xref: /dpdk/drivers/net/hns3/hns3_rxtx.c (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <rte_bus_pci.h>
6 #include <rte_common.h>
7 #include <rte_cycles.h>
8 #include <rte_geneve.h>
9 #include <rte_vxlan.h>
10 #include <ethdev_driver.h>
11 #include <rte_io.h>
12 #include <rte_net.h>
13 #include <rte_malloc.h>
14 #if defined(RTE_ARCH_ARM64) && defined(__ARM_FEATURE_SVE)
15 #include <rte_cpuflags.h>
16 #endif
17 
18 #include "hns3_ethdev.h"
19 #include "hns3_rxtx.h"
20 #include "hns3_regs.h"
21 #include "hns3_logs.h"
22 
23 #define HNS3_CFG_DESC_NUM(num)	((num) / 8 - 1)
24 #define HNS3_RX_RING_PREFETCTH_MASK	3
25 
26 static void
27 hns3_rx_queue_release_mbufs(struct hns3_rx_queue *rxq)
28 {
29 	uint16_t i;
30 
31 	/* Note: Fake rx queue will not enter here */
32 	if (rxq->sw_ring == NULL)
33 		return;
34 
35 	if (rxq->rx_rearm_nb == 0) {
36 		for (i = 0; i < rxq->nb_rx_desc; i++) {
37 			if (rxq->sw_ring[i].mbuf != NULL) {
38 				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
39 				rxq->sw_ring[i].mbuf = NULL;
40 			}
41 		}
42 	} else {
43 		for (i = rxq->next_to_use;
44 		     i != rxq->rx_rearm_start;
45 		     i = (i + 1) % rxq->nb_rx_desc) {
46 			if (rxq->sw_ring[i].mbuf != NULL) {
47 				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
48 				rxq->sw_ring[i].mbuf = NULL;
49 			}
50 		}
51 	}
52 
53 	for (i = 0; i < rxq->bulk_mbuf_num; i++)
54 		rte_pktmbuf_free_seg(rxq->bulk_mbuf[i]);
55 	rxq->bulk_mbuf_num = 0;
56 
57 	if (rxq->pkt_first_seg) {
58 		rte_pktmbuf_free(rxq->pkt_first_seg);
59 		rxq->pkt_first_seg = NULL;
60 	}
61 }
62 
63 static void
64 hns3_tx_queue_release_mbufs(struct hns3_tx_queue *txq)
65 {
66 	uint16_t i;
67 
68 	/* Note: Fake tx queue will not enter here */
69 	if (txq->sw_ring) {
70 		for (i = 0; i < txq->nb_tx_desc; i++) {
71 			if (txq->sw_ring[i].mbuf) {
72 				rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
73 				txq->sw_ring[i].mbuf = NULL;
74 			}
75 		}
76 	}
77 }
78 
79 static void
80 hns3_rx_queue_release(void *queue)
81 {
82 	struct hns3_rx_queue *rxq = queue;
83 	if (rxq) {
84 		hns3_rx_queue_release_mbufs(rxq);
85 		if (rxq->mz)
86 			rte_memzone_free(rxq->mz);
87 		if (rxq->sw_ring)
88 			rte_free(rxq->sw_ring);
89 		rte_free(rxq);
90 	}
91 }
92 
93 static void
94 hns3_tx_queue_release(void *queue)
95 {
96 	struct hns3_tx_queue *txq = queue;
97 	if (txq) {
98 		hns3_tx_queue_release_mbufs(txq);
99 		if (txq->mz)
100 			rte_memzone_free(txq->mz);
101 		if (txq->sw_ring)
102 			rte_free(txq->sw_ring);
103 		if (txq->free)
104 			rte_free(txq->free);
105 		rte_free(txq);
106 	}
107 }
108 
109 void
110 hns3_dev_rx_queue_release(void *queue)
111 {
112 	struct hns3_rx_queue *rxq = queue;
113 	struct hns3_adapter *hns;
114 
115 	if (rxq == NULL)
116 		return;
117 
118 	hns = rxq->hns;
119 	rte_spinlock_lock(&hns->hw.lock);
120 	hns3_rx_queue_release(queue);
121 	rte_spinlock_unlock(&hns->hw.lock);
122 }
123 
124 void
125 hns3_dev_tx_queue_release(void *queue)
126 {
127 	struct hns3_tx_queue *txq = queue;
128 	struct hns3_adapter *hns;
129 
130 	if (txq == NULL)
131 		return;
132 
133 	hns = txq->hns;
134 	rte_spinlock_lock(&hns->hw.lock);
135 	hns3_tx_queue_release(queue);
136 	rte_spinlock_unlock(&hns->hw.lock);
137 }
138 
139 static void
140 hns3_fake_rx_queue_release(struct hns3_rx_queue *queue)
141 {
142 	struct hns3_rx_queue *rxq = queue;
143 	struct hns3_adapter *hns;
144 	struct hns3_hw *hw;
145 	uint16_t idx;
146 
147 	if (rxq == NULL)
148 		return;
149 
150 	hns = rxq->hns;
151 	hw = &hns->hw;
152 	idx = rxq->queue_id;
153 	if (hw->fkq_data.rx_queues[idx]) {
154 		hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
155 		hw->fkq_data.rx_queues[idx] = NULL;
156 	}
157 
158 	/* free fake rx queue arrays */
159 	if (idx == (hw->fkq_data.nb_fake_rx_queues - 1)) {
160 		hw->fkq_data.nb_fake_rx_queues = 0;
161 		rte_free(hw->fkq_data.rx_queues);
162 		hw->fkq_data.rx_queues = NULL;
163 	}
164 }
165 
166 static void
167 hns3_fake_tx_queue_release(struct hns3_tx_queue *queue)
168 {
169 	struct hns3_tx_queue *txq = queue;
170 	struct hns3_adapter *hns;
171 	struct hns3_hw *hw;
172 	uint16_t idx;
173 
174 	if (txq == NULL)
175 		return;
176 
177 	hns = txq->hns;
178 	hw = &hns->hw;
179 	idx = txq->queue_id;
180 	if (hw->fkq_data.tx_queues[idx]) {
181 		hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
182 		hw->fkq_data.tx_queues[idx] = NULL;
183 	}
184 
185 	/* free fake tx queue arrays */
186 	if (idx == (hw->fkq_data.nb_fake_tx_queues - 1)) {
187 		hw->fkq_data.nb_fake_tx_queues = 0;
188 		rte_free(hw->fkq_data.tx_queues);
189 		hw->fkq_data.tx_queues = NULL;
190 	}
191 }
192 
193 static void
194 hns3_free_rx_queues(struct rte_eth_dev *dev)
195 {
196 	struct hns3_adapter *hns = dev->data->dev_private;
197 	struct hns3_fake_queue_data *fkq_data;
198 	struct hns3_hw *hw = &hns->hw;
199 	uint16_t nb_rx_q;
200 	uint16_t i;
201 
202 	nb_rx_q = hw->data->nb_rx_queues;
203 	for (i = 0; i < nb_rx_q; i++) {
204 		if (dev->data->rx_queues[i]) {
205 			hns3_rx_queue_release(dev->data->rx_queues[i]);
206 			dev->data->rx_queues[i] = NULL;
207 		}
208 	}
209 
210 	/* Free fake Rx queues */
211 	fkq_data = &hw->fkq_data;
212 	for (i = 0; i < fkq_data->nb_fake_rx_queues; i++) {
213 		if (fkq_data->rx_queues[i])
214 			hns3_fake_rx_queue_release(fkq_data->rx_queues[i]);
215 	}
216 }
217 
218 static void
219 hns3_free_tx_queues(struct rte_eth_dev *dev)
220 {
221 	struct hns3_adapter *hns = dev->data->dev_private;
222 	struct hns3_fake_queue_data *fkq_data;
223 	struct hns3_hw *hw = &hns->hw;
224 	uint16_t nb_tx_q;
225 	uint16_t i;
226 
227 	nb_tx_q = hw->data->nb_tx_queues;
228 	for (i = 0; i < nb_tx_q; i++) {
229 		if (dev->data->tx_queues[i]) {
230 			hns3_tx_queue_release(dev->data->tx_queues[i]);
231 			dev->data->tx_queues[i] = NULL;
232 		}
233 	}
234 
235 	/* Free fake Tx queues */
236 	fkq_data = &hw->fkq_data;
237 	for (i = 0; i < fkq_data->nb_fake_tx_queues; i++) {
238 		if (fkq_data->tx_queues[i])
239 			hns3_fake_tx_queue_release(fkq_data->tx_queues[i]);
240 	}
241 }
242 
243 void
244 hns3_free_all_queues(struct rte_eth_dev *dev)
245 {
246 	hns3_free_rx_queues(dev);
247 	hns3_free_tx_queues(dev);
248 }
249 
250 static int
251 hns3_alloc_rx_queue_mbufs(struct hns3_hw *hw, struct hns3_rx_queue *rxq)
252 {
253 	struct rte_mbuf *mbuf;
254 	uint64_t dma_addr;
255 	uint16_t i;
256 
257 	for (i = 0; i < rxq->nb_rx_desc; i++) {
258 		mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
259 		if (unlikely(mbuf == NULL)) {
260 			hns3_err(hw, "Failed to allocate RXD[%u] for rx queue!",
261 				 i);
262 			hns3_rx_queue_release_mbufs(rxq);
263 			return -ENOMEM;
264 		}
265 
266 		rte_mbuf_refcnt_set(mbuf, 1);
267 		mbuf->next = NULL;
268 		mbuf->data_off = RTE_PKTMBUF_HEADROOM;
269 		mbuf->nb_segs = 1;
270 		mbuf->port = rxq->port_id;
271 
272 		rxq->sw_ring[i].mbuf = mbuf;
273 		dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
274 		rxq->rx_ring[i].addr = dma_addr;
275 		rxq->rx_ring[i].rx.bd_base_info = 0;
276 	}
277 
278 	return 0;
279 }
280 
281 static int
282 hns3_buf_size2type(uint32_t buf_size)
283 {
284 	int bd_size_type;
285 
286 	switch (buf_size) {
287 	case 512:
288 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
289 		break;
290 	case 1024:
291 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
292 		break;
293 	case 4096:
294 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
295 		break;
296 	default:
297 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
298 	}
299 
300 	return bd_size_type;
301 }
302 
303 static void
304 hns3_init_rx_queue_hw(struct hns3_rx_queue *rxq)
305 {
306 	uint32_t rx_buf_len = rxq->rx_buf_len;
307 	uint64_t dma_addr = rxq->rx_ring_phys_addr;
308 
309 	hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_L_REG, (uint32_t)dma_addr);
310 	hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_H_REG,
311 		       (uint32_t)((dma_addr >> 31) >> 1));
312 
313 	hns3_write_dev(rxq, HNS3_RING_RX_BD_LEN_REG,
314 		       hns3_buf_size2type(rx_buf_len));
315 	hns3_write_dev(rxq, HNS3_RING_RX_BD_NUM_REG,
316 		       HNS3_CFG_DESC_NUM(rxq->nb_rx_desc));
317 }
318 
319 static void
320 hns3_init_tx_queue_hw(struct hns3_tx_queue *txq)
321 {
322 	uint64_t dma_addr = txq->tx_ring_phys_addr;
323 
324 	hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_L_REG, (uint32_t)dma_addr);
325 	hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_H_REG,
326 		       (uint32_t)((dma_addr >> 31) >> 1));
327 
328 	hns3_write_dev(txq, HNS3_RING_TX_BD_NUM_REG,
329 		       HNS3_CFG_DESC_NUM(txq->nb_tx_desc));
330 }
331 
332 void
333 hns3_update_all_queues_pvid_proc_en(struct hns3_hw *hw)
334 {
335 	uint16_t nb_rx_q = hw->data->nb_rx_queues;
336 	uint16_t nb_tx_q = hw->data->nb_tx_queues;
337 	struct hns3_rx_queue *rxq;
338 	struct hns3_tx_queue *txq;
339 	bool pvid_en;
340 	int i;
341 
342 	pvid_en = hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE;
343 	for (i = 0; i < hw->cfg_max_queues; i++) {
344 		if (i < nb_rx_q) {
345 			rxq = hw->data->rx_queues[i];
346 			if (rxq != NULL)
347 				rxq->pvid_sw_discard_en = pvid_en;
348 		}
349 		if (i < nb_tx_q) {
350 			txq = hw->data->tx_queues[i];
351 			if (txq != NULL)
352 				txq->pvid_sw_shift_en = pvid_en;
353 		}
354 	}
355 }
356 
357 static void
358 hns3_stop_unused_queue(void *tqp_base, enum hns3_ring_type queue_type)
359 {
360 	uint32_t reg_offset;
361 	uint32_t reg;
362 
363 	reg_offset = queue_type == HNS3_RING_TYPE_TX ?
364 				   HNS3_RING_TX_EN_REG : HNS3_RING_RX_EN_REG;
365 	reg = hns3_read_reg(tqp_base, reg_offset);
366 	reg &= ~BIT(HNS3_RING_EN_B);
367 	hns3_write_reg(tqp_base, reg_offset, reg);
368 }
369 
370 void
371 hns3_enable_all_queues(struct hns3_hw *hw, bool en)
372 {
373 	uint16_t nb_rx_q = hw->data->nb_rx_queues;
374 	uint16_t nb_tx_q = hw->data->nb_tx_queues;
375 	struct hns3_rx_queue *rxq;
376 	struct hns3_tx_queue *txq;
377 	uint32_t rcb_reg;
378 	void *tqp_base;
379 	int i;
380 
381 	for (i = 0; i < hw->cfg_max_queues; i++) {
382 		if (hns3_dev_indep_txrx_supported(hw)) {
383 			rxq = i < nb_rx_q ? hw->data->rx_queues[i] : NULL;
384 			txq = i < nb_tx_q ? hw->data->tx_queues[i] : NULL;
385 
386 			tqp_base = (void *)((char *)hw->io_base +
387 					hns3_get_tqp_reg_offset(i));
388 			/*
389 			 * If queue struct is not initialized, it means the
390 			 * related HW ring has not been initialized yet.
391 			 * So, these queues should be disabled before enable
392 			 * the tqps to avoid a HW exception since the queues
393 			 * are enabled by default.
394 			 */
395 			if (rxq == NULL)
396 				hns3_stop_unused_queue(tqp_base,
397 							HNS3_RING_TYPE_RX);
398 			if (txq == NULL)
399 				hns3_stop_unused_queue(tqp_base,
400 							HNS3_RING_TYPE_TX);
401 		} else {
402 			rxq = i < nb_rx_q ? hw->data->rx_queues[i] :
403 			      hw->fkq_data.rx_queues[i - nb_rx_q];
404 
405 			tqp_base = rxq->io_base;
406 		}
407 		/*
408 		 * This is the master switch that used to control the enabling
409 		 * of a pair of Tx and Rx queues. Both the Rx and Tx point to
410 		 * the same register
411 		 */
412 		rcb_reg = hns3_read_reg(tqp_base, HNS3_RING_EN_REG);
413 		if (en)
414 			rcb_reg |= BIT(HNS3_RING_EN_B);
415 		else
416 			rcb_reg &= ~BIT(HNS3_RING_EN_B);
417 		hns3_write_reg(tqp_base, HNS3_RING_EN_REG, rcb_reg);
418 	}
419 }
420 
421 static void
422 hns3_enable_txq(struct hns3_tx_queue *txq, bool en)
423 {
424 	struct hns3_hw *hw = &txq->hns->hw;
425 	uint32_t reg;
426 
427 	if (hns3_dev_indep_txrx_supported(hw)) {
428 		reg = hns3_read_dev(txq, HNS3_RING_TX_EN_REG);
429 		if (en)
430 			reg |= BIT(HNS3_RING_EN_B);
431 		else
432 			reg &= ~BIT(HNS3_RING_EN_B);
433 		hns3_write_dev(txq, HNS3_RING_TX_EN_REG, reg);
434 	}
435 	txq->enabled = en;
436 }
437 
438 static void
439 hns3_enable_rxq(struct hns3_rx_queue *rxq, bool en)
440 {
441 	struct hns3_hw *hw = &rxq->hns->hw;
442 	uint32_t reg;
443 
444 	if (hns3_dev_indep_txrx_supported(hw)) {
445 		reg = hns3_read_dev(rxq, HNS3_RING_RX_EN_REG);
446 		if (en)
447 			reg |= BIT(HNS3_RING_EN_B);
448 		else
449 			reg &= ~BIT(HNS3_RING_EN_B);
450 		hns3_write_dev(rxq, HNS3_RING_RX_EN_REG, reg);
451 	}
452 	rxq->enabled = en;
453 }
454 
455 int
456 hns3_start_all_txqs(struct rte_eth_dev *dev)
457 {
458 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
459 	struct hns3_tx_queue *txq;
460 	uint16_t i, j;
461 
462 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
463 		txq = hw->data->tx_queues[i];
464 		if (!txq) {
465 			hns3_err(hw, "Tx queue %u not available or setup.", i);
466 			goto start_txqs_fail;
467 		}
468 		/*
469 		 * Tx queue is enabled by default. Therefore, the Tx queues
470 		 * needs to be disabled when deferred_start is set. There is
471 		 * another master switch used to control the enabling of a pair
472 		 * of Tx and Rx queues. And the master switch is disabled by
473 		 * default.
474 		 */
475 		if (txq->tx_deferred_start)
476 			hns3_enable_txq(txq, false);
477 		else
478 			hns3_enable_txq(txq, true);
479 	}
480 	return 0;
481 
482 start_txqs_fail:
483 	for (j = 0; j < i; j++) {
484 		txq = hw->data->tx_queues[j];
485 		hns3_enable_txq(txq, false);
486 	}
487 	return -EINVAL;
488 }
489 
490 int
491 hns3_start_all_rxqs(struct rte_eth_dev *dev)
492 {
493 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
494 	struct hns3_rx_queue *rxq;
495 	uint16_t i, j;
496 
497 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
498 		rxq = hw->data->rx_queues[i];
499 		if (!rxq) {
500 			hns3_err(hw, "Rx queue %u not available or setup.", i);
501 			goto start_rxqs_fail;
502 		}
503 		/*
504 		 * Rx queue is enabled by default. Therefore, the Rx queues
505 		 * needs to be disabled when deferred_start is set. There is
506 		 * another master switch used to control the enabling of a pair
507 		 * of Tx and Rx queues. And the master switch is disabled by
508 		 * default.
509 		 */
510 		if (rxq->rx_deferred_start)
511 			hns3_enable_rxq(rxq, false);
512 		else
513 			hns3_enable_rxq(rxq, true);
514 	}
515 	return 0;
516 
517 start_rxqs_fail:
518 	for (j = 0; j < i; j++) {
519 		rxq = hw->data->rx_queues[j];
520 		hns3_enable_rxq(rxq, false);
521 	}
522 	return -EINVAL;
523 }
524 
525 void
526 hns3_restore_tqp_enable_state(struct hns3_hw *hw)
527 {
528 	struct hns3_rx_queue *rxq;
529 	struct hns3_tx_queue *txq;
530 	uint16_t i;
531 
532 	for (i = 0; i < hw->data->nb_rx_queues; i++) {
533 		rxq = hw->data->rx_queues[i];
534 		if (rxq != NULL)
535 			hns3_enable_rxq(rxq, rxq->enabled);
536 	}
537 
538 	for (i = 0; i < hw->data->nb_tx_queues; i++) {
539 		txq = hw->data->tx_queues[i];
540 		if (txq != NULL)
541 			hns3_enable_txq(txq, txq->enabled);
542 	}
543 }
544 
545 void
546 hns3_stop_all_txqs(struct rte_eth_dev *dev)
547 {
548 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
549 	struct hns3_tx_queue *txq;
550 	uint16_t i;
551 
552 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
553 		txq = hw->data->tx_queues[i];
554 		if (!txq)
555 			continue;
556 		hns3_enable_txq(txq, false);
557 	}
558 }
559 
560 static int
561 hns3_tqp_enable(struct hns3_hw *hw, uint16_t queue_id, bool enable)
562 {
563 	struct hns3_cfg_com_tqp_queue_cmd *req;
564 	struct hns3_cmd_desc desc;
565 	int ret;
566 
567 	req = (struct hns3_cfg_com_tqp_queue_cmd *)desc.data;
568 
569 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_COM_TQP_QUEUE, false);
570 	req->tqp_id = rte_cpu_to_le_16(queue_id);
571 	req->stream_id = 0;
572 	hns3_set_bit(req->enable, HNS3_TQP_ENABLE_B, enable ? 1 : 0);
573 
574 	ret = hns3_cmd_send(hw, &desc, 1);
575 	if (ret)
576 		hns3_err(hw, "TQP enable fail, ret = %d", ret);
577 
578 	return ret;
579 }
580 
581 static int
582 hns3_send_reset_tqp_cmd(struct hns3_hw *hw, uint16_t queue_id, bool enable)
583 {
584 	struct hns3_reset_tqp_queue_cmd *req;
585 	struct hns3_cmd_desc desc;
586 	int ret;
587 
588 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, false);
589 
590 	req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
591 	req->tqp_id = rte_cpu_to_le_16(queue_id);
592 	hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
593 	ret = hns3_cmd_send(hw, &desc, 1);
594 	if (ret)
595 		hns3_err(hw, "send tqp reset cmd error, queue_id = %u, "
596 			     "ret = %d", queue_id, ret);
597 
598 	return ret;
599 }
600 
601 static int
602 hns3_get_tqp_reset_status(struct hns3_hw *hw, uint16_t queue_id,
603 			  uint8_t *reset_status)
604 {
605 	struct hns3_reset_tqp_queue_cmd *req;
606 	struct hns3_cmd_desc desc;
607 	int ret;
608 
609 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, true);
610 
611 	req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
612 	req->tqp_id = rte_cpu_to_le_16(queue_id);
613 
614 	ret = hns3_cmd_send(hw, &desc, 1);
615 	if (ret) {
616 		hns3_err(hw, "get tqp reset status error, queue_id = %u, "
617 			     "ret = %d.", queue_id, ret);
618 		return ret;
619 	}
620 	*reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
621 	return ret;
622 }
623 
624 static int
625 hns3pf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
626 {
627 #define HNS3_TQP_RESET_TRY_MS	200
628 	uint8_t reset_status;
629 	uint64_t end;
630 	int ret;
631 
632 	/*
633 	 * In current version VF is not supported when PF is driven by DPDK
634 	 * driver, all task queue pairs are mapped to PF function, so PF's queue
635 	 * id is equals to the global queue id in PF range.
636 	 */
637 	ret = hns3_send_reset_tqp_cmd(hw, queue_id, true);
638 	if (ret) {
639 		hns3_err(hw, "Send reset tqp cmd fail, ret = %d", ret);
640 		return ret;
641 	}
642 	end = get_timeofday_ms() + HNS3_TQP_RESET_TRY_MS;
643 	do {
644 		/* Wait for tqp hw reset */
645 		rte_delay_ms(HNS3_POLL_RESPONE_MS);
646 		ret = hns3_get_tqp_reset_status(hw, queue_id, &reset_status);
647 		if (ret)
648 			goto tqp_reset_fail;
649 
650 		if (reset_status)
651 			break;
652 	} while (get_timeofday_ms() < end);
653 
654 	if (!reset_status) {
655 		ret = -ETIMEDOUT;
656 		hns3_err(hw, "reset tqp timeout, queue_id = %u, ret = %d",
657 			     queue_id, ret);
658 		goto tqp_reset_fail;
659 	}
660 
661 	ret = hns3_send_reset_tqp_cmd(hw, queue_id, false);
662 	if (ret)
663 		hns3_err(hw, "Deassert the soft reset fail, ret = %d", ret);
664 
665 	return ret;
666 
667 tqp_reset_fail:
668 	hns3_send_reset_tqp_cmd(hw, queue_id, false);
669 	return ret;
670 }
671 
672 static int
673 hns3vf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
674 {
675 	uint8_t msg_data[2];
676 	int ret;
677 
678 	memcpy(msg_data, &queue_id, sizeof(uint16_t));
679 
680 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
681 				 sizeof(msg_data), true, NULL, 0);
682 	if (ret)
683 		hns3_err(hw, "fail to reset tqp, queue_id = %u, ret = %d.",
684 			 queue_id, ret);
685 	return ret;
686 }
687 
688 static int
689 hns3_reset_rcb_cmd(struct hns3_hw *hw, uint8_t *reset_status)
690 {
691 	struct hns3_reset_cmd *req;
692 	struct hns3_cmd_desc desc;
693 	int ret;
694 
695 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
696 	req = (struct hns3_reset_cmd *)desc.data;
697 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_RCB_B, 1);
698 
699 	/*
700 	 * The start qid should be the global qid of the first tqp of the
701 	 * function which should be reset in this port. Since our PF not
702 	 * support take over of VFs, so we only need to reset function 0,
703 	 * and its start qid is always 0.
704 	 */
705 	req->fun_reset_rcb_vqid_start = rte_cpu_to_le_16(0);
706 	req->fun_reset_rcb_vqid_num = rte_cpu_to_le_16(hw->cfg_max_queues);
707 
708 	ret = hns3_cmd_send(hw, &desc, 1);
709 	if (ret) {
710 		hns3_err(hw, "fail to send rcb reset cmd, ret = %d.", ret);
711 		return ret;
712 	}
713 
714 	*reset_status = req->fun_reset_rcb_return_status;
715 	return 0;
716 }
717 
718 static int
719 hns3pf_reset_all_tqps(struct hns3_hw *hw)
720 {
721 #define HNS3_RESET_RCB_NOT_SUPPORT	0U
722 #define HNS3_RESET_ALL_TQP_SUCCESS	1U
723 	uint8_t reset_status;
724 	int ret;
725 	int i;
726 
727 	ret = hns3_reset_rcb_cmd(hw, &reset_status);
728 	if (ret)
729 		return ret;
730 
731 	/*
732 	 * If the firmware version is low, it may not support the rcb reset
733 	 * which means reset all the tqps at a time. In this case, we should
734 	 * reset tqps one by one.
735 	 */
736 	if (reset_status == HNS3_RESET_RCB_NOT_SUPPORT) {
737 		for (i = 0; i < hw->cfg_max_queues; i++) {
738 			ret = hns3pf_reset_tqp(hw, i);
739 			if (ret) {
740 				hns3_err(hw,
741 				  "fail to reset tqp, queue_id = %d, ret = %d.",
742 				  i, ret);
743 				return ret;
744 			}
745 		}
746 	} else if (reset_status != HNS3_RESET_ALL_TQP_SUCCESS) {
747 		hns3_err(hw, "fail to reset all tqps, reset_status = %u.",
748 				reset_status);
749 		return -EIO;
750 	}
751 
752 	return 0;
753 }
754 
755 static int
756 hns3vf_reset_all_tqps(struct hns3_hw *hw)
757 {
758 #define HNS3VF_RESET_ALL_TQP_DONE	1U
759 	uint8_t reset_status;
760 	uint8_t msg_data[2];
761 	int ret;
762 	int i;
763 
764 	memset(msg_data, 0, sizeof(uint16_t));
765 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
766 				sizeof(msg_data), true, &reset_status,
767 				sizeof(reset_status));
768 	if (ret) {
769 		hns3_err(hw, "fail to send rcb reset mbx, ret = %d.", ret);
770 		return ret;
771 	}
772 
773 	if (reset_status == HNS3VF_RESET_ALL_TQP_DONE)
774 		return 0;
775 
776 	/*
777 	 * If the firmware version or kernel PF version is low, it may not
778 	 * support the rcb reset which means reset all the tqps at a time.
779 	 * In this case, we should reset tqps one by one.
780 	 */
781 	for (i = 1; i < hw->cfg_max_queues; i++) {
782 		ret = hns3vf_reset_tqp(hw, i);
783 		if (ret)
784 			return ret;
785 	}
786 
787 	return 0;
788 }
789 
790 int
791 hns3_reset_all_tqps(struct hns3_adapter *hns)
792 {
793 	struct hns3_hw *hw = &hns->hw;
794 	int ret, i;
795 
796 	/* Disable all queues before reset all queues */
797 	for (i = 0; i < hw->cfg_max_queues; i++) {
798 		ret = hns3_tqp_enable(hw, i, false);
799 		if (ret) {
800 			hns3_err(hw,
801 			    "fail to disable tqps before tqps reset, ret = %d.",
802 			    ret);
803 			return ret;
804 		}
805 	}
806 
807 	if (hns->is_vf)
808 		return hns3vf_reset_all_tqps(hw);
809 	else
810 		return hns3pf_reset_all_tqps(hw);
811 }
812 
813 static int
814 hns3_send_reset_queue_cmd(struct hns3_hw *hw, uint16_t queue_id,
815 			  enum hns3_ring_type queue_type, bool enable)
816 {
817 	struct hns3_reset_tqp_queue_cmd *req;
818 	struct hns3_cmd_desc desc;
819 	int queue_direction;
820 	int ret;
821 
822 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, false);
823 
824 	req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
825 	req->tqp_id = rte_cpu_to_le_16(queue_id);
826 	queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1;
827 	req->queue_direction = rte_cpu_to_le_16(queue_direction);
828 	hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
829 
830 	ret = hns3_cmd_send(hw, &desc, 1);
831 	if (ret)
832 		hns3_err(hw, "send queue reset cmd error, queue_id = %u, "
833 			 "queue_type = %s, ret = %d.", queue_id,
834 			 queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret);
835 	return ret;
836 }
837 
838 static int
839 hns3_get_queue_reset_status(struct hns3_hw *hw, uint16_t queue_id,
840 			    enum hns3_ring_type queue_type,
841 			    uint8_t *reset_status)
842 {
843 	struct hns3_reset_tqp_queue_cmd *req;
844 	struct hns3_cmd_desc desc;
845 	int queue_direction;
846 	int ret;
847 
848 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, true);
849 
850 	req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
851 	req->tqp_id = rte_cpu_to_le_16(queue_id);
852 	queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1;
853 	req->queue_direction = rte_cpu_to_le_16(queue_direction);
854 
855 	ret = hns3_cmd_send(hw, &desc, 1);
856 	if (ret) {
857 		hns3_err(hw, "get queue reset status error, queue_id = %u "
858 			 "queue_type = %s, ret = %d.", queue_id,
859 			 queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret);
860 		return ret;
861 	}
862 
863 	*reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
864 	return  ret;
865 }
866 
867 static int
868 hns3_reset_queue(struct hns3_hw *hw, uint16_t queue_id,
869 		 enum hns3_ring_type queue_type)
870 {
871 #define HNS3_QUEUE_RESET_TRY_MS	200
872 	struct hns3_tx_queue *txq;
873 	struct hns3_rx_queue *rxq;
874 	uint32_t reset_wait_times;
875 	uint32_t max_wait_times;
876 	uint8_t reset_status;
877 	int ret;
878 
879 	if (queue_type == HNS3_RING_TYPE_TX) {
880 		txq = hw->data->tx_queues[queue_id];
881 		hns3_enable_txq(txq, false);
882 	} else {
883 		rxq = hw->data->rx_queues[queue_id];
884 		hns3_enable_rxq(rxq, false);
885 	}
886 
887 	ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, true);
888 	if (ret) {
889 		hns3_err(hw, "send reset queue cmd fail, ret = %d.", ret);
890 		return ret;
891 	}
892 
893 	reset_wait_times = 0;
894 	max_wait_times = HNS3_QUEUE_RESET_TRY_MS / HNS3_POLL_RESPONE_MS;
895 	while (reset_wait_times < max_wait_times) {
896 		/* Wait for queue hw reset */
897 		rte_delay_ms(HNS3_POLL_RESPONE_MS);
898 		ret = hns3_get_queue_reset_status(hw, queue_id,
899 						queue_type, &reset_status);
900 		if (ret)
901 			goto queue_reset_fail;
902 
903 		if (reset_status)
904 			break;
905 		reset_wait_times++;
906 	}
907 
908 	if (!reset_status) {
909 		hns3_err(hw, "reset queue timeout, queue_id = %u, "
910 			     "queue_type = %s", queue_id,
911 			     queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx");
912 		ret = -ETIMEDOUT;
913 		goto queue_reset_fail;
914 	}
915 
916 	ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false);
917 	if (ret)
918 		hns3_err(hw, "deassert queue reset fail, ret = %d.", ret);
919 
920 	return ret;
921 
922 queue_reset_fail:
923 	hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false);
924 	return ret;
925 }
926 
927 uint32_t
928 hns3_get_tqp_intr_reg_offset(uint16_t tqp_intr_id)
929 {
930 	uint32_t reg_offset;
931 
932 	/* Need an extend offset to config queues > 64 */
933 	if (tqp_intr_id < HNS3_MIN_EXT_TQP_INTR_ID)
934 		reg_offset = HNS3_TQP_INTR_REG_BASE +
935 			     tqp_intr_id * HNS3_TQP_INTR_LOW_ORDER_OFFSET;
936 	else
937 		reg_offset = HNS3_TQP_INTR_EXT_REG_BASE +
938 			     tqp_intr_id / HNS3_MIN_EXT_TQP_INTR_ID *
939 			     HNS3_TQP_INTR_HIGH_ORDER_OFFSET +
940 			     tqp_intr_id % HNS3_MIN_EXT_TQP_INTR_ID *
941 			     HNS3_TQP_INTR_LOW_ORDER_OFFSET;
942 
943 	return reg_offset;
944 }
945 
946 void
947 hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id,
948 		       uint8_t gl_idx, uint16_t gl_value)
949 {
950 	uint32_t offset[] = {HNS3_TQP_INTR_GL0_REG,
951 			     HNS3_TQP_INTR_GL1_REG,
952 			     HNS3_TQP_INTR_GL2_REG};
953 	uint32_t addr, value;
954 
955 	if (gl_idx >= RTE_DIM(offset) || gl_value > HNS3_TQP_INTR_GL_MAX)
956 		return;
957 
958 	addr = offset[gl_idx] + hns3_get_tqp_intr_reg_offset(queue_id);
959 	if (hw->intr.gl_unit == HNS3_INTR_COALESCE_GL_UINT_1US)
960 		value = gl_value | HNS3_TQP_INTR_GL_UNIT_1US;
961 	else
962 		value = HNS3_GL_USEC_TO_REG(gl_value);
963 
964 	hns3_write_dev(hw, addr, value);
965 }
966 
967 void
968 hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id, uint16_t rl_value)
969 {
970 	uint32_t addr, value;
971 
972 	if (rl_value > HNS3_TQP_INTR_RL_MAX)
973 		return;
974 
975 	addr = HNS3_TQP_INTR_RL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
976 	value = HNS3_RL_USEC_TO_REG(rl_value);
977 	if (value > 0)
978 		value |= HNS3_TQP_INTR_RL_ENABLE_MASK;
979 
980 	hns3_write_dev(hw, addr, value);
981 }
982 
983 void
984 hns3_set_queue_intr_ql(struct hns3_hw *hw, uint16_t queue_id, uint16_t ql_value)
985 {
986 	uint32_t addr;
987 
988 	/*
989 	 * int_ql_max == 0 means the hardware does not support QL,
990 	 * QL regs config is not permitted if QL is not supported,
991 	 * here just return.
992 	 */
993 	if (hw->intr.int_ql_max == HNS3_INTR_QL_NONE)
994 		return;
995 
996 	addr = HNS3_TQP_INTR_TX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
997 	hns3_write_dev(hw, addr, ql_value);
998 
999 	addr = HNS3_TQP_INTR_RX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
1000 	hns3_write_dev(hw, addr, ql_value);
1001 }
1002 
1003 static void
1004 hns3_queue_intr_enable(struct hns3_hw *hw, uint16_t queue_id, bool en)
1005 {
1006 	uint32_t addr, value;
1007 
1008 	addr = HNS3_TQP_INTR_CTRL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
1009 	value = en ? 1 : 0;
1010 
1011 	hns3_write_dev(hw, addr, value);
1012 }
1013 
1014 /*
1015  * Enable all rx queue interrupt when in interrupt rx mode.
1016  * This api was called before enable queue rx&tx (in normal start or reset
1017  * recover scenes), used to fix hardware rx queue interrupt enable was clear
1018  * when FLR.
1019  */
1020 void
1021 hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en)
1022 {
1023 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1024 	uint16_t nb_rx_q = hw->data->nb_rx_queues;
1025 	int i;
1026 
1027 	if (dev->data->dev_conf.intr_conf.rxq == 0)
1028 		return;
1029 
1030 	for (i = 0; i < nb_rx_q; i++)
1031 		hns3_queue_intr_enable(hw, i, en);
1032 }
1033 
1034 int
1035 hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1036 {
1037 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1038 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1039 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1040 
1041 	if (dev->data->dev_conf.intr_conf.rxq == 0)
1042 		return -ENOTSUP;
1043 
1044 	hns3_queue_intr_enable(hw, queue_id, true);
1045 
1046 	return rte_intr_ack(intr_handle);
1047 }
1048 
1049 int
1050 hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1051 {
1052 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1053 
1054 	if (dev->data->dev_conf.intr_conf.rxq == 0)
1055 		return -ENOTSUP;
1056 
1057 	hns3_queue_intr_enable(hw, queue_id, false);
1058 
1059 	return 0;
1060 }
1061 
1062 static int
1063 hns3_init_rxq(struct hns3_adapter *hns, uint16_t idx)
1064 {
1065 	struct hns3_hw *hw = &hns->hw;
1066 	struct hns3_rx_queue *rxq;
1067 	int ret;
1068 
1069 	PMD_INIT_FUNC_TRACE();
1070 
1071 	rxq = (struct hns3_rx_queue *)hw->data->rx_queues[idx];
1072 	ret = hns3_alloc_rx_queue_mbufs(hw, rxq);
1073 	if (ret) {
1074 		hns3_err(hw, "fail to alloc mbuf for Rx queue %u, ret = %d.",
1075 			 idx, ret);
1076 		return ret;
1077 	}
1078 
1079 	rxq->next_to_use = 0;
1080 	rxq->rx_rearm_start = 0;
1081 	rxq->rx_free_hold = 0;
1082 	rxq->rx_rearm_nb = 0;
1083 	rxq->pkt_first_seg = NULL;
1084 	rxq->pkt_last_seg = NULL;
1085 	hns3_init_rx_queue_hw(rxq);
1086 	hns3_rxq_vec_setup(rxq);
1087 
1088 	return 0;
1089 }
1090 
1091 static void
1092 hns3_init_fake_rxq(struct hns3_adapter *hns, uint16_t idx)
1093 {
1094 	struct hns3_hw *hw = &hns->hw;
1095 	struct hns3_rx_queue *rxq;
1096 
1097 	rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[idx];
1098 	rxq->next_to_use = 0;
1099 	rxq->rx_free_hold = 0;
1100 	rxq->rx_rearm_start = 0;
1101 	rxq->rx_rearm_nb = 0;
1102 	hns3_init_rx_queue_hw(rxq);
1103 }
1104 
1105 static void
1106 hns3_init_txq(struct hns3_tx_queue *txq)
1107 {
1108 	struct hns3_desc *desc;
1109 	int i;
1110 
1111 	/* Clear tx bd */
1112 	desc = txq->tx_ring;
1113 	for (i = 0; i < txq->nb_tx_desc; i++) {
1114 		desc->tx.tp_fe_sc_vld_ra_ri = 0;
1115 		desc++;
1116 	}
1117 
1118 	txq->next_to_use = 0;
1119 	txq->next_to_clean = 0;
1120 	txq->tx_bd_ready = txq->nb_tx_desc - 1;
1121 	hns3_init_tx_queue_hw(txq);
1122 }
1123 
1124 static void
1125 hns3_init_tx_ring_tc(struct hns3_adapter *hns)
1126 {
1127 	struct hns3_hw *hw = &hns->hw;
1128 	struct hns3_tx_queue *txq;
1129 	int i, num;
1130 
1131 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1132 		struct hns3_tc_queue_info *tc_queue = &hw->tc_queue[i];
1133 		int j;
1134 
1135 		if (!tc_queue->enable)
1136 			continue;
1137 
1138 		for (j = 0; j < tc_queue->tqp_count; j++) {
1139 			num = tc_queue->tqp_offset + j;
1140 			txq = (struct hns3_tx_queue *)hw->data->tx_queues[num];
1141 			if (txq == NULL)
1142 				continue;
1143 
1144 			hns3_write_dev(txq, HNS3_RING_TX_TC_REG, tc_queue->tc);
1145 		}
1146 	}
1147 }
1148 
1149 static int
1150 hns3_init_rx_queues(struct hns3_adapter *hns)
1151 {
1152 	struct hns3_hw *hw = &hns->hw;
1153 	struct hns3_rx_queue *rxq;
1154 	uint16_t i, j;
1155 	int ret;
1156 
1157 	/* Initialize RSS for queues */
1158 	ret = hns3_config_rss(hns);
1159 	if (ret) {
1160 		hns3_err(hw, "failed to configure rss, ret = %d.", ret);
1161 		return ret;
1162 	}
1163 
1164 	for (i = 0; i < hw->data->nb_rx_queues; i++) {
1165 		rxq = (struct hns3_rx_queue *)hw->data->rx_queues[i];
1166 		if (!rxq) {
1167 			hns3_err(hw, "Rx queue %u not available or setup.", i);
1168 			goto out;
1169 		}
1170 
1171 		if (rxq->rx_deferred_start)
1172 			continue;
1173 
1174 		ret = hns3_init_rxq(hns, i);
1175 		if (ret) {
1176 			hns3_err(hw, "failed to init Rx queue %u, ret = %d.", i,
1177 				 ret);
1178 			goto out;
1179 		}
1180 	}
1181 
1182 	for (i = 0; i < hw->fkq_data.nb_fake_rx_queues; i++)
1183 		hns3_init_fake_rxq(hns, i);
1184 
1185 	return 0;
1186 
1187 out:
1188 	for (j = 0; j < i; j++) {
1189 		rxq = (struct hns3_rx_queue *)hw->data->rx_queues[j];
1190 		hns3_rx_queue_release_mbufs(rxq);
1191 	}
1192 
1193 	return ret;
1194 }
1195 
1196 static int
1197 hns3_init_tx_queues(struct hns3_adapter *hns)
1198 {
1199 	struct hns3_hw *hw = &hns->hw;
1200 	struct hns3_tx_queue *txq;
1201 	uint16_t i;
1202 
1203 	for (i = 0; i < hw->data->nb_tx_queues; i++) {
1204 		txq = (struct hns3_tx_queue *)hw->data->tx_queues[i];
1205 		if (!txq) {
1206 			hns3_err(hw, "Tx queue %u not available or setup.", i);
1207 			return -EINVAL;
1208 		}
1209 
1210 		if (txq->tx_deferred_start)
1211 			continue;
1212 		hns3_init_txq(txq);
1213 	}
1214 
1215 	for (i = 0; i < hw->fkq_data.nb_fake_tx_queues; i++) {
1216 		txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[i];
1217 		hns3_init_txq(txq);
1218 	}
1219 	hns3_init_tx_ring_tc(hns);
1220 
1221 	return 0;
1222 }
1223 
1224 /*
1225  * Init all queues.
1226  * Note: just init and setup queues, and don't enable tqps.
1227  */
1228 int
1229 hns3_init_queues(struct hns3_adapter *hns, bool reset_queue)
1230 {
1231 	struct hns3_hw *hw = &hns->hw;
1232 	int ret;
1233 
1234 	if (reset_queue) {
1235 		ret = hns3_reset_all_tqps(hns);
1236 		if (ret) {
1237 			hns3_err(hw, "failed to reset all queues, ret = %d.",
1238 				 ret);
1239 			return ret;
1240 		}
1241 	}
1242 
1243 	ret = hns3_init_rx_queues(hns);
1244 	if (ret) {
1245 		hns3_err(hw, "failed to init rx queues, ret = %d.", ret);
1246 		return ret;
1247 	}
1248 
1249 	ret = hns3_init_tx_queues(hns);
1250 	if (ret) {
1251 		hns3_dev_release_mbufs(hns);
1252 		hns3_err(hw, "failed to init tx queues, ret = %d.", ret);
1253 	}
1254 
1255 	return ret;
1256 }
1257 
1258 void
1259 hns3_start_tqps(struct hns3_hw *hw)
1260 {
1261 	struct hns3_tx_queue *txq;
1262 	struct hns3_rx_queue *rxq;
1263 	uint16_t i;
1264 
1265 	hns3_enable_all_queues(hw, true);
1266 
1267 	for (i = 0; i < hw->data->nb_tx_queues; i++) {
1268 		txq = hw->data->tx_queues[i];
1269 		if (txq->enabled)
1270 			hw->data->tx_queue_state[i] =
1271 				RTE_ETH_QUEUE_STATE_STARTED;
1272 	}
1273 
1274 	for (i = 0; i < hw->data->nb_rx_queues; i++) {
1275 		rxq = hw->data->rx_queues[i];
1276 		if (rxq->enabled)
1277 			hw->data->rx_queue_state[i] =
1278 				RTE_ETH_QUEUE_STATE_STARTED;
1279 	}
1280 }
1281 
1282 void
1283 hns3_stop_tqps(struct hns3_hw *hw)
1284 {
1285 	uint16_t i;
1286 
1287 	hns3_enable_all_queues(hw, false);
1288 
1289 	for (i = 0; i < hw->data->nb_tx_queues; i++)
1290 		hw->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1291 
1292 	for (i = 0; i < hw->data->nb_rx_queues; i++)
1293 		hw->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1294 }
1295 
1296 /*
1297  * Iterate over all Rx Queue, and call the callback() function for each Rx
1298  * queue.
1299  *
1300  * @param[in] dev
1301  *   The target eth dev.
1302  * @param[in] callback
1303  *   The function to call for each queue.
1304  *   if callback function return nonzero will stop iterate and return it's value
1305  * @param[in] arg
1306  *   The arguments to provide the callback function with.
1307  *
1308  * @return
1309  *   0 on success, otherwise with errno set.
1310  */
1311 int
1312 hns3_rxq_iterate(struct rte_eth_dev *dev,
1313 		 int (*callback)(struct hns3_rx_queue *, void *), void *arg)
1314 {
1315 	uint32_t i;
1316 	int ret;
1317 
1318 	if (dev->data->rx_queues == NULL)
1319 		return -EINVAL;
1320 
1321 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
1322 		ret = callback(dev->data->rx_queues[i], arg);
1323 		if (ret != 0)
1324 			return ret;
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 static void*
1331 hns3_alloc_rxq_and_dma_zone(struct rte_eth_dev *dev,
1332 			    struct hns3_queue_info *q_info)
1333 {
1334 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1335 	const struct rte_memzone *rx_mz;
1336 	struct hns3_rx_queue *rxq;
1337 	unsigned int rx_desc;
1338 
1339 	rxq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_rx_queue),
1340 				 RTE_CACHE_LINE_SIZE, q_info->socket_id);
1341 	if (rxq == NULL) {
1342 		hns3_err(hw, "Failed to allocate memory for No.%u rx ring!",
1343 			 q_info->idx);
1344 		return NULL;
1345 	}
1346 
1347 	/* Allocate rx ring hardware descriptors. */
1348 	rxq->queue_id = q_info->idx;
1349 	rxq->nb_rx_desc = q_info->nb_desc;
1350 
1351 	/*
1352 	 * Allocate a litter more memory because rx vector functions
1353 	 * don't check boundaries each time.
1354 	 */
1355 	rx_desc = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) *
1356 			sizeof(struct hns3_desc);
1357 	rx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
1358 					 rx_desc, HNS3_RING_BASE_ALIGN,
1359 					 q_info->socket_id);
1360 	if (rx_mz == NULL) {
1361 		hns3_err(hw, "Failed to reserve DMA memory for No.%u rx ring!",
1362 			 q_info->idx);
1363 		hns3_rx_queue_release(rxq);
1364 		return NULL;
1365 	}
1366 	rxq->mz = rx_mz;
1367 	rxq->rx_ring = (struct hns3_desc *)rx_mz->addr;
1368 	rxq->rx_ring_phys_addr = rx_mz->iova;
1369 
1370 	hns3_dbg(hw, "No.%u rx descriptors iova 0x%" PRIx64, q_info->idx,
1371 		 rxq->rx_ring_phys_addr);
1372 
1373 	return rxq;
1374 }
1375 
1376 static int
1377 hns3_fake_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
1378 			 uint16_t nb_desc, unsigned int socket_id)
1379 {
1380 	struct hns3_adapter *hns = dev->data->dev_private;
1381 	struct hns3_hw *hw = &hns->hw;
1382 	struct hns3_queue_info q_info;
1383 	struct hns3_rx_queue *rxq;
1384 	uint16_t nb_rx_q;
1385 
1386 	if (hw->fkq_data.rx_queues[idx]) {
1387 		hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
1388 		hw->fkq_data.rx_queues[idx] = NULL;
1389 	}
1390 
1391 	q_info.idx = idx;
1392 	q_info.socket_id = socket_id;
1393 	q_info.nb_desc = nb_desc;
1394 	q_info.type = "hns3 fake RX queue";
1395 	q_info.ring_name = "rx_fake_ring";
1396 	rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
1397 	if (rxq == NULL) {
1398 		hns3_err(hw, "Failed to setup No.%u fake rx ring.", idx);
1399 		return -ENOMEM;
1400 	}
1401 
1402 	/* Don't need alloc sw_ring, because upper applications don't use it */
1403 	rxq->sw_ring = NULL;
1404 
1405 	rxq->hns = hns;
1406 	rxq->rx_deferred_start = false;
1407 	rxq->port_id = dev->data->port_id;
1408 	rxq->configured = true;
1409 	nb_rx_q = dev->data->nb_rx_queues;
1410 	rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1411 				(nb_rx_q + idx) * HNS3_TQP_REG_SIZE);
1412 	rxq->rx_buf_len = HNS3_MIN_BD_BUF_SIZE;
1413 
1414 	rte_spinlock_lock(&hw->lock);
1415 	hw->fkq_data.rx_queues[idx] = rxq;
1416 	rte_spinlock_unlock(&hw->lock);
1417 
1418 	return 0;
1419 }
1420 
1421 static void*
1422 hns3_alloc_txq_and_dma_zone(struct rte_eth_dev *dev,
1423 			    struct hns3_queue_info *q_info)
1424 {
1425 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1426 	const struct rte_memzone *tx_mz;
1427 	struct hns3_tx_queue *txq;
1428 	struct hns3_desc *desc;
1429 	unsigned int tx_desc;
1430 	int i;
1431 
1432 	txq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_tx_queue),
1433 				 RTE_CACHE_LINE_SIZE, q_info->socket_id);
1434 	if (txq == NULL) {
1435 		hns3_err(hw, "Failed to allocate memory for No.%u tx ring!",
1436 			 q_info->idx);
1437 		return NULL;
1438 	}
1439 
1440 	/* Allocate tx ring hardware descriptors. */
1441 	txq->queue_id = q_info->idx;
1442 	txq->nb_tx_desc = q_info->nb_desc;
1443 	tx_desc = txq->nb_tx_desc * sizeof(struct hns3_desc);
1444 	tx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
1445 					 tx_desc, HNS3_RING_BASE_ALIGN,
1446 					 q_info->socket_id);
1447 	if (tx_mz == NULL) {
1448 		hns3_err(hw, "Failed to reserve DMA memory for No.%u tx ring!",
1449 			 q_info->idx);
1450 		hns3_tx_queue_release(txq);
1451 		return NULL;
1452 	}
1453 	txq->mz = tx_mz;
1454 	txq->tx_ring = (struct hns3_desc *)tx_mz->addr;
1455 	txq->tx_ring_phys_addr = tx_mz->iova;
1456 
1457 	hns3_dbg(hw, "No.%u tx descriptors iova 0x%" PRIx64, q_info->idx,
1458 		 txq->tx_ring_phys_addr);
1459 
1460 	/* Clear tx bd */
1461 	desc = txq->tx_ring;
1462 	for (i = 0; i < txq->nb_tx_desc; i++) {
1463 		desc->tx.tp_fe_sc_vld_ra_ri = 0;
1464 		desc++;
1465 	}
1466 
1467 	return txq;
1468 }
1469 
1470 static int
1471 hns3_fake_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
1472 			 uint16_t nb_desc, unsigned int socket_id)
1473 {
1474 	struct hns3_adapter *hns = dev->data->dev_private;
1475 	struct hns3_hw *hw = &hns->hw;
1476 	struct hns3_queue_info q_info;
1477 	struct hns3_tx_queue *txq;
1478 	uint16_t nb_tx_q;
1479 
1480 	if (hw->fkq_data.tx_queues[idx] != NULL) {
1481 		hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
1482 		hw->fkq_data.tx_queues[idx] = NULL;
1483 	}
1484 
1485 	q_info.idx = idx;
1486 	q_info.socket_id = socket_id;
1487 	q_info.nb_desc = nb_desc;
1488 	q_info.type = "hns3 fake TX queue";
1489 	q_info.ring_name = "tx_fake_ring";
1490 	txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
1491 	if (txq == NULL) {
1492 		hns3_err(hw, "Failed to setup No.%u fake tx ring.", idx);
1493 		return -ENOMEM;
1494 	}
1495 
1496 	/* Don't need alloc sw_ring, because upper applications don't use it */
1497 	txq->sw_ring = NULL;
1498 	txq->free = NULL;
1499 
1500 	txq->hns = hns;
1501 	txq->tx_deferred_start = false;
1502 	txq->port_id = dev->data->port_id;
1503 	txq->configured = true;
1504 	nb_tx_q = dev->data->nb_tx_queues;
1505 	txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1506 				(nb_tx_q + idx) * HNS3_TQP_REG_SIZE);
1507 
1508 	rte_spinlock_lock(&hw->lock);
1509 	hw->fkq_data.tx_queues[idx] = txq;
1510 	rte_spinlock_unlock(&hw->lock);
1511 
1512 	return 0;
1513 }
1514 
1515 static int
1516 hns3_fake_rx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
1517 {
1518 	uint16_t old_nb_queues = hw->fkq_data.nb_fake_rx_queues;
1519 	void **rxq;
1520 	uint16_t i;
1521 
1522 	if (hw->fkq_data.rx_queues == NULL && nb_queues != 0) {
1523 		/* first time configuration */
1524 		uint32_t size;
1525 		size = sizeof(hw->fkq_data.rx_queues[0]) * nb_queues;
1526 		hw->fkq_data.rx_queues = rte_zmalloc("fake_rx_queues", size,
1527 						     RTE_CACHE_LINE_SIZE);
1528 		if (hw->fkq_data.rx_queues == NULL) {
1529 			hw->fkq_data.nb_fake_rx_queues = 0;
1530 			return -ENOMEM;
1531 		}
1532 	} else if (hw->fkq_data.rx_queues != NULL && nb_queues != 0) {
1533 		/* re-configure */
1534 		rxq = hw->fkq_data.rx_queues;
1535 		for (i = nb_queues; i < old_nb_queues; i++)
1536 			hns3_dev_rx_queue_release(rxq[i]);
1537 
1538 		rxq = rte_realloc(rxq, sizeof(rxq[0]) * nb_queues,
1539 				  RTE_CACHE_LINE_SIZE);
1540 		if (rxq == NULL)
1541 			return -ENOMEM;
1542 		if (nb_queues > old_nb_queues) {
1543 			uint16_t new_qs = nb_queues - old_nb_queues;
1544 			memset(rxq + old_nb_queues, 0, sizeof(rxq[0]) * new_qs);
1545 		}
1546 
1547 		hw->fkq_data.rx_queues = rxq;
1548 	} else if (hw->fkq_data.rx_queues != NULL && nb_queues == 0) {
1549 		rxq = hw->fkq_data.rx_queues;
1550 		for (i = nb_queues; i < old_nb_queues; i++)
1551 			hns3_dev_rx_queue_release(rxq[i]);
1552 
1553 		rte_free(hw->fkq_data.rx_queues);
1554 		hw->fkq_data.rx_queues = NULL;
1555 	}
1556 
1557 	hw->fkq_data.nb_fake_rx_queues = nb_queues;
1558 
1559 	return 0;
1560 }
1561 
1562 static int
1563 hns3_fake_tx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
1564 {
1565 	uint16_t old_nb_queues = hw->fkq_data.nb_fake_tx_queues;
1566 	void **txq;
1567 	uint16_t i;
1568 
1569 	if (hw->fkq_data.tx_queues == NULL && nb_queues != 0) {
1570 		/* first time configuration */
1571 		uint32_t size;
1572 		size = sizeof(hw->fkq_data.tx_queues[0]) * nb_queues;
1573 		hw->fkq_data.tx_queues = rte_zmalloc("fake_tx_queues", size,
1574 						     RTE_CACHE_LINE_SIZE);
1575 		if (hw->fkq_data.tx_queues == NULL) {
1576 			hw->fkq_data.nb_fake_tx_queues = 0;
1577 			return -ENOMEM;
1578 		}
1579 	} else if (hw->fkq_data.tx_queues != NULL && nb_queues != 0) {
1580 		/* re-configure */
1581 		txq = hw->fkq_data.tx_queues;
1582 		for (i = nb_queues; i < old_nb_queues; i++)
1583 			hns3_dev_tx_queue_release(txq[i]);
1584 		txq = rte_realloc(txq, sizeof(txq[0]) * nb_queues,
1585 				  RTE_CACHE_LINE_SIZE);
1586 		if (txq == NULL)
1587 			return -ENOMEM;
1588 		if (nb_queues > old_nb_queues) {
1589 			uint16_t new_qs = nb_queues - old_nb_queues;
1590 			memset(txq + old_nb_queues, 0, sizeof(txq[0]) * new_qs);
1591 		}
1592 
1593 		hw->fkq_data.tx_queues = txq;
1594 	} else if (hw->fkq_data.tx_queues != NULL && nb_queues == 0) {
1595 		txq = hw->fkq_data.tx_queues;
1596 		for (i = nb_queues; i < old_nb_queues; i++)
1597 			hns3_dev_tx_queue_release(txq[i]);
1598 
1599 		rte_free(hw->fkq_data.tx_queues);
1600 		hw->fkq_data.tx_queues = NULL;
1601 	}
1602 	hw->fkq_data.nb_fake_tx_queues = nb_queues;
1603 
1604 	return 0;
1605 }
1606 
1607 int
1608 hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q,
1609 			      uint16_t nb_tx_q)
1610 {
1611 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1612 	uint16_t rx_need_add_nb_q;
1613 	uint16_t tx_need_add_nb_q;
1614 	uint16_t port_id;
1615 	uint16_t q;
1616 	int ret;
1617 
1618 	/* Setup new number of fake RX/TX queues and reconfigure device. */
1619 	rx_need_add_nb_q = hw->cfg_max_queues - nb_rx_q;
1620 	tx_need_add_nb_q = hw->cfg_max_queues - nb_tx_q;
1621 	ret = hns3_fake_rx_queue_config(hw, rx_need_add_nb_q);
1622 	if (ret) {
1623 		hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
1624 		return ret;
1625 	}
1626 
1627 	ret = hns3_fake_tx_queue_config(hw, tx_need_add_nb_q);
1628 	if (ret) {
1629 		hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
1630 		goto cfg_fake_tx_q_fail;
1631 	}
1632 
1633 	/* Allocate and set up fake RX queue per Ethernet port. */
1634 	port_id = hw->data->port_id;
1635 	for (q = 0; q < rx_need_add_nb_q; q++) {
1636 		ret = hns3_fake_rx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
1637 					       rte_eth_dev_socket_id(port_id));
1638 		if (ret)
1639 			goto setup_fake_rx_q_fail;
1640 	}
1641 
1642 	/* Allocate and set up fake TX queue per Ethernet port. */
1643 	for (q = 0; q < tx_need_add_nb_q; q++) {
1644 		ret = hns3_fake_tx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
1645 					       rte_eth_dev_socket_id(port_id));
1646 		if (ret)
1647 			goto setup_fake_tx_q_fail;
1648 	}
1649 
1650 	return 0;
1651 
1652 setup_fake_tx_q_fail:
1653 setup_fake_rx_q_fail:
1654 	(void)hns3_fake_tx_queue_config(hw, 0);
1655 cfg_fake_tx_q_fail:
1656 	(void)hns3_fake_rx_queue_config(hw, 0);
1657 
1658 	return ret;
1659 }
1660 
1661 void
1662 hns3_dev_release_mbufs(struct hns3_adapter *hns)
1663 {
1664 	struct rte_eth_dev_data *dev_data = hns->hw.data;
1665 	struct hns3_rx_queue *rxq;
1666 	struct hns3_tx_queue *txq;
1667 	int i;
1668 
1669 	if (dev_data->rx_queues)
1670 		for (i = 0; i < dev_data->nb_rx_queues; i++) {
1671 			rxq = dev_data->rx_queues[i];
1672 			if (rxq == NULL)
1673 				continue;
1674 			hns3_rx_queue_release_mbufs(rxq);
1675 		}
1676 
1677 	if (dev_data->tx_queues)
1678 		for (i = 0; i < dev_data->nb_tx_queues; i++) {
1679 			txq = dev_data->tx_queues[i];
1680 			if (txq == NULL)
1681 				continue;
1682 			hns3_tx_queue_release_mbufs(txq);
1683 		}
1684 }
1685 
1686 static int
1687 hns3_rx_buf_len_calc(struct rte_mempool *mp, uint16_t *rx_buf_len)
1688 {
1689 	uint16_t vld_buf_size;
1690 	uint16_t num_hw_specs;
1691 	uint16_t i;
1692 
1693 	/*
1694 	 * hns3 network engine only support to set 4 typical specification, and
1695 	 * different buffer size will affect the max packet_len and the max
1696 	 * number of segmentation when hw gro is turned on in receive side. The
1697 	 * relationship between them is as follows:
1698 	 *      rx_buf_size     |  max_gro_pkt_len  |  max_gro_nb_seg
1699 	 * ---------------------|-------------------|----------------
1700 	 * HNS3_4K_BD_BUF_SIZE  |        60KB       |       15
1701 	 * HNS3_2K_BD_BUF_SIZE  |        62KB       |       31
1702 	 * HNS3_1K_BD_BUF_SIZE  |        63KB       |       63
1703 	 * HNS3_512_BD_BUF_SIZE |      31.5KB       |       63
1704 	 */
1705 	static const uint16_t hw_rx_buf_size[] = {
1706 		HNS3_4K_BD_BUF_SIZE,
1707 		HNS3_2K_BD_BUF_SIZE,
1708 		HNS3_1K_BD_BUF_SIZE,
1709 		HNS3_512_BD_BUF_SIZE
1710 	};
1711 
1712 	vld_buf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) -
1713 			RTE_PKTMBUF_HEADROOM);
1714 	if (vld_buf_size < HNS3_MIN_BD_BUF_SIZE)
1715 		return -EINVAL;
1716 
1717 	num_hw_specs = RTE_DIM(hw_rx_buf_size);
1718 	for (i = 0; i < num_hw_specs; i++) {
1719 		if (vld_buf_size >= hw_rx_buf_size[i]) {
1720 			*rx_buf_len = hw_rx_buf_size[i];
1721 			break;
1722 		}
1723 	}
1724 	return 0;
1725 }
1726 
1727 static int
1728 hns3_rxq_conf_runtime_check(struct hns3_hw *hw, uint16_t buf_size,
1729 				uint16_t nb_desc)
1730 {
1731 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1732 	struct rte_eth_rxmode *rxmode = &hw->data->dev_conf.rxmode;
1733 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
1734 	uint16_t min_vec_bds;
1735 
1736 	/*
1737 	 * HNS3 hardware network engine set scattered as default. If the driver
1738 	 * is not work in scattered mode and the pkts greater than buf_size
1739 	 * but smaller than max_rx_pkt_len will be distributed to multiple BDs.
1740 	 * Driver cannot handle this situation.
1741 	 */
1742 	if (!hw->data->scattered_rx && rxmode->max_rx_pkt_len > buf_size) {
1743 		hns3_err(hw, "max_rx_pkt_len is not allowed to be set greater "
1744 			     "than rx_buf_len if scattered is off.");
1745 		return -EINVAL;
1746 	}
1747 
1748 	if (pkt_burst == hns3_recv_pkts_vec) {
1749 		min_vec_bds = HNS3_DEFAULT_RXQ_REARM_THRESH +
1750 			      HNS3_DEFAULT_RX_BURST;
1751 		if (nb_desc < min_vec_bds ||
1752 		    nb_desc % HNS3_DEFAULT_RXQ_REARM_THRESH) {
1753 			hns3_err(hw, "if Rx burst mode is vector, "
1754 				 "number of descriptor is required to be "
1755 				 "bigger than min vector bds:%u, and could be "
1756 				 "divided by rxq rearm thresh:%u.",
1757 				 min_vec_bds, HNS3_DEFAULT_RXQ_REARM_THRESH);
1758 			return -EINVAL;
1759 		}
1760 	}
1761 	return 0;
1762 }
1763 
1764 static int
1765 hns3_rx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_rxconf *conf,
1766 			 struct rte_mempool *mp, uint16_t nb_desc,
1767 			 uint16_t *buf_size)
1768 {
1769 	int ret;
1770 
1771 	if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
1772 	    nb_desc % HNS3_ALIGN_RING_DESC) {
1773 		hns3_err(hw, "Number (%u) of rx descriptors is invalid",
1774 			 nb_desc);
1775 		return -EINVAL;
1776 	}
1777 
1778 	if (conf->rx_drop_en == 0)
1779 		hns3_warn(hw, "if no descriptors available, packets are always "
1780 			  "dropped and rx_drop_en (1) is fixed on");
1781 
1782 	if (hns3_rx_buf_len_calc(mp, buf_size)) {
1783 		hns3_err(hw, "rxq mbufs' data room size (%u) is not enough! "
1784 				"minimal data room size (%u).",
1785 				rte_pktmbuf_data_room_size(mp),
1786 				HNS3_MIN_BD_BUF_SIZE + RTE_PKTMBUF_HEADROOM);
1787 		return -EINVAL;
1788 	}
1789 
1790 	if (hw->data->dev_started) {
1791 		ret = hns3_rxq_conf_runtime_check(hw, *buf_size, nb_desc);
1792 		if (ret) {
1793 			hns3_err(hw, "Rx queue runtime setup fail.");
1794 			return ret;
1795 		}
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 uint32_t
1802 hns3_get_tqp_reg_offset(uint16_t queue_id)
1803 {
1804 	uint32_t reg_offset;
1805 
1806 	/* Need an extend offset to config queue > 1024 */
1807 	if (queue_id < HNS3_MIN_EXTEND_QUEUE_ID)
1808 		reg_offset = HNS3_TQP_REG_OFFSET + queue_id * HNS3_TQP_REG_SIZE;
1809 	else
1810 		reg_offset = HNS3_TQP_REG_OFFSET + HNS3_TQP_EXT_REG_OFFSET +
1811 			     (queue_id - HNS3_MIN_EXTEND_QUEUE_ID) *
1812 			     HNS3_TQP_REG_SIZE;
1813 
1814 	return reg_offset;
1815 }
1816 
1817 int
1818 hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
1819 		    unsigned int socket_id, const struct rte_eth_rxconf *conf,
1820 		    struct rte_mempool *mp)
1821 {
1822 	struct hns3_adapter *hns = dev->data->dev_private;
1823 	struct hns3_hw *hw = &hns->hw;
1824 	struct hns3_queue_info q_info;
1825 	struct hns3_rx_queue *rxq;
1826 	uint16_t rx_buf_size;
1827 	int rx_entry_len;
1828 	int ret;
1829 
1830 	ret = hns3_rx_queue_conf_check(hw, conf, mp, nb_desc, &rx_buf_size);
1831 	if (ret)
1832 		return ret;
1833 
1834 	if (dev->data->rx_queues[idx]) {
1835 		hns3_rx_queue_release(dev->data->rx_queues[idx]);
1836 		dev->data->rx_queues[idx] = NULL;
1837 	}
1838 
1839 	q_info.idx = idx;
1840 	q_info.socket_id = socket_id;
1841 	q_info.nb_desc = nb_desc;
1842 	q_info.type = "hns3 RX queue";
1843 	q_info.ring_name = "rx_ring";
1844 
1845 	rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
1846 	if (rxq == NULL) {
1847 		hns3_err(hw,
1848 			 "Failed to alloc mem and reserve DMA mem for rx ring!");
1849 		return -ENOMEM;
1850 	}
1851 
1852 	rxq->hns = hns;
1853 	rxq->ptype_tbl = &hns->ptype_tbl;
1854 	rxq->mb_pool = mp;
1855 	rxq->rx_free_thresh = (conf->rx_free_thresh > 0) ?
1856 		conf->rx_free_thresh : HNS3_DEFAULT_RX_FREE_THRESH;
1857 
1858 	rxq->rx_deferred_start = conf->rx_deferred_start;
1859 	if (rxq->rx_deferred_start && !hns3_dev_indep_txrx_supported(hw)) {
1860 		hns3_warn(hw, "deferred start is not supported.");
1861 		rxq->rx_deferred_start = false;
1862 	}
1863 
1864 	rx_entry_len = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) *
1865 			sizeof(struct hns3_entry);
1866 	rxq->sw_ring = rte_zmalloc_socket("hns3 RX sw ring", rx_entry_len,
1867 					  RTE_CACHE_LINE_SIZE, socket_id);
1868 	if (rxq->sw_ring == NULL) {
1869 		hns3_err(hw, "Failed to allocate memory for rx sw ring!");
1870 		hns3_rx_queue_release(rxq);
1871 		return -ENOMEM;
1872 	}
1873 
1874 	rxq->next_to_use = 0;
1875 	rxq->rx_free_hold = 0;
1876 	rxq->rx_rearm_start = 0;
1877 	rxq->rx_rearm_nb = 0;
1878 	rxq->pkt_first_seg = NULL;
1879 	rxq->pkt_last_seg = NULL;
1880 	rxq->port_id = dev->data->port_id;
1881 	/*
1882 	 * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE,
1883 	 * the pvid_sw_discard_en in the queue struct should not be changed,
1884 	 * because PVID-related operations do not need to be processed by PMD
1885 	 * driver. For hns3 VF device, whether it needs to process PVID depends
1886 	 * on the configuration of PF kernel mode netdevice driver. And the
1887 	 * related PF configuration is delivered through the mailbox and finally
1888 	 * reflectd in port_base_vlan_cfg.
1889 	 */
1890 	if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1891 		rxq->pvid_sw_discard_en = hw->port_base_vlan_cfg.state ==
1892 				       HNS3_PORT_BASE_VLAN_ENABLE;
1893 	else
1894 		rxq->pvid_sw_discard_en = false;
1895 	rxq->ptype_en = hns3_dev_rxd_adv_layout_supported(hw) ? true : false;
1896 	rxq->configured = true;
1897 	rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1898 				idx * HNS3_TQP_REG_SIZE);
1899 	rxq->io_base = (void *)((char *)hw->io_base +
1900 					hns3_get_tqp_reg_offset(idx));
1901 	rxq->io_head_reg = (volatile void *)((char *)rxq->io_base +
1902 			   HNS3_RING_RX_HEAD_REG);
1903 	rxq->rx_buf_len = rx_buf_size;
1904 	memset(&rxq->basic_stats, 0, sizeof(struct hns3_rx_basic_stats));
1905 	memset(&rxq->err_stats, 0, sizeof(struct hns3_rx_bd_errors_stats));
1906 	memset(&rxq->dfx_stats, 0, sizeof(struct hns3_rx_dfx_stats));
1907 
1908 	/* CRC len set here is used for amending packet length */
1909 	if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1910 		rxq->crc_len = RTE_ETHER_CRC_LEN;
1911 	else
1912 		rxq->crc_len = 0;
1913 
1914 	rxq->bulk_mbuf_num = 0;
1915 
1916 	rte_spinlock_lock(&hw->lock);
1917 	dev->data->rx_queues[idx] = rxq;
1918 	rte_spinlock_unlock(&hw->lock);
1919 
1920 	return 0;
1921 }
1922 
1923 void
1924 hns3_rx_scattered_reset(struct rte_eth_dev *dev)
1925 {
1926 	struct hns3_adapter *hns = dev->data->dev_private;
1927 	struct hns3_hw *hw = &hns->hw;
1928 
1929 	hw->rx_buf_len = 0;
1930 	dev->data->scattered_rx = false;
1931 }
1932 
1933 void
1934 hns3_rx_scattered_calc(struct rte_eth_dev *dev)
1935 {
1936 	struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1937 	struct hns3_adapter *hns = dev->data->dev_private;
1938 	struct hns3_hw *hw = &hns->hw;
1939 	struct hns3_rx_queue *rxq;
1940 	uint32_t queue_id;
1941 
1942 	if (dev->data->rx_queues == NULL)
1943 		return;
1944 
1945 	for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
1946 		rxq = dev->data->rx_queues[queue_id];
1947 		if (hw->rx_buf_len == 0)
1948 			hw->rx_buf_len = rxq->rx_buf_len;
1949 		else
1950 			hw->rx_buf_len = RTE_MIN(hw->rx_buf_len,
1951 						 rxq->rx_buf_len);
1952 	}
1953 
1954 	if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_SCATTER ||
1955 	    dev_conf->rxmode.max_rx_pkt_len > hw->rx_buf_len)
1956 		dev->data->scattered_rx = true;
1957 }
1958 
1959 const uint32_t *
1960 hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1961 {
1962 	static const uint32_t ptypes[] = {
1963 		RTE_PTYPE_L2_ETHER,
1964 		RTE_PTYPE_L2_ETHER_VLAN,
1965 		RTE_PTYPE_L2_ETHER_QINQ,
1966 		RTE_PTYPE_L2_ETHER_LLDP,
1967 		RTE_PTYPE_L2_ETHER_ARP,
1968 		RTE_PTYPE_L3_IPV4,
1969 		RTE_PTYPE_L3_IPV4_EXT,
1970 		RTE_PTYPE_L3_IPV6,
1971 		RTE_PTYPE_L3_IPV6_EXT,
1972 		RTE_PTYPE_L4_IGMP,
1973 		RTE_PTYPE_L4_ICMP,
1974 		RTE_PTYPE_L4_SCTP,
1975 		RTE_PTYPE_L4_TCP,
1976 		RTE_PTYPE_L4_UDP,
1977 		RTE_PTYPE_TUNNEL_GRE,
1978 		RTE_PTYPE_INNER_L2_ETHER,
1979 		RTE_PTYPE_INNER_L2_ETHER_VLAN,
1980 		RTE_PTYPE_INNER_L2_ETHER_QINQ,
1981 		RTE_PTYPE_INNER_L3_IPV4,
1982 		RTE_PTYPE_INNER_L3_IPV6,
1983 		RTE_PTYPE_INNER_L3_IPV4_EXT,
1984 		RTE_PTYPE_INNER_L3_IPV6_EXT,
1985 		RTE_PTYPE_INNER_L4_UDP,
1986 		RTE_PTYPE_INNER_L4_TCP,
1987 		RTE_PTYPE_INNER_L4_SCTP,
1988 		RTE_PTYPE_INNER_L4_ICMP,
1989 		RTE_PTYPE_TUNNEL_VXLAN,
1990 		RTE_PTYPE_TUNNEL_NVGRE,
1991 		RTE_PTYPE_UNKNOWN
1992 	};
1993 
1994 	if (dev->rx_pkt_burst == hns3_recv_pkts ||
1995 	    dev->rx_pkt_burst == hns3_recv_scattered_pkts ||
1996 	    dev->rx_pkt_burst == hns3_recv_pkts_vec ||
1997 	    dev->rx_pkt_burst == hns3_recv_pkts_vec_sve)
1998 		return ptypes;
1999 
2000 	return NULL;
2001 }
2002 
2003 static void
2004 hns3_init_non_tunnel_ptype_tbl(struct hns3_ptype_table *tbl)
2005 {
2006 	tbl->l2l3table[0][0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4;
2007 	tbl->l2l3table[0][1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6;
2008 	tbl->l2l3table[0][2] = RTE_PTYPE_L2_ETHER_ARP;
2009 	tbl->l2l3table[0][3] = RTE_PTYPE_L2_ETHER;
2010 	tbl->l2l3table[0][4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT;
2011 	tbl->l2l3table[0][5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT;
2012 	tbl->l2l3table[0][6] = RTE_PTYPE_L2_ETHER_LLDP;
2013 	tbl->l2l3table[0][15] = RTE_PTYPE_L2_ETHER;
2014 
2015 	tbl->l2l3table[1][0] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV4;
2016 	tbl->l2l3table[1][1] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV6;
2017 	tbl->l2l3table[1][2] = RTE_PTYPE_L2_ETHER_ARP;
2018 	tbl->l2l3table[1][3] = RTE_PTYPE_L2_ETHER_VLAN;
2019 	tbl->l2l3table[1][4] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV4_EXT;
2020 	tbl->l2l3table[1][5] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV6_EXT;
2021 	tbl->l2l3table[1][6] = RTE_PTYPE_L2_ETHER_LLDP;
2022 	tbl->l2l3table[1][15] = RTE_PTYPE_L2_ETHER_VLAN;
2023 
2024 	tbl->l2l3table[2][0] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV4;
2025 	tbl->l2l3table[2][1] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV6;
2026 	tbl->l2l3table[2][2] = RTE_PTYPE_L2_ETHER_ARP;
2027 	tbl->l2l3table[2][3] = RTE_PTYPE_L2_ETHER_QINQ;
2028 	tbl->l2l3table[2][4] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV4_EXT;
2029 	tbl->l2l3table[2][5] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV6_EXT;
2030 	tbl->l2l3table[2][6] = RTE_PTYPE_L2_ETHER_LLDP;
2031 	tbl->l2l3table[2][15] = RTE_PTYPE_L2_ETHER_QINQ;
2032 
2033 	tbl->l4table[0] = RTE_PTYPE_L4_UDP;
2034 	tbl->l4table[1] = RTE_PTYPE_L4_TCP;
2035 	tbl->l4table[2] = RTE_PTYPE_TUNNEL_GRE;
2036 	tbl->l4table[3] = RTE_PTYPE_L4_SCTP;
2037 	tbl->l4table[4] = RTE_PTYPE_L4_IGMP;
2038 	tbl->l4table[5] = RTE_PTYPE_L4_ICMP;
2039 }
2040 
2041 static void
2042 hns3_init_tunnel_ptype_tbl(struct hns3_ptype_table *tbl)
2043 {
2044 	tbl->inner_l2table[0] = RTE_PTYPE_INNER_L2_ETHER;
2045 	tbl->inner_l2table[1] = RTE_PTYPE_INNER_L2_ETHER_VLAN;
2046 	tbl->inner_l2table[2] = RTE_PTYPE_INNER_L2_ETHER_QINQ;
2047 
2048 	tbl->inner_l3table[0] = RTE_PTYPE_INNER_L3_IPV4;
2049 	tbl->inner_l3table[1] = RTE_PTYPE_INNER_L3_IPV6;
2050 	/* There is not a ptype for inner ARP/RARP */
2051 	tbl->inner_l3table[2] = RTE_PTYPE_UNKNOWN;
2052 	tbl->inner_l3table[3] = RTE_PTYPE_UNKNOWN;
2053 	tbl->inner_l3table[4] = RTE_PTYPE_INNER_L3_IPV4_EXT;
2054 	tbl->inner_l3table[5] = RTE_PTYPE_INNER_L3_IPV6_EXT;
2055 
2056 	tbl->inner_l4table[0] = RTE_PTYPE_INNER_L4_UDP;
2057 	tbl->inner_l4table[1] = RTE_PTYPE_INNER_L4_TCP;
2058 	/* There is not a ptype for inner GRE */
2059 	tbl->inner_l4table[2] = RTE_PTYPE_UNKNOWN;
2060 	tbl->inner_l4table[3] = RTE_PTYPE_INNER_L4_SCTP;
2061 	/* There is not a ptype for inner IGMP */
2062 	tbl->inner_l4table[4] = RTE_PTYPE_UNKNOWN;
2063 	tbl->inner_l4table[5] = RTE_PTYPE_INNER_L4_ICMP;
2064 
2065 	tbl->ol2table[0] = RTE_PTYPE_L2_ETHER;
2066 	tbl->ol2table[1] = RTE_PTYPE_L2_ETHER_VLAN;
2067 	tbl->ol2table[2] = RTE_PTYPE_L2_ETHER_QINQ;
2068 
2069 	tbl->ol3table[0] = RTE_PTYPE_L3_IPV4;
2070 	tbl->ol3table[1] = RTE_PTYPE_L3_IPV6;
2071 	tbl->ol3table[2] = RTE_PTYPE_UNKNOWN;
2072 	tbl->ol3table[3] = RTE_PTYPE_UNKNOWN;
2073 	tbl->ol3table[4] = RTE_PTYPE_L3_IPV4_EXT;
2074 	tbl->ol3table[5] = RTE_PTYPE_L3_IPV6_EXT;
2075 
2076 	tbl->ol4table[0] = RTE_PTYPE_UNKNOWN;
2077 	tbl->ol4table[1] = RTE_PTYPE_TUNNEL_VXLAN;
2078 	tbl->ol4table[2] = RTE_PTYPE_TUNNEL_NVGRE;
2079 }
2080 
2081 static void
2082 hns3_init_adv_layout_ptype(struct hns3_ptype_table *tbl)
2083 {
2084 	uint32_t *ptype = tbl->ptype;
2085 
2086 	/* Non-tunnel L2 */
2087 	ptype[1] = RTE_PTYPE_L2_ETHER_ARP;
2088 	ptype[3] = RTE_PTYPE_L2_ETHER_LLDP;
2089 	ptype[8] = RTE_PTYPE_L2_ETHER_TIMESYNC;
2090 
2091 	/* Non-tunnel IPv4 */
2092 	ptype[17] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2093 		    RTE_PTYPE_L4_FRAG;
2094 	ptype[18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2095 		    RTE_PTYPE_L4_NONFRAG;
2096 	ptype[19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2097 		    RTE_PTYPE_L4_UDP;
2098 	ptype[20] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2099 		    RTE_PTYPE_L4_TCP;
2100 	/* The next ptype is GRE over IPv4 */
2101 	ptype[21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
2102 	ptype[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2103 		    RTE_PTYPE_L4_SCTP;
2104 	ptype[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2105 		    RTE_PTYPE_L4_IGMP;
2106 	ptype[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2107 		    RTE_PTYPE_L4_ICMP;
2108 	/* The next ptype is PTP over IPv4 + UDP */
2109 	ptype[25] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2110 		    RTE_PTYPE_L4_UDP;
2111 
2112 	/* IPv4 --> GRE/Teredo/VXLAN */
2113 	ptype[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2114 		    RTE_PTYPE_TUNNEL_GRENAT;
2115 	/* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2116 	ptype[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2117 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER;
2118 
2119 	/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2120 	ptype[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2121 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2122 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2123 		    RTE_PTYPE_INNER_L4_FRAG;
2124 	ptype[32] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2125 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2126 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2127 		    RTE_PTYPE_INNER_L4_NONFRAG;
2128 	ptype[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2129 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2130 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2131 		    RTE_PTYPE_INNER_L4_UDP;
2132 	ptype[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2133 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2134 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2135 		    RTE_PTYPE_INNER_L4_TCP;
2136 	ptype[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2137 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2138 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2139 		    RTE_PTYPE_INNER_L4_SCTP;
2140 	/* The next ptype's inner L4 is IGMP */
2141 	ptype[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2142 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2143 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
2144 	ptype[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2145 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2146 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2147 		    RTE_PTYPE_INNER_L4_ICMP;
2148 
2149 	/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2150 	ptype[39] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2151 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2152 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2153 		    RTE_PTYPE_INNER_L4_FRAG;
2154 	ptype[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2155 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2156 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2157 		    RTE_PTYPE_INNER_L4_NONFRAG;
2158 	ptype[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2159 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2160 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2161 		    RTE_PTYPE_INNER_L4_UDP;
2162 	ptype[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2163 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2164 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2165 		    RTE_PTYPE_INNER_L4_TCP;
2166 	ptype[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2167 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2168 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2169 		    RTE_PTYPE_INNER_L4_SCTP;
2170 	/* The next ptype's inner L4 is IGMP */
2171 	ptype[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2172 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2173 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
2174 	ptype[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2175 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2176 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2177 		    RTE_PTYPE_INNER_L4_ICMP;
2178 
2179 	/* Non-tunnel IPv6 */
2180 	ptype[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2181 		     RTE_PTYPE_L4_FRAG;
2182 	ptype[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2183 		     RTE_PTYPE_L4_NONFRAG;
2184 	ptype[113] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2185 		     RTE_PTYPE_L4_UDP;
2186 	ptype[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2187 		     RTE_PTYPE_L4_TCP;
2188 	/* The next ptype is GRE over IPv6 */
2189 	ptype[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
2190 	ptype[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2191 		     RTE_PTYPE_L4_SCTP;
2192 	ptype[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2193 		     RTE_PTYPE_L4_IGMP;
2194 	ptype[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2195 		     RTE_PTYPE_L4_ICMP;
2196 	/* Special for PTP over IPv6 + UDP */
2197 	ptype[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2198 		     RTE_PTYPE_L4_UDP;
2199 
2200 	/* IPv6 --> GRE/Teredo/VXLAN */
2201 	ptype[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2202 		     RTE_PTYPE_TUNNEL_GRENAT;
2203 	/* IPv6 --> GRE/Teredo/VXLAN --> MAC */
2204 	ptype[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2205 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER;
2206 
2207 	/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2208 	ptype[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2209 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2210 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2211 		     RTE_PTYPE_INNER_L4_FRAG;
2212 	ptype[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2213 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2214 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2215 		     RTE_PTYPE_INNER_L4_NONFRAG;
2216 	ptype[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2217 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2218 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2219 		     RTE_PTYPE_INNER_L4_UDP;
2220 	ptype[128] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2221 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2222 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2223 		     RTE_PTYPE_INNER_L4_TCP;
2224 	ptype[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2225 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2226 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2227 		     RTE_PTYPE_INNER_L4_SCTP;
2228 	/* The next ptype's inner L4 is IGMP */
2229 	ptype[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2230 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2231 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
2232 	ptype[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2233 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2234 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2235 		     RTE_PTYPE_INNER_L4_ICMP;
2236 
2237 	/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2238 	ptype[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2239 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2240 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2241 		     RTE_PTYPE_INNER_L4_FRAG;
2242 	ptype[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2243 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2244 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2245 		     RTE_PTYPE_INNER_L4_NONFRAG;
2246 	ptype[135] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2247 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2248 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2249 		     RTE_PTYPE_INNER_L4_UDP;
2250 	ptype[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2251 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2252 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2253 		     RTE_PTYPE_INNER_L4_TCP;
2254 	ptype[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2255 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2256 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2257 		     RTE_PTYPE_INNER_L4_SCTP;
2258 	/* The next ptype's inner L4 is IGMP */
2259 	ptype[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2260 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2261 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
2262 	ptype[139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2263 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2264 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2265 		     RTE_PTYPE_INNER_L4_ICMP;
2266 }
2267 
2268 void
2269 hns3_init_rx_ptype_tble(struct rte_eth_dev *dev)
2270 {
2271 	struct hns3_adapter *hns = dev->data->dev_private;
2272 	struct hns3_ptype_table *tbl = &hns->ptype_tbl;
2273 
2274 	memset(tbl, 0, sizeof(*tbl));
2275 
2276 	hns3_init_non_tunnel_ptype_tbl(tbl);
2277 	hns3_init_tunnel_ptype_tbl(tbl);
2278 	hns3_init_adv_layout_ptype(tbl);
2279 }
2280 
2281 static inline void
2282 hns3_rxd_to_vlan_tci(struct hns3_rx_queue *rxq, struct rte_mbuf *mb,
2283 		     uint32_t l234_info, const struct hns3_desc *rxd)
2284 {
2285 #define HNS3_STRP_STATUS_NUM		0x4
2286 
2287 #define HNS3_NO_STRP_VLAN_VLD		0x0
2288 #define HNS3_INNER_STRP_VLAN_VLD	0x1
2289 #define HNS3_OUTER_STRP_VLAN_VLD	0x2
2290 	uint32_t strip_status;
2291 	uint32_t report_mode;
2292 
2293 	/*
2294 	 * Since HW limitation, the vlan tag will always be inserted into RX
2295 	 * descriptor when strip the tag from packet, driver needs to determine
2296 	 * reporting which tag to mbuf according to the PVID configuration
2297 	 * and vlan striped status.
2298 	 */
2299 	static const uint32_t report_type[][HNS3_STRP_STATUS_NUM] = {
2300 		{
2301 			HNS3_NO_STRP_VLAN_VLD,
2302 			HNS3_OUTER_STRP_VLAN_VLD,
2303 			HNS3_INNER_STRP_VLAN_VLD,
2304 			HNS3_OUTER_STRP_VLAN_VLD
2305 		},
2306 		{
2307 			HNS3_NO_STRP_VLAN_VLD,
2308 			HNS3_NO_STRP_VLAN_VLD,
2309 			HNS3_NO_STRP_VLAN_VLD,
2310 			HNS3_INNER_STRP_VLAN_VLD
2311 		}
2312 	};
2313 	strip_status = hns3_get_field(l234_info, HNS3_RXD_STRP_TAGP_M,
2314 				      HNS3_RXD_STRP_TAGP_S);
2315 	report_mode = report_type[rxq->pvid_sw_discard_en][strip_status];
2316 	switch (report_mode) {
2317 	case HNS3_NO_STRP_VLAN_VLD:
2318 		mb->vlan_tci = 0;
2319 		return;
2320 	case HNS3_INNER_STRP_VLAN_VLD:
2321 		mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
2322 		mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.vlan_tag);
2323 		return;
2324 	case HNS3_OUTER_STRP_VLAN_VLD:
2325 		mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
2326 		mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.ot_vlan_tag);
2327 		return;
2328 	default:
2329 		mb->vlan_tci = 0;
2330 		return;
2331 	}
2332 }
2333 
2334 static inline void
2335 recalculate_data_len(struct rte_mbuf *first_seg, struct rte_mbuf *last_seg,
2336 		    struct rte_mbuf *rxm, struct hns3_rx_queue *rxq,
2337 		    uint16_t data_len)
2338 {
2339 	uint8_t crc_len = rxq->crc_len;
2340 
2341 	if (data_len <= crc_len) {
2342 		rte_pktmbuf_free_seg(rxm);
2343 		first_seg->nb_segs--;
2344 		last_seg->data_len = (uint16_t)(last_seg->data_len -
2345 			(crc_len - data_len));
2346 		last_seg->next = NULL;
2347 	} else
2348 		rxm->data_len = (uint16_t)(data_len - crc_len);
2349 }
2350 
2351 static inline struct rte_mbuf *
2352 hns3_rx_alloc_buffer(struct hns3_rx_queue *rxq)
2353 {
2354 	int ret;
2355 
2356 	if (likely(rxq->bulk_mbuf_num > 0))
2357 		return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
2358 
2359 	ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)rxq->bulk_mbuf,
2360 				   HNS3_BULK_ALLOC_MBUF_NUM);
2361 	if (likely(ret == 0)) {
2362 		rxq->bulk_mbuf_num = HNS3_BULK_ALLOC_MBUF_NUM;
2363 		return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
2364 	} else
2365 		return rte_mbuf_raw_alloc(rxq->mb_pool);
2366 }
2367 
2368 uint16_t
2369 hns3_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
2370 {
2371 	volatile struct hns3_desc *rx_ring;  /* RX ring (desc) */
2372 	volatile struct hns3_desc *rxdp;     /* pointer of the current desc */
2373 	struct hns3_rx_queue *rxq;      /* RX queue */
2374 	struct hns3_entry *sw_ring;
2375 	struct hns3_entry *rxe;
2376 	struct hns3_desc rxd;
2377 	struct rte_mbuf *nmb;           /* pointer of the new mbuf */
2378 	struct rte_mbuf *rxm;
2379 	uint32_t bd_base_info;
2380 	uint32_t cksum_err;
2381 	uint32_t l234_info;
2382 	uint32_t ol_info;
2383 	uint64_t dma_addr;
2384 	uint16_t nb_rx_bd;
2385 	uint16_t nb_rx;
2386 	uint16_t rx_id;
2387 	int ret;
2388 
2389 	nb_rx = 0;
2390 	nb_rx_bd = 0;
2391 	rxq = rx_queue;
2392 	rx_ring = rxq->rx_ring;
2393 	sw_ring = rxq->sw_ring;
2394 	rx_id = rxq->next_to_use;
2395 
2396 	while (nb_rx < nb_pkts) {
2397 		rxdp = &rx_ring[rx_id];
2398 		bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
2399 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2400 			break;
2401 
2402 		rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
2403 			   (1u << HNS3_RXD_VLD_B)];
2404 
2405 		nmb = hns3_rx_alloc_buffer(rxq);
2406 		if (unlikely(nmb == NULL)) {
2407 			uint16_t port_id;
2408 
2409 			port_id = rxq->port_id;
2410 			rte_eth_devices[port_id].data->rx_mbuf_alloc_failed++;
2411 			break;
2412 		}
2413 
2414 		nb_rx_bd++;
2415 		rxe = &sw_ring[rx_id];
2416 		rx_id++;
2417 		if (unlikely(rx_id == rxq->nb_rx_desc))
2418 			rx_id = 0;
2419 
2420 		rte_prefetch0(sw_ring[rx_id].mbuf);
2421 		if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
2422 			rte_prefetch0(&rx_ring[rx_id]);
2423 			rte_prefetch0(&sw_ring[rx_id]);
2424 		}
2425 
2426 		rxm = rxe->mbuf;
2427 		rxe->mbuf = nmb;
2428 
2429 		dma_addr = rte_mbuf_data_iova_default(nmb);
2430 		rxdp->addr = rte_cpu_to_le_64(dma_addr);
2431 		rxdp->rx.bd_base_info = 0;
2432 
2433 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
2434 		rxm->pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.rx.pkt_len)) -
2435 				rxq->crc_len;
2436 		rxm->data_len = rxm->pkt_len;
2437 		rxm->port = rxq->port_id;
2438 		rxm->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
2439 		rxm->ol_flags = PKT_RX_RSS_HASH;
2440 		if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
2441 			rxm->hash.fdir.hi =
2442 				rte_le_to_cpu_16(rxd.rx.fd_id);
2443 			rxm->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
2444 		}
2445 		rxm->nb_segs = 1;
2446 		rxm->next = NULL;
2447 
2448 		/* Load remained descriptor data and extract necessary fields */
2449 		l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
2450 		ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
2451 		ret = hns3_handle_bdinfo(rxq, rxm, bd_base_info,
2452 					 l234_info, &cksum_err);
2453 		if (unlikely(ret))
2454 			goto pkt_err;
2455 
2456 		rxm->packet_type = hns3_rx_calc_ptype(rxq, l234_info, ol_info);
2457 
2458 		if (likely(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2459 			hns3_rx_set_cksum_flag(rxm, rxm->packet_type,
2460 					       cksum_err);
2461 		hns3_rxd_to_vlan_tci(rxq, rxm, l234_info, &rxd);
2462 
2463 		/* Increment bytes counter  */
2464 		rxq->basic_stats.bytes += rxm->pkt_len;
2465 
2466 		rx_pkts[nb_rx++] = rxm;
2467 		continue;
2468 pkt_err:
2469 		rte_pktmbuf_free(rxm);
2470 	}
2471 
2472 	rxq->next_to_use = rx_id;
2473 	rxq->rx_free_hold += nb_rx_bd;
2474 	if (rxq->rx_free_hold > rxq->rx_free_thresh) {
2475 		hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
2476 		rxq->rx_free_hold = 0;
2477 	}
2478 
2479 	return nb_rx;
2480 }
2481 
2482 uint16_t
2483 hns3_recv_scattered_pkts(void *rx_queue,
2484 			 struct rte_mbuf **rx_pkts,
2485 			 uint16_t nb_pkts)
2486 {
2487 	volatile struct hns3_desc *rx_ring;  /* RX ring (desc) */
2488 	volatile struct hns3_desc *rxdp;     /* pointer of the current desc */
2489 	struct hns3_rx_queue *rxq;      /* RX queue */
2490 	struct hns3_entry *sw_ring;
2491 	struct hns3_entry *rxe;
2492 	struct rte_mbuf *first_seg;
2493 	struct rte_mbuf *last_seg;
2494 	struct hns3_desc rxd;
2495 	struct rte_mbuf *nmb;           /* pointer of the new mbuf */
2496 	struct rte_mbuf *rxm;
2497 	struct rte_eth_dev *dev;
2498 	uint32_t bd_base_info;
2499 	uint32_t cksum_err;
2500 	uint32_t l234_info;
2501 	uint32_t gro_size;
2502 	uint32_t ol_info;
2503 	uint64_t dma_addr;
2504 	uint16_t nb_rx_bd;
2505 	uint16_t nb_rx;
2506 	uint16_t rx_id;
2507 	int ret;
2508 
2509 	nb_rx = 0;
2510 	nb_rx_bd = 0;
2511 	rxq = rx_queue;
2512 
2513 	rx_id = rxq->next_to_use;
2514 	rx_ring = rxq->rx_ring;
2515 	sw_ring = rxq->sw_ring;
2516 	first_seg = rxq->pkt_first_seg;
2517 	last_seg = rxq->pkt_last_seg;
2518 
2519 	while (nb_rx < nb_pkts) {
2520 		rxdp = &rx_ring[rx_id];
2521 		bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
2522 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2523 			break;
2524 
2525 		/*
2526 		 * The interactive process between software and hardware of
2527 		 * receiving a new packet in hns3 network engine:
2528 		 * 1. Hardware network engine firstly writes the packet content
2529 		 *    to the memory pointed by the 'addr' field of the Rx Buffer
2530 		 *    Descriptor, secondly fills the result of parsing the
2531 		 *    packet include the valid field into the Rx Buffer
2532 		 *    Descriptor in one write operation.
2533 		 * 2. Driver reads the Rx BD's valid field in the loop to check
2534 		 *    whether it's valid, if valid then assign a new address to
2535 		 *    the addr field, clear the valid field, get the other
2536 		 *    information of the packet by parsing Rx BD's other fields,
2537 		 *    finally write back the number of Rx BDs processed by the
2538 		 *    driver to the HNS3_RING_RX_HEAD_REG register to inform
2539 		 *    hardware.
2540 		 * In the above process, the ordering is very important. We must
2541 		 * make sure that CPU read Rx BD's other fields only after the
2542 		 * Rx BD is valid.
2543 		 *
2544 		 * There are two type of re-ordering: compiler re-ordering and
2545 		 * CPU re-ordering under the ARMv8 architecture.
2546 		 * 1. we use volatile to deal with compiler re-ordering, so you
2547 		 *    can see that rx_ring/rxdp defined with volatile.
2548 		 * 2. we commonly use memory barrier to deal with CPU
2549 		 *    re-ordering, but the cost is high.
2550 		 *
2551 		 * In order to solve the high cost of using memory barrier, we
2552 		 * use the data dependency order under the ARMv8 architecture,
2553 		 * for example:
2554 		 *      instr01: load A
2555 		 *      instr02: load B <- A
2556 		 * the instr02 will always execute after instr01.
2557 		 *
2558 		 * To construct the data dependency ordering, we use the
2559 		 * following assignment:
2560 		 *      rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
2561 		 *                 (1u<<HNS3_RXD_VLD_B)]
2562 		 * Using gcc compiler under the ARMv8 architecture, the related
2563 		 * assembly code example as follows:
2564 		 * note: (1u << HNS3_RXD_VLD_B) equal 0x10
2565 		 *      instr01: ldr w26, [x22, #28]  --read bd_base_info
2566 		 *      instr02: and w0, w26, #0x10   --calc bd_base_info & 0x10
2567 		 *      instr03: sub w0, w0, #0x10    --calc (bd_base_info &
2568 		 *                                            0x10) - 0x10
2569 		 *      instr04: add x0, x22, x0, lsl #5 --calc copy source addr
2570 		 *      instr05: ldp x2, x3, [x0]
2571 		 *      instr06: stp x2, x3, [x29, #256] --copy BD's [0 ~ 15]B
2572 		 *      instr07: ldp x4, x5, [x0, #16]
2573 		 *      instr08: stp x4, x5, [x29, #272] --copy BD's [16 ~ 31]B
2574 		 * the instr05~08 depend on x0's value, x0 depent on w26's
2575 		 * value, the w26 is the bd_base_info, this form the data
2576 		 * dependency ordering.
2577 		 * note: if BD is valid, (bd_base_info & (1u<<HNS3_RXD_VLD_B)) -
2578 		 *       (1u<<HNS3_RXD_VLD_B) will always zero, so the
2579 		 *       assignment is correct.
2580 		 *
2581 		 * So we use the data dependency ordering instead of memory
2582 		 * barrier to improve receive performance.
2583 		 */
2584 		rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
2585 			   (1u << HNS3_RXD_VLD_B)];
2586 
2587 		nmb = hns3_rx_alloc_buffer(rxq);
2588 		if (unlikely(nmb == NULL)) {
2589 			dev = &rte_eth_devices[rxq->port_id];
2590 			dev->data->rx_mbuf_alloc_failed++;
2591 			break;
2592 		}
2593 
2594 		nb_rx_bd++;
2595 		rxe = &sw_ring[rx_id];
2596 		rx_id++;
2597 		if (unlikely(rx_id == rxq->nb_rx_desc))
2598 			rx_id = 0;
2599 
2600 		rte_prefetch0(sw_ring[rx_id].mbuf);
2601 		if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
2602 			rte_prefetch0(&rx_ring[rx_id]);
2603 			rte_prefetch0(&sw_ring[rx_id]);
2604 		}
2605 
2606 		rxm = rxe->mbuf;
2607 		rxe->mbuf = nmb;
2608 
2609 		dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2610 		rxdp->rx.bd_base_info = 0;
2611 		rxdp->addr = dma_addr;
2612 
2613 		if (first_seg == NULL) {
2614 			first_seg = rxm;
2615 			first_seg->nb_segs = 1;
2616 		} else {
2617 			first_seg->nb_segs++;
2618 			last_seg->next = rxm;
2619 		}
2620 
2621 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
2622 		rxm->data_len = rte_le_to_cpu_16(rxd.rx.size);
2623 
2624 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2625 			last_seg = rxm;
2626 			rxm->next = NULL;
2627 			continue;
2628 		}
2629 
2630 		/*
2631 		 * The last buffer of the received packet. packet len from
2632 		 * buffer description may contains CRC len, packet len should
2633 		 * subtract it, same as data len.
2634 		 */
2635 		first_seg->pkt_len = rte_le_to_cpu_16(rxd.rx.pkt_len);
2636 
2637 		/*
2638 		 * This is the last buffer of the received packet. If the CRC
2639 		 * is not stripped by the hardware:
2640 		 *  - Subtract the CRC length from the total packet length.
2641 		 *  - If the last buffer only contains the whole CRC or a part
2642 		 *  of it, free the mbuf associated to the last buffer. If part
2643 		 *  of the CRC is also contained in the previous mbuf, subtract
2644 		 *  the length of that CRC part from the data length of the
2645 		 *  previous mbuf.
2646 		 */
2647 		rxm->next = NULL;
2648 		if (unlikely(rxq->crc_len > 0)) {
2649 			first_seg->pkt_len -= rxq->crc_len;
2650 			recalculate_data_len(first_seg, last_seg, rxm, rxq,
2651 				rxm->data_len);
2652 		}
2653 
2654 		first_seg->port = rxq->port_id;
2655 		first_seg->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
2656 		first_seg->ol_flags = PKT_RX_RSS_HASH;
2657 		if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
2658 			first_seg->hash.fdir.hi =
2659 				rte_le_to_cpu_16(rxd.rx.fd_id);
2660 			first_seg->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
2661 		}
2662 
2663 		gro_size = hns3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M,
2664 					  HNS3_RXD_GRO_SIZE_S);
2665 		if (gro_size != 0) {
2666 			first_seg->ol_flags |= PKT_RX_LRO;
2667 			first_seg->tso_segsz = gro_size;
2668 		}
2669 
2670 		l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
2671 		ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
2672 		ret = hns3_handle_bdinfo(rxq, first_seg, bd_base_info,
2673 					 l234_info, &cksum_err);
2674 		if (unlikely(ret))
2675 			goto pkt_err;
2676 
2677 		first_seg->packet_type = hns3_rx_calc_ptype(rxq,
2678 						l234_info, ol_info);
2679 
2680 		if (bd_base_info & BIT(HNS3_RXD_L3L4P_B))
2681 			hns3_rx_set_cksum_flag(first_seg,
2682 					       first_seg->packet_type,
2683 					       cksum_err);
2684 		hns3_rxd_to_vlan_tci(rxq, first_seg, l234_info, &rxd);
2685 
2686 		/* Increment bytes counter */
2687 		rxq->basic_stats.bytes += first_seg->pkt_len;
2688 
2689 		rx_pkts[nb_rx++] = first_seg;
2690 		first_seg = NULL;
2691 		continue;
2692 pkt_err:
2693 		rte_pktmbuf_free(first_seg);
2694 		first_seg = NULL;
2695 	}
2696 
2697 	rxq->next_to_use = rx_id;
2698 	rxq->pkt_first_seg = first_seg;
2699 	rxq->pkt_last_seg = last_seg;
2700 
2701 	rxq->rx_free_hold += nb_rx_bd;
2702 	if (rxq->rx_free_hold > rxq->rx_free_thresh) {
2703 		hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
2704 		rxq->rx_free_hold = 0;
2705 	}
2706 
2707 	return nb_rx;
2708 }
2709 
2710 void __rte_weak
2711 hns3_rxq_vec_setup(__rte_unused struct hns3_rx_queue *rxq)
2712 {
2713 }
2714 
2715 int __rte_weak
2716 hns3_rx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
2717 {
2718 	return -ENOTSUP;
2719 }
2720 
2721 uint16_t __rte_weak
2722 hns3_recv_pkts_vec(__rte_unused void *tx_queue,
2723 		   __rte_unused struct rte_mbuf **rx_pkts,
2724 		   __rte_unused uint16_t nb_pkts)
2725 {
2726 	return 0;
2727 }
2728 
2729 uint16_t __rte_weak
2730 hns3_recv_pkts_vec_sve(__rte_unused void *tx_queue,
2731 		       __rte_unused struct rte_mbuf **rx_pkts,
2732 		       __rte_unused uint16_t nb_pkts)
2733 {
2734 	return 0;
2735 }
2736 
2737 int
2738 hns3_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2739 		       struct rte_eth_burst_mode *mode)
2740 {
2741 	static const struct {
2742 		eth_rx_burst_t pkt_burst;
2743 		const char *info;
2744 	} burst_infos[] = {
2745 		{ hns3_recv_pkts,		"Scalar" },
2746 		{ hns3_recv_scattered_pkts,	"Scalar Scattered" },
2747 		{ hns3_recv_pkts_vec,		"Vector Neon" },
2748 		{ hns3_recv_pkts_vec_sve,	"Vector Sve" },
2749 	};
2750 
2751 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
2752 	int ret = -EINVAL;
2753 	unsigned int i;
2754 
2755 	for (i = 0; i < RTE_DIM(burst_infos); i++) {
2756 		if (pkt_burst == burst_infos[i].pkt_burst) {
2757 			snprintf(mode->info, sizeof(mode->info), "%s",
2758 				 burst_infos[i].info);
2759 			ret = 0;
2760 			break;
2761 		}
2762 	}
2763 
2764 	return ret;
2765 }
2766 
2767 static bool
2768 hns3_check_sve_support(void)
2769 {
2770 #if defined(RTE_ARCH_ARM64) && defined(__ARM_FEATURE_SVE)
2771 	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SVE))
2772 		return true;
2773 #endif
2774 	return false;
2775 }
2776 
2777 static eth_rx_burst_t
2778 hns3_get_rx_function(struct rte_eth_dev *dev)
2779 {
2780 	struct hns3_adapter *hns = dev->data->dev_private;
2781 	uint64_t offloads = dev->data->dev_conf.rxmode.offloads;
2782 	bool vec_allowed, sve_allowed, simple_allowed;
2783 
2784 	vec_allowed = hns->rx_vec_allowed &&
2785 		      hns3_rx_check_vec_support(dev) == 0;
2786 	sve_allowed = vec_allowed && hns3_check_sve_support();
2787 	simple_allowed = hns->rx_simple_allowed && !dev->data->scattered_rx &&
2788 			 (offloads & DEV_RX_OFFLOAD_TCP_LRO) == 0;
2789 
2790 	if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_VEC && vec_allowed)
2791 		return hns3_recv_pkts_vec;
2792 	if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_SVE && sve_allowed)
2793 		return hns3_recv_pkts_vec_sve;
2794 	if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_SIMPLE && simple_allowed)
2795 		return hns3_recv_pkts;
2796 	if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_COMMON)
2797 		return hns3_recv_scattered_pkts;
2798 
2799 	if (vec_allowed)
2800 		return hns3_recv_pkts_vec;
2801 	if (simple_allowed)
2802 		return hns3_recv_pkts;
2803 
2804 	return hns3_recv_scattered_pkts;
2805 }
2806 
2807 static int
2808 hns3_tx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_txconf *conf,
2809 			 uint16_t nb_desc, uint16_t *tx_rs_thresh,
2810 			 uint16_t *tx_free_thresh, uint16_t idx)
2811 {
2812 #define HNS3_TX_RS_FREE_THRESH_GAP	8
2813 	uint16_t rs_thresh, free_thresh, fast_free_thresh;
2814 
2815 	if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
2816 	    nb_desc % HNS3_ALIGN_RING_DESC) {
2817 		hns3_err(hw, "number (%u) of tx descriptors is invalid",
2818 			 nb_desc);
2819 		return -EINVAL;
2820 	}
2821 
2822 	rs_thresh = (conf->tx_rs_thresh > 0) ?
2823 			conf->tx_rs_thresh : HNS3_DEFAULT_TX_RS_THRESH;
2824 	free_thresh = (conf->tx_free_thresh > 0) ?
2825 			conf->tx_free_thresh : HNS3_DEFAULT_TX_FREE_THRESH;
2826 	if (rs_thresh + free_thresh > nb_desc || nb_desc % rs_thresh ||
2827 	    rs_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP ||
2828 	    free_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP) {
2829 		hns3_err(hw, "tx_rs_thresh (%u) tx_free_thresh (%u) nb_desc "
2830 			 "(%u) of tx descriptors for port=%u queue=%u check "
2831 			 "fail!",
2832 			 rs_thresh, free_thresh, nb_desc, hw->data->port_id,
2833 			 idx);
2834 		return -EINVAL;
2835 	}
2836 
2837 	if (conf->tx_free_thresh == 0) {
2838 		/* Fast free Tx memory buffer to improve cache hit rate */
2839 		fast_free_thresh = nb_desc - rs_thresh;
2840 		if (fast_free_thresh >=
2841 		    HNS3_TX_FAST_FREE_AHEAD + HNS3_DEFAULT_TX_FREE_THRESH)
2842 			free_thresh = fast_free_thresh -
2843 					HNS3_TX_FAST_FREE_AHEAD;
2844 	}
2845 
2846 	*tx_rs_thresh = rs_thresh;
2847 	*tx_free_thresh = free_thresh;
2848 	return 0;
2849 }
2850 
2851 int
2852 hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
2853 		    unsigned int socket_id, const struct rte_eth_txconf *conf)
2854 {
2855 	struct hns3_adapter *hns = dev->data->dev_private;
2856 	uint16_t tx_rs_thresh, tx_free_thresh;
2857 	struct hns3_hw *hw = &hns->hw;
2858 	struct hns3_queue_info q_info;
2859 	struct hns3_tx_queue *txq;
2860 	int tx_entry_len;
2861 	int ret;
2862 
2863 	ret = hns3_tx_queue_conf_check(hw, conf, nb_desc,
2864 				       &tx_rs_thresh, &tx_free_thresh, idx);
2865 	if (ret)
2866 		return ret;
2867 
2868 	if (dev->data->tx_queues[idx] != NULL) {
2869 		hns3_tx_queue_release(dev->data->tx_queues[idx]);
2870 		dev->data->tx_queues[idx] = NULL;
2871 	}
2872 
2873 	q_info.idx = idx;
2874 	q_info.socket_id = socket_id;
2875 	q_info.nb_desc = nb_desc;
2876 	q_info.type = "hns3 TX queue";
2877 	q_info.ring_name = "tx_ring";
2878 	txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
2879 	if (txq == NULL) {
2880 		hns3_err(hw,
2881 			 "Failed to alloc mem and reserve DMA mem for tx ring!");
2882 		return -ENOMEM;
2883 	}
2884 
2885 	txq->tx_deferred_start = conf->tx_deferred_start;
2886 	if (txq->tx_deferred_start && !hns3_dev_indep_txrx_supported(hw)) {
2887 		hns3_warn(hw, "deferred start is not supported.");
2888 		txq->tx_deferred_start = false;
2889 	}
2890 
2891 	tx_entry_len = sizeof(struct hns3_entry) * txq->nb_tx_desc;
2892 	txq->sw_ring = rte_zmalloc_socket("hns3 TX sw ring", tx_entry_len,
2893 					  RTE_CACHE_LINE_SIZE, socket_id);
2894 	if (txq->sw_ring == NULL) {
2895 		hns3_err(hw, "Failed to allocate memory for tx sw ring!");
2896 		hns3_tx_queue_release(txq);
2897 		return -ENOMEM;
2898 	}
2899 
2900 	txq->hns = hns;
2901 	txq->next_to_use = 0;
2902 	txq->next_to_clean = 0;
2903 	txq->tx_bd_ready = txq->nb_tx_desc - 1;
2904 	txq->tx_free_thresh = tx_free_thresh;
2905 	txq->tx_rs_thresh = tx_rs_thresh;
2906 	txq->free = rte_zmalloc_socket("hns3 TX mbuf free array",
2907 				sizeof(struct rte_mbuf *) * txq->tx_rs_thresh,
2908 				RTE_CACHE_LINE_SIZE, socket_id);
2909 	if (!txq->free) {
2910 		hns3_err(hw, "failed to allocate tx mbuf free array!");
2911 		hns3_tx_queue_release(txq);
2912 		return -ENOMEM;
2913 	}
2914 
2915 	txq->port_id = dev->data->port_id;
2916 	/*
2917 	 * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE,
2918 	 * the pvid_sw_shift_en in the queue struct should not be changed,
2919 	 * because PVID-related operations do not need to be processed by PMD
2920 	 * driver. For hns3 VF device, whether it needs to process PVID depends
2921 	 * on the configuration of PF kernel mode netdev driver. And the
2922 	 * related PF configuration is delivered through the mailbox and finally
2923 	 * reflectd in port_base_vlan_cfg.
2924 	 */
2925 	if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
2926 		txq->pvid_sw_shift_en = hw->port_base_vlan_cfg.state ==
2927 					HNS3_PORT_BASE_VLAN_ENABLE;
2928 	else
2929 		txq->pvid_sw_shift_en = false;
2930 	txq->max_non_tso_bd_num = hw->max_non_tso_bd_num;
2931 	txq->configured = true;
2932 	txq->io_base = (void *)((char *)hw->io_base +
2933 						hns3_get_tqp_reg_offset(idx));
2934 	txq->io_tail_reg = (volatile void *)((char *)txq->io_base +
2935 					     HNS3_RING_TX_TAIL_REG);
2936 	txq->min_tx_pkt_len = hw->min_tx_pkt_len;
2937 	txq->tso_mode = hw->tso_mode;
2938 	txq->udp_cksum_mode = hw->udp_cksum_mode;
2939 	memset(&txq->basic_stats, 0, sizeof(struct hns3_tx_basic_stats));
2940 	memset(&txq->dfx_stats, 0, sizeof(struct hns3_tx_dfx_stats));
2941 
2942 	rte_spinlock_lock(&hw->lock);
2943 	dev->data->tx_queues[idx] = txq;
2944 	rte_spinlock_unlock(&hw->lock);
2945 
2946 	return 0;
2947 }
2948 
2949 static void
2950 hns3_tx_free_useless_buffer(struct hns3_tx_queue *txq)
2951 {
2952 	uint16_t tx_next_clean = txq->next_to_clean;
2953 	uint16_t tx_next_use   = txq->next_to_use;
2954 	uint16_t tx_bd_ready   = txq->tx_bd_ready;
2955 	uint16_t tx_bd_max     = txq->nb_tx_desc;
2956 	struct hns3_entry *tx_bak_pkt = &txq->sw_ring[tx_next_clean];
2957 	struct hns3_desc *desc = &txq->tx_ring[tx_next_clean];
2958 	struct rte_mbuf *mbuf;
2959 
2960 	while ((!(desc->tx.tp_fe_sc_vld_ra_ri &
2961 		rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))) &&
2962 		tx_next_use != tx_next_clean) {
2963 		mbuf = tx_bak_pkt->mbuf;
2964 		if (mbuf) {
2965 			rte_pktmbuf_free_seg(mbuf);
2966 			tx_bak_pkt->mbuf = NULL;
2967 		}
2968 
2969 		desc++;
2970 		tx_bak_pkt++;
2971 		tx_next_clean++;
2972 		tx_bd_ready++;
2973 
2974 		if (tx_next_clean >= tx_bd_max) {
2975 			tx_next_clean = 0;
2976 			desc = txq->tx_ring;
2977 			tx_bak_pkt = txq->sw_ring;
2978 		}
2979 	}
2980 
2981 	txq->next_to_clean = tx_next_clean;
2982 	txq->tx_bd_ready   = tx_bd_ready;
2983 }
2984 
2985 int
2986 hns3_config_gro(struct hns3_hw *hw, bool en)
2987 {
2988 	struct hns3_cfg_gro_status_cmd *req;
2989 	struct hns3_cmd_desc desc;
2990 	int ret;
2991 
2992 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false);
2993 	req = (struct hns3_cfg_gro_status_cmd *)desc.data;
2994 
2995 	req->gro_en = rte_cpu_to_le_16(en ? 1 : 0);
2996 
2997 	ret = hns3_cmd_send(hw, &desc, 1);
2998 	if (ret)
2999 		hns3_err(hw, "%s hardware GRO failed, ret = %d",
3000 			 en ? "enable" : "disable", ret);
3001 
3002 	return ret;
3003 }
3004 
3005 int
3006 hns3_restore_gro_conf(struct hns3_hw *hw)
3007 {
3008 	uint64_t offloads;
3009 	bool gro_en;
3010 	int ret;
3011 
3012 	offloads = hw->data->dev_conf.rxmode.offloads;
3013 	gro_en = offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
3014 	ret = hns3_config_gro(hw, gro_en);
3015 	if (ret)
3016 		hns3_err(hw, "restore hardware GRO to %s failed, ret = %d",
3017 			 gro_en ? "enabled" : "disabled", ret);
3018 
3019 	return ret;
3020 }
3021 
3022 static inline bool
3023 hns3_pkt_is_tso(struct rte_mbuf *m)
3024 {
3025 	return (m->tso_segsz != 0 && m->ol_flags & PKT_TX_TCP_SEG);
3026 }
3027 
3028 static void
3029 hns3_set_tso(struct hns3_desc *desc, uint32_t paylen, struct rte_mbuf *rxm)
3030 {
3031 	if (!hns3_pkt_is_tso(rxm))
3032 		return;
3033 
3034 	if (paylen <= rxm->tso_segsz)
3035 		return;
3036 
3037 	desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(BIT(HNS3_TXD_TSO_B));
3038 	desc->tx.mss = rte_cpu_to_le_16(rxm->tso_segsz);
3039 }
3040 
3041 static inline void
3042 hns3_fill_per_desc(struct hns3_desc *desc, struct rte_mbuf *rxm)
3043 {
3044 	desc->addr = rte_mbuf_data_iova(rxm);
3045 	desc->tx.send_size = rte_cpu_to_le_16(rte_pktmbuf_data_len(rxm));
3046 	desc->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B));
3047 }
3048 
3049 static void
3050 hns3_fill_first_desc(struct hns3_tx_queue *txq, struct hns3_desc *desc,
3051 		     struct rte_mbuf *rxm)
3052 {
3053 	uint64_t ol_flags = rxm->ol_flags;
3054 	uint32_t hdr_len;
3055 	uint32_t paylen;
3056 
3057 	hdr_len = rxm->l2_len + rxm->l3_len + rxm->l4_len;
3058 	hdr_len += (ol_flags & PKT_TX_TUNNEL_MASK) ?
3059 			   rxm->outer_l2_len + rxm->outer_l3_len : 0;
3060 	paylen = rxm->pkt_len - hdr_len;
3061 	desc->tx.paylen_fd_dop_ol4cs |= rte_cpu_to_le_32(paylen);
3062 	hns3_set_tso(desc, paylen, rxm);
3063 
3064 	/*
3065 	 * Currently, hardware doesn't support more than two layers VLAN offload
3066 	 * in Tx direction based on hns3 network engine. So when the number of
3067 	 * VLANs in the packets represented by rxm plus the number of VLAN
3068 	 * offload by hardware such as PVID etc, exceeds two, the packets will
3069 	 * be discarded or the original VLAN of the packets will be overwitted
3070 	 * by hardware. When the PF PVID is enabled by calling the API function
3071 	 * named rte_eth_dev_set_vlan_pvid or the VF PVID is enabled by the hns3
3072 	 * PF kernel ether driver, the outer VLAN tag will always be the PVID.
3073 	 * To avoid the VLAN of Tx descriptor is overwritten by PVID, it should
3074 	 * be added to the position close to the IP header when PVID is enabled.
3075 	 */
3076 	if (!txq->pvid_sw_shift_en && ol_flags & (PKT_TX_VLAN_PKT |
3077 				PKT_TX_QINQ_PKT)) {
3078 		desc->tx.ol_type_vlan_len_msec |=
3079 				rte_cpu_to_le_32(BIT(HNS3_TXD_OVLAN_B));
3080 		if (ol_flags & PKT_TX_QINQ_PKT)
3081 			desc->tx.outer_vlan_tag =
3082 					rte_cpu_to_le_16(rxm->vlan_tci_outer);
3083 		else
3084 			desc->tx.outer_vlan_tag =
3085 					rte_cpu_to_le_16(rxm->vlan_tci);
3086 	}
3087 
3088 	if (ol_flags & PKT_TX_QINQ_PKT ||
3089 	    ((ol_flags & PKT_TX_VLAN_PKT) && txq->pvid_sw_shift_en)) {
3090 		desc->tx.type_cs_vlan_tso_len |=
3091 					rte_cpu_to_le_32(BIT(HNS3_TXD_VLAN_B));
3092 		desc->tx.vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci);
3093 	}
3094 }
3095 
3096 static inline int
3097 hns3_tx_alloc_mbufs(struct rte_mempool *mb_pool, uint16_t nb_new_buf,
3098 			struct rte_mbuf **alloc_mbuf)
3099 {
3100 #define MAX_NON_TSO_BD_PER_PKT 18
3101 	struct rte_mbuf *pkt_segs[MAX_NON_TSO_BD_PER_PKT];
3102 	uint16_t i;
3103 
3104 	/* Allocate enough mbufs */
3105 	if (rte_mempool_get_bulk(mb_pool, (void **)pkt_segs, nb_new_buf))
3106 		return -ENOMEM;
3107 
3108 	for (i = 0; i < nb_new_buf - 1; i++)
3109 		pkt_segs[i]->next = pkt_segs[i + 1];
3110 
3111 	pkt_segs[nb_new_buf - 1]->next = NULL;
3112 	pkt_segs[0]->nb_segs = nb_new_buf;
3113 	*alloc_mbuf = pkt_segs[0];
3114 
3115 	return 0;
3116 }
3117 
3118 static inline void
3119 hns3_pktmbuf_copy_hdr(struct rte_mbuf *new_pkt, struct rte_mbuf *old_pkt)
3120 {
3121 	new_pkt->ol_flags = old_pkt->ol_flags;
3122 	new_pkt->pkt_len = rte_pktmbuf_pkt_len(old_pkt);
3123 	new_pkt->outer_l2_len = old_pkt->outer_l2_len;
3124 	new_pkt->outer_l3_len = old_pkt->outer_l3_len;
3125 	new_pkt->l2_len = old_pkt->l2_len;
3126 	new_pkt->l3_len = old_pkt->l3_len;
3127 	new_pkt->l4_len = old_pkt->l4_len;
3128 	new_pkt->vlan_tci_outer = old_pkt->vlan_tci_outer;
3129 	new_pkt->vlan_tci = old_pkt->vlan_tci;
3130 }
3131 
3132 static int
3133 hns3_reassemble_tx_pkts(struct rte_mbuf *tx_pkt, struct rte_mbuf **new_pkt,
3134 				  uint8_t max_non_tso_bd_num)
3135 {
3136 	struct rte_mempool *mb_pool;
3137 	struct rte_mbuf *new_mbuf;
3138 	struct rte_mbuf *temp_new;
3139 	struct rte_mbuf *temp;
3140 	uint16_t last_buf_len;
3141 	uint16_t nb_new_buf;
3142 	uint16_t buf_size;
3143 	uint16_t buf_len;
3144 	uint16_t len_s;
3145 	uint16_t len_d;
3146 	uint16_t len;
3147 	int ret;
3148 	char *s;
3149 	char *d;
3150 
3151 	mb_pool = tx_pkt->pool;
3152 	buf_size = tx_pkt->buf_len - RTE_PKTMBUF_HEADROOM;
3153 	nb_new_buf = (rte_pktmbuf_pkt_len(tx_pkt) - 1) / buf_size + 1;
3154 	if (nb_new_buf > max_non_tso_bd_num)
3155 		return -EINVAL;
3156 
3157 	last_buf_len = rte_pktmbuf_pkt_len(tx_pkt) % buf_size;
3158 	if (last_buf_len == 0)
3159 		last_buf_len = buf_size;
3160 
3161 	/* Allocate enough mbufs */
3162 	ret = hns3_tx_alloc_mbufs(mb_pool, nb_new_buf, &new_mbuf);
3163 	if (ret)
3164 		return ret;
3165 
3166 	/* Copy the original packet content to the new mbufs */
3167 	temp = tx_pkt;
3168 	s = rte_pktmbuf_mtod(temp, char *);
3169 	len_s = rte_pktmbuf_data_len(temp);
3170 	temp_new = new_mbuf;
3171 	while (temp != NULL && temp_new != NULL) {
3172 		d = rte_pktmbuf_mtod(temp_new, char *);
3173 		buf_len = temp_new->next == NULL ? last_buf_len : buf_size;
3174 		len_d = buf_len;
3175 
3176 		while (len_d) {
3177 			len = RTE_MIN(len_s, len_d);
3178 			memcpy(d, s, len);
3179 			s = s + len;
3180 			d = d + len;
3181 			len_d = len_d - len;
3182 			len_s = len_s - len;
3183 
3184 			if (len_s == 0) {
3185 				temp = temp->next;
3186 				if (temp == NULL)
3187 					break;
3188 				s = rte_pktmbuf_mtod(temp, char *);
3189 				len_s = rte_pktmbuf_data_len(temp);
3190 			}
3191 		}
3192 
3193 		temp_new->data_len = buf_len;
3194 		temp_new = temp_new->next;
3195 	}
3196 	hns3_pktmbuf_copy_hdr(new_mbuf, tx_pkt);
3197 
3198 	/* free original mbufs */
3199 	rte_pktmbuf_free(tx_pkt);
3200 
3201 	*new_pkt = new_mbuf;
3202 
3203 	return 0;
3204 }
3205 
3206 static void
3207 hns3_parse_outer_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec)
3208 {
3209 	uint32_t tmp = *ol_type_vlan_len_msec;
3210 	uint64_t ol_flags = m->ol_flags;
3211 
3212 	/* (outer) IP header type */
3213 	if (ol_flags & PKT_TX_OUTER_IPV4) {
3214 		if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
3215 			tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M,
3216 					HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM);
3217 		else
3218 			tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M,
3219 				HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_NO_CSUM);
3220 	} else if (ol_flags & PKT_TX_OUTER_IPV6) {
3221 		tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
3222 					HNS3_OL3T_IPV6);
3223 	}
3224 	/* OL3 header size, defined in 4 bytes */
3225 	tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
3226 				m->outer_l3_len >> HNS3_L3_LEN_UNIT);
3227 	*ol_type_vlan_len_msec = tmp;
3228 }
3229 
3230 static int
3231 hns3_parse_inner_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec,
3232 			uint32_t *type_cs_vlan_tso_len)
3233 {
3234 #define HNS3_NVGRE_HLEN 8
3235 	uint32_t tmp_outer = *ol_type_vlan_len_msec;
3236 	uint32_t tmp_inner = *type_cs_vlan_tso_len;
3237 	uint64_t ol_flags = m->ol_flags;
3238 	uint16_t inner_l2_len;
3239 
3240 	switch (ol_flags & PKT_TX_TUNNEL_MASK) {
3241 	case PKT_TX_TUNNEL_VXLAN_GPE:
3242 	case PKT_TX_TUNNEL_GENEVE:
3243 	case PKT_TX_TUNNEL_VXLAN:
3244 		/* MAC in UDP tunnelling packet, include VxLAN and GENEVE */
3245 		tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M,
3246 				HNS3_TXD_TUNTYPE_S, HNS3_TUN_MAC_IN_UDP);
3247 		/*
3248 		 * The inner l2 length of mbuf is the sum of outer l4 length,
3249 		 * tunneling header length and inner l2 length for a tunnel
3250 		 * packect. But in hns3 tx descriptor, the tunneling header
3251 		 * length is contained in the field of outer L4 length.
3252 		 * Therefore, driver need to calculate the outer L4 length and
3253 		 * inner L2 length.
3254 		 */
3255 		tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M,
3256 						HNS3_TXD_L4LEN_S,
3257 						(uint8_t)RTE_ETHER_VXLAN_HLEN >>
3258 						HNS3_L4_LEN_UNIT);
3259 
3260 		inner_l2_len = m->l2_len - RTE_ETHER_VXLAN_HLEN;
3261 		break;
3262 	case PKT_TX_TUNNEL_GRE:
3263 		tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M,
3264 					HNS3_TXD_TUNTYPE_S, HNS3_TUN_NVGRE);
3265 		/*
3266 		 * For NVGRE tunnel packect, the outer L4 is empty. So only
3267 		 * fill the NVGRE header length to the outer L4 field.
3268 		 */
3269 		tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M,
3270 				HNS3_TXD_L4LEN_S,
3271 				(uint8_t)HNS3_NVGRE_HLEN >> HNS3_L4_LEN_UNIT);
3272 
3273 		inner_l2_len = m->l2_len - HNS3_NVGRE_HLEN;
3274 		break;
3275 	default:
3276 		/* For non UDP / GRE tunneling, drop the tunnel packet */
3277 		return -EINVAL;
3278 	}
3279 
3280 	tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
3281 					inner_l2_len >> HNS3_L2_LEN_UNIT);
3282 	/* OL2 header size, defined in 2 bytes */
3283 	tmp_outer |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
3284 					m->outer_l2_len >> HNS3_L2_LEN_UNIT);
3285 
3286 	*type_cs_vlan_tso_len = tmp_inner;
3287 	*ol_type_vlan_len_msec = tmp_outer;
3288 
3289 	return 0;
3290 }
3291 
3292 static int
3293 hns3_parse_tunneling_params(struct hns3_tx_queue *txq, struct rte_mbuf *m,
3294 			    uint16_t tx_desc_id)
3295 {
3296 	struct hns3_desc *tx_ring = txq->tx_ring;
3297 	struct hns3_desc *desc = &tx_ring[tx_desc_id];
3298 	uint64_t ol_flags = m->ol_flags;
3299 	uint32_t tmp_outer = 0;
3300 	uint32_t tmp_inner = 0;
3301 	uint32_t tmp_ol4cs;
3302 	int ret;
3303 
3304 	/*
3305 	 * The tunnel header is contained in the inner L2 header field of the
3306 	 * mbuf, but for hns3 descriptor, it is contained in the outer L4. So,
3307 	 * there is a need that switching between them. To avoid multiple
3308 	 * calculations, the length of the L2 header include the outer and
3309 	 * inner, will be filled during the parsing of tunnel packects.
3310 	 */
3311 	if (!(ol_flags & PKT_TX_TUNNEL_MASK)) {
3312 		/*
3313 		 * For non tunnel type the tunnel type id is 0, so no need to
3314 		 * assign a value to it. Only the inner(normal) L2 header length
3315 		 * is assigned.
3316 		 */
3317 		tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M,
3318 			       HNS3_TXD_L2LEN_S, m->l2_len >> HNS3_L2_LEN_UNIT);
3319 	} else {
3320 		/*
3321 		 * If outer csum is not offload, the outer length may be filled
3322 		 * with 0. And the length of the outer header is added to the
3323 		 * inner l2_len. It would lead a cksum error. So driver has to
3324 		 * calculate the header length.
3325 		 */
3326 		if (unlikely(!(ol_flags &
3327 			(PKT_TX_OUTER_IP_CKSUM | PKT_TX_OUTER_UDP_CKSUM)) &&
3328 					m->outer_l2_len == 0)) {
3329 			struct rte_net_hdr_lens hdr_len;
3330 			(void)rte_net_get_ptype(m, &hdr_len,
3331 					RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);
3332 			m->outer_l3_len = hdr_len.l3_len;
3333 			m->outer_l2_len = hdr_len.l2_len;
3334 			m->l2_len = m->l2_len - hdr_len.l2_len - hdr_len.l3_len;
3335 		}
3336 		hns3_parse_outer_params(m, &tmp_outer);
3337 		ret = hns3_parse_inner_params(m, &tmp_outer, &tmp_inner);
3338 		if (ret)
3339 			return -EINVAL;
3340 	}
3341 
3342 	desc->tx.ol_type_vlan_len_msec = rte_cpu_to_le_32(tmp_outer);
3343 	desc->tx.type_cs_vlan_tso_len = rte_cpu_to_le_32(tmp_inner);
3344 	tmp_ol4cs = ol_flags & PKT_TX_OUTER_UDP_CKSUM ?
3345 			BIT(HNS3_TXD_OL4CS_B) : 0;
3346 	desc->tx.paylen_fd_dop_ol4cs = rte_cpu_to_le_32(tmp_ol4cs);
3347 
3348 	return 0;
3349 }
3350 
3351 static void
3352 hns3_parse_l3_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len)
3353 {
3354 	uint64_t ol_flags = m->ol_flags;
3355 	uint32_t l3_type;
3356 	uint32_t tmp;
3357 
3358 	tmp = *type_cs_vlan_tso_len;
3359 	if (ol_flags & PKT_TX_IPV4)
3360 		l3_type = HNS3_L3T_IPV4;
3361 	else if (ol_flags & PKT_TX_IPV6)
3362 		l3_type = HNS3_L3T_IPV6;
3363 	else
3364 		l3_type = HNS3_L3T_NONE;
3365 
3366 	/* inner(/normal) L3 header size, defined in 4 bytes */
3367 	tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
3368 					m->l3_len >> HNS3_L3_LEN_UNIT);
3369 
3370 	tmp |= hns3_gen_field_val(HNS3_TXD_L3T_M, HNS3_TXD_L3T_S, l3_type);
3371 
3372 	/* Enable L3 checksum offloads */
3373 	if (ol_flags & PKT_TX_IP_CKSUM)
3374 		tmp |= BIT(HNS3_TXD_L3CS_B);
3375 	*type_cs_vlan_tso_len = tmp;
3376 }
3377 
3378 static void
3379 hns3_parse_l4_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len)
3380 {
3381 	uint64_t ol_flags = m->ol_flags;
3382 	uint32_t tmp;
3383 	/* Enable L4 checksum offloads */
3384 	switch (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG)) {
3385 	case PKT_TX_TCP_CKSUM | PKT_TX_TCP_SEG:
3386 	case PKT_TX_TCP_CKSUM:
3387 	case PKT_TX_TCP_SEG:
3388 		tmp = *type_cs_vlan_tso_len;
3389 		tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
3390 					HNS3_L4T_TCP);
3391 		break;
3392 	case PKT_TX_UDP_CKSUM:
3393 		tmp = *type_cs_vlan_tso_len;
3394 		tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
3395 					HNS3_L4T_UDP);
3396 		break;
3397 	case PKT_TX_SCTP_CKSUM:
3398 		tmp = *type_cs_vlan_tso_len;
3399 		tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
3400 					HNS3_L4T_SCTP);
3401 		break;
3402 	default:
3403 		return;
3404 	}
3405 	tmp |= BIT(HNS3_TXD_L4CS_B);
3406 	tmp |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
3407 					m->l4_len >> HNS3_L4_LEN_UNIT);
3408 	*type_cs_vlan_tso_len = tmp;
3409 }
3410 
3411 static void
3412 hns3_txd_enable_checksum(struct hns3_tx_queue *txq, struct rte_mbuf *m,
3413 			 uint16_t tx_desc_id)
3414 {
3415 	struct hns3_desc *tx_ring = txq->tx_ring;
3416 	struct hns3_desc *desc = &tx_ring[tx_desc_id];
3417 	uint32_t value = 0;
3418 
3419 	hns3_parse_l3_cksum_params(m, &value);
3420 	hns3_parse_l4_cksum_params(m, &value);
3421 
3422 	desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(value);
3423 }
3424 
3425 static bool
3426 hns3_pkt_need_linearized(struct rte_mbuf *tx_pkts, uint32_t bd_num,
3427 				 uint32_t max_non_tso_bd_num)
3428 {
3429 	struct rte_mbuf *m_first = tx_pkts;
3430 	struct rte_mbuf *m_last = tx_pkts;
3431 	uint32_t tot_len = 0;
3432 	uint32_t hdr_len;
3433 	uint32_t i;
3434 
3435 	/*
3436 	 * Hardware requires that the sum of the data length of every 8
3437 	 * consecutive buffers is greater than MSS in hns3 network engine.
3438 	 * We simplify it by ensuring pkt_headlen + the first 8 consecutive
3439 	 * frags greater than gso header len + mss, and the remaining 7
3440 	 * consecutive frags greater than MSS except the last 7 frags.
3441 	 */
3442 	if (bd_num <= max_non_tso_bd_num)
3443 		return false;
3444 
3445 	for (i = 0; m_last && i < max_non_tso_bd_num - 1;
3446 	     i++, m_last = m_last->next)
3447 		tot_len += m_last->data_len;
3448 
3449 	if (!m_last)
3450 		return true;
3451 
3452 	/* ensure the first 8 frags is greater than mss + header */
3453 	hdr_len = tx_pkts->l2_len + tx_pkts->l3_len + tx_pkts->l4_len;
3454 	hdr_len += (tx_pkts->ol_flags & PKT_TX_TUNNEL_MASK) ?
3455 		   tx_pkts->outer_l2_len + tx_pkts->outer_l3_len : 0;
3456 	if (tot_len + m_last->data_len < tx_pkts->tso_segsz + hdr_len)
3457 		return true;
3458 
3459 	/*
3460 	 * ensure the sum of the data length of every 7 consecutive buffer
3461 	 * is greater than mss except the last one.
3462 	 */
3463 	for (i = 0; m_last && i < bd_num - max_non_tso_bd_num; i++) {
3464 		tot_len -= m_first->data_len;
3465 		tot_len += m_last->data_len;
3466 
3467 		if (tot_len < tx_pkts->tso_segsz)
3468 			return true;
3469 
3470 		m_first = m_first->next;
3471 		m_last = m_last->next;
3472 	}
3473 
3474 	return false;
3475 }
3476 
3477 static bool
3478 hns3_outer_ipv4_cksum_prepared(struct rte_mbuf *m, uint64_t ol_flags,
3479 				uint32_t *l4_proto)
3480 {
3481 	struct rte_ipv4_hdr *ipv4_hdr;
3482 	ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
3483 					   m->outer_l2_len);
3484 	if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
3485 		ipv4_hdr->hdr_checksum = 0;
3486 	if (ol_flags & PKT_TX_OUTER_UDP_CKSUM) {
3487 		struct rte_udp_hdr *udp_hdr;
3488 		/*
3489 		 * If OUTER_UDP_CKSUM is support, HW can caclulate the pseudo
3490 		 * header for TSO packets
3491 		 */
3492 		if (ol_flags & PKT_TX_TCP_SEG)
3493 			return true;
3494 		udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3495 				m->outer_l2_len + m->outer_l3_len);
3496 		udp_hdr->dgram_cksum = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
3497 
3498 		return true;
3499 	}
3500 	*l4_proto = ipv4_hdr->next_proto_id;
3501 	return false;
3502 }
3503 
3504 static bool
3505 hns3_outer_ipv6_cksum_prepared(struct rte_mbuf *m, uint64_t ol_flags,
3506 				uint32_t *l4_proto)
3507 {
3508 	struct rte_ipv6_hdr *ipv6_hdr;
3509 	ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
3510 					   m->outer_l2_len);
3511 	if (ol_flags & PKT_TX_OUTER_UDP_CKSUM) {
3512 		struct rte_udp_hdr *udp_hdr;
3513 		/*
3514 		 * If OUTER_UDP_CKSUM is support, HW can caclulate the pseudo
3515 		 * header for TSO packets
3516 		 */
3517 		if (ol_flags & PKT_TX_TCP_SEG)
3518 			return true;
3519 		udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3520 				m->outer_l2_len + m->outer_l3_len);
3521 		udp_hdr->dgram_cksum = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
3522 
3523 		return true;
3524 	}
3525 	*l4_proto = ipv6_hdr->proto;
3526 	return false;
3527 }
3528 
3529 static void
3530 hns3_outer_header_cksum_prepare(struct rte_mbuf *m)
3531 {
3532 	uint64_t ol_flags = m->ol_flags;
3533 	uint32_t paylen, hdr_len, l4_proto;
3534 	struct rte_udp_hdr *udp_hdr;
3535 
3536 	if (!(ol_flags & (PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6)))
3537 		return;
3538 
3539 	if (ol_flags & PKT_TX_OUTER_IPV4) {
3540 		if (hns3_outer_ipv4_cksum_prepared(m, ol_flags, &l4_proto))
3541 			return;
3542 	} else {
3543 		if (hns3_outer_ipv6_cksum_prepared(m, ol_flags, &l4_proto))
3544 			return;
3545 	}
3546 
3547 	/* driver should ensure the outer udp cksum is 0 for TUNNEL TSO */
3548 	if (l4_proto == IPPROTO_UDP && (ol_flags & PKT_TX_TCP_SEG)) {
3549 		hdr_len = m->l2_len + m->l3_len + m->l4_len;
3550 		hdr_len += m->outer_l2_len + m->outer_l3_len;
3551 		paylen = m->pkt_len - hdr_len;
3552 		if (paylen <= m->tso_segsz)
3553 			return;
3554 		udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3555 						  m->outer_l2_len +
3556 						  m->outer_l3_len);
3557 		udp_hdr->dgram_cksum = 0;
3558 	}
3559 }
3560 
3561 static int
3562 hns3_check_tso_pkt_valid(struct rte_mbuf *m)
3563 {
3564 	uint32_t tmp_data_len_sum = 0;
3565 	uint16_t nb_buf = m->nb_segs;
3566 	uint32_t paylen, hdr_len;
3567 	struct rte_mbuf *m_seg;
3568 	int i;
3569 
3570 	if (nb_buf > HNS3_MAX_TSO_BD_PER_PKT)
3571 		return -EINVAL;
3572 
3573 	hdr_len = m->l2_len + m->l3_len + m->l4_len;
3574 	hdr_len += (m->ol_flags & PKT_TX_TUNNEL_MASK) ?
3575 			m->outer_l2_len + m->outer_l3_len : 0;
3576 	if (hdr_len > HNS3_MAX_TSO_HDR_SIZE)
3577 		return -EINVAL;
3578 
3579 	paylen = m->pkt_len - hdr_len;
3580 	if (paylen > HNS3_MAX_BD_PAYLEN)
3581 		return -EINVAL;
3582 
3583 	/*
3584 	 * The TSO header (include outer and inner L2, L3 and L4 header)
3585 	 * should be provided by three descriptors in maximum in hns3 network
3586 	 * engine.
3587 	 */
3588 	m_seg = m;
3589 	for (i = 0; m_seg != NULL && i < HNS3_MAX_TSO_HDR_BD_NUM && i < nb_buf;
3590 	     i++, m_seg = m_seg->next) {
3591 		tmp_data_len_sum += m_seg->data_len;
3592 	}
3593 
3594 	if (hdr_len > tmp_data_len_sum)
3595 		return -EINVAL;
3596 
3597 	return 0;
3598 }
3599 
3600 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
3601 static inline int
3602 hns3_vld_vlan_chk(struct hns3_tx_queue *txq, struct rte_mbuf *m)
3603 {
3604 	struct rte_ether_hdr *eh;
3605 	struct rte_vlan_hdr *vh;
3606 
3607 	if (!txq->pvid_sw_shift_en)
3608 		return 0;
3609 
3610 	/*
3611 	 * Due to hardware limitations, we only support two-layer VLAN hardware
3612 	 * offload in Tx direction based on hns3 network engine, so when PVID is
3613 	 * enabled, QinQ insert is no longer supported.
3614 	 * And when PVID is enabled, in the following two cases:
3615 	 *  i) packets with more than two VLAN tags.
3616 	 *  ii) packets with one VLAN tag while the hardware VLAN insert is
3617 	 *      enabled.
3618 	 * The packets will be regarded as abnormal packets and discarded by
3619 	 * hardware in Tx direction. For debugging purposes, a validation check
3620 	 * for these types of packets is added to the '.tx_pkt_prepare' ops
3621 	 * implementation function named hns3_prep_pkts to inform users that
3622 	 * these packets will be discarded.
3623 	 */
3624 	if (m->ol_flags & PKT_TX_QINQ_PKT)
3625 		return -EINVAL;
3626 
3627 	eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
3628 	if (eh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) {
3629 		if (m->ol_flags & PKT_TX_VLAN_PKT)
3630 			return -EINVAL;
3631 
3632 		/* Ensure the incoming packet is not a QinQ packet */
3633 		vh = (struct rte_vlan_hdr *)(eh + 1);
3634 		if (vh->eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))
3635 			return -EINVAL;
3636 	}
3637 
3638 	return 0;
3639 }
3640 #endif
3641 
3642 static uint16_t
3643 hns3_udp_cksum_help(struct rte_mbuf *m)
3644 {
3645 	uint64_t ol_flags = m->ol_flags;
3646 	uint16_t cksum = 0;
3647 	uint32_t l4_len;
3648 
3649 	if (ol_flags & PKT_TX_IPV4) {
3650 		struct rte_ipv4_hdr *ipv4_hdr = rte_pktmbuf_mtod_offset(m,
3651 				struct rte_ipv4_hdr *, m->l2_len);
3652 		l4_len = rte_be_to_cpu_16(ipv4_hdr->total_length) - m->l3_len;
3653 	} else {
3654 		struct rte_ipv6_hdr *ipv6_hdr = rte_pktmbuf_mtod_offset(m,
3655 				struct rte_ipv6_hdr *, m->l2_len);
3656 		l4_len = rte_be_to_cpu_16(ipv6_hdr->payload_len);
3657 	}
3658 
3659 	rte_raw_cksum_mbuf(m, m->l2_len + m->l3_len, l4_len, &cksum);
3660 
3661 	cksum = ~cksum;
3662 	/*
3663 	 * RFC 768:If the computed checksum is zero for UDP, it is transmitted
3664 	 * as all ones
3665 	 */
3666 	if (cksum == 0)
3667 		cksum = 0xffff;
3668 
3669 	return (uint16_t)cksum;
3670 }
3671 
3672 static bool
3673 hns3_validate_tunnel_cksum(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m)
3674 {
3675 	uint64_t ol_flags = m->ol_flags;
3676 	struct rte_udp_hdr *udp_hdr;
3677 	uint16_t dst_port;
3678 
3679 	if (tx_queue->udp_cksum_mode == HNS3_SPECIAL_PORT_HW_CKSUM_MODE ||
3680 	    ol_flags & PKT_TX_TUNNEL_MASK ||
3681 	    (ol_flags & PKT_TX_L4_MASK) != PKT_TX_UDP_CKSUM)
3682 		return true;
3683 	/*
3684 	 * A UDP packet with the same dst_port as VXLAN\VXLAN_GPE\GENEVE will
3685 	 * be recognized as a tunnel packet in HW. In this case, if UDP CKSUM
3686 	 * offload is set and the tunnel mask has not been set, the CKSUM will
3687 	 * be wrong since the header length is wrong and driver should complete
3688 	 * the CKSUM to avoid CKSUM error.
3689 	 */
3690 	udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3691 						m->l2_len + m->l3_len);
3692 	dst_port = rte_be_to_cpu_16(udp_hdr->dst_port);
3693 	switch (dst_port) {
3694 	case RTE_VXLAN_DEFAULT_PORT:
3695 	case RTE_VXLAN_GPE_DEFAULT_PORT:
3696 	case RTE_GENEVE_DEFAULT_PORT:
3697 		udp_hdr->dgram_cksum = hns3_udp_cksum_help(m);
3698 		m->ol_flags = ol_flags & ~PKT_TX_L4_MASK;
3699 		return false;
3700 	default:
3701 		return true;
3702 	}
3703 }
3704 
3705 static int
3706 hns3_prep_pkt_proc(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m)
3707 {
3708 	int ret;
3709 
3710 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
3711 	ret = rte_validate_tx_offload(m);
3712 	if (ret != 0) {
3713 		rte_errno = -ret;
3714 		return ret;
3715 	}
3716 
3717 	ret = hns3_vld_vlan_chk(tx_queue, m);
3718 	if (ret != 0) {
3719 		rte_errno = EINVAL;
3720 		return ret;
3721 	}
3722 #endif
3723 	if (hns3_pkt_is_tso(m)) {
3724 		if (hns3_pkt_need_linearized(m, m->nb_segs,
3725 					     tx_queue->max_non_tso_bd_num) ||
3726 		    hns3_check_tso_pkt_valid(m)) {
3727 			rte_errno = EINVAL;
3728 			return -EINVAL;
3729 		}
3730 
3731 		if (tx_queue->tso_mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) {
3732 			/*
3733 			 * (tso mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) means
3734 			 * hardware support recalculate the TCP pseudo header
3735 			 * checksum of packets that need TSO, so network driver
3736 			 * software not need to recalculate it.
3737 			 */
3738 			hns3_outer_header_cksum_prepare(m);
3739 			return 0;
3740 		}
3741 	}
3742 
3743 	ret = rte_net_intel_cksum_prepare(m);
3744 	if (ret != 0) {
3745 		rte_errno = -ret;
3746 		return ret;
3747 	}
3748 
3749 	if (!hns3_validate_tunnel_cksum(tx_queue, m))
3750 		return 0;
3751 
3752 	hns3_outer_header_cksum_prepare(m);
3753 
3754 	return 0;
3755 }
3756 
3757 uint16_t
3758 hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
3759 	       uint16_t nb_pkts)
3760 {
3761 	struct rte_mbuf *m;
3762 	uint16_t i;
3763 
3764 	for (i = 0; i < nb_pkts; i++) {
3765 		m = tx_pkts[i];
3766 		if (hns3_prep_pkt_proc(tx_queue, m))
3767 			return i;
3768 	}
3769 
3770 	return i;
3771 }
3772 
3773 static int
3774 hns3_parse_cksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id,
3775 		 struct rte_mbuf *m)
3776 {
3777 	struct hns3_desc *tx_ring = txq->tx_ring;
3778 	struct hns3_desc *desc = &tx_ring[tx_desc_id];
3779 
3780 	/* Enable checksum offloading */
3781 	if (m->ol_flags & HNS3_TX_CKSUM_OFFLOAD_MASK) {
3782 		/* Fill in tunneling parameters if necessary */
3783 		if (hns3_parse_tunneling_params(txq, m, tx_desc_id)) {
3784 			txq->dfx_stats.unsupported_tunnel_pkt_cnt++;
3785 				return -EINVAL;
3786 		}
3787 
3788 		hns3_txd_enable_checksum(txq, m, tx_desc_id);
3789 	} else {
3790 		/* clear the control bit */
3791 		desc->tx.type_cs_vlan_tso_len  = 0;
3792 		desc->tx.ol_type_vlan_len_msec = 0;
3793 	}
3794 
3795 	return 0;
3796 }
3797 
3798 static int
3799 hns3_check_non_tso_pkt(uint16_t nb_buf, struct rte_mbuf **m_seg,
3800 		      struct rte_mbuf *tx_pkt, struct hns3_tx_queue *txq)
3801 {
3802 	uint8_t max_non_tso_bd_num;
3803 	struct rte_mbuf *new_pkt;
3804 	int ret;
3805 
3806 	if (hns3_pkt_is_tso(*m_seg))
3807 		return 0;
3808 
3809 	/*
3810 	 * If packet length is greater than HNS3_MAX_FRAME_LEN
3811 	 * driver support, the packet will be ignored.
3812 	 */
3813 	if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) > HNS3_MAX_FRAME_LEN)) {
3814 		txq->dfx_stats.over_length_pkt_cnt++;
3815 		return -EINVAL;
3816 	}
3817 
3818 	max_non_tso_bd_num = txq->max_non_tso_bd_num;
3819 	if (unlikely(nb_buf > max_non_tso_bd_num)) {
3820 		txq->dfx_stats.exceed_limit_bd_pkt_cnt++;
3821 		ret = hns3_reassemble_tx_pkts(tx_pkt, &new_pkt,
3822 					      max_non_tso_bd_num);
3823 		if (ret) {
3824 			txq->dfx_stats.exceed_limit_bd_reassem_fail++;
3825 			return ret;
3826 		}
3827 		*m_seg = new_pkt;
3828 	}
3829 
3830 	return 0;
3831 }
3832 
3833 static inline void
3834 hns3_tx_free_buffer_simple(struct hns3_tx_queue *txq)
3835 {
3836 	struct hns3_entry *tx_entry;
3837 	struct hns3_desc *desc;
3838 	uint16_t tx_next_clean;
3839 	int i;
3840 
3841 	while (1) {
3842 		if (HNS3_GET_TX_QUEUE_PEND_BD_NUM(txq) < txq->tx_rs_thresh)
3843 			break;
3844 
3845 		/*
3846 		 * All mbufs can be released only when the VLD bits of all
3847 		 * descriptors in a batch are cleared.
3848 		 */
3849 		tx_next_clean = (txq->next_to_clean + txq->tx_rs_thresh - 1) %
3850 				txq->nb_tx_desc;
3851 		desc = &txq->tx_ring[tx_next_clean];
3852 		for (i = 0; i < txq->tx_rs_thresh; i++) {
3853 			if (rte_le_to_cpu_16(desc->tx.tp_fe_sc_vld_ra_ri) &
3854 					BIT(HNS3_TXD_VLD_B))
3855 				return;
3856 			desc--;
3857 		}
3858 
3859 		tx_entry = &txq->sw_ring[txq->next_to_clean];
3860 
3861 		for (i = 0; i < txq->tx_rs_thresh; i++)
3862 			rte_prefetch0((tx_entry + i)->mbuf);
3863 		for (i = 0; i < txq->tx_rs_thresh; i++, tx_entry++) {
3864 			rte_mempool_put(tx_entry->mbuf->pool, tx_entry->mbuf);
3865 			tx_entry->mbuf = NULL;
3866 		}
3867 
3868 		txq->next_to_clean = (tx_next_clean + 1) % txq->nb_tx_desc;
3869 		txq->tx_bd_ready += txq->tx_rs_thresh;
3870 	}
3871 }
3872 
3873 static inline void
3874 hns3_tx_backup_1mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts)
3875 {
3876 	tx_entry->mbuf = pkts[0];
3877 }
3878 
3879 static inline void
3880 hns3_tx_backup_4mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts)
3881 {
3882 	hns3_tx_backup_1mbuf(&tx_entry[0], &pkts[0]);
3883 	hns3_tx_backup_1mbuf(&tx_entry[1], &pkts[1]);
3884 	hns3_tx_backup_1mbuf(&tx_entry[2], &pkts[2]);
3885 	hns3_tx_backup_1mbuf(&tx_entry[3], &pkts[3]);
3886 }
3887 
3888 static inline void
3889 hns3_tx_setup_4bd(struct hns3_desc *txdp, struct rte_mbuf **pkts)
3890 {
3891 #define PER_LOOP_NUM	4
3892 	const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B);
3893 	uint64_t dma_addr;
3894 	uint32_t i;
3895 
3896 	for (i = 0; i < PER_LOOP_NUM; i++, txdp++, pkts++) {
3897 		dma_addr = rte_mbuf_data_iova(*pkts);
3898 		txdp->addr = rte_cpu_to_le_64(dma_addr);
3899 		txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len);
3900 		txdp->tx.paylen_fd_dop_ol4cs = 0;
3901 		txdp->tx.type_cs_vlan_tso_len = 0;
3902 		txdp->tx.ol_type_vlan_len_msec = 0;
3903 		txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag);
3904 	}
3905 }
3906 
3907 static inline void
3908 hns3_tx_setup_1bd(struct hns3_desc *txdp, struct rte_mbuf **pkts)
3909 {
3910 	const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B);
3911 	uint64_t dma_addr;
3912 
3913 	dma_addr = rte_mbuf_data_iova(*pkts);
3914 	txdp->addr = rte_cpu_to_le_64(dma_addr);
3915 	txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len);
3916 	txdp->tx.paylen_fd_dop_ol4cs = 0;
3917 	txdp->tx.type_cs_vlan_tso_len = 0;
3918 	txdp->tx.ol_type_vlan_len_msec = 0;
3919 	txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag);
3920 }
3921 
3922 static inline void
3923 hns3_tx_fill_hw_ring(struct hns3_tx_queue *txq,
3924 		     struct rte_mbuf **pkts,
3925 		     uint16_t nb_pkts)
3926 {
3927 #define PER_LOOP_NUM	4
3928 #define PER_LOOP_MASK	(PER_LOOP_NUM - 1)
3929 	struct hns3_desc *txdp = &txq->tx_ring[txq->next_to_use];
3930 	struct hns3_entry *tx_entry = &txq->sw_ring[txq->next_to_use];
3931 	const uint32_t mainpart = (nb_pkts & ((uint32_t)~PER_LOOP_MASK));
3932 	const uint32_t leftover = (nb_pkts & ((uint32_t)PER_LOOP_MASK));
3933 	uint32_t i;
3934 
3935 	for (i = 0; i < mainpart; i += PER_LOOP_NUM) {
3936 		hns3_tx_backup_4mbuf(tx_entry + i, pkts + i);
3937 		hns3_tx_setup_4bd(txdp + i, pkts + i);
3938 
3939 		/* Increment bytes counter */
3940 		uint32_t j;
3941 		for (j = 0; j < PER_LOOP_NUM; j++)
3942 			txq->basic_stats.bytes += pkts[i + j]->pkt_len;
3943 	}
3944 	if (unlikely(leftover > 0)) {
3945 		for (i = 0; i < leftover; i++) {
3946 			hns3_tx_backup_1mbuf(tx_entry + mainpart + i,
3947 					     pkts + mainpart + i);
3948 			hns3_tx_setup_1bd(txdp + mainpart + i,
3949 					  pkts + mainpart + i);
3950 
3951 			/* Increment bytes counter */
3952 			txq->basic_stats.bytes += pkts[mainpart + i]->pkt_len;
3953 		}
3954 	}
3955 }
3956 
3957 uint16_t
3958 hns3_xmit_pkts_simple(void *tx_queue,
3959 		      struct rte_mbuf **tx_pkts,
3960 		      uint16_t nb_pkts)
3961 {
3962 	struct hns3_tx_queue *txq = tx_queue;
3963 	uint16_t nb_tx = 0;
3964 
3965 	hns3_tx_free_buffer_simple(txq);
3966 
3967 	nb_pkts = RTE_MIN(txq->tx_bd_ready, nb_pkts);
3968 	if (unlikely(nb_pkts == 0)) {
3969 		if (txq->tx_bd_ready == 0)
3970 			txq->dfx_stats.queue_full_cnt++;
3971 		return 0;
3972 	}
3973 
3974 	txq->tx_bd_ready -= nb_pkts;
3975 	if (txq->next_to_use + nb_pkts > txq->nb_tx_desc) {
3976 		nb_tx = txq->nb_tx_desc - txq->next_to_use;
3977 		hns3_tx_fill_hw_ring(txq, tx_pkts, nb_tx);
3978 		txq->next_to_use = 0;
3979 	}
3980 
3981 	hns3_tx_fill_hw_ring(txq, tx_pkts + nb_tx, nb_pkts - nb_tx);
3982 	txq->next_to_use += nb_pkts - nb_tx;
3983 
3984 	hns3_write_reg_opt(txq->io_tail_reg, nb_pkts);
3985 
3986 	return nb_pkts;
3987 }
3988 
3989 uint16_t
3990 hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
3991 {
3992 	struct hns3_tx_queue *txq = tx_queue;
3993 	struct hns3_entry *tx_bak_pkt;
3994 	struct hns3_desc *tx_ring;
3995 	struct rte_mbuf *tx_pkt;
3996 	struct rte_mbuf *m_seg;
3997 	struct hns3_desc *desc;
3998 	uint32_t nb_hold = 0;
3999 	uint16_t tx_next_use;
4000 	uint16_t tx_pkt_num;
4001 	uint16_t tx_bd_max;
4002 	uint16_t nb_buf;
4003 	uint16_t nb_tx;
4004 	uint16_t i;
4005 
4006 	/* free useless buffer */
4007 	hns3_tx_free_useless_buffer(txq);
4008 
4009 	tx_next_use   = txq->next_to_use;
4010 	tx_bd_max     = txq->nb_tx_desc;
4011 	tx_pkt_num = nb_pkts;
4012 	tx_ring = txq->tx_ring;
4013 
4014 	/* send packets */
4015 	tx_bak_pkt = &txq->sw_ring[tx_next_use];
4016 	for (nb_tx = 0; nb_tx < tx_pkt_num; nb_tx++) {
4017 		tx_pkt = *tx_pkts++;
4018 
4019 		nb_buf = tx_pkt->nb_segs;
4020 
4021 		if (nb_buf > txq->tx_bd_ready) {
4022 			txq->dfx_stats.queue_full_cnt++;
4023 			if (nb_tx == 0)
4024 				return 0;
4025 
4026 			goto end_of_tx;
4027 		}
4028 
4029 		/*
4030 		 * If packet length is less than minimum packet length supported
4031 		 * by hardware in Tx direction, driver need to pad it to avoid
4032 		 * error.
4033 		 */
4034 		if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) <
4035 						txq->min_tx_pkt_len)) {
4036 			uint16_t add_len;
4037 			char *appended;
4038 
4039 			add_len = txq->min_tx_pkt_len -
4040 					 rte_pktmbuf_pkt_len(tx_pkt);
4041 			appended = rte_pktmbuf_append(tx_pkt, add_len);
4042 			if (appended == NULL) {
4043 				txq->dfx_stats.pkt_padding_fail_cnt++;
4044 				break;
4045 			}
4046 
4047 			memset(appended, 0, add_len);
4048 		}
4049 
4050 		m_seg = tx_pkt;
4051 
4052 		if (hns3_check_non_tso_pkt(nb_buf, &m_seg, tx_pkt, txq))
4053 			goto end_of_tx;
4054 
4055 		if (hns3_parse_cksum(txq, tx_next_use, m_seg))
4056 			goto end_of_tx;
4057 
4058 		i = 0;
4059 		desc = &tx_ring[tx_next_use];
4060 
4061 		/*
4062 		 * If the packet is divided into multiple Tx Buffer Descriptors,
4063 		 * only need to fill vlan, paylen and tso into the first Tx
4064 		 * Buffer Descriptor.
4065 		 */
4066 		hns3_fill_first_desc(txq, desc, m_seg);
4067 
4068 		do {
4069 			desc = &tx_ring[tx_next_use];
4070 			/*
4071 			 * Fill valid bits, DMA address and data length for each
4072 			 * Tx Buffer Descriptor.
4073 			 */
4074 			hns3_fill_per_desc(desc, m_seg);
4075 			tx_bak_pkt->mbuf = m_seg;
4076 			m_seg = m_seg->next;
4077 			tx_next_use++;
4078 			tx_bak_pkt++;
4079 			if (tx_next_use >= tx_bd_max) {
4080 				tx_next_use = 0;
4081 				tx_bak_pkt = txq->sw_ring;
4082 			}
4083 
4084 			i++;
4085 		} while (m_seg != NULL);
4086 
4087 		/* Add end flag for the last Tx Buffer Descriptor */
4088 		desc->tx.tp_fe_sc_vld_ra_ri |=
4089 				 rte_cpu_to_le_16(BIT(HNS3_TXD_FE_B));
4090 
4091 		/* Increment bytes counter */
4092 		txq->basic_stats.bytes += tx_pkt->pkt_len;
4093 		nb_hold += i;
4094 		txq->next_to_use = tx_next_use;
4095 		txq->tx_bd_ready -= i;
4096 	}
4097 
4098 end_of_tx:
4099 
4100 	if (likely(nb_tx))
4101 		hns3_write_reg_opt(txq->io_tail_reg, nb_hold);
4102 
4103 	return nb_tx;
4104 }
4105 
4106 int __rte_weak
4107 hns3_tx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
4108 {
4109 	return -ENOTSUP;
4110 }
4111 
4112 uint16_t __rte_weak
4113 hns3_xmit_pkts_vec(__rte_unused void *tx_queue,
4114 		   __rte_unused struct rte_mbuf **tx_pkts,
4115 		   __rte_unused uint16_t nb_pkts)
4116 {
4117 	return 0;
4118 }
4119 
4120 uint16_t __rte_weak
4121 hns3_xmit_pkts_vec_sve(void __rte_unused * tx_queue,
4122 		       struct rte_mbuf __rte_unused **tx_pkts,
4123 		       uint16_t __rte_unused nb_pkts)
4124 {
4125 	return 0;
4126 }
4127 
4128 int
4129 hns3_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
4130 		       struct rte_eth_burst_mode *mode)
4131 {
4132 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
4133 	const char *info = NULL;
4134 
4135 	if (pkt_burst == hns3_xmit_pkts_simple)
4136 		info = "Scalar Simple";
4137 	else if (pkt_burst == hns3_xmit_pkts)
4138 		info = "Scalar";
4139 	else if (pkt_burst == hns3_xmit_pkts_vec)
4140 		info = "Vector Neon";
4141 	else if (pkt_burst == hns3_xmit_pkts_vec_sve)
4142 		info = "Vector Sve";
4143 
4144 	if (info == NULL)
4145 		return -EINVAL;
4146 
4147 	snprintf(mode->info, sizeof(mode->info), "%s", info);
4148 
4149 	return 0;
4150 }
4151 
4152 static eth_tx_burst_t
4153 hns3_get_tx_function(struct rte_eth_dev *dev, eth_tx_prep_t *prep)
4154 {
4155 	uint64_t offloads = dev->data->dev_conf.txmode.offloads;
4156 	struct hns3_adapter *hns = dev->data->dev_private;
4157 	bool vec_allowed, sve_allowed, simple_allowed;
4158 
4159 	vec_allowed = hns->tx_vec_allowed &&
4160 		      hns3_tx_check_vec_support(dev) == 0;
4161 	sve_allowed = vec_allowed && hns3_check_sve_support();
4162 	simple_allowed = hns->tx_simple_allowed &&
4163 			 offloads == (offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE);
4164 
4165 	*prep = NULL;
4166 
4167 	if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_VEC && vec_allowed)
4168 		return hns3_xmit_pkts_vec;
4169 	if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_SVE && sve_allowed)
4170 		return hns3_xmit_pkts_vec_sve;
4171 	if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_SIMPLE && simple_allowed)
4172 		return hns3_xmit_pkts_simple;
4173 	if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_COMMON) {
4174 		*prep = hns3_prep_pkts;
4175 		return hns3_xmit_pkts;
4176 	}
4177 
4178 	if (vec_allowed)
4179 		return hns3_xmit_pkts_vec;
4180 	if (simple_allowed)
4181 		return hns3_xmit_pkts_simple;
4182 
4183 	*prep = hns3_prep_pkts;
4184 	return hns3_xmit_pkts;
4185 }
4186 
4187 static uint16_t
4188 hns3_dummy_rxtx_burst(void *dpdk_txq __rte_unused,
4189 		      struct rte_mbuf **pkts __rte_unused,
4190 		      uint16_t pkts_n __rte_unused)
4191 {
4192 	return 0;
4193 }
4194 
4195 void hns3_set_rxtx_function(struct rte_eth_dev *eth_dev)
4196 {
4197 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4198 	eth_tx_prep_t prep = NULL;
4199 
4200 	if (hns->hw.adapter_state == HNS3_NIC_STARTED &&
4201 	    __atomic_load_n(&hns->hw.reset.resetting, __ATOMIC_RELAXED) == 0) {
4202 		eth_dev->rx_pkt_burst = hns3_get_rx_function(eth_dev);
4203 		eth_dev->rx_descriptor_status = hns3_dev_rx_descriptor_status;
4204 		eth_dev->tx_pkt_burst = hns3_get_tx_function(eth_dev, &prep);
4205 		eth_dev->tx_pkt_prepare = prep;
4206 		eth_dev->tx_descriptor_status = hns3_dev_tx_descriptor_status;
4207 	} else {
4208 		eth_dev->rx_pkt_burst = hns3_dummy_rxtx_burst;
4209 		eth_dev->tx_pkt_burst = hns3_dummy_rxtx_burst;
4210 		eth_dev->tx_pkt_prepare = hns3_dummy_rxtx_burst;
4211 	}
4212 }
4213 
4214 void
4215 hns3_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
4216 		  struct rte_eth_rxq_info *qinfo)
4217 {
4218 	struct hns3_rx_queue *rxq = dev->data->rx_queues[queue_id];
4219 
4220 	qinfo->mp = rxq->mb_pool;
4221 	qinfo->nb_desc = rxq->nb_rx_desc;
4222 	qinfo->scattered_rx = dev->data->scattered_rx;
4223 	/* Report the HW Rx buffer length to user */
4224 	qinfo->rx_buf_size = rxq->rx_buf_len;
4225 
4226 	/*
4227 	 * If there are no available Rx buffer descriptors, incoming packets
4228 	 * are always dropped by hardware based on hns3 network engine.
4229 	 */
4230 	qinfo->conf.rx_drop_en = 1;
4231 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
4232 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
4233 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
4234 }
4235 
4236 void
4237 hns3_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
4238 		  struct rte_eth_txq_info *qinfo)
4239 {
4240 	struct hns3_tx_queue *txq = dev->data->tx_queues[queue_id];
4241 
4242 	qinfo->nb_desc = txq->nb_tx_desc;
4243 	qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
4244 	qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
4245 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
4246 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
4247 }
4248 
4249 int
4250 hns3_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
4251 {
4252 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4253 	struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
4254 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4255 	int ret;
4256 
4257 	if (!hns3_dev_indep_txrx_supported(hw))
4258 		return -ENOTSUP;
4259 
4260 	ret = hns3_reset_queue(hw, rx_queue_id, HNS3_RING_TYPE_RX);
4261 	if (ret) {
4262 		hns3_err(hw, "fail to reset Rx queue %u, ret = %d.",
4263 			 rx_queue_id, ret);
4264 		return ret;
4265 	}
4266 
4267 	ret = hns3_init_rxq(hns, rx_queue_id);
4268 	if (ret) {
4269 		hns3_err(hw, "fail to init Rx queue %u, ret = %d.",
4270 			 rx_queue_id, ret);
4271 		return ret;
4272 	}
4273 
4274 	hns3_enable_rxq(rxq, true);
4275 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
4276 
4277 	return ret;
4278 }
4279 
4280 static void
4281 hns3_reset_sw_rxq(struct hns3_rx_queue *rxq)
4282 {
4283 	rxq->next_to_use = 0;
4284 	rxq->rx_rearm_start = 0;
4285 	rxq->rx_free_hold = 0;
4286 	rxq->rx_rearm_nb = 0;
4287 	rxq->pkt_first_seg = NULL;
4288 	rxq->pkt_last_seg = NULL;
4289 	memset(&rxq->rx_ring[0], 0, rxq->nb_rx_desc * sizeof(struct hns3_desc));
4290 	hns3_rxq_vec_setup(rxq);
4291 }
4292 
4293 int
4294 hns3_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
4295 {
4296 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4297 	struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
4298 
4299 	if (!hns3_dev_indep_txrx_supported(hw))
4300 		return -ENOTSUP;
4301 
4302 	hns3_enable_rxq(rxq, false);
4303 
4304 	hns3_rx_queue_release_mbufs(rxq);
4305 
4306 	hns3_reset_sw_rxq(rxq);
4307 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
4308 
4309 	return 0;
4310 }
4311 
4312 int
4313 hns3_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
4314 {
4315 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4316 	struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
4317 	int ret;
4318 
4319 	if (!hns3_dev_indep_txrx_supported(hw))
4320 		return -ENOTSUP;
4321 
4322 	ret = hns3_reset_queue(hw, tx_queue_id, HNS3_RING_TYPE_TX);
4323 	if (ret) {
4324 		hns3_err(hw, "fail to reset Tx queue %u, ret = %d.",
4325 			 tx_queue_id, ret);
4326 		return ret;
4327 	}
4328 
4329 	hns3_init_txq(txq);
4330 	hns3_enable_txq(txq, true);
4331 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
4332 
4333 	return ret;
4334 }
4335 
4336 int
4337 hns3_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
4338 {
4339 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4340 	struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
4341 
4342 	if (!hns3_dev_indep_txrx_supported(hw))
4343 		return -ENOTSUP;
4344 
4345 	hns3_enable_txq(txq, false);
4346 	hns3_tx_queue_release_mbufs(txq);
4347 	/*
4348 	 * All the mbufs in sw_ring are released and all the pointers in sw_ring
4349 	 * are set to NULL. If this queue is still called by upper layer,
4350 	 * residual SW status of this txq may cause these pointers in sw_ring
4351 	 * which have been set to NULL to be released again. To avoid it,
4352 	 * reinit the txq.
4353 	 */
4354 	hns3_init_txq(txq);
4355 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
4356 
4357 	return 0;
4358 }
4359 
4360 static int
4361 hns3_tx_done_cleanup_full(struct hns3_tx_queue *txq, uint32_t free_cnt)
4362 {
4363 	uint16_t next_to_clean = txq->next_to_clean;
4364 	uint16_t next_to_use   = txq->next_to_use;
4365 	uint16_t tx_bd_ready   = txq->tx_bd_ready;
4366 	struct hns3_entry *tx_pkt = &txq->sw_ring[next_to_clean];
4367 	struct hns3_desc *desc = &txq->tx_ring[next_to_clean];
4368 	uint32_t idx;
4369 
4370 	if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
4371 		free_cnt = txq->nb_tx_desc;
4372 
4373 	for (idx = 0; idx < free_cnt; idx++) {
4374 		if (next_to_clean == next_to_use)
4375 			break;
4376 
4377 		if (desc->tx.tp_fe_sc_vld_ra_ri &
4378 		    rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))
4379 			break;
4380 
4381 		if (tx_pkt->mbuf != NULL) {
4382 			rte_pktmbuf_free_seg(tx_pkt->mbuf);
4383 			tx_pkt->mbuf = NULL;
4384 		}
4385 
4386 		next_to_clean++;
4387 		tx_bd_ready++;
4388 		tx_pkt++;
4389 		desc++;
4390 		if (next_to_clean == txq->nb_tx_desc) {
4391 			tx_pkt = txq->sw_ring;
4392 			desc = txq->tx_ring;
4393 			next_to_clean = 0;
4394 		}
4395 	}
4396 
4397 	if (idx > 0) {
4398 		txq->next_to_clean = next_to_clean;
4399 		txq->tx_bd_ready = tx_bd_ready;
4400 	}
4401 
4402 	return (int)idx;
4403 }
4404 
4405 int
4406 hns3_tx_done_cleanup(void *txq, uint32_t free_cnt)
4407 {
4408 	struct hns3_tx_queue *q = (struct hns3_tx_queue *)txq;
4409 	struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
4410 
4411 	if (dev->tx_pkt_burst == hns3_xmit_pkts)
4412 		return hns3_tx_done_cleanup_full(q, free_cnt);
4413 	else if (dev->tx_pkt_burst == hns3_dummy_rxtx_burst)
4414 		return 0;
4415 	else
4416 		return -ENOTSUP;
4417 }
4418 
4419 int
4420 hns3_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
4421 {
4422 	volatile struct hns3_desc *rxdp;
4423 	struct hns3_rx_queue *rxq;
4424 	struct rte_eth_dev *dev;
4425 	uint32_t bd_base_info;
4426 	uint16_t desc_id;
4427 
4428 	rxq = (struct hns3_rx_queue *)rx_queue;
4429 	if (offset >= rxq->nb_rx_desc)
4430 		return -EINVAL;
4431 
4432 	desc_id = (rxq->next_to_use + offset) % rxq->nb_rx_desc;
4433 	rxdp = &rxq->rx_ring[desc_id];
4434 	bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
4435 	dev = &rte_eth_devices[rxq->port_id];
4436 	if (dev->rx_pkt_burst == hns3_recv_pkts ||
4437 	    dev->rx_pkt_burst == hns3_recv_scattered_pkts) {
4438 		if (offset >= rxq->nb_rx_desc - rxq->rx_free_hold)
4439 			return RTE_ETH_RX_DESC_UNAVAIL;
4440 	} else if (dev->rx_pkt_burst == hns3_recv_pkts_vec ||
4441 		   dev->rx_pkt_burst == hns3_recv_pkts_vec_sve){
4442 		if (offset >= rxq->nb_rx_desc - rxq->rx_rearm_nb)
4443 			return RTE_ETH_RX_DESC_UNAVAIL;
4444 	} else {
4445 		return RTE_ETH_RX_DESC_UNAVAIL;
4446 	}
4447 
4448 	if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
4449 		return RTE_ETH_RX_DESC_AVAIL;
4450 	else
4451 		return RTE_ETH_RX_DESC_DONE;
4452 }
4453 
4454 int
4455 hns3_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
4456 {
4457 	volatile struct hns3_desc *txdp;
4458 	struct hns3_tx_queue *txq;
4459 	struct rte_eth_dev *dev;
4460 	uint16_t desc_id;
4461 
4462 	txq = (struct hns3_tx_queue *)tx_queue;
4463 	if (offset >= txq->nb_tx_desc)
4464 		return -EINVAL;
4465 
4466 	dev = &rte_eth_devices[txq->port_id];
4467 	if (dev->tx_pkt_burst != hns3_xmit_pkts_simple &&
4468 	    dev->tx_pkt_burst != hns3_xmit_pkts &&
4469 	    dev->tx_pkt_burst != hns3_xmit_pkts_vec_sve &&
4470 	    dev->tx_pkt_burst != hns3_xmit_pkts_vec)
4471 		return RTE_ETH_TX_DESC_UNAVAIL;
4472 
4473 	desc_id = (txq->next_to_use + offset) % txq->nb_tx_desc;
4474 	txdp = &txq->tx_ring[desc_id];
4475 	if (txdp->tx.tp_fe_sc_vld_ra_ri & rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))
4476 		return RTE_ETH_TX_DESC_FULL;
4477 	else
4478 		return RTE_ETH_TX_DESC_DONE;
4479 }
4480 
4481 uint32_t
4482 hns3_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
4483 {
4484 	/*
4485 	 * Number of BDs that have been processed by the driver
4486 	 * but have not been notified to the hardware.
4487 	 */
4488 	uint32_t driver_hold_bd_num;
4489 	struct hns3_rx_queue *rxq;
4490 	uint32_t fbd_num;
4491 
4492 	rxq = dev->data->rx_queues[rx_queue_id];
4493 	fbd_num = hns3_read_dev(rxq, HNS3_RING_RX_FBDNUM_REG);
4494 	if (dev->rx_pkt_burst == hns3_recv_pkts_vec ||
4495 	    dev->rx_pkt_burst == hns3_recv_pkts_vec_sve)
4496 		driver_hold_bd_num = rxq->rx_rearm_nb;
4497 	else
4498 		driver_hold_bd_num = rxq->rx_free_hold;
4499 
4500 	if (fbd_num <= driver_hold_bd_num)
4501 		return 0;
4502 	else
4503 		return fbd_num - driver_hold_bd_num;
4504 }
4505 
4506 void
4507 hns3_enable_rxd_adv_layout(struct hns3_hw *hw)
4508 {
4509 	/*
4510 	 * If the hardware support rxd advanced layout, then driver enable it
4511 	 * default.
4512 	 */
4513 	if (hns3_dev_rxd_adv_layout_supported(hw))
4514 		hns3_write_dev(hw, HNS3_RXD_ADV_LAYOUT_EN_REG, 1);
4515 }
4516