1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2018-2019 Hisilicon Limited. 3 */ 4 5 #include <rte_bus_pci.h> 6 #include <rte_common.h> 7 #include <rte_cycles.h> 8 #include <rte_geneve.h> 9 #include <rte_vxlan.h> 10 #include <ethdev_driver.h> 11 #include <rte_io.h> 12 #include <rte_net.h> 13 #include <rte_malloc.h> 14 #if defined(RTE_ARCH_ARM64) && defined(__ARM_FEATURE_SVE) 15 #include <rte_cpuflags.h> 16 #endif 17 18 #include "hns3_ethdev.h" 19 #include "hns3_rxtx.h" 20 #include "hns3_regs.h" 21 #include "hns3_logs.h" 22 23 #define HNS3_CFG_DESC_NUM(num) ((num) / 8 - 1) 24 #define HNS3_RX_RING_PREFETCTH_MASK 3 25 26 static void 27 hns3_rx_queue_release_mbufs(struct hns3_rx_queue *rxq) 28 { 29 uint16_t i; 30 31 /* Note: Fake rx queue will not enter here */ 32 if (rxq->sw_ring == NULL) 33 return; 34 35 if (rxq->rx_rearm_nb == 0) { 36 for (i = 0; i < rxq->nb_rx_desc; i++) { 37 if (rxq->sw_ring[i].mbuf != NULL) { 38 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); 39 rxq->sw_ring[i].mbuf = NULL; 40 } 41 } 42 } else { 43 for (i = rxq->next_to_use; 44 i != rxq->rx_rearm_start; 45 i = (i + 1) % rxq->nb_rx_desc) { 46 if (rxq->sw_ring[i].mbuf != NULL) { 47 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); 48 rxq->sw_ring[i].mbuf = NULL; 49 } 50 } 51 } 52 53 for (i = 0; i < rxq->bulk_mbuf_num; i++) 54 rte_pktmbuf_free_seg(rxq->bulk_mbuf[i]); 55 rxq->bulk_mbuf_num = 0; 56 57 if (rxq->pkt_first_seg) { 58 rte_pktmbuf_free(rxq->pkt_first_seg); 59 rxq->pkt_first_seg = NULL; 60 } 61 } 62 63 static void 64 hns3_tx_queue_release_mbufs(struct hns3_tx_queue *txq) 65 { 66 uint16_t i; 67 68 /* Note: Fake tx queue will not enter here */ 69 if (txq->sw_ring) { 70 for (i = 0; i < txq->nb_tx_desc; i++) { 71 if (txq->sw_ring[i].mbuf) { 72 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); 73 txq->sw_ring[i].mbuf = NULL; 74 } 75 } 76 } 77 } 78 79 static void 80 hns3_rx_queue_release(void *queue) 81 { 82 struct hns3_rx_queue *rxq = queue; 83 if (rxq) { 84 hns3_rx_queue_release_mbufs(rxq); 85 if (rxq->mz) 86 rte_memzone_free(rxq->mz); 87 if (rxq->sw_ring) 88 rte_free(rxq->sw_ring); 89 rte_free(rxq); 90 } 91 } 92 93 static void 94 hns3_tx_queue_release(void *queue) 95 { 96 struct hns3_tx_queue *txq = queue; 97 if (txq) { 98 hns3_tx_queue_release_mbufs(txq); 99 if (txq->mz) 100 rte_memzone_free(txq->mz); 101 if (txq->sw_ring) 102 rte_free(txq->sw_ring); 103 if (txq->free) 104 rte_free(txq->free); 105 rte_free(txq); 106 } 107 } 108 109 void 110 hns3_dev_rx_queue_release(void *queue) 111 { 112 struct hns3_rx_queue *rxq = queue; 113 struct hns3_adapter *hns; 114 115 if (rxq == NULL) 116 return; 117 118 hns = rxq->hns; 119 rte_spinlock_lock(&hns->hw.lock); 120 hns3_rx_queue_release(queue); 121 rte_spinlock_unlock(&hns->hw.lock); 122 } 123 124 void 125 hns3_dev_tx_queue_release(void *queue) 126 { 127 struct hns3_tx_queue *txq = queue; 128 struct hns3_adapter *hns; 129 130 if (txq == NULL) 131 return; 132 133 hns = txq->hns; 134 rte_spinlock_lock(&hns->hw.lock); 135 hns3_tx_queue_release(queue); 136 rte_spinlock_unlock(&hns->hw.lock); 137 } 138 139 static void 140 hns3_fake_rx_queue_release(struct hns3_rx_queue *queue) 141 { 142 struct hns3_rx_queue *rxq = queue; 143 struct hns3_adapter *hns; 144 struct hns3_hw *hw; 145 uint16_t idx; 146 147 if (rxq == NULL) 148 return; 149 150 hns = rxq->hns; 151 hw = &hns->hw; 152 idx = rxq->queue_id; 153 if (hw->fkq_data.rx_queues[idx]) { 154 hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]); 155 hw->fkq_data.rx_queues[idx] = NULL; 156 } 157 158 /* free fake rx queue arrays */ 159 if (idx == (hw->fkq_data.nb_fake_rx_queues - 1)) { 160 hw->fkq_data.nb_fake_rx_queues = 0; 161 rte_free(hw->fkq_data.rx_queues); 162 hw->fkq_data.rx_queues = NULL; 163 } 164 } 165 166 static void 167 hns3_fake_tx_queue_release(struct hns3_tx_queue *queue) 168 { 169 struct hns3_tx_queue *txq = queue; 170 struct hns3_adapter *hns; 171 struct hns3_hw *hw; 172 uint16_t idx; 173 174 if (txq == NULL) 175 return; 176 177 hns = txq->hns; 178 hw = &hns->hw; 179 idx = txq->queue_id; 180 if (hw->fkq_data.tx_queues[idx]) { 181 hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]); 182 hw->fkq_data.tx_queues[idx] = NULL; 183 } 184 185 /* free fake tx queue arrays */ 186 if (idx == (hw->fkq_data.nb_fake_tx_queues - 1)) { 187 hw->fkq_data.nb_fake_tx_queues = 0; 188 rte_free(hw->fkq_data.tx_queues); 189 hw->fkq_data.tx_queues = NULL; 190 } 191 } 192 193 static void 194 hns3_free_rx_queues(struct rte_eth_dev *dev) 195 { 196 struct hns3_adapter *hns = dev->data->dev_private; 197 struct hns3_fake_queue_data *fkq_data; 198 struct hns3_hw *hw = &hns->hw; 199 uint16_t nb_rx_q; 200 uint16_t i; 201 202 nb_rx_q = hw->data->nb_rx_queues; 203 for (i = 0; i < nb_rx_q; i++) { 204 if (dev->data->rx_queues[i]) { 205 hns3_rx_queue_release(dev->data->rx_queues[i]); 206 dev->data->rx_queues[i] = NULL; 207 } 208 } 209 210 /* Free fake Rx queues */ 211 fkq_data = &hw->fkq_data; 212 for (i = 0; i < fkq_data->nb_fake_rx_queues; i++) { 213 if (fkq_data->rx_queues[i]) 214 hns3_fake_rx_queue_release(fkq_data->rx_queues[i]); 215 } 216 } 217 218 static void 219 hns3_free_tx_queues(struct rte_eth_dev *dev) 220 { 221 struct hns3_adapter *hns = dev->data->dev_private; 222 struct hns3_fake_queue_data *fkq_data; 223 struct hns3_hw *hw = &hns->hw; 224 uint16_t nb_tx_q; 225 uint16_t i; 226 227 nb_tx_q = hw->data->nb_tx_queues; 228 for (i = 0; i < nb_tx_q; i++) { 229 if (dev->data->tx_queues[i]) { 230 hns3_tx_queue_release(dev->data->tx_queues[i]); 231 dev->data->tx_queues[i] = NULL; 232 } 233 } 234 235 /* Free fake Tx queues */ 236 fkq_data = &hw->fkq_data; 237 for (i = 0; i < fkq_data->nb_fake_tx_queues; i++) { 238 if (fkq_data->tx_queues[i]) 239 hns3_fake_tx_queue_release(fkq_data->tx_queues[i]); 240 } 241 } 242 243 void 244 hns3_free_all_queues(struct rte_eth_dev *dev) 245 { 246 hns3_free_rx_queues(dev); 247 hns3_free_tx_queues(dev); 248 } 249 250 static int 251 hns3_alloc_rx_queue_mbufs(struct hns3_hw *hw, struct hns3_rx_queue *rxq) 252 { 253 struct rte_mbuf *mbuf; 254 uint64_t dma_addr; 255 uint16_t i; 256 257 for (i = 0; i < rxq->nb_rx_desc; i++) { 258 mbuf = rte_mbuf_raw_alloc(rxq->mb_pool); 259 if (unlikely(mbuf == NULL)) { 260 hns3_err(hw, "Failed to allocate RXD[%u] for rx queue!", 261 i); 262 hns3_rx_queue_release_mbufs(rxq); 263 return -ENOMEM; 264 } 265 266 rte_mbuf_refcnt_set(mbuf, 1); 267 mbuf->next = NULL; 268 mbuf->data_off = RTE_PKTMBUF_HEADROOM; 269 mbuf->nb_segs = 1; 270 mbuf->port = rxq->port_id; 271 272 rxq->sw_ring[i].mbuf = mbuf; 273 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf)); 274 rxq->rx_ring[i].addr = dma_addr; 275 rxq->rx_ring[i].rx.bd_base_info = 0; 276 } 277 278 return 0; 279 } 280 281 static int 282 hns3_buf_size2type(uint32_t buf_size) 283 { 284 int bd_size_type; 285 286 switch (buf_size) { 287 case 512: 288 bd_size_type = HNS3_BD_SIZE_512_TYPE; 289 break; 290 case 1024: 291 bd_size_type = HNS3_BD_SIZE_1024_TYPE; 292 break; 293 case 4096: 294 bd_size_type = HNS3_BD_SIZE_4096_TYPE; 295 break; 296 default: 297 bd_size_type = HNS3_BD_SIZE_2048_TYPE; 298 } 299 300 return bd_size_type; 301 } 302 303 static void 304 hns3_init_rx_queue_hw(struct hns3_rx_queue *rxq) 305 { 306 uint32_t rx_buf_len = rxq->rx_buf_len; 307 uint64_t dma_addr = rxq->rx_ring_phys_addr; 308 309 hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_L_REG, (uint32_t)dma_addr); 310 hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_H_REG, 311 (uint32_t)((dma_addr >> 31) >> 1)); 312 313 hns3_write_dev(rxq, HNS3_RING_RX_BD_LEN_REG, 314 hns3_buf_size2type(rx_buf_len)); 315 hns3_write_dev(rxq, HNS3_RING_RX_BD_NUM_REG, 316 HNS3_CFG_DESC_NUM(rxq->nb_rx_desc)); 317 } 318 319 static void 320 hns3_init_tx_queue_hw(struct hns3_tx_queue *txq) 321 { 322 uint64_t dma_addr = txq->tx_ring_phys_addr; 323 324 hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_L_REG, (uint32_t)dma_addr); 325 hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_H_REG, 326 (uint32_t)((dma_addr >> 31) >> 1)); 327 328 hns3_write_dev(txq, HNS3_RING_TX_BD_NUM_REG, 329 HNS3_CFG_DESC_NUM(txq->nb_tx_desc)); 330 } 331 332 void 333 hns3_update_all_queues_pvid_proc_en(struct hns3_hw *hw) 334 { 335 uint16_t nb_rx_q = hw->data->nb_rx_queues; 336 uint16_t nb_tx_q = hw->data->nb_tx_queues; 337 struct hns3_rx_queue *rxq; 338 struct hns3_tx_queue *txq; 339 bool pvid_en; 340 int i; 341 342 pvid_en = hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE; 343 for (i = 0; i < hw->cfg_max_queues; i++) { 344 if (i < nb_rx_q) { 345 rxq = hw->data->rx_queues[i]; 346 if (rxq != NULL) 347 rxq->pvid_sw_discard_en = pvid_en; 348 } 349 if (i < nb_tx_q) { 350 txq = hw->data->tx_queues[i]; 351 if (txq != NULL) 352 txq->pvid_sw_shift_en = pvid_en; 353 } 354 } 355 } 356 357 static void 358 hns3_stop_unused_queue(void *tqp_base, enum hns3_ring_type queue_type) 359 { 360 uint32_t reg_offset; 361 uint32_t reg; 362 363 reg_offset = queue_type == HNS3_RING_TYPE_TX ? 364 HNS3_RING_TX_EN_REG : HNS3_RING_RX_EN_REG; 365 reg = hns3_read_reg(tqp_base, reg_offset); 366 reg &= ~BIT(HNS3_RING_EN_B); 367 hns3_write_reg(tqp_base, reg_offset, reg); 368 } 369 370 void 371 hns3_enable_all_queues(struct hns3_hw *hw, bool en) 372 { 373 uint16_t nb_rx_q = hw->data->nb_rx_queues; 374 uint16_t nb_tx_q = hw->data->nb_tx_queues; 375 struct hns3_rx_queue *rxq; 376 struct hns3_tx_queue *txq; 377 uint32_t rcb_reg; 378 void *tqp_base; 379 int i; 380 381 for (i = 0; i < hw->cfg_max_queues; i++) { 382 if (hns3_dev_indep_txrx_supported(hw)) { 383 rxq = i < nb_rx_q ? hw->data->rx_queues[i] : NULL; 384 txq = i < nb_tx_q ? hw->data->tx_queues[i] : NULL; 385 386 tqp_base = (void *)((char *)hw->io_base + 387 hns3_get_tqp_reg_offset(i)); 388 /* 389 * If queue struct is not initialized, it means the 390 * related HW ring has not been initialized yet. 391 * So, these queues should be disabled before enable 392 * the tqps to avoid a HW exception since the queues 393 * are enabled by default. 394 */ 395 if (rxq == NULL) 396 hns3_stop_unused_queue(tqp_base, 397 HNS3_RING_TYPE_RX); 398 if (txq == NULL) 399 hns3_stop_unused_queue(tqp_base, 400 HNS3_RING_TYPE_TX); 401 } else { 402 rxq = i < nb_rx_q ? hw->data->rx_queues[i] : 403 hw->fkq_data.rx_queues[i - nb_rx_q]; 404 405 tqp_base = rxq->io_base; 406 } 407 /* 408 * This is the master switch that used to control the enabling 409 * of a pair of Tx and Rx queues. Both the Rx and Tx point to 410 * the same register 411 */ 412 rcb_reg = hns3_read_reg(tqp_base, HNS3_RING_EN_REG); 413 if (en) 414 rcb_reg |= BIT(HNS3_RING_EN_B); 415 else 416 rcb_reg &= ~BIT(HNS3_RING_EN_B); 417 hns3_write_reg(tqp_base, HNS3_RING_EN_REG, rcb_reg); 418 } 419 } 420 421 static void 422 hns3_enable_txq(struct hns3_tx_queue *txq, bool en) 423 { 424 struct hns3_hw *hw = &txq->hns->hw; 425 uint32_t reg; 426 427 if (hns3_dev_indep_txrx_supported(hw)) { 428 reg = hns3_read_dev(txq, HNS3_RING_TX_EN_REG); 429 if (en) 430 reg |= BIT(HNS3_RING_EN_B); 431 else 432 reg &= ~BIT(HNS3_RING_EN_B); 433 hns3_write_dev(txq, HNS3_RING_TX_EN_REG, reg); 434 } 435 txq->enabled = en; 436 } 437 438 static void 439 hns3_enable_rxq(struct hns3_rx_queue *rxq, bool en) 440 { 441 struct hns3_hw *hw = &rxq->hns->hw; 442 uint32_t reg; 443 444 if (hns3_dev_indep_txrx_supported(hw)) { 445 reg = hns3_read_dev(rxq, HNS3_RING_RX_EN_REG); 446 if (en) 447 reg |= BIT(HNS3_RING_EN_B); 448 else 449 reg &= ~BIT(HNS3_RING_EN_B); 450 hns3_write_dev(rxq, HNS3_RING_RX_EN_REG, reg); 451 } 452 rxq->enabled = en; 453 } 454 455 int 456 hns3_start_all_txqs(struct rte_eth_dev *dev) 457 { 458 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 459 struct hns3_tx_queue *txq; 460 uint16_t i, j; 461 462 for (i = 0; i < dev->data->nb_tx_queues; i++) { 463 txq = hw->data->tx_queues[i]; 464 if (!txq) { 465 hns3_err(hw, "Tx queue %u not available or setup.", i); 466 goto start_txqs_fail; 467 } 468 /* 469 * Tx queue is enabled by default. Therefore, the Tx queues 470 * needs to be disabled when deferred_start is set. There is 471 * another master switch used to control the enabling of a pair 472 * of Tx and Rx queues. And the master switch is disabled by 473 * default. 474 */ 475 if (txq->tx_deferred_start) 476 hns3_enable_txq(txq, false); 477 else 478 hns3_enable_txq(txq, true); 479 } 480 return 0; 481 482 start_txqs_fail: 483 for (j = 0; j < i; j++) { 484 txq = hw->data->tx_queues[j]; 485 hns3_enable_txq(txq, false); 486 } 487 return -EINVAL; 488 } 489 490 int 491 hns3_start_all_rxqs(struct rte_eth_dev *dev) 492 { 493 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 494 struct hns3_rx_queue *rxq; 495 uint16_t i, j; 496 497 for (i = 0; i < dev->data->nb_rx_queues; i++) { 498 rxq = hw->data->rx_queues[i]; 499 if (!rxq) { 500 hns3_err(hw, "Rx queue %u not available or setup.", i); 501 goto start_rxqs_fail; 502 } 503 /* 504 * Rx queue is enabled by default. Therefore, the Rx queues 505 * needs to be disabled when deferred_start is set. There is 506 * another master switch used to control the enabling of a pair 507 * of Tx and Rx queues. And the master switch is disabled by 508 * default. 509 */ 510 if (rxq->rx_deferred_start) 511 hns3_enable_rxq(rxq, false); 512 else 513 hns3_enable_rxq(rxq, true); 514 } 515 return 0; 516 517 start_rxqs_fail: 518 for (j = 0; j < i; j++) { 519 rxq = hw->data->rx_queues[j]; 520 hns3_enable_rxq(rxq, false); 521 } 522 return -EINVAL; 523 } 524 525 void 526 hns3_restore_tqp_enable_state(struct hns3_hw *hw) 527 { 528 struct hns3_rx_queue *rxq; 529 struct hns3_tx_queue *txq; 530 uint16_t i; 531 532 for (i = 0; i < hw->data->nb_rx_queues; i++) { 533 rxq = hw->data->rx_queues[i]; 534 if (rxq != NULL) 535 hns3_enable_rxq(rxq, rxq->enabled); 536 } 537 538 for (i = 0; i < hw->data->nb_tx_queues; i++) { 539 txq = hw->data->tx_queues[i]; 540 if (txq != NULL) 541 hns3_enable_txq(txq, txq->enabled); 542 } 543 } 544 545 void 546 hns3_stop_all_txqs(struct rte_eth_dev *dev) 547 { 548 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 549 struct hns3_tx_queue *txq; 550 uint16_t i; 551 552 for (i = 0; i < dev->data->nb_tx_queues; i++) { 553 txq = hw->data->tx_queues[i]; 554 if (!txq) 555 continue; 556 hns3_enable_txq(txq, false); 557 } 558 } 559 560 static int 561 hns3_tqp_enable(struct hns3_hw *hw, uint16_t queue_id, bool enable) 562 { 563 struct hns3_cfg_com_tqp_queue_cmd *req; 564 struct hns3_cmd_desc desc; 565 int ret; 566 567 req = (struct hns3_cfg_com_tqp_queue_cmd *)desc.data; 568 569 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_COM_TQP_QUEUE, false); 570 req->tqp_id = rte_cpu_to_le_16(queue_id); 571 req->stream_id = 0; 572 hns3_set_bit(req->enable, HNS3_TQP_ENABLE_B, enable ? 1 : 0); 573 574 ret = hns3_cmd_send(hw, &desc, 1); 575 if (ret) 576 hns3_err(hw, "TQP enable fail, ret = %d", ret); 577 578 return ret; 579 } 580 581 static int 582 hns3_send_reset_tqp_cmd(struct hns3_hw *hw, uint16_t queue_id, bool enable) 583 { 584 struct hns3_reset_tqp_queue_cmd *req; 585 struct hns3_cmd_desc desc; 586 int ret; 587 588 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, false); 589 590 req = (struct hns3_reset_tqp_queue_cmd *)desc.data; 591 req->tqp_id = rte_cpu_to_le_16(queue_id); 592 hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0); 593 ret = hns3_cmd_send(hw, &desc, 1); 594 if (ret) 595 hns3_err(hw, "send tqp reset cmd error, queue_id = %u, " 596 "ret = %d", queue_id, ret); 597 598 return ret; 599 } 600 601 static int 602 hns3_get_tqp_reset_status(struct hns3_hw *hw, uint16_t queue_id, 603 uint8_t *reset_status) 604 { 605 struct hns3_reset_tqp_queue_cmd *req; 606 struct hns3_cmd_desc desc; 607 int ret; 608 609 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, true); 610 611 req = (struct hns3_reset_tqp_queue_cmd *)desc.data; 612 req->tqp_id = rte_cpu_to_le_16(queue_id); 613 614 ret = hns3_cmd_send(hw, &desc, 1); 615 if (ret) { 616 hns3_err(hw, "get tqp reset status error, queue_id = %u, " 617 "ret = %d.", queue_id, ret); 618 return ret; 619 } 620 *reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B); 621 return ret; 622 } 623 624 static int 625 hns3pf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id) 626 { 627 #define HNS3_TQP_RESET_TRY_MS 200 628 uint8_t reset_status; 629 uint64_t end; 630 int ret; 631 632 /* 633 * In current version VF is not supported when PF is driven by DPDK 634 * driver, all task queue pairs are mapped to PF function, so PF's queue 635 * id is equals to the global queue id in PF range. 636 */ 637 ret = hns3_send_reset_tqp_cmd(hw, queue_id, true); 638 if (ret) { 639 hns3_err(hw, "Send reset tqp cmd fail, ret = %d", ret); 640 return ret; 641 } 642 end = get_timeofday_ms() + HNS3_TQP_RESET_TRY_MS; 643 do { 644 /* Wait for tqp hw reset */ 645 rte_delay_ms(HNS3_POLL_RESPONE_MS); 646 ret = hns3_get_tqp_reset_status(hw, queue_id, &reset_status); 647 if (ret) 648 goto tqp_reset_fail; 649 650 if (reset_status) 651 break; 652 } while (get_timeofday_ms() < end); 653 654 if (!reset_status) { 655 ret = -ETIMEDOUT; 656 hns3_err(hw, "reset tqp timeout, queue_id = %u, ret = %d", 657 queue_id, ret); 658 goto tqp_reset_fail; 659 } 660 661 ret = hns3_send_reset_tqp_cmd(hw, queue_id, false); 662 if (ret) 663 hns3_err(hw, "Deassert the soft reset fail, ret = %d", ret); 664 665 return ret; 666 667 tqp_reset_fail: 668 hns3_send_reset_tqp_cmd(hw, queue_id, false); 669 return ret; 670 } 671 672 static int 673 hns3vf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id) 674 { 675 uint8_t msg_data[2]; 676 int ret; 677 678 memcpy(msg_data, &queue_id, sizeof(uint16_t)); 679 680 ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data, 681 sizeof(msg_data), true, NULL, 0); 682 if (ret) 683 hns3_err(hw, "fail to reset tqp, queue_id = %u, ret = %d.", 684 queue_id, ret); 685 return ret; 686 } 687 688 static int 689 hns3_reset_rcb_cmd(struct hns3_hw *hw, uint8_t *reset_status) 690 { 691 struct hns3_reset_cmd *req; 692 struct hns3_cmd_desc desc; 693 int ret; 694 695 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false); 696 req = (struct hns3_reset_cmd *)desc.data; 697 hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_RCB_B, 1); 698 699 /* 700 * The start qid should be the global qid of the first tqp of the 701 * function which should be reset in this port. Since our PF not 702 * support take over of VFs, so we only need to reset function 0, 703 * and its start qid is always 0. 704 */ 705 req->fun_reset_rcb_vqid_start = rte_cpu_to_le_16(0); 706 req->fun_reset_rcb_vqid_num = rte_cpu_to_le_16(hw->cfg_max_queues); 707 708 ret = hns3_cmd_send(hw, &desc, 1); 709 if (ret) { 710 hns3_err(hw, "fail to send rcb reset cmd, ret = %d.", ret); 711 return ret; 712 } 713 714 *reset_status = req->fun_reset_rcb_return_status; 715 return 0; 716 } 717 718 static int 719 hns3pf_reset_all_tqps(struct hns3_hw *hw) 720 { 721 #define HNS3_RESET_RCB_NOT_SUPPORT 0U 722 #define HNS3_RESET_ALL_TQP_SUCCESS 1U 723 uint8_t reset_status; 724 int ret; 725 int i; 726 727 ret = hns3_reset_rcb_cmd(hw, &reset_status); 728 if (ret) 729 return ret; 730 731 /* 732 * If the firmware version is low, it may not support the rcb reset 733 * which means reset all the tqps at a time. In this case, we should 734 * reset tqps one by one. 735 */ 736 if (reset_status == HNS3_RESET_RCB_NOT_SUPPORT) { 737 for (i = 0; i < hw->cfg_max_queues; i++) { 738 ret = hns3pf_reset_tqp(hw, i); 739 if (ret) { 740 hns3_err(hw, 741 "fail to reset tqp, queue_id = %d, ret = %d.", 742 i, ret); 743 return ret; 744 } 745 } 746 } else if (reset_status != HNS3_RESET_ALL_TQP_SUCCESS) { 747 hns3_err(hw, "fail to reset all tqps, reset_status = %u.", 748 reset_status); 749 return -EIO; 750 } 751 752 return 0; 753 } 754 755 static int 756 hns3vf_reset_all_tqps(struct hns3_hw *hw) 757 { 758 #define HNS3VF_RESET_ALL_TQP_DONE 1U 759 uint8_t reset_status; 760 uint8_t msg_data[2]; 761 int ret; 762 int i; 763 764 memset(msg_data, 0, sizeof(uint16_t)); 765 ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data, 766 sizeof(msg_data), true, &reset_status, 767 sizeof(reset_status)); 768 if (ret) { 769 hns3_err(hw, "fail to send rcb reset mbx, ret = %d.", ret); 770 return ret; 771 } 772 773 if (reset_status == HNS3VF_RESET_ALL_TQP_DONE) 774 return 0; 775 776 /* 777 * If the firmware version or kernel PF version is low, it may not 778 * support the rcb reset which means reset all the tqps at a time. 779 * In this case, we should reset tqps one by one. 780 */ 781 for (i = 1; i < hw->cfg_max_queues; i++) { 782 ret = hns3vf_reset_tqp(hw, i); 783 if (ret) 784 return ret; 785 } 786 787 return 0; 788 } 789 790 int 791 hns3_reset_all_tqps(struct hns3_adapter *hns) 792 { 793 struct hns3_hw *hw = &hns->hw; 794 int ret, i; 795 796 /* Disable all queues before reset all queues */ 797 for (i = 0; i < hw->cfg_max_queues; i++) { 798 ret = hns3_tqp_enable(hw, i, false); 799 if (ret) { 800 hns3_err(hw, 801 "fail to disable tqps before tqps reset, ret = %d.", 802 ret); 803 return ret; 804 } 805 } 806 807 if (hns->is_vf) 808 return hns3vf_reset_all_tqps(hw); 809 else 810 return hns3pf_reset_all_tqps(hw); 811 } 812 813 static int 814 hns3_send_reset_queue_cmd(struct hns3_hw *hw, uint16_t queue_id, 815 enum hns3_ring_type queue_type, bool enable) 816 { 817 struct hns3_reset_tqp_queue_cmd *req; 818 struct hns3_cmd_desc desc; 819 int queue_direction; 820 int ret; 821 822 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, false); 823 824 req = (struct hns3_reset_tqp_queue_cmd *)desc.data; 825 req->tqp_id = rte_cpu_to_le_16(queue_id); 826 queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1; 827 req->queue_direction = rte_cpu_to_le_16(queue_direction); 828 hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0); 829 830 ret = hns3_cmd_send(hw, &desc, 1); 831 if (ret) 832 hns3_err(hw, "send queue reset cmd error, queue_id = %u, " 833 "queue_type = %s, ret = %d.", queue_id, 834 queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret); 835 return ret; 836 } 837 838 static int 839 hns3_get_queue_reset_status(struct hns3_hw *hw, uint16_t queue_id, 840 enum hns3_ring_type queue_type, 841 uint8_t *reset_status) 842 { 843 struct hns3_reset_tqp_queue_cmd *req; 844 struct hns3_cmd_desc desc; 845 int queue_direction; 846 int ret; 847 848 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, true); 849 850 req = (struct hns3_reset_tqp_queue_cmd *)desc.data; 851 req->tqp_id = rte_cpu_to_le_16(queue_id); 852 queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1; 853 req->queue_direction = rte_cpu_to_le_16(queue_direction); 854 855 ret = hns3_cmd_send(hw, &desc, 1); 856 if (ret) { 857 hns3_err(hw, "get queue reset status error, queue_id = %u " 858 "queue_type = %s, ret = %d.", queue_id, 859 queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret); 860 return ret; 861 } 862 863 *reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B); 864 return ret; 865 } 866 867 static int 868 hns3_reset_queue(struct hns3_hw *hw, uint16_t queue_id, 869 enum hns3_ring_type queue_type) 870 { 871 #define HNS3_QUEUE_RESET_TRY_MS 200 872 struct hns3_tx_queue *txq; 873 struct hns3_rx_queue *rxq; 874 uint32_t reset_wait_times; 875 uint32_t max_wait_times; 876 uint8_t reset_status; 877 int ret; 878 879 if (queue_type == HNS3_RING_TYPE_TX) { 880 txq = hw->data->tx_queues[queue_id]; 881 hns3_enable_txq(txq, false); 882 } else { 883 rxq = hw->data->rx_queues[queue_id]; 884 hns3_enable_rxq(rxq, false); 885 } 886 887 ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, true); 888 if (ret) { 889 hns3_err(hw, "send reset queue cmd fail, ret = %d.", ret); 890 return ret; 891 } 892 893 reset_wait_times = 0; 894 max_wait_times = HNS3_QUEUE_RESET_TRY_MS / HNS3_POLL_RESPONE_MS; 895 while (reset_wait_times < max_wait_times) { 896 /* Wait for queue hw reset */ 897 rte_delay_ms(HNS3_POLL_RESPONE_MS); 898 ret = hns3_get_queue_reset_status(hw, queue_id, 899 queue_type, &reset_status); 900 if (ret) 901 goto queue_reset_fail; 902 903 if (reset_status) 904 break; 905 reset_wait_times++; 906 } 907 908 if (!reset_status) { 909 hns3_err(hw, "reset queue timeout, queue_id = %u, " 910 "queue_type = %s", queue_id, 911 queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx"); 912 ret = -ETIMEDOUT; 913 goto queue_reset_fail; 914 } 915 916 ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false); 917 if (ret) 918 hns3_err(hw, "deassert queue reset fail, ret = %d.", ret); 919 920 return ret; 921 922 queue_reset_fail: 923 hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false); 924 return ret; 925 } 926 927 uint32_t 928 hns3_get_tqp_intr_reg_offset(uint16_t tqp_intr_id) 929 { 930 uint32_t reg_offset; 931 932 /* Need an extend offset to config queues > 64 */ 933 if (tqp_intr_id < HNS3_MIN_EXT_TQP_INTR_ID) 934 reg_offset = HNS3_TQP_INTR_REG_BASE + 935 tqp_intr_id * HNS3_TQP_INTR_LOW_ORDER_OFFSET; 936 else 937 reg_offset = HNS3_TQP_INTR_EXT_REG_BASE + 938 tqp_intr_id / HNS3_MIN_EXT_TQP_INTR_ID * 939 HNS3_TQP_INTR_HIGH_ORDER_OFFSET + 940 tqp_intr_id % HNS3_MIN_EXT_TQP_INTR_ID * 941 HNS3_TQP_INTR_LOW_ORDER_OFFSET; 942 943 return reg_offset; 944 } 945 946 void 947 hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id, 948 uint8_t gl_idx, uint16_t gl_value) 949 { 950 uint32_t offset[] = {HNS3_TQP_INTR_GL0_REG, 951 HNS3_TQP_INTR_GL1_REG, 952 HNS3_TQP_INTR_GL2_REG}; 953 uint32_t addr, value; 954 955 if (gl_idx >= RTE_DIM(offset) || gl_value > HNS3_TQP_INTR_GL_MAX) 956 return; 957 958 addr = offset[gl_idx] + hns3_get_tqp_intr_reg_offset(queue_id); 959 if (hw->intr.gl_unit == HNS3_INTR_COALESCE_GL_UINT_1US) 960 value = gl_value | HNS3_TQP_INTR_GL_UNIT_1US; 961 else 962 value = HNS3_GL_USEC_TO_REG(gl_value); 963 964 hns3_write_dev(hw, addr, value); 965 } 966 967 void 968 hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id, uint16_t rl_value) 969 { 970 uint32_t addr, value; 971 972 if (rl_value > HNS3_TQP_INTR_RL_MAX) 973 return; 974 975 addr = HNS3_TQP_INTR_RL_REG + hns3_get_tqp_intr_reg_offset(queue_id); 976 value = HNS3_RL_USEC_TO_REG(rl_value); 977 if (value > 0) 978 value |= HNS3_TQP_INTR_RL_ENABLE_MASK; 979 980 hns3_write_dev(hw, addr, value); 981 } 982 983 void 984 hns3_set_queue_intr_ql(struct hns3_hw *hw, uint16_t queue_id, uint16_t ql_value) 985 { 986 uint32_t addr; 987 988 /* 989 * int_ql_max == 0 means the hardware does not support QL, 990 * QL regs config is not permitted if QL is not supported, 991 * here just return. 992 */ 993 if (hw->intr.int_ql_max == HNS3_INTR_QL_NONE) 994 return; 995 996 addr = HNS3_TQP_INTR_TX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id); 997 hns3_write_dev(hw, addr, ql_value); 998 999 addr = HNS3_TQP_INTR_RX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id); 1000 hns3_write_dev(hw, addr, ql_value); 1001 } 1002 1003 static void 1004 hns3_queue_intr_enable(struct hns3_hw *hw, uint16_t queue_id, bool en) 1005 { 1006 uint32_t addr, value; 1007 1008 addr = HNS3_TQP_INTR_CTRL_REG + hns3_get_tqp_intr_reg_offset(queue_id); 1009 value = en ? 1 : 0; 1010 1011 hns3_write_dev(hw, addr, value); 1012 } 1013 1014 /* 1015 * Enable all rx queue interrupt when in interrupt rx mode. 1016 * This api was called before enable queue rx&tx (in normal start or reset 1017 * recover scenes), used to fix hardware rx queue interrupt enable was clear 1018 * when FLR. 1019 */ 1020 void 1021 hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en) 1022 { 1023 struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id]; 1024 uint16_t nb_rx_q = hw->data->nb_rx_queues; 1025 int i; 1026 1027 if (dev->data->dev_conf.intr_conf.rxq == 0) 1028 return; 1029 1030 for (i = 0; i < nb_rx_q; i++) 1031 hns3_queue_intr_enable(hw, i, en); 1032 } 1033 1034 int 1035 hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) 1036 { 1037 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1038 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; 1039 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 1040 1041 if (dev->data->dev_conf.intr_conf.rxq == 0) 1042 return -ENOTSUP; 1043 1044 hns3_queue_intr_enable(hw, queue_id, true); 1045 1046 return rte_intr_ack(intr_handle); 1047 } 1048 1049 int 1050 hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) 1051 { 1052 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 1053 1054 if (dev->data->dev_conf.intr_conf.rxq == 0) 1055 return -ENOTSUP; 1056 1057 hns3_queue_intr_enable(hw, queue_id, false); 1058 1059 return 0; 1060 } 1061 1062 static int 1063 hns3_init_rxq(struct hns3_adapter *hns, uint16_t idx) 1064 { 1065 struct hns3_hw *hw = &hns->hw; 1066 struct hns3_rx_queue *rxq; 1067 int ret; 1068 1069 PMD_INIT_FUNC_TRACE(); 1070 1071 rxq = (struct hns3_rx_queue *)hw->data->rx_queues[idx]; 1072 ret = hns3_alloc_rx_queue_mbufs(hw, rxq); 1073 if (ret) { 1074 hns3_err(hw, "fail to alloc mbuf for Rx queue %u, ret = %d.", 1075 idx, ret); 1076 return ret; 1077 } 1078 1079 rxq->next_to_use = 0; 1080 rxq->rx_rearm_start = 0; 1081 rxq->rx_free_hold = 0; 1082 rxq->rx_rearm_nb = 0; 1083 rxq->pkt_first_seg = NULL; 1084 rxq->pkt_last_seg = NULL; 1085 hns3_init_rx_queue_hw(rxq); 1086 hns3_rxq_vec_setup(rxq); 1087 1088 return 0; 1089 } 1090 1091 static void 1092 hns3_init_fake_rxq(struct hns3_adapter *hns, uint16_t idx) 1093 { 1094 struct hns3_hw *hw = &hns->hw; 1095 struct hns3_rx_queue *rxq; 1096 1097 rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[idx]; 1098 rxq->next_to_use = 0; 1099 rxq->rx_free_hold = 0; 1100 rxq->rx_rearm_start = 0; 1101 rxq->rx_rearm_nb = 0; 1102 hns3_init_rx_queue_hw(rxq); 1103 } 1104 1105 static void 1106 hns3_init_txq(struct hns3_tx_queue *txq) 1107 { 1108 struct hns3_desc *desc; 1109 int i; 1110 1111 /* Clear tx bd */ 1112 desc = txq->tx_ring; 1113 for (i = 0; i < txq->nb_tx_desc; i++) { 1114 desc->tx.tp_fe_sc_vld_ra_ri = 0; 1115 desc++; 1116 } 1117 1118 txq->next_to_use = 0; 1119 txq->next_to_clean = 0; 1120 txq->tx_bd_ready = txq->nb_tx_desc - 1; 1121 hns3_init_tx_queue_hw(txq); 1122 } 1123 1124 static void 1125 hns3_init_tx_ring_tc(struct hns3_adapter *hns) 1126 { 1127 struct hns3_hw *hw = &hns->hw; 1128 struct hns3_tx_queue *txq; 1129 int i, num; 1130 1131 for (i = 0; i < HNS3_MAX_TC_NUM; i++) { 1132 struct hns3_tc_queue_info *tc_queue = &hw->tc_queue[i]; 1133 int j; 1134 1135 if (!tc_queue->enable) 1136 continue; 1137 1138 for (j = 0; j < tc_queue->tqp_count; j++) { 1139 num = tc_queue->tqp_offset + j; 1140 txq = (struct hns3_tx_queue *)hw->data->tx_queues[num]; 1141 if (txq == NULL) 1142 continue; 1143 1144 hns3_write_dev(txq, HNS3_RING_TX_TC_REG, tc_queue->tc); 1145 } 1146 } 1147 } 1148 1149 static int 1150 hns3_init_rx_queues(struct hns3_adapter *hns) 1151 { 1152 struct hns3_hw *hw = &hns->hw; 1153 struct hns3_rx_queue *rxq; 1154 uint16_t i, j; 1155 int ret; 1156 1157 /* Initialize RSS for queues */ 1158 ret = hns3_config_rss(hns); 1159 if (ret) { 1160 hns3_err(hw, "failed to configure rss, ret = %d.", ret); 1161 return ret; 1162 } 1163 1164 for (i = 0; i < hw->data->nb_rx_queues; i++) { 1165 rxq = (struct hns3_rx_queue *)hw->data->rx_queues[i]; 1166 if (!rxq) { 1167 hns3_err(hw, "Rx queue %u not available or setup.", i); 1168 goto out; 1169 } 1170 1171 if (rxq->rx_deferred_start) 1172 continue; 1173 1174 ret = hns3_init_rxq(hns, i); 1175 if (ret) { 1176 hns3_err(hw, "failed to init Rx queue %u, ret = %d.", i, 1177 ret); 1178 goto out; 1179 } 1180 } 1181 1182 for (i = 0; i < hw->fkq_data.nb_fake_rx_queues; i++) 1183 hns3_init_fake_rxq(hns, i); 1184 1185 return 0; 1186 1187 out: 1188 for (j = 0; j < i; j++) { 1189 rxq = (struct hns3_rx_queue *)hw->data->rx_queues[j]; 1190 hns3_rx_queue_release_mbufs(rxq); 1191 } 1192 1193 return ret; 1194 } 1195 1196 static int 1197 hns3_init_tx_queues(struct hns3_adapter *hns) 1198 { 1199 struct hns3_hw *hw = &hns->hw; 1200 struct hns3_tx_queue *txq; 1201 uint16_t i; 1202 1203 for (i = 0; i < hw->data->nb_tx_queues; i++) { 1204 txq = (struct hns3_tx_queue *)hw->data->tx_queues[i]; 1205 if (!txq) { 1206 hns3_err(hw, "Tx queue %u not available or setup.", i); 1207 return -EINVAL; 1208 } 1209 1210 if (txq->tx_deferred_start) 1211 continue; 1212 hns3_init_txq(txq); 1213 } 1214 1215 for (i = 0; i < hw->fkq_data.nb_fake_tx_queues; i++) { 1216 txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[i]; 1217 hns3_init_txq(txq); 1218 } 1219 hns3_init_tx_ring_tc(hns); 1220 1221 return 0; 1222 } 1223 1224 /* 1225 * Init all queues. 1226 * Note: just init and setup queues, and don't enable tqps. 1227 */ 1228 int 1229 hns3_init_queues(struct hns3_adapter *hns, bool reset_queue) 1230 { 1231 struct hns3_hw *hw = &hns->hw; 1232 int ret; 1233 1234 if (reset_queue) { 1235 ret = hns3_reset_all_tqps(hns); 1236 if (ret) { 1237 hns3_err(hw, "failed to reset all queues, ret = %d.", 1238 ret); 1239 return ret; 1240 } 1241 } 1242 1243 ret = hns3_init_rx_queues(hns); 1244 if (ret) { 1245 hns3_err(hw, "failed to init rx queues, ret = %d.", ret); 1246 return ret; 1247 } 1248 1249 ret = hns3_init_tx_queues(hns); 1250 if (ret) { 1251 hns3_dev_release_mbufs(hns); 1252 hns3_err(hw, "failed to init tx queues, ret = %d.", ret); 1253 } 1254 1255 return ret; 1256 } 1257 1258 void 1259 hns3_start_tqps(struct hns3_hw *hw) 1260 { 1261 struct hns3_tx_queue *txq; 1262 struct hns3_rx_queue *rxq; 1263 uint16_t i; 1264 1265 hns3_enable_all_queues(hw, true); 1266 1267 for (i = 0; i < hw->data->nb_tx_queues; i++) { 1268 txq = hw->data->tx_queues[i]; 1269 if (txq->enabled) 1270 hw->data->tx_queue_state[i] = 1271 RTE_ETH_QUEUE_STATE_STARTED; 1272 } 1273 1274 for (i = 0; i < hw->data->nb_rx_queues; i++) { 1275 rxq = hw->data->rx_queues[i]; 1276 if (rxq->enabled) 1277 hw->data->rx_queue_state[i] = 1278 RTE_ETH_QUEUE_STATE_STARTED; 1279 } 1280 } 1281 1282 void 1283 hns3_stop_tqps(struct hns3_hw *hw) 1284 { 1285 uint16_t i; 1286 1287 hns3_enable_all_queues(hw, false); 1288 1289 for (i = 0; i < hw->data->nb_tx_queues; i++) 1290 hw->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; 1291 1292 for (i = 0; i < hw->data->nb_rx_queues; i++) 1293 hw->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; 1294 } 1295 1296 /* 1297 * Iterate over all Rx Queue, and call the callback() function for each Rx 1298 * queue. 1299 * 1300 * @param[in] dev 1301 * The target eth dev. 1302 * @param[in] callback 1303 * The function to call for each queue. 1304 * if callback function return nonzero will stop iterate and return it's value 1305 * @param[in] arg 1306 * The arguments to provide the callback function with. 1307 * 1308 * @return 1309 * 0 on success, otherwise with errno set. 1310 */ 1311 int 1312 hns3_rxq_iterate(struct rte_eth_dev *dev, 1313 int (*callback)(struct hns3_rx_queue *, void *), void *arg) 1314 { 1315 uint32_t i; 1316 int ret; 1317 1318 if (dev->data->rx_queues == NULL) 1319 return -EINVAL; 1320 1321 for (i = 0; i < dev->data->nb_rx_queues; i++) { 1322 ret = callback(dev->data->rx_queues[i], arg); 1323 if (ret != 0) 1324 return ret; 1325 } 1326 1327 return 0; 1328 } 1329 1330 static void* 1331 hns3_alloc_rxq_and_dma_zone(struct rte_eth_dev *dev, 1332 struct hns3_queue_info *q_info) 1333 { 1334 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 1335 const struct rte_memzone *rx_mz; 1336 struct hns3_rx_queue *rxq; 1337 unsigned int rx_desc; 1338 1339 rxq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_rx_queue), 1340 RTE_CACHE_LINE_SIZE, q_info->socket_id); 1341 if (rxq == NULL) { 1342 hns3_err(hw, "Failed to allocate memory for No.%u rx ring!", 1343 q_info->idx); 1344 return NULL; 1345 } 1346 1347 /* Allocate rx ring hardware descriptors. */ 1348 rxq->queue_id = q_info->idx; 1349 rxq->nb_rx_desc = q_info->nb_desc; 1350 1351 /* 1352 * Allocate a litter more memory because rx vector functions 1353 * don't check boundaries each time. 1354 */ 1355 rx_desc = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) * 1356 sizeof(struct hns3_desc); 1357 rx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx, 1358 rx_desc, HNS3_RING_BASE_ALIGN, 1359 q_info->socket_id); 1360 if (rx_mz == NULL) { 1361 hns3_err(hw, "Failed to reserve DMA memory for No.%u rx ring!", 1362 q_info->idx); 1363 hns3_rx_queue_release(rxq); 1364 return NULL; 1365 } 1366 rxq->mz = rx_mz; 1367 rxq->rx_ring = (struct hns3_desc *)rx_mz->addr; 1368 rxq->rx_ring_phys_addr = rx_mz->iova; 1369 1370 hns3_dbg(hw, "No.%u rx descriptors iova 0x%" PRIx64, q_info->idx, 1371 rxq->rx_ring_phys_addr); 1372 1373 return rxq; 1374 } 1375 1376 static int 1377 hns3_fake_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, 1378 uint16_t nb_desc, unsigned int socket_id) 1379 { 1380 struct hns3_adapter *hns = dev->data->dev_private; 1381 struct hns3_hw *hw = &hns->hw; 1382 struct hns3_queue_info q_info; 1383 struct hns3_rx_queue *rxq; 1384 uint16_t nb_rx_q; 1385 1386 if (hw->fkq_data.rx_queues[idx]) { 1387 hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]); 1388 hw->fkq_data.rx_queues[idx] = NULL; 1389 } 1390 1391 q_info.idx = idx; 1392 q_info.socket_id = socket_id; 1393 q_info.nb_desc = nb_desc; 1394 q_info.type = "hns3 fake RX queue"; 1395 q_info.ring_name = "rx_fake_ring"; 1396 rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info); 1397 if (rxq == NULL) { 1398 hns3_err(hw, "Failed to setup No.%u fake rx ring.", idx); 1399 return -ENOMEM; 1400 } 1401 1402 /* Don't need alloc sw_ring, because upper applications don't use it */ 1403 rxq->sw_ring = NULL; 1404 1405 rxq->hns = hns; 1406 rxq->rx_deferred_start = false; 1407 rxq->port_id = dev->data->port_id; 1408 rxq->configured = true; 1409 nb_rx_q = dev->data->nb_rx_queues; 1410 rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET + 1411 (nb_rx_q + idx) * HNS3_TQP_REG_SIZE); 1412 rxq->rx_buf_len = HNS3_MIN_BD_BUF_SIZE; 1413 1414 rte_spinlock_lock(&hw->lock); 1415 hw->fkq_data.rx_queues[idx] = rxq; 1416 rte_spinlock_unlock(&hw->lock); 1417 1418 return 0; 1419 } 1420 1421 static void* 1422 hns3_alloc_txq_and_dma_zone(struct rte_eth_dev *dev, 1423 struct hns3_queue_info *q_info) 1424 { 1425 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 1426 const struct rte_memzone *tx_mz; 1427 struct hns3_tx_queue *txq; 1428 struct hns3_desc *desc; 1429 unsigned int tx_desc; 1430 int i; 1431 1432 txq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_tx_queue), 1433 RTE_CACHE_LINE_SIZE, q_info->socket_id); 1434 if (txq == NULL) { 1435 hns3_err(hw, "Failed to allocate memory for No.%u tx ring!", 1436 q_info->idx); 1437 return NULL; 1438 } 1439 1440 /* Allocate tx ring hardware descriptors. */ 1441 txq->queue_id = q_info->idx; 1442 txq->nb_tx_desc = q_info->nb_desc; 1443 tx_desc = txq->nb_tx_desc * sizeof(struct hns3_desc); 1444 tx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx, 1445 tx_desc, HNS3_RING_BASE_ALIGN, 1446 q_info->socket_id); 1447 if (tx_mz == NULL) { 1448 hns3_err(hw, "Failed to reserve DMA memory for No.%u tx ring!", 1449 q_info->idx); 1450 hns3_tx_queue_release(txq); 1451 return NULL; 1452 } 1453 txq->mz = tx_mz; 1454 txq->tx_ring = (struct hns3_desc *)tx_mz->addr; 1455 txq->tx_ring_phys_addr = tx_mz->iova; 1456 1457 hns3_dbg(hw, "No.%u tx descriptors iova 0x%" PRIx64, q_info->idx, 1458 txq->tx_ring_phys_addr); 1459 1460 /* Clear tx bd */ 1461 desc = txq->tx_ring; 1462 for (i = 0; i < txq->nb_tx_desc; i++) { 1463 desc->tx.tp_fe_sc_vld_ra_ri = 0; 1464 desc++; 1465 } 1466 1467 return txq; 1468 } 1469 1470 static int 1471 hns3_fake_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, 1472 uint16_t nb_desc, unsigned int socket_id) 1473 { 1474 struct hns3_adapter *hns = dev->data->dev_private; 1475 struct hns3_hw *hw = &hns->hw; 1476 struct hns3_queue_info q_info; 1477 struct hns3_tx_queue *txq; 1478 uint16_t nb_tx_q; 1479 1480 if (hw->fkq_data.tx_queues[idx] != NULL) { 1481 hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]); 1482 hw->fkq_data.tx_queues[idx] = NULL; 1483 } 1484 1485 q_info.idx = idx; 1486 q_info.socket_id = socket_id; 1487 q_info.nb_desc = nb_desc; 1488 q_info.type = "hns3 fake TX queue"; 1489 q_info.ring_name = "tx_fake_ring"; 1490 txq = hns3_alloc_txq_and_dma_zone(dev, &q_info); 1491 if (txq == NULL) { 1492 hns3_err(hw, "Failed to setup No.%u fake tx ring.", idx); 1493 return -ENOMEM; 1494 } 1495 1496 /* Don't need alloc sw_ring, because upper applications don't use it */ 1497 txq->sw_ring = NULL; 1498 txq->free = NULL; 1499 1500 txq->hns = hns; 1501 txq->tx_deferred_start = false; 1502 txq->port_id = dev->data->port_id; 1503 txq->configured = true; 1504 nb_tx_q = dev->data->nb_tx_queues; 1505 txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET + 1506 (nb_tx_q + idx) * HNS3_TQP_REG_SIZE); 1507 1508 rte_spinlock_lock(&hw->lock); 1509 hw->fkq_data.tx_queues[idx] = txq; 1510 rte_spinlock_unlock(&hw->lock); 1511 1512 return 0; 1513 } 1514 1515 static int 1516 hns3_fake_rx_queue_config(struct hns3_hw *hw, uint16_t nb_queues) 1517 { 1518 uint16_t old_nb_queues = hw->fkq_data.nb_fake_rx_queues; 1519 void **rxq; 1520 uint16_t i; 1521 1522 if (hw->fkq_data.rx_queues == NULL && nb_queues != 0) { 1523 /* first time configuration */ 1524 uint32_t size; 1525 size = sizeof(hw->fkq_data.rx_queues[0]) * nb_queues; 1526 hw->fkq_data.rx_queues = rte_zmalloc("fake_rx_queues", size, 1527 RTE_CACHE_LINE_SIZE); 1528 if (hw->fkq_data.rx_queues == NULL) { 1529 hw->fkq_data.nb_fake_rx_queues = 0; 1530 return -ENOMEM; 1531 } 1532 } else if (hw->fkq_data.rx_queues != NULL && nb_queues != 0) { 1533 /* re-configure */ 1534 rxq = hw->fkq_data.rx_queues; 1535 for (i = nb_queues; i < old_nb_queues; i++) 1536 hns3_dev_rx_queue_release(rxq[i]); 1537 1538 rxq = rte_realloc(rxq, sizeof(rxq[0]) * nb_queues, 1539 RTE_CACHE_LINE_SIZE); 1540 if (rxq == NULL) 1541 return -ENOMEM; 1542 if (nb_queues > old_nb_queues) { 1543 uint16_t new_qs = nb_queues - old_nb_queues; 1544 memset(rxq + old_nb_queues, 0, sizeof(rxq[0]) * new_qs); 1545 } 1546 1547 hw->fkq_data.rx_queues = rxq; 1548 } else if (hw->fkq_data.rx_queues != NULL && nb_queues == 0) { 1549 rxq = hw->fkq_data.rx_queues; 1550 for (i = nb_queues; i < old_nb_queues; i++) 1551 hns3_dev_rx_queue_release(rxq[i]); 1552 1553 rte_free(hw->fkq_data.rx_queues); 1554 hw->fkq_data.rx_queues = NULL; 1555 } 1556 1557 hw->fkq_data.nb_fake_rx_queues = nb_queues; 1558 1559 return 0; 1560 } 1561 1562 static int 1563 hns3_fake_tx_queue_config(struct hns3_hw *hw, uint16_t nb_queues) 1564 { 1565 uint16_t old_nb_queues = hw->fkq_data.nb_fake_tx_queues; 1566 void **txq; 1567 uint16_t i; 1568 1569 if (hw->fkq_data.tx_queues == NULL && nb_queues != 0) { 1570 /* first time configuration */ 1571 uint32_t size; 1572 size = sizeof(hw->fkq_data.tx_queues[0]) * nb_queues; 1573 hw->fkq_data.tx_queues = rte_zmalloc("fake_tx_queues", size, 1574 RTE_CACHE_LINE_SIZE); 1575 if (hw->fkq_data.tx_queues == NULL) { 1576 hw->fkq_data.nb_fake_tx_queues = 0; 1577 return -ENOMEM; 1578 } 1579 } else if (hw->fkq_data.tx_queues != NULL && nb_queues != 0) { 1580 /* re-configure */ 1581 txq = hw->fkq_data.tx_queues; 1582 for (i = nb_queues; i < old_nb_queues; i++) 1583 hns3_dev_tx_queue_release(txq[i]); 1584 txq = rte_realloc(txq, sizeof(txq[0]) * nb_queues, 1585 RTE_CACHE_LINE_SIZE); 1586 if (txq == NULL) 1587 return -ENOMEM; 1588 if (nb_queues > old_nb_queues) { 1589 uint16_t new_qs = nb_queues - old_nb_queues; 1590 memset(txq + old_nb_queues, 0, sizeof(txq[0]) * new_qs); 1591 } 1592 1593 hw->fkq_data.tx_queues = txq; 1594 } else if (hw->fkq_data.tx_queues != NULL && nb_queues == 0) { 1595 txq = hw->fkq_data.tx_queues; 1596 for (i = nb_queues; i < old_nb_queues; i++) 1597 hns3_dev_tx_queue_release(txq[i]); 1598 1599 rte_free(hw->fkq_data.tx_queues); 1600 hw->fkq_data.tx_queues = NULL; 1601 } 1602 hw->fkq_data.nb_fake_tx_queues = nb_queues; 1603 1604 return 0; 1605 } 1606 1607 int 1608 hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q, 1609 uint16_t nb_tx_q) 1610 { 1611 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 1612 uint16_t rx_need_add_nb_q; 1613 uint16_t tx_need_add_nb_q; 1614 uint16_t port_id; 1615 uint16_t q; 1616 int ret; 1617 1618 /* Setup new number of fake RX/TX queues and reconfigure device. */ 1619 rx_need_add_nb_q = hw->cfg_max_queues - nb_rx_q; 1620 tx_need_add_nb_q = hw->cfg_max_queues - nb_tx_q; 1621 ret = hns3_fake_rx_queue_config(hw, rx_need_add_nb_q); 1622 if (ret) { 1623 hns3_err(hw, "Fail to configure fake rx queues: %d", ret); 1624 return ret; 1625 } 1626 1627 ret = hns3_fake_tx_queue_config(hw, tx_need_add_nb_q); 1628 if (ret) { 1629 hns3_err(hw, "Fail to configure fake rx queues: %d", ret); 1630 goto cfg_fake_tx_q_fail; 1631 } 1632 1633 /* Allocate and set up fake RX queue per Ethernet port. */ 1634 port_id = hw->data->port_id; 1635 for (q = 0; q < rx_need_add_nb_q; q++) { 1636 ret = hns3_fake_rx_queue_setup(dev, q, HNS3_MIN_RING_DESC, 1637 rte_eth_dev_socket_id(port_id)); 1638 if (ret) 1639 goto setup_fake_rx_q_fail; 1640 } 1641 1642 /* Allocate and set up fake TX queue per Ethernet port. */ 1643 for (q = 0; q < tx_need_add_nb_q; q++) { 1644 ret = hns3_fake_tx_queue_setup(dev, q, HNS3_MIN_RING_DESC, 1645 rte_eth_dev_socket_id(port_id)); 1646 if (ret) 1647 goto setup_fake_tx_q_fail; 1648 } 1649 1650 return 0; 1651 1652 setup_fake_tx_q_fail: 1653 setup_fake_rx_q_fail: 1654 (void)hns3_fake_tx_queue_config(hw, 0); 1655 cfg_fake_tx_q_fail: 1656 (void)hns3_fake_rx_queue_config(hw, 0); 1657 1658 return ret; 1659 } 1660 1661 void 1662 hns3_dev_release_mbufs(struct hns3_adapter *hns) 1663 { 1664 struct rte_eth_dev_data *dev_data = hns->hw.data; 1665 struct hns3_rx_queue *rxq; 1666 struct hns3_tx_queue *txq; 1667 int i; 1668 1669 if (dev_data->rx_queues) 1670 for (i = 0; i < dev_data->nb_rx_queues; i++) { 1671 rxq = dev_data->rx_queues[i]; 1672 if (rxq == NULL) 1673 continue; 1674 hns3_rx_queue_release_mbufs(rxq); 1675 } 1676 1677 if (dev_data->tx_queues) 1678 for (i = 0; i < dev_data->nb_tx_queues; i++) { 1679 txq = dev_data->tx_queues[i]; 1680 if (txq == NULL) 1681 continue; 1682 hns3_tx_queue_release_mbufs(txq); 1683 } 1684 } 1685 1686 static int 1687 hns3_rx_buf_len_calc(struct rte_mempool *mp, uint16_t *rx_buf_len) 1688 { 1689 uint16_t vld_buf_size; 1690 uint16_t num_hw_specs; 1691 uint16_t i; 1692 1693 /* 1694 * hns3 network engine only support to set 4 typical specification, and 1695 * different buffer size will affect the max packet_len and the max 1696 * number of segmentation when hw gro is turned on in receive side. The 1697 * relationship between them is as follows: 1698 * rx_buf_size | max_gro_pkt_len | max_gro_nb_seg 1699 * ---------------------|-------------------|---------------- 1700 * HNS3_4K_BD_BUF_SIZE | 60KB | 15 1701 * HNS3_2K_BD_BUF_SIZE | 62KB | 31 1702 * HNS3_1K_BD_BUF_SIZE | 63KB | 63 1703 * HNS3_512_BD_BUF_SIZE | 31.5KB | 63 1704 */ 1705 static const uint16_t hw_rx_buf_size[] = { 1706 HNS3_4K_BD_BUF_SIZE, 1707 HNS3_2K_BD_BUF_SIZE, 1708 HNS3_1K_BD_BUF_SIZE, 1709 HNS3_512_BD_BUF_SIZE 1710 }; 1711 1712 vld_buf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) - 1713 RTE_PKTMBUF_HEADROOM); 1714 if (vld_buf_size < HNS3_MIN_BD_BUF_SIZE) 1715 return -EINVAL; 1716 1717 num_hw_specs = RTE_DIM(hw_rx_buf_size); 1718 for (i = 0; i < num_hw_specs; i++) { 1719 if (vld_buf_size >= hw_rx_buf_size[i]) { 1720 *rx_buf_len = hw_rx_buf_size[i]; 1721 break; 1722 } 1723 } 1724 return 0; 1725 } 1726 1727 static int 1728 hns3_rxq_conf_runtime_check(struct hns3_hw *hw, uint16_t buf_size, 1729 uint16_t nb_desc) 1730 { 1731 struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id]; 1732 struct rte_eth_rxmode *rxmode = &hw->data->dev_conf.rxmode; 1733 eth_rx_burst_t pkt_burst = dev->rx_pkt_burst; 1734 uint16_t min_vec_bds; 1735 1736 /* 1737 * HNS3 hardware network engine set scattered as default. If the driver 1738 * is not work in scattered mode and the pkts greater than buf_size 1739 * but smaller than max_rx_pkt_len will be distributed to multiple BDs. 1740 * Driver cannot handle this situation. 1741 */ 1742 if (!hw->data->scattered_rx && rxmode->max_rx_pkt_len > buf_size) { 1743 hns3_err(hw, "max_rx_pkt_len is not allowed to be set greater " 1744 "than rx_buf_len if scattered is off."); 1745 return -EINVAL; 1746 } 1747 1748 if (pkt_burst == hns3_recv_pkts_vec) { 1749 min_vec_bds = HNS3_DEFAULT_RXQ_REARM_THRESH + 1750 HNS3_DEFAULT_RX_BURST; 1751 if (nb_desc < min_vec_bds || 1752 nb_desc % HNS3_DEFAULT_RXQ_REARM_THRESH) { 1753 hns3_err(hw, "if Rx burst mode is vector, " 1754 "number of descriptor is required to be " 1755 "bigger than min vector bds:%u, and could be " 1756 "divided by rxq rearm thresh:%u.", 1757 min_vec_bds, HNS3_DEFAULT_RXQ_REARM_THRESH); 1758 return -EINVAL; 1759 } 1760 } 1761 return 0; 1762 } 1763 1764 static int 1765 hns3_rx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_rxconf *conf, 1766 struct rte_mempool *mp, uint16_t nb_desc, 1767 uint16_t *buf_size) 1768 { 1769 int ret; 1770 1771 if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC || 1772 nb_desc % HNS3_ALIGN_RING_DESC) { 1773 hns3_err(hw, "Number (%u) of rx descriptors is invalid", 1774 nb_desc); 1775 return -EINVAL; 1776 } 1777 1778 if (conf->rx_drop_en == 0) 1779 hns3_warn(hw, "if no descriptors available, packets are always " 1780 "dropped and rx_drop_en (1) is fixed on"); 1781 1782 if (hns3_rx_buf_len_calc(mp, buf_size)) { 1783 hns3_err(hw, "rxq mbufs' data room size (%u) is not enough! " 1784 "minimal data room size (%u).", 1785 rte_pktmbuf_data_room_size(mp), 1786 HNS3_MIN_BD_BUF_SIZE + RTE_PKTMBUF_HEADROOM); 1787 return -EINVAL; 1788 } 1789 1790 if (hw->data->dev_started) { 1791 ret = hns3_rxq_conf_runtime_check(hw, *buf_size, nb_desc); 1792 if (ret) { 1793 hns3_err(hw, "Rx queue runtime setup fail."); 1794 return ret; 1795 } 1796 } 1797 1798 return 0; 1799 } 1800 1801 uint32_t 1802 hns3_get_tqp_reg_offset(uint16_t queue_id) 1803 { 1804 uint32_t reg_offset; 1805 1806 /* Need an extend offset to config queue > 1024 */ 1807 if (queue_id < HNS3_MIN_EXTEND_QUEUE_ID) 1808 reg_offset = HNS3_TQP_REG_OFFSET + queue_id * HNS3_TQP_REG_SIZE; 1809 else 1810 reg_offset = HNS3_TQP_REG_OFFSET + HNS3_TQP_EXT_REG_OFFSET + 1811 (queue_id - HNS3_MIN_EXTEND_QUEUE_ID) * 1812 HNS3_TQP_REG_SIZE; 1813 1814 return reg_offset; 1815 } 1816 1817 int 1818 hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc, 1819 unsigned int socket_id, const struct rte_eth_rxconf *conf, 1820 struct rte_mempool *mp) 1821 { 1822 struct hns3_adapter *hns = dev->data->dev_private; 1823 struct hns3_hw *hw = &hns->hw; 1824 struct hns3_queue_info q_info; 1825 struct hns3_rx_queue *rxq; 1826 uint16_t rx_buf_size; 1827 int rx_entry_len; 1828 int ret; 1829 1830 ret = hns3_rx_queue_conf_check(hw, conf, mp, nb_desc, &rx_buf_size); 1831 if (ret) 1832 return ret; 1833 1834 if (dev->data->rx_queues[idx]) { 1835 hns3_rx_queue_release(dev->data->rx_queues[idx]); 1836 dev->data->rx_queues[idx] = NULL; 1837 } 1838 1839 q_info.idx = idx; 1840 q_info.socket_id = socket_id; 1841 q_info.nb_desc = nb_desc; 1842 q_info.type = "hns3 RX queue"; 1843 q_info.ring_name = "rx_ring"; 1844 1845 rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info); 1846 if (rxq == NULL) { 1847 hns3_err(hw, 1848 "Failed to alloc mem and reserve DMA mem for rx ring!"); 1849 return -ENOMEM; 1850 } 1851 1852 rxq->hns = hns; 1853 rxq->ptype_tbl = &hns->ptype_tbl; 1854 rxq->mb_pool = mp; 1855 rxq->rx_free_thresh = (conf->rx_free_thresh > 0) ? 1856 conf->rx_free_thresh : HNS3_DEFAULT_RX_FREE_THRESH; 1857 1858 rxq->rx_deferred_start = conf->rx_deferred_start; 1859 if (rxq->rx_deferred_start && !hns3_dev_indep_txrx_supported(hw)) { 1860 hns3_warn(hw, "deferred start is not supported."); 1861 rxq->rx_deferred_start = false; 1862 } 1863 1864 rx_entry_len = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) * 1865 sizeof(struct hns3_entry); 1866 rxq->sw_ring = rte_zmalloc_socket("hns3 RX sw ring", rx_entry_len, 1867 RTE_CACHE_LINE_SIZE, socket_id); 1868 if (rxq->sw_ring == NULL) { 1869 hns3_err(hw, "Failed to allocate memory for rx sw ring!"); 1870 hns3_rx_queue_release(rxq); 1871 return -ENOMEM; 1872 } 1873 1874 rxq->next_to_use = 0; 1875 rxq->rx_free_hold = 0; 1876 rxq->rx_rearm_start = 0; 1877 rxq->rx_rearm_nb = 0; 1878 rxq->pkt_first_seg = NULL; 1879 rxq->pkt_last_seg = NULL; 1880 rxq->port_id = dev->data->port_id; 1881 /* 1882 * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE, 1883 * the pvid_sw_discard_en in the queue struct should not be changed, 1884 * because PVID-related operations do not need to be processed by PMD 1885 * driver. For hns3 VF device, whether it needs to process PVID depends 1886 * on the configuration of PF kernel mode netdevice driver. And the 1887 * related PF configuration is delivered through the mailbox and finally 1888 * reflectd in port_base_vlan_cfg. 1889 */ 1890 if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE) 1891 rxq->pvid_sw_discard_en = hw->port_base_vlan_cfg.state == 1892 HNS3_PORT_BASE_VLAN_ENABLE; 1893 else 1894 rxq->pvid_sw_discard_en = false; 1895 rxq->ptype_en = hns3_dev_rxd_adv_layout_supported(hw) ? true : false; 1896 rxq->configured = true; 1897 rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET + 1898 idx * HNS3_TQP_REG_SIZE); 1899 rxq->io_base = (void *)((char *)hw->io_base + 1900 hns3_get_tqp_reg_offset(idx)); 1901 rxq->io_head_reg = (volatile void *)((char *)rxq->io_base + 1902 HNS3_RING_RX_HEAD_REG); 1903 rxq->rx_buf_len = rx_buf_size; 1904 memset(&rxq->basic_stats, 0, sizeof(struct hns3_rx_basic_stats)); 1905 memset(&rxq->err_stats, 0, sizeof(struct hns3_rx_bd_errors_stats)); 1906 memset(&rxq->dfx_stats, 0, sizeof(struct hns3_rx_dfx_stats)); 1907 1908 /* CRC len set here is used for amending packet length */ 1909 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) 1910 rxq->crc_len = RTE_ETHER_CRC_LEN; 1911 else 1912 rxq->crc_len = 0; 1913 1914 rxq->bulk_mbuf_num = 0; 1915 1916 rte_spinlock_lock(&hw->lock); 1917 dev->data->rx_queues[idx] = rxq; 1918 rte_spinlock_unlock(&hw->lock); 1919 1920 return 0; 1921 } 1922 1923 void 1924 hns3_rx_scattered_reset(struct rte_eth_dev *dev) 1925 { 1926 struct hns3_adapter *hns = dev->data->dev_private; 1927 struct hns3_hw *hw = &hns->hw; 1928 1929 hw->rx_buf_len = 0; 1930 dev->data->scattered_rx = false; 1931 } 1932 1933 void 1934 hns3_rx_scattered_calc(struct rte_eth_dev *dev) 1935 { 1936 struct rte_eth_conf *dev_conf = &dev->data->dev_conf; 1937 struct hns3_adapter *hns = dev->data->dev_private; 1938 struct hns3_hw *hw = &hns->hw; 1939 struct hns3_rx_queue *rxq; 1940 uint32_t queue_id; 1941 1942 if (dev->data->rx_queues == NULL) 1943 return; 1944 1945 for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) { 1946 rxq = dev->data->rx_queues[queue_id]; 1947 if (hw->rx_buf_len == 0) 1948 hw->rx_buf_len = rxq->rx_buf_len; 1949 else 1950 hw->rx_buf_len = RTE_MIN(hw->rx_buf_len, 1951 rxq->rx_buf_len); 1952 } 1953 1954 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_SCATTER || 1955 dev_conf->rxmode.max_rx_pkt_len > hw->rx_buf_len) 1956 dev->data->scattered_rx = true; 1957 } 1958 1959 const uint32_t * 1960 hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev) 1961 { 1962 static const uint32_t ptypes[] = { 1963 RTE_PTYPE_L2_ETHER, 1964 RTE_PTYPE_L2_ETHER_VLAN, 1965 RTE_PTYPE_L2_ETHER_QINQ, 1966 RTE_PTYPE_L2_ETHER_LLDP, 1967 RTE_PTYPE_L2_ETHER_ARP, 1968 RTE_PTYPE_L3_IPV4, 1969 RTE_PTYPE_L3_IPV4_EXT, 1970 RTE_PTYPE_L3_IPV6, 1971 RTE_PTYPE_L3_IPV6_EXT, 1972 RTE_PTYPE_L4_IGMP, 1973 RTE_PTYPE_L4_ICMP, 1974 RTE_PTYPE_L4_SCTP, 1975 RTE_PTYPE_L4_TCP, 1976 RTE_PTYPE_L4_UDP, 1977 RTE_PTYPE_TUNNEL_GRE, 1978 RTE_PTYPE_INNER_L2_ETHER, 1979 RTE_PTYPE_INNER_L2_ETHER_VLAN, 1980 RTE_PTYPE_INNER_L2_ETHER_QINQ, 1981 RTE_PTYPE_INNER_L3_IPV4, 1982 RTE_PTYPE_INNER_L3_IPV6, 1983 RTE_PTYPE_INNER_L3_IPV4_EXT, 1984 RTE_PTYPE_INNER_L3_IPV6_EXT, 1985 RTE_PTYPE_INNER_L4_UDP, 1986 RTE_PTYPE_INNER_L4_TCP, 1987 RTE_PTYPE_INNER_L4_SCTP, 1988 RTE_PTYPE_INNER_L4_ICMP, 1989 RTE_PTYPE_TUNNEL_VXLAN, 1990 RTE_PTYPE_TUNNEL_NVGRE, 1991 RTE_PTYPE_UNKNOWN 1992 }; 1993 1994 if (dev->rx_pkt_burst == hns3_recv_pkts || 1995 dev->rx_pkt_burst == hns3_recv_scattered_pkts || 1996 dev->rx_pkt_burst == hns3_recv_pkts_vec || 1997 dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) 1998 return ptypes; 1999 2000 return NULL; 2001 } 2002 2003 static void 2004 hns3_init_non_tunnel_ptype_tbl(struct hns3_ptype_table *tbl) 2005 { 2006 tbl->l2l3table[0][0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4; 2007 tbl->l2l3table[0][1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6; 2008 tbl->l2l3table[0][2] = RTE_PTYPE_L2_ETHER_ARP; 2009 tbl->l2l3table[0][3] = RTE_PTYPE_L2_ETHER; 2010 tbl->l2l3table[0][4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT; 2011 tbl->l2l3table[0][5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT; 2012 tbl->l2l3table[0][6] = RTE_PTYPE_L2_ETHER_LLDP; 2013 tbl->l2l3table[0][15] = RTE_PTYPE_L2_ETHER; 2014 2015 tbl->l2l3table[1][0] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV4; 2016 tbl->l2l3table[1][1] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV6; 2017 tbl->l2l3table[1][2] = RTE_PTYPE_L2_ETHER_ARP; 2018 tbl->l2l3table[1][3] = RTE_PTYPE_L2_ETHER_VLAN; 2019 tbl->l2l3table[1][4] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV4_EXT; 2020 tbl->l2l3table[1][5] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV6_EXT; 2021 tbl->l2l3table[1][6] = RTE_PTYPE_L2_ETHER_LLDP; 2022 tbl->l2l3table[1][15] = RTE_PTYPE_L2_ETHER_VLAN; 2023 2024 tbl->l2l3table[2][0] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV4; 2025 tbl->l2l3table[2][1] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV6; 2026 tbl->l2l3table[2][2] = RTE_PTYPE_L2_ETHER_ARP; 2027 tbl->l2l3table[2][3] = RTE_PTYPE_L2_ETHER_QINQ; 2028 tbl->l2l3table[2][4] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV4_EXT; 2029 tbl->l2l3table[2][5] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV6_EXT; 2030 tbl->l2l3table[2][6] = RTE_PTYPE_L2_ETHER_LLDP; 2031 tbl->l2l3table[2][15] = RTE_PTYPE_L2_ETHER_QINQ; 2032 2033 tbl->l4table[0] = RTE_PTYPE_L4_UDP; 2034 tbl->l4table[1] = RTE_PTYPE_L4_TCP; 2035 tbl->l4table[2] = RTE_PTYPE_TUNNEL_GRE; 2036 tbl->l4table[3] = RTE_PTYPE_L4_SCTP; 2037 tbl->l4table[4] = RTE_PTYPE_L4_IGMP; 2038 tbl->l4table[5] = RTE_PTYPE_L4_ICMP; 2039 } 2040 2041 static void 2042 hns3_init_tunnel_ptype_tbl(struct hns3_ptype_table *tbl) 2043 { 2044 tbl->inner_l2table[0] = RTE_PTYPE_INNER_L2_ETHER; 2045 tbl->inner_l2table[1] = RTE_PTYPE_INNER_L2_ETHER_VLAN; 2046 tbl->inner_l2table[2] = RTE_PTYPE_INNER_L2_ETHER_QINQ; 2047 2048 tbl->inner_l3table[0] = RTE_PTYPE_INNER_L3_IPV4; 2049 tbl->inner_l3table[1] = RTE_PTYPE_INNER_L3_IPV6; 2050 /* There is not a ptype for inner ARP/RARP */ 2051 tbl->inner_l3table[2] = RTE_PTYPE_UNKNOWN; 2052 tbl->inner_l3table[3] = RTE_PTYPE_UNKNOWN; 2053 tbl->inner_l3table[4] = RTE_PTYPE_INNER_L3_IPV4_EXT; 2054 tbl->inner_l3table[5] = RTE_PTYPE_INNER_L3_IPV6_EXT; 2055 2056 tbl->inner_l4table[0] = RTE_PTYPE_INNER_L4_UDP; 2057 tbl->inner_l4table[1] = RTE_PTYPE_INNER_L4_TCP; 2058 /* There is not a ptype for inner GRE */ 2059 tbl->inner_l4table[2] = RTE_PTYPE_UNKNOWN; 2060 tbl->inner_l4table[3] = RTE_PTYPE_INNER_L4_SCTP; 2061 /* There is not a ptype for inner IGMP */ 2062 tbl->inner_l4table[4] = RTE_PTYPE_UNKNOWN; 2063 tbl->inner_l4table[5] = RTE_PTYPE_INNER_L4_ICMP; 2064 2065 tbl->ol2table[0] = RTE_PTYPE_L2_ETHER; 2066 tbl->ol2table[1] = RTE_PTYPE_L2_ETHER_VLAN; 2067 tbl->ol2table[2] = RTE_PTYPE_L2_ETHER_QINQ; 2068 2069 tbl->ol3table[0] = RTE_PTYPE_L3_IPV4; 2070 tbl->ol3table[1] = RTE_PTYPE_L3_IPV6; 2071 tbl->ol3table[2] = RTE_PTYPE_UNKNOWN; 2072 tbl->ol3table[3] = RTE_PTYPE_UNKNOWN; 2073 tbl->ol3table[4] = RTE_PTYPE_L3_IPV4_EXT; 2074 tbl->ol3table[5] = RTE_PTYPE_L3_IPV6_EXT; 2075 2076 tbl->ol4table[0] = RTE_PTYPE_UNKNOWN; 2077 tbl->ol4table[1] = RTE_PTYPE_TUNNEL_VXLAN; 2078 tbl->ol4table[2] = RTE_PTYPE_TUNNEL_NVGRE; 2079 } 2080 2081 static void 2082 hns3_init_adv_layout_ptype(struct hns3_ptype_table *tbl) 2083 { 2084 uint32_t *ptype = tbl->ptype; 2085 2086 /* Non-tunnel L2 */ 2087 ptype[1] = RTE_PTYPE_L2_ETHER_ARP; 2088 ptype[3] = RTE_PTYPE_L2_ETHER_LLDP; 2089 ptype[8] = RTE_PTYPE_L2_ETHER_TIMESYNC; 2090 2091 /* Non-tunnel IPv4 */ 2092 ptype[17] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2093 RTE_PTYPE_L4_FRAG; 2094 ptype[18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2095 RTE_PTYPE_L4_NONFRAG; 2096 ptype[19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2097 RTE_PTYPE_L4_UDP; 2098 ptype[20] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2099 RTE_PTYPE_L4_TCP; 2100 /* The next ptype is GRE over IPv4 */ 2101 ptype[21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 2102 ptype[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2103 RTE_PTYPE_L4_SCTP; 2104 ptype[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2105 RTE_PTYPE_L4_IGMP; 2106 ptype[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2107 RTE_PTYPE_L4_ICMP; 2108 /* The next ptype is PTP over IPv4 + UDP */ 2109 ptype[25] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2110 RTE_PTYPE_L4_UDP; 2111 2112 /* IPv4 --> GRE/Teredo/VXLAN */ 2113 ptype[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2114 RTE_PTYPE_TUNNEL_GRENAT; 2115 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */ 2116 ptype[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2117 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER; 2118 2119 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */ 2120 ptype[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2121 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2122 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2123 RTE_PTYPE_INNER_L4_FRAG; 2124 ptype[32] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2125 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2126 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2127 RTE_PTYPE_INNER_L4_NONFRAG; 2128 ptype[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2129 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2130 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2131 RTE_PTYPE_INNER_L4_UDP; 2132 ptype[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2133 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2134 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2135 RTE_PTYPE_INNER_L4_TCP; 2136 ptype[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2137 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2138 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2139 RTE_PTYPE_INNER_L4_SCTP; 2140 /* The next ptype's inner L4 is IGMP */ 2141 ptype[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2142 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2143 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN; 2144 ptype[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2145 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2146 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2147 RTE_PTYPE_INNER_L4_ICMP; 2148 2149 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */ 2150 ptype[39] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2151 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2152 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2153 RTE_PTYPE_INNER_L4_FRAG; 2154 ptype[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2155 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2156 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2157 RTE_PTYPE_INNER_L4_NONFRAG; 2158 ptype[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2159 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2160 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2161 RTE_PTYPE_INNER_L4_UDP; 2162 ptype[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2163 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2164 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2165 RTE_PTYPE_INNER_L4_TCP; 2166 ptype[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2167 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2168 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2169 RTE_PTYPE_INNER_L4_SCTP; 2170 /* The next ptype's inner L4 is IGMP */ 2171 ptype[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2172 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2173 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN; 2174 ptype[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2175 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2176 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2177 RTE_PTYPE_INNER_L4_ICMP; 2178 2179 /* Non-tunnel IPv6 */ 2180 ptype[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2181 RTE_PTYPE_L4_FRAG; 2182 ptype[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2183 RTE_PTYPE_L4_NONFRAG; 2184 ptype[113] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2185 RTE_PTYPE_L4_UDP; 2186 ptype[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2187 RTE_PTYPE_L4_TCP; 2188 /* The next ptype is GRE over IPv6 */ 2189 ptype[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 2190 ptype[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2191 RTE_PTYPE_L4_SCTP; 2192 ptype[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2193 RTE_PTYPE_L4_IGMP; 2194 ptype[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2195 RTE_PTYPE_L4_ICMP; 2196 /* Special for PTP over IPv6 + UDP */ 2197 ptype[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2198 RTE_PTYPE_L4_UDP; 2199 2200 /* IPv6 --> GRE/Teredo/VXLAN */ 2201 ptype[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2202 RTE_PTYPE_TUNNEL_GRENAT; 2203 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */ 2204 ptype[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2205 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER; 2206 2207 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */ 2208 ptype[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2209 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2210 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2211 RTE_PTYPE_INNER_L4_FRAG; 2212 ptype[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2213 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2214 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2215 RTE_PTYPE_INNER_L4_NONFRAG; 2216 ptype[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2217 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2218 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2219 RTE_PTYPE_INNER_L4_UDP; 2220 ptype[128] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2221 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2222 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2223 RTE_PTYPE_INNER_L4_TCP; 2224 ptype[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2225 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2226 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2227 RTE_PTYPE_INNER_L4_SCTP; 2228 /* The next ptype's inner L4 is IGMP */ 2229 ptype[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2230 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2231 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN; 2232 ptype[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2233 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2234 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2235 RTE_PTYPE_INNER_L4_ICMP; 2236 2237 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */ 2238 ptype[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2239 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2240 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2241 RTE_PTYPE_INNER_L4_FRAG; 2242 ptype[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2243 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2244 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2245 RTE_PTYPE_INNER_L4_NONFRAG; 2246 ptype[135] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2247 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2248 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2249 RTE_PTYPE_INNER_L4_UDP; 2250 ptype[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2251 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2252 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2253 RTE_PTYPE_INNER_L4_TCP; 2254 ptype[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2255 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2256 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2257 RTE_PTYPE_INNER_L4_SCTP; 2258 /* The next ptype's inner L4 is IGMP */ 2259 ptype[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2260 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2261 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN; 2262 ptype[139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2263 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2264 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2265 RTE_PTYPE_INNER_L4_ICMP; 2266 } 2267 2268 void 2269 hns3_init_rx_ptype_tble(struct rte_eth_dev *dev) 2270 { 2271 struct hns3_adapter *hns = dev->data->dev_private; 2272 struct hns3_ptype_table *tbl = &hns->ptype_tbl; 2273 2274 memset(tbl, 0, sizeof(*tbl)); 2275 2276 hns3_init_non_tunnel_ptype_tbl(tbl); 2277 hns3_init_tunnel_ptype_tbl(tbl); 2278 hns3_init_adv_layout_ptype(tbl); 2279 } 2280 2281 static inline void 2282 hns3_rxd_to_vlan_tci(struct hns3_rx_queue *rxq, struct rte_mbuf *mb, 2283 uint32_t l234_info, const struct hns3_desc *rxd) 2284 { 2285 #define HNS3_STRP_STATUS_NUM 0x4 2286 2287 #define HNS3_NO_STRP_VLAN_VLD 0x0 2288 #define HNS3_INNER_STRP_VLAN_VLD 0x1 2289 #define HNS3_OUTER_STRP_VLAN_VLD 0x2 2290 uint32_t strip_status; 2291 uint32_t report_mode; 2292 2293 /* 2294 * Since HW limitation, the vlan tag will always be inserted into RX 2295 * descriptor when strip the tag from packet, driver needs to determine 2296 * reporting which tag to mbuf according to the PVID configuration 2297 * and vlan striped status. 2298 */ 2299 static const uint32_t report_type[][HNS3_STRP_STATUS_NUM] = { 2300 { 2301 HNS3_NO_STRP_VLAN_VLD, 2302 HNS3_OUTER_STRP_VLAN_VLD, 2303 HNS3_INNER_STRP_VLAN_VLD, 2304 HNS3_OUTER_STRP_VLAN_VLD 2305 }, 2306 { 2307 HNS3_NO_STRP_VLAN_VLD, 2308 HNS3_NO_STRP_VLAN_VLD, 2309 HNS3_NO_STRP_VLAN_VLD, 2310 HNS3_INNER_STRP_VLAN_VLD 2311 } 2312 }; 2313 strip_status = hns3_get_field(l234_info, HNS3_RXD_STRP_TAGP_M, 2314 HNS3_RXD_STRP_TAGP_S); 2315 report_mode = report_type[rxq->pvid_sw_discard_en][strip_status]; 2316 switch (report_mode) { 2317 case HNS3_NO_STRP_VLAN_VLD: 2318 mb->vlan_tci = 0; 2319 return; 2320 case HNS3_INNER_STRP_VLAN_VLD: 2321 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED; 2322 mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.vlan_tag); 2323 return; 2324 case HNS3_OUTER_STRP_VLAN_VLD: 2325 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED; 2326 mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.ot_vlan_tag); 2327 return; 2328 default: 2329 mb->vlan_tci = 0; 2330 return; 2331 } 2332 } 2333 2334 static inline void 2335 recalculate_data_len(struct rte_mbuf *first_seg, struct rte_mbuf *last_seg, 2336 struct rte_mbuf *rxm, struct hns3_rx_queue *rxq, 2337 uint16_t data_len) 2338 { 2339 uint8_t crc_len = rxq->crc_len; 2340 2341 if (data_len <= crc_len) { 2342 rte_pktmbuf_free_seg(rxm); 2343 first_seg->nb_segs--; 2344 last_seg->data_len = (uint16_t)(last_seg->data_len - 2345 (crc_len - data_len)); 2346 last_seg->next = NULL; 2347 } else 2348 rxm->data_len = (uint16_t)(data_len - crc_len); 2349 } 2350 2351 static inline struct rte_mbuf * 2352 hns3_rx_alloc_buffer(struct hns3_rx_queue *rxq) 2353 { 2354 int ret; 2355 2356 if (likely(rxq->bulk_mbuf_num > 0)) 2357 return rxq->bulk_mbuf[--rxq->bulk_mbuf_num]; 2358 2359 ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)rxq->bulk_mbuf, 2360 HNS3_BULK_ALLOC_MBUF_NUM); 2361 if (likely(ret == 0)) { 2362 rxq->bulk_mbuf_num = HNS3_BULK_ALLOC_MBUF_NUM; 2363 return rxq->bulk_mbuf[--rxq->bulk_mbuf_num]; 2364 } else 2365 return rte_mbuf_raw_alloc(rxq->mb_pool); 2366 } 2367 2368 uint16_t 2369 hns3_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) 2370 { 2371 volatile struct hns3_desc *rx_ring; /* RX ring (desc) */ 2372 volatile struct hns3_desc *rxdp; /* pointer of the current desc */ 2373 struct hns3_rx_queue *rxq; /* RX queue */ 2374 struct hns3_entry *sw_ring; 2375 struct hns3_entry *rxe; 2376 struct hns3_desc rxd; 2377 struct rte_mbuf *nmb; /* pointer of the new mbuf */ 2378 struct rte_mbuf *rxm; 2379 uint32_t bd_base_info; 2380 uint32_t cksum_err; 2381 uint32_t l234_info; 2382 uint32_t ol_info; 2383 uint64_t dma_addr; 2384 uint16_t nb_rx_bd; 2385 uint16_t nb_rx; 2386 uint16_t rx_id; 2387 int ret; 2388 2389 nb_rx = 0; 2390 nb_rx_bd = 0; 2391 rxq = rx_queue; 2392 rx_ring = rxq->rx_ring; 2393 sw_ring = rxq->sw_ring; 2394 rx_id = rxq->next_to_use; 2395 2396 while (nb_rx < nb_pkts) { 2397 rxdp = &rx_ring[rx_id]; 2398 bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info); 2399 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) 2400 break; 2401 2402 rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) - 2403 (1u << HNS3_RXD_VLD_B)]; 2404 2405 nmb = hns3_rx_alloc_buffer(rxq); 2406 if (unlikely(nmb == NULL)) { 2407 uint16_t port_id; 2408 2409 port_id = rxq->port_id; 2410 rte_eth_devices[port_id].data->rx_mbuf_alloc_failed++; 2411 break; 2412 } 2413 2414 nb_rx_bd++; 2415 rxe = &sw_ring[rx_id]; 2416 rx_id++; 2417 if (unlikely(rx_id == rxq->nb_rx_desc)) 2418 rx_id = 0; 2419 2420 rte_prefetch0(sw_ring[rx_id].mbuf); 2421 if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) { 2422 rte_prefetch0(&rx_ring[rx_id]); 2423 rte_prefetch0(&sw_ring[rx_id]); 2424 } 2425 2426 rxm = rxe->mbuf; 2427 rxe->mbuf = nmb; 2428 2429 dma_addr = rte_mbuf_data_iova_default(nmb); 2430 rxdp->addr = rte_cpu_to_le_64(dma_addr); 2431 rxdp->rx.bd_base_info = 0; 2432 2433 rxm->data_off = RTE_PKTMBUF_HEADROOM; 2434 rxm->pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.rx.pkt_len)) - 2435 rxq->crc_len; 2436 rxm->data_len = rxm->pkt_len; 2437 rxm->port = rxq->port_id; 2438 rxm->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash); 2439 rxm->ol_flags = PKT_RX_RSS_HASH; 2440 if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) { 2441 rxm->hash.fdir.hi = 2442 rte_le_to_cpu_16(rxd.rx.fd_id); 2443 rxm->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID; 2444 } 2445 rxm->nb_segs = 1; 2446 rxm->next = NULL; 2447 2448 /* Load remained descriptor data and extract necessary fields */ 2449 l234_info = rte_le_to_cpu_32(rxd.rx.l234_info); 2450 ol_info = rte_le_to_cpu_32(rxd.rx.ol_info); 2451 ret = hns3_handle_bdinfo(rxq, rxm, bd_base_info, 2452 l234_info, &cksum_err); 2453 if (unlikely(ret)) 2454 goto pkt_err; 2455 2456 rxm->packet_type = hns3_rx_calc_ptype(rxq, l234_info, ol_info); 2457 2458 if (likely(bd_base_info & BIT(HNS3_RXD_L3L4P_B))) 2459 hns3_rx_set_cksum_flag(rxm, rxm->packet_type, 2460 cksum_err); 2461 hns3_rxd_to_vlan_tci(rxq, rxm, l234_info, &rxd); 2462 2463 /* Increment bytes counter */ 2464 rxq->basic_stats.bytes += rxm->pkt_len; 2465 2466 rx_pkts[nb_rx++] = rxm; 2467 continue; 2468 pkt_err: 2469 rte_pktmbuf_free(rxm); 2470 } 2471 2472 rxq->next_to_use = rx_id; 2473 rxq->rx_free_hold += nb_rx_bd; 2474 if (rxq->rx_free_hold > rxq->rx_free_thresh) { 2475 hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold); 2476 rxq->rx_free_hold = 0; 2477 } 2478 2479 return nb_rx; 2480 } 2481 2482 uint16_t 2483 hns3_recv_scattered_pkts(void *rx_queue, 2484 struct rte_mbuf **rx_pkts, 2485 uint16_t nb_pkts) 2486 { 2487 volatile struct hns3_desc *rx_ring; /* RX ring (desc) */ 2488 volatile struct hns3_desc *rxdp; /* pointer of the current desc */ 2489 struct hns3_rx_queue *rxq; /* RX queue */ 2490 struct hns3_entry *sw_ring; 2491 struct hns3_entry *rxe; 2492 struct rte_mbuf *first_seg; 2493 struct rte_mbuf *last_seg; 2494 struct hns3_desc rxd; 2495 struct rte_mbuf *nmb; /* pointer of the new mbuf */ 2496 struct rte_mbuf *rxm; 2497 struct rte_eth_dev *dev; 2498 uint32_t bd_base_info; 2499 uint32_t cksum_err; 2500 uint32_t l234_info; 2501 uint32_t gro_size; 2502 uint32_t ol_info; 2503 uint64_t dma_addr; 2504 uint16_t nb_rx_bd; 2505 uint16_t nb_rx; 2506 uint16_t rx_id; 2507 int ret; 2508 2509 nb_rx = 0; 2510 nb_rx_bd = 0; 2511 rxq = rx_queue; 2512 2513 rx_id = rxq->next_to_use; 2514 rx_ring = rxq->rx_ring; 2515 sw_ring = rxq->sw_ring; 2516 first_seg = rxq->pkt_first_seg; 2517 last_seg = rxq->pkt_last_seg; 2518 2519 while (nb_rx < nb_pkts) { 2520 rxdp = &rx_ring[rx_id]; 2521 bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info); 2522 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) 2523 break; 2524 2525 /* 2526 * The interactive process between software and hardware of 2527 * receiving a new packet in hns3 network engine: 2528 * 1. Hardware network engine firstly writes the packet content 2529 * to the memory pointed by the 'addr' field of the Rx Buffer 2530 * Descriptor, secondly fills the result of parsing the 2531 * packet include the valid field into the Rx Buffer 2532 * Descriptor in one write operation. 2533 * 2. Driver reads the Rx BD's valid field in the loop to check 2534 * whether it's valid, if valid then assign a new address to 2535 * the addr field, clear the valid field, get the other 2536 * information of the packet by parsing Rx BD's other fields, 2537 * finally write back the number of Rx BDs processed by the 2538 * driver to the HNS3_RING_RX_HEAD_REG register to inform 2539 * hardware. 2540 * In the above process, the ordering is very important. We must 2541 * make sure that CPU read Rx BD's other fields only after the 2542 * Rx BD is valid. 2543 * 2544 * There are two type of re-ordering: compiler re-ordering and 2545 * CPU re-ordering under the ARMv8 architecture. 2546 * 1. we use volatile to deal with compiler re-ordering, so you 2547 * can see that rx_ring/rxdp defined with volatile. 2548 * 2. we commonly use memory barrier to deal with CPU 2549 * re-ordering, but the cost is high. 2550 * 2551 * In order to solve the high cost of using memory barrier, we 2552 * use the data dependency order under the ARMv8 architecture, 2553 * for example: 2554 * instr01: load A 2555 * instr02: load B <- A 2556 * the instr02 will always execute after instr01. 2557 * 2558 * To construct the data dependency ordering, we use the 2559 * following assignment: 2560 * rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) - 2561 * (1u<<HNS3_RXD_VLD_B)] 2562 * Using gcc compiler under the ARMv8 architecture, the related 2563 * assembly code example as follows: 2564 * note: (1u << HNS3_RXD_VLD_B) equal 0x10 2565 * instr01: ldr w26, [x22, #28] --read bd_base_info 2566 * instr02: and w0, w26, #0x10 --calc bd_base_info & 0x10 2567 * instr03: sub w0, w0, #0x10 --calc (bd_base_info & 2568 * 0x10) - 0x10 2569 * instr04: add x0, x22, x0, lsl #5 --calc copy source addr 2570 * instr05: ldp x2, x3, [x0] 2571 * instr06: stp x2, x3, [x29, #256] --copy BD's [0 ~ 15]B 2572 * instr07: ldp x4, x5, [x0, #16] 2573 * instr08: stp x4, x5, [x29, #272] --copy BD's [16 ~ 31]B 2574 * the instr05~08 depend on x0's value, x0 depent on w26's 2575 * value, the w26 is the bd_base_info, this form the data 2576 * dependency ordering. 2577 * note: if BD is valid, (bd_base_info & (1u<<HNS3_RXD_VLD_B)) - 2578 * (1u<<HNS3_RXD_VLD_B) will always zero, so the 2579 * assignment is correct. 2580 * 2581 * So we use the data dependency ordering instead of memory 2582 * barrier to improve receive performance. 2583 */ 2584 rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) - 2585 (1u << HNS3_RXD_VLD_B)]; 2586 2587 nmb = hns3_rx_alloc_buffer(rxq); 2588 if (unlikely(nmb == NULL)) { 2589 dev = &rte_eth_devices[rxq->port_id]; 2590 dev->data->rx_mbuf_alloc_failed++; 2591 break; 2592 } 2593 2594 nb_rx_bd++; 2595 rxe = &sw_ring[rx_id]; 2596 rx_id++; 2597 if (unlikely(rx_id == rxq->nb_rx_desc)) 2598 rx_id = 0; 2599 2600 rte_prefetch0(sw_ring[rx_id].mbuf); 2601 if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) { 2602 rte_prefetch0(&rx_ring[rx_id]); 2603 rte_prefetch0(&sw_ring[rx_id]); 2604 } 2605 2606 rxm = rxe->mbuf; 2607 rxe->mbuf = nmb; 2608 2609 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb)); 2610 rxdp->rx.bd_base_info = 0; 2611 rxdp->addr = dma_addr; 2612 2613 if (first_seg == NULL) { 2614 first_seg = rxm; 2615 first_seg->nb_segs = 1; 2616 } else { 2617 first_seg->nb_segs++; 2618 last_seg->next = rxm; 2619 } 2620 2621 rxm->data_off = RTE_PKTMBUF_HEADROOM; 2622 rxm->data_len = rte_le_to_cpu_16(rxd.rx.size); 2623 2624 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { 2625 last_seg = rxm; 2626 rxm->next = NULL; 2627 continue; 2628 } 2629 2630 /* 2631 * The last buffer of the received packet. packet len from 2632 * buffer description may contains CRC len, packet len should 2633 * subtract it, same as data len. 2634 */ 2635 first_seg->pkt_len = rte_le_to_cpu_16(rxd.rx.pkt_len); 2636 2637 /* 2638 * This is the last buffer of the received packet. If the CRC 2639 * is not stripped by the hardware: 2640 * - Subtract the CRC length from the total packet length. 2641 * - If the last buffer only contains the whole CRC or a part 2642 * of it, free the mbuf associated to the last buffer. If part 2643 * of the CRC is also contained in the previous mbuf, subtract 2644 * the length of that CRC part from the data length of the 2645 * previous mbuf. 2646 */ 2647 rxm->next = NULL; 2648 if (unlikely(rxq->crc_len > 0)) { 2649 first_seg->pkt_len -= rxq->crc_len; 2650 recalculate_data_len(first_seg, last_seg, rxm, rxq, 2651 rxm->data_len); 2652 } 2653 2654 first_seg->port = rxq->port_id; 2655 first_seg->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash); 2656 first_seg->ol_flags = PKT_RX_RSS_HASH; 2657 if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) { 2658 first_seg->hash.fdir.hi = 2659 rte_le_to_cpu_16(rxd.rx.fd_id); 2660 first_seg->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID; 2661 } 2662 2663 gro_size = hns3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M, 2664 HNS3_RXD_GRO_SIZE_S); 2665 if (gro_size != 0) { 2666 first_seg->ol_flags |= PKT_RX_LRO; 2667 first_seg->tso_segsz = gro_size; 2668 } 2669 2670 l234_info = rte_le_to_cpu_32(rxd.rx.l234_info); 2671 ol_info = rte_le_to_cpu_32(rxd.rx.ol_info); 2672 ret = hns3_handle_bdinfo(rxq, first_seg, bd_base_info, 2673 l234_info, &cksum_err); 2674 if (unlikely(ret)) 2675 goto pkt_err; 2676 2677 first_seg->packet_type = hns3_rx_calc_ptype(rxq, 2678 l234_info, ol_info); 2679 2680 if (bd_base_info & BIT(HNS3_RXD_L3L4P_B)) 2681 hns3_rx_set_cksum_flag(first_seg, 2682 first_seg->packet_type, 2683 cksum_err); 2684 hns3_rxd_to_vlan_tci(rxq, first_seg, l234_info, &rxd); 2685 2686 /* Increment bytes counter */ 2687 rxq->basic_stats.bytes += first_seg->pkt_len; 2688 2689 rx_pkts[nb_rx++] = first_seg; 2690 first_seg = NULL; 2691 continue; 2692 pkt_err: 2693 rte_pktmbuf_free(first_seg); 2694 first_seg = NULL; 2695 } 2696 2697 rxq->next_to_use = rx_id; 2698 rxq->pkt_first_seg = first_seg; 2699 rxq->pkt_last_seg = last_seg; 2700 2701 rxq->rx_free_hold += nb_rx_bd; 2702 if (rxq->rx_free_hold > rxq->rx_free_thresh) { 2703 hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold); 2704 rxq->rx_free_hold = 0; 2705 } 2706 2707 return nb_rx; 2708 } 2709 2710 void __rte_weak 2711 hns3_rxq_vec_setup(__rte_unused struct hns3_rx_queue *rxq) 2712 { 2713 } 2714 2715 int __rte_weak 2716 hns3_rx_check_vec_support(__rte_unused struct rte_eth_dev *dev) 2717 { 2718 return -ENOTSUP; 2719 } 2720 2721 uint16_t __rte_weak 2722 hns3_recv_pkts_vec(__rte_unused void *tx_queue, 2723 __rte_unused struct rte_mbuf **rx_pkts, 2724 __rte_unused uint16_t nb_pkts) 2725 { 2726 return 0; 2727 } 2728 2729 uint16_t __rte_weak 2730 hns3_recv_pkts_vec_sve(__rte_unused void *tx_queue, 2731 __rte_unused struct rte_mbuf **rx_pkts, 2732 __rte_unused uint16_t nb_pkts) 2733 { 2734 return 0; 2735 } 2736 2737 int 2738 hns3_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, 2739 struct rte_eth_burst_mode *mode) 2740 { 2741 static const struct { 2742 eth_rx_burst_t pkt_burst; 2743 const char *info; 2744 } burst_infos[] = { 2745 { hns3_recv_pkts, "Scalar" }, 2746 { hns3_recv_scattered_pkts, "Scalar Scattered" }, 2747 { hns3_recv_pkts_vec, "Vector Neon" }, 2748 { hns3_recv_pkts_vec_sve, "Vector Sve" }, 2749 }; 2750 2751 eth_rx_burst_t pkt_burst = dev->rx_pkt_burst; 2752 int ret = -EINVAL; 2753 unsigned int i; 2754 2755 for (i = 0; i < RTE_DIM(burst_infos); i++) { 2756 if (pkt_burst == burst_infos[i].pkt_burst) { 2757 snprintf(mode->info, sizeof(mode->info), "%s", 2758 burst_infos[i].info); 2759 ret = 0; 2760 break; 2761 } 2762 } 2763 2764 return ret; 2765 } 2766 2767 static bool 2768 hns3_check_sve_support(void) 2769 { 2770 #if defined(RTE_ARCH_ARM64) && defined(__ARM_FEATURE_SVE) 2771 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SVE)) 2772 return true; 2773 #endif 2774 return false; 2775 } 2776 2777 static eth_rx_burst_t 2778 hns3_get_rx_function(struct rte_eth_dev *dev) 2779 { 2780 struct hns3_adapter *hns = dev->data->dev_private; 2781 uint64_t offloads = dev->data->dev_conf.rxmode.offloads; 2782 bool vec_allowed, sve_allowed, simple_allowed; 2783 2784 vec_allowed = hns->rx_vec_allowed && 2785 hns3_rx_check_vec_support(dev) == 0; 2786 sve_allowed = vec_allowed && hns3_check_sve_support(); 2787 simple_allowed = hns->rx_simple_allowed && !dev->data->scattered_rx && 2788 (offloads & DEV_RX_OFFLOAD_TCP_LRO) == 0; 2789 2790 if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_VEC && vec_allowed) 2791 return hns3_recv_pkts_vec; 2792 if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_SVE && sve_allowed) 2793 return hns3_recv_pkts_vec_sve; 2794 if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_SIMPLE && simple_allowed) 2795 return hns3_recv_pkts; 2796 if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_COMMON) 2797 return hns3_recv_scattered_pkts; 2798 2799 if (vec_allowed) 2800 return hns3_recv_pkts_vec; 2801 if (simple_allowed) 2802 return hns3_recv_pkts; 2803 2804 return hns3_recv_scattered_pkts; 2805 } 2806 2807 static int 2808 hns3_tx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_txconf *conf, 2809 uint16_t nb_desc, uint16_t *tx_rs_thresh, 2810 uint16_t *tx_free_thresh, uint16_t idx) 2811 { 2812 #define HNS3_TX_RS_FREE_THRESH_GAP 8 2813 uint16_t rs_thresh, free_thresh, fast_free_thresh; 2814 2815 if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC || 2816 nb_desc % HNS3_ALIGN_RING_DESC) { 2817 hns3_err(hw, "number (%u) of tx descriptors is invalid", 2818 nb_desc); 2819 return -EINVAL; 2820 } 2821 2822 rs_thresh = (conf->tx_rs_thresh > 0) ? 2823 conf->tx_rs_thresh : HNS3_DEFAULT_TX_RS_THRESH; 2824 free_thresh = (conf->tx_free_thresh > 0) ? 2825 conf->tx_free_thresh : HNS3_DEFAULT_TX_FREE_THRESH; 2826 if (rs_thresh + free_thresh > nb_desc || nb_desc % rs_thresh || 2827 rs_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP || 2828 free_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP) { 2829 hns3_err(hw, "tx_rs_thresh (%u) tx_free_thresh (%u) nb_desc " 2830 "(%u) of tx descriptors for port=%u queue=%u check " 2831 "fail!", 2832 rs_thresh, free_thresh, nb_desc, hw->data->port_id, 2833 idx); 2834 return -EINVAL; 2835 } 2836 2837 if (conf->tx_free_thresh == 0) { 2838 /* Fast free Tx memory buffer to improve cache hit rate */ 2839 fast_free_thresh = nb_desc - rs_thresh; 2840 if (fast_free_thresh >= 2841 HNS3_TX_FAST_FREE_AHEAD + HNS3_DEFAULT_TX_FREE_THRESH) 2842 free_thresh = fast_free_thresh - 2843 HNS3_TX_FAST_FREE_AHEAD; 2844 } 2845 2846 *tx_rs_thresh = rs_thresh; 2847 *tx_free_thresh = free_thresh; 2848 return 0; 2849 } 2850 2851 int 2852 hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc, 2853 unsigned int socket_id, const struct rte_eth_txconf *conf) 2854 { 2855 struct hns3_adapter *hns = dev->data->dev_private; 2856 uint16_t tx_rs_thresh, tx_free_thresh; 2857 struct hns3_hw *hw = &hns->hw; 2858 struct hns3_queue_info q_info; 2859 struct hns3_tx_queue *txq; 2860 int tx_entry_len; 2861 int ret; 2862 2863 ret = hns3_tx_queue_conf_check(hw, conf, nb_desc, 2864 &tx_rs_thresh, &tx_free_thresh, idx); 2865 if (ret) 2866 return ret; 2867 2868 if (dev->data->tx_queues[idx] != NULL) { 2869 hns3_tx_queue_release(dev->data->tx_queues[idx]); 2870 dev->data->tx_queues[idx] = NULL; 2871 } 2872 2873 q_info.idx = idx; 2874 q_info.socket_id = socket_id; 2875 q_info.nb_desc = nb_desc; 2876 q_info.type = "hns3 TX queue"; 2877 q_info.ring_name = "tx_ring"; 2878 txq = hns3_alloc_txq_and_dma_zone(dev, &q_info); 2879 if (txq == NULL) { 2880 hns3_err(hw, 2881 "Failed to alloc mem and reserve DMA mem for tx ring!"); 2882 return -ENOMEM; 2883 } 2884 2885 txq->tx_deferred_start = conf->tx_deferred_start; 2886 if (txq->tx_deferred_start && !hns3_dev_indep_txrx_supported(hw)) { 2887 hns3_warn(hw, "deferred start is not supported."); 2888 txq->tx_deferred_start = false; 2889 } 2890 2891 tx_entry_len = sizeof(struct hns3_entry) * txq->nb_tx_desc; 2892 txq->sw_ring = rte_zmalloc_socket("hns3 TX sw ring", tx_entry_len, 2893 RTE_CACHE_LINE_SIZE, socket_id); 2894 if (txq->sw_ring == NULL) { 2895 hns3_err(hw, "Failed to allocate memory for tx sw ring!"); 2896 hns3_tx_queue_release(txq); 2897 return -ENOMEM; 2898 } 2899 2900 txq->hns = hns; 2901 txq->next_to_use = 0; 2902 txq->next_to_clean = 0; 2903 txq->tx_bd_ready = txq->nb_tx_desc - 1; 2904 txq->tx_free_thresh = tx_free_thresh; 2905 txq->tx_rs_thresh = tx_rs_thresh; 2906 txq->free = rte_zmalloc_socket("hns3 TX mbuf free array", 2907 sizeof(struct rte_mbuf *) * txq->tx_rs_thresh, 2908 RTE_CACHE_LINE_SIZE, socket_id); 2909 if (!txq->free) { 2910 hns3_err(hw, "failed to allocate tx mbuf free array!"); 2911 hns3_tx_queue_release(txq); 2912 return -ENOMEM; 2913 } 2914 2915 txq->port_id = dev->data->port_id; 2916 /* 2917 * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE, 2918 * the pvid_sw_shift_en in the queue struct should not be changed, 2919 * because PVID-related operations do not need to be processed by PMD 2920 * driver. For hns3 VF device, whether it needs to process PVID depends 2921 * on the configuration of PF kernel mode netdev driver. And the 2922 * related PF configuration is delivered through the mailbox and finally 2923 * reflectd in port_base_vlan_cfg. 2924 */ 2925 if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE) 2926 txq->pvid_sw_shift_en = hw->port_base_vlan_cfg.state == 2927 HNS3_PORT_BASE_VLAN_ENABLE; 2928 else 2929 txq->pvid_sw_shift_en = false; 2930 txq->max_non_tso_bd_num = hw->max_non_tso_bd_num; 2931 txq->configured = true; 2932 txq->io_base = (void *)((char *)hw->io_base + 2933 hns3_get_tqp_reg_offset(idx)); 2934 txq->io_tail_reg = (volatile void *)((char *)txq->io_base + 2935 HNS3_RING_TX_TAIL_REG); 2936 txq->min_tx_pkt_len = hw->min_tx_pkt_len; 2937 txq->tso_mode = hw->tso_mode; 2938 txq->udp_cksum_mode = hw->udp_cksum_mode; 2939 memset(&txq->basic_stats, 0, sizeof(struct hns3_tx_basic_stats)); 2940 memset(&txq->dfx_stats, 0, sizeof(struct hns3_tx_dfx_stats)); 2941 2942 rte_spinlock_lock(&hw->lock); 2943 dev->data->tx_queues[idx] = txq; 2944 rte_spinlock_unlock(&hw->lock); 2945 2946 return 0; 2947 } 2948 2949 static void 2950 hns3_tx_free_useless_buffer(struct hns3_tx_queue *txq) 2951 { 2952 uint16_t tx_next_clean = txq->next_to_clean; 2953 uint16_t tx_next_use = txq->next_to_use; 2954 uint16_t tx_bd_ready = txq->tx_bd_ready; 2955 uint16_t tx_bd_max = txq->nb_tx_desc; 2956 struct hns3_entry *tx_bak_pkt = &txq->sw_ring[tx_next_clean]; 2957 struct hns3_desc *desc = &txq->tx_ring[tx_next_clean]; 2958 struct rte_mbuf *mbuf; 2959 2960 while ((!(desc->tx.tp_fe_sc_vld_ra_ri & 2961 rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))) && 2962 tx_next_use != tx_next_clean) { 2963 mbuf = tx_bak_pkt->mbuf; 2964 if (mbuf) { 2965 rte_pktmbuf_free_seg(mbuf); 2966 tx_bak_pkt->mbuf = NULL; 2967 } 2968 2969 desc++; 2970 tx_bak_pkt++; 2971 tx_next_clean++; 2972 tx_bd_ready++; 2973 2974 if (tx_next_clean >= tx_bd_max) { 2975 tx_next_clean = 0; 2976 desc = txq->tx_ring; 2977 tx_bak_pkt = txq->sw_ring; 2978 } 2979 } 2980 2981 txq->next_to_clean = tx_next_clean; 2982 txq->tx_bd_ready = tx_bd_ready; 2983 } 2984 2985 int 2986 hns3_config_gro(struct hns3_hw *hw, bool en) 2987 { 2988 struct hns3_cfg_gro_status_cmd *req; 2989 struct hns3_cmd_desc desc; 2990 int ret; 2991 2992 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false); 2993 req = (struct hns3_cfg_gro_status_cmd *)desc.data; 2994 2995 req->gro_en = rte_cpu_to_le_16(en ? 1 : 0); 2996 2997 ret = hns3_cmd_send(hw, &desc, 1); 2998 if (ret) 2999 hns3_err(hw, "%s hardware GRO failed, ret = %d", 3000 en ? "enable" : "disable", ret); 3001 3002 return ret; 3003 } 3004 3005 int 3006 hns3_restore_gro_conf(struct hns3_hw *hw) 3007 { 3008 uint64_t offloads; 3009 bool gro_en; 3010 int ret; 3011 3012 offloads = hw->data->dev_conf.rxmode.offloads; 3013 gro_en = offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false; 3014 ret = hns3_config_gro(hw, gro_en); 3015 if (ret) 3016 hns3_err(hw, "restore hardware GRO to %s failed, ret = %d", 3017 gro_en ? "enabled" : "disabled", ret); 3018 3019 return ret; 3020 } 3021 3022 static inline bool 3023 hns3_pkt_is_tso(struct rte_mbuf *m) 3024 { 3025 return (m->tso_segsz != 0 && m->ol_flags & PKT_TX_TCP_SEG); 3026 } 3027 3028 static void 3029 hns3_set_tso(struct hns3_desc *desc, uint32_t paylen, struct rte_mbuf *rxm) 3030 { 3031 if (!hns3_pkt_is_tso(rxm)) 3032 return; 3033 3034 if (paylen <= rxm->tso_segsz) 3035 return; 3036 3037 desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(BIT(HNS3_TXD_TSO_B)); 3038 desc->tx.mss = rte_cpu_to_le_16(rxm->tso_segsz); 3039 } 3040 3041 static inline void 3042 hns3_fill_per_desc(struct hns3_desc *desc, struct rte_mbuf *rxm) 3043 { 3044 desc->addr = rte_mbuf_data_iova(rxm); 3045 desc->tx.send_size = rte_cpu_to_le_16(rte_pktmbuf_data_len(rxm)); 3046 desc->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)); 3047 } 3048 3049 static void 3050 hns3_fill_first_desc(struct hns3_tx_queue *txq, struct hns3_desc *desc, 3051 struct rte_mbuf *rxm) 3052 { 3053 uint64_t ol_flags = rxm->ol_flags; 3054 uint32_t hdr_len; 3055 uint32_t paylen; 3056 3057 hdr_len = rxm->l2_len + rxm->l3_len + rxm->l4_len; 3058 hdr_len += (ol_flags & PKT_TX_TUNNEL_MASK) ? 3059 rxm->outer_l2_len + rxm->outer_l3_len : 0; 3060 paylen = rxm->pkt_len - hdr_len; 3061 desc->tx.paylen_fd_dop_ol4cs |= rte_cpu_to_le_32(paylen); 3062 hns3_set_tso(desc, paylen, rxm); 3063 3064 /* 3065 * Currently, hardware doesn't support more than two layers VLAN offload 3066 * in Tx direction based on hns3 network engine. So when the number of 3067 * VLANs in the packets represented by rxm plus the number of VLAN 3068 * offload by hardware such as PVID etc, exceeds two, the packets will 3069 * be discarded or the original VLAN of the packets will be overwitted 3070 * by hardware. When the PF PVID is enabled by calling the API function 3071 * named rte_eth_dev_set_vlan_pvid or the VF PVID is enabled by the hns3 3072 * PF kernel ether driver, the outer VLAN tag will always be the PVID. 3073 * To avoid the VLAN of Tx descriptor is overwritten by PVID, it should 3074 * be added to the position close to the IP header when PVID is enabled. 3075 */ 3076 if (!txq->pvid_sw_shift_en && ol_flags & (PKT_TX_VLAN_PKT | 3077 PKT_TX_QINQ_PKT)) { 3078 desc->tx.ol_type_vlan_len_msec |= 3079 rte_cpu_to_le_32(BIT(HNS3_TXD_OVLAN_B)); 3080 if (ol_flags & PKT_TX_QINQ_PKT) 3081 desc->tx.outer_vlan_tag = 3082 rte_cpu_to_le_16(rxm->vlan_tci_outer); 3083 else 3084 desc->tx.outer_vlan_tag = 3085 rte_cpu_to_le_16(rxm->vlan_tci); 3086 } 3087 3088 if (ol_flags & PKT_TX_QINQ_PKT || 3089 ((ol_flags & PKT_TX_VLAN_PKT) && txq->pvid_sw_shift_en)) { 3090 desc->tx.type_cs_vlan_tso_len |= 3091 rte_cpu_to_le_32(BIT(HNS3_TXD_VLAN_B)); 3092 desc->tx.vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci); 3093 } 3094 } 3095 3096 static inline int 3097 hns3_tx_alloc_mbufs(struct rte_mempool *mb_pool, uint16_t nb_new_buf, 3098 struct rte_mbuf **alloc_mbuf) 3099 { 3100 #define MAX_NON_TSO_BD_PER_PKT 18 3101 struct rte_mbuf *pkt_segs[MAX_NON_TSO_BD_PER_PKT]; 3102 uint16_t i; 3103 3104 /* Allocate enough mbufs */ 3105 if (rte_mempool_get_bulk(mb_pool, (void **)pkt_segs, nb_new_buf)) 3106 return -ENOMEM; 3107 3108 for (i = 0; i < nb_new_buf - 1; i++) 3109 pkt_segs[i]->next = pkt_segs[i + 1]; 3110 3111 pkt_segs[nb_new_buf - 1]->next = NULL; 3112 pkt_segs[0]->nb_segs = nb_new_buf; 3113 *alloc_mbuf = pkt_segs[0]; 3114 3115 return 0; 3116 } 3117 3118 static inline void 3119 hns3_pktmbuf_copy_hdr(struct rte_mbuf *new_pkt, struct rte_mbuf *old_pkt) 3120 { 3121 new_pkt->ol_flags = old_pkt->ol_flags; 3122 new_pkt->pkt_len = rte_pktmbuf_pkt_len(old_pkt); 3123 new_pkt->outer_l2_len = old_pkt->outer_l2_len; 3124 new_pkt->outer_l3_len = old_pkt->outer_l3_len; 3125 new_pkt->l2_len = old_pkt->l2_len; 3126 new_pkt->l3_len = old_pkt->l3_len; 3127 new_pkt->l4_len = old_pkt->l4_len; 3128 new_pkt->vlan_tci_outer = old_pkt->vlan_tci_outer; 3129 new_pkt->vlan_tci = old_pkt->vlan_tci; 3130 } 3131 3132 static int 3133 hns3_reassemble_tx_pkts(struct rte_mbuf *tx_pkt, struct rte_mbuf **new_pkt, 3134 uint8_t max_non_tso_bd_num) 3135 { 3136 struct rte_mempool *mb_pool; 3137 struct rte_mbuf *new_mbuf; 3138 struct rte_mbuf *temp_new; 3139 struct rte_mbuf *temp; 3140 uint16_t last_buf_len; 3141 uint16_t nb_new_buf; 3142 uint16_t buf_size; 3143 uint16_t buf_len; 3144 uint16_t len_s; 3145 uint16_t len_d; 3146 uint16_t len; 3147 int ret; 3148 char *s; 3149 char *d; 3150 3151 mb_pool = tx_pkt->pool; 3152 buf_size = tx_pkt->buf_len - RTE_PKTMBUF_HEADROOM; 3153 nb_new_buf = (rte_pktmbuf_pkt_len(tx_pkt) - 1) / buf_size + 1; 3154 if (nb_new_buf > max_non_tso_bd_num) 3155 return -EINVAL; 3156 3157 last_buf_len = rte_pktmbuf_pkt_len(tx_pkt) % buf_size; 3158 if (last_buf_len == 0) 3159 last_buf_len = buf_size; 3160 3161 /* Allocate enough mbufs */ 3162 ret = hns3_tx_alloc_mbufs(mb_pool, nb_new_buf, &new_mbuf); 3163 if (ret) 3164 return ret; 3165 3166 /* Copy the original packet content to the new mbufs */ 3167 temp = tx_pkt; 3168 s = rte_pktmbuf_mtod(temp, char *); 3169 len_s = rte_pktmbuf_data_len(temp); 3170 temp_new = new_mbuf; 3171 while (temp != NULL && temp_new != NULL) { 3172 d = rte_pktmbuf_mtod(temp_new, char *); 3173 buf_len = temp_new->next == NULL ? last_buf_len : buf_size; 3174 len_d = buf_len; 3175 3176 while (len_d) { 3177 len = RTE_MIN(len_s, len_d); 3178 memcpy(d, s, len); 3179 s = s + len; 3180 d = d + len; 3181 len_d = len_d - len; 3182 len_s = len_s - len; 3183 3184 if (len_s == 0) { 3185 temp = temp->next; 3186 if (temp == NULL) 3187 break; 3188 s = rte_pktmbuf_mtod(temp, char *); 3189 len_s = rte_pktmbuf_data_len(temp); 3190 } 3191 } 3192 3193 temp_new->data_len = buf_len; 3194 temp_new = temp_new->next; 3195 } 3196 hns3_pktmbuf_copy_hdr(new_mbuf, tx_pkt); 3197 3198 /* free original mbufs */ 3199 rte_pktmbuf_free(tx_pkt); 3200 3201 *new_pkt = new_mbuf; 3202 3203 return 0; 3204 } 3205 3206 static void 3207 hns3_parse_outer_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec) 3208 { 3209 uint32_t tmp = *ol_type_vlan_len_msec; 3210 uint64_t ol_flags = m->ol_flags; 3211 3212 /* (outer) IP header type */ 3213 if (ol_flags & PKT_TX_OUTER_IPV4) { 3214 if (ol_flags & PKT_TX_OUTER_IP_CKSUM) 3215 tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, 3216 HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM); 3217 else 3218 tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, 3219 HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_NO_CSUM); 3220 } else if (ol_flags & PKT_TX_OUTER_IPV6) { 3221 tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S, 3222 HNS3_OL3T_IPV6); 3223 } 3224 /* OL3 header size, defined in 4 bytes */ 3225 tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S, 3226 m->outer_l3_len >> HNS3_L3_LEN_UNIT); 3227 *ol_type_vlan_len_msec = tmp; 3228 } 3229 3230 static int 3231 hns3_parse_inner_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec, 3232 uint32_t *type_cs_vlan_tso_len) 3233 { 3234 #define HNS3_NVGRE_HLEN 8 3235 uint32_t tmp_outer = *ol_type_vlan_len_msec; 3236 uint32_t tmp_inner = *type_cs_vlan_tso_len; 3237 uint64_t ol_flags = m->ol_flags; 3238 uint16_t inner_l2_len; 3239 3240 switch (ol_flags & PKT_TX_TUNNEL_MASK) { 3241 case PKT_TX_TUNNEL_VXLAN_GPE: 3242 case PKT_TX_TUNNEL_GENEVE: 3243 case PKT_TX_TUNNEL_VXLAN: 3244 /* MAC in UDP tunnelling packet, include VxLAN and GENEVE */ 3245 tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M, 3246 HNS3_TXD_TUNTYPE_S, HNS3_TUN_MAC_IN_UDP); 3247 /* 3248 * The inner l2 length of mbuf is the sum of outer l4 length, 3249 * tunneling header length and inner l2 length for a tunnel 3250 * packect. But in hns3 tx descriptor, the tunneling header 3251 * length is contained in the field of outer L4 length. 3252 * Therefore, driver need to calculate the outer L4 length and 3253 * inner L2 length. 3254 */ 3255 tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, 3256 HNS3_TXD_L4LEN_S, 3257 (uint8_t)RTE_ETHER_VXLAN_HLEN >> 3258 HNS3_L4_LEN_UNIT); 3259 3260 inner_l2_len = m->l2_len - RTE_ETHER_VXLAN_HLEN; 3261 break; 3262 case PKT_TX_TUNNEL_GRE: 3263 tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M, 3264 HNS3_TXD_TUNTYPE_S, HNS3_TUN_NVGRE); 3265 /* 3266 * For NVGRE tunnel packect, the outer L4 is empty. So only 3267 * fill the NVGRE header length to the outer L4 field. 3268 */ 3269 tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, 3270 HNS3_TXD_L4LEN_S, 3271 (uint8_t)HNS3_NVGRE_HLEN >> HNS3_L4_LEN_UNIT); 3272 3273 inner_l2_len = m->l2_len - HNS3_NVGRE_HLEN; 3274 break; 3275 default: 3276 /* For non UDP / GRE tunneling, drop the tunnel packet */ 3277 return -EINVAL; 3278 } 3279 3280 tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S, 3281 inner_l2_len >> HNS3_L2_LEN_UNIT); 3282 /* OL2 header size, defined in 2 bytes */ 3283 tmp_outer |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S, 3284 m->outer_l2_len >> HNS3_L2_LEN_UNIT); 3285 3286 *type_cs_vlan_tso_len = tmp_inner; 3287 *ol_type_vlan_len_msec = tmp_outer; 3288 3289 return 0; 3290 } 3291 3292 static int 3293 hns3_parse_tunneling_params(struct hns3_tx_queue *txq, struct rte_mbuf *m, 3294 uint16_t tx_desc_id) 3295 { 3296 struct hns3_desc *tx_ring = txq->tx_ring; 3297 struct hns3_desc *desc = &tx_ring[tx_desc_id]; 3298 uint64_t ol_flags = m->ol_flags; 3299 uint32_t tmp_outer = 0; 3300 uint32_t tmp_inner = 0; 3301 uint32_t tmp_ol4cs; 3302 int ret; 3303 3304 /* 3305 * The tunnel header is contained in the inner L2 header field of the 3306 * mbuf, but for hns3 descriptor, it is contained in the outer L4. So, 3307 * there is a need that switching between them. To avoid multiple 3308 * calculations, the length of the L2 header include the outer and 3309 * inner, will be filled during the parsing of tunnel packects. 3310 */ 3311 if (!(ol_flags & PKT_TX_TUNNEL_MASK)) { 3312 /* 3313 * For non tunnel type the tunnel type id is 0, so no need to 3314 * assign a value to it. Only the inner(normal) L2 header length 3315 * is assigned. 3316 */ 3317 tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, 3318 HNS3_TXD_L2LEN_S, m->l2_len >> HNS3_L2_LEN_UNIT); 3319 } else { 3320 /* 3321 * If outer csum is not offload, the outer length may be filled 3322 * with 0. And the length of the outer header is added to the 3323 * inner l2_len. It would lead a cksum error. So driver has to 3324 * calculate the header length. 3325 */ 3326 if (unlikely(!(ol_flags & 3327 (PKT_TX_OUTER_IP_CKSUM | PKT_TX_OUTER_UDP_CKSUM)) && 3328 m->outer_l2_len == 0)) { 3329 struct rte_net_hdr_lens hdr_len; 3330 (void)rte_net_get_ptype(m, &hdr_len, 3331 RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK); 3332 m->outer_l3_len = hdr_len.l3_len; 3333 m->outer_l2_len = hdr_len.l2_len; 3334 m->l2_len = m->l2_len - hdr_len.l2_len - hdr_len.l3_len; 3335 } 3336 hns3_parse_outer_params(m, &tmp_outer); 3337 ret = hns3_parse_inner_params(m, &tmp_outer, &tmp_inner); 3338 if (ret) 3339 return -EINVAL; 3340 } 3341 3342 desc->tx.ol_type_vlan_len_msec = rte_cpu_to_le_32(tmp_outer); 3343 desc->tx.type_cs_vlan_tso_len = rte_cpu_to_le_32(tmp_inner); 3344 tmp_ol4cs = ol_flags & PKT_TX_OUTER_UDP_CKSUM ? 3345 BIT(HNS3_TXD_OL4CS_B) : 0; 3346 desc->tx.paylen_fd_dop_ol4cs = rte_cpu_to_le_32(tmp_ol4cs); 3347 3348 return 0; 3349 } 3350 3351 static void 3352 hns3_parse_l3_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len) 3353 { 3354 uint64_t ol_flags = m->ol_flags; 3355 uint32_t l3_type; 3356 uint32_t tmp; 3357 3358 tmp = *type_cs_vlan_tso_len; 3359 if (ol_flags & PKT_TX_IPV4) 3360 l3_type = HNS3_L3T_IPV4; 3361 else if (ol_flags & PKT_TX_IPV6) 3362 l3_type = HNS3_L3T_IPV6; 3363 else 3364 l3_type = HNS3_L3T_NONE; 3365 3366 /* inner(/normal) L3 header size, defined in 4 bytes */ 3367 tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S, 3368 m->l3_len >> HNS3_L3_LEN_UNIT); 3369 3370 tmp |= hns3_gen_field_val(HNS3_TXD_L3T_M, HNS3_TXD_L3T_S, l3_type); 3371 3372 /* Enable L3 checksum offloads */ 3373 if (ol_flags & PKT_TX_IP_CKSUM) 3374 tmp |= BIT(HNS3_TXD_L3CS_B); 3375 *type_cs_vlan_tso_len = tmp; 3376 } 3377 3378 static void 3379 hns3_parse_l4_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len) 3380 { 3381 uint64_t ol_flags = m->ol_flags; 3382 uint32_t tmp; 3383 /* Enable L4 checksum offloads */ 3384 switch (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG)) { 3385 case PKT_TX_TCP_CKSUM | PKT_TX_TCP_SEG: 3386 case PKT_TX_TCP_CKSUM: 3387 case PKT_TX_TCP_SEG: 3388 tmp = *type_cs_vlan_tso_len; 3389 tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S, 3390 HNS3_L4T_TCP); 3391 break; 3392 case PKT_TX_UDP_CKSUM: 3393 tmp = *type_cs_vlan_tso_len; 3394 tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S, 3395 HNS3_L4T_UDP); 3396 break; 3397 case PKT_TX_SCTP_CKSUM: 3398 tmp = *type_cs_vlan_tso_len; 3399 tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S, 3400 HNS3_L4T_SCTP); 3401 break; 3402 default: 3403 return; 3404 } 3405 tmp |= BIT(HNS3_TXD_L4CS_B); 3406 tmp |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S, 3407 m->l4_len >> HNS3_L4_LEN_UNIT); 3408 *type_cs_vlan_tso_len = tmp; 3409 } 3410 3411 static void 3412 hns3_txd_enable_checksum(struct hns3_tx_queue *txq, struct rte_mbuf *m, 3413 uint16_t tx_desc_id) 3414 { 3415 struct hns3_desc *tx_ring = txq->tx_ring; 3416 struct hns3_desc *desc = &tx_ring[tx_desc_id]; 3417 uint32_t value = 0; 3418 3419 hns3_parse_l3_cksum_params(m, &value); 3420 hns3_parse_l4_cksum_params(m, &value); 3421 3422 desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(value); 3423 } 3424 3425 static bool 3426 hns3_pkt_need_linearized(struct rte_mbuf *tx_pkts, uint32_t bd_num, 3427 uint32_t max_non_tso_bd_num) 3428 { 3429 struct rte_mbuf *m_first = tx_pkts; 3430 struct rte_mbuf *m_last = tx_pkts; 3431 uint32_t tot_len = 0; 3432 uint32_t hdr_len; 3433 uint32_t i; 3434 3435 /* 3436 * Hardware requires that the sum of the data length of every 8 3437 * consecutive buffers is greater than MSS in hns3 network engine. 3438 * We simplify it by ensuring pkt_headlen + the first 8 consecutive 3439 * frags greater than gso header len + mss, and the remaining 7 3440 * consecutive frags greater than MSS except the last 7 frags. 3441 */ 3442 if (bd_num <= max_non_tso_bd_num) 3443 return false; 3444 3445 for (i = 0; m_last && i < max_non_tso_bd_num - 1; 3446 i++, m_last = m_last->next) 3447 tot_len += m_last->data_len; 3448 3449 if (!m_last) 3450 return true; 3451 3452 /* ensure the first 8 frags is greater than mss + header */ 3453 hdr_len = tx_pkts->l2_len + tx_pkts->l3_len + tx_pkts->l4_len; 3454 hdr_len += (tx_pkts->ol_flags & PKT_TX_TUNNEL_MASK) ? 3455 tx_pkts->outer_l2_len + tx_pkts->outer_l3_len : 0; 3456 if (tot_len + m_last->data_len < tx_pkts->tso_segsz + hdr_len) 3457 return true; 3458 3459 /* 3460 * ensure the sum of the data length of every 7 consecutive buffer 3461 * is greater than mss except the last one. 3462 */ 3463 for (i = 0; m_last && i < bd_num - max_non_tso_bd_num; i++) { 3464 tot_len -= m_first->data_len; 3465 tot_len += m_last->data_len; 3466 3467 if (tot_len < tx_pkts->tso_segsz) 3468 return true; 3469 3470 m_first = m_first->next; 3471 m_last = m_last->next; 3472 } 3473 3474 return false; 3475 } 3476 3477 static bool 3478 hns3_outer_ipv4_cksum_prepared(struct rte_mbuf *m, uint64_t ol_flags, 3479 uint32_t *l4_proto) 3480 { 3481 struct rte_ipv4_hdr *ipv4_hdr; 3482 ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, 3483 m->outer_l2_len); 3484 if (ol_flags & PKT_TX_OUTER_IP_CKSUM) 3485 ipv4_hdr->hdr_checksum = 0; 3486 if (ol_flags & PKT_TX_OUTER_UDP_CKSUM) { 3487 struct rte_udp_hdr *udp_hdr; 3488 /* 3489 * If OUTER_UDP_CKSUM is support, HW can caclulate the pseudo 3490 * header for TSO packets 3491 */ 3492 if (ol_flags & PKT_TX_TCP_SEG) 3493 return true; 3494 udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *, 3495 m->outer_l2_len + m->outer_l3_len); 3496 udp_hdr->dgram_cksum = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); 3497 3498 return true; 3499 } 3500 *l4_proto = ipv4_hdr->next_proto_id; 3501 return false; 3502 } 3503 3504 static bool 3505 hns3_outer_ipv6_cksum_prepared(struct rte_mbuf *m, uint64_t ol_flags, 3506 uint32_t *l4_proto) 3507 { 3508 struct rte_ipv6_hdr *ipv6_hdr; 3509 ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *, 3510 m->outer_l2_len); 3511 if (ol_flags & PKT_TX_OUTER_UDP_CKSUM) { 3512 struct rte_udp_hdr *udp_hdr; 3513 /* 3514 * If OUTER_UDP_CKSUM is support, HW can caclulate the pseudo 3515 * header for TSO packets 3516 */ 3517 if (ol_flags & PKT_TX_TCP_SEG) 3518 return true; 3519 udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *, 3520 m->outer_l2_len + m->outer_l3_len); 3521 udp_hdr->dgram_cksum = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); 3522 3523 return true; 3524 } 3525 *l4_proto = ipv6_hdr->proto; 3526 return false; 3527 } 3528 3529 static void 3530 hns3_outer_header_cksum_prepare(struct rte_mbuf *m) 3531 { 3532 uint64_t ol_flags = m->ol_flags; 3533 uint32_t paylen, hdr_len, l4_proto; 3534 struct rte_udp_hdr *udp_hdr; 3535 3536 if (!(ol_flags & (PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6))) 3537 return; 3538 3539 if (ol_flags & PKT_TX_OUTER_IPV4) { 3540 if (hns3_outer_ipv4_cksum_prepared(m, ol_flags, &l4_proto)) 3541 return; 3542 } else { 3543 if (hns3_outer_ipv6_cksum_prepared(m, ol_flags, &l4_proto)) 3544 return; 3545 } 3546 3547 /* driver should ensure the outer udp cksum is 0 for TUNNEL TSO */ 3548 if (l4_proto == IPPROTO_UDP && (ol_flags & PKT_TX_TCP_SEG)) { 3549 hdr_len = m->l2_len + m->l3_len + m->l4_len; 3550 hdr_len += m->outer_l2_len + m->outer_l3_len; 3551 paylen = m->pkt_len - hdr_len; 3552 if (paylen <= m->tso_segsz) 3553 return; 3554 udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *, 3555 m->outer_l2_len + 3556 m->outer_l3_len); 3557 udp_hdr->dgram_cksum = 0; 3558 } 3559 } 3560 3561 static int 3562 hns3_check_tso_pkt_valid(struct rte_mbuf *m) 3563 { 3564 uint32_t tmp_data_len_sum = 0; 3565 uint16_t nb_buf = m->nb_segs; 3566 uint32_t paylen, hdr_len; 3567 struct rte_mbuf *m_seg; 3568 int i; 3569 3570 if (nb_buf > HNS3_MAX_TSO_BD_PER_PKT) 3571 return -EINVAL; 3572 3573 hdr_len = m->l2_len + m->l3_len + m->l4_len; 3574 hdr_len += (m->ol_flags & PKT_TX_TUNNEL_MASK) ? 3575 m->outer_l2_len + m->outer_l3_len : 0; 3576 if (hdr_len > HNS3_MAX_TSO_HDR_SIZE) 3577 return -EINVAL; 3578 3579 paylen = m->pkt_len - hdr_len; 3580 if (paylen > HNS3_MAX_BD_PAYLEN) 3581 return -EINVAL; 3582 3583 /* 3584 * The TSO header (include outer and inner L2, L3 and L4 header) 3585 * should be provided by three descriptors in maximum in hns3 network 3586 * engine. 3587 */ 3588 m_seg = m; 3589 for (i = 0; m_seg != NULL && i < HNS3_MAX_TSO_HDR_BD_NUM && i < nb_buf; 3590 i++, m_seg = m_seg->next) { 3591 tmp_data_len_sum += m_seg->data_len; 3592 } 3593 3594 if (hdr_len > tmp_data_len_sum) 3595 return -EINVAL; 3596 3597 return 0; 3598 } 3599 3600 #ifdef RTE_LIBRTE_ETHDEV_DEBUG 3601 static inline int 3602 hns3_vld_vlan_chk(struct hns3_tx_queue *txq, struct rte_mbuf *m) 3603 { 3604 struct rte_ether_hdr *eh; 3605 struct rte_vlan_hdr *vh; 3606 3607 if (!txq->pvid_sw_shift_en) 3608 return 0; 3609 3610 /* 3611 * Due to hardware limitations, we only support two-layer VLAN hardware 3612 * offload in Tx direction based on hns3 network engine, so when PVID is 3613 * enabled, QinQ insert is no longer supported. 3614 * And when PVID is enabled, in the following two cases: 3615 * i) packets with more than two VLAN tags. 3616 * ii) packets with one VLAN tag while the hardware VLAN insert is 3617 * enabled. 3618 * The packets will be regarded as abnormal packets and discarded by 3619 * hardware in Tx direction. For debugging purposes, a validation check 3620 * for these types of packets is added to the '.tx_pkt_prepare' ops 3621 * implementation function named hns3_prep_pkts to inform users that 3622 * these packets will be discarded. 3623 */ 3624 if (m->ol_flags & PKT_TX_QINQ_PKT) 3625 return -EINVAL; 3626 3627 eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 3628 if (eh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) { 3629 if (m->ol_flags & PKT_TX_VLAN_PKT) 3630 return -EINVAL; 3631 3632 /* Ensure the incoming packet is not a QinQ packet */ 3633 vh = (struct rte_vlan_hdr *)(eh + 1); 3634 if (vh->eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) 3635 return -EINVAL; 3636 } 3637 3638 return 0; 3639 } 3640 #endif 3641 3642 static uint16_t 3643 hns3_udp_cksum_help(struct rte_mbuf *m) 3644 { 3645 uint64_t ol_flags = m->ol_flags; 3646 uint16_t cksum = 0; 3647 uint32_t l4_len; 3648 3649 if (ol_flags & PKT_TX_IPV4) { 3650 struct rte_ipv4_hdr *ipv4_hdr = rte_pktmbuf_mtod_offset(m, 3651 struct rte_ipv4_hdr *, m->l2_len); 3652 l4_len = rte_be_to_cpu_16(ipv4_hdr->total_length) - m->l3_len; 3653 } else { 3654 struct rte_ipv6_hdr *ipv6_hdr = rte_pktmbuf_mtod_offset(m, 3655 struct rte_ipv6_hdr *, m->l2_len); 3656 l4_len = rte_be_to_cpu_16(ipv6_hdr->payload_len); 3657 } 3658 3659 rte_raw_cksum_mbuf(m, m->l2_len + m->l3_len, l4_len, &cksum); 3660 3661 cksum = ~cksum; 3662 /* 3663 * RFC 768:If the computed checksum is zero for UDP, it is transmitted 3664 * as all ones 3665 */ 3666 if (cksum == 0) 3667 cksum = 0xffff; 3668 3669 return (uint16_t)cksum; 3670 } 3671 3672 static bool 3673 hns3_validate_tunnel_cksum(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m) 3674 { 3675 uint64_t ol_flags = m->ol_flags; 3676 struct rte_udp_hdr *udp_hdr; 3677 uint16_t dst_port; 3678 3679 if (tx_queue->udp_cksum_mode == HNS3_SPECIAL_PORT_HW_CKSUM_MODE || 3680 ol_flags & PKT_TX_TUNNEL_MASK || 3681 (ol_flags & PKT_TX_L4_MASK) != PKT_TX_UDP_CKSUM) 3682 return true; 3683 /* 3684 * A UDP packet with the same dst_port as VXLAN\VXLAN_GPE\GENEVE will 3685 * be recognized as a tunnel packet in HW. In this case, if UDP CKSUM 3686 * offload is set and the tunnel mask has not been set, the CKSUM will 3687 * be wrong since the header length is wrong and driver should complete 3688 * the CKSUM to avoid CKSUM error. 3689 */ 3690 udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *, 3691 m->l2_len + m->l3_len); 3692 dst_port = rte_be_to_cpu_16(udp_hdr->dst_port); 3693 switch (dst_port) { 3694 case RTE_VXLAN_DEFAULT_PORT: 3695 case RTE_VXLAN_GPE_DEFAULT_PORT: 3696 case RTE_GENEVE_DEFAULT_PORT: 3697 udp_hdr->dgram_cksum = hns3_udp_cksum_help(m); 3698 m->ol_flags = ol_flags & ~PKT_TX_L4_MASK; 3699 return false; 3700 default: 3701 return true; 3702 } 3703 } 3704 3705 static int 3706 hns3_prep_pkt_proc(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m) 3707 { 3708 int ret; 3709 3710 #ifdef RTE_LIBRTE_ETHDEV_DEBUG 3711 ret = rte_validate_tx_offload(m); 3712 if (ret != 0) { 3713 rte_errno = -ret; 3714 return ret; 3715 } 3716 3717 ret = hns3_vld_vlan_chk(tx_queue, m); 3718 if (ret != 0) { 3719 rte_errno = EINVAL; 3720 return ret; 3721 } 3722 #endif 3723 if (hns3_pkt_is_tso(m)) { 3724 if (hns3_pkt_need_linearized(m, m->nb_segs, 3725 tx_queue->max_non_tso_bd_num) || 3726 hns3_check_tso_pkt_valid(m)) { 3727 rte_errno = EINVAL; 3728 return -EINVAL; 3729 } 3730 3731 if (tx_queue->tso_mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) { 3732 /* 3733 * (tso mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) means 3734 * hardware support recalculate the TCP pseudo header 3735 * checksum of packets that need TSO, so network driver 3736 * software not need to recalculate it. 3737 */ 3738 hns3_outer_header_cksum_prepare(m); 3739 return 0; 3740 } 3741 } 3742 3743 ret = rte_net_intel_cksum_prepare(m); 3744 if (ret != 0) { 3745 rte_errno = -ret; 3746 return ret; 3747 } 3748 3749 if (!hns3_validate_tunnel_cksum(tx_queue, m)) 3750 return 0; 3751 3752 hns3_outer_header_cksum_prepare(m); 3753 3754 return 0; 3755 } 3756 3757 uint16_t 3758 hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts, 3759 uint16_t nb_pkts) 3760 { 3761 struct rte_mbuf *m; 3762 uint16_t i; 3763 3764 for (i = 0; i < nb_pkts; i++) { 3765 m = tx_pkts[i]; 3766 if (hns3_prep_pkt_proc(tx_queue, m)) 3767 return i; 3768 } 3769 3770 return i; 3771 } 3772 3773 static int 3774 hns3_parse_cksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id, 3775 struct rte_mbuf *m) 3776 { 3777 struct hns3_desc *tx_ring = txq->tx_ring; 3778 struct hns3_desc *desc = &tx_ring[tx_desc_id]; 3779 3780 /* Enable checksum offloading */ 3781 if (m->ol_flags & HNS3_TX_CKSUM_OFFLOAD_MASK) { 3782 /* Fill in tunneling parameters if necessary */ 3783 if (hns3_parse_tunneling_params(txq, m, tx_desc_id)) { 3784 txq->dfx_stats.unsupported_tunnel_pkt_cnt++; 3785 return -EINVAL; 3786 } 3787 3788 hns3_txd_enable_checksum(txq, m, tx_desc_id); 3789 } else { 3790 /* clear the control bit */ 3791 desc->tx.type_cs_vlan_tso_len = 0; 3792 desc->tx.ol_type_vlan_len_msec = 0; 3793 } 3794 3795 return 0; 3796 } 3797 3798 static int 3799 hns3_check_non_tso_pkt(uint16_t nb_buf, struct rte_mbuf **m_seg, 3800 struct rte_mbuf *tx_pkt, struct hns3_tx_queue *txq) 3801 { 3802 uint8_t max_non_tso_bd_num; 3803 struct rte_mbuf *new_pkt; 3804 int ret; 3805 3806 if (hns3_pkt_is_tso(*m_seg)) 3807 return 0; 3808 3809 /* 3810 * If packet length is greater than HNS3_MAX_FRAME_LEN 3811 * driver support, the packet will be ignored. 3812 */ 3813 if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) > HNS3_MAX_FRAME_LEN)) { 3814 txq->dfx_stats.over_length_pkt_cnt++; 3815 return -EINVAL; 3816 } 3817 3818 max_non_tso_bd_num = txq->max_non_tso_bd_num; 3819 if (unlikely(nb_buf > max_non_tso_bd_num)) { 3820 txq->dfx_stats.exceed_limit_bd_pkt_cnt++; 3821 ret = hns3_reassemble_tx_pkts(tx_pkt, &new_pkt, 3822 max_non_tso_bd_num); 3823 if (ret) { 3824 txq->dfx_stats.exceed_limit_bd_reassem_fail++; 3825 return ret; 3826 } 3827 *m_seg = new_pkt; 3828 } 3829 3830 return 0; 3831 } 3832 3833 static inline void 3834 hns3_tx_free_buffer_simple(struct hns3_tx_queue *txq) 3835 { 3836 struct hns3_entry *tx_entry; 3837 struct hns3_desc *desc; 3838 uint16_t tx_next_clean; 3839 int i; 3840 3841 while (1) { 3842 if (HNS3_GET_TX_QUEUE_PEND_BD_NUM(txq) < txq->tx_rs_thresh) 3843 break; 3844 3845 /* 3846 * All mbufs can be released only when the VLD bits of all 3847 * descriptors in a batch are cleared. 3848 */ 3849 tx_next_clean = (txq->next_to_clean + txq->tx_rs_thresh - 1) % 3850 txq->nb_tx_desc; 3851 desc = &txq->tx_ring[tx_next_clean]; 3852 for (i = 0; i < txq->tx_rs_thresh; i++) { 3853 if (rte_le_to_cpu_16(desc->tx.tp_fe_sc_vld_ra_ri) & 3854 BIT(HNS3_TXD_VLD_B)) 3855 return; 3856 desc--; 3857 } 3858 3859 tx_entry = &txq->sw_ring[txq->next_to_clean]; 3860 3861 for (i = 0; i < txq->tx_rs_thresh; i++) 3862 rte_prefetch0((tx_entry + i)->mbuf); 3863 for (i = 0; i < txq->tx_rs_thresh; i++, tx_entry++) { 3864 rte_mempool_put(tx_entry->mbuf->pool, tx_entry->mbuf); 3865 tx_entry->mbuf = NULL; 3866 } 3867 3868 txq->next_to_clean = (tx_next_clean + 1) % txq->nb_tx_desc; 3869 txq->tx_bd_ready += txq->tx_rs_thresh; 3870 } 3871 } 3872 3873 static inline void 3874 hns3_tx_backup_1mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts) 3875 { 3876 tx_entry->mbuf = pkts[0]; 3877 } 3878 3879 static inline void 3880 hns3_tx_backup_4mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts) 3881 { 3882 hns3_tx_backup_1mbuf(&tx_entry[0], &pkts[0]); 3883 hns3_tx_backup_1mbuf(&tx_entry[1], &pkts[1]); 3884 hns3_tx_backup_1mbuf(&tx_entry[2], &pkts[2]); 3885 hns3_tx_backup_1mbuf(&tx_entry[3], &pkts[3]); 3886 } 3887 3888 static inline void 3889 hns3_tx_setup_4bd(struct hns3_desc *txdp, struct rte_mbuf **pkts) 3890 { 3891 #define PER_LOOP_NUM 4 3892 const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B); 3893 uint64_t dma_addr; 3894 uint32_t i; 3895 3896 for (i = 0; i < PER_LOOP_NUM; i++, txdp++, pkts++) { 3897 dma_addr = rte_mbuf_data_iova(*pkts); 3898 txdp->addr = rte_cpu_to_le_64(dma_addr); 3899 txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len); 3900 txdp->tx.paylen_fd_dop_ol4cs = 0; 3901 txdp->tx.type_cs_vlan_tso_len = 0; 3902 txdp->tx.ol_type_vlan_len_msec = 0; 3903 txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag); 3904 } 3905 } 3906 3907 static inline void 3908 hns3_tx_setup_1bd(struct hns3_desc *txdp, struct rte_mbuf **pkts) 3909 { 3910 const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B); 3911 uint64_t dma_addr; 3912 3913 dma_addr = rte_mbuf_data_iova(*pkts); 3914 txdp->addr = rte_cpu_to_le_64(dma_addr); 3915 txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len); 3916 txdp->tx.paylen_fd_dop_ol4cs = 0; 3917 txdp->tx.type_cs_vlan_tso_len = 0; 3918 txdp->tx.ol_type_vlan_len_msec = 0; 3919 txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag); 3920 } 3921 3922 static inline void 3923 hns3_tx_fill_hw_ring(struct hns3_tx_queue *txq, 3924 struct rte_mbuf **pkts, 3925 uint16_t nb_pkts) 3926 { 3927 #define PER_LOOP_NUM 4 3928 #define PER_LOOP_MASK (PER_LOOP_NUM - 1) 3929 struct hns3_desc *txdp = &txq->tx_ring[txq->next_to_use]; 3930 struct hns3_entry *tx_entry = &txq->sw_ring[txq->next_to_use]; 3931 const uint32_t mainpart = (nb_pkts & ((uint32_t)~PER_LOOP_MASK)); 3932 const uint32_t leftover = (nb_pkts & ((uint32_t)PER_LOOP_MASK)); 3933 uint32_t i; 3934 3935 for (i = 0; i < mainpart; i += PER_LOOP_NUM) { 3936 hns3_tx_backup_4mbuf(tx_entry + i, pkts + i); 3937 hns3_tx_setup_4bd(txdp + i, pkts + i); 3938 3939 /* Increment bytes counter */ 3940 uint32_t j; 3941 for (j = 0; j < PER_LOOP_NUM; j++) 3942 txq->basic_stats.bytes += pkts[i + j]->pkt_len; 3943 } 3944 if (unlikely(leftover > 0)) { 3945 for (i = 0; i < leftover; i++) { 3946 hns3_tx_backup_1mbuf(tx_entry + mainpart + i, 3947 pkts + mainpart + i); 3948 hns3_tx_setup_1bd(txdp + mainpart + i, 3949 pkts + mainpart + i); 3950 3951 /* Increment bytes counter */ 3952 txq->basic_stats.bytes += pkts[mainpart + i]->pkt_len; 3953 } 3954 } 3955 } 3956 3957 uint16_t 3958 hns3_xmit_pkts_simple(void *tx_queue, 3959 struct rte_mbuf **tx_pkts, 3960 uint16_t nb_pkts) 3961 { 3962 struct hns3_tx_queue *txq = tx_queue; 3963 uint16_t nb_tx = 0; 3964 3965 hns3_tx_free_buffer_simple(txq); 3966 3967 nb_pkts = RTE_MIN(txq->tx_bd_ready, nb_pkts); 3968 if (unlikely(nb_pkts == 0)) { 3969 if (txq->tx_bd_ready == 0) 3970 txq->dfx_stats.queue_full_cnt++; 3971 return 0; 3972 } 3973 3974 txq->tx_bd_ready -= nb_pkts; 3975 if (txq->next_to_use + nb_pkts > txq->nb_tx_desc) { 3976 nb_tx = txq->nb_tx_desc - txq->next_to_use; 3977 hns3_tx_fill_hw_ring(txq, tx_pkts, nb_tx); 3978 txq->next_to_use = 0; 3979 } 3980 3981 hns3_tx_fill_hw_ring(txq, tx_pkts + nb_tx, nb_pkts - nb_tx); 3982 txq->next_to_use += nb_pkts - nb_tx; 3983 3984 hns3_write_reg_opt(txq->io_tail_reg, nb_pkts); 3985 3986 return nb_pkts; 3987 } 3988 3989 uint16_t 3990 hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 3991 { 3992 struct hns3_tx_queue *txq = tx_queue; 3993 struct hns3_entry *tx_bak_pkt; 3994 struct hns3_desc *tx_ring; 3995 struct rte_mbuf *tx_pkt; 3996 struct rte_mbuf *m_seg; 3997 struct hns3_desc *desc; 3998 uint32_t nb_hold = 0; 3999 uint16_t tx_next_use; 4000 uint16_t tx_pkt_num; 4001 uint16_t tx_bd_max; 4002 uint16_t nb_buf; 4003 uint16_t nb_tx; 4004 uint16_t i; 4005 4006 /* free useless buffer */ 4007 hns3_tx_free_useless_buffer(txq); 4008 4009 tx_next_use = txq->next_to_use; 4010 tx_bd_max = txq->nb_tx_desc; 4011 tx_pkt_num = nb_pkts; 4012 tx_ring = txq->tx_ring; 4013 4014 /* send packets */ 4015 tx_bak_pkt = &txq->sw_ring[tx_next_use]; 4016 for (nb_tx = 0; nb_tx < tx_pkt_num; nb_tx++) { 4017 tx_pkt = *tx_pkts++; 4018 4019 nb_buf = tx_pkt->nb_segs; 4020 4021 if (nb_buf > txq->tx_bd_ready) { 4022 txq->dfx_stats.queue_full_cnt++; 4023 if (nb_tx == 0) 4024 return 0; 4025 4026 goto end_of_tx; 4027 } 4028 4029 /* 4030 * If packet length is less than minimum packet length supported 4031 * by hardware in Tx direction, driver need to pad it to avoid 4032 * error. 4033 */ 4034 if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) < 4035 txq->min_tx_pkt_len)) { 4036 uint16_t add_len; 4037 char *appended; 4038 4039 add_len = txq->min_tx_pkt_len - 4040 rte_pktmbuf_pkt_len(tx_pkt); 4041 appended = rte_pktmbuf_append(tx_pkt, add_len); 4042 if (appended == NULL) { 4043 txq->dfx_stats.pkt_padding_fail_cnt++; 4044 break; 4045 } 4046 4047 memset(appended, 0, add_len); 4048 } 4049 4050 m_seg = tx_pkt; 4051 4052 if (hns3_check_non_tso_pkt(nb_buf, &m_seg, tx_pkt, txq)) 4053 goto end_of_tx; 4054 4055 if (hns3_parse_cksum(txq, tx_next_use, m_seg)) 4056 goto end_of_tx; 4057 4058 i = 0; 4059 desc = &tx_ring[tx_next_use]; 4060 4061 /* 4062 * If the packet is divided into multiple Tx Buffer Descriptors, 4063 * only need to fill vlan, paylen and tso into the first Tx 4064 * Buffer Descriptor. 4065 */ 4066 hns3_fill_first_desc(txq, desc, m_seg); 4067 4068 do { 4069 desc = &tx_ring[tx_next_use]; 4070 /* 4071 * Fill valid bits, DMA address and data length for each 4072 * Tx Buffer Descriptor. 4073 */ 4074 hns3_fill_per_desc(desc, m_seg); 4075 tx_bak_pkt->mbuf = m_seg; 4076 m_seg = m_seg->next; 4077 tx_next_use++; 4078 tx_bak_pkt++; 4079 if (tx_next_use >= tx_bd_max) { 4080 tx_next_use = 0; 4081 tx_bak_pkt = txq->sw_ring; 4082 } 4083 4084 i++; 4085 } while (m_seg != NULL); 4086 4087 /* Add end flag for the last Tx Buffer Descriptor */ 4088 desc->tx.tp_fe_sc_vld_ra_ri |= 4089 rte_cpu_to_le_16(BIT(HNS3_TXD_FE_B)); 4090 4091 /* Increment bytes counter */ 4092 txq->basic_stats.bytes += tx_pkt->pkt_len; 4093 nb_hold += i; 4094 txq->next_to_use = tx_next_use; 4095 txq->tx_bd_ready -= i; 4096 } 4097 4098 end_of_tx: 4099 4100 if (likely(nb_tx)) 4101 hns3_write_reg_opt(txq->io_tail_reg, nb_hold); 4102 4103 return nb_tx; 4104 } 4105 4106 int __rte_weak 4107 hns3_tx_check_vec_support(__rte_unused struct rte_eth_dev *dev) 4108 { 4109 return -ENOTSUP; 4110 } 4111 4112 uint16_t __rte_weak 4113 hns3_xmit_pkts_vec(__rte_unused void *tx_queue, 4114 __rte_unused struct rte_mbuf **tx_pkts, 4115 __rte_unused uint16_t nb_pkts) 4116 { 4117 return 0; 4118 } 4119 4120 uint16_t __rte_weak 4121 hns3_xmit_pkts_vec_sve(void __rte_unused * tx_queue, 4122 struct rte_mbuf __rte_unused **tx_pkts, 4123 uint16_t __rte_unused nb_pkts) 4124 { 4125 return 0; 4126 } 4127 4128 int 4129 hns3_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, 4130 struct rte_eth_burst_mode *mode) 4131 { 4132 eth_tx_burst_t pkt_burst = dev->tx_pkt_burst; 4133 const char *info = NULL; 4134 4135 if (pkt_burst == hns3_xmit_pkts_simple) 4136 info = "Scalar Simple"; 4137 else if (pkt_burst == hns3_xmit_pkts) 4138 info = "Scalar"; 4139 else if (pkt_burst == hns3_xmit_pkts_vec) 4140 info = "Vector Neon"; 4141 else if (pkt_burst == hns3_xmit_pkts_vec_sve) 4142 info = "Vector Sve"; 4143 4144 if (info == NULL) 4145 return -EINVAL; 4146 4147 snprintf(mode->info, sizeof(mode->info), "%s", info); 4148 4149 return 0; 4150 } 4151 4152 static eth_tx_burst_t 4153 hns3_get_tx_function(struct rte_eth_dev *dev, eth_tx_prep_t *prep) 4154 { 4155 uint64_t offloads = dev->data->dev_conf.txmode.offloads; 4156 struct hns3_adapter *hns = dev->data->dev_private; 4157 bool vec_allowed, sve_allowed, simple_allowed; 4158 4159 vec_allowed = hns->tx_vec_allowed && 4160 hns3_tx_check_vec_support(dev) == 0; 4161 sve_allowed = vec_allowed && hns3_check_sve_support(); 4162 simple_allowed = hns->tx_simple_allowed && 4163 offloads == (offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE); 4164 4165 *prep = NULL; 4166 4167 if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_VEC && vec_allowed) 4168 return hns3_xmit_pkts_vec; 4169 if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_SVE && sve_allowed) 4170 return hns3_xmit_pkts_vec_sve; 4171 if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_SIMPLE && simple_allowed) 4172 return hns3_xmit_pkts_simple; 4173 if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_COMMON) { 4174 *prep = hns3_prep_pkts; 4175 return hns3_xmit_pkts; 4176 } 4177 4178 if (vec_allowed) 4179 return hns3_xmit_pkts_vec; 4180 if (simple_allowed) 4181 return hns3_xmit_pkts_simple; 4182 4183 *prep = hns3_prep_pkts; 4184 return hns3_xmit_pkts; 4185 } 4186 4187 static uint16_t 4188 hns3_dummy_rxtx_burst(void *dpdk_txq __rte_unused, 4189 struct rte_mbuf **pkts __rte_unused, 4190 uint16_t pkts_n __rte_unused) 4191 { 4192 return 0; 4193 } 4194 4195 void hns3_set_rxtx_function(struct rte_eth_dev *eth_dev) 4196 { 4197 struct hns3_adapter *hns = eth_dev->data->dev_private; 4198 eth_tx_prep_t prep = NULL; 4199 4200 if (hns->hw.adapter_state == HNS3_NIC_STARTED && 4201 __atomic_load_n(&hns->hw.reset.resetting, __ATOMIC_RELAXED) == 0) { 4202 eth_dev->rx_pkt_burst = hns3_get_rx_function(eth_dev); 4203 eth_dev->rx_descriptor_status = hns3_dev_rx_descriptor_status; 4204 eth_dev->tx_pkt_burst = hns3_get_tx_function(eth_dev, &prep); 4205 eth_dev->tx_pkt_prepare = prep; 4206 eth_dev->tx_descriptor_status = hns3_dev_tx_descriptor_status; 4207 } else { 4208 eth_dev->rx_pkt_burst = hns3_dummy_rxtx_burst; 4209 eth_dev->tx_pkt_burst = hns3_dummy_rxtx_burst; 4210 eth_dev->tx_pkt_prepare = hns3_dummy_rxtx_burst; 4211 } 4212 } 4213 4214 void 4215 hns3_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, 4216 struct rte_eth_rxq_info *qinfo) 4217 { 4218 struct hns3_rx_queue *rxq = dev->data->rx_queues[queue_id]; 4219 4220 qinfo->mp = rxq->mb_pool; 4221 qinfo->nb_desc = rxq->nb_rx_desc; 4222 qinfo->scattered_rx = dev->data->scattered_rx; 4223 /* Report the HW Rx buffer length to user */ 4224 qinfo->rx_buf_size = rxq->rx_buf_len; 4225 4226 /* 4227 * If there are no available Rx buffer descriptors, incoming packets 4228 * are always dropped by hardware based on hns3 network engine. 4229 */ 4230 qinfo->conf.rx_drop_en = 1; 4231 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 4232 qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; 4233 qinfo->conf.rx_deferred_start = rxq->rx_deferred_start; 4234 } 4235 4236 void 4237 hns3_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, 4238 struct rte_eth_txq_info *qinfo) 4239 { 4240 struct hns3_tx_queue *txq = dev->data->tx_queues[queue_id]; 4241 4242 qinfo->nb_desc = txq->nb_tx_desc; 4243 qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads; 4244 qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh; 4245 qinfo->conf.tx_free_thresh = txq->tx_free_thresh; 4246 qinfo->conf.tx_deferred_start = txq->tx_deferred_start; 4247 } 4248 4249 int 4250 hns3_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 4251 { 4252 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 4253 struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id]; 4254 struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); 4255 int ret; 4256 4257 if (!hns3_dev_indep_txrx_supported(hw)) 4258 return -ENOTSUP; 4259 4260 ret = hns3_reset_queue(hw, rx_queue_id, HNS3_RING_TYPE_RX); 4261 if (ret) { 4262 hns3_err(hw, "fail to reset Rx queue %u, ret = %d.", 4263 rx_queue_id, ret); 4264 return ret; 4265 } 4266 4267 ret = hns3_init_rxq(hns, rx_queue_id); 4268 if (ret) { 4269 hns3_err(hw, "fail to init Rx queue %u, ret = %d.", 4270 rx_queue_id, ret); 4271 return ret; 4272 } 4273 4274 hns3_enable_rxq(rxq, true); 4275 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; 4276 4277 return ret; 4278 } 4279 4280 static void 4281 hns3_reset_sw_rxq(struct hns3_rx_queue *rxq) 4282 { 4283 rxq->next_to_use = 0; 4284 rxq->rx_rearm_start = 0; 4285 rxq->rx_free_hold = 0; 4286 rxq->rx_rearm_nb = 0; 4287 rxq->pkt_first_seg = NULL; 4288 rxq->pkt_last_seg = NULL; 4289 memset(&rxq->rx_ring[0], 0, rxq->nb_rx_desc * sizeof(struct hns3_desc)); 4290 hns3_rxq_vec_setup(rxq); 4291 } 4292 4293 int 4294 hns3_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 4295 { 4296 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 4297 struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id]; 4298 4299 if (!hns3_dev_indep_txrx_supported(hw)) 4300 return -ENOTSUP; 4301 4302 hns3_enable_rxq(rxq, false); 4303 4304 hns3_rx_queue_release_mbufs(rxq); 4305 4306 hns3_reset_sw_rxq(rxq); 4307 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; 4308 4309 return 0; 4310 } 4311 4312 int 4313 hns3_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 4314 { 4315 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 4316 struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id]; 4317 int ret; 4318 4319 if (!hns3_dev_indep_txrx_supported(hw)) 4320 return -ENOTSUP; 4321 4322 ret = hns3_reset_queue(hw, tx_queue_id, HNS3_RING_TYPE_TX); 4323 if (ret) { 4324 hns3_err(hw, "fail to reset Tx queue %u, ret = %d.", 4325 tx_queue_id, ret); 4326 return ret; 4327 } 4328 4329 hns3_init_txq(txq); 4330 hns3_enable_txq(txq, true); 4331 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; 4332 4333 return ret; 4334 } 4335 4336 int 4337 hns3_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 4338 { 4339 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 4340 struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id]; 4341 4342 if (!hns3_dev_indep_txrx_supported(hw)) 4343 return -ENOTSUP; 4344 4345 hns3_enable_txq(txq, false); 4346 hns3_tx_queue_release_mbufs(txq); 4347 /* 4348 * All the mbufs in sw_ring are released and all the pointers in sw_ring 4349 * are set to NULL. If this queue is still called by upper layer, 4350 * residual SW status of this txq may cause these pointers in sw_ring 4351 * which have been set to NULL to be released again. To avoid it, 4352 * reinit the txq. 4353 */ 4354 hns3_init_txq(txq); 4355 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; 4356 4357 return 0; 4358 } 4359 4360 static int 4361 hns3_tx_done_cleanup_full(struct hns3_tx_queue *txq, uint32_t free_cnt) 4362 { 4363 uint16_t next_to_clean = txq->next_to_clean; 4364 uint16_t next_to_use = txq->next_to_use; 4365 uint16_t tx_bd_ready = txq->tx_bd_ready; 4366 struct hns3_entry *tx_pkt = &txq->sw_ring[next_to_clean]; 4367 struct hns3_desc *desc = &txq->tx_ring[next_to_clean]; 4368 uint32_t idx; 4369 4370 if (free_cnt == 0 || free_cnt > txq->nb_tx_desc) 4371 free_cnt = txq->nb_tx_desc; 4372 4373 for (idx = 0; idx < free_cnt; idx++) { 4374 if (next_to_clean == next_to_use) 4375 break; 4376 4377 if (desc->tx.tp_fe_sc_vld_ra_ri & 4378 rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B))) 4379 break; 4380 4381 if (tx_pkt->mbuf != NULL) { 4382 rte_pktmbuf_free_seg(tx_pkt->mbuf); 4383 tx_pkt->mbuf = NULL; 4384 } 4385 4386 next_to_clean++; 4387 tx_bd_ready++; 4388 tx_pkt++; 4389 desc++; 4390 if (next_to_clean == txq->nb_tx_desc) { 4391 tx_pkt = txq->sw_ring; 4392 desc = txq->tx_ring; 4393 next_to_clean = 0; 4394 } 4395 } 4396 4397 if (idx > 0) { 4398 txq->next_to_clean = next_to_clean; 4399 txq->tx_bd_ready = tx_bd_ready; 4400 } 4401 4402 return (int)idx; 4403 } 4404 4405 int 4406 hns3_tx_done_cleanup(void *txq, uint32_t free_cnt) 4407 { 4408 struct hns3_tx_queue *q = (struct hns3_tx_queue *)txq; 4409 struct rte_eth_dev *dev = &rte_eth_devices[q->port_id]; 4410 4411 if (dev->tx_pkt_burst == hns3_xmit_pkts) 4412 return hns3_tx_done_cleanup_full(q, free_cnt); 4413 else if (dev->tx_pkt_burst == hns3_dummy_rxtx_burst) 4414 return 0; 4415 else 4416 return -ENOTSUP; 4417 } 4418 4419 int 4420 hns3_dev_rx_descriptor_status(void *rx_queue, uint16_t offset) 4421 { 4422 volatile struct hns3_desc *rxdp; 4423 struct hns3_rx_queue *rxq; 4424 struct rte_eth_dev *dev; 4425 uint32_t bd_base_info; 4426 uint16_t desc_id; 4427 4428 rxq = (struct hns3_rx_queue *)rx_queue; 4429 if (offset >= rxq->nb_rx_desc) 4430 return -EINVAL; 4431 4432 desc_id = (rxq->next_to_use + offset) % rxq->nb_rx_desc; 4433 rxdp = &rxq->rx_ring[desc_id]; 4434 bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info); 4435 dev = &rte_eth_devices[rxq->port_id]; 4436 if (dev->rx_pkt_burst == hns3_recv_pkts || 4437 dev->rx_pkt_burst == hns3_recv_scattered_pkts) { 4438 if (offset >= rxq->nb_rx_desc - rxq->rx_free_hold) 4439 return RTE_ETH_RX_DESC_UNAVAIL; 4440 } else if (dev->rx_pkt_burst == hns3_recv_pkts_vec || 4441 dev->rx_pkt_burst == hns3_recv_pkts_vec_sve){ 4442 if (offset >= rxq->nb_rx_desc - rxq->rx_rearm_nb) 4443 return RTE_ETH_RX_DESC_UNAVAIL; 4444 } else { 4445 return RTE_ETH_RX_DESC_UNAVAIL; 4446 } 4447 4448 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B))) 4449 return RTE_ETH_RX_DESC_AVAIL; 4450 else 4451 return RTE_ETH_RX_DESC_DONE; 4452 } 4453 4454 int 4455 hns3_dev_tx_descriptor_status(void *tx_queue, uint16_t offset) 4456 { 4457 volatile struct hns3_desc *txdp; 4458 struct hns3_tx_queue *txq; 4459 struct rte_eth_dev *dev; 4460 uint16_t desc_id; 4461 4462 txq = (struct hns3_tx_queue *)tx_queue; 4463 if (offset >= txq->nb_tx_desc) 4464 return -EINVAL; 4465 4466 dev = &rte_eth_devices[txq->port_id]; 4467 if (dev->tx_pkt_burst != hns3_xmit_pkts_simple && 4468 dev->tx_pkt_burst != hns3_xmit_pkts && 4469 dev->tx_pkt_burst != hns3_xmit_pkts_vec_sve && 4470 dev->tx_pkt_burst != hns3_xmit_pkts_vec) 4471 return RTE_ETH_TX_DESC_UNAVAIL; 4472 4473 desc_id = (txq->next_to_use + offset) % txq->nb_tx_desc; 4474 txdp = &txq->tx_ring[desc_id]; 4475 if (txdp->tx.tp_fe_sc_vld_ra_ri & rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B))) 4476 return RTE_ETH_TX_DESC_FULL; 4477 else 4478 return RTE_ETH_TX_DESC_DONE; 4479 } 4480 4481 uint32_t 4482 hns3_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 4483 { 4484 /* 4485 * Number of BDs that have been processed by the driver 4486 * but have not been notified to the hardware. 4487 */ 4488 uint32_t driver_hold_bd_num; 4489 struct hns3_rx_queue *rxq; 4490 uint32_t fbd_num; 4491 4492 rxq = dev->data->rx_queues[rx_queue_id]; 4493 fbd_num = hns3_read_dev(rxq, HNS3_RING_RX_FBDNUM_REG); 4494 if (dev->rx_pkt_burst == hns3_recv_pkts_vec || 4495 dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) 4496 driver_hold_bd_num = rxq->rx_rearm_nb; 4497 else 4498 driver_hold_bd_num = rxq->rx_free_hold; 4499 4500 if (fbd_num <= driver_hold_bd_num) 4501 return 0; 4502 else 4503 return fbd_num - driver_hold_bd_num; 4504 } 4505 4506 void 4507 hns3_enable_rxd_adv_layout(struct hns3_hw *hw) 4508 { 4509 /* 4510 * If the hardware support rxd advanced layout, then driver enable it 4511 * default. 4512 */ 4513 if (hns3_dev_rxd_adv_layout_supported(hw)) 4514 hns3_write_dev(hw, HNS3_RXD_ADV_LAYOUT_EN_REG, 1); 4515 } 4516