1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2017 6WIND S.A. 3 * Copyright 2017 Mellanox Technologies, Ltd 4 */ 5 6 /** 7 * @file 8 * Memory management functions for mlx4 driver. 9 */ 10 11 #include <errno.h> 12 #include <inttypes.h> 13 #include <stddef.h> 14 #include <stdint.h> 15 #include <string.h> 16 17 /* Verbs headers do not support -pedantic. */ 18 #ifdef PEDANTIC 19 #pragma GCC diagnostic ignored "-Wpedantic" 20 #endif 21 #include <infiniband/verbs.h> 22 #ifdef PEDANTIC 23 #pragma GCC diagnostic error "-Wpedantic" 24 #endif 25 26 #include <rte_branch_prediction.h> 27 #include <rte_common.h> 28 #include <rte_eal_memconfig.h> 29 #include <rte_errno.h> 30 #include <rte_malloc.h> 31 #include <rte_memory.h> 32 #include <rte_mempool.h> 33 #include <rte_rwlock.h> 34 35 #include "mlx4_glue.h" 36 #include "mlx4_mr.h" 37 #include "mlx4_rxtx.h" 38 #include "mlx4_utils.h" 39 40 struct mr_find_contig_memsegs_data { 41 uintptr_t addr; 42 uintptr_t start; 43 uintptr_t end; 44 const struct rte_memseg_list *msl; 45 }; 46 47 struct mr_update_mp_data { 48 struct rte_eth_dev *dev; 49 struct mlx4_mr_ctrl *mr_ctrl; 50 int ret; 51 }; 52 53 /** 54 * Expand B-tree table to a given size. Can't be called with holding 55 * memory_hotplug_lock or priv->mr.rwlock due to rte_realloc(). 56 * 57 * @param bt 58 * Pointer to B-tree structure. 59 * @param n 60 * Number of entries for expansion. 61 * 62 * @return 63 * 0 on success, -1 on failure. 64 */ 65 static int 66 mr_btree_expand(struct mlx4_mr_btree *bt, int n) 67 { 68 void *mem; 69 int ret = 0; 70 71 if (n <= bt->size) 72 return ret; 73 /* 74 * Downside of directly using rte_realloc() is that SOCKET_ID_ANY is 75 * used inside if there's no room to expand. Because this is a quite 76 * rare case and a part of very slow path, it is very acceptable. 77 * Initially cache_bh[] will be given practically enough space and once 78 * it is expanded, expansion wouldn't be needed again ever. 79 */ 80 mem = rte_realloc(bt->table, n * sizeof(struct mlx4_mr_cache), 0); 81 if (mem == NULL) { 82 /* Not an error, B-tree search will be skipped. */ 83 WARN("failed to expand MR B-tree (%p) table", (void *)bt); 84 ret = -1; 85 } else { 86 DEBUG("expanded MR B-tree table (size=%u)", n); 87 bt->table = mem; 88 bt->size = n; 89 } 90 return ret; 91 } 92 93 /** 94 * Look up LKey from given B-tree lookup table, store the last index and return 95 * searched LKey. 96 * 97 * @param bt 98 * Pointer to B-tree structure. 99 * @param[out] idx 100 * Pointer to index. Even on search failure, returns index where it stops 101 * searching so that index can be used when inserting a new entry. 102 * @param addr 103 * Search key. 104 * 105 * @return 106 * Searched LKey on success, UINT32_MAX on no match. 107 */ 108 static uint32_t 109 mr_btree_lookup(struct mlx4_mr_btree *bt, uint16_t *idx, uintptr_t addr) 110 { 111 struct mlx4_mr_cache *lkp_tbl; 112 uint16_t n; 113 uint16_t base = 0; 114 115 MLX4_ASSERT(bt != NULL); 116 lkp_tbl = *bt->table; 117 n = bt->len; 118 /* First entry must be NULL for comparison. */ 119 MLX4_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 && 120 lkp_tbl[0].lkey == UINT32_MAX)); 121 /* Binary search. */ 122 do { 123 register uint16_t delta = n >> 1; 124 125 if (addr < lkp_tbl[base + delta].start) { 126 n = delta; 127 } else { 128 base += delta; 129 n -= delta; 130 } 131 } while (n > 1); 132 MLX4_ASSERT(addr >= lkp_tbl[base].start); 133 *idx = base; 134 if (addr < lkp_tbl[base].end) 135 return lkp_tbl[base].lkey; 136 /* Not found. */ 137 return UINT32_MAX; 138 } 139 140 /** 141 * Insert an entry to B-tree lookup table. 142 * 143 * @param bt 144 * Pointer to B-tree structure. 145 * @param entry 146 * Pointer to new entry to insert. 147 * 148 * @return 149 * 0 on success, -1 on failure. 150 */ 151 static int 152 mr_btree_insert(struct mlx4_mr_btree *bt, struct mlx4_mr_cache *entry) 153 { 154 struct mlx4_mr_cache *lkp_tbl; 155 uint16_t idx = 0; 156 size_t shift; 157 158 MLX4_ASSERT(bt != NULL); 159 MLX4_ASSERT(bt->len <= bt->size); 160 MLX4_ASSERT(bt->len > 0); 161 lkp_tbl = *bt->table; 162 /* Find out the slot for insertion. */ 163 if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) { 164 DEBUG("abort insertion to B-tree(%p): already exist at" 165 " idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 166 (void *)bt, idx, entry->start, entry->end, entry->lkey); 167 /* Already exist, return. */ 168 return 0; 169 } 170 /* If table is full, return error. */ 171 if (unlikely(bt->len == bt->size)) { 172 bt->overflow = 1; 173 return -1; 174 } 175 /* Insert entry. */ 176 ++idx; 177 shift = (bt->len - idx) * sizeof(struct mlx4_mr_cache); 178 if (shift) 179 memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift); 180 lkp_tbl[idx] = *entry; 181 bt->len++; 182 DEBUG("inserted B-tree(%p)[%u]," 183 " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 184 (void *)bt, idx, entry->start, entry->end, entry->lkey); 185 return 0; 186 } 187 188 /** 189 * Initialize B-tree and allocate memory for lookup table. 190 * 191 * @param bt 192 * Pointer to B-tree structure. 193 * @param n 194 * Number of entries to allocate. 195 * @param socket 196 * NUMA socket on which memory must be allocated. 197 * 198 * @return 199 * 0 on success, a negative errno value otherwise and rte_errno is set. 200 */ 201 int 202 mlx4_mr_btree_init(struct mlx4_mr_btree *bt, int n, int socket) 203 { 204 if (bt == NULL) { 205 rte_errno = EINVAL; 206 return -rte_errno; 207 } 208 memset(bt, 0, sizeof(*bt)); 209 bt->table = rte_calloc_socket("B-tree table", 210 n, sizeof(struct mlx4_mr_cache), 211 0, socket); 212 if (bt->table == NULL) { 213 rte_errno = ENOMEM; 214 ERROR("failed to allocate memory for btree cache on socket %d", 215 socket); 216 return -rte_errno; 217 } 218 bt->size = n; 219 /* First entry must be NULL for binary search. */ 220 (*bt->table)[bt->len++] = (struct mlx4_mr_cache) { 221 .lkey = UINT32_MAX, 222 }; 223 DEBUG("initialized B-tree %p with table %p", 224 (void *)bt, (void *)bt->table); 225 return 0; 226 } 227 228 /** 229 * Free B-tree resources. 230 * 231 * @param bt 232 * Pointer to B-tree structure. 233 */ 234 void 235 mlx4_mr_btree_free(struct mlx4_mr_btree *bt) 236 { 237 if (bt == NULL) 238 return; 239 DEBUG("freeing B-tree %p with table %p", (void *)bt, (void *)bt->table); 240 rte_free(bt->table); 241 memset(bt, 0, sizeof(*bt)); 242 } 243 244 #ifdef RTE_LIBRTE_MLX4_DEBUG 245 /** 246 * Dump all the entries in a B-tree 247 * 248 * @param bt 249 * Pointer to B-tree structure. 250 */ 251 void 252 mlx4_mr_btree_dump(struct mlx4_mr_btree *bt) 253 { 254 int idx; 255 struct mlx4_mr_cache *lkp_tbl; 256 257 if (bt == NULL) 258 return; 259 lkp_tbl = *bt->table; 260 for (idx = 0; idx < bt->len; ++idx) { 261 struct mlx4_mr_cache *entry = &lkp_tbl[idx]; 262 263 DEBUG("B-tree(%p)[%u]," 264 " [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x", 265 (void *)bt, idx, entry->start, entry->end, entry->lkey); 266 } 267 } 268 #endif 269 270 /** 271 * Find virtually contiguous memory chunk in a given MR. 272 * 273 * @param dev 274 * Pointer to MR structure. 275 * @param[out] entry 276 * Pointer to returning MR cache entry. If not found, this will not be 277 * updated. 278 * @param start_idx 279 * Start index of the memseg bitmap. 280 * 281 * @return 282 * Next index to go on lookup. 283 */ 284 static int 285 mr_find_next_chunk(struct mlx4_mr *mr, struct mlx4_mr_cache *entry, 286 int base_idx) 287 { 288 uintptr_t start = 0; 289 uintptr_t end = 0; 290 uint32_t idx = 0; 291 292 /* MR for external memory doesn't have memseg list. */ 293 if (mr->msl == NULL) { 294 struct ibv_mr *ibv_mr = mr->ibv_mr; 295 296 MLX4_ASSERT(mr->ms_bmp_n == 1); 297 MLX4_ASSERT(mr->ms_n == 1); 298 MLX4_ASSERT(base_idx == 0); 299 /* 300 * Can't search it from memseg list but get it directly from 301 * verbs MR as there's only one chunk. 302 */ 303 entry->start = (uintptr_t)ibv_mr->addr; 304 entry->end = (uintptr_t)ibv_mr->addr + mr->ibv_mr->length; 305 entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey); 306 /* Returning 1 ends iteration. */ 307 return 1; 308 } 309 for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) { 310 if (rte_bitmap_get(mr->ms_bmp, idx)) { 311 const struct rte_memseg_list *msl; 312 const struct rte_memseg *ms; 313 314 msl = mr->msl; 315 ms = rte_fbarray_get(&msl->memseg_arr, 316 mr->ms_base_idx + idx); 317 MLX4_ASSERT(msl->page_sz == ms->hugepage_sz); 318 if (!start) 319 start = ms->addr_64; 320 end = ms->addr_64 + ms->hugepage_sz; 321 } else if (start) { 322 /* Passed the end of a fragment. */ 323 break; 324 } 325 } 326 if (start) { 327 /* Found one chunk. */ 328 entry->start = start; 329 entry->end = end; 330 entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey); 331 } 332 return idx; 333 } 334 335 /** 336 * Insert a MR to the global B-tree cache. It may fail due to low-on-memory. 337 * Then, this entry will have to be searched by mr_lookup_dev_list() in 338 * mlx4_mr_create() on miss. 339 * 340 * @param dev 341 * Pointer to Ethernet device. 342 * @param mr 343 * Pointer to MR to insert. 344 * 345 * @return 346 * 0 on success, -1 on failure. 347 */ 348 static int 349 mr_insert_dev_cache(struct rte_eth_dev *dev, struct mlx4_mr *mr) 350 { 351 struct mlx4_priv *priv = dev->data->dev_private; 352 unsigned int n; 353 354 DEBUG("port %u inserting MR(%p) to global cache", 355 dev->data->port_id, (void *)mr); 356 for (n = 0; n < mr->ms_bmp_n; ) { 357 struct mlx4_mr_cache entry; 358 359 memset(&entry, 0, sizeof(entry)); 360 /* Find a contiguous chunk and advance the index. */ 361 n = mr_find_next_chunk(mr, &entry, n); 362 if (!entry.end) 363 break; 364 if (mr_btree_insert(&priv->mr.cache, &entry) < 0) { 365 /* 366 * Overflowed, but the global table cannot be expanded 367 * because of deadlock. 368 */ 369 return -1; 370 } 371 } 372 return 0; 373 } 374 375 /** 376 * Look up address in the original global MR list. 377 * 378 * @param dev 379 * Pointer to Ethernet device. 380 * @param[out] entry 381 * Pointer to returning MR cache entry. If no match, this will not be updated. 382 * @param addr 383 * Search key. 384 * 385 * @return 386 * Found MR on match, NULL otherwise. 387 */ 388 static struct mlx4_mr * 389 mr_lookup_dev_list(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, 390 uintptr_t addr) 391 { 392 struct mlx4_priv *priv = dev->data->dev_private; 393 struct mlx4_mr *mr; 394 395 /* Iterate all the existing MRs. */ 396 LIST_FOREACH(mr, &priv->mr.mr_list, mr) { 397 unsigned int n; 398 399 if (mr->ms_n == 0) 400 continue; 401 for (n = 0; n < mr->ms_bmp_n; ) { 402 struct mlx4_mr_cache ret; 403 404 memset(&ret, 0, sizeof(ret)); 405 n = mr_find_next_chunk(mr, &ret, n); 406 if (addr >= ret.start && addr < ret.end) { 407 /* Found. */ 408 *entry = ret; 409 return mr; 410 } 411 } 412 } 413 return NULL; 414 } 415 416 /** 417 * Look up address on device. 418 * 419 * @param dev 420 * Pointer to Ethernet device. 421 * @param[out] entry 422 * Pointer to returning MR cache entry. If no match, this will not be updated. 423 * @param addr 424 * Search key. 425 * 426 * @return 427 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 428 */ 429 static uint32_t 430 mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, 431 uintptr_t addr) 432 { 433 struct mlx4_priv *priv = dev->data->dev_private; 434 uint16_t idx; 435 uint32_t lkey = UINT32_MAX; 436 struct mlx4_mr *mr; 437 438 /* 439 * If the global cache has overflowed since it failed to expand the 440 * B-tree table, it can't have all the existing MRs. Then, the address 441 * has to be searched by traversing the original MR list instead, which 442 * is very slow path. Otherwise, the global cache is all inclusive. 443 */ 444 if (!unlikely(priv->mr.cache.overflow)) { 445 lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr); 446 if (lkey != UINT32_MAX) 447 *entry = (*priv->mr.cache.table)[idx]; 448 } else { 449 /* Falling back to the slowest path. */ 450 mr = mr_lookup_dev_list(dev, entry, addr); 451 if (mr != NULL) 452 lkey = entry->lkey; 453 } 454 MLX4_ASSERT(lkey == UINT32_MAX || (addr >= entry->start && 455 addr < entry->end)); 456 return lkey; 457 } 458 459 /** 460 * Free MR resources. MR lock must not be held to avoid a deadlock. rte_free() 461 * can raise memory free event and the callback function will spin on the lock. 462 * 463 * @param mr 464 * Pointer to MR to free. 465 */ 466 static void 467 mr_free(struct mlx4_mr *mr) 468 { 469 if (mr == NULL) 470 return; 471 DEBUG("freeing MR(%p):", (void *)mr); 472 if (mr->ibv_mr != NULL) 473 claim_zero(mlx4_glue->dereg_mr(mr->ibv_mr)); 474 rte_bitmap_free(mr->ms_bmp); 475 rte_free(mr); 476 } 477 478 /** 479 * Release resources of detached MR having no online entry. 480 * 481 * @param dev 482 * Pointer to Ethernet device. 483 */ 484 static void 485 mlx4_mr_garbage_collect(struct rte_eth_dev *dev) 486 { 487 struct mlx4_priv *priv = dev->data->dev_private; 488 struct mlx4_mr *mr_next; 489 struct mlx4_mr_list free_list = LIST_HEAD_INITIALIZER(free_list); 490 491 /* Must be called from the primary process. */ 492 MLX4_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 493 /* 494 * MR can't be freed with holding the lock because rte_free() could call 495 * memory free callback function. This will be a deadlock situation. 496 */ 497 rte_rwlock_write_lock(&priv->mr.rwlock); 498 /* Detach the whole free list and release it after unlocking. */ 499 free_list = priv->mr.mr_free_list; 500 LIST_INIT(&priv->mr.mr_free_list); 501 rte_rwlock_write_unlock(&priv->mr.rwlock); 502 /* Release resources. */ 503 mr_next = LIST_FIRST(&free_list); 504 while (mr_next != NULL) { 505 struct mlx4_mr *mr = mr_next; 506 507 mr_next = LIST_NEXT(mr, mr); 508 mr_free(mr); 509 } 510 } 511 512 /* Called during rte_memseg_contig_walk() by mlx4_mr_create(). */ 513 static int 514 mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl, 515 const struct rte_memseg *ms, size_t len, void *arg) 516 { 517 struct mr_find_contig_memsegs_data *data = arg; 518 519 if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len) 520 return 0; 521 /* Found, save it and stop walking. */ 522 data->start = ms->addr_64; 523 data->end = ms->addr_64 + len; 524 data->msl = msl; 525 return 1; 526 } 527 528 /** 529 * Create a new global Memory Region (MR) for a missing virtual address. 530 * This API should be called on a secondary process, then a request is sent to 531 * the primary process in order to create a MR for the address. As the global MR 532 * list is on the shared memory, following LKey lookup should succeed unless the 533 * request fails. 534 * 535 * @param dev 536 * Pointer to Ethernet device. 537 * @param[out] entry 538 * Pointer to returning MR cache entry, found in the global cache or newly 539 * created. If failed to create one, this will not be updated. 540 * @param addr 541 * Target virtual address to register. 542 * 543 * @return 544 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 545 */ 546 static uint32_t 547 mlx4_mr_create_secondary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, 548 uintptr_t addr) 549 { 550 struct mlx4_priv *priv = dev->data->dev_private; 551 int ret; 552 553 DEBUG("port %u requesting MR creation for address (%p)", 554 dev->data->port_id, (void *)addr); 555 ret = mlx4_mp_req_mr_create(dev, addr); 556 if (ret) { 557 DEBUG("port %u fail to request MR creation for address (%p)", 558 dev->data->port_id, (void *)addr); 559 return UINT32_MAX; 560 } 561 rte_rwlock_read_lock(&priv->mr.rwlock); 562 /* Fill in output data. */ 563 mr_lookup_dev(dev, entry, addr); 564 /* Lookup can't fail. */ 565 MLX4_ASSERT(entry->lkey != UINT32_MAX); 566 rte_rwlock_read_unlock(&priv->mr.rwlock); 567 DEBUG("port %u MR CREATED by primary process for %p:", 568 dev->data->port_id, (void *)addr); 569 DEBUG(" [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x", 570 entry->start, entry->end, entry->lkey); 571 return entry->lkey; 572 } 573 574 /** 575 * Create a new global Memory Region (MR) for a missing virtual address. 576 * Register entire virtually contiguous memory chunk around the address. 577 * This must be called from the primary process. 578 * 579 * @param dev 580 * Pointer to Ethernet device. 581 * @param[out] entry 582 * Pointer to returning MR cache entry, found in the global cache or newly 583 * created. If failed to create one, this will not be updated. 584 * @param addr 585 * Target virtual address to register. 586 * 587 * @return 588 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 589 */ 590 uint32_t 591 mlx4_mr_create_primary(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, 592 uintptr_t addr) 593 { 594 struct mlx4_priv *priv = dev->data->dev_private; 595 const struct rte_memseg_list *msl; 596 const struct rte_memseg *ms; 597 struct mlx4_mr *mr = NULL; 598 size_t len; 599 uint32_t ms_n; 600 uint32_t bmp_size; 601 void *bmp_mem; 602 int ms_idx_shift = -1; 603 unsigned int n; 604 struct mr_find_contig_memsegs_data data = { 605 .addr = addr, 606 }; 607 struct mr_find_contig_memsegs_data data_re; 608 609 DEBUG("port %u creating a MR using address (%p)", 610 dev->data->port_id, (void *)addr); 611 /* 612 * Release detached MRs if any. This can't be called with holding either 613 * memory_hotplug_lock or priv->mr.rwlock. MRs on the free list have 614 * been detached by the memory free event but it couldn't be released 615 * inside the callback due to deadlock. As a result, releasing resources 616 * is quite opportunistic. 617 */ 618 mlx4_mr_garbage_collect(dev); 619 /* 620 * If enabled, find out a contiguous virtual address chunk in use, to 621 * which the given address belongs, in order to register maximum range. 622 * In the best case where mempools are not dynamically recreated and 623 * '--socket-mem' is specified as an EAL option, it is very likely to 624 * have only one MR(LKey) per a socket and per a hugepage-size even 625 * though the system memory is highly fragmented. As the whole memory 626 * chunk will be pinned by kernel, it can't be reused unless entire 627 * chunk is freed from EAL. 628 * 629 * If disabled, just register one memseg (page). Then, memory 630 * consumption will be minimized but it may drop performance if there 631 * are many MRs to lookup on the datapath. 632 */ 633 if (!priv->mr_ext_memseg_en) { 634 data.msl = rte_mem_virt2memseg_list((void *)addr); 635 data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz); 636 data.end = data.start + data.msl->page_sz; 637 } else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) { 638 WARN("port %u unable to find virtually contiguous" 639 " chunk for address (%p)." 640 " rte_memseg_contig_walk() failed.", 641 dev->data->port_id, (void *)addr); 642 rte_errno = ENXIO; 643 goto err_nolock; 644 } 645 alloc_resources: 646 /* Addresses must be page-aligned. */ 647 MLX4_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz)); 648 MLX4_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz)); 649 msl = data.msl; 650 ms = rte_mem_virt2memseg((void *)data.start, msl); 651 len = data.end - data.start; 652 MLX4_ASSERT(msl->page_sz == ms->hugepage_sz); 653 /* Number of memsegs in the range. */ 654 ms_n = len / msl->page_sz; 655 DEBUG("port %u extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 656 " page_sz=0x%" PRIx64 ", ms_n=%u", 657 dev->data->port_id, (void *)addr, 658 data.start, data.end, msl->page_sz, ms_n); 659 /* Size of memory for bitmap. */ 660 bmp_size = rte_bitmap_get_memory_footprint(ms_n); 661 mr = rte_zmalloc_socket(NULL, 662 RTE_ALIGN_CEIL(sizeof(*mr), 663 RTE_CACHE_LINE_SIZE) + 664 bmp_size, 665 RTE_CACHE_LINE_SIZE, msl->socket_id); 666 if (mr == NULL) { 667 WARN("port %u unable to allocate memory for a new MR of" 668 " address (%p).", 669 dev->data->port_id, (void *)addr); 670 rte_errno = ENOMEM; 671 goto err_nolock; 672 } 673 mr->msl = msl; 674 /* 675 * Save the index of the first memseg and initialize memseg bitmap. To 676 * see if a memseg of ms_idx in the memseg-list is still valid, check: 677 * rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx) 678 */ 679 mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 680 bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE); 681 mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size); 682 if (mr->ms_bmp == NULL) { 683 WARN("port %u unable to initialize bitmap for a new MR of" 684 " address (%p).", 685 dev->data->port_id, (void *)addr); 686 rte_errno = EINVAL; 687 goto err_nolock; 688 } 689 /* 690 * Should recheck whether the extended contiguous chunk is still valid. 691 * Because memory_hotplug_lock can't be held if there's any memory 692 * related calls in a critical path, resource allocation above can't be 693 * locked. If the memory has been changed at this point, try again with 694 * just single page. If not, go on with the big chunk atomically from 695 * here. 696 */ 697 rte_mcfg_mem_read_lock(); 698 data_re = data; 699 if (len > msl->page_sz && 700 !rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) { 701 WARN("port %u unable to find virtually contiguous" 702 " chunk for address (%p)." 703 " rte_memseg_contig_walk() failed.", 704 dev->data->port_id, (void *)addr); 705 rte_errno = ENXIO; 706 goto err_memlock; 707 } 708 if (data.start != data_re.start || data.end != data_re.end) { 709 /* 710 * The extended contiguous chunk has been changed. Try again 711 * with single memseg instead. 712 */ 713 data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz); 714 data.end = data.start + msl->page_sz; 715 rte_mcfg_mem_read_unlock(); 716 mr_free(mr); 717 goto alloc_resources; 718 } 719 MLX4_ASSERT(data.msl == data_re.msl); 720 rte_rwlock_write_lock(&priv->mr.rwlock); 721 /* 722 * Check the address is really missing. If other thread already created 723 * one or it is not found due to overflow, abort and return. 724 */ 725 if (mr_lookup_dev(dev, entry, addr) != UINT32_MAX) { 726 /* 727 * Insert to the global cache table. It may fail due to 728 * low-on-memory. Then, this entry will have to be searched 729 * here again. 730 */ 731 mr_btree_insert(&priv->mr.cache, entry); 732 DEBUG("port %u found MR for %p on final lookup, abort", 733 dev->data->port_id, (void *)addr); 734 rte_rwlock_write_unlock(&priv->mr.rwlock); 735 rte_mcfg_mem_read_unlock(); 736 /* 737 * Must be unlocked before calling rte_free() because 738 * mlx4_mr_mem_event_free_cb() can be called inside. 739 */ 740 mr_free(mr); 741 return entry->lkey; 742 } 743 /* 744 * Trim start and end addresses for verbs MR. Set bits for registering 745 * memsegs but exclude already registered ones. Bitmap can be 746 * fragmented. 747 */ 748 for (n = 0; n < ms_n; ++n) { 749 uintptr_t start; 750 struct mlx4_mr_cache ret; 751 752 memset(&ret, 0, sizeof(ret)); 753 start = data_re.start + n * msl->page_sz; 754 /* Exclude memsegs already registered by other MRs. */ 755 if (mr_lookup_dev(dev, &ret, start) == UINT32_MAX) { 756 /* 757 * Start from the first unregistered memseg in the 758 * extended range. 759 */ 760 if (ms_idx_shift == -1) { 761 mr->ms_base_idx += n; 762 data.start = start; 763 ms_idx_shift = n; 764 } 765 data.end = start + msl->page_sz; 766 rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift); 767 ++mr->ms_n; 768 } 769 } 770 len = data.end - data.start; 771 mr->ms_bmp_n = len / msl->page_sz; 772 MLX4_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n); 773 /* 774 * Finally create a verbs MR for the memory chunk. ibv_reg_mr() can be 775 * called with holding the memory lock because it doesn't use 776 * mlx4_alloc_buf_extern() which eventually calls rte_malloc_socket() 777 * through mlx4_alloc_verbs_buf(). 778 */ 779 mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)data.start, len, 780 IBV_ACCESS_LOCAL_WRITE); 781 if (mr->ibv_mr == NULL) { 782 WARN("port %u fail to create a verbs MR for address (%p)", 783 dev->data->port_id, (void *)addr); 784 rte_errno = EINVAL; 785 goto err_mrlock; 786 } 787 MLX4_ASSERT((uintptr_t)mr->ibv_mr->addr == data.start); 788 MLX4_ASSERT(mr->ibv_mr->length == len); 789 LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr); 790 DEBUG("port %u MR CREATED (%p) for %p:", 791 dev->data->port_id, (void *)mr, (void *)addr); 792 DEBUG(" [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 793 " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", 794 data.start, data.end, rte_cpu_to_be_32(mr->ibv_mr->lkey), 795 mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); 796 /* Insert to the global cache table. */ 797 mr_insert_dev_cache(dev, mr); 798 /* Fill in output data. */ 799 mr_lookup_dev(dev, entry, addr); 800 /* Lookup can't fail. */ 801 MLX4_ASSERT(entry->lkey != UINT32_MAX); 802 rte_rwlock_write_unlock(&priv->mr.rwlock); 803 rte_mcfg_mem_read_unlock(); 804 return entry->lkey; 805 err_mrlock: 806 rte_rwlock_write_unlock(&priv->mr.rwlock); 807 err_memlock: 808 rte_mcfg_mem_read_unlock(); 809 err_nolock: 810 /* 811 * In case of error, as this can be called in a datapath, a warning 812 * message per an error is preferable instead. Must be unlocked before 813 * calling rte_free() because mlx4_mr_mem_event_free_cb() can be called 814 * inside. 815 */ 816 mr_free(mr); 817 return UINT32_MAX; 818 } 819 820 /** 821 * Create a new global Memory Region (MR) for a missing virtual address. 822 * This can be called from primary and secondary process. 823 * 824 * @param dev 825 * Pointer to Ethernet device. 826 * @param[out] entry 827 * Pointer to returning MR cache entry, found in the global cache or newly 828 * created. If failed to create one, this will not be updated. 829 * @param addr 830 * Target virtual address to register. 831 * 832 * @return 833 * Searched LKey on success, UINT32_MAX on failure and rte_errno is set. 834 */ 835 static uint32_t 836 mlx4_mr_create(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry, 837 uintptr_t addr) 838 { 839 uint32_t ret = 0; 840 841 switch (rte_eal_process_type()) { 842 case RTE_PROC_PRIMARY: 843 ret = mlx4_mr_create_primary(dev, entry, addr); 844 break; 845 case RTE_PROC_SECONDARY: 846 ret = mlx4_mr_create_secondary(dev, entry, addr); 847 break; 848 default: 849 break; 850 } 851 return ret; 852 } 853 854 /** 855 * Rebuild the global B-tree cache of device from the original MR list. 856 * 857 * @param dev 858 * Pointer to Ethernet device. 859 */ 860 static void 861 mr_rebuild_dev_cache(struct rte_eth_dev *dev) 862 { 863 struct mlx4_priv *priv = dev->data->dev_private; 864 struct mlx4_mr *mr; 865 866 DEBUG("port %u rebuild dev cache[]", dev->data->port_id); 867 /* Flush cache to rebuild. */ 868 priv->mr.cache.len = 1; 869 priv->mr.cache.overflow = 0; 870 /* Iterate all the existing MRs. */ 871 LIST_FOREACH(mr, &priv->mr.mr_list, mr) 872 if (mr_insert_dev_cache(dev, mr) < 0) 873 return; 874 } 875 876 /** 877 * Callback for memory free event. Iterate freed memsegs and check whether it 878 * belongs to an existing MR. If found, clear the bit from bitmap of MR. As a 879 * result, the MR would be fragmented. If it becomes empty, the MR will be freed 880 * later by mlx4_mr_garbage_collect(). 881 * 882 * The global cache must be rebuilt if there's any change and this event has to 883 * be propagated to dataplane threads to flush the local caches. 884 * 885 * @param dev 886 * Pointer to Ethernet device. 887 * @param addr 888 * Address of freed memory. 889 * @param len 890 * Size of freed memory. 891 */ 892 static void 893 mlx4_mr_mem_event_free_cb(struct rte_eth_dev *dev, const void *addr, size_t len) 894 { 895 struct mlx4_priv *priv = dev->data->dev_private; 896 const struct rte_memseg_list *msl; 897 struct mlx4_mr *mr; 898 int ms_n; 899 int i; 900 int rebuild = 0; 901 902 DEBUG("port %u free callback: addr=%p, len=%zu", 903 dev->data->port_id, addr, len); 904 msl = rte_mem_virt2memseg_list(addr); 905 /* addr and len must be page-aligned. */ 906 MLX4_ASSERT((uintptr_t)addr == 907 RTE_ALIGN((uintptr_t)addr, msl->page_sz)); 908 MLX4_ASSERT(len == RTE_ALIGN(len, msl->page_sz)); 909 ms_n = len / msl->page_sz; 910 rte_rwlock_write_lock(&priv->mr.rwlock); 911 /* Clear bits of freed memsegs from MR. */ 912 for (i = 0; i < ms_n; ++i) { 913 const struct rte_memseg *ms; 914 struct mlx4_mr_cache entry; 915 uintptr_t start; 916 int ms_idx; 917 uint32_t pos; 918 919 /* Find MR having this memseg. */ 920 start = (uintptr_t)addr + i * msl->page_sz; 921 mr = mr_lookup_dev_list(dev, &entry, start); 922 if (mr == NULL) 923 continue; 924 MLX4_ASSERT(mr->msl); /* Can't be external memory. */ 925 ms = rte_mem_virt2memseg((void *)start, msl); 926 MLX4_ASSERT(ms != NULL); 927 MLX4_ASSERT(msl->page_sz == ms->hugepage_sz); 928 ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms); 929 pos = ms_idx - mr->ms_base_idx; 930 MLX4_ASSERT(rte_bitmap_get(mr->ms_bmp, pos)); 931 MLX4_ASSERT(pos < mr->ms_bmp_n); 932 DEBUG("port %u MR(%p): clear bitmap[%u] for addr %p", 933 dev->data->port_id, (void *)mr, pos, (void *)start); 934 rte_bitmap_clear(mr->ms_bmp, pos); 935 if (--mr->ms_n == 0) { 936 LIST_REMOVE(mr, mr); 937 LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr); 938 DEBUG("port %u remove MR(%p) from list", 939 dev->data->port_id, (void *)mr); 940 } 941 /* 942 * MR is fragmented or will be freed. the global cache must be 943 * rebuilt. 944 */ 945 rebuild = 1; 946 } 947 if (rebuild) { 948 mr_rebuild_dev_cache(dev); 949 /* 950 * No explicit wmb is needed after updating dev_gen due to 951 * store-release ordering in unlock that provides the 952 * implicit barrier at the software visible level. 953 */ 954 ++priv->mr.dev_gen; 955 DEBUG("broadcasting local cache flush, gen=%d", 956 priv->mr.dev_gen); 957 } 958 rte_rwlock_write_unlock(&priv->mr.rwlock); 959 #ifdef RTE_LIBRTE_MLX4_DEBUG 960 if (rebuild) 961 mlx4_mr_dump_dev(dev); 962 #endif 963 } 964 965 /** 966 * Callback for memory event. 967 * 968 * @param event_type 969 * Memory event type. 970 * @param addr 971 * Address of memory. 972 * @param len 973 * Size of memory. 974 */ 975 void 976 mlx4_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr, 977 size_t len, void *arg __rte_unused) 978 { 979 struct mlx4_priv *priv; 980 struct mlx4_dev_list *dev_list = &mlx4_shared_data->mem_event_cb_list; 981 982 /* Must be called from the primary process. */ 983 MLX4_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 984 switch (event_type) { 985 case RTE_MEM_EVENT_FREE: 986 rte_rwlock_read_lock(&mlx4_shared_data->mem_event_rwlock); 987 /* Iterate all the existing mlx4 devices. */ 988 LIST_FOREACH(priv, dev_list, mem_event_cb) 989 mlx4_mr_mem_event_free_cb(ETH_DEV(priv), addr, len); 990 rte_rwlock_read_unlock(&mlx4_shared_data->mem_event_rwlock); 991 break; 992 case RTE_MEM_EVENT_ALLOC: 993 default: 994 break; 995 } 996 } 997 998 /** 999 * Look up address in the global MR cache table. If not found, create a new MR. 1000 * Insert the found/created entry to local bottom-half cache table. 1001 * 1002 * @param dev 1003 * Pointer to Ethernet device. 1004 * @param mr_ctrl 1005 * Pointer to per-queue MR control structure. 1006 * @param[out] entry 1007 * Pointer to returning MR cache entry, found in the global cache or newly 1008 * created. If failed to create one, this is not written. 1009 * @param addr 1010 * Search key. 1011 * 1012 * @return 1013 * Searched LKey on success, UINT32_MAX on no match. 1014 */ 1015 static uint32_t 1016 mlx4_mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl, 1017 struct mlx4_mr_cache *entry, uintptr_t addr) 1018 { 1019 struct mlx4_priv *priv = dev->data->dev_private; 1020 struct mlx4_mr_btree *bt = &mr_ctrl->cache_bh; 1021 uint16_t idx; 1022 uint32_t lkey; 1023 1024 /* If local cache table is full, try to double it. */ 1025 if (unlikely(bt->len == bt->size)) 1026 mr_btree_expand(bt, bt->size << 1); 1027 /* Look up in the global cache. */ 1028 rte_rwlock_read_lock(&priv->mr.rwlock); 1029 lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr); 1030 if (lkey != UINT32_MAX) { 1031 /* Found. */ 1032 *entry = (*priv->mr.cache.table)[idx]; 1033 rte_rwlock_read_unlock(&priv->mr.rwlock); 1034 /* 1035 * Update local cache. Even if it fails, return the found entry 1036 * to update top-half cache. Next time, this entry will be found 1037 * in the global cache. 1038 */ 1039 mr_btree_insert(bt, entry); 1040 return lkey; 1041 } 1042 rte_rwlock_read_unlock(&priv->mr.rwlock); 1043 /* First time to see the address? Create a new MR. */ 1044 lkey = mlx4_mr_create(dev, entry, addr); 1045 /* 1046 * Update the local cache if successfully created a new global MR. Even 1047 * if failed to create one, there's no action to take in this datapath 1048 * code. As returning LKey is invalid, this will eventually make HW 1049 * fail. 1050 */ 1051 if (lkey != UINT32_MAX) 1052 mr_btree_insert(bt, entry); 1053 return lkey; 1054 } 1055 1056 /** 1057 * Bottom-half of LKey search on datapath. Firstly search in cache_bh[] and if 1058 * misses, search in the global MR cache table and update the new entry to 1059 * per-queue local caches. 1060 * 1061 * @param dev 1062 * Pointer to Ethernet device. 1063 * @param mr_ctrl 1064 * Pointer to per-queue MR control structure. 1065 * @param addr 1066 * Search key. 1067 * 1068 * @return 1069 * Searched LKey on success, UINT32_MAX on no match. 1070 */ 1071 static uint32_t 1072 mlx4_mr_addr2mr_bh(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl, 1073 uintptr_t addr) 1074 { 1075 uint32_t lkey; 1076 uint16_t bh_idx = 0; 1077 /* Victim in top-half cache to replace with new entry. */ 1078 struct mlx4_mr_cache *repl = &mr_ctrl->cache[mr_ctrl->head]; 1079 1080 /* Binary-search MR translation table. */ 1081 lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr); 1082 /* Update top-half cache. */ 1083 if (likely(lkey != UINT32_MAX)) { 1084 *repl = (*mr_ctrl->cache_bh.table)[bh_idx]; 1085 } else { 1086 /* 1087 * If missed in local lookup table, search in the global cache 1088 * and local cache_bh[] will be updated inside if possible. 1089 * Top-half cache entry will also be updated. 1090 */ 1091 lkey = mlx4_mr_lookup_dev(dev, mr_ctrl, repl, addr); 1092 if (unlikely(lkey == UINT32_MAX)) 1093 return UINT32_MAX; 1094 } 1095 /* Update the most recently used entry. */ 1096 mr_ctrl->mru = mr_ctrl->head; 1097 /* Point to the next victim, the oldest. */ 1098 mr_ctrl->head = (mr_ctrl->head + 1) % MLX4_MR_CACHE_N; 1099 return lkey; 1100 } 1101 1102 /** 1103 * Bottom-half of LKey search on Rx. 1104 * 1105 * @param rxq 1106 * Pointer to Rx queue structure. 1107 * @param addr 1108 * Search key. 1109 * 1110 * @return 1111 * Searched LKey on success, UINT32_MAX on no match. 1112 */ 1113 uint32_t 1114 mlx4_rx_addr2mr_bh(struct rxq *rxq, uintptr_t addr) 1115 { 1116 struct mlx4_mr_ctrl *mr_ctrl = &rxq->mr_ctrl; 1117 struct mlx4_priv *priv = rxq->priv; 1118 1119 return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr); 1120 } 1121 1122 /** 1123 * Bottom-half of LKey search on Tx. 1124 * 1125 * @param txq 1126 * Pointer to Tx queue structure. 1127 * @param addr 1128 * Search key. 1129 * 1130 * @return 1131 * Searched LKey on success, UINT32_MAX on no match. 1132 */ 1133 static uint32_t 1134 mlx4_tx_addr2mr_bh(struct txq *txq, uintptr_t addr) 1135 { 1136 struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl; 1137 struct mlx4_priv *priv = txq->priv; 1138 1139 return mlx4_mr_addr2mr_bh(ETH_DEV(priv), mr_ctrl, addr); 1140 } 1141 1142 /** 1143 * Bottom-half of LKey search on Tx. If it can't be searched in the memseg 1144 * list, register the mempool of the mbuf as externally allocated memory. 1145 * 1146 * @param txq 1147 * Pointer to Tx queue structure. 1148 * @param mb 1149 * Pointer to mbuf. 1150 * 1151 * @return 1152 * Searched LKey on success, UINT32_MAX on no match. 1153 */ 1154 uint32_t 1155 mlx4_tx_mb2mr_bh(struct txq *txq, struct rte_mbuf *mb) 1156 { 1157 uintptr_t addr = (uintptr_t)mb->buf_addr; 1158 uint32_t lkey; 1159 1160 lkey = mlx4_tx_addr2mr_bh(txq, addr); 1161 if (lkey == UINT32_MAX && rte_errno == ENXIO) { 1162 /* Mempool may have externally allocated memory. */ 1163 return mlx4_tx_update_ext_mp(txq, addr, mlx4_mb2mp(mb)); 1164 } 1165 return lkey; 1166 } 1167 1168 /** 1169 * Flush all of the local cache entries. 1170 * 1171 * @param mr_ctrl 1172 * Pointer to per-queue MR control structure. 1173 */ 1174 void 1175 mlx4_mr_flush_local_cache(struct mlx4_mr_ctrl *mr_ctrl) 1176 { 1177 /* Reset the most-recently-used index. */ 1178 mr_ctrl->mru = 0; 1179 /* Reset the linear search array. */ 1180 mr_ctrl->head = 0; 1181 memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache)); 1182 /* Reset the B-tree table. */ 1183 mr_ctrl->cache_bh.len = 1; 1184 mr_ctrl->cache_bh.overflow = 0; 1185 /* Update the generation number. */ 1186 mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr; 1187 DEBUG("mr_ctrl(%p): flushed, cur_gen=%d", 1188 (void *)mr_ctrl, mr_ctrl->cur_gen); 1189 } 1190 1191 /** 1192 * Called during rte_mempool_mem_iter() by mlx4_mr_update_ext_mp(). 1193 * 1194 * Externally allocated chunk is registered and a MR is created for the chunk. 1195 * The MR object is added to the global list. If memseg list of a MR object 1196 * (mr->msl) is null, the MR object can be regarded as externally allocated 1197 * memory. 1198 * 1199 * Once external memory is registered, it should be static. If the memory is 1200 * freed and the virtual address range has different physical memory mapped 1201 * again, it may cause crash on device due to the wrong translation entry. PMD 1202 * can't track the free event of the external memory for now. 1203 */ 1204 static void 1205 mlx4_mr_update_ext_mp_cb(struct rte_mempool *mp, void *opaque, 1206 struct rte_mempool_memhdr *memhdr, 1207 unsigned mem_idx __rte_unused) 1208 { 1209 struct mr_update_mp_data *data = opaque; 1210 struct rte_eth_dev *dev = data->dev; 1211 struct mlx4_priv *priv = dev->data->dev_private; 1212 struct mlx4_mr_ctrl *mr_ctrl = data->mr_ctrl; 1213 struct mlx4_mr *mr = NULL; 1214 uintptr_t addr = (uintptr_t)memhdr->addr; 1215 size_t len = memhdr->len; 1216 struct mlx4_mr_cache entry; 1217 uint32_t lkey; 1218 1219 MLX4_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY); 1220 /* If already registered, it should return. */ 1221 rte_rwlock_read_lock(&priv->mr.rwlock); 1222 lkey = mr_lookup_dev(dev, &entry, addr); 1223 rte_rwlock_read_unlock(&priv->mr.rwlock); 1224 if (lkey != UINT32_MAX) 1225 return; 1226 mr = rte_zmalloc_socket(NULL, 1227 RTE_ALIGN_CEIL(sizeof(*mr), 1228 RTE_CACHE_LINE_SIZE), 1229 RTE_CACHE_LINE_SIZE, mp->socket_id); 1230 if (mr == NULL) { 1231 WARN("port %u unable to allocate memory for a new MR of" 1232 " mempool (%s).", 1233 dev->data->port_id, mp->name); 1234 data->ret = -1; 1235 return; 1236 } 1237 DEBUG("port %u register MR for chunk #%d of mempool (%s)", 1238 dev->data->port_id, mem_idx, mp->name); 1239 mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)addr, len, 1240 IBV_ACCESS_LOCAL_WRITE); 1241 if (mr->ibv_mr == NULL) { 1242 WARN("port %u fail to create a verbs MR for address (%p)", 1243 dev->data->port_id, (void *)addr); 1244 rte_free(mr); 1245 data->ret = -1; 1246 return; 1247 } 1248 mr->msl = NULL; /* Mark it is external memory. */ 1249 mr->ms_bmp = NULL; 1250 mr->ms_n = 1; 1251 mr->ms_bmp_n = 1; 1252 rte_rwlock_write_lock(&priv->mr.rwlock); 1253 LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr); 1254 DEBUG("port %u MR CREATED (%p) for external memory %p:", 1255 dev->data->port_id, (void *)mr, (void *)addr); 1256 DEBUG(" [0x%" PRIxPTR ", 0x%" PRIxPTR ")," 1257 " lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u", 1258 addr, addr + len, rte_cpu_to_be_32(mr->ibv_mr->lkey), 1259 mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n); 1260 /* Insert to the global cache table. */ 1261 mr_insert_dev_cache(dev, mr); 1262 rte_rwlock_write_unlock(&priv->mr.rwlock); 1263 /* Insert to the local cache table */ 1264 mlx4_mr_addr2mr_bh(dev, mr_ctrl, addr); 1265 } 1266 1267 /** 1268 * Register MR for entire memory chunks in a Mempool having externally allocated 1269 * memory and fill in local cache. 1270 * 1271 * @param dev 1272 * Pointer to Ethernet device. 1273 * @param mr_ctrl 1274 * Pointer to per-queue MR control structure. 1275 * @param mp 1276 * Pointer to registering Mempool. 1277 * 1278 * @return 1279 * 0 on success, -1 on failure. 1280 */ 1281 static uint32_t 1282 mlx4_mr_update_ext_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl, 1283 struct rte_mempool *mp) 1284 { 1285 struct mr_update_mp_data data = { 1286 .dev = dev, 1287 .mr_ctrl = mr_ctrl, 1288 .ret = 0, 1289 }; 1290 1291 rte_mempool_mem_iter(mp, mlx4_mr_update_ext_mp_cb, &data); 1292 return data.ret; 1293 } 1294 1295 /** 1296 * Register MR entire memory chunks in a Mempool having externally allocated 1297 * memory and search LKey of the address to return. 1298 * 1299 * @param dev 1300 * Pointer to Ethernet device. 1301 * @param addr 1302 * Search key. 1303 * @param mp 1304 * Pointer to registering Mempool where addr belongs. 1305 * 1306 * @return 1307 * LKey for address on success, UINT32_MAX on failure. 1308 */ 1309 uint32_t 1310 mlx4_tx_update_ext_mp(struct txq *txq, uintptr_t addr, struct rte_mempool *mp) 1311 { 1312 struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl; 1313 struct mlx4_priv *priv = txq->priv; 1314 1315 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 1316 WARN("port %u using address (%p) from unregistered mempool" 1317 " having externally allocated memory" 1318 " in secondary process, please create mempool" 1319 " prior to rte_eth_dev_start()", 1320 PORT_ID(priv), (void *)addr); 1321 return UINT32_MAX; 1322 } 1323 mlx4_mr_update_ext_mp(ETH_DEV(priv), mr_ctrl, mp); 1324 return mlx4_tx_addr2mr_bh(txq, addr); 1325 } 1326 1327 /* Called during rte_mempool_mem_iter() by mlx4_mr_update_mp(). */ 1328 static void 1329 mlx4_mr_update_mp_cb(struct rte_mempool *mp __rte_unused, void *opaque, 1330 struct rte_mempool_memhdr *memhdr, 1331 unsigned mem_idx __rte_unused) 1332 { 1333 struct mr_update_mp_data *data = opaque; 1334 uint32_t lkey; 1335 1336 /* Stop iteration if failed in the previous walk. */ 1337 if (data->ret < 0) 1338 return; 1339 /* Register address of the chunk and update local caches. */ 1340 lkey = mlx4_mr_addr2mr_bh(data->dev, data->mr_ctrl, 1341 (uintptr_t)memhdr->addr); 1342 if (lkey == UINT32_MAX) 1343 data->ret = -1; 1344 } 1345 1346 /** 1347 * Register entire memory chunks in a Mempool. 1348 * 1349 * @param dev 1350 * Pointer to Ethernet device. 1351 * @param mr_ctrl 1352 * Pointer to per-queue MR control structure. 1353 * @param mp 1354 * Pointer to registering Mempool. 1355 * 1356 * @return 1357 * 0 on success, -1 on failure. 1358 */ 1359 int 1360 mlx4_mr_update_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl, 1361 struct rte_mempool *mp) 1362 { 1363 struct mr_update_mp_data data = { 1364 .dev = dev, 1365 .mr_ctrl = mr_ctrl, 1366 .ret = 0, 1367 }; 1368 1369 rte_mempool_mem_iter(mp, mlx4_mr_update_mp_cb, &data); 1370 if (data.ret < 0 && rte_errno == ENXIO) { 1371 /* Mempool may have externally allocated memory. */ 1372 return mlx4_mr_update_ext_mp(dev, mr_ctrl, mp); 1373 } 1374 return data.ret; 1375 } 1376 1377 #ifdef RTE_LIBRTE_MLX4_DEBUG 1378 /** 1379 * Dump all the created MRs and the global cache entries. 1380 * 1381 * @param dev 1382 * Pointer to Ethernet device. 1383 */ 1384 void 1385 mlx4_mr_dump_dev(struct rte_eth_dev *dev) 1386 { 1387 struct mlx4_priv *priv = dev->data->dev_private; 1388 struct mlx4_mr *mr; 1389 int mr_n = 0; 1390 int chunk_n = 0; 1391 1392 rte_rwlock_read_lock(&priv->mr.rwlock); 1393 /* Iterate all the existing MRs. */ 1394 LIST_FOREACH(mr, &priv->mr.mr_list, mr) { 1395 unsigned int n; 1396 1397 DEBUG("port %u MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u", 1398 dev->data->port_id, mr_n++, 1399 rte_cpu_to_be_32(mr->ibv_mr->lkey), 1400 mr->ms_n, mr->ms_bmp_n); 1401 if (mr->ms_n == 0) 1402 continue; 1403 for (n = 0; n < mr->ms_bmp_n; ) { 1404 struct mlx4_mr_cache ret; 1405 1406 memset(&ret, 0, sizeof(ret)); 1407 n = mr_find_next_chunk(mr, &ret, n); 1408 if (!ret.end) 1409 break; 1410 DEBUG(" chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")", 1411 chunk_n++, ret.start, ret.end); 1412 } 1413 } 1414 DEBUG("port %u dumping global cache", dev->data->port_id); 1415 mlx4_mr_btree_dump(&priv->mr.cache); 1416 rte_rwlock_read_unlock(&priv->mr.rwlock); 1417 } 1418 #endif 1419 1420 /** 1421 * Release all the created MRs and resources. Remove device from memory callback 1422 * list. 1423 * 1424 * @param dev 1425 * Pointer to Ethernet device. 1426 */ 1427 void 1428 mlx4_mr_release(struct rte_eth_dev *dev) 1429 { 1430 struct mlx4_priv *priv = dev->data->dev_private; 1431 struct mlx4_mr *mr_next; 1432 1433 /* Remove from memory callback device list. */ 1434 rte_rwlock_write_lock(&mlx4_shared_data->mem_event_rwlock); 1435 LIST_REMOVE(priv, mem_event_cb); 1436 rte_rwlock_write_unlock(&mlx4_shared_data->mem_event_rwlock); 1437 #ifdef RTE_LIBRTE_MLX4_DEBUG 1438 mlx4_mr_dump_dev(dev); 1439 #endif 1440 rte_rwlock_write_lock(&priv->mr.rwlock); 1441 /* Detach from MR list and move to free list. */ 1442 mr_next = LIST_FIRST(&priv->mr.mr_list); 1443 while (mr_next != NULL) { 1444 struct mlx4_mr *mr = mr_next; 1445 1446 mr_next = LIST_NEXT(mr, mr); 1447 LIST_REMOVE(mr, mr); 1448 LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr); 1449 } 1450 LIST_INIT(&priv->mr.mr_list); 1451 /* Free global cache. */ 1452 mlx4_mr_btree_free(&priv->mr.cache); 1453 rte_rwlock_write_unlock(&priv->mr.rwlock); 1454 /* Free all remaining MRs. */ 1455 mlx4_mr_garbage_collect(dev); 1456 } 1457