xref: /dpdk/drivers/net/mlx4/mlx4_mr.c (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5 
6 /**
7  * @file
8  * Memory management functions for mlx4 driver.
9  */
10 
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <stddef.h>
14 #include <stdint.h>
15 #include <string.h>
16 
17 /* Verbs headers do not support -pedantic. */
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic ignored "-Wpedantic"
20 #endif
21 #include <infiniband/verbs.h>
22 #ifdef PEDANTIC
23 #pragma GCC diagnostic error "-Wpedantic"
24 #endif
25 
26 #include <rte_branch_prediction.h>
27 #include <rte_common.h>
28 #include <rte_eal_memconfig.h>
29 #include <rte_errno.h>
30 #include <rte_malloc.h>
31 #include <rte_memory.h>
32 #include <rte_mempool.h>
33 #include <rte_rwlock.h>
34 
35 #include "mlx4_glue.h"
36 #include "mlx4_mr.h"
37 #include "mlx4_rxtx.h"
38 #include "mlx4_utils.h"
39 
40 struct mr_find_contig_memsegs_data {
41 	uintptr_t addr;
42 	uintptr_t start;
43 	uintptr_t end;
44 	const struct rte_memseg_list *msl;
45 };
46 
47 struct mr_update_mp_data {
48 	struct rte_eth_dev *dev;
49 	struct mlx4_mr_ctrl *mr_ctrl;
50 	int ret;
51 };
52 
53 /**
54  * Expand B-tree table to a given size. Can't be called with holding
55  * memory_hotplug_lock or priv->mr.rwlock due to rte_realloc().
56  *
57  * @param bt
58  *   Pointer to B-tree structure.
59  * @param n
60  *   Number of entries for expansion.
61  *
62  * @return
63  *   0 on success, -1 on failure.
64  */
65 static int
66 mr_btree_expand(struct mlx4_mr_btree *bt, int n)
67 {
68 	void *mem;
69 	int ret = 0;
70 
71 	if (n <= bt->size)
72 		return ret;
73 	/*
74 	 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
75 	 * used inside if there's no room to expand. Because this is a quite
76 	 * rare case and a part of very slow path, it is very acceptable.
77 	 * Initially cache_bh[] will be given practically enough space and once
78 	 * it is expanded, expansion wouldn't be needed again ever.
79 	 */
80 	mem = rte_realloc(bt->table, n * sizeof(struct mlx4_mr_cache), 0);
81 	if (mem == NULL) {
82 		/* Not an error, B-tree search will be skipped. */
83 		WARN("failed to expand MR B-tree (%p) table", (void *)bt);
84 		ret = -1;
85 	} else {
86 		DEBUG("expanded MR B-tree table (size=%u)", n);
87 		bt->table = mem;
88 		bt->size = n;
89 	}
90 	return ret;
91 }
92 
93 /**
94  * Look up LKey from given B-tree lookup table, store the last index and return
95  * searched LKey.
96  *
97  * @param bt
98  *   Pointer to B-tree structure.
99  * @param[out] idx
100  *   Pointer to index. Even on search failure, returns index where it stops
101  *   searching so that index can be used when inserting a new entry.
102  * @param addr
103  *   Search key.
104  *
105  * @return
106  *   Searched LKey on success, UINT32_MAX on no match.
107  */
108 static uint32_t
109 mr_btree_lookup(struct mlx4_mr_btree *bt, uint16_t *idx, uintptr_t addr)
110 {
111 	struct mlx4_mr_cache *lkp_tbl;
112 	uint16_t n;
113 	uint16_t base = 0;
114 
115 	MLX4_ASSERT(bt != NULL);
116 	lkp_tbl = *bt->table;
117 	n = bt->len;
118 	/* First entry must be NULL for comparison. */
119 	MLX4_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 &&
120 				    lkp_tbl[0].lkey == UINT32_MAX));
121 	/* Binary search. */
122 	do {
123 		register uint16_t delta = n >> 1;
124 
125 		if (addr < lkp_tbl[base + delta].start) {
126 			n = delta;
127 		} else {
128 			base += delta;
129 			n -= delta;
130 		}
131 	} while (n > 1);
132 	MLX4_ASSERT(addr >= lkp_tbl[base].start);
133 	*idx = base;
134 	if (addr < lkp_tbl[base].end)
135 		return lkp_tbl[base].lkey;
136 	/* Not found. */
137 	return UINT32_MAX;
138 }
139 
140 /**
141  * Insert an entry to B-tree lookup table.
142  *
143  * @param bt
144  *   Pointer to B-tree structure.
145  * @param entry
146  *   Pointer to new entry to insert.
147  *
148  * @return
149  *   0 on success, -1 on failure.
150  */
151 static int
152 mr_btree_insert(struct mlx4_mr_btree *bt, struct mlx4_mr_cache *entry)
153 {
154 	struct mlx4_mr_cache *lkp_tbl;
155 	uint16_t idx = 0;
156 	size_t shift;
157 
158 	MLX4_ASSERT(bt != NULL);
159 	MLX4_ASSERT(bt->len <= bt->size);
160 	MLX4_ASSERT(bt->len > 0);
161 	lkp_tbl = *bt->table;
162 	/* Find out the slot for insertion. */
163 	if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
164 		DEBUG("abort insertion to B-tree(%p): already exist at"
165 		      " idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
166 		      (void *)bt, idx, entry->start, entry->end, entry->lkey);
167 		/* Already exist, return. */
168 		return 0;
169 	}
170 	/* If table is full, return error. */
171 	if (unlikely(bt->len == bt->size)) {
172 		bt->overflow = 1;
173 		return -1;
174 	}
175 	/* Insert entry. */
176 	++idx;
177 	shift = (bt->len - idx) * sizeof(struct mlx4_mr_cache);
178 	if (shift)
179 		memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
180 	lkp_tbl[idx] = *entry;
181 	bt->len++;
182 	DEBUG("inserted B-tree(%p)[%u],"
183 	      " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
184 	      (void *)bt, idx, entry->start, entry->end, entry->lkey);
185 	return 0;
186 }
187 
188 /**
189  * Initialize B-tree and allocate memory for lookup table.
190  *
191  * @param bt
192  *   Pointer to B-tree structure.
193  * @param n
194  *   Number of entries to allocate.
195  * @param socket
196  *   NUMA socket on which memory must be allocated.
197  *
198  * @return
199  *   0 on success, a negative errno value otherwise and rte_errno is set.
200  */
201 int
202 mlx4_mr_btree_init(struct mlx4_mr_btree *bt, int n, int socket)
203 {
204 	if (bt == NULL) {
205 		rte_errno = EINVAL;
206 		return -rte_errno;
207 	}
208 	memset(bt, 0, sizeof(*bt));
209 	bt->table = rte_calloc_socket("B-tree table",
210 				      n, sizeof(struct mlx4_mr_cache),
211 				      0, socket);
212 	if (bt->table == NULL) {
213 		rte_errno = ENOMEM;
214 		ERROR("failed to allocate memory for btree cache on socket %d",
215 		      socket);
216 		return -rte_errno;
217 	}
218 	bt->size = n;
219 	/* First entry must be NULL for binary search. */
220 	(*bt->table)[bt->len++] = (struct mlx4_mr_cache) {
221 		.lkey = UINT32_MAX,
222 	};
223 	DEBUG("initialized B-tree %p with table %p",
224 	      (void *)bt, (void *)bt->table);
225 	return 0;
226 }
227 
228 /**
229  * Free B-tree resources.
230  *
231  * @param bt
232  *   Pointer to B-tree structure.
233  */
234 void
235 mlx4_mr_btree_free(struct mlx4_mr_btree *bt)
236 {
237 	if (bt == NULL)
238 		return;
239 	DEBUG("freeing B-tree %p with table %p", (void *)bt, (void *)bt->table);
240 	rte_free(bt->table);
241 	memset(bt, 0, sizeof(*bt));
242 }
243 
244 #ifdef RTE_LIBRTE_MLX4_DEBUG
245 /**
246  * Dump all the entries in a B-tree
247  *
248  * @param bt
249  *   Pointer to B-tree structure.
250  */
251 void
252 mlx4_mr_btree_dump(struct mlx4_mr_btree *bt)
253 {
254 	int idx;
255 	struct mlx4_mr_cache *lkp_tbl;
256 
257 	if (bt == NULL)
258 		return;
259 	lkp_tbl = *bt->table;
260 	for (idx = 0; idx < bt->len; ++idx) {
261 		struct mlx4_mr_cache *entry = &lkp_tbl[idx];
262 
263 		DEBUG("B-tree(%p)[%u],"
264 		      " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
265 		      (void *)bt, idx, entry->start, entry->end, entry->lkey);
266 	}
267 }
268 #endif
269 
270 /**
271  * Find virtually contiguous memory chunk in a given MR.
272  *
273  * @param dev
274  *   Pointer to MR structure.
275  * @param[out] entry
276  *   Pointer to returning MR cache entry. If not found, this will not be
277  *   updated.
278  * @param start_idx
279  *   Start index of the memseg bitmap.
280  *
281  * @return
282  *   Next index to go on lookup.
283  */
284 static int
285 mr_find_next_chunk(struct mlx4_mr *mr, struct mlx4_mr_cache *entry,
286 		   int base_idx)
287 {
288 	uintptr_t start = 0;
289 	uintptr_t end = 0;
290 	uint32_t idx = 0;
291 
292 	/* MR for external memory doesn't have memseg list. */
293 	if (mr->msl == NULL) {
294 		struct ibv_mr *ibv_mr = mr->ibv_mr;
295 
296 		MLX4_ASSERT(mr->ms_bmp_n == 1);
297 		MLX4_ASSERT(mr->ms_n == 1);
298 		MLX4_ASSERT(base_idx == 0);
299 		/*
300 		 * Can't search it from memseg list but get it directly from
301 		 * verbs MR as there's only one chunk.
302 		 */
303 		entry->start = (uintptr_t)ibv_mr->addr;
304 		entry->end = (uintptr_t)ibv_mr->addr + mr->ibv_mr->length;
305 		entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey);
306 		/* Returning 1 ends iteration. */
307 		return 1;
308 	}
309 	for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
310 		if (rte_bitmap_get(mr->ms_bmp, idx)) {
311 			const struct rte_memseg_list *msl;
312 			const struct rte_memseg *ms;
313 
314 			msl = mr->msl;
315 			ms = rte_fbarray_get(&msl->memseg_arr,
316 					     mr->ms_base_idx + idx);
317 			MLX4_ASSERT(msl->page_sz == ms->hugepage_sz);
318 			if (!start)
319 				start = ms->addr_64;
320 			end = ms->addr_64 + ms->hugepage_sz;
321 		} else if (start) {
322 			/* Passed the end of a fragment. */
323 			break;
324 		}
325 	}
326 	if (start) {
327 		/* Found one chunk. */
328 		entry->start = start;
329 		entry->end = end;
330 		entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey);
331 	}
332 	return idx;
333 }
334 
335 /**
336  * Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
337  * Then, this entry will have to be searched by mr_lookup_dev_list() in
338  * mlx4_mr_create() on miss.
339  *
340  * @param dev
341  *   Pointer to Ethernet device.
342  * @param mr
343  *   Pointer to MR to insert.
344  *
345  * @return
346  *   0 on success, -1 on failure.
347  */
348 static int
349 mr_insert_dev_cache(struct rte_eth_dev *dev, struct mlx4_mr *mr)
350 {
351 	struct mlx4_priv *priv = dev->data->dev_private;
352 	unsigned int n;
353 
354 	DEBUG("port %u inserting MR(%p) to global cache",
355 	      dev->data->port_id, (void *)mr);
356 	for (n = 0; n < mr->ms_bmp_n; ) {
357 		struct mlx4_mr_cache entry;
358 
359 		memset(&entry, 0, sizeof(entry));
360 		/* Find a contiguous chunk and advance the index. */
361 		n = mr_find_next_chunk(mr, &entry, n);
362 		if (!entry.end)
363 			break;
364 		if (mr_btree_insert(&priv->mr.cache, &entry) < 0) {
365 			/*
366 			 * Overflowed, but the global table cannot be expanded
367 			 * because of deadlock.
368 			 */
369 			return -1;
370 		}
371 	}
372 	return 0;
373 }
374 
375 /**
376  * Look up address in the original global MR list.
377  *
378  * @param dev
379  *   Pointer to Ethernet device.
380  * @param[out] entry
381  *   Pointer to returning MR cache entry. If no match, this will not be updated.
382  * @param addr
383  *   Search key.
384  *
385  * @return
386  *   Found MR on match, NULL otherwise.
387  */
388 static struct mlx4_mr *
389 mr_lookup_dev_list(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
390 		   uintptr_t addr)
391 {
392 	struct mlx4_priv *priv = dev->data->dev_private;
393 	struct mlx4_mr *mr;
394 
395 	/* Iterate all the existing MRs. */
396 	LIST_FOREACH(mr, &priv->mr.mr_list, mr) {
397 		unsigned int n;
398 
399 		if (mr->ms_n == 0)
400 			continue;
401 		for (n = 0; n < mr->ms_bmp_n; ) {
402 			struct mlx4_mr_cache ret;
403 
404 			memset(&ret, 0, sizeof(ret));
405 			n = mr_find_next_chunk(mr, &ret, n);
406 			if (addr >= ret.start && addr < ret.end) {
407 				/* Found. */
408 				*entry = ret;
409 				return mr;
410 			}
411 		}
412 	}
413 	return NULL;
414 }
415 
416 /**
417  * Look up address on device.
418  *
419  * @param dev
420  *   Pointer to Ethernet device.
421  * @param[out] entry
422  *   Pointer to returning MR cache entry. If no match, this will not be updated.
423  * @param addr
424  *   Search key.
425  *
426  * @return
427  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
428  */
429 static uint32_t
430 mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
431 	      uintptr_t addr)
432 {
433 	struct mlx4_priv *priv = dev->data->dev_private;
434 	uint16_t idx;
435 	uint32_t lkey = UINT32_MAX;
436 	struct mlx4_mr *mr;
437 
438 	/*
439 	 * If the global cache has overflowed since it failed to expand the
440 	 * B-tree table, it can't have all the existing MRs. Then, the address
441 	 * has to be searched by traversing the original MR list instead, which
442 	 * is very slow path. Otherwise, the global cache is all inclusive.
443 	 */
444 	if (!unlikely(priv->mr.cache.overflow)) {
445 		lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr);
446 		if (lkey != UINT32_MAX)
447 			*entry = (*priv->mr.cache.table)[idx];
448 	} else {
449 		/* Falling back to the slowest path. */
450 		mr = mr_lookup_dev_list(dev, entry, addr);
451 		if (mr != NULL)
452 			lkey = entry->lkey;
453 	}
454 	MLX4_ASSERT(lkey == UINT32_MAX || (addr >= entry->start &&
455 					   addr < entry->end));
456 	return lkey;
457 }
458 
459 /**
460  * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
461  * can raise memory free event and the callback function will spin on the lock.
462  *
463  * @param mr
464  *   Pointer to MR to free.
465  */
466 static void
467 mr_free(struct mlx4_mr *mr)
468 {
469 	if (mr == NULL)
470 		return;
471 	DEBUG("freeing MR(%p):", (void *)mr);
472 	if (mr->ibv_mr != NULL)
473 		claim_zero(mlx4_glue->dereg_mr(mr->ibv_mr));
474 	if (mr->ms_bmp != NULL)
475 		rte_bitmap_free(mr->ms_bmp);
476 	rte_free(mr);
477 }
478 
479 /**
480  * Release resources of detached MR having no online entry.
481  *
482  * @param dev
483  *   Pointer to Ethernet device.
484  */
485 static void
486 mlx4_mr_garbage_collect(struct rte_eth_dev *dev)
487 {
488 	struct mlx4_priv *priv = dev->data->dev_private;
489 	struct mlx4_mr *mr_next;
490 	struct mlx4_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
491 
492 	/* Must be called from the primary process. */
493 	MLX4_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
494 	/*
495 	 * MR can't be freed with holding the lock because rte_free() could call
496 	 * memory free callback function. This will be a deadlock situation.
497 	 */
498 	rte_rwlock_write_lock(&priv->mr.rwlock);
499 	/* Detach the whole free list and release it after unlocking. */
500 	free_list = priv->mr.mr_free_list;
501 	LIST_INIT(&priv->mr.mr_free_list);
502 	rte_rwlock_write_unlock(&priv->mr.rwlock);
503 	/* Release resources. */
504 	mr_next = LIST_FIRST(&free_list);
505 	while (mr_next != NULL) {
506 		struct mlx4_mr *mr = mr_next;
507 
508 		mr_next = LIST_NEXT(mr, mr);
509 		mr_free(mr);
510 	}
511 }
512 
513 /* Called during rte_memseg_contig_walk() by mlx4_mr_create(). */
514 static int
515 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
516 			  const struct rte_memseg *ms, size_t len, void *arg)
517 {
518 	struct mr_find_contig_memsegs_data *data = arg;
519 
520 	if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
521 		return 0;
522 	/* Found, save it and stop walking. */
523 	data->start = ms->addr_64;
524 	data->end = ms->addr_64 + len;
525 	data->msl = msl;
526 	return 1;
527 }
528 
529 /**
530  * Create a new global Memory Region (MR) for a missing virtual address.
531  * This API should be called on a secondary process, then a request is sent to
532  * the primary process in order to create a MR for the address. As the global MR
533  * list is on the shared memory, following LKey lookup should succeed unless the
534  * request fails.
535  *
536  * @param dev
537  *   Pointer to Ethernet device.
538  * @param[out] entry
539  *   Pointer to returning MR cache entry, found in the global cache or newly
540  *   created. If failed to create one, this will not be updated.
541  * @param addr
542  *   Target virtual address to register.
543  *
544  * @return
545  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
546  */
547 static uint32_t
548 mlx4_mr_create_secondary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
549 			 uintptr_t addr)
550 {
551 	struct mlx4_priv *priv = dev->data->dev_private;
552 	int ret;
553 
554 	DEBUG("port %u requesting MR creation for address (%p)",
555 	      dev->data->port_id, (void *)addr);
556 	ret = mlx4_mp_req_mr_create(dev, addr);
557 	if (ret) {
558 		DEBUG("port %u fail to request MR creation for address (%p)",
559 		      dev->data->port_id, (void *)addr);
560 		return UINT32_MAX;
561 	}
562 	rte_rwlock_read_lock(&priv->mr.rwlock);
563 	/* Fill in output data. */
564 	mr_lookup_dev(dev, entry, addr);
565 	/* Lookup can't fail. */
566 	MLX4_ASSERT(entry->lkey != UINT32_MAX);
567 	rte_rwlock_read_unlock(&priv->mr.rwlock);
568 	DEBUG("port %u MR CREATED by primary process for %p:\n"
569 	      "  [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
570 	      dev->data->port_id, (void *)addr,
571 	      entry->start, entry->end, entry->lkey);
572 	return entry->lkey;
573 }
574 
575 /**
576  * Create a new global Memory Region (MR) for a missing virtual address.
577  * Register entire virtually contiguous memory chunk around the address.
578  * This must be called from the primary process.
579  *
580  * @param dev
581  *   Pointer to Ethernet device.
582  * @param[out] entry
583  *   Pointer to returning MR cache entry, found in the global cache or newly
584  *   created. If failed to create one, this will not be updated.
585  * @param addr
586  *   Target virtual address to register.
587  *
588  * @return
589  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
590  */
591 uint32_t
592 mlx4_mr_create_primary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
593 		       uintptr_t addr)
594 {
595 	struct mlx4_priv *priv = dev->data->dev_private;
596 	const struct rte_memseg_list *msl;
597 	const struct rte_memseg *ms;
598 	struct mlx4_mr *mr = NULL;
599 	size_t len;
600 	uint32_t ms_n;
601 	uint32_t bmp_size;
602 	void *bmp_mem;
603 	int ms_idx_shift = -1;
604 	unsigned int n;
605 	struct mr_find_contig_memsegs_data data = {
606 		.addr = addr,
607 	};
608 	struct mr_find_contig_memsegs_data data_re;
609 
610 	DEBUG("port %u creating a MR using address (%p)",
611 	      dev->data->port_id, (void *)addr);
612 	/*
613 	 * Release detached MRs if any. This can't be called with holding either
614 	 * memory_hotplug_lock or priv->mr.rwlock. MRs on the free list have
615 	 * been detached by the memory free event but it couldn't be released
616 	 * inside the callback due to deadlock. As a result, releasing resources
617 	 * is quite opportunistic.
618 	 */
619 	mlx4_mr_garbage_collect(dev);
620 	/*
621 	 * If enabled, find out a contiguous virtual address chunk in use, to
622 	 * which the given address belongs, in order to register maximum range.
623 	 * In the best case where mempools are not dynamically recreated and
624 	 * '--socket-mem' is specified as an EAL option, it is very likely to
625 	 * have only one MR(LKey) per a socket and per a hugepage-size even
626 	 * though the system memory is highly fragmented. As the whole memory
627 	 * chunk will be pinned by kernel, it can't be reused unless entire
628 	 * chunk is freed from EAL.
629 	 *
630 	 * If disabled, just register one memseg (page). Then, memory
631 	 * consumption will be minimized but it may drop performance if there
632 	 * are many MRs to lookup on the datapath.
633 	 */
634 	if (!priv->mr_ext_memseg_en) {
635 		data.msl = rte_mem_virt2memseg_list((void *)addr);
636 		data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
637 		data.end = data.start + data.msl->page_sz;
638 	} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
639 		WARN("port %u unable to find virtually contiguous"
640 		     " chunk for address (%p)."
641 		     " rte_memseg_contig_walk() failed.",
642 		     dev->data->port_id, (void *)addr);
643 		rte_errno = ENXIO;
644 		goto err_nolock;
645 	}
646 alloc_resources:
647 	/* Addresses must be page-aligned. */
648 	MLX4_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz));
649 	MLX4_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz));
650 	msl = data.msl;
651 	ms = rte_mem_virt2memseg((void *)data.start, msl);
652 	len = data.end - data.start;
653 	MLX4_ASSERT(msl->page_sz == ms->hugepage_sz);
654 	/* Number of memsegs in the range. */
655 	ms_n = len / msl->page_sz;
656 	DEBUG("port %u extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
657 	      " page_sz=0x%" PRIx64 ", ms_n=%u",
658 	      dev->data->port_id, (void *)addr,
659 	      data.start, data.end, msl->page_sz, ms_n);
660 	/* Size of memory for bitmap. */
661 	bmp_size = rte_bitmap_get_memory_footprint(ms_n);
662 	mr = rte_zmalloc_socket(NULL,
663 				RTE_ALIGN_CEIL(sizeof(*mr),
664 					       RTE_CACHE_LINE_SIZE) +
665 				bmp_size,
666 				RTE_CACHE_LINE_SIZE, msl->socket_id);
667 	if (mr == NULL) {
668 		WARN("port %u unable to allocate memory for a new MR of"
669 		     " address (%p).",
670 		     dev->data->port_id, (void *)addr);
671 		rte_errno = ENOMEM;
672 		goto err_nolock;
673 	}
674 	mr->msl = msl;
675 	/*
676 	 * Save the index of the first memseg and initialize memseg bitmap. To
677 	 * see if a memseg of ms_idx in the memseg-list is still valid, check:
678 	 *	rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
679 	 */
680 	mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
681 	bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
682 	mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
683 	if (mr->ms_bmp == NULL) {
684 		WARN("port %u unable to initialize bitmap for a new MR of"
685 		     " address (%p).",
686 		     dev->data->port_id, (void *)addr);
687 		rte_errno = EINVAL;
688 		goto err_nolock;
689 	}
690 	/*
691 	 * Should recheck whether the extended contiguous chunk is still valid.
692 	 * Because memory_hotplug_lock can't be held if there's any memory
693 	 * related calls in a critical path, resource allocation above can't be
694 	 * locked. If the memory has been changed at this point, try again with
695 	 * just single page. If not, go on with the big chunk atomically from
696 	 * here.
697 	 */
698 	rte_mcfg_mem_read_lock();
699 	data_re = data;
700 	if (len > msl->page_sz &&
701 	    !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
702 		WARN("port %u unable to find virtually contiguous"
703 		     " chunk for address (%p)."
704 		     " rte_memseg_contig_walk() failed.",
705 		     dev->data->port_id, (void *)addr);
706 		rte_errno = ENXIO;
707 		goto err_memlock;
708 	}
709 	if (data.start != data_re.start || data.end != data_re.end) {
710 		/*
711 		 * The extended contiguous chunk has been changed. Try again
712 		 * with single memseg instead.
713 		 */
714 		data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
715 		data.end = data.start + msl->page_sz;
716 		rte_mcfg_mem_read_unlock();
717 		mr_free(mr);
718 		goto alloc_resources;
719 	}
720 	MLX4_ASSERT(data.msl == data_re.msl);
721 	rte_rwlock_write_lock(&priv->mr.rwlock);
722 	/*
723 	 * Check the address is really missing. If other thread already created
724 	 * one or it is not found due to overflow, abort and return.
725 	 */
726 	if (mr_lookup_dev(dev, entry, addr) != UINT32_MAX) {
727 		/*
728 		 * Insert to the global cache table. It may fail due to
729 		 * low-on-memory. Then, this entry will have to be searched
730 		 * here again.
731 		 */
732 		mr_btree_insert(&priv->mr.cache, entry);
733 		DEBUG("port %u found MR for %p on final lookup, abort",
734 		      dev->data->port_id, (void *)addr);
735 		rte_rwlock_write_unlock(&priv->mr.rwlock);
736 		rte_mcfg_mem_read_unlock();
737 		/*
738 		 * Must be unlocked before calling rte_free() because
739 		 * mlx4_mr_mem_event_free_cb() can be called inside.
740 		 */
741 		mr_free(mr);
742 		return entry->lkey;
743 	}
744 	/*
745 	 * Trim start and end addresses for verbs MR. Set bits for registering
746 	 * memsegs but exclude already registered ones. Bitmap can be
747 	 * fragmented.
748 	 */
749 	for (n = 0; n < ms_n; ++n) {
750 		uintptr_t start;
751 		struct mlx4_mr_cache ret;
752 
753 		memset(&ret, 0, sizeof(ret));
754 		start = data_re.start + n * msl->page_sz;
755 		/* Exclude memsegs already registered by other MRs. */
756 		if (mr_lookup_dev(dev, &ret, start) == UINT32_MAX) {
757 			/*
758 			 * Start from the first unregistered memseg in the
759 			 * extended range.
760 			 */
761 			if (ms_idx_shift == -1) {
762 				mr->ms_base_idx += n;
763 				data.start = start;
764 				ms_idx_shift = n;
765 			}
766 			data.end = start + msl->page_sz;
767 			rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
768 			++mr->ms_n;
769 		}
770 	}
771 	len = data.end - data.start;
772 	mr->ms_bmp_n = len / msl->page_sz;
773 	MLX4_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n);
774 	/*
775 	 * Finally create a verbs MR for the memory chunk. ibv_reg_mr() can be
776 	 * called with holding the memory lock because it doesn't use
777 	 * mlx4_alloc_buf_extern() which eventually calls rte_malloc_socket()
778 	 * through mlx4_alloc_verbs_buf().
779 	 */
780 	mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)data.start, len,
781 				       IBV_ACCESS_LOCAL_WRITE);
782 	if (mr->ibv_mr == NULL) {
783 		WARN("port %u fail to create a verbs MR for address (%p)",
784 		     dev->data->port_id, (void *)addr);
785 		rte_errno = EINVAL;
786 		goto err_mrlock;
787 	}
788 	MLX4_ASSERT((uintptr_t)mr->ibv_mr->addr == data.start);
789 	MLX4_ASSERT(mr->ibv_mr->length == len);
790 	LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr);
791 	DEBUG("port %u MR CREATED (%p) for %p:\n"
792 	      "  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
793 	      " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
794 	      dev->data->port_id, (void *)mr, (void *)addr,
795 	      data.start, data.end, rte_cpu_to_be_32(mr->ibv_mr->lkey),
796 	      mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
797 	/* Insert to the global cache table. */
798 	mr_insert_dev_cache(dev, mr);
799 	/* Fill in output data. */
800 	mr_lookup_dev(dev, entry, addr);
801 	/* Lookup can't fail. */
802 	MLX4_ASSERT(entry->lkey != UINT32_MAX);
803 	rte_rwlock_write_unlock(&priv->mr.rwlock);
804 	rte_mcfg_mem_read_unlock();
805 	return entry->lkey;
806 err_mrlock:
807 	rte_rwlock_write_unlock(&priv->mr.rwlock);
808 err_memlock:
809 	rte_mcfg_mem_read_unlock();
810 err_nolock:
811 	/*
812 	 * In case of error, as this can be called in a datapath, a warning
813 	 * message per an error is preferable instead. Must be unlocked before
814 	 * calling rte_free() because mlx4_mr_mem_event_free_cb() can be called
815 	 * inside.
816 	 */
817 	mr_free(mr);
818 	return UINT32_MAX;
819 }
820 
821 /**
822  * Create a new global Memory Region (MR) for a missing virtual address.
823  * This can be called from primary and secondary process.
824  *
825  * @param dev
826  *   Pointer to Ethernet device.
827  * @param[out] entry
828  *   Pointer to returning MR cache entry, found in the global cache or newly
829  *   created. If failed to create one, this will not be updated.
830  * @param addr
831  *   Target virtual address to register.
832  *
833  * @return
834  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
835  */
836 static uint32_t
837 mlx4_mr_create(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
838 	       uintptr_t addr)
839 {
840 	uint32_t ret = 0;
841 
842 	switch (rte_eal_process_type()) {
843 	case RTE_PROC_PRIMARY:
844 		ret = mlx4_mr_create_primary(dev, entry, addr);
845 		break;
846 	case RTE_PROC_SECONDARY:
847 		ret = mlx4_mr_create_secondary(dev, entry, addr);
848 		break;
849 	default:
850 		break;
851 	}
852 	return ret;
853 }
854 
855 /**
856  * Rebuild the global B-tree cache of device from the original MR list.
857  *
858  * @param dev
859  *   Pointer to Ethernet device.
860  */
861 static void
862 mr_rebuild_dev_cache(struct rte_eth_dev *dev)
863 {
864 	struct mlx4_priv *priv = dev->data->dev_private;
865 	struct mlx4_mr *mr;
866 
867 	DEBUG("port %u rebuild dev cache[]", dev->data->port_id);
868 	/* Flush cache to rebuild. */
869 	priv->mr.cache.len = 1;
870 	priv->mr.cache.overflow = 0;
871 	/* Iterate all the existing MRs. */
872 	LIST_FOREACH(mr, &priv->mr.mr_list, mr)
873 		if (mr_insert_dev_cache(dev, mr) < 0)
874 			return;
875 }
876 
877 /**
878  * Callback for memory free event. Iterate freed memsegs and check whether it
879  * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
880  * result, the MR would be fragmented. If it becomes empty, the MR will be freed
881  * later by mlx4_mr_garbage_collect().
882  *
883  * The global cache must be rebuilt if there's any change and this event has to
884  * be propagated to dataplane threads to flush the local caches.
885  *
886  * @param dev
887  *   Pointer to Ethernet device.
888  * @param addr
889  *   Address of freed memory.
890  * @param len
891  *   Size of freed memory.
892  */
893 static void
894 mlx4_mr_mem_event_free_cb(struct rte_eth_dev *dev, const void *addr, size_t len)
895 {
896 	struct mlx4_priv *priv = dev->data->dev_private;
897 	const struct rte_memseg_list *msl;
898 	struct mlx4_mr *mr;
899 	int ms_n;
900 	int i;
901 	int rebuild = 0;
902 
903 	DEBUG("port %u free callback: addr=%p, len=%zu",
904 	      dev->data->port_id, addr, len);
905 	msl = rte_mem_virt2memseg_list(addr);
906 	/* addr and len must be page-aligned. */
907 	MLX4_ASSERT((uintptr_t)addr ==
908 		    RTE_ALIGN((uintptr_t)addr, msl->page_sz));
909 	MLX4_ASSERT(len == RTE_ALIGN(len, msl->page_sz));
910 	ms_n = len / msl->page_sz;
911 	rte_rwlock_write_lock(&priv->mr.rwlock);
912 	/* Clear bits of freed memsegs from MR. */
913 	for (i = 0; i < ms_n; ++i) {
914 		const struct rte_memseg *ms;
915 		struct mlx4_mr_cache entry;
916 		uintptr_t start;
917 		int ms_idx;
918 		uint32_t pos;
919 
920 		/* Find MR having this memseg. */
921 		start = (uintptr_t)addr + i * msl->page_sz;
922 		mr = mr_lookup_dev_list(dev, &entry, start);
923 		if (mr == NULL)
924 			continue;
925 		MLX4_ASSERT(mr->msl); /* Can't be external memory. */
926 		ms = rte_mem_virt2memseg((void *)start, msl);
927 		MLX4_ASSERT(ms != NULL);
928 		MLX4_ASSERT(msl->page_sz == ms->hugepage_sz);
929 		ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
930 		pos = ms_idx - mr->ms_base_idx;
931 		MLX4_ASSERT(rte_bitmap_get(mr->ms_bmp, pos));
932 		MLX4_ASSERT(pos < mr->ms_bmp_n);
933 		DEBUG("port %u MR(%p): clear bitmap[%u] for addr %p",
934 		      dev->data->port_id, (void *)mr, pos, (void *)start);
935 		rte_bitmap_clear(mr->ms_bmp, pos);
936 		if (--mr->ms_n == 0) {
937 			LIST_REMOVE(mr, mr);
938 			LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr);
939 			DEBUG("port %u remove MR(%p) from list",
940 			      dev->data->port_id, (void *)mr);
941 		}
942 		/*
943 		 * MR is fragmented or will be freed. the global cache must be
944 		 * rebuilt.
945 		 */
946 		rebuild = 1;
947 	}
948 	if (rebuild) {
949 		mr_rebuild_dev_cache(dev);
950 		/*
951 		 * Flush local caches by propagating invalidation across cores.
952 		 * rte_smp_wmb() is enough to synchronize this event. If one of
953 		 * freed memsegs is seen by other core, that means the memseg
954 		 * has been allocated by allocator, which will come after this
955 		 * free call. Therefore, this store instruction (incrementing
956 		 * generation below) will be guaranteed to be seen by other core
957 		 * before the core sees the newly allocated memory.
958 		 */
959 		++priv->mr.dev_gen;
960 		DEBUG("broadcasting local cache flush, gen=%d",
961 		      priv->mr.dev_gen);
962 		rte_smp_wmb();
963 	}
964 	rte_rwlock_write_unlock(&priv->mr.rwlock);
965 #ifdef RTE_LIBRTE_MLX4_DEBUG
966 	if (rebuild)
967 		mlx4_mr_dump_dev(dev);
968 #endif
969 }
970 
971 /**
972  * Callback for memory event.
973  *
974  * @param event_type
975  *   Memory event type.
976  * @param addr
977  *   Address of memory.
978  * @param len
979  *   Size of memory.
980  */
981 void
982 mlx4_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr,
983 		     size_t len, void *arg __rte_unused)
984 {
985 	struct mlx4_priv *priv;
986 	struct mlx4_dev_list *dev_list = &mlx4_shared_data->mem_event_cb_list;
987 
988 	/* Must be called from the primary process. */
989 	MLX4_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
990 	switch (event_type) {
991 	case RTE_MEM_EVENT_FREE:
992 		rte_rwlock_read_lock(&mlx4_shared_data->mem_event_rwlock);
993 		/* Iterate all the existing mlx4 devices. */
994 		LIST_FOREACH(priv, dev_list, mem_event_cb)
995 			mlx4_mr_mem_event_free_cb(ETH_DEV(priv), addr, len);
996 		rte_rwlock_read_unlock(&mlx4_shared_data->mem_event_rwlock);
997 		break;
998 	case RTE_MEM_EVENT_ALLOC:
999 	default:
1000 		break;
1001 	}
1002 }
1003 
1004 /**
1005  * Look up address in the global MR cache table. If not found, create a new MR.
1006  * Insert the found/created entry to local bottom-half cache table.
1007  *
1008  * @param dev
1009  *   Pointer to Ethernet device.
1010  * @param mr_ctrl
1011  *   Pointer to per-queue MR control structure.
1012  * @param[out] entry
1013  *   Pointer to returning MR cache entry, found in the global cache or newly
1014  *   created. If failed to create one, this is not written.
1015  * @param addr
1016  *   Search key.
1017  *
1018  * @return
1019  *   Searched LKey on success, UINT32_MAX on no match.
1020  */
1021 static uint32_t
1022 mlx4_mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
1023 		   struct mlx4_mr_cache *entry, uintptr_t addr)
1024 {
1025 	struct mlx4_priv *priv = dev->data->dev_private;
1026 	struct mlx4_mr_btree *bt = &mr_ctrl->cache_bh;
1027 	uint16_t idx;
1028 	uint32_t lkey;
1029 
1030 	/* If local cache table is full, try to double it. */
1031 	if (unlikely(bt->len == bt->size))
1032 		mr_btree_expand(bt, bt->size << 1);
1033 	/* Look up in the global cache. */
1034 	rte_rwlock_read_lock(&priv->mr.rwlock);
1035 	lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr);
1036 	if (lkey != UINT32_MAX) {
1037 		/* Found. */
1038 		*entry = (*priv->mr.cache.table)[idx];
1039 		rte_rwlock_read_unlock(&priv->mr.rwlock);
1040 		/*
1041 		 * Update local cache. Even if it fails, return the found entry
1042 		 * to update top-half cache. Next time, this entry will be found
1043 		 * in the global cache.
1044 		 */
1045 		mr_btree_insert(bt, entry);
1046 		return lkey;
1047 	}
1048 	rte_rwlock_read_unlock(&priv->mr.rwlock);
1049 	/* First time to see the address? Create a new MR. */
1050 	lkey = mlx4_mr_create(dev, entry, addr);
1051 	/*
1052 	 * Update the local cache if successfully created a new global MR. Even
1053 	 * if failed to create one, there's no action to take in this datapath
1054 	 * code. As returning LKey is invalid, this will eventually make HW
1055 	 * fail.
1056 	 */
1057 	if (lkey != UINT32_MAX)
1058 		mr_btree_insert(bt, entry);
1059 	return lkey;
1060 }
1061 
1062 /**
1063  * Bottom-half of LKey search on datapath. Firstly search in cache_bh[] and if
1064  * misses, search in the global MR cache table and update the new entry to
1065  * per-queue local caches.
1066  *
1067  * @param dev
1068  *   Pointer to Ethernet device.
1069  * @param mr_ctrl
1070  *   Pointer to per-queue MR control structure.
1071  * @param addr
1072  *   Search key.
1073  *
1074  * @return
1075  *   Searched LKey on success, UINT32_MAX on no match.
1076  */
1077 static uint32_t
1078 mlx4_mr_addr2mr_bh(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
1079 		   uintptr_t addr)
1080 {
1081 	uint32_t lkey;
1082 	uint16_t bh_idx = 0;
1083 	/* Victim in top-half cache to replace with new entry. */
1084 	struct mlx4_mr_cache *repl = &mr_ctrl->cache[mr_ctrl->head];
1085 
1086 	/* Binary-search MR translation table. */
1087 	lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
1088 	/* Update top-half cache. */
1089 	if (likely(lkey != UINT32_MAX)) {
1090 		*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
1091 	} else {
1092 		/*
1093 		 * If missed in local lookup table, search in the global cache
1094 		 * and local cache_bh[] will be updated inside if possible.
1095 		 * Top-half cache entry will also be updated.
1096 		 */
1097 		lkey = mlx4_mr_lookup_dev(dev, mr_ctrl, repl, addr);
1098 		if (unlikely(lkey == UINT32_MAX))
1099 			return UINT32_MAX;
1100 	}
1101 	/* Update the most recently used entry. */
1102 	mr_ctrl->mru = mr_ctrl->head;
1103 	/* Point to the next victim, the oldest. */
1104 	mr_ctrl->head = (mr_ctrl->head + 1) % MLX4_MR_CACHE_N;
1105 	return lkey;
1106 }
1107 
1108 /**
1109  * Bottom-half of LKey search on Rx.
1110  *
1111  * @param rxq
1112  *   Pointer to Rx queue structure.
1113  * @param addr
1114  *   Search key.
1115  *
1116  * @return
1117  *   Searched LKey on success, UINT32_MAX on no match.
1118  */
1119 uint32_t
1120 mlx4_rx_addr2mr_bh(struct rxq *rxq, uintptr_t addr)
1121 {
1122 	struct mlx4_mr_ctrl *mr_ctrl = &rxq->mr_ctrl;
1123 	struct mlx4_priv *priv = rxq->priv;
1124 
1125 	return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr);
1126 }
1127 
1128 /**
1129  * Bottom-half of LKey search on Tx.
1130  *
1131  * @param txq
1132  *   Pointer to Tx queue structure.
1133  * @param addr
1134  *   Search key.
1135  *
1136  * @return
1137  *   Searched LKey on success, UINT32_MAX on no match.
1138  */
1139 static uint32_t
1140 mlx4_tx_addr2mr_bh(struct txq *txq, uintptr_t addr)
1141 {
1142 	struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
1143 	struct mlx4_priv *priv = txq->priv;
1144 
1145 	return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr);
1146 }
1147 
1148 /**
1149  * Bottom-half of LKey search on Tx. If it can't be searched in the memseg
1150  * list, register the mempool of the mbuf as externally allocated memory.
1151  *
1152  * @param txq
1153  *   Pointer to Tx queue structure.
1154  * @param mb
1155  *   Pointer to mbuf.
1156  *
1157  * @return
1158  *   Searched LKey on success, UINT32_MAX on no match.
1159  */
1160 uint32_t
1161 mlx4_tx_mb2mr_bh(struct txq *txq, struct rte_mbuf *mb)
1162 {
1163 	uintptr_t addr = (uintptr_t)mb->buf_addr;
1164 	uint32_t lkey;
1165 
1166 	lkey = mlx4_tx_addr2mr_bh(txq, addr);
1167 	if (lkey == UINT32_MAX && rte_errno == ENXIO) {
1168 		/* Mempool may have externally allocated memory. */
1169 		return mlx4_tx_update_ext_mp(txq, addr, mlx4_mb2mp(mb));
1170 	}
1171 	return lkey;
1172 }
1173 
1174 /**
1175  * Flush all of the local cache entries.
1176  *
1177  * @param mr_ctrl
1178  *   Pointer to per-queue MR control structure.
1179  */
1180 void
1181 mlx4_mr_flush_local_cache(struct mlx4_mr_ctrl *mr_ctrl)
1182 {
1183 	/* Reset the most-recently-used index. */
1184 	mr_ctrl->mru = 0;
1185 	/* Reset the linear search array. */
1186 	mr_ctrl->head = 0;
1187 	memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
1188 	/* Reset the B-tree table. */
1189 	mr_ctrl->cache_bh.len = 1;
1190 	mr_ctrl->cache_bh.overflow = 0;
1191 	/* Update the generation number. */
1192 	mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
1193 	DEBUG("mr_ctrl(%p): flushed, cur_gen=%d",
1194 	      (void *)mr_ctrl, mr_ctrl->cur_gen);
1195 }
1196 
1197 /**
1198  * Called during rte_mempool_mem_iter() by mlx4_mr_update_ext_mp().
1199  *
1200  * Externally allocated chunk is registered and a MR is created for the chunk.
1201  * The MR object is added to the global list. If memseg list of a MR object
1202  * (mr->msl) is null, the MR object can be regarded as externally allocated
1203  * memory.
1204  *
1205  * Once external memory is registered, it should be static. If the memory is
1206  * freed and the virtual address range has different physical memory mapped
1207  * again, it may cause crash on device due to the wrong translation entry. PMD
1208  * can't track the free event of the external memory for now.
1209  */
1210 static void
1211 mlx4_mr_update_ext_mp_cb(struct rte_mempool *mp, void *opaque,
1212 			 struct rte_mempool_memhdr *memhdr,
1213 			 unsigned mem_idx __rte_unused)
1214 {
1215 	struct mr_update_mp_data *data = opaque;
1216 	struct rte_eth_dev *dev = data->dev;
1217 	struct mlx4_priv *priv = dev->data->dev_private;
1218 	struct mlx4_mr_ctrl *mr_ctrl = data->mr_ctrl;
1219 	struct mlx4_mr *mr = NULL;
1220 	uintptr_t addr = (uintptr_t)memhdr->addr;
1221 	size_t len = memhdr->len;
1222 	struct mlx4_mr_cache entry;
1223 	uint32_t lkey;
1224 
1225 	MLX4_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
1226 	/* If already registered, it should return. */
1227 	rte_rwlock_read_lock(&priv->mr.rwlock);
1228 	lkey = mr_lookup_dev(dev, &entry, addr);
1229 	rte_rwlock_read_unlock(&priv->mr.rwlock);
1230 	if (lkey != UINT32_MAX)
1231 		return;
1232 	mr = rte_zmalloc_socket(NULL,
1233 				RTE_ALIGN_CEIL(sizeof(*mr),
1234 					       RTE_CACHE_LINE_SIZE),
1235 				RTE_CACHE_LINE_SIZE, mp->socket_id);
1236 	if (mr == NULL) {
1237 		WARN("port %u unable to allocate memory for a new MR of"
1238 		     " mempool (%s).",
1239 		     dev->data->port_id, mp->name);
1240 		data->ret = -1;
1241 		return;
1242 	}
1243 	DEBUG("port %u register MR for chunk #%d of mempool (%s)",
1244 	      dev->data->port_id, mem_idx, mp->name);
1245 	mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)addr, len,
1246 				       IBV_ACCESS_LOCAL_WRITE);
1247 	if (mr->ibv_mr == NULL) {
1248 		WARN("port %u fail to create a verbs MR for address (%p)",
1249 		     dev->data->port_id, (void *)addr);
1250 		rte_free(mr);
1251 		data->ret = -1;
1252 		return;
1253 	}
1254 	mr->msl = NULL; /* Mark it is external memory. */
1255 	mr->ms_bmp = NULL;
1256 	mr->ms_n = 1;
1257 	mr->ms_bmp_n = 1;
1258 	rte_rwlock_write_lock(&priv->mr.rwlock);
1259 	LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr);
1260 	DEBUG("port %u MR CREATED (%p) for external memory %p:\n"
1261 	      "  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
1262 	      " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
1263 	      dev->data->port_id, (void *)mr, (void *)addr,
1264 	      addr, addr + len, rte_cpu_to_be_32(mr->ibv_mr->lkey),
1265 	      mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
1266 	/* Insert to the global cache table. */
1267 	mr_insert_dev_cache(dev, mr);
1268 	rte_rwlock_write_unlock(&priv->mr.rwlock);
1269 	/* Insert to the local cache table */
1270 	mlx4_mr_addr2mr_bh(dev, mr_ctrl, addr);
1271 }
1272 
1273 /**
1274  * Register MR for entire memory chunks in a Mempool having externally allocated
1275  * memory and fill in local cache.
1276  *
1277  * @param dev
1278  *   Pointer to Ethernet device.
1279  * @param mr_ctrl
1280  *   Pointer to per-queue MR control structure.
1281  * @param mp
1282  *   Pointer to registering Mempool.
1283  *
1284  * @return
1285  *   0 on success, -1 on failure.
1286  */
1287 static uint32_t
1288 mlx4_mr_update_ext_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
1289 		      struct rte_mempool *mp)
1290 {
1291 	struct mr_update_mp_data data = {
1292 		.dev = dev,
1293 		.mr_ctrl = mr_ctrl,
1294 		.ret = 0,
1295 	};
1296 
1297 	rte_mempool_mem_iter(mp, mlx4_mr_update_ext_mp_cb, &data);
1298 	return data.ret;
1299 }
1300 
1301 /**
1302  * Register MR entire memory chunks in a Mempool having externally allocated
1303  * memory and search LKey of the address to return.
1304  *
1305  * @param dev
1306  *   Pointer to Ethernet device.
1307  * @param addr
1308  *   Search key.
1309  * @param mp
1310  *   Pointer to registering Mempool where addr belongs.
1311  *
1312  * @return
1313  *   LKey for address on success, UINT32_MAX on failure.
1314  */
1315 uint32_t
1316 mlx4_tx_update_ext_mp(struct txq *txq, uintptr_t addr, struct rte_mempool *mp)
1317 {
1318 	struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
1319 	struct mlx4_priv *priv = txq->priv;
1320 
1321 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1322 		WARN("port %u using address (%p) from unregistered mempool"
1323 		     " having externally allocated memory"
1324 		     " in secondary process, please create mempool"
1325 		     " prior to rte_eth_dev_start()",
1326 		     PORT_ID(priv), (void *)addr);
1327 		return UINT32_MAX;
1328 	}
1329 	mlx4_mr_update_ext_mp(ETH_DEV(priv), mr_ctrl, mp);
1330 	return mlx4_tx_addr2mr_bh(txq, addr);
1331 }
1332 
1333 /* Called during rte_mempool_mem_iter() by mlx4_mr_update_mp(). */
1334 static void
1335 mlx4_mr_update_mp_cb(struct rte_mempool *mp __rte_unused, void *opaque,
1336 		     struct rte_mempool_memhdr *memhdr,
1337 		     unsigned mem_idx __rte_unused)
1338 {
1339 	struct mr_update_mp_data *data = opaque;
1340 	uint32_t lkey;
1341 
1342 	/* Stop iteration if failed in the previous walk. */
1343 	if (data->ret < 0)
1344 		return;
1345 	/* Register address of the chunk and update local caches. */
1346 	lkey = mlx4_mr_addr2mr_bh(data->dev, data->mr_ctrl,
1347 				  (uintptr_t)memhdr->addr);
1348 	if (lkey == UINT32_MAX)
1349 		data->ret = -1;
1350 }
1351 
1352 /**
1353  * Register entire memory chunks in a Mempool.
1354  *
1355  * @param dev
1356  *   Pointer to Ethernet device.
1357  * @param mr_ctrl
1358  *   Pointer to per-queue MR control structure.
1359  * @param mp
1360  *   Pointer to registering Mempool.
1361  *
1362  * @return
1363  *   0 on success, -1 on failure.
1364  */
1365 int
1366 mlx4_mr_update_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
1367 		  struct rte_mempool *mp)
1368 {
1369 	struct mr_update_mp_data data = {
1370 		.dev = dev,
1371 		.mr_ctrl = mr_ctrl,
1372 		.ret = 0,
1373 	};
1374 
1375 	rte_mempool_mem_iter(mp, mlx4_mr_update_mp_cb, &data);
1376 	if (data.ret < 0 && rte_errno == ENXIO) {
1377 		/* Mempool may have externally allocated memory. */
1378 		return mlx4_mr_update_ext_mp(dev, mr_ctrl, mp);
1379 	}
1380 	return data.ret;
1381 }
1382 
1383 #ifdef RTE_LIBRTE_MLX4_DEBUG
1384 /**
1385  * Dump all the created MRs and the global cache entries.
1386  *
1387  * @param dev
1388  *   Pointer to Ethernet device.
1389  */
1390 void
1391 mlx4_mr_dump_dev(struct rte_eth_dev *dev)
1392 {
1393 	struct mlx4_priv *priv = dev->data->dev_private;
1394 	struct mlx4_mr *mr;
1395 	int mr_n = 0;
1396 	int chunk_n = 0;
1397 
1398 	rte_rwlock_read_lock(&priv->mr.rwlock);
1399 	/* Iterate all the existing MRs. */
1400 	LIST_FOREACH(mr, &priv->mr.mr_list, mr) {
1401 		unsigned int n;
1402 
1403 		DEBUG("port %u MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
1404 		      dev->data->port_id, mr_n++,
1405 		      rte_cpu_to_be_32(mr->ibv_mr->lkey),
1406 		      mr->ms_n, mr->ms_bmp_n);
1407 		if (mr->ms_n == 0)
1408 			continue;
1409 		for (n = 0; n < mr->ms_bmp_n; ) {
1410 			struct mlx4_mr_cache ret;
1411 
1412 			memset(&ret, 0, sizeof(ret));
1413 			n = mr_find_next_chunk(mr, &ret, n);
1414 			if (!ret.end)
1415 				break;
1416 			DEBUG("  chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
1417 			      chunk_n++, ret.start, ret.end);
1418 		}
1419 	}
1420 	DEBUG("port %u dumping global cache", dev->data->port_id);
1421 	mlx4_mr_btree_dump(&priv->mr.cache);
1422 	rte_rwlock_read_unlock(&priv->mr.rwlock);
1423 }
1424 #endif
1425 
1426 /**
1427  * Release all the created MRs and resources. Remove device from memory callback
1428  * list.
1429  *
1430  * @param dev
1431  *   Pointer to Ethernet device.
1432  */
1433 void
1434 mlx4_mr_release(struct rte_eth_dev *dev)
1435 {
1436 	struct mlx4_priv *priv = dev->data->dev_private;
1437 	struct mlx4_mr *mr_next;
1438 
1439 	/* Remove from memory callback device list. */
1440 	rte_rwlock_write_lock(&mlx4_shared_data->mem_event_rwlock);
1441 	LIST_REMOVE(priv, mem_event_cb);
1442 	rte_rwlock_write_unlock(&mlx4_shared_data->mem_event_rwlock);
1443 #ifdef RTE_LIBRTE_MLX4_DEBUG
1444 	mlx4_mr_dump_dev(dev);
1445 #endif
1446 	rte_rwlock_write_lock(&priv->mr.rwlock);
1447 	/* Detach from MR list and move to free list. */
1448 	mr_next = LIST_FIRST(&priv->mr.mr_list);
1449 	while (mr_next != NULL) {
1450 		struct mlx4_mr *mr = mr_next;
1451 
1452 		mr_next = LIST_NEXT(mr, mr);
1453 		LIST_REMOVE(mr, mr);
1454 		LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr);
1455 	}
1456 	LIST_INIT(&priv->mr.mr_list);
1457 	/* Free global cache. */
1458 	mlx4_mr_btree_free(&priv->mr.cache);
1459 	rte_rwlock_write_unlock(&priv->mr.rwlock);
1460 	/* Free all remaining MRs. */
1461 	mlx4_mr_garbage_collect(dev);
1462 }
1463