xref: /dpdk/drivers/net/intel/ice/ice_rxtx_vec_sse.c (revision 61dcf278a0958542414603afb21a3d3badd49380)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4 
5 #include "ice_rxtx_vec_common.h"
6 
7 #include <rte_vect.h>
8 
9 static inline __m128i
10 ice_flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)
11 {
12 #define FDID_MIS_MAGIC 0xFFFFFFFF
13 	RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2));
14 	RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
15 	const __m128i pkt_fdir_bit = _mm_set1_epi32(RTE_MBUF_F_RX_FDIR |
16 			RTE_MBUF_F_RX_FDIR_ID);
17 	/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
18 	const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC);
19 	__m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3,
20 			fdir_mis_mask);
21 	/* this XOR op results to bit-reverse the fdir_mask */
22 	fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask);
23 	const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit);
24 
25 	return fdir_flags;
26 }
27 
28 static inline void
29 ice_rxq_rearm(struct ice_rx_queue *rxq)
30 {
31 	int i;
32 	uint16_t rx_id;
33 	volatile union ice_rx_flex_desc *rxdp;
34 	struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
35 	struct rte_mbuf *mb0, *mb1;
36 	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
37 					  RTE_PKTMBUF_HEADROOM);
38 	__m128i dma_addr0, dma_addr1;
39 
40 	rxdp = rxq->rx_ring + rxq->rxrearm_start;
41 
42 	/* Pull 'n' more MBUFs into the software ring */
43 	if (rte_mempool_get_bulk(rxq->mp,
44 				 (void *)rxep,
45 				 ICE_RXQ_REARM_THRESH) < 0) {
46 		if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
47 		    rxq->nb_rx_desc) {
48 			dma_addr0 = _mm_setzero_si128();
49 			for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
50 				rxep[i].mbuf = &rxq->fake_mbuf;
51 				_mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp[i].read),
52 						dma_addr0);
53 			}
54 		}
55 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
56 			ICE_RXQ_REARM_THRESH;
57 		return;
58 	}
59 
60 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
61 	for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
62 		__m128i vaddr0, vaddr1;
63 
64 		mb0 = rxep[0].mbuf;
65 		mb1 = rxep[1].mbuf;
66 
67 #if RTE_IOVA_IN_MBUF
68 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
69 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
70 				 offsetof(struct rte_mbuf, buf_addr) + 8);
71 #endif
72 		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
73 		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
74 
75 #if RTE_IOVA_IN_MBUF
76 		/* convert pa to dma_addr hdr/data */
77 		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
78 		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
79 #else
80 		/* convert va to dma_addr hdr/data */
81 		dma_addr0 = _mm_unpacklo_epi64(vaddr0, vaddr0);
82 		dma_addr1 = _mm_unpacklo_epi64(vaddr1, vaddr1);
83 #endif
84 
85 		/* add headroom to pa values */
86 		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
87 		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
88 
89 		/* flush desc with pa dma_addr */
90 		_mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp++->read), dma_addr0);
91 		_mm_store_si128(RTE_CAST_PTR(__m128i *, &rxdp++->read), dma_addr1);
92 	}
93 
94 	rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
95 	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
96 		rxq->rxrearm_start = 0;
97 
98 	rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
99 
100 	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
101 			   (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
102 
103 	/* Update the tail pointer on the NIC */
104 	ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
105 }
106 
107 static inline void
108 ice_rx_desc_to_olflags_v(struct ice_rx_queue *rxq, __m128i descs[4],
109 			 struct rte_mbuf **rx_pkts)
110 {
111 	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
112 	__m128i rearm0, rearm1, rearm2, rearm3;
113 
114 	__m128i tmp_desc, flags, rss_vlan;
115 
116 	/* mask everything except checksum, RSS and VLAN flags.
117 	 * bit6:4 for checksum.
118 	 * bit12 for RSS indication.
119 	 * bit13 for VLAN indication.
120 	 */
121 	const __m128i desc_mask = _mm_set_epi32(0x30f0, 0x30f0,
122 						0x30f0, 0x30f0);
123 	const __m128i cksum_mask = _mm_set_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
124 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
125 						 RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK |
126 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
127 						 RTE_MBUF_F_RX_IP_CKSUM_MASK |
128 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
129 						 RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK |
130 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
131 						 RTE_MBUF_F_RX_IP_CKSUM_MASK |
132 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
133 						 RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK |
134 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
135 						 RTE_MBUF_F_RX_IP_CKSUM_MASK |
136 						 RTE_MBUF_F_RX_L4_CKSUM_MASK |
137 						 RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK |
138 						 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
139 
140 	/* map the checksum, rss and vlan fields to the checksum, rss
141 	 * and vlan flag
142 	 */
143 	const __m128i cksum_flags =
144 		_mm_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
145 		 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
146 		  RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
147 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
148 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
149 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
150 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
151 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
152 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
153 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
154 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
155 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
156 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
157 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
158 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
159 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
160 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
161 		/**
162 		 * shift right 20 bits to use the low two bits to indicate
163 		 * outer checksum status
164 		 * shift right 1 bit to make sure it not exceed 255
165 		 */
166 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
167 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
168 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
169 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
170 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
171 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
172 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
173 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
174 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
175 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
176 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
177 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
178 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
179 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
180 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
181 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
182 
183 	const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
184 			0, 0, 0, 0,
185 			0, 0, 0, 0,
186 			RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
187 			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
188 			RTE_MBUF_F_RX_RSS_HASH, 0);
189 
190 	/* merge 4 descriptors */
191 	flags = _mm_unpackhi_epi32(descs[0], descs[1]);
192 	tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
193 	tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
194 	tmp_desc = _mm_and_si128(tmp_desc, desc_mask);
195 
196 	/* checksum flags */
197 	tmp_desc = _mm_srli_epi32(tmp_desc, 4);
198 	flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
199 	/* then we shift left 1 bit */
200 	flags = _mm_slli_epi32(flags, 1);
201 
202 	__m128i l4_outer_mask = _mm_set_epi32(0x6, 0x6, 0x6, 0x6);
203 	__m128i l4_outer_flags = _mm_and_si128(flags, l4_outer_mask);
204 	l4_outer_flags = _mm_slli_epi32(l4_outer_flags, 20);
205 
206 	__m128i l3_l4_mask = _mm_set_epi32(~0x6, ~0x6, ~0x6, ~0x6);
207 	__m128i l3_l4_flags = _mm_and_si128(flags, l3_l4_mask);
208 	flags = _mm_or_si128(l3_l4_flags, l4_outer_flags);
209 	/* we need to mask out the redundant bits introduced by RSS or
210 	 * VLAN fields.
211 	 */
212 	flags = _mm_and_si128(flags, cksum_mask);
213 
214 	/* RSS, VLAN flag */
215 	tmp_desc = _mm_srli_epi32(tmp_desc, 8);
216 	rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
217 
218 	/* merge the flags */
219 	flags = _mm_or_si128(flags, rss_vlan);
220 
221 	if (rxq->fdir_enabled) {
222 		const __m128i fdir_id0_1 =
223 			_mm_unpackhi_epi32(descs[0], descs[1]);
224 
225 		const __m128i fdir_id2_3 =
226 			_mm_unpackhi_epi32(descs[2], descs[3]);
227 
228 		const __m128i fdir_id0_3 =
229 			_mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3);
230 
231 		const __m128i fdir_flags =
232 			ice_flex_rxd_to_fdir_flags_vec(fdir_id0_3);
233 
234 		/* merge with fdir_flags */
235 		flags = _mm_or_si128(flags, fdir_flags);
236 
237 		/* write fdir_id to mbuf */
238 		rx_pkts[0]->hash.fdir.hi =
239 			_mm_extract_epi32(fdir_id0_3, 0);
240 
241 		rx_pkts[1]->hash.fdir.hi =
242 			_mm_extract_epi32(fdir_id0_3, 1);
243 
244 		rx_pkts[2]->hash.fdir.hi =
245 			_mm_extract_epi32(fdir_id0_3, 2);
246 
247 		rx_pkts[3]->hash.fdir.hi =
248 			_mm_extract_epi32(fdir_id0_3, 3);
249 	} /* if() on fdir_enabled */
250 
251 	/**
252 	 * At this point, we have the 4 sets of flags in the low 16-bits
253 	 * of each 32-bit value in flags.
254 	 * We want to extract these, and merge them with the mbuf init data
255 	 * so we can do a single 16-byte write to the mbuf to set the flags
256 	 * and all the other initialization fields. Extracting the
257 	 * appropriate flags means that we have to do a shift and blend for
258 	 * each mbuf before we do the write.
259 	 */
260 	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x30);
261 	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x30);
262 	rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x30);
263 	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x30);
264 
265 	/* write the rearm data and the olflags in one write */
266 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
267 			 offsetof(struct rte_mbuf, rearm_data) + 8);
268 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
269 			 RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
270 	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
271 	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
272 	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
273 	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
274 }
275 
276 static inline void
277 ice_rx_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
278 		       uint32_t *ptype_tbl)
279 {
280 	const __m128i ptype_mask = _mm_set_epi16(ICE_RX_FLEX_DESC_PTYPE_M, 0,
281 						 ICE_RX_FLEX_DESC_PTYPE_M, 0,
282 						 ICE_RX_FLEX_DESC_PTYPE_M, 0,
283 						 ICE_RX_FLEX_DESC_PTYPE_M, 0);
284 	__m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
285 	__m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
286 	__m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
287 
288 	ptype_all = _mm_and_si128(ptype_all, ptype_mask);
289 
290 	rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 1)];
291 	rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 3)];
292 	rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 5)];
293 	rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 7)];
294 }
295 
296 /**
297  * vPMD raw receive routine, only accept(nb_pkts >= ICE_DESCS_PER_LOOP)
298  *
299  * Notice:
300  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
301  * - floor align nb_pkts to a ICE_DESCS_PER_LOOP power-of-two
302  */
303 static inline uint16_t
304 _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
305 		       uint16_t nb_pkts, uint8_t *split_packet)
306 {
307 	volatile union ice_rx_flex_desc *rxdp;
308 	struct ice_rx_entry *sw_ring;
309 	uint16_t nb_pkts_recd;
310 	int pos;
311 	uint64_t var;
312 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
313 	__m128i crc_adjust = _mm_set_epi16
314 				(0, 0, 0,       /* ignore non-length fields */
315 				 -rxq->crc_len, /* sub crc on data_len */
316 				 0,          /* ignore high-16bits of pkt_len */
317 				 -rxq->crc_len, /* sub crc on pkt_len */
318 				 0, 0           /* ignore pkt_type field */
319 				);
320 	const __m128i zero = _mm_setzero_si128();
321 	/* mask to shuffle from desc. to mbuf */
322 	const __m128i shuf_msk = _mm_set_epi8
323 			(0xFF, 0xFF,
324 			 0xFF, 0xFF,  /* rss hash parsed separately */
325 			 11, 10,      /* octet 10~11, 16 bits vlan_macip */
326 			 5, 4,        /* octet 4~5, 16 bits data_len */
327 			 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
328 			 5, 4,        /* octet 4~5, low 16 bits pkt_len */
329 			 0xFF, 0xFF,  /* pkt_type set as unknown */
330 			 0xFF, 0xFF   /* pkt_type set as unknown */
331 			);
332 	const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
333 						   0xFF, 0xFF,
334 						   0xFF, 0xFF,
335 						   0xFF, 0xFF,
336 						   0xFF, 0xFF,
337 						   0xFF, 0xFF,
338 						   0x04, 0x0C,
339 						   0x00, 0x08);
340 
341 	/**
342 	 * compile-time check the above crc_adjust layout is correct.
343 	 * NOTE: the first field (lowest address) is given last in set_epi16
344 	 * call above.
345 	 */
346 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
347 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
348 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
349 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
350 
351 	/* 4 packets DD mask */
352 	const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
353 						0x0000000100000001LL);
354 	/* 4 packets EOP mask */
355 	const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
356 						 0x0000000200000002LL);
357 
358 	/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP */
359 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP);
360 
361 	/* Just the act of getting into the function from the application is
362 	 * going to cost about 7 cycles
363 	 */
364 	rxdp = rxq->rx_ring + rxq->rx_tail;
365 
366 	rte_prefetch0(rxdp);
367 
368 	/* See if we need to rearm the RX queue - gives the prefetch a bit
369 	 * of time to act
370 	 */
371 	if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
372 		ice_rxq_rearm(rxq);
373 
374 	/* Before we start moving massive data around, check to see if
375 	 * there is actually a packet available
376 	 */
377 	if (!(rxdp->wb.status_error0 &
378 	      rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
379 		return 0;
380 
381 	/**
382 	 * Compile-time verify the shuffle mask
383 	 * NOTE: some field positions already verified above, but duplicated
384 	 * here for completeness in case of future modifications.
385 	 */
386 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
387 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
388 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
389 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
390 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
391 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
392 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
393 			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
394 
395 	/* Cache is empty -> need to scan the buffer rings, but first move
396 	 * the next 'n' mbufs into the cache
397 	 */
398 	sw_ring = &rxq->sw_ring[rxq->rx_tail];
399 
400 	/* A. load 4 packet in one loop
401 	 * [A*. mask out 4 unused dirty field in desc]
402 	 * B. copy 4 mbuf point from swring to rx_pkts
403 	 * C. calc the number of DD bits among the 4 packets
404 	 * [C*. extract the end-of-packet bit, if requested]
405 	 * D. fill info. from desc to mbuf
406 	 */
407 
408 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
409 	     pos += ICE_DESCS_PER_LOOP,
410 	     rxdp += ICE_DESCS_PER_LOOP) {
411 		__m128i descs[ICE_DESCS_PER_LOOP];
412 		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
413 		__m128i staterr, sterr_tmp1, sterr_tmp2;
414 		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
415 		__m128i mbp1;
416 #if defined(RTE_ARCH_X86_64)
417 		__m128i mbp2;
418 #endif
419 
420 		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
421 		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
422 		/* Read desc statuses backwards to avoid race condition */
423 		/* A.1 load desc[3] */
424 		descs[3] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp + 3));
425 		rte_compiler_barrier();
426 
427 		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
428 		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
429 
430 #if defined(RTE_ARCH_X86_64)
431 		/* B.1 load 2 64 bit mbuf points */
432 		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
433 #endif
434 
435 		/* A.1 load desc[2-0] */
436 		descs[2] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp + 2));
437 		rte_compiler_barrier();
438 		descs[1] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp + 1));
439 		rte_compiler_barrier();
440 		descs[0] = _mm_loadu_si128(RTE_CAST_PTR(const __m128i *, rxdp));
441 
442 #if defined(RTE_ARCH_X86_64)
443 		/* B.2 copy 2 mbuf point into rx_pkts  */
444 		_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
445 #endif
446 
447 		if (split_packet) {
448 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
449 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
450 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
451 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
452 		}
453 
454 		/* avoid compiler reorder optimization */
455 		rte_compiler_barrier();
456 
457 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
458 		pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk);
459 		pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk);
460 
461 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
462 		pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk);
463 		pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk);
464 
465 		/* C.1 4=>2 filter staterr info only */
466 		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
467 		/* C.1 4=>2 filter staterr info only */
468 		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
469 
470 		ice_rx_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
471 
472 		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
473 		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
474 		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
475 
476 		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
477 		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
478 		pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust);
479 
480 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
481 		/**
482 		 * needs to load 2nd 16B of each desc for RSS hash parsing,
483 		 * will cause performance drop to get into this context.
484 		 */
485 		if (rxq->vsi->adapter->pf.dev_data->dev_conf.rxmode.offloads &
486 				RTE_ETH_RX_OFFLOAD_RSS_HASH) {
487 			/* load bottom half of every 32B desc */
488 			const __m128i raw_desc_bh3 =
489 				_mm_load_si128
490 					(RTE_CAST_PTR(const __m128i *, &rxdp[3].wb.status_error1));
491 			rte_compiler_barrier();
492 			const __m128i raw_desc_bh2 =
493 				_mm_load_si128
494 					(RTE_CAST_PTR(const __m128i *, &rxdp[2].wb.status_error1));
495 			rte_compiler_barrier();
496 			const __m128i raw_desc_bh1 =
497 				_mm_load_si128
498 					(RTE_CAST_PTR(const __m128i *, &rxdp[1].wb.status_error1));
499 			rte_compiler_barrier();
500 			const __m128i raw_desc_bh0 =
501 				_mm_load_si128
502 					(RTE_CAST_PTR(const __m128i *, &rxdp[0].wb.status_error1));
503 
504 			/**
505 			 * to shift the 32b RSS hash value to the
506 			 * highest 32b of each 128b before mask
507 			 */
508 			__m128i rss_hash3 =
509 				_mm_slli_epi64(raw_desc_bh3, 32);
510 			__m128i rss_hash2 =
511 				_mm_slli_epi64(raw_desc_bh2, 32);
512 			__m128i rss_hash1 =
513 				_mm_slli_epi64(raw_desc_bh1, 32);
514 			__m128i rss_hash0 =
515 				_mm_slli_epi64(raw_desc_bh0, 32);
516 
517 			__m128i rss_hash_msk =
518 				_mm_set_epi32(0xFFFFFFFF, 0, 0, 0);
519 
520 			rss_hash3 = _mm_and_si128
521 					(rss_hash3, rss_hash_msk);
522 			rss_hash2 = _mm_and_si128
523 					(rss_hash2, rss_hash_msk);
524 			rss_hash1 = _mm_and_si128
525 					(rss_hash1, rss_hash_msk);
526 			rss_hash0 = _mm_and_si128
527 					(rss_hash0, rss_hash_msk);
528 
529 			pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3);
530 			pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2);
531 			pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1);
532 			pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0);
533 		} /* if() on RSS hash parsing */
534 #endif
535 
536 		/* C.2 get 4 pkts staterr value  */
537 		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
538 
539 		/* D.3 copy final 3,4 data to rx_pkts */
540 		_mm_storeu_si128
541 			((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
542 			 pkt_mb3);
543 		_mm_storeu_si128
544 			((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
545 			 pkt_mb2);
546 
547 		/* C* extract and record EOP bit */
548 		if (split_packet) {
549 			/* and with mask to extract bits, flipping 1-0 */
550 			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
551 			/* the staterr values are not in order, as the count
552 			 * of dd bits doesn't care. However, for end of
553 			 * packet tracking, we do care, so shuffle. This also
554 			 * compresses the 32-bit values to 8-bit
555 			 */
556 			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
557 			/* store the resulting 32-bit value */
558 			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
559 			split_packet += ICE_DESCS_PER_LOOP;
560 		}
561 
562 		/* C.3 calc available number of desc */
563 		staterr = _mm_and_si128(staterr, dd_check);
564 		staterr = _mm_packs_epi32(staterr, zero);
565 
566 		/* D.3 copy final 1,2 data to rx_pkts */
567 		_mm_storeu_si128
568 			((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
569 			 pkt_mb1);
570 		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
571 				 pkt_mb0);
572 		ice_rx_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
573 		/* C.4 calc available number of desc */
574 		var = rte_popcount64(_mm_cvtsi128_si64(staterr));
575 		nb_pkts_recd += var;
576 		if (likely(var != ICE_DESCS_PER_LOOP))
577 			break;
578 	}
579 
580 	/* Update our internal tail pointer */
581 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
582 	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
583 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
584 
585 	return nb_pkts_recd;
586 }
587 
588 /**
589  * Notice:
590  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
591  * - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST
592  *   numbers of DD bits
593  */
594 uint16_t
595 ice_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
596 		  uint16_t nb_pkts)
597 {
598 	return _ice_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
599 }
600 
601 /**
602  * vPMD receive routine that reassembles single burst of 32 scattered packets
603  *
604  * Notice:
605  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
606  */
607 static uint16_t
608 ice_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
609 			     uint16_t nb_pkts)
610 {
611 	struct ice_rx_queue *rxq = rx_queue;
612 	uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
613 
614 	/* get some new buffers */
615 	uint16_t nb_bufs = _ice_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
616 						  split_flags);
617 	if (nb_bufs == 0)
618 		return 0;
619 
620 	/* happy day case, full burst + no packets to be joined */
621 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
622 
623 	if (!rxq->pkt_first_seg &&
624 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
625 	    split_fl64[2] == 0 && split_fl64[3] == 0)
626 		return nb_bufs;
627 
628 	/* reassemble any packets that need reassembly*/
629 	unsigned int i = 0;
630 
631 	if (!rxq->pkt_first_seg) {
632 		/* find the first split flag, and only reassemble then*/
633 		while (i < nb_bufs && !split_flags[i])
634 			i++;
635 		if (i == nb_bufs)
636 			return nb_bufs;
637 		rxq->pkt_first_seg = rx_pkts[i];
638 	}
639 	return i + ci_rx_reassemble_packets(&rx_pkts[i], nb_bufs - i, &split_flags[i],
640 			&rxq->pkt_first_seg, &rxq->pkt_last_seg, rxq->crc_len);
641 }
642 
643 /**
644  * vPMD receive routine that reassembles scattered packets.
645  */
646 uint16_t
647 ice_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
648 			    uint16_t nb_pkts)
649 {
650 	uint16_t retval = 0;
651 
652 	while (nb_pkts > ICE_VPMD_RX_BURST) {
653 		uint16_t burst;
654 
655 		burst = ice_recv_scattered_burst_vec(rx_queue,
656 						     rx_pkts + retval,
657 						     ICE_VPMD_RX_BURST);
658 		retval += burst;
659 		nb_pkts -= burst;
660 		if (burst < ICE_VPMD_RX_BURST)
661 			return retval;
662 	}
663 
664 	return retval + ice_recv_scattered_burst_vec(rx_queue,
665 						     rx_pkts + retval,
666 						     nb_pkts);
667 }
668 
669 static inline void
670 ice_vtx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf *pkt,
671 	 uint64_t flags)
672 {
673 	uint64_t high_qw =
674 		(ICE_TX_DESC_DTYPE_DATA |
675 		 ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
676 		 ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
677 
678 	__m128i descriptor = _mm_set_epi64x(high_qw, rte_pktmbuf_iova(pkt));
679 	_mm_store_si128(RTE_CAST_PTR(__m128i *, txdp), descriptor);
680 }
681 
682 static inline void
683 ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
684 	uint16_t nb_pkts, uint64_t flags)
685 {
686 	int i;
687 
688 	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
689 		ice_vtx1(txdp, *pkt, flags);
690 }
691 
692 static uint16_t
693 ice_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
694 			 uint16_t nb_pkts)
695 {
696 	struct ci_tx_queue *txq = (struct ci_tx_queue *)tx_queue;
697 	volatile struct ice_tx_desc *txdp;
698 	struct ci_tx_entry_vec *txep;
699 	uint16_t n, nb_commit, tx_id;
700 	uint64_t flags = ICE_TD_CMD;
701 	uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
702 	int i;
703 
704 	/* cross rx_thresh boundary is not allowed */
705 	nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
706 
707 	if (txq->nb_tx_free < txq->tx_free_thresh)
708 		ci_tx_free_bufs_vec(txq, ice_tx_desc_done, false);
709 
710 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
711 	nb_commit = nb_pkts;
712 	if (unlikely(nb_pkts == 0))
713 		return 0;
714 
715 	tx_id = txq->tx_tail;
716 	txdp = &txq->ice_tx_ring[tx_id];
717 	txep = &txq->sw_ring_vec[tx_id];
718 
719 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
720 
721 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
722 	if (nb_commit >= n) {
723 		ci_tx_backlog_entry_vec(txep, tx_pkts, n);
724 
725 		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
726 			ice_vtx1(txdp, *tx_pkts, flags);
727 
728 		ice_vtx1(txdp, *tx_pkts++, rs);
729 
730 		nb_commit = (uint16_t)(nb_commit - n);
731 
732 		tx_id = 0;
733 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
734 
735 		/* avoid reach the end of ring */
736 		txdp = &txq->ice_tx_ring[tx_id];
737 		txep = &txq->sw_ring_vec[tx_id];
738 	}
739 
740 	ci_tx_backlog_entry_vec(txep, tx_pkts, nb_commit);
741 
742 	ice_vtx(txdp, tx_pkts, nb_commit, flags);
743 
744 	tx_id = (uint16_t)(tx_id + nb_commit);
745 	if (tx_id > txq->tx_next_rs) {
746 		txq->ice_tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
747 			rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
748 					 ICE_TXD_QW1_CMD_S);
749 		txq->tx_next_rs =
750 			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
751 	}
752 
753 	txq->tx_tail = tx_id;
754 
755 	ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
756 
757 	return nb_pkts;
758 }
759 
760 uint16_t
761 ice_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
762 		  uint16_t nb_pkts)
763 {
764 	uint16_t nb_tx = 0;
765 	struct ci_tx_queue *txq = (struct ci_tx_queue *)tx_queue;
766 
767 	while (nb_pkts) {
768 		uint16_t ret, num;
769 
770 		num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
771 		ret = ice_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
772 		nb_tx += ret;
773 		nb_pkts -= ret;
774 		if (ret < num)
775 			break;
776 	}
777 
778 	return nb_tx;
779 }
780 
781 int __rte_cold
782 ice_rxq_vec_setup(struct ice_rx_queue *rxq)
783 {
784 	if (!rxq)
785 		return -1;
786 
787 	rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs_vec;
788 	rxq->mbuf_initializer = ci_rxq_mbuf_initializer(rxq->port_id);
789 	return 0;
790 }
791 
792 int __rte_cold
793 ice_txq_vec_setup(struct ci_tx_queue *txq __rte_unused)
794 {
795 	return 0;
796 }
797 
798 int __rte_cold
799 ice_rx_vec_dev_check(struct rte_eth_dev *dev)
800 {
801 	return ice_rx_vec_dev_check_default(dev);
802 }
803 
804 int __rte_cold
805 ice_tx_vec_dev_check(struct rte_eth_dev *dev)
806 {
807 	return ice_tx_vec_dev_check_default(dev);
808 }
809