xref: /dpdk/drivers/net/intel/ice/ice_rxtx.c (revision d3bb1c9e0a16145eacc75deadc96726b351495ec)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4 
5 #include <ethdev_driver.h>
6 #include <rte_net.h>
7 #include <rte_vect.h>
8 
9 #include "ice_rxtx.h"
10 #include "ice_rxtx_vec_common.h"
11 
12 #define ICE_TX_CKSUM_OFFLOAD_MASK (RTE_MBUF_F_TX_IP_CKSUM |		 \
13 		RTE_MBUF_F_TX_L4_MASK |		 \
14 		RTE_MBUF_F_TX_TCP_SEG |		 \
15 		RTE_MBUF_F_TX_UDP_SEG |		 \
16 		RTE_MBUF_F_TX_OUTER_IP_CKSUM)
17 
18 /**
19  * The mbuf dynamic field pointer for protocol extraction metadata.
20  */
21 #define ICE_DYNF_PROTO_XTR_METADATA(m, n) \
22 	RTE_MBUF_DYNFIELD((m), (n), uint32_t *)
23 
24 static int
25 ice_monitor_callback(const uint64_t value,
26 		const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
27 {
28 	const uint64_t m = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
29 	/*
30 	 * we expect the DD bit to be set to 1 if this descriptor was already
31 	 * written to.
32 	 */
33 	return (value & m) == m ? -1 : 0;
34 }
35 
36 int
37 ice_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
38 {
39 	volatile union ice_rx_flex_desc *rxdp;
40 	struct ice_rx_queue *rxq = rx_queue;
41 	uint16_t desc;
42 
43 	desc = rxq->rx_tail;
44 	rxdp = &rxq->rx_ring[desc];
45 	/* watch for changes in status bit */
46 	pmc->addr = &rxdp->wb.status_error0;
47 
48 	/* comparison callback */
49 	pmc->fn = ice_monitor_callback;
50 
51 	/* register is 16-bit */
52 	pmc->size = sizeof(uint16_t);
53 
54 	return 0;
55 }
56 
57 
58 static inline uint8_t
59 ice_proto_xtr_type_to_rxdid(uint8_t xtr_type)
60 {
61 	static uint8_t rxdid_map[] = {
62 		[PROTO_XTR_NONE]      = ICE_RXDID_COMMS_OVS,
63 		[PROTO_XTR_VLAN]      = ICE_RXDID_COMMS_AUX_VLAN,
64 		[PROTO_XTR_IPV4]      = ICE_RXDID_COMMS_AUX_IPV4,
65 		[PROTO_XTR_IPV6]      = ICE_RXDID_COMMS_AUX_IPV6,
66 		[PROTO_XTR_IPV6_FLOW] = ICE_RXDID_COMMS_AUX_IPV6_FLOW,
67 		[PROTO_XTR_TCP]       = ICE_RXDID_COMMS_AUX_TCP,
68 		[PROTO_XTR_IP_OFFSET] = ICE_RXDID_COMMS_AUX_IP_OFFSET,
69 	};
70 
71 	return xtr_type < RTE_DIM(rxdid_map) ?
72 				rxdid_map[xtr_type] : ICE_RXDID_COMMS_OVS;
73 }
74 
75 static inline void
76 ice_rxd_to_pkt_fields_by_comms_generic(__rte_unused struct ice_rx_queue *rxq,
77 				       struct rte_mbuf *mb,
78 				       volatile union ice_rx_flex_desc *rxdp)
79 {
80 	volatile struct ice_32b_rx_flex_desc_comms *desc =
81 			(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
82 	uint16_t stat_err = rte_le_to_cpu_16(desc->status_error0);
83 
84 	if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
85 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
86 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
87 	}
88 
89 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
90 	if (desc->flow_id != 0xFFFFFFFF) {
91 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
92 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
93 	}
94 #endif
95 }
96 
97 static inline void
98 ice_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct ice_rx_queue *rxq,
99 				   struct rte_mbuf *mb,
100 				   volatile union ice_rx_flex_desc *rxdp)
101 {
102 	volatile struct ice_32b_rx_flex_desc_comms_ovs *desc =
103 			(volatile struct ice_32b_rx_flex_desc_comms_ovs *)rxdp;
104 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
105 	uint16_t stat_err;
106 #endif
107 
108 	if (desc->flow_id != 0xFFFFFFFF) {
109 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
110 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
111 	}
112 
113 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
114 	stat_err = rte_le_to_cpu_16(desc->status_error0);
115 	if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
116 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
117 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
118 	}
119 #endif
120 }
121 
122 static inline void
123 ice_rxd_to_pkt_fields_by_comms_aux_v1(struct ice_rx_queue *rxq,
124 				      struct rte_mbuf *mb,
125 				      volatile union ice_rx_flex_desc *rxdp)
126 {
127 	volatile struct ice_32b_rx_flex_desc_comms *desc =
128 			(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
129 	uint16_t stat_err;
130 
131 	stat_err = rte_le_to_cpu_16(desc->status_error0);
132 	if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
133 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
134 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
135 	}
136 
137 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
138 	if (desc->flow_id != 0xFFFFFFFF) {
139 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
140 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
141 	}
142 
143 	if (rxq->xtr_ol_flag) {
144 		uint32_t metadata = 0;
145 
146 		stat_err = rte_le_to_cpu_16(desc->status_error1);
147 
148 		if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
149 			metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
150 
151 		if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
152 			metadata |=
153 				rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
154 
155 		if (metadata) {
156 			mb->ol_flags |= rxq->xtr_ol_flag;
157 
158 			*ICE_DYNF_PROTO_XTR_METADATA(mb, rxq->xtr_field_offs) = metadata;
159 		}
160 	}
161 #else
162 	RTE_SET_USED(rxq);
163 #endif
164 }
165 
166 static inline void
167 ice_rxd_to_pkt_fields_by_comms_aux_v2(struct ice_rx_queue *rxq,
168 				      struct rte_mbuf *mb,
169 				      volatile union ice_rx_flex_desc *rxdp)
170 {
171 	volatile struct ice_32b_rx_flex_desc_comms *desc =
172 			(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
173 	uint16_t stat_err;
174 
175 	stat_err = rte_le_to_cpu_16(desc->status_error0);
176 	if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
177 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
178 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
179 	}
180 
181 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
182 	if (desc->flow_id != 0xFFFFFFFF) {
183 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
184 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
185 	}
186 
187 	if (rxq->xtr_ol_flag) {
188 		uint32_t metadata = 0;
189 
190 		if (desc->flex_ts.flex.aux0 != 0xFFFF)
191 			metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
192 		else if (desc->flex_ts.flex.aux1 != 0xFFFF)
193 			metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
194 
195 		if (metadata) {
196 			mb->ol_flags |= rxq->xtr_ol_flag;
197 
198 			*ICE_DYNF_PROTO_XTR_METADATA(mb, rxq->xtr_field_offs) = metadata;
199 		}
200 	}
201 #else
202 	RTE_SET_USED(rxq);
203 #endif
204 }
205 
206 static const ice_rxd_to_pkt_fields_t rxd_to_pkt_fields_ops[] = {
207 	[ICE_RXDID_COMMS_AUX_VLAN] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
208 	[ICE_RXDID_COMMS_AUX_IPV4] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
209 	[ICE_RXDID_COMMS_AUX_IPV6] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
210 	[ICE_RXDID_COMMS_AUX_IPV6_FLOW] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
211 	[ICE_RXDID_COMMS_AUX_TCP] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
212 	[ICE_RXDID_COMMS_AUX_IP_OFFSET] = ice_rxd_to_pkt_fields_by_comms_aux_v2,
213 	[ICE_RXDID_COMMS_GENERIC] = ice_rxd_to_pkt_fields_by_comms_generic,
214 	[ICE_RXDID_COMMS_OVS] = ice_rxd_to_pkt_fields_by_comms_ovs,
215 };
216 
217 void
218 ice_select_rxd_to_pkt_fields_handler(struct ice_rx_queue *rxq, uint32_t rxdid)
219 {
220 	rxq->rxdid = rxdid;
221 
222 	switch (rxdid) {
223 	case ICE_RXDID_COMMS_AUX_VLAN:
224 	case ICE_RXDID_COMMS_AUX_IPV4:
225 	case ICE_RXDID_COMMS_AUX_IPV6:
226 	case ICE_RXDID_COMMS_AUX_IPV6_FLOW:
227 	case ICE_RXDID_COMMS_AUX_TCP:
228 	case ICE_RXDID_COMMS_AUX_IP_OFFSET:
229 		break;
230 	case ICE_RXDID_COMMS_GENERIC:
231 		/* fallthrough */
232 	case ICE_RXDID_COMMS_OVS:
233 		break;
234 
235 	default:
236 		/* update this according to the RXDID for PROTO_XTR_NONE */
237 		rxq->rxdid = ICE_RXDID_COMMS_OVS;
238 		break;
239 	}
240 
241 	if (rxq->xtr_field_offs == -1)
242 		rxq->xtr_ol_flag = 0;
243 }
244 
245 static int
246 ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
247 {
248 	struct ice_vsi *vsi = rxq->vsi;
249 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
250 	struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
251 	struct rte_eth_dev_data *dev_data = rxq->vsi->adapter->pf.dev_data;
252 	struct ice_rlan_ctx rx_ctx;
253 	uint16_t buf_size;
254 	uint32_t rxdid = ICE_RXDID_COMMS_OVS;
255 	uint32_t regval;
256 	struct ice_adapter *ad = rxq->vsi->adapter;
257 	uint32_t frame_size = dev_data->mtu + ICE_ETH_OVERHEAD;
258 	int err;
259 
260 	/* Set buffer size as the head split is disabled. */
261 	buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
262 			      RTE_PKTMBUF_HEADROOM);
263 	rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
264 	rxq->rx_buf_len = RTE_MIN(rxq->rx_buf_len, ICE_RX_MAX_DATA_BUF_SIZE);
265 	rxq->max_pkt_len =
266 		RTE_MIN((uint32_t)ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len,
267 			frame_size);
268 
269 	if (rxq->max_pkt_len <= RTE_ETHER_MIN_LEN ||
270 	    rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
271 		PMD_DRV_LOG(ERR, "maximum packet length must "
272 			    "be larger than %u and smaller than %u",
273 			    (uint32_t)RTE_ETHER_MIN_LEN,
274 			    (uint32_t)ICE_FRAME_SIZE_MAX);
275 		return -EINVAL;
276 	}
277 
278 	if (!rxq->ts_enable && (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
279 		/* Register mbuf field and flag for Rx timestamp */
280 		err = rte_mbuf_dyn_rx_timestamp_register(
281 				&ice_timestamp_dynfield_offset,
282 				&ice_timestamp_dynflag);
283 		if (err) {
284 			PMD_DRV_LOG(ERR,
285 				"Cannot register mbuf field/flag for timestamp");
286 			return -EINVAL;
287 		}
288 		rxq->ts_enable = true;
289 	}
290 
291 	memset(&rx_ctx, 0, sizeof(rx_ctx));
292 
293 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) {
294 		uint32_t proto_hdr;
295 		proto_hdr = rxq->rxseg[0].proto_hdr;
296 
297 		if (proto_hdr == RTE_PTYPE_UNKNOWN) {
298 			PMD_DRV_LOG(ERR, "Buffer split protocol must be configured");
299 			return -EINVAL;
300 		}
301 
302 		switch (proto_hdr & RTE_PTYPE_L4_MASK) {
303 		case RTE_PTYPE_L4_TCP:
304 		case RTE_PTYPE_L4_UDP:
305 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
306 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_TCP_UDP;
307 			goto set_hsplit_finish;
308 		case RTE_PTYPE_L4_SCTP:
309 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
310 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_SCTP;
311 			goto set_hsplit_finish;
312 		}
313 
314 		switch (proto_hdr & RTE_PTYPE_L3_MASK) {
315 		case RTE_PTYPE_L3_IPV4_EXT_UNKNOWN:
316 		case RTE_PTYPE_L3_IPV6_EXT_UNKNOWN:
317 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
318 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_IP;
319 			goto set_hsplit_finish;
320 		}
321 
322 		switch (proto_hdr & RTE_PTYPE_L2_MASK) {
323 		case RTE_PTYPE_L2_ETHER:
324 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
325 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_L2;
326 			rx_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_SPLIT_L2;
327 			goto set_hsplit_finish;
328 		}
329 
330 		switch (proto_hdr & RTE_PTYPE_INNER_L4_MASK) {
331 		case RTE_PTYPE_INNER_L4_TCP:
332 		case RTE_PTYPE_INNER_L4_UDP:
333 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
334 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_TCP_UDP;
335 			goto set_hsplit_finish;
336 		case RTE_PTYPE_INNER_L4_SCTP:
337 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
338 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_SCTP;
339 			goto set_hsplit_finish;
340 		}
341 
342 		switch (proto_hdr & RTE_PTYPE_INNER_L3_MASK) {
343 		case RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN:
344 		case RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN:
345 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
346 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_IP;
347 			goto set_hsplit_finish;
348 		}
349 
350 		switch (proto_hdr & RTE_PTYPE_INNER_L2_MASK) {
351 		case RTE_PTYPE_INNER_L2_ETHER:
352 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
353 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_L2;
354 			goto set_hsplit_finish;
355 		}
356 
357 		switch (proto_hdr & RTE_PTYPE_TUNNEL_MASK) {
358 		case RTE_PTYPE_TUNNEL_GRENAT:
359 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
360 			rx_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_SPLIT_ALWAYS;
361 			goto set_hsplit_finish;
362 		}
363 
364 		PMD_DRV_LOG(ERR, "Buffer split protocol is not supported");
365 		return -EINVAL;
366 
367 set_hsplit_finish:
368 		rxq->rx_hdr_len = ICE_RX_HDR_BUF_SIZE;
369 	} else {
370 		rxq->rx_hdr_len = 0;
371 		rx_ctx.dtype = 0; /* No Protocol Based Buffer Split mode */
372 	}
373 
374 	rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
375 	rx_ctx.qlen = rxq->nb_rx_desc;
376 	rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
377 	rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
378 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
379 	rx_ctx.dsize = 1; /* 32B descriptors */
380 #endif
381 	rx_ctx.rxmax = rxq->max_pkt_len;
382 	/* TPH: Transaction Layer Packet (TLP) processing hints */
383 	rx_ctx.tphrdesc_ena = 1;
384 	rx_ctx.tphwdesc_ena = 1;
385 	rx_ctx.tphdata_ena = 1;
386 	rx_ctx.tphhead_ena = 1;
387 	/* Low Receive Queue Threshold defined in 64 descriptors units.
388 	 * When the number of free descriptors goes below the lrxqthresh,
389 	 * an immediate interrupt is triggered.
390 	 */
391 	rx_ctx.lrxqthresh = 2;
392 	/*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
393 	rx_ctx.l2tsel = 1;
394 	rx_ctx.showiv = 0;
395 	rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
396 
397 	rxdid = ice_proto_xtr_type_to_rxdid(rxq->proto_xtr);
398 
399 	PMD_DRV_LOG(DEBUG, "Port (%u) - Rx queue (%u) is set with RXDID : %u",
400 		    rxq->port_id, rxq->queue_id, rxdid);
401 
402 	if (!(pf->supported_rxdid & BIT(rxdid))) {
403 		PMD_DRV_LOG(ERR, "currently package doesn't support RXDID (%u)",
404 			    rxdid);
405 		return -EINVAL;
406 	}
407 
408 	rxq->rxdid = rxdid;
409 
410 	/* Enable Flexible Descriptors in the queue context which
411 	 * allows this driver to select a specific receive descriptor format
412 	 */
413 	regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
414 		QRXFLXP_CNTXT_RXDID_IDX_M;
415 
416 	/* increasing context priority to pick up profile ID;
417 	 * default is 0x01; setting to 0x03 to ensure profile
418 	 * is programming if prev context is of same priority
419 	 */
420 	regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
421 		QRXFLXP_CNTXT_RXDID_PRIO_M;
422 
423 	if (ad->ptp_ena || rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
424 		regval |= QRXFLXP_CNTXT_TS_M;
425 
426 	ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
427 
428 	err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
429 	if (err) {
430 		PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
431 			    rxq->queue_id);
432 		return -EINVAL;
433 	}
434 	err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
435 	if (err) {
436 		PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
437 			    rxq->queue_id);
438 		return -EINVAL;
439 	}
440 
441 	/* Check if scattered RX needs to be used. */
442 	if (frame_size > buf_size)
443 		dev_data->scattered_rx = 1;
444 
445 	rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
446 
447 	/* Init the Rx tail register*/
448 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
449 
450 	return 0;
451 }
452 
453 /* Allocate mbufs for all descriptors in rx queue */
454 static int
455 ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
456 {
457 	struct ice_rx_entry *rxe = rxq->sw_ring;
458 	uint64_t dma_addr;
459 	uint16_t i;
460 
461 	for (i = 0; i < rxq->nb_rx_desc; i++) {
462 		volatile union ice_rx_flex_desc *rxd;
463 		rxd = &rxq->rx_ring[i];
464 		struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
465 
466 		if (unlikely(!mbuf)) {
467 			PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
468 			return -ENOMEM;
469 		}
470 
471 		mbuf->data_off = RTE_PKTMBUF_HEADROOM;
472 		mbuf->nb_segs = 1;
473 		mbuf->port = rxq->port_id;
474 
475 		dma_addr =
476 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
477 
478 		if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
479 			rte_mbuf_refcnt_set(mbuf, 1);
480 			mbuf->next = NULL;
481 			rxd->read.hdr_addr = 0;
482 			rxd->read.pkt_addr = dma_addr;
483 		} else {
484 			struct rte_mbuf *mbuf_pay;
485 			mbuf_pay = rte_mbuf_raw_alloc(rxq->rxseg[1].mp);
486 			if (unlikely(!mbuf_pay)) {
487 				rte_pktmbuf_free(mbuf);
488 				PMD_DRV_LOG(ERR, "Failed to allocate payload mbuf for RX");
489 				return -ENOMEM;
490 			}
491 
492 			mbuf_pay->next = NULL;
493 			mbuf_pay->data_off = RTE_PKTMBUF_HEADROOM;
494 			mbuf_pay->nb_segs = 1;
495 			mbuf_pay->port = rxq->port_id;
496 			mbuf->next = mbuf_pay;
497 
498 			rxd->read.hdr_addr = dma_addr;
499 			/* The LS bit should be set to zero regardless of
500 			 * buffer split enablement.
501 			 */
502 			rxd->read.pkt_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf_pay));
503 		}
504 
505 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
506 		rxd->read.rsvd1 = 0;
507 		rxd->read.rsvd2 = 0;
508 #endif
509 		rxe[i].mbuf = mbuf;
510 	}
511 
512 	return 0;
513 }
514 
515 /* Free all mbufs for descriptors in rx queue */
516 static void
517 _ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
518 {
519 	uint16_t i;
520 
521 	if (!rxq || !rxq->sw_ring) {
522 		PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
523 		return;
524 	}
525 
526 	for (i = 0; i < rxq->nb_rx_desc; i++) {
527 		if (rxq->sw_ring[i].mbuf) {
528 			rte_pktmbuf_free(rxq->sw_ring[i].mbuf);
529 			rxq->sw_ring[i].mbuf = NULL;
530 		}
531 	}
532 	if (rxq->rx_nb_avail == 0)
533 		return;
534 	for (i = 0; i < rxq->rx_nb_avail; i++)
535 		rte_pktmbuf_free(rxq->rx_stage[rxq->rx_next_avail + i]);
536 
537 	rxq->rx_nb_avail = 0;
538 }
539 
540 /* turn on or off rx queue
541  * @q_idx: queue index in pf scope
542  * @on: turn on or off the queue
543  */
544 static int
545 ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
546 {
547 	uint32_t reg;
548 	uint16_t j;
549 
550 	/* QRX_CTRL = QRX_ENA */
551 	reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
552 
553 	if (on) {
554 		if (reg & QRX_CTRL_QENA_STAT_M)
555 			return 0; /* Already on, skip */
556 		reg |= QRX_CTRL_QENA_REQ_M;
557 	} else {
558 		if (!(reg & QRX_CTRL_QENA_STAT_M))
559 			return 0; /* Already off, skip */
560 		reg &= ~QRX_CTRL_QENA_REQ_M;
561 	}
562 
563 	/* Write the register */
564 	ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
565 	/* Check the result. It is said that QENA_STAT
566 	 * follows the QENA_REQ not more than 10 use.
567 	 * TODO: need to change the wait counter later
568 	 */
569 	for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
570 		rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
571 		reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
572 		if (on) {
573 			if ((reg & QRX_CTRL_QENA_REQ_M) &&
574 			    (reg & QRX_CTRL_QENA_STAT_M))
575 				break;
576 		} else {
577 			if (!(reg & QRX_CTRL_QENA_REQ_M) &&
578 			    !(reg & QRX_CTRL_QENA_STAT_M))
579 				break;
580 		}
581 	}
582 
583 	/* Check if it is timeout */
584 	if (j >= ICE_CHK_Q_ENA_COUNT) {
585 		PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
586 			    (on ? "enable" : "disable"), q_idx);
587 		return -ETIMEDOUT;
588 	}
589 
590 	return 0;
591 }
592 
593 static inline int
594 ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
595 {
596 	int ret = 0;
597 
598 	if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
599 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
600 			     "rxq->rx_free_thresh=%d, "
601 			     "ICE_RX_MAX_BURST=%d",
602 			     rxq->rx_free_thresh, ICE_RX_MAX_BURST);
603 		ret = -EINVAL;
604 	} else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
605 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
606 			     "rxq->rx_free_thresh=%d, "
607 			     "rxq->nb_rx_desc=%d",
608 			     rxq->rx_free_thresh, rxq->nb_rx_desc);
609 		ret = -EINVAL;
610 	} else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
611 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
612 			     "rxq->nb_rx_desc=%d, "
613 			     "rxq->rx_free_thresh=%d",
614 			     rxq->nb_rx_desc, rxq->rx_free_thresh);
615 		ret = -EINVAL;
616 	}
617 
618 	return ret;
619 }
620 
621 /* reset fields in ice_rx_queue back to default */
622 static void
623 ice_reset_rx_queue(struct ice_rx_queue *rxq)
624 {
625 	unsigned int i;
626 	uint16_t len;
627 
628 	if (!rxq) {
629 		PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
630 		return;
631 	}
632 
633 	len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
634 
635 	for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
636 		((volatile char *)rxq->rx_ring)[i] = 0;
637 
638 	memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
639 	for (i = 0; i < ICE_RX_MAX_BURST; ++i)
640 		rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
641 
642 	rxq->rx_nb_avail = 0;
643 	rxq->rx_next_avail = 0;
644 	rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
645 
646 	rxq->rx_tail = 0;
647 	rxq->nb_rx_hold = 0;
648 	rxq->pkt_first_seg = NULL;
649 	rxq->pkt_last_seg = NULL;
650 
651 	rxq->rxrearm_start = 0;
652 	rxq->rxrearm_nb = 0;
653 }
654 
655 int
656 ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
657 {
658 	struct ice_rx_queue *rxq;
659 	int err;
660 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
661 
662 	PMD_INIT_FUNC_TRACE();
663 
664 	if (rx_queue_id >= dev->data->nb_rx_queues) {
665 		PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
666 			    rx_queue_id, dev->data->nb_rx_queues);
667 		return -EINVAL;
668 	}
669 
670 	rxq = dev->data->rx_queues[rx_queue_id];
671 	if (!rxq || !rxq->q_set) {
672 		PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
673 			    rx_queue_id);
674 		return -EINVAL;
675 	}
676 
677 	if (dev->data->rx_queue_state[rx_queue_id] ==
678 		RTE_ETH_QUEUE_STATE_STARTED)
679 		return 0;
680 
681 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
682 		rxq->ts_enable = true;
683 	err = ice_program_hw_rx_queue(rxq);
684 	if (err) {
685 		PMD_DRV_LOG(ERR, "fail to program RX queue %u",
686 			    rx_queue_id);
687 		return -EIO;
688 	}
689 
690 	err = ice_alloc_rx_queue_mbufs(rxq);
691 	if (err) {
692 		PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
693 		return -ENOMEM;
694 	}
695 
696 	/* Init the RX tail register. */
697 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
698 
699 	err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
700 	if (err) {
701 		PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
702 			    rx_queue_id);
703 
704 		rxq->rx_rel_mbufs(rxq);
705 		ice_reset_rx_queue(rxq);
706 		return -EINVAL;
707 	}
708 
709 	dev->data->rx_queue_state[rx_queue_id] =
710 		RTE_ETH_QUEUE_STATE_STARTED;
711 
712 	return 0;
713 }
714 
715 int
716 ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
717 {
718 	struct ice_rx_queue *rxq;
719 	int err;
720 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
721 
722 	if (rx_queue_id < dev->data->nb_rx_queues) {
723 		rxq = dev->data->rx_queues[rx_queue_id];
724 
725 		if (dev->data->rx_queue_state[rx_queue_id] ==
726 			RTE_ETH_QUEUE_STATE_STOPPED)
727 			return 0;
728 
729 		err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
730 		if (err) {
731 			PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
732 				    rx_queue_id);
733 			return -EINVAL;
734 		}
735 		rxq->rx_rel_mbufs(rxq);
736 		ice_reset_rx_queue(rxq);
737 		dev->data->rx_queue_state[rx_queue_id] =
738 			RTE_ETH_QUEUE_STATE_STOPPED;
739 	}
740 
741 	return 0;
742 }
743 
744 int
745 ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
746 {
747 	struct ci_tx_queue *txq;
748 	int err;
749 	struct ice_vsi *vsi;
750 	struct ice_hw *hw;
751 	struct ice_pf *pf;
752 	struct ice_aqc_add_tx_qgrp *txq_elem;
753 	struct ice_tlan_ctx tx_ctx;
754 	int buf_len;
755 	struct ice_adapter *ad = ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
756 
757 	PMD_INIT_FUNC_TRACE();
758 
759 	if (tx_queue_id >= dev->data->nb_tx_queues) {
760 		PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
761 			    tx_queue_id, dev->data->nb_tx_queues);
762 		return -EINVAL;
763 	}
764 
765 	txq = dev->data->tx_queues[tx_queue_id];
766 	if (!txq || !txq->q_set) {
767 		PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
768 			    tx_queue_id);
769 		return -EINVAL;
770 	}
771 
772 	if (dev->data->tx_queue_state[tx_queue_id] ==
773 		RTE_ETH_QUEUE_STATE_STARTED)
774 		return 0;
775 
776 	buf_len = ice_struct_size(txq_elem, txqs, 1);
777 	txq_elem = ice_malloc(hw, buf_len);
778 	if (!txq_elem)
779 		return -ENOMEM;
780 
781 	vsi = txq->ice_vsi;
782 	hw = ICE_VSI_TO_HW(vsi);
783 	pf = ICE_VSI_TO_PF(vsi);
784 
785 	memset(&tx_ctx, 0, sizeof(tx_ctx));
786 	txq_elem->num_txqs = 1;
787 	txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
788 
789 	tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
790 	tx_ctx.qlen = txq->nb_tx_desc;
791 	tx_ctx.pf_num = hw->pf_id;
792 	tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
793 	tx_ctx.src_vsi = vsi->vsi_id;
794 	tx_ctx.port_num = hw->port_info->lport;
795 	tx_ctx.tso_ena = 1; /* tso enable */
796 	tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
797 	tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
798 	tx_ctx.tsyn_ena = 1;
799 
800 	ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
801 		    ice_tlan_ctx_info);
802 
803 	txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
804 
805 	/* Init the Tx tail register*/
806 	ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
807 
808 	/* Fix me, we assume TC always 0 here */
809 	err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
810 			txq_elem, buf_len, NULL);
811 	if (err) {
812 		PMD_DRV_LOG(ERR, "Failed to add lan txq");
813 		rte_free(txq_elem);
814 		return -EIO;
815 	}
816 	/* store the schedule node id */
817 	txq->q_teid = txq_elem->txqs[0].q_teid;
818 
819 	/* move the queue to correct position in hierarchy, if explicit hierarchy configured */
820 	if (pf->tm_conf.committed)
821 		if (ice_tm_setup_txq_node(pf, hw, tx_queue_id, txq->q_teid) != 0) {
822 			PMD_DRV_LOG(ERR, "Failed to set up txq traffic management node");
823 			rte_free(txq_elem);
824 			return -EIO;
825 		}
826 
827 	/* record what kind of descriptor cleanup we need on teardown */
828 	txq->vector_tx = ad->tx_vec_allowed;
829 
830 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
831 
832 	rte_free(txq_elem);
833 	return 0;
834 }
835 
836 static int
837 ice_fdir_program_hw_rx_queue(struct ice_rx_queue *rxq)
838 {
839 	struct ice_vsi *vsi = rxq->vsi;
840 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
841 	uint32_t rxdid = ICE_RXDID_LEGACY_1;
842 	struct ice_rlan_ctx rx_ctx;
843 	uint32_t regval;
844 	int err;
845 
846 	rxq->rx_hdr_len = 0;
847 	rxq->rx_buf_len = 1024;
848 
849 	memset(&rx_ctx, 0, sizeof(rx_ctx));
850 
851 	rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
852 	rx_ctx.qlen = rxq->nb_rx_desc;
853 	rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
854 	rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
855 	rx_ctx.dtype = 0; /* No Buffer Split mode */
856 	rx_ctx.dsize = 1; /* 32B descriptors */
857 	rx_ctx.rxmax = ICE_ETH_MAX_LEN;
858 	/* TPH: Transaction Layer Packet (TLP) processing hints */
859 	rx_ctx.tphrdesc_ena = 1;
860 	rx_ctx.tphwdesc_ena = 1;
861 	rx_ctx.tphdata_ena = 1;
862 	rx_ctx.tphhead_ena = 1;
863 	/* Low Receive Queue Threshold defined in 64 descriptors units.
864 	 * When the number of free descriptors goes below the lrxqthresh,
865 	 * an immediate interrupt is triggered.
866 	 */
867 	rx_ctx.lrxqthresh = 2;
868 	/*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
869 	rx_ctx.l2tsel = 1;
870 	rx_ctx.showiv = 0;
871 	rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
872 
873 	/* Enable Flexible Descriptors in the queue context which
874 	 * allows this driver to select a specific receive descriptor format
875 	 */
876 	regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
877 		QRXFLXP_CNTXT_RXDID_IDX_M;
878 
879 	/* increasing context priority to pick up profile ID;
880 	 * default is 0x01; setting to 0x03 to ensure profile
881 	 * is programming if prev context is of same priority
882 	 */
883 	regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
884 		QRXFLXP_CNTXT_RXDID_PRIO_M;
885 
886 	ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
887 
888 	err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
889 	if (err) {
890 		PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
891 			    rxq->queue_id);
892 		return -EINVAL;
893 	}
894 	err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
895 	if (err) {
896 		PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
897 			    rxq->queue_id);
898 		return -EINVAL;
899 	}
900 
901 	rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
902 
903 	/* Init the Rx tail register*/
904 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
905 
906 	return 0;
907 }
908 
909 int
910 ice_fdir_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
911 {
912 	struct ice_rx_queue *rxq;
913 	int err;
914 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
915 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
916 
917 	PMD_INIT_FUNC_TRACE();
918 
919 	rxq = pf->fdir.rxq;
920 	if (!rxq || !rxq->q_set) {
921 		PMD_DRV_LOG(ERR, "FDIR RX queue %u not available or setup",
922 			    rx_queue_id);
923 		return -EINVAL;
924 	}
925 
926 	err = ice_fdir_program_hw_rx_queue(rxq);
927 	if (err) {
928 		PMD_DRV_LOG(ERR, "fail to program FDIR RX queue %u",
929 			    rx_queue_id);
930 		return -EIO;
931 	}
932 
933 	/* Init the RX tail register. */
934 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
935 
936 	err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
937 	if (err) {
938 		PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u on",
939 			    rx_queue_id);
940 
941 		ice_reset_rx_queue(rxq);
942 		return -EINVAL;
943 	}
944 
945 	return 0;
946 }
947 
948 int
949 ice_fdir_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
950 {
951 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
952 	struct ci_tx_queue *txq;
953 	int err;
954 	struct ice_vsi *vsi;
955 	struct ice_hw *hw;
956 	struct ice_aqc_add_tx_qgrp *txq_elem;
957 	struct ice_tlan_ctx tx_ctx;
958 	int buf_len;
959 
960 	PMD_INIT_FUNC_TRACE();
961 
962 	txq = pf->fdir.txq;
963 	if (!txq || !txq->q_set) {
964 		PMD_DRV_LOG(ERR, "FDIR TX queue %u is not available or setup",
965 			    tx_queue_id);
966 		return -EINVAL;
967 	}
968 
969 	buf_len = ice_struct_size(txq_elem, txqs, 1);
970 	txq_elem = ice_malloc(hw, buf_len);
971 	if (!txq_elem)
972 		return -ENOMEM;
973 
974 	vsi = txq->ice_vsi;
975 	hw = ICE_VSI_TO_HW(vsi);
976 
977 	memset(&tx_ctx, 0, sizeof(tx_ctx));
978 	txq_elem->num_txqs = 1;
979 	txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
980 
981 	tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
982 	tx_ctx.qlen = txq->nb_tx_desc;
983 	tx_ctx.pf_num = hw->pf_id;
984 	tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
985 	tx_ctx.src_vsi = vsi->vsi_id;
986 	tx_ctx.port_num = hw->port_info->lport;
987 	tx_ctx.tso_ena = 1; /* tso enable */
988 	tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
989 	tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
990 
991 	ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
992 		    ice_tlan_ctx_info);
993 
994 	txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
995 
996 	/* Init the Tx tail register*/
997 	ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
998 
999 	/* Fix me, we assume TC always 0 here */
1000 	err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
1001 			      txq_elem, buf_len, NULL);
1002 	if (err) {
1003 		PMD_DRV_LOG(ERR, "Failed to add FDIR txq");
1004 		rte_free(txq_elem);
1005 		return -EIO;
1006 	}
1007 	/* store the schedule node id */
1008 	txq->q_teid = txq_elem->txqs[0].q_teid;
1009 
1010 	rte_free(txq_elem);
1011 	return 0;
1012 }
1013 
1014 static void
1015 ice_reset_tx_queue(struct ci_tx_queue *txq)
1016 {
1017 	struct ci_tx_entry *txe;
1018 	uint16_t i, prev, size;
1019 
1020 	if (!txq) {
1021 		PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
1022 		return;
1023 	}
1024 
1025 	txe = txq->sw_ring;
1026 	size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
1027 	for (i = 0; i < size; i++)
1028 		((volatile char *)txq->ice_tx_ring)[i] = 0;
1029 
1030 	prev = (uint16_t)(txq->nb_tx_desc - 1);
1031 	for (i = 0; i < txq->nb_tx_desc; i++) {
1032 		volatile struct ice_tx_desc *txd = &txq->ice_tx_ring[i];
1033 
1034 		txd->cmd_type_offset_bsz =
1035 			rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
1036 		txe[i].mbuf =  NULL;
1037 		txe[i].last_id = i;
1038 		txe[prev].next_id = i;
1039 		prev = i;
1040 	}
1041 
1042 	txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1043 	txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1044 
1045 	txq->tx_tail = 0;
1046 	txq->nb_tx_used = 0;
1047 
1048 	txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
1049 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
1050 }
1051 
1052 int
1053 ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1054 {
1055 	struct ci_tx_queue *txq;
1056 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1057 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1058 	struct ice_vsi *vsi = pf->main_vsi;
1059 	uint16_t q_ids[1];
1060 	uint32_t q_teids[1];
1061 	uint16_t q_handle = tx_queue_id;
1062 	int status;
1063 
1064 	if (tx_queue_id >= dev->data->nb_tx_queues) {
1065 		PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
1066 			    tx_queue_id, dev->data->nb_tx_queues);
1067 		return -EINVAL;
1068 	}
1069 
1070 	txq = dev->data->tx_queues[tx_queue_id];
1071 	if (!txq) {
1072 		PMD_DRV_LOG(ERR, "TX queue %u is not available",
1073 			    tx_queue_id);
1074 		return -EINVAL;
1075 	}
1076 
1077 	if (dev->data->tx_queue_state[tx_queue_id] ==
1078 		RTE_ETH_QUEUE_STATE_STOPPED)
1079 		return 0;
1080 
1081 	q_ids[0] = txq->reg_idx;
1082 	q_teids[0] = txq->q_teid;
1083 
1084 	/* Fix me, we assume TC always 0 here */
1085 	status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1086 				q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1087 	if (status != ICE_SUCCESS) {
1088 		PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1089 		return -EINVAL;
1090 	}
1091 
1092 	ci_txq_release_all_mbufs(txq, false);
1093 	ice_reset_tx_queue(txq);
1094 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1095 
1096 	return 0;
1097 }
1098 
1099 int
1100 ice_fdir_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1101 {
1102 	struct ice_rx_queue *rxq;
1103 	int err;
1104 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1105 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1106 
1107 	rxq = pf->fdir.rxq;
1108 
1109 	err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
1110 	if (err) {
1111 		PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u off",
1112 			    rx_queue_id);
1113 		return -EINVAL;
1114 	}
1115 	rxq->rx_rel_mbufs(rxq);
1116 
1117 	return 0;
1118 }
1119 
1120 int
1121 ice_fdir_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1122 {
1123 	struct ci_tx_queue *txq;
1124 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1125 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1126 	struct ice_vsi *vsi = pf->main_vsi;
1127 	uint16_t q_ids[1];
1128 	uint32_t q_teids[1];
1129 	uint16_t q_handle = tx_queue_id;
1130 	int status;
1131 
1132 	txq = pf->fdir.txq;
1133 	if (!txq) {
1134 		PMD_DRV_LOG(ERR, "TX queue %u is not available",
1135 			    tx_queue_id);
1136 		return -EINVAL;
1137 	}
1138 	if (txq->qtx_tail == NULL) {
1139 		PMD_DRV_LOG(INFO, "TX queue %u not started", tx_queue_id);
1140 		return 0;
1141 	}
1142 	vsi = txq->ice_vsi;
1143 
1144 	q_ids[0] = txq->reg_idx;
1145 	q_teids[0] = txq->q_teid;
1146 
1147 	/* Fix me, we assume TC always 0 here */
1148 	status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1149 				 q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1150 	if (status != ICE_SUCCESS) {
1151 		PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1152 		return -EINVAL;
1153 	}
1154 
1155 	ci_txq_release_all_mbufs(txq, false);
1156 	txq->qtx_tail = NULL;
1157 
1158 	return 0;
1159 }
1160 
1161 int
1162 ice_rx_queue_setup(struct rte_eth_dev *dev,
1163 		   uint16_t queue_idx,
1164 		   uint16_t nb_desc,
1165 		   unsigned int socket_id,
1166 		   const struct rte_eth_rxconf *rx_conf,
1167 		   struct rte_mempool *mp)
1168 {
1169 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1170 	struct ice_adapter *ad =
1171 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1172 	struct ice_vsi *vsi = pf->main_vsi;
1173 	struct ice_rx_queue *rxq;
1174 	const struct rte_memzone *rz;
1175 	uint32_t ring_size;
1176 	uint16_t len;
1177 	int use_def_burst_func = 1;
1178 	uint64_t offloads;
1179 	uint16_t n_seg = rx_conf->rx_nseg;
1180 	uint16_t i;
1181 
1182 	if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1183 	    nb_desc > ICE_MAX_RING_DESC ||
1184 	    nb_desc < ICE_MIN_RING_DESC) {
1185 		PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
1186 			     "invalid", nb_desc);
1187 		return -EINVAL;
1188 	}
1189 
1190 	offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1191 
1192 	if (mp)
1193 		n_seg = 1;
1194 
1195 	if (n_seg > 1 && !(offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
1196 		PMD_INIT_LOG(ERR, "port %u queue index %u split offload not configured",
1197 				dev->data->port_id, queue_idx);
1198 		return -EINVAL;
1199 	}
1200 
1201 	/* Free memory if needed */
1202 	if (dev->data->rx_queues[queue_idx]) {
1203 		ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
1204 		dev->data->rx_queues[queue_idx] = NULL;
1205 	}
1206 
1207 	/* Allocate the rx queue data structure */
1208 	rxq = rte_zmalloc_socket(NULL,
1209 				 sizeof(struct ice_rx_queue),
1210 				 RTE_CACHE_LINE_SIZE,
1211 				 socket_id);
1212 
1213 	if (!rxq) {
1214 		PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1215 			     "rx queue data structure");
1216 		return -ENOMEM;
1217 	}
1218 
1219 	rxq->rxseg_nb = n_seg;
1220 	if (n_seg > 1) {
1221 		for (i = 0; i < n_seg; i++)
1222 			memcpy(&rxq->rxseg[i], &rx_conf->rx_seg[i].split,
1223 				sizeof(struct rte_eth_rxseg_split));
1224 
1225 		rxq->mp = rxq->rxseg[0].mp;
1226 	} else {
1227 		rxq->mp = mp;
1228 	}
1229 
1230 	rxq->nb_rx_desc = nb_desc;
1231 	rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1232 	rxq->queue_id = queue_idx;
1233 	rxq->offloads = offloads;
1234 
1235 	rxq->reg_idx = vsi->base_queue + queue_idx;
1236 	rxq->port_id = dev->data->port_id;
1237 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
1238 		rxq->crc_len = RTE_ETHER_CRC_LEN;
1239 	else
1240 		rxq->crc_len = 0;
1241 
1242 	rxq->drop_en = rx_conf->rx_drop_en;
1243 	rxq->vsi = vsi;
1244 	rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1245 	rxq->proto_xtr = pf->proto_xtr != NULL ?
1246 			 pf->proto_xtr[queue_idx] : PROTO_XTR_NONE;
1247 	if (rxq->proto_xtr != PROTO_XTR_NONE &&
1248 			ad->devargs.xtr_flag_offs[rxq->proto_xtr] != 0xff)
1249 		rxq->xtr_ol_flag = 1ULL << ad->devargs.xtr_flag_offs[rxq->proto_xtr];
1250 	rxq->xtr_field_offs = ad->devargs.xtr_field_offs;
1251 
1252 	/* Allocate the maximum number of RX ring hardware descriptor. */
1253 	len = ICE_MAX_RING_DESC;
1254 
1255 	/**
1256 	 * Allocating a little more memory because vectorized/bulk_alloc Rx
1257 	 * functions doesn't check boundaries each time.
1258 	 */
1259 	len += ICE_RX_MAX_BURST;
1260 
1261 	/* Allocate the maximum number of RX ring hardware descriptor. */
1262 	ring_size = sizeof(union ice_rx_flex_desc) * len;
1263 	ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1264 	rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1265 				      ring_size, ICE_RING_BASE_ALIGN,
1266 				      socket_id);
1267 	if (!rz) {
1268 		ice_rx_queue_release(rxq);
1269 		PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
1270 		return -ENOMEM;
1271 	}
1272 
1273 	rxq->mz = rz;
1274 	/* Zero all the descriptors in the ring. */
1275 	memset(rz->addr, 0, ring_size);
1276 
1277 	rxq->rx_ring_dma = rz->iova;
1278 	rxq->rx_ring = rz->addr;
1279 
1280 	/* always reserve more for bulk alloc */
1281 	len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
1282 
1283 	/* Allocate the software ring. */
1284 	rxq->sw_ring = rte_zmalloc_socket(NULL,
1285 					  sizeof(struct ice_rx_entry) * len,
1286 					  RTE_CACHE_LINE_SIZE,
1287 					  socket_id);
1288 	if (!rxq->sw_ring) {
1289 		ice_rx_queue_release(rxq);
1290 		PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
1291 		return -ENOMEM;
1292 	}
1293 
1294 	ice_reset_rx_queue(rxq);
1295 	rxq->q_set = true;
1296 	dev->data->rx_queues[queue_idx] = rxq;
1297 	rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
1298 
1299 	use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
1300 
1301 	if (!use_def_burst_func) {
1302 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1303 			     "satisfied. Rx Burst Bulk Alloc function will be "
1304 			     "used on port=%d, queue=%d.",
1305 			     rxq->port_id, rxq->queue_id);
1306 	} else {
1307 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1308 			     "not satisfied, Scattered Rx is requested. "
1309 			     "on port=%d, queue=%d.",
1310 			     rxq->port_id, rxq->queue_id);
1311 		ad->rx_bulk_alloc_allowed = false;
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 void
1318 ice_rx_queue_release(void *rxq)
1319 {
1320 	struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
1321 
1322 	if (!q) {
1323 		PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1324 		return;
1325 	}
1326 
1327 	if (q->rx_rel_mbufs != NULL)
1328 		q->rx_rel_mbufs(q);
1329 	rte_free(q->sw_ring);
1330 	rte_memzone_free(q->mz);
1331 	rte_free(q);
1332 }
1333 
1334 int
1335 ice_tx_queue_setup(struct rte_eth_dev *dev,
1336 		   uint16_t queue_idx,
1337 		   uint16_t nb_desc,
1338 		   unsigned int socket_id,
1339 		   const struct rte_eth_txconf *tx_conf)
1340 {
1341 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1342 	struct ice_vsi *vsi = pf->main_vsi;
1343 	struct ci_tx_queue *txq;
1344 	const struct rte_memzone *tz;
1345 	uint32_t ring_size;
1346 	uint16_t tx_rs_thresh, tx_free_thresh;
1347 	uint64_t offloads;
1348 
1349 	offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1350 
1351 	if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1352 	    nb_desc > ICE_MAX_RING_DESC ||
1353 	    nb_desc < ICE_MIN_RING_DESC) {
1354 		PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
1355 			     "invalid", nb_desc);
1356 		return -EINVAL;
1357 	}
1358 
1359 	/**
1360 	 * The following two parameters control the setting of the RS bit on
1361 	 * transmit descriptors. TX descriptors will have their RS bit set
1362 	 * after txq->tx_rs_thresh descriptors have been used. The TX
1363 	 * descriptor ring will be cleaned after txq->tx_free_thresh
1364 	 * descriptors are used or if the number of descriptors required to
1365 	 * transmit a packet is greater than the number of free TX descriptors.
1366 	 *
1367 	 * The following constraints must be satisfied:
1368 	 *  - tx_rs_thresh must be greater than 0.
1369 	 *  - tx_rs_thresh must be less than the size of the ring minus 2.
1370 	 *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
1371 	 *  - tx_rs_thresh must be a divisor of the ring size.
1372 	 *  - tx_free_thresh must be greater than 0.
1373 	 *  - tx_free_thresh must be less than the size of the ring minus 3.
1374 	 *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
1375 	 *
1376 	 * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1377 	 * race condition, hence the maximum threshold constraints. When set
1378 	 * to zero use default values.
1379 	 */
1380 	tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
1381 				    tx_conf->tx_free_thresh :
1382 				    ICE_DEFAULT_TX_FREE_THRESH);
1383 	/* force tx_rs_thresh to adapt an aggressive tx_free_thresh */
1384 	tx_rs_thresh =
1385 		(ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
1386 			nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
1387 	if (tx_conf->tx_rs_thresh)
1388 		tx_rs_thresh = tx_conf->tx_rs_thresh;
1389 	if (tx_rs_thresh + tx_free_thresh > nb_desc) {
1390 		PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
1391 				"exceed nb_desc. (tx_rs_thresh=%u "
1392 				"tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
1393 				(unsigned int)tx_rs_thresh,
1394 				(unsigned int)tx_free_thresh,
1395 				(unsigned int)nb_desc,
1396 				(int)dev->data->port_id,
1397 				(int)queue_idx);
1398 		return -EINVAL;
1399 	}
1400 	if (tx_rs_thresh >= (nb_desc - 2)) {
1401 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1402 			     "number of TX descriptors minus 2. "
1403 			     "(tx_rs_thresh=%u port=%d queue=%d)",
1404 			     (unsigned int)tx_rs_thresh,
1405 			     (int)dev->data->port_id,
1406 			     (int)queue_idx);
1407 		return -EINVAL;
1408 	}
1409 	if (tx_free_thresh >= (nb_desc - 3)) {
1410 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1411 			     "tx_free_thresh must be less than the "
1412 			     "number of TX descriptors minus 3. "
1413 			     "(tx_free_thresh=%u port=%d queue=%d)",
1414 			     (unsigned int)tx_free_thresh,
1415 			     (int)dev->data->port_id,
1416 			     (int)queue_idx);
1417 		return -EINVAL;
1418 	}
1419 	if (tx_rs_thresh > tx_free_thresh) {
1420 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
1421 			     "equal to tx_free_thresh. (tx_free_thresh=%u"
1422 			     " tx_rs_thresh=%u port=%d queue=%d)",
1423 			     (unsigned int)tx_free_thresh,
1424 			     (unsigned int)tx_rs_thresh,
1425 			     (int)dev->data->port_id,
1426 			     (int)queue_idx);
1427 		return -EINVAL;
1428 	}
1429 	if ((nb_desc % tx_rs_thresh) != 0) {
1430 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
1431 			     "number of TX descriptors. (tx_rs_thresh=%u"
1432 			     " port=%d queue=%d)",
1433 			     (unsigned int)tx_rs_thresh,
1434 			     (int)dev->data->port_id,
1435 			     (int)queue_idx);
1436 		return -EINVAL;
1437 	}
1438 	if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
1439 		PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1440 			     "tx_rs_thresh is greater than 1. "
1441 			     "(tx_rs_thresh=%u port=%d queue=%d)",
1442 			     (unsigned int)tx_rs_thresh,
1443 			     (int)dev->data->port_id,
1444 			     (int)queue_idx);
1445 		return -EINVAL;
1446 	}
1447 
1448 	/* Free memory if needed. */
1449 	if (dev->data->tx_queues[queue_idx]) {
1450 		ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
1451 		dev->data->tx_queues[queue_idx] = NULL;
1452 	}
1453 
1454 	/* Allocate the TX queue data structure. */
1455 	txq = rte_zmalloc_socket(NULL,
1456 				 sizeof(struct ci_tx_queue),
1457 				 RTE_CACHE_LINE_SIZE,
1458 				 socket_id);
1459 	if (!txq) {
1460 		PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1461 			     "tx queue structure");
1462 		return -ENOMEM;
1463 	}
1464 
1465 	/* Allocate TX hardware ring descriptors. */
1466 	ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
1467 	ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1468 	tz = rte_eth_dma_zone_reserve(dev, "ice_tx_ring", queue_idx,
1469 				      ring_size, ICE_RING_BASE_ALIGN,
1470 				      socket_id);
1471 	if (!tz) {
1472 		ice_tx_queue_release(txq);
1473 		PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
1474 		return -ENOMEM;
1475 	}
1476 
1477 	txq->mz = tz;
1478 	txq->nb_tx_desc = nb_desc;
1479 	txq->tx_rs_thresh = tx_rs_thresh;
1480 	txq->tx_free_thresh = tx_free_thresh;
1481 	txq->queue_id = queue_idx;
1482 
1483 	txq->reg_idx = vsi->base_queue + queue_idx;
1484 	txq->port_id = dev->data->port_id;
1485 	txq->offloads = offloads;
1486 	txq->ice_vsi = vsi;
1487 	txq->tx_deferred_start = tx_conf->tx_deferred_start;
1488 
1489 	txq->tx_ring_dma = tz->iova;
1490 	txq->ice_tx_ring = tz->addr;
1491 
1492 	/* Allocate software ring */
1493 	txq->sw_ring =
1494 		rte_zmalloc_socket(NULL,
1495 				   sizeof(struct ci_tx_entry) * nb_desc,
1496 				   RTE_CACHE_LINE_SIZE,
1497 				   socket_id);
1498 	if (!txq->sw_ring) {
1499 		ice_tx_queue_release(txq);
1500 		PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
1501 		return -ENOMEM;
1502 	}
1503 
1504 	ice_reset_tx_queue(txq);
1505 	txq->q_set = true;
1506 	dev->data->tx_queues[queue_idx] = txq;
1507 	ice_set_tx_function_flag(dev, txq);
1508 
1509 	return 0;
1510 }
1511 
1512 void
1513 ice_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1514 {
1515 	ice_rx_queue_release(dev->data->rx_queues[qid]);
1516 }
1517 
1518 void
1519 ice_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1520 {
1521 	ice_tx_queue_release(dev->data->tx_queues[qid]);
1522 }
1523 
1524 void
1525 ice_tx_queue_release(void *txq)
1526 {
1527 	struct ci_tx_queue *q = (struct ci_tx_queue *)txq;
1528 
1529 	if (!q) {
1530 		PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
1531 		return;
1532 	}
1533 
1534 	ci_txq_release_all_mbufs(q, false);
1535 	rte_free(q->sw_ring);
1536 	rte_memzone_free(q->mz);
1537 	rte_free(q);
1538 }
1539 
1540 void
1541 ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1542 		 struct rte_eth_rxq_info *qinfo)
1543 {
1544 	struct ice_rx_queue *rxq;
1545 
1546 	rxq = dev->data->rx_queues[queue_id];
1547 
1548 	qinfo->mp = rxq->mp;
1549 	qinfo->scattered_rx = dev->data->scattered_rx;
1550 	qinfo->nb_desc = rxq->nb_rx_desc;
1551 
1552 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1553 	qinfo->conf.rx_drop_en = rxq->drop_en;
1554 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1555 }
1556 
1557 void
1558 ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1559 		 struct rte_eth_txq_info *qinfo)
1560 {
1561 	struct ci_tx_queue *txq;
1562 
1563 	txq = dev->data->tx_queues[queue_id];
1564 
1565 	qinfo->nb_desc = txq->nb_tx_desc;
1566 
1567 	qinfo->conf.tx_thresh.pthresh = ICE_DEFAULT_TX_PTHRESH;
1568 	qinfo->conf.tx_thresh.hthresh = ICE_DEFAULT_TX_HTHRESH;
1569 	qinfo->conf.tx_thresh.wthresh = ICE_DEFAULT_TX_WTHRESH;
1570 
1571 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1572 	qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
1573 	qinfo->conf.offloads = txq->offloads;
1574 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1575 }
1576 
1577 uint32_t
1578 ice_rx_queue_count(void *rx_queue)
1579 {
1580 #define ICE_RXQ_SCAN_INTERVAL 4
1581 	volatile union ice_rx_flex_desc *rxdp;
1582 	struct ice_rx_queue *rxq;
1583 	uint16_t desc = 0;
1584 
1585 	rxq = rx_queue;
1586 	rxdp = &rxq->rx_ring[rxq->rx_tail];
1587 	while ((desc < rxq->nb_rx_desc) &&
1588 	       rte_le_to_cpu_16(rxdp->wb.status_error0) &
1589 	       (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
1590 		/**
1591 		 * Check the DD bit of a rx descriptor of each 4 in a group,
1592 		 * to avoid checking too frequently and downgrading performance
1593 		 * too much.
1594 		 */
1595 		desc += ICE_RXQ_SCAN_INTERVAL;
1596 		rxdp += ICE_RXQ_SCAN_INTERVAL;
1597 		if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1598 			rxdp = &(rxq->rx_ring[rxq->rx_tail +
1599 				 desc - rxq->nb_rx_desc]);
1600 	}
1601 
1602 	return desc;
1603 }
1604 
1605 #define ICE_RX_FLEX_ERR0_BITS	\
1606 	((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) |	\
1607 	 (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |	\
1608 	 (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |	\
1609 	 (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) |	\
1610 	 (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |	\
1611 	 (1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
1612 
1613 /* Rx L3/L4 checksum */
1614 static inline uint64_t
1615 ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
1616 {
1617 	uint64_t flags = 0;
1618 
1619 	/* check if HW has decoded the packet and checksum */
1620 	if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1621 		return 0;
1622 
1623 	if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
1624 		flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD |
1625 			  RTE_MBUF_F_RX_L4_CKSUM_GOOD |
1626 			  RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD);
1627 		return flags;
1628 	}
1629 
1630 	if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1631 		flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1632 	else
1633 		flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1634 
1635 	if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1636 		flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1637 	else
1638 		flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1639 
1640 	if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1641 		flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1642 
1643 	if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
1644 		flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
1645 	else
1646 		flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD;
1647 
1648 	return flags;
1649 }
1650 
1651 static inline void
1652 ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
1653 {
1654 	if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
1655 	    (1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1656 		mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
1657 		mb->vlan_tci =
1658 			rte_le_to_cpu_16(rxdp->wb.l2tag1);
1659 		PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
1660 			   rte_le_to_cpu_16(rxdp->wb.l2tag1));
1661 	} else {
1662 		mb->vlan_tci = 0;
1663 	}
1664 
1665 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1666 	if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1667 	    (1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1668 		mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED | RTE_MBUF_F_RX_QINQ |
1669 				RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN;
1670 		mb->vlan_tci_outer = mb->vlan_tci;
1671 		mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1672 		PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1673 			   rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1674 			   rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1675 	} else {
1676 		mb->vlan_tci_outer = 0;
1677 	}
1678 #endif
1679 	PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
1680 		   mb->vlan_tci, mb->vlan_tci_outer);
1681 }
1682 
1683 #define ICE_LOOK_AHEAD 8
1684 #if (ICE_LOOK_AHEAD != 8)
1685 #error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
1686 #endif
1687 
1688 #define ICE_PTP_TS_VALID 0x1
1689 
1690 static inline int
1691 ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
1692 {
1693 	volatile union ice_rx_flex_desc *rxdp;
1694 	struct ice_rx_entry *rxep;
1695 	struct rte_mbuf *mb;
1696 	uint16_t stat_err0;
1697 	uint16_t pkt_len, hdr_len;
1698 	int32_t s[ICE_LOOK_AHEAD], nb_dd;
1699 	int32_t i, j, nb_rx = 0;
1700 	uint64_t pkt_flags = 0;
1701 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1702 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1703 	bool is_tsinit = false;
1704 	uint64_t ts_ns;
1705 	struct ice_vsi *vsi = rxq->vsi;
1706 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
1707 	struct ice_adapter *ad = rxq->vsi->adapter;
1708 #endif
1709 	rxdp = &rxq->rx_ring[rxq->rx_tail];
1710 	rxep = &rxq->sw_ring[rxq->rx_tail];
1711 
1712 	stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1713 
1714 	/* Make sure there is at least 1 packet to receive */
1715 	if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1716 		return 0;
1717 
1718 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1719 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
1720 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
1721 
1722 		if (unlikely(sw_cur_time - rxq->hw_time_update > 4))
1723 			is_tsinit = 1;
1724 	}
1725 #endif
1726 
1727 	/**
1728 	 * Scan LOOK_AHEAD descriptors at a time to determine which
1729 	 * descriptors reference packets that are ready to be received.
1730 	 */
1731 	for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
1732 	     rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
1733 		/* Read desc statuses backwards to avoid race condition */
1734 		for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
1735 			s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1736 
1737 		rte_smp_rmb();
1738 
1739 		/* Compute how many status bits were set */
1740 		for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
1741 			nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
1742 
1743 		nb_rx += nb_dd;
1744 
1745 		/* Translate descriptor info to mbuf parameters */
1746 		for (j = 0; j < nb_dd; j++) {
1747 			mb = rxep[j].mbuf;
1748 			pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1749 				   ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1750 			mb->data_len = pkt_len;
1751 			mb->pkt_len = pkt_len;
1752 
1753 			if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
1754 				pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1755 					ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1756 				mb->data_len = pkt_len;
1757 				mb->pkt_len = pkt_len;
1758 			} else {
1759 				mb->nb_segs = (uint16_t)(mb->nb_segs + mb->next->nb_segs);
1760 				mb->next->next = NULL;
1761 				hdr_len = rte_le_to_cpu_16(rxdp[j].wb.hdr_len_sph_flex_flags1) &
1762 						ICE_RX_FLEX_DESC_HEADER_LEN_M;
1763 				pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1764 					ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1765 				mb->data_len = hdr_len;
1766 				mb->pkt_len = hdr_len + pkt_len;
1767 				mb->next->data_len = pkt_len;
1768 #ifdef RTE_ETHDEV_DEBUG_RX
1769 				rte_pktmbuf_dump(stdout, mb, rte_pktmbuf_pkt_len(mb));
1770 #endif
1771 			}
1772 
1773 			mb->ol_flags = 0;
1774 			stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1775 			pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
1776 			mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1777 				rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1778 			ice_rxd_to_vlan_tci(mb, &rxdp[j]);
1779 			rxd_to_pkt_fields_ops[rxq->rxdid](rxq, mb, &rxdp[j]);
1780 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1781 			if (ice_timestamp_dynflag > 0 &&
1782 			    (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
1783 				rxq->time_high =
1784 				rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
1785 				if (unlikely(is_tsinit)) {
1786 					ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1,
1787 									   rxq->time_high);
1788 					rxq->hw_time_low = (uint32_t)ts_ns;
1789 					rxq->hw_time_high = (uint32_t)(ts_ns >> 32);
1790 					is_tsinit = false;
1791 				} else {
1792 					if (rxq->time_high < rxq->hw_time_low)
1793 						rxq->hw_time_high += 1;
1794 					ts_ns = (uint64_t)rxq->hw_time_high << 32 | rxq->time_high;
1795 					rxq->hw_time_low = rxq->time_high;
1796 				}
1797 				rxq->hw_time_update = rte_get_timer_cycles() /
1798 						     (rte_get_timer_hz() / 1000);
1799 				*RTE_MBUF_DYNFIELD(mb,
1800 						   ice_timestamp_dynfield_offset,
1801 						   rte_mbuf_timestamp_t *) = ts_ns;
1802 				pkt_flags |= ice_timestamp_dynflag;
1803 			}
1804 
1805 			if (ad->ptp_ena && ((mb->packet_type &
1806 			    RTE_PTYPE_L2_MASK) == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
1807 				rxq->time_high =
1808 				   rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
1809 				mb->timesync = rxq->queue_id;
1810 				pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
1811 				if (rxdp[j].wb.time_stamp_low &
1812 				    ICE_PTP_TS_VALID)
1813 					pkt_flags |=
1814 						RTE_MBUF_F_RX_IEEE1588_TMST;
1815 			}
1816 #endif
1817 			mb->ol_flags |= pkt_flags;
1818 		}
1819 
1820 		for (j = 0; j < ICE_LOOK_AHEAD; j++)
1821 			rxq->rx_stage[i + j] = rxep[j].mbuf;
1822 
1823 		if (nb_dd != ICE_LOOK_AHEAD)
1824 			break;
1825 	}
1826 
1827 	/* Clear software ring entries */
1828 	for (i = 0; i < nb_rx; i++)
1829 		rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1830 
1831 	PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
1832 		   "port_id=%u, queue_id=%u, nb_rx=%d",
1833 		   rxq->port_id, rxq->queue_id, nb_rx);
1834 
1835 	return nb_rx;
1836 }
1837 
1838 static inline uint16_t
1839 ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
1840 		       struct rte_mbuf **rx_pkts,
1841 		       uint16_t nb_pkts)
1842 {
1843 	uint16_t i;
1844 	struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1845 
1846 	nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1847 
1848 	for (i = 0; i < nb_pkts; i++)
1849 		rx_pkts[i] = stage[i];
1850 
1851 	rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1852 	rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1853 
1854 	return nb_pkts;
1855 }
1856 
1857 static inline int
1858 ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
1859 {
1860 	volatile union ice_rx_flex_desc *rxdp;
1861 	struct ice_rx_entry *rxep;
1862 	struct rte_mbuf *mb;
1863 	uint16_t alloc_idx, i;
1864 	uint64_t dma_addr;
1865 	int diag, diag_pay;
1866 	uint64_t pay_addr;
1867 	struct rte_mbuf *mbufs_pay[rxq->rx_free_thresh];
1868 
1869 	/* Allocate buffers in bulk */
1870 	alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1871 			       (rxq->rx_free_thresh - 1));
1872 	rxep = &rxq->sw_ring[alloc_idx];
1873 	diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1874 				    rxq->rx_free_thresh);
1875 	if (unlikely(diag != 0)) {
1876 		PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1877 		return -ENOMEM;
1878 	}
1879 
1880 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) {
1881 		diag_pay = rte_mempool_get_bulk(rxq->rxseg[1].mp,
1882 				(void *)mbufs_pay, rxq->rx_free_thresh);
1883 		if (unlikely(diag_pay != 0)) {
1884 			rte_mempool_put_bulk(rxq->mp, (void *)rxep,
1885 				    rxq->rx_free_thresh);
1886 			PMD_RX_LOG(ERR, "Failed to get payload mbufs in bulk");
1887 			return -ENOMEM;
1888 		}
1889 	}
1890 
1891 	rxdp = &rxq->rx_ring[alloc_idx];
1892 	for (i = 0; i < rxq->rx_free_thresh; i++) {
1893 		if (likely(i < (rxq->rx_free_thresh - 1)))
1894 			/* Prefetch next mbuf */
1895 			rte_prefetch0(rxep[i + 1].mbuf);
1896 
1897 		mb = rxep[i].mbuf;
1898 		rte_mbuf_refcnt_set(mb, 1);
1899 		mb->data_off = RTE_PKTMBUF_HEADROOM;
1900 		mb->nb_segs = 1;
1901 		mb->port = rxq->port_id;
1902 		dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1903 
1904 		if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
1905 			mb->next = NULL;
1906 			rxdp[i].read.hdr_addr = 0;
1907 			rxdp[i].read.pkt_addr = dma_addr;
1908 		} else {
1909 			mb->next = mbufs_pay[i];
1910 			pay_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbufs_pay[i]));
1911 			rxdp[i].read.hdr_addr = dma_addr;
1912 			rxdp[i].read.pkt_addr = pay_addr;
1913 		}
1914 	}
1915 
1916 	/* Update Rx tail register */
1917 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1918 
1919 	rxq->rx_free_trigger =
1920 		(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1921 	if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1922 		rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1923 
1924 	return 0;
1925 }
1926 
1927 static inline uint16_t
1928 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1929 {
1930 	struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
1931 	uint16_t nb_rx = 0;
1932 
1933 	if (!nb_pkts)
1934 		return 0;
1935 
1936 	if (rxq->rx_nb_avail)
1937 		return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1938 
1939 	nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
1940 	rxq->rx_next_avail = 0;
1941 	rxq->rx_nb_avail = nb_rx;
1942 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1943 
1944 	if (rxq->rx_tail > rxq->rx_free_trigger) {
1945 		if (ice_rx_alloc_bufs(rxq) != 0) {
1946 			uint16_t i, j;
1947 
1948 			rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed +=
1949 				rxq->rx_free_thresh;
1950 			PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1951 				   "port_id=%u, queue_id=%u",
1952 				   rxq->port_id, rxq->queue_id);
1953 			rxq->rx_nb_avail = 0;
1954 			rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1955 			for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1956 				rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1957 
1958 			return 0;
1959 		}
1960 	}
1961 
1962 	if (rxq->rx_tail >= rxq->nb_rx_desc)
1963 		rxq->rx_tail = 0;
1964 
1965 	if (rxq->rx_nb_avail)
1966 		return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1967 
1968 	return 0;
1969 }
1970 
1971 static uint16_t
1972 ice_recv_pkts_bulk_alloc(void *rx_queue,
1973 			 struct rte_mbuf **rx_pkts,
1974 			 uint16_t nb_pkts)
1975 {
1976 	uint16_t nb_rx = 0;
1977 	uint16_t n;
1978 	uint16_t count;
1979 
1980 	if (unlikely(nb_pkts == 0))
1981 		return nb_rx;
1982 
1983 	if (likely(nb_pkts <= ICE_RX_MAX_BURST))
1984 		return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1985 
1986 	while (nb_pkts) {
1987 		n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
1988 		count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1989 		nb_rx = (uint16_t)(nb_rx + count);
1990 		nb_pkts = (uint16_t)(nb_pkts - count);
1991 		if (count < n)
1992 			break;
1993 	}
1994 
1995 	return nb_rx;
1996 }
1997 
1998 static uint16_t
1999 ice_recv_scattered_pkts(void *rx_queue,
2000 			struct rte_mbuf **rx_pkts,
2001 			uint16_t nb_pkts)
2002 {
2003 	struct ice_rx_queue *rxq = rx_queue;
2004 	volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2005 	volatile union ice_rx_flex_desc *rxdp;
2006 	union ice_rx_flex_desc rxd;
2007 	struct ice_rx_entry *sw_ring = rxq->sw_ring;
2008 	struct ice_rx_entry *rxe;
2009 	struct rte_mbuf *first_seg = rxq->pkt_first_seg;
2010 	struct rte_mbuf *last_seg = rxq->pkt_last_seg;
2011 	struct rte_mbuf *nmb; /* new allocated mbuf */
2012 	struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2013 	uint16_t rx_id = rxq->rx_tail;
2014 	uint16_t nb_rx = 0;
2015 	uint16_t nb_hold = 0;
2016 	uint16_t rx_packet_len;
2017 	uint16_t rx_stat_err0;
2018 	uint64_t dma_addr;
2019 	uint64_t pkt_flags;
2020 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2021 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2022 	bool is_tsinit = false;
2023 	uint64_t ts_ns;
2024 	struct ice_vsi *vsi = rxq->vsi;
2025 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
2026 	struct ice_adapter *ad = rxq->vsi->adapter;
2027 
2028 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
2029 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
2030 
2031 		if (unlikely(sw_cur_time - rxq->hw_time_update > 4))
2032 			is_tsinit = true;
2033 	}
2034 #endif
2035 
2036 	while (nb_rx < nb_pkts) {
2037 		rxdp = &rx_ring[rx_id];
2038 		rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2039 
2040 		/* Check the DD bit first */
2041 		if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2042 			break;
2043 
2044 		/* allocate mbuf */
2045 		nmb = rte_mbuf_raw_alloc(rxq->mp);
2046 		if (unlikely(!nmb)) {
2047 			rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2048 			break;
2049 		}
2050 		rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2051 
2052 		nb_hold++;
2053 		rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2054 		rx_id++;
2055 		if (unlikely(rx_id == rxq->nb_rx_desc))
2056 			rx_id = 0;
2057 
2058 		/* Prefetch next mbuf */
2059 		rte_prefetch0(sw_ring[rx_id].mbuf);
2060 
2061 		/**
2062 		 * When next RX descriptor is on a cache line boundary,
2063 		 * prefetch the next 4 RX descriptors and next 8 pointers
2064 		 * to mbufs.
2065 		 */
2066 		if ((rx_id & 0x3) == 0) {
2067 			rte_prefetch0(&rx_ring[rx_id]);
2068 			rte_prefetch0(&sw_ring[rx_id]);
2069 		}
2070 
2071 		rxm = rxe->mbuf;
2072 		rxe->mbuf = nmb;
2073 		dma_addr =
2074 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2075 
2076 		/* Set data buffer address and data length of the mbuf */
2077 		rxdp->read.hdr_addr = 0;
2078 		rxdp->read.pkt_addr = dma_addr;
2079 		rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
2080 				ICE_RX_FLX_DESC_PKT_LEN_M;
2081 		rxm->data_len = rx_packet_len;
2082 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
2083 
2084 		/**
2085 		 * If this is the first buffer of the received packet, set the
2086 		 * pointer to the first mbuf of the packet and initialize its
2087 		 * context. Otherwise, update the total length and the number
2088 		 * of segments of the current scattered packet, and update the
2089 		 * pointer to the last mbuf of the current packet.
2090 		 */
2091 		if (!first_seg) {
2092 			first_seg = rxm;
2093 			first_seg->nb_segs = 1;
2094 			first_seg->pkt_len = rx_packet_len;
2095 		} else {
2096 			first_seg->pkt_len =
2097 				(uint16_t)(first_seg->pkt_len +
2098 					   rx_packet_len);
2099 			first_seg->nb_segs++;
2100 			last_seg->next = rxm;
2101 		}
2102 
2103 		/**
2104 		 * If this is not the last buffer of the received packet,
2105 		 * update the pointer to the last mbuf of the current scattered
2106 		 * packet and continue to parse the RX ring.
2107 		 */
2108 		if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
2109 			last_seg = rxm;
2110 			continue;
2111 		}
2112 
2113 		/**
2114 		 * This is the last buffer of the received packet. If the CRC
2115 		 * is not stripped by the hardware:
2116 		 *  - Subtract the CRC length from the total packet length.
2117 		 *  - If the last buffer only contains the whole CRC or a part
2118 		 *  of it, free the mbuf associated to the last buffer. If part
2119 		 *  of the CRC is also contained in the previous mbuf, subtract
2120 		 *  the length of that CRC part from the data length of the
2121 		 *  previous mbuf.
2122 		 */
2123 		rxm->next = NULL;
2124 		if (unlikely(rxq->crc_len > 0)) {
2125 			first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
2126 			if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
2127 				rte_pktmbuf_free_seg(rxm);
2128 				first_seg->nb_segs--;
2129 				last_seg->data_len =
2130 					(uint16_t)(last_seg->data_len -
2131 					(RTE_ETHER_CRC_LEN - rx_packet_len));
2132 				last_seg->next = NULL;
2133 			} else
2134 				rxm->data_len = (uint16_t)(rx_packet_len -
2135 							   RTE_ETHER_CRC_LEN);
2136 		} else if (rx_packet_len == 0) {
2137 			rte_pktmbuf_free_seg(rxm);
2138 			first_seg->nb_segs--;
2139 			last_seg->next = NULL;
2140 		}
2141 
2142 		first_seg->port = rxq->port_id;
2143 		first_seg->ol_flags = 0;
2144 		first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2145 			rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2146 		ice_rxd_to_vlan_tci(first_seg, &rxd);
2147 		rxd_to_pkt_fields_ops[rxq->rxdid](rxq, first_seg, &rxd);
2148 		pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2149 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2150 		if (ice_timestamp_dynflag > 0 &&
2151 		    (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
2152 			rxq->time_high =
2153 			   rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2154 			if (unlikely(is_tsinit)) {
2155 				ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1, rxq->time_high);
2156 				rxq->hw_time_low = (uint32_t)ts_ns;
2157 				rxq->hw_time_high = (uint32_t)(ts_ns >> 32);
2158 				is_tsinit = false;
2159 			} else {
2160 				if (rxq->time_high < rxq->hw_time_low)
2161 					rxq->hw_time_high += 1;
2162 				ts_ns = (uint64_t)rxq->hw_time_high << 32 | rxq->time_high;
2163 				rxq->hw_time_low = rxq->time_high;
2164 			}
2165 			rxq->hw_time_update = rte_get_timer_cycles() /
2166 					     (rte_get_timer_hz() / 1000);
2167 			*RTE_MBUF_DYNFIELD(first_seg,
2168 					   (ice_timestamp_dynfield_offset),
2169 					   rte_mbuf_timestamp_t *) = ts_ns;
2170 			pkt_flags |= ice_timestamp_dynflag;
2171 		}
2172 
2173 		if (ad->ptp_ena && ((first_seg->packet_type & RTE_PTYPE_L2_MASK)
2174 		    == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
2175 			rxq->time_high =
2176 			   rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2177 			first_seg->timesync = rxq->queue_id;
2178 			pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
2179 		}
2180 #endif
2181 		first_seg->ol_flags |= pkt_flags;
2182 		/* Prefetch data of first segment, if configured to do so. */
2183 		rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
2184 					  first_seg->data_off));
2185 		rx_pkts[nb_rx++] = first_seg;
2186 		first_seg = NULL;
2187 	}
2188 
2189 	/* Record index of the next RX descriptor to probe. */
2190 	rxq->rx_tail = rx_id;
2191 	rxq->pkt_first_seg = first_seg;
2192 	rxq->pkt_last_seg = last_seg;
2193 
2194 	/**
2195 	 * If the number of free RX descriptors is greater than the RX free
2196 	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2197 	 * register. Update the RDT with the value of the last processed RX
2198 	 * descriptor minus 1, to guarantee that the RDT register is never
2199 	 * equal to the RDH register, which creates a "full" ring situation
2200 	 * from the hardware point of view.
2201 	 */
2202 	nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2203 	if (nb_hold > rxq->rx_free_thresh) {
2204 		rx_id = (uint16_t)(rx_id == 0 ?
2205 				   (rxq->nb_rx_desc - 1) : (rx_id - 1));
2206 		/* write TAIL register */
2207 		ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2208 		nb_hold = 0;
2209 	}
2210 	rxq->nb_rx_hold = nb_hold;
2211 
2212 	/* return received packet in the burst */
2213 	return nb_rx;
2214 }
2215 
2216 const uint32_t *
2217 ice_dev_supported_ptypes_get(struct rte_eth_dev *dev, size_t *no_of_elements)
2218 {
2219 	struct ice_adapter *ad =
2220 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2221 	const uint32_t *ptypes;
2222 
2223 	static const uint32_t ptypes_os[] = {
2224 		/* refers to ice_get_default_pkt_type() */
2225 		RTE_PTYPE_L2_ETHER,
2226 		RTE_PTYPE_L2_ETHER_TIMESYNC,
2227 		RTE_PTYPE_L2_ETHER_LLDP,
2228 		RTE_PTYPE_L2_ETHER_ARP,
2229 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2230 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2231 		RTE_PTYPE_L4_FRAG,
2232 		RTE_PTYPE_L4_ICMP,
2233 		RTE_PTYPE_L4_NONFRAG,
2234 		RTE_PTYPE_L4_SCTP,
2235 		RTE_PTYPE_L4_TCP,
2236 		RTE_PTYPE_L4_UDP,
2237 		RTE_PTYPE_TUNNEL_GRENAT,
2238 		RTE_PTYPE_TUNNEL_IP,
2239 		RTE_PTYPE_INNER_L2_ETHER,
2240 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2241 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2242 		RTE_PTYPE_INNER_L4_FRAG,
2243 		RTE_PTYPE_INNER_L4_ICMP,
2244 		RTE_PTYPE_INNER_L4_NONFRAG,
2245 		RTE_PTYPE_INNER_L4_SCTP,
2246 		RTE_PTYPE_INNER_L4_TCP,
2247 		RTE_PTYPE_INNER_L4_UDP,
2248 	};
2249 
2250 	static const uint32_t ptypes_comms[] = {
2251 		/* refers to ice_get_default_pkt_type() */
2252 		RTE_PTYPE_L2_ETHER,
2253 		RTE_PTYPE_L2_ETHER_TIMESYNC,
2254 		RTE_PTYPE_L2_ETHER_LLDP,
2255 		RTE_PTYPE_L2_ETHER_ARP,
2256 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2257 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2258 		RTE_PTYPE_L4_FRAG,
2259 		RTE_PTYPE_L4_ICMP,
2260 		RTE_PTYPE_L4_NONFRAG,
2261 		RTE_PTYPE_L4_SCTP,
2262 		RTE_PTYPE_L4_TCP,
2263 		RTE_PTYPE_L4_UDP,
2264 		RTE_PTYPE_TUNNEL_GRENAT,
2265 		RTE_PTYPE_TUNNEL_IP,
2266 		RTE_PTYPE_INNER_L2_ETHER,
2267 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2268 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2269 		RTE_PTYPE_INNER_L4_FRAG,
2270 		RTE_PTYPE_INNER_L4_ICMP,
2271 		RTE_PTYPE_INNER_L4_NONFRAG,
2272 		RTE_PTYPE_INNER_L4_SCTP,
2273 		RTE_PTYPE_INNER_L4_TCP,
2274 		RTE_PTYPE_INNER_L4_UDP,
2275 		RTE_PTYPE_TUNNEL_GTPC,
2276 		RTE_PTYPE_TUNNEL_GTPU,
2277 		RTE_PTYPE_L2_ETHER_PPPOE,
2278 	};
2279 
2280 	if (ad->active_pkg_type == ICE_PKG_TYPE_COMMS) {
2281 		*no_of_elements = RTE_DIM(ptypes_comms);
2282 		ptypes = ptypes_comms;
2283 	} else {
2284 		*no_of_elements = RTE_DIM(ptypes_os);
2285 		ptypes = ptypes_os;
2286 	}
2287 
2288 	if (dev->rx_pkt_burst == ice_recv_pkts ||
2289 	    dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
2290 	    dev->rx_pkt_burst == ice_recv_scattered_pkts)
2291 		return ptypes;
2292 
2293 #ifdef RTE_ARCH_X86
2294 	if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
2295 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
2296 #ifdef CC_AVX512_SUPPORT
2297 	    dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
2298 	    dev->rx_pkt_burst == ice_recv_pkts_vec_avx512_offload ||
2299 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
2300 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512_offload ||
2301 #endif
2302 	    dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
2303 	    dev->rx_pkt_burst == ice_recv_pkts_vec_avx2_offload ||
2304 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2 ||
2305 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2_offload)
2306 		return ptypes;
2307 #endif
2308 
2309 	return NULL;
2310 }
2311 
2312 int
2313 ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
2314 {
2315 	volatile union ice_rx_flex_desc *rxdp;
2316 	struct ice_rx_queue *rxq = rx_queue;
2317 	uint32_t desc;
2318 
2319 	if (unlikely(offset >= rxq->nb_rx_desc))
2320 		return -EINVAL;
2321 
2322 	if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2323 		return RTE_ETH_RX_DESC_UNAVAIL;
2324 
2325 	desc = rxq->rx_tail + offset;
2326 	if (desc >= rxq->nb_rx_desc)
2327 		desc -= rxq->nb_rx_desc;
2328 
2329 	rxdp = &rxq->rx_ring[desc];
2330 	if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
2331 	    (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
2332 		return RTE_ETH_RX_DESC_DONE;
2333 
2334 	return RTE_ETH_RX_DESC_AVAIL;
2335 }
2336 
2337 int
2338 ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
2339 {
2340 	struct ci_tx_queue *txq = tx_queue;
2341 	volatile uint64_t *status;
2342 	uint64_t mask, expect;
2343 	uint32_t desc;
2344 
2345 	if (unlikely(offset >= txq->nb_tx_desc))
2346 		return -EINVAL;
2347 
2348 	desc = txq->tx_tail + offset;
2349 	/* go to next desc that has the RS bit */
2350 	desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2351 		txq->tx_rs_thresh;
2352 	if (desc >= txq->nb_tx_desc) {
2353 		desc -= txq->nb_tx_desc;
2354 		if (desc >= txq->nb_tx_desc)
2355 			desc -= txq->nb_tx_desc;
2356 	}
2357 
2358 	status = &txq->ice_tx_ring[desc].cmd_type_offset_bsz;
2359 	mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
2360 	expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
2361 				  ICE_TXD_QW1_DTYPE_S);
2362 	if ((*status & mask) == expect)
2363 		return RTE_ETH_TX_DESC_DONE;
2364 
2365 	return RTE_ETH_TX_DESC_FULL;
2366 }
2367 
2368 void
2369 ice_free_queues(struct rte_eth_dev *dev)
2370 {
2371 	uint16_t i;
2372 
2373 	PMD_INIT_FUNC_TRACE();
2374 
2375 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
2376 		if (!dev->data->rx_queues[i])
2377 			continue;
2378 		ice_rx_queue_release(dev->data->rx_queues[i]);
2379 		dev->data->rx_queues[i] = NULL;
2380 	}
2381 	dev->data->nb_rx_queues = 0;
2382 
2383 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
2384 		if (!dev->data->tx_queues[i])
2385 			continue;
2386 		ice_tx_queue_release(dev->data->tx_queues[i]);
2387 		dev->data->tx_queues[i] = NULL;
2388 	}
2389 	dev->data->nb_tx_queues = 0;
2390 }
2391 
2392 #define ICE_FDIR_NUM_TX_DESC  ICE_MIN_RING_DESC
2393 #define ICE_FDIR_NUM_RX_DESC  ICE_MIN_RING_DESC
2394 
2395 int
2396 ice_fdir_setup_tx_resources(struct ice_pf *pf)
2397 {
2398 	struct ci_tx_queue *txq;
2399 	const struct rte_memzone *tz = NULL;
2400 	uint32_t ring_size;
2401 	struct rte_eth_dev *dev;
2402 
2403 	if (!pf) {
2404 		PMD_DRV_LOG(ERR, "PF is not available");
2405 		return -EINVAL;
2406 	}
2407 
2408 	dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2409 
2410 	/* Allocate the TX queue data structure. */
2411 	txq = rte_zmalloc_socket("ice fdir tx queue",
2412 				 sizeof(struct ci_tx_queue),
2413 				 RTE_CACHE_LINE_SIZE,
2414 				 SOCKET_ID_ANY);
2415 	if (!txq) {
2416 		PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2417 			    "tx queue structure.");
2418 		return -ENOMEM;
2419 	}
2420 
2421 	/* Allocate TX hardware ring descriptors. */
2422 	ring_size = sizeof(struct ice_tx_desc) * ICE_FDIR_NUM_TX_DESC;
2423 	ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2424 
2425 	tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2426 				      ICE_FDIR_QUEUE_ID, ring_size,
2427 				      ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2428 	if (!tz) {
2429 		ice_tx_queue_release(txq);
2430 		PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2431 		return -ENOMEM;
2432 	}
2433 
2434 	txq->mz = tz;
2435 	txq->nb_tx_desc = ICE_FDIR_NUM_TX_DESC;
2436 	txq->queue_id = ICE_FDIR_QUEUE_ID;
2437 	txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2438 	txq->ice_vsi = pf->fdir.fdir_vsi;
2439 
2440 	txq->tx_ring_dma = tz->iova;
2441 	txq->ice_tx_ring = (struct ice_tx_desc *)tz->addr;
2442 	/*
2443 	 * don't need to allocate software ring and reset for the fdir
2444 	 * program queue just set the queue has been configured.
2445 	 */
2446 	txq->q_set = true;
2447 	pf->fdir.txq = txq;
2448 
2449 
2450 	return ICE_SUCCESS;
2451 }
2452 
2453 int
2454 ice_fdir_setup_rx_resources(struct ice_pf *pf)
2455 {
2456 	struct ice_rx_queue *rxq;
2457 	const struct rte_memzone *rz = NULL;
2458 	uint32_t ring_size;
2459 	struct rte_eth_dev *dev;
2460 
2461 	if (!pf) {
2462 		PMD_DRV_LOG(ERR, "PF is not available");
2463 		return -EINVAL;
2464 	}
2465 
2466 	dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2467 
2468 	/* Allocate the RX queue data structure. */
2469 	rxq = rte_zmalloc_socket("ice fdir rx queue",
2470 				 sizeof(struct ice_rx_queue),
2471 				 RTE_CACHE_LINE_SIZE,
2472 				 SOCKET_ID_ANY);
2473 	if (!rxq) {
2474 		PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2475 			    "rx queue structure.");
2476 		return -ENOMEM;
2477 	}
2478 
2479 	/* Allocate RX hardware ring descriptors. */
2480 	ring_size = sizeof(union ice_32byte_rx_desc) * ICE_FDIR_NUM_RX_DESC;
2481 	ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2482 
2483 	rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2484 				      ICE_FDIR_QUEUE_ID, ring_size,
2485 				      ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2486 	if (!rz) {
2487 		ice_rx_queue_release(rxq);
2488 		PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2489 		return -ENOMEM;
2490 	}
2491 
2492 	rxq->mz = rz;
2493 	rxq->nb_rx_desc = ICE_FDIR_NUM_RX_DESC;
2494 	rxq->queue_id = ICE_FDIR_QUEUE_ID;
2495 	rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2496 	rxq->vsi = pf->fdir.fdir_vsi;
2497 
2498 	rxq->rx_ring_dma = rz->iova;
2499 	memset(rz->addr, 0, ICE_FDIR_NUM_RX_DESC *
2500 	       sizeof(union ice_32byte_rx_desc));
2501 	rxq->rx_ring = (union ice_rx_flex_desc *)rz->addr;
2502 
2503 	/*
2504 	 * Don't need to allocate software ring and reset for the fdir
2505 	 * rx queue, just set the queue has been configured.
2506 	 */
2507 	rxq->q_set = true;
2508 	pf->fdir.rxq = rxq;
2509 
2510 	rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
2511 
2512 	return ICE_SUCCESS;
2513 }
2514 
2515 uint16_t
2516 ice_recv_pkts(void *rx_queue,
2517 	      struct rte_mbuf **rx_pkts,
2518 	      uint16_t nb_pkts)
2519 {
2520 	struct ice_rx_queue *rxq = rx_queue;
2521 	volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2522 	volatile union ice_rx_flex_desc *rxdp;
2523 	union ice_rx_flex_desc rxd;
2524 	struct ice_rx_entry *sw_ring = rxq->sw_ring;
2525 	struct ice_rx_entry *rxe;
2526 	struct rte_mbuf *nmb; /* new allocated mbuf */
2527 	struct rte_mbuf *nmb_pay; /* new allocated payload mbuf */
2528 	struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2529 	uint16_t rx_id = rxq->rx_tail;
2530 	uint16_t nb_rx = 0;
2531 	uint16_t nb_hold = 0;
2532 	uint16_t rx_packet_len;
2533 	uint16_t rx_header_len;
2534 	uint16_t rx_stat_err0;
2535 	uint64_t dma_addr;
2536 	uint64_t pkt_flags;
2537 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2538 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2539 	bool is_tsinit = false;
2540 	uint64_t ts_ns;
2541 	struct ice_vsi *vsi = rxq->vsi;
2542 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
2543 	struct ice_adapter *ad = rxq->vsi->adapter;
2544 
2545 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
2546 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
2547 
2548 		if (unlikely(sw_cur_time - rxq->hw_time_update > 4))
2549 			is_tsinit = 1;
2550 	}
2551 #endif
2552 
2553 	while (nb_rx < nb_pkts) {
2554 		rxdp = &rx_ring[rx_id];
2555 		rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2556 
2557 		/* Check the DD bit first */
2558 		if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2559 			break;
2560 
2561 		/* allocate header mbuf */
2562 		nmb = rte_mbuf_raw_alloc(rxq->mp);
2563 		if (unlikely(!nmb)) {
2564 			rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2565 			break;
2566 		}
2567 
2568 		rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2569 
2570 		nb_hold++;
2571 		rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2572 		rx_id++;
2573 		if (unlikely(rx_id == rxq->nb_rx_desc))
2574 			rx_id = 0;
2575 		rxm = rxe->mbuf;
2576 		rxe->mbuf = nmb;
2577 		dma_addr =
2578 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2579 
2580 		if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
2581 			/**
2582 			 * fill the read format of descriptor with physic address in
2583 			 * new allocated mbuf: nmb
2584 			 */
2585 			rxdp->read.hdr_addr = 0;
2586 			rxdp->read.pkt_addr = dma_addr;
2587 		} else {
2588 			/* allocate payload mbuf */
2589 			nmb_pay = rte_mbuf_raw_alloc(rxq->rxseg[1].mp);
2590 			if (unlikely(!nmb_pay)) {
2591 				rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2592 				rxe->mbuf = NULL;
2593 				nb_hold--;
2594 				if (unlikely(rx_id == 0))
2595 					rx_id = rxq->nb_rx_desc;
2596 
2597 				rx_id--;
2598 				rte_pktmbuf_free(nmb);
2599 				break;
2600 			}
2601 
2602 			nmb->next = nmb_pay;
2603 			nmb_pay->next = NULL;
2604 
2605 			/**
2606 			 * fill the read format of descriptor with physic address in
2607 			 * new allocated mbuf: nmb
2608 			 */
2609 			rxdp->read.hdr_addr = dma_addr;
2610 			rxdp->read.pkt_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb_pay));
2611 		}
2612 
2613 		/* fill old mbuf with received descriptor: rxd */
2614 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
2615 		rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
2616 		if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
2617 			rxm->nb_segs = 1;
2618 			rxm->next = NULL;
2619 			/* calculate rx_packet_len of the received pkt */
2620 			rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2621 					ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2622 			rxm->data_len = rx_packet_len;
2623 			rxm->pkt_len = rx_packet_len;
2624 		} else {
2625 			rxm->nb_segs = (uint16_t)(rxm->nb_segs + rxm->next->nb_segs);
2626 			rxm->next->next = NULL;
2627 			/* calculate rx_packet_len of the received pkt */
2628 			rx_header_len = rte_le_to_cpu_16(rxd.wb.hdr_len_sph_flex_flags1) &
2629 					ICE_RX_FLEX_DESC_HEADER_LEN_M;
2630 			rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2631 					ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2632 			rxm->data_len = rx_header_len;
2633 			rxm->pkt_len = rx_header_len + rx_packet_len;
2634 			rxm->next->data_len = rx_packet_len;
2635 
2636 #ifdef RTE_ETHDEV_DEBUG_RX
2637 			rte_pktmbuf_dump(stdout, rxm, rte_pktmbuf_pkt_len(rxm));
2638 #endif
2639 		}
2640 
2641 		rxm->port = rxq->port_id;
2642 		rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2643 			rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2644 		ice_rxd_to_vlan_tci(rxm, &rxd);
2645 		rxd_to_pkt_fields_ops[rxq->rxdid](rxq, rxm, &rxd);
2646 		pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2647 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2648 		if (ice_timestamp_dynflag > 0 &&
2649 		    (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
2650 			rxq->time_high =
2651 			   rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2652 			if (unlikely(is_tsinit)) {
2653 				ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1, rxq->time_high);
2654 				rxq->hw_time_low = (uint32_t)ts_ns;
2655 				rxq->hw_time_high = (uint32_t)(ts_ns >> 32);
2656 				is_tsinit = false;
2657 			} else {
2658 				if (rxq->time_high < rxq->hw_time_low)
2659 					rxq->hw_time_high += 1;
2660 				ts_ns = (uint64_t)rxq->hw_time_high << 32 | rxq->time_high;
2661 				rxq->hw_time_low = rxq->time_high;
2662 			}
2663 			rxq->hw_time_update = rte_get_timer_cycles() /
2664 					     (rte_get_timer_hz() / 1000);
2665 			*RTE_MBUF_DYNFIELD(rxm,
2666 					   (ice_timestamp_dynfield_offset),
2667 					   rte_mbuf_timestamp_t *) = ts_ns;
2668 			pkt_flags |= ice_timestamp_dynflag;
2669 		}
2670 
2671 		if (ad->ptp_ena && ((rxm->packet_type & RTE_PTYPE_L2_MASK) ==
2672 		    RTE_PTYPE_L2_ETHER_TIMESYNC)) {
2673 			rxq->time_high =
2674 			   rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2675 			rxm->timesync = rxq->queue_id;
2676 			pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
2677 		}
2678 #endif
2679 		rxm->ol_flags |= pkt_flags;
2680 		/* copy old mbuf to rx_pkts */
2681 		rx_pkts[nb_rx++] = rxm;
2682 	}
2683 
2684 	rxq->rx_tail = rx_id;
2685 	/**
2686 	 * If the number of free RX descriptors is greater than the RX free
2687 	 * threshold of the queue, advance the receive tail register of queue.
2688 	 * Update that register with the value of the last processed RX
2689 	 * descriptor minus 1.
2690 	 */
2691 	nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2692 	if (nb_hold > rxq->rx_free_thresh) {
2693 		rx_id = (uint16_t)(rx_id == 0 ?
2694 				   (rxq->nb_rx_desc - 1) : (rx_id - 1));
2695 		/* write TAIL register */
2696 		ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2697 		nb_hold = 0;
2698 	}
2699 	rxq->nb_rx_hold = nb_hold;
2700 
2701 	/* return received packet in the burst */
2702 	return nb_rx;
2703 }
2704 
2705 static inline void
2706 ice_parse_tunneling_params(uint64_t ol_flags,
2707 			    union ice_tx_offload tx_offload,
2708 			    uint32_t *cd_tunneling)
2709 {
2710 	/* EIPT: External (outer) IP header type */
2711 	if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
2712 		*cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
2713 	else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4)
2714 		*cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
2715 	else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)
2716 		*cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
2717 
2718 	/* EIPLEN: External (outer) IP header length, in DWords */
2719 	*cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
2720 		ICE_TXD_CTX_QW0_EIPLEN_S;
2721 
2722 	/* L4TUNT: L4 Tunneling Type */
2723 	switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
2724 	case RTE_MBUF_F_TX_TUNNEL_IPIP:
2725 		/* for non UDP / GRE tunneling, set to 00b */
2726 		break;
2727 	case RTE_MBUF_F_TX_TUNNEL_VXLAN:
2728 	case RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE:
2729 	case RTE_MBUF_F_TX_TUNNEL_GTP:
2730 	case RTE_MBUF_F_TX_TUNNEL_GENEVE:
2731 		*cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
2732 		break;
2733 	case RTE_MBUF_F_TX_TUNNEL_GRE:
2734 		*cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
2735 		break;
2736 	default:
2737 		PMD_TX_LOG(ERR, "Tunnel type not supported");
2738 		return;
2739 	}
2740 
2741 	/* L4TUNLEN: L4 Tunneling Length, in Words
2742 	 *
2743 	 * We depend on app to set rte_mbuf.l2_len correctly.
2744 	 * For IP in GRE it should be set to the length of the GRE
2745 	 * header;
2746 	 * For MAC in GRE or MAC in UDP it should be set to the length
2747 	 * of the GRE or UDP headers plus the inner MAC up to including
2748 	 * its last Ethertype.
2749 	 * If MPLS labels exists, it should include them as well.
2750 	 */
2751 	*cd_tunneling |= (tx_offload.l2_len >> 1) <<
2752 		ICE_TXD_CTX_QW0_NATLEN_S;
2753 
2754 	/**
2755 	 * Calculate the tunneling UDP checksum.
2756 	 * Shall be set only if L4TUNT = 01b and EIPT is not zero
2757 	 */
2758 	if ((*cd_tunneling & ICE_TXD_CTX_QW0_EIPT_M) &&
2759 			(*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING) &&
2760 			(ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM))
2761 		*cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
2762 }
2763 
2764 static inline void
2765 ice_txd_enable_checksum(uint64_t ol_flags,
2766 			uint32_t *td_cmd,
2767 			uint32_t *td_offset,
2768 			union ice_tx_offload tx_offload)
2769 {
2770 	/* Set MACLEN */
2771 	if (!(ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK))
2772 		*td_offset |= (tx_offload.l2_len >> 1)
2773 			<< ICE_TX_DESC_LEN_MACLEN_S;
2774 
2775 	/* Enable L3 checksum offloads */
2776 	if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
2777 		*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
2778 		*td_offset |= (tx_offload.l3_len >> 2) <<
2779 			ICE_TX_DESC_LEN_IPLEN_S;
2780 	} else if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2781 		*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
2782 		*td_offset |= (tx_offload.l3_len >> 2) <<
2783 			ICE_TX_DESC_LEN_IPLEN_S;
2784 	} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2785 		*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2786 		*td_offset |= (tx_offload.l3_len >> 2) <<
2787 			ICE_TX_DESC_LEN_IPLEN_S;
2788 	}
2789 
2790 	if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2791 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2792 		*td_offset |= (tx_offload.l4_len >> 2) <<
2793 			      ICE_TX_DESC_LEN_L4_LEN_S;
2794 		return;
2795 	}
2796 
2797 	if (ol_flags & RTE_MBUF_F_TX_UDP_SEG) {
2798 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2799 		*td_offset |= (tx_offload.l4_len >> 2) <<
2800 			      ICE_TX_DESC_LEN_L4_LEN_S;
2801 		return;
2802 	}
2803 
2804 	/* Enable L4 checksum offloads */
2805 	switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
2806 	case RTE_MBUF_F_TX_TCP_CKSUM:
2807 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2808 		*td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2809 			      ICE_TX_DESC_LEN_L4_LEN_S;
2810 		break;
2811 	case RTE_MBUF_F_TX_SCTP_CKSUM:
2812 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2813 		*td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2814 			      ICE_TX_DESC_LEN_L4_LEN_S;
2815 		break;
2816 	case RTE_MBUF_F_TX_UDP_CKSUM:
2817 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2818 		*td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2819 			      ICE_TX_DESC_LEN_L4_LEN_S;
2820 		break;
2821 	default:
2822 		break;
2823 	}
2824 }
2825 
2826 static inline int
2827 ice_xmit_cleanup(struct ci_tx_queue *txq)
2828 {
2829 	struct ci_tx_entry *sw_ring = txq->sw_ring;
2830 	volatile struct ice_tx_desc *txd = txq->ice_tx_ring;
2831 	uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2832 	uint16_t nb_tx_desc = txq->nb_tx_desc;
2833 	uint16_t desc_to_clean_to;
2834 	uint16_t nb_tx_to_clean;
2835 
2836 	/* Determine the last descriptor needing to be cleaned */
2837 	desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
2838 	if (desc_to_clean_to >= nb_tx_desc)
2839 		desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2840 
2841 	/* Check to make sure the last descriptor to clean is done */
2842 	desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2843 	if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
2844 	    rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
2845 		PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2846 			   "(port=%d queue=%d) value=0x%"PRIx64,
2847 			   desc_to_clean_to,
2848 			   txq->port_id, txq->queue_id,
2849 			   txd[desc_to_clean_to].cmd_type_offset_bsz);
2850 		/* Failed to clean any descriptors */
2851 		return -1;
2852 	}
2853 
2854 	/* Figure out how many descriptors will be cleaned */
2855 	if (last_desc_cleaned > desc_to_clean_to)
2856 		nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2857 					    desc_to_clean_to);
2858 	else
2859 		nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2860 					    last_desc_cleaned);
2861 
2862 	/* The last descriptor to clean is done, so that means all the
2863 	 * descriptors from the last descriptor that was cleaned
2864 	 * up to the last descriptor with the RS bit set
2865 	 * are done. Only reset the threshold descriptor.
2866 	 */
2867 	txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2868 
2869 	/* Update the txq to reflect the last descriptor that was cleaned */
2870 	txq->last_desc_cleaned = desc_to_clean_to;
2871 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
2872 
2873 	return 0;
2874 }
2875 
2876 /* Construct the tx flags */
2877 static inline uint64_t
2878 ice_build_ctob(uint32_t td_cmd,
2879 	       uint32_t td_offset,
2880 	       uint16_t size,
2881 	       uint32_t td_tag)
2882 {
2883 	return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2884 				((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2885 				((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2886 				((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
2887 				((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2888 }
2889 
2890 /* Check if the context descriptor is needed for TX offloading */
2891 static inline uint16_t
2892 ice_calc_context_desc(uint64_t flags)
2893 {
2894 	static uint64_t mask = RTE_MBUF_F_TX_TCP_SEG |
2895 		RTE_MBUF_F_TX_UDP_SEG |
2896 		RTE_MBUF_F_TX_QINQ |
2897 		RTE_MBUF_F_TX_OUTER_IP_CKSUM |
2898 		RTE_MBUF_F_TX_TUNNEL_MASK |
2899 		RTE_MBUF_F_TX_IEEE1588_TMST;
2900 
2901 	return (flags & mask) ? 1 : 0;
2902 }
2903 
2904 /* set ice TSO context descriptor */
2905 static inline uint64_t
2906 ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
2907 {
2908 	uint64_t ctx_desc = 0;
2909 	uint32_t cd_cmd, hdr_len, cd_tso_len;
2910 
2911 	if (!tx_offload.l4_len) {
2912 		PMD_TX_LOG(DEBUG, "L4 length set to 0");
2913 		return ctx_desc;
2914 	}
2915 
2916 	hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
2917 	hdr_len += (mbuf->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
2918 		   tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
2919 
2920 	cd_cmd = ICE_TX_CTX_DESC_TSO;
2921 	cd_tso_len = mbuf->pkt_len - hdr_len;
2922 	ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
2923 		    ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2924 		    ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
2925 
2926 	return ctx_desc;
2927 }
2928 
2929 /* HW requires that TX buffer size ranges from 1B up to (16K-1)B. */
2930 #define ICE_MAX_DATA_PER_TXD \
2931 	(ICE_TXD_QW1_TX_BUF_SZ_M >> ICE_TXD_QW1_TX_BUF_SZ_S)
2932 /* Calculate the number of TX descriptors needed for each pkt */
2933 static inline uint16_t
2934 ice_calc_pkt_desc(struct rte_mbuf *tx_pkt)
2935 {
2936 	struct rte_mbuf *txd = tx_pkt;
2937 	uint16_t count = 0;
2938 
2939 	while (txd != NULL) {
2940 		count += DIV_ROUND_UP(txd->data_len, ICE_MAX_DATA_PER_TXD);
2941 		txd = txd->next;
2942 	}
2943 
2944 	return count;
2945 }
2946 
2947 uint16_t
2948 ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2949 {
2950 	struct ci_tx_queue *txq;
2951 	volatile struct ice_tx_desc *ice_tx_ring;
2952 	volatile struct ice_tx_desc *txd;
2953 	struct ci_tx_entry *sw_ring;
2954 	struct ci_tx_entry *txe, *txn;
2955 	struct rte_mbuf *tx_pkt;
2956 	struct rte_mbuf *m_seg;
2957 	uint32_t cd_tunneling_params;
2958 	uint16_t tx_id;
2959 	uint16_t nb_tx;
2960 	uint16_t nb_used;
2961 	uint16_t nb_ctx;
2962 	uint32_t td_cmd = 0;
2963 	uint32_t td_offset = 0;
2964 	uint32_t td_tag = 0;
2965 	uint16_t tx_last;
2966 	uint16_t slen;
2967 	uint64_t buf_dma_addr;
2968 	uint64_t ol_flags;
2969 	union ice_tx_offload tx_offload = {0};
2970 
2971 	txq = tx_queue;
2972 	sw_ring = txq->sw_ring;
2973 	ice_tx_ring = txq->ice_tx_ring;
2974 	tx_id = txq->tx_tail;
2975 	txe = &sw_ring[tx_id];
2976 
2977 	/* Check if the descriptor ring needs to be cleaned. */
2978 	if (txq->nb_tx_free < txq->tx_free_thresh)
2979 		(void)ice_xmit_cleanup(txq);
2980 
2981 	for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2982 		tx_pkt = *tx_pkts++;
2983 
2984 		td_cmd = 0;
2985 		td_tag = 0;
2986 		td_offset = 0;
2987 		ol_flags = tx_pkt->ol_flags;
2988 		tx_offload.l2_len = tx_pkt->l2_len;
2989 		tx_offload.l3_len = tx_pkt->l3_len;
2990 		tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
2991 		tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
2992 		tx_offload.l4_len = tx_pkt->l4_len;
2993 		tx_offload.tso_segsz = tx_pkt->tso_segsz;
2994 		/* Calculate the number of context descriptors needed. */
2995 		nb_ctx = ice_calc_context_desc(ol_flags);
2996 
2997 		/* The number of descriptors that must be allocated for
2998 		 * a packet equals to the number of the segments of that
2999 		 * packet plus the number of context descriptor if needed.
3000 		 * Recalculate the needed tx descs when TSO enabled in case
3001 		 * the mbuf data size exceeds max data size that hw allows
3002 		 * per tx desc.
3003 		 */
3004 		if (ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
3005 			nb_used = (uint16_t)(ice_calc_pkt_desc(tx_pkt) +
3006 					     nb_ctx);
3007 		else
3008 			nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
3009 		tx_last = (uint16_t)(tx_id + nb_used - 1);
3010 
3011 		/* Circular ring */
3012 		if (tx_last >= txq->nb_tx_desc)
3013 			tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
3014 
3015 		if (nb_used > txq->nb_tx_free) {
3016 			if (ice_xmit_cleanup(txq) != 0) {
3017 				if (nb_tx == 0)
3018 					return 0;
3019 				goto end_of_tx;
3020 			}
3021 			if (unlikely(nb_used > txq->tx_rs_thresh)) {
3022 				while (nb_used > txq->nb_tx_free) {
3023 					if (ice_xmit_cleanup(txq) != 0) {
3024 						if (nb_tx == 0)
3025 							return 0;
3026 						goto end_of_tx;
3027 					}
3028 				}
3029 			}
3030 		}
3031 
3032 		/* Descriptor based VLAN insertion */
3033 		if (ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) {
3034 			td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
3035 			td_tag = tx_pkt->vlan_tci;
3036 		}
3037 
3038 		/* Fill in tunneling parameters if necessary */
3039 		cd_tunneling_params = 0;
3040 		if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
3041 			td_offset |= (tx_offload.outer_l2_len >> 1)
3042 				<< ICE_TX_DESC_LEN_MACLEN_S;
3043 			ice_parse_tunneling_params(ol_flags, tx_offload,
3044 						   &cd_tunneling_params);
3045 		}
3046 
3047 		/* Enable checksum offloading */
3048 		if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK)
3049 			ice_txd_enable_checksum(ol_flags, &td_cmd,
3050 						&td_offset, tx_offload);
3051 
3052 		if (nb_ctx) {
3053 			/* Setup TX context descriptor if required */
3054 			volatile struct ice_tx_ctx_desc *ctx_txd =
3055 				(volatile struct ice_tx_ctx_desc *)
3056 					&ice_tx_ring[tx_id];
3057 			uint16_t cd_l2tag2 = 0;
3058 			uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
3059 
3060 			txn = &sw_ring[txe->next_id];
3061 			RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
3062 			if (txe->mbuf) {
3063 				rte_pktmbuf_free_seg(txe->mbuf);
3064 				txe->mbuf = NULL;
3065 			}
3066 
3067 			if (ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
3068 				cd_type_cmd_tso_mss |=
3069 					ice_set_tso_ctx(tx_pkt, tx_offload);
3070 			else if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
3071 				cd_type_cmd_tso_mss |=
3072 					((uint64_t)ICE_TX_CTX_DESC_TSYN <<
3073 					ICE_TXD_CTX_QW1_CMD_S) |
3074 					 (((uint64_t)txq->ice_vsi->adapter->ptp_tx_index <<
3075 					 ICE_TXD_CTX_QW1_TSYN_S) & ICE_TXD_CTX_QW1_TSYN_M);
3076 
3077 			ctx_txd->tunneling_params =
3078 				rte_cpu_to_le_32(cd_tunneling_params);
3079 
3080 			/* TX context descriptor based double VLAN insert */
3081 			if (ol_flags & RTE_MBUF_F_TX_QINQ) {
3082 				cd_l2tag2 = tx_pkt->vlan_tci_outer;
3083 				cd_type_cmd_tso_mss |=
3084 					((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
3085 					 ICE_TXD_CTX_QW1_CMD_S);
3086 			}
3087 			ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
3088 			ctx_txd->qw1 =
3089 				rte_cpu_to_le_64(cd_type_cmd_tso_mss);
3090 
3091 			txe->last_id = tx_last;
3092 			tx_id = txe->next_id;
3093 			txe = txn;
3094 		}
3095 		m_seg = tx_pkt;
3096 
3097 		do {
3098 			txd = &ice_tx_ring[tx_id];
3099 			txn = &sw_ring[txe->next_id];
3100 
3101 			if (txe->mbuf)
3102 				rte_pktmbuf_free_seg(txe->mbuf);
3103 			txe->mbuf = m_seg;
3104 
3105 			/* Setup TX Descriptor */
3106 			slen = m_seg->data_len;
3107 			buf_dma_addr = rte_mbuf_data_iova(m_seg);
3108 
3109 			while ((ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) &&
3110 				unlikely(slen > ICE_MAX_DATA_PER_TXD)) {
3111 				txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
3112 				txd->cmd_type_offset_bsz =
3113 				rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
3114 				((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
3115 				((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
3116 				((uint64_t)ICE_MAX_DATA_PER_TXD <<
3117 				 ICE_TXD_QW1_TX_BUF_SZ_S) |
3118 				((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
3119 
3120 				buf_dma_addr += ICE_MAX_DATA_PER_TXD;
3121 				slen -= ICE_MAX_DATA_PER_TXD;
3122 
3123 				txe->last_id = tx_last;
3124 				tx_id = txe->next_id;
3125 				txe = txn;
3126 				txd = &ice_tx_ring[tx_id];
3127 				txn = &sw_ring[txe->next_id];
3128 			}
3129 
3130 			txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
3131 			txd->cmd_type_offset_bsz =
3132 				rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
3133 				((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
3134 				((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
3135 				((uint64_t)slen << ICE_TXD_QW1_TX_BUF_SZ_S) |
3136 				((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
3137 
3138 			txe->last_id = tx_last;
3139 			tx_id = txe->next_id;
3140 			txe = txn;
3141 			m_seg = m_seg->next;
3142 		} while (m_seg);
3143 
3144 		/* fill the last descriptor with End of Packet (EOP) bit */
3145 		td_cmd |= ICE_TX_DESC_CMD_EOP;
3146 		txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
3147 		txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
3148 
3149 		/* set RS bit on the last descriptor of one packet */
3150 		if (txq->nb_tx_used >= txq->tx_rs_thresh) {
3151 			PMD_TX_LOG(DEBUG,
3152 				   "Setting RS bit on TXD id="
3153 				   "%4u (port=%d queue=%d)",
3154 				   tx_last, txq->port_id, txq->queue_id);
3155 
3156 			td_cmd |= ICE_TX_DESC_CMD_RS;
3157 
3158 			/* Update txq RS bit counters */
3159 			txq->nb_tx_used = 0;
3160 		}
3161 		txd->cmd_type_offset_bsz |=
3162 			rte_cpu_to_le_64(((uint64_t)td_cmd) <<
3163 					 ICE_TXD_QW1_CMD_S);
3164 	}
3165 end_of_tx:
3166 	/* update Tail register */
3167 	ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
3168 	txq->tx_tail = tx_id;
3169 
3170 	return nb_tx;
3171 }
3172 
3173 static __rte_always_inline int
3174 ice_tx_free_bufs(struct ci_tx_queue *txq)
3175 {
3176 	struct ci_tx_entry *txep;
3177 	uint16_t i;
3178 
3179 	if ((txq->ice_tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
3180 	     rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
3181 	    rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
3182 		return 0;
3183 
3184 	txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
3185 
3186 	for (i = 0; i < txq->tx_rs_thresh; i++)
3187 		rte_prefetch0((txep + i)->mbuf);
3188 
3189 	if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) {
3190 		for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
3191 			rte_mempool_put(txep->mbuf->pool, txep->mbuf);
3192 			txep->mbuf = NULL;
3193 		}
3194 	} else {
3195 		for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
3196 			rte_pktmbuf_free_seg(txep->mbuf);
3197 			txep->mbuf = NULL;
3198 		}
3199 	}
3200 
3201 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
3202 	txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
3203 	if (txq->tx_next_dd >= txq->nb_tx_desc)
3204 		txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
3205 
3206 	return txq->tx_rs_thresh;
3207 }
3208 
3209 static int
3210 ice_tx_done_cleanup_full(struct ci_tx_queue *txq,
3211 			uint32_t free_cnt)
3212 {
3213 	struct ci_tx_entry *swr_ring = txq->sw_ring;
3214 	uint16_t i, tx_last, tx_id;
3215 	uint16_t nb_tx_free_last;
3216 	uint16_t nb_tx_to_clean;
3217 	uint32_t pkt_cnt;
3218 
3219 	/* Start free mbuf from the next of tx_tail */
3220 	tx_last = txq->tx_tail;
3221 	tx_id  = swr_ring[tx_last].next_id;
3222 
3223 	if (txq->nb_tx_free == 0 && ice_xmit_cleanup(txq))
3224 		return 0;
3225 
3226 	nb_tx_to_clean = txq->nb_tx_free;
3227 	nb_tx_free_last = txq->nb_tx_free;
3228 	if (!free_cnt)
3229 		free_cnt = txq->nb_tx_desc;
3230 
3231 	/* Loop through swr_ring to count the amount of
3232 	 * freeable mubfs and packets.
3233 	 */
3234 	for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
3235 		for (i = 0; i < nb_tx_to_clean &&
3236 			pkt_cnt < free_cnt &&
3237 			tx_id != tx_last; i++) {
3238 			if (swr_ring[tx_id].mbuf != NULL) {
3239 				rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
3240 				swr_ring[tx_id].mbuf = NULL;
3241 
3242 				/*
3243 				 * last segment in the packet,
3244 				 * increment packet count
3245 				 */
3246 				pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
3247 			}
3248 
3249 			tx_id = swr_ring[tx_id].next_id;
3250 		}
3251 
3252 		if (txq->tx_rs_thresh > txq->nb_tx_desc -
3253 			txq->nb_tx_free || tx_id == tx_last)
3254 			break;
3255 
3256 		if (pkt_cnt < free_cnt) {
3257 			if (ice_xmit_cleanup(txq))
3258 				break;
3259 
3260 			nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
3261 			nb_tx_free_last = txq->nb_tx_free;
3262 		}
3263 	}
3264 
3265 	return (int)pkt_cnt;
3266 }
3267 
3268 #ifdef RTE_ARCH_X86
3269 static int
3270 ice_tx_done_cleanup_vec(struct ci_tx_queue *txq __rte_unused,
3271 			uint32_t free_cnt __rte_unused)
3272 {
3273 	return -ENOTSUP;
3274 }
3275 #endif
3276 
3277 static int
3278 ice_tx_done_cleanup_simple(struct ci_tx_queue *txq,
3279 			uint32_t free_cnt)
3280 {
3281 	int i, n, cnt;
3282 
3283 	if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
3284 		free_cnt = txq->nb_tx_desc;
3285 
3286 	cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
3287 
3288 	for (i = 0; i < cnt; i += n) {
3289 		if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
3290 			break;
3291 
3292 		n = ice_tx_free_bufs(txq);
3293 
3294 		if (n == 0)
3295 			break;
3296 	}
3297 
3298 	return i;
3299 }
3300 
3301 int
3302 ice_tx_done_cleanup(void *txq, uint32_t free_cnt)
3303 {
3304 	struct ci_tx_queue *q = (struct ci_tx_queue *)txq;
3305 	struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
3306 	struct ice_adapter *ad =
3307 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3308 
3309 #ifdef RTE_ARCH_X86
3310 	if (ad->tx_vec_allowed)
3311 		return ice_tx_done_cleanup_vec(q, free_cnt);
3312 #endif
3313 	if (ad->tx_simple_allowed)
3314 		return ice_tx_done_cleanup_simple(q, free_cnt);
3315 	else
3316 		return ice_tx_done_cleanup_full(q, free_cnt);
3317 }
3318 
3319 /* Populate 4 descriptors with data from 4 mbufs */
3320 static inline void
3321 tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3322 {
3323 	uint64_t dma_addr;
3324 	uint32_t i;
3325 
3326 	for (i = 0; i < 4; i++, txdp++, pkts++) {
3327 		dma_addr = rte_mbuf_data_iova(*pkts);
3328 		txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3329 		txdp->cmd_type_offset_bsz =
3330 			ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3331 				       (*pkts)->data_len, 0);
3332 	}
3333 }
3334 
3335 /* Populate 1 descriptor with data from 1 mbuf */
3336 static inline void
3337 tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3338 {
3339 	uint64_t dma_addr;
3340 
3341 	dma_addr = rte_mbuf_data_iova(*pkts);
3342 	txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3343 	txdp->cmd_type_offset_bsz =
3344 		ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3345 			       (*pkts)->data_len, 0);
3346 }
3347 
3348 static inline void
3349 ice_tx_fill_hw_ring(struct ci_tx_queue *txq, struct rte_mbuf **pkts,
3350 		    uint16_t nb_pkts)
3351 {
3352 	volatile struct ice_tx_desc *txdp = &txq->ice_tx_ring[txq->tx_tail];
3353 	struct ci_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
3354 	const int N_PER_LOOP = 4;
3355 	const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
3356 	int mainpart, leftover;
3357 	int i, j;
3358 
3359 	/**
3360 	 * Process most of the packets in chunks of N pkts.  Any
3361 	 * leftover packets will get processed one at a time.
3362 	 */
3363 	mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
3364 	leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
3365 	for (i = 0; i < mainpart; i += N_PER_LOOP) {
3366 		/* Copy N mbuf pointers to the S/W ring */
3367 		for (j = 0; j < N_PER_LOOP; ++j)
3368 			(txep + i + j)->mbuf = *(pkts + i + j);
3369 		tx4(txdp + i, pkts + i);
3370 	}
3371 
3372 	if (unlikely(leftover > 0)) {
3373 		for (i = 0; i < leftover; ++i) {
3374 			(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
3375 			tx1(txdp + mainpart + i, pkts + mainpart + i);
3376 		}
3377 	}
3378 }
3379 
3380 static inline uint16_t
3381 tx_xmit_pkts(struct ci_tx_queue *txq,
3382 	     struct rte_mbuf **tx_pkts,
3383 	     uint16_t nb_pkts)
3384 {
3385 	volatile struct ice_tx_desc *txr = txq->ice_tx_ring;
3386 	uint16_t n = 0;
3387 
3388 	/**
3389 	 * Begin scanning the H/W ring for done descriptors when the number
3390 	 * of available descriptors drops below tx_free_thresh. For each done
3391 	 * descriptor, free the associated buffer.
3392 	 */
3393 	if (txq->nb_tx_free < txq->tx_free_thresh)
3394 		ice_tx_free_bufs(txq);
3395 
3396 	/* Use available descriptor only */
3397 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
3398 	if (unlikely(!nb_pkts))
3399 		return 0;
3400 
3401 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
3402 	if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
3403 		n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
3404 		ice_tx_fill_hw_ring(txq, tx_pkts, n);
3405 		txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3406 			rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3407 					 ICE_TXD_QW1_CMD_S);
3408 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3409 		txq->tx_tail = 0;
3410 	}
3411 
3412 	/* Fill hardware descriptor ring with mbuf data */
3413 	ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
3414 	txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
3415 
3416 	/* Determine if RS bit needs to be set */
3417 	if (txq->tx_tail > txq->tx_next_rs) {
3418 		txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3419 			rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3420 					 ICE_TXD_QW1_CMD_S);
3421 		txq->tx_next_rs =
3422 			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
3423 		if (txq->tx_next_rs >= txq->nb_tx_desc)
3424 			txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3425 	}
3426 
3427 	if (txq->tx_tail >= txq->nb_tx_desc)
3428 		txq->tx_tail = 0;
3429 
3430 	/* Update the tx tail register */
3431 	ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
3432 
3433 	return nb_pkts;
3434 }
3435 
3436 static uint16_t
3437 ice_xmit_pkts_simple(void *tx_queue,
3438 		     struct rte_mbuf **tx_pkts,
3439 		     uint16_t nb_pkts)
3440 {
3441 	uint16_t nb_tx = 0;
3442 
3443 	if (likely(nb_pkts <= ICE_TX_MAX_BURST))
3444 		return tx_xmit_pkts((struct ci_tx_queue *)tx_queue,
3445 				    tx_pkts, nb_pkts);
3446 
3447 	while (nb_pkts) {
3448 		uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
3449 						      ICE_TX_MAX_BURST);
3450 
3451 		ret = tx_xmit_pkts((struct ci_tx_queue *)tx_queue,
3452 				   &tx_pkts[nb_tx], num);
3453 		nb_tx = (uint16_t)(nb_tx + ret);
3454 		nb_pkts = (uint16_t)(nb_pkts - ret);
3455 		if (ret < num)
3456 			break;
3457 	}
3458 
3459 	return nb_tx;
3460 }
3461 
3462 void __rte_cold
3463 ice_set_rx_function(struct rte_eth_dev *dev)
3464 {
3465 	PMD_INIT_FUNC_TRACE();
3466 	struct ice_adapter *ad =
3467 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3468 #ifdef RTE_ARCH_X86
3469 	struct ice_rx_queue *rxq;
3470 	int i;
3471 	int rx_check_ret = -1;
3472 
3473 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3474 		ad->rx_use_avx512 = false;
3475 		ad->rx_use_avx2 = false;
3476 		rx_check_ret = ice_rx_vec_dev_check(dev);
3477 		if (ad->ptp_ena)
3478 			rx_check_ret = -1;
3479 		ad->rx_vec_offload_support =
3480 				(rx_check_ret == ICE_VECTOR_OFFLOAD_PATH);
3481 		if (rx_check_ret >= 0 && ad->rx_bulk_alloc_allowed &&
3482 		    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3483 			ad->rx_vec_allowed = true;
3484 			for (i = 0; i < dev->data->nb_rx_queues; i++) {
3485 				rxq = dev->data->rx_queues[i];
3486 				if (rxq && ice_rxq_vec_setup(rxq)) {
3487 					ad->rx_vec_allowed = false;
3488 					break;
3489 				}
3490 			}
3491 
3492 			if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3493 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3494 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3495 #ifdef CC_AVX512_SUPPORT
3496 				ad->rx_use_avx512 = true;
3497 #else
3498 			PMD_DRV_LOG(NOTICE,
3499 				"AVX512 is not supported in build env");
3500 #endif
3501 			if (!ad->rx_use_avx512 &&
3502 			(rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3503 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3504 			rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3505 				ad->rx_use_avx2 = true;
3506 
3507 		} else {
3508 			ad->rx_vec_allowed = false;
3509 		}
3510 	}
3511 
3512 	if (ad->rx_vec_allowed) {
3513 		if (dev->data->scattered_rx) {
3514 			if (ad->rx_use_avx512) {
3515 #ifdef CC_AVX512_SUPPORT
3516 				if (ad->rx_vec_offload_support) {
3517 					PMD_DRV_LOG(NOTICE,
3518 						"Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
3519 						dev->data->port_id);
3520 					dev->rx_pkt_burst =
3521 						ice_recv_scattered_pkts_vec_avx512_offload;
3522 				} else {
3523 					PMD_DRV_LOG(NOTICE,
3524 						"Using AVX512 Vector Scattered Rx (port %d).",
3525 						dev->data->port_id);
3526 					dev->rx_pkt_burst =
3527 						ice_recv_scattered_pkts_vec_avx512;
3528 				}
3529 #endif
3530 			} else if (ad->rx_use_avx2) {
3531 				if (ad->rx_vec_offload_support) {
3532 					PMD_DRV_LOG(NOTICE,
3533 						    "Using AVX2 OFFLOAD Vector Scattered Rx (port %d).",
3534 						    dev->data->port_id);
3535 					dev->rx_pkt_burst =
3536 						ice_recv_scattered_pkts_vec_avx2_offload;
3537 				} else {
3538 					PMD_DRV_LOG(NOTICE,
3539 						    "Using AVX2 Vector Scattered Rx (port %d).",
3540 						    dev->data->port_id);
3541 					dev->rx_pkt_burst =
3542 						ice_recv_scattered_pkts_vec_avx2;
3543 				}
3544 			} else {
3545 				PMD_DRV_LOG(DEBUG,
3546 					"Using Vector Scattered Rx (port %d).",
3547 					dev->data->port_id);
3548 				dev->rx_pkt_burst = ice_recv_scattered_pkts_vec;
3549 			}
3550 		} else {
3551 			if (ad->rx_use_avx512) {
3552 #ifdef CC_AVX512_SUPPORT
3553 				if (ad->rx_vec_offload_support) {
3554 					PMD_DRV_LOG(NOTICE,
3555 						"Using AVX512 OFFLOAD Vector Rx (port %d).",
3556 						dev->data->port_id);
3557 					dev->rx_pkt_burst =
3558 						ice_recv_pkts_vec_avx512_offload;
3559 				} else {
3560 					PMD_DRV_LOG(NOTICE,
3561 						"Using AVX512 Vector Rx (port %d).",
3562 						dev->data->port_id);
3563 					dev->rx_pkt_burst =
3564 						ice_recv_pkts_vec_avx512;
3565 				}
3566 #endif
3567 			} else if (ad->rx_use_avx2) {
3568 				if (ad->rx_vec_offload_support) {
3569 					PMD_DRV_LOG(NOTICE,
3570 						    "Using AVX2 OFFLOAD Vector Rx (port %d).",
3571 						    dev->data->port_id);
3572 					dev->rx_pkt_burst =
3573 						ice_recv_pkts_vec_avx2_offload;
3574 				} else {
3575 					PMD_DRV_LOG(NOTICE,
3576 						    "Using AVX2 Vector Rx (port %d).",
3577 						    dev->data->port_id);
3578 					dev->rx_pkt_burst =
3579 						ice_recv_pkts_vec_avx2;
3580 				}
3581 			} else {
3582 				PMD_DRV_LOG(DEBUG,
3583 					"Using Vector Rx (port %d).",
3584 					dev->data->port_id);
3585 				dev->rx_pkt_burst = ice_recv_pkts_vec;
3586 			}
3587 		}
3588 		return;
3589 	}
3590 
3591 #endif
3592 
3593 	if (dev->data->scattered_rx) {
3594 		/* Set the non-LRO scattered function */
3595 		PMD_INIT_LOG(DEBUG,
3596 			     "Using a Scattered function on port %d.",
3597 			     dev->data->port_id);
3598 		dev->rx_pkt_burst = ice_recv_scattered_pkts;
3599 	} else if (ad->rx_bulk_alloc_allowed) {
3600 		PMD_INIT_LOG(DEBUG,
3601 			     "Rx Burst Bulk Alloc Preconditions are "
3602 			     "satisfied. Rx Burst Bulk Alloc function "
3603 			     "will be used on port %d.",
3604 			     dev->data->port_id);
3605 		dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
3606 	} else {
3607 		PMD_INIT_LOG(DEBUG,
3608 			     "Rx Burst Bulk Alloc Preconditions are not "
3609 			     "satisfied, Normal Rx will be used on port %d.",
3610 			     dev->data->port_id);
3611 		dev->rx_pkt_burst = ice_recv_pkts;
3612 	}
3613 }
3614 
3615 static const struct {
3616 	eth_rx_burst_t pkt_burst;
3617 	const char *info;
3618 } ice_rx_burst_infos[] = {
3619 	{ ice_recv_scattered_pkts,          "Scalar Scattered" },
3620 	{ ice_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3621 	{ ice_recv_pkts,                    "Scalar" },
3622 #ifdef RTE_ARCH_X86
3623 #ifdef CC_AVX512_SUPPORT
3624 	{ ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3625 	{ ice_recv_scattered_pkts_vec_avx512_offload, "Offload Vector AVX512 Scattered" },
3626 	{ ice_recv_pkts_vec_avx512,           "Vector AVX512" },
3627 	{ ice_recv_pkts_vec_avx512_offload,   "Offload Vector AVX512" },
3628 #endif
3629 	{ ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3630 	{ ice_recv_scattered_pkts_vec_avx2_offload, "Offload Vector AVX2 Scattered" },
3631 	{ ice_recv_pkts_vec_avx2,           "Vector AVX2" },
3632 	{ ice_recv_pkts_vec_avx2_offload,   "Offload Vector AVX2" },
3633 	{ ice_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3634 	{ ice_recv_pkts_vec,                "Vector SSE" },
3635 #endif
3636 };
3637 
3638 int
3639 ice_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3640 		      struct rte_eth_burst_mode *mode)
3641 {
3642 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3643 	int ret = -EINVAL;
3644 	unsigned int i;
3645 
3646 	for (i = 0; i < RTE_DIM(ice_rx_burst_infos); ++i) {
3647 		if (pkt_burst == ice_rx_burst_infos[i].pkt_burst) {
3648 			snprintf(mode->info, sizeof(mode->info), "%s",
3649 				 ice_rx_burst_infos[i].info);
3650 			ret = 0;
3651 			break;
3652 		}
3653 	}
3654 
3655 	return ret;
3656 }
3657 
3658 void __rte_cold
3659 ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ci_tx_queue *txq)
3660 {
3661 	struct ice_adapter *ad =
3662 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3663 
3664 	/* Use a simple Tx queue if possible (only fast free is allowed) */
3665 	ad->tx_simple_allowed =
3666 		(txq->offloads ==
3667 		(txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) &&
3668 		txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
3669 
3670 	if (ad->tx_simple_allowed)
3671 		PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3672 			     txq->queue_id);
3673 	else
3674 		PMD_INIT_LOG(DEBUG,
3675 			     "Simple Tx can NOT be enabled on Tx queue %u.",
3676 			     txq->queue_id);
3677 }
3678 
3679 /*********************************************************************
3680  *
3681  *  TX prep functions
3682  *
3683  **********************************************************************/
3684 /* The default values of TSO MSS */
3685 #define ICE_MIN_TSO_MSS            64
3686 #define ICE_MAX_TSO_MSS            9728
3687 #define ICE_MAX_TSO_FRAME_SIZE     262144
3688 
3689 /*Check for empty mbuf*/
3690 static inline uint16_t
3691 ice_check_empty_mbuf(struct rte_mbuf *tx_pkt)
3692 {
3693 	struct rte_mbuf *txd = tx_pkt;
3694 
3695 	while (txd != NULL) {
3696 		if (txd->data_len == 0)
3697 			return -1;
3698 		txd = txd->next;
3699 	}
3700 
3701 	return 0;
3702 }
3703 
3704 /* Tx mbuf check */
3705 static uint16_t
3706 ice_xmit_pkts_check(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
3707 {
3708 	struct ci_tx_queue *txq = tx_queue;
3709 	uint16_t idx;
3710 	struct rte_mbuf *mb;
3711 	bool pkt_error = false;
3712 	uint16_t good_pkts = nb_pkts;
3713 	const char *reason = NULL;
3714 	struct ice_adapter *adapter = txq->ice_vsi->adapter;
3715 	uint64_t ol_flags;
3716 
3717 	for (idx = 0; idx < nb_pkts; idx++) {
3718 		mb = tx_pkts[idx];
3719 		ol_flags = mb->ol_flags;
3720 
3721 		if ((adapter->devargs.mbuf_check & ICE_MBUF_CHECK_F_TX_MBUF) &&
3722 		    (rte_mbuf_check(mb, 1, &reason) != 0)) {
3723 			PMD_TX_LOG(ERR, "INVALID mbuf: %s", reason);
3724 			pkt_error = true;
3725 			break;
3726 		}
3727 
3728 		if ((adapter->devargs.mbuf_check & ICE_MBUF_CHECK_F_TX_SIZE) &&
3729 		    (mb->data_len > mb->pkt_len ||
3730 		     mb->data_len < ICE_TX_MIN_PKT_LEN ||
3731 		     mb->data_len > ICE_FRAME_SIZE_MAX)) {
3732 			PMD_TX_LOG(ERR, "INVALID mbuf: data_len (%u) is out of range, reasonable range (%d - %d)",
3733 				mb->data_len, ICE_TX_MIN_PKT_LEN, ICE_FRAME_SIZE_MAX);
3734 			pkt_error = true;
3735 			break;
3736 		}
3737 
3738 		if (adapter->devargs.mbuf_check & ICE_MBUF_CHECK_F_TX_SEGMENT) {
3739 			if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
3740 				/**
3741 				 * No TSO case: nb->segs, pkt_len to not exceed
3742 				 * the limites.
3743 				 */
3744 				if (mb->nb_segs > ICE_TX_MTU_SEG_MAX) {
3745 					PMD_TX_LOG(ERR, "INVALID mbuf: nb_segs (%d) exceeds HW limit, maximum allowed value is %d",
3746 						mb->nb_segs, ICE_TX_MTU_SEG_MAX);
3747 					pkt_error = true;
3748 					break;
3749 				}
3750 				if (mb->pkt_len > ICE_FRAME_SIZE_MAX) {
3751 					PMD_TX_LOG(ERR, "INVALID mbuf: pkt_len (%d) exceeds HW limit, maximum allowed value is %d",
3752 						mb->nb_segs, ICE_FRAME_SIZE_MAX);
3753 					pkt_error = true;
3754 					break;
3755 				}
3756 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
3757 				/** TSO case: tso_segsz, nb_segs, pkt_len not exceed
3758 				 * the limits.
3759 				 */
3760 				if (mb->tso_segsz < ICE_MIN_TSO_MSS ||
3761 				    mb->tso_segsz > ICE_MAX_TSO_MSS) {
3762 					/**
3763 					 * MSS outside the range are considered malicious
3764 					 */
3765 					PMD_TX_LOG(ERR, "INVALID mbuf: tso_segsz (%u) is out of range, reasonable range (%d - %u)",
3766 						mb->tso_segsz, ICE_MIN_TSO_MSS, ICE_MAX_TSO_MSS);
3767 					pkt_error = true;
3768 					break;
3769 				}
3770 				if (mb->nb_segs > ((struct ci_tx_queue *)tx_queue)->nb_tx_desc) {
3771 					PMD_TX_LOG(ERR, "INVALID mbuf: nb_segs out of ring length");
3772 					pkt_error = true;
3773 					break;
3774 				}
3775 			}
3776 		}
3777 
3778 		if (adapter->devargs.mbuf_check & ICE_MBUF_CHECK_F_TX_OFFLOAD) {
3779 			if (ol_flags & ICE_TX_OFFLOAD_NOTSUP_MASK) {
3780 				PMD_TX_LOG(ERR, "INVALID mbuf: TX offload is not supported");
3781 				pkt_error = true;
3782 				break;
3783 			}
3784 
3785 			if (!rte_validate_tx_offload(mb)) {
3786 				PMD_TX_LOG(ERR, "INVALID mbuf: TX offload setup error");
3787 				pkt_error = true;
3788 				break;
3789 			}
3790 		}
3791 	}
3792 
3793 	if (pkt_error) {
3794 		txq->mbuf_errors++;
3795 		good_pkts = idx;
3796 		if (good_pkts == 0)
3797 			return 0;
3798 	}
3799 
3800 	return adapter->tx_pkt_burst(tx_queue, tx_pkts, good_pkts);
3801 }
3802 
3803 uint16_t
3804 ice_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3805 	      uint16_t nb_pkts)
3806 {
3807 	int i, ret;
3808 	uint64_t ol_flags;
3809 	struct rte_mbuf *m;
3810 
3811 	for (i = 0; i < nb_pkts; i++) {
3812 		m = tx_pkts[i];
3813 		ol_flags = m->ol_flags;
3814 
3815 		if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
3816 		    /**
3817 		     * No TSO case: nb->segs, pkt_len to not exceed
3818 		     * the limites.
3819 		     */
3820 		    (m->nb_segs > ICE_TX_MTU_SEG_MAX ||
3821 		     m->pkt_len > ICE_FRAME_SIZE_MAX)) {
3822 			rte_errno = EINVAL;
3823 			return i;
3824 		} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
3825 		    /** TSO case: tso_segsz, nb_segs, pkt_len not exceed
3826 		     * the limits.
3827 		     */
3828 		    (m->tso_segsz < ICE_MIN_TSO_MSS ||
3829 		     m->tso_segsz > ICE_MAX_TSO_MSS ||
3830 		     m->nb_segs >
3831 			((struct ci_tx_queue *)tx_queue)->nb_tx_desc ||
3832 		     m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
3833 			/**
3834 			 * MSS outside the range are considered malicious
3835 			 */
3836 			rte_errno = EINVAL;
3837 			return i;
3838 		}
3839 
3840 		if (m->pkt_len < ICE_TX_MIN_PKT_LEN) {
3841 			rte_errno = EINVAL;
3842 			return i;
3843 		}
3844 
3845 #ifdef RTE_ETHDEV_DEBUG_TX
3846 		ret = rte_validate_tx_offload(m);
3847 		if (ret != 0) {
3848 			rte_errno = -ret;
3849 			return i;
3850 		}
3851 #endif
3852 		ret = rte_net_intel_cksum_prepare(m);
3853 		if (ret != 0) {
3854 			rte_errno = -ret;
3855 			return i;
3856 		}
3857 
3858 		if (ice_check_empty_mbuf(m) != 0) {
3859 			rte_errno = EINVAL;
3860 			return i;
3861 		}
3862 	}
3863 	return i;
3864 }
3865 
3866 void __rte_cold
3867 ice_set_tx_function(struct rte_eth_dev *dev)
3868 {
3869 	struct ice_adapter *ad =
3870 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3871 	int mbuf_check = ad->devargs.mbuf_check;
3872 #ifdef RTE_ARCH_X86
3873 	struct ci_tx_queue *txq;
3874 	int i;
3875 	int tx_check_ret = -1;
3876 
3877 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3878 		ad->tx_use_avx2 = false;
3879 		ad->tx_use_avx512 = false;
3880 		tx_check_ret = ice_tx_vec_dev_check(dev);
3881 		if (tx_check_ret >= 0 &&
3882 		    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3883 			ad->tx_vec_allowed = true;
3884 
3885 			if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3886 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3887 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3888 #ifdef CC_AVX512_SUPPORT
3889 				ad->tx_use_avx512 = true;
3890 #else
3891 			PMD_DRV_LOG(NOTICE,
3892 				"AVX512 is not supported in build env");
3893 #endif
3894 			if (!ad->tx_use_avx512 &&
3895 				(rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3896 				rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3897 				rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3898 				ad->tx_use_avx2 = true;
3899 
3900 			if (!ad->tx_use_avx2 && !ad->tx_use_avx512 &&
3901 				tx_check_ret == ICE_VECTOR_OFFLOAD_PATH)
3902 				ad->tx_vec_allowed = false;
3903 
3904 			if (ad->tx_vec_allowed) {
3905 				for (i = 0; i < dev->data->nb_tx_queues; i++) {
3906 					txq = dev->data->tx_queues[i];
3907 					if (txq && ice_txq_vec_setup(txq)) {
3908 						ad->tx_vec_allowed = false;
3909 						break;
3910 					}
3911 				}
3912 			}
3913 		} else {
3914 			ad->tx_vec_allowed = false;
3915 		}
3916 	}
3917 
3918 	if (ad->tx_vec_allowed) {
3919 		dev->tx_pkt_prepare = NULL;
3920 		if (ad->tx_use_avx512) {
3921 #ifdef CC_AVX512_SUPPORT
3922 			if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3923 				PMD_DRV_LOG(NOTICE,
3924 					    "Using AVX512 OFFLOAD Vector Tx (port %d).",
3925 					    dev->data->port_id);
3926 				dev->tx_pkt_burst =
3927 					ice_xmit_pkts_vec_avx512_offload;
3928 				dev->tx_pkt_prepare = ice_prep_pkts;
3929 			} else {
3930 				PMD_DRV_LOG(NOTICE,
3931 					    "Using AVX512 Vector Tx (port %d).",
3932 					    dev->data->port_id);
3933 				dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
3934 			}
3935 #endif
3936 		} else {
3937 			if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3938 				PMD_DRV_LOG(NOTICE,
3939 					    "Using AVX2 OFFLOAD Vector Tx (port %d).",
3940 					    dev->data->port_id);
3941 				dev->tx_pkt_burst =
3942 					ice_xmit_pkts_vec_avx2_offload;
3943 				dev->tx_pkt_prepare = ice_prep_pkts;
3944 			} else {
3945 				PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
3946 					    ad->tx_use_avx2 ? "avx2 " : "",
3947 					    dev->data->port_id);
3948 				dev->tx_pkt_burst = ad->tx_use_avx2 ?
3949 						    ice_xmit_pkts_vec_avx2 :
3950 						    ice_xmit_pkts_vec;
3951 			}
3952 		}
3953 
3954 		if (mbuf_check) {
3955 			ad->tx_pkt_burst = dev->tx_pkt_burst;
3956 			dev->tx_pkt_burst = ice_xmit_pkts_check;
3957 		}
3958 		return;
3959 	}
3960 #endif
3961 
3962 	if (ad->tx_simple_allowed) {
3963 		PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3964 		dev->tx_pkt_burst = ice_xmit_pkts_simple;
3965 		dev->tx_pkt_prepare = NULL;
3966 	} else {
3967 		PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
3968 		dev->tx_pkt_burst = ice_xmit_pkts;
3969 		dev->tx_pkt_prepare = ice_prep_pkts;
3970 	}
3971 
3972 	if (mbuf_check) {
3973 		ad->tx_pkt_burst = dev->tx_pkt_burst;
3974 		dev->tx_pkt_burst = ice_xmit_pkts_check;
3975 	}
3976 }
3977 
3978 static const struct {
3979 	eth_tx_burst_t pkt_burst;
3980 	const char *info;
3981 } ice_tx_burst_infos[] = {
3982 	{ ice_xmit_pkts_simple,   "Scalar Simple" },
3983 	{ ice_xmit_pkts,          "Scalar" },
3984 #ifdef RTE_ARCH_X86
3985 #ifdef CC_AVX512_SUPPORT
3986 	{ ice_xmit_pkts_vec_avx512, "Vector AVX512" },
3987 	{ ice_xmit_pkts_vec_avx512_offload, "Offload Vector AVX512" },
3988 #endif
3989 	{ ice_xmit_pkts_vec_avx2,         "Vector AVX2" },
3990 	{ ice_xmit_pkts_vec_avx2_offload, "Offload Vector AVX2" },
3991 	{ ice_xmit_pkts_vec,              "Vector SSE" },
3992 #endif
3993 };
3994 
3995 int
3996 ice_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3997 		      struct rte_eth_burst_mode *mode)
3998 {
3999 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
4000 	int ret = -EINVAL;
4001 	unsigned int i;
4002 
4003 	for (i = 0; i < RTE_DIM(ice_tx_burst_infos); ++i) {
4004 		if (pkt_burst == ice_tx_burst_infos[i].pkt_burst) {
4005 			snprintf(mode->info, sizeof(mode->info), "%s",
4006 				 ice_tx_burst_infos[i].info);
4007 			ret = 0;
4008 			break;
4009 		}
4010 	}
4011 
4012 	return ret;
4013 }
4014 
4015 /* For each value it means, datasheet of hardware can tell more details
4016  *
4017  * @note: fix ice_dev_supported_ptypes_get() if any change here.
4018  */
4019 static inline uint32_t
4020 ice_get_default_pkt_type(uint16_t ptype)
4021 {
4022 	static const alignas(RTE_CACHE_LINE_SIZE) uint32_t type_table[ICE_MAX_PKT_TYPE] = {
4023 		/* L2 types */
4024 		/* [0] reserved */
4025 		[1] = RTE_PTYPE_L2_ETHER,
4026 		[2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
4027 		/* [3] - [5] reserved */
4028 		[6] = RTE_PTYPE_L2_ETHER_LLDP,
4029 		/* [7] - [10] reserved */
4030 		[11] = RTE_PTYPE_L2_ETHER_ARP,
4031 		/* [12] - [21] reserved */
4032 
4033 		/* Non tunneled IPv4 */
4034 		[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4035 		       RTE_PTYPE_L4_FRAG,
4036 		[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4037 		       RTE_PTYPE_L4_NONFRAG,
4038 		[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4039 		       RTE_PTYPE_L4_UDP,
4040 		/* [25] reserved */
4041 		[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4042 		       RTE_PTYPE_L4_TCP,
4043 		[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4044 		       RTE_PTYPE_L4_SCTP,
4045 		[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4046 		       RTE_PTYPE_L4_ICMP,
4047 
4048 		/* IPv4 --> IPv4 */
4049 		[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4050 		       RTE_PTYPE_TUNNEL_IP |
4051 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4052 		       RTE_PTYPE_INNER_L4_FRAG,
4053 		[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4054 		       RTE_PTYPE_TUNNEL_IP |
4055 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4056 		       RTE_PTYPE_INNER_L4_NONFRAG,
4057 		[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4058 		       RTE_PTYPE_TUNNEL_IP |
4059 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4060 		       RTE_PTYPE_INNER_L4_UDP,
4061 		/* [32] reserved */
4062 		[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4063 		       RTE_PTYPE_TUNNEL_IP |
4064 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4065 		       RTE_PTYPE_INNER_L4_TCP,
4066 		[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4067 		       RTE_PTYPE_TUNNEL_IP |
4068 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4069 		       RTE_PTYPE_INNER_L4_SCTP,
4070 		[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4071 		       RTE_PTYPE_TUNNEL_IP |
4072 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4073 		       RTE_PTYPE_INNER_L4_ICMP,
4074 
4075 		/* IPv4 --> IPv6 */
4076 		[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4077 		       RTE_PTYPE_TUNNEL_IP |
4078 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4079 		       RTE_PTYPE_INNER_L4_FRAG,
4080 		[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4081 		       RTE_PTYPE_TUNNEL_IP |
4082 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4083 		       RTE_PTYPE_INNER_L4_NONFRAG,
4084 		[38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4085 		       RTE_PTYPE_TUNNEL_IP |
4086 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4087 		       RTE_PTYPE_INNER_L4_UDP,
4088 		/* [39] reserved */
4089 		[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4090 		       RTE_PTYPE_TUNNEL_IP |
4091 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4092 		       RTE_PTYPE_INNER_L4_TCP,
4093 		[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4094 		       RTE_PTYPE_TUNNEL_IP |
4095 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4096 		       RTE_PTYPE_INNER_L4_SCTP,
4097 		[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4098 		       RTE_PTYPE_TUNNEL_IP |
4099 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4100 		       RTE_PTYPE_INNER_L4_ICMP,
4101 
4102 		/* IPv4 --> GRE/Teredo/VXLAN */
4103 		[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4104 		       RTE_PTYPE_TUNNEL_GRENAT,
4105 
4106 		/* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
4107 		[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4108 		       RTE_PTYPE_TUNNEL_GRENAT |
4109 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4110 		       RTE_PTYPE_INNER_L4_FRAG,
4111 		[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4112 		       RTE_PTYPE_TUNNEL_GRENAT |
4113 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4114 		       RTE_PTYPE_INNER_L4_NONFRAG,
4115 		[46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4116 		       RTE_PTYPE_TUNNEL_GRENAT |
4117 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4118 		       RTE_PTYPE_INNER_L4_UDP,
4119 		/* [47] reserved */
4120 		[48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4121 		       RTE_PTYPE_TUNNEL_GRENAT |
4122 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4123 		       RTE_PTYPE_INNER_L4_TCP,
4124 		[49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4125 		       RTE_PTYPE_TUNNEL_GRENAT |
4126 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4127 		       RTE_PTYPE_INNER_L4_SCTP,
4128 		[50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4129 		       RTE_PTYPE_TUNNEL_GRENAT |
4130 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4131 		       RTE_PTYPE_INNER_L4_ICMP,
4132 
4133 		/* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
4134 		[51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4135 		       RTE_PTYPE_TUNNEL_GRENAT |
4136 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4137 		       RTE_PTYPE_INNER_L4_FRAG,
4138 		[52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4139 		       RTE_PTYPE_TUNNEL_GRENAT |
4140 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4141 		       RTE_PTYPE_INNER_L4_NONFRAG,
4142 		[53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4143 		       RTE_PTYPE_TUNNEL_GRENAT |
4144 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4145 		       RTE_PTYPE_INNER_L4_UDP,
4146 		/* [54] reserved */
4147 		[55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4148 		       RTE_PTYPE_TUNNEL_GRENAT |
4149 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4150 		       RTE_PTYPE_INNER_L4_TCP,
4151 		[56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4152 		       RTE_PTYPE_TUNNEL_GRENAT |
4153 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4154 		       RTE_PTYPE_INNER_L4_SCTP,
4155 		[57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4156 		       RTE_PTYPE_TUNNEL_GRENAT |
4157 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4158 		       RTE_PTYPE_INNER_L4_ICMP,
4159 
4160 		/* IPv4 --> GRE/Teredo/VXLAN --> MAC */
4161 		[58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4162 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
4163 
4164 		/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
4165 		[59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4166 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4167 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4168 		       RTE_PTYPE_INNER_L4_FRAG,
4169 		[60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4170 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4171 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4172 		       RTE_PTYPE_INNER_L4_NONFRAG,
4173 		[61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4174 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4175 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4176 		       RTE_PTYPE_INNER_L4_UDP,
4177 		/* [62] reserved */
4178 		[63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4179 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4180 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4181 		       RTE_PTYPE_INNER_L4_TCP,
4182 		[64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4183 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4184 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4185 		       RTE_PTYPE_INNER_L4_SCTP,
4186 		[65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4187 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4188 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4189 		       RTE_PTYPE_INNER_L4_ICMP,
4190 
4191 		/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
4192 		[66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4193 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4194 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4195 		       RTE_PTYPE_INNER_L4_FRAG,
4196 		[67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4197 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4198 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4199 		       RTE_PTYPE_INNER_L4_NONFRAG,
4200 		[68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4201 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4202 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4203 		       RTE_PTYPE_INNER_L4_UDP,
4204 		/* [69] reserved */
4205 		[70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4206 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4207 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4208 		       RTE_PTYPE_INNER_L4_TCP,
4209 		[71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4210 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4211 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4212 		       RTE_PTYPE_INNER_L4_SCTP,
4213 		[72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4214 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4215 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4216 		       RTE_PTYPE_INNER_L4_ICMP,
4217 		/* [73] - [87] reserved */
4218 
4219 		/* Non tunneled IPv6 */
4220 		[88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4221 		       RTE_PTYPE_L4_FRAG,
4222 		[89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4223 		       RTE_PTYPE_L4_NONFRAG,
4224 		[90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4225 		       RTE_PTYPE_L4_UDP,
4226 		/* [91] reserved */
4227 		[92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4228 		       RTE_PTYPE_L4_TCP,
4229 		[93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4230 		       RTE_PTYPE_L4_SCTP,
4231 		[94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4232 		       RTE_PTYPE_L4_ICMP,
4233 
4234 		/* IPv6 --> IPv4 */
4235 		[95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4236 		       RTE_PTYPE_TUNNEL_IP |
4237 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4238 		       RTE_PTYPE_INNER_L4_FRAG,
4239 		[96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4240 		       RTE_PTYPE_TUNNEL_IP |
4241 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4242 		       RTE_PTYPE_INNER_L4_NONFRAG,
4243 		[97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4244 		       RTE_PTYPE_TUNNEL_IP |
4245 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4246 		       RTE_PTYPE_INNER_L4_UDP,
4247 		/* [98] reserved */
4248 		[99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4249 		       RTE_PTYPE_TUNNEL_IP |
4250 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4251 		       RTE_PTYPE_INNER_L4_TCP,
4252 		[100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4253 			RTE_PTYPE_TUNNEL_IP |
4254 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4255 			RTE_PTYPE_INNER_L4_SCTP,
4256 		[101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4257 			RTE_PTYPE_TUNNEL_IP |
4258 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4259 			RTE_PTYPE_INNER_L4_ICMP,
4260 
4261 		/* IPv6 --> IPv6 */
4262 		[102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4263 			RTE_PTYPE_TUNNEL_IP |
4264 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4265 			RTE_PTYPE_INNER_L4_FRAG,
4266 		[103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4267 			RTE_PTYPE_TUNNEL_IP |
4268 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4269 			RTE_PTYPE_INNER_L4_NONFRAG,
4270 		[104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4271 			RTE_PTYPE_TUNNEL_IP |
4272 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4273 			RTE_PTYPE_INNER_L4_UDP,
4274 		/* [105] reserved */
4275 		[106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4276 			RTE_PTYPE_TUNNEL_IP |
4277 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4278 			RTE_PTYPE_INNER_L4_TCP,
4279 		[107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4280 			RTE_PTYPE_TUNNEL_IP |
4281 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4282 			RTE_PTYPE_INNER_L4_SCTP,
4283 		[108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4284 			RTE_PTYPE_TUNNEL_IP |
4285 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4286 			RTE_PTYPE_INNER_L4_ICMP,
4287 
4288 		/* IPv6 --> GRE/Teredo/VXLAN */
4289 		[109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4290 			RTE_PTYPE_TUNNEL_GRENAT,
4291 
4292 		/* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
4293 		[110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4294 			RTE_PTYPE_TUNNEL_GRENAT |
4295 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4296 			RTE_PTYPE_INNER_L4_FRAG,
4297 		[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4298 			RTE_PTYPE_TUNNEL_GRENAT |
4299 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4300 			RTE_PTYPE_INNER_L4_NONFRAG,
4301 		[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4302 			RTE_PTYPE_TUNNEL_GRENAT |
4303 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4304 			RTE_PTYPE_INNER_L4_UDP,
4305 		/* [113] reserved */
4306 		[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4307 			RTE_PTYPE_TUNNEL_GRENAT |
4308 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4309 			RTE_PTYPE_INNER_L4_TCP,
4310 		[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4311 			RTE_PTYPE_TUNNEL_GRENAT |
4312 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4313 			RTE_PTYPE_INNER_L4_SCTP,
4314 		[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4315 			RTE_PTYPE_TUNNEL_GRENAT |
4316 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4317 			RTE_PTYPE_INNER_L4_ICMP,
4318 
4319 		/* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
4320 		[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4321 			RTE_PTYPE_TUNNEL_GRENAT |
4322 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4323 			RTE_PTYPE_INNER_L4_FRAG,
4324 		[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4325 			RTE_PTYPE_TUNNEL_GRENAT |
4326 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4327 			RTE_PTYPE_INNER_L4_NONFRAG,
4328 		[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4329 			RTE_PTYPE_TUNNEL_GRENAT |
4330 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4331 			RTE_PTYPE_INNER_L4_UDP,
4332 		/* [120] reserved */
4333 		[121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4334 			RTE_PTYPE_TUNNEL_GRENAT |
4335 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4336 			RTE_PTYPE_INNER_L4_TCP,
4337 		[122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4338 			RTE_PTYPE_TUNNEL_GRENAT |
4339 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4340 			RTE_PTYPE_INNER_L4_SCTP,
4341 		[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4342 			RTE_PTYPE_TUNNEL_GRENAT |
4343 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4344 			RTE_PTYPE_INNER_L4_ICMP,
4345 
4346 		/* IPv6 --> GRE/Teredo/VXLAN --> MAC */
4347 		[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4348 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
4349 
4350 		/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
4351 		[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4352 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4353 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4354 			RTE_PTYPE_INNER_L4_FRAG,
4355 		[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4356 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4357 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4358 			RTE_PTYPE_INNER_L4_NONFRAG,
4359 		[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4360 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4361 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4362 			RTE_PTYPE_INNER_L4_UDP,
4363 		/* [128] reserved */
4364 		[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4365 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4366 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4367 			RTE_PTYPE_INNER_L4_TCP,
4368 		[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4369 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4370 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4371 			RTE_PTYPE_INNER_L4_SCTP,
4372 		[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4373 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4374 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4375 			RTE_PTYPE_INNER_L4_ICMP,
4376 
4377 		/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
4378 		[132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4379 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4380 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4381 			RTE_PTYPE_INNER_L4_FRAG,
4382 		[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4383 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4384 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4385 			RTE_PTYPE_INNER_L4_NONFRAG,
4386 		[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4387 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4388 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4389 			RTE_PTYPE_INNER_L4_UDP,
4390 		/* [135] reserved */
4391 		[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4392 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4393 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4394 			RTE_PTYPE_INNER_L4_TCP,
4395 		[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4396 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4397 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4398 			RTE_PTYPE_INNER_L4_SCTP,
4399 		[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4400 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4401 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4402 			RTE_PTYPE_INNER_L4_ICMP,
4403 		/* [139] - [299] reserved */
4404 
4405 		/* PPPoE */
4406 		[300] = RTE_PTYPE_L2_ETHER_PPPOE,
4407 		[301] = RTE_PTYPE_L2_ETHER_PPPOE,
4408 
4409 		/* PPPoE --> IPv4 */
4410 		[302] = RTE_PTYPE_L2_ETHER_PPPOE |
4411 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4412 			RTE_PTYPE_L4_FRAG,
4413 		[303] = RTE_PTYPE_L2_ETHER_PPPOE |
4414 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4415 			RTE_PTYPE_L4_NONFRAG,
4416 		[304] = RTE_PTYPE_L2_ETHER_PPPOE |
4417 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4418 			RTE_PTYPE_L4_UDP,
4419 		[305] = RTE_PTYPE_L2_ETHER_PPPOE |
4420 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4421 			RTE_PTYPE_L4_TCP,
4422 		[306] = RTE_PTYPE_L2_ETHER_PPPOE |
4423 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4424 			RTE_PTYPE_L4_SCTP,
4425 		[307] = RTE_PTYPE_L2_ETHER_PPPOE |
4426 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4427 			RTE_PTYPE_L4_ICMP,
4428 
4429 		/* PPPoE --> IPv6 */
4430 		[308] = RTE_PTYPE_L2_ETHER_PPPOE |
4431 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4432 			RTE_PTYPE_L4_FRAG,
4433 		[309] = RTE_PTYPE_L2_ETHER_PPPOE |
4434 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4435 			RTE_PTYPE_L4_NONFRAG,
4436 		[310] = RTE_PTYPE_L2_ETHER_PPPOE |
4437 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4438 			RTE_PTYPE_L4_UDP,
4439 		[311] = RTE_PTYPE_L2_ETHER_PPPOE |
4440 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4441 			RTE_PTYPE_L4_TCP,
4442 		[312] = RTE_PTYPE_L2_ETHER_PPPOE |
4443 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4444 			RTE_PTYPE_L4_SCTP,
4445 		[313] = RTE_PTYPE_L2_ETHER_PPPOE |
4446 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4447 			RTE_PTYPE_L4_ICMP,
4448 		/* [314] - [324] reserved */
4449 
4450 		/* IPv4/IPv6 --> GTPC/GTPU */
4451 		[325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4452 			RTE_PTYPE_TUNNEL_GTPC,
4453 		[326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4454 			RTE_PTYPE_TUNNEL_GTPC,
4455 		[327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4456 			RTE_PTYPE_TUNNEL_GTPC,
4457 		[328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4458 			RTE_PTYPE_TUNNEL_GTPC,
4459 		[329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4460 			RTE_PTYPE_TUNNEL_GTPU,
4461 		[330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4462 			RTE_PTYPE_TUNNEL_GTPU,
4463 
4464 		/* IPv4 --> GTPU --> IPv4 */
4465 		[331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4466 			RTE_PTYPE_TUNNEL_GTPU |
4467 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4468 			RTE_PTYPE_INNER_L4_FRAG,
4469 		[332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4470 			RTE_PTYPE_TUNNEL_GTPU |
4471 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4472 			RTE_PTYPE_INNER_L4_NONFRAG,
4473 		[333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4474 			RTE_PTYPE_TUNNEL_GTPU |
4475 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4476 			RTE_PTYPE_INNER_L4_UDP,
4477 		[334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4478 			RTE_PTYPE_TUNNEL_GTPU |
4479 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4480 			RTE_PTYPE_INNER_L4_TCP,
4481 		[335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4482 			RTE_PTYPE_TUNNEL_GTPU |
4483 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4484 			RTE_PTYPE_INNER_L4_ICMP,
4485 
4486 		/* IPv6 --> GTPU --> IPv4 */
4487 		[336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4488 			RTE_PTYPE_TUNNEL_GTPU |
4489 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4490 			RTE_PTYPE_INNER_L4_FRAG,
4491 		[337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4492 			RTE_PTYPE_TUNNEL_GTPU |
4493 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4494 			RTE_PTYPE_INNER_L4_NONFRAG,
4495 		[338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4496 			RTE_PTYPE_TUNNEL_GTPU |
4497 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4498 			RTE_PTYPE_INNER_L4_UDP,
4499 		[339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4500 			RTE_PTYPE_TUNNEL_GTPU |
4501 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4502 			RTE_PTYPE_INNER_L4_TCP,
4503 		[340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4504 			RTE_PTYPE_TUNNEL_GTPU |
4505 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4506 			RTE_PTYPE_INNER_L4_ICMP,
4507 
4508 		/* IPv4 --> GTPU --> IPv6 */
4509 		[341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4510 			RTE_PTYPE_TUNNEL_GTPU |
4511 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4512 			RTE_PTYPE_INNER_L4_FRAG,
4513 		[342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4514 			RTE_PTYPE_TUNNEL_GTPU |
4515 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4516 			RTE_PTYPE_INNER_L4_NONFRAG,
4517 		[343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4518 			RTE_PTYPE_TUNNEL_GTPU |
4519 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4520 			RTE_PTYPE_INNER_L4_UDP,
4521 		[344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4522 			RTE_PTYPE_TUNNEL_GTPU |
4523 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4524 			RTE_PTYPE_INNER_L4_TCP,
4525 		[345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4526 			RTE_PTYPE_TUNNEL_GTPU |
4527 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4528 			RTE_PTYPE_INNER_L4_ICMP,
4529 
4530 		/* IPv6 --> GTPU --> IPv6 */
4531 		[346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4532 			RTE_PTYPE_TUNNEL_GTPU |
4533 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4534 			RTE_PTYPE_INNER_L4_FRAG,
4535 		[347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4536 			RTE_PTYPE_TUNNEL_GTPU |
4537 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4538 			RTE_PTYPE_INNER_L4_NONFRAG,
4539 		[348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4540 			RTE_PTYPE_TUNNEL_GTPU |
4541 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4542 			RTE_PTYPE_INNER_L4_UDP,
4543 		[349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4544 			RTE_PTYPE_TUNNEL_GTPU |
4545 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4546 			RTE_PTYPE_INNER_L4_TCP,
4547 		[350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4548 			RTE_PTYPE_TUNNEL_GTPU |
4549 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4550 			RTE_PTYPE_INNER_L4_ICMP,
4551 
4552 		/* IPv4 --> UDP ECPRI */
4553 		[372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4554 			RTE_PTYPE_L4_UDP,
4555 		[373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4556 			RTE_PTYPE_L4_UDP,
4557 		[374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4558 			RTE_PTYPE_L4_UDP,
4559 		[375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4560 			RTE_PTYPE_L4_UDP,
4561 		[376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4562 			RTE_PTYPE_L4_UDP,
4563 		[377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4564 			RTE_PTYPE_L4_UDP,
4565 		[378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4566 			RTE_PTYPE_L4_UDP,
4567 		[379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4568 			RTE_PTYPE_L4_UDP,
4569 		[380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4570 			RTE_PTYPE_L4_UDP,
4571 		[381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4572 			RTE_PTYPE_L4_UDP,
4573 
4574 		/* IPV6 --> UDP ECPRI */
4575 		[382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4576 			RTE_PTYPE_L4_UDP,
4577 		[383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4578 			RTE_PTYPE_L4_UDP,
4579 		[384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4580 			RTE_PTYPE_L4_UDP,
4581 		[385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4582 			RTE_PTYPE_L4_UDP,
4583 		[386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4584 			RTE_PTYPE_L4_UDP,
4585 		[387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4586 			RTE_PTYPE_L4_UDP,
4587 		[388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4588 			RTE_PTYPE_L4_UDP,
4589 		[389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4590 			RTE_PTYPE_L4_UDP,
4591 		[390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4592 			RTE_PTYPE_L4_UDP,
4593 		[391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4594 			RTE_PTYPE_L4_UDP,
4595 		/* All others reserved */
4596 	};
4597 
4598 	return type_table[ptype];
4599 }
4600 
4601 void __rte_cold
4602 ice_set_default_ptype_table(struct rte_eth_dev *dev)
4603 {
4604 	struct ice_adapter *ad =
4605 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
4606 	int i;
4607 
4608 	for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
4609 		ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
4610 }
4611 
4612 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S	1
4613 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M	\
4614 			(0x3UL << ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S)
4615 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD 0
4616 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL 0x1
4617 
4618 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S	4
4619 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M	\
4620 	(1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S)
4621 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S	5
4622 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M	\
4623 	(1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S)
4624 
4625 /*
4626  * check the programming status descriptor in rx queue.
4627  * done after Programming Flow Director is programmed on
4628  * tx queue
4629  */
4630 static inline int
4631 ice_check_fdir_programming_status(struct ice_rx_queue *rxq)
4632 {
4633 	volatile union ice_32byte_rx_desc *rxdp;
4634 	uint64_t qword1;
4635 	uint32_t rx_status;
4636 	uint32_t error;
4637 	uint32_t id;
4638 	int ret = -EAGAIN;
4639 
4640 	rxdp = (volatile union ice_32byte_rx_desc *)
4641 		(&rxq->rx_ring[rxq->rx_tail]);
4642 	qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
4643 	rx_status = (qword1 & ICE_RXD_QW1_STATUS_M)
4644 			>> ICE_RXD_QW1_STATUS_S;
4645 
4646 	if (rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)) {
4647 		ret = 0;
4648 		error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M) >>
4649 			ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S;
4650 		id = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M) >>
4651 			ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S;
4652 		if (error) {
4653 			if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD)
4654 				PMD_DRV_LOG(ERR, "Failed to add FDIR rule.");
4655 			else if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL)
4656 				PMD_DRV_LOG(ERR, "Failed to remove FDIR rule.");
4657 			ret = -EINVAL;
4658 			goto err;
4659 		}
4660 		error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M) >>
4661 			ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S;
4662 		if (error) {
4663 			PMD_DRV_LOG(ERR, "Failed to create FDIR profile.");
4664 			ret = -EINVAL;
4665 		}
4666 err:
4667 		rxdp->wb.qword1.status_error_len = 0;
4668 		rxq->rx_tail++;
4669 		if (unlikely(rxq->rx_tail == rxq->nb_rx_desc))
4670 			rxq->rx_tail = 0;
4671 		if (rxq->rx_tail == 0)
4672 			ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
4673 		else
4674 			ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_tail - 1);
4675 	}
4676 
4677 	return ret;
4678 }
4679 
4680 #define ICE_FDIR_MAX_WAIT_US 10000
4681 
4682 int
4683 ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc)
4684 {
4685 	struct ci_tx_queue *txq = pf->fdir.txq;
4686 	struct ice_rx_queue *rxq = pf->fdir.rxq;
4687 	volatile struct ice_fltr_desc *fdirdp;
4688 	volatile struct ice_tx_desc *txdp;
4689 	uint32_t td_cmd;
4690 	uint16_t i;
4691 
4692 	fdirdp = (volatile struct ice_fltr_desc *)
4693 		(&txq->ice_tx_ring[txq->tx_tail]);
4694 	fdirdp->qidx_compq_space_stat = fdir_desc->qidx_compq_space_stat;
4695 	fdirdp->dtype_cmd_vsi_fdid = fdir_desc->dtype_cmd_vsi_fdid;
4696 
4697 	txdp = &txq->ice_tx_ring[txq->tx_tail + 1];
4698 	txdp->buf_addr = rte_cpu_to_le_64(pf->fdir.dma_addr);
4699 	td_cmd = ICE_TX_DESC_CMD_EOP |
4700 		ICE_TX_DESC_CMD_RS  |
4701 		ICE_TX_DESC_CMD_DUMMY;
4702 
4703 	txdp->cmd_type_offset_bsz =
4704 		ice_build_ctob(td_cmd, 0, ICE_FDIR_PKT_LEN, 0);
4705 
4706 	txq->tx_tail += 2;
4707 	if (txq->tx_tail >= txq->nb_tx_desc)
4708 		txq->tx_tail = 0;
4709 	/* Update the tx tail register */
4710 	ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
4711 	for (i = 0; i < ICE_FDIR_MAX_WAIT_US; i++) {
4712 		if ((txdp->cmd_type_offset_bsz &
4713 		     rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) ==
4714 		    rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
4715 			break;
4716 		rte_delay_us(1);
4717 	}
4718 	if (i >= ICE_FDIR_MAX_WAIT_US) {
4719 		PMD_DRV_LOG(ERR,
4720 			    "Failed to program FDIR filter: time out to get DD on tx queue.");
4721 		return -ETIMEDOUT;
4722 	}
4723 
4724 	for (; i < ICE_FDIR_MAX_WAIT_US; i++) {
4725 		int ret;
4726 
4727 		ret = ice_check_fdir_programming_status(rxq);
4728 		if (ret == -EAGAIN)
4729 			rte_delay_us(1);
4730 		else
4731 			return ret;
4732 	}
4733 
4734 	PMD_DRV_LOG(ERR,
4735 		    "Failed to program FDIR filter: programming status reported.");
4736 	return -ETIMEDOUT;
4737 
4738 
4739 }
4740