1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2017 6WIND S.A. 3 * Copyright 2017 Mellanox Technologies, Ltd 4 */ 5 6 /** 7 * @file 8 * Memory management functions for mlx4 driver. 9 */ 10 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <stddef.h> 14 #include <stdint.h> 15 #include <string.h> 16 17 /* Verbs headers do not support -pedantic. */ 18 #ifdef PEDANTIC 19 #pragma GCC diagnostic ignored "-Wpedantic" 20 #endif 21 #include <infiniband/verbs.h> 22 #ifdef PEDANTIC 23 #pragma GCC diagnostic error "-Wpedantic" 24 #endif 25 26 #include <rte_branch_prediction.h> 27 #include <rte_common.h> 28 #include <rte_eal_memconfig.h> 29 #include <rte_errno.h> 30 #include <rte_malloc.h> 31 #include <rte_memory.h> 32 #include <rte_mempool.h> 33 #include <rte_rwlock.h> 34 35 #include "mlx4_glue.h" 36 #include "mlx4_mr.h" 37 #include "mlx4_rxtx.h" 38 #include "mlx4_utils.h" 39 40 struct mr_find_contig_memsegs_data { 41 uintptr_t addr; 42 uintptr_t start; 43 uintptr_t end; 44 const struct rte_memseg_list *msl; 45 }; 46 47 struct mr_update_mp_data { 48 struct rte_eth_dev *dev; 49 struct mlx4_mr_ctrl *mr_ctrl; 50 int ret; 51 }; 52 53 /** 54 * Expand B-tree table to a given size. Can't be called with holding 55 * memory_hotplug_lock or priv->mr.rwlock due to rte_realloc(). 56 * 57 * @param bt 58 * Pointer to B-tree structure. 59 * @param n 60 * Number of entries for expansion. 61 * 62 * @return 63 * 0 on success, -1 on failure. 64 */ 65 static int 66 mr_btree_expand(struct mlx4_mr_btree *bt, int n) 67 { 68 void *mem; 69 int ret = 0; 70 71 if (n <= bt->size) 72 return ret; 73 /* 74 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is 75 * used inside if there's no room to expand. Because this is a quite 76 * rare case and a part of very slow path, it is very acceptable. 77 * Initially cache_bh[] will be given practically enough space and once 78 * it is expanded, expansion wouldn't be needed again ever. 79 */ 80 mem = rte_realloc(bt->table, n * sizeof(struct mlx4_mr_cache), 0); 81 if (mem == NULL) { 82 /* Not an error, B-tree search will be skipped. */ 83 WARN("failed to expand MR B-tree (%p) table", (void *)bt); 84 ret = -1; 85 } else { 86 DEBUG("expanded MR B-tree table (size=%u)", n); 87 bt->table = mem; 88 bt->size = n; 89 } 90 return ret; 91 } 92 93 /** 94 * Look up LKey from given B-tree lookup table, store the last index and return 95 * searched LKey. 96 * 97 * @param bt 98 * Pointer to B-tree structure. 99 * @param[out] idx 100 * Pointer to index. Even on search failure, returns index where it stops 101 * searching so that index can be used when inserting a new entry. 102 * @param addr 103 * Search key. 104 * 105 * @return 106 * Searched LKey on success, UINT32_MAX on no match. 107 */ 108 static uint32_t 109 mr_btree_lookup(struct mlx4_mr_btree *bt, uint16_t *idx, uintptr_t addr) 110 { 111 struct mlx4_mr_cache *lkp_tbl; 112 uint16_t n; 113 uint16_t base = 0; 114 115 MLX4_ASSERT(bt != NULL); 116 lkp_tbl = *bt->table; 117 n = bt->len; 118 /* First entry must be NULL for comparison. */ 119 MLX4_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 && 120 lkp_tbl[0].lkey == UINT32_MAX)); 121 /* Binary search. */ 122 do { 123 register uint16_t delta = n >> 1; 124 125 if (addr < lkp_tbl[base + delta].start) { 126 n = delta; 127 } else { 128 base += delta; 129 n -= delta; 130 } 131 } while (n > 1); 132 MLX4_ASSERT(addr >= lkp_tbl[base].start); 133 *idx = base; 134 if (addr < lkp_tbl[base].end) 135 return lkp_tbl[base].lkey; 136 /* Not found. */ 137 return UINT32_MAX; 138 } 139 140 /** 141 * Insert an entry to B-tree lookup table. 142 * 143 * @param bt 144 * Pointer to B-tree structure. 145 * @param entry 146 * Pointer to new entry to insert. 147 * 148 * @return 149 * 0 on success, -1 on failure. 150 */ 151 static int 152 mr_btree_insert(struct mlx4_mr_btree *bt, struct mlx4_mr_cache *entry) 153 { 154 struct mlx4_mr_cache *lkp_tbl; 155 uint16_t idx = 0; 156 size_t shift; 157 158 MLX4_ASSERT(bt != NULL); 159 MLX4_ASSERT(bt->len <= bt->size); 160 MLX4_ASSERT(bt->len > 0); 161 lkp_tbl = *bt->table; 162 /* Find out the slot for insertion. */ 163 if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) { 164 DEBUG("abort insertion to B-tree(%p): already exist at" 165 " idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 166 (void *)bt, idx, entry->start, entry->end, entry->lkey); 167 /* Already exist, return. */ 168 return 0; 169 } 170 /* If table is full, return error. */ 171 if (unlikely(bt->len == bt->size)) { 172 bt->overflow = 1; 173 return -1; 174 } 175 /* Insert entry. */ 176 ++idx; 177 shift = (bt->len - idx) * sizeof(struct mlx4_mr_cache); 178 if (shift) 179 memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift); 180 lkp_tbl[idx] = *entry; 181 bt->len++; 182 DEBUG("inserted B-tree(%p)[%u]," 183 " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 184 (void *)bt, idx, entry->start, entry->end, entry->lkey); 185 return 0; 186 } 187 188 /** 189 * Initialize B-tree and allocate memory for lookup table. 190 * 191 * @param bt 192 * Pointer to B-tree structure. 193 * @param n 194 * Number of entries to allocate. 195 * @param socket 196 * NUMA socket on which memory must be allocated. 197 * 198 * @return 199 * 0 on success, a negative errno value otherwise and rte_errno is set. 200 */ 201 int 202 mlx4_mr_btree_init(struct mlx4_mr_btree *bt, int n, int socket) 203 { 204 if (bt == NULL) { 205 rte_errno = EINVAL; 206 return -rte_errno; 207 } 208 memset(bt, 0, sizeof(*bt)); 209 bt->table = rte_calloc_socket("B-tree table", 210 n, sizeof(struct mlx4_mr_cache), 211 0, socket); 212 if (bt->table == NULL) { 213 rte_errno = ENOMEM; 214 ERROR("failed to allocate memory for btree cache on socket %d", 215 socket); 216 return -rte_errno; 217 } 218 bt->size = n; 219 /* First entry must be NULL for binary search. */ 220 (*bt->table)[bt->len++] = (struct mlx4_mr_cache) { 221 .lkey = UINT32_MAX, 222 }; 223 DEBUG("initialized B-tree %p with table %p", 224 (void *)bt, (void *)bt->table); 225 return 0; 226 } 227 228 /** 229 * Free B-tree resources. 230 * 231 * @param bt 232 * Pointer to B-tree structure. 233 */ 234 void 235 mlx4_mr_btree_free(struct mlx4_mr_btree *bt) 236 { 237 if (bt == NULL) 238 return; 239 DEBUG("freeing B-tree %p with table %p", (void *)bt, (void *)bt->table); 240 rte_free(bt->table); 241 memset(bt, 0, sizeof(*bt)); 242 } 243 244 #ifdef RTE_LIBRTE_MLX4_DEBUG 245 /** 246 * Dump all the entries in a B-tree 247 * 248 * @param bt 249 * Pointer to B-tree structure. 250 */ 251 void 252 mlx4_mr_btree_dump(struct mlx4_mr_btree *bt) 253 { 254 int idx; 255 struct mlx4_mr_cache *lkp_tbl; 256 257 if (bt == NULL) 258 return; 259 lkp_tbl = *bt->table; 260 for (idx = 0; idx < bt->len; ++idx) { 261 struct mlx4_mr_cache *entry = &lkp_tbl[idx]; 262 263 DEBUG("B-tree(%p)[%u]," 264 " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 265 (void *)bt, idx, entry->start, entry->end, entry->lkey); 266 } 267 } 268 #endif 269 270 /** 271 * Find virtually contiguous memory chunk in a given MR. 272 * 273 * @param dev 274 * Pointer to MR structure. 275 * @param[out] entry 276 * Pointer to returning MR cache entry. If not found, this will not be 277 * updated. 278 * @param start_idx 279 * Start index of the memseg bitmap. 280 * 281 * @return 282 * Next index to go on lookup. 283 */ 284 static int 285 mr_find_next_chunk(struct mlx4_mr *mr, struct mlx4_mr_cache *entry, 286 int base_idx) 287 { 288 uintptr_t start = 0; 289 uintptr_t end = 0; 290 uint32_t idx = 0; 291 292 /* MR for external memory doesn't have memseg list. */ 293 if (mr->msl == NULL) { 294 struct ibv_mr *ibv_mr = mr->ibv_mr; 295 296 MLX4_ASSERT(mr->ms_bmp_n == 1); 297 MLX4_ASSERT(mr->ms_n == 1); 298 MLX4_ASSERT(base_idx == 0); 299 /* 300 * Can't search it from memseg list but get it directly from 301 * verbs MR as there's only one chunk. 302 */ 303 entry->start = (uintptr_t)ibv_mr->addr; 304 entry->end = (uintptr_t)ibv_mr->addr + mr->ibv_mr->length; 305 entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey); 306 /* Returning 1 ends iteration. */ 307 return 1; 308 } 309 for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) { 310 if (rte_bitmap_get(mr->ms_bmp, idx)) { 311 const struct rte_memseg_list *msl; 312 const struct rte_memseg *ms; 313 314 msl = mr->msl; 315 ms = rte_fbarray_get(&msl->memseg_arr, 316 mr->ms_base_idx + idx); 317 MLX4_ASSERT(msl->page_sz == ms->hugepage_sz); 318 if (!start) 319 start = ms->addr_64; 320 end = ms->addr_64 + ms->hugepage_sz; 321 } else if (start) { 322 /* Passed the end of a fragment. */ 323 break; 324 } 325 } 326 if (start) { 327 /* Found one chunk. */ 328 entry->start = start; 329 entry->end = end; 330 entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey); 331 } 332 return idx; 333 } 334 335 /** 336 * Insert a MR to the global B-tree cache. It may fail due to low-on-memory. 337 * Then, this entry will have to be searched by mr_lookup_dev_list() in 338 * mlx4_mr_create() on miss. 339 * 340 * @param dev 341 * Pointer to Ethernet device. 342 * @param mr 343 * Pointer to MR to insert. 344 * 345 * @return 346 * 0 on success, -1 on failure. 347 */ 348 static int 349 mr_insert_dev_cache(struct rte_eth_dev *dev, struct mlx4_mr *mr) 350 { 351 struct mlx4_priv *priv = dev->data->dev_private; 352 unsigned int n; 353 354 DEBUG("port %u inserting MR(%p) to global cache", 355 dev->data->port_id, (void *)mr); 356 for (n = 0; n < mr->ms_bmp_n; ) { 357 struct mlx4_mr_cache entry; 358 359 memset(&entry, 0, sizeof(entry)); 360 /* Find a contiguous chunk and advance the index. */ 361 n = mr_find_next_chunk(mr, &entry, n); 362 if (!entry.end) 363 break; 364 if (mr_btree_insert(&priv->mr.cache, &entry) < 0) { 365 /* 366 * Overflowed, but the global table cannot be expanded 367 * because of deadlock. 368 */ 369 return -1; 370 } 371 } 372 return 0; 373 } 374 375 /** 376 * Look up address in the original global MR list. 377 * 378 * @param dev 379 * Pointer to Ethernet device. 380 * @param[out] entry 381 * Pointer to returning MR cache entry. If no match, this will not be updated. 382 * @param addr 383 * Search key. 384 * 385 * @return 386 * Found MR on match, NULL otherwise. 387 */ 388 static struct mlx4_mr * 389 mr_lookup_dev_list(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, 390 uintptr_t addr) 391 { 392 struct mlx4_priv *priv = dev->data->dev_private; 393 struct mlx4_mr *mr; 394 395 /* Iterate all the existing MRs. */ 396 LIST_FOREACH(mr, &priv->mr.mr_list, mr) { 397 unsigned int n; 398 399 if (mr->ms_n == 0) 400 continue; 401 for (n = 0; n < mr->ms_bmp_n; ) { 402 struct mlx4_mr_cache ret; 403 404 memset(&ret, 0, sizeof(ret)); 405 n = mr_find_next_chunk(mr, &ret, n); 406 if (addr >= ret.start && addr < ret.end) { 407 /* Found. */ 408 *entry = ret; 409 return mr; 410 } 411 } 412 } 413 return NULL; 414 } 415 416 /** 417 * Look up address on device. 418 * 419 * @param dev 420 * Pointer to Ethernet device. 421 * @param[out] entry 422 * Pointer to returning MR cache entry. If no match, this will not be updated. 423 * @param addr 424 * Search key. 425 * 426 * @return 427 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 428 */ 429 static uint32_t 430 mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, 431 uintptr_t addr) 432 { 433 struct mlx4_priv *priv = dev->data->dev_private; 434 uint16_t idx; 435 uint32_t lkey = UINT32_MAX; 436 struct mlx4_mr *mr; 437 438 /* 439 * If the global cache has overflowed since it failed to expand the 440 * B-tree table, it can't have all the existing MRs. Then, the address 441 * has to be searched by traversing the original MR list instead, which 442 * is very slow path. Otherwise, the global cache is all inclusive. 443 */ 444 if (!unlikely(priv->mr.cache.overflow)) { 445 lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr); 446 if (lkey != UINT32_MAX) 447 *entry = (*priv->mr.cache.table)[idx]; 448 } else { 449 /* Falling back to the slowest path. */ 450 mr = mr_lookup_dev_list(dev, entry, addr); 451 if (mr != NULL) 452 lkey = entry->lkey; 453 } 454 MLX4_ASSERT(lkey == UINT32_MAX || (addr >= entry->start && 455 addr < entry->end)); 456 return lkey; 457 } 458 459 /** 460 * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free() 461 * can raise memory free event and the callback function will spin on the lock. 462 * 463 * @param mr 464 * Pointer to MR to free. 465 */ 466 static void 467 mr_free(struct mlx4_mr *mr) 468 { 469 if (mr == NULL) 470 return; 471 DEBUG("freeing MR(%p):", (void *)mr); 472 if (mr->ibv_mr != NULL) 473 claim_zero(mlx4_glue->dereg_mr(mr->ibv_mr)); 474 if (mr->ms_bmp != NULL) 475 rte_bitmap_free(mr->ms_bmp); 476 rte_free(mr); 477 } 478 479 /** 480 * Release resources of detached MR having no online entry. 481 * 482 * @param dev 483 * Pointer to Ethernet device. 484 */ 485 static void 486 mlx4_mr_garbage_collect(struct rte_eth_dev *dev) 487 { 488 struct mlx4_priv *priv = dev->data->dev_private; 489 struct mlx4_mr *mr_next; 490 struct mlx4_mr_list free_list = LIST_HEAD_INITIALIZER(free_list); 491 492 /* Must be called from the primary process. */ 493 MLX4_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 494 /* 495 * MR can't be freed with holding the lock because rte_free() could call 496 * memory free callback function. This will be a deadlock situation. 497 */ 498 rte_rwlock_write_lock(&priv->mr.rwlock); 499 /* Detach the whole free list and release it after unlocking. */ 500 free_list = priv->mr.mr_free_list; 501 LIST_INIT(&priv->mr.mr_free_list); 502 rte_rwlock_write_unlock(&priv->mr.rwlock); 503 /* Release resources. */ 504 mr_next = LIST_FIRST(&free_list); 505 while (mr_next != NULL) { 506 struct mlx4_mr *mr = mr_next; 507 508 mr_next = LIST_NEXT(mr, mr); 509 mr_free(mr); 510 } 511 } 512 513 /* Called during rte_memseg_contig_walk() by mlx4_mr_create(). */ 514 static int 515 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl, 516 const struct rte_memseg *ms, size_t len, void *arg) 517 { 518 struct mr_find_contig_memsegs_data *data = arg; 519 520 if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len) 521 return 0; 522 /* Found, save it and stop walking. */ 523 data->start = ms->addr_64; 524 data->end = ms->addr_64 + len; 525 data->msl = msl; 526 return 1; 527 } 528 529 /** 530 * Create a new global Memory Region (MR) for a missing virtual address. 531 * This API should be called on a secondary process, then a request is sent to 532 * the primary process in order to create a MR for the address. As the global MR 533 * list is on the shared memory, following LKey lookup should succeed unless the 534 * request fails. 535 * 536 * @param dev 537 * Pointer to Ethernet device. 538 * @param[out] entry 539 * Pointer to returning MR cache entry, found in the global cache or newly 540 * created. If failed to create one, this will not be updated. 541 * @param addr 542 * Target virtual address to register. 543 * 544 * @return 545 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 546 */ 547 static uint32_t 548 mlx4_mr_create_secondary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, 549 uintptr_t addr) 550 { 551 struct mlx4_priv *priv = dev->data->dev_private; 552 int ret; 553 554 DEBUG("port %u requesting MR creation for address (%p)", 555 dev->data->port_id, (void *)addr); 556 ret = mlx4_mp_req_mr_create(dev, addr); 557 if (ret) { 558 DEBUG("port %u fail to request MR creation for address (%p)", 559 dev->data->port_id, (void *)addr); 560 return UINT32_MAX; 561 } 562 rte_rwlock_read_lock(&priv->mr.rwlock); 563 /* Fill in output data. */ 564 mr_lookup_dev(dev, entry, addr); 565 /* Lookup can't fail. */ 566 MLX4_ASSERT(entry->lkey != UINT32_MAX); 567 rte_rwlock_read_unlock(&priv->mr.rwlock); 568 DEBUG("port %u MR CREATED by primary process for %p:\n" 569 " [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x", 570 dev->data->port_id, (void *)addr, 571 entry->start, entry->end, entry->lkey); 572 return entry->lkey; 573 } 574 575 /** 576 * Create a new global Memory Region (MR) for a missing virtual address. 577 * Register entire virtually contiguous memory chunk around the address. 578 * This must be called from the primary process. 579 * 580 * @param dev 581 * Pointer to Ethernet device. 582 * @param[out] entry 583 * Pointer to returning MR cache entry, found in the global cache or newly 584 * created. If failed to create one, this will not be updated. 585 * @param addr 586 * Target virtual address to register. 587 * 588 * @return 589 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 590 */ 591 uint32_t 592 mlx4_mr_create_primary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, 593 uintptr_t addr) 594 { 595 struct mlx4_priv *priv = dev->data->dev_private; 596 const struct rte_memseg_list *msl; 597 const struct rte_memseg *ms; 598 struct mlx4_mr *mr = NULL; 599 size_t len; 600 uint32_t ms_n; 601 uint32_t bmp_size; 602 void *bmp_mem; 603 int ms_idx_shift = -1; 604 unsigned int n; 605 struct mr_find_contig_memsegs_data data = { 606 .addr = addr, 607 }; 608 struct mr_find_contig_memsegs_data data_re; 609 610 DEBUG("port %u creating a MR using address (%p)", 611 dev->data->port_id, (void *)addr); 612 /* 613 * Release detached MRs if any. This can't be called with holding either 614 * memory_hotplug_lock or priv->mr.rwlock. MRs on the free list have 615 * been detached by the memory free event but it couldn't be released 616 * inside the callback due to deadlock. As a result, releasing resources 617 * is quite opportunistic. 618 */ 619 mlx4_mr_garbage_collect(dev); 620 /* 621 * If enabled, find out a contiguous virtual address chunk in use, to 622 * which the given address belongs, in order to register maximum range. 623 * In the best case where mempools are not dynamically recreated and 624 * '--socket-mem' is specified as an EAL option, it is very likely to 625 * have only one MR(LKey) per a socket and per a hugepage-size even 626 * though the system memory is highly fragmented. As the whole memory 627 * chunk will be pinned by kernel, it can't be reused unless entire 628 * chunk is freed from EAL. 629 * 630 * If disabled, just register one memseg (page). Then, memory 631 * consumption will be minimized but it may drop performance if there 632 * are many MRs to lookup on the datapath. 633 */ 634 if (!priv->mr_ext_memseg_en) { 635 data.msl = rte_mem_virt2memseg_list((void *)addr); 636 data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz); 637 data.end = data.start + data.msl->page_sz; 638 } else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) { 639 WARN("port %u unable to find virtually contiguous" 640 " chunk for address (%p)." 641 " rte_memseg_contig_walk() failed.", 642 dev->data->port_id, (void *)addr); 643 rte_errno = ENXIO; 644 goto err_nolock; 645 } 646 alloc_resources: 647 /* Addresses must be page-aligned. */ 648 MLX4_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz)); 649 MLX4_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz)); 650 msl = data.msl; 651 ms = rte_mem_virt2memseg((void *)data.start, msl); 652 len = data.end - data.start; 653 MLX4_ASSERT(msl->page_sz == ms->hugepage_sz); 654 /* Number of memsegs in the range. */ 655 ms_n = len / msl->page_sz; 656 DEBUG("port %u extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 657 " page_sz=0x%" PRIx64 ", ms_n=%u", 658 dev->data->port_id, (void *)addr, 659 data.start, data.end, msl->page_sz, ms_n); 660 /* Size of memory for bitmap. */ 661 bmp_size = rte_bitmap_get_memory_footprint(ms_n); 662 mr = rte_zmalloc_socket(NULL, 663 RTE_ALIGN_CEIL(sizeof(*mr), 664 RTE_CACHE_LINE_SIZE) + 665 bmp_size, 666 RTE_CACHE_LINE_SIZE, msl->socket_id); 667 if (mr == NULL) { 668 WARN("port %u unable to allocate memory for a new MR of" 669 " address (%p).", 670 dev->data->port_id, (void *)addr); 671 rte_errno = ENOMEM; 672 goto err_nolock; 673 } 674 mr->msl = msl; 675 /* 676 * Save the index of the first memseg and initialize memseg bitmap. To 677 * see if a memseg of ms_idx in the memseg-list is still valid, check: 678 * rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx) 679 */ 680 mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 681 bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE); 682 mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size); 683 if (mr->ms_bmp == NULL) { 684 WARN("port %u unable to initialize bitmap for a new MR of" 685 " address (%p).", 686 dev->data->port_id, (void *)addr); 687 rte_errno = EINVAL; 688 goto err_nolock; 689 } 690 /* 691 * Should recheck whether the extended contiguous chunk is still valid. 692 * Because memory_hotplug_lock can't be held if there's any memory 693 * related calls in a critical path, resource allocation above can't be 694 * locked. If the memory has been changed at this point, try again with 695 * just single page. If not, go on with the big chunk atomically from 696 * here. 697 */ 698 rte_mcfg_mem_read_lock(); 699 data_re = data; 700 if (len > msl->page_sz && 701 !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) { 702 WARN("port %u unable to find virtually contiguous" 703 " chunk for address (%p)." 704 " rte_memseg_contig_walk() failed.", 705 dev->data->port_id, (void *)addr); 706 rte_errno = ENXIO; 707 goto err_memlock; 708 } 709 if (data.start != data_re.start || data.end != data_re.end) { 710 /* 711 * The extended contiguous chunk has been changed. Try again 712 * with single memseg instead. 713 */ 714 data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz); 715 data.end = data.start + msl->page_sz; 716 rte_mcfg_mem_read_unlock(); 717 mr_free(mr); 718 goto alloc_resources; 719 } 720 MLX4_ASSERT(data.msl == data_re.msl); 721 rte_rwlock_write_lock(&priv->mr.rwlock); 722 /* 723 * Check the address is really missing. If other thread already created 724 * one or it is not found due to overflow, abort and return. 725 */ 726 if (mr_lookup_dev(dev, entry, addr) != UINT32_MAX) { 727 /* 728 * Insert to the global cache table. It may fail due to 729 * low-on-memory. Then, this entry will have to be searched 730 * here again. 731 */ 732 mr_btree_insert(&priv->mr.cache, entry); 733 DEBUG("port %u found MR for %p on final lookup, abort", 734 dev->data->port_id, (void *)addr); 735 rte_rwlock_write_unlock(&priv->mr.rwlock); 736 rte_mcfg_mem_read_unlock(); 737 /* 738 * Must be unlocked before calling rte_free() because 739 * mlx4_mr_mem_event_free_cb() can be called inside. 740 */ 741 mr_free(mr); 742 return entry->lkey; 743 } 744 /* 745 * Trim start and end addresses for verbs MR. Set bits for registering 746 * memsegs but exclude already registered ones. Bitmap can be 747 * fragmented. 748 */ 749 for (n = 0; n < ms_n; ++n) { 750 uintptr_t start; 751 struct mlx4_mr_cache ret; 752 753 memset(&ret, 0, sizeof(ret)); 754 start = data_re.start + n * msl->page_sz; 755 /* Exclude memsegs already registered by other MRs. */ 756 if (mr_lookup_dev(dev, &ret, start) == UINT32_MAX) { 757 /* 758 * Start from the first unregistered memseg in the 759 * extended range. 760 */ 761 if (ms_idx_shift == -1) { 762 mr->ms_base_idx += n; 763 data.start = start; 764 ms_idx_shift = n; 765 } 766 data.end = start + msl->page_sz; 767 rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift); 768 ++mr->ms_n; 769 } 770 } 771 len = data.end - data.start; 772 mr->ms_bmp_n = len / msl->page_sz; 773 MLX4_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n); 774 /* 775 * Finally create a verbs MR for the memory chunk. ibv_reg_mr() can be 776 * called with holding the memory lock because it doesn't use 777 * mlx4_alloc_buf_extern() which eventually calls rte_malloc_socket() 778 * through mlx4_alloc_verbs_buf(). 779 */ 780 mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)data.start, len, 781 IBV_ACCESS_LOCAL_WRITE); 782 if (mr->ibv_mr == NULL) { 783 WARN("port %u fail to create a verbs MR for address (%p)", 784 dev->data->port_id, (void *)addr); 785 rte_errno = EINVAL; 786 goto err_mrlock; 787 } 788 MLX4_ASSERT((uintptr_t)mr->ibv_mr->addr == data.start); 789 MLX4_ASSERT(mr->ibv_mr->length == len); 790 LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr); 791 DEBUG("port %u MR CREATED (%p) for %p:\n" 792 " [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 793 " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", 794 dev->data->port_id, (void *)mr, (void *)addr, 795 data.start, data.end, rte_cpu_to_be_32(mr->ibv_mr->lkey), 796 mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); 797 /* Insert to the global cache table. */ 798 mr_insert_dev_cache(dev, mr); 799 /* Fill in output data. */ 800 mr_lookup_dev(dev, entry, addr); 801 /* Lookup can't fail. */ 802 MLX4_ASSERT(entry->lkey != UINT32_MAX); 803 rte_rwlock_write_unlock(&priv->mr.rwlock); 804 rte_mcfg_mem_read_unlock(); 805 return entry->lkey; 806 err_mrlock: 807 rte_rwlock_write_unlock(&priv->mr.rwlock); 808 err_memlock: 809 rte_mcfg_mem_read_unlock(); 810 err_nolock: 811 /* 812 * In case of error, as this can be called in a datapath, a warning 813 * message per an error is preferable instead. Must be unlocked before 814 * calling rte_free() because mlx4_mr_mem_event_free_cb() can be called 815 * inside. 816 */ 817 mr_free(mr); 818 return UINT32_MAX; 819 } 820 821 /** 822 * Create a new global Memory Region (MR) for a missing virtual address. 823 * This can be called from primary and secondary process. 824 * 825 * @param dev 826 * Pointer to Ethernet device. 827 * @param[out] entry 828 * Pointer to returning MR cache entry, found in the global cache or newly 829 * created. If failed to create one, this will not be updated. 830 * @param addr 831 * Target virtual address to register. 832 * 833 * @return 834 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 835 */ 836 static uint32_t 837 mlx4_mr_create(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, 838 uintptr_t addr) 839 { 840 uint32_t ret = 0; 841 842 switch (rte_eal_process_type()) { 843 case RTE_PROC_PRIMARY: 844 ret = mlx4_mr_create_primary(dev, entry, addr); 845 break; 846 case RTE_PROC_SECONDARY: 847 ret = mlx4_mr_create_secondary(dev, entry, addr); 848 break; 849 default: 850 break; 851 } 852 return ret; 853 } 854 855 /** 856 * Rebuild the global B-tree cache of device from the original MR list. 857 * 858 * @param dev 859 * Pointer to Ethernet device. 860 */ 861 static void 862 mr_rebuild_dev_cache(struct rte_eth_dev *dev) 863 { 864 struct mlx4_priv *priv = dev->data->dev_private; 865 struct mlx4_mr *mr; 866 867 DEBUG("port %u rebuild dev cache[]", dev->data->port_id); 868 /* Flush cache to rebuild. */ 869 priv->mr.cache.len = 1; 870 priv->mr.cache.overflow = 0; 871 /* Iterate all the existing MRs. */ 872 LIST_FOREACH(mr, &priv->mr.mr_list, mr) 873 if (mr_insert_dev_cache(dev, mr) < 0) 874 return; 875 } 876 877 /** 878 * Callback for memory free event. Iterate freed memsegs and check whether it 879 * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a 880 * result, the MR would be fragmented. If it becomes empty, the MR will be freed 881 * later by mlx4_mr_garbage_collect(). 882 * 883 * The global cache must be rebuilt if there's any change and this event has to 884 * be propagated to dataplane threads to flush the local caches. 885 * 886 * @param dev 887 * Pointer to Ethernet device. 888 * @param addr 889 * Address of freed memory. 890 * @param len 891 * Size of freed memory. 892 */ 893 static void 894 mlx4_mr_mem_event_free_cb(struct rte_eth_dev *dev, const void *addr, size_t len) 895 { 896 struct mlx4_priv *priv = dev->data->dev_private; 897 const struct rte_memseg_list *msl; 898 struct mlx4_mr *mr; 899 int ms_n; 900 int i; 901 int rebuild = 0; 902 903 DEBUG("port %u free callback: addr=%p, len=%zu", 904 dev->data->port_id, addr, len); 905 msl = rte_mem_virt2memseg_list(addr); 906 /* addr and len must be page-aligned. */ 907 MLX4_ASSERT((uintptr_t)addr == 908 RTE_ALIGN((uintptr_t)addr, msl->page_sz)); 909 MLX4_ASSERT(len == RTE_ALIGN(len, msl->page_sz)); 910 ms_n = len / msl->page_sz; 911 rte_rwlock_write_lock(&priv->mr.rwlock); 912 /* Clear bits of freed memsegs from MR. */ 913 for (i = 0; i < ms_n; ++i) { 914 const struct rte_memseg *ms; 915 struct mlx4_mr_cache entry; 916 uintptr_t start; 917 int ms_idx; 918 uint32_t pos; 919 920 /* Find MR having this memseg. */ 921 start = (uintptr_t)addr + i * msl->page_sz; 922 mr = mr_lookup_dev_list(dev, &entry, start); 923 if (mr == NULL) 924 continue; 925 MLX4_ASSERT(mr->msl); /* Can't be external memory. */ 926 ms = rte_mem_virt2memseg((void *)start, msl); 927 MLX4_ASSERT(ms != NULL); 928 MLX4_ASSERT(msl->page_sz == ms->hugepage_sz); 929 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 930 pos = ms_idx - mr->ms_base_idx; 931 MLX4_ASSERT(rte_bitmap_get(mr->ms_bmp, pos)); 932 MLX4_ASSERT(pos < mr->ms_bmp_n); 933 DEBUG("port %u MR(%p): clear bitmap[%u] for addr %p", 934 dev->data->port_id, (void *)mr, pos, (void *)start); 935 rte_bitmap_clear(mr->ms_bmp, pos); 936 if (--mr->ms_n == 0) { 937 LIST_REMOVE(mr, mr); 938 LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr); 939 DEBUG("port %u remove MR(%p) from list", 940 dev->data->port_id, (void *)mr); 941 } 942 /* 943 * MR is fragmented or will be freed. the global cache must be 944 * rebuilt. 945 */ 946 rebuild = 1; 947 } 948 if (rebuild) { 949 mr_rebuild_dev_cache(dev); 950 /* 951 * Flush local caches by propagating invalidation across cores. 952 * rte_smp_wmb() is enough to synchronize this event. If one of 953 * freed memsegs is seen by other core, that means the memseg 954 * has been allocated by allocator, which will come after this 955 * free call. Therefore, this store instruction (incrementing 956 * generation below) will be guaranteed to be seen by other core 957 * before the core sees the newly allocated memory. 958 */ 959 ++priv->mr.dev_gen; 960 DEBUG("broadcasting local cache flush, gen=%d", 961 priv->mr.dev_gen); 962 rte_smp_wmb(); 963 } 964 rte_rwlock_write_unlock(&priv->mr.rwlock); 965 #ifdef RTE_LIBRTE_MLX4_DEBUG 966 if (rebuild) 967 mlx4_mr_dump_dev(dev); 968 #endif 969 } 970 971 /** 972 * Callback for memory event. 973 * 974 * @param event_type 975 * Memory event type. 976 * @param addr 977 * Address of memory. 978 * @param len 979 * Size of memory. 980 */ 981 void 982 mlx4_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr, 983 size_t len, void *arg __rte_unused) 984 { 985 struct mlx4_priv *priv; 986 struct mlx4_dev_list *dev_list = &mlx4_shared_data->mem_event_cb_list; 987 988 /* Must be called from the primary process. */ 989 MLX4_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 990 switch (event_type) { 991 case RTE_MEM_EVENT_FREE: 992 rte_rwlock_read_lock(&mlx4_shared_data->mem_event_rwlock); 993 /* Iterate all the existing mlx4 devices. */ 994 LIST_FOREACH(priv, dev_list, mem_event_cb) 995 mlx4_mr_mem_event_free_cb(ETH_DEV(priv), addr, len); 996 rte_rwlock_read_unlock(&mlx4_shared_data->mem_event_rwlock); 997 break; 998 case RTE_MEM_EVENT_ALLOC: 999 default: 1000 break; 1001 } 1002 } 1003 1004 /** 1005 * Look up address in the global MR cache table. If not found, create a new MR. 1006 * Insert the found/created entry to local bottom-half cache table. 1007 * 1008 * @param dev 1009 * Pointer to Ethernet device. 1010 * @param mr_ctrl 1011 * Pointer to per-queue MR control structure. 1012 * @param[out] entry 1013 * Pointer to returning MR cache entry, found in the global cache or newly 1014 * created. If failed to create one, this is not written. 1015 * @param addr 1016 * Search key. 1017 * 1018 * @return 1019 * Searched LKey on success, UINT32_MAX on no match. 1020 */ 1021 static uint32_t 1022 mlx4_mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl, 1023 struct mlx4_mr_cache *entry, uintptr_t addr) 1024 { 1025 struct mlx4_priv *priv = dev->data->dev_private; 1026 struct mlx4_mr_btree *bt = &mr_ctrl->cache_bh; 1027 uint16_t idx; 1028 uint32_t lkey; 1029 1030 /* If local cache table is full, try to double it. */ 1031 if (unlikely(bt->len == bt->size)) 1032 mr_btree_expand(bt, bt->size << 1); 1033 /* Look up in the global cache. */ 1034 rte_rwlock_read_lock(&priv->mr.rwlock); 1035 lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr); 1036 if (lkey != UINT32_MAX) { 1037 /* Found. */ 1038 *entry = (*priv->mr.cache.table)[idx]; 1039 rte_rwlock_read_unlock(&priv->mr.rwlock); 1040 /* 1041 * Update local cache. Even if it fails, return the found entry 1042 * to update top-half cache. Next time, this entry will be found 1043 * in the global cache. 1044 */ 1045 mr_btree_insert(bt, entry); 1046 return lkey; 1047 } 1048 rte_rwlock_read_unlock(&priv->mr.rwlock); 1049 /* First time to see the address? Create a new MR. */ 1050 lkey = mlx4_mr_create(dev, entry, addr); 1051 /* 1052 * Update the local cache if successfully created a new global MR. Even 1053 * if failed to create one, there's no action to take in this datapath 1054 * code. As returning LKey is invalid, this will eventually make HW 1055 * fail. 1056 */ 1057 if (lkey != UINT32_MAX) 1058 mr_btree_insert(bt, entry); 1059 return lkey; 1060 } 1061 1062 /** 1063 * Bottom-half of LKey search on datapath. Firstly search in cache_bh[] and if 1064 * misses, search in the global MR cache table and update the new entry to 1065 * per-queue local caches. 1066 * 1067 * @param dev 1068 * Pointer to Ethernet device. 1069 * @param mr_ctrl 1070 * Pointer to per-queue MR control structure. 1071 * @param addr 1072 * Search key. 1073 * 1074 * @return 1075 * Searched LKey on success, UINT32_MAX on no match. 1076 */ 1077 static uint32_t 1078 mlx4_mr_addr2mr_bh(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl, 1079 uintptr_t addr) 1080 { 1081 uint32_t lkey; 1082 uint16_t bh_idx = 0; 1083 /* Victim in top-half cache to replace with new entry. */ 1084 struct mlx4_mr_cache *repl = &mr_ctrl->cache[mr_ctrl->head]; 1085 1086 /* Binary-search MR translation table. */ 1087 lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr); 1088 /* Update top-half cache. */ 1089 if (likely(lkey != UINT32_MAX)) { 1090 *repl = (*mr_ctrl->cache_bh.table)[bh_idx]; 1091 } else { 1092 /* 1093 * If missed in local lookup table, search in the global cache 1094 * and local cache_bh[] will be updated inside if possible. 1095 * Top-half cache entry will also be updated. 1096 */ 1097 lkey = mlx4_mr_lookup_dev(dev, mr_ctrl, repl, addr); 1098 if (unlikely(lkey == UINT32_MAX)) 1099 return UINT32_MAX; 1100 } 1101 /* Update the most recently used entry. */ 1102 mr_ctrl->mru = mr_ctrl->head; 1103 /* Point to the next victim, the oldest. */ 1104 mr_ctrl->head = (mr_ctrl->head + 1) % MLX4_MR_CACHE_N; 1105 return lkey; 1106 } 1107 1108 /** 1109 * Bottom-half of LKey search on Rx. 1110 * 1111 * @param rxq 1112 * Pointer to Rx queue structure. 1113 * @param addr 1114 * Search key. 1115 * 1116 * @return 1117 * Searched LKey on success, UINT32_MAX on no match. 1118 */ 1119 uint32_t 1120 mlx4_rx_addr2mr_bh(struct rxq *rxq, uintptr_t addr) 1121 { 1122 struct mlx4_mr_ctrl *mr_ctrl = &rxq->mr_ctrl; 1123 struct mlx4_priv *priv = rxq->priv; 1124 1125 return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr); 1126 } 1127 1128 /** 1129 * Bottom-half of LKey search on Tx. 1130 * 1131 * @param txq 1132 * Pointer to Tx queue structure. 1133 * @param addr 1134 * Search key. 1135 * 1136 * @return 1137 * Searched LKey on success, UINT32_MAX on no match. 1138 */ 1139 static uint32_t 1140 mlx4_tx_addr2mr_bh(struct txq *txq, uintptr_t addr) 1141 { 1142 struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl; 1143 struct mlx4_priv *priv = txq->priv; 1144 1145 return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr); 1146 } 1147 1148 /** 1149 * Bottom-half of LKey search on Tx. If it can't be searched in the memseg 1150 * list, register the mempool of the mbuf as externally allocated memory. 1151 * 1152 * @param txq 1153 * Pointer to Tx queue structure. 1154 * @param mb 1155 * Pointer to mbuf. 1156 * 1157 * @return 1158 * Searched LKey on success, UINT32_MAX on no match. 1159 */ 1160 uint32_t 1161 mlx4_tx_mb2mr_bh(struct txq *txq, struct rte_mbuf *mb) 1162 { 1163 uintptr_t addr = (uintptr_t)mb->buf_addr; 1164 uint32_t lkey; 1165 1166 lkey = mlx4_tx_addr2mr_bh(txq, addr); 1167 if (lkey == UINT32_MAX && rte_errno == ENXIO) { 1168 /* Mempool may have externally allocated memory. */ 1169 return mlx4_tx_update_ext_mp(txq, addr, mlx4_mb2mp(mb)); 1170 } 1171 return lkey; 1172 } 1173 1174 /** 1175 * Flush all of the local cache entries. 1176 * 1177 * @param mr_ctrl 1178 * Pointer to per-queue MR control structure. 1179 */ 1180 void 1181 mlx4_mr_flush_local_cache(struct mlx4_mr_ctrl *mr_ctrl) 1182 { 1183 /* Reset the most-recently-used index. */ 1184 mr_ctrl->mru = 0; 1185 /* Reset the linear search array. */ 1186 mr_ctrl->head = 0; 1187 memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache)); 1188 /* Reset the B-tree table. */ 1189 mr_ctrl->cache_bh.len = 1; 1190 mr_ctrl->cache_bh.overflow = 0; 1191 /* Update the generation number. */ 1192 mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr; 1193 DEBUG("mr_ctrl(%p): flushed, cur_gen=%d", 1194 (void *)mr_ctrl, mr_ctrl->cur_gen); 1195 } 1196 1197 /** 1198 * Called during rte_mempool_mem_iter() by mlx4_mr_update_ext_mp(). 1199 * 1200 * Externally allocated chunk is registered and a MR is created for the chunk. 1201 * The MR object is added to the global list. If memseg list of a MR object 1202 * (mr->msl) is null, the MR object can be regarded as externally allocated 1203 * memory. 1204 * 1205 * Once external memory is registered, it should be static. If the memory is 1206 * freed and the virtual address range has different physical memory mapped 1207 * again, it may cause crash on device due to the wrong translation entry. PMD 1208 * can't track the free event of the external memory for now. 1209 */ 1210 static void 1211 mlx4_mr_update_ext_mp_cb(struct rte_mempool *mp, void *opaque, 1212 struct rte_mempool_memhdr *memhdr, 1213 unsigned mem_idx __rte_unused) 1214 { 1215 struct mr_update_mp_data *data = opaque; 1216 struct rte_eth_dev *dev = data->dev; 1217 struct mlx4_priv *priv = dev->data->dev_private; 1218 struct mlx4_mr_ctrl *mr_ctrl = data->mr_ctrl; 1219 struct mlx4_mr *mr = NULL; 1220 uintptr_t addr = (uintptr_t)memhdr->addr; 1221 size_t len = memhdr->len; 1222 struct mlx4_mr_cache entry; 1223 uint32_t lkey; 1224 1225 MLX4_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 1226 /* If already registered, it should return. */ 1227 rte_rwlock_read_lock(&priv->mr.rwlock); 1228 lkey = mr_lookup_dev(dev, &entry, addr); 1229 rte_rwlock_read_unlock(&priv->mr.rwlock); 1230 if (lkey != UINT32_MAX) 1231 return; 1232 mr = rte_zmalloc_socket(NULL, 1233 RTE_ALIGN_CEIL(sizeof(*mr), 1234 RTE_CACHE_LINE_SIZE), 1235 RTE_CACHE_LINE_SIZE, mp->socket_id); 1236 if (mr == NULL) { 1237 WARN("port %u unable to allocate memory for a new MR of" 1238 " mempool (%s).", 1239 dev->data->port_id, mp->name); 1240 data->ret = -1; 1241 return; 1242 } 1243 DEBUG("port %u register MR for chunk #%d of mempool (%s)", 1244 dev->data->port_id, mem_idx, mp->name); 1245 mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)addr, len, 1246 IBV_ACCESS_LOCAL_WRITE); 1247 if (mr->ibv_mr == NULL) { 1248 WARN("port %u fail to create a verbs MR for address (%p)", 1249 dev->data->port_id, (void *)addr); 1250 rte_free(mr); 1251 data->ret = -1; 1252 return; 1253 } 1254 mr->msl = NULL; /* Mark it is external memory. */ 1255 mr->ms_bmp = NULL; 1256 mr->ms_n = 1; 1257 mr->ms_bmp_n = 1; 1258 rte_rwlock_write_lock(&priv->mr.rwlock); 1259 LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr); 1260 DEBUG("port %u MR CREATED (%p) for external memory %p:\n" 1261 " [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 1262 " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", 1263 dev->data->port_id, (void *)mr, (void *)addr, 1264 addr, addr + len, rte_cpu_to_be_32(mr->ibv_mr->lkey), 1265 mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); 1266 /* Insert to the global cache table. */ 1267 mr_insert_dev_cache(dev, mr); 1268 rte_rwlock_write_unlock(&priv->mr.rwlock); 1269 /* Insert to the local cache table */ 1270 mlx4_mr_addr2mr_bh(dev, mr_ctrl, addr); 1271 } 1272 1273 /** 1274 * Register MR for entire memory chunks in a Mempool having externally allocated 1275 * memory and fill in local cache. 1276 * 1277 * @param dev 1278 * Pointer to Ethernet device. 1279 * @param mr_ctrl 1280 * Pointer to per-queue MR control structure. 1281 * @param mp 1282 * Pointer to registering Mempool. 1283 * 1284 * @return 1285 * 0 on success, -1 on failure. 1286 */ 1287 static uint32_t 1288 mlx4_mr_update_ext_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl, 1289 struct rte_mempool *mp) 1290 { 1291 struct mr_update_mp_data data = { 1292 .dev = dev, 1293 .mr_ctrl = mr_ctrl, 1294 .ret = 0, 1295 }; 1296 1297 rte_mempool_mem_iter(mp, mlx4_mr_update_ext_mp_cb, &data); 1298 return data.ret; 1299 } 1300 1301 /** 1302 * Register MR entire memory chunks in a Mempool having externally allocated 1303 * memory and search LKey of the address to return. 1304 * 1305 * @param dev 1306 * Pointer to Ethernet device. 1307 * @param addr 1308 * Search key. 1309 * @param mp 1310 * Pointer to registering Mempool where addr belongs. 1311 * 1312 * @return 1313 * LKey for address on success, UINT32_MAX on failure. 1314 */ 1315 uint32_t 1316 mlx4_tx_update_ext_mp(struct txq *txq, uintptr_t addr, struct rte_mempool *mp) 1317 { 1318 struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl; 1319 struct mlx4_priv *priv = txq->priv; 1320 1321 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 1322 WARN("port %u using address (%p) from unregistered mempool" 1323 " having externally allocated memory" 1324 " in secondary process, please create mempool" 1325 " prior to rte_eth_dev_start()", 1326 PORT_ID(priv), (void *)addr); 1327 return UINT32_MAX; 1328 } 1329 mlx4_mr_update_ext_mp(ETH_DEV(priv), mr_ctrl, mp); 1330 return mlx4_tx_addr2mr_bh(txq, addr); 1331 } 1332 1333 /* Called during rte_mempool_mem_iter() by mlx4_mr_update_mp(). */ 1334 static void 1335 mlx4_mr_update_mp_cb(struct rte_mempool *mp __rte_unused, void *opaque, 1336 struct rte_mempool_memhdr *memhdr, 1337 unsigned mem_idx __rte_unused) 1338 { 1339 struct mr_update_mp_data *data = opaque; 1340 uint32_t lkey; 1341 1342 /* Stop iteration if failed in the previous walk. */ 1343 if (data->ret < 0) 1344 return; 1345 /* Register address of the chunk and update local caches. */ 1346 lkey = mlx4_mr_addr2mr_bh(data->dev, data->mr_ctrl, 1347 (uintptr_t)memhdr->addr); 1348 if (lkey == UINT32_MAX) 1349 data->ret = -1; 1350 } 1351 1352 /** 1353 * Register entire memory chunks in a Mempool. 1354 * 1355 * @param dev 1356 * Pointer to Ethernet device. 1357 * @param mr_ctrl 1358 * Pointer to per-queue MR control structure. 1359 * @param mp 1360 * Pointer to registering Mempool. 1361 * 1362 * @return 1363 * 0 on success, -1 on failure. 1364 */ 1365 int 1366 mlx4_mr_update_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl, 1367 struct rte_mempool *mp) 1368 { 1369 struct mr_update_mp_data data = { 1370 .dev = dev, 1371 .mr_ctrl = mr_ctrl, 1372 .ret = 0, 1373 }; 1374 1375 rte_mempool_mem_iter(mp, mlx4_mr_update_mp_cb, &data); 1376 if (data.ret < 0 && rte_errno == ENXIO) { 1377 /* Mempool may have externally allocated memory. */ 1378 return mlx4_mr_update_ext_mp(dev, mr_ctrl, mp); 1379 } 1380 return data.ret; 1381 } 1382 1383 #ifdef RTE_LIBRTE_MLX4_DEBUG 1384 /** 1385 * Dump all the created MRs and the global cache entries. 1386 * 1387 * @param dev 1388 * Pointer to Ethernet device. 1389 */ 1390 void 1391 mlx4_mr_dump_dev(struct rte_eth_dev *dev) 1392 { 1393 struct mlx4_priv *priv = dev->data->dev_private; 1394 struct mlx4_mr *mr; 1395 int mr_n = 0; 1396 int chunk_n = 0; 1397 1398 rte_rwlock_read_lock(&priv->mr.rwlock); 1399 /* Iterate all the existing MRs. */ 1400 LIST_FOREACH(mr, &priv->mr.mr_list, mr) { 1401 unsigned int n; 1402 1403 DEBUG("port %u MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u", 1404 dev->data->port_id, mr_n++, 1405 rte_cpu_to_be_32(mr->ibv_mr->lkey), 1406 mr->ms_n, mr->ms_bmp_n); 1407 if (mr->ms_n == 0) 1408 continue; 1409 for (n = 0; n < mr->ms_bmp_n; ) { 1410 struct mlx4_mr_cache ret; 1411 1412 memset(&ret, 0, sizeof(ret)); 1413 n = mr_find_next_chunk(mr, &ret, n); 1414 if (!ret.end) 1415 break; 1416 DEBUG(" chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")", 1417 chunk_n++, ret.start, ret.end); 1418 } 1419 } 1420 DEBUG("port %u dumping global cache", dev->data->port_id); 1421 mlx4_mr_btree_dump(&priv->mr.cache); 1422 rte_rwlock_read_unlock(&priv->mr.rwlock); 1423 } 1424 #endif 1425 1426 /** 1427 * Release all the created MRs and resources. Remove device from memory callback 1428 * list. 1429 * 1430 * @param dev 1431 * Pointer to Ethernet device. 1432 */ 1433 void 1434 mlx4_mr_release(struct rte_eth_dev *dev) 1435 { 1436 struct mlx4_priv *priv = dev->data->dev_private; 1437 struct mlx4_mr *mr_next; 1438 1439 /* Remove from memory callback device list. */ 1440 rte_rwlock_write_lock(&mlx4_shared_data->mem_event_rwlock); 1441 LIST_REMOVE(priv, mem_event_cb); 1442 rte_rwlock_write_unlock(&mlx4_shared_data->mem_event_rwlock); 1443 #ifdef RTE_LIBRTE_MLX4_DEBUG 1444 mlx4_mr_dump_dev(dev); 1445 #endif 1446 rte_rwlock_write_lock(&priv->mr.rwlock); 1447 /* Detach from MR list and move to free list. */ 1448 mr_next = LIST_FIRST(&priv->mr.mr_list); 1449 while (mr_next != NULL) { 1450 struct mlx4_mr *mr = mr_next; 1451 1452 mr_next = LIST_NEXT(mr, mr); 1453 LIST_REMOVE(mr, mr); 1454 LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr); 1455 } 1456 LIST_INIT(&priv->mr.mr_list); 1457 /* Free global cache. */ 1458 mlx4_mr_btree_free(&priv->mr.cache); 1459 rte_rwlock_write_unlock(&priv->mr.rwlock); 1460 /* Free all remaining MRs. */ 1461 mlx4_mr_garbage_collect(dev); 1462 } 1463