xref: /dpdk/drivers/net/intel/ice/ice_rxtx.c (revision e3b5f52d590ec2cae30f2eddcc310832154847f1)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4 
5 #include <ethdev_driver.h>
6 #include <rte_net.h>
7 #include <rte_vect.h>
8 
9 #include "ice_rxtx.h"
10 #include "ice_rxtx_vec_common.h"
11 
12 #define ICE_TX_CKSUM_OFFLOAD_MASK (RTE_MBUF_F_TX_IP_CKSUM |		 \
13 		RTE_MBUF_F_TX_L4_MASK |		 \
14 		RTE_MBUF_F_TX_TCP_SEG |		 \
15 		RTE_MBUF_F_TX_UDP_SEG |		 \
16 		RTE_MBUF_F_TX_OUTER_IP_CKSUM)
17 
18 /**
19  * The mbuf dynamic field pointer for protocol extraction metadata.
20  */
21 #define ICE_DYNF_PROTO_XTR_METADATA(m, n) \
22 	RTE_MBUF_DYNFIELD((m), (n), uint32_t *)
23 
24 static int
25 ice_monitor_callback(const uint64_t value,
26 		const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
27 {
28 	const uint64_t m = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
29 	/*
30 	 * we expect the DD bit to be set to 1 if this descriptor was already
31 	 * written to.
32 	 */
33 	return (value & m) == m ? -1 : 0;
34 }
35 
36 int
37 ice_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
38 {
39 	volatile union ice_rx_flex_desc *rxdp;
40 	struct ice_rx_queue *rxq = rx_queue;
41 	uint16_t desc;
42 
43 	desc = rxq->rx_tail;
44 	rxdp = &rxq->rx_ring[desc];
45 	/* watch for changes in status bit */
46 	pmc->addr = &rxdp->wb.status_error0;
47 
48 	/* comparison callback */
49 	pmc->fn = ice_monitor_callback;
50 
51 	/* register is 16-bit */
52 	pmc->size = sizeof(uint16_t);
53 
54 	return 0;
55 }
56 
57 
58 static inline uint8_t
59 ice_proto_xtr_type_to_rxdid(uint8_t xtr_type)
60 {
61 	static uint8_t rxdid_map[] = {
62 		[PROTO_XTR_NONE]      = ICE_RXDID_COMMS_OVS,
63 		[PROTO_XTR_VLAN]      = ICE_RXDID_COMMS_AUX_VLAN,
64 		[PROTO_XTR_IPV4]      = ICE_RXDID_COMMS_AUX_IPV4,
65 		[PROTO_XTR_IPV6]      = ICE_RXDID_COMMS_AUX_IPV6,
66 		[PROTO_XTR_IPV6_FLOW] = ICE_RXDID_COMMS_AUX_IPV6_FLOW,
67 		[PROTO_XTR_TCP]       = ICE_RXDID_COMMS_AUX_TCP,
68 		[PROTO_XTR_IP_OFFSET] = ICE_RXDID_COMMS_AUX_IP_OFFSET,
69 	};
70 
71 	return xtr_type < RTE_DIM(rxdid_map) ?
72 				rxdid_map[xtr_type] : ICE_RXDID_COMMS_OVS;
73 }
74 
75 static inline void
76 ice_rxd_to_pkt_fields_by_comms_generic(__rte_unused struct ice_rx_queue *rxq,
77 				       struct rte_mbuf *mb,
78 				       volatile union ice_rx_flex_desc *rxdp)
79 {
80 	volatile struct ice_32b_rx_flex_desc_comms *desc =
81 			(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
82 	uint16_t stat_err = rte_le_to_cpu_16(desc->status_error0);
83 
84 	if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
85 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
86 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
87 	}
88 
89 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
90 	if (desc->flow_id != 0xFFFFFFFF) {
91 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
92 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
93 	}
94 #endif
95 }
96 
97 static inline void
98 ice_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct ice_rx_queue *rxq,
99 				   struct rte_mbuf *mb,
100 				   volatile union ice_rx_flex_desc *rxdp)
101 {
102 	volatile struct ice_32b_rx_flex_desc_comms_ovs *desc =
103 			(volatile struct ice_32b_rx_flex_desc_comms_ovs *)rxdp;
104 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
105 	uint16_t stat_err;
106 #endif
107 
108 	if (desc->flow_id != 0xFFFFFFFF) {
109 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
110 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
111 	}
112 
113 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
114 	stat_err = rte_le_to_cpu_16(desc->status_error0);
115 	if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
116 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
117 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
118 	}
119 #endif
120 }
121 
122 static inline void
123 ice_rxd_to_pkt_fields_by_comms_aux_v1(struct ice_rx_queue *rxq,
124 				      struct rte_mbuf *mb,
125 				      volatile union ice_rx_flex_desc *rxdp)
126 {
127 	volatile struct ice_32b_rx_flex_desc_comms *desc =
128 			(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
129 	uint16_t stat_err;
130 
131 	stat_err = rte_le_to_cpu_16(desc->status_error0);
132 	if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
133 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
134 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
135 	}
136 
137 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
138 	if (desc->flow_id != 0xFFFFFFFF) {
139 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
140 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
141 	}
142 
143 	if (rxq->xtr_ol_flag) {
144 		uint32_t metadata = 0;
145 
146 		stat_err = rte_le_to_cpu_16(desc->status_error1);
147 
148 		if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
149 			metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
150 
151 		if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
152 			metadata |=
153 				rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
154 
155 		if (metadata) {
156 			mb->ol_flags |= rxq->xtr_ol_flag;
157 
158 			*ICE_DYNF_PROTO_XTR_METADATA(mb, rxq->xtr_field_offs) = metadata;
159 		}
160 	}
161 #else
162 	RTE_SET_USED(rxq);
163 #endif
164 }
165 
166 static inline void
167 ice_rxd_to_pkt_fields_by_comms_aux_v2(struct ice_rx_queue *rxq,
168 				      struct rte_mbuf *mb,
169 				      volatile union ice_rx_flex_desc *rxdp)
170 {
171 	volatile struct ice_32b_rx_flex_desc_comms *desc =
172 			(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
173 	uint16_t stat_err;
174 
175 	stat_err = rte_le_to_cpu_16(desc->status_error0);
176 	if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
177 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
178 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
179 	}
180 
181 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
182 	if (desc->flow_id != 0xFFFFFFFF) {
183 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
184 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
185 	}
186 
187 	if (rxq->xtr_ol_flag) {
188 		uint32_t metadata = 0;
189 
190 		if (desc->flex_ts.flex.aux0 != 0xFFFF)
191 			metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
192 		else if (desc->flex_ts.flex.aux1 != 0xFFFF)
193 			metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
194 
195 		if (metadata) {
196 			mb->ol_flags |= rxq->xtr_ol_flag;
197 
198 			*ICE_DYNF_PROTO_XTR_METADATA(mb, rxq->xtr_field_offs) = metadata;
199 		}
200 	}
201 #else
202 	RTE_SET_USED(rxq);
203 #endif
204 }
205 
206 static const ice_rxd_to_pkt_fields_t rxd_to_pkt_fields_ops[] = {
207 	[ICE_RXDID_COMMS_AUX_VLAN] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
208 	[ICE_RXDID_COMMS_AUX_IPV4] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
209 	[ICE_RXDID_COMMS_AUX_IPV6] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
210 	[ICE_RXDID_COMMS_AUX_IPV6_FLOW] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
211 	[ICE_RXDID_COMMS_AUX_TCP] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
212 	[ICE_RXDID_COMMS_AUX_IP_OFFSET] = ice_rxd_to_pkt_fields_by_comms_aux_v2,
213 	[ICE_RXDID_COMMS_GENERIC] = ice_rxd_to_pkt_fields_by_comms_generic,
214 	[ICE_RXDID_COMMS_OVS] = ice_rxd_to_pkt_fields_by_comms_ovs,
215 };
216 
217 void
218 ice_select_rxd_to_pkt_fields_handler(struct ice_rx_queue *rxq, uint32_t rxdid)
219 {
220 	rxq->rxdid = rxdid;
221 
222 	switch (rxdid) {
223 	case ICE_RXDID_COMMS_AUX_VLAN:
224 	case ICE_RXDID_COMMS_AUX_IPV4:
225 	case ICE_RXDID_COMMS_AUX_IPV6:
226 	case ICE_RXDID_COMMS_AUX_IPV6_FLOW:
227 	case ICE_RXDID_COMMS_AUX_TCP:
228 	case ICE_RXDID_COMMS_AUX_IP_OFFSET:
229 		break;
230 	case ICE_RXDID_COMMS_GENERIC:
231 		/* fallthrough */
232 	case ICE_RXDID_COMMS_OVS:
233 		break;
234 
235 	default:
236 		/* update this according to the RXDID for PROTO_XTR_NONE */
237 		rxq->rxdid = ICE_RXDID_COMMS_OVS;
238 		break;
239 	}
240 
241 	if (rxq->xtr_field_offs == -1)
242 		rxq->xtr_ol_flag = 0;
243 }
244 
245 static int
246 ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
247 {
248 	struct ice_vsi *vsi = rxq->vsi;
249 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
250 	struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
251 	struct rte_eth_dev_data *dev_data = rxq->vsi->adapter->pf.dev_data;
252 	struct ice_rlan_ctx rx_ctx;
253 	uint16_t buf_size;
254 	uint32_t rxdid = ICE_RXDID_COMMS_OVS;
255 	uint32_t regval;
256 	struct ice_adapter *ad = rxq->vsi->adapter;
257 	uint32_t frame_size = dev_data->mtu + ICE_ETH_OVERHEAD;
258 	int err;
259 
260 	/* Set buffer size as the head split is disabled. */
261 	buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
262 			      RTE_PKTMBUF_HEADROOM);
263 	rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
264 	rxq->rx_buf_len = RTE_MIN(rxq->rx_buf_len, ICE_RX_MAX_DATA_BUF_SIZE);
265 	rxq->max_pkt_len =
266 		RTE_MIN((uint32_t)ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len,
267 			frame_size);
268 
269 	if (rxq->max_pkt_len <= RTE_ETHER_MIN_LEN ||
270 	    rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
271 		PMD_DRV_LOG(ERR, "maximum packet length must "
272 			    "be larger than %u and smaller than %u",
273 			    (uint32_t)RTE_ETHER_MIN_LEN,
274 			    (uint32_t)ICE_FRAME_SIZE_MAX);
275 		return -EINVAL;
276 	}
277 
278 	if (!rxq->ts_enable && (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
279 		/* Register mbuf field and flag for Rx timestamp */
280 		err = rte_mbuf_dyn_rx_timestamp_register(
281 				&ice_timestamp_dynfield_offset,
282 				&ice_timestamp_dynflag);
283 		if (err) {
284 			PMD_DRV_LOG(ERR,
285 				"Cannot register mbuf field/flag for timestamp");
286 			return -EINVAL;
287 		}
288 		rxq->ts_enable = true;
289 	}
290 
291 	memset(&rx_ctx, 0, sizeof(rx_ctx));
292 
293 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) {
294 		uint32_t proto_hdr;
295 		proto_hdr = rxq->rxseg[0].proto_hdr;
296 
297 		if (proto_hdr == RTE_PTYPE_UNKNOWN) {
298 			PMD_DRV_LOG(ERR, "Buffer split protocol must be configured");
299 			return -EINVAL;
300 		}
301 
302 		switch (proto_hdr & RTE_PTYPE_L4_MASK) {
303 		case RTE_PTYPE_L4_TCP:
304 		case RTE_PTYPE_L4_UDP:
305 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
306 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_TCP_UDP;
307 			goto set_hsplit_finish;
308 		case RTE_PTYPE_L4_SCTP:
309 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
310 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_SCTP;
311 			goto set_hsplit_finish;
312 		}
313 
314 		switch (proto_hdr & RTE_PTYPE_L3_MASK) {
315 		case RTE_PTYPE_L3_IPV4_EXT_UNKNOWN:
316 		case RTE_PTYPE_L3_IPV6_EXT_UNKNOWN:
317 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
318 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_IP;
319 			goto set_hsplit_finish;
320 		}
321 
322 		switch (proto_hdr & RTE_PTYPE_L2_MASK) {
323 		case RTE_PTYPE_L2_ETHER:
324 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
325 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_L2;
326 			rx_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_SPLIT_L2;
327 			goto set_hsplit_finish;
328 		}
329 
330 		switch (proto_hdr & RTE_PTYPE_INNER_L4_MASK) {
331 		case RTE_PTYPE_INNER_L4_TCP:
332 		case RTE_PTYPE_INNER_L4_UDP:
333 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
334 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_TCP_UDP;
335 			goto set_hsplit_finish;
336 		case RTE_PTYPE_INNER_L4_SCTP:
337 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
338 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_SCTP;
339 			goto set_hsplit_finish;
340 		}
341 
342 		switch (proto_hdr & RTE_PTYPE_INNER_L3_MASK) {
343 		case RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN:
344 		case RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN:
345 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
346 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_IP;
347 			goto set_hsplit_finish;
348 		}
349 
350 		switch (proto_hdr & RTE_PTYPE_INNER_L2_MASK) {
351 		case RTE_PTYPE_INNER_L2_ETHER:
352 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
353 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_L2;
354 			goto set_hsplit_finish;
355 		}
356 
357 		switch (proto_hdr & RTE_PTYPE_TUNNEL_MASK) {
358 		case RTE_PTYPE_TUNNEL_GRENAT:
359 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
360 			rx_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_SPLIT_ALWAYS;
361 			goto set_hsplit_finish;
362 		}
363 
364 		PMD_DRV_LOG(ERR, "Buffer split protocol is not supported");
365 		return -EINVAL;
366 
367 set_hsplit_finish:
368 		rxq->rx_hdr_len = ICE_RX_HDR_BUF_SIZE;
369 	} else {
370 		rxq->rx_hdr_len = 0;
371 		rx_ctx.dtype = 0; /* No Protocol Based Buffer Split mode */
372 	}
373 
374 	rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
375 	rx_ctx.qlen = rxq->nb_rx_desc;
376 	rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
377 	rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
378 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
379 	rx_ctx.dsize = 1; /* 32B descriptors */
380 #endif
381 	rx_ctx.rxmax = rxq->max_pkt_len;
382 	/* TPH: Transaction Layer Packet (TLP) processing hints */
383 	rx_ctx.tphrdesc_ena = 1;
384 	rx_ctx.tphwdesc_ena = 1;
385 	rx_ctx.tphdata_ena = 1;
386 	rx_ctx.tphhead_ena = 1;
387 	/* Low Receive Queue Threshold defined in 64 descriptors units.
388 	 * When the number of free descriptors goes below the lrxqthresh,
389 	 * an immediate interrupt is triggered.
390 	 */
391 	rx_ctx.lrxqthresh = 2;
392 	/*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
393 	rx_ctx.l2tsel = 1;
394 	rx_ctx.showiv = 0;
395 	rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
396 
397 	rxdid = ice_proto_xtr_type_to_rxdid(rxq->proto_xtr);
398 
399 	PMD_DRV_LOG(DEBUG, "Port (%u) - Rx queue (%u) is set with RXDID : %u",
400 		    rxq->port_id, rxq->queue_id, rxdid);
401 
402 	if (!(pf->supported_rxdid & BIT(rxdid))) {
403 		PMD_DRV_LOG(ERR, "currently package doesn't support RXDID (%u)",
404 			    rxdid);
405 		return -EINVAL;
406 	}
407 
408 	rxq->rxdid = rxdid;
409 
410 	/* Enable Flexible Descriptors in the queue context which
411 	 * allows this driver to select a specific receive descriptor format
412 	 */
413 	regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
414 		QRXFLXP_CNTXT_RXDID_IDX_M;
415 
416 	/* increasing context priority to pick up profile ID;
417 	 * default is 0x01; setting to 0x03 to ensure profile
418 	 * is programming if prev context is of same priority
419 	 */
420 	regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
421 		QRXFLXP_CNTXT_RXDID_PRIO_M;
422 
423 	if (ad->ptp_ena || rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
424 		regval |= QRXFLXP_CNTXT_TS_M;
425 
426 	ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
427 
428 	err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
429 	if (err) {
430 		PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
431 			    rxq->queue_id);
432 		return -EINVAL;
433 	}
434 	err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
435 	if (err) {
436 		PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
437 			    rxq->queue_id);
438 		return -EINVAL;
439 	}
440 
441 	/* Check if scattered RX needs to be used. */
442 	if (frame_size > buf_size)
443 		dev_data->scattered_rx = 1;
444 
445 	rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
446 
447 	/* Init the Rx tail register*/
448 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
449 
450 	return 0;
451 }
452 
453 /* Allocate mbufs for all descriptors in rx queue */
454 static int
455 ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
456 {
457 	struct ice_rx_entry *rxe = rxq->sw_ring;
458 	uint64_t dma_addr;
459 	uint16_t i;
460 
461 	for (i = 0; i < rxq->nb_rx_desc; i++) {
462 		volatile union ice_rx_flex_desc *rxd;
463 		rxd = &rxq->rx_ring[i];
464 		struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
465 
466 		if (unlikely(!mbuf)) {
467 			PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
468 			return -ENOMEM;
469 		}
470 
471 		mbuf->data_off = RTE_PKTMBUF_HEADROOM;
472 		mbuf->nb_segs = 1;
473 		mbuf->port = rxq->port_id;
474 
475 		dma_addr =
476 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
477 
478 		if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
479 			rte_mbuf_refcnt_set(mbuf, 1);
480 			mbuf->next = NULL;
481 			rxd->read.hdr_addr = 0;
482 			rxd->read.pkt_addr = dma_addr;
483 		} else {
484 			struct rte_mbuf *mbuf_pay;
485 			mbuf_pay = rte_mbuf_raw_alloc(rxq->rxseg[1].mp);
486 			if (unlikely(!mbuf_pay)) {
487 				rte_pktmbuf_free(mbuf);
488 				PMD_DRV_LOG(ERR, "Failed to allocate payload mbuf for RX");
489 				return -ENOMEM;
490 			}
491 
492 			mbuf_pay->next = NULL;
493 			mbuf_pay->data_off = RTE_PKTMBUF_HEADROOM;
494 			mbuf_pay->nb_segs = 1;
495 			mbuf_pay->port = rxq->port_id;
496 			mbuf->next = mbuf_pay;
497 
498 			rxd->read.hdr_addr = dma_addr;
499 			/* The LS bit should be set to zero regardless of
500 			 * buffer split enablement.
501 			 */
502 			rxd->read.pkt_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf_pay));
503 		}
504 
505 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
506 		rxd->read.rsvd1 = 0;
507 		rxd->read.rsvd2 = 0;
508 #endif
509 		rxe[i].mbuf = mbuf;
510 	}
511 
512 	return 0;
513 }
514 
515 /* Free all mbufs for descriptors in rx queue */
516 static void
517 _ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
518 {
519 	uint16_t i;
520 
521 	if (!rxq || !rxq->sw_ring) {
522 		PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
523 		return;
524 	}
525 
526 	for (i = 0; i < rxq->nb_rx_desc; i++) {
527 		if (rxq->sw_ring[i].mbuf) {
528 			rte_pktmbuf_free(rxq->sw_ring[i].mbuf);
529 			rxq->sw_ring[i].mbuf = NULL;
530 		}
531 	}
532 	if (rxq->rx_nb_avail == 0)
533 		return;
534 	for (i = 0; i < rxq->rx_nb_avail; i++)
535 		rte_pktmbuf_free(rxq->rx_stage[rxq->rx_next_avail + i]);
536 
537 	rxq->rx_nb_avail = 0;
538 }
539 
540 /* turn on or off rx queue
541  * @q_idx: queue index in pf scope
542  * @on: turn on or off the queue
543  */
544 static int
545 ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
546 {
547 	uint32_t reg;
548 	uint16_t j;
549 
550 	/* QRX_CTRL = QRX_ENA */
551 	reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
552 
553 	if (on) {
554 		if (reg & QRX_CTRL_QENA_STAT_M)
555 			return 0; /* Already on, skip */
556 		reg |= QRX_CTRL_QENA_REQ_M;
557 	} else {
558 		if (!(reg & QRX_CTRL_QENA_STAT_M))
559 			return 0; /* Already off, skip */
560 		reg &= ~QRX_CTRL_QENA_REQ_M;
561 	}
562 
563 	/* Write the register */
564 	ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
565 	/* Check the result. It is said that QENA_STAT
566 	 * follows the QENA_REQ not more than 10 use.
567 	 * TODO: need to change the wait counter later
568 	 */
569 	for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
570 		rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
571 		reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
572 		if (on) {
573 			if ((reg & QRX_CTRL_QENA_REQ_M) &&
574 			    (reg & QRX_CTRL_QENA_STAT_M))
575 				break;
576 		} else {
577 			if (!(reg & QRX_CTRL_QENA_REQ_M) &&
578 			    !(reg & QRX_CTRL_QENA_STAT_M))
579 				break;
580 		}
581 	}
582 
583 	/* Check if it is timeout */
584 	if (j >= ICE_CHK_Q_ENA_COUNT) {
585 		PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
586 			    (on ? "enable" : "disable"), q_idx);
587 		return -ETIMEDOUT;
588 	}
589 
590 	return 0;
591 }
592 
593 static inline int
594 ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
595 {
596 	int ret = 0;
597 
598 	if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
599 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
600 			     "rxq->rx_free_thresh=%d, "
601 			     "ICE_RX_MAX_BURST=%d",
602 			     rxq->rx_free_thresh, ICE_RX_MAX_BURST);
603 		ret = -EINVAL;
604 	} else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
605 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
606 			     "rxq->rx_free_thresh=%d, "
607 			     "rxq->nb_rx_desc=%d",
608 			     rxq->rx_free_thresh, rxq->nb_rx_desc);
609 		ret = -EINVAL;
610 	} else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
611 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
612 			     "rxq->nb_rx_desc=%d, "
613 			     "rxq->rx_free_thresh=%d",
614 			     rxq->nb_rx_desc, rxq->rx_free_thresh);
615 		ret = -EINVAL;
616 	}
617 
618 	return ret;
619 }
620 
621 /* reset fields in ice_rx_queue back to default */
622 static void
623 ice_reset_rx_queue(struct ice_rx_queue *rxq)
624 {
625 	unsigned int i;
626 	uint16_t len;
627 
628 	if (!rxq) {
629 		PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
630 		return;
631 	}
632 
633 	len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
634 
635 	for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
636 		((volatile char *)rxq->rx_ring)[i] = 0;
637 
638 	memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
639 	for (i = 0; i < ICE_RX_MAX_BURST; ++i)
640 		rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
641 
642 	rxq->rx_nb_avail = 0;
643 	rxq->rx_next_avail = 0;
644 	rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
645 
646 	rxq->rx_tail = 0;
647 	rxq->nb_rx_hold = 0;
648 	rxq->pkt_first_seg = NULL;
649 	rxq->pkt_last_seg = NULL;
650 
651 	rxq->rxrearm_start = 0;
652 	rxq->rxrearm_nb = 0;
653 }
654 
655 int
656 ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
657 {
658 	struct ice_rx_queue *rxq;
659 	int err;
660 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
661 
662 	PMD_INIT_FUNC_TRACE();
663 
664 	if (rx_queue_id >= dev->data->nb_rx_queues) {
665 		PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
666 			    rx_queue_id, dev->data->nb_rx_queues);
667 		return -EINVAL;
668 	}
669 
670 	rxq = dev->data->rx_queues[rx_queue_id];
671 	if (!rxq || !rxq->q_set) {
672 		PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
673 			    rx_queue_id);
674 		return -EINVAL;
675 	}
676 
677 	if (dev->data->rx_queue_state[rx_queue_id] ==
678 		RTE_ETH_QUEUE_STATE_STARTED)
679 		return 0;
680 
681 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
682 		rxq->ts_enable = true;
683 	err = ice_program_hw_rx_queue(rxq);
684 	if (err) {
685 		PMD_DRV_LOG(ERR, "fail to program RX queue %u",
686 			    rx_queue_id);
687 		return -EIO;
688 	}
689 
690 	err = ice_alloc_rx_queue_mbufs(rxq);
691 	if (err) {
692 		PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
693 		return -ENOMEM;
694 	}
695 
696 	/* Init the RX tail register. */
697 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
698 
699 	err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
700 	if (err) {
701 		PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
702 			    rx_queue_id);
703 
704 		rxq->rx_rel_mbufs(rxq);
705 		ice_reset_rx_queue(rxq);
706 		return -EINVAL;
707 	}
708 
709 	dev->data->rx_queue_state[rx_queue_id] =
710 		RTE_ETH_QUEUE_STATE_STARTED;
711 
712 	return 0;
713 }
714 
715 int
716 ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
717 {
718 	struct ice_rx_queue *rxq;
719 	int err;
720 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
721 
722 	if (rx_queue_id < dev->data->nb_rx_queues) {
723 		rxq = dev->data->rx_queues[rx_queue_id];
724 
725 		if (dev->data->rx_queue_state[rx_queue_id] ==
726 			RTE_ETH_QUEUE_STATE_STOPPED)
727 			return 0;
728 
729 		err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
730 		if (err) {
731 			PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
732 				    rx_queue_id);
733 			return -EINVAL;
734 		}
735 		rxq->rx_rel_mbufs(rxq);
736 		ice_reset_rx_queue(rxq);
737 		dev->data->rx_queue_state[rx_queue_id] =
738 			RTE_ETH_QUEUE_STATE_STOPPED;
739 	}
740 
741 	return 0;
742 }
743 
744 int
745 ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
746 {
747 	struct ci_tx_queue *txq;
748 	int err;
749 	struct ice_vsi *vsi;
750 	struct ice_hw *hw;
751 	struct ice_pf *pf;
752 	struct ice_aqc_add_tx_qgrp *txq_elem;
753 	struct ice_tlan_ctx tx_ctx;
754 	int buf_len;
755 
756 	PMD_INIT_FUNC_TRACE();
757 
758 	if (tx_queue_id >= dev->data->nb_tx_queues) {
759 		PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
760 			    tx_queue_id, dev->data->nb_tx_queues);
761 		return -EINVAL;
762 	}
763 
764 	txq = dev->data->tx_queues[tx_queue_id];
765 	if (!txq || !txq->q_set) {
766 		PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
767 			    tx_queue_id);
768 		return -EINVAL;
769 	}
770 
771 	if (dev->data->tx_queue_state[tx_queue_id] ==
772 		RTE_ETH_QUEUE_STATE_STARTED)
773 		return 0;
774 
775 	buf_len = ice_struct_size(txq_elem, txqs, 1);
776 	txq_elem = ice_malloc(hw, buf_len);
777 	if (!txq_elem)
778 		return -ENOMEM;
779 
780 	vsi = txq->ice_vsi;
781 	hw = ICE_VSI_TO_HW(vsi);
782 	pf = ICE_VSI_TO_PF(vsi);
783 
784 	memset(&tx_ctx, 0, sizeof(tx_ctx));
785 	txq_elem->num_txqs = 1;
786 	txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
787 
788 	tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
789 	tx_ctx.qlen = txq->nb_tx_desc;
790 	tx_ctx.pf_num = hw->pf_id;
791 	tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
792 	tx_ctx.src_vsi = vsi->vsi_id;
793 	tx_ctx.port_num = hw->port_info->lport;
794 	tx_ctx.tso_ena = 1; /* tso enable */
795 	tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
796 	tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
797 	tx_ctx.tsyn_ena = 1;
798 
799 	ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
800 		    ice_tlan_ctx_info);
801 
802 	txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
803 
804 	/* Init the Tx tail register*/
805 	ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
806 
807 	/* Fix me, we assume TC always 0 here */
808 	err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
809 			txq_elem, buf_len, NULL);
810 	if (err) {
811 		PMD_DRV_LOG(ERR, "Failed to add lan txq");
812 		rte_free(txq_elem);
813 		return -EIO;
814 	}
815 	/* store the schedule node id */
816 	txq->q_teid = txq_elem->txqs[0].q_teid;
817 
818 	/* move the queue to correct position in hierarchy, if explicit hierarchy configured */
819 	if (pf->tm_conf.committed)
820 		if (ice_tm_setup_txq_node(pf, hw, tx_queue_id, txq->q_teid) != 0) {
821 			PMD_DRV_LOG(ERR, "Failed to set up txq traffic management node");
822 			rte_free(txq_elem);
823 			return -EIO;
824 		}
825 
826 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
827 
828 	rte_free(txq_elem);
829 	return 0;
830 }
831 
832 static int
833 ice_fdir_program_hw_rx_queue(struct ice_rx_queue *rxq)
834 {
835 	struct ice_vsi *vsi = rxq->vsi;
836 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
837 	uint32_t rxdid = ICE_RXDID_LEGACY_1;
838 	struct ice_rlan_ctx rx_ctx;
839 	uint32_t regval;
840 	int err;
841 
842 	rxq->rx_hdr_len = 0;
843 	rxq->rx_buf_len = 1024;
844 
845 	memset(&rx_ctx, 0, sizeof(rx_ctx));
846 
847 	rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
848 	rx_ctx.qlen = rxq->nb_rx_desc;
849 	rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
850 	rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
851 	rx_ctx.dtype = 0; /* No Buffer Split mode */
852 	rx_ctx.dsize = 1; /* 32B descriptors */
853 	rx_ctx.rxmax = ICE_ETH_MAX_LEN;
854 	/* TPH: Transaction Layer Packet (TLP) processing hints */
855 	rx_ctx.tphrdesc_ena = 1;
856 	rx_ctx.tphwdesc_ena = 1;
857 	rx_ctx.tphdata_ena = 1;
858 	rx_ctx.tphhead_ena = 1;
859 	/* Low Receive Queue Threshold defined in 64 descriptors units.
860 	 * When the number of free descriptors goes below the lrxqthresh,
861 	 * an immediate interrupt is triggered.
862 	 */
863 	rx_ctx.lrxqthresh = 2;
864 	/*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
865 	rx_ctx.l2tsel = 1;
866 	rx_ctx.showiv = 0;
867 	rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
868 
869 	/* Enable Flexible Descriptors in the queue context which
870 	 * allows this driver to select a specific receive descriptor format
871 	 */
872 	regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
873 		QRXFLXP_CNTXT_RXDID_IDX_M;
874 
875 	/* increasing context priority to pick up profile ID;
876 	 * default is 0x01; setting to 0x03 to ensure profile
877 	 * is programming if prev context is of same priority
878 	 */
879 	regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
880 		QRXFLXP_CNTXT_RXDID_PRIO_M;
881 
882 	ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
883 
884 	err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
885 	if (err) {
886 		PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
887 			    rxq->queue_id);
888 		return -EINVAL;
889 	}
890 	err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
891 	if (err) {
892 		PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
893 			    rxq->queue_id);
894 		return -EINVAL;
895 	}
896 
897 	rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
898 
899 	/* Init the Rx tail register*/
900 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
901 
902 	return 0;
903 }
904 
905 int
906 ice_fdir_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
907 {
908 	struct ice_rx_queue *rxq;
909 	int err;
910 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
911 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
912 
913 	PMD_INIT_FUNC_TRACE();
914 
915 	rxq = pf->fdir.rxq;
916 	if (!rxq || !rxq->q_set) {
917 		PMD_DRV_LOG(ERR, "FDIR RX queue %u not available or setup",
918 			    rx_queue_id);
919 		return -EINVAL;
920 	}
921 
922 	err = ice_fdir_program_hw_rx_queue(rxq);
923 	if (err) {
924 		PMD_DRV_LOG(ERR, "fail to program FDIR RX queue %u",
925 			    rx_queue_id);
926 		return -EIO;
927 	}
928 
929 	/* Init the RX tail register. */
930 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
931 
932 	err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
933 	if (err) {
934 		PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u on",
935 			    rx_queue_id);
936 
937 		ice_reset_rx_queue(rxq);
938 		return -EINVAL;
939 	}
940 
941 	return 0;
942 }
943 
944 int
945 ice_fdir_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
946 {
947 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
948 	struct ci_tx_queue *txq;
949 	int err;
950 	struct ice_vsi *vsi;
951 	struct ice_hw *hw;
952 	struct ice_aqc_add_tx_qgrp *txq_elem;
953 	struct ice_tlan_ctx tx_ctx;
954 	int buf_len;
955 
956 	PMD_INIT_FUNC_TRACE();
957 
958 	txq = pf->fdir.txq;
959 	if (!txq || !txq->q_set) {
960 		PMD_DRV_LOG(ERR, "FDIR TX queue %u is not available or setup",
961 			    tx_queue_id);
962 		return -EINVAL;
963 	}
964 
965 	buf_len = ice_struct_size(txq_elem, txqs, 1);
966 	txq_elem = ice_malloc(hw, buf_len);
967 	if (!txq_elem)
968 		return -ENOMEM;
969 
970 	vsi = txq->ice_vsi;
971 	hw = ICE_VSI_TO_HW(vsi);
972 
973 	memset(&tx_ctx, 0, sizeof(tx_ctx));
974 	txq_elem->num_txqs = 1;
975 	txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
976 
977 	tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
978 	tx_ctx.qlen = txq->nb_tx_desc;
979 	tx_ctx.pf_num = hw->pf_id;
980 	tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
981 	tx_ctx.src_vsi = vsi->vsi_id;
982 	tx_ctx.port_num = hw->port_info->lport;
983 	tx_ctx.tso_ena = 1; /* tso enable */
984 	tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
985 	tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
986 
987 	ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
988 		    ice_tlan_ctx_info);
989 
990 	txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
991 
992 	/* Init the Tx tail register*/
993 	ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
994 
995 	/* Fix me, we assume TC always 0 here */
996 	err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
997 			      txq_elem, buf_len, NULL);
998 	if (err) {
999 		PMD_DRV_LOG(ERR, "Failed to add FDIR txq");
1000 		rte_free(txq_elem);
1001 		return -EIO;
1002 	}
1003 	/* store the schedule node id */
1004 	txq->q_teid = txq_elem->txqs[0].q_teid;
1005 
1006 	rte_free(txq_elem);
1007 	return 0;
1008 }
1009 
1010 /* Free all mbufs for descriptors in tx queue */
1011 static void
1012 _ice_tx_queue_release_mbufs(struct ci_tx_queue *txq)
1013 {
1014 	uint16_t i;
1015 
1016 	if (!txq || !txq->sw_ring) {
1017 		PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
1018 		return;
1019 	}
1020 
1021 	for (i = 0; i < txq->nb_tx_desc; i++) {
1022 		if (txq->sw_ring[i].mbuf) {
1023 			rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1024 			txq->sw_ring[i].mbuf = NULL;
1025 		}
1026 	}
1027 }
1028 
1029 static void
1030 ice_reset_tx_queue(struct ci_tx_queue *txq)
1031 {
1032 	struct ci_tx_entry *txe;
1033 	uint16_t i, prev, size;
1034 
1035 	if (!txq) {
1036 		PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
1037 		return;
1038 	}
1039 
1040 	txe = txq->sw_ring;
1041 	size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
1042 	for (i = 0; i < size; i++)
1043 		((volatile char *)txq->ice_tx_ring)[i] = 0;
1044 
1045 	prev = (uint16_t)(txq->nb_tx_desc - 1);
1046 	for (i = 0; i < txq->nb_tx_desc; i++) {
1047 		volatile struct ice_tx_desc *txd = &txq->ice_tx_ring[i];
1048 
1049 		txd->cmd_type_offset_bsz =
1050 			rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
1051 		txe[i].mbuf =  NULL;
1052 		txe[i].last_id = i;
1053 		txe[prev].next_id = i;
1054 		prev = i;
1055 	}
1056 
1057 	txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1058 	txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1059 
1060 	txq->tx_tail = 0;
1061 	txq->nb_tx_used = 0;
1062 
1063 	txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
1064 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
1065 }
1066 
1067 int
1068 ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1069 {
1070 	struct ci_tx_queue *txq;
1071 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1072 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1073 	struct ice_vsi *vsi = pf->main_vsi;
1074 	uint16_t q_ids[1];
1075 	uint32_t q_teids[1];
1076 	uint16_t q_handle = tx_queue_id;
1077 	int status;
1078 
1079 	if (tx_queue_id >= dev->data->nb_tx_queues) {
1080 		PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
1081 			    tx_queue_id, dev->data->nb_tx_queues);
1082 		return -EINVAL;
1083 	}
1084 
1085 	txq = dev->data->tx_queues[tx_queue_id];
1086 	if (!txq) {
1087 		PMD_DRV_LOG(ERR, "TX queue %u is not available",
1088 			    tx_queue_id);
1089 		return -EINVAL;
1090 	}
1091 
1092 	if (dev->data->tx_queue_state[tx_queue_id] ==
1093 		RTE_ETH_QUEUE_STATE_STOPPED)
1094 		return 0;
1095 
1096 	q_ids[0] = txq->reg_idx;
1097 	q_teids[0] = txq->q_teid;
1098 
1099 	/* Fix me, we assume TC always 0 here */
1100 	status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1101 				q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1102 	if (status != ICE_SUCCESS) {
1103 		PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1104 		return -EINVAL;
1105 	}
1106 
1107 	txq->tx_rel_mbufs(txq);
1108 	ice_reset_tx_queue(txq);
1109 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1110 
1111 	return 0;
1112 }
1113 
1114 int
1115 ice_fdir_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1116 {
1117 	struct ice_rx_queue *rxq;
1118 	int err;
1119 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1120 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1121 
1122 	rxq = pf->fdir.rxq;
1123 
1124 	err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
1125 	if (err) {
1126 		PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u off",
1127 			    rx_queue_id);
1128 		return -EINVAL;
1129 	}
1130 	rxq->rx_rel_mbufs(rxq);
1131 
1132 	return 0;
1133 }
1134 
1135 int
1136 ice_fdir_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1137 {
1138 	struct ci_tx_queue *txq;
1139 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1140 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1141 	struct ice_vsi *vsi = pf->main_vsi;
1142 	uint16_t q_ids[1];
1143 	uint32_t q_teids[1];
1144 	uint16_t q_handle = tx_queue_id;
1145 	int status;
1146 
1147 	txq = pf->fdir.txq;
1148 	if (!txq) {
1149 		PMD_DRV_LOG(ERR, "TX queue %u is not available",
1150 			    tx_queue_id);
1151 		return -EINVAL;
1152 	}
1153 	if (txq->qtx_tail == NULL) {
1154 		PMD_DRV_LOG(INFO, "TX queue %u not started", tx_queue_id);
1155 		return 0;
1156 	}
1157 	vsi = txq->ice_vsi;
1158 
1159 	q_ids[0] = txq->reg_idx;
1160 	q_teids[0] = txq->q_teid;
1161 
1162 	/* Fix me, we assume TC always 0 here */
1163 	status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1164 				 q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1165 	if (status != ICE_SUCCESS) {
1166 		PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1167 		return -EINVAL;
1168 	}
1169 
1170 	txq->tx_rel_mbufs(txq);
1171 	txq->qtx_tail = NULL;
1172 
1173 	return 0;
1174 }
1175 
1176 int
1177 ice_rx_queue_setup(struct rte_eth_dev *dev,
1178 		   uint16_t queue_idx,
1179 		   uint16_t nb_desc,
1180 		   unsigned int socket_id,
1181 		   const struct rte_eth_rxconf *rx_conf,
1182 		   struct rte_mempool *mp)
1183 {
1184 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1185 	struct ice_adapter *ad =
1186 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1187 	struct ice_vsi *vsi = pf->main_vsi;
1188 	struct ice_rx_queue *rxq;
1189 	const struct rte_memzone *rz;
1190 	uint32_t ring_size;
1191 	uint16_t len;
1192 	int use_def_burst_func = 1;
1193 	uint64_t offloads;
1194 	uint16_t n_seg = rx_conf->rx_nseg;
1195 	uint16_t i;
1196 
1197 	if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1198 	    nb_desc > ICE_MAX_RING_DESC ||
1199 	    nb_desc < ICE_MIN_RING_DESC) {
1200 		PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
1201 			     "invalid", nb_desc);
1202 		return -EINVAL;
1203 	}
1204 
1205 	offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1206 
1207 	if (mp)
1208 		n_seg = 1;
1209 
1210 	if (n_seg > 1 && !(offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
1211 		PMD_INIT_LOG(ERR, "port %u queue index %u split offload not configured",
1212 				dev->data->port_id, queue_idx);
1213 		return -EINVAL;
1214 	}
1215 
1216 	/* Free memory if needed */
1217 	if (dev->data->rx_queues[queue_idx]) {
1218 		ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
1219 		dev->data->rx_queues[queue_idx] = NULL;
1220 	}
1221 
1222 	/* Allocate the rx queue data structure */
1223 	rxq = rte_zmalloc_socket(NULL,
1224 				 sizeof(struct ice_rx_queue),
1225 				 RTE_CACHE_LINE_SIZE,
1226 				 socket_id);
1227 
1228 	if (!rxq) {
1229 		PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1230 			     "rx queue data structure");
1231 		return -ENOMEM;
1232 	}
1233 
1234 	rxq->rxseg_nb = n_seg;
1235 	if (n_seg > 1) {
1236 		for (i = 0; i < n_seg; i++)
1237 			memcpy(&rxq->rxseg[i], &rx_conf->rx_seg[i].split,
1238 				sizeof(struct rte_eth_rxseg_split));
1239 
1240 		rxq->mp = rxq->rxseg[0].mp;
1241 	} else {
1242 		rxq->mp = mp;
1243 	}
1244 
1245 	rxq->nb_rx_desc = nb_desc;
1246 	rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1247 	rxq->queue_id = queue_idx;
1248 	rxq->offloads = offloads;
1249 
1250 	rxq->reg_idx = vsi->base_queue + queue_idx;
1251 	rxq->port_id = dev->data->port_id;
1252 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
1253 		rxq->crc_len = RTE_ETHER_CRC_LEN;
1254 	else
1255 		rxq->crc_len = 0;
1256 
1257 	rxq->drop_en = rx_conf->rx_drop_en;
1258 	rxq->vsi = vsi;
1259 	rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1260 	rxq->proto_xtr = pf->proto_xtr != NULL ?
1261 			 pf->proto_xtr[queue_idx] : PROTO_XTR_NONE;
1262 	if (rxq->proto_xtr != PROTO_XTR_NONE &&
1263 			ad->devargs.xtr_flag_offs[rxq->proto_xtr] != 0xff)
1264 		rxq->xtr_ol_flag = 1ULL << ad->devargs.xtr_flag_offs[rxq->proto_xtr];
1265 	rxq->xtr_field_offs = ad->devargs.xtr_field_offs;
1266 
1267 	/* Allocate the maximum number of RX ring hardware descriptor. */
1268 	len = ICE_MAX_RING_DESC;
1269 
1270 	/**
1271 	 * Allocating a little more memory because vectorized/bulk_alloc Rx
1272 	 * functions doesn't check boundaries each time.
1273 	 */
1274 	len += ICE_RX_MAX_BURST;
1275 
1276 	/* Allocate the maximum number of RX ring hardware descriptor. */
1277 	ring_size = sizeof(union ice_rx_flex_desc) * len;
1278 	ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1279 	rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1280 				      ring_size, ICE_RING_BASE_ALIGN,
1281 				      socket_id);
1282 	if (!rz) {
1283 		ice_rx_queue_release(rxq);
1284 		PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
1285 		return -ENOMEM;
1286 	}
1287 
1288 	rxq->mz = rz;
1289 	/* Zero all the descriptors in the ring. */
1290 	memset(rz->addr, 0, ring_size);
1291 
1292 	rxq->rx_ring_dma = rz->iova;
1293 	rxq->rx_ring = rz->addr;
1294 
1295 	/* always reserve more for bulk alloc */
1296 	len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
1297 
1298 	/* Allocate the software ring. */
1299 	rxq->sw_ring = rte_zmalloc_socket(NULL,
1300 					  sizeof(struct ice_rx_entry) * len,
1301 					  RTE_CACHE_LINE_SIZE,
1302 					  socket_id);
1303 	if (!rxq->sw_ring) {
1304 		ice_rx_queue_release(rxq);
1305 		PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
1306 		return -ENOMEM;
1307 	}
1308 
1309 	ice_reset_rx_queue(rxq);
1310 	rxq->q_set = true;
1311 	dev->data->rx_queues[queue_idx] = rxq;
1312 	rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
1313 
1314 	use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
1315 
1316 	if (!use_def_burst_func) {
1317 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1318 			     "satisfied. Rx Burst Bulk Alloc function will be "
1319 			     "used on port=%d, queue=%d.",
1320 			     rxq->port_id, rxq->queue_id);
1321 	} else {
1322 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1323 			     "not satisfied, Scattered Rx is requested. "
1324 			     "on port=%d, queue=%d.",
1325 			     rxq->port_id, rxq->queue_id);
1326 		ad->rx_bulk_alloc_allowed = false;
1327 	}
1328 
1329 	return 0;
1330 }
1331 
1332 void
1333 ice_rx_queue_release(void *rxq)
1334 {
1335 	struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
1336 
1337 	if (!q) {
1338 		PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1339 		return;
1340 	}
1341 
1342 	if (q->rx_rel_mbufs != NULL)
1343 		q->rx_rel_mbufs(q);
1344 	rte_free(q->sw_ring);
1345 	rte_memzone_free(q->mz);
1346 	rte_free(q);
1347 }
1348 
1349 int
1350 ice_tx_queue_setup(struct rte_eth_dev *dev,
1351 		   uint16_t queue_idx,
1352 		   uint16_t nb_desc,
1353 		   unsigned int socket_id,
1354 		   const struct rte_eth_txconf *tx_conf)
1355 {
1356 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1357 	struct ice_vsi *vsi = pf->main_vsi;
1358 	struct ci_tx_queue *txq;
1359 	const struct rte_memzone *tz;
1360 	uint32_t ring_size;
1361 	uint16_t tx_rs_thresh, tx_free_thresh;
1362 	uint64_t offloads;
1363 
1364 	offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1365 
1366 	if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1367 	    nb_desc > ICE_MAX_RING_DESC ||
1368 	    nb_desc < ICE_MIN_RING_DESC) {
1369 		PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
1370 			     "invalid", nb_desc);
1371 		return -EINVAL;
1372 	}
1373 
1374 	/**
1375 	 * The following two parameters control the setting of the RS bit on
1376 	 * transmit descriptors. TX descriptors will have their RS bit set
1377 	 * after txq->tx_rs_thresh descriptors have been used. The TX
1378 	 * descriptor ring will be cleaned after txq->tx_free_thresh
1379 	 * descriptors are used or if the number of descriptors required to
1380 	 * transmit a packet is greater than the number of free TX descriptors.
1381 	 *
1382 	 * The following constraints must be satisfied:
1383 	 *  - tx_rs_thresh must be greater than 0.
1384 	 *  - tx_rs_thresh must be less than the size of the ring minus 2.
1385 	 *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
1386 	 *  - tx_rs_thresh must be a divisor of the ring size.
1387 	 *  - tx_free_thresh must be greater than 0.
1388 	 *  - tx_free_thresh must be less than the size of the ring minus 3.
1389 	 *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
1390 	 *
1391 	 * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1392 	 * race condition, hence the maximum threshold constraints. When set
1393 	 * to zero use default values.
1394 	 */
1395 	tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
1396 				    tx_conf->tx_free_thresh :
1397 				    ICE_DEFAULT_TX_FREE_THRESH);
1398 	/* force tx_rs_thresh to adapt an aggressive tx_free_thresh */
1399 	tx_rs_thresh =
1400 		(ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
1401 			nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
1402 	if (tx_conf->tx_rs_thresh)
1403 		tx_rs_thresh = tx_conf->tx_rs_thresh;
1404 	if (tx_rs_thresh + tx_free_thresh > nb_desc) {
1405 		PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
1406 				"exceed nb_desc. (tx_rs_thresh=%u "
1407 				"tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
1408 				(unsigned int)tx_rs_thresh,
1409 				(unsigned int)tx_free_thresh,
1410 				(unsigned int)nb_desc,
1411 				(int)dev->data->port_id,
1412 				(int)queue_idx);
1413 		return -EINVAL;
1414 	}
1415 	if (tx_rs_thresh >= (nb_desc - 2)) {
1416 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1417 			     "number of TX descriptors minus 2. "
1418 			     "(tx_rs_thresh=%u port=%d queue=%d)",
1419 			     (unsigned int)tx_rs_thresh,
1420 			     (int)dev->data->port_id,
1421 			     (int)queue_idx);
1422 		return -EINVAL;
1423 	}
1424 	if (tx_free_thresh >= (nb_desc - 3)) {
1425 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1426 			     "tx_free_thresh must be less than the "
1427 			     "number of TX descriptors minus 3. "
1428 			     "(tx_free_thresh=%u port=%d queue=%d)",
1429 			     (unsigned int)tx_free_thresh,
1430 			     (int)dev->data->port_id,
1431 			     (int)queue_idx);
1432 		return -EINVAL;
1433 	}
1434 	if (tx_rs_thresh > tx_free_thresh) {
1435 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
1436 			     "equal to tx_free_thresh. (tx_free_thresh=%u"
1437 			     " tx_rs_thresh=%u port=%d queue=%d)",
1438 			     (unsigned int)tx_free_thresh,
1439 			     (unsigned int)tx_rs_thresh,
1440 			     (int)dev->data->port_id,
1441 			     (int)queue_idx);
1442 		return -EINVAL;
1443 	}
1444 	if ((nb_desc % tx_rs_thresh) != 0) {
1445 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
1446 			     "number of TX descriptors. (tx_rs_thresh=%u"
1447 			     " port=%d queue=%d)",
1448 			     (unsigned int)tx_rs_thresh,
1449 			     (int)dev->data->port_id,
1450 			     (int)queue_idx);
1451 		return -EINVAL;
1452 	}
1453 	if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
1454 		PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1455 			     "tx_rs_thresh is greater than 1. "
1456 			     "(tx_rs_thresh=%u port=%d queue=%d)",
1457 			     (unsigned int)tx_rs_thresh,
1458 			     (int)dev->data->port_id,
1459 			     (int)queue_idx);
1460 		return -EINVAL;
1461 	}
1462 
1463 	/* Free memory if needed. */
1464 	if (dev->data->tx_queues[queue_idx]) {
1465 		ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
1466 		dev->data->tx_queues[queue_idx] = NULL;
1467 	}
1468 
1469 	/* Allocate the TX queue data structure. */
1470 	txq = rte_zmalloc_socket(NULL,
1471 				 sizeof(struct ci_tx_queue),
1472 				 RTE_CACHE_LINE_SIZE,
1473 				 socket_id);
1474 	if (!txq) {
1475 		PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1476 			     "tx queue structure");
1477 		return -ENOMEM;
1478 	}
1479 
1480 	/* Allocate TX hardware ring descriptors. */
1481 	ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
1482 	ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1483 	tz = rte_eth_dma_zone_reserve(dev, "ice_tx_ring", queue_idx,
1484 				      ring_size, ICE_RING_BASE_ALIGN,
1485 				      socket_id);
1486 	if (!tz) {
1487 		ice_tx_queue_release(txq);
1488 		PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
1489 		return -ENOMEM;
1490 	}
1491 
1492 	txq->mz = tz;
1493 	txq->nb_tx_desc = nb_desc;
1494 	txq->tx_rs_thresh = tx_rs_thresh;
1495 	txq->tx_free_thresh = tx_free_thresh;
1496 	txq->queue_id = queue_idx;
1497 
1498 	txq->reg_idx = vsi->base_queue + queue_idx;
1499 	txq->port_id = dev->data->port_id;
1500 	txq->offloads = offloads;
1501 	txq->ice_vsi = vsi;
1502 	txq->tx_deferred_start = tx_conf->tx_deferred_start;
1503 
1504 	txq->tx_ring_dma = tz->iova;
1505 	txq->ice_tx_ring = tz->addr;
1506 
1507 	/* Allocate software ring */
1508 	txq->sw_ring =
1509 		rte_zmalloc_socket(NULL,
1510 				   sizeof(struct ci_tx_entry) * nb_desc,
1511 				   RTE_CACHE_LINE_SIZE,
1512 				   socket_id);
1513 	if (!txq->sw_ring) {
1514 		ice_tx_queue_release(txq);
1515 		PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
1516 		return -ENOMEM;
1517 	}
1518 
1519 	ice_reset_tx_queue(txq);
1520 	txq->q_set = true;
1521 	dev->data->tx_queues[queue_idx] = txq;
1522 	txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
1523 	ice_set_tx_function_flag(dev, txq);
1524 
1525 	return 0;
1526 }
1527 
1528 void
1529 ice_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1530 {
1531 	ice_rx_queue_release(dev->data->rx_queues[qid]);
1532 }
1533 
1534 void
1535 ice_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1536 {
1537 	ice_tx_queue_release(dev->data->tx_queues[qid]);
1538 }
1539 
1540 void
1541 ice_tx_queue_release(void *txq)
1542 {
1543 	struct ci_tx_queue *q = (struct ci_tx_queue *)txq;
1544 
1545 	if (!q) {
1546 		PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
1547 		return;
1548 	}
1549 
1550 	if (q->tx_rel_mbufs != NULL)
1551 		q->tx_rel_mbufs(q);
1552 	rte_free(q->sw_ring);
1553 	rte_memzone_free(q->mz);
1554 	rte_free(q);
1555 }
1556 
1557 void
1558 ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1559 		 struct rte_eth_rxq_info *qinfo)
1560 {
1561 	struct ice_rx_queue *rxq;
1562 
1563 	rxq = dev->data->rx_queues[queue_id];
1564 
1565 	qinfo->mp = rxq->mp;
1566 	qinfo->scattered_rx = dev->data->scattered_rx;
1567 	qinfo->nb_desc = rxq->nb_rx_desc;
1568 
1569 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1570 	qinfo->conf.rx_drop_en = rxq->drop_en;
1571 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1572 }
1573 
1574 void
1575 ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1576 		 struct rte_eth_txq_info *qinfo)
1577 {
1578 	struct ci_tx_queue *txq;
1579 
1580 	txq = dev->data->tx_queues[queue_id];
1581 
1582 	qinfo->nb_desc = txq->nb_tx_desc;
1583 
1584 	qinfo->conf.tx_thresh.pthresh = ICE_DEFAULT_TX_PTHRESH;
1585 	qinfo->conf.tx_thresh.hthresh = ICE_DEFAULT_TX_HTHRESH;
1586 	qinfo->conf.tx_thresh.wthresh = ICE_DEFAULT_TX_WTHRESH;
1587 
1588 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1589 	qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
1590 	qinfo->conf.offloads = txq->offloads;
1591 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1592 }
1593 
1594 uint32_t
1595 ice_rx_queue_count(void *rx_queue)
1596 {
1597 #define ICE_RXQ_SCAN_INTERVAL 4
1598 	volatile union ice_rx_flex_desc *rxdp;
1599 	struct ice_rx_queue *rxq;
1600 	uint16_t desc = 0;
1601 
1602 	rxq = rx_queue;
1603 	rxdp = &rxq->rx_ring[rxq->rx_tail];
1604 	while ((desc < rxq->nb_rx_desc) &&
1605 	       rte_le_to_cpu_16(rxdp->wb.status_error0) &
1606 	       (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
1607 		/**
1608 		 * Check the DD bit of a rx descriptor of each 4 in a group,
1609 		 * to avoid checking too frequently and downgrading performance
1610 		 * too much.
1611 		 */
1612 		desc += ICE_RXQ_SCAN_INTERVAL;
1613 		rxdp += ICE_RXQ_SCAN_INTERVAL;
1614 		if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1615 			rxdp = &(rxq->rx_ring[rxq->rx_tail +
1616 				 desc - rxq->nb_rx_desc]);
1617 	}
1618 
1619 	return desc;
1620 }
1621 
1622 #define ICE_RX_FLEX_ERR0_BITS	\
1623 	((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) |	\
1624 	 (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |	\
1625 	 (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |	\
1626 	 (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) |	\
1627 	 (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |	\
1628 	 (1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
1629 
1630 /* Rx L3/L4 checksum */
1631 static inline uint64_t
1632 ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
1633 {
1634 	uint64_t flags = 0;
1635 
1636 	/* check if HW has decoded the packet and checksum */
1637 	if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1638 		return 0;
1639 
1640 	if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
1641 		flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD |
1642 			  RTE_MBUF_F_RX_L4_CKSUM_GOOD |
1643 			  RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD);
1644 		return flags;
1645 	}
1646 
1647 	if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1648 		flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1649 	else
1650 		flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1651 
1652 	if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1653 		flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1654 	else
1655 		flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1656 
1657 	if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1658 		flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1659 
1660 	if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
1661 		flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
1662 	else
1663 		flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD;
1664 
1665 	return flags;
1666 }
1667 
1668 static inline void
1669 ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
1670 {
1671 	if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
1672 	    (1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1673 		mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
1674 		mb->vlan_tci =
1675 			rte_le_to_cpu_16(rxdp->wb.l2tag1);
1676 		PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
1677 			   rte_le_to_cpu_16(rxdp->wb.l2tag1));
1678 	} else {
1679 		mb->vlan_tci = 0;
1680 	}
1681 
1682 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1683 	if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1684 	    (1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1685 		mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED | RTE_MBUF_F_RX_QINQ |
1686 				RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN;
1687 		mb->vlan_tci_outer = mb->vlan_tci;
1688 		mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1689 		PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1690 			   rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1691 			   rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1692 	} else {
1693 		mb->vlan_tci_outer = 0;
1694 	}
1695 #endif
1696 	PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
1697 		   mb->vlan_tci, mb->vlan_tci_outer);
1698 }
1699 
1700 #define ICE_LOOK_AHEAD 8
1701 #if (ICE_LOOK_AHEAD != 8)
1702 #error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
1703 #endif
1704 
1705 #define ICE_PTP_TS_VALID 0x1
1706 
1707 static inline int
1708 ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
1709 {
1710 	volatile union ice_rx_flex_desc *rxdp;
1711 	struct ice_rx_entry *rxep;
1712 	struct rte_mbuf *mb;
1713 	uint16_t stat_err0;
1714 	uint16_t pkt_len, hdr_len;
1715 	int32_t s[ICE_LOOK_AHEAD], nb_dd;
1716 	int32_t i, j, nb_rx = 0;
1717 	uint64_t pkt_flags = 0;
1718 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1719 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1720 	bool is_tsinit = false;
1721 	uint64_t ts_ns;
1722 	struct ice_vsi *vsi = rxq->vsi;
1723 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
1724 	struct ice_adapter *ad = rxq->vsi->adapter;
1725 #endif
1726 	rxdp = &rxq->rx_ring[rxq->rx_tail];
1727 	rxep = &rxq->sw_ring[rxq->rx_tail];
1728 
1729 	stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1730 
1731 	/* Make sure there is at least 1 packet to receive */
1732 	if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1733 		return 0;
1734 
1735 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1736 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
1737 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
1738 
1739 		if (unlikely(sw_cur_time - rxq->hw_time_update > 4))
1740 			is_tsinit = 1;
1741 	}
1742 #endif
1743 
1744 	/**
1745 	 * Scan LOOK_AHEAD descriptors at a time to determine which
1746 	 * descriptors reference packets that are ready to be received.
1747 	 */
1748 	for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
1749 	     rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
1750 		/* Read desc statuses backwards to avoid race condition */
1751 		for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
1752 			s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1753 
1754 		rte_smp_rmb();
1755 
1756 		/* Compute how many status bits were set */
1757 		for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
1758 			nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
1759 
1760 		nb_rx += nb_dd;
1761 
1762 		/* Translate descriptor info to mbuf parameters */
1763 		for (j = 0; j < nb_dd; j++) {
1764 			mb = rxep[j].mbuf;
1765 			pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1766 				   ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1767 			mb->data_len = pkt_len;
1768 			mb->pkt_len = pkt_len;
1769 
1770 			if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
1771 				pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1772 					ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1773 				mb->data_len = pkt_len;
1774 				mb->pkt_len = pkt_len;
1775 			} else {
1776 				mb->nb_segs = (uint16_t)(mb->nb_segs + mb->next->nb_segs);
1777 				mb->next->next = NULL;
1778 				hdr_len = rte_le_to_cpu_16(rxdp[j].wb.hdr_len_sph_flex_flags1) &
1779 						ICE_RX_FLEX_DESC_HEADER_LEN_M;
1780 				pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1781 					ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1782 				mb->data_len = hdr_len;
1783 				mb->pkt_len = hdr_len + pkt_len;
1784 				mb->next->data_len = pkt_len;
1785 #ifdef RTE_ETHDEV_DEBUG_RX
1786 				rte_pktmbuf_dump(stdout, mb, rte_pktmbuf_pkt_len(mb));
1787 #endif
1788 			}
1789 
1790 			mb->ol_flags = 0;
1791 			stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1792 			pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
1793 			mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1794 				rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1795 			ice_rxd_to_vlan_tci(mb, &rxdp[j]);
1796 			rxd_to_pkt_fields_ops[rxq->rxdid](rxq, mb, &rxdp[j]);
1797 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1798 			if (ice_timestamp_dynflag > 0 &&
1799 			    (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
1800 				rxq->time_high =
1801 				rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
1802 				if (unlikely(is_tsinit)) {
1803 					ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1,
1804 									   rxq->time_high);
1805 					rxq->hw_time_low = (uint32_t)ts_ns;
1806 					rxq->hw_time_high = (uint32_t)(ts_ns >> 32);
1807 					is_tsinit = false;
1808 				} else {
1809 					if (rxq->time_high < rxq->hw_time_low)
1810 						rxq->hw_time_high += 1;
1811 					ts_ns = (uint64_t)rxq->hw_time_high << 32 | rxq->time_high;
1812 					rxq->hw_time_low = rxq->time_high;
1813 				}
1814 				rxq->hw_time_update = rte_get_timer_cycles() /
1815 						     (rte_get_timer_hz() / 1000);
1816 				*RTE_MBUF_DYNFIELD(mb,
1817 						   ice_timestamp_dynfield_offset,
1818 						   rte_mbuf_timestamp_t *) = ts_ns;
1819 				pkt_flags |= ice_timestamp_dynflag;
1820 			}
1821 
1822 			if (ad->ptp_ena && ((mb->packet_type &
1823 			    RTE_PTYPE_L2_MASK) == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
1824 				rxq->time_high =
1825 				   rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
1826 				mb->timesync = rxq->queue_id;
1827 				pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
1828 				if (rxdp[j].wb.time_stamp_low &
1829 				    ICE_PTP_TS_VALID)
1830 					pkt_flags |=
1831 						RTE_MBUF_F_RX_IEEE1588_TMST;
1832 			}
1833 #endif
1834 			mb->ol_flags |= pkt_flags;
1835 		}
1836 
1837 		for (j = 0; j < ICE_LOOK_AHEAD; j++)
1838 			rxq->rx_stage[i + j] = rxep[j].mbuf;
1839 
1840 		if (nb_dd != ICE_LOOK_AHEAD)
1841 			break;
1842 	}
1843 
1844 	/* Clear software ring entries */
1845 	for (i = 0; i < nb_rx; i++)
1846 		rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1847 
1848 	PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
1849 		   "port_id=%u, queue_id=%u, nb_rx=%d",
1850 		   rxq->port_id, rxq->queue_id, nb_rx);
1851 
1852 	return nb_rx;
1853 }
1854 
1855 static inline uint16_t
1856 ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
1857 		       struct rte_mbuf **rx_pkts,
1858 		       uint16_t nb_pkts)
1859 {
1860 	uint16_t i;
1861 	struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1862 
1863 	nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1864 
1865 	for (i = 0; i < nb_pkts; i++)
1866 		rx_pkts[i] = stage[i];
1867 
1868 	rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1869 	rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1870 
1871 	return nb_pkts;
1872 }
1873 
1874 static inline int
1875 ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
1876 {
1877 	volatile union ice_rx_flex_desc *rxdp;
1878 	struct ice_rx_entry *rxep;
1879 	struct rte_mbuf *mb;
1880 	uint16_t alloc_idx, i;
1881 	uint64_t dma_addr;
1882 	int diag, diag_pay;
1883 	uint64_t pay_addr;
1884 	struct rte_mbuf *mbufs_pay[rxq->rx_free_thresh];
1885 
1886 	/* Allocate buffers in bulk */
1887 	alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1888 			       (rxq->rx_free_thresh - 1));
1889 	rxep = &rxq->sw_ring[alloc_idx];
1890 	diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1891 				    rxq->rx_free_thresh);
1892 	if (unlikely(diag != 0)) {
1893 		PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1894 		return -ENOMEM;
1895 	}
1896 
1897 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) {
1898 		diag_pay = rte_mempool_get_bulk(rxq->rxseg[1].mp,
1899 				(void *)mbufs_pay, rxq->rx_free_thresh);
1900 		if (unlikely(diag_pay != 0)) {
1901 			rte_mempool_put_bulk(rxq->mp, (void *)rxep,
1902 				    rxq->rx_free_thresh);
1903 			PMD_RX_LOG(ERR, "Failed to get payload mbufs in bulk");
1904 			return -ENOMEM;
1905 		}
1906 	}
1907 
1908 	rxdp = &rxq->rx_ring[alloc_idx];
1909 	for (i = 0; i < rxq->rx_free_thresh; i++) {
1910 		if (likely(i < (rxq->rx_free_thresh - 1)))
1911 			/* Prefetch next mbuf */
1912 			rte_prefetch0(rxep[i + 1].mbuf);
1913 
1914 		mb = rxep[i].mbuf;
1915 		rte_mbuf_refcnt_set(mb, 1);
1916 		mb->data_off = RTE_PKTMBUF_HEADROOM;
1917 		mb->nb_segs = 1;
1918 		mb->port = rxq->port_id;
1919 		dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1920 
1921 		if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
1922 			mb->next = NULL;
1923 			rxdp[i].read.hdr_addr = 0;
1924 			rxdp[i].read.pkt_addr = dma_addr;
1925 		} else {
1926 			mb->next = mbufs_pay[i];
1927 			pay_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbufs_pay[i]));
1928 			rxdp[i].read.hdr_addr = dma_addr;
1929 			rxdp[i].read.pkt_addr = pay_addr;
1930 		}
1931 	}
1932 
1933 	/* Update Rx tail register */
1934 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1935 
1936 	rxq->rx_free_trigger =
1937 		(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1938 	if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1939 		rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1940 
1941 	return 0;
1942 }
1943 
1944 static inline uint16_t
1945 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1946 {
1947 	struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
1948 	uint16_t nb_rx = 0;
1949 
1950 	if (!nb_pkts)
1951 		return 0;
1952 
1953 	if (rxq->rx_nb_avail)
1954 		return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1955 
1956 	nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
1957 	rxq->rx_next_avail = 0;
1958 	rxq->rx_nb_avail = nb_rx;
1959 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1960 
1961 	if (rxq->rx_tail > rxq->rx_free_trigger) {
1962 		if (ice_rx_alloc_bufs(rxq) != 0) {
1963 			uint16_t i, j;
1964 
1965 			rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed +=
1966 				rxq->rx_free_thresh;
1967 			PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1968 				   "port_id=%u, queue_id=%u",
1969 				   rxq->port_id, rxq->queue_id);
1970 			rxq->rx_nb_avail = 0;
1971 			rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1972 			for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1973 				rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1974 
1975 			return 0;
1976 		}
1977 	}
1978 
1979 	if (rxq->rx_tail >= rxq->nb_rx_desc)
1980 		rxq->rx_tail = 0;
1981 
1982 	if (rxq->rx_nb_avail)
1983 		return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1984 
1985 	return 0;
1986 }
1987 
1988 static uint16_t
1989 ice_recv_pkts_bulk_alloc(void *rx_queue,
1990 			 struct rte_mbuf **rx_pkts,
1991 			 uint16_t nb_pkts)
1992 {
1993 	uint16_t nb_rx = 0;
1994 	uint16_t n;
1995 	uint16_t count;
1996 
1997 	if (unlikely(nb_pkts == 0))
1998 		return nb_rx;
1999 
2000 	if (likely(nb_pkts <= ICE_RX_MAX_BURST))
2001 		return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
2002 
2003 	while (nb_pkts) {
2004 		n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
2005 		count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
2006 		nb_rx = (uint16_t)(nb_rx + count);
2007 		nb_pkts = (uint16_t)(nb_pkts - count);
2008 		if (count < n)
2009 			break;
2010 	}
2011 
2012 	return nb_rx;
2013 }
2014 
2015 static uint16_t
2016 ice_recv_scattered_pkts(void *rx_queue,
2017 			struct rte_mbuf **rx_pkts,
2018 			uint16_t nb_pkts)
2019 {
2020 	struct ice_rx_queue *rxq = rx_queue;
2021 	volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2022 	volatile union ice_rx_flex_desc *rxdp;
2023 	union ice_rx_flex_desc rxd;
2024 	struct ice_rx_entry *sw_ring = rxq->sw_ring;
2025 	struct ice_rx_entry *rxe;
2026 	struct rte_mbuf *first_seg = rxq->pkt_first_seg;
2027 	struct rte_mbuf *last_seg = rxq->pkt_last_seg;
2028 	struct rte_mbuf *nmb; /* new allocated mbuf */
2029 	struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2030 	uint16_t rx_id = rxq->rx_tail;
2031 	uint16_t nb_rx = 0;
2032 	uint16_t nb_hold = 0;
2033 	uint16_t rx_packet_len;
2034 	uint16_t rx_stat_err0;
2035 	uint64_t dma_addr;
2036 	uint64_t pkt_flags;
2037 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2038 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2039 	bool is_tsinit = false;
2040 	uint64_t ts_ns;
2041 	struct ice_vsi *vsi = rxq->vsi;
2042 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
2043 	struct ice_adapter *ad = rxq->vsi->adapter;
2044 
2045 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
2046 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
2047 
2048 		if (unlikely(sw_cur_time - rxq->hw_time_update > 4))
2049 			is_tsinit = true;
2050 	}
2051 #endif
2052 
2053 	while (nb_rx < nb_pkts) {
2054 		rxdp = &rx_ring[rx_id];
2055 		rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2056 
2057 		/* Check the DD bit first */
2058 		if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2059 			break;
2060 
2061 		/* allocate mbuf */
2062 		nmb = rte_mbuf_raw_alloc(rxq->mp);
2063 		if (unlikely(!nmb)) {
2064 			rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2065 			break;
2066 		}
2067 		rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2068 
2069 		nb_hold++;
2070 		rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2071 		rx_id++;
2072 		if (unlikely(rx_id == rxq->nb_rx_desc))
2073 			rx_id = 0;
2074 
2075 		/* Prefetch next mbuf */
2076 		rte_prefetch0(sw_ring[rx_id].mbuf);
2077 
2078 		/**
2079 		 * When next RX descriptor is on a cache line boundary,
2080 		 * prefetch the next 4 RX descriptors and next 8 pointers
2081 		 * to mbufs.
2082 		 */
2083 		if ((rx_id & 0x3) == 0) {
2084 			rte_prefetch0(&rx_ring[rx_id]);
2085 			rte_prefetch0(&sw_ring[rx_id]);
2086 		}
2087 
2088 		rxm = rxe->mbuf;
2089 		rxe->mbuf = nmb;
2090 		dma_addr =
2091 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2092 
2093 		/* Set data buffer address and data length of the mbuf */
2094 		rxdp->read.hdr_addr = 0;
2095 		rxdp->read.pkt_addr = dma_addr;
2096 		rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
2097 				ICE_RX_FLX_DESC_PKT_LEN_M;
2098 		rxm->data_len = rx_packet_len;
2099 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
2100 
2101 		/**
2102 		 * If this is the first buffer of the received packet, set the
2103 		 * pointer to the first mbuf of the packet and initialize its
2104 		 * context. Otherwise, update the total length and the number
2105 		 * of segments of the current scattered packet, and update the
2106 		 * pointer to the last mbuf of the current packet.
2107 		 */
2108 		if (!first_seg) {
2109 			first_seg = rxm;
2110 			first_seg->nb_segs = 1;
2111 			first_seg->pkt_len = rx_packet_len;
2112 		} else {
2113 			first_seg->pkt_len =
2114 				(uint16_t)(first_seg->pkt_len +
2115 					   rx_packet_len);
2116 			first_seg->nb_segs++;
2117 			last_seg->next = rxm;
2118 		}
2119 
2120 		/**
2121 		 * If this is not the last buffer of the received packet,
2122 		 * update the pointer to the last mbuf of the current scattered
2123 		 * packet and continue to parse the RX ring.
2124 		 */
2125 		if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
2126 			last_seg = rxm;
2127 			continue;
2128 		}
2129 
2130 		/**
2131 		 * This is the last buffer of the received packet. If the CRC
2132 		 * is not stripped by the hardware:
2133 		 *  - Subtract the CRC length from the total packet length.
2134 		 *  - If the last buffer only contains the whole CRC or a part
2135 		 *  of it, free the mbuf associated to the last buffer. If part
2136 		 *  of the CRC is also contained in the previous mbuf, subtract
2137 		 *  the length of that CRC part from the data length of the
2138 		 *  previous mbuf.
2139 		 */
2140 		rxm->next = NULL;
2141 		if (unlikely(rxq->crc_len > 0)) {
2142 			first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
2143 			if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
2144 				rte_pktmbuf_free_seg(rxm);
2145 				first_seg->nb_segs--;
2146 				last_seg->data_len =
2147 					(uint16_t)(last_seg->data_len -
2148 					(RTE_ETHER_CRC_LEN - rx_packet_len));
2149 				last_seg->next = NULL;
2150 			} else
2151 				rxm->data_len = (uint16_t)(rx_packet_len -
2152 							   RTE_ETHER_CRC_LEN);
2153 		} else if (rx_packet_len == 0) {
2154 			rte_pktmbuf_free_seg(rxm);
2155 			first_seg->nb_segs--;
2156 			last_seg->next = NULL;
2157 		}
2158 
2159 		first_seg->port = rxq->port_id;
2160 		first_seg->ol_flags = 0;
2161 		first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2162 			rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2163 		ice_rxd_to_vlan_tci(first_seg, &rxd);
2164 		rxd_to_pkt_fields_ops[rxq->rxdid](rxq, first_seg, &rxd);
2165 		pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2166 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2167 		if (ice_timestamp_dynflag > 0 &&
2168 		    (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
2169 			rxq->time_high =
2170 			   rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2171 			if (unlikely(is_tsinit)) {
2172 				ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1, rxq->time_high);
2173 				rxq->hw_time_low = (uint32_t)ts_ns;
2174 				rxq->hw_time_high = (uint32_t)(ts_ns >> 32);
2175 				is_tsinit = false;
2176 			} else {
2177 				if (rxq->time_high < rxq->hw_time_low)
2178 					rxq->hw_time_high += 1;
2179 				ts_ns = (uint64_t)rxq->hw_time_high << 32 | rxq->time_high;
2180 				rxq->hw_time_low = rxq->time_high;
2181 			}
2182 			rxq->hw_time_update = rte_get_timer_cycles() /
2183 					     (rte_get_timer_hz() / 1000);
2184 			*RTE_MBUF_DYNFIELD(first_seg,
2185 					   (ice_timestamp_dynfield_offset),
2186 					   rte_mbuf_timestamp_t *) = ts_ns;
2187 			pkt_flags |= ice_timestamp_dynflag;
2188 		}
2189 
2190 		if (ad->ptp_ena && ((first_seg->packet_type & RTE_PTYPE_L2_MASK)
2191 		    == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
2192 			rxq->time_high =
2193 			   rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2194 			first_seg->timesync = rxq->queue_id;
2195 			pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
2196 		}
2197 #endif
2198 		first_seg->ol_flags |= pkt_flags;
2199 		/* Prefetch data of first segment, if configured to do so. */
2200 		rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
2201 					  first_seg->data_off));
2202 		rx_pkts[nb_rx++] = first_seg;
2203 		first_seg = NULL;
2204 	}
2205 
2206 	/* Record index of the next RX descriptor to probe. */
2207 	rxq->rx_tail = rx_id;
2208 	rxq->pkt_first_seg = first_seg;
2209 	rxq->pkt_last_seg = last_seg;
2210 
2211 	/**
2212 	 * If the number of free RX descriptors is greater than the RX free
2213 	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2214 	 * register. Update the RDT with the value of the last processed RX
2215 	 * descriptor minus 1, to guarantee that the RDT register is never
2216 	 * equal to the RDH register, which creates a "full" ring situation
2217 	 * from the hardware point of view.
2218 	 */
2219 	nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2220 	if (nb_hold > rxq->rx_free_thresh) {
2221 		rx_id = (uint16_t)(rx_id == 0 ?
2222 				   (rxq->nb_rx_desc - 1) : (rx_id - 1));
2223 		/* write TAIL register */
2224 		ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2225 		nb_hold = 0;
2226 	}
2227 	rxq->nb_rx_hold = nb_hold;
2228 
2229 	/* return received packet in the burst */
2230 	return nb_rx;
2231 }
2232 
2233 const uint32_t *
2234 ice_dev_supported_ptypes_get(struct rte_eth_dev *dev, size_t *no_of_elements)
2235 {
2236 	struct ice_adapter *ad =
2237 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2238 	const uint32_t *ptypes;
2239 
2240 	static const uint32_t ptypes_os[] = {
2241 		/* refers to ice_get_default_pkt_type() */
2242 		RTE_PTYPE_L2_ETHER,
2243 		RTE_PTYPE_L2_ETHER_TIMESYNC,
2244 		RTE_PTYPE_L2_ETHER_LLDP,
2245 		RTE_PTYPE_L2_ETHER_ARP,
2246 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2247 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2248 		RTE_PTYPE_L4_FRAG,
2249 		RTE_PTYPE_L4_ICMP,
2250 		RTE_PTYPE_L4_NONFRAG,
2251 		RTE_PTYPE_L4_SCTP,
2252 		RTE_PTYPE_L4_TCP,
2253 		RTE_PTYPE_L4_UDP,
2254 		RTE_PTYPE_TUNNEL_GRENAT,
2255 		RTE_PTYPE_TUNNEL_IP,
2256 		RTE_PTYPE_INNER_L2_ETHER,
2257 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2258 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2259 		RTE_PTYPE_INNER_L4_FRAG,
2260 		RTE_PTYPE_INNER_L4_ICMP,
2261 		RTE_PTYPE_INNER_L4_NONFRAG,
2262 		RTE_PTYPE_INNER_L4_SCTP,
2263 		RTE_PTYPE_INNER_L4_TCP,
2264 		RTE_PTYPE_INNER_L4_UDP,
2265 	};
2266 
2267 	static const uint32_t ptypes_comms[] = {
2268 		/* refers to ice_get_default_pkt_type() */
2269 		RTE_PTYPE_L2_ETHER,
2270 		RTE_PTYPE_L2_ETHER_TIMESYNC,
2271 		RTE_PTYPE_L2_ETHER_LLDP,
2272 		RTE_PTYPE_L2_ETHER_ARP,
2273 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2274 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2275 		RTE_PTYPE_L4_FRAG,
2276 		RTE_PTYPE_L4_ICMP,
2277 		RTE_PTYPE_L4_NONFRAG,
2278 		RTE_PTYPE_L4_SCTP,
2279 		RTE_PTYPE_L4_TCP,
2280 		RTE_PTYPE_L4_UDP,
2281 		RTE_PTYPE_TUNNEL_GRENAT,
2282 		RTE_PTYPE_TUNNEL_IP,
2283 		RTE_PTYPE_INNER_L2_ETHER,
2284 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2285 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2286 		RTE_PTYPE_INNER_L4_FRAG,
2287 		RTE_PTYPE_INNER_L4_ICMP,
2288 		RTE_PTYPE_INNER_L4_NONFRAG,
2289 		RTE_PTYPE_INNER_L4_SCTP,
2290 		RTE_PTYPE_INNER_L4_TCP,
2291 		RTE_PTYPE_INNER_L4_UDP,
2292 		RTE_PTYPE_TUNNEL_GTPC,
2293 		RTE_PTYPE_TUNNEL_GTPU,
2294 		RTE_PTYPE_L2_ETHER_PPPOE,
2295 	};
2296 
2297 	if (ad->active_pkg_type == ICE_PKG_TYPE_COMMS) {
2298 		*no_of_elements = RTE_DIM(ptypes_comms);
2299 		ptypes = ptypes_comms;
2300 	} else {
2301 		*no_of_elements = RTE_DIM(ptypes_os);
2302 		ptypes = ptypes_os;
2303 	}
2304 
2305 	if (dev->rx_pkt_burst == ice_recv_pkts ||
2306 	    dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
2307 	    dev->rx_pkt_burst == ice_recv_scattered_pkts)
2308 		return ptypes;
2309 
2310 #ifdef RTE_ARCH_X86
2311 	if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
2312 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
2313 #ifdef CC_AVX512_SUPPORT
2314 	    dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
2315 	    dev->rx_pkt_burst == ice_recv_pkts_vec_avx512_offload ||
2316 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
2317 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512_offload ||
2318 #endif
2319 	    dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
2320 	    dev->rx_pkt_burst == ice_recv_pkts_vec_avx2_offload ||
2321 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2 ||
2322 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2_offload)
2323 		return ptypes;
2324 #endif
2325 
2326 	return NULL;
2327 }
2328 
2329 int
2330 ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
2331 {
2332 	volatile union ice_rx_flex_desc *rxdp;
2333 	struct ice_rx_queue *rxq = rx_queue;
2334 	uint32_t desc;
2335 
2336 	if (unlikely(offset >= rxq->nb_rx_desc))
2337 		return -EINVAL;
2338 
2339 	if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2340 		return RTE_ETH_RX_DESC_UNAVAIL;
2341 
2342 	desc = rxq->rx_tail + offset;
2343 	if (desc >= rxq->nb_rx_desc)
2344 		desc -= rxq->nb_rx_desc;
2345 
2346 	rxdp = &rxq->rx_ring[desc];
2347 	if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
2348 	    (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
2349 		return RTE_ETH_RX_DESC_DONE;
2350 
2351 	return RTE_ETH_RX_DESC_AVAIL;
2352 }
2353 
2354 int
2355 ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
2356 {
2357 	struct ci_tx_queue *txq = tx_queue;
2358 	volatile uint64_t *status;
2359 	uint64_t mask, expect;
2360 	uint32_t desc;
2361 
2362 	if (unlikely(offset >= txq->nb_tx_desc))
2363 		return -EINVAL;
2364 
2365 	desc = txq->tx_tail + offset;
2366 	/* go to next desc that has the RS bit */
2367 	desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2368 		txq->tx_rs_thresh;
2369 	if (desc >= txq->nb_tx_desc) {
2370 		desc -= txq->nb_tx_desc;
2371 		if (desc >= txq->nb_tx_desc)
2372 			desc -= txq->nb_tx_desc;
2373 	}
2374 
2375 	status = &txq->ice_tx_ring[desc].cmd_type_offset_bsz;
2376 	mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
2377 	expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
2378 				  ICE_TXD_QW1_DTYPE_S);
2379 	if ((*status & mask) == expect)
2380 		return RTE_ETH_TX_DESC_DONE;
2381 
2382 	return RTE_ETH_TX_DESC_FULL;
2383 }
2384 
2385 void
2386 ice_free_queues(struct rte_eth_dev *dev)
2387 {
2388 	uint16_t i;
2389 
2390 	PMD_INIT_FUNC_TRACE();
2391 
2392 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
2393 		if (!dev->data->rx_queues[i])
2394 			continue;
2395 		ice_rx_queue_release(dev->data->rx_queues[i]);
2396 		dev->data->rx_queues[i] = NULL;
2397 	}
2398 	dev->data->nb_rx_queues = 0;
2399 
2400 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
2401 		if (!dev->data->tx_queues[i])
2402 			continue;
2403 		ice_tx_queue_release(dev->data->tx_queues[i]);
2404 		dev->data->tx_queues[i] = NULL;
2405 	}
2406 	dev->data->nb_tx_queues = 0;
2407 }
2408 
2409 #define ICE_FDIR_NUM_TX_DESC  ICE_MIN_RING_DESC
2410 #define ICE_FDIR_NUM_RX_DESC  ICE_MIN_RING_DESC
2411 
2412 int
2413 ice_fdir_setup_tx_resources(struct ice_pf *pf)
2414 {
2415 	struct ci_tx_queue *txq;
2416 	const struct rte_memzone *tz = NULL;
2417 	uint32_t ring_size;
2418 	struct rte_eth_dev *dev;
2419 
2420 	if (!pf) {
2421 		PMD_DRV_LOG(ERR, "PF is not available");
2422 		return -EINVAL;
2423 	}
2424 
2425 	dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2426 
2427 	/* Allocate the TX queue data structure. */
2428 	txq = rte_zmalloc_socket("ice fdir tx queue",
2429 				 sizeof(struct ci_tx_queue),
2430 				 RTE_CACHE_LINE_SIZE,
2431 				 SOCKET_ID_ANY);
2432 	if (!txq) {
2433 		PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2434 			    "tx queue structure.");
2435 		return -ENOMEM;
2436 	}
2437 
2438 	/* Allocate TX hardware ring descriptors. */
2439 	ring_size = sizeof(struct ice_tx_desc) * ICE_FDIR_NUM_TX_DESC;
2440 	ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2441 
2442 	tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2443 				      ICE_FDIR_QUEUE_ID, ring_size,
2444 				      ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2445 	if (!tz) {
2446 		ice_tx_queue_release(txq);
2447 		PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2448 		return -ENOMEM;
2449 	}
2450 
2451 	txq->mz = tz;
2452 	txq->nb_tx_desc = ICE_FDIR_NUM_TX_DESC;
2453 	txq->queue_id = ICE_FDIR_QUEUE_ID;
2454 	txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2455 	txq->ice_vsi = pf->fdir.fdir_vsi;
2456 
2457 	txq->tx_ring_dma = tz->iova;
2458 	txq->ice_tx_ring = (struct ice_tx_desc *)tz->addr;
2459 	/*
2460 	 * don't need to allocate software ring and reset for the fdir
2461 	 * program queue just set the queue has been configured.
2462 	 */
2463 	txq->q_set = true;
2464 	pf->fdir.txq = txq;
2465 
2466 	txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
2467 
2468 	return ICE_SUCCESS;
2469 }
2470 
2471 int
2472 ice_fdir_setup_rx_resources(struct ice_pf *pf)
2473 {
2474 	struct ice_rx_queue *rxq;
2475 	const struct rte_memzone *rz = NULL;
2476 	uint32_t ring_size;
2477 	struct rte_eth_dev *dev;
2478 
2479 	if (!pf) {
2480 		PMD_DRV_LOG(ERR, "PF is not available");
2481 		return -EINVAL;
2482 	}
2483 
2484 	dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2485 
2486 	/* Allocate the RX queue data structure. */
2487 	rxq = rte_zmalloc_socket("ice fdir rx queue",
2488 				 sizeof(struct ice_rx_queue),
2489 				 RTE_CACHE_LINE_SIZE,
2490 				 SOCKET_ID_ANY);
2491 	if (!rxq) {
2492 		PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2493 			    "rx queue structure.");
2494 		return -ENOMEM;
2495 	}
2496 
2497 	/* Allocate RX hardware ring descriptors. */
2498 	ring_size = sizeof(union ice_32byte_rx_desc) * ICE_FDIR_NUM_RX_DESC;
2499 	ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2500 
2501 	rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2502 				      ICE_FDIR_QUEUE_ID, ring_size,
2503 				      ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2504 	if (!rz) {
2505 		ice_rx_queue_release(rxq);
2506 		PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2507 		return -ENOMEM;
2508 	}
2509 
2510 	rxq->mz = rz;
2511 	rxq->nb_rx_desc = ICE_FDIR_NUM_RX_DESC;
2512 	rxq->queue_id = ICE_FDIR_QUEUE_ID;
2513 	rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2514 	rxq->vsi = pf->fdir.fdir_vsi;
2515 
2516 	rxq->rx_ring_dma = rz->iova;
2517 	memset(rz->addr, 0, ICE_FDIR_NUM_RX_DESC *
2518 	       sizeof(union ice_32byte_rx_desc));
2519 	rxq->rx_ring = (union ice_rx_flex_desc *)rz->addr;
2520 
2521 	/*
2522 	 * Don't need to allocate software ring and reset for the fdir
2523 	 * rx queue, just set the queue has been configured.
2524 	 */
2525 	rxq->q_set = true;
2526 	pf->fdir.rxq = rxq;
2527 
2528 	rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
2529 
2530 	return ICE_SUCCESS;
2531 }
2532 
2533 uint16_t
2534 ice_recv_pkts(void *rx_queue,
2535 	      struct rte_mbuf **rx_pkts,
2536 	      uint16_t nb_pkts)
2537 {
2538 	struct ice_rx_queue *rxq = rx_queue;
2539 	volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2540 	volatile union ice_rx_flex_desc *rxdp;
2541 	union ice_rx_flex_desc rxd;
2542 	struct ice_rx_entry *sw_ring = rxq->sw_ring;
2543 	struct ice_rx_entry *rxe;
2544 	struct rte_mbuf *nmb; /* new allocated mbuf */
2545 	struct rte_mbuf *nmb_pay; /* new allocated payload mbuf */
2546 	struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2547 	uint16_t rx_id = rxq->rx_tail;
2548 	uint16_t nb_rx = 0;
2549 	uint16_t nb_hold = 0;
2550 	uint16_t rx_packet_len;
2551 	uint16_t rx_header_len;
2552 	uint16_t rx_stat_err0;
2553 	uint64_t dma_addr;
2554 	uint64_t pkt_flags;
2555 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2556 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2557 	bool is_tsinit = false;
2558 	uint64_t ts_ns;
2559 	struct ice_vsi *vsi = rxq->vsi;
2560 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
2561 	struct ice_adapter *ad = rxq->vsi->adapter;
2562 
2563 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
2564 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
2565 
2566 		if (unlikely(sw_cur_time - rxq->hw_time_update > 4))
2567 			is_tsinit = 1;
2568 	}
2569 #endif
2570 
2571 	while (nb_rx < nb_pkts) {
2572 		rxdp = &rx_ring[rx_id];
2573 		rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2574 
2575 		/* Check the DD bit first */
2576 		if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2577 			break;
2578 
2579 		/* allocate header mbuf */
2580 		nmb = rte_mbuf_raw_alloc(rxq->mp);
2581 		if (unlikely(!nmb)) {
2582 			rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2583 			break;
2584 		}
2585 
2586 		rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2587 
2588 		nb_hold++;
2589 		rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2590 		rx_id++;
2591 		if (unlikely(rx_id == rxq->nb_rx_desc))
2592 			rx_id = 0;
2593 		rxm = rxe->mbuf;
2594 		rxe->mbuf = nmb;
2595 		dma_addr =
2596 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2597 
2598 		if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
2599 			/**
2600 			 * fill the read format of descriptor with physic address in
2601 			 * new allocated mbuf: nmb
2602 			 */
2603 			rxdp->read.hdr_addr = 0;
2604 			rxdp->read.pkt_addr = dma_addr;
2605 		} else {
2606 			/* allocate payload mbuf */
2607 			nmb_pay = rte_mbuf_raw_alloc(rxq->rxseg[1].mp);
2608 			if (unlikely(!nmb_pay)) {
2609 				rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2610 				rxe->mbuf = NULL;
2611 				nb_hold--;
2612 				if (unlikely(rx_id == 0))
2613 					rx_id = rxq->nb_rx_desc;
2614 
2615 				rx_id--;
2616 				rte_pktmbuf_free(nmb);
2617 				break;
2618 			}
2619 
2620 			nmb->next = nmb_pay;
2621 			nmb_pay->next = NULL;
2622 
2623 			/**
2624 			 * fill the read format of descriptor with physic address in
2625 			 * new allocated mbuf: nmb
2626 			 */
2627 			rxdp->read.hdr_addr = dma_addr;
2628 			rxdp->read.pkt_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb_pay));
2629 		}
2630 
2631 		/* fill old mbuf with received descriptor: rxd */
2632 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
2633 		rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
2634 		if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
2635 			rxm->nb_segs = 1;
2636 			rxm->next = NULL;
2637 			/* calculate rx_packet_len of the received pkt */
2638 			rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2639 					ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2640 			rxm->data_len = rx_packet_len;
2641 			rxm->pkt_len = rx_packet_len;
2642 		} else {
2643 			rxm->nb_segs = (uint16_t)(rxm->nb_segs + rxm->next->nb_segs);
2644 			rxm->next->next = NULL;
2645 			/* calculate rx_packet_len of the received pkt */
2646 			rx_header_len = rte_le_to_cpu_16(rxd.wb.hdr_len_sph_flex_flags1) &
2647 					ICE_RX_FLEX_DESC_HEADER_LEN_M;
2648 			rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2649 					ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2650 			rxm->data_len = rx_header_len;
2651 			rxm->pkt_len = rx_header_len + rx_packet_len;
2652 			rxm->next->data_len = rx_packet_len;
2653 
2654 #ifdef RTE_ETHDEV_DEBUG_RX
2655 			rte_pktmbuf_dump(stdout, rxm, rte_pktmbuf_pkt_len(rxm));
2656 #endif
2657 		}
2658 
2659 		rxm->port = rxq->port_id;
2660 		rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2661 			rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2662 		ice_rxd_to_vlan_tci(rxm, &rxd);
2663 		rxd_to_pkt_fields_ops[rxq->rxdid](rxq, rxm, &rxd);
2664 		pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2665 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2666 		if (ice_timestamp_dynflag > 0 &&
2667 		    (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
2668 			rxq->time_high =
2669 			   rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2670 			if (unlikely(is_tsinit)) {
2671 				ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1, rxq->time_high);
2672 				rxq->hw_time_low = (uint32_t)ts_ns;
2673 				rxq->hw_time_high = (uint32_t)(ts_ns >> 32);
2674 				is_tsinit = false;
2675 			} else {
2676 				if (rxq->time_high < rxq->hw_time_low)
2677 					rxq->hw_time_high += 1;
2678 				ts_ns = (uint64_t)rxq->hw_time_high << 32 | rxq->time_high;
2679 				rxq->hw_time_low = rxq->time_high;
2680 			}
2681 			rxq->hw_time_update = rte_get_timer_cycles() /
2682 					     (rte_get_timer_hz() / 1000);
2683 			*RTE_MBUF_DYNFIELD(rxm,
2684 					   (ice_timestamp_dynfield_offset),
2685 					   rte_mbuf_timestamp_t *) = ts_ns;
2686 			pkt_flags |= ice_timestamp_dynflag;
2687 		}
2688 
2689 		if (ad->ptp_ena && ((rxm->packet_type & RTE_PTYPE_L2_MASK) ==
2690 		    RTE_PTYPE_L2_ETHER_TIMESYNC)) {
2691 			rxq->time_high =
2692 			   rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2693 			rxm->timesync = rxq->queue_id;
2694 			pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
2695 		}
2696 #endif
2697 		rxm->ol_flags |= pkt_flags;
2698 		/* copy old mbuf to rx_pkts */
2699 		rx_pkts[nb_rx++] = rxm;
2700 	}
2701 
2702 	rxq->rx_tail = rx_id;
2703 	/**
2704 	 * If the number of free RX descriptors is greater than the RX free
2705 	 * threshold of the queue, advance the receive tail register of queue.
2706 	 * Update that register with the value of the last processed RX
2707 	 * descriptor minus 1.
2708 	 */
2709 	nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2710 	if (nb_hold > rxq->rx_free_thresh) {
2711 		rx_id = (uint16_t)(rx_id == 0 ?
2712 				   (rxq->nb_rx_desc - 1) : (rx_id - 1));
2713 		/* write TAIL register */
2714 		ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2715 		nb_hold = 0;
2716 	}
2717 	rxq->nb_rx_hold = nb_hold;
2718 
2719 	/* return received packet in the burst */
2720 	return nb_rx;
2721 }
2722 
2723 static inline void
2724 ice_parse_tunneling_params(uint64_t ol_flags,
2725 			    union ice_tx_offload tx_offload,
2726 			    uint32_t *cd_tunneling)
2727 {
2728 	/* EIPT: External (outer) IP header type */
2729 	if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
2730 		*cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
2731 	else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4)
2732 		*cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
2733 	else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)
2734 		*cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
2735 
2736 	/* EIPLEN: External (outer) IP header length, in DWords */
2737 	*cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
2738 		ICE_TXD_CTX_QW0_EIPLEN_S;
2739 
2740 	/* L4TUNT: L4 Tunneling Type */
2741 	switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
2742 	case RTE_MBUF_F_TX_TUNNEL_IPIP:
2743 		/* for non UDP / GRE tunneling, set to 00b */
2744 		break;
2745 	case RTE_MBUF_F_TX_TUNNEL_VXLAN:
2746 	case RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE:
2747 	case RTE_MBUF_F_TX_TUNNEL_GTP:
2748 	case RTE_MBUF_F_TX_TUNNEL_GENEVE:
2749 		*cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
2750 		break;
2751 	case RTE_MBUF_F_TX_TUNNEL_GRE:
2752 		*cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
2753 		break;
2754 	default:
2755 		PMD_TX_LOG(ERR, "Tunnel type not supported");
2756 		return;
2757 	}
2758 
2759 	/* L4TUNLEN: L4 Tunneling Length, in Words
2760 	 *
2761 	 * We depend on app to set rte_mbuf.l2_len correctly.
2762 	 * For IP in GRE it should be set to the length of the GRE
2763 	 * header;
2764 	 * For MAC in GRE or MAC in UDP it should be set to the length
2765 	 * of the GRE or UDP headers plus the inner MAC up to including
2766 	 * its last Ethertype.
2767 	 * If MPLS labels exists, it should include them as well.
2768 	 */
2769 	*cd_tunneling |= (tx_offload.l2_len >> 1) <<
2770 		ICE_TXD_CTX_QW0_NATLEN_S;
2771 
2772 	/**
2773 	 * Calculate the tunneling UDP checksum.
2774 	 * Shall be set only if L4TUNT = 01b and EIPT is not zero
2775 	 */
2776 	if ((*cd_tunneling & ICE_TXD_CTX_QW0_EIPT_M) &&
2777 			(*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING) &&
2778 			(ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM))
2779 		*cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
2780 }
2781 
2782 static inline void
2783 ice_txd_enable_checksum(uint64_t ol_flags,
2784 			uint32_t *td_cmd,
2785 			uint32_t *td_offset,
2786 			union ice_tx_offload tx_offload)
2787 {
2788 	/* Set MACLEN */
2789 	if (!(ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK))
2790 		*td_offset |= (tx_offload.l2_len >> 1)
2791 			<< ICE_TX_DESC_LEN_MACLEN_S;
2792 
2793 	/* Enable L3 checksum offloads */
2794 	if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
2795 		*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
2796 		*td_offset |= (tx_offload.l3_len >> 2) <<
2797 			ICE_TX_DESC_LEN_IPLEN_S;
2798 	} else if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2799 		*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
2800 		*td_offset |= (tx_offload.l3_len >> 2) <<
2801 			ICE_TX_DESC_LEN_IPLEN_S;
2802 	} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2803 		*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2804 		*td_offset |= (tx_offload.l3_len >> 2) <<
2805 			ICE_TX_DESC_LEN_IPLEN_S;
2806 	}
2807 
2808 	if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2809 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2810 		*td_offset |= (tx_offload.l4_len >> 2) <<
2811 			      ICE_TX_DESC_LEN_L4_LEN_S;
2812 		return;
2813 	}
2814 
2815 	if (ol_flags & RTE_MBUF_F_TX_UDP_SEG) {
2816 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2817 		*td_offset |= (tx_offload.l4_len >> 2) <<
2818 			      ICE_TX_DESC_LEN_L4_LEN_S;
2819 		return;
2820 	}
2821 
2822 	/* Enable L4 checksum offloads */
2823 	switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
2824 	case RTE_MBUF_F_TX_TCP_CKSUM:
2825 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2826 		*td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2827 			      ICE_TX_DESC_LEN_L4_LEN_S;
2828 		break;
2829 	case RTE_MBUF_F_TX_SCTP_CKSUM:
2830 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2831 		*td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2832 			      ICE_TX_DESC_LEN_L4_LEN_S;
2833 		break;
2834 	case RTE_MBUF_F_TX_UDP_CKSUM:
2835 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2836 		*td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2837 			      ICE_TX_DESC_LEN_L4_LEN_S;
2838 		break;
2839 	default:
2840 		break;
2841 	}
2842 }
2843 
2844 static inline int
2845 ice_xmit_cleanup(struct ci_tx_queue *txq)
2846 {
2847 	struct ci_tx_entry *sw_ring = txq->sw_ring;
2848 	volatile struct ice_tx_desc *txd = txq->ice_tx_ring;
2849 	uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2850 	uint16_t nb_tx_desc = txq->nb_tx_desc;
2851 	uint16_t desc_to_clean_to;
2852 	uint16_t nb_tx_to_clean;
2853 
2854 	/* Determine the last descriptor needing to be cleaned */
2855 	desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
2856 	if (desc_to_clean_to >= nb_tx_desc)
2857 		desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2858 
2859 	/* Check to make sure the last descriptor to clean is done */
2860 	desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2861 	if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
2862 	    rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
2863 		PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2864 			   "(port=%d queue=%d) value=0x%"PRIx64,
2865 			   desc_to_clean_to,
2866 			   txq->port_id, txq->queue_id,
2867 			   txd[desc_to_clean_to].cmd_type_offset_bsz);
2868 		/* Failed to clean any descriptors */
2869 		return -1;
2870 	}
2871 
2872 	/* Figure out how many descriptors will be cleaned */
2873 	if (last_desc_cleaned > desc_to_clean_to)
2874 		nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2875 					    desc_to_clean_to);
2876 	else
2877 		nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2878 					    last_desc_cleaned);
2879 
2880 	/* The last descriptor to clean is done, so that means all the
2881 	 * descriptors from the last descriptor that was cleaned
2882 	 * up to the last descriptor with the RS bit set
2883 	 * are done. Only reset the threshold descriptor.
2884 	 */
2885 	txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2886 
2887 	/* Update the txq to reflect the last descriptor that was cleaned */
2888 	txq->last_desc_cleaned = desc_to_clean_to;
2889 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
2890 
2891 	return 0;
2892 }
2893 
2894 /* Construct the tx flags */
2895 static inline uint64_t
2896 ice_build_ctob(uint32_t td_cmd,
2897 	       uint32_t td_offset,
2898 	       uint16_t size,
2899 	       uint32_t td_tag)
2900 {
2901 	return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2902 				((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2903 				((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2904 				((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
2905 				((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2906 }
2907 
2908 /* Check if the context descriptor is needed for TX offloading */
2909 static inline uint16_t
2910 ice_calc_context_desc(uint64_t flags)
2911 {
2912 	static uint64_t mask = RTE_MBUF_F_TX_TCP_SEG |
2913 		RTE_MBUF_F_TX_UDP_SEG |
2914 		RTE_MBUF_F_TX_QINQ |
2915 		RTE_MBUF_F_TX_OUTER_IP_CKSUM |
2916 		RTE_MBUF_F_TX_TUNNEL_MASK |
2917 		RTE_MBUF_F_TX_IEEE1588_TMST;
2918 
2919 	return (flags & mask) ? 1 : 0;
2920 }
2921 
2922 /* set ice TSO context descriptor */
2923 static inline uint64_t
2924 ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
2925 {
2926 	uint64_t ctx_desc = 0;
2927 	uint32_t cd_cmd, hdr_len, cd_tso_len;
2928 
2929 	if (!tx_offload.l4_len) {
2930 		PMD_TX_LOG(DEBUG, "L4 length set to 0");
2931 		return ctx_desc;
2932 	}
2933 
2934 	hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
2935 	hdr_len += (mbuf->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
2936 		   tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
2937 
2938 	cd_cmd = ICE_TX_CTX_DESC_TSO;
2939 	cd_tso_len = mbuf->pkt_len - hdr_len;
2940 	ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
2941 		    ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2942 		    ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
2943 
2944 	return ctx_desc;
2945 }
2946 
2947 /* HW requires that TX buffer size ranges from 1B up to (16K-1)B. */
2948 #define ICE_MAX_DATA_PER_TXD \
2949 	(ICE_TXD_QW1_TX_BUF_SZ_M >> ICE_TXD_QW1_TX_BUF_SZ_S)
2950 /* Calculate the number of TX descriptors needed for each pkt */
2951 static inline uint16_t
2952 ice_calc_pkt_desc(struct rte_mbuf *tx_pkt)
2953 {
2954 	struct rte_mbuf *txd = tx_pkt;
2955 	uint16_t count = 0;
2956 
2957 	while (txd != NULL) {
2958 		count += DIV_ROUND_UP(txd->data_len, ICE_MAX_DATA_PER_TXD);
2959 		txd = txd->next;
2960 	}
2961 
2962 	return count;
2963 }
2964 
2965 uint16_t
2966 ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2967 {
2968 	struct ci_tx_queue *txq;
2969 	volatile struct ice_tx_desc *ice_tx_ring;
2970 	volatile struct ice_tx_desc *txd;
2971 	struct ci_tx_entry *sw_ring;
2972 	struct ci_tx_entry *txe, *txn;
2973 	struct rte_mbuf *tx_pkt;
2974 	struct rte_mbuf *m_seg;
2975 	uint32_t cd_tunneling_params;
2976 	uint16_t tx_id;
2977 	uint16_t nb_tx;
2978 	uint16_t nb_used;
2979 	uint16_t nb_ctx;
2980 	uint32_t td_cmd = 0;
2981 	uint32_t td_offset = 0;
2982 	uint32_t td_tag = 0;
2983 	uint16_t tx_last;
2984 	uint16_t slen;
2985 	uint64_t buf_dma_addr;
2986 	uint64_t ol_flags;
2987 	union ice_tx_offload tx_offload = {0};
2988 
2989 	txq = tx_queue;
2990 	sw_ring = txq->sw_ring;
2991 	ice_tx_ring = txq->ice_tx_ring;
2992 	tx_id = txq->tx_tail;
2993 	txe = &sw_ring[tx_id];
2994 
2995 	/* Check if the descriptor ring needs to be cleaned. */
2996 	if (txq->nb_tx_free < txq->tx_free_thresh)
2997 		(void)ice_xmit_cleanup(txq);
2998 
2999 	for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
3000 		tx_pkt = *tx_pkts++;
3001 
3002 		td_cmd = 0;
3003 		td_tag = 0;
3004 		td_offset = 0;
3005 		ol_flags = tx_pkt->ol_flags;
3006 		tx_offload.l2_len = tx_pkt->l2_len;
3007 		tx_offload.l3_len = tx_pkt->l3_len;
3008 		tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
3009 		tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
3010 		tx_offload.l4_len = tx_pkt->l4_len;
3011 		tx_offload.tso_segsz = tx_pkt->tso_segsz;
3012 		/* Calculate the number of context descriptors needed. */
3013 		nb_ctx = ice_calc_context_desc(ol_flags);
3014 
3015 		/* The number of descriptors that must be allocated for
3016 		 * a packet equals to the number of the segments of that
3017 		 * packet plus the number of context descriptor if needed.
3018 		 * Recalculate the needed tx descs when TSO enabled in case
3019 		 * the mbuf data size exceeds max data size that hw allows
3020 		 * per tx desc.
3021 		 */
3022 		if (ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
3023 			nb_used = (uint16_t)(ice_calc_pkt_desc(tx_pkt) +
3024 					     nb_ctx);
3025 		else
3026 			nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
3027 		tx_last = (uint16_t)(tx_id + nb_used - 1);
3028 
3029 		/* Circular ring */
3030 		if (tx_last >= txq->nb_tx_desc)
3031 			tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
3032 
3033 		if (nb_used > txq->nb_tx_free) {
3034 			if (ice_xmit_cleanup(txq) != 0) {
3035 				if (nb_tx == 0)
3036 					return 0;
3037 				goto end_of_tx;
3038 			}
3039 			if (unlikely(nb_used > txq->tx_rs_thresh)) {
3040 				while (nb_used > txq->nb_tx_free) {
3041 					if (ice_xmit_cleanup(txq) != 0) {
3042 						if (nb_tx == 0)
3043 							return 0;
3044 						goto end_of_tx;
3045 					}
3046 				}
3047 			}
3048 		}
3049 
3050 		/* Descriptor based VLAN insertion */
3051 		if (ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) {
3052 			td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
3053 			td_tag = tx_pkt->vlan_tci;
3054 		}
3055 
3056 		/* Fill in tunneling parameters if necessary */
3057 		cd_tunneling_params = 0;
3058 		if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
3059 			td_offset |= (tx_offload.outer_l2_len >> 1)
3060 				<< ICE_TX_DESC_LEN_MACLEN_S;
3061 			ice_parse_tunneling_params(ol_flags, tx_offload,
3062 						   &cd_tunneling_params);
3063 		}
3064 
3065 		/* Enable checksum offloading */
3066 		if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK)
3067 			ice_txd_enable_checksum(ol_flags, &td_cmd,
3068 						&td_offset, tx_offload);
3069 
3070 		if (nb_ctx) {
3071 			/* Setup TX context descriptor if required */
3072 			volatile struct ice_tx_ctx_desc *ctx_txd =
3073 				(volatile struct ice_tx_ctx_desc *)
3074 					&ice_tx_ring[tx_id];
3075 			uint16_t cd_l2tag2 = 0;
3076 			uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
3077 
3078 			txn = &sw_ring[txe->next_id];
3079 			RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
3080 			if (txe->mbuf) {
3081 				rte_pktmbuf_free_seg(txe->mbuf);
3082 				txe->mbuf = NULL;
3083 			}
3084 
3085 			if (ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
3086 				cd_type_cmd_tso_mss |=
3087 					ice_set_tso_ctx(tx_pkt, tx_offload);
3088 			else if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
3089 				cd_type_cmd_tso_mss |=
3090 					((uint64_t)ICE_TX_CTX_DESC_TSYN <<
3091 					ICE_TXD_CTX_QW1_CMD_S) |
3092 					 (((uint64_t)txq->ice_vsi->adapter->ptp_tx_index <<
3093 					 ICE_TXD_CTX_QW1_TSYN_S) & ICE_TXD_CTX_QW1_TSYN_M);
3094 
3095 			ctx_txd->tunneling_params =
3096 				rte_cpu_to_le_32(cd_tunneling_params);
3097 
3098 			/* TX context descriptor based double VLAN insert */
3099 			if (ol_flags & RTE_MBUF_F_TX_QINQ) {
3100 				cd_l2tag2 = tx_pkt->vlan_tci_outer;
3101 				cd_type_cmd_tso_mss |=
3102 					((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
3103 					 ICE_TXD_CTX_QW1_CMD_S);
3104 			}
3105 			ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
3106 			ctx_txd->qw1 =
3107 				rte_cpu_to_le_64(cd_type_cmd_tso_mss);
3108 
3109 			txe->last_id = tx_last;
3110 			tx_id = txe->next_id;
3111 			txe = txn;
3112 		}
3113 		m_seg = tx_pkt;
3114 
3115 		do {
3116 			txd = &ice_tx_ring[tx_id];
3117 			txn = &sw_ring[txe->next_id];
3118 
3119 			if (txe->mbuf)
3120 				rte_pktmbuf_free_seg(txe->mbuf);
3121 			txe->mbuf = m_seg;
3122 
3123 			/* Setup TX Descriptor */
3124 			slen = m_seg->data_len;
3125 			buf_dma_addr = rte_mbuf_data_iova(m_seg);
3126 
3127 			while ((ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) &&
3128 				unlikely(slen > ICE_MAX_DATA_PER_TXD)) {
3129 				txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
3130 				txd->cmd_type_offset_bsz =
3131 				rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
3132 				((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
3133 				((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
3134 				((uint64_t)ICE_MAX_DATA_PER_TXD <<
3135 				 ICE_TXD_QW1_TX_BUF_SZ_S) |
3136 				((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
3137 
3138 				buf_dma_addr += ICE_MAX_DATA_PER_TXD;
3139 				slen -= ICE_MAX_DATA_PER_TXD;
3140 
3141 				txe->last_id = tx_last;
3142 				tx_id = txe->next_id;
3143 				txe = txn;
3144 				txd = &ice_tx_ring[tx_id];
3145 				txn = &sw_ring[txe->next_id];
3146 			}
3147 
3148 			txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
3149 			txd->cmd_type_offset_bsz =
3150 				rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
3151 				((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
3152 				((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
3153 				((uint64_t)slen << ICE_TXD_QW1_TX_BUF_SZ_S) |
3154 				((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
3155 
3156 			txe->last_id = tx_last;
3157 			tx_id = txe->next_id;
3158 			txe = txn;
3159 			m_seg = m_seg->next;
3160 		} while (m_seg);
3161 
3162 		/* fill the last descriptor with End of Packet (EOP) bit */
3163 		td_cmd |= ICE_TX_DESC_CMD_EOP;
3164 		txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
3165 		txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
3166 
3167 		/* set RS bit on the last descriptor of one packet */
3168 		if (txq->nb_tx_used >= txq->tx_rs_thresh) {
3169 			PMD_TX_LOG(DEBUG,
3170 				   "Setting RS bit on TXD id="
3171 				   "%4u (port=%d queue=%d)",
3172 				   tx_last, txq->port_id, txq->queue_id);
3173 
3174 			td_cmd |= ICE_TX_DESC_CMD_RS;
3175 
3176 			/* Update txq RS bit counters */
3177 			txq->nb_tx_used = 0;
3178 		}
3179 		txd->cmd_type_offset_bsz |=
3180 			rte_cpu_to_le_64(((uint64_t)td_cmd) <<
3181 					 ICE_TXD_QW1_CMD_S);
3182 	}
3183 end_of_tx:
3184 	/* update Tail register */
3185 	ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
3186 	txq->tx_tail = tx_id;
3187 
3188 	return nb_tx;
3189 }
3190 
3191 static __rte_always_inline int
3192 ice_tx_free_bufs(struct ci_tx_queue *txq)
3193 {
3194 	struct ci_tx_entry *txep;
3195 	uint16_t i;
3196 
3197 	if ((txq->ice_tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
3198 	     rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
3199 	    rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
3200 		return 0;
3201 
3202 	txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
3203 
3204 	for (i = 0; i < txq->tx_rs_thresh; i++)
3205 		rte_prefetch0((txep + i)->mbuf);
3206 
3207 	if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) {
3208 		for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
3209 			rte_mempool_put(txep->mbuf->pool, txep->mbuf);
3210 			txep->mbuf = NULL;
3211 		}
3212 	} else {
3213 		for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
3214 			rte_pktmbuf_free_seg(txep->mbuf);
3215 			txep->mbuf = NULL;
3216 		}
3217 	}
3218 
3219 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
3220 	txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
3221 	if (txq->tx_next_dd >= txq->nb_tx_desc)
3222 		txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
3223 
3224 	return txq->tx_rs_thresh;
3225 }
3226 
3227 static int
3228 ice_tx_done_cleanup_full(struct ci_tx_queue *txq,
3229 			uint32_t free_cnt)
3230 {
3231 	struct ci_tx_entry *swr_ring = txq->sw_ring;
3232 	uint16_t i, tx_last, tx_id;
3233 	uint16_t nb_tx_free_last;
3234 	uint16_t nb_tx_to_clean;
3235 	uint32_t pkt_cnt;
3236 
3237 	/* Start free mbuf from the next of tx_tail */
3238 	tx_last = txq->tx_tail;
3239 	tx_id  = swr_ring[tx_last].next_id;
3240 
3241 	if (txq->nb_tx_free == 0 && ice_xmit_cleanup(txq))
3242 		return 0;
3243 
3244 	nb_tx_to_clean = txq->nb_tx_free;
3245 	nb_tx_free_last = txq->nb_tx_free;
3246 	if (!free_cnt)
3247 		free_cnt = txq->nb_tx_desc;
3248 
3249 	/* Loop through swr_ring to count the amount of
3250 	 * freeable mubfs and packets.
3251 	 */
3252 	for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
3253 		for (i = 0; i < nb_tx_to_clean &&
3254 			pkt_cnt < free_cnt &&
3255 			tx_id != tx_last; i++) {
3256 			if (swr_ring[tx_id].mbuf != NULL) {
3257 				rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
3258 				swr_ring[tx_id].mbuf = NULL;
3259 
3260 				/*
3261 				 * last segment in the packet,
3262 				 * increment packet count
3263 				 */
3264 				pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
3265 			}
3266 
3267 			tx_id = swr_ring[tx_id].next_id;
3268 		}
3269 
3270 		if (txq->tx_rs_thresh > txq->nb_tx_desc -
3271 			txq->nb_tx_free || tx_id == tx_last)
3272 			break;
3273 
3274 		if (pkt_cnt < free_cnt) {
3275 			if (ice_xmit_cleanup(txq))
3276 				break;
3277 
3278 			nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
3279 			nb_tx_free_last = txq->nb_tx_free;
3280 		}
3281 	}
3282 
3283 	return (int)pkt_cnt;
3284 }
3285 
3286 #ifdef RTE_ARCH_X86
3287 static int
3288 ice_tx_done_cleanup_vec(struct ci_tx_queue *txq __rte_unused,
3289 			uint32_t free_cnt __rte_unused)
3290 {
3291 	return -ENOTSUP;
3292 }
3293 #endif
3294 
3295 static int
3296 ice_tx_done_cleanup_simple(struct ci_tx_queue *txq,
3297 			uint32_t free_cnt)
3298 {
3299 	int i, n, cnt;
3300 
3301 	if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
3302 		free_cnt = txq->nb_tx_desc;
3303 
3304 	cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
3305 
3306 	for (i = 0; i < cnt; i += n) {
3307 		if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
3308 			break;
3309 
3310 		n = ice_tx_free_bufs(txq);
3311 
3312 		if (n == 0)
3313 			break;
3314 	}
3315 
3316 	return i;
3317 }
3318 
3319 int
3320 ice_tx_done_cleanup(void *txq, uint32_t free_cnt)
3321 {
3322 	struct ci_tx_queue *q = (struct ci_tx_queue *)txq;
3323 	struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
3324 	struct ice_adapter *ad =
3325 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3326 
3327 #ifdef RTE_ARCH_X86
3328 	if (ad->tx_vec_allowed)
3329 		return ice_tx_done_cleanup_vec(q, free_cnt);
3330 #endif
3331 	if (ad->tx_simple_allowed)
3332 		return ice_tx_done_cleanup_simple(q, free_cnt);
3333 	else
3334 		return ice_tx_done_cleanup_full(q, free_cnt);
3335 }
3336 
3337 /* Populate 4 descriptors with data from 4 mbufs */
3338 static inline void
3339 tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3340 {
3341 	uint64_t dma_addr;
3342 	uint32_t i;
3343 
3344 	for (i = 0; i < 4; i++, txdp++, pkts++) {
3345 		dma_addr = rte_mbuf_data_iova(*pkts);
3346 		txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3347 		txdp->cmd_type_offset_bsz =
3348 			ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3349 				       (*pkts)->data_len, 0);
3350 	}
3351 }
3352 
3353 /* Populate 1 descriptor with data from 1 mbuf */
3354 static inline void
3355 tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3356 {
3357 	uint64_t dma_addr;
3358 
3359 	dma_addr = rte_mbuf_data_iova(*pkts);
3360 	txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3361 	txdp->cmd_type_offset_bsz =
3362 		ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3363 			       (*pkts)->data_len, 0);
3364 }
3365 
3366 static inline void
3367 ice_tx_fill_hw_ring(struct ci_tx_queue *txq, struct rte_mbuf **pkts,
3368 		    uint16_t nb_pkts)
3369 {
3370 	volatile struct ice_tx_desc *txdp = &txq->ice_tx_ring[txq->tx_tail];
3371 	struct ci_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
3372 	const int N_PER_LOOP = 4;
3373 	const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
3374 	int mainpart, leftover;
3375 	int i, j;
3376 
3377 	/**
3378 	 * Process most of the packets in chunks of N pkts.  Any
3379 	 * leftover packets will get processed one at a time.
3380 	 */
3381 	mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
3382 	leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
3383 	for (i = 0; i < mainpart; i += N_PER_LOOP) {
3384 		/* Copy N mbuf pointers to the S/W ring */
3385 		for (j = 0; j < N_PER_LOOP; ++j)
3386 			(txep + i + j)->mbuf = *(pkts + i + j);
3387 		tx4(txdp + i, pkts + i);
3388 	}
3389 
3390 	if (unlikely(leftover > 0)) {
3391 		for (i = 0; i < leftover; ++i) {
3392 			(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
3393 			tx1(txdp + mainpart + i, pkts + mainpart + i);
3394 		}
3395 	}
3396 }
3397 
3398 static inline uint16_t
3399 tx_xmit_pkts(struct ci_tx_queue *txq,
3400 	     struct rte_mbuf **tx_pkts,
3401 	     uint16_t nb_pkts)
3402 {
3403 	volatile struct ice_tx_desc *txr = txq->ice_tx_ring;
3404 	uint16_t n = 0;
3405 
3406 	/**
3407 	 * Begin scanning the H/W ring for done descriptors when the number
3408 	 * of available descriptors drops below tx_free_thresh. For each done
3409 	 * descriptor, free the associated buffer.
3410 	 */
3411 	if (txq->nb_tx_free < txq->tx_free_thresh)
3412 		ice_tx_free_bufs(txq);
3413 
3414 	/* Use available descriptor only */
3415 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
3416 	if (unlikely(!nb_pkts))
3417 		return 0;
3418 
3419 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
3420 	if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
3421 		n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
3422 		ice_tx_fill_hw_ring(txq, tx_pkts, n);
3423 		txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3424 			rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3425 					 ICE_TXD_QW1_CMD_S);
3426 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3427 		txq->tx_tail = 0;
3428 	}
3429 
3430 	/* Fill hardware descriptor ring with mbuf data */
3431 	ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
3432 	txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
3433 
3434 	/* Determine if RS bit needs to be set */
3435 	if (txq->tx_tail > txq->tx_next_rs) {
3436 		txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3437 			rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3438 					 ICE_TXD_QW1_CMD_S);
3439 		txq->tx_next_rs =
3440 			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
3441 		if (txq->tx_next_rs >= txq->nb_tx_desc)
3442 			txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3443 	}
3444 
3445 	if (txq->tx_tail >= txq->nb_tx_desc)
3446 		txq->tx_tail = 0;
3447 
3448 	/* Update the tx tail register */
3449 	ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
3450 
3451 	return nb_pkts;
3452 }
3453 
3454 static uint16_t
3455 ice_xmit_pkts_simple(void *tx_queue,
3456 		     struct rte_mbuf **tx_pkts,
3457 		     uint16_t nb_pkts)
3458 {
3459 	uint16_t nb_tx = 0;
3460 
3461 	if (likely(nb_pkts <= ICE_TX_MAX_BURST))
3462 		return tx_xmit_pkts((struct ci_tx_queue *)tx_queue,
3463 				    tx_pkts, nb_pkts);
3464 
3465 	while (nb_pkts) {
3466 		uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
3467 						      ICE_TX_MAX_BURST);
3468 
3469 		ret = tx_xmit_pkts((struct ci_tx_queue *)tx_queue,
3470 				   &tx_pkts[nb_tx], num);
3471 		nb_tx = (uint16_t)(nb_tx + ret);
3472 		nb_pkts = (uint16_t)(nb_pkts - ret);
3473 		if (ret < num)
3474 			break;
3475 	}
3476 
3477 	return nb_tx;
3478 }
3479 
3480 void __rte_cold
3481 ice_set_rx_function(struct rte_eth_dev *dev)
3482 {
3483 	PMD_INIT_FUNC_TRACE();
3484 	struct ice_adapter *ad =
3485 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3486 #ifdef RTE_ARCH_X86
3487 	struct ice_rx_queue *rxq;
3488 	int i;
3489 	int rx_check_ret = -1;
3490 
3491 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3492 		ad->rx_use_avx512 = false;
3493 		ad->rx_use_avx2 = false;
3494 		rx_check_ret = ice_rx_vec_dev_check(dev);
3495 		if (ad->ptp_ena)
3496 			rx_check_ret = -1;
3497 		ad->rx_vec_offload_support =
3498 				(rx_check_ret == ICE_VECTOR_OFFLOAD_PATH);
3499 		if (rx_check_ret >= 0 && ad->rx_bulk_alloc_allowed &&
3500 		    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3501 			ad->rx_vec_allowed = true;
3502 			for (i = 0; i < dev->data->nb_rx_queues; i++) {
3503 				rxq = dev->data->rx_queues[i];
3504 				if (rxq && ice_rxq_vec_setup(rxq)) {
3505 					ad->rx_vec_allowed = false;
3506 					break;
3507 				}
3508 			}
3509 
3510 			if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3511 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3512 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3513 #ifdef CC_AVX512_SUPPORT
3514 				ad->rx_use_avx512 = true;
3515 #else
3516 			PMD_DRV_LOG(NOTICE,
3517 				"AVX512 is not supported in build env");
3518 #endif
3519 			if (!ad->rx_use_avx512 &&
3520 			(rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3521 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3522 			rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3523 				ad->rx_use_avx2 = true;
3524 
3525 		} else {
3526 			ad->rx_vec_allowed = false;
3527 		}
3528 	}
3529 
3530 	if (ad->rx_vec_allowed) {
3531 		if (dev->data->scattered_rx) {
3532 			if (ad->rx_use_avx512) {
3533 #ifdef CC_AVX512_SUPPORT
3534 				if (ad->rx_vec_offload_support) {
3535 					PMD_DRV_LOG(NOTICE,
3536 						"Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
3537 						dev->data->port_id);
3538 					dev->rx_pkt_burst =
3539 						ice_recv_scattered_pkts_vec_avx512_offload;
3540 				} else {
3541 					PMD_DRV_LOG(NOTICE,
3542 						"Using AVX512 Vector Scattered Rx (port %d).",
3543 						dev->data->port_id);
3544 					dev->rx_pkt_burst =
3545 						ice_recv_scattered_pkts_vec_avx512;
3546 				}
3547 #endif
3548 			} else if (ad->rx_use_avx2) {
3549 				if (ad->rx_vec_offload_support) {
3550 					PMD_DRV_LOG(NOTICE,
3551 						    "Using AVX2 OFFLOAD Vector Scattered Rx (port %d).",
3552 						    dev->data->port_id);
3553 					dev->rx_pkt_burst =
3554 						ice_recv_scattered_pkts_vec_avx2_offload;
3555 				} else {
3556 					PMD_DRV_LOG(NOTICE,
3557 						    "Using AVX2 Vector Scattered Rx (port %d).",
3558 						    dev->data->port_id);
3559 					dev->rx_pkt_burst =
3560 						ice_recv_scattered_pkts_vec_avx2;
3561 				}
3562 			} else {
3563 				PMD_DRV_LOG(DEBUG,
3564 					"Using Vector Scattered Rx (port %d).",
3565 					dev->data->port_id);
3566 				dev->rx_pkt_burst = ice_recv_scattered_pkts_vec;
3567 			}
3568 		} else {
3569 			if (ad->rx_use_avx512) {
3570 #ifdef CC_AVX512_SUPPORT
3571 				if (ad->rx_vec_offload_support) {
3572 					PMD_DRV_LOG(NOTICE,
3573 						"Using AVX512 OFFLOAD Vector Rx (port %d).",
3574 						dev->data->port_id);
3575 					dev->rx_pkt_burst =
3576 						ice_recv_pkts_vec_avx512_offload;
3577 				} else {
3578 					PMD_DRV_LOG(NOTICE,
3579 						"Using AVX512 Vector Rx (port %d).",
3580 						dev->data->port_id);
3581 					dev->rx_pkt_burst =
3582 						ice_recv_pkts_vec_avx512;
3583 				}
3584 #endif
3585 			} else if (ad->rx_use_avx2) {
3586 				if (ad->rx_vec_offload_support) {
3587 					PMD_DRV_LOG(NOTICE,
3588 						    "Using AVX2 OFFLOAD Vector Rx (port %d).",
3589 						    dev->data->port_id);
3590 					dev->rx_pkt_burst =
3591 						ice_recv_pkts_vec_avx2_offload;
3592 				} else {
3593 					PMD_DRV_LOG(NOTICE,
3594 						    "Using AVX2 Vector Rx (port %d).",
3595 						    dev->data->port_id);
3596 					dev->rx_pkt_burst =
3597 						ice_recv_pkts_vec_avx2;
3598 				}
3599 			} else {
3600 				PMD_DRV_LOG(DEBUG,
3601 					"Using Vector Rx (port %d).",
3602 					dev->data->port_id);
3603 				dev->rx_pkt_burst = ice_recv_pkts_vec;
3604 			}
3605 		}
3606 		return;
3607 	}
3608 
3609 #endif
3610 
3611 	if (dev->data->scattered_rx) {
3612 		/* Set the non-LRO scattered function */
3613 		PMD_INIT_LOG(DEBUG,
3614 			     "Using a Scattered function on port %d.",
3615 			     dev->data->port_id);
3616 		dev->rx_pkt_burst = ice_recv_scattered_pkts;
3617 	} else if (ad->rx_bulk_alloc_allowed) {
3618 		PMD_INIT_LOG(DEBUG,
3619 			     "Rx Burst Bulk Alloc Preconditions are "
3620 			     "satisfied. Rx Burst Bulk Alloc function "
3621 			     "will be used on port %d.",
3622 			     dev->data->port_id);
3623 		dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
3624 	} else {
3625 		PMD_INIT_LOG(DEBUG,
3626 			     "Rx Burst Bulk Alloc Preconditions are not "
3627 			     "satisfied, Normal Rx will be used on port %d.",
3628 			     dev->data->port_id);
3629 		dev->rx_pkt_burst = ice_recv_pkts;
3630 	}
3631 }
3632 
3633 static const struct {
3634 	eth_rx_burst_t pkt_burst;
3635 	const char *info;
3636 } ice_rx_burst_infos[] = {
3637 	{ ice_recv_scattered_pkts,          "Scalar Scattered" },
3638 	{ ice_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3639 	{ ice_recv_pkts,                    "Scalar" },
3640 #ifdef RTE_ARCH_X86
3641 #ifdef CC_AVX512_SUPPORT
3642 	{ ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3643 	{ ice_recv_scattered_pkts_vec_avx512_offload, "Offload Vector AVX512 Scattered" },
3644 	{ ice_recv_pkts_vec_avx512,           "Vector AVX512" },
3645 	{ ice_recv_pkts_vec_avx512_offload,   "Offload Vector AVX512" },
3646 #endif
3647 	{ ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3648 	{ ice_recv_scattered_pkts_vec_avx2_offload, "Offload Vector AVX2 Scattered" },
3649 	{ ice_recv_pkts_vec_avx2,           "Vector AVX2" },
3650 	{ ice_recv_pkts_vec_avx2_offload,   "Offload Vector AVX2" },
3651 	{ ice_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3652 	{ ice_recv_pkts_vec,                "Vector SSE" },
3653 #endif
3654 };
3655 
3656 int
3657 ice_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3658 		      struct rte_eth_burst_mode *mode)
3659 {
3660 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3661 	int ret = -EINVAL;
3662 	unsigned int i;
3663 
3664 	for (i = 0; i < RTE_DIM(ice_rx_burst_infos); ++i) {
3665 		if (pkt_burst == ice_rx_burst_infos[i].pkt_burst) {
3666 			snprintf(mode->info, sizeof(mode->info), "%s",
3667 				 ice_rx_burst_infos[i].info);
3668 			ret = 0;
3669 			break;
3670 		}
3671 	}
3672 
3673 	return ret;
3674 }
3675 
3676 void __rte_cold
3677 ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ci_tx_queue *txq)
3678 {
3679 	struct ice_adapter *ad =
3680 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3681 
3682 	/* Use a simple Tx queue if possible (only fast free is allowed) */
3683 	ad->tx_simple_allowed =
3684 		(txq->offloads ==
3685 		(txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) &&
3686 		txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
3687 
3688 	if (ad->tx_simple_allowed)
3689 		PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3690 			     txq->queue_id);
3691 	else
3692 		PMD_INIT_LOG(DEBUG,
3693 			     "Simple Tx can NOT be enabled on Tx queue %u.",
3694 			     txq->queue_id);
3695 }
3696 
3697 /*********************************************************************
3698  *
3699  *  TX prep functions
3700  *
3701  **********************************************************************/
3702 /* The default values of TSO MSS */
3703 #define ICE_MIN_TSO_MSS            64
3704 #define ICE_MAX_TSO_MSS            9728
3705 #define ICE_MAX_TSO_FRAME_SIZE     262144
3706 
3707 /*Check for empty mbuf*/
3708 static inline uint16_t
3709 ice_check_empty_mbuf(struct rte_mbuf *tx_pkt)
3710 {
3711 	struct rte_mbuf *txd = tx_pkt;
3712 
3713 	while (txd != NULL) {
3714 		if (txd->data_len == 0)
3715 			return -1;
3716 		txd = txd->next;
3717 	}
3718 
3719 	return 0;
3720 }
3721 
3722 /* Tx mbuf check */
3723 static uint16_t
3724 ice_xmit_pkts_check(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
3725 {
3726 	struct ci_tx_queue *txq = tx_queue;
3727 	uint16_t idx;
3728 	struct rte_mbuf *mb;
3729 	bool pkt_error = false;
3730 	uint16_t good_pkts = nb_pkts;
3731 	const char *reason = NULL;
3732 	struct ice_adapter *adapter = txq->ice_vsi->adapter;
3733 	uint64_t ol_flags;
3734 
3735 	for (idx = 0; idx < nb_pkts; idx++) {
3736 		mb = tx_pkts[idx];
3737 		ol_flags = mb->ol_flags;
3738 
3739 		if ((adapter->devargs.mbuf_check & ICE_MBUF_CHECK_F_TX_MBUF) &&
3740 		    (rte_mbuf_check(mb, 1, &reason) != 0)) {
3741 			PMD_TX_LOG(ERR, "INVALID mbuf: %s", reason);
3742 			pkt_error = true;
3743 			break;
3744 		}
3745 
3746 		if ((adapter->devargs.mbuf_check & ICE_MBUF_CHECK_F_TX_SIZE) &&
3747 		    (mb->data_len > mb->pkt_len ||
3748 		     mb->data_len < ICE_TX_MIN_PKT_LEN ||
3749 		     mb->data_len > ICE_FRAME_SIZE_MAX)) {
3750 			PMD_TX_LOG(ERR, "INVALID mbuf: data_len (%u) is out of range, reasonable range (%d - %d)",
3751 				mb->data_len, ICE_TX_MIN_PKT_LEN, ICE_FRAME_SIZE_MAX);
3752 			pkt_error = true;
3753 			break;
3754 		}
3755 
3756 		if (adapter->devargs.mbuf_check & ICE_MBUF_CHECK_F_TX_SEGMENT) {
3757 			if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
3758 				/**
3759 				 * No TSO case: nb->segs, pkt_len to not exceed
3760 				 * the limites.
3761 				 */
3762 				if (mb->nb_segs > ICE_TX_MTU_SEG_MAX) {
3763 					PMD_TX_LOG(ERR, "INVALID mbuf: nb_segs (%d) exceeds HW limit, maximum allowed value is %d",
3764 						mb->nb_segs, ICE_TX_MTU_SEG_MAX);
3765 					pkt_error = true;
3766 					break;
3767 				}
3768 				if (mb->pkt_len > ICE_FRAME_SIZE_MAX) {
3769 					PMD_TX_LOG(ERR, "INVALID mbuf: pkt_len (%d) exceeds HW limit, maximum allowed value is %d",
3770 						mb->nb_segs, ICE_FRAME_SIZE_MAX);
3771 					pkt_error = true;
3772 					break;
3773 				}
3774 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
3775 				/** TSO case: tso_segsz, nb_segs, pkt_len not exceed
3776 				 * the limits.
3777 				 */
3778 				if (mb->tso_segsz < ICE_MIN_TSO_MSS ||
3779 				    mb->tso_segsz > ICE_MAX_TSO_MSS) {
3780 					/**
3781 					 * MSS outside the range are considered malicious
3782 					 */
3783 					PMD_TX_LOG(ERR, "INVALID mbuf: tso_segsz (%u) is out of range, reasonable range (%d - %u)",
3784 						mb->tso_segsz, ICE_MIN_TSO_MSS, ICE_MAX_TSO_MSS);
3785 					pkt_error = true;
3786 					break;
3787 				}
3788 				if (mb->nb_segs > ((struct ci_tx_queue *)tx_queue)->nb_tx_desc) {
3789 					PMD_TX_LOG(ERR, "INVALID mbuf: nb_segs out of ring length");
3790 					pkt_error = true;
3791 					break;
3792 				}
3793 			}
3794 		}
3795 
3796 		if (adapter->devargs.mbuf_check & ICE_MBUF_CHECK_F_TX_OFFLOAD) {
3797 			if (ol_flags & ICE_TX_OFFLOAD_NOTSUP_MASK) {
3798 				PMD_TX_LOG(ERR, "INVALID mbuf: TX offload is not supported");
3799 				pkt_error = true;
3800 				break;
3801 			}
3802 
3803 			if (!rte_validate_tx_offload(mb)) {
3804 				PMD_TX_LOG(ERR, "INVALID mbuf: TX offload setup error");
3805 				pkt_error = true;
3806 				break;
3807 			}
3808 		}
3809 	}
3810 
3811 	if (pkt_error) {
3812 		txq->mbuf_errors++;
3813 		good_pkts = idx;
3814 		if (good_pkts == 0)
3815 			return 0;
3816 	}
3817 
3818 	return adapter->tx_pkt_burst(tx_queue, tx_pkts, good_pkts);
3819 }
3820 
3821 uint16_t
3822 ice_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3823 	      uint16_t nb_pkts)
3824 {
3825 	int i, ret;
3826 	uint64_t ol_flags;
3827 	struct rte_mbuf *m;
3828 
3829 	for (i = 0; i < nb_pkts; i++) {
3830 		m = tx_pkts[i];
3831 		ol_flags = m->ol_flags;
3832 
3833 		if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
3834 		    /**
3835 		     * No TSO case: nb->segs, pkt_len to not exceed
3836 		     * the limites.
3837 		     */
3838 		    (m->nb_segs > ICE_TX_MTU_SEG_MAX ||
3839 		     m->pkt_len > ICE_FRAME_SIZE_MAX)) {
3840 			rte_errno = EINVAL;
3841 			return i;
3842 		} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
3843 		    /** TSO case: tso_segsz, nb_segs, pkt_len not exceed
3844 		     * the limits.
3845 		     */
3846 		    (m->tso_segsz < ICE_MIN_TSO_MSS ||
3847 		     m->tso_segsz > ICE_MAX_TSO_MSS ||
3848 		     m->nb_segs >
3849 			((struct ci_tx_queue *)tx_queue)->nb_tx_desc ||
3850 		     m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
3851 			/**
3852 			 * MSS outside the range are considered malicious
3853 			 */
3854 			rte_errno = EINVAL;
3855 			return i;
3856 		}
3857 
3858 		if (m->pkt_len < ICE_TX_MIN_PKT_LEN) {
3859 			rte_errno = EINVAL;
3860 			return i;
3861 		}
3862 
3863 #ifdef RTE_ETHDEV_DEBUG_TX
3864 		ret = rte_validate_tx_offload(m);
3865 		if (ret != 0) {
3866 			rte_errno = -ret;
3867 			return i;
3868 		}
3869 #endif
3870 		ret = rte_net_intel_cksum_prepare(m);
3871 		if (ret != 0) {
3872 			rte_errno = -ret;
3873 			return i;
3874 		}
3875 
3876 		if (ice_check_empty_mbuf(m) != 0) {
3877 			rte_errno = EINVAL;
3878 			return i;
3879 		}
3880 	}
3881 	return i;
3882 }
3883 
3884 void __rte_cold
3885 ice_set_tx_function(struct rte_eth_dev *dev)
3886 {
3887 	struct ice_adapter *ad =
3888 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3889 	int mbuf_check = ad->devargs.mbuf_check;
3890 #ifdef RTE_ARCH_X86
3891 	struct ci_tx_queue *txq;
3892 	int i;
3893 	int tx_check_ret = -1;
3894 
3895 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3896 		ad->tx_use_avx2 = false;
3897 		ad->tx_use_avx512 = false;
3898 		tx_check_ret = ice_tx_vec_dev_check(dev);
3899 		if (tx_check_ret >= 0 &&
3900 		    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3901 			ad->tx_vec_allowed = true;
3902 
3903 			if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3904 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3905 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3906 #ifdef CC_AVX512_SUPPORT
3907 				ad->tx_use_avx512 = true;
3908 #else
3909 			PMD_DRV_LOG(NOTICE,
3910 				"AVX512 is not supported in build env");
3911 #endif
3912 			if (!ad->tx_use_avx512 &&
3913 				(rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3914 				rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3915 				rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3916 				ad->tx_use_avx2 = true;
3917 
3918 			if (!ad->tx_use_avx2 && !ad->tx_use_avx512 &&
3919 				tx_check_ret == ICE_VECTOR_OFFLOAD_PATH)
3920 				ad->tx_vec_allowed = false;
3921 
3922 			if (ad->tx_vec_allowed) {
3923 				for (i = 0; i < dev->data->nb_tx_queues; i++) {
3924 					txq = dev->data->tx_queues[i];
3925 					if (txq && ice_txq_vec_setup(txq)) {
3926 						ad->tx_vec_allowed = false;
3927 						break;
3928 					}
3929 				}
3930 			}
3931 		} else {
3932 			ad->tx_vec_allowed = false;
3933 		}
3934 	}
3935 
3936 	if (ad->tx_vec_allowed) {
3937 		dev->tx_pkt_prepare = NULL;
3938 		if (ad->tx_use_avx512) {
3939 #ifdef CC_AVX512_SUPPORT
3940 			if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3941 				PMD_DRV_LOG(NOTICE,
3942 					    "Using AVX512 OFFLOAD Vector Tx (port %d).",
3943 					    dev->data->port_id);
3944 				dev->tx_pkt_burst =
3945 					ice_xmit_pkts_vec_avx512_offload;
3946 				dev->tx_pkt_prepare = ice_prep_pkts;
3947 			} else {
3948 				PMD_DRV_LOG(NOTICE,
3949 					    "Using AVX512 Vector Tx (port %d).",
3950 					    dev->data->port_id);
3951 				dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
3952 			}
3953 #endif
3954 		} else {
3955 			if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3956 				PMD_DRV_LOG(NOTICE,
3957 					    "Using AVX2 OFFLOAD Vector Tx (port %d).",
3958 					    dev->data->port_id);
3959 				dev->tx_pkt_burst =
3960 					ice_xmit_pkts_vec_avx2_offload;
3961 				dev->tx_pkt_prepare = ice_prep_pkts;
3962 			} else {
3963 				PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
3964 					    ad->tx_use_avx2 ? "avx2 " : "",
3965 					    dev->data->port_id);
3966 				dev->tx_pkt_burst = ad->tx_use_avx2 ?
3967 						    ice_xmit_pkts_vec_avx2 :
3968 						    ice_xmit_pkts_vec;
3969 			}
3970 		}
3971 
3972 		if (mbuf_check) {
3973 			ad->tx_pkt_burst = dev->tx_pkt_burst;
3974 			dev->tx_pkt_burst = ice_xmit_pkts_check;
3975 		}
3976 		return;
3977 	}
3978 #endif
3979 
3980 	if (ad->tx_simple_allowed) {
3981 		PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3982 		dev->tx_pkt_burst = ice_xmit_pkts_simple;
3983 		dev->tx_pkt_prepare = NULL;
3984 	} else {
3985 		PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
3986 		dev->tx_pkt_burst = ice_xmit_pkts;
3987 		dev->tx_pkt_prepare = ice_prep_pkts;
3988 	}
3989 
3990 	if (mbuf_check) {
3991 		ad->tx_pkt_burst = dev->tx_pkt_burst;
3992 		dev->tx_pkt_burst = ice_xmit_pkts_check;
3993 	}
3994 }
3995 
3996 static const struct {
3997 	eth_tx_burst_t pkt_burst;
3998 	const char *info;
3999 } ice_tx_burst_infos[] = {
4000 	{ ice_xmit_pkts_simple,   "Scalar Simple" },
4001 	{ ice_xmit_pkts,          "Scalar" },
4002 #ifdef RTE_ARCH_X86
4003 #ifdef CC_AVX512_SUPPORT
4004 	{ ice_xmit_pkts_vec_avx512, "Vector AVX512" },
4005 	{ ice_xmit_pkts_vec_avx512_offload, "Offload Vector AVX512" },
4006 #endif
4007 	{ ice_xmit_pkts_vec_avx2,         "Vector AVX2" },
4008 	{ ice_xmit_pkts_vec_avx2_offload, "Offload Vector AVX2" },
4009 	{ ice_xmit_pkts_vec,              "Vector SSE" },
4010 #endif
4011 };
4012 
4013 int
4014 ice_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
4015 		      struct rte_eth_burst_mode *mode)
4016 {
4017 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
4018 	int ret = -EINVAL;
4019 	unsigned int i;
4020 
4021 	for (i = 0; i < RTE_DIM(ice_tx_burst_infos); ++i) {
4022 		if (pkt_burst == ice_tx_burst_infos[i].pkt_burst) {
4023 			snprintf(mode->info, sizeof(mode->info), "%s",
4024 				 ice_tx_burst_infos[i].info);
4025 			ret = 0;
4026 			break;
4027 		}
4028 	}
4029 
4030 	return ret;
4031 }
4032 
4033 /* For each value it means, datasheet of hardware can tell more details
4034  *
4035  * @note: fix ice_dev_supported_ptypes_get() if any change here.
4036  */
4037 static inline uint32_t
4038 ice_get_default_pkt_type(uint16_t ptype)
4039 {
4040 	static const alignas(RTE_CACHE_LINE_SIZE) uint32_t type_table[ICE_MAX_PKT_TYPE] = {
4041 		/* L2 types */
4042 		/* [0] reserved */
4043 		[1] = RTE_PTYPE_L2_ETHER,
4044 		[2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
4045 		/* [3] - [5] reserved */
4046 		[6] = RTE_PTYPE_L2_ETHER_LLDP,
4047 		/* [7] - [10] reserved */
4048 		[11] = RTE_PTYPE_L2_ETHER_ARP,
4049 		/* [12] - [21] reserved */
4050 
4051 		/* Non tunneled IPv4 */
4052 		[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4053 		       RTE_PTYPE_L4_FRAG,
4054 		[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4055 		       RTE_PTYPE_L4_NONFRAG,
4056 		[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4057 		       RTE_PTYPE_L4_UDP,
4058 		/* [25] reserved */
4059 		[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4060 		       RTE_PTYPE_L4_TCP,
4061 		[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4062 		       RTE_PTYPE_L4_SCTP,
4063 		[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4064 		       RTE_PTYPE_L4_ICMP,
4065 
4066 		/* IPv4 --> IPv4 */
4067 		[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4068 		       RTE_PTYPE_TUNNEL_IP |
4069 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4070 		       RTE_PTYPE_INNER_L4_FRAG,
4071 		[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4072 		       RTE_PTYPE_TUNNEL_IP |
4073 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4074 		       RTE_PTYPE_INNER_L4_NONFRAG,
4075 		[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4076 		       RTE_PTYPE_TUNNEL_IP |
4077 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4078 		       RTE_PTYPE_INNER_L4_UDP,
4079 		/* [32] reserved */
4080 		[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4081 		       RTE_PTYPE_TUNNEL_IP |
4082 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4083 		       RTE_PTYPE_INNER_L4_TCP,
4084 		[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4085 		       RTE_PTYPE_TUNNEL_IP |
4086 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4087 		       RTE_PTYPE_INNER_L4_SCTP,
4088 		[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4089 		       RTE_PTYPE_TUNNEL_IP |
4090 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4091 		       RTE_PTYPE_INNER_L4_ICMP,
4092 
4093 		/* IPv4 --> IPv6 */
4094 		[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4095 		       RTE_PTYPE_TUNNEL_IP |
4096 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4097 		       RTE_PTYPE_INNER_L4_FRAG,
4098 		[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4099 		       RTE_PTYPE_TUNNEL_IP |
4100 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4101 		       RTE_PTYPE_INNER_L4_NONFRAG,
4102 		[38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4103 		       RTE_PTYPE_TUNNEL_IP |
4104 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4105 		       RTE_PTYPE_INNER_L4_UDP,
4106 		/* [39] reserved */
4107 		[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4108 		       RTE_PTYPE_TUNNEL_IP |
4109 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4110 		       RTE_PTYPE_INNER_L4_TCP,
4111 		[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4112 		       RTE_PTYPE_TUNNEL_IP |
4113 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4114 		       RTE_PTYPE_INNER_L4_SCTP,
4115 		[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4116 		       RTE_PTYPE_TUNNEL_IP |
4117 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4118 		       RTE_PTYPE_INNER_L4_ICMP,
4119 
4120 		/* IPv4 --> GRE/Teredo/VXLAN */
4121 		[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4122 		       RTE_PTYPE_TUNNEL_GRENAT,
4123 
4124 		/* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
4125 		[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4126 		       RTE_PTYPE_TUNNEL_GRENAT |
4127 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4128 		       RTE_PTYPE_INNER_L4_FRAG,
4129 		[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4130 		       RTE_PTYPE_TUNNEL_GRENAT |
4131 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4132 		       RTE_PTYPE_INNER_L4_NONFRAG,
4133 		[46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4134 		       RTE_PTYPE_TUNNEL_GRENAT |
4135 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4136 		       RTE_PTYPE_INNER_L4_UDP,
4137 		/* [47] reserved */
4138 		[48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4139 		       RTE_PTYPE_TUNNEL_GRENAT |
4140 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4141 		       RTE_PTYPE_INNER_L4_TCP,
4142 		[49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4143 		       RTE_PTYPE_TUNNEL_GRENAT |
4144 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4145 		       RTE_PTYPE_INNER_L4_SCTP,
4146 		[50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4147 		       RTE_PTYPE_TUNNEL_GRENAT |
4148 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4149 		       RTE_PTYPE_INNER_L4_ICMP,
4150 
4151 		/* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
4152 		[51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4153 		       RTE_PTYPE_TUNNEL_GRENAT |
4154 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4155 		       RTE_PTYPE_INNER_L4_FRAG,
4156 		[52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4157 		       RTE_PTYPE_TUNNEL_GRENAT |
4158 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4159 		       RTE_PTYPE_INNER_L4_NONFRAG,
4160 		[53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4161 		       RTE_PTYPE_TUNNEL_GRENAT |
4162 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4163 		       RTE_PTYPE_INNER_L4_UDP,
4164 		/* [54] reserved */
4165 		[55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4166 		       RTE_PTYPE_TUNNEL_GRENAT |
4167 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4168 		       RTE_PTYPE_INNER_L4_TCP,
4169 		[56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4170 		       RTE_PTYPE_TUNNEL_GRENAT |
4171 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4172 		       RTE_PTYPE_INNER_L4_SCTP,
4173 		[57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4174 		       RTE_PTYPE_TUNNEL_GRENAT |
4175 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4176 		       RTE_PTYPE_INNER_L4_ICMP,
4177 
4178 		/* IPv4 --> GRE/Teredo/VXLAN --> MAC */
4179 		[58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4180 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
4181 
4182 		/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
4183 		[59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4184 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4185 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4186 		       RTE_PTYPE_INNER_L4_FRAG,
4187 		[60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4188 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4189 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4190 		       RTE_PTYPE_INNER_L4_NONFRAG,
4191 		[61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4192 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4193 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4194 		       RTE_PTYPE_INNER_L4_UDP,
4195 		/* [62] reserved */
4196 		[63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4197 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4198 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4199 		       RTE_PTYPE_INNER_L4_TCP,
4200 		[64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4201 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4202 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4203 		       RTE_PTYPE_INNER_L4_SCTP,
4204 		[65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4205 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4206 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4207 		       RTE_PTYPE_INNER_L4_ICMP,
4208 
4209 		/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
4210 		[66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4211 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4212 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4213 		       RTE_PTYPE_INNER_L4_FRAG,
4214 		[67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4215 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4216 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4217 		       RTE_PTYPE_INNER_L4_NONFRAG,
4218 		[68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4219 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4220 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4221 		       RTE_PTYPE_INNER_L4_UDP,
4222 		/* [69] reserved */
4223 		[70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4224 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4225 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4226 		       RTE_PTYPE_INNER_L4_TCP,
4227 		[71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4228 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4229 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4230 		       RTE_PTYPE_INNER_L4_SCTP,
4231 		[72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4232 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4233 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4234 		       RTE_PTYPE_INNER_L4_ICMP,
4235 		/* [73] - [87] reserved */
4236 
4237 		/* Non tunneled IPv6 */
4238 		[88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4239 		       RTE_PTYPE_L4_FRAG,
4240 		[89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4241 		       RTE_PTYPE_L4_NONFRAG,
4242 		[90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4243 		       RTE_PTYPE_L4_UDP,
4244 		/* [91] reserved */
4245 		[92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4246 		       RTE_PTYPE_L4_TCP,
4247 		[93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4248 		       RTE_PTYPE_L4_SCTP,
4249 		[94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4250 		       RTE_PTYPE_L4_ICMP,
4251 
4252 		/* IPv6 --> IPv4 */
4253 		[95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4254 		       RTE_PTYPE_TUNNEL_IP |
4255 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4256 		       RTE_PTYPE_INNER_L4_FRAG,
4257 		[96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4258 		       RTE_PTYPE_TUNNEL_IP |
4259 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4260 		       RTE_PTYPE_INNER_L4_NONFRAG,
4261 		[97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4262 		       RTE_PTYPE_TUNNEL_IP |
4263 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4264 		       RTE_PTYPE_INNER_L4_UDP,
4265 		/* [98] reserved */
4266 		[99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4267 		       RTE_PTYPE_TUNNEL_IP |
4268 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4269 		       RTE_PTYPE_INNER_L4_TCP,
4270 		[100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4271 			RTE_PTYPE_TUNNEL_IP |
4272 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4273 			RTE_PTYPE_INNER_L4_SCTP,
4274 		[101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4275 			RTE_PTYPE_TUNNEL_IP |
4276 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4277 			RTE_PTYPE_INNER_L4_ICMP,
4278 
4279 		/* IPv6 --> IPv6 */
4280 		[102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4281 			RTE_PTYPE_TUNNEL_IP |
4282 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4283 			RTE_PTYPE_INNER_L4_FRAG,
4284 		[103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4285 			RTE_PTYPE_TUNNEL_IP |
4286 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4287 			RTE_PTYPE_INNER_L4_NONFRAG,
4288 		[104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4289 			RTE_PTYPE_TUNNEL_IP |
4290 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4291 			RTE_PTYPE_INNER_L4_UDP,
4292 		/* [105] reserved */
4293 		[106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4294 			RTE_PTYPE_TUNNEL_IP |
4295 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4296 			RTE_PTYPE_INNER_L4_TCP,
4297 		[107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4298 			RTE_PTYPE_TUNNEL_IP |
4299 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4300 			RTE_PTYPE_INNER_L4_SCTP,
4301 		[108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4302 			RTE_PTYPE_TUNNEL_IP |
4303 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4304 			RTE_PTYPE_INNER_L4_ICMP,
4305 
4306 		/* IPv6 --> GRE/Teredo/VXLAN */
4307 		[109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4308 			RTE_PTYPE_TUNNEL_GRENAT,
4309 
4310 		/* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
4311 		[110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4312 			RTE_PTYPE_TUNNEL_GRENAT |
4313 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4314 			RTE_PTYPE_INNER_L4_FRAG,
4315 		[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4316 			RTE_PTYPE_TUNNEL_GRENAT |
4317 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4318 			RTE_PTYPE_INNER_L4_NONFRAG,
4319 		[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4320 			RTE_PTYPE_TUNNEL_GRENAT |
4321 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4322 			RTE_PTYPE_INNER_L4_UDP,
4323 		/* [113] reserved */
4324 		[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4325 			RTE_PTYPE_TUNNEL_GRENAT |
4326 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4327 			RTE_PTYPE_INNER_L4_TCP,
4328 		[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4329 			RTE_PTYPE_TUNNEL_GRENAT |
4330 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4331 			RTE_PTYPE_INNER_L4_SCTP,
4332 		[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4333 			RTE_PTYPE_TUNNEL_GRENAT |
4334 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4335 			RTE_PTYPE_INNER_L4_ICMP,
4336 
4337 		/* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
4338 		[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4339 			RTE_PTYPE_TUNNEL_GRENAT |
4340 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4341 			RTE_PTYPE_INNER_L4_FRAG,
4342 		[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4343 			RTE_PTYPE_TUNNEL_GRENAT |
4344 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4345 			RTE_PTYPE_INNER_L4_NONFRAG,
4346 		[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4347 			RTE_PTYPE_TUNNEL_GRENAT |
4348 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4349 			RTE_PTYPE_INNER_L4_UDP,
4350 		/* [120] reserved */
4351 		[121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4352 			RTE_PTYPE_TUNNEL_GRENAT |
4353 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4354 			RTE_PTYPE_INNER_L4_TCP,
4355 		[122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4356 			RTE_PTYPE_TUNNEL_GRENAT |
4357 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4358 			RTE_PTYPE_INNER_L4_SCTP,
4359 		[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4360 			RTE_PTYPE_TUNNEL_GRENAT |
4361 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4362 			RTE_PTYPE_INNER_L4_ICMP,
4363 
4364 		/* IPv6 --> GRE/Teredo/VXLAN --> MAC */
4365 		[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4366 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
4367 
4368 		/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
4369 		[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4370 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4371 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4372 			RTE_PTYPE_INNER_L4_FRAG,
4373 		[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4374 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4375 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4376 			RTE_PTYPE_INNER_L4_NONFRAG,
4377 		[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4378 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4379 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4380 			RTE_PTYPE_INNER_L4_UDP,
4381 		/* [128] reserved */
4382 		[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4383 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4384 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4385 			RTE_PTYPE_INNER_L4_TCP,
4386 		[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4387 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4388 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4389 			RTE_PTYPE_INNER_L4_SCTP,
4390 		[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4391 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4392 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4393 			RTE_PTYPE_INNER_L4_ICMP,
4394 
4395 		/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
4396 		[132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4397 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4398 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4399 			RTE_PTYPE_INNER_L4_FRAG,
4400 		[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4401 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4402 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4403 			RTE_PTYPE_INNER_L4_NONFRAG,
4404 		[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4405 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4406 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4407 			RTE_PTYPE_INNER_L4_UDP,
4408 		/* [135] reserved */
4409 		[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4410 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4411 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4412 			RTE_PTYPE_INNER_L4_TCP,
4413 		[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4414 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4415 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4416 			RTE_PTYPE_INNER_L4_SCTP,
4417 		[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4418 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4419 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4420 			RTE_PTYPE_INNER_L4_ICMP,
4421 		/* [139] - [299] reserved */
4422 
4423 		/* PPPoE */
4424 		[300] = RTE_PTYPE_L2_ETHER_PPPOE,
4425 		[301] = RTE_PTYPE_L2_ETHER_PPPOE,
4426 
4427 		/* PPPoE --> IPv4 */
4428 		[302] = RTE_PTYPE_L2_ETHER_PPPOE |
4429 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4430 			RTE_PTYPE_L4_FRAG,
4431 		[303] = RTE_PTYPE_L2_ETHER_PPPOE |
4432 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4433 			RTE_PTYPE_L4_NONFRAG,
4434 		[304] = RTE_PTYPE_L2_ETHER_PPPOE |
4435 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4436 			RTE_PTYPE_L4_UDP,
4437 		[305] = RTE_PTYPE_L2_ETHER_PPPOE |
4438 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4439 			RTE_PTYPE_L4_TCP,
4440 		[306] = RTE_PTYPE_L2_ETHER_PPPOE |
4441 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4442 			RTE_PTYPE_L4_SCTP,
4443 		[307] = RTE_PTYPE_L2_ETHER_PPPOE |
4444 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4445 			RTE_PTYPE_L4_ICMP,
4446 
4447 		/* PPPoE --> IPv6 */
4448 		[308] = RTE_PTYPE_L2_ETHER_PPPOE |
4449 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4450 			RTE_PTYPE_L4_FRAG,
4451 		[309] = RTE_PTYPE_L2_ETHER_PPPOE |
4452 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4453 			RTE_PTYPE_L4_NONFRAG,
4454 		[310] = RTE_PTYPE_L2_ETHER_PPPOE |
4455 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4456 			RTE_PTYPE_L4_UDP,
4457 		[311] = RTE_PTYPE_L2_ETHER_PPPOE |
4458 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4459 			RTE_PTYPE_L4_TCP,
4460 		[312] = RTE_PTYPE_L2_ETHER_PPPOE |
4461 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4462 			RTE_PTYPE_L4_SCTP,
4463 		[313] = RTE_PTYPE_L2_ETHER_PPPOE |
4464 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4465 			RTE_PTYPE_L4_ICMP,
4466 		/* [314] - [324] reserved */
4467 
4468 		/* IPv4/IPv6 --> GTPC/GTPU */
4469 		[325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4470 			RTE_PTYPE_TUNNEL_GTPC,
4471 		[326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4472 			RTE_PTYPE_TUNNEL_GTPC,
4473 		[327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4474 			RTE_PTYPE_TUNNEL_GTPC,
4475 		[328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4476 			RTE_PTYPE_TUNNEL_GTPC,
4477 		[329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4478 			RTE_PTYPE_TUNNEL_GTPU,
4479 		[330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4480 			RTE_PTYPE_TUNNEL_GTPU,
4481 
4482 		/* IPv4 --> GTPU --> IPv4 */
4483 		[331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4484 			RTE_PTYPE_TUNNEL_GTPU |
4485 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4486 			RTE_PTYPE_INNER_L4_FRAG,
4487 		[332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4488 			RTE_PTYPE_TUNNEL_GTPU |
4489 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4490 			RTE_PTYPE_INNER_L4_NONFRAG,
4491 		[333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4492 			RTE_PTYPE_TUNNEL_GTPU |
4493 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4494 			RTE_PTYPE_INNER_L4_UDP,
4495 		[334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4496 			RTE_PTYPE_TUNNEL_GTPU |
4497 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4498 			RTE_PTYPE_INNER_L4_TCP,
4499 		[335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4500 			RTE_PTYPE_TUNNEL_GTPU |
4501 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4502 			RTE_PTYPE_INNER_L4_ICMP,
4503 
4504 		/* IPv6 --> GTPU --> IPv4 */
4505 		[336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4506 			RTE_PTYPE_TUNNEL_GTPU |
4507 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4508 			RTE_PTYPE_INNER_L4_FRAG,
4509 		[337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4510 			RTE_PTYPE_TUNNEL_GTPU |
4511 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4512 			RTE_PTYPE_INNER_L4_NONFRAG,
4513 		[338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4514 			RTE_PTYPE_TUNNEL_GTPU |
4515 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4516 			RTE_PTYPE_INNER_L4_UDP,
4517 		[339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4518 			RTE_PTYPE_TUNNEL_GTPU |
4519 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4520 			RTE_PTYPE_INNER_L4_TCP,
4521 		[340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4522 			RTE_PTYPE_TUNNEL_GTPU |
4523 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4524 			RTE_PTYPE_INNER_L4_ICMP,
4525 
4526 		/* IPv4 --> GTPU --> IPv6 */
4527 		[341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4528 			RTE_PTYPE_TUNNEL_GTPU |
4529 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4530 			RTE_PTYPE_INNER_L4_FRAG,
4531 		[342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4532 			RTE_PTYPE_TUNNEL_GTPU |
4533 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4534 			RTE_PTYPE_INNER_L4_NONFRAG,
4535 		[343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4536 			RTE_PTYPE_TUNNEL_GTPU |
4537 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4538 			RTE_PTYPE_INNER_L4_UDP,
4539 		[344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4540 			RTE_PTYPE_TUNNEL_GTPU |
4541 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4542 			RTE_PTYPE_INNER_L4_TCP,
4543 		[345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4544 			RTE_PTYPE_TUNNEL_GTPU |
4545 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4546 			RTE_PTYPE_INNER_L4_ICMP,
4547 
4548 		/* IPv6 --> GTPU --> IPv6 */
4549 		[346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4550 			RTE_PTYPE_TUNNEL_GTPU |
4551 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4552 			RTE_PTYPE_INNER_L4_FRAG,
4553 		[347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4554 			RTE_PTYPE_TUNNEL_GTPU |
4555 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4556 			RTE_PTYPE_INNER_L4_NONFRAG,
4557 		[348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4558 			RTE_PTYPE_TUNNEL_GTPU |
4559 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4560 			RTE_PTYPE_INNER_L4_UDP,
4561 		[349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4562 			RTE_PTYPE_TUNNEL_GTPU |
4563 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4564 			RTE_PTYPE_INNER_L4_TCP,
4565 		[350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4566 			RTE_PTYPE_TUNNEL_GTPU |
4567 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4568 			RTE_PTYPE_INNER_L4_ICMP,
4569 
4570 		/* IPv4 --> UDP ECPRI */
4571 		[372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4572 			RTE_PTYPE_L4_UDP,
4573 		[373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4574 			RTE_PTYPE_L4_UDP,
4575 		[374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4576 			RTE_PTYPE_L4_UDP,
4577 		[375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4578 			RTE_PTYPE_L4_UDP,
4579 		[376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4580 			RTE_PTYPE_L4_UDP,
4581 		[377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4582 			RTE_PTYPE_L4_UDP,
4583 		[378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4584 			RTE_PTYPE_L4_UDP,
4585 		[379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4586 			RTE_PTYPE_L4_UDP,
4587 		[380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4588 			RTE_PTYPE_L4_UDP,
4589 		[381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4590 			RTE_PTYPE_L4_UDP,
4591 
4592 		/* IPV6 --> UDP ECPRI */
4593 		[382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4594 			RTE_PTYPE_L4_UDP,
4595 		[383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4596 			RTE_PTYPE_L4_UDP,
4597 		[384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4598 			RTE_PTYPE_L4_UDP,
4599 		[385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4600 			RTE_PTYPE_L4_UDP,
4601 		[386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4602 			RTE_PTYPE_L4_UDP,
4603 		[387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4604 			RTE_PTYPE_L4_UDP,
4605 		[388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4606 			RTE_PTYPE_L4_UDP,
4607 		[389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4608 			RTE_PTYPE_L4_UDP,
4609 		[390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4610 			RTE_PTYPE_L4_UDP,
4611 		[391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4612 			RTE_PTYPE_L4_UDP,
4613 		/* All others reserved */
4614 	};
4615 
4616 	return type_table[ptype];
4617 }
4618 
4619 void __rte_cold
4620 ice_set_default_ptype_table(struct rte_eth_dev *dev)
4621 {
4622 	struct ice_adapter *ad =
4623 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
4624 	int i;
4625 
4626 	for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
4627 		ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
4628 }
4629 
4630 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S	1
4631 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M	\
4632 			(0x3UL << ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S)
4633 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD 0
4634 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL 0x1
4635 
4636 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S	4
4637 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M	\
4638 	(1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S)
4639 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S	5
4640 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M	\
4641 	(1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S)
4642 
4643 /*
4644  * check the programming status descriptor in rx queue.
4645  * done after Programming Flow Director is programmed on
4646  * tx queue
4647  */
4648 static inline int
4649 ice_check_fdir_programming_status(struct ice_rx_queue *rxq)
4650 {
4651 	volatile union ice_32byte_rx_desc *rxdp;
4652 	uint64_t qword1;
4653 	uint32_t rx_status;
4654 	uint32_t error;
4655 	uint32_t id;
4656 	int ret = -EAGAIN;
4657 
4658 	rxdp = (volatile union ice_32byte_rx_desc *)
4659 		(&rxq->rx_ring[rxq->rx_tail]);
4660 	qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
4661 	rx_status = (qword1 & ICE_RXD_QW1_STATUS_M)
4662 			>> ICE_RXD_QW1_STATUS_S;
4663 
4664 	if (rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)) {
4665 		ret = 0;
4666 		error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M) >>
4667 			ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S;
4668 		id = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M) >>
4669 			ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S;
4670 		if (error) {
4671 			if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD)
4672 				PMD_DRV_LOG(ERR, "Failed to add FDIR rule.");
4673 			else if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL)
4674 				PMD_DRV_LOG(ERR, "Failed to remove FDIR rule.");
4675 			ret = -EINVAL;
4676 			goto err;
4677 		}
4678 		error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M) >>
4679 			ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S;
4680 		if (error) {
4681 			PMD_DRV_LOG(ERR, "Failed to create FDIR profile.");
4682 			ret = -EINVAL;
4683 		}
4684 err:
4685 		rxdp->wb.qword1.status_error_len = 0;
4686 		rxq->rx_tail++;
4687 		if (unlikely(rxq->rx_tail == rxq->nb_rx_desc))
4688 			rxq->rx_tail = 0;
4689 		if (rxq->rx_tail == 0)
4690 			ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
4691 		else
4692 			ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_tail - 1);
4693 	}
4694 
4695 	return ret;
4696 }
4697 
4698 #define ICE_FDIR_MAX_WAIT_US 10000
4699 
4700 int
4701 ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc)
4702 {
4703 	struct ci_tx_queue *txq = pf->fdir.txq;
4704 	struct ice_rx_queue *rxq = pf->fdir.rxq;
4705 	volatile struct ice_fltr_desc *fdirdp;
4706 	volatile struct ice_tx_desc *txdp;
4707 	uint32_t td_cmd;
4708 	uint16_t i;
4709 
4710 	fdirdp = (volatile struct ice_fltr_desc *)
4711 		(&txq->ice_tx_ring[txq->tx_tail]);
4712 	fdirdp->qidx_compq_space_stat = fdir_desc->qidx_compq_space_stat;
4713 	fdirdp->dtype_cmd_vsi_fdid = fdir_desc->dtype_cmd_vsi_fdid;
4714 
4715 	txdp = &txq->ice_tx_ring[txq->tx_tail + 1];
4716 	txdp->buf_addr = rte_cpu_to_le_64(pf->fdir.dma_addr);
4717 	td_cmd = ICE_TX_DESC_CMD_EOP |
4718 		ICE_TX_DESC_CMD_RS  |
4719 		ICE_TX_DESC_CMD_DUMMY;
4720 
4721 	txdp->cmd_type_offset_bsz =
4722 		ice_build_ctob(td_cmd, 0, ICE_FDIR_PKT_LEN, 0);
4723 
4724 	txq->tx_tail += 2;
4725 	if (txq->tx_tail >= txq->nb_tx_desc)
4726 		txq->tx_tail = 0;
4727 	/* Update the tx tail register */
4728 	ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
4729 	for (i = 0; i < ICE_FDIR_MAX_WAIT_US; i++) {
4730 		if ((txdp->cmd_type_offset_bsz &
4731 		     rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) ==
4732 		    rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
4733 			break;
4734 		rte_delay_us(1);
4735 	}
4736 	if (i >= ICE_FDIR_MAX_WAIT_US) {
4737 		PMD_DRV_LOG(ERR,
4738 			    "Failed to program FDIR filter: time out to get DD on tx queue.");
4739 		return -ETIMEDOUT;
4740 	}
4741 
4742 	for (; i < ICE_FDIR_MAX_WAIT_US; i++) {
4743 		int ret;
4744 
4745 		ret = ice_check_fdir_programming_status(rxq);
4746 		if (ret == -EAGAIN)
4747 			rte_delay_us(1);
4748 		else
4749 			return ret;
4750 	}
4751 
4752 	PMD_DRV_LOG(ERR,
4753 		    "Failed to program FDIR filter: programming status reported.");
4754 	return -ETIMEDOUT;
4755 
4756 
4757 }
4758