xref: /dpdk/drivers/net/mlx4/mlx4_mr.c (revision 1af8b0b2747fe6c6267fa7bedb602e569742362e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017 6WIND S.A.
3  * Copyright 2017 Mellanox Technologies, Ltd
4  */
5 
6 /**
7  * @file
8  * Memory management functions for mlx4 driver.
9  */
10 
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <stddef.h>
14 #include <stdint.h>
15 #include <string.h>
16 
17 /* Verbs headers do not support -pedantic. */
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic ignored "-Wpedantic"
20 #endif
21 #include <infiniband/verbs.h>
22 #ifdef PEDANTIC
23 #pragma GCC diagnostic error "-Wpedantic"
24 #endif
25 
26 #include <rte_branch_prediction.h>
27 #include <rte_common.h>
28 #include <rte_eal_memconfig.h>
29 #include <rte_errno.h>
30 #include <rte_malloc.h>
31 #include <rte_memory.h>
32 #include <rte_mempool.h>
33 #include <rte_rwlock.h>
34 
35 #include "mlx4_glue.h"
36 #include "mlx4_mr.h"
37 #include "mlx4_rxtx.h"
38 #include "mlx4_utils.h"
39 
40 struct mr_find_contig_memsegs_data {
41 	uintptr_t addr;
42 	uintptr_t start;
43 	uintptr_t end;
44 	const struct rte_memseg_list *msl;
45 };
46 
47 struct mr_update_mp_data {
48 	struct rte_eth_dev *dev;
49 	struct mlx4_mr_ctrl *mr_ctrl;
50 	int ret;
51 };
52 
53 /**
54  * Expand B-tree table to a given size. Can't be called with holding
55  * memory_hotplug_lock or priv->mr.rwlock due to rte_realloc().
56  *
57  * @param bt
58  *   Pointer to B-tree structure.
59  * @param n
60  *   Number of entries for expansion.
61  *
62  * @return
63  *   0 on success, -1 on failure.
64  */
65 static int
66 mr_btree_expand(struct mlx4_mr_btree *bt, int n)
67 {
68 	void *mem;
69 	int ret = 0;
70 
71 	if (n <= bt->size)
72 		return ret;
73 	/*
74 	 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
75 	 * used inside if there's no room to expand. Because this is a quite
76 	 * rare case and a part of very slow path, it is very acceptable.
77 	 * Initially cache_bh[] will be given practically enough space and once
78 	 * it is expanded, expansion wouldn't be needed again ever.
79 	 */
80 	mem = rte_realloc(bt->table, n * sizeof(struct mlx4_mr_cache), 0);
81 	if (mem == NULL) {
82 		/* Not an error, B-tree search will be skipped. */
83 		WARN("failed to expand MR B-tree (%p) table", (void *)bt);
84 		ret = -1;
85 	} else {
86 		DEBUG("expanded MR B-tree table (size=%u)", n);
87 		bt->table = mem;
88 		bt->size = n;
89 	}
90 	return ret;
91 }
92 
93 /**
94  * Look up LKey from given B-tree lookup table, store the last index and return
95  * searched LKey.
96  *
97  * @param bt
98  *   Pointer to B-tree structure.
99  * @param[out] idx
100  *   Pointer to index. Even on search failure, returns index where it stops
101  *   searching so that index can be used when inserting a new entry.
102  * @param addr
103  *   Search key.
104  *
105  * @return
106  *   Searched LKey on success, UINT32_MAX on no match.
107  */
108 static uint32_t
109 mr_btree_lookup(struct mlx4_mr_btree *bt, uint16_t *idx, uintptr_t addr)
110 {
111 	struct mlx4_mr_cache *lkp_tbl;
112 	uint16_t n;
113 	uint16_t base = 0;
114 
115 	MLX4_ASSERT(bt != NULL);
116 	lkp_tbl = *bt->table;
117 	n = bt->len;
118 	/* First entry must be NULL for comparison. */
119 	MLX4_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 &&
120 				    lkp_tbl[0].lkey == UINT32_MAX));
121 	/* Binary search. */
122 	do {
123 		register uint16_t delta = n >> 1;
124 
125 		if (addr < lkp_tbl[base + delta].start) {
126 			n = delta;
127 		} else {
128 			base += delta;
129 			n -= delta;
130 		}
131 	} while (n > 1);
132 	MLX4_ASSERT(addr >= lkp_tbl[base].start);
133 	*idx = base;
134 	if (addr < lkp_tbl[base].end)
135 		return lkp_tbl[base].lkey;
136 	/* Not found. */
137 	return UINT32_MAX;
138 }
139 
140 /**
141  * Insert an entry to B-tree lookup table.
142  *
143  * @param bt
144  *   Pointer to B-tree structure.
145  * @param entry
146  *   Pointer to new entry to insert.
147  *
148  * @return
149  *   0 on success, -1 on failure.
150  */
151 static int
152 mr_btree_insert(struct mlx4_mr_btree *bt, struct mlx4_mr_cache *entry)
153 {
154 	struct mlx4_mr_cache *lkp_tbl;
155 	uint16_t idx = 0;
156 	size_t shift;
157 
158 	MLX4_ASSERT(bt != NULL);
159 	MLX4_ASSERT(bt->len <= bt->size);
160 	MLX4_ASSERT(bt->len > 0);
161 	lkp_tbl = *bt->table;
162 	/* Find out the slot for insertion. */
163 	if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
164 		DEBUG("abort insertion to B-tree(%p): already exist at"
165 		      " idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
166 		      (void *)bt, idx, entry->start, entry->end, entry->lkey);
167 		/* Already exist, return. */
168 		return 0;
169 	}
170 	/* If table is full, return error. */
171 	if (unlikely(bt->len == bt->size)) {
172 		bt->overflow = 1;
173 		return -1;
174 	}
175 	/* Insert entry. */
176 	++idx;
177 	shift = (bt->len - idx) * sizeof(struct mlx4_mr_cache);
178 	if (shift)
179 		memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
180 	lkp_tbl[idx] = *entry;
181 	bt->len++;
182 	DEBUG("inserted B-tree(%p)[%u],"
183 	      " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
184 	      (void *)bt, idx, entry->start, entry->end, entry->lkey);
185 	return 0;
186 }
187 
188 /**
189  * Initialize B-tree and allocate memory for lookup table.
190  *
191  * @param bt
192  *   Pointer to B-tree structure.
193  * @param n
194  *   Number of entries to allocate.
195  * @param socket
196  *   NUMA socket on which memory must be allocated.
197  *
198  * @return
199  *   0 on success, a negative errno value otherwise and rte_errno is set.
200  */
201 int
202 mlx4_mr_btree_init(struct mlx4_mr_btree *bt, int n, int socket)
203 {
204 	if (bt == NULL) {
205 		rte_errno = EINVAL;
206 		return -rte_errno;
207 	}
208 	memset(bt, 0, sizeof(*bt));
209 	bt->table = rte_calloc_socket("B-tree table",
210 				      n, sizeof(struct mlx4_mr_cache),
211 				      0, socket);
212 	if (bt->table == NULL) {
213 		rte_errno = ENOMEM;
214 		ERROR("failed to allocate memory for btree cache on socket %d",
215 		      socket);
216 		return -rte_errno;
217 	}
218 	bt->size = n;
219 	/* First entry must be NULL for binary search. */
220 	(*bt->table)[bt->len++] = (struct mlx4_mr_cache) {
221 		.lkey = UINT32_MAX,
222 	};
223 	DEBUG("initialized B-tree %p with table %p",
224 	      (void *)bt, (void *)bt->table);
225 	return 0;
226 }
227 
228 /**
229  * Free B-tree resources.
230  *
231  * @param bt
232  *   Pointer to B-tree structure.
233  */
234 void
235 mlx4_mr_btree_free(struct mlx4_mr_btree *bt)
236 {
237 	if (bt == NULL)
238 		return;
239 	DEBUG("freeing B-tree %p with table %p", (void *)bt, (void *)bt->table);
240 	rte_free(bt->table);
241 	memset(bt, 0, sizeof(*bt));
242 }
243 
244 #ifdef RTE_LIBRTE_MLX4_DEBUG
245 /**
246  * Dump all the entries in a B-tree
247  *
248  * @param bt
249  *   Pointer to B-tree structure.
250  */
251 void
252 mlx4_mr_btree_dump(struct mlx4_mr_btree *bt)
253 {
254 	int idx;
255 	struct mlx4_mr_cache *lkp_tbl;
256 
257 	if (bt == NULL)
258 		return;
259 	lkp_tbl = *bt->table;
260 	for (idx = 0; idx < bt->len; ++idx) {
261 		struct mlx4_mr_cache *entry = &lkp_tbl[idx];
262 
263 		DEBUG("B-tree(%p)[%u],"
264 		      " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
265 		      (void *)bt, idx, entry->start, entry->end, entry->lkey);
266 	}
267 }
268 #endif
269 
270 /**
271  * Find virtually contiguous memory chunk in a given MR.
272  *
273  * @param dev
274  *   Pointer to MR structure.
275  * @param[out] entry
276  *   Pointer to returning MR cache entry. If not found, this will not be
277  *   updated.
278  * @param start_idx
279  *   Start index of the memseg bitmap.
280  *
281  * @return
282  *   Next index to go on lookup.
283  */
284 static int
285 mr_find_next_chunk(struct mlx4_mr *mr, struct mlx4_mr_cache *entry,
286 		   int base_idx)
287 {
288 	uintptr_t start = 0;
289 	uintptr_t end = 0;
290 	uint32_t idx = 0;
291 
292 	/* MR for external memory doesn't have memseg list. */
293 	if (mr->msl == NULL) {
294 		struct ibv_mr *ibv_mr = mr->ibv_mr;
295 
296 		MLX4_ASSERT(mr->ms_bmp_n == 1);
297 		MLX4_ASSERT(mr->ms_n == 1);
298 		MLX4_ASSERT(base_idx == 0);
299 		/*
300 		 * Can't search it from memseg list but get it directly from
301 		 * verbs MR as there's only one chunk.
302 		 */
303 		entry->start = (uintptr_t)ibv_mr->addr;
304 		entry->end = (uintptr_t)ibv_mr->addr + mr->ibv_mr->length;
305 		entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey);
306 		/* Returning 1 ends iteration. */
307 		return 1;
308 	}
309 	for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
310 		if (rte_bitmap_get(mr->ms_bmp, idx)) {
311 			const struct rte_memseg_list *msl;
312 			const struct rte_memseg *ms;
313 
314 			msl = mr->msl;
315 			ms = rte_fbarray_get(&msl->memseg_arr,
316 					     mr->ms_base_idx + idx);
317 			MLX4_ASSERT(msl->page_sz == ms->hugepage_sz);
318 			if (!start)
319 				start = ms->addr_64;
320 			end = ms->addr_64 + ms->hugepage_sz;
321 		} else if (start) {
322 			/* Passed the end of a fragment. */
323 			break;
324 		}
325 	}
326 	if (start) {
327 		/* Found one chunk. */
328 		entry->start = start;
329 		entry->end = end;
330 		entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey);
331 	}
332 	return idx;
333 }
334 
335 /**
336  * Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
337  * Then, this entry will have to be searched by mr_lookup_dev_list() in
338  * mlx4_mr_create() on miss.
339  *
340  * @param dev
341  *   Pointer to Ethernet device.
342  * @param mr
343  *   Pointer to MR to insert.
344  *
345  * @return
346  *   0 on success, -1 on failure.
347  */
348 static int
349 mr_insert_dev_cache(struct rte_eth_dev *dev, struct mlx4_mr *mr)
350 {
351 	struct mlx4_priv *priv = dev->data->dev_private;
352 	unsigned int n;
353 
354 	DEBUG("port %u inserting MR(%p) to global cache",
355 	      dev->data->port_id, (void *)mr);
356 	for (n = 0; n < mr->ms_bmp_n; ) {
357 		struct mlx4_mr_cache entry;
358 
359 		memset(&entry, 0, sizeof(entry));
360 		/* Find a contiguous chunk and advance the index. */
361 		n = mr_find_next_chunk(mr, &entry, n);
362 		if (!entry.end)
363 			break;
364 		if (mr_btree_insert(&priv->mr.cache, &entry) < 0) {
365 			/*
366 			 * Overflowed, but the global table cannot be expanded
367 			 * because of deadlock.
368 			 */
369 			return -1;
370 		}
371 	}
372 	return 0;
373 }
374 
375 /**
376  * Look up address in the original global MR list.
377  *
378  * @param dev
379  *   Pointer to Ethernet device.
380  * @param[out] entry
381  *   Pointer to returning MR cache entry. If no match, this will not be updated.
382  * @param addr
383  *   Search key.
384  *
385  * @return
386  *   Found MR on match, NULL otherwise.
387  */
388 static struct mlx4_mr *
389 mr_lookup_dev_list(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
390 		   uintptr_t addr)
391 {
392 	struct mlx4_priv *priv = dev->data->dev_private;
393 	struct mlx4_mr *mr;
394 
395 	/* Iterate all the existing MRs. */
396 	LIST_FOREACH(mr, &priv->mr.mr_list, mr) {
397 		unsigned int n;
398 
399 		if (mr->ms_n == 0)
400 			continue;
401 		for (n = 0; n < mr->ms_bmp_n; ) {
402 			struct mlx4_mr_cache ret;
403 
404 			memset(&ret, 0, sizeof(ret));
405 			n = mr_find_next_chunk(mr, &ret, n);
406 			if (addr >= ret.start && addr < ret.end) {
407 				/* Found. */
408 				*entry = ret;
409 				return mr;
410 			}
411 		}
412 	}
413 	return NULL;
414 }
415 
416 /**
417  * Look up address on device.
418  *
419  * @param dev
420  *   Pointer to Ethernet device.
421  * @param[out] entry
422  *   Pointer to returning MR cache entry. If no match, this will not be updated.
423  * @param addr
424  *   Search key.
425  *
426  * @return
427  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
428  */
429 static uint32_t
430 mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
431 	      uintptr_t addr)
432 {
433 	struct mlx4_priv *priv = dev->data->dev_private;
434 	uint16_t idx;
435 	uint32_t lkey = UINT32_MAX;
436 	struct mlx4_mr *mr;
437 
438 	/*
439 	 * If the global cache has overflowed since it failed to expand the
440 	 * B-tree table, it can't have all the existing MRs. Then, the address
441 	 * has to be searched by traversing the original MR list instead, which
442 	 * is very slow path. Otherwise, the global cache is all inclusive.
443 	 */
444 	if (!unlikely(priv->mr.cache.overflow)) {
445 		lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr);
446 		if (lkey != UINT32_MAX)
447 			*entry = (*priv->mr.cache.table)[idx];
448 	} else {
449 		/* Falling back to the slowest path. */
450 		mr = mr_lookup_dev_list(dev, entry, addr);
451 		if (mr != NULL)
452 			lkey = entry->lkey;
453 	}
454 	MLX4_ASSERT(lkey == UINT32_MAX || (addr >= entry->start &&
455 					   addr < entry->end));
456 	return lkey;
457 }
458 
459 /**
460  * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
461  * can raise memory free event and the callback function will spin on the lock.
462  *
463  * @param mr
464  *   Pointer to MR to free.
465  */
466 static void
467 mr_free(struct mlx4_mr *mr)
468 {
469 	if (mr == NULL)
470 		return;
471 	DEBUG("freeing MR(%p):", (void *)mr);
472 	if (mr->ibv_mr != NULL)
473 		claim_zero(mlx4_glue->dereg_mr(mr->ibv_mr));
474 	rte_bitmap_free(mr->ms_bmp);
475 	rte_free(mr);
476 }
477 
478 /**
479  * Release resources of detached MR having no online entry.
480  *
481  * @param dev
482  *   Pointer to Ethernet device.
483  */
484 static void
485 mlx4_mr_garbage_collect(struct rte_eth_dev *dev)
486 {
487 	struct mlx4_priv *priv = dev->data->dev_private;
488 	struct mlx4_mr *mr_next;
489 	struct mlx4_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
490 
491 	/* Must be called from the primary process. */
492 	MLX4_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
493 	/*
494 	 * MR can't be freed with holding the lock because rte_free() could call
495 	 * memory free callback function. This will be a deadlock situation.
496 	 */
497 	rte_rwlock_write_lock(&priv->mr.rwlock);
498 	/* Detach the whole free list and release it after unlocking. */
499 	free_list = priv->mr.mr_free_list;
500 	LIST_INIT(&priv->mr.mr_free_list);
501 	rte_rwlock_write_unlock(&priv->mr.rwlock);
502 	/* Release resources. */
503 	mr_next = LIST_FIRST(&free_list);
504 	while (mr_next != NULL) {
505 		struct mlx4_mr *mr = mr_next;
506 
507 		mr_next = LIST_NEXT(mr, mr);
508 		mr_free(mr);
509 	}
510 }
511 
512 /* Called during rte_memseg_contig_walk() by mlx4_mr_create(). */
513 static int
514 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
515 			  const struct rte_memseg *ms, size_t len, void *arg)
516 {
517 	struct mr_find_contig_memsegs_data *data = arg;
518 
519 	if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
520 		return 0;
521 	/* Found, save it and stop walking. */
522 	data->start = ms->addr_64;
523 	data->end = ms->addr_64 + len;
524 	data->msl = msl;
525 	return 1;
526 }
527 
528 /**
529  * Create a new global Memory Region (MR) for a missing virtual address.
530  * This API should be called on a secondary process, then a request is sent to
531  * the primary process in order to create a MR for the address. As the global MR
532  * list is on the shared memory, following LKey lookup should succeed unless the
533  * request fails.
534  *
535  * @param dev
536  *   Pointer to Ethernet device.
537  * @param[out] entry
538  *   Pointer to returning MR cache entry, found in the global cache or newly
539  *   created. If failed to create one, this will not be updated.
540  * @param addr
541  *   Target virtual address to register.
542  *
543  * @return
544  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
545  */
546 static uint32_t
547 mlx4_mr_create_secondary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
548 			 uintptr_t addr)
549 {
550 	struct mlx4_priv *priv = dev->data->dev_private;
551 	int ret;
552 
553 	DEBUG("port %u requesting MR creation for address (%p)",
554 	      dev->data->port_id, (void *)addr);
555 	ret = mlx4_mp_req_mr_create(dev, addr);
556 	if (ret) {
557 		DEBUG("port %u fail to request MR creation for address (%p)",
558 		      dev->data->port_id, (void *)addr);
559 		return UINT32_MAX;
560 	}
561 	rte_rwlock_read_lock(&priv->mr.rwlock);
562 	/* Fill in output data. */
563 	mr_lookup_dev(dev, entry, addr);
564 	/* Lookup can't fail. */
565 	MLX4_ASSERT(entry->lkey != UINT32_MAX);
566 	rte_rwlock_read_unlock(&priv->mr.rwlock);
567 	DEBUG("port %u MR CREATED by primary process for %p:",
568 	      dev->data->port_id, (void *)addr);
569 	DEBUG("  [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
570 	      entry->start, entry->end, entry->lkey);
571 	return entry->lkey;
572 }
573 
574 /**
575  * Create a new global Memory Region (MR) for a missing virtual address.
576  * Register entire virtually contiguous memory chunk around the address.
577  * This must be called from the primary process.
578  *
579  * @param dev
580  *   Pointer to Ethernet device.
581  * @param[out] entry
582  *   Pointer to returning MR cache entry, found in the global cache or newly
583  *   created. If failed to create one, this will not be updated.
584  * @param addr
585  *   Target virtual address to register.
586  *
587  * @return
588  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
589  */
590 uint32_t
591 mlx4_mr_create_primary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
592 		       uintptr_t addr)
593 {
594 	struct mlx4_priv *priv = dev->data->dev_private;
595 	const struct rte_memseg_list *msl;
596 	const struct rte_memseg *ms;
597 	struct mlx4_mr *mr = NULL;
598 	size_t len;
599 	uint32_t ms_n;
600 	uint32_t bmp_size;
601 	void *bmp_mem;
602 	int ms_idx_shift = -1;
603 	unsigned int n;
604 	struct mr_find_contig_memsegs_data data = {
605 		.addr = addr,
606 	};
607 	struct mr_find_contig_memsegs_data data_re;
608 
609 	DEBUG("port %u creating a MR using address (%p)",
610 	      dev->data->port_id, (void *)addr);
611 	/*
612 	 * Release detached MRs if any. This can't be called with holding either
613 	 * memory_hotplug_lock or priv->mr.rwlock. MRs on the free list have
614 	 * been detached by the memory free event but it couldn't be released
615 	 * inside the callback due to deadlock. As a result, releasing resources
616 	 * is quite opportunistic.
617 	 */
618 	mlx4_mr_garbage_collect(dev);
619 	/*
620 	 * If enabled, find out a contiguous virtual address chunk in use, to
621 	 * which the given address belongs, in order to register maximum range.
622 	 * In the best case where mempools are not dynamically recreated and
623 	 * '--socket-mem' is specified as an EAL option, it is very likely to
624 	 * have only one MR(LKey) per a socket and per a hugepage-size even
625 	 * though the system memory is highly fragmented. As the whole memory
626 	 * chunk will be pinned by kernel, it can't be reused unless entire
627 	 * chunk is freed from EAL.
628 	 *
629 	 * If disabled, just register one memseg (page). Then, memory
630 	 * consumption will be minimized but it may drop performance if there
631 	 * are many MRs to lookup on the datapath.
632 	 */
633 	if (!priv->mr_ext_memseg_en) {
634 		data.msl = rte_mem_virt2memseg_list((void *)addr);
635 		data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
636 		data.end = data.start + data.msl->page_sz;
637 	} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
638 		WARN("port %u unable to find virtually contiguous"
639 		     " chunk for address (%p)."
640 		     " rte_memseg_contig_walk() failed.",
641 		     dev->data->port_id, (void *)addr);
642 		rte_errno = ENXIO;
643 		goto err_nolock;
644 	}
645 alloc_resources:
646 	/* Addresses must be page-aligned. */
647 	MLX4_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz));
648 	MLX4_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz));
649 	msl = data.msl;
650 	ms = rte_mem_virt2memseg((void *)data.start, msl);
651 	len = data.end - data.start;
652 	MLX4_ASSERT(msl->page_sz == ms->hugepage_sz);
653 	/* Number of memsegs in the range. */
654 	ms_n = len / msl->page_sz;
655 	DEBUG("port %u extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
656 	      " page_sz=0x%" PRIx64 ", ms_n=%u",
657 	      dev->data->port_id, (void *)addr,
658 	      data.start, data.end, msl->page_sz, ms_n);
659 	/* Size of memory for bitmap. */
660 	bmp_size = rte_bitmap_get_memory_footprint(ms_n);
661 	mr = rte_zmalloc_socket(NULL,
662 				RTE_ALIGN_CEIL(sizeof(*mr),
663 					       RTE_CACHE_LINE_SIZE) +
664 				bmp_size,
665 				RTE_CACHE_LINE_SIZE, msl->socket_id);
666 	if (mr == NULL) {
667 		WARN("port %u unable to allocate memory for a new MR of"
668 		     " address (%p).",
669 		     dev->data->port_id, (void *)addr);
670 		rte_errno = ENOMEM;
671 		goto err_nolock;
672 	}
673 	mr->msl = msl;
674 	/*
675 	 * Save the index of the first memseg and initialize memseg bitmap. To
676 	 * see if a memseg of ms_idx in the memseg-list is still valid, check:
677 	 *	rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
678 	 */
679 	mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
680 	bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
681 	mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
682 	if (mr->ms_bmp == NULL) {
683 		WARN("port %u unable to initialize bitmap for a new MR of"
684 		     " address (%p).",
685 		     dev->data->port_id, (void *)addr);
686 		rte_errno = EINVAL;
687 		goto err_nolock;
688 	}
689 	/*
690 	 * Should recheck whether the extended contiguous chunk is still valid.
691 	 * Because memory_hotplug_lock can't be held if there's any memory
692 	 * related calls in a critical path, resource allocation above can't be
693 	 * locked. If the memory has been changed at this point, try again with
694 	 * just single page. If not, go on with the big chunk atomically from
695 	 * here.
696 	 */
697 	rte_mcfg_mem_read_lock();
698 	data_re = data;
699 	if (len > msl->page_sz &&
700 	    !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
701 		WARN("port %u unable to find virtually contiguous"
702 		     " chunk for address (%p)."
703 		     " rte_memseg_contig_walk() failed.",
704 		     dev->data->port_id, (void *)addr);
705 		rte_errno = ENXIO;
706 		goto err_memlock;
707 	}
708 	if (data.start != data_re.start || data.end != data_re.end) {
709 		/*
710 		 * The extended contiguous chunk has been changed. Try again
711 		 * with single memseg instead.
712 		 */
713 		data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
714 		data.end = data.start + msl->page_sz;
715 		rte_mcfg_mem_read_unlock();
716 		mr_free(mr);
717 		goto alloc_resources;
718 	}
719 	MLX4_ASSERT(data.msl == data_re.msl);
720 	rte_rwlock_write_lock(&priv->mr.rwlock);
721 	/*
722 	 * Check the address is really missing. If other thread already created
723 	 * one or it is not found due to overflow, abort and return.
724 	 */
725 	if (mr_lookup_dev(dev, entry, addr) != UINT32_MAX) {
726 		/*
727 		 * Insert to the global cache table. It may fail due to
728 		 * low-on-memory. Then, this entry will have to be searched
729 		 * here again.
730 		 */
731 		mr_btree_insert(&priv->mr.cache, entry);
732 		DEBUG("port %u found MR for %p on final lookup, abort",
733 		      dev->data->port_id, (void *)addr);
734 		rte_rwlock_write_unlock(&priv->mr.rwlock);
735 		rte_mcfg_mem_read_unlock();
736 		/*
737 		 * Must be unlocked before calling rte_free() because
738 		 * mlx4_mr_mem_event_free_cb() can be called inside.
739 		 */
740 		mr_free(mr);
741 		return entry->lkey;
742 	}
743 	/*
744 	 * Trim start and end addresses for verbs MR. Set bits for registering
745 	 * memsegs but exclude already registered ones. Bitmap can be
746 	 * fragmented.
747 	 */
748 	for (n = 0; n < ms_n; ++n) {
749 		uintptr_t start;
750 		struct mlx4_mr_cache ret;
751 
752 		memset(&ret, 0, sizeof(ret));
753 		start = data_re.start + n * msl->page_sz;
754 		/* Exclude memsegs already registered by other MRs. */
755 		if (mr_lookup_dev(dev, &ret, start) == UINT32_MAX) {
756 			/*
757 			 * Start from the first unregistered memseg in the
758 			 * extended range.
759 			 */
760 			if (ms_idx_shift == -1) {
761 				mr->ms_base_idx += n;
762 				data.start = start;
763 				ms_idx_shift = n;
764 			}
765 			data.end = start + msl->page_sz;
766 			rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
767 			++mr->ms_n;
768 		}
769 	}
770 	len = data.end - data.start;
771 	mr->ms_bmp_n = len / msl->page_sz;
772 	MLX4_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n);
773 	/*
774 	 * Finally create a verbs MR for the memory chunk. ibv_reg_mr() can be
775 	 * called with holding the memory lock because it doesn't use
776 	 * mlx4_alloc_buf_extern() which eventually calls rte_malloc_socket()
777 	 * through mlx4_alloc_verbs_buf().
778 	 */
779 	mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)data.start, len,
780 				       IBV_ACCESS_LOCAL_WRITE);
781 	if (mr->ibv_mr == NULL) {
782 		WARN("port %u fail to create a verbs MR for address (%p)",
783 		     dev->data->port_id, (void *)addr);
784 		rte_errno = EINVAL;
785 		goto err_mrlock;
786 	}
787 	MLX4_ASSERT((uintptr_t)mr->ibv_mr->addr == data.start);
788 	MLX4_ASSERT(mr->ibv_mr->length == len);
789 	LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr);
790 	DEBUG("port %u MR CREATED (%p) for %p:",
791 	      dev->data->port_id, (void *)mr, (void *)addr);
792 	DEBUG("  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
793 	      " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
794 	      data.start, data.end, rte_cpu_to_be_32(mr->ibv_mr->lkey),
795 	      mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
796 	/* Insert to the global cache table. */
797 	mr_insert_dev_cache(dev, mr);
798 	/* Fill in output data. */
799 	mr_lookup_dev(dev, entry, addr);
800 	/* Lookup can't fail. */
801 	MLX4_ASSERT(entry->lkey != UINT32_MAX);
802 	rte_rwlock_write_unlock(&priv->mr.rwlock);
803 	rte_mcfg_mem_read_unlock();
804 	return entry->lkey;
805 err_mrlock:
806 	rte_rwlock_write_unlock(&priv->mr.rwlock);
807 err_memlock:
808 	rte_mcfg_mem_read_unlock();
809 err_nolock:
810 	/*
811 	 * In case of error, as this can be called in a datapath, a warning
812 	 * message per an error is preferable instead. Must be unlocked before
813 	 * calling rte_free() because mlx4_mr_mem_event_free_cb() can be called
814 	 * inside.
815 	 */
816 	mr_free(mr);
817 	return UINT32_MAX;
818 }
819 
820 /**
821  * Create a new global Memory Region (MR) for a missing virtual address.
822  * This can be called from primary and secondary process.
823  *
824  * @param dev
825  *   Pointer to Ethernet device.
826  * @param[out] entry
827  *   Pointer to returning MR cache entry, found in the global cache or newly
828  *   created. If failed to create one, this will not be updated.
829  * @param addr
830  *   Target virtual address to register.
831  *
832  * @return
833  *   Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
834  */
835 static uint32_t
836 mlx4_mr_create(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
837 	       uintptr_t addr)
838 {
839 	uint32_t ret = 0;
840 
841 	switch (rte_eal_process_type()) {
842 	case RTE_PROC_PRIMARY:
843 		ret = mlx4_mr_create_primary(dev, entry, addr);
844 		break;
845 	case RTE_PROC_SECONDARY:
846 		ret = mlx4_mr_create_secondary(dev, entry, addr);
847 		break;
848 	default:
849 		break;
850 	}
851 	return ret;
852 }
853 
854 /**
855  * Rebuild the global B-tree cache of device from the original MR list.
856  *
857  * @param dev
858  *   Pointer to Ethernet device.
859  */
860 static void
861 mr_rebuild_dev_cache(struct rte_eth_dev *dev)
862 {
863 	struct mlx4_priv *priv = dev->data->dev_private;
864 	struct mlx4_mr *mr;
865 
866 	DEBUG("port %u rebuild dev cache[]", dev->data->port_id);
867 	/* Flush cache to rebuild. */
868 	priv->mr.cache.len = 1;
869 	priv->mr.cache.overflow = 0;
870 	/* Iterate all the existing MRs. */
871 	LIST_FOREACH(mr, &priv->mr.mr_list, mr)
872 		if (mr_insert_dev_cache(dev, mr) < 0)
873 			return;
874 }
875 
876 /**
877  * Callback for memory free event. Iterate freed memsegs and check whether it
878  * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
879  * result, the MR would be fragmented. If it becomes empty, the MR will be freed
880  * later by mlx4_mr_garbage_collect().
881  *
882  * The global cache must be rebuilt if there's any change and this event has to
883  * be propagated to dataplane threads to flush the local caches.
884  *
885  * @param dev
886  *   Pointer to Ethernet device.
887  * @param addr
888  *   Address of freed memory.
889  * @param len
890  *   Size of freed memory.
891  */
892 static void
893 mlx4_mr_mem_event_free_cb(struct rte_eth_dev *dev, const void *addr, size_t len)
894 {
895 	struct mlx4_priv *priv = dev->data->dev_private;
896 	const struct rte_memseg_list *msl;
897 	struct mlx4_mr *mr;
898 	int ms_n;
899 	int i;
900 	int rebuild = 0;
901 
902 	DEBUG("port %u free callback: addr=%p, len=%zu",
903 	      dev->data->port_id, addr, len);
904 	msl = rte_mem_virt2memseg_list(addr);
905 	/* addr and len must be page-aligned. */
906 	MLX4_ASSERT((uintptr_t)addr ==
907 		    RTE_ALIGN((uintptr_t)addr, msl->page_sz));
908 	MLX4_ASSERT(len == RTE_ALIGN(len, msl->page_sz));
909 	ms_n = len / msl->page_sz;
910 	rte_rwlock_write_lock(&priv->mr.rwlock);
911 	/* Clear bits of freed memsegs from MR. */
912 	for (i = 0; i < ms_n; ++i) {
913 		const struct rte_memseg *ms;
914 		struct mlx4_mr_cache entry;
915 		uintptr_t start;
916 		int ms_idx;
917 		uint32_t pos;
918 
919 		/* Find MR having this memseg. */
920 		start = (uintptr_t)addr + i * msl->page_sz;
921 		mr = mr_lookup_dev_list(dev, &entry, start);
922 		if (mr == NULL)
923 			continue;
924 		MLX4_ASSERT(mr->msl); /* Can't be external memory. */
925 		ms = rte_mem_virt2memseg((void *)start, msl);
926 		MLX4_ASSERT(ms != NULL);
927 		MLX4_ASSERT(msl->page_sz == ms->hugepage_sz);
928 		ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
929 		pos = ms_idx - mr->ms_base_idx;
930 		MLX4_ASSERT(rte_bitmap_get(mr->ms_bmp, pos));
931 		MLX4_ASSERT(pos < mr->ms_bmp_n);
932 		DEBUG("port %u MR(%p): clear bitmap[%u] for addr %p",
933 		      dev->data->port_id, (void *)mr, pos, (void *)start);
934 		rte_bitmap_clear(mr->ms_bmp, pos);
935 		if (--mr->ms_n == 0) {
936 			LIST_REMOVE(mr, mr);
937 			LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr);
938 			DEBUG("port %u remove MR(%p) from list",
939 			      dev->data->port_id, (void *)mr);
940 		}
941 		/*
942 		 * MR is fragmented or will be freed. the global cache must be
943 		 * rebuilt.
944 		 */
945 		rebuild = 1;
946 	}
947 	if (rebuild) {
948 		mr_rebuild_dev_cache(dev);
949 		/*
950 		 * No explicit wmb is needed after updating dev_gen due to
951 		 * store-release ordering in unlock that provides the
952 		 * implicit barrier at the software visible level.
953 		 */
954 		++priv->mr.dev_gen;
955 		DEBUG("broadcasting local cache flush, gen=%d",
956 		      priv->mr.dev_gen);
957 	}
958 	rte_rwlock_write_unlock(&priv->mr.rwlock);
959 #ifdef RTE_LIBRTE_MLX4_DEBUG
960 	if (rebuild)
961 		mlx4_mr_dump_dev(dev);
962 #endif
963 }
964 
965 /**
966  * Callback for memory event.
967  *
968  * @param event_type
969  *   Memory event type.
970  * @param addr
971  *   Address of memory.
972  * @param len
973  *   Size of memory.
974  */
975 void
976 mlx4_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr,
977 		     size_t len, void *arg __rte_unused)
978 {
979 	struct mlx4_priv *priv;
980 	struct mlx4_dev_list *dev_list = &mlx4_shared_data->mem_event_cb_list;
981 
982 	/* Must be called from the primary process. */
983 	MLX4_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
984 	switch (event_type) {
985 	case RTE_MEM_EVENT_FREE:
986 		rte_rwlock_read_lock(&mlx4_shared_data->mem_event_rwlock);
987 		/* Iterate all the existing mlx4 devices. */
988 		LIST_FOREACH(priv, dev_list, mem_event_cb)
989 			mlx4_mr_mem_event_free_cb(ETH_DEV(priv), addr, len);
990 		rte_rwlock_read_unlock(&mlx4_shared_data->mem_event_rwlock);
991 		break;
992 	case RTE_MEM_EVENT_ALLOC:
993 	default:
994 		break;
995 	}
996 }
997 
998 /**
999  * Look up address in the global MR cache table. If not found, create a new MR.
1000  * Insert the found/created entry to local bottom-half cache table.
1001  *
1002  * @param dev
1003  *   Pointer to Ethernet device.
1004  * @param mr_ctrl
1005  *   Pointer to per-queue MR control structure.
1006  * @param[out] entry
1007  *   Pointer to returning MR cache entry, found in the global cache or newly
1008  *   created. If failed to create one, this is not written.
1009  * @param addr
1010  *   Search key.
1011  *
1012  * @return
1013  *   Searched LKey on success, UINT32_MAX on no match.
1014  */
1015 static uint32_t
1016 mlx4_mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
1017 		   struct mlx4_mr_cache *entry, uintptr_t addr)
1018 {
1019 	struct mlx4_priv *priv = dev->data->dev_private;
1020 	struct mlx4_mr_btree *bt = &mr_ctrl->cache_bh;
1021 	uint16_t idx;
1022 	uint32_t lkey;
1023 
1024 	/* If local cache table is full, try to double it. */
1025 	if (unlikely(bt->len == bt->size))
1026 		mr_btree_expand(bt, bt->size << 1);
1027 	/* Look up in the global cache. */
1028 	rte_rwlock_read_lock(&priv->mr.rwlock);
1029 	lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr);
1030 	if (lkey != UINT32_MAX) {
1031 		/* Found. */
1032 		*entry = (*priv->mr.cache.table)[idx];
1033 		rte_rwlock_read_unlock(&priv->mr.rwlock);
1034 		/*
1035 		 * Update local cache. Even if it fails, return the found entry
1036 		 * to update top-half cache. Next time, this entry will be found
1037 		 * in the global cache.
1038 		 */
1039 		mr_btree_insert(bt, entry);
1040 		return lkey;
1041 	}
1042 	rte_rwlock_read_unlock(&priv->mr.rwlock);
1043 	/* First time to see the address? Create a new MR. */
1044 	lkey = mlx4_mr_create(dev, entry, addr);
1045 	/*
1046 	 * Update the local cache if successfully created a new global MR. Even
1047 	 * if failed to create one, there's no action to take in this datapath
1048 	 * code. As returning LKey is invalid, this will eventually make HW
1049 	 * fail.
1050 	 */
1051 	if (lkey != UINT32_MAX)
1052 		mr_btree_insert(bt, entry);
1053 	return lkey;
1054 }
1055 
1056 /**
1057  * Bottom-half of LKey search on datapath. Firstly search in cache_bh[] and if
1058  * misses, search in the global MR cache table and update the new entry to
1059  * per-queue local caches.
1060  *
1061  * @param dev
1062  *   Pointer to Ethernet device.
1063  * @param mr_ctrl
1064  *   Pointer to per-queue MR control structure.
1065  * @param addr
1066  *   Search key.
1067  *
1068  * @return
1069  *   Searched LKey on success, UINT32_MAX on no match.
1070  */
1071 static uint32_t
1072 mlx4_mr_addr2mr_bh(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
1073 		   uintptr_t addr)
1074 {
1075 	uint32_t lkey;
1076 	uint16_t bh_idx = 0;
1077 	/* Victim in top-half cache to replace with new entry. */
1078 	struct mlx4_mr_cache *repl = &mr_ctrl->cache[mr_ctrl->head];
1079 
1080 	/* Binary-search MR translation table. */
1081 	lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
1082 	/* Update top-half cache. */
1083 	if (likely(lkey != UINT32_MAX)) {
1084 		*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
1085 	} else {
1086 		/*
1087 		 * If missed in local lookup table, search in the global cache
1088 		 * and local cache_bh[] will be updated inside if possible.
1089 		 * Top-half cache entry will also be updated.
1090 		 */
1091 		lkey = mlx4_mr_lookup_dev(dev, mr_ctrl, repl, addr);
1092 		if (unlikely(lkey == UINT32_MAX))
1093 			return UINT32_MAX;
1094 	}
1095 	/* Update the most recently used entry. */
1096 	mr_ctrl->mru = mr_ctrl->head;
1097 	/* Point to the next victim, the oldest. */
1098 	mr_ctrl->head = (mr_ctrl->head + 1) % MLX4_MR_CACHE_N;
1099 	return lkey;
1100 }
1101 
1102 /**
1103  * Bottom-half of LKey search on Rx.
1104  *
1105  * @param rxq
1106  *   Pointer to Rx queue structure.
1107  * @param addr
1108  *   Search key.
1109  *
1110  * @return
1111  *   Searched LKey on success, UINT32_MAX on no match.
1112  */
1113 uint32_t
1114 mlx4_rx_addr2mr_bh(struct rxq *rxq, uintptr_t addr)
1115 {
1116 	struct mlx4_mr_ctrl *mr_ctrl = &rxq->mr_ctrl;
1117 	struct mlx4_priv *priv = rxq->priv;
1118 
1119 	return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr);
1120 }
1121 
1122 /**
1123  * Bottom-half of LKey search on Tx.
1124  *
1125  * @param txq
1126  *   Pointer to Tx queue structure.
1127  * @param addr
1128  *   Search key.
1129  *
1130  * @return
1131  *   Searched LKey on success, UINT32_MAX on no match.
1132  */
1133 static uint32_t
1134 mlx4_tx_addr2mr_bh(struct txq *txq, uintptr_t addr)
1135 {
1136 	struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
1137 	struct mlx4_priv *priv = txq->priv;
1138 
1139 	return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr);
1140 }
1141 
1142 /**
1143  * Bottom-half of LKey search on Tx. If it can't be searched in the memseg
1144  * list, register the mempool of the mbuf as externally allocated memory.
1145  *
1146  * @param txq
1147  *   Pointer to Tx queue structure.
1148  * @param mb
1149  *   Pointer to mbuf.
1150  *
1151  * @return
1152  *   Searched LKey on success, UINT32_MAX on no match.
1153  */
1154 uint32_t
1155 mlx4_tx_mb2mr_bh(struct txq *txq, struct rte_mbuf *mb)
1156 {
1157 	uintptr_t addr = (uintptr_t)mb->buf_addr;
1158 	uint32_t lkey;
1159 
1160 	lkey = mlx4_tx_addr2mr_bh(txq, addr);
1161 	if (lkey == UINT32_MAX && rte_errno == ENXIO) {
1162 		/* Mempool may have externally allocated memory. */
1163 		return mlx4_tx_update_ext_mp(txq, addr, mlx4_mb2mp(mb));
1164 	}
1165 	return lkey;
1166 }
1167 
1168 /**
1169  * Flush all of the local cache entries.
1170  *
1171  * @param mr_ctrl
1172  *   Pointer to per-queue MR control structure.
1173  */
1174 void
1175 mlx4_mr_flush_local_cache(struct mlx4_mr_ctrl *mr_ctrl)
1176 {
1177 	/* Reset the most-recently-used index. */
1178 	mr_ctrl->mru = 0;
1179 	/* Reset the linear search array. */
1180 	mr_ctrl->head = 0;
1181 	memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
1182 	/* Reset the B-tree table. */
1183 	mr_ctrl->cache_bh.len = 1;
1184 	mr_ctrl->cache_bh.overflow = 0;
1185 	/* Update the generation number. */
1186 	mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
1187 	DEBUG("mr_ctrl(%p): flushed, cur_gen=%d",
1188 	      (void *)mr_ctrl, mr_ctrl->cur_gen);
1189 }
1190 
1191 /**
1192  * Called during rte_mempool_mem_iter() by mlx4_mr_update_ext_mp().
1193  *
1194  * Externally allocated chunk is registered and a MR is created for the chunk.
1195  * The MR object is added to the global list. If memseg list of a MR object
1196  * (mr->msl) is null, the MR object can be regarded as externally allocated
1197  * memory.
1198  *
1199  * Once external memory is registered, it should be static. If the memory is
1200  * freed and the virtual address range has different physical memory mapped
1201  * again, it may cause crash on device due to the wrong translation entry. PMD
1202  * can't track the free event of the external memory for now.
1203  */
1204 static void
1205 mlx4_mr_update_ext_mp_cb(struct rte_mempool *mp, void *opaque,
1206 			 struct rte_mempool_memhdr *memhdr,
1207 			 unsigned mem_idx __rte_unused)
1208 {
1209 	struct mr_update_mp_data *data = opaque;
1210 	struct rte_eth_dev *dev = data->dev;
1211 	struct mlx4_priv *priv = dev->data->dev_private;
1212 	struct mlx4_mr_ctrl *mr_ctrl = data->mr_ctrl;
1213 	struct mlx4_mr *mr = NULL;
1214 	uintptr_t addr = (uintptr_t)memhdr->addr;
1215 	size_t len = memhdr->len;
1216 	struct mlx4_mr_cache entry;
1217 	uint32_t lkey;
1218 
1219 	MLX4_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
1220 	/* If already registered, it should return. */
1221 	rte_rwlock_read_lock(&priv->mr.rwlock);
1222 	lkey = mr_lookup_dev(dev, &entry, addr);
1223 	rte_rwlock_read_unlock(&priv->mr.rwlock);
1224 	if (lkey != UINT32_MAX)
1225 		return;
1226 	mr = rte_zmalloc_socket(NULL,
1227 				RTE_ALIGN_CEIL(sizeof(*mr),
1228 					       RTE_CACHE_LINE_SIZE),
1229 				RTE_CACHE_LINE_SIZE, mp->socket_id);
1230 	if (mr == NULL) {
1231 		WARN("port %u unable to allocate memory for a new MR of"
1232 		     " mempool (%s).",
1233 		     dev->data->port_id, mp->name);
1234 		data->ret = -1;
1235 		return;
1236 	}
1237 	DEBUG("port %u register MR for chunk #%d of mempool (%s)",
1238 	      dev->data->port_id, mem_idx, mp->name);
1239 	mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)addr, len,
1240 				       IBV_ACCESS_LOCAL_WRITE);
1241 	if (mr->ibv_mr == NULL) {
1242 		WARN("port %u fail to create a verbs MR for address (%p)",
1243 		     dev->data->port_id, (void *)addr);
1244 		rte_free(mr);
1245 		data->ret = -1;
1246 		return;
1247 	}
1248 	mr->msl = NULL; /* Mark it is external memory. */
1249 	mr->ms_bmp = NULL;
1250 	mr->ms_n = 1;
1251 	mr->ms_bmp_n = 1;
1252 	rte_rwlock_write_lock(&priv->mr.rwlock);
1253 	LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr);
1254 	DEBUG("port %u MR CREATED (%p) for external memory %p:",
1255 	      dev->data->port_id, (void *)mr, (void *)addr);
1256 	DEBUG("  [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
1257 	      " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
1258 	      addr, addr + len, rte_cpu_to_be_32(mr->ibv_mr->lkey),
1259 	      mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
1260 	/* Insert to the global cache table. */
1261 	mr_insert_dev_cache(dev, mr);
1262 	rte_rwlock_write_unlock(&priv->mr.rwlock);
1263 	/* Insert to the local cache table */
1264 	mlx4_mr_addr2mr_bh(dev, mr_ctrl, addr);
1265 }
1266 
1267 /**
1268  * Register MR for entire memory chunks in a Mempool having externally allocated
1269  * memory and fill in local cache.
1270  *
1271  * @param dev
1272  *   Pointer to Ethernet device.
1273  * @param mr_ctrl
1274  *   Pointer to per-queue MR control structure.
1275  * @param mp
1276  *   Pointer to registering Mempool.
1277  *
1278  * @return
1279  *   0 on success, -1 on failure.
1280  */
1281 static uint32_t
1282 mlx4_mr_update_ext_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
1283 		      struct rte_mempool *mp)
1284 {
1285 	struct mr_update_mp_data data = {
1286 		.dev = dev,
1287 		.mr_ctrl = mr_ctrl,
1288 		.ret = 0,
1289 	};
1290 
1291 	rte_mempool_mem_iter(mp, mlx4_mr_update_ext_mp_cb, &data);
1292 	return data.ret;
1293 }
1294 
1295 /**
1296  * Register MR entire memory chunks in a Mempool having externally allocated
1297  * memory and search LKey of the address to return.
1298  *
1299  * @param dev
1300  *   Pointer to Ethernet device.
1301  * @param addr
1302  *   Search key.
1303  * @param mp
1304  *   Pointer to registering Mempool where addr belongs.
1305  *
1306  * @return
1307  *   LKey for address on success, UINT32_MAX on failure.
1308  */
1309 uint32_t
1310 mlx4_tx_update_ext_mp(struct txq *txq, uintptr_t addr, struct rte_mempool *mp)
1311 {
1312 	struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
1313 	struct mlx4_priv *priv = txq->priv;
1314 
1315 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1316 		WARN("port %u using address (%p) from unregistered mempool"
1317 		     " having externally allocated memory"
1318 		     " in secondary process, please create mempool"
1319 		     " prior to rte_eth_dev_start()",
1320 		     PORT_ID(priv), (void *)addr);
1321 		return UINT32_MAX;
1322 	}
1323 	mlx4_mr_update_ext_mp(ETH_DEV(priv), mr_ctrl, mp);
1324 	return mlx4_tx_addr2mr_bh(txq, addr);
1325 }
1326 
1327 /* Called during rte_mempool_mem_iter() by mlx4_mr_update_mp(). */
1328 static void
1329 mlx4_mr_update_mp_cb(struct rte_mempool *mp __rte_unused, void *opaque,
1330 		     struct rte_mempool_memhdr *memhdr,
1331 		     unsigned mem_idx __rte_unused)
1332 {
1333 	struct mr_update_mp_data *data = opaque;
1334 	uint32_t lkey;
1335 
1336 	/* Stop iteration if failed in the previous walk. */
1337 	if (data->ret < 0)
1338 		return;
1339 	/* Register address of the chunk and update local caches. */
1340 	lkey = mlx4_mr_addr2mr_bh(data->dev, data->mr_ctrl,
1341 				  (uintptr_t)memhdr->addr);
1342 	if (lkey == UINT32_MAX)
1343 		data->ret = -1;
1344 }
1345 
1346 /**
1347  * Register entire memory chunks in a Mempool.
1348  *
1349  * @param dev
1350  *   Pointer to Ethernet device.
1351  * @param mr_ctrl
1352  *   Pointer to per-queue MR control structure.
1353  * @param mp
1354  *   Pointer to registering Mempool.
1355  *
1356  * @return
1357  *   0 on success, -1 on failure.
1358  */
1359 int
1360 mlx4_mr_update_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
1361 		  struct rte_mempool *mp)
1362 {
1363 	struct mr_update_mp_data data = {
1364 		.dev = dev,
1365 		.mr_ctrl = mr_ctrl,
1366 		.ret = 0,
1367 	};
1368 
1369 	rte_mempool_mem_iter(mp, mlx4_mr_update_mp_cb, &data);
1370 	if (data.ret < 0 && rte_errno == ENXIO) {
1371 		/* Mempool may have externally allocated memory. */
1372 		return mlx4_mr_update_ext_mp(dev, mr_ctrl, mp);
1373 	}
1374 	return data.ret;
1375 }
1376 
1377 #ifdef RTE_LIBRTE_MLX4_DEBUG
1378 /**
1379  * Dump all the created MRs and the global cache entries.
1380  *
1381  * @param dev
1382  *   Pointer to Ethernet device.
1383  */
1384 void
1385 mlx4_mr_dump_dev(struct rte_eth_dev *dev)
1386 {
1387 	struct mlx4_priv *priv = dev->data->dev_private;
1388 	struct mlx4_mr *mr;
1389 	int mr_n = 0;
1390 	int chunk_n = 0;
1391 
1392 	rte_rwlock_read_lock(&priv->mr.rwlock);
1393 	/* Iterate all the existing MRs. */
1394 	LIST_FOREACH(mr, &priv->mr.mr_list, mr) {
1395 		unsigned int n;
1396 
1397 		DEBUG("port %u MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
1398 		      dev->data->port_id, mr_n++,
1399 		      rte_cpu_to_be_32(mr->ibv_mr->lkey),
1400 		      mr->ms_n, mr->ms_bmp_n);
1401 		if (mr->ms_n == 0)
1402 			continue;
1403 		for (n = 0; n < mr->ms_bmp_n; ) {
1404 			struct mlx4_mr_cache ret;
1405 
1406 			memset(&ret, 0, sizeof(ret));
1407 			n = mr_find_next_chunk(mr, &ret, n);
1408 			if (!ret.end)
1409 				break;
1410 			DEBUG("  chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
1411 			      chunk_n++, ret.start, ret.end);
1412 		}
1413 	}
1414 	DEBUG("port %u dumping global cache", dev->data->port_id);
1415 	mlx4_mr_btree_dump(&priv->mr.cache);
1416 	rte_rwlock_read_unlock(&priv->mr.rwlock);
1417 }
1418 #endif
1419 
1420 /**
1421  * Release all the created MRs and resources. Remove device from memory callback
1422  * list.
1423  *
1424  * @param dev
1425  *   Pointer to Ethernet device.
1426  */
1427 void
1428 mlx4_mr_release(struct rte_eth_dev *dev)
1429 {
1430 	struct mlx4_priv *priv = dev->data->dev_private;
1431 	struct mlx4_mr *mr_next;
1432 
1433 	/* Remove from memory callback device list. */
1434 	rte_rwlock_write_lock(&mlx4_shared_data->mem_event_rwlock);
1435 	LIST_REMOVE(priv, mem_event_cb);
1436 	rte_rwlock_write_unlock(&mlx4_shared_data->mem_event_rwlock);
1437 #ifdef RTE_LIBRTE_MLX4_DEBUG
1438 	mlx4_mr_dump_dev(dev);
1439 #endif
1440 	rte_rwlock_write_lock(&priv->mr.rwlock);
1441 	/* Detach from MR list and move to free list. */
1442 	mr_next = LIST_FIRST(&priv->mr.mr_list);
1443 	while (mr_next != NULL) {
1444 		struct mlx4_mr *mr = mr_next;
1445 
1446 		mr_next = LIST_NEXT(mr, mr);
1447 		LIST_REMOVE(mr, mr);
1448 		LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr);
1449 	}
1450 	LIST_INIT(&priv->mr.mr_list);
1451 	/* Free global cache. */
1452 	mlx4_mr_btree_free(&priv->mr.cache);
1453 	rte_rwlock_write_unlock(&priv->mr.rwlock);
1454 	/* Free all remaining MRs. */
1455 	mlx4_mr_garbage_collect(dev);
1456 }
1457