xref: /dpdk/drivers/net/intel/ice/ice_rxtx.c (revision cef05386b08a19741f0559f7f072eefb8b59f0bb)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4 
5 #include <ethdev_driver.h>
6 #include <rte_net.h>
7 #include <rte_vect.h>
8 
9 #include "ice_rxtx.h"
10 #include "ice_rxtx_vec_common.h"
11 
12 #define ICE_TX_CKSUM_OFFLOAD_MASK (RTE_MBUF_F_TX_IP_CKSUM |		 \
13 		RTE_MBUF_F_TX_L4_MASK |		 \
14 		RTE_MBUF_F_TX_TCP_SEG |		 \
15 		RTE_MBUF_F_TX_UDP_SEG |		 \
16 		RTE_MBUF_F_TX_OUTER_IP_CKSUM)
17 
18 /**
19  * The mbuf dynamic field pointer for protocol extraction metadata.
20  */
21 #define ICE_DYNF_PROTO_XTR_METADATA(m, n) \
22 	RTE_MBUF_DYNFIELD((m), (n), uint32_t *)
23 
24 static int
25 ice_monitor_callback(const uint64_t value,
26 		const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
27 {
28 	const uint64_t m = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
29 	/*
30 	 * we expect the DD bit to be set to 1 if this descriptor was already
31 	 * written to.
32 	 */
33 	return (value & m) == m ? -1 : 0;
34 }
35 
36 int
37 ice_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
38 {
39 	volatile union ice_rx_flex_desc *rxdp;
40 	struct ice_rx_queue *rxq = rx_queue;
41 	uint16_t desc;
42 
43 	desc = rxq->rx_tail;
44 	rxdp = &rxq->rx_ring[desc];
45 	/* watch for changes in status bit */
46 	pmc->addr = &rxdp->wb.status_error0;
47 
48 	/* comparison callback */
49 	pmc->fn = ice_monitor_callback;
50 
51 	/* register is 16-bit */
52 	pmc->size = sizeof(uint16_t);
53 
54 	return 0;
55 }
56 
57 
58 static inline uint8_t
59 ice_proto_xtr_type_to_rxdid(uint8_t xtr_type)
60 {
61 	static uint8_t rxdid_map[] = {
62 		[PROTO_XTR_NONE]      = ICE_RXDID_COMMS_OVS,
63 		[PROTO_XTR_VLAN]      = ICE_RXDID_COMMS_AUX_VLAN,
64 		[PROTO_XTR_IPV4]      = ICE_RXDID_COMMS_AUX_IPV4,
65 		[PROTO_XTR_IPV6]      = ICE_RXDID_COMMS_AUX_IPV6,
66 		[PROTO_XTR_IPV6_FLOW] = ICE_RXDID_COMMS_AUX_IPV6_FLOW,
67 		[PROTO_XTR_TCP]       = ICE_RXDID_COMMS_AUX_TCP,
68 		[PROTO_XTR_IP_OFFSET] = ICE_RXDID_COMMS_AUX_IP_OFFSET,
69 	};
70 
71 	return xtr_type < RTE_DIM(rxdid_map) ?
72 				rxdid_map[xtr_type] : ICE_RXDID_COMMS_OVS;
73 }
74 
75 static inline void
76 ice_rxd_to_pkt_fields_by_comms_generic(__rte_unused struct ice_rx_queue *rxq,
77 				       struct rte_mbuf *mb,
78 				       volatile union ice_rx_flex_desc *rxdp)
79 {
80 	volatile struct ice_32b_rx_flex_desc_comms *desc =
81 			(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
82 	uint16_t stat_err = rte_le_to_cpu_16(desc->status_error0);
83 
84 	if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
85 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
86 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
87 	}
88 
89 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
90 	if (desc->flow_id != 0xFFFFFFFF) {
91 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
92 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
93 	}
94 #endif
95 }
96 
97 static inline void
98 ice_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct ice_rx_queue *rxq,
99 				   struct rte_mbuf *mb,
100 				   volatile union ice_rx_flex_desc *rxdp)
101 {
102 	volatile struct ice_32b_rx_flex_desc_comms_ovs *desc =
103 			(volatile struct ice_32b_rx_flex_desc_comms_ovs *)rxdp;
104 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
105 	uint16_t stat_err;
106 #endif
107 
108 	if (desc->flow_id != 0xFFFFFFFF) {
109 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
110 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
111 	}
112 
113 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
114 	stat_err = rte_le_to_cpu_16(desc->status_error0);
115 	if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
116 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
117 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
118 	}
119 #endif
120 }
121 
122 static inline void
123 ice_rxd_to_pkt_fields_by_comms_aux_v1(struct ice_rx_queue *rxq,
124 				      struct rte_mbuf *mb,
125 				      volatile union ice_rx_flex_desc *rxdp)
126 {
127 	volatile struct ice_32b_rx_flex_desc_comms *desc =
128 			(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
129 	uint16_t stat_err;
130 
131 	stat_err = rte_le_to_cpu_16(desc->status_error0);
132 	if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
133 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
134 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
135 	}
136 
137 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
138 	if (desc->flow_id != 0xFFFFFFFF) {
139 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
140 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
141 	}
142 
143 	if (rxq->xtr_ol_flag) {
144 		uint32_t metadata = 0;
145 
146 		stat_err = rte_le_to_cpu_16(desc->status_error1);
147 
148 		if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
149 			metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
150 
151 		if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
152 			metadata |=
153 				rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
154 
155 		if (metadata) {
156 			mb->ol_flags |= rxq->xtr_ol_flag;
157 
158 			*ICE_DYNF_PROTO_XTR_METADATA(mb, rxq->xtr_field_offs) = metadata;
159 		}
160 	}
161 #else
162 	RTE_SET_USED(rxq);
163 #endif
164 }
165 
166 static inline void
167 ice_rxd_to_pkt_fields_by_comms_aux_v2(struct ice_rx_queue *rxq,
168 				      struct rte_mbuf *mb,
169 				      volatile union ice_rx_flex_desc *rxdp)
170 {
171 	volatile struct ice_32b_rx_flex_desc_comms *desc =
172 			(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
173 	uint16_t stat_err;
174 
175 	stat_err = rte_le_to_cpu_16(desc->status_error0);
176 	if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
177 		mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
178 		mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
179 	}
180 
181 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
182 	if (desc->flow_id != 0xFFFFFFFF) {
183 		mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
184 		mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
185 	}
186 
187 	if (rxq->xtr_ol_flag) {
188 		uint32_t metadata = 0;
189 
190 		if (desc->flex_ts.flex.aux0 != 0xFFFF)
191 			metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
192 		else if (desc->flex_ts.flex.aux1 != 0xFFFF)
193 			metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
194 
195 		if (metadata) {
196 			mb->ol_flags |= rxq->xtr_ol_flag;
197 
198 			*ICE_DYNF_PROTO_XTR_METADATA(mb, rxq->xtr_field_offs) = metadata;
199 		}
200 	}
201 #else
202 	RTE_SET_USED(rxq);
203 #endif
204 }
205 
206 static const ice_rxd_to_pkt_fields_t rxd_to_pkt_fields_ops[] = {
207 	[ICE_RXDID_COMMS_AUX_VLAN] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
208 	[ICE_RXDID_COMMS_AUX_IPV4] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
209 	[ICE_RXDID_COMMS_AUX_IPV6] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
210 	[ICE_RXDID_COMMS_AUX_IPV6_FLOW] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
211 	[ICE_RXDID_COMMS_AUX_TCP] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
212 	[ICE_RXDID_COMMS_AUX_IP_OFFSET] = ice_rxd_to_pkt_fields_by_comms_aux_v2,
213 	[ICE_RXDID_COMMS_GENERIC] = ice_rxd_to_pkt_fields_by_comms_generic,
214 	[ICE_RXDID_COMMS_OVS] = ice_rxd_to_pkt_fields_by_comms_ovs,
215 };
216 
217 void
218 ice_select_rxd_to_pkt_fields_handler(struct ice_rx_queue *rxq, uint32_t rxdid)
219 {
220 	rxq->rxdid = rxdid;
221 
222 	switch (rxdid) {
223 	case ICE_RXDID_COMMS_AUX_VLAN:
224 	case ICE_RXDID_COMMS_AUX_IPV4:
225 	case ICE_RXDID_COMMS_AUX_IPV6:
226 	case ICE_RXDID_COMMS_AUX_IPV6_FLOW:
227 	case ICE_RXDID_COMMS_AUX_TCP:
228 	case ICE_RXDID_COMMS_AUX_IP_OFFSET:
229 		break;
230 	case ICE_RXDID_COMMS_GENERIC:
231 		/* fallthrough */
232 	case ICE_RXDID_COMMS_OVS:
233 		break;
234 
235 	default:
236 		/* update this according to the RXDID for PROTO_XTR_NONE */
237 		rxq->rxdid = ICE_RXDID_COMMS_OVS;
238 		break;
239 	}
240 
241 	if (rxq->xtr_field_offs == -1)
242 		rxq->xtr_ol_flag = 0;
243 }
244 
245 static int
246 ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
247 {
248 	struct ice_vsi *vsi = rxq->vsi;
249 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
250 	struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
251 	struct rte_eth_dev_data *dev_data = rxq->vsi->adapter->pf.dev_data;
252 	struct ice_rlan_ctx rx_ctx;
253 	uint16_t buf_size;
254 	uint32_t rxdid = ICE_RXDID_COMMS_OVS;
255 	uint32_t regval;
256 	struct ice_adapter *ad = rxq->vsi->adapter;
257 	uint32_t frame_size = dev_data->mtu + ICE_ETH_OVERHEAD;
258 	int err;
259 
260 	/* Set buffer size as the head split is disabled. */
261 	buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
262 			      RTE_PKTMBUF_HEADROOM);
263 	rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
264 	rxq->rx_buf_len = RTE_MIN(rxq->rx_buf_len, ICE_RX_MAX_DATA_BUF_SIZE);
265 	rxq->max_pkt_len =
266 		RTE_MIN((uint32_t)ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len,
267 			frame_size);
268 
269 	if (rxq->max_pkt_len <= RTE_ETHER_MIN_LEN ||
270 	    rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
271 		PMD_DRV_LOG(ERR, "maximum packet length must "
272 			    "be larger than %u and smaller than %u",
273 			    (uint32_t)RTE_ETHER_MIN_LEN,
274 			    (uint32_t)ICE_FRAME_SIZE_MAX);
275 		return -EINVAL;
276 	}
277 
278 	if (!rxq->ts_enable && (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
279 		/* Register mbuf field and flag for Rx timestamp */
280 		err = rte_mbuf_dyn_rx_timestamp_register(
281 				&ice_timestamp_dynfield_offset,
282 				&ice_timestamp_dynflag);
283 		if (err) {
284 			PMD_DRV_LOG(ERR,
285 				"Cannot register mbuf field/flag for timestamp");
286 			return -EINVAL;
287 		}
288 		rxq->ts_enable = true;
289 	}
290 
291 	memset(&rx_ctx, 0, sizeof(rx_ctx));
292 
293 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) {
294 		uint32_t proto_hdr;
295 		proto_hdr = rxq->rxseg[0].proto_hdr;
296 
297 		if (proto_hdr == RTE_PTYPE_UNKNOWN) {
298 			PMD_DRV_LOG(ERR, "Buffer split protocol must be configured");
299 			return -EINVAL;
300 		}
301 
302 		switch (proto_hdr & RTE_PTYPE_L4_MASK) {
303 		case RTE_PTYPE_L4_TCP:
304 		case RTE_PTYPE_L4_UDP:
305 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
306 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_TCP_UDP;
307 			goto set_hsplit_finish;
308 		case RTE_PTYPE_L4_SCTP:
309 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
310 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_SCTP;
311 			goto set_hsplit_finish;
312 		}
313 
314 		switch (proto_hdr & RTE_PTYPE_L3_MASK) {
315 		case RTE_PTYPE_L3_IPV4_EXT_UNKNOWN:
316 		case RTE_PTYPE_L3_IPV6_EXT_UNKNOWN:
317 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
318 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_IP;
319 			goto set_hsplit_finish;
320 		}
321 
322 		switch (proto_hdr & RTE_PTYPE_L2_MASK) {
323 		case RTE_PTYPE_L2_ETHER:
324 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
325 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_L2;
326 			rx_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_SPLIT_L2;
327 			goto set_hsplit_finish;
328 		}
329 
330 		switch (proto_hdr & RTE_PTYPE_INNER_L4_MASK) {
331 		case RTE_PTYPE_INNER_L4_TCP:
332 		case RTE_PTYPE_INNER_L4_UDP:
333 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
334 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_TCP_UDP;
335 			goto set_hsplit_finish;
336 		case RTE_PTYPE_INNER_L4_SCTP:
337 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
338 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_SCTP;
339 			goto set_hsplit_finish;
340 		}
341 
342 		switch (proto_hdr & RTE_PTYPE_INNER_L3_MASK) {
343 		case RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN:
344 		case RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN:
345 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
346 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_IP;
347 			goto set_hsplit_finish;
348 		}
349 
350 		switch (proto_hdr & RTE_PTYPE_INNER_L2_MASK) {
351 		case RTE_PTYPE_INNER_L2_ETHER:
352 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
353 			rx_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_SPLIT_L2;
354 			goto set_hsplit_finish;
355 		}
356 
357 		switch (proto_hdr & RTE_PTYPE_TUNNEL_MASK) {
358 		case RTE_PTYPE_TUNNEL_GRENAT:
359 			rx_ctx.dtype = ICE_RX_DTYPE_HEADER_SPLIT;
360 			rx_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_SPLIT_ALWAYS;
361 			goto set_hsplit_finish;
362 		}
363 
364 		PMD_DRV_LOG(ERR, "Buffer split protocol is not supported");
365 		return -EINVAL;
366 
367 set_hsplit_finish:
368 		rxq->rx_hdr_len = ICE_RX_HDR_BUF_SIZE;
369 	} else {
370 		rxq->rx_hdr_len = 0;
371 		rx_ctx.dtype = 0; /* No Protocol Based Buffer Split mode */
372 	}
373 
374 	rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
375 	rx_ctx.qlen = rxq->nb_rx_desc;
376 	rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
377 	rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
378 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
379 	rx_ctx.dsize = 1; /* 32B descriptors */
380 #endif
381 	rx_ctx.rxmax = rxq->max_pkt_len;
382 	/* TPH: Transaction Layer Packet (TLP) processing hints */
383 	rx_ctx.tphrdesc_ena = 1;
384 	rx_ctx.tphwdesc_ena = 1;
385 	rx_ctx.tphdata_ena = 1;
386 	rx_ctx.tphhead_ena = 1;
387 	/* Low Receive Queue Threshold defined in 64 descriptors units.
388 	 * When the number of free descriptors goes below the lrxqthresh,
389 	 * an immediate interrupt is triggered.
390 	 */
391 	rx_ctx.lrxqthresh = 2;
392 	/*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
393 	rx_ctx.l2tsel = 1;
394 	rx_ctx.showiv = 0;
395 	rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
396 
397 	rxdid = ice_proto_xtr_type_to_rxdid(rxq->proto_xtr);
398 
399 	PMD_DRV_LOG(DEBUG, "Port (%u) - Rx queue (%u) is set with RXDID : %u",
400 		    rxq->port_id, rxq->queue_id, rxdid);
401 
402 	if (!(pf->supported_rxdid & BIT(rxdid))) {
403 		PMD_DRV_LOG(ERR, "currently package doesn't support RXDID (%u)",
404 			    rxdid);
405 		return -EINVAL;
406 	}
407 
408 	rxq->rxdid = rxdid;
409 
410 	/* Enable Flexible Descriptors in the queue context which
411 	 * allows this driver to select a specific receive descriptor format
412 	 */
413 	regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
414 		QRXFLXP_CNTXT_RXDID_IDX_M;
415 
416 	/* increasing context priority to pick up profile ID;
417 	 * default is 0x01; setting to 0x03 to ensure profile
418 	 * is programming if prev context is of same priority
419 	 */
420 	regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
421 		QRXFLXP_CNTXT_RXDID_PRIO_M;
422 
423 	if (ad->ptp_ena || rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
424 		regval |= QRXFLXP_CNTXT_TS_M;
425 
426 	ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
427 
428 	err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
429 	if (err) {
430 		PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
431 			    rxq->queue_id);
432 		return -EINVAL;
433 	}
434 	err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
435 	if (err) {
436 		PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
437 			    rxq->queue_id);
438 		return -EINVAL;
439 	}
440 
441 	/* Check if scattered RX needs to be used. */
442 	if (frame_size > buf_size)
443 		dev_data->scattered_rx = 1;
444 
445 	rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
446 
447 	/* Init the Rx tail register*/
448 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
449 
450 	return 0;
451 }
452 
453 /* Allocate mbufs for all descriptors in rx queue */
454 static int
455 ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
456 {
457 	struct ice_rx_entry *rxe = rxq->sw_ring;
458 	uint64_t dma_addr;
459 	uint16_t i;
460 
461 	for (i = 0; i < rxq->nb_rx_desc; i++) {
462 		volatile union ice_rx_flex_desc *rxd;
463 		rxd = &rxq->rx_ring[i];
464 		struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
465 
466 		if (unlikely(!mbuf)) {
467 			PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
468 			return -ENOMEM;
469 		}
470 
471 		mbuf->data_off = RTE_PKTMBUF_HEADROOM;
472 		mbuf->nb_segs = 1;
473 		mbuf->port = rxq->port_id;
474 
475 		dma_addr =
476 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
477 
478 		if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
479 			rte_mbuf_refcnt_set(mbuf, 1);
480 			mbuf->next = NULL;
481 			rxd->read.hdr_addr = 0;
482 			rxd->read.pkt_addr = dma_addr;
483 		} else {
484 			struct rte_mbuf *mbuf_pay;
485 			mbuf_pay = rte_mbuf_raw_alloc(rxq->rxseg[1].mp);
486 			if (unlikely(!mbuf_pay)) {
487 				rte_pktmbuf_free(mbuf);
488 				PMD_DRV_LOG(ERR, "Failed to allocate payload mbuf for RX");
489 				return -ENOMEM;
490 			}
491 
492 			mbuf_pay->next = NULL;
493 			mbuf_pay->data_off = RTE_PKTMBUF_HEADROOM;
494 			mbuf_pay->nb_segs = 1;
495 			mbuf_pay->port = rxq->port_id;
496 			mbuf->next = mbuf_pay;
497 
498 			rxd->read.hdr_addr = dma_addr;
499 			/* The LS bit should be set to zero regardless of
500 			 * buffer split enablement.
501 			 */
502 			rxd->read.pkt_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf_pay));
503 		}
504 
505 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
506 		rxd->read.rsvd1 = 0;
507 		rxd->read.rsvd2 = 0;
508 #endif
509 		rxe[i].mbuf = mbuf;
510 	}
511 
512 	return 0;
513 }
514 
515 /* Free all mbufs for descriptors in rx queue */
516 static void
517 _ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
518 {
519 	uint16_t i;
520 
521 	if (!rxq || !rxq->sw_ring) {
522 		PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
523 		return;
524 	}
525 
526 	for (i = 0; i < rxq->nb_rx_desc; i++) {
527 		if (rxq->sw_ring[i].mbuf) {
528 			rte_pktmbuf_free(rxq->sw_ring[i].mbuf);
529 			rxq->sw_ring[i].mbuf = NULL;
530 		}
531 	}
532 	if (rxq->rx_nb_avail == 0)
533 		return;
534 	for (i = 0; i < rxq->rx_nb_avail; i++)
535 		rte_pktmbuf_free(rxq->rx_stage[rxq->rx_next_avail + i]);
536 
537 	rxq->rx_nb_avail = 0;
538 }
539 
540 /* turn on or off rx queue
541  * @q_idx: queue index in pf scope
542  * @on: turn on or off the queue
543  */
544 static int
545 ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
546 {
547 	uint32_t reg;
548 	uint16_t j;
549 
550 	/* QRX_CTRL = QRX_ENA */
551 	reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
552 
553 	if (on) {
554 		if (reg & QRX_CTRL_QENA_STAT_M)
555 			return 0; /* Already on, skip */
556 		reg |= QRX_CTRL_QENA_REQ_M;
557 	} else {
558 		if (!(reg & QRX_CTRL_QENA_STAT_M))
559 			return 0; /* Already off, skip */
560 		reg &= ~QRX_CTRL_QENA_REQ_M;
561 	}
562 
563 	/* Write the register */
564 	ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
565 	/* Check the result. It is said that QENA_STAT
566 	 * follows the QENA_REQ not more than 10 use.
567 	 * TODO: need to change the wait counter later
568 	 */
569 	for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
570 		rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
571 		reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
572 		if (on) {
573 			if ((reg & QRX_CTRL_QENA_REQ_M) &&
574 			    (reg & QRX_CTRL_QENA_STAT_M))
575 				break;
576 		} else {
577 			if (!(reg & QRX_CTRL_QENA_REQ_M) &&
578 			    !(reg & QRX_CTRL_QENA_STAT_M))
579 				break;
580 		}
581 	}
582 
583 	/* Check if it is timeout */
584 	if (j >= ICE_CHK_Q_ENA_COUNT) {
585 		PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
586 			    (on ? "enable" : "disable"), q_idx);
587 		return -ETIMEDOUT;
588 	}
589 
590 	return 0;
591 }
592 
593 static inline int
594 ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
595 {
596 	int ret = 0;
597 
598 	if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
599 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
600 			     "rxq->rx_free_thresh=%d, "
601 			     "ICE_RX_MAX_BURST=%d",
602 			     rxq->rx_free_thresh, ICE_RX_MAX_BURST);
603 		ret = -EINVAL;
604 	} else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
605 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
606 			     "rxq->rx_free_thresh=%d, "
607 			     "rxq->nb_rx_desc=%d",
608 			     rxq->rx_free_thresh, rxq->nb_rx_desc);
609 		ret = -EINVAL;
610 	} else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
611 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
612 			     "rxq->nb_rx_desc=%d, "
613 			     "rxq->rx_free_thresh=%d",
614 			     rxq->nb_rx_desc, rxq->rx_free_thresh);
615 		ret = -EINVAL;
616 	}
617 
618 	return ret;
619 }
620 
621 /* reset fields in ice_rx_queue back to default */
622 static void
623 ice_reset_rx_queue(struct ice_rx_queue *rxq)
624 {
625 	unsigned int i;
626 	uint16_t len;
627 
628 	if (!rxq) {
629 		PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
630 		return;
631 	}
632 
633 	len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
634 
635 	for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
636 		((volatile char *)rxq->rx_ring)[i] = 0;
637 
638 	memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
639 	for (i = 0; i < ICE_RX_MAX_BURST; ++i)
640 		rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
641 
642 	rxq->rx_nb_avail = 0;
643 	rxq->rx_next_avail = 0;
644 	rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
645 
646 	rxq->rx_tail = 0;
647 	rxq->nb_rx_hold = 0;
648 	rxq->pkt_first_seg = NULL;
649 	rxq->pkt_last_seg = NULL;
650 
651 	rxq->rxrearm_start = 0;
652 	rxq->rxrearm_nb = 0;
653 }
654 
655 int
656 ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
657 {
658 	struct ice_rx_queue *rxq;
659 	int err;
660 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
661 
662 	PMD_INIT_FUNC_TRACE();
663 
664 	if (rx_queue_id >= dev->data->nb_rx_queues) {
665 		PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
666 			    rx_queue_id, dev->data->nb_rx_queues);
667 		return -EINVAL;
668 	}
669 
670 	rxq = dev->data->rx_queues[rx_queue_id];
671 	if (!rxq || !rxq->q_set) {
672 		PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
673 			    rx_queue_id);
674 		return -EINVAL;
675 	}
676 
677 	if (dev->data->rx_queue_state[rx_queue_id] ==
678 		RTE_ETH_QUEUE_STATE_STARTED)
679 		return 0;
680 
681 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
682 		rxq->ts_enable = true;
683 	err = ice_program_hw_rx_queue(rxq);
684 	if (err) {
685 		PMD_DRV_LOG(ERR, "fail to program RX queue %u",
686 			    rx_queue_id);
687 		return -EIO;
688 	}
689 
690 	err = ice_alloc_rx_queue_mbufs(rxq);
691 	if (err) {
692 		PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
693 		return -ENOMEM;
694 	}
695 
696 	/* Init the RX tail register. */
697 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
698 
699 	err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
700 	if (err) {
701 		PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
702 			    rx_queue_id);
703 
704 		rxq->rx_rel_mbufs(rxq);
705 		ice_reset_rx_queue(rxq);
706 		return -EINVAL;
707 	}
708 
709 	dev->data->rx_queue_state[rx_queue_id] =
710 		RTE_ETH_QUEUE_STATE_STARTED;
711 
712 	return 0;
713 }
714 
715 int
716 ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
717 {
718 	struct ice_rx_queue *rxq;
719 	int err;
720 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
721 
722 	if (rx_queue_id < dev->data->nb_rx_queues) {
723 		rxq = dev->data->rx_queues[rx_queue_id];
724 
725 		if (dev->data->rx_queue_state[rx_queue_id] ==
726 			RTE_ETH_QUEUE_STATE_STOPPED)
727 			return 0;
728 
729 		err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
730 		if (err) {
731 			PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
732 				    rx_queue_id);
733 			return -EINVAL;
734 		}
735 		rxq->rx_rel_mbufs(rxq);
736 		ice_reset_rx_queue(rxq);
737 		dev->data->rx_queue_state[rx_queue_id] =
738 			RTE_ETH_QUEUE_STATE_STOPPED;
739 	}
740 
741 	return 0;
742 }
743 
744 int
745 ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
746 {
747 	struct ci_tx_queue *txq;
748 	int err;
749 	struct ice_vsi *vsi;
750 	struct ice_hw *hw;
751 	struct ice_pf *pf;
752 	struct ice_aqc_add_tx_qgrp *txq_elem;
753 	struct ice_tlan_ctx tx_ctx;
754 	int buf_len;
755 	struct ice_adapter *ad = ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
756 
757 	PMD_INIT_FUNC_TRACE();
758 
759 	if (tx_queue_id >= dev->data->nb_tx_queues) {
760 		PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
761 			    tx_queue_id, dev->data->nb_tx_queues);
762 		return -EINVAL;
763 	}
764 
765 	txq = dev->data->tx_queues[tx_queue_id];
766 	if (!txq || !txq->q_set) {
767 		PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
768 			    tx_queue_id);
769 		return -EINVAL;
770 	}
771 
772 	if (dev->data->tx_queue_state[tx_queue_id] ==
773 		RTE_ETH_QUEUE_STATE_STARTED)
774 		return 0;
775 
776 	buf_len = ice_struct_size(txq_elem, txqs, 1);
777 	txq_elem = ice_malloc(hw, buf_len);
778 	if (!txq_elem)
779 		return -ENOMEM;
780 
781 	vsi = txq->ice_vsi;
782 	hw = ICE_VSI_TO_HW(vsi);
783 	pf = ICE_VSI_TO_PF(vsi);
784 
785 	memset(&tx_ctx, 0, sizeof(tx_ctx));
786 	txq_elem->num_txqs = 1;
787 	txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
788 
789 	tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
790 	tx_ctx.qlen = txq->nb_tx_desc;
791 	tx_ctx.pf_num = hw->pf_id;
792 	tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
793 	tx_ctx.src_vsi = vsi->vsi_id;
794 	tx_ctx.port_num = hw->port_info->lport;
795 	tx_ctx.tso_ena = 1; /* tso enable */
796 	tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
797 	tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
798 	tx_ctx.tsyn_ena = 1;
799 
800 	ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
801 		    ice_tlan_ctx_info);
802 
803 	txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
804 
805 	/* Init the Tx tail register*/
806 	ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
807 
808 	/* Fix me, we assume TC always 0 here */
809 	err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
810 			txq_elem, buf_len, NULL);
811 	if (err) {
812 		PMD_DRV_LOG(ERR, "Failed to add lan txq");
813 		rte_free(txq_elem);
814 		return -EIO;
815 	}
816 	/* store the schedule node id */
817 	txq->q_teid = txq_elem->txqs[0].q_teid;
818 
819 	/* move the queue to correct position in hierarchy, if explicit hierarchy configured */
820 	if (pf->tm_conf.committed)
821 		if (ice_tm_setup_txq_node(pf, hw, tx_queue_id, txq->q_teid) != 0) {
822 			PMD_DRV_LOG(ERR, "Failed to set up txq traffic management node");
823 			rte_free(txq_elem);
824 			return -EIO;
825 		}
826 
827 	/* record what kind of descriptor cleanup we need on teardown */
828 	txq->vector_tx = ad->tx_vec_allowed;
829 	txq->vector_sw_ring = ad->tx_use_avx512;
830 
831 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
832 
833 	rte_free(txq_elem);
834 	return 0;
835 }
836 
837 static int
838 ice_fdir_program_hw_rx_queue(struct ice_rx_queue *rxq)
839 {
840 	struct ice_vsi *vsi = rxq->vsi;
841 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
842 	uint32_t rxdid = ICE_RXDID_LEGACY_1;
843 	struct ice_rlan_ctx rx_ctx;
844 	uint32_t regval;
845 	int err;
846 
847 	rxq->rx_hdr_len = 0;
848 	rxq->rx_buf_len = 1024;
849 
850 	memset(&rx_ctx, 0, sizeof(rx_ctx));
851 
852 	rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
853 	rx_ctx.qlen = rxq->nb_rx_desc;
854 	rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
855 	rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
856 	rx_ctx.dtype = 0; /* No Buffer Split mode */
857 	rx_ctx.dsize = 1; /* 32B descriptors */
858 	rx_ctx.rxmax = ICE_ETH_MAX_LEN;
859 	/* TPH: Transaction Layer Packet (TLP) processing hints */
860 	rx_ctx.tphrdesc_ena = 1;
861 	rx_ctx.tphwdesc_ena = 1;
862 	rx_ctx.tphdata_ena = 1;
863 	rx_ctx.tphhead_ena = 1;
864 	/* Low Receive Queue Threshold defined in 64 descriptors units.
865 	 * When the number of free descriptors goes below the lrxqthresh,
866 	 * an immediate interrupt is triggered.
867 	 */
868 	rx_ctx.lrxqthresh = 2;
869 	/*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
870 	rx_ctx.l2tsel = 1;
871 	rx_ctx.showiv = 0;
872 	rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
873 
874 	/* Enable Flexible Descriptors in the queue context which
875 	 * allows this driver to select a specific receive descriptor format
876 	 */
877 	regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
878 		QRXFLXP_CNTXT_RXDID_IDX_M;
879 
880 	/* increasing context priority to pick up profile ID;
881 	 * default is 0x01; setting to 0x03 to ensure profile
882 	 * is programming if prev context is of same priority
883 	 */
884 	regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
885 		QRXFLXP_CNTXT_RXDID_PRIO_M;
886 
887 	ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
888 
889 	err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
890 	if (err) {
891 		PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
892 			    rxq->queue_id);
893 		return -EINVAL;
894 	}
895 	err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
896 	if (err) {
897 		PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
898 			    rxq->queue_id);
899 		return -EINVAL;
900 	}
901 
902 	rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
903 
904 	/* Init the Rx tail register*/
905 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
906 
907 	return 0;
908 }
909 
910 int
911 ice_fdir_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
912 {
913 	struct ice_rx_queue *rxq;
914 	int err;
915 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
916 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
917 
918 	PMD_INIT_FUNC_TRACE();
919 
920 	rxq = pf->fdir.rxq;
921 	if (!rxq || !rxq->q_set) {
922 		PMD_DRV_LOG(ERR, "FDIR RX queue %u not available or setup",
923 			    rx_queue_id);
924 		return -EINVAL;
925 	}
926 
927 	err = ice_fdir_program_hw_rx_queue(rxq);
928 	if (err) {
929 		PMD_DRV_LOG(ERR, "fail to program FDIR RX queue %u",
930 			    rx_queue_id);
931 		return -EIO;
932 	}
933 
934 	/* Init the RX tail register. */
935 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
936 
937 	err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
938 	if (err) {
939 		PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u on",
940 			    rx_queue_id);
941 
942 		ice_reset_rx_queue(rxq);
943 		return -EINVAL;
944 	}
945 
946 	return 0;
947 }
948 
949 int
950 ice_fdir_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
951 {
952 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
953 	struct ci_tx_queue *txq;
954 	int err;
955 	struct ice_vsi *vsi;
956 	struct ice_hw *hw;
957 	struct ice_aqc_add_tx_qgrp *txq_elem;
958 	struct ice_tlan_ctx tx_ctx;
959 	int buf_len;
960 
961 	PMD_INIT_FUNC_TRACE();
962 
963 	txq = pf->fdir.txq;
964 	if (!txq || !txq->q_set) {
965 		PMD_DRV_LOG(ERR, "FDIR TX queue %u is not available or setup",
966 			    tx_queue_id);
967 		return -EINVAL;
968 	}
969 
970 	buf_len = ice_struct_size(txq_elem, txqs, 1);
971 	txq_elem = ice_malloc(hw, buf_len);
972 	if (!txq_elem)
973 		return -ENOMEM;
974 
975 	vsi = txq->ice_vsi;
976 	hw = ICE_VSI_TO_HW(vsi);
977 
978 	memset(&tx_ctx, 0, sizeof(tx_ctx));
979 	txq_elem->num_txqs = 1;
980 	txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
981 
982 	tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
983 	tx_ctx.qlen = txq->nb_tx_desc;
984 	tx_ctx.pf_num = hw->pf_id;
985 	tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
986 	tx_ctx.src_vsi = vsi->vsi_id;
987 	tx_ctx.port_num = hw->port_info->lport;
988 	tx_ctx.tso_ena = 1; /* tso enable */
989 	tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
990 	tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
991 
992 	ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
993 		    ice_tlan_ctx_info);
994 
995 	txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
996 
997 	/* Init the Tx tail register*/
998 	ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
999 
1000 	/* Fix me, we assume TC always 0 here */
1001 	err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
1002 			      txq_elem, buf_len, NULL);
1003 	if (err) {
1004 		PMD_DRV_LOG(ERR, "Failed to add FDIR txq");
1005 		rte_free(txq_elem);
1006 		return -EIO;
1007 	}
1008 	/* store the schedule node id */
1009 	txq->q_teid = txq_elem->txqs[0].q_teid;
1010 
1011 	rte_free(txq_elem);
1012 	return 0;
1013 }
1014 
1015 static void
1016 ice_reset_tx_queue(struct ci_tx_queue *txq)
1017 {
1018 	struct ci_tx_entry *txe;
1019 	uint16_t i, prev, size;
1020 
1021 	if (!txq) {
1022 		PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
1023 		return;
1024 	}
1025 
1026 	txe = txq->sw_ring;
1027 	size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
1028 	for (i = 0; i < size; i++)
1029 		((volatile char *)txq->ice_tx_ring)[i] = 0;
1030 
1031 	prev = (uint16_t)(txq->nb_tx_desc - 1);
1032 	for (i = 0; i < txq->nb_tx_desc; i++) {
1033 		volatile struct ice_tx_desc *txd = &txq->ice_tx_ring[i];
1034 
1035 		txd->cmd_type_offset_bsz =
1036 			rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
1037 		txe[i].mbuf =  NULL;
1038 		txe[i].last_id = i;
1039 		txe[prev].next_id = i;
1040 		prev = i;
1041 	}
1042 
1043 	txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1044 	txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1045 
1046 	txq->tx_tail = 0;
1047 	txq->nb_tx_used = 0;
1048 
1049 	txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
1050 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
1051 }
1052 
1053 int
1054 ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1055 {
1056 	struct ci_tx_queue *txq;
1057 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1058 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1059 	struct ice_vsi *vsi = pf->main_vsi;
1060 	uint16_t q_ids[1];
1061 	uint32_t q_teids[1];
1062 	uint16_t q_handle = tx_queue_id;
1063 	int status;
1064 
1065 	if (tx_queue_id >= dev->data->nb_tx_queues) {
1066 		PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
1067 			    tx_queue_id, dev->data->nb_tx_queues);
1068 		return -EINVAL;
1069 	}
1070 
1071 	txq = dev->data->tx_queues[tx_queue_id];
1072 	if (!txq) {
1073 		PMD_DRV_LOG(ERR, "TX queue %u is not available",
1074 			    tx_queue_id);
1075 		return -EINVAL;
1076 	}
1077 
1078 	if (dev->data->tx_queue_state[tx_queue_id] ==
1079 		RTE_ETH_QUEUE_STATE_STOPPED)
1080 		return 0;
1081 
1082 	q_ids[0] = txq->reg_idx;
1083 	q_teids[0] = txq->q_teid;
1084 
1085 	/* Fix me, we assume TC always 0 here */
1086 	status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1087 				q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1088 	if (status != ICE_SUCCESS) {
1089 		PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1090 		return -EINVAL;
1091 	}
1092 
1093 	ci_txq_release_all_mbufs(txq, false);
1094 	ice_reset_tx_queue(txq);
1095 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1096 
1097 	return 0;
1098 }
1099 
1100 int
1101 ice_fdir_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1102 {
1103 	struct ice_rx_queue *rxq;
1104 	int err;
1105 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1106 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1107 
1108 	rxq = pf->fdir.rxq;
1109 
1110 	err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
1111 	if (err) {
1112 		PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u off",
1113 			    rx_queue_id);
1114 		return -EINVAL;
1115 	}
1116 	rxq->rx_rel_mbufs(rxq);
1117 
1118 	return 0;
1119 }
1120 
1121 int
1122 ice_fdir_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1123 {
1124 	struct ci_tx_queue *txq;
1125 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1126 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1127 	struct ice_vsi *vsi = pf->main_vsi;
1128 	uint16_t q_ids[1];
1129 	uint32_t q_teids[1];
1130 	uint16_t q_handle = tx_queue_id;
1131 	int status;
1132 
1133 	txq = pf->fdir.txq;
1134 	if (!txq) {
1135 		PMD_DRV_LOG(ERR, "TX queue %u is not available",
1136 			    tx_queue_id);
1137 		return -EINVAL;
1138 	}
1139 	if (txq->qtx_tail == NULL) {
1140 		PMD_DRV_LOG(INFO, "TX queue %u not started", tx_queue_id);
1141 		return 0;
1142 	}
1143 	vsi = txq->ice_vsi;
1144 
1145 	q_ids[0] = txq->reg_idx;
1146 	q_teids[0] = txq->q_teid;
1147 
1148 	/* Fix me, we assume TC always 0 here */
1149 	status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1150 				 q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1151 	if (status != ICE_SUCCESS) {
1152 		PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1153 		return -EINVAL;
1154 	}
1155 
1156 	ci_txq_release_all_mbufs(txq, false);
1157 	txq->qtx_tail = NULL;
1158 
1159 	return 0;
1160 }
1161 
1162 int
1163 ice_rx_queue_setup(struct rte_eth_dev *dev,
1164 		   uint16_t queue_idx,
1165 		   uint16_t nb_desc,
1166 		   unsigned int socket_id,
1167 		   const struct rte_eth_rxconf *rx_conf,
1168 		   struct rte_mempool *mp)
1169 {
1170 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1171 	struct ice_adapter *ad =
1172 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1173 	struct ice_vsi *vsi = pf->main_vsi;
1174 	struct ice_rx_queue *rxq;
1175 	const struct rte_memzone *rz;
1176 	uint32_t ring_size;
1177 	uint16_t len;
1178 	int use_def_burst_func = 1;
1179 	uint64_t offloads;
1180 	uint16_t n_seg = rx_conf->rx_nseg;
1181 	uint16_t i;
1182 
1183 	if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1184 	    nb_desc > ICE_MAX_RING_DESC ||
1185 	    nb_desc < ICE_MIN_RING_DESC) {
1186 		PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
1187 			     "invalid", nb_desc);
1188 		return -EINVAL;
1189 	}
1190 
1191 	offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1192 
1193 	if (mp)
1194 		n_seg = 1;
1195 
1196 	if (n_seg > 1 && !(offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
1197 		PMD_INIT_LOG(ERR, "port %u queue index %u split offload not configured",
1198 				dev->data->port_id, queue_idx);
1199 		return -EINVAL;
1200 	}
1201 
1202 	/* Free memory if needed */
1203 	if (dev->data->rx_queues[queue_idx]) {
1204 		ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
1205 		dev->data->rx_queues[queue_idx] = NULL;
1206 	}
1207 
1208 	/* Allocate the rx queue data structure */
1209 	rxq = rte_zmalloc_socket(NULL,
1210 				 sizeof(struct ice_rx_queue),
1211 				 RTE_CACHE_LINE_SIZE,
1212 				 socket_id);
1213 
1214 	if (!rxq) {
1215 		PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1216 			     "rx queue data structure");
1217 		return -ENOMEM;
1218 	}
1219 
1220 	rxq->rxseg_nb = n_seg;
1221 	if (n_seg > 1) {
1222 		for (i = 0; i < n_seg; i++)
1223 			memcpy(&rxq->rxseg[i], &rx_conf->rx_seg[i].split,
1224 				sizeof(struct rte_eth_rxseg_split));
1225 
1226 		rxq->mp = rxq->rxseg[0].mp;
1227 	} else {
1228 		rxq->mp = mp;
1229 	}
1230 
1231 	rxq->nb_rx_desc = nb_desc;
1232 	rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1233 	rxq->queue_id = queue_idx;
1234 	rxq->offloads = offloads;
1235 
1236 	rxq->reg_idx = vsi->base_queue + queue_idx;
1237 	rxq->port_id = dev->data->port_id;
1238 	if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
1239 		rxq->crc_len = RTE_ETHER_CRC_LEN;
1240 	else
1241 		rxq->crc_len = 0;
1242 
1243 	rxq->drop_en = rx_conf->rx_drop_en;
1244 	rxq->vsi = vsi;
1245 	rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1246 	rxq->proto_xtr = pf->proto_xtr != NULL ?
1247 			 pf->proto_xtr[queue_idx] : PROTO_XTR_NONE;
1248 	if (rxq->proto_xtr != PROTO_XTR_NONE &&
1249 			ad->devargs.xtr_flag_offs[rxq->proto_xtr] != 0xff)
1250 		rxq->xtr_ol_flag = 1ULL << ad->devargs.xtr_flag_offs[rxq->proto_xtr];
1251 	rxq->xtr_field_offs = ad->devargs.xtr_field_offs;
1252 
1253 	/* Allocate the maximum number of RX ring hardware descriptor. */
1254 	len = ICE_MAX_RING_DESC;
1255 
1256 	/**
1257 	 * Allocating a little more memory because vectorized/bulk_alloc Rx
1258 	 * functions doesn't check boundaries each time.
1259 	 */
1260 	len += ICE_RX_MAX_BURST;
1261 
1262 	/* Allocate the maximum number of RX ring hardware descriptor. */
1263 	ring_size = sizeof(union ice_rx_flex_desc) * len;
1264 	ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1265 	rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1266 				      ring_size, ICE_RING_BASE_ALIGN,
1267 				      socket_id);
1268 	if (!rz) {
1269 		ice_rx_queue_release(rxq);
1270 		PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
1271 		return -ENOMEM;
1272 	}
1273 
1274 	rxq->mz = rz;
1275 	/* Zero all the descriptors in the ring. */
1276 	memset(rz->addr, 0, ring_size);
1277 
1278 	rxq->rx_ring_dma = rz->iova;
1279 	rxq->rx_ring = rz->addr;
1280 
1281 	/* always reserve more for bulk alloc */
1282 	len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
1283 
1284 	/* Allocate the software ring. */
1285 	rxq->sw_ring = rte_zmalloc_socket(NULL,
1286 					  sizeof(struct ice_rx_entry) * len,
1287 					  RTE_CACHE_LINE_SIZE,
1288 					  socket_id);
1289 	if (!rxq->sw_ring) {
1290 		ice_rx_queue_release(rxq);
1291 		PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
1292 		return -ENOMEM;
1293 	}
1294 
1295 	ice_reset_rx_queue(rxq);
1296 	rxq->q_set = true;
1297 	dev->data->rx_queues[queue_idx] = rxq;
1298 	rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
1299 
1300 	use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
1301 
1302 	if (!use_def_burst_func) {
1303 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1304 			     "satisfied. Rx Burst Bulk Alloc function will be "
1305 			     "used on port=%d, queue=%d.",
1306 			     rxq->port_id, rxq->queue_id);
1307 	} else {
1308 		PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1309 			     "not satisfied, Scattered Rx is requested. "
1310 			     "on port=%d, queue=%d.",
1311 			     rxq->port_id, rxq->queue_id);
1312 		ad->rx_bulk_alloc_allowed = false;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 void
1319 ice_rx_queue_release(void *rxq)
1320 {
1321 	struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
1322 
1323 	if (!q) {
1324 		PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1325 		return;
1326 	}
1327 
1328 	if (q->rx_rel_mbufs != NULL)
1329 		q->rx_rel_mbufs(q);
1330 	rte_free(q->sw_ring);
1331 	rte_memzone_free(q->mz);
1332 	rte_free(q);
1333 }
1334 
1335 int
1336 ice_tx_queue_setup(struct rte_eth_dev *dev,
1337 		   uint16_t queue_idx,
1338 		   uint16_t nb_desc,
1339 		   unsigned int socket_id,
1340 		   const struct rte_eth_txconf *tx_conf)
1341 {
1342 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1343 	struct ice_vsi *vsi = pf->main_vsi;
1344 	struct ci_tx_queue *txq;
1345 	const struct rte_memzone *tz;
1346 	uint32_t ring_size;
1347 	uint16_t tx_rs_thresh, tx_free_thresh;
1348 	uint64_t offloads;
1349 
1350 	offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1351 
1352 	if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1353 	    nb_desc > ICE_MAX_RING_DESC ||
1354 	    nb_desc < ICE_MIN_RING_DESC) {
1355 		PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
1356 			     "invalid", nb_desc);
1357 		return -EINVAL;
1358 	}
1359 
1360 	/**
1361 	 * The following two parameters control the setting of the RS bit on
1362 	 * transmit descriptors. TX descriptors will have their RS bit set
1363 	 * after txq->tx_rs_thresh descriptors have been used. The TX
1364 	 * descriptor ring will be cleaned after txq->tx_free_thresh
1365 	 * descriptors are used or if the number of descriptors required to
1366 	 * transmit a packet is greater than the number of free TX descriptors.
1367 	 *
1368 	 * The following constraints must be satisfied:
1369 	 *  - tx_rs_thresh must be greater than 0.
1370 	 *  - tx_rs_thresh must be less than the size of the ring minus 2.
1371 	 *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
1372 	 *  - tx_rs_thresh must be a divisor of the ring size.
1373 	 *  - tx_free_thresh must be greater than 0.
1374 	 *  - tx_free_thresh must be less than the size of the ring minus 3.
1375 	 *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
1376 	 *
1377 	 * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1378 	 * race condition, hence the maximum threshold constraints. When set
1379 	 * to zero use default values.
1380 	 */
1381 	tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
1382 				    tx_conf->tx_free_thresh :
1383 				    ICE_DEFAULT_TX_FREE_THRESH);
1384 	/* force tx_rs_thresh to adapt an aggressive tx_free_thresh */
1385 	tx_rs_thresh =
1386 		(ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
1387 			nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
1388 	if (tx_conf->tx_rs_thresh)
1389 		tx_rs_thresh = tx_conf->tx_rs_thresh;
1390 	if (tx_rs_thresh + tx_free_thresh > nb_desc) {
1391 		PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
1392 				"exceed nb_desc. (tx_rs_thresh=%u "
1393 				"tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
1394 				(unsigned int)tx_rs_thresh,
1395 				(unsigned int)tx_free_thresh,
1396 				(unsigned int)nb_desc,
1397 				(int)dev->data->port_id,
1398 				(int)queue_idx);
1399 		return -EINVAL;
1400 	}
1401 	if (tx_rs_thresh >= (nb_desc - 2)) {
1402 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1403 			     "number of TX descriptors minus 2. "
1404 			     "(tx_rs_thresh=%u port=%d queue=%d)",
1405 			     (unsigned int)tx_rs_thresh,
1406 			     (int)dev->data->port_id,
1407 			     (int)queue_idx);
1408 		return -EINVAL;
1409 	}
1410 	if (tx_free_thresh >= (nb_desc - 3)) {
1411 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1412 			     "tx_free_thresh must be less than the "
1413 			     "number of TX descriptors minus 3. "
1414 			     "(tx_free_thresh=%u port=%d queue=%d)",
1415 			     (unsigned int)tx_free_thresh,
1416 			     (int)dev->data->port_id,
1417 			     (int)queue_idx);
1418 		return -EINVAL;
1419 	}
1420 	if (tx_rs_thresh > tx_free_thresh) {
1421 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
1422 			     "equal to tx_free_thresh. (tx_free_thresh=%u"
1423 			     " tx_rs_thresh=%u port=%d queue=%d)",
1424 			     (unsigned int)tx_free_thresh,
1425 			     (unsigned int)tx_rs_thresh,
1426 			     (int)dev->data->port_id,
1427 			     (int)queue_idx);
1428 		return -EINVAL;
1429 	}
1430 	if ((nb_desc % tx_rs_thresh) != 0) {
1431 		PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
1432 			     "number of TX descriptors. (tx_rs_thresh=%u"
1433 			     " port=%d queue=%d)",
1434 			     (unsigned int)tx_rs_thresh,
1435 			     (int)dev->data->port_id,
1436 			     (int)queue_idx);
1437 		return -EINVAL;
1438 	}
1439 	if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
1440 		PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1441 			     "tx_rs_thresh is greater than 1. "
1442 			     "(tx_rs_thresh=%u port=%d queue=%d)",
1443 			     (unsigned int)tx_rs_thresh,
1444 			     (int)dev->data->port_id,
1445 			     (int)queue_idx);
1446 		return -EINVAL;
1447 	}
1448 
1449 	/* Free memory if needed. */
1450 	if (dev->data->tx_queues[queue_idx]) {
1451 		ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
1452 		dev->data->tx_queues[queue_idx] = NULL;
1453 	}
1454 
1455 	/* Allocate the TX queue data structure. */
1456 	txq = rte_zmalloc_socket(NULL,
1457 				 sizeof(struct ci_tx_queue),
1458 				 RTE_CACHE_LINE_SIZE,
1459 				 socket_id);
1460 	if (!txq) {
1461 		PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1462 			     "tx queue structure");
1463 		return -ENOMEM;
1464 	}
1465 
1466 	/* Allocate TX hardware ring descriptors. */
1467 	ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
1468 	ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1469 	tz = rte_eth_dma_zone_reserve(dev, "ice_tx_ring", queue_idx,
1470 				      ring_size, ICE_RING_BASE_ALIGN,
1471 				      socket_id);
1472 	if (!tz) {
1473 		ice_tx_queue_release(txq);
1474 		PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
1475 		return -ENOMEM;
1476 	}
1477 
1478 	txq->mz = tz;
1479 	txq->nb_tx_desc = nb_desc;
1480 	txq->tx_rs_thresh = tx_rs_thresh;
1481 	txq->tx_free_thresh = tx_free_thresh;
1482 	txq->queue_id = queue_idx;
1483 
1484 	txq->reg_idx = vsi->base_queue + queue_idx;
1485 	txq->port_id = dev->data->port_id;
1486 	txq->offloads = offloads;
1487 	txq->ice_vsi = vsi;
1488 	txq->tx_deferred_start = tx_conf->tx_deferred_start;
1489 
1490 	txq->tx_ring_dma = tz->iova;
1491 	txq->ice_tx_ring = tz->addr;
1492 
1493 	/* Allocate software ring */
1494 	txq->sw_ring =
1495 		rte_zmalloc_socket(NULL,
1496 				   sizeof(struct ci_tx_entry) * nb_desc,
1497 				   RTE_CACHE_LINE_SIZE,
1498 				   socket_id);
1499 	if (!txq->sw_ring) {
1500 		ice_tx_queue_release(txq);
1501 		PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
1502 		return -ENOMEM;
1503 	}
1504 
1505 	ice_reset_tx_queue(txq);
1506 	txq->q_set = true;
1507 	dev->data->tx_queues[queue_idx] = txq;
1508 	ice_set_tx_function_flag(dev, txq);
1509 
1510 	return 0;
1511 }
1512 
1513 void
1514 ice_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1515 {
1516 	ice_rx_queue_release(dev->data->rx_queues[qid]);
1517 }
1518 
1519 void
1520 ice_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1521 {
1522 	ice_tx_queue_release(dev->data->tx_queues[qid]);
1523 }
1524 
1525 void
1526 ice_tx_queue_release(void *txq)
1527 {
1528 	struct ci_tx_queue *q = (struct ci_tx_queue *)txq;
1529 
1530 	if (!q) {
1531 		PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
1532 		return;
1533 	}
1534 
1535 	ci_txq_release_all_mbufs(q, false);
1536 	rte_free(q->sw_ring);
1537 	rte_memzone_free(q->mz);
1538 	rte_free(q);
1539 }
1540 
1541 void
1542 ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1543 		 struct rte_eth_rxq_info *qinfo)
1544 {
1545 	struct ice_rx_queue *rxq;
1546 
1547 	rxq = dev->data->rx_queues[queue_id];
1548 
1549 	qinfo->mp = rxq->mp;
1550 	qinfo->scattered_rx = dev->data->scattered_rx;
1551 	qinfo->nb_desc = rxq->nb_rx_desc;
1552 
1553 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1554 	qinfo->conf.rx_drop_en = rxq->drop_en;
1555 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1556 }
1557 
1558 void
1559 ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1560 		 struct rte_eth_txq_info *qinfo)
1561 {
1562 	struct ci_tx_queue *txq;
1563 
1564 	txq = dev->data->tx_queues[queue_id];
1565 
1566 	qinfo->nb_desc = txq->nb_tx_desc;
1567 
1568 	qinfo->conf.tx_thresh.pthresh = ICE_DEFAULT_TX_PTHRESH;
1569 	qinfo->conf.tx_thresh.hthresh = ICE_DEFAULT_TX_HTHRESH;
1570 	qinfo->conf.tx_thresh.wthresh = ICE_DEFAULT_TX_WTHRESH;
1571 
1572 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1573 	qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
1574 	qinfo->conf.offloads = txq->offloads;
1575 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1576 }
1577 
1578 uint32_t
1579 ice_rx_queue_count(void *rx_queue)
1580 {
1581 #define ICE_RXQ_SCAN_INTERVAL 4
1582 	volatile union ice_rx_flex_desc *rxdp;
1583 	struct ice_rx_queue *rxq;
1584 	uint16_t desc = 0;
1585 
1586 	rxq = rx_queue;
1587 	rxdp = &rxq->rx_ring[rxq->rx_tail];
1588 	while ((desc < rxq->nb_rx_desc) &&
1589 	       rte_le_to_cpu_16(rxdp->wb.status_error0) &
1590 	       (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
1591 		/**
1592 		 * Check the DD bit of a rx descriptor of each 4 in a group,
1593 		 * to avoid checking too frequently and downgrading performance
1594 		 * too much.
1595 		 */
1596 		desc += ICE_RXQ_SCAN_INTERVAL;
1597 		rxdp += ICE_RXQ_SCAN_INTERVAL;
1598 		if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1599 			rxdp = &(rxq->rx_ring[rxq->rx_tail +
1600 				 desc - rxq->nb_rx_desc]);
1601 	}
1602 
1603 	return desc;
1604 }
1605 
1606 #define ICE_RX_FLEX_ERR0_BITS	\
1607 	((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) |	\
1608 	 (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |	\
1609 	 (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |	\
1610 	 (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) |	\
1611 	 (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |	\
1612 	 (1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
1613 
1614 /* Rx L3/L4 checksum */
1615 static inline uint64_t
1616 ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
1617 {
1618 	uint64_t flags = 0;
1619 
1620 	/* check if HW has decoded the packet and checksum */
1621 	if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1622 		return 0;
1623 
1624 	if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
1625 		flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD |
1626 			  RTE_MBUF_F_RX_L4_CKSUM_GOOD |
1627 			  RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD);
1628 		return flags;
1629 	}
1630 
1631 	if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1632 		flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1633 	else
1634 		flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1635 
1636 	if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1637 		flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1638 	else
1639 		flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1640 
1641 	if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1642 		flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1643 
1644 	if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
1645 		flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
1646 	else
1647 		flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD;
1648 
1649 	return flags;
1650 }
1651 
1652 static inline void
1653 ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
1654 {
1655 	if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
1656 	    (1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1657 		mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
1658 		mb->vlan_tci =
1659 			rte_le_to_cpu_16(rxdp->wb.l2tag1);
1660 		PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
1661 			   rte_le_to_cpu_16(rxdp->wb.l2tag1));
1662 	} else {
1663 		mb->vlan_tci = 0;
1664 	}
1665 
1666 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1667 	if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1668 	    (1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1669 		mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED | RTE_MBUF_F_RX_QINQ |
1670 				RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN;
1671 		mb->vlan_tci_outer = mb->vlan_tci;
1672 		mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1673 		PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1674 			   rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1675 			   rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1676 	} else {
1677 		mb->vlan_tci_outer = 0;
1678 	}
1679 #endif
1680 	PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
1681 		   mb->vlan_tci, mb->vlan_tci_outer);
1682 }
1683 
1684 #define ICE_LOOK_AHEAD 8
1685 #if (ICE_LOOK_AHEAD != 8)
1686 #error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
1687 #endif
1688 
1689 #define ICE_PTP_TS_VALID 0x1
1690 
1691 static inline int
1692 ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
1693 {
1694 	volatile union ice_rx_flex_desc *rxdp;
1695 	struct ice_rx_entry *rxep;
1696 	struct rte_mbuf *mb;
1697 	uint16_t stat_err0;
1698 	uint16_t pkt_len, hdr_len;
1699 	int32_t s[ICE_LOOK_AHEAD], nb_dd;
1700 	int32_t i, j, nb_rx = 0;
1701 	uint64_t pkt_flags = 0;
1702 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1703 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1704 	bool is_tsinit = false;
1705 	uint64_t ts_ns;
1706 	struct ice_vsi *vsi = rxq->vsi;
1707 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
1708 	struct ice_adapter *ad = rxq->vsi->adapter;
1709 #endif
1710 	rxdp = &rxq->rx_ring[rxq->rx_tail];
1711 	rxep = &rxq->sw_ring[rxq->rx_tail];
1712 
1713 	stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1714 
1715 	/* Make sure there is at least 1 packet to receive */
1716 	if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1717 		return 0;
1718 
1719 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1720 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
1721 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
1722 
1723 		if (unlikely(sw_cur_time - rxq->hw_time_update > 4))
1724 			is_tsinit = 1;
1725 	}
1726 #endif
1727 
1728 	/**
1729 	 * Scan LOOK_AHEAD descriptors at a time to determine which
1730 	 * descriptors reference packets that are ready to be received.
1731 	 */
1732 	for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
1733 	     rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
1734 		/* Read desc statuses backwards to avoid race condition */
1735 		for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
1736 			s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1737 
1738 		rte_smp_rmb();
1739 
1740 		/* Compute how many status bits were set */
1741 		for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
1742 			nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
1743 
1744 		nb_rx += nb_dd;
1745 
1746 		/* Translate descriptor info to mbuf parameters */
1747 		for (j = 0; j < nb_dd; j++) {
1748 			mb = rxep[j].mbuf;
1749 			pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1750 				   ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1751 			mb->data_len = pkt_len;
1752 			mb->pkt_len = pkt_len;
1753 
1754 			if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
1755 				pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1756 					ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1757 				mb->data_len = pkt_len;
1758 				mb->pkt_len = pkt_len;
1759 			} else {
1760 				mb->nb_segs = (uint16_t)(mb->nb_segs + mb->next->nb_segs);
1761 				mb->next->next = NULL;
1762 				hdr_len = rte_le_to_cpu_16(rxdp[j].wb.hdr_len_sph_flex_flags1) &
1763 						ICE_RX_FLEX_DESC_HEADER_LEN_M;
1764 				pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1765 					ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1766 				mb->data_len = hdr_len;
1767 				mb->pkt_len = hdr_len + pkt_len;
1768 				mb->next->data_len = pkt_len;
1769 #ifdef RTE_ETHDEV_DEBUG_RX
1770 				rte_pktmbuf_dump(stdout, mb, rte_pktmbuf_pkt_len(mb));
1771 #endif
1772 			}
1773 
1774 			mb->ol_flags = 0;
1775 			stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1776 			pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
1777 			mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1778 				rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1779 			ice_rxd_to_vlan_tci(mb, &rxdp[j]);
1780 			rxd_to_pkt_fields_ops[rxq->rxdid](rxq, mb, &rxdp[j]);
1781 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1782 			if (ice_timestamp_dynflag > 0 &&
1783 			    (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
1784 				rxq->time_high =
1785 				rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
1786 				if (unlikely(is_tsinit)) {
1787 					ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1,
1788 									   rxq->time_high);
1789 					rxq->hw_time_low = (uint32_t)ts_ns;
1790 					rxq->hw_time_high = (uint32_t)(ts_ns >> 32);
1791 					is_tsinit = false;
1792 				} else {
1793 					if (rxq->time_high < rxq->hw_time_low)
1794 						rxq->hw_time_high += 1;
1795 					ts_ns = (uint64_t)rxq->hw_time_high << 32 | rxq->time_high;
1796 					rxq->hw_time_low = rxq->time_high;
1797 				}
1798 				rxq->hw_time_update = rte_get_timer_cycles() /
1799 						     (rte_get_timer_hz() / 1000);
1800 				*RTE_MBUF_DYNFIELD(mb,
1801 						   ice_timestamp_dynfield_offset,
1802 						   rte_mbuf_timestamp_t *) = ts_ns;
1803 				pkt_flags |= ice_timestamp_dynflag;
1804 			}
1805 
1806 			if (ad->ptp_ena && ((mb->packet_type &
1807 			    RTE_PTYPE_L2_MASK) == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
1808 				rxq->time_high =
1809 				   rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
1810 				mb->timesync = rxq->queue_id;
1811 				pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
1812 				if (rxdp[j].wb.time_stamp_low &
1813 				    ICE_PTP_TS_VALID)
1814 					pkt_flags |=
1815 						RTE_MBUF_F_RX_IEEE1588_TMST;
1816 			}
1817 #endif
1818 			mb->ol_flags |= pkt_flags;
1819 		}
1820 
1821 		for (j = 0; j < ICE_LOOK_AHEAD; j++)
1822 			rxq->rx_stage[i + j] = rxep[j].mbuf;
1823 
1824 		if (nb_dd != ICE_LOOK_AHEAD)
1825 			break;
1826 	}
1827 
1828 	/* Clear software ring entries */
1829 	for (i = 0; i < nb_rx; i++)
1830 		rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1831 
1832 	PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
1833 		   "port_id=%u, queue_id=%u, nb_rx=%d",
1834 		   rxq->port_id, rxq->queue_id, nb_rx);
1835 
1836 	return nb_rx;
1837 }
1838 
1839 static inline uint16_t
1840 ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
1841 		       struct rte_mbuf **rx_pkts,
1842 		       uint16_t nb_pkts)
1843 {
1844 	uint16_t i;
1845 	struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1846 
1847 	nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1848 
1849 	for (i = 0; i < nb_pkts; i++)
1850 		rx_pkts[i] = stage[i];
1851 
1852 	rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1853 	rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1854 
1855 	return nb_pkts;
1856 }
1857 
1858 static inline int
1859 ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
1860 {
1861 	volatile union ice_rx_flex_desc *rxdp;
1862 	struct ice_rx_entry *rxep;
1863 	struct rte_mbuf *mb;
1864 	uint16_t alloc_idx, i;
1865 	uint64_t dma_addr;
1866 	int diag, diag_pay;
1867 	uint64_t pay_addr;
1868 	struct rte_mbuf *mbufs_pay[rxq->rx_free_thresh];
1869 
1870 	/* Allocate buffers in bulk */
1871 	alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1872 			       (rxq->rx_free_thresh - 1));
1873 	rxep = &rxq->sw_ring[alloc_idx];
1874 	diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1875 				    rxq->rx_free_thresh);
1876 	if (unlikely(diag != 0)) {
1877 		PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1878 		return -ENOMEM;
1879 	}
1880 
1881 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) {
1882 		diag_pay = rte_mempool_get_bulk(rxq->rxseg[1].mp,
1883 				(void *)mbufs_pay, rxq->rx_free_thresh);
1884 		if (unlikely(diag_pay != 0)) {
1885 			rte_mempool_put_bulk(rxq->mp, (void *)rxep,
1886 				    rxq->rx_free_thresh);
1887 			PMD_RX_LOG(ERR, "Failed to get payload mbufs in bulk");
1888 			return -ENOMEM;
1889 		}
1890 	}
1891 
1892 	rxdp = &rxq->rx_ring[alloc_idx];
1893 	for (i = 0; i < rxq->rx_free_thresh; i++) {
1894 		if (likely(i < (rxq->rx_free_thresh - 1)))
1895 			/* Prefetch next mbuf */
1896 			rte_prefetch0(rxep[i + 1].mbuf);
1897 
1898 		mb = rxep[i].mbuf;
1899 		rte_mbuf_refcnt_set(mb, 1);
1900 		mb->data_off = RTE_PKTMBUF_HEADROOM;
1901 		mb->nb_segs = 1;
1902 		mb->port = rxq->port_id;
1903 		dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1904 
1905 		if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
1906 			mb->next = NULL;
1907 			rxdp[i].read.hdr_addr = 0;
1908 			rxdp[i].read.pkt_addr = dma_addr;
1909 		} else {
1910 			mb->next = mbufs_pay[i];
1911 			pay_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbufs_pay[i]));
1912 			rxdp[i].read.hdr_addr = dma_addr;
1913 			rxdp[i].read.pkt_addr = pay_addr;
1914 		}
1915 	}
1916 
1917 	/* Update Rx tail register */
1918 	ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1919 
1920 	rxq->rx_free_trigger =
1921 		(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1922 	if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1923 		rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1924 
1925 	return 0;
1926 }
1927 
1928 static inline uint16_t
1929 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1930 {
1931 	struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
1932 	uint16_t nb_rx = 0;
1933 
1934 	if (!nb_pkts)
1935 		return 0;
1936 
1937 	if (rxq->rx_nb_avail)
1938 		return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1939 
1940 	nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
1941 	rxq->rx_next_avail = 0;
1942 	rxq->rx_nb_avail = nb_rx;
1943 	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1944 
1945 	if (rxq->rx_tail > rxq->rx_free_trigger) {
1946 		if (ice_rx_alloc_bufs(rxq) != 0) {
1947 			uint16_t i, j;
1948 
1949 			rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed +=
1950 				rxq->rx_free_thresh;
1951 			PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1952 				   "port_id=%u, queue_id=%u",
1953 				   rxq->port_id, rxq->queue_id);
1954 			rxq->rx_nb_avail = 0;
1955 			rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1956 			for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1957 				rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1958 
1959 			return 0;
1960 		}
1961 	}
1962 
1963 	if (rxq->rx_tail >= rxq->nb_rx_desc)
1964 		rxq->rx_tail = 0;
1965 
1966 	if (rxq->rx_nb_avail)
1967 		return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1968 
1969 	return 0;
1970 }
1971 
1972 static uint16_t
1973 ice_recv_pkts_bulk_alloc(void *rx_queue,
1974 			 struct rte_mbuf **rx_pkts,
1975 			 uint16_t nb_pkts)
1976 {
1977 	uint16_t nb_rx = 0;
1978 	uint16_t n;
1979 	uint16_t count;
1980 
1981 	if (unlikely(nb_pkts == 0))
1982 		return nb_rx;
1983 
1984 	if (likely(nb_pkts <= ICE_RX_MAX_BURST))
1985 		return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1986 
1987 	while (nb_pkts) {
1988 		n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
1989 		count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1990 		nb_rx = (uint16_t)(nb_rx + count);
1991 		nb_pkts = (uint16_t)(nb_pkts - count);
1992 		if (count < n)
1993 			break;
1994 	}
1995 
1996 	return nb_rx;
1997 }
1998 
1999 static uint16_t
2000 ice_recv_scattered_pkts(void *rx_queue,
2001 			struct rte_mbuf **rx_pkts,
2002 			uint16_t nb_pkts)
2003 {
2004 	struct ice_rx_queue *rxq = rx_queue;
2005 	volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2006 	volatile union ice_rx_flex_desc *rxdp;
2007 	union ice_rx_flex_desc rxd;
2008 	struct ice_rx_entry *sw_ring = rxq->sw_ring;
2009 	struct ice_rx_entry *rxe;
2010 	struct rte_mbuf *first_seg = rxq->pkt_first_seg;
2011 	struct rte_mbuf *last_seg = rxq->pkt_last_seg;
2012 	struct rte_mbuf *nmb; /* new allocated mbuf */
2013 	struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2014 	uint16_t rx_id = rxq->rx_tail;
2015 	uint16_t nb_rx = 0;
2016 	uint16_t nb_hold = 0;
2017 	uint16_t rx_packet_len;
2018 	uint16_t rx_stat_err0;
2019 	uint64_t dma_addr;
2020 	uint64_t pkt_flags;
2021 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2022 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2023 	bool is_tsinit = false;
2024 	uint64_t ts_ns;
2025 	struct ice_vsi *vsi = rxq->vsi;
2026 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
2027 	struct ice_adapter *ad = rxq->vsi->adapter;
2028 
2029 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
2030 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
2031 
2032 		if (unlikely(sw_cur_time - rxq->hw_time_update > 4))
2033 			is_tsinit = true;
2034 	}
2035 #endif
2036 
2037 	while (nb_rx < nb_pkts) {
2038 		rxdp = &rx_ring[rx_id];
2039 		rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2040 
2041 		/* Check the DD bit first */
2042 		if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2043 			break;
2044 
2045 		/* allocate mbuf */
2046 		nmb = rte_mbuf_raw_alloc(rxq->mp);
2047 		if (unlikely(!nmb)) {
2048 			rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2049 			break;
2050 		}
2051 		rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2052 
2053 		nb_hold++;
2054 		rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2055 		rx_id++;
2056 		if (unlikely(rx_id == rxq->nb_rx_desc))
2057 			rx_id = 0;
2058 
2059 		/* Prefetch next mbuf */
2060 		rte_prefetch0(sw_ring[rx_id].mbuf);
2061 
2062 		/**
2063 		 * When next RX descriptor is on a cache line boundary,
2064 		 * prefetch the next 4 RX descriptors and next 8 pointers
2065 		 * to mbufs.
2066 		 */
2067 		if ((rx_id & 0x3) == 0) {
2068 			rte_prefetch0(&rx_ring[rx_id]);
2069 			rte_prefetch0(&sw_ring[rx_id]);
2070 		}
2071 
2072 		rxm = rxe->mbuf;
2073 		rxe->mbuf = nmb;
2074 		dma_addr =
2075 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2076 
2077 		/* Set data buffer address and data length of the mbuf */
2078 		rxdp->read.hdr_addr = 0;
2079 		rxdp->read.pkt_addr = dma_addr;
2080 		rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
2081 				ICE_RX_FLX_DESC_PKT_LEN_M;
2082 		rxm->data_len = rx_packet_len;
2083 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
2084 
2085 		/**
2086 		 * If this is the first buffer of the received packet, set the
2087 		 * pointer to the first mbuf of the packet and initialize its
2088 		 * context. Otherwise, update the total length and the number
2089 		 * of segments of the current scattered packet, and update the
2090 		 * pointer to the last mbuf of the current packet.
2091 		 */
2092 		if (!first_seg) {
2093 			first_seg = rxm;
2094 			first_seg->nb_segs = 1;
2095 			first_seg->pkt_len = rx_packet_len;
2096 		} else {
2097 			first_seg->pkt_len =
2098 				(uint16_t)(first_seg->pkt_len +
2099 					   rx_packet_len);
2100 			first_seg->nb_segs++;
2101 			last_seg->next = rxm;
2102 		}
2103 
2104 		/**
2105 		 * If this is not the last buffer of the received packet,
2106 		 * update the pointer to the last mbuf of the current scattered
2107 		 * packet and continue to parse the RX ring.
2108 		 */
2109 		if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
2110 			last_seg = rxm;
2111 			continue;
2112 		}
2113 
2114 		/**
2115 		 * This is the last buffer of the received packet. If the CRC
2116 		 * is not stripped by the hardware:
2117 		 *  - Subtract the CRC length from the total packet length.
2118 		 *  - If the last buffer only contains the whole CRC or a part
2119 		 *  of it, free the mbuf associated to the last buffer. If part
2120 		 *  of the CRC is also contained in the previous mbuf, subtract
2121 		 *  the length of that CRC part from the data length of the
2122 		 *  previous mbuf.
2123 		 */
2124 		rxm->next = NULL;
2125 		if (unlikely(rxq->crc_len > 0)) {
2126 			first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
2127 			if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
2128 				rte_pktmbuf_free_seg(rxm);
2129 				first_seg->nb_segs--;
2130 				last_seg->data_len =
2131 					(uint16_t)(last_seg->data_len -
2132 					(RTE_ETHER_CRC_LEN - rx_packet_len));
2133 				last_seg->next = NULL;
2134 			} else
2135 				rxm->data_len = (uint16_t)(rx_packet_len -
2136 							   RTE_ETHER_CRC_LEN);
2137 		} else if (rx_packet_len == 0) {
2138 			rte_pktmbuf_free_seg(rxm);
2139 			first_seg->nb_segs--;
2140 			last_seg->next = NULL;
2141 		}
2142 
2143 		first_seg->port = rxq->port_id;
2144 		first_seg->ol_flags = 0;
2145 		first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2146 			rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2147 		ice_rxd_to_vlan_tci(first_seg, &rxd);
2148 		rxd_to_pkt_fields_ops[rxq->rxdid](rxq, first_seg, &rxd);
2149 		pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2150 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2151 		if (ice_timestamp_dynflag > 0 &&
2152 		    (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
2153 			rxq->time_high =
2154 			   rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2155 			if (unlikely(is_tsinit)) {
2156 				ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1, rxq->time_high);
2157 				rxq->hw_time_low = (uint32_t)ts_ns;
2158 				rxq->hw_time_high = (uint32_t)(ts_ns >> 32);
2159 				is_tsinit = false;
2160 			} else {
2161 				if (rxq->time_high < rxq->hw_time_low)
2162 					rxq->hw_time_high += 1;
2163 				ts_ns = (uint64_t)rxq->hw_time_high << 32 | rxq->time_high;
2164 				rxq->hw_time_low = rxq->time_high;
2165 			}
2166 			rxq->hw_time_update = rte_get_timer_cycles() /
2167 					     (rte_get_timer_hz() / 1000);
2168 			*RTE_MBUF_DYNFIELD(first_seg,
2169 					   (ice_timestamp_dynfield_offset),
2170 					   rte_mbuf_timestamp_t *) = ts_ns;
2171 			pkt_flags |= ice_timestamp_dynflag;
2172 		}
2173 
2174 		if (ad->ptp_ena && ((first_seg->packet_type & RTE_PTYPE_L2_MASK)
2175 		    == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
2176 			rxq->time_high =
2177 			   rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2178 			first_seg->timesync = rxq->queue_id;
2179 			pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
2180 		}
2181 #endif
2182 		first_seg->ol_flags |= pkt_flags;
2183 		/* Prefetch data of first segment, if configured to do so. */
2184 		rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
2185 					  first_seg->data_off));
2186 		rx_pkts[nb_rx++] = first_seg;
2187 		first_seg = NULL;
2188 	}
2189 
2190 	/* Record index of the next RX descriptor to probe. */
2191 	rxq->rx_tail = rx_id;
2192 	rxq->pkt_first_seg = first_seg;
2193 	rxq->pkt_last_seg = last_seg;
2194 
2195 	/**
2196 	 * If the number of free RX descriptors is greater than the RX free
2197 	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2198 	 * register. Update the RDT with the value of the last processed RX
2199 	 * descriptor minus 1, to guarantee that the RDT register is never
2200 	 * equal to the RDH register, which creates a "full" ring situation
2201 	 * from the hardware point of view.
2202 	 */
2203 	nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2204 	if (nb_hold > rxq->rx_free_thresh) {
2205 		rx_id = (uint16_t)(rx_id == 0 ?
2206 				   (rxq->nb_rx_desc - 1) : (rx_id - 1));
2207 		/* write TAIL register */
2208 		ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2209 		nb_hold = 0;
2210 	}
2211 	rxq->nb_rx_hold = nb_hold;
2212 
2213 	/* return received packet in the burst */
2214 	return nb_rx;
2215 }
2216 
2217 const uint32_t *
2218 ice_dev_supported_ptypes_get(struct rte_eth_dev *dev, size_t *no_of_elements)
2219 {
2220 	struct ice_adapter *ad =
2221 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2222 	const uint32_t *ptypes;
2223 
2224 	static const uint32_t ptypes_os[] = {
2225 		/* refers to ice_get_default_pkt_type() */
2226 		RTE_PTYPE_L2_ETHER,
2227 		RTE_PTYPE_L2_ETHER_TIMESYNC,
2228 		RTE_PTYPE_L2_ETHER_LLDP,
2229 		RTE_PTYPE_L2_ETHER_ARP,
2230 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2231 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2232 		RTE_PTYPE_L4_FRAG,
2233 		RTE_PTYPE_L4_ICMP,
2234 		RTE_PTYPE_L4_NONFRAG,
2235 		RTE_PTYPE_L4_SCTP,
2236 		RTE_PTYPE_L4_TCP,
2237 		RTE_PTYPE_L4_UDP,
2238 		RTE_PTYPE_TUNNEL_GRENAT,
2239 		RTE_PTYPE_TUNNEL_IP,
2240 		RTE_PTYPE_INNER_L2_ETHER,
2241 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2242 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2243 		RTE_PTYPE_INNER_L4_FRAG,
2244 		RTE_PTYPE_INNER_L4_ICMP,
2245 		RTE_PTYPE_INNER_L4_NONFRAG,
2246 		RTE_PTYPE_INNER_L4_SCTP,
2247 		RTE_PTYPE_INNER_L4_TCP,
2248 		RTE_PTYPE_INNER_L4_UDP,
2249 	};
2250 
2251 	static const uint32_t ptypes_comms[] = {
2252 		/* refers to ice_get_default_pkt_type() */
2253 		RTE_PTYPE_L2_ETHER,
2254 		RTE_PTYPE_L2_ETHER_TIMESYNC,
2255 		RTE_PTYPE_L2_ETHER_LLDP,
2256 		RTE_PTYPE_L2_ETHER_ARP,
2257 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2258 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2259 		RTE_PTYPE_L4_FRAG,
2260 		RTE_PTYPE_L4_ICMP,
2261 		RTE_PTYPE_L4_NONFRAG,
2262 		RTE_PTYPE_L4_SCTP,
2263 		RTE_PTYPE_L4_TCP,
2264 		RTE_PTYPE_L4_UDP,
2265 		RTE_PTYPE_TUNNEL_GRENAT,
2266 		RTE_PTYPE_TUNNEL_IP,
2267 		RTE_PTYPE_INNER_L2_ETHER,
2268 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2269 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2270 		RTE_PTYPE_INNER_L4_FRAG,
2271 		RTE_PTYPE_INNER_L4_ICMP,
2272 		RTE_PTYPE_INNER_L4_NONFRAG,
2273 		RTE_PTYPE_INNER_L4_SCTP,
2274 		RTE_PTYPE_INNER_L4_TCP,
2275 		RTE_PTYPE_INNER_L4_UDP,
2276 		RTE_PTYPE_TUNNEL_GTPC,
2277 		RTE_PTYPE_TUNNEL_GTPU,
2278 		RTE_PTYPE_L2_ETHER_PPPOE,
2279 	};
2280 
2281 	if (ad->active_pkg_type == ICE_PKG_TYPE_COMMS) {
2282 		*no_of_elements = RTE_DIM(ptypes_comms);
2283 		ptypes = ptypes_comms;
2284 	} else {
2285 		*no_of_elements = RTE_DIM(ptypes_os);
2286 		ptypes = ptypes_os;
2287 	}
2288 
2289 	if (dev->rx_pkt_burst == ice_recv_pkts ||
2290 	    dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
2291 	    dev->rx_pkt_burst == ice_recv_scattered_pkts)
2292 		return ptypes;
2293 
2294 #ifdef RTE_ARCH_X86
2295 	if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
2296 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
2297 #ifdef CC_AVX512_SUPPORT
2298 	    dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
2299 	    dev->rx_pkt_burst == ice_recv_pkts_vec_avx512_offload ||
2300 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
2301 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512_offload ||
2302 #endif
2303 	    dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
2304 	    dev->rx_pkt_burst == ice_recv_pkts_vec_avx2_offload ||
2305 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2 ||
2306 	    dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2_offload)
2307 		return ptypes;
2308 #endif
2309 
2310 	return NULL;
2311 }
2312 
2313 int
2314 ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
2315 {
2316 	volatile union ice_rx_flex_desc *rxdp;
2317 	struct ice_rx_queue *rxq = rx_queue;
2318 	uint32_t desc;
2319 
2320 	if (unlikely(offset >= rxq->nb_rx_desc))
2321 		return -EINVAL;
2322 
2323 	if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2324 		return RTE_ETH_RX_DESC_UNAVAIL;
2325 
2326 	desc = rxq->rx_tail + offset;
2327 	if (desc >= rxq->nb_rx_desc)
2328 		desc -= rxq->nb_rx_desc;
2329 
2330 	rxdp = &rxq->rx_ring[desc];
2331 	if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
2332 	    (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
2333 		return RTE_ETH_RX_DESC_DONE;
2334 
2335 	return RTE_ETH_RX_DESC_AVAIL;
2336 }
2337 
2338 int
2339 ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
2340 {
2341 	struct ci_tx_queue *txq = tx_queue;
2342 	volatile uint64_t *status;
2343 	uint64_t mask, expect;
2344 	uint32_t desc;
2345 
2346 	if (unlikely(offset >= txq->nb_tx_desc))
2347 		return -EINVAL;
2348 
2349 	desc = txq->tx_tail + offset;
2350 	/* go to next desc that has the RS bit */
2351 	desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2352 		txq->tx_rs_thresh;
2353 	if (desc >= txq->nb_tx_desc) {
2354 		desc -= txq->nb_tx_desc;
2355 		if (desc >= txq->nb_tx_desc)
2356 			desc -= txq->nb_tx_desc;
2357 	}
2358 
2359 	status = &txq->ice_tx_ring[desc].cmd_type_offset_bsz;
2360 	mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
2361 	expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
2362 				  ICE_TXD_QW1_DTYPE_S);
2363 	if ((*status & mask) == expect)
2364 		return RTE_ETH_TX_DESC_DONE;
2365 
2366 	return RTE_ETH_TX_DESC_FULL;
2367 }
2368 
2369 void
2370 ice_free_queues(struct rte_eth_dev *dev)
2371 {
2372 	uint16_t i;
2373 
2374 	PMD_INIT_FUNC_TRACE();
2375 
2376 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
2377 		if (!dev->data->rx_queues[i])
2378 			continue;
2379 		ice_rx_queue_release(dev->data->rx_queues[i]);
2380 		dev->data->rx_queues[i] = NULL;
2381 	}
2382 	dev->data->nb_rx_queues = 0;
2383 
2384 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
2385 		if (!dev->data->tx_queues[i])
2386 			continue;
2387 		ice_tx_queue_release(dev->data->tx_queues[i]);
2388 		dev->data->tx_queues[i] = NULL;
2389 	}
2390 	dev->data->nb_tx_queues = 0;
2391 }
2392 
2393 #define ICE_FDIR_NUM_TX_DESC  ICE_MIN_RING_DESC
2394 #define ICE_FDIR_NUM_RX_DESC  ICE_MIN_RING_DESC
2395 
2396 int
2397 ice_fdir_setup_tx_resources(struct ice_pf *pf)
2398 {
2399 	struct ci_tx_queue *txq;
2400 	const struct rte_memzone *tz = NULL;
2401 	uint32_t ring_size;
2402 	struct rte_eth_dev *dev;
2403 
2404 	if (!pf) {
2405 		PMD_DRV_LOG(ERR, "PF is not available");
2406 		return -EINVAL;
2407 	}
2408 
2409 	dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2410 
2411 	/* Allocate the TX queue data structure. */
2412 	txq = rte_zmalloc_socket("ice fdir tx queue",
2413 				 sizeof(struct ci_tx_queue),
2414 				 RTE_CACHE_LINE_SIZE,
2415 				 SOCKET_ID_ANY);
2416 	if (!txq) {
2417 		PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2418 			    "tx queue structure.");
2419 		return -ENOMEM;
2420 	}
2421 
2422 	/* Allocate TX hardware ring descriptors. */
2423 	ring_size = sizeof(struct ice_tx_desc) * ICE_FDIR_NUM_TX_DESC;
2424 	ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2425 
2426 	tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2427 				      ICE_FDIR_QUEUE_ID, ring_size,
2428 				      ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2429 	if (!tz) {
2430 		ice_tx_queue_release(txq);
2431 		PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2432 		return -ENOMEM;
2433 	}
2434 
2435 	txq->mz = tz;
2436 	txq->nb_tx_desc = ICE_FDIR_NUM_TX_DESC;
2437 	txq->queue_id = ICE_FDIR_QUEUE_ID;
2438 	txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2439 	txq->ice_vsi = pf->fdir.fdir_vsi;
2440 
2441 	txq->tx_ring_dma = tz->iova;
2442 	txq->ice_tx_ring = (struct ice_tx_desc *)tz->addr;
2443 	/*
2444 	 * don't need to allocate software ring and reset for the fdir
2445 	 * program queue just set the queue has been configured.
2446 	 */
2447 	txq->q_set = true;
2448 	pf->fdir.txq = txq;
2449 
2450 
2451 	return ICE_SUCCESS;
2452 }
2453 
2454 int
2455 ice_fdir_setup_rx_resources(struct ice_pf *pf)
2456 {
2457 	struct ice_rx_queue *rxq;
2458 	const struct rte_memzone *rz = NULL;
2459 	uint32_t ring_size;
2460 	struct rte_eth_dev *dev;
2461 
2462 	if (!pf) {
2463 		PMD_DRV_LOG(ERR, "PF is not available");
2464 		return -EINVAL;
2465 	}
2466 
2467 	dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2468 
2469 	/* Allocate the RX queue data structure. */
2470 	rxq = rte_zmalloc_socket("ice fdir rx queue",
2471 				 sizeof(struct ice_rx_queue),
2472 				 RTE_CACHE_LINE_SIZE,
2473 				 SOCKET_ID_ANY);
2474 	if (!rxq) {
2475 		PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2476 			    "rx queue structure.");
2477 		return -ENOMEM;
2478 	}
2479 
2480 	/* Allocate RX hardware ring descriptors. */
2481 	ring_size = sizeof(union ice_32byte_rx_desc) * ICE_FDIR_NUM_RX_DESC;
2482 	ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2483 
2484 	rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2485 				      ICE_FDIR_QUEUE_ID, ring_size,
2486 				      ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2487 	if (!rz) {
2488 		ice_rx_queue_release(rxq);
2489 		PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2490 		return -ENOMEM;
2491 	}
2492 
2493 	rxq->mz = rz;
2494 	rxq->nb_rx_desc = ICE_FDIR_NUM_RX_DESC;
2495 	rxq->queue_id = ICE_FDIR_QUEUE_ID;
2496 	rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2497 	rxq->vsi = pf->fdir.fdir_vsi;
2498 
2499 	rxq->rx_ring_dma = rz->iova;
2500 	memset(rz->addr, 0, ICE_FDIR_NUM_RX_DESC *
2501 	       sizeof(union ice_32byte_rx_desc));
2502 	rxq->rx_ring = (union ice_rx_flex_desc *)rz->addr;
2503 
2504 	/*
2505 	 * Don't need to allocate software ring and reset for the fdir
2506 	 * rx queue, just set the queue has been configured.
2507 	 */
2508 	rxq->q_set = true;
2509 	pf->fdir.rxq = rxq;
2510 
2511 	rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
2512 
2513 	return ICE_SUCCESS;
2514 }
2515 
2516 uint16_t
2517 ice_recv_pkts(void *rx_queue,
2518 	      struct rte_mbuf **rx_pkts,
2519 	      uint16_t nb_pkts)
2520 {
2521 	struct ice_rx_queue *rxq = rx_queue;
2522 	volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2523 	volatile union ice_rx_flex_desc *rxdp;
2524 	union ice_rx_flex_desc rxd;
2525 	struct ice_rx_entry *sw_ring = rxq->sw_ring;
2526 	struct ice_rx_entry *rxe;
2527 	struct rte_mbuf *nmb; /* new allocated mbuf */
2528 	struct rte_mbuf *nmb_pay; /* new allocated payload mbuf */
2529 	struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2530 	uint16_t rx_id = rxq->rx_tail;
2531 	uint16_t nb_rx = 0;
2532 	uint16_t nb_hold = 0;
2533 	uint16_t rx_packet_len;
2534 	uint16_t rx_header_len;
2535 	uint16_t rx_stat_err0;
2536 	uint64_t dma_addr;
2537 	uint64_t pkt_flags;
2538 	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2539 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2540 	bool is_tsinit = false;
2541 	uint64_t ts_ns;
2542 	struct ice_vsi *vsi = rxq->vsi;
2543 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
2544 	struct ice_adapter *ad = rxq->vsi->adapter;
2545 
2546 	if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
2547 		uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
2548 
2549 		if (unlikely(sw_cur_time - rxq->hw_time_update > 4))
2550 			is_tsinit = 1;
2551 	}
2552 #endif
2553 
2554 	while (nb_rx < nb_pkts) {
2555 		rxdp = &rx_ring[rx_id];
2556 		rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2557 
2558 		/* Check the DD bit first */
2559 		if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2560 			break;
2561 
2562 		/* allocate header mbuf */
2563 		nmb = rte_mbuf_raw_alloc(rxq->mp);
2564 		if (unlikely(!nmb)) {
2565 			rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2566 			break;
2567 		}
2568 
2569 		rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2570 
2571 		nb_hold++;
2572 		rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2573 		rx_id++;
2574 		if (unlikely(rx_id == rxq->nb_rx_desc))
2575 			rx_id = 0;
2576 		rxm = rxe->mbuf;
2577 		rxe->mbuf = nmb;
2578 		dma_addr =
2579 			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2580 
2581 		if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
2582 			/**
2583 			 * fill the read format of descriptor with physic address in
2584 			 * new allocated mbuf: nmb
2585 			 */
2586 			rxdp->read.hdr_addr = 0;
2587 			rxdp->read.pkt_addr = dma_addr;
2588 		} else {
2589 			/* allocate payload mbuf */
2590 			nmb_pay = rte_mbuf_raw_alloc(rxq->rxseg[1].mp);
2591 			if (unlikely(!nmb_pay)) {
2592 				rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2593 				rxe->mbuf = NULL;
2594 				nb_hold--;
2595 				if (unlikely(rx_id == 0))
2596 					rx_id = rxq->nb_rx_desc;
2597 
2598 				rx_id--;
2599 				rte_pktmbuf_free(nmb);
2600 				break;
2601 			}
2602 
2603 			nmb->next = nmb_pay;
2604 			nmb_pay->next = NULL;
2605 
2606 			/**
2607 			 * fill the read format of descriptor with physic address in
2608 			 * new allocated mbuf: nmb
2609 			 */
2610 			rxdp->read.hdr_addr = dma_addr;
2611 			rxdp->read.pkt_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb_pay));
2612 		}
2613 
2614 		/* fill old mbuf with received descriptor: rxd */
2615 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
2616 		rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
2617 		if (!(rxq->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT)) {
2618 			rxm->nb_segs = 1;
2619 			rxm->next = NULL;
2620 			/* calculate rx_packet_len of the received pkt */
2621 			rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2622 					ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2623 			rxm->data_len = rx_packet_len;
2624 			rxm->pkt_len = rx_packet_len;
2625 		} else {
2626 			rxm->nb_segs = (uint16_t)(rxm->nb_segs + rxm->next->nb_segs);
2627 			rxm->next->next = NULL;
2628 			/* calculate rx_packet_len of the received pkt */
2629 			rx_header_len = rte_le_to_cpu_16(rxd.wb.hdr_len_sph_flex_flags1) &
2630 					ICE_RX_FLEX_DESC_HEADER_LEN_M;
2631 			rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2632 					ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2633 			rxm->data_len = rx_header_len;
2634 			rxm->pkt_len = rx_header_len + rx_packet_len;
2635 			rxm->next->data_len = rx_packet_len;
2636 
2637 #ifdef RTE_ETHDEV_DEBUG_RX
2638 			rte_pktmbuf_dump(stdout, rxm, rte_pktmbuf_pkt_len(rxm));
2639 #endif
2640 		}
2641 
2642 		rxm->port = rxq->port_id;
2643 		rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2644 			rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2645 		ice_rxd_to_vlan_tci(rxm, &rxd);
2646 		rxd_to_pkt_fields_ops[rxq->rxdid](rxq, rxm, &rxd);
2647 		pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2648 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2649 		if (ice_timestamp_dynflag > 0 &&
2650 		    (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
2651 			rxq->time_high =
2652 			   rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2653 			if (unlikely(is_tsinit)) {
2654 				ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1, rxq->time_high);
2655 				rxq->hw_time_low = (uint32_t)ts_ns;
2656 				rxq->hw_time_high = (uint32_t)(ts_ns >> 32);
2657 				is_tsinit = false;
2658 			} else {
2659 				if (rxq->time_high < rxq->hw_time_low)
2660 					rxq->hw_time_high += 1;
2661 				ts_ns = (uint64_t)rxq->hw_time_high << 32 | rxq->time_high;
2662 				rxq->hw_time_low = rxq->time_high;
2663 			}
2664 			rxq->hw_time_update = rte_get_timer_cycles() /
2665 					     (rte_get_timer_hz() / 1000);
2666 			*RTE_MBUF_DYNFIELD(rxm,
2667 					   (ice_timestamp_dynfield_offset),
2668 					   rte_mbuf_timestamp_t *) = ts_ns;
2669 			pkt_flags |= ice_timestamp_dynflag;
2670 		}
2671 
2672 		if (ad->ptp_ena && ((rxm->packet_type & RTE_PTYPE_L2_MASK) ==
2673 		    RTE_PTYPE_L2_ETHER_TIMESYNC)) {
2674 			rxq->time_high =
2675 			   rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2676 			rxm->timesync = rxq->queue_id;
2677 			pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
2678 		}
2679 #endif
2680 		rxm->ol_flags |= pkt_flags;
2681 		/* copy old mbuf to rx_pkts */
2682 		rx_pkts[nb_rx++] = rxm;
2683 	}
2684 
2685 	rxq->rx_tail = rx_id;
2686 	/**
2687 	 * If the number of free RX descriptors is greater than the RX free
2688 	 * threshold of the queue, advance the receive tail register of queue.
2689 	 * Update that register with the value of the last processed RX
2690 	 * descriptor minus 1.
2691 	 */
2692 	nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2693 	if (nb_hold > rxq->rx_free_thresh) {
2694 		rx_id = (uint16_t)(rx_id == 0 ?
2695 				   (rxq->nb_rx_desc - 1) : (rx_id - 1));
2696 		/* write TAIL register */
2697 		ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2698 		nb_hold = 0;
2699 	}
2700 	rxq->nb_rx_hold = nb_hold;
2701 
2702 	/* return received packet in the burst */
2703 	return nb_rx;
2704 }
2705 
2706 static inline void
2707 ice_parse_tunneling_params(uint64_t ol_flags,
2708 			    union ice_tx_offload tx_offload,
2709 			    uint32_t *cd_tunneling)
2710 {
2711 	/* EIPT: External (outer) IP header type */
2712 	if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
2713 		*cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
2714 	else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4)
2715 		*cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
2716 	else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)
2717 		*cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
2718 
2719 	/* EIPLEN: External (outer) IP header length, in DWords */
2720 	*cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
2721 		ICE_TXD_CTX_QW0_EIPLEN_S;
2722 
2723 	/* L4TUNT: L4 Tunneling Type */
2724 	switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
2725 	case RTE_MBUF_F_TX_TUNNEL_IPIP:
2726 		/* for non UDP / GRE tunneling, set to 00b */
2727 		break;
2728 	case RTE_MBUF_F_TX_TUNNEL_VXLAN:
2729 	case RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE:
2730 	case RTE_MBUF_F_TX_TUNNEL_GTP:
2731 	case RTE_MBUF_F_TX_TUNNEL_GENEVE:
2732 		*cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
2733 		break;
2734 	case RTE_MBUF_F_TX_TUNNEL_GRE:
2735 		*cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
2736 		break;
2737 	default:
2738 		PMD_TX_LOG(ERR, "Tunnel type not supported");
2739 		return;
2740 	}
2741 
2742 	/* L4TUNLEN: L4 Tunneling Length, in Words
2743 	 *
2744 	 * We depend on app to set rte_mbuf.l2_len correctly.
2745 	 * For IP in GRE it should be set to the length of the GRE
2746 	 * header;
2747 	 * For MAC in GRE or MAC in UDP it should be set to the length
2748 	 * of the GRE or UDP headers plus the inner MAC up to including
2749 	 * its last Ethertype.
2750 	 * If MPLS labels exists, it should include them as well.
2751 	 */
2752 	*cd_tunneling |= (tx_offload.l2_len >> 1) <<
2753 		ICE_TXD_CTX_QW0_NATLEN_S;
2754 
2755 	/**
2756 	 * Calculate the tunneling UDP checksum.
2757 	 * Shall be set only if L4TUNT = 01b and EIPT is not zero
2758 	 */
2759 	if ((*cd_tunneling & ICE_TXD_CTX_QW0_EIPT_M) &&
2760 			(*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING) &&
2761 			(ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM))
2762 		*cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
2763 }
2764 
2765 static inline void
2766 ice_txd_enable_checksum(uint64_t ol_flags,
2767 			uint32_t *td_cmd,
2768 			uint32_t *td_offset,
2769 			union ice_tx_offload tx_offload)
2770 {
2771 	/* Set MACLEN */
2772 	if (!(ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK))
2773 		*td_offset |= (tx_offload.l2_len >> 1)
2774 			<< ICE_TX_DESC_LEN_MACLEN_S;
2775 
2776 	/* Enable L3 checksum offloads */
2777 	if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
2778 		*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
2779 		*td_offset |= (tx_offload.l3_len >> 2) <<
2780 			ICE_TX_DESC_LEN_IPLEN_S;
2781 	} else if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2782 		*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
2783 		*td_offset |= (tx_offload.l3_len >> 2) <<
2784 			ICE_TX_DESC_LEN_IPLEN_S;
2785 	} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2786 		*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2787 		*td_offset |= (tx_offload.l3_len >> 2) <<
2788 			ICE_TX_DESC_LEN_IPLEN_S;
2789 	}
2790 
2791 	if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2792 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2793 		*td_offset |= (tx_offload.l4_len >> 2) <<
2794 			      ICE_TX_DESC_LEN_L4_LEN_S;
2795 		return;
2796 	}
2797 
2798 	if (ol_flags & RTE_MBUF_F_TX_UDP_SEG) {
2799 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2800 		*td_offset |= (tx_offload.l4_len >> 2) <<
2801 			      ICE_TX_DESC_LEN_L4_LEN_S;
2802 		return;
2803 	}
2804 
2805 	/* Enable L4 checksum offloads */
2806 	switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
2807 	case RTE_MBUF_F_TX_TCP_CKSUM:
2808 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2809 		*td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2810 			      ICE_TX_DESC_LEN_L4_LEN_S;
2811 		break;
2812 	case RTE_MBUF_F_TX_SCTP_CKSUM:
2813 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2814 		*td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2815 			      ICE_TX_DESC_LEN_L4_LEN_S;
2816 		break;
2817 	case RTE_MBUF_F_TX_UDP_CKSUM:
2818 		*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2819 		*td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2820 			      ICE_TX_DESC_LEN_L4_LEN_S;
2821 		break;
2822 	default:
2823 		break;
2824 	}
2825 }
2826 
2827 static inline int
2828 ice_xmit_cleanup(struct ci_tx_queue *txq)
2829 {
2830 	struct ci_tx_entry *sw_ring = txq->sw_ring;
2831 	volatile struct ice_tx_desc *txd = txq->ice_tx_ring;
2832 	uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2833 	uint16_t nb_tx_desc = txq->nb_tx_desc;
2834 	uint16_t desc_to_clean_to;
2835 	uint16_t nb_tx_to_clean;
2836 
2837 	/* Determine the last descriptor needing to be cleaned */
2838 	desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
2839 	if (desc_to_clean_to >= nb_tx_desc)
2840 		desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2841 
2842 	/* Check to make sure the last descriptor to clean is done */
2843 	desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2844 	if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
2845 	    rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
2846 		PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2847 			   "(port=%d queue=%d) value=0x%"PRIx64,
2848 			   desc_to_clean_to,
2849 			   txq->port_id, txq->queue_id,
2850 			   txd[desc_to_clean_to].cmd_type_offset_bsz);
2851 		/* Failed to clean any descriptors */
2852 		return -1;
2853 	}
2854 
2855 	/* Figure out how many descriptors will be cleaned */
2856 	if (last_desc_cleaned > desc_to_clean_to)
2857 		nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2858 					    desc_to_clean_to);
2859 	else
2860 		nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2861 					    last_desc_cleaned);
2862 
2863 	/* The last descriptor to clean is done, so that means all the
2864 	 * descriptors from the last descriptor that was cleaned
2865 	 * up to the last descriptor with the RS bit set
2866 	 * are done. Only reset the threshold descriptor.
2867 	 */
2868 	txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2869 
2870 	/* Update the txq to reflect the last descriptor that was cleaned */
2871 	txq->last_desc_cleaned = desc_to_clean_to;
2872 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
2873 
2874 	return 0;
2875 }
2876 
2877 /* Construct the tx flags */
2878 static inline uint64_t
2879 ice_build_ctob(uint32_t td_cmd,
2880 	       uint32_t td_offset,
2881 	       uint16_t size,
2882 	       uint32_t td_tag)
2883 {
2884 	return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2885 				((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2886 				((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2887 				((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
2888 				((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2889 }
2890 
2891 /* Check if the context descriptor is needed for TX offloading */
2892 static inline uint16_t
2893 ice_calc_context_desc(uint64_t flags)
2894 {
2895 	static uint64_t mask = RTE_MBUF_F_TX_TCP_SEG |
2896 		RTE_MBUF_F_TX_UDP_SEG |
2897 		RTE_MBUF_F_TX_QINQ |
2898 		RTE_MBUF_F_TX_OUTER_IP_CKSUM |
2899 		RTE_MBUF_F_TX_TUNNEL_MASK |
2900 		RTE_MBUF_F_TX_IEEE1588_TMST;
2901 
2902 	return (flags & mask) ? 1 : 0;
2903 }
2904 
2905 /* set ice TSO context descriptor */
2906 static inline uint64_t
2907 ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
2908 {
2909 	uint64_t ctx_desc = 0;
2910 	uint32_t cd_cmd, hdr_len, cd_tso_len;
2911 
2912 	if (!tx_offload.l4_len) {
2913 		PMD_TX_LOG(DEBUG, "L4 length set to 0");
2914 		return ctx_desc;
2915 	}
2916 
2917 	hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
2918 	hdr_len += (mbuf->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
2919 		   tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
2920 
2921 	cd_cmd = ICE_TX_CTX_DESC_TSO;
2922 	cd_tso_len = mbuf->pkt_len - hdr_len;
2923 	ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
2924 		    ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2925 		    ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
2926 
2927 	return ctx_desc;
2928 }
2929 
2930 /* HW requires that TX buffer size ranges from 1B up to (16K-1)B. */
2931 #define ICE_MAX_DATA_PER_TXD \
2932 	(ICE_TXD_QW1_TX_BUF_SZ_M >> ICE_TXD_QW1_TX_BUF_SZ_S)
2933 /* Calculate the number of TX descriptors needed for each pkt */
2934 static inline uint16_t
2935 ice_calc_pkt_desc(struct rte_mbuf *tx_pkt)
2936 {
2937 	struct rte_mbuf *txd = tx_pkt;
2938 	uint16_t count = 0;
2939 
2940 	while (txd != NULL) {
2941 		count += DIV_ROUND_UP(txd->data_len, ICE_MAX_DATA_PER_TXD);
2942 		txd = txd->next;
2943 	}
2944 
2945 	return count;
2946 }
2947 
2948 uint16_t
2949 ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2950 {
2951 	struct ci_tx_queue *txq;
2952 	volatile struct ice_tx_desc *ice_tx_ring;
2953 	volatile struct ice_tx_desc *txd;
2954 	struct ci_tx_entry *sw_ring;
2955 	struct ci_tx_entry *txe, *txn;
2956 	struct rte_mbuf *tx_pkt;
2957 	struct rte_mbuf *m_seg;
2958 	uint32_t cd_tunneling_params;
2959 	uint16_t tx_id;
2960 	uint16_t nb_tx;
2961 	uint16_t nb_used;
2962 	uint16_t nb_ctx;
2963 	uint32_t td_cmd = 0;
2964 	uint32_t td_offset = 0;
2965 	uint32_t td_tag = 0;
2966 	uint16_t tx_last;
2967 	uint16_t slen;
2968 	uint64_t buf_dma_addr;
2969 	uint64_t ol_flags;
2970 	union ice_tx_offload tx_offload = {0};
2971 
2972 	txq = tx_queue;
2973 	sw_ring = txq->sw_ring;
2974 	ice_tx_ring = txq->ice_tx_ring;
2975 	tx_id = txq->tx_tail;
2976 	txe = &sw_ring[tx_id];
2977 
2978 	/* Check if the descriptor ring needs to be cleaned. */
2979 	if (txq->nb_tx_free < txq->tx_free_thresh)
2980 		(void)ice_xmit_cleanup(txq);
2981 
2982 	for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2983 		tx_pkt = *tx_pkts++;
2984 
2985 		td_cmd = 0;
2986 		td_tag = 0;
2987 		td_offset = 0;
2988 		ol_flags = tx_pkt->ol_flags;
2989 		tx_offload.l2_len = tx_pkt->l2_len;
2990 		tx_offload.l3_len = tx_pkt->l3_len;
2991 		tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
2992 		tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
2993 		tx_offload.l4_len = tx_pkt->l4_len;
2994 		tx_offload.tso_segsz = tx_pkt->tso_segsz;
2995 		/* Calculate the number of context descriptors needed. */
2996 		nb_ctx = ice_calc_context_desc(ol_flags);
2997 
2998 		/* The number of descriptors that must be allocated for
2999 		 * a packet equals to the number of the segments of that
3000 		 * packet plus the number of context descriptor if needed.
3001 		 * Recalculate the needed tx descs when TSO enabled in case
3002 		 * the mbuf data size exceeds max data size that hw allows
3003 		 * per tx desc.
3004 		 */
3005 		if (ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
3006 			nb_used = (uint16_t)(ice_calc_pkt_desc(tx_pkt) +
3007 					     nb_ctx);
3008 		else
3009 			nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
3010 		tx_last = (uint16_t)(tx_id + nb_used - 1);
3011 
3012 		/* Circular ring */
3013 		if (tx_last >= txq->nb_tx_desc)
3014 			tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
3015 
3016 		if (nb_used > txq->nb_tx_free) {
3017 			if (ice_xmit_cleanup(txq) != 0) {
3018 				if (nb_tx == 0)
3019 					return 0;
3020 				goto end_of_tx;
3021 			}
3022 			if (unlikely(nb_used > txq->tx_rs_thresh)) {
3023 				while (nb_used > txq->nb_tx_free) {
3024 					if (ice_xmit_cleanup(txq) != 0) {
3025 						if (nb_tx == 0)
3026 							return 0;
3027 						goto end_of_tx;
3028 					}
3029 				}
3030 			}
3031 		}
3032 
3033 		/* Descriptor based VLAN insertion */
3034 		if (ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) {
3035 			td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
3036 			td_tag = tx_pkt->vlan_tci;
3037 		}
3038 
3039 		/* Fill in tunneling parameters if necessary */
3040 		cd_tunneling_params = 0;
3041 		if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
3042 			td_offset |= (tx_offload.outer_l2_len >> 1)
3043 				<< ICE_TX_DESC_LEN_MACLEN_S;
3044 			ice_parse_tunneling_params(ol_flags, tx_offload,
3045 						   &cd_tunneling_params);
3046 		}
3047 
3048 		/* Enable checksum offloading */
3049 		if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK)
3050 			ice_txd_enable_checksum(ol_flags, &td_cmd,
3051 						&td_offset, tx_offload);
3052 
3053 		if (nb_ctx) {
3054 			/* Setup TX context descriptor if required */
3055 			volatile struct ice_tx_ctx_desc *ctx_txd =
3056 				(volatile struct ice_tx_ctx_desc *)
3057 					&ice_tx_ring[tx_id];
3058 			uint16_t cd_l2tag2 = 0;
3059 			uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
3060 
3061 			txn = &sw_ring[txe->next_id];
3062 			RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
3063 			if (txe->mbuf) {
3064 				rte_pktmbuf_free_seg(txe->mbuf);
3065 				txe->mbuf = NULL;
3066 			}
3067 
3068 			if (ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
3069 				cd_type_cmd_tso_mss |=
3070 					ice_set_tso_ctx(tx_pkt, tx_offload);
3071 			else if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
3072 				cd_type_cmd_tso_mss |=
3073 					((uint64_t)ICE_TX_CTX_DESC_TSYN <<
3074 					ICE_TXD_CTX_QW1_CMD_S) |
3075 					 (((uint64_t)txq->ice_vsi->adapter->ptp_tx_index <<
3076 					 ICE_TXD_CTX_QW1_TSYN_S) & ICE_TXD_CTX_QW1_TSYN_M);
3077 
3078 			ctx_txd->tunneling_params =
3079 				rte_cpu_to_le_32(cd_tunneling_params);
3080 
3081 			/* TX context descriptor based double VLAN insert */
3082 			if (ol_flags & RTE_MBUF_F_TX_QINQ) {
3083 				cd_l2tag2 = tx_pkt->vlan_tci_outer;
3084 				cd_type_cmd_tso_mss |=
3085 					((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
3086 					 ICE_TXD_CTX_QW1_CMD_S);
3087 			}
3088 			ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
3089 			ctx_txd->qw1 =
3090 				rte_cpu_to_le_64(cd_type_cmd_tso_mss);
3091 
3092 			txe->last_id = tx_last;
3093 			tx_id = txe->next_id;
3094 			txe = txn;
3095 		}
3096 		m_seg = tx_pkt;
3097 
3098 		do {
3099 			txd = &ice_tx_ring[tx_id];
3100 			txn = &sw_ring[txe->next_id];
3101 
3102 			if (txe->mbuf)
3103 				rte_pktmbuf_free_seg(txe->mbuf);
3104 			txe->mbuf = m_seg;
3105 
3106 			/* Setup TX Descriptor */
3107 			slen = m_seg->data_len;
3108 			buf_dma_addr = rte_mbuf_data_iova(m_seg);
3109 
3110 			while ((ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) &&
3111 				unlikely(slen > ICE_MAX_DATA_PER_TXD)) {
3112 				txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
3113 				txd->cmd_type_offset_bsz =
3114 				rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
3115 				((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
3116 				((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
3117 				((uint64_t)ICE_MAX_DATA_PER_TXD <<
3118 				 ICE_TXD_QW1_TX_BUF_SZ_S) |
3119 				((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
3120 
3121 				buf_dma_addr += ICE_MAX_DATA_PER_TXD;
3122 				slen -= ICE_MAX_DATA_PER_TXD;
3123 
3124 				txe->last_id = tx_last;
3125 				tx_id = txe->next_id;
3126 				txe = txn;
3127 				txd = &ice_tx_ring[tx_id];
3128 				txn = &sw_ring[txe->next_id];
3129 			}
3130 
3131 			txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
3132 			txd->cmd_type_offset_bsz =
3133 				rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
3134 				((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
3135 				((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
3136 				((uint64_t)slen << ICE_TXD_QW1_TX_BUF_SZ_S) |
3137 				((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
3138 
3139 			txe->last_id = tx_last;
3140 			tx_id = txe->next_id;
3141 			txe = txn;
3142 			m_seg = m_seg->next;
3143 		} while (m_seg);
3144 
3145 		/* fill the last descriptor with End of Packet (EOP) bit */
3146 		td_cmd |= ICE_TX_DESC_CMD_EOP;
3147 		txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
3148 		txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
3149 
3150 		/* set RS bit on the last descriptor of one packet */
3151 		if (txq->nb_tx_used >= txq->tx_rs_thresh) {
3152 			PMD_TX_LOG(DEBUG,
3153 				   "Setting RS bit on TXD id="
3154 				   "%4u (port=%d queue=%d)",
3155 				   tx_last, txq->port_id, txq->queue_id);
3156 
3157 			td_cmd |= ICE_TX_DESC_CMD_RS;
3158 
3159 			/* Update txq RS bit counters */
3160 			txq->nb_tx_used = 0;
3161 		}
3162 		txd->cmd_type_offset_bsz |=
3163 			rte_cpu_to_le_64(((uint64_t)td_cmd) <<
3164 					 ICE_TXD_QW1_CMD_S);
3165 	}
3166 end_of_tx:
3167 	/* update Tail register */
3168 	ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
3169 	txq->tx_tail = tx_id;
3170 
3171 	return nb_tx;
3172 }
3173 
3174 static __rte_always_inline int
3175 ice_tx_free_bufs(struct ci_tx_queue *txq)
3176 {
3177 	struct ci_tx_entry *txep;
3178 	uint16_t i;
3179 
3180 	if ((txq->ice_tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
3181 	     rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
3182 	    rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
3183 		return 0;
3184 
3185 	txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
3186 
3187 	for (i = 0; i < txq->tx_rs_thresh; i++)
3188 		rte_prefetch0((txep + i)->mbuf);
3189 
3190 	if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) {
3191 		for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
3192 			rte_mempool_put(txep->mbuf->pool, txep->mbuf);
3193 			txep->mbuf = NULL;
3194 		}
3195 	} else {
3196 		for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
3197 			rte_pktmbuf_free_seg(txep->mbuf);
3198 			txep->mbuf = NULL;
3199 		}
3200 	}
3201 
3202 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
3203 	txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
3204 	if (txq->tx_next_dd >= txq->nb_tx_desc)
3205 		txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
3206 
3207 	return txq->tx_rs_thresh;
3208 }
3209 
3210 static int
3211 ice_tx_done_cleanup_full(struct ci_tx_queue *txq,
3212 			uint32_t free_cnt)
3213 {
3214 	struct ci_tx_entry *swr_ring = txq->sw_ring;
3215 	uint16_t i, tx_last, tx_id;
3216 	uint16_t nb_tx_free_last;
3217 	uint16_t nb_tx_to_clean;
3218 	uint32_t pkt_cnt;
3219 
3220 	/* Start free mbuf from the next of tx_tail */
3221 	tx_last = txq->tx_tail;
3222 	tx_id  = swr_ring[tx_last].next_id;
3223 
3224 	if (txq->nb_tx_free == 0 && ice_xmit_cleanup(txq))
3225 		return 0;
3226 
3227 	nb_tx_to_clean = txq->nb_tx_free;
3228 	nb_tx_free_last = txq->nb_tx_free;
3229 	if (!free_cnt)
3230 		free_cnt = txq->nb_tx_desc;
3231 
3232 	/* Loop through swr_ring to count the amount of
3233 	 * freeable mubfs and packets.
3234 	 */
3235 	for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
3236 		for (i = 0; i < nb_tx_to_clean &&
3237 			pkt_cnt < free_cnt &&
3238 			tx_id != tx_last; i++) {
3239 			if (swr_ring[tx_id].mbuf != NULL) {
3240 				rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
3241 				swr_ring[tx_id].mbuf = NULL;
3242 
3243 				/*
3244 				 * last segment in the packet,
3245 				 * increment packet count
3246 				 */
3247 				pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
3248 			}
3249 
3250 			tx_id = swr_ring[tx_id].next_id;
3251 		}
3252 
3253 		if (txq->tx_rs_thresh > txq->nb_tx_desc -
3254 			txq->nb_tx_free || tx_id == tx_last)
3255 			break;
3256 
3257 		if (pkt_cnt < free_cnt) {
3258 			if (ice_xmit_cleanup(txq))
3259 				break;
3260 
3261 			nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
3262 			nb_tx_free_last = txq->nb_tx_free;
3263 		}
3264 	}
3265 
3266 	return (int)pkt_cnt;
3267 }
3268 
3269 #ifdef RTE_ARCH_X86
3270 static int
3271 ice_tx_done_cleanup_vec(struct ci_tx_queue *txq __rte_unused,
3272 			uint32_t free_cnt __rte_unused)
3273 {
3274 	return -ENOTSUP;
3275 }
3276 #endif
3277 
3278 static int
3279 ice_tx_done_cleanup_simple(struct ci_tx_queue *txq,
3280 			uint32_t free_cnt)
3281 {
3282 	int i, n, cnt;
3283 
3284 	if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
3285 		free_cnt = txq->nb_tx_desc;
3286 
3287 	cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
3288 
3289 	for (i = 0; i < cnt; i += n) {
3290 		if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
3291 			break;
3292 
3293 		n = ice_tx_free_bufs(txq);
3294 
3295 		if (n == 0)
3296 			break;
3297 	}
3298 
3299 	return i;
3300 }
3301 
3302 int
3303 ice_tx_done_cleanup(void *txq, uint32_t free_cnt)
3304 {
3305 	struct ci_tx_queue *q = (struct ci_tx_queue *)txq;
3306 	struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
3307 	struct ice_adapter *ad =
3308 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3309 
3310 #ifdef RTE_ARCH_X86
3311 	if (ad->tx_vec_allowed)
3312 		return ice_tx_done_cleanup_vec(q, free_cnt);
3313 #endif
3314 	if (ad->tx_simple_allowed)
3315 		return ice_tx_done_cleanup_simple(q, free_cnt);
3316 	else
3317 		return ice_tx_done_cleanup_full(q, free_cnt);
3318 }
3319 
3320 /* Populate 4 descriptors with data from 4 mbufs */
3321 static inline void
3322 tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3323 {
3324 	uint64_t dma_addr;
3325 	uint32_t i;
3326 
3327 	for (i = 0; i < 4; i++, txdp++, pkts++) {
3328 		dma_addr = rte_mbuf_data_iova(*pkts);
3329 		txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3330 		txdp->cmd_type_offset_bsz =
3331 			ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3332 				       (*pkts)->data_len, 0);
3333 	}
3334 }
3335 
3336 /* Populate 1 descriptor with data from 1 mbuf */
3337 static inline void
3338 tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3339 {
3340 	uint64_t dma_addr;
3341 
3342 	dma_addr = rte_mbuf_data_iova(*pkts);
3343 	txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3344 	txdp->cmd_type_offset_bsz =
3345 		ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3346 			       (*pkts)->data_len, 0);
3347 }
3348 
3349 static inline void
3350 ice_tx_fill_hw_ring(struct ci_tx_queue *txq, struct rte_mbuf **pkts,
3351 		    uint16_t nb_pkts)
3352 {
3353 	volatile struct ice_tx_desc *txdp = &txq->ice_tx_ring[txq->tx_tail];
3354 	struct ci_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
3355 	const int N_PER_LOOP = 4;
3356 	const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
3357 	int mainpart, leftover;
3358 	int i, j;
3359 
3360 	/**
3361 	 * Process most of the packets in chunks of N pkts.  Any
3362 	 * leftover packets will get processed one at a time.
3363 	 */
3364 	mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
3365 	leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
3366 	for (i = 0; i < mainpart; i += N_PER_LOOP) {
3367 		/* Copy N mbuf pointers to the S/W ring */
3368 		for (j = 0; j < N_PER_LOOP; ++j)
3369 			(txep + i + j)->mbuf = *(pkts + i + j);
3370 		tx4(txdp + i, pkts + i);
3371 	}
3372 
3373 	if (unlikely(leftover > 0)) {
3374 		for (i = 0; i < leftover; ++i) {
3375 			(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
3376 			tx1(txdp + mainpart + i, pkts + mainpart + i);
3377 		}
3378 	}
3379 }
3380 
3381 static inline uint16_t
3382 tx_xmit_pkts(struct ci_tx_queue *txq,
3383 	     struct rte_mbuf **tx_pkts,
3384 	     uint16_t nb_pkts)
3385 {
3386 	volatile struct ice_tx_desc *txr = txq->ice_tx_ring;
3387 	uint16_t n = 0;
3388 
3389 	/**
3390 	 * Begin scanning the H/W ring for done descriptors when the number
3391 	 * of available descriptors drops below tx_free_thresh. For each done
3392 	 * descriptor, free the associated buffer.
3393 	 */
3394 	if (txq->nb_tx_free < txq->tx_free_thresh)
3395 		ice_tx_free_bufs(txq);
3396 
3397 	/* Use available descriptor only */
3398 	nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
3399 	if (unlikely(!nb_pkts))
3400 		return 0;
3401 
3402 	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
3403 	if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
3404 		n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
3405 		ice_tx_fill_hw_ring(txq, tx_pkts, n);
3406 		txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3407 			rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3408 					 ICE_TXD_QW1_CMD_S);
3409 		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3410 		txq->tx_tail = 0;
3411 	}
3412 
3413 	/* Fill hardware descriptor ring with mbuf data */
3414 	ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
3415 	txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
3416 
3417 	/* Determine if RS bit needs to be set */
3418 	if (txq->tx_tail > txq->tx_next_rs) {
3419 		txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3420 			rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3421 					 ICE_TXD_QW1_CMD_S);
3422 		txq->tx_next_rs =
3423 			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
3424 		if (txq->tx_next_rs >= txq->nb_tx_desc)
3425 			txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3426 	}
3427 
3428 	if (txq->tx_tail >= txq->nb_tx_desc)
3429 		txq->tx_tail = 0;
3430 
3431 	/* Update the tx tail register */
3432 	ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
3433 
3434 	return nb_pkts;
3435 }
3436 
3437 static uint16_t
3438 ice_xmit_pkts_simple(void *tx_queue,
3439 		     struct rte_mbuf **tx_pkts,
3440 		     uint16_t nb_pkts)
3441 {
3442 	uint16_t nb_tx = 0;
3443 
3444 	if (likely(nb_pkts <= ICE_TX_MAX_BURST))
3445 		return tx_xmit_pkts((struct ci_tx_queue *)tx_queue,
3446 				    tx_pkts, nb_pkts);
3447 
3448 	while (nb_pkts) {
3449 		uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
3450 						      ICE_TX_MAX_BURST);
3451 
3452 		ret = tx_xmit_pkts((struct ci_tx_queue *)tx_queue,
3453 				   &tx_pkts[nb_tx], num);
3454 		nb_tx = (uint16_t)(nb_tx + ret);
3455 		nb_pkts = (uint16_t)(nb_pkts - ret);
3456 		if (ret < num)
3457 			break;
3458 	}
3459 
3460 	return nb_tx;
3461 }
3462 
3463 void __rte_cold
3464 ice_set_rx_function(struct rte_eth_dev *dev)
3465 {
3466 	PMD_INIT_FUNC_TRACE();
3467 	struct ice_adapter *ad =
3468 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3469 #ifdef RTE_ARCH_X86
3470 	struct ice_rx_queue *rxq;
3471 	int i;
3472 	int rx_check_ret = -1;
3473 
3474 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3475 		ad->rx_use_avx512 = false;
3476 		ad->rx_use_avx2 = false;
3477 		rx_check_ret = ice_rx_vec_dev_check(dev);
3478 		if (ad->ptp_ena)
3479 			rx_check_ret = -1;
3480 		ad->rx_vec_offload_support =
3481 				(rx_check_ret == ICE_VECTOR_OFFLOAD_PATH);
3482 		if (rx_check_ret >= 0 && ad->rx_bulk_alloc_allowed &&
3483 		    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3484 			ad->rx_vec_allowed = true;
3485 			for (i = 0; i < dev->data->nb_rx_queues; i++) {
3486 				rxq = dev->data->rx_queues[i];
3487 				if (rxq && ice_rxq_vec_setup(rxq)) {
3488 					ad->rx_vec_allowed = false;
3489 					break;
3490 				}
3491 			}
3492 
3493 			if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3494 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3495 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3496 #ifdef CC_AVX512_SUPPORT
3497 				ad->rx_use_avx512 = true;
3498 #else
3499 			PMD_DRV_LOG(NOTICE,
3500 				"AVX512 is not supported in build env");
3501 #endif
3502 			if (!ad->rx_use_avx512 &&
3503 			(rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3504 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3505 			rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3506 				ad->rx_use_avx2 = true;
3507 
3508 		} else {
3509 			ad->rx_vec_allowed = false;
3510 		}
3511 	}
3512 
3513 	if (ad->rx_vec_allowed) {
3514 		if (dev->data->scattered_rx) {
3515 			if (ad->rx_use_avx512) {
3516 #ifdef CC_AVX512_SUPPORT
3517 				if (ad->rx_vec_offload_support) {
3518 					PMD_DRV_LOG(NOTICE,
3519 						"Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
3520 						dev->data->port_id);
3521 					dev->rx_pkt_burst =
3522 						ice_recv_scattered_pkts_vec_avx512_offload;
3523 				} else {
3524 					PMD_DRV_LOG(NOTICE,
3525 						"Using AVX512 Vector Scattered Rx (port %d).",
3526 						dev->data->port_id);
3527 					dev->rx_pkt_burst =
3528 						ice_recv_scattered_pkts_vec_avx512;
3529 				}
3530 #endif
3531 			} else if (ad->rx_use_avx2) {
3532 				if (ad->rx_vec_offload_support) {
3533 					PMD_DRV_LOG(NOTICE,
3534 						    "Using AVX2 OFFLOAD Vector Scattered Rx (port %d).",
3535 						    dev->data->port_id);
3536 					dev->rx_pkt_burst =
3537 						ice_recv_scattered_pkts_vec_avx2_offload;
3538 				} else {
3539 					PMD_DRV_LOG(NOTICE,
3540 						    "Using AVX2 Vector Scattered Rx (port %d).",
3541 						    dev->data->port_id);
3542 					dev->rx_pkt_burst =
3543 						ice_recv_scattered_pkts_vec_avx2;
3544 				}
3545 			} else {
3546 				PMD_DRV_LOG(DEBUG,
3547 					"Using Vector Scattered Rx (port %d).",
3548 					dev->data->port_id);
3549 				dev->rx_pkt_burst = ice_recv_scattered_pkts_vec;
3550 			}
3551 		} else {
3552 			if (ad->rx_use_avx512) {
3553 #ifdef CC_AVX512_SUPPORT
3554 				if (ad->rx_vec_offload_support) {
3555 					PMD_DRV_LOG(NOTICE,
3556 						"Using AVX512 OFFLOAD Vector Rx (port %d).",
3557 						dev->data->port_id);
3558 					dev->rx_pkt_burst =
3559 						ice_recv_pkts_vec_avx512_offload;
3560 				} else {
3561 					PMD_DRV_LOG(NOTICE,
3562 						"Using AVX512 Vector Rx (port %d).",
3563 						dev->data->port_id);
3564 					dev->rx_pkt_burst =
3565 						ice_recv_pkts_vec_avx512;
3566 				}
3567 #endif
3568 			} else if (ad->rx_use_avx2) {
3569 				if (ad->rx_vec_offload_support) {
3570 					PMD_DRV_LOG(NOTICE,
3571 						    "Using AVX2 OFFLOAD Vector Rx (port %d).",
3572 						    dev->data->port_id);
3573 					dev->rx_pkt_burst =
3574 						ice_recv_pkts_vec_avx2_offload;
3575 				} else {
3576 					PMD_DRV_LOG(NOTICE,
3577 						    "Using AVX2 Vector Rx (port %d).",
3578 						    dev->data->port_id);
3579 					dev->rx_pkt_burst =
3580 						ice_recv_pkts_vec_avx2;
3581 				}
3582 			} else {
3583 				PMD_DRV_LOG(DEBUG,
3584 					"Using Vector Rx (port %d).",
3585 					dev->data->port_id);
3586 				dev->rx_pkt_burst = ice_recv_pkts_vec;
3587 			}
3588 		}
3589 		return;
3590 	}
3591 
3592 #endif
3593 
3594 	if (dev->data->scattered_rx) {
3595 		/* Set the non-LRO scattered function */
3596 		PMD_INIT_LOG(DEBUG,
3597 			     "Using a Scattered function on port %d.",
3598 			     dev->data->port_id);
3599 		dev->rx_pkt_burst = ice_recv_scattered_pkts;
3600 	} else if (ad->rx_bulk_alloc_allowed) {
3601 		PMD_INIT_LOG(DEBUG,
3602 			     "Rx Burst Bulk Alloc Preconditions are "
3603 			     "satisfied. Rx Burst Bulk Alloc function "
3604 			     "will be used on port %d.",
3605 			     dev->data->port_id);
3606 		dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
3607 	} else {
3608 		PMD_INIT_LOG(DEBUG,
3609 			     "Rx Burst Bulk Alloc Preconditions are not "
3610 			     "satisfied, Normal Rx will be used on port %d.",
3611 			     dev->data->port_id);
3612 		dev->rx_pkt_burst = ice_recv_pkts;
3613 	}
3614 }
3615 
3616 static const struct {
3617 	eth_rx_burst_t pkt_burst;
3618 	const char *info;
3619 } ice_rx_burst_infos[] = {
3620 	{ ice_recv_scattered_pkts,          "Scalar Scattered" },
3621 	{ ice_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3622 	{ ice_recv_pkts,                    "Scalar" },
3623 #ifdef RTE_ARCH_X86
3624 #ifdef CC_AVX512_SUPPORT
3625 	{ ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3626 	{ ice_recv_scattered_pkts_vec_avx512_offload, "Offload Vector AVX512 Scattered" },
3627 	{ ice_recv_pkts_vec_avx512,           "Vector AVX512" },
3628 	{ ice_recv_pkts_vec_avx512_offload,   "Offload Vector AVX512" },
3629 #endif
3630 	{ ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3631 	{ ice_recv_scattered_pkts_vec_avx2_offload, "Offload Vector AVX2 Scattered" },
3632 	{ ice_recv_pkts_vec_avx2,           "Vector AVX2" },
3633 	{ ice_recv_pkts_vec_avx2_offload,   "Offload Vector AVX2" },
3634 	{ ice_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3635 	{ ice_recv_pkts_vec,                "Vector SSE" },
3636 #endif
3637 };
3638 
3639 int
3640 ice_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3641 		      struct rte_eth_burst_mode *mode)
3642 {
3643 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3644 	int ret = -EINVAL;
3645 	unsigned int i;
3646 
3647 	for (i = 0; i < RTE_DIM(ice_rx_burst_infos); ++i) {
3648 		if (pkt_burst == ice_rx_burst_infos[i].pkt_burst) {
3649 			snprintf(mode->info, sizeof(mode->info), "%s",
3650 				 ice_rx_burst_infos[i].info);
3651 			ret = 0;
3652 			break;
3653 		}
3654 	}
3655 
3656 	return ret;
3657 }
3658 
3659 void __rte_cold
3660 ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ci_tx_queue *txq)
3661 {
3662 	struct ice_adapter *ad =
3663 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3664 
3665 	/* Use a simple Tx queue if possible (only fast free is allowed) */
3666 	ad->tx_simple_allowed =
3667 		(txq->offloads ==
3668 		(txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) &&
3669 		txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
3670 
3671 	if (ad->tx_simple_allowed)
3672 		PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3673 			     txq->queue_id);
3674 	else
3675 		PMD_INIT_LOG(DEBUG,
3676 			     "Simple Tx can NOT be enabled on Tx queue %u.",
3677 			     txq->queue_id);
3678 }
3679 
3680 /*********************************************************************
3681  *
3682  *  TX prep functions
3683  *
3684  **********************************************************************/
3685 /* The default values of TSO MSS */
3686 #define ICE_MIN_TSO_MSS            64
3687 #define ICE_MAX_TSO_MSS            9728
3688 #define ICE_MAX_TSO_FRAME_SIZE     262144
3689 
3690 /*Check for empty mbuf*/
3691 static inline uint16_t
3692 ice_check_empty_mbuf(struct rte_mbuf *tx_pkt)
3693 {
3694 	struct rte_mbuf *txd = tx_pkt;
3695 
3696 	while (txd != NULL) {
3697 		if (txd->data_len == 0)
3698 			return -1;
3699 		txd = txd->next;
3700 	}
3701 
3702 	return 0;
3703 }
3704 
3705 /* Tx mbuf check */
3706 static uint16_t
3707 ice_xmit_pkts_check(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
3708 {
3709 	struct ci_tx_queue *txq = tx_queue;
3710 	uint16_t idx;
3711 	struct rte_mbuf *mb;
3712 	bool pkt_error = false;
3713 	uint16_t good_pkts = nb_pkts;
3714 	const char *reason = NULL;
3715 	struct ice_adapter *adapter = txq->ice_vsi->adapter;
3716 	uint64_t ol_flags;
3717 
3718 	for (idx = 0; idx < nb_pkts; idx++) {
3719 		mb = tx_pkts[idx];
3720 		ol_flags = mb->ol_flags;
3721 
3722 		if ((adapter->devargs.mbuf_check & ICE_MBUF_CHECK_F_TX_MBUF) &&
3723 		    (rte_mbuf_check(mb, 1, &reason) != 0)) {
3724 			PMD_TX_LOG(ERR, "INVALID mbuf: %s", reason);
3725 			pkt_error = true;
3726 			break;
3727 		}
3728 
3729 		if ((adapter->devargs.mbuf_check & ICE_MBUF_CHECK_F_TX_SIZE) &&
3730 		    (mb->data_len > mb->pkt_len ||
3731 		     mb->data_len < ICE_TX_MIN_PKT_LEN ||
3732 		     mb->data_len > ICE_FRAME_SIZE_MAX)) {
3733 			PMD_TX_LOG(ERR, "INVALID mbuf: data_len (%u) is out of range, reasonable range (%d - %d)",
3734 				mb->data_len, ICE_TX_MIN_PKT_LEN, ICE_FRAME_SIZE_MAX);
3735 			pkt_error = true;
3736 			break;
3737 		}
3738 
3739 		if (adapter->devargs.mbuf_check & ICE_MBUF_CHECK_F_TX_SEGMENT) {
3740 			if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
3741 				/**
3742 				 * No TSO case: nb->segs, pkt_len to not exceed
3743 				 * the limites.
3744 				 */
3745 				if (mb->nb_segs > ICE_TX_MTU_SEG_MAX) {
3746 					PMD_TX_LOG(ERR, "INVALID mbuf: nb_segs (%d) exceeds HW limit, maximum allowed value is %d",
3747 						mb->nb_segs, ICE_TX_MTU_SEG_MAX);
3748 					pkt_error = true;
3749 					break;
3750 				}
3751 				if (mb->pkt_len > ICE_FRAME_SIZE_MAX) {
3752 					PMD_TX_LOG(ERR, "INVALID mbuf: pkt_len (%d) exceeds HW limit, maximum allowed value is %d",
3753 						mb->nb_segs, ICE_FRAME_SIZE_MAX);
3754 					pkt_error = true;
3755 					break;
3756 				}
3757 			} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
3758 				/** TSO case: tso_segsz, nb_segs, pkt_len not exceed
3759 				 * the limits.
3760 				 */
3761 				if (mb->tso_segsz < ICE_MIN_TSO_MSS ||
3762 				    mb->tso_segsz > ICE_MAX_TSO_MSS) {
3763 					/**
3764 					 * MSS outside the range are considered malicious
3765 					 */
3766 					PMD_TX_LOG(ERR, "INVALID mbuf: tso_segsz (%u) is out of range, reasonable range (%d - %u)",
3767 						mb->tso_segsz, ICE_MIN_TSO_MSS, ICE_MAX_TSO_MSS);
3768 					pkt_error = true;
3769 					break;
3770 				}
3771 				if (mb->nb_segs > ((struct ci_tx_queue *)tx_queue)->nb_tx_desc) {
3772 					PMD_TX_LOG(ERR, "INVALID mbuf: nb_segs out of ring length");
3773 					pkt_error = true;
3774 					break;
3775 				}
3776 			}
3777 		}
3778 
3779 		if (adapter->devargs.mbuf_check & ICE_MBUF_CHECK_F_TX_OFFLOAD) {
3780 			if (ol_flags & ICE_TX_OFFLOAD_NOTSUP_MASK) {
3781 				PMD_TX_LOG(ERR, "INVALID mbuf: TX offload is not supported");
3782 				pkt_error = true;
3783 				break;
3784 			}
3785 
3786 			if (!rte_validate_tx_offload(mb)) {
3787 				PMD_TX_LOG(ERR, "INVALID mbuf: TX offload setup error");
3788 				pkt_error = true;
3789 				break;
3790 			}
3791 		}
3792 	}
3793 
3794 	if (pkt_error) {
3795 		txq->mbuf_errors++;
3796 		good_pkts = idx;
3797 		if (good_pkts == 0)
3798 			return 0;
3799 	}
3800 
3801 	return adapter->tx_pkt_burst(tx_queue, tx_pkts, good_pkts);
3802 }
3803 
3804 uint16_t
3805 ice_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3806 	      uint16_t nb_pkts)
3807 {
3808 	int i, ret;
3809 	uint64_t ol_flags;
3810 	struct rte_mbuf *m;
3811 
3812 	for (i = 0; i < nb_pkts; i++) {
3813 		m = tx_pkts[i];
3814 		ol_flags = m->ol_flags;
3815 
3816 		if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
3817 		    /**
3818 		     * No TSO case: nb->segs, pkt_len to not exceed
3819 		     * the limites.
3820 		     */
3821 		    (m->nb_segs > ICE_TX_MTU_SEG_MAX ||
3822 		     m->pkt_len > ICE_FRAME_SIZE_MAX)) {
3823 			rte_errno = EINVAL;
3824 			return i;
3825 		} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
3826 		    /** TSO case: tso_segsz, nb_segs, pkt_len not exceed
3827 		     * the limits.
3828 		     */
3829 		    (m->tso_segsz < ICE_MIN_TSO_MSS ||
3830 		     m->tso_segsz > ICE_MAX_TSO_MSS ||
3831 		     m->nb_segs >
3832 			((struct ci_tx_queue *)tx_queue)->nb_tx_desc ||
3833 		     m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
3834 			/**
3835 			 * MSS outside the range are considered malicious
3836 			 */
3837 			rte_errno = EINVAL;
3838 			return i;
3839 		}
3840 
3841 		if (m->pkt_len < ICE_TX_MIN_PKT_LEN) {
3842 			rte_errno = EINVAL;
3843 			return i;
3844 		}
3845 
3846 #ifdef RTE_ETHDEV_DEBUG_TX
3847 		ret = rte_validate_tx_offload(m);
3848 		if (ret != 0) {
3849 			rte_errno = -ret;
3850 			return i;
3851 		}
3852 #endif
3853 		ret = rte_net_intel_cksum_prepare(m);
3854 		if (ret != 0) {
3855 			rte_errno = -ret;
3856 			return i;
3857 		}
3858 
3859 		if (ice_check_empty_mbuf(m) != 0) {
3860 			rte_errno = EINVAL;
3861 			return i;
3862 		}
3863 	}
3864 	return i;
3865 }
3866 
3867 void __rte_cold
3868 ice_set_tx_function(struct rte_eth_dev *dev)
3869 {
3870 	struct ice_adapter *ad =
3871 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3872 	int mbuf_check = ad->devargs.mbuf_check;
3873 #ifdef RTE_ARCH_X86
3874 	struct ci_tx_queue *txq;
3875 	int i;
3876 	int tx_check_ret = -1;
3877 
3878 	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3879 		ad->tx_use_avx2 = false;
3880 		ad->tx_use_avx512 = false;
3881 		tx_check_ret = ice_tx_vec_dev_check(dev);
3882 		if (tx_check_ret >= 0 &&
3883 		    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3884 			ad->tx_vec_allowed = true;
3885 
3886 			if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3887 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3888 			rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3889 #ifdef CC_AVX512_SUPPORT
3890 				ad->tx_use_avx512 = true;
3891 #else
3892 			PMD_DRV_LOG(NOTICE,
3893 				"AVX512 is not supported in build env");
3894 #endif
3895 			if (!ad->tx_use_avx512 &&
3896 				(rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3897 				rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3898 				rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3899 				ad->tx_use_avx2 = true;
3900 
3901 			if (!ad->tx_use_avx2 && !ad->tx_use_avx512 &&
3902 				tx_check_ret == ICE_VECTOR_OFFLOAD_PATH)
3903 				ad->tx_vec_allowed = false;
3904 
3905 			if (ad->tx_vec_allowed) {
3906 				for (i = 0; i < dev->data->nb_tx_queues; i++) {
3907 					txq = dev->data->tx_queues[i];
3908 					if (txq && ice_txq_vec_setup(txq)) {
3909 						ad->tx_vec_allowed = false;
3910 						break;
3911 					}
3912 				}
3913 			}
3914 		} else {
3915 			ad->tx_vec_allowed = false;
3916 		}
3917 	}
3918 
3919 	if (ad->tx_vec_allowed) {
3920 		dev->tx_pkt_prepare = NULL;
3921 		if (ad->tx_use_avx512) {
3922 #ifdef CC_AVX512_SUPPORT
3923 			if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3924 				PMD_DRV_LOG(NOTICE,
3925 					    "Using AVX512 OFFLOAD Vector Tx (port %d).",
3926 					    dev->data->port_id);
3927 				dev->tx_pkt_burst =
3928 					ice_xmit_pkts_vec_avx512_offload;
3929 				dev->tx_pkt_prepare = ice_prep_pkts;
3930 			} else {
3931 				PMD_DRV_LOG(NOTICE,
3932 					    "Using AVX512 Vector Tx (port %d).",
3933 					    dev->data->port_id);
3934 				dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
3935 			}
3936 #endif
3937 		} else {
3938 			if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3939 				PMD_DRV_LOG(NOTICE,
3940 					    "Using AVX2 OFFLOAD Vector Tx (port %d).",
3941 					    dev->data->port_id);
3942 				dev->tx_pkt_burst =
3943 					ice_xmit_pkts_vec_avx2_offload;
3944 				dev->tx_pkt_prepare = ice_prep_pkts;
3945 			} else {
3946 				PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
3947 					    ad->tx_use_avx2 ? "avx2 " : "",
3948 					    dev->data->port_id);
3949 				dev->tx_pkt_burst = ad->tx_use_avx2 ?
3950 						    ice_xmit_pkts_vec_avx2 :
3951 						    ice_xmit_pkts_vec;
3952 			}
3953 		}
3954 
3955 		if (mbuf_check) {
3956 			ad->tx_pkt_burst = dev->tx_pkt_burst;
3957 			dev->tx_pkt_burst = ice_xmit_pkts_check;
3958 		}
3959 		return;
3960 	}
3961 #endif
3962 
3963 	if (ad->tx_simple_allowed) {
3964 		PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3965 		dev->tx_pkt_burst = ice_xmit_pkts_simple;
3966 		dev->tx_pkt_prepare = NULL;
3967 	} else {
3968 		PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
3969 		dev->tx_pkt_burst = ice_xmit_pkts;
3970 		dev->tx_pkt_prepare = ice_prep_pkts;
3971 	}
3972 
3973 	if (mbuf_check) {
3974 		ad->tx_pkt_burst = dev->tx_pkt_burst;
3975 		dev->tx_pkt_burst = ice_xmit_pkts_check;
3976 	}
3977 }
3978 
3979 static const struct {
3980 	eth_tx_burst_t pkt_burst;
3981 	const char *info;
3982 } ice_tx_burst_infos[] = {
3983 	{ ice_xmit_pkts_simple,   "Scalar Simple" },
3984 	{ ice_xmit_pkts,          "Scalar" },
3985 #ifdef RTE_ARCH_X86
3986 #ifdef CC_AVX512_SUPPORT
3987 	{ ice_xmit_pkts_vec_avx512, "Vector AVX512" },
3988 	{ ice_xmit_pkts_vec_avx512_offload, "Offload Vector AVX512" },
3989 #endif
3990 	{ ice_xmit_pkts_vec_avx2,         "Vector AVX2" },
3991 	{ ice_xmit_pkts_vec_avx2_offload, "Offload Vector AVX2" },
3992 	{ ice_xmit_pkts_vec,              "Vector SSE" },
3993 #endif
3994 };
3995 
3996 int
3997 ice_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3998 		      struct rte_eth_burst_mode *mode)
3999 {
4000 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
4001 	int ret = -EINVAL;
4002 	unsigned int i;
4003 
4004 	for (i = 0; i < RTE_DIM(ice_tx_burst_infos); ++i) {
4005 		if (pkt_burst == ice_tx_burst_infos[i].pkt_burst) {
4006 			snprintf(mode->info, sizeof(mode->info), "%s",
4007 				 ice_tx_burst_infos[i].info);
4008 			ret = 0;
4009 			break;
4010 		}
4011 	}
4012 
4013 	return ret;
4014 }
4015 
4016 /* For each value it means, datasheet of hardware can tell more details
4017  *
4018  * @note: fix ice_dev_supported_ptypes_get() if any change here.
4019  */
4020 static inline uint32_t
4021 ice_get_default_pkt_type(uint16_t ptype)
4022 {
4023 	static const alignas(RTE_CACHE_LINE_SIZE) uint32_t type_table[ICE_MAX_PKT_TYPE] = {
4024 		/* L2 types */
4025 		/* [0] reserved */
4026 		[1] = RTE_PTYPE_L2_ETHER,
4027 		[2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
4028 		/* [3] - [5] reserved */
4029 		[6] = RTE_PTYPE_L2_ETHER_LLDP,
4030 		/* [7] - [10] reserved */
4031 		[11] = RTE_PTYPE_L2_ETHER_ARP,
4032 		/* [12] - [21] reserved */
4033 
4034 		/* Non tunneled IPv4 */
4035 		[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4036 		       RTE_PTYPE_L4_FRAG,
4037 		[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4038 		       RTE_PTYPE_L4_NONFRAG,
4039 		[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4040 		       RTE_PTYPE_L4_UDP,
4041 		/* [25] reserved */
4042 		[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4043 		       RTE_PTYPE_L4_TCP,
4044 		[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4045 		       RTE_PTYPE_L4_SCTP,
4046 		[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4047 		       RTE_PTYPE_L4_ICMP,
4048 
4049 		/* IPv4 --> IPv4 */
4050 		[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4051 		       RTE_PTYPE_TUNNEL_IP |
4052 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4053 		       RTE_PTYPE_INNER_L4_FRAG,
4054 		[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4055 		       RTE_PTYPE_TUNNEL_IP |
4056 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4057 		       RTE_PTYPE_INNER_L4_NONFRAG,
4058 		[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4059 		       RTE_PTYPE_TUNNEL_IP |
4060 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4061 		       RTE_PTYPE_INNER_L4_UDP,
4062 		/* [32] reserved */
4063 		[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4064 		       RTE_PTYPE_TUNNEL_IP |
4065 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4066 		       RTE_PTYPE_INNER_L4_TCP,
4067 		[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4068 		       RTE_PTYPE_TUNNEL_IP |
4069 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4070 		       RTE_PTYPE_INNER_L4_SCTP,
4071 		[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4072 		       RTE_PTYPE_TUNNEL_IP |
4073 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4074 		       RTE_PTYPE_INNER_L4_ICMP,
4075 
4076 		/* IPv4 --> IPv6 */
4077 		[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4078 		       RTE_PTYPE_TUNNEL_IP |
4079 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4080 		       RTE_PTYPE_INNER_L4_FRAG,
4081 		[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4082 		       RTE_PTYPE_TUNNEL_IP |
4083 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4084 		       RTE_PTYPE_INNER_L4_NONFRAG,
4085 		[38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4086 		       RTE_PTYPE_TUNNEL_IP |
4087 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4088 		       RTE_PTYPE_INNER_L4_UDP,
4089 		/* [39] reserved */
4090 		[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4091 		       RTE_PTYPE_TUNNEL_IP |
4092 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4093 		       RTE_PTYPE_INNER_L4_TCP,
4094 		[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4095 		       RTE_PTYPE_TUNNEL_IP |
4096 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4097 		       RTE_PTYPE_INNER_L4_SCTP,
4098 		[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4099 		       RTE_PTYPE_TUNNEL_IP |
4100 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4101 		       RTE_PTYPE_INNER_L4_ICMP,
4102 
4103 		/* IPv4 --> GRE/Teredo/VXLAN */
4104 		[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4105 		       RTE_PTYPE_TUNNEL_GRENAT,
4106 
4107 		/* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
4108 		[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4109 		       RTE_PTYPE_TUNNEL_GRENAT |
4110 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4111 		       RTE_PTYPE_INNER_L4_FRAG,
4112 		[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4113 		       RTE_PTYPE_TUNNEL_GRENAT |
4114 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4115 		       RTE_PTYPE_INNER_L4_NONFRAG,
4116 		[46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4117 		       RTE_PTYPE_TUNNEL_GRENAT |
4118 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4119 		       RTE_PTYPE_INNER_L4_UDP,
4120 		/* [47] reserved */
4121 		[48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4122 		       RTE_PTYPE_TUNNEL_GRENAT |
4123 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4124 		       RTE_PTYPE_INNER_L4_TCP,
4125 		[49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4126 		       RTE_PTYPE_TUNNEL_GRENAT |
4127 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4128 		       RTE_PTYPE_INNER_L4_SCTP,
4129 		[50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4130 		       RTE_PTYPE_TUNNEL_GRENAT |
4131 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4132 		       RTE_PTYPE_INNER_L4_ICMP,
4133 
4134 		/* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
4135 		[51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4136 		       RTE_PTYPE_TUNNEL_GRENAT |
4137 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4138 		       RTE_PTYPE_INNER_L4_FRAG,
4139 		[52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4140 		       RTE_PTYPE_TUNNEL_GRENAT |
4141 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4142 		       RTE_PTYPE_INNER_L4_NONFRAG,
4143 		[53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4144 		       RTE_PTYPE_TUNNEL_GRENAT |
4145 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4146 		       RTE_PTYPE_INNER_L4_UDP,
4147 		/* [54] reserved */
4148 		[55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4149 		       RTE_PTYPE_TUNNEL_GRENAT |
4150 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4151 		       RTE_PTYPE_INNER_L4_TCP,
4152 		[56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4153 		       RTE_PTYPE_TUNNEL_GRENAT |
4154 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4155 		       RTE_PTYPE_INNER_L4_SCTP,
4156 		[57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4157 		       RTE_PTYPE_TUNNEL_GRENAT |
4158 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4159 		       RTE_PTYPE_INNER_L4_ICMP,
4160 
4161 		/* IPv4 --> GRE/Teredo/VXLAN --> MAC */
4162 		[58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4163 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
4164 
4165 		/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
4166 		[59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4167 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4168 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4169 		       RTE_PTYPE_INNER_L4_FRAG,
4170 		[60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4171 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4172 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4173 		       RTE_PTYPE_INNER_L4_NONFRAG,
4174 		[61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4175 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4176 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4177 		       RTE_PTYPE_INNER_L4_UDP,
4178 		/* [62] reserved */
4179 		[63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4180 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4181 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4182 		       RTE_PTYPE_INNER_L4_TCP,
4183 		[64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4184 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4185 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4186 		       RTE_PTYPE_INNER_L4_SCTP,
4187 		[65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4188 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4189 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4190 		       RTE_PTYPE_INNER_L4_ICMP,
4191 
4192 		/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
4193 		[66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4194 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4195 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4196 		       RTE_PTYPE_INNER_L4_FRAG,
4197 		[67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4198 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4199 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4200 		       RTE_PTYPE_INNER_L4_NONFRAG,
4201 		[68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4202 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4203 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4204 		       RTE_PTYPE_INNER_L4_UDP,
4205 		/* [69] reserved */
4206 		[70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4207 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4208 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4209 		       RTE_PTYPE_INNER_L4_TCP,
4210 		[71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4211 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4212 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4213 		       RTE_PTYPE_INNER_L4_SCTP,
4214 		[72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4215 		       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4216 		       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4217 		       RTE_PTYPE_INNER_L4_ICMP,
4218 		/* [73] - [87] reserved */
4219 
4220 		/* Non tunneled IPv6 */
4221 		[88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4222 		       RTE_PTYPE_L4_FRAG,
4223 		[89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4224 		       RTE_PTYPE_L4_NONFRAG,
4225 		[90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4226 		       RTE_PTYPE_L4_UDP,
4227 		/* [91] reserved */
4228 		[92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4229 		       RTE_PTYPE_L4_TCP,
4230 		[93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4231 		       RTE_PTYPE_L4_SCTP,
4232 		[94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4233 		       RTE_PTYPE_L4_ICMP,
4234 
4235 		/* IPv6 --> IPv4 */
4236 		[95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4237 		       RTE_PTYPE_TUNNEL_IP |
4238 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4239 		       RTE_PTYPE_INNER_L4_FRAG,
4240 		[96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4241 		       RTE_PTYPE_TUNNEL_IP |
4242 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4243 		       RTE_PTYPE_INNER_L4_NONFRAG,
4244 		[97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4245 		       RTE_PTYPE_TUNNEL_IP |
4246 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4247 		       RTE_PTYPE_INNER_L4_UDP,
4248 		/* [98] reserved */
4249 		[99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4250 		       RTE_PTYPE_TUNNEL_IP |
4251 		       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4252 		       RTE_PTYPE_INNER_L4_TCP,
4253 		[100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4254 			RTE_PTYPE_TUNNEL_IP |
4255 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4256 			RTE_PTYPE_INNER_L4_SCTP,
4257 		[101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4258 			RTE_PTYPE_TUNNEL_IP |
4259 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4260 			RTE_PTYPE_INNER_L4_ICMP,
4261 
4262 		/* IPv6 --> IPv6 */
4263 		[102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4264 			RTE_PTYPE_TUNNEL_IP |
4265 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4266 			RTE_PTYPE_INNER_L4_FRAG,
4267 		[103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4268 			RTE_PTYPE_TUNNEL_IP |
4269 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4270 			RTE_PTYPE_INNER_L4_NONFRAG,
4271 		[104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4272 			RTE_PTYPE_TUNNEL_IP |
4273 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4274 			RTE_PTYPE_INNER_L4_UDP,
4275 		/* [105] reserved */
4276 		[106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4277 			RTE_PTYPE_TUNNEL_IP |
4278 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4279 			RTE_PTYPE_INNER_L4_TCP,
4280 		[107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4281 			RTE_PTYPE_TUNNEL_IP |
4282 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4283 			RTE_PTYPE_INNER_L4_SCTP,
4284 		[108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4285 			RTE_PTYPE_TUNNEL_IP |
4286 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4287 			RTE_PTYPE_INNER_L4_ICMP,
4288 
4289 		/* IPv6 --> GRE/Teredo/VXLAN */
4290 		[109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4291 			RTE_PTYPE_TUNNEL_GRENAT,
4292 
4293 		/* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
4294 		[110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4295 			RTE_PTYPE_TUNNEL_GRENAT |
4296 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4297 			RTE_PTYPE_INNER_L4_FRAG,
4298 		[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4299 			RTE_PTYPE_TUNNEL_GRENAT |
4300 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4301 			RTE_PTYPE_INNER_L4_NONFRAG,
4302 		[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4303 			RTE_PTYPE_TUNNEL_GRENAT |
4304 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4305 			RTE_PTYPE_INNER_L4_UDP,
4306 		/* [113] reserved */
4307 		[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4308 			RTE_PTYPE_TUNNEL_GRENAT |
4309 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4310 			RTE_PTYPE_INNER_L4_TCP,
4311 		[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4312 			RTE_PTYPE_TUNNEL_GRENAT |
4313 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4314 			RTE_PTYPE_INNER_L4_SCTP,
4315 		[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4316 			RTE_PTYPE_TUNNEL_GRENAT |
4317 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4318 			RTE_PTYPE_INNER_L4_ICMP,
4319 
4320 		/* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
4321 		[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4322 			RTE_PTYPE_TUNNEL_GRENAT |
4323 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4324 			RTE_PTYPE_INNER_L4_FRAG,
4325 		[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4326 			RTE_PTYPE_TUNNEL_GRENAT |
4327 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4328 			RTE_PTYPE_INNER_L4_NONFRAG,
4329 		[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4330 			RTE_PTYPE_TUNNEL_GRENAT |
4331 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4332 			RTE_PTYPE_INNER_L4_UDP,
4333 		/* [120] reserved */
4334 		[121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4335 			RTE_PTYPE_TUNNEL_GRENAT |
4336 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4337 			RTE_PTYPE_INNER_L4_TCP,
4338 		[122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4339 			RTE_PTYPE_TUNNEL_GRENAT |
4340 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4341 			RTE_PTYPE_INNER_L4_SCTP,
4342 		[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4343 			RTE_PTYPE_TUNNEL_GRENAT |
4344 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4345 			RTE_PTYPE_INNER_L4_ICMP,
4346 
4347 		/* IPv6 --> GRE/Teredo/VXLAN --> MAC */
4348 		[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4349 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
4350 
4351 		/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
4352 		[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4353 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4354 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4355 			RTE_PTYPE_INNER_L4_FRAG,
4356 		[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4357 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4358 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4359 			RTE_PTYPE_INNER_L4_NONFRAG,
4360 		[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4361 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4362 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4363 			RTE_PTYPE_INNER_L4_UDP,
4364 		/* [128] reserved */
4365 		[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4366 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4367 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4368 			RTE_PTYPE_INNER_L4_TCP,
4369 		[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4370 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4371 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4372 			RTE_PTYPE_INNER_L4_SCTP,
4373 		[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4374 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4375 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4376 			RTE_PTYPE_INNER_L4_ICMP,
4377 
4378 		/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
4379 		[132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4380 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4381 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4382 			RTE_PTYPE_INNER_L4_FRAG,
4383 		[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4384 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4385 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4386 			RTE_PTYPE_INNER_L4_NONFRAG,
4387 		[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4388 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4389 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4390 			RTE_PTYPE_INNER_L4_UDP,
4391 		/* [135] reserved */
4392 		[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4393 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4394 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4395 			RTE_PTYPE_INNER_L4_TCP,
4396 		[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4397 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4398 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4399 			RTE_PTYPE_INNER_L4_SCTP,
4400 		[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4401 			RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4402 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4403 			RTE_PTYPE_INNER_L4_ICMP,
4404 		/* [139] - [299] reserved */
4405 
4406 		/* PPPoE */
4407 		[300] = RTE_PTYPE_L2_ETHER_PPPOE,
4408 		[301] = RTE_PTYPE_L2_ETHER_PPPOE,
4409 
4410 		/* PPPoE --> IPv4 */
4411 		[302] = RTE_PTYPE_L2_ETHER_PPPOE |
4412 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4413 			RTE_PTYPE_L4_FRAG,
4414 		[303] = RTE_PTYPE_L2_ETHER_PPPOE |
4415 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4416 			RTE_PTYPE_L4_NONFRAG,
4417 		[304] = RTE_PTYPE_L2_ETHER_PPPOE |
4418 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4419 			RTE_PTYPE_L4_UDP,
4420 		[305] = RTE_PTYPE_L2_ETHER_PPPOE |
4421 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4422 			RTE_PTYPE_L4_TCP,
4423 		[306] = RTE_PTYPE_L2_ETHER_PPPOE |
4424 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4425 			RTE_PTYPE_L4_SCTP,
4426 		[307] = RTE_PTYPE_L2_ETHER_PPPOE |
4427 			RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4428 			RTE_PTYPE_L4_ICMP,
4429 
4430 		/* PPPoE --> IPv6 */
4431 		[308] = RTE_PTYPE_L2_ETHER_PPPOE |
4432 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4433 			RTE_PTYPE_L4_FRAG,
4434 		[309] = RTE_PTYPE_L2_ETHER_PPPOE |
4435 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4436 			RTE_PTYPE_L4_NONFRAG,
4437 		[310] = RTE_PTYPE_L2_ETHER_PPPOE |
4438 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4439 			RTE_PTYPE_L4_UDP,
4440 		[311] = RTE_PTYPE_L2_ETHER_PPPOE |
4441 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4442 			RTE_PTYPE_L4_TCP,
4443 		[312] = RTE_PTYPE_L2_ETHER_PPPOE |
4444 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4445 			RTE_PTYPE_L4_SCTP,
4446 		[313] = RTE_PTYPE_L2_ETHER_PPPOE |
4447 			RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4448 			RTE_PTYPE_L4_ICMP,
4449 		/* [314] - [324] reserved */
4450 
4451 		/* IPv4/IPv6 --> GTPC/GTPU */
4452 		[325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4453 			RTE_PTYPE_TUNNEL_GTPC,
4454 		[326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4455 			RTE_PTYPE_TUNNEL_GTPC,
4456 		[327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4457 			RTE_PTYPE_TUNNEL_GTPC,
4458 		[328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4459 			RTE_PTYPE_TUNNEL_GTPC,
4460 		[329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4461 			RTE_PTYPE_TUNNEL_GTPU,
4462 		[330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4463 			RTE_PTYPE_TUNNEL_GTPU,
4464 
4465 		/* IPv4 --> GTPU --> IPv4 */
4466 		[331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4467 			RTE_PTYPE_TUNNEL_GTPU |
4468 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4469 			RTE_PTYPE_INNER_L4_FRAG,
4470 		[332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4471 			RTE_PTYPE_TUNNEL_GTPU |
4472 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4473 			RTE_PTYPE_INNER_L4_NONFRAG,
4474 		[333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4475 			RTE_PTYPE_TUNNEL_GTPU |
4476 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4477 			RTE_PTYPE_INNER_L4_UDP,
4478 		[334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4479 			RTE_PTYPE_TUNNEL_GTPU |
4480 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4481 			RTE_PTYPE_INNER_L4_TCP,
4482 		[335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4483 			RTE_PTYPE_TUNNEL_GTPU |
4484 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4485 			RTE_PTYPE_INNER_L4_ICMP,
4486 
4487 		/* IPv6 --> GTPU --> IPv4 */
4488 		[336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4489 			RTE_PTYPE_TUNNEL_GTPU |
4490 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4491 			RTE_PTYPE_INNER_L4_FRAG,
4492 		[337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4493 			RTE_PTYPE_TUNNEL_GTPU |
4494 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4495 			RTE_PTYPE_INNER_L4_NONFRAG,
4496 		[338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4497 			RTE_PTYPE_TUNNEL_GTPU |
4498 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4499 			RTE_PTYPE_INNER_L4_UDP,
4500 		[339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4501 			RTE_PTYPE_TUNNEL_GTPU |
4502 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4503 			RTE_PTYPE_INNER_L4_TCP,
4504 		[340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4505 			RTE_PTYPE_TUNNEL_GTPU |
4506 			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4507 			RTE_PTYPE_INNER_L4_ICMP,
4508 
4509 		/* IPv4 --> GTPU --> IPv6 */
4510 		[341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4511 			RTE_PTYPE_TUNNEL_GTPU |
4512 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4513 			RTE_PTYPE_INNER_L4_FRAG,
4514 		[342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4515 			RTE_PTYPE_TUNNEL_GTPU |
4516 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4517 			RTE_PTYPE_INNER_L4_NONFRAG,
4518 		[343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4519 			RTE_PTYPE_TUNNEL_GTPU |
4520 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4521 			RTE_PTYPE_INNER_L4_UDP,
4522 		[344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4523 			RTE_PTYPE_TUNNEL_GTPU |
4524 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4525 			RTE_PTYPE_INNER_L4_TCP,
4526 		[345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4527 			RTE_PTYPE_TUNNEL_GTPU |
4528 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4529 			RTE_PTYPE_INNER_L4_ICMP,
4530 
4531 		/* IPv6 --> GTPU --> IPv6 */
4532 		[346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4533 			RTE_PTYPE_TUNNEL_GTPU |
4534 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4535 			RTE_PTYPE_INNER_L4_FRAG,
4536 		[347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4537 			RTE_PTYPE_TUNNEL_GTPU |
4538 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4539 			RTE_PTYPE_INNER_L4_NONFRAG,
4540 		[348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4541 			RTE_PTYPE_TUNNEL_GTPU |
4542 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4543 			RTE_PTYPE_INNER_L4_UDP,
4544 		[349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4545 			RTE_PTYPE_TUNNEL_GTPU |
4546 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4547 			RTE_PTYPE_INNER_L4_TCP,
4548 		[350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4549 			RTE_PTYPE_TUNNEL_GTPU |
4550 			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4551 			RTE_PTYPE_INNER_L4_ICMP,
4552 
4553 		/* IPv4 --> UDP ECPRI */
4554 		[372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4555 			RTE_PTYPE_L4_UDP,
4556 		[373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4557 			RTE_PTYPE_L4_UDP,
4558 		[374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4559 			RTE_PTYPE_L4_UDP,
4560 		[375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4561 			RTE_PTYPE_L4_UDP,
4562 		[376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4563 			RTE_PTYPE_L4_UDP,
4564 		[377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4565 			RTE_PTYPE_L4_UDP,
4566 		[378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4567 			RTE_PTYPE_L4_UDP,
4568 		[379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4569 			RTE_PTYPE_L4_UDP,
4570 		[380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4571 			RTE_PTYPE_L4_UDP,
4572 		[381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4573 			RTE_PTYPE_L4_UDP,
4574 
4575 		/* IPV6 --> UDP ECPRI */
4576 		[382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4577 			RTE_PTYPE_L4_UDP,
4578 		[383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4579 			RTE_PTYPE_L4_UDP,
4580 		[384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4581 			RTE_PTYPE_L4_UDP,
4582 		[385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4583 			RTE_PTYPE_L4_UDP,
4584 		[386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4585 			RTE_PTYPE_L4_UDP,
4586 		[387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4587 			RTE_PTYPE_L4_UDP,
4588 		[388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4589 			RTE_PTYPE_L4_UDP,
4590 		[389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4591 			RTE_PTYPE_L4_UDP,
4592 		[390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4593 			RTE_PTYPE_L4_UDP,
4594 		[391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4595 			RTE_PTYPE_L4_UDP,
4596 		/* All others reserved */
4597 	};
4598 
4599 	return type_table[ptype];
4600 }
4601 
4602 void __rte_cold
4603 ice_set_default_ptype_table(struct rte_eth_dev *dev)
4604 {
4605 	struct ice_adapter *ad =
4606 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
4607 	int i;
4608 
4609 	for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
4610 		ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
4611 }
4612 
4613 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S	1
4614 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M	\
4615 			(0x3UL << ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S)
4616 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD 0
4617 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL 0x1
4618 
4619 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S	4
4620 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M	\
4621 	(1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S)
4622 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S	5
4623 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M	\
4624 	(1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S)
4625 
4626 /*
4627  * check the programming status descriptor in rx queue.
4628  * done after Programming Flow Director is programmed on
4629  * tx queue
4630  */
4631 static inline int
4632 ice_check_fdir_programming_status(struct ice_rx_queue *rxq)
4633 {
4634 	volatile union ice_32byte_rx_desc *rxdp;
4635 	uint64_t qword1;
4636 	uint32_t rx_status;
4637 	uint32_t error;
4638 	uint32_t id;
4639 	int ret = -EAGAIN;
4640 
4641 	rxdp = (volatile union ice_32byte_rx_desc *)
4642 		(&rxq->rx_ring[rxq->rx_tail]);
4643 	qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
4644 	rx_status = (qword1 & ICE_RXD_QW1_STATUS_M)
4645 			>> ICE_RXD_QW1_STATUS_S;
4646 
4647 	if (rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)) {
4648 		ret = 0;
4649 		error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M) >>
4650 			ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S;
4651 		id = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M) >>
4652 			ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S;
4653 		if (error) {
4654 			if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD)
4655 				PMD_DRV_LOG(ERR, "Failed to add FDIR rule.");
4656 			else if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL)
4657 				PMD_DRV_LOG(ERR, "Failed to remove FDIR rule.");
4658 			ret = -EINVAL;
4659 			goto err;
4660 		}
4661 		error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M) >>
4662 			ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S;
4663 		if (error) {
4664 			PMD_DRV_LOG(ERR, "Failed to create FDIR profile.");
4665 			ret = -EINVAL;
4666 		}
4667 err:
4668 		rxdp->wb.qword1.status_error_len = 0;
4669 		rxq->rx_tail++;
4670 		if (unlikely(rxq->rx_tail == rxq->nb_rx_desc))
4671 			rxq->rx_tail = 0;
4672 		if (rxq->rx_tail == 0)
4673 			ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
4674 		else
4675 			ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_tail - 1);
4676 	}
4677 
4678 	return ret;
4679 }
4680 
4681 #define ICE_FDIR_MAX_WAIT_US 10000
4682 
4683 int
4684 ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc)
4685 {
4686 	struct ci_tx_queue *txq = pf->fdir.txq;
4687 	struct ice_rx_queue *rxq = pf->fdir.rxq;
4688 	volatile struct ice_fltr_desc *fdirdp;
4689 	volatile struct ice_tx_desc *txdp;
4690 	uint32_t td_cmd;
4691 	uint16_t i;
4692 
4693 	fdirdp = (volatile struct ice_fltr_desc *)
4694 		(&txq->ice_tx_ring[txq->tx_tail]);
4695 	fdirdp->qidx_compq_space_stat = fdir_desc->qidx_compq_space_stat;
4696 	fdirdp->dtype_cmd_vsi_fdid = fdir_desc->dtype_cmd_vsi_fdid;
4697 
4698 	txdp = &txq->ice_tx_ring[txq->tx_tail + 1];
4699 	txdp->buf_addr = rte_cpu_to_le_64(pf->fdir.dma_addr);
4700 	td_cmd = ICE_TX_DESC_CMD_EOP |
4701 		ICE_TX_DESC_CMD_RS  |
4702 		ICE_TX_DESC_CMD_DUMMY;
4703 
4704 	txdp->cmd_type_offset_bsz =
4705 		ice_build_ctob(td_cmd, 0, ICE_FDIR_PKT_LEN, 0);
4706 
4707 	txq->tx_tail += 2;
4708 	if (txq->tx_tail >= txq->nb_tx_desc)
4709 		txq->tx_tail = 0;
4710 	/* Update the tx tail register */
4711 	ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
4712 	for (i = 0; i < ICE_FDIR_MAX_WAIT_US; i++) {
4713 		if ((txdp->cmd_type_offset_bsz &
4714 		     rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) ==
4715 		    rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
4716 			break;
4717 		rte_delay_us(1);
4718 	}
4719 	if (i >= ICE_FDIR_MAX_WAIT_US) {
4720 		PMD_DRV_LOG(ERR,
4721 			    "Failed to program FDIR filter: time out to get DD on tx queue.");
4722 		return -ETIMEDOUT;
4723 	}
4724 
4725 	for (; i < ICE_FDIR_MAX_WAIT_US; i++) {
4726 		int ret;
4727 
4728 		ret = ice_check_fdir_programming_status(rxq);
4729 		if (ret == -EAGAIN)
4730 			rte_delay_us(1);
4731 		else
4732 			return ret;
4733 	}
4734 
4735 	PMD_DRV_LOG(ERR,
4736 		    "Failed to program FDIR filter: programming status reported.");
4737 	return -ETIMEDOUT;
4738 
4739 
4740 }
4741