xref: /dpdk/drivers/net/intel/ice/ice_rxtx_vec_avx2.c (revision 7e230d568a751685588b7badcc14ede92cdd9c91)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4 
5 #include "ice_rxtx_vec_common.h"
6 #include "ice_rxtx_common_avx.h"
7 
8 #include <rte_vect.h>
9 
10 static __rte_always_inline void
11 ice_rxq_rearm(struct ice_rx_queue *rxq)
12 {
13 	return ice_rxq_rearm_common(rxq, false);
14 }
15 
16 static __rte_always_inline __m256i
17 ice_flex_rxd_to_fdir_flags_vec_avx2(const __m256i fdir_id0_7)
18 {
19 #define FDID_MIS_MAGIC 0xFFFFFFFF
20 	RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2));
21 	RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
22 	const __m256i pkt_fdir_bit = _mm256_set1_epi32(RTE_MBUF_F_RX_FDIR |
23 			RTE_MBUF_F_RX_FDIR_ID);
24 	/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
25 	const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
26 	__m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
27 			fdir_mis_mask);
28 	/* this XOR op results to bit-reverse the fdir_mask */
29 	fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
30 	const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
31 
32 	return fdir_flags;
33 }
34 
35 static __rte_always_inline uint16_t
36 _ice_recv_raw_pkts_vec_avx2(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
37 			    uint16_t nb_pkts, uint8_t *split_packet,
38 			    bool offload)
39 {
40 #define ICE_DESCS_PER_LOOP_AVX 8
41 
42 	const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
43 	const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
44 			0, rxq->mbuf_initializer);
45 	struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
46 	volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
47 	const int avx_aligned = ((rxq->rx_tail & 1) == 0);
48 
49 	rte_prefetch0(rxdp);
50 
51 	/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
52 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
53 
54 	/* See if we need to rearm the RX queue - gives the prefetch a bit
55 	 * of time to act
56 	 */
57 	if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
58 		ice_rxq_rearm(rxq);
59 
60 	/* Before we start moving massive data around, check to see if
61 	 * there is actually a packet available
62 	 */
63 	if (!(rxdp->wb.status_error0 &
64 			rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
65 		return 0;
66 
67 	/* constants used in processing loop */
68 	const __m256i crc_adjust =
69 		_mm256_set_epi16
70 			(/* first descriptor */
71 			 0, 0, 0,       /* ignore non-length fields */
72 			 -rxq->crc_len, /* sub crc on data_len */
73 			 0,             /* ignore high-16bits of pkt_len */
74 			 -rxq->crc_len, /* sub crc on pkt_len */
75 			 0, 0,          /* ignore pkt_type field */
76 			 /* second descriptor */
77 			 0, 0, 0,       /* ignore non-length fields */
78 			 -rxq->crc_len, /* sub crc on data_len */
79 			 0,             /* ignore high-16bits of pkt_len */
80 			 -rxq->crc_len, /* sub crc on pkt_len */
81 			 0, 0           /* ignore pkt_type field */
82 			);
83 
84 	/* 8 packets DD mask, LSB in each 32-bit value */
85 	const __m256i dd_check = _mm256_set1_epi32(1);
86 
87 	/* 8 packets EOP mask, second-LSB in each 32-bit value */
88 	const __m256i eop_check = _mm256_slli_epi32(dd_check,
89 			ICE_RX_DESC_STATUS_EOF_S);
90 
91 	/* mask to shuffle from desc. to mbuf (2 descriptors)*/
92 	const __m256i shuf_msk =
93 		_mm256_set_epi8
94 			(/* first descriptor */
95 			 0xFF, 0xFF,
96 			 0xFF, 0xFF,	/* rss hash parsed separately */
97 			 11, 10,	/* octet 10~11, 16 bits vlan_macip */
98 			 5, 4,		/* octet 4~5, 16 bits data_len */
99 			 0xFF, 0xFF,	/* skip hi 16 bits pkt_len, zero out */
100 			 5, 4,		/* octet 4~5, 16 bits pkt_len */
101 			 0xFF, 0xFF,	/* pkt_type set as unknown */
102 			 0xFF, 0xFF,	/*pkt_type set as unknown */
103 			 /* second descriptor */
104 			 0xFF, 0xFF,
105 			 0xFF, 0xFF,	/* rss hash parsed separately */
106 			 11, 10,	/* octet 10~11, 16 bits vlan_macip */
107 			 5, 4,		/* octet 4~5, 16 bits data_len */
108 			 0xFF, 0xFF,	/* skip hi 16 bits pkt_len, zero out */
109 			 5, 4,		/* octet 4~5, 16 bits pkt_len */
110 			 0xFF, 0xFF,	/* pkt_type set as unknown */
111 			 0xFF, 0xFF	/*pkt_type set as unknown */
112 			);
113 	/**
114 	 * compile-time check the above crc and shuffle layout is correct.
115 	 * NOTE: the first field (lowest address) is given last in set_epi
116 	 * calls above.
117 	 */
118 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
119 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
120 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
121 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
122 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
123 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
124 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
125 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
126 
127 	/* Status/Error flag masks */
128 	/**
129 	 * mask everything except Checksum Reports, RSS indication
130 	 * and VLAN indication.
131 	 * bit6:4 for IP/L4 checksum errors.
132 	 * bit12 is for RSS indication.
133 	 * bit13 is for VLAN indication.
134 	 */
135 	const __m256i flags_mask =
136 		 _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
137 	/**
138 	 * data to be shuffled by the result of the flags mask shifted by 4
139 	 * bits.  This gives use the l3_l4 flags.
140 	 */
141 	const __m256i l3_l4_flags_shuf =
142 		_mm256_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
143 		 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
144 		  RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
145 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
146 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
147 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
148 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
149 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
150 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
151 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
152 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
153 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
154 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
155 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
156 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
157 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
158 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
159 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
160 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
161 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
162 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
163 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
164 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
165 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
166 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
167 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
168 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
169 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
170 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
171 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
172 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
173 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
174 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
175 		/**
176 		 * second 128-bits
177 		 * shift right 20 bits to use the low two bits to indicate
178 		 * outer checksum status
179 		 * shift right 1 bit to make sure it not exceed 255
180 		 */
181 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
182 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
183 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
184 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
185 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
186 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
187 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
188 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
189 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
190 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
191 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
192 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
193 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
194 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
195 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
196 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
197 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
198 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
199 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
200 		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
201 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
202 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
203 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
204 		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
205 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
206 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
207 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
208 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
209 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
210 		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
211 		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
212 		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
213 	const __m256i cksum_mask =
214 		 _mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
215 				   RTE_MBUF_F_RX_L4_CKSUM_MASK |
216 				   RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
217 				   RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK);
218 	/**
219 	 * data to be shuffled by result of flag mask, shifted down 12.
220 	 * If RSS(bit12)/VLAN(bit13) are set,
221 	 * shuffle moves appropriate flags in place.
222 	 */
223 	const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
224 			0, 0, 0, 0,
225 			0, 0, 0, 0,
226 			RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
227 			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
228 			RTE_MBUF_F_RX_RSS_HASH, 0,
229 			/* end up 128-bits */
230 			0, 0, 0, 0,
231 			0, 0, 0, 0,
232 			0, 0, 0, 0,
233 			RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
234 			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
235 			RTE_MBUF_F_RX_RSS_HASH, 0);
236 
237 	RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
238 
239 	uint16_t i, received;
240 
241 	for (i = 0, received = 0; i < nb_pkts;
242 	     i += ICE_DESCS_PER_LOOP_AVX,
243 	     rxdp += ICE_DESCS_PER_LOOP_AVX) {
244 		/* step 1, copy over 8 mbuf pointers to rx_pkts array */
245 		_mm256_storeu_si256((void *)&rx_pkts[i],
246 				    _mm256_loadu_si256((void *)&sw_ring[i]));
247 #ifdef RTE_ARCH_X86_64
248 		_mm256_storeu_si256
249 			((void *)&rx_pkts[i + 4],
250 			 _mm256_loadu_si256((void *)&sw_ring[i + 4]));
251 #endif
252 
253 		const __m128i raw_desc7 = _mm_load_si128
254 			(RTE_CAST_PTR(const __m128i *, rxdp + 7));
255 		rte_compiler_barrier();
256 		const __m128i raw_desc6 = _mm_load_si128
257 			(RTE_CAST_PTR(const __m128i *, rxdp + 6));
258 		rte_compiler_barrier();
259 		const __m128i raw_desc5 = _mm_load_si128
260 			(RTE_CAST_PTR(const __m128i *, rxdp + 5));
261 		rte_compiler_barrier();
262 		const __m128i raw_desc4 = _mm_load_si128
263 			(RTE_CAST_PTR(const __m128i *, rxdp + 4));
264 		rte_compiler_barrier();
265 		const __m128i raw_desc3 = _mm_load_si128
266 			(RTE_CAST_PTR(const __m128i *, rxdp + 3));
267 		rte_compiler_barrier();
268 		const __m128i raw_desc2 = _mm_load_si128
269 			(RTE_CAST_PTR(const __m128i *, rxdp + 2));
270 		rte_compiler_barrier();
271 		const __m128i raw_desc1 = _mm_load_si128
272 			(RTE_CAST_PTR(const __m128i *, rxdp + 1));
273 		rte_compiler_barrier();
274 		const __m128i raw_desc0 = _mm_load_si128
275 			(RTE_CAST_PTR(const __m128i *, rxdp + 0));
276 
277 		const __m256i raw_desc6_7 =
278 			_mm256_inserti128_si256(_mm256_castsi128_si256(raw_desc6), raw_desc7, 1);
279 		const __m256i raw_desc4_5 =
280 			_mm256_inserti128_si256(_mm256_castsi128_si256(raw_desc4), raw_desc5, 1);
281 		const __m256i raw_desc2_3 =
282 			_mm256_inserti128_si256(_mm256_castsi128_si256(raw_desc2), raw_desc3, 1);
283 		const __m256i raw_desc0_1 =
284 			_mm256_inserti128_si256(_mm256_castsi128_si256(raw_desc0), raw_desc1, 1);
285 
286 		if (split_packet) {
287 			int j;
288 
289 			for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
290 				rte_mbuf_prefetch_part2(rx_pkts[i + j]);
291 		}
292 
293 		/**
294 		 * convert descriptors 4-7 into mbufs, re-arrange fields.
295 		 * Then write into the mbuf.
296 		 */
297 		__m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
298 		__m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
299 
300 		mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
301 		mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
302 		/**
303 		 * to get packet types, ptype is located in bit16-25
304 		 * of each 128bits
305 		 */
306 		const __m256i ptype_mask =
307 			_mm256_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
308 		const __m256i ptypes6_7 =
309 			_mm256_and_si256(raw_desc6_7, ptype_mask);
310 		const __m256i ptypes4_5 =
311 			_mm256_and_si256(raw_desc4_5, ptype_mask);
312 		const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
313 		const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
314 		const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
315 		const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
316 
317 		mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
318 		mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
319 		mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
320 		mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
321 		/* merge the status bits into one register */
322 		const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
323 				raw_desc4_5);
324 
325 		/**
326 		 * convert descriptors 0-3 into mbufs, re-arrange fields.
327 		 * Then write into the mbuf.
328 		 */
329 		__m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
330 		__m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
331 
332 		mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
333 		mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
334 		/**
335 		 * to get packet types, ptype is located in bit16-25
336 		 * of each 128bits
337 		 */
338 		const __m256i ptypes2_3 =
339 			_mm256_and_si256(raw_desc2_3, ptype_mask);
340 		const __m256i ptypes0_1 =
341 			_mm256_and_si256(raw_desc0_1, ptype_mask);
342 		const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
343 		const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
344 		const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
345 		const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
346 
347 		mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
348 		mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
349 		mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
350 		mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
351 		/* merge the status bits into one register */
352 		const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
353 								raw_desc0_1);
354 
355 		/**
356 		 * take the two sets of status bits and merge to one
357 		 * After merge, the packets status flags are in the
358 		 * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
359 		 */
360 		__m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
361 							  status0_3);
362 		__m256i mbuf_flags = _mm256_set1_epi32(0);
363 
364 		if (offload) {
365 			/* now do flag manipulation */
366 
367 			/* get only flag/error bits we want */
368 			const __m256i flag_bits =
369 				_mm256_and_si256(status0_7, flags_mask);
370 			/**
371 			 * l3_l4_error flags, shuffle, then shift to correct adjustment
372 			 * of flags in flags_shuf, and finally mask out extra bits
373 			 */
374 			__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
375 					_mm256_srli_epi32(flag_bits, 4));
376 			l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
377 
378 			__m256i l4_outer_mask = _mm256_set1_epi32(0x6);
379 			__m256i l4_outer_flags =
380 					_mm256_and_si256(l3_l4_flags, l4_outer_mask);
381 			l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
382 
383 			__m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
384 
385 			l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
386 			l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
387 			l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
388 			/* set rss and vlan flags */
389 			const __m256i rss_vlan_flag_bits =
390 				_mm256_srli_epi32(flag_bits, 12);
391 			const __m256i rss_vlan_flags =
392 				_mm256_shuffle_epi8(rss_vlan_flags_shuf,
393 						    rss_vlan_flag_bits);
394 
395 			/* merge flags */
396 			mbuf_flags = _mm256_or_si256(l3_l4_flags,
397 						     rss_vlan_flags);
398 		}
399 
400 		if (rxq->fdir_enabled) {
401 			const __m256i fdir_id4_7 =
402 				_mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
403 
404 			const __m256i fdir_id0_3 =
405 				_mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
406 
407 			const __m256i fdir_id0_7 =
408 				_mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
409 
410 			const __m256i fdir_flags =
411 				ice_flex_rxd_to_fdir_flags_vec_avx2(fdir_id0_7);
412 
413 			/* merge with fdir_flags */
414 			mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
415 
416 			/* write to mbuf: have to use scalar store here */
417 			rx_pkts[i + 0]->hash.fdir.hi =
418 				_mm256_extract_epi32(fdir_id0_7, 3);
419 
420 			rx_pkts[i + 1]->hash.fdir.hi =
421 				_mm256_extract_epi32(fdir_id0_7, 7);
422 
423 			rx_pkts[i + 2]->hash.fdir.hi =
424 				_mm256_extract_epi32(fdir_id0_7, 2);
425 
426 			rx_pkts[i + 3]->hash.fdir.hi =
427 				_mm256_extract_epi32(fdir_id0_7, 6);
428 
429 			rx_pkts[i + 4]->hash.fdir.hi =
430 				_mm256_extract_epi32(fdir_id0_7, 1);
431 
432 			rx_pkts[i + 5]->hash.fdir.hi =
433 				_mm256_extract_epi32(fdir_id0_7, 5);
434 
435 			rx_pkts[i + 6]->hash.fdir.hi =
436 				_mm256_extract_epi32(fdir_id0_7, 0);
437 
438 			rx_pkts[i + 7]->hash.fdir.hi =
439 				_mm256_extract_epi32(fdir_id0_7, 4);
440 		} /* if() on fdir_enabled */
441 
442 		if (offload) {
443 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
444 			/**
445 			 * needs to load 2nd 16B of each desc for RSS hash parsing,
446 			 * will cause performance drop to get into this context.
447 			 */
448 			if (rxq->vsi->adapter->pf.dev_data->dev_conf.rxmode.offloads &
449 					RTE_ETH_RX_OFFLOAD_RSS_HASH) {
450 				/* load bottom half of every 32B desc */
451 				const __m128i raw_desc_bh7 = _mm_load_si128
452 					(RTE_CAST_PTR(const __m128i *, &rxdp[7].wb.status_error1));
453 				rte_compiler_barrier();
454 				const __m128i raw_desc_bh6 = _mm_load_si128
455 					(RTE_CAST_PTR(const __m128i *, &rxdp[6].wb.status_error1));
456 				rte_compiler_barrier();
457 				const __m128i raw_desc_bh5 = _mm_load_si128
458 					(RTE_CAST_PTR(const __m128i *, &rxdp[5].wb.status_error1));
459 				rte_compiler_barrier();
460 				const __m128i raw_desc_bh4 = _mm_load_si128
461 					(RTE_CAST_PTR(const __m128i *, &rxdp[4].wb.status_error1));
462 				rte_compiler_barrier();
463 				const __m128i raw_desc_bh3 = _mm_load_si128
464 					(RTE_CAST_PTR(const __m128i *, &rxdp[3].wb.status_error1));
465 				rte_compiler_barrier();
466 				const __m128i raw_desc_bh2 = _mm_load_si128
467 					(RTE_CAST_PTR(const __m128i *, &rxdp[2].wb.status_error1));
468 				rte_compiler_barrier();
469 				const __m128i raw_desc_bh1 = _mm_load_si128
470 					(RTE_CAST_PTR(const __m128i *, &rxdp[1].wb.status_error1));
471 				rte_compiler_barrier();
472 				const __m128i raw_desc_bh0 = _mm_load_si128
473 					(RTE_CAST_PTR(const __m128i *, &rxdp[0].wb.status_error1));
474 
475 				__m256i raw_desc_bh6_7 =
476 					_mm256_inserti128_si256
477 						(_mm256_castsi128_si256(raw_desc_bh6),
478 						raw_desc_bh7, 1);
479 				__m256i raw_desc_bh4_5 =
480 					_mm256_inserti128_si256
481 						(_mm256_castsi128_si256(raw_desc_bh4),
482 						raw_desc_bh5, 1);
483 				__m256i raw_desc_bh2_3 =
484 					_mm256_inserti128_si256
485 						(_mm256_castsi128_si256(raw_desc_bh2),
486 						raw_desc_bh3, 1);
487 				__m256i raw_desc_bh0_1 =
488 					_mm256_inserti128_si256
489 						(_mm256_castsi128_si256(raw_desc_bh0),
490 						raw_desc_bh1, 1);
491 
492 				/**
493 				 * to shift the 32b RSS hash value to the
494 				 * highest 32b of each 128b before mask
495 				 */
496 				__m256i rss_hash6_7 =
497 					_mm256_slli_epi64(raw_desc_bh6_7, 32);
498 				__m256i rss_hash4_5 =
499 					_mm256_slli_epi64(raw_desc_bh4_5, 32);
500 				__m256i rss_hash2_3 =
501 					_mm256_slli_epi64(raw_desc_bh2_3, 32);
502 				__m256i rss_hash0_1 =
503 					_mm256_slli_epi64(raw_desc_bh0_1, 32);
504 
505 				__m256i rss_hash_msk =
506 					_mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
507 							 0xFFFFFFFF, 0, 0, 0);
508 
509 				rss_hash6_7 = _mm256_and_si256
510 						(rss_hash6_7, rss_hash_msk);
511 				rss_hash4_5 = _mm256_and_si256
512 						(rss_hash4_5, rss_hash_msk);
513 				rss_hash2_3 = _mm256_and_si256
514 						(rss_hash2_3, rss_hash_msk);
515 				rss_hash0_1 = _mm256_and_si256
516 						(rss_hash0_1, rss_hash_msk);
517 
518 				mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
519 				mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
520 				mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
521 				mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
522 			} /* if() on RSS hash parsing */
523 #endif
524 		}
525 
526 		/**
527 		 * At this point, we have the 8 sets of flags in the low 16-bits
528 		 * of each 32-bit value in vlan0.
529 		 * We want to extract these, and merge them with the mbuf init
530 		 * data so we can do a single write to the mbuf to set the flags
531 		 * and all the other initialization fields. Extracting the
532 		 * appropriate flags means that we have to do a shift and blend
533 		 * for each mbuf before we do the write. However, we can also
534 		 * add in the previously computed rx_descriptor fields to
535 		 * make a single 256-bit write per mbuf
536 		 */
537 		/* check the structure matches expectations */
538 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
539 				 offsetof(struct rte_mbuf, rearm_data) + 8);
540 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
541 				 RTE_ALIGN(offsetof(struct rte_mbuf,
542 						    rearm_data),
543 					   16));
544 		/* build up data and do writes */
545 		__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
546 			rearm6, rearm7;
547 		rearm6 = _mm256_blend_epi32(mbuf_init,
548 					    _mm256_slli_si256(mbuf_flags, 8),
549 					    0x04);
550 		rearm4 = _mm256_blend_epi32(mbuf_init,
551 					    _mm256_slli_si256(mbuf_flags, 4),
552 					    0x04);
553 		rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
554 		rearm0 = _mm256_blend_epi32(mbuf_init,
555 					    _mm256_srli_si256(mbuf_flags, 4),
556 					    0x04);
557 		/* permute to add in the rx_descriptor e.g. rss fields */
558 		rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
559 		rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
560 		rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
561 		rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
562 		/* write to mbuf */
563 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
564 				    rearm6);
565 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
566 				    rearm4);
567 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
568 				    rearm2);
569 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
570 				    rearm0);
571 
572 		/* repeat for the odd mbufs */
573 		const __m256i odd_flags =
574 			_mm256_castsi128_si256
575 				(_mm256_extracti128_si256(mbuf_flags, 1));
576 		rearm7 = _mm256_blend_epi32(mbuf_init,
577 					    _mm256_slli_si256(odd_flags, 8),
578 					    0x04);
579 		rearm5 = _mm256_blend_epi32(mbuf_init,
580 					    _mm256_slli_si256(odd_flags, 4),
581 					    0x04);
582 		rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
583 		rearm1 = _mm256_blend_epi32(mbuf_init,
584 					    _mm256_srli_si256(odd_flags, 4),
585 					    0x04);
586 		/* since odd mbufs are already in hi 128-bits use blend */
587 		rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
588 		rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
589 		rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
590 		rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
591 		/* again write to mbufs */
592 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
593 				    rearm7);
594 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
595 				    rearm5);
596 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
597 				    rearm3);
598 		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
599 				    rearm1);
600 
601 		/* extract and record EOP bit */
602 		if (split_packet) {
603 			const __m128i eop_mask =
604 				_mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
605 			const __m256i eop_bits256 = _mm256_and_si256(status0_7,
606 								     eop_check);
607 			/* pack status bits into a single 128-bit register */
608 			const __m128i eop_bits =
609 				_mm_packus_epi32
610 					(_mm256_castsi256_si128(eop_bits256),
611 					 _mm256_extractf128_si256(eop_bits256,
612 								  1));
613 			/**
614 			 * flip bits, and mask out the EOP bit, which is now
615 			 * a split-packet bit i.e. !EOP, rather than EOP one.
616 			 */
617 			__m128i split_bits = _mm_andnot_si128(eop_bits,
618 					eop_mask);
619 			/**
620 			 * eop bits are out of order, so we need to shuffle them
621 			 * back into order again. In doing so, only use low 8
622 			 * bits, which acts like another pack instruction
623 			 * The original order is (hi->lo): 1,3,5,7,0,2,4,6
624 			 * [Since we use epi8, the 16-bit positions are
625 			 * multiplied by 2 in the eop_shuffle value.]
626 			 */
627 			__m128i eop_shuffle =
628 				_mm_set_epi8(/* zero hi 64b */
629 					     0xFF, 0xFF, 0xFF, 0xFF,
630 					     0xFF, 0xFF, 0xFF, 0xFF,
631 					     /* move values to lo 64b */
632 					     8, 0, 10, 2,
633 					     12, 4, 14, 6);
634 			split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
635 			*(uint64_t *)split_packet =
636 				_mm_cvtsi128_si64(split_bits);
637 			split_packet += ICE_DESCS_PER_LOOP_AVX;
638 		}
639 
640 		/* perform dd_check */
641 		status0_7 = _mm256_and_si256(status0_7, dd_check);
642 		status0_7 = _mm256_packs_epi32(status0_7,
643 					       _mm256_setzero_si256());
644 
645 		uint64_t burst = rte_popcount64
646 					(_mm_cvtsi128_si64
647 						(_mm256_extracti128_si256
648 							(status0_7, 1)));
649 		burst += rte_popcount64
650 				(_mm_cvtsi128_si64
651 					(_mm256_castsi256_si128(status0_7)));
652 		received += burst;
653 		if (burst != ICE_DESCS_PER_LOOP_AVX)
654 			break;
655 	}
656 
657 	/* update tail pointers */
658 	rxq->rx_tail += received;
659 	rxq->rx_tail &= (rxq->nb_rx_desc - 1);
660 	if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
661 		rxq->rx_tail--;
662 		received--;
663 	}
664 	rxq->rxrearm_nb += received;
665 	return received;
666 }
667 
668 /**
669  * Notice:
670  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
671  */
672 uint16_t
673 ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
674 		       uint16_t nb_pkts)
675 {
676 	return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts,
677 					   nb_pkts, NULL, false);
678 }
679 
680 uint16_t
681 ice_recv_pkts_vec_avx2_offload(void *rx_queue, struct rte_mbuf **rx_pkts,
682 			       uint16_t nb_pkts)
683 {
684 	return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts,
685 					   nb_pkts, NULL, true);
686 }
687 
688 /**
689  * vPMD receive routine that reassembles single burst of 32 scattered packets
690  * Notice:
691  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
692  */
693 static __rte_always_inline uint16_t
694 ice_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
695 				  uint16_t nb_pkts, bool offload)
696 {
697 	struct ice_rx_queue *rxq = rx_queue;
698 	uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
699 
700 	/* get some new buffers */
701 	uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
702 						       split_flags, offload);
703 	if (nb_bufs == 0)
704 		return 0;
705 
706 	/* happy day case, full burst + no packets to be joined */
707 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
708 
709 	if (!rxq->pkt_first_seg &&
710 	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
711 	    split_fl64[2] == 0 && split_fl64[3] == 0)
712 		return nb_bufs;
713 
714 	/* reassemble any packets that need reassembly*/
715 	unsigned int i = 0;
716 
717 	if (!rxq->pkt_first_seg) {
718 		/* find the first split flag, and only reassemble then*/
719 		while (i < nb_bufs && !split_flags[i])
720 			i++;
721 		if (i == nb_bufs)
722 			return nb_bufs;
723 		rxq->pkt_first_seg = rx_pkts[i];
724 	}
725 	return i + ci_rx_reassemble_packets(&rx_pkts[i], nb_bufs - i, &split_flags[i],
726 			&rxq->pkt_first_seg, &rxq->pkt_last_seg, rxq->crc_len);
727 }
728 
729 /**
730  * vPMD receive routine that reassembles scattered packets.
731  * Main receive routine that can handle arbitrary burst sizes
732  * Notice:
733  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
734  */
735 static __rte_always_inline uint16_t
736 ice_recv_scattered_pkts_vec_avx2_common(void *rx_queue,
737 					struct rte_mbuf **rx_pkts,
738 					uint16_t nb_pkts,
739 					bool offload)
740 {
741 	uint16_t retval = 0;
742 
743 	while (nb_pkts > ICE_VPMD_RX_BURST) {
744 		uint16_t burst = ice_recv_scattered_burst_vec_avx2(rx_queue,
745 				rx_pkts + retval, ICE_VPMD_RX_BURST, offload);
746 		retval += burst;
747 		nb_pkts -= burst;
748 		if (burst < ICE_VPMD_RX_BURST)
749 			return retval;
750 	}
751 	return retval + ice_recv_scattered_burst_vec_avx2(rx_queue,
752 				rx_pkts + retval, nb_pkts, offload);
753 }
754 
755 uint16_t
756 ice_recv_scattered_pkts_vec_avx2(void *rx_queue,
757 				 struct rte_mbuf **rx_pkts,
758 				 uint16_t nb_pkts)
759 {
760 	return ice_recv_scattered_pkts_vec_avx2_common(rx_queue,
761 						       rx_pkts,
762 						       nb_pkts,
763 						       false);
764 }
765 
766 uint16_t
767 ice_recv_scattered_pkts_vec_avx2_offload(void *rx_queue,
768 					 struct rte_mbuf **rx_pkts,
769 					 uint16_t nb_pkts)
770 {
771 	return ice_recv_scattered_pkts_vec_avx2_common(rx_queue,
772 						       rx_pkts,
773 						       nb_pkts,
774 						       true);
775 }
776 
777 static __rte_always_inline void
778 ice_vtx1(volatile struct ice_tx_desc *txdp,
779 	 struct rte_mbuf *pkt, uint64_t flags, bool offload)
780 {
781 	uint64_t high_qw =
782 		(ICE_TX_DESC_DTYPE_DATA |
783 		 ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
784 		 ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
785 	if (offload)
786 		ice_txd_enable_offload(pkt, &high_qw);
787 
788 	__m128i descriptor = _mm_set_epi64x(high_qw, rte_pktmbuf_iova(pkt));
789 	_mm_store_si128(RTE_CAST_PTR(__m128i *, txdp), descriptor);
790 }
791 
792 static __rte_always_inline void
793 ice_vtx(volatile struct ice_tx_desc *txdp,
794 	struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags, bool offload)
795 {
796 	const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
797 			((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
798 
799 	/* if unaligned on 32-bit boundary, do one to align */
800 	if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
801 		ice_vtx1(txdp, *pkt, flags, offload);
802 		nb_pkts--, txdp++, pkt++;
803 	}
804 
805 	/* do two at a time while possible, in bursts */
806 	for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
807 		uint64_t hi_qw3 =
808 			hi_qw_tmpl |
809 			((uint64_t)pkt[3]->data_len <<
810 			 ICE_TXD_QW1_TX_BUF_SZ_S);
811 		if (offload)
812 			ice_txd_enable_offload(pkt[3], &hi_qw3);
813 		uint64_t hi_qw2 =
814 			hi_qw_tmpl |
815 			((uint64_t)pkt[2]->data_len <<
816 			 ICE_TXD_QW1_TX_BUF_SZ_S);
817 		if (offload)
818 			ice_txd_enable_offload(pkt[2], &hi_qw2);
819 		uint64_t hi_qw1 =
820 			hi_qw_tmpl |
821 			((uint64_t)pkt[1]->data_len <<
822 			 ICE_TXD_QW1_TX_BUF_SZ_S);
823 		if (offload)
824 			ice_txd_enable_offload(pkt[1], &hi_qw1);
825 		uint64_t hi_qw0 =
826 			hi_qw_tmpl |
827 			((uint64_t)pkt[0]->data_len <<
828 			 ICE_TXD_QW1_TX_BUF_SZ_S);
829 		if (offload)
830 			ice_txd_enable_offload(pkt[0], &hi_qw0);
831 
832 		__m256i desc2_3 =
833 			_mm256_set_epi64x
834 				(hi_qw3, rte_pktmbuf_iova(pkt[3]),
835 				 hi_qw2, rte_pktmbuf_iova(pkt[2]));
836 		__m256i desc0_1 =
837 			_mm256_set_epi64x
838 				(hi_qw1, rte_pktmbuf_iova(pkt[1]),
839 				 hi_qw0, rte_pktmbuf_iova(pkt[0]));
840 		_mm256_store_si256(RTE_CAST_PTR(__m256i *, txdp + 2), desc2_3);
841 		_mm256_store_si256(RTE_CAST_PTR(__m256i *, txdp), desc0_1);
842 	}
843 
844 	/* do any last ones */
845 	while (nb_pkts) {
846 		ice_vtx1(txdp, *pkt, flags, offload);
847 		txdp++, pkt++, nb_pkts--;
848 	}
849 }
850 
851 static __rte_always_inline uint16_t
852 ice_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
853 			      uint16_t nb_pkts, bool offload)
854 {
855 	struct ci_tx_queue *txq = (struct ci_tx_queue *)tx_queue;
856 	volatile struct ice_tx_desc *txdp;
857 	struct ci_tx_entry_vec *txep;
858 	uint16_t n, nb_commit, tx_id;
859 	uint64_t flags = ICE_TD_CMD;
860 	uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
861 
862 	/* cross rx_thresh boundary is not allowed */
863 	nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
864 
865 	if (txq->nb_tx_free < txq->tx_free_thresh)
866 		ci_tx_free_bufs_vec(txq, ice_tx_desc_done, false);
867 
868 	nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
869 	if (unlikely(nb_pkts == 0))
870 		return 0;
871 
872 	tx_id = txq->tx_tail;
873 	txdp = &txq->ice_tx_ring[tx_id];
874 	txep = &txq->sw_ring_vec[tx_id];
875 
876 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
877 
878 	n = (uint16_t)(txq->nb_tx_desc - tx_id);
879 	if (nb_commit >= n) {
880 		ci_tx_backlog_entry_vec(txep, tx_pkts, n);
881 
882 		ice_vtx(txdp, tx_pkts, n - 1, flags, offload);
883 		tx_pkts += (n - 1);
884 		txdp += (n - 1);
885 
886 		ice_vtx1(txdp, *tx_pkts++, rs, offload);
887 
888 		nb_commit = (uint16_t)(nb_commit - n);
889 
890 		tx_id = 0;
891 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
892 
893 		/* avoid reach the end of ring */
894 		txdp = &txq->ice_tx_ring[tx_id];
895 		txep = &txq->sw_ring_vec[tx_id];
896 	}
897 
898 	ci_tx_backlog_entry_vec(txep, tx_pkts, nb_commit);
899 
900 	ice_vtx(txdp, tx_pkts, nb_commit, flags, offload);
901 
902 	tx_id = (uint16_t)(tx_id + nb_commit);
903 	if (tx_id > txq->tx_next_rs) {
904 		txq->ice_tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
905 			rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
906 					 ICE_TXD_QW1_CMD_S);
907 		txq->tx_next_rs =
908 			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
909 	}
910 
911 	txq->tx_tail = tx_id;
912 
913 	ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
914 
915 	return nb_pkts;
916 }
917 
918 static __rte_always_inline uint16_t
919 ice_xmit_pkts_vec_avx2_common(void *tx_queue, struct rte_mbuf **tx_pkts,
920 			      uint16_t nb_pkts, bool offload)
921 {
922 	uint16_t nb_tx = 0;
923 	struct ci_tx_queue *txq = (struct ci_tx_queue *)tx_queue;
924 
925 	while (nb_pkts) {
926 		uint16_t ret, num;
927 
928 		num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
929 		ret = ice_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
930 						    num, offload);
931 		nb_tx += ret;
932 		nb_pkts -= ret;
933 		if (ret < num)
934 			break;
935 	}
936 
937 	return nb_tx;
938 }
939 
940 uint16_t
941 ice_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
942 		       uint16_t nb_pkts)
943 {
944 	return ice_xmit_pkts_vec_avx2_common(tx_queue, tx_pkts, nb_pkts, false);
945 }
946 
947 uint16_t
948 ice_xmit_pkts_vec_avx2_offload(void *tx_queue, struct rte_mbuf **tx_pkts,
949 			       uint16_t nb_pkts)
950 {
951 	return ice_xmit_pkts_vec_avx2_common(tx_queue, tx_pkts, nb_pkts, true);
952 }
953