_flow_tunnel * 7768 mlx5_flow_tunnel_allocate(struct rte_eth_dev *dev, 7769 const struct rte_flow_tunnel *app_tunnel) 7770 { 7771 struct mlx5_priv *priv = dev->data->dev_private; 7772 struct mlx5_indexed_pool *ipool; 7773 struct mlx5_flow_tunnel *tunnel; 7774 uint32_t id; 7775 7776 ipool = priv->sh->ipool[MLX5_IPOOL_TUNNEL_ID]; 7777 tunnel = mlx5_ipool_zmalloc(ipool, &id); 7778 if (!tunnel) 7779 return NULL; 7780 if (id >= MLX5_MAX_TUNNELS) { 7781 mlx5_ipool_free(ipool, id); 7782 DRV_LOG(ERR, "Tunnel ID %d exceed max limit.", id); 7783 return NULL; 7784 } 7785 tunnel->groups = mlx5_hlist_create("tunnel groups", 1024, 0, 0, 7786 mlx5_flow_tunnel_grp2tbl_create_cb, 7787 mlx5_flow_tunnel_grp2tbl_match_cb, 7788 mlx5_flow_tunnel_grp2tbl_remove_cb); 7789 if (!tunnel->groups) { 7790 mlx5_ipool_free(ipool, id); 7791 return NULL; 7792 } 7793 tunnel->groups->ctx = priv->sh; 7794 /* initiate new PMD tunnel */ 7795 memcpy(&tunnel->app_tunnel, app_tunnel, sizeof(*app_tunnel)); 7796 tunnel->tunnel_id = id; 7797 tunnel->action.type = (typeof(tunnel->action.type)) 7798 MLX5_RTE_FLOW_ACTION_TYPE_TUNNEL_SET; 7799 tunnel->action.conf = tunnel; 7800 tunnel->item.type = (typeof(tunnel->item.type)) 7801 MLX5_RTE_FLOW_ITEM_TYPE_TUNNEL; 7802 tunnel->item.spec = tunnel; 7803 tunnel->item.last = NULL; 7804 tunnel->item.mask = NULL; 7805 7806 DRV_LOG(DEBUG, "port %u new pmd tunnel id=0x%x", 7807 dev->data->port_id, tunnel->tunnel_id); 7808 7809 return tunnel; 7810 } 7811 7812 struct tunnel_db_get_tunnel_ctx { 7813 const struct rte_flow_tunnel *app_tunnel; 7814 struct mlx5_flow_tunnel *tunnel; 7815 }; 7816 7817 static bool get_tunnel_match(struct rte_eth_dev *dev, 7818 struct mlx5_flow_tunnel *tunnel, const void *x) 7819 { 7820 const struct tunnel_db_get_tunnel_ctx *ctx = x; 7821 7822 RTE_SET_USED(dev); 7823 return !memcmp(ctx->app_tunnel, &tunnel->app_tunnel, 7824 sizeof(*ctx->app_tunnel)); 7825 } 7826 7827 static void get_tunnel_hit(struct rte_eth_dev *dev, 7828 struct mlx5_flow_tunnel *tunnel, void *x) 7829 { 7830 /* called under tunnel spinlock protection */ 7831 struct tunnel_db_get_tunnel_ctx *ctx = x; 7832 7833 RTE_SET_USED(dev); 7834 tunnel->refctn++; 7835 ctx->tunnel = tunnel; 7836 } 7837 7838 static void get_tunnel_miss(struct rte_eth_dev *dev, void *x) 7839 { 7840 /* called under tunnel spinlock protection */ 7841 struct mlx5_flow_tunnel_hub *thub = mlx5_tunnel_hub(dev); 7842 struct tunnel_db_get_tunnel_ctx *ctx = x; 7843 7844 rte_spinlock_unlock(&thub->sl); 7845 ctx->tunnel = mlx5_flow_tunnel_allocate(dev, ctx->app_tunnel); 7846 ctx->tunnel->refctn = 1; 7847 rte_spinlock_lock(&thub->sl); 7848 if (ctx->tunnel) 7849 LIST_INSERT_HEAD(&thub->tunnels, ctx->tunnel, chain); 7850 } 7851 7852 7853 static int 7854 mlx5_get_flow_tunnel(struct rte_eth_dev *dev, 7855 const struct rte_flow_tunnel *app_tunnel, 7856 struct mlx5_flow_tunnel **tunnel) 7857 { 7858 struct tunnel_db_get_tunnel_ctx ctx = { 7859 .app_tunnel = app_tunnel, 7860 }; 7861 7862 mlx5_access_tunnel_offload_db(dev, get_tunnel_match, get_tunnel_hit, 7863 get_tunnel_miss, &ctx, true); 7864 *tunnel = ctx.tunnel; 7865 return ctx.tunnel ? 0 : -ENOMEM; 7866 } 7867 7868 void mlx5_release_tunnel_hub(struct mlx5_dev_ctx_shared *sh, uint16_t port_id) 7869 { 7870 struct mlx5_flow_tunnel_hub *thub = sh->tunnel_hub; 7871 7872 if (!thub) 7873 return; 7874 if (!LIST_EMPTY(&thub->tunnels)) 7875 DRV_LOG(WARNING, "port %u tunnels present\n", port_id); 7876 mlx5_hlist_destroy(thub->groups); 7877 mlx5_free(thub); 7878 } 7879 7880 int mlx5_alloc_tunnel_hub(struct mlx5_dev_ctx_shared *sh) 7881 { 7882 int err; 7883 struct mlx5_flow_tunnel_hub *thub; 7884 7885 thub = mlx5_malloc(MLX5_MEM_SYS | MLX5_MEM_ZERO, sizeof(*thub), 7886 0, SOCKET_ID_ANY); 7887 if (!thub) 7888 return -ENOMEM; 7889 LIST_INIT(&thub->tunnels); 7890 rte_spinlock_init(&thub->sl); 7891 thub->groups = mlx5_hlist_create("flow groups", MLX5_MAX_TABLES, 0, 7892 0, mlx5_flow_tunnel_grp2tbl_create_cb, 7893 mlx5_flow_tunnel_grp2tbl_match_cb, 7894 mlx5_flow_tunnel_grp2tbl_remove_cb); 7895 if (!thub->groups) { 7896 err = -rte_errno; 7897 goto err; 7898 } 7899 thub->groups->ctx = sh; 7900 sh->tunnel_hub = thub; 7901 7902 return 0; 7903 7904 err: 7905 if (thub->groups) 7906 mlx5_hlist_destroy(thub->groups); 7907 if (thub) 7908 mlx5_free(thub); 7909 return err; 7910 } 7911 7912 static inline bool 7913 mlx5_flow_tunnel_validate(struct rte_eth_dev *dev, 7914 struct rte_flow_tunnel *tunnel, 7915 const char *err_msg) 7916 { 7917 err_msg = NULL; 7918 if (!is_tunnel_offload_active(dev)) { 7919 err_msg = "tunnel offload was not activated"; 7920 goto out; 7921 } else if (!tunnel) { 7922 err_msg = "no application tunnel"; 7923 goto out; 7924 } 7925 7926 switch (tunnel->type) { 7927 default: 7928 err_msg = "unsupported tunnel type"; 7929 goto out; 7930 case RTE_FLOW_ITEM_TYPE_VXLAN: 7931 break; 7932 } 7933 7934 out: 7935 return !err_msg; 7936 } 7937 7938 static int 7939 mlx5_flow_tunnel_decap_set(struct rte_eth_dev *dev, 7940 struct rte_flow_tunnel *app_tunnel, 7941 struct rte_flow_action **actions, 7942 uint32_t *num_of_actions, 7943 struct rte_flow_error *error) 7944 { 7945 int ret; 7946 struct mlx5_flow_tunnel *tunnel; 7947 const char *err_msg = NULL; 7948 bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg); 7949 7950 if (!verdict) 7951 return rte_flow_error_set(error, EINVAL, 7952 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 7953 err_msg); 7954 ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel); 7955 if (ret < 0) { 7956 return rte_flow_error_set(error, ret, 7957 RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL, 7958 "failed to initialize pmd tunnel"); 7959 } 7960 *actions = &tunnel->action; 7961 *num_of_actions = 1; 7962 return 0; 7963 } 7964 7965 static int 7966 mlx5_flow_tunnel_match(struct rte_eth_dev *dev, 7967 struct rte_flow_tunnel *app_tunnel, 7968 struct rte_flow_item **items, 7969 uint32_t *num_of_items, 7970 struct rte_flow_error *error) 7971 { 7972 int ret; 7973 struct mlx5_flow_tunnel *tunnel; 7974 const char *err_msg = NULL; 7975 bool verdict = mlx5_flow_tunnel_validate(dev, app_tunnel, err_msg); 7976 7977 if (!verdict) 7978 return rte_flow_error_set(error, EINVAL, 7979 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 7980 err_msg); 7981 ret = mlx5_get_flow_tunnel(dev, app_tunnel, &tunnel); 7982 if (ret < 0) { 7983 return rte_flow_error_set(error, ret, 7984 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 7985 "failed to initialize pmd tunnel"); 7986 } 7987 *items = &tunnel->item; 7988 *num_of_items = 1; 7989 return 0; 7990 } 7991 7992 struct tunnel_db_element_release_ctx { 7993 struct rte_flow_item *items; 7994 struct rte_flow_action *actions; 7995 uint32_t num_elements; 7996 struct rte_flow_error *error; 7997 int ret; 7998 }; 7999 8000 static bool 8001 tunnel_element_release_match(struct rte_eth_dev *dev, 8002 struct mlx5_flow_tunnel *tunnel, const void *x) 8003 { 8004 const struct tunnel_db_element_release_ctx *ctx = x; 8005 8006 RTE_SET_USED(dev); 8007 if (ctx->num_elements != 1) 8008 return false; 8009 else if (ctx->items) 8010 return ctx->items == &tunnel->item; 8011 else if (ctx->actions) 8012 return ctx->actions == &tunnel->action; 8013 8014 return false; 8015 } 8016 8017 static void 8018 tunnel_element_release_hit(struct rte_eth_dev *dev, 8019 struct mlx5_flow_tunnel *tunnel, void *x) 8020 { 8021 struct tunnel_db_element_release_ctx *ctx = x; 8022 ctx->ret = 0; 8023 if (!__atomic_sub_fetch(&tunnel->refctn, 1, __ATOMIC_RELAXED)) 8024 mlx5_flow_tunnel_free(dev, tunnel); 8025 } 8026 8027 static void 8028 tunnel_element_release_miss(struct rte_eth_dev *dev, void *x) 8029 { 8030 struct tunnel_db_element_release_ctx *ctx = x; 8031 RTE_SET_USED(dev); 8032 ctx->ret = rte_flow_error_set(ctx->error, EINVAL, 8033 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 8034 "invalid argument"); 8035 } 8036 8037 static int 8038 mlx5_flow_tunnel_item_release(struct rte_eth_dev *dev, 8039 struct rte_flow_item *pmd_items, 8040 uint32_t num_items, struct rte_flow_error *err) 8041 { 8042 struct tunnel_db_element_release_ctx ctx = { 8043 .items = pmd_items, 8044 .actions = NULL, 8045 .num_elements = num_items, 8046 .error = err, 8047 }; 8048 8049 mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match, 8050 tunnel_element_release_hit, 8051 tunnel_element_release_miss, &ctx, false); 8052 8053 return ctx.ret; 8054 } 8055 8056 static int 8057 mlx5_flow_tunnel_action_release(struct rte_eth_dev *dev, 8058 struct rte_flow_action *pmd_actions, 8059 uint32_t num_actions, struct rte_flow_error *err) 8060 { 8061 struct tunnel_db_element_release_ctx ctx = { 8062 .items = NULL, 8063 .actions = pmd_actions, 8064 .num_elements = num_actions, 8065 .error = err, 8066 }; 8067 8068 mlx5_access_tunnel_offload_db(dev, tunnel_element_release_match, 8069 tunnel_element_release_hit, 8070 tunnel_element_release_miss, &ctx, false); 8071 8072 return ctx.ret; 8073 } 8074 8075 static int 8076 mlx5_flow_tunnel_get_restore_info(struct rte_eth_dev *dev, 8077 struct rte_mbuf *m, 8078 struct rte_flow_restore_info *info, 8079 struct rte_flow_error *err) 8080 { 8081 uint64_t ol_flags = m->ol_flags; 8082 const struct mlx5_flow_tbl_data_entry *tble; 8083 const uint64_t mask = PKT_RX_FDIR | PKT_RX_FDIR_ID; 8084 8085 if (!is_tunnel_offload_active(dev)) { 8086 info->flags = 0; 8087 return 0; 8088 } 8089 8090 if ((ol_flags & mask) != mask) 8091 goto err; 8092 tble = tunnel_mark_decode(dev, m->hash.fdir.hi); 8093 if (!tble) { 8094 DRV_LOG(DEBUG, "port %u invalid miss tunnel mark %#x", 8095 dev->data->port_id, m->hash.fdir.hi); 8096 goto err; 8097 } 8098 MLX5_ASSERT(tble->tunnel); 8099 memcpy(&info->tunnel, &tble->tunnel->app_tunnel, sizeof(info->tunnel)); 8100 info->group_id = tble->group_id; 8101 info->flags = RTE_FLOW_RESTORE_INFO_TUNNEL | 8102 RTE_FLOW_RESTORE_INFO_GROUP_ID | 8103 RTE_FLOW_RESTORE_INFO_ENCAPSULATED; 8104 8105 return 0; 8106 8107 err: 8108 return rte_flow_error_set(err, EINVAL, 8109 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 8110 "failed to get restore info"); 8111 } 8112 8113 #else /* HAVE_IBV_FLOW_DV_SUPPORT */ 8114 static int 8115 mlx5_flow_tunnel_decap_set(__rte_unused struct rte_eth_dev *dev, 8116 __rte_unused struct rte_flow_tunnel *app_tunnel, 8117 __rte_unused struct rte_flow_action **actions, 8118 __rte_unused uint32_t *num_of_actions, 8119 __rte_unused struct rte_flow_error *error) 8120 { 8121 return -ENOTSUP; 8122 } 8123 8124 static int 8125 mlx5_flow_tunnel_match(__rte_unused struct rte_eth_dev *dev, 8126 __rte_unused struct rte_flow_tunnel *app_tunnel, 8127 __rte_unused struct rte_flow_item **items, 8128 __rte_unused uint32_t *num_of_items, 8129 __rte_unused struct rte_flow_error *error) 8130 { 8131 return -ENOTSUP; 8132 } 8133 8134 static int 8135 mlx5_flow_tunnel_item_release(__rte_unused struct rte_eth_dev *dev, 8136 __rte_unused struct rte_flow_item *pmd_items, 8137 __rte_unused uint32_t num_items, 8138 __rte_unused struct rte_flow_error *err) 8139 { 8140 return -ENOTSUP; 8141 } 8142 8143 static int 8144 mlx5_flow_tunnel_action_release(__rte_unused struct rte_eth_dev *dev, 8145 __rte_unused struct rte_flow_action *pmd_action, 8146 __rte_unused uint32_t num_actions, 8147 __rte_unused struct rte_flow_error *err) 8148 { 8149 return -ENOTSUP; 8150 } 8151 8152 static int 8153 mlx5_flow_tunnel_get_restore_info(__rte_unused struct rte_eth_dev *dev, 8154 __rte_unused struct rte_mbuf *m, 8155 __rte_unused struct rte_flow_restore_info *i, 8156 __rte_unused struct rte_flow_error *err) 8157 { 8158 return -ENOTSUP; 8159 } 8160 8161 static int 8162 flow_tunnel_add_default_miss(__rte_unused struct rte_eth_dev *dev, 8163 __rte_unused struct rte_flow *flow, 8164 __rte_unused const struct rte_flow_attr *attr, 8165 __rte_unused const struct rte_flow_action *actions, 8166 __rte_unused uint32_t flow_idx, 8167 __rte_unused struct tunnel_default_miss_ctx *ctx, 8168 __rte_unused struct rte_flow_error *error) 8169 { 8170 return -ENOTSUP; 8171 } 8172 8173 static struct mlx5_flow_tunnel * 8174 mlx5_find_tunnel_id(__rte_unused struct rte_eth_dev *dev, 8175 __rte_unused uint32_t id) 8176 { 8177 return NULL; 8178 } 8179 8180 static void 8181 mlx5_flow_tunnel_free(__rte_unused struct rte_eth_dev *dev, 8182 __rte_unused struct mlx5_flow_tunnel *tunnel) 8183 { 8184 } 8185 8186 static uint32_t 8187 tunnel_flow_group_to_flow_table(__rte_unused struct rte_eth_dev *dev, 8188 __rte_unused const struct mlx5_flow_tunnel *t, 8189 __rte_unused uint32_t group, 8190 __rte_unused uint32_t *table, 8191 struct rte_flow_error *error) 8192 { 8193 return rte_flow_error_set(error, ENOTSUP, 8194 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 8195 "tunnel offload requires DV support"); 8196 } 8197 8198 void 8199 mlx5_release_tunnel_hub(__rte_unused struct mlx5_dev_ctx_shared *sh, 8200 __rte_unused uint16_t port_id) 8201 { 8202 } 8203 #endif /* HAVE_IBV_FLOW_DV_SUPPORT */ 8204 8205