1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2018-2019 Hisilicon Limited. 3 */ 4 5 #include <rte_bus_pci.h> 6 #include <rte_common.h> 7 #include <rte_cycles.h> 8 #include <rte_vxlan.h> 9 #include <ethdev_driver.h> 10 #include <rte_io.h> 11 #include <rte_net.h> 12 #include <rte_malloc.h> 13 #if defined(RTE_ARCH_ARM64) && defined(__ARM_FEATURE_SVE) 14 #include <rte_cpuflags.h> 15 #endif 16 17 #include "hns3_ethdev.h" 18 #include "hns3_rxtx.h" 19 #include "hns3_regs.h" 20 #include "hns3_logs.h" 21 22 #define HNS3_CFG_DESC_NUM(num) ((num) / 8 - 1) 23 #define HNS3_RX_RING_PREFETCTH_MASK 3 24 25 static void 26 hns3_rx_queue_release_mbufs(struct hns3_rx_queue *rxq) 27 { 28 uint16_t i; 29 30 /* Note: Fake rx queue will not enter here */ 31 if (rxq->sw_ring == NULL) 32 return; 33 34 if (rxq->rx_rearm_nb == 0) { 35 for (i = 0; i < rxq->nb_rx_desc; i++) { 36 if (rxq->sw_ring[i].mbuf != NULL) { 37 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); 38 rxq->sw_ring[i].mbuf = NULL; 39 } 40 } 41 } else { 42 for (i = rxq->next_to_use; 43 i != rxq->rx_rearm_start; 44 i = (i + 1) % rxq->nb_rx_desc) { 45 if (rxq->sw_ring[i].mbuf != NULL) { 46 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); 47 rxq->sw_ring[i].mbuf = NULL; 48 } 49 } 50 } 51 52 for (i = 0; i < rxq->bulk_mbuf_num; i++) 53 rte_pktmbuf_free_seg(rxq->bulk_mbuf[i]); 54 rxq->bulk_mbuf_num = 0; 55 56 if (rxq->pkt_first_seg) { 57 rte_pktmbuf_free(rxq->pkt_first_seg); 58 rxq->pkt_first_seg = NULL; 59 } 60 } 61 62 static void 63 hns3_tx_queue_release_mbufs(struct hns3_tx_queue *txq) 64 { 65 uint16_t i; 66 67 /* Note: Fake tx queue will not enter here */ 68 if (txq->sw_ring) { 69 for (i = 0; i < txq->nb_tx_desc; i++) { 70 if (txq->sw_ring[i].mbuf) { 71 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); 72 txq->sw_ring[i].mbuf = NULL; 73 } 74 } 75 } 76 } 77 78 static void 79 hns3_rx_queue_release(void *queue) 80 { 81 struct hns3_rx_queue *rxq = queue; 82 if (rxq) { 83 hns3_rx_queue_release_mbufs(rxq); 84 if (rxq->mz) 85 rte_memzone_free(rxq->mz); 86 if (rxq->sw_ring) 87 rte_free(rxq->sw_ring); 88 rte_free(rxq); 89 } 90 } 91 92 static void 93 hns3_tx_queue_release(void *queue) 94 { 95 struct hns3_tx_queue *txq = queue; 96 if (txq) { 97 hns3_tx_queue_release_mbufs(txq); 98 if (txq->mz) 99 rte_memzone_free(txq->mz); 100 if (txq->sw_ring) 101 rte_free(txq->sw_ring); 102 if (txq->free) 103 rte_free(txq->free); 104 rte_free(txq); 105 } 106 } 107 108 void 109 hns3_dev_rx_queue_release(void *queue) 110 { 111 struct hns3_rx_queue *rxq = queue; 112 struct hns3_adapter *hns; 113 114 if (rxq == NULL) 115 return; 116 117 hns = rxq->hns; 118 rte_spinlock_lock(&hns->hw.lock); 119 hns3_rx_queue_release(queue); 120 rte_spinlock_unlock(&hns->hw.lock); 121 } 122 123 void 124 hns3_dev_tx_queue_release(void *queue) 125 { 126 struct hns3_tx_queue *txq = queue; 127 struct hns3_adapter *hns; 128 129 if (txq == NULL) 130 return; 131 132 hns = txq->hns; 133 rte_spinlock_lock(&hns->hw.lock); 134 hns3_tx_queue_release(queue); 135 rte_spinlock_unlock(&hns->hw.lock); 136 } 137 138 static void 139 hns3_fake_rx_queue_release(struct hns3_rx_queue *queue) 140 { 141 struct hns3_rx_queue *rxq = queue; 142 struct hns3_adapter *hns; 143 struct hns3_hw *hw; 144 uint16_t idx; 145 146 if (rxq == NULL) 147 return; 148 149 hns = rxq->hns; 150 hw = &hns->hw; 151 idx = rxq->queue_id; 152 if (hw->fkq_data.rx_queues[idx]) { 153 hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]); 154 hw->fkq_data.rx_queues[idx] = NULL; 155 } 156 157 /* free fake rx queue arrays */ 158 if (idx == (hw->fkq_data.nb_fake_rx_queues - 1)) { 159 hw->fkq_data.nb_fake_rx_queues = 0; 160 rte_free(hw->fkq_data.rx_queues); 161 hw->fkq_data.rx_queues = NULL; 162 } 163 } 164 165 static void 166 hns3_fake_tx_queue_release(struct hns3_tx_queue *queue) 167 { 168 struct hns3_tx_queue *txq = queue; 169 struct hns3_adapter *hns; 170 struct hns3_hw *hw; 171 uint16_t idx; 172 173 if (txq == NULL) 174 return; 175 176 hns = txq->hns; 177 hw = &hns->hw; 178 idx = txq->queue_id; 179 if (hw->fkq_data.tx_queues[idx]) { 180 hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]); 181 hw->fkq_data.tx_queues[idx] = NULL; 182 } 183 184 /* free fake tx queue arrays */ 185 if (idx == (hw->fkq_data.nb_fake_tx_queues - 1)) { 186 hw->fkq_data.nb_fake_tx_queues = 0; 187 rte_free(hw->fkq_data.tx_queues); 188 hw->fkq_data.tx_queues = NULL; 189 } 190 } 191 192 static void 193 hns3_free_rx_queues(struct rte_eth_dev *dev) 194 { 195 struct hns3_adapter *hns = dev->data->dev_private; 196 struct hns3_fake_queue_data *fkq_data; 197 struct hns3_hw *hw = &hns->hw; 198 uint16_t nb_rx_q; 199 uint16_t i; 200 201 nb_rx_q = hw->data->nb_rx_queues; 202 for (i = 0; i < nb_rx_q; i++) { 203 if (dev->data->rx_queues[i]) { 204 hns3_rx_queue_release(dev->data->rx_queues[i]); 205 dev->data->rx_queues[i] = NULL; 206 } 207 } 208 209 /* Free fake Rx queues */ 210 fkq_data = &hw->fkq_data; 211 for (i = 0; i < fkq_data->nb_fake_rx_queues; i++) { 212 if (fkq_data->rx_queues[i]) 213 hns3_fake_rx_queue_release(fkq_data->rx_queues[i]); 214 } 215 } 216 217 static void 218 hns3_free_tx_queues(struct rte_eth_dev *dev) 219 { 220 struct hns3_adapter *hns = dev->data->dev_private; 221 struct hns3_fake_queue_data *fkq_data; 222 struct hns3_hw *hw = &hns->hw; 223 uint16_t nb_tx_q; 224 uint16_t i; 225 226 nb_tx_q = hw->data->nb_tx_queues; 227 for (i = 0; i < nb_tx_q; i++) { 228 if (dev->data->tx_queues[i]) { 229 hns3_tx_queue_release(dev->data->tx_queues[i]); 230 dev->data->tx_queues[i] = NULL; 231 } 232 } 233 234 /* Free fake Tx queues */ 235 fkq_data = &hw->fkq_data; 236 for (i = 0; i < fkq_data->nb_fake_tx_queues; i++) { 237 if (fkq_data->tx_queues[i]) 238 hns3_fake_tx_queue_release(fkq_data->tx_queues[i]); 239 } 240 } 241 242 void 243 hns3_free_all_queues(struct rte_eth_dev *dev) 244 { 245 hns3_free_rx_queues(dev); 246 hns3_free_tx_queues(dev); 247 } 248 249 static int 250 hns3_alloc_rx_queue_mbufs(struct hns3_hw *hw, struct hns3_rx_queue *rxq) 251 { 252 struct rte_mbuf *mbuf; 253 uint64_t dma_addr; 254 uint16_t i; 255 256 for (i = 0; i < rxq->nb_rx_desc; i++) { 257 mbuf = rte_mbuf_raw_alloc(rxq->mb_pool); 258 if (unlikely(mbuf == NULL)) { 259 hns3_err(hw, "Failed to allocate RXD[%u] for rx queue!", 260 i); 261 hns3_rx_queue_release_mbufs(rxq); 262 return -ENOMEM; 263 } 264 265 rte_mbuf_refcnt_set(mbuf, 1); 266 mbuf->next = NULL; 267 mbuf->data_off = RTE_PKTMBUF_HEADROOM; 268 mbuf->nb_segs = 1; 269 mbuf->port = rxq->port_id; 270 271 rxq->sw_ring[i].mbuf = mbuf; 272 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf)); 273 rxq->rx_ring[i].addr = dma_addr; 274 rxq->rx_ring[i].rx.bd_base_info = 0; 275 } 276 277 return 0; 278 } 279 280 static int 281 hns3_buf_size2type(uint32_t buf_size) 282 { 283 int bd_size_type; 284 285 switch (buf_size) { 286 case 512: 287 bd_size_type = HNS3_BD_SIZE_512_TYPE; 288 break; 289 case 1024: 290 bd_size_type = HNS3_BD_SIZE_1024_TYPE; 291 break; 292 case 4096: 293 bd_size_type = HNS3_BD_SIZE_4096_TYPE; 294 break; 295 default: 296 bd_size_type = HNS3_BD_SIZE_2048_TYPE; 297 } 298 299 return bd_size_type; 300 } 301 302 static void 303 hns3_init_rx_queue_hw(struct hns3_rx_queue *rxq) 304 { 305 uint32_t rx_buf_len = rxq->rx_buf_len; 306 uint64_t dma_addr = rxq->rx_ring_phys_addr; 307 308 hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_L_REG, (uint32_t)dma_addr); 309 hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_H_REG, 310 (uint32_t)((dma_addr >> 31) >> 1)); 311 312 hns3_write_dev(rxq, HNS3_RING_RX_BD_LEN_REG, 313 hns3_buf_size2type(rx_buf_len)); 314 hns3_write_dev(rxq, HNS3_RING_RX_BD_NUM_REG, 315 HNS3_CFG_DESC_NUM(rxq->nb_rx_desc)); 316 } 317 318 static void 319 hns3_init_tx_queue_hw(struct hns3_tx_queue *txq) 320 { 321 uint64_t dma_addr = txq->tx_ring_phys_addr; 322 323 hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_L_REG, (uint32_t)dma_addr); 324 hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_H_REG, 325 (uint32_t)((dma_addr >> 31) >> 1)); 326 327 hns3_write_dev(txq, HNS3_RING_TX_BD_NUM_REG, 328 HNS3_CFG_DESC_NUM(txq->nb_tx_desc)); 329 } 330 331 void 332 hns3_update_all_queues_pvid_proc_en(struct hns3_hw *hw) 333 { 334 uint16_t nb_rx_q = hw->data->nb_rx_queues; 335 uint16_t nb_tx_q = hw->data->nb_tx_queues; 336 struct hns3_rx_queue *rxq; 337 struct hns3_tx_queue *txq; 338 bool pvid_en; 339 int i; 340 341 pvid_en = hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE; 342 for (i = 0; i < hw->cfg_max_queues; i++) { 343 if (i < nb_rx_q) { 344 rxq = hw->data->rx_queues[i]; 345 if (rxq != NULL) 346 rxq->pvid_sw_discard_en = pvid_en; 347 } 348 if (i < nb_tx_q) { 349 txq = hw->data->tx_queues[i]; 350 if (txq != NULL) 351 txq->pvid_sw_shift_en = pvid_en; 352 } 353 } 354 } 355 356 static void 357 hns3_stop_unused_queue(void *tqp_base, enum hns3_ring_type queue_type) 358 { 359 uint32_t reg_offset; 360 uint32_t reg; 361 362 reg_offset = queue_type == HNS3_RING_TYPE_TX ? 363 HNS3_RING_TX_EN_REG : HNS3_RING_RX_EN_REG; 364 reg = hns3_read_reg(tqp_base, reg_offset); 365 reg &= ~BIT(HNS3_RING_EN_B); 366 hns3_write_reg(tqp_base, reg_offset, reg); 367 } 368 369 void 370 hns3_enable_all_queues(struct hns3_hw *hw, bool en) 371 { 372 uint16_t nb_rx_q = hw->data->nb_rx_queues; 373 uint16_t nb_tx_q = hw->data->nb_tx_queues; 374 struct hns3_rx_queue *rxq; 375 struct hns3_tx_queue *txq; 376 uint32_t rcb_reg; 377 void *tqp_base; 378 int i; 379 380 for (i = 0; i < hw->cfg_max_queues; i++) { 381 if (hns3_dev_indep_txrx_supported(hw)) { 382 rxq = i < nb_rx_q ? hw->data->rx_queues[i] : NULL; 383 txq = i < nb_tx_q ? hw->data->tx_queues[i] : NULL; 384 385 tqp_base = (void *)((char *)hw->io_base + 386 hns3_get_tqp_reg_offset(i)); 387 /* 388 * If queue struct is not initialized, it means the 389 * related HW ring has not been initialized yet. 390 * So, these queues should be disabled before enable 391 * the tqps to avoid a HW exception since the queues 392 * are enabled by default. 393 */ 394 if (rxq == NULL) 395 hns3_stop_unused_queue(tqp_base, 396 HNS3_RING_TYPE_RX); 397 if (txq == NULL) 398 hns3_stop_unused_queue(tqp_base, 399 HNS3_RING_TYPE_TX); 400 } else { 401 rxq = i < nb_rx_q ? hw->data->rx_queues[i] : 402 hw->fkq_data.rx_queues[i - nb_rx_q]; 403 404 tqp_base = rxq->io_base; 405 } 406 /* 407 * This is the master switch that used to control the enabling 408 * of a pair of Tx and Rx queues. Both the Rx and Tx point to 409 * the same register 410 */ 411 rcb_reg = hns3_read_reg(tqp_base, HNS3_RING_EN_REG); 412 if (en) 413 rcb_reg |= BIT(HNS3_RING_EN_B); 414 else 415 rcb_reg &= ~BIT(HNS3_RING_EN_B); 416 hns3_write_reg(tqp_base, HNS3_RING_EN_REG, rcb_reg); 417 } 418 } 419 420 static void 421 hns3_enable_txq(struct hns3_tx_queue *txq, bool en) 422 { 423 struct hns3_hw *hw = &txq->hns->hw; 424 uint32_t reg; 425 426 if (hns3_dev_indep_txrx_supported(hw)) { 427 reg = hns3_read_dev(txq, HNS3_RING_TX_EN_REG); 428 if (en) 429 reg |= BIT(HNS3_RING_EN_B); 430 else 431 reg &= ~BIT(HNS3_RING_EN_B); 432 hns3_write_dev(txq, HNS3_RING_TX_EN_REG, reg); 433 } 434 txq->enabled = en; 435 } 436 437 static void 438 hns3_enable_rxq(struct hns3_rx_queue *rxq, bool en) 439 { 440 struct hns3_hw *hw = &rxq->hns->hw; 441 uint32_t reg; 442 443 if (hns3_dev_indep_txrx_supported(hw)) { 444 reg = hns3_read_dev(rxq, HNS3_RING_RX_EN_REG); 445 if (en) 446 reg |= BIT(HNS3_RING_EN_B); 447 else 448 reg &= ~BIT(HNS3_RING_EN_B); 449 hns3_write_dev(rxq, HNS3_RING_RX_EN_REG, reg); 450 } 451 rxq->enabled = en; 452 } 453 454 int 455 hns3_start_all_txqs(struct rte_eth_dev *dev) 456 { 457 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 458 struct hns3_tx_queue *txq; 459 uint16_t i, j; 460 461 for (i = 0; i < dev->data->nb_tx_queues; i++) { 462 txq = hw->data->tx_queues[i]; 463 if (!txq) { 464 hns3_err(hw, "Tx queue %u not available or setup.", i); 465 goto start_txqs_fail; 466 } 467 /* 468 * Tx queue is enabled by default. Therefore, the Tx queues 469 * needs to be disabled when deferred_start is set. There is 470 * another master switch used to control the enabling of a pair 471 * of Tx and Rx queues. And the master switch is disabled by 472 * default. 473 */ 474 if (txq->tx_deferred_start) 475 hns3_enable_txq(txq, false); 476 else 477 hns3_enable_txq(txq, true); 478 } 479 return 0; 480 481 start_txqs_fail: 482 for (j = 0; j < i; j++) { 483 txq = hw->data->tx_queues[j]; 484 hns3_enable_txq(txq, false); 485 } 486 return -EINVAL; 487 } 488 489 int 490 hns3_start_all_rxqs(struct rte_eth_dev *dev) 491 { 492 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 493 struct hns3_rx_queue *rxq; 494 uint16_t i, j; 495 496 for (i = 0; i < dev->data->nb_rx_queues; i++) { 497 rxq = hw->data->rx_queues[i]; 498 if (!rxq) { 499 hns3_err(hw, "Rx queue %u not available or setup.", i); 500 goto start_rxqs_fail; 501 } 502 /* 503 * Rx queue is enabled by default. Therefore, the Rx queues 504 * needs to be disabled when deferred_start is set. There is 505 * another master switch used to control the enabling of a pair 506 * of Tx and Rx queues. And the master switch is disabled by 507 * default. 508 */ 509 if (rxq->rx_deferred_start) 510 hns3_enable_rxq(rxq, false); 511 else 512 hns3_enable_rxq(rxq, true); 513 } 514 return 0; 515 516 start_rxqs_fail: 517 for (j = 0; j < i; j++) { 518 rxq = hw->data->rx_queues[j]; 519 hns3_enable_rxq(rxq, false); 520 } 521 return -EINVAL; 522 } 523 524 void 525 hns3_restore_tqp_enable_state(struct hns3_hw *hw) 526 { 527 struct hns3_rx_queue *rxq; 528 struct hns3_tx_queue *txq; 529 uint16_t i; 530 531 for (i = 0; i < hw->data->nb_rx_queues; i++) { 532 rxq = hw->data->rx_queues[i]; 533 if (rxq != NULL) 534 hns3_enable_rxq(rxq, rxq->enabled); 535 } 536 537 for (i = 0; i < hw->data->nb_tx_queues; i++) { 538 txq = hw->data->tx_queues[i]; 539 if (txq != NULL) 540 hns3_enable_txq(txq, txq->enabled); 541 } 542 } 543 544 void 545 hns3_stop_all_txqs(struct rte_eth_dev *dev) 546 { 547 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 548 struct hns3_tx_queue *txq; 549 uint16_t i; 550 551 for (i = 0; i < dev->data->nb_tx_queues; i++) { 552 txq = hw->data->tx_queues[i]; 553 if (!txq) 554 continue; 555 hns3_enable_txq(txq, false); 556 } 557 } 558 559 static int 560 hns3_tqp_enable(struct hns3_hw *hw, uint16_t queue_id, bool enable) 561 { 562 struct hns3_cfg_com_tqp_queue_cmd *req; 563 struct hns3_cmd_desc desc; 564 int ret; 565 566 req = (struct hns3_cfg_com_tqp_queue_cmd *)desc.data; 567 568 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_COM_TQP_QUEUE, false); 569 req->tqp_id = rte_cpu_to_le_16(queue_id); 570 req->stream_id = 0; 571 hns3_set_bit(req->enable, HNS3_TQP_ENABLE_B, enable ? 1 : 0); 572 573 ret = hns3_cmd_send(hw, &desc, 1); 574 if (ret) 575 hns3_err(hw, "TQP enable fail, ret = %d", ret); 576 577 return ret; 578 } 579 580 static int 581 hns3_send_reset_tqp_cmd(struct hns3_hw *hw, uint16_t queue_id, bool enable) 582 { 583 struct hns3_reset_tqp_queue_cmd *req; 584 struct hns3_cmd_desc desc; 585 int ret; 586 587 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, false); 588 589 req = (struct hns3_reset_tqp_queue_cmd *)desc.data; 590 req->tqp_id = rte_cpu_to_le_16(queue_id); 591 hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0); 592 ret = hns3_cmd_send(hw, &desc, 1); 593 if (ret) 594 hns3_err(hw, "send tqp reset cmd error, queue_id = %u, " 595 "ret = %d", queue_id, ret); 596 597 return ret; 598 } 599 600 static int 601 hns3_get_tqp_reset_status(struct hns3_hw *hw, uint16_t queue_id, 602 uint8_t *reset_status) 603 { 604 struct hns3_reset_tqp_queue_cmd *req; 605 struct hns3_cmd_desc desc; 606 int ret; 607 608 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, true); 609 610 req = (struct hns3_reset_tqp_queue_cmd *)desc.data; 611 req->tqp_id = rte_cpu_to_le_16(queue_id); 612 613 ret = hns3_cmd_send(hw, &desc, 1); 614 if (ret) { 615 hns3_err(hw, "get tqp reset status error, queue_id = %u, " 616 "ret = %d.", queue_id, ret); 617 return ret; 618 } 619 *reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B); 620 return ret; 621 } 622 623 static int 624 hns3pf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id) 625 { 626 #define HNS3_TQP_RESET_TRY_MS 200 627 uint8_t reset_status; 628 uint64_t end; 629 int ret; 630 631 ret = hns3_tqp_enable(hw, queue_id, false); 632 if (ret) 633 return ret; 634 635 /* 636 * In current version VF is not supported when PF is driven by DPDK 637 * driver, all task queue pairs are mapped to PF function, so PF's queue 638 * id is equals to the global queue id in PF range. 639 */ 640 ret = hns3_send_reset_tqp_cmd(hw, queue_id, true); 641 if (ret) { 642 hns3_err(hw, "Send reset tqp cmd fail, ret = %d", ret); 643 return ret; 644 } 645 end = get_timeofday_ms() + HNS3_TQP_RESET_TRY_MS; 646 do { 647 /* Wait for tqp hw reset */ 648 rte_delay_ms(HNS3_POLL_RESPONE_MS); 649 ret = hns3_get_tqp_reset_status(hw, queue_id, &reset_status); 650 if (ret) 651 goto tqp_reset_fail; 652 653 if (reset_status) 654 break; 655 } while (get_timeofday_ms() < end); 656 657 if (!reset_status) { 658 ret = -ETIMEDOUT; 659 hns3_err(hw, "reset tqp timeout, queue_id = %u, ret = %d", 660 queue_id, ret); 661 goto tqp_reset_fail; 662 } 663 664 ret = hns3_send_reset_tqp_cmd(hw, queue_id, false); 665 if (ret) 666 hns3_err(hw, "Deassert the soft reset fail, ret = %d", ret); 667 668 return ret; 669 670 tqp_reset_fail: 671 hns3_send_reset_tqp_cmd(hw, queue_id, false); 672 return ret; 673 } 674 675 static int 676 hns3vf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id) 677 { 678 uint8_t msg_data[2]; 679 int ret; 680 681 /* Disable VF's queue before send queue reset msg to PF */ 682 ret = hns3_tqp_enable(hw, queue_id, false); 683 if (ret) 684 return ret; 685 686 memcpy(msg_data, &queue_id, sizeof(uint16_t)); 687 688 ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data, 689 sizeof(msg_data), true, NULL, 0); 690 if (ret) 691 hns3_err(hw, "fail to reset tqp, queue_id = %u, ret = %d.", 692 queue_id, ret); 693 return ret; 694 } 695 696 static int 697 hns3_reset_tqp(struct hns3_adapter *hns, uint16_t queue_id) 698 { 699 struct hns3_hw *hw = &hns->hw; 700 701 if (hns->is_vf) 702 return hns3vf_reset_tqp(hw, queue_id); 703 else 704 return hns3pf_reset_tqp(hw, queue_id); 705 } 706 707 int 708 hns3_reset_all_tqps(struct hns3_adapter *hns) 709 { 710 struct hns3_hw *hw = &hns->hw; 711 int ret, i; 712 713 for (i = 0; i < hw->cfg_max_queues; i++) { 714 ret = hns3_reset_tqp(hns, i); 715 if (ret) { 716 hns3_err(hw, "Failed to reset No.%d queue: %d", i, ret); 717 return ret; 718 } 719 } 720 return 0; 721 } 722 723 static int 724 hns3_send_reset_queue_cmd(struct hns3_hw *hw, uint16_t queue_id, 725 enum hns3_ring_type queue_type, bool enable) 726 { 727 struct hns3_reset_tqp_queue_cmd *req; 728 struct hns3_cmd_desc desc; 729 int queue_direction; 730 int ret; 731 732 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, false); 733 734 req = (struct hns3_reset_tqp_queue_cmd *)desc.data; 735 req->tqp_id = rte_cpu_to_le_16(queue_id); 736 queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1; 737 req->queue_direction = rte_cpu_to_le_16(queue_direction); 738 hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0); 739 740 ret = hns3_cmd_send(hw, &desc, 1); 741 if (ret) 742 hns3_err(hw, "send queue reset cmd error, queue_id = %u, " 743 "queue_type = %s, ret = %d.", queue_id, 744 queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret); 745 return ret; 746 } 747 748 static int 749 hns3_get_queue_reset_status(struct hns3_hw *hw, uint16_t queue_id, 750 enum hns3_ring_type queue_type, 751 uint8_t *reset_status) 752 { 753 struct hns3_reset_tqp_queue_cmd *req; 754 struct hns3_cmd_desc desc; 755 int queue_direction; 756 int ret; 757 758 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, true); 759 760 req = (struct hns3_reset_tqp_queue_cmd *)desc.data; 761 req->tqp_id = rte_cpu_to_le_16(queue_id); 762 queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1; 763 req->queue_direction = rte_cpu_to_le_16(queue_direction); 764 765 ret = hns3_cmd_send(hw, &desc, 1); 766 if (ret) { 767 hns3_err(hw, "get queue reset status error, queue_id = %u " 768 "queue_type = %s, ret = %d.", queue_id, 769 queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret); 770 return ret; 771 } 772 773 *reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B); 774 return ret; 775 } 776 777 static int 778 hns3_reset_queue(struct hns3_hw *hw, uint16_t queue_id, 779 enum hns3_ring_type queue_type) 780 { 781 #define HNS3_QUEUE_RESET_TRY_MS 200 782 struct hns3_tx_queue *txq; 783 struct hns3_rx_queue *rxq; 784 uint32_t reset_wait_times; 785 uint32_t max_wait_times; 786 uint8_t reset_status; 787 int ret; 788 789 if (queue_type == HNS3_RING_TYPE_TX) { 790 txq = hw->data->tx_queues[queue_id]; 791 hns3_enable_txq(txq, false); 792 } else { 793 rxq = hw->data->rx_queues[queue_id]; 794 hns3_enable_rxq(rxq, false); 795 } 796 797 ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, true); 798 if (ret) { 799 hns3_err(hw, "send reset queue cmd fail, ret = %d.", ret); 800 return ret; 801 } 802 803 reset_wait_times = 0; 804 max_wait_times = HNS3_QUEUE_RESET_TRY_MS / HNS3_POLL_RESPONE_MS; 805 while (reset_wait_times < max_wait_times) { 806 /* Wait for queue hw reset */ 807 rte_delay_ms(HNS3_POLL_RESPONE_MS); 808 ret = hns3_get_queue_reset_status(hw, queue_id, 809 queue_type, &reset_status); 810 if (ret) 811 goto queue_reset_fail; 812 813 if (reset_status) 814 break; 815 reset_wait_times++; 816 } 817 818 if (!reset_status) { 819 hns3_err(hw, "reset queue timeout, queue_id = %u, " 820 "queue_type = %s", queue_id, 821 queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx"); 822 ret = -ETIMEDOUT; 823 goto queue_reset_fail; 824 } 825 826 ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false); 827 if (ret) 828 hns3_err(hw, "deassert queue reset fail, ret = %d.", ret); 829 830 return ret; 831 832 queue_reset_fail: 833 hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false); 834 return ret; 835 } 836 837 uint32_t 838 hns3_get_tqp_intr_reg_offset(uint16_t tqp_intr_id) 839 { 840 uint32_t reg_offset; 841 842 /* Need an extend offset to config queues > 64 */ 843 if (tqp_intr_id < HNS3_MIN_EXT_TQP_INTR_ID) 844 reg_offset = HNS3_TQP_INTR_REG_BASE + 845 tqp_intr_id * HNS3_TQP_INTR_LOW_ORDER_OFFSET; 846 else 847 reg_offset = HNS3_TQP_INTR_EXT_REG_BASE + 848 tqp_intr_id / HNS3_MIN_EXT_TQP_INTR_ID * 849 HNS3_TQP_INTR_HIGH_ORDER_OFFSET + 850 tqp_intr_id % HNS3_MIN_EXT_TQP_INTR_ID * 851 HNS3_TQP_INTR_LOW_ORDER_OFFSET; 852 853 return reg_offset; 854 } 855 856 void 857 hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id, 858 uint8_t gl_idx, uint16_t gl_value) 859 { 860 uint32_t offset[] = {HNS3_TQP_INTR_GL0_REG, 861 HNS3_TQP_INTR_GL1_REG, 862 HNS3_TQP_INTR_GL2_REG}; 863 uint32_t addr, value; 864 865 if (gl_idx >= RTE_DIM(offset) || gl_value > HNS3_TQP_INTR_GL_MAX) 866 return; 867 868 addr = offset[gl_idx] + hns3_get_tqp_intr_reg_offset(queue_id); 869 if (hw->intr.gl_unit == HNS3_INTR_COALESCE_GL_UINT_1US) 870 value = gl_value | HNS3_TQP_INTR_GL_UNIT_1US; 871 else 872 value = HNS3_GL_USEC_TO_REG(gl_value); 873 874 hns3_write_dev(hw, addr, value); 875 } 876 877 void 878 hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id, uint16_t rl_value) 879 { 880 uint32_t addr, value; 881 882 if (rl_value > HNS3_TQP_INTR_RL_MAX) 883 return; 884 885 addr = HNS3_TQP_INTR_RL_REG + hns3_get_tqp_intr_reg_offset(queue_id); 886 value = HNS3_RL_USEC_TO_REG(rl_value); 887 if (value > 0) 888 value |= HNS3_TQP_INTR_RL_ENABLE_MASK; 889 890 hns3_write_dev(hw, addr, value); 891 } 892 893 void 894 hns3_set_queue_intr_ql(struct hns3_hw *hw, uint16_t queue_id, uint16_t ql_value) 895 { 896 uint32_t addr; 897 898 /* 899 * int_ql_max == 0 means the hardware does not support QL, 900 * QL regs config is not permitted if QL is not supported, 901 * here just return. 902 */ 903 if (hw->intr.int_ql_max == HNS3_INTR_QL_NONE) 904 return; 905 906 addr = HNS3_TQP_INTR_TX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id); 907 hns3_write_dev(hw, addr, ql_value); 908 909 addr = HNS3_TQP_INTR_RX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id); 910 hns3_write_dev(hw, addr, ql_value); 911 } 912 913 static void 914 hns3_queue_intr_enable(struct hns3_hw *hw, uint16_t queue_id, bool en) 915 { 916 uint32_t addr, value; 917 918 addr = HNS3_TQP_INTR_CTRL_REG + hns3_get_tqp_intr_reg_offset(queue_id); 919 value = en ? 1 : 0; 920 921 hns3_write_dev(hw, addr, value); 922 } 923 924 /* 925 * Enable all rx queue interrupt when in interrupt rx mode. 926 * This api was called before enable queue rx&tx (in normal start or reset 927 * recover scenes), used to fix hardware rx queue interrupt enable was clear 928 * when FLR. 929 */ 930 void 931 hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en) 932 { 933 struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id]; 934 uint16_t nb_rx_q = hw->data->nb_rx_queues; 935 int i; 936 937 if (dev->data->dev_conf.intr_conf.rxq == 0) 938 return; 939 940 for (i = 0; i < nb_rx_q; i++) 941 hns3_queue_intr_enable(hw, i, en); 942 } 943 944 int 945 hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) 946 { 947 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 948 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle; 949 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 950 951 if (dev->data->dev_conf.intr_conf.rxq == 0) 952 return -ENOTSUP; 953 954 hns3_queue_intr_enable(hw, queue_id, true); 955 956 return rte_intr_ack(intr_handle); 957 } 958 959 int 960 hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) 961 { 962 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 963 964 if (dev->data->dev_conf.intr_conf.rxq == 0) 965 return -ENOTSUP; 966 967 hns3_queue_intr_enable(hw, queue_id, false); 968 969 return 0; 970 } 971 972 static int 973 hns3_init_rxq(struct hns3_adapter *hns, uint16_t idx) 974 { 975 struct hns3_hw *hw = &hns->hw; 976 struct hns3_rx_queue *rxq; 977 int ret; 978 979 PMD_INIT_FUNC_TRACE(); 980 981 rxq = (struct hns3_rx_queue *)hw->data->rx_queues[idx]; 982 ret = hns3_alloc_rx_queue_mbufs(hw, rxq); 983 if (ret) { 984 hns3_err(hw, "fail to alloc mbuf for Rx queue %u, ret = %d.", 985 idx, ret); 986 return ret; 987 } 988 989 rxq->next_to_use = 0; 990 rxq->rx_rearm_start = 0; 991 rxq->rx_free_hold = 0; 992 rxq->rx_rearm_nb = 0; 993 rxq->pkt_first_seg = NULL; 994 rxq->pkt_last_seg = NULL; 995 hns3_init_rx_queue_hw(rxq); 996 hns3_rxq_vec_setup(rxq); 997 998 return 0; 999 } 1000 1001 static void 1002 hns3_init_fake_rxq(struct hns3_adapter *hns, uint16_t idx) 1003 { 1004 struct hns3_hw *hw = &hns->hw; 1005 struct hns3_rx_queue *rxq; 1006 1007 rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[idx]; 1008 rxq->next_to_use = 0; 1009 rxq->rx_free_hold = 0; 1010 rxq->rx_rearm_start = 0; 1011 rxq->rx_rearm_nb = 0; 1012 hns3_init_rx_queue_hw(rxq); 1013 } 1014 1015 static void 1016 hns3_init_txq(struct hns3_tx_queue *txq) 1017 { 1018 struct hns3_desc *desc; 1019 int i; 1020 1021 /* Clear tx bd */ 1022 desc = txq->tx_ring; 1023 for (i = 0; i < txq->nb_tx_desc; i++) { 1024 desc->tx.tp_fe_sc_vld_ra_ri = 0; 1025 desc++; 1026 } 1027 1028 txq->next_to_use = 0; 1029 txq->next_to_clean = 0; 1030 txq->tx_bd_ready = txq->nb_tx_desc - 1; 1031 hns3_init_tx_queue_hw(txq); 1032 } 1033 1034 static void 1035 hns3_init_tx_ring_tc(struct hns3_adapter *hns) 1036 { 1037 struct hns3_hw *hw = &hns->hw; 1038 struct hns3_tx_queue *txq; 1039 int i, num; 1040 1041 for (i = 0; i < HNS3_MAX_TC_NUM; i++) { 1042 struct hns3_tc_queue_info *tc_queue = &hw->tc_queue[i]; 1043 int j; 1044 1045 if (!tc_queue->enable) 1046 continue; 1047 1048 for (j = 0; j < tc_queue->tqp_count; j++) { 1049 num = tc_queue->tqp_offset + j; 1050 txq = (struct hns3_tx_queue *)hw->data->tx_queues[num]; 1051 if (txq == NULL) 1052 continue; 1053 1054 hns3_write_dev(txq, HNS3_RING_TX_TC_REG, tc_queue->tc); 1055 } 1056 } 1057 } 1058 1059 static int 1060 hns3_init_rx_queues(struct hns3_adapter *hns) 1061 { 1062 struct hns3_hw *hw = &hns->hw; 1063 struct hns3_rx_queue *rxq; 1064 uint16_t i, j; 1065 int ret; 1066 1067 /* Initialize RSS for queues */ 1068 ret = hns3_config_rss(hns); 1069 if (ret) { 1070 hns3_err(hw, "failed to configure rss, ret = %d.", ret); 1071 return ret; 1072 } 1073 1074 for (i = 0; i < hw->data->nb_rx_queues; i++) { 1075 rxq = (struct hns3_rx_queue *)hw->data->rx_queues[i]; 1076 if (!rxq) { 1077 hns3_err(hw, "Rx queue %u not available or setup.", i); 1078 goto out; 1079 } 1080 1081 if (rxq->rx_deferred_start) 1082 continue; 1083 1084 ret = hns3_init_rxq(hns, i); 1085 if (ret) { 1086 hns3_err(hw, "failed to init Rx queue %u, ret = %d.", i, 1087 ret); 1088 goto out; 1089 } 1090 } 1091 1092 for (i = 0; i < hw->fkq_data.nb_fake_rx_queues; i++) 1093 hns3_init_fake_rxq(hns, i); 1094 1095 return 0; 1096 1097 out: 1098 for (j = 0; j < i; j++) { 1099 rxq = (struct hns3_rx_queue *)hw->data->rx_queues[j]; 1100 hns3_rx_queue_release_mbufs(rxq); 1101 } 1102 1103 return ret; 1104 } 1105 1106 static int 1107 hns3_init_tx_queues(struct hns3_adapter *hns) 1108 { 1109 struct hns3_hw *hw = &hns->hw; 1110 struct hns3_tx_queue *txq; 1111 uint16_t i; 1112 1113 for (i = 0; i < hw->data->nb_tx_queues; i++) { 1114 txq = (struct hns3_tx_queue *)hw->data->tx_queues[i]; 1115 if (!txq) { 1116 hns3_err(hw, "Tx queue %u not available or setup.", i); 1117 return -EINVAL; 1118 } 1119 1120 if (txq->tx_deferred_start) 1121 continue; 1122 hns3_init_txq(txq); 1123 } 1124 1125 for (i = 0; i < hw->fkq_data.nb_fake_tx_queues; i++) { 1126 txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[i]; 1127 hns3_init_txq(txq); 1128 } 1129 hns3_init_tx_ring_tc(hns); 1130 1131 return 0; 1132 } 1133 1134 /* 1135 * Init all queues. 1136 * Note: just init and setup queues, and don't enable tqps. 1137 */ 1138 int 1139 hns3_init_queues(struct hns3_adapter *hns, bool reset_queue) 1140 { 1141 struct hns3_hw *hw = &hns->hw; 1142 int ret; 1143 1144 if (reset_queue) { 1145 ret = hns3_reset_all_tqps(hns); 1146 if (ret) { 1147 hns3_err(hw, "failed to reset all queues, ret = %d.", 1148 ret); 1149 return ret; 1150 } 1151 } 1152 1153 ret = hns3_init_rx_queues(hns); 1154 if (ret) { 1155 hns3_err(hw, "failed to init rx queues, ret = %d.", ret); 1156 return ret; 1157 } 1158 1159 ret = hns3_init_tx_queues(hns); 1160 if (ret) { 1161 hns3_dev_release_mbufs(hns); 1162 hns3_err(hw, "failed to init tx queues, ret = %d.", ret); 1163 } 1164 1165 return ret; 1166 } 1167 1168 void 1169 hns3_start_tqps(struct hns3_hw *hw) 1170 { 1171 struct hns3_tx_queue *txq; 1172 struct hns3_rx_queue *rxq; 1173 uint16_t i; 1174 1175 hns3_enable_all_queues(hw, true); 1176 1177 for (i = 0; i < hw->data->nb_tx_queues; i++) { 1178 txq = hw->data->tx_queues[i]; 1179 if (txq->enabled) 1180 hw->data->tx_queue_state[i] = 1181 RTE_ETH_QUEUE_STATE_STARTED; 1182 } 1183 1184 for (i = 0; i < hw->data->nb_rx_queues; i++) { 1185 rxq = hw->data->rx_queues[i]; 1186 if (rxq->enabled) 1187 hw->data->rx_queue_state[i] = 1188 RTE_ETH_QUEUE_STATE_STARTED; 1189 } 1190 } 1191 1192 void 1193 hns3_stop_tqps(struct hns3_hw *hw) 1194 { 1195 uint16_t i; 1196 1197 hns3_enable_all_queues(hw, false); 1198 1199 for (i = 0; i < hw->data->nb_tx_queues; i++) 1200 hw->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; 1201 1202 for (i = 0; i < hw->data->nb_rx_queues; i++) 1203 hw->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED; 1204 } 1205 1206 /* 1207 * Iterate over all Rx Queue, and call the callback() function for each Rx 1208 * queue. 1209 * 1210 * @param[in] dev 1211 * The target eth dev. 1212 * @param[in] callback 1213 * The function to call for each queue. 1214 * if callback function return nonzero will stop iterate and return it's value 1215 * @param[in] arg 1216 * The arguments to provide the callback function with. 1217 * 1218 * @return 1219 * 0 on success, otherwise with errno set. 1220 */ 1221 int 1222 hns3_rxq_iterate(struct rte_eth_dev *dev, 1223 int (*callback)(struct hns3_rx_queue *, void *), void *arg) 1224 { 1225 uint32_t i; 1226 int ret; 1227 1228 if (dev->data->rx_queues == NULL) 1229 return -EINVAL; 1230 1231 for (i = 0; i < dev->data->nb_rx_queues; i++) { 1232 ret = callback(dev->data->rx_queues[i], arg); 1233 if (ret != 0) 1234 return ret; 1235 } 1236 1237 return 0; 1238 } 1239 1240 static void* 1241 hns3_alloc_rxq_and_dma_zone(struct rte_eth_dev *dev, 1242 struct hns3_queue_info *q_info) 1243 { 1244 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 1245 const struct rte_memzone *rx_mz; 1246 struct hns3_rx_queue *rxq; 1247 unsigned int rx_desc; 1248 1249 rxq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_rx_queue), 1250 RTE_CACHE_LINE_SIZE, q_info->socket_id); 1251 if (rxq == NULL) { 1252 hns3_err(hw, "Failed to allocate memory for No.%u rx ring!", 1253 q_info->idx); 1254 return NULL; 1255 } 1256 1257 /* Allocate rx ring hardware descriptors. */ 1258 rxq->queue_id = q_info->idx; 1259 rxq->nb_rx_desc = q_info->nb_desc; 1260 1261 /* 1262 * Allocate a litter more memory because rx vector functions 1263 * don't check boundaries each time. 1264 */ 1265 rx_desc = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) * 1266 sizeof(struct hns3_desc); 1267 rx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx, 1268 rx_desc, HNS3_RING_BASE_ALIGN, 1269 q_info->socket_id); 1270 if (rx_mz == NULL) { 1271 hns3_err(hw, "Failed to reserve DMA memory for No.%u rx ring!", 1272 q_info->idx); 1273 hns3_rx_queue_release(rxq); 1274 return NULL; 1275 } 1276 rxq->mz = rx_mz; 1277 rxq->rx_ring = (struct hns3_desc *)rx_mz->addr; 1278 rxq->rx_ring_phys_addr = rx_mz->iova; 1279 1280 hns3_dbg(hw, "No.%u rx descriptors iova 0x%" PRIx64, q_info->idx, 1281 rxq->rx_ring_phys_addr); 1282 1283 return rxq; 1284 } 1285 1286 static int 1287 hns3_fake_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, 1288 uint16_t nb_desc, unsigned int socket_id) 1289 { 1290 struct hns3_adapter *hns = dev->data->dev_private; 1291 struct hns3_hw *hw = &hns->hw; 1292 struct hns3_queue_info q_info; 1293 struct hns3_rx_queue *rxq; 1294 uint16_t nb_rx_q; 1295 1296 if (hw->fkq_data.rx_queues[idx]) { 1297 hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]); 1298 hw->fkq_data.rx_queues[idx] = NULL; 1299 } 1300 1301 q_info.idx = idx; 1302 q_info.socket_id = socket_id; 1303 q_info.nb_desc = nb_desc; 1304 q_info.type = "hns3 fake RX queue"; 1305 q_info.ring_name = "rx_fake_ring"; 1306 rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info); 1307 if (rxq == NULL) { 1308 hns3_err(hw, "Failed to setup No.%u fake rx ring.", idx); 1309 return -ENOMEM; 1310 } 1311 1312 /* Don't need alloc sw_ring, because upper applications don't use it */ 1313 rxq->sw_ring = NULL; 1314 1315 rxq->hns = hns; 1316 rxq->rx_deferred_start = false; 1317 rxq->port_id = dev->data->port_id; 1318 rxq->configured = true; 1319 nb_rx_q = dev->data->nb_rx_queues; 1320 rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET + 1321 (nb_rx_q + idx) * HNS3_TQP_REG_SIZE); 1322 rxq->rx_buf_len = HNS3_MIN_BD_BUF_SIZE; 1323 1324 rte_spinlock_lock(&hw->lock); 1325 hw->fkq_data.rx_queues[idx] = rxq; 1326 rte_spinlock_unlock(&hw->lock); 1327 1328 return 0; 1329 } 1330 1331 static void* 1332 hns3_alloc_txq_and_dma_zone(struct rte_eth_dev *dev, 1333 struct hns3_queue_info *q_info) 1334 { 1335 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 1336 const struct rte_memzone *tx_mz; 1337 struct hns3_tx_queue *txq; 1338 struct hns3_desc *desc; 1339 unsigned int tx_desc; 1340 int i; 1341 1342 txq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_tx_queue), 1343 RTE_CACHE_LINE_SIZE, q_info->socket_id); 1344 if (txq == NULL) { 1345 hns3_err(hw, "Failed to allocate memory for No.%u tx ring!", 1346 q_info->idx); 1347 return NULL; 1348 } 1349 1350 /* Allocate tx ring hardware descriptors. */ 1351 txq->queue_id = q_info->idx; 1352 txq->nb_tx_desc = q_info->nb_desc; 1353 tx_desc = txq->nb_tx_desc * sizeof(struct hns3_desc); 1354 tx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx, 1355 tx_desc, HNS3_RING_BASE_ALIGN, 1356 q_info->socket_id); 1357 if (tx_mz == NULL) { 1358 hns3_err(hw, "Failed to reserve DMA memory for No.%u tx ring!", 1359 q_info->idx); 1360 hns3_tx_queue_release(txq); 1361 return NULL; 1362 } 1363 txq->mz = tx_mz; 1364 txq->tx_ring = (struct hns3_desc *)tx_mz->addr; 1365 txq->tx_ring_phys_addr = tx_mz->iova; 1366 1367 hns3_dbg(hw, "No.%u tx descriptors iova 0x%" PRIx64, q_info->idx, 1368 txq->tx_ring_phys_addr); 1369 1370 /* Clear tx bd */ 1371 desc = txq->tx_ring; 1372 for (i = 0; i < txq->nb_tx_desc; i++) { 1373 desc->tx.tp_fe_sc_vld_ra_ri = 0; 1374 desc++; 1375 } 1376 1377 return txq; 1378 } 1379 1380 static int 1381 hns3_fake_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, 1382 uint16_t nb_desc, unsigned int socket_id) 1383 { 1384 struct hns3_adapter *hns = dev->data->dev_private; 1385 struct hns3_hw *hw = &hns->hw; 1386 struct hns3_queue_info q_info; 1387 struct hns3_tx_queue *txq; 1388 uint16_t nb_tx_q; 1389 1390 if (hw->fkq_data.tx_queues[idx] != NULL) { 1391 hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]); 1392 hw->fkq_data.tx_queues[idx] = NULL; 1393 } 1394 1395 q_info.idx = idx; 1396 q_info.socket_id = socket_id; 1397 q_info.nb_desc = nb_desc; 1398 q_info.type = "hns3 fake TX queue"; 1399 q_info.ring_name = "tx_fake_ring"; 1400 txq = hns3_alloc_txq_and_dma_zone(dev, &q_info); 1401 if (txq == NULL) { 1402 hns3_err(hw, "Failed to setup No.%u fake tx ring.", idx); 1403 return -ENOMEM; 1404 } 1405 1406 /* Don't need alloc sw_ring, because upper applications don't use it */ 1407 txq->sw_ring = NULL; 1408 txq->free = NULL; 1409 1410 txq->hns = hns; 1411 txq->tx_deferred_start = false; 1412 txq->port_id = dev->data->port_id; 1413 txq->configured = true; 1414 nb_tx_q = dev->data->nb_tx_queues; 1415 txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET + 1416 (nb_tx_q + idx) * HNS3_TQP_REG_SIZE); 1417 1418 rte_spinlock_lock(&hw->lock); 1419 hw->fkq_data.tx_queues[idx] = txq; 1420 rte_spinlock_unlock(&hw->lock); 1421 1422 return 0; 1423 } 1424 1425 static int 1426 hns3_fake_rx_queue_config(struct hns3_hw *hw, uint16_t nb_queues) 1427 { 1428 uint16_t old_nb_queues = hw->fkq_data.nb_fake_rx_queues; 1429 void **rxq; 1430 uint16_t i; 1431 1432 if (hw->fkq_data.rx_queues == NULL && nb_queues != 0) { 1433 /* first time configuration */ 1434 uint32_t size; 1435 size = sizeof(hw->fkq_data.rx_queues[0]) * nb_queues; 1436 hw->fkq_data.rx_queues = rte_zmalloc("fake_rx_queues", size, 1437 RTE_CACHE_LINE_SIZE); 1438 if (hw->fkq_data.rx_queues == NULL) { 1439 hw->fkq_data.nb_fake_rx_queues = 0; 1440 return -ENOMEM; 1441 } 1442 } else if (hw->fkq_data.rx_queues != NULL && nb_queues != 0) { 1443 /* re-configure */ 1444 rxq = hw->fkq_data.rx_queues; 1445 for (i = nb_queues; i < old_nb_queues; i++) 1446 hns3_dev_rx_queue_release(rxq[i]); 1447 1448 rxq = rte_realloc(rxq, sizeof(rxq[0]) * nb_queues, 1449 RTE_CACHE_LINE_SIZE); 1450 if (rxq == NULL) 1451 return -ENOMEM; 1452 if (nb_queues > old_nb_queues) { 1453 uint16_t new_qs = nb_queues - old_nb_queues; 1454 memset(rxq + old_nb_queues, 0, sizeof(rxq[0]) * new_qs); 1455 } 1456 1457 hw->fkq_data.rx_queues = rxq; 1458 } else if (hw->fkq_data.rx_queues != NULL && nb_queues == 0) { 1459 rxq = hw->fkq_data.rx_queues; 1460 for (i = nb_queues; i < old_nb_queues; i++) 1461 hns3_dev_rx_queue_release(rxq[i]); 1462 1463 rte_free(hw->fkq_data.rx_queues); 1464 hw->fkq_data.rx_queues = NULL; 1465 } 1466 1467 hw->fkq_data.nb_fake_rx_queues = nb_queues; 1468 1469 return 0; 1470 } 1471 1472 static int 1473 hns3_fake_tx_queue_config(struct hns3_hw *hw, uint16_t nb_queues) 1474 { 1475 uint16_t old_nb_queues = hw->fkq_data.nb_fake_tx_queues; 1476 void **txq; 1477 uint16_t i; 1478 1479 if (hw->fkq_data.tx_queues == NULL && nb_queues != 0) { 1480 /* first time configuration */ 1481 uint32_t size; 1482 size = sizeof(hw->fkq_data.tx_queues[0]) * nb_queues; 1483 hw->fkq_data.tx_queues = rte_zmalloc("fake_tx_queues", size, 1484 RTE_CACHE_LINE_SIZE); 1485 if (hw->fkq_data.tx_queues == NULL) { 1486 hw->fkq_data.nb_fake_tx_queues = 0; 1487 return -ENOMEM; 1488 } 1489 } else if (hw->fkq_data.tx_queues != NULL && nb_queues != 0) { 1490 /* re-configure */ 1491 txq = hw->fkq_data.tx_queues; 1492 for (i = nb_queues; i < old_nb_queues; i++) 1493 hns3_dev_tx_queue_release(txq[i]); 1494 txq = rte_realloc(txq, sizeof(txq[0]) * nb_queues, 1495 RTE_CACHE_LINE_SIZE); 1496 if (txq == NULL) 1497 return -ENOMEM; 1498 if (nb_queues > old_nb_queues) { 1499 uint16_t new_qs = nb_queues - old_nb_queues; 1500 memset(txq + old_nb_queues, 0, sizeof(txq[0]) * new_qs); 1501 } 1502 1503 hw->fkq_data.tx_queues = txq; 1504 } else if (hw->fkq_data.tx_queues != NULL && nb_queues == 0) { 1505 txq = hw->fkq_data.tx_queues; 1506 for (i = nb_queues; i < old_nb_queues; i++) 1507 hns3_dev_tx_queue_release(txq[i]); 1508 1509 rte_free(hw->fkq_data.tx_queues); 1510 hw->fkq_data.tx_queues = NULL; 1511 } 1512 hw->fkq_data.nb_fake_tx_queues = nb_queues; 1513 1514 return 0; 1515 } 1516 1517 int 1518 hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q, 1519 uint16_t nb_tx_q) 1520 { 1521 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 1522 uint16_t rx_need_add_nb_q; 1523 uint16_t tx_need_add_nb_q; 1524 uint16_t port_id; 1525 uint16_t q; 1526 int ret; 1527 1528 /* Setup new number of fake RX/TX queues and reconfigure device. */ 1529 rx_need_add_nb_q = hw->cfg_max_queues - nb_rx_q; 1530 tx_need_add_nb_q = hw->cfg_max_queues - nb_tx_q; 1531 ret = hns3_fake_rx_queue_config(hw, rx_need_add_nb_q); 1532 if (ret) { 1533 hns3_err(hw, "Fail to configure fake rx queues: %d", ret); 1534 return ret; 1535 } 1536 1537 ret = hns3_fake_tx_queue_config(hw, tx_need_add_nb_q); 1538 if (ret) { 1539 hns3_err(hw, "Fail to configure fake rx queues: %d", ret); 1540 goto cfg_fake_tx_q_fail; 1541 } 1542 1543 /* Allocate and set up fake RX queue per Ethernet port. */ 1544 port_id = hw->data->port_id; 1545 for (q = 0; q < rx_need_add_nb_q; q++) { 1546 ret = hns3_fake_rx_queue_setup(dev, q, HNS3_MIN_RING_DESC, 1547 rte_eth_dev_socket_id(port_id)); 1548 if (ret) 1549 goto setup_fake_rx_q_fail; 1550 } 1551 1552 /* Allocate and set up fake TX queue per Ethernet port. */ 1553 for (q = 0; q < tx_need_add_nb_q; q++) { 1554 ret = hns3_fake_tx_queue_setup(dev, q, HNS3_MIN_RING_DESC, 1555 rte_eth_dev_socket_id(port_id)); 1556 if (ret) 1557 goto setup_fake_tx_q_fail; 1558 } 1559 1560 return 0; 1561 1562 setup_fake_tx_q_fail: 1563 setup_fake_rx_q_fail: 1564 (void)hns3_fake_tx_queue_config(hw, 0); 1565 cfg_fake_tx_q_fail: 1566 (void)hns3_fake_rx_queue_config(hw, 0); 1567 1568 return ret; 1569 } 1570 1571 void 1572 hns3_dev_release_mbufs(struct hns3_adapter *hns) 1573 { 1574 struct rte_eth_dev_data *dev_data = hns->hw.data; 1575 struct hns3_rx_queue *rxq; 1576 struct hns3_tx_queue *txq; 1577 int i; 1578 1579 if (dev_data->rx_queues) 1580 for (i = 0; i < dev_data->nb_rx_queues; i++) { 1581 rxq = dev_data->rx_queues[i]; 1582 if (rxq == NULL) 1583 continue; 1584 hns3_rx_queue_release_mbufs(rxq); 1585 } 1586 1587 if (dev_data->tx_queues) 1588 for (i = 0; i < dev_data->nb_tx_queues; i++) { 1589 txq = dev_data->tx_queues[i]; 1590 if (txq == NULL) 1591 continue; 1592 hns3_tx_queue_release_mbufs(txq); 1593 } 1594 } 1595 1596 static int 1597 hns3_rx_buf_len_calc(struct rte_mempool *mp, uint16_t *rx_buf_len) 1598 { 1599 uint16_t vld_buf_size; 1600 uint16_t num_hw_specs; 1601 uint16_t i; 1602 1603 /* 1604 * hns3 network engine only support to set 4 typical specification, and 1605 * different buffer size will affect the max packet_len and the max 1606 * number of segmentation when hw gro is turned on in receive side. The 1607 * relationship between them is as follows: 1608 * rx_buf_size | max_gro_pkt_len | max_gro_nb_seg 1609 * ---------------------|-------------------|---------------- 1610 * HNS3_4K_BD_BUF_SIZE | 60KB | 15 1611 * HNS3_2K_BD_BUF_SIZE | 62KB | 31 1612 * HNS3_1K_BD_BUF_SIZE | 63KB | 63 1613 * HNS3_512_BD_BUF_SIZE | 31.5KB | 63 1614 */ 1615 static const uint16_t hw_rx_buf_size[] = { 1616 HNS3_4K_BD_BUF_SIZE, 1617 HNS3_2K_BD_BUF_SIZE, 1618 HNS3_1K_BD_BUF_SIZE, 1619 HNS3_512_BD_BUF_SIZE 1620 }; 1621 1622 vld_buf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) - 1623 RTE_PKTMBUF_HEADROOM); 1624 if (vld_buf_size < HNS3_MIN_BD_BUF_SIZE) 1625 return -EINVAL; 1626 1627 num_hw_specs = RTE_DIM(hw_rx_buf_size); 1628 for (i = 0; i < num_hw_specs; i++) { 1629 if (vld_buf_size >= hw_rx_buf_size[i]) { 1630 *rx_buf_len = hw_rx_buf_size[i]; 1631 break; 1632 } 1633 } 1634 return 0; 1635 } 1636 1637 static int 1638 hns3_rxq_conf_runtime_check(struct hns3_hw *hw, uint16_t buf_size, 1639 uint16_t nb_desc) 1640 { 1641 struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id]; 1642 struct rte_eth_rxmode *rxmode = &hw->data->dev_conf.rxmode; 1643 eth_rx_burst_t pkt_burst = dev->rx_pkt_burst; 1644 uint16_t min_vec_bds; 1645 1646 /* 1647 * HNS3 hardware network engine set scattered as default. If the driver 1648 * is not work in scattered mode and the pkts greater than buf_size 1649 * but smaller than max_rx_pkt_len will be distributed to multiple BDs. 1650 * Driver cannot handle this situation. 1651 */ 1652 if (!hw->data->scattered_rx && rxmode->max_rx_pkt_len > buf_size) { 1653 hns3_err(hw, "max_rx_pkt_len is not allowed to be set greater " 1654 "than rx_buf_len if scattered is off."); 1655 return -EINVAL; 1656 } 1657 1658 if (pkt_burst == hns3_recv_pkts_vec) { 1659 min_vec_bds = HNS3_DEFAULT_RXQ_REARM_THRESH + 1660 HNS3_DEFAULT_RX_BURST; 1661 if (nb_desc < min_vec_bds || 1662 nb_desc % HNS3_DEFAULT_RXQ_REARM_THRESH) { 1663 hns3_err(hw, "if Rx burst mode is vector, " 1664 "number of descriptor is required to be " 1665 "bigger than min vector bds:%u, and could be " 1666 "divided by rxq rearm thresh:%u.", 1667 min_vec_bds, HNS3_DEFAULT_RXQ_REARM_THRESH); 1668 return -EINVAL; 1669 } 1670 } 1671 return 0; 1672 } 1673 1674 static int 1675 hns3_rx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_rxconf *conf, 1676 struct rte_mempool *mp, uint16_t nb_desc, 1677 uint16_t *buf_size) 1678 { 1679 int ret; 1680 1681 if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC || 1682 nb_desc % HNS3_ALIGN_RING_DESC) { 1683 hns3_err(hw, "Number (%u) of rx descriptors is invalid", 1684 nb_desc); 1685 return -EINVAL; 1686 } 1687 1688 if (conf->rx_drop_en == 0) 1689 hns3_warn(hw, "if no descriptors available, packets are always " 1690 "dropped and rx_drop_en (1) is fixed on"); 1691 1692 if (hns3_rx_buf_len_calc(mp, buf_size)) { 1693 hns3_err(hw, "rxq mbufs' data room size (%u) is not enough! " 1694 "minimal data room size (%u).", 1695 rte_pktmbuf_data_room_size(mp), 1696 HNS3_MIN_BD_BUF_SIZE + RTE_PKTMBUF_HEADROOM); 1697 return -EINVAL; 1698 } 1699 1700 if (hw->data->dev_started) { 1701 ret = hns3_rxq_conf_runtime_check(hw, *buf_size, nb_desc); 1702 if (ret) { 1703 hns3_err(hw, "Rx queue runtime setup fail."); 1704 return ret; 1705 } 1706 } 1707 1708 return 0; 1709 } 1710 1711 uint32_t 1712 hns3_get_tqp_reg_offset(uint16_t queue_id) 1713 { 1714 uint32_t reg_offset; 1715 1716 /* Need an extend offset to config queue > 1024 */ 1717 if (queue_id < HNS3_MIN_EXTEND_QUEUE_ID) 1718 reg_offset = HNS3_TQP_REG_OFFSET + queue_id * HNS3_TQP_REG_SIZE; 1719 else 1720 reg_offset = HNS3_TQP_REG_OFFSET + HNS3_TQP_EXT_REG_OFFSET + 1721 (queue_id - HNS3_MIN_EXTEND_QUEUE_ID) * 1722 HNS3_TQP_REG_SIZE; 1723 1724 return reg_offset; 1725 } 1726 1727 int 1728 hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc, 1729 unsigned int socket_id, const struct rte_eth_rxconf *conf, 1730 struct rte_mempool *mp) 1731 { 1732 struct hns3_adapter *hns = dev->data->dev_private; 1733 struct hns3_hw *hw = &hns->hw; 1734 struct hns3_queue_info q_info; 1735 struct hns3_rx_queue *rxq; 1736 uint16_t rx_buf_size; 1737 int rx_entry_len; 1738 int ret; 1739 1740 ret = hns3_rx_queue_conf_check(hw, conf, mp, nb_desc, &rx_buf_size); 1741 if (ret) 1742 return ret; 1743 1744 if (dev->data->rx_queues[idx]) { 1745 hns3_rx_queue_release(dev->data->rx_queues[idx]); 1746 dev->data->rx_queues[idx] = NULL; 1747 } 1748 1749 q_info.idx = idx; 1750 q_info.socket_id = socket_id; 1751 q_info.nb_desc = nb_desc; 1752 q_info.type = "hns3 RX queue"; 1753 q_info.ring_name = "rx_ring"; 1754 1755 rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info); 1756 if (rxq == NULL) { 1757 hns3_err(hw, 1758 "Failed to alloc mem and reserve DMA mem for rx ring!"); 1759 return -ENOMEM; 1760 } 1761 1762 rxq->hns = hns; 1763 rxq->ptype_tbl = &hns->ptype_tbl; 1764 rxq->mb_pool = mp; 1765 rxq->rx_free_thresh = (conf->rx_free_thresh > 0) ? 1766 conf->rx_free_thresh : HNS3_DEFAULT_RX_FREE_THRESH; 1767 1768 rxq->rx_deferred_start = conf->rx_deferred_start; 1769 if (rxq->rx_deferred_start && !hns3_dev_indep_txrx_supported(hw)) { 1770 hns3_warn(hw, "deferred start is not supported."); 1771 rxq->rx_deferred_start = false; 1772 } 1773 1774 rx_entry_len = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) * 1775 sizeof(struct hns3_entry); 1776 rxq->sw_ring = rte_zmalloc_socket("hns3 RX sw ring", rx_entry_len, 1777 RTE_CACHE_LINE_SIZE, socket_id); 1778 if (rxq->sw_ring == NULL) { 1779 hns3_err(hw, "Failed to allocate memory for rx sw ring!"); 1780 hns3_rx_queue_release(rxq); 1781 return -ENOMEM; 1782 } 1783 1784 rxq->next_to_use = 0; 1785 rxq->rx_free_hold = 0; 1786 rxq->rx_rearm_start = 0; 1787 rxq->rx_rearm_nb = 0; 1788 rxq->pkt_first_seg = NULL; 1789 rxq->pkt_last_seg = NULL; 1790 rxq->port_id = dev->data->port_id; 1791 /* 1792 * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE, 1793 * the pvid_sw_discard_en in the queue struct should not be changed, 1794 * because PVID-related operations do not need to be processed by PMD 1795 * driver. For hns3 VF device, whether it needs to process PVID depends 1796 * on the configuration of PF kernel mode netdevice driver. And the 1797 * related PF configuration is delivered through the mailbox and finally 1798 * reflectd in port_base_vlan_cfg. 1799 */ 1800 if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE) 1801 rxq->pvid_sw_discard_en = hw->port_base_vlan_cfg.state == 1802 HNS3_PORT_BASE_VLAN_ENABLE; 1803 else 1804 rxq->pvid_sw_discard_en = false; 1805 rxq->ptype_en = hns3_dev_rxd_adv_layout_supported(hw) ? true : false; 1806 rxq->configured = true; 1807 rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET + 1808 idx * HNS3_TQP_REG_SIZE); 1809 rxq->io_base = (void *)((char *)hw->io_base + 1810 hns3_get_tqp_reg_offset(idx)); 1811 rxq->io_head_reg = (volatile void *)((char *)rxq->io_base + 1812 HNS3_RING_RX_HEAD_REG); 1813 rxq->rx_buf_len = rx_buf_size; 1814 memset(&rxq->basic_stats, 0, sizeof(struct hns3_rx_basic_stats)); 1815 memset(&rxq->err_stats, 0, sizeof(struct hns3_rx_bd_errors_stats)); 1816 memset(&rxq->dfx_stats, 0, sizeof(struct hns3_rx_dfx_stats)); 1817 1818 /* CRC len set here is used for amending packet length */ 1819 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) 1820 rxq->crc_len = RTE_ETHER_CRC_LEN; 1821 else 1822 rxq->crc_len = 0; 1823 1824 rxq->bulk_mbuf_num = 0; 1825 1826 rte_spinlock_lock(&hw->lock); 1827 dev->data->rx_queues[idx] = rxq; 1828 rte_spinlock_unlock(&hw->lock); 1829 1830 return 0; 1831 } 1832 1833 void 1834 hns3_rx_scattered_reset(struct rte_eth_dev *dev) 1835 { 1836 struct hns3_adapter *hns = dev->data->dev_private; 1837 struct hns3_hw *hw = &hns->hw; 1838 1839 hw->rx_buf_len = 0; 1840 dev->data->scattered_rx = false; 1841 } 1842 1843 void 1844 hns3_rx_scattered_calc(struct rte_eth_dev *dev) 1845 { 1846 struct rte_eth_conf *dev_conf = &dev->data->dev_conf; 1847 struct hns3_adapter *hns = dev->data->dev_private; 1848 struct hns3_hw *hw = &hns->hw; 1849 struct hns3_rx_queue *rxq; 1850 uint32_t queue_id; 1851 1852 if (dev->data->rx_queues == NULL) 1853 return; 1854 1855 for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) { 1856 rxq = dev->data->rx_queues[queue_id]; 1857 if (hw->rx_buf_len == 0) 1858 hw->rx_buf_len = rxq->rx_buf_len; 1859 else 1860 hw->rx_buf_len = RTE_MIN(hw->rx_buf_len, 1861 rxq->rx_buf_len); 1862 } 1863 1864 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_SCATTER || 1865 dev_conf->rxmode.max_rx_pkt_len > hw->rx_buf_len) 1866 dev->data->scattered_rx = true; 1867 } 1868 1869 const uint32_t * 1870 hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev) 1871 { 1872 static const uint32_t ptypes[] = { 1873 RTE_PTYPE_L2_ETHER, 1874 RTE_PTYPE_L2_ETHER_VLAN, 1875 RTE_PTYPE_L2_ETHER_QINQ, 1876 RTE_PTYPE_L2_ETHER_LLDP, 1877 RTE_PTYPE_L2_ETHER_ARP, 1878 RTE_PTYPE_L3_IPV4, 1879 RTE_PTYPE_L3_IPV4_EXT, 1880 RTE_PTYPE_L3_IPV6, 1881 RTE_PTYPE_L3_IPV6_EXT, 1882 RTE_PTYPE_L4_IGMP, 1883 RTE_PTYPE_L4_ICMP, 1884 RTE_PTYPE_L4_SCTP, 1885 RTE_PTYPE_L4_TCP, 1886 RTE_PTYPE_L4_UDP, 1887 RTE_PTYPE_TUNNEL_GRE, 1888 RTE_PTYPE_INNER_L2_ETHER, 1889 RTE_PTYPE_INNER_L2_ETHER_VLAN, 1890 RTE_PTYPE_INNER_L2_ETHER_QINQ, 1891 RTE_PTYPE_INNER_L3_IPV4, 1892 RTE_PTYPE_INNER_L3_IPV6, 1893 RTE_PTYPE_INNER_L3_IPV4_EXT, 1894 RTE_PTYPE_INNER_L3_IPV6_EXT, 1895 RTE_PTYPE_INNER_L4_UDP, 1896 RTE_PTYPE_INNER_L4_TCP, 1897 RTE_PTYPE_INNER_L4_SCTP, 1898 RTE_PTYPE_INNER_L4_ICMP, 1899 RTE_PTYPE_TUNNEL_VXLAN, 1900 RTE_PTYPE_TUNNEL_NVGRE, 1901 RTE_PTYPE_UNKNOWN 1902 }; 1903 1904 if (dev->rx_pkt_burst == hns3_recv_pkts || 1905 dev->rx_pkt_burst == hns3_recv_scattered_pkts || 1906 dev->rx_pkt_burst == hns3_recv_pkts_vec || 1907 dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) 1908 return ptypes; 1909 1910 return NULL; 1911 } 1912 1913 static void 1914 hns3_init_non_tunnel_ptype_tbl(struct hns3_ptype_table *tbl) 1915 { 1916 tbl->l2l3table[0][0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4; 1917 tbl->l2l3table[0][1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6; 1918 tbl->l2l3table[0][2] = RTE_PTYPE_L2_ETHER_ARP; 1919 tbl->l2l3table[0][3] = RTE_PTYPE_L2_ETHER; 1920 tbl->l2l3table[0][4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT; 1921 tbl->l2l3table[0][5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT; 1922 tbl->l2l3table[0][6] = RTE_PTYPE_L2_ETHER_LLDP; 1923 tbl->l2l3table[0][15] = RTE_PTYPE_L2_ETHER; 1924 1925 tbl->l2l3table[1][0] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV4; 1926 tbl->l2l3table[1][1] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV6; 1927 tbl->l2l3table[1][2] = RTE_PTYPE_L2_ETHER_ARP; 1928 tbl->l2l3table[1][3] = RTE_PTYPE_L2_ETHER_VLAN; 1929 tbl->l2l3table[1][4] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV4_EXT; 1930 tbl->l2l3table[1][5] = RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV6_EXT; 1931 tbl->l2l3table[1][6] = RTE_PTYPE_L2_ETHER_LLDP; 1932 tbl->l2l3table[1][15] = RTE_PTYPE_L2_ETHER_VLAN; 1933 1934 tbl->l2l3table[2][0] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV4; 1935 tbl->l2l3table[2][1] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV6; 1936 tbl->l2l3table[2][2] = RTE_PTYPE_L2_ETHER_ARP; 1937 tbl->l2l3table[2][3] = RTE_PTYPE_L2_ETHER_QINQ; 1938 tbl->l2l3table[2][4] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV4_EXT; 1939 tbl->l2l3table[2][5] = RTE_PTYPE_L2_ETHER_QINQ | RTE_PTYPE_L3_IPV6_EXT; 1940 tbl->l2l3table[2][6] = RTE_PTYPE_L2_ETHER_LLDP; 1941 tbl->l2l3table[2][15] = RTE_PTYPE_L2_ETHER_QINQ; 1942 1943 tbl->l4table[0] = RTE_PTYPE_L4_UDP; 1944 tbl->l4table[1] = RTE_PTYPE_L4_TCP; 1945 tbl->l4table[2] = RTE_PTYPE_TUNNEL_GRE; 1946 tbl->l4table[3] = RTE_PTYPE_L4_SCTP; 1947 tbl->l4table[4] = RTE_PTYPE_L4_IGMP; 1948 tbl->l4table[5] = RTE_PTYPE_L4_ICMP; 1949 } 1950 1951 static void 1952 hns3_init_tunnel_ptype_tbl(struct hns3_ptype_table *tbl) 1953 { 1954 tbl->inner_l2table[0] = RTE_PTYPE_INNER_L2_ETHER; 1955 tbl->inner_l2table[1] = RTE_PTYPE_INNER_L2_ETHER_VLAN; 1956 tbl->inner_l2table[2] = RTE_PTYPE_INNER_L2_ETHER_QINQ; 1957 1958 tbl->inner_l3table[0] = RTE_PTYPE_INNER_L3_IPV4; 1959 tbl->inner_l3table[1] = RTE_PTYPE_INNER_L3_IPV6; 1960 /* There is not a ptype for inner ARP/RARP */ 1961 tbl->inner_l3table[2] = RTE_PTYPE_UNKNOWN; 1962 tbl->inner_l3table[3] = RTE_PTYPE_UNKNOWN; 1963 tbl->inner_l3table[4] = RTE_PTYPE_INNER_L3_IPV4_EXT; 1964 tbl->inner_l3table[5] = RTE_PTYPE_INNER_L3_IPV6_EXT; 1965 1966 tbl->inner_l4table[0] = RTE_PTYPE_INNER_L4_UDP; 1967 tbl->inner_l4table[1] = RTE_PTYPE_INNER_L4_TCP; 1968 /* There is not a ptype for inner GRE */ 1969 tbl->inner_l4table[2] = RTE_PTYPE_UNKNOWN; 1970 tbl->inner_l4table[3] = RTE_PTYPE_INNER_L4_SCTP; 1971 /* There is not a ptype for inner IGMP */ 1972 tbl->inner_l4table[4] = RTE_PTYPE_UNKNOWN; 1973 tbl->inner_l4table[5] = RTE_PTYPE_INNER_L4_ICMP; 1974 1975 tbl->ol2table[0] = RTE_PTYPE_L2_ETHER; 1976 tbl->ol2table[1] = RTE_PTYPE_L2_ETHER_VLAN; 1977 tbl->ol2table[2] = RTE_PTYPE_L2_ETHER_QINQ; 1978 1979 tbl->ol3table[0] = RTE_PTYPE_L3_IPV4; 1980 tbl->ol3table[1] = RTE_PTYPE_L3_IPV6; 1981 tbl->ol3table[2] = RTE_PTYPE_UNKNOWN; 1982 tbl->ol3table[3] = RTE_PTYPE_UNKNOWN; 1983 tbl->ol3table[4] = RTE_PTYPE_L3_IPV4_EXT; 1984 tbl->ol3table[5] = RTE_PTYPE_L3_IPV6_EXT; 1985 1986 tbl->ol4table[0] = RTE_PTYPE_UNKNOWN; 1987 tbl->ol4table[1] = RTE_PTYPE_TUNNEL_VXLAN; 1988 tbl->ol4table[2] = RTE_PTYPE_TUNNEL_NVGRE; 1989 } 1990 1991 static void 1992 hns3_init_adv_layout_ptype(struct hns3_ptype_table *tbl) 1993 { 1994 uint32_t *ptype = tbl->ptype; 1995 1996 /* Non-tunnel L2 */ 1997 ptype[1] = RTE_PTYPE_L2_ETHER_ARP; 1998 ptype[3] = RTE_PTYPE_L2_ETHER_LLDP; 1999 ptype[8] = RTE_PTYPE_L2_ETHER_TIMESYNC; 2000 2001 /* Non-tunnel IPv4 */ 2002 ptype[17] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2003 RTE_PTYPE_L4_FRAG; 2004 ptype[18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2005 RTE_PTYPE_L4_NONFRAG; 2006 ptype[19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2007 RTE_PTYPE_L4_UDP; 2008 ptype[20] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2009 RTE_PTYPE_L4_TCP; 2010 /* The next ptype is GRE over IPv4 */ 2011 ptype[21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN; 2012 ptype[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2013 RTE_PTYPE_L4_SCTP; 2014 ptype[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2015 RTE_PTYPE_L4_IGMP; 2016 ptype[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2017 RTE_PTYPE_L4_ICMP; 2018 /* The next ptype is PTP over IPv4 + UDP */ 2019 ptype[25] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2020 RTE_PTYPE_L4_UDP; 2021 2022 /* IPv4 --> GRE/Teredo/VXLAN */ 2023 ptype[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2024 RTE_PTYPE_TUNNEL_GRENAT; 2025 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */ 2026 ptype[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2027 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER; 2028 2029 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */ 2030 ptype[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2031 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2032 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2033 RTE_PTYPE_INNER_L4_FRAG; 2034 ptype[32] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2035 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2036 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2037 RTE_PTYPE_INNER_L4_NONFRAG; 2038 ptype[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2039 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2040 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2041 RTE_PTYPE_INNER_L4_UDP; 2042 ptype[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2043 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2044 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2045 RTE_PTYPE_INNER_L4_TCP; 2046 ptype[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2047 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2048 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2049 RTE_PTYPE_INNER_L4_SCTP; 2050 /* The next ptype's inner L4 is IGMP */ 2051 ptype[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2052 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2053 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN; 2054 ptype[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2055 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2056 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2057 RTE_PTYPE_INNER_L4_ICMP; 2058 2059 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */ 2060 ptype[39] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2061 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2062 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2063 RTE_PTYPE_INNER_L4_FRAG; 2064 ptype[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2065 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2066 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2067 RTE_PTYPE_INNER_L4_NONFRAG; 2068 ptype[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2069 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2070 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2071 RTE_PTYPE_INNER_L4_UDP; 2072 ptype[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2073 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2074 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2075 RTE_PTYPE_INNER_L4_TCP; 2076 ptype[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2077 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2078 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2079 RTE_PTYPE_INNER_L4_SCTP; 2080 /* The next ptype's inner L4 is IGMP */ 2081 ptype[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2082 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2083 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN; 2084 ptype[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | 2085 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2086 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2087 RTE_PTYPE_INNER_L4_ICMP; 2088 2089 /* Non-tunnel IPv6 */ 2090 ptype[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2091 RTE_PTYPE_L4_FRAG; 2092 ptype[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2093 RTE_PTYPE_L4_NONFRAG; 2094 ptype[113] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2095 RTE_PTYPE_L4_UDP; 2096 ptype[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2097 RTE_PTYPE_L4_TCP; 2098 /* The next ptype is GRE over IPv6 */ 2099 ptype[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN; 2100 ptype[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2101 RTE_PTYPE_L4_SCTP; 2102 ptype[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2103 RTE_PTYPE_L4_IGMP; 2104 ptype[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2105 RTE_PTYPE_L4_ICMP; 2106 /* Special for PTP over IPv6 + UDP */ 2107 ptype[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2108 RTE_PTYPE_L4_UDP; 2109 2110 /* IPv6 --> GRE/Teredo/VXLAN */ 2111 ptype[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2112 RTE_PTYPE_TUNNEL_GRENAT; 2113 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */ 2114 ptype[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2115 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER; 2116 2117 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */ 2118 ptype[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2119 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2120 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2121 RTE_PTYPE_INNER_L4_FRAG; 2122 ptype[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2123 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2124 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2125 RTE_PTYPE_INNER_L4_NONFRAG; 2126 ptype[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2127 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2128 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2129 RTE_PTYPE_INNER_L4_UDP; 2130 ptype[128] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2131 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2132 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2133 RTE_PTYPE_INNER_L4_TCP; 2134 ptype[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2135 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2136 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2137 RTE_PTYPE_INNER_L4_SCTP; 2138 /* The next ptype's inner L4 is IGMP */ 2139 ptype[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2140 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2141 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN; 2142 ptype[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2143 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2144 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN | 2145 RTE_PTYPE_INNER_L4_ICMP; 2146 2147 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */ 2148 ptype[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2149 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2150 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2151 RTE_PTYPE_INNER_L4_FRAG; 2152 ptype[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2153 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2154 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2155 RTE_PTYPE_INNER_L4_NONFRAG; 2156 ptype[135] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2157 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2158 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2159 RTE_PTYPE_INNER_L4_UDP; 2160 ptype[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2161 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2162 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2163 RTE_PTYPE_INNER_L4_TCP; 2164 ptype[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2165 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2166 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2167 RTE_PTYPE_INNER_L4_SCTP; 2168 /* The next ptype's inner L4 is IGMP */ 2169 ptype[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2170 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2171 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN; 2172 ptype[139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | 2173 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER | 2174 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN | 2175 RTE_PTYPE_INNER_L4_ICMP; 2176 } 2177 2178 void 2179 hns3_init_rx_ptype_tble(struct rte_eth_dev *dev) 2180 { 2181 struct hns3_adapter *hns = dev->data->dev_private; 2182 struct hns3_ptype_table *tbl = &hns->ptype_tbl; 2183 2184 memset(tbl, 0, sizeof(*tbl)); 2185 2186 hns3_init_non_tunnel_ptype_tbl(tbl); 2187 hns3_init_tunnel_ptype_tbl(tbl); 2188 hns3_init_adv_layout_ptype(tbl); 2189 } 2190 2191 static inline void 2192 hns3_rxd_to_vlan_tci(struct hns3_rx_queue *rxq, struct rte_mbuf *mb, 2193 uint32_t l234_info, const struct hns3_desc *rxd) 2194 { 2195 #define HNS3_STRP_STATUS_NUM 0x4 2196 2197 #define HNS3_NO_STRP_VLAN_VLD 0x0 2198 #define HNS3_INNER_STRP_VLAN_VLD 0x1 2199 #define HNS3_OUTER_STRP_VLAN_VLD 0x2 2200 uint32_t strip_status; 2201 uint32_t report_mode; 2202 2203 /* 2204 * Since HW limitation, the vlan tag will always be inserted into RX 2205 * descriptor when strip the tag from packet, driver needs to determine 2206 * reporting which tag to mbuf according to the PVID configuration 2207 * and vlan striped status. 2208 */ 2209 static const uint32_t report_type[][HNS3_STRP_STATUS_NUM] = { 2210 { 2211 HNS3_NO_STRP_VLAN_VLD, 2212 HNS3_OUTER_STRP_VLAN_VLD, 2213 HNS3_INNER_STRP_VLAN_VLD, 2214 HNS3_OUTER_STRP_VLAN_VLD 2215 }, 2216 { 2217 HNS3_NO_STRP_VLAN_VLD, 2218 HNS3_NO_STRP_VLAN_VLD, 2219 HNS3_NO_STRP_VLAN_VLD, 2220 HNS3_INNER_STRP_VLAN_VLD 2221 } 2222 }; 2223 strip_status = hns3_get_field(l234_info, HNS3_RXD_STRP_TAGP_M, 2224 HNS3_RXD_STRP_TAGP_S); 2225 report_mode = report_type[rxq->pvid_sw_discard_en][strip_status]; 2226 switch (report_mode) { 2227 case HNS3_NO_STRP_VLAN_VLD: 2228 mb->vlan_tci = 0; 2229 return; 2230 case HNS3_INNER_STRP_VLAN_VLD: 2231 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED; 2232 mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.vlan_tag); 2233 return; 2234 case HNS3_OUTER_STRP_VLAN_VLD: 2235 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED; 2236 mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.ot_vlan_tag); 2237 return; 2238 default: 2239 mb->vlan_tci = 0; 2240 return; 2241 } 2242 } 2243 2244 static inline void 2245 recalculate_data_len(struct rte_mbuf *first_seg, struct rte_mbuf *last_seg, 2246 struct rte_mbuf *rxm, struct hns3_rx_queue *rxq, 2247 uint16_t data_len) 2248 { 2249 uint8_t crc_len = rxq->crc_len; 2250 2251 if (data_len <= crc_len) { 2252 rte_pktmbuf_free_seg(rxm); 2253 first_seg->nb_segs--; 2254 last_seg->data_len = (uint16_t)(last_seg->data_len - 2255 (crc_len - data_len)); 2256 last_seg->next = NULL; 2257 } else 2258 rxm->data_len = (uint16_t)(data_len - crc_len); 2259 } 2260 2261 static inline struct rte_mbuf * 2262 hns3_rx_alloc_buffer(struct hns3_rx_queue *rxq) 2263 { 2264 int ret; 2265 2266 if (likely(rxq->bulk_mbuf_num > 0)) 2267 return rxq->bulk_mbuf[--rxq->bulk_mbuf_num]; 2268 2269 ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)rxq->bulk_mbuf, 2270 HNS3_BULK_ALLOC_MBUF_NUM); 2271 if (likely(ret == 0)) { 2272 rxq->bulk_mbuf_num = HNS3_BULK_ALLOC_MBUF_NUM; 2273 return rxq->bulk_mbuf[--rxq->bulk_mbuf_num]; 2274 } else 2275 return rte_mbuf_raw_alloc(rxq->mb_pool); 2276 } 2277 2278 uint16_t 2279 hns3_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts) 2280 { 2281 volatile struct hns3_desc *rx_ring; /* RX ring (desc) */ 2282 volatile struct hns3_desc *rxdp; /* pointer of the current desc */ 2283 struct hns3_rx_queue *rxq; /* RX queue */ 2284 struct hns3_entry *sw_ring; 2285 struct hns3_entry *rxe; 2286 struct hns3_desc rxd; 2287 struct rte_mbuf *nmb; /* pointer of the new mbuf */ 2288 struct rte_mbuf *rxm; 2289 uint32_t bd_base_info; 2290 uint32_t cksum_err; 2291 uint32_t l234_info; 2292 uint32_t ol_info; 2293 uint64_t dma_addr; 2294 uint16_t nb_rx_bd; 2295 uint16_t nb_rx; 2296 uint16_t rx_id; 2297 int ret; 2298 2299 nb_rx = 0; 2300 nb_rx_bd = 0; 2301 rxq = rx_queue; 2302 rx_ring = rxq->rx_ring; 2303 sw_ring = rxq->sw_ring; 2304 rx_id = rxq->next_to_use; 2305 2306 while (nb_rx < nb_pkts) { 2307 rxdp = &rx_ring[rx_id]; 2308 bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info); 2309 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) 2310 break; 2311 2312 rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) - 2313 (1u << HNS3_RXD_VLD_B)]; 2314 2315 nmb = hns3_rx_alloc_buffer(rxq); 2316 if (unlikely(nmb == NULL)) { 2317 uint16_t port_id; 2318 2319 port_id = rxq->port_id; 2320 rte_eth_devices[port_id].data->rx_mbuf_alloc_failed++; 2321 break; 2322 } 2323 2324 nb_rx_bd++; 2325 rxe = &sw_ring[rx_id]; 2326 rx_id++; 2327 if (unlikely(rx_id == rxq->nb_rx_desc)) 2328 rx_id = 0; 2329 2330 rte_prefetch0(sw_ring[rx_id].mbuf); 2331 if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) { 2332 rte_prefetch0(&rx_ring[rx_id]); 2333 rte_prefetch0(&sw_ring[rx_id]); 2334 } 2335 2336 rxm = rxe->mbuf; 2337 rxe->mbuf = nmb; 2338 2339 dma_addr = rte_mbuf_data_iova_default(nmb); 2340 rxdp->addr = rte_cpu_to_le_64(dma_addr); 2341 rxdp->rx.bd_base_info = 0; 2342 2343 rxm->data_off = RTE_PKTMBUF_HEADROOM; 2344 rxm->pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.rx.pkt_len)) - 2345 rxq->crc_len; 2346 rxm->data_len = rxm->pkt_len; 2347 rxm->port = rxq->port_id; 2348 rxm->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash); 2349 rxm->ol_flags = PKT_RX_RSS_HASH; 2350 if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) { 2351 rxm->hash.fdir.hi = 2352 rte_le_to_cpu_16(rxd.rx.fd_id); 2353 rxm->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID; 2354 } 2355 rxm->nb_segs = 1; 2356 rxm->next = NULL; 2357 2358 /* Load remained descriptor data and extract necessary fields */ 2359 l234_info = rte_le_to_cpu_32(rxd.rx.l234_info); 2360 ol_info = rte_le_to_cpu_32(rxd.rx.ol_info); 2361 ret = hns3_handle_bdinfo(rxq, rxm, bd_base_info, 2362 l234_info, &cksum_err); 2363 if (unlikely(ret)) 2364 goto pkt_err; 2365 2366 rxm->packet_type = hns3_rx_calc_ptype(rxq, l234_info, ol_info); 2367 2368 if (likely(bd_base_info & BIT(HNS3_RXD_L3L4P_B))) 2369 hns3_rx_set_cksum_flag(rxm, rxm->packet_type, 2370 cksum_err); 2371 hns3_rxd_to_vlan_tci(rxq, rxm, l234_info, &rxd); 2372 2373 /* Increment bytes counter */ 2374 rxq->basic_stats.bytes += rxm->pkt_len; 2375 2376 rx_pkts[nb_rx++] = rxm; 2377 continue; 2378 pkt_err: 2379 rte_pktmbuf_free(rxm); 2380 } 2381 2382 rxq->next_to_use = rx_id; 2383 rxq->rx_free_hold += nb_rx_bd; 2384 if (rxq->rx_free_hold > rxq->rx_free_thresh) { 2385 hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold); 2386 rxq->rx_free_hold = 0; 2387 } 2388 2389 return nb_rx; 2390 } 2391 2392 uint16_t 2393 hns3_recv_scattered_pkts(void *rx_queue, 2394 struct rte_mbuf **rx_pkts, 2395 uint16_t nb_pkts) 2396 { 2397 volatile struct hns3_desc *rx_ring; /* RX ring (desc) */ 2398 volatile struct hns3_desc *rxdp; /* pointer of the current desc */ 2399 struct hns3_rx_queue *rxq; /* RX queue */ 2400 struct hns3_entry *sw_ring; 2401 struct hns3_entry *rxe; 2402 struct rte_mbuf *first_seg; 2403 struct rte_mbuf *last_seg; 2404 struct hns3_desc rxd; 2405 struct rte_mbuf *nmb; /* pointer of the new mbuf */ 2406 struct rte_mbuf *rxm; 2407 struct rte_eth_dev *dev; 2408 uint32_t bd_base_info; 2409 uint32_t cksum_err; 2410 uint32_t l234_info; 2411 uint32_t gro_size; 2412 uint32_t ol_info; 2413 uint64_t dma_addr; 2414 uint16_t nb_rx_bd; 2415 uint16_t nb_rx; 2416 uint16_t rx_id; 2417 int ret; 2418 2419 nb_rx = 0; 2420 nb_rx_bd = 0; 2421 rxq = rx_queue; 2422 2423 rx_id = rxq->next_to_use; 2424 rx_ring = rxq->rx_ring; 2425 sw_ring = rxq->sw_ring; 2426 first_seg = rxq->pkt_first_seg; 2427 last_seg = rxq->pkt_last_seg; 2428 2429 while (nb_rx < nb_pkts) { 2430 rxdp = &rx_ring[rx_id]; 2431 bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info); 2432 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) 2433 break; 2434 2435 /* 2436 * The interactive process between software and hardware of 2437 * receiving a new packet in hns3 network engine: 2438 * 1. Hardware network engine firstly writes the packet content 2439 * to the memory pointed by the 'addr' field of the Rx Buffer 2440 * Descriptor, secondly fills the result of parsing the 2441 * packet include the valid field into the Rx Buffer 2442 * Descriptor in one write operation. 2443 * 2. Driver reads the Rx BD's valid field in the loop to check 2444 * whether it's valid, if valid then assign a new address to 2445 * the addr field, clear the valid field, get the other 2446 * information of the packet by parsing Rx BD's other fields, 2447 * finally write back the number of Rx BDs processed by the 2448 * driver to the HNS3_RING_RX_HEAD_REG register to inform 2449 * hardware. 2450 * In the above process, the ordering is very important. We must 2451 * make sure that CPU read Rx BD's other fields only after the 2452 * Rx BD is valid. 2453 * 2454 * There are two type of re-ordering: compiler re-ordering and 2455 * CPU re-ordering under the ARMv8 architecture. 2456 * 1. we use volatile to deal with compiler re-ordering, so you 2457 * can see that rx_ring/rxdp defined with volatile. 2458 * 2. we commonly use memory barrier to deal with CPU 2459 * re-ordering, but the cost is high. 2460 * 2461 * In order to solve the high cost of using memory barrier, we 2462 * use the data dependency order under the ARMv8 architecture, 2463 * for example: 2464 * instr01: load A 2465 * instr02: load B <- A 2466 * the instr02 will always execute after instr01. 2467 * 2468 * To construct the data dependency ordering, we use the 2469 * following assignment: 2470 * rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) - 2471 * (1u<<HNS3_RXD_VLD_B)] 2472 * Using gcc compiler under the ARMv8 architecture, the related 2473 * assembly code example as follows: 2474 * note: (1u << HNS3_RXD_VLD_B) equal 0x10 2475 * instr01: ldr w26, [x22, #28] --read bd_base_info 2476 * instr02: and w0, w26, #0x10 --calc bd_base_info & 0x10 2477 * instr03: sub w0, w0, #0x10 --calc (bd_base_info & 2478 * 0x10) - 0x10 2479 * instr04: add x0, x22, x0, lsl #5 --calc copy source addr 2480 * instr05: ldp x2, x3, [x0] 2481 * instr06: stp x2, x3, [x29, #256] --copy BD's [0 ~ 15]B 2482 * instr07: ldp x4, x5, [x0, #16] 2483 * instr08: stp x4, x5, [x29, #272] --copy BD's [16 ~ 31]B 2484 * the instr05~08 depend on x0's value, x0 depent on w26's 2485 * value, the w26 is the bd_base_info, this form the data 2486 * dependency ordering. 2487 * note: if BD is valid, (bd_base_info & (1u<<HNS3_RXD_VLD_B)) - 2488 * (1u<<HNS3_RXD_VLD_B) will always zero, so the 2489 * assignment is correct. 2490 * 2491 * So we use the data dependency ordering instead of memory 2492 * barrier to improve receive performance. 2493 */ 2494 rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) - 2495 (1u << HNS3_RXD_VLD_B)]; 2496 2497 nmb = hns3_rx_alloc_buffer(rxq); 2498 if (unlikely(nmb == NULL)) { 2499 dev = &rte_eth_devices[rxq->port_id]; 2500 dev->data->rx_mbuf_alloc_failed++; 2501 break; 2502 } 2503 2504 nb_rx_bd++; 2505 rxe = &sw_ring[rx_id]; 2506 rx_id++; 2507 if (unlikely(rx_id == rxq->nb_rx_desc)) 2508 rx_id = 0; 2509 2510 rte_prefetch0(sw_ring[rx_id].mbuf); 2511 if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) { 2512 rte_prefetch0(&rx_ring[rx_id]); 2513 rte_prefetch0(&sw_ring[rx_id]); 2514 } 2515 2516 rxm = rxe->mbuf; 2517 rxe->mbuf = nmb; 2518 2519 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb)); 2520 rxdp->rx.bd_base_info = 0; 2521 rxdp->addr = dma_addr; 2522 2523 if (first_seg == NULL) { 2524 first_seg = rxm; 2525 first_seg->nb_segs = 1; 2526 } else { 2527 first_seg->nb_segs++; 2528 last_seg->next = rxm; 2529 } 2530 2531 rxm->data_off = RTE_PKTMBUF_HEADROOM; 2532 rxm->data_len = rte_le_to_cpu_16(rxd.rx.size); 2533 2534 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { 2535 last_seg = rxm; 2536 rxm->next = NULL; 2537 continue; 2538 } 2539 2540 /* 2541 * The last buffer of the received packet. packet len from 2542 * buffer description may contains CRC len, packet len should 2543 * subtract it, same as data len. 2544 */ 2545 first_seg->pkt_len = rte_le_to_cpu_16(rxd.rx.pkt_len); 2546 2547 /* 2548 * This is the last buffer of the received packet. If the CRC 2549 * is not stripped by the hardware: 2550 * - Subtract the CRC length from the total packet length. 2551 * - If the last buffer only contains the whole CRC or a part 2552 * of it, free the mbuf associated to the last buffer. If part 2553 * of the CRC is also contained in the previous mbuf, subtract 2554 * the length of that CRC part from the data length of the 2555 * previous mbuf. 2556 */ 2557 rxm->next = NULL; 2558 if (unlikely(rxq->crc_len > 0)) { 2559 first_seg->pkt_len -= rxq->crc_len; 2560 recalculate_data_len(first_seg, last_seg, rxm, rxq, 2561 rxm->data_len); 2562 } 2563 2564 first_seg->port = rxq->port_id; 2565 first_seg->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash); 2566 first_seg->ol_flags = PKT_RX_RSS_HASH; 2567 if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) { 2568 first_seg->hash.fdir.hi = 2569 rte_le_to_cpu_16(rxd.rx.fd_id); 2570 first_seg->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID; 2571 } 2572 2573 gro_size = hns3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M, 2574 HNS3_RXD_GRO_SIZE_S); 2575 if (gro_size != 0) { 2576 first_seg->ol_flags |= PKT_RX_LRO; 2577 first_seg->tso_segsz = gro_size; 2578 } 2579 2580 l234_info = rte_le_to_cpu_32(rxd.rx.l234_info); 2581 ol_info = rte_le_to_cpu_32(rxd.rx.ol_info); 2582 ret = hns3_handle_bdinfo(rxq, first_seg, bd_base_info, 2583 l234_info, &cksum_err); 2584 if (unlikely(ret)) 2585 goto pkt_err; 2586 2587 first_seg->packet_type = hns3_rx_calc_ptype(rxq, 2588 l234_info, ol_info); 2589 2590 if (bd_base_info & BIT(HNS3_RXD_L3L4P_B)) 2591 hns3_rx_set_cksum_flag(first_seg, 2592 first_seg->packet_type, 2593 cksum_err); 2594 hns3_rxd_to_vlan_tci(rxq, first_seg, l234_info, &rxd); 2595 2596 /* Increment bytes counter */ 2597 rxq->basic_stats.bytes += first_seg->pkt_len; 2598 2599 rx_pkts[nb_rx++] = first_seg; 2600 first_seg = NULL; 2601 continue; 2602 pkt_err: 2603 rte_pktmbuf_free(first_seg); 2604 first_seg = NULL; 2605 } 2606 2607 rxq->next_to_use = rx_id; 2608 rxq->pkt_first_seg = first_seg; 2609 rxq->pkt_last_seg = last_seg; 2610 2611 rxq->rx_free_hold += nb_rx_bd; 2612 if (rxq->rx_free_hold > rxq->rx_free_thresh) { 2613 hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold); 2614 rxq->rx_free_hold = 0; 2615 } 2616 2617 return nb_rx; 2618 } 2619 2620 void __rte_weak 2621 hns3_rxq_vec_setup(__rte_unused struct hns3_rx_queue *rxq) 2622 { 2623 } 2624 2625 int __rte_weak 2626 hns3_rx_check_vec_support(__rte_unused struct rte_eth_dev *dev) 2627 { 2628 return -ENOTSUP; 2629 } 2630 2631 uint16_t __rte_weak 2632 hns3_recv_pkts_vec(__rte_unused void *tx_queue, 2633 __rte_unused struct rte_mbuf **rx_pkts, 2634 __rte_unused uint16_t nb_pkts) 2635 { 2636 return 0; 2637 } 2638 2639 uint16_t __rte_weak 2640 hns3_recv_pkts_vec_sve(__rte_unused void *tx_queue, 2641 __rte_unused struct rte_mbuf **rx_pkts, 2642 __rte_unused uint16_t nb_pkts) 2643 { 2644 return 0; 2645 } 2646 2647 int 2648 hns3_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, 2649 struct rte_eth_burst_mode *mode) 2650 { 2651 static const struct { 2652 eth_rx_burst_t pkt_burst; 2653 const char *info; 2654 } burst_infos[] = { 2655 { hns3_recv_pkts, "Scalar" }, 2656 { hns3_recv_scattered_pkts, "Scalar Scattered" }, 2657 { hns3_recv_pkts_vec, "Vector Neon" }, 2658 { hns3_recv_pkts_vec_sve, "Vector Sve" }, 2659 }; 2660 2661 eth_rx_burst_t pkt_burst = dev->rx_pkt_burst; 2662 int ret = -EINVAL; 2663 unsigned int i; 2664 2665 for (i = 0; i < RTE_DIM(burst_infos); i++) { 2666 if (pkt_burst == burst_infos[i].pkt_burst) { 2667 snprintf(mode->info, sizeof(mode->info), "%s", 2668 burst_infos[i].info); 2669 ret = 0; 2670 break; 2671 } 2672 } 2673 2674 return ret; 2675 } 2676 2677 static bool 2678 hns3_check_sve_support(void) 2679 { 2680 #if defined(RTE_ARCH_ARM64) && defined(__ARM_FEATURE_SVE) 2681 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SVE)) 2682 return true; 2683 #endif 2684 return false; 2685 } 2686 2687 static eth_rx_burst_t 2688 hns3_get_rx_function(struct rte_eth_dev *dev) 2689 { 2690 struct hns3_adapter *hns = dev->data->dev_private; 2691 uint64_t offloads = dev->data->dev_conf.rxmode.offloads; 2692 2693 if (hns->rx_vec_allowed && hns3_rx_check_vec_support(dev) == 0) 2694 return hns3_check_sve_support() ? hns3_recv_pkts_vec_sve : 2695 hns3_recv_pkts_vec; 2696 2697 if (hns->rx_simple_allowed && !dev->data->scattered_rx && 2698 (offloads & DEV_RX_OFFLOAD_TCP_LRO) == 0) 2699 return hns3_recv_pkts; 2700 2701 return hns3_recv_scattered_pkts; 2702 } 2703 2704 static int 2705 hns3_tx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_txconf *conf, 2706 uint16_t nb_desc, uint16_t *tx_rs_thresh, 2707 uint16_t *tx_free_thresh, uint16_t idx) 2708 { 2709 #define HNS3_TX_RS_FREE_THRESH_GAP 8 2710 uint16_t rs_thresh, free_thresh, fast_free_thresh; 2711 2712 if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC || 2713 nb_desc % HNS3_ALIGN_RING_DESC) { 2714 hns3_err(hw, "number (%u) of tx descriptors is invalid", 2715 nb_desc); 2716 return -EINVAL; 2717 } 2718 2719 rs_thresh = (conf->tx_rs_thresh > 0) ? 2720 conf->tx_rs_thresh : HNS3_DEFAULT_TX_RS_THRESH; 2721 free_thresh = (conf->tx_free_thresh > 0) ? 2722 conf->tx_free_thresh : HNS3_DEFAULT_TX_FREE_THRESH; 2723 if (rs_thresh + free_thresh > nb_desc || nb_desc % rs_thresh || 2724 rs_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP || 2725 free_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP) { 2726 hns3_err(hw, "tx_rs_thresh (%u) tx_free_thresh (%u) nb_desc " 2727 "(%u) of tx descriptors for port=%u queue=%u check " 2728 "fail!", 2729 rs_thresh, free_thresh, nb_desc, hw->data->port_id, 2730 idx); 2731 return -EINVAL; 2732 } 2733 2734 if (conf->tx_free_thresh == 0) { 2735 /* Fast free Tx memory buffer to improve cache hit rate */ 2736 fast_free_thresh = nb_desc - rs_thresh; 2737 if (fast_free_thresh >= 2738 HNS3_TX_FAST_FREE_AHEAD + HNS3_DEFAULT_TX_FREE_THRESH) 2739 free_thresh = fast_free_thresh - 2740 HNS3_TX_FAST_FREE_AHEAD; 2741 } 2742 2743 *tx_rs_thresh = rs_thresh; 2744 *tx_free_thresh = free_thresh; 2745 return 0; 2746 } 2747 2748 int 2749 hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc, 2750 unsigned int socket_id, const struct rte_eth_txconf *conf) 2751 { 2752 struct hns3_adapter *hns = dev->data->dev_private; 2753 uint16_t tx_rs_thresh, tx_free_thresh; 2754 struct hns3_hw *hw = &hns->hw; 2755 struct hns3_queue_info q_info; 2756 struct hns3_tx_queue *txq; 2757 int tx_entry_len; 2758 int ret; 2759 2760 ret = hns3_tx_queue_conf_check(hw, conf, nb_desc, 2761 &tx_rs_thresh, &tx_free_thresh, idx); 2762 if (ret) 2763 return ret; 2764 2765 if (dev->data->tx_queues[idx] != NULL) { 2766 hns3_tx_queue_release(dev->data->tx_queues[idx]); 2767 dev->data->tx_queues[idx] = NULL; 2768 } 2769 2770 q_info.idx = idx; 2771 q_info.socket_id = socket_id; 2772 q_info.nb_desc = nb_desc; 2773 q_info.type = "hns3 TX queue"; 2774 q_info.ring_name = "tx_ring"; 2775 txq = hns3_alloc_txq_and_dma_zone(dev, &q_info); 2776 if (txq == NULL) { 2777 hns3_err(hw, 2778 "Failed to alloc mem and reserve DMA mem for tx ring!"); 2779 return -ENOMEM; 2780 } 2781 2782 txq->tx_deferred_start = conf->tx_deferred_start; 2783 if (txq->tx_deferred_start && !hns3_dev_indep_txrx_supported(hw)) { 2784 hns3_warn(hw, "deferred start is not supported."); 2785 txq->tx_deferred_start = false; 2786 } 2787 2788 tx_entry_len = sizeof(struct hns3_entry) * txq->nb_tx_desc; 2789 txq->sw_ring = rte_zmalloc_socket("hns3 TX sw ring", tx_entry_len, 2790 RTE_CACHE_LINE_SIZE, socket_id); 2791 if (txq->sw_ring == NULL) { 2792 hns3_err(hw, "Failed to allocate memory for tx sw ring!"); 2793 hns3_tx_queue_release(txq); 2794 return -ENOMEM; 2795 } 2796 2797 txq->hns = hns; 2798 txq->next_to_use = 0; 2799 txq->next_to_clean = 0; 2800 txq->tx_bd_ready = txq->nb_tx_desc - 1; 2801 txq->tx_free_thresh = tx_free_thresh; 2802 txq->tx_rs_thresh = tx_rs_thresh; 2803 txq->free = rte_zmalloc_socket("hns3 TX mbuf free array", 2804 sizeof(struct rte_mbuf *) * txq->tx_rs_thresh, 2805 RTE_CACHE_LINE_SIZE, socket_id); 2806 if (!txq->free) { 2807 hns3_err(hw, "failed to allocate tx mbuf free array!"); 2808 hns3_tx_queue_release(txq); 2809 return -ENOMEM; 2810 } 2811 2812 txq->port_id = dev->data->port_id; 2813 /* 2814 * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE, 2815 * the pvid_sw_shift_en in the queue struct should not be changed, 2816 * because PVID-related operations do not need to be processed by PMD 2817 * driver. For hns3 VF device, whether it needs to process PVID depends 2818 * on the configuration of PF kernel mode netdev driver. And the 2819 * related PF configuration is delivered through the mailbox and finally 2820 * reflectd in port_base_vlan_cfg. 2821 */ 2822 if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE) 2823 txq->pvid_sw_shift_en = hw->port_base_vlan_cfg.state == 2824 HNS3_PORT_BASE_VLAN_ENABLE; 2825 else 2826 txq->pvid_sw_shift_en = false; 2827 txq->max_non_tso_bd_num = hw->max_non_tso_bd_num; 2828 txq->configured = true; 2829 txq->io_base = (void *)((char *)hw->io_base + 2830 hns3_get_tqp_reg_offset(idx)); 2831 txq->io_tail_reg = (volatile void *)((char *)txq->io_base + 2832 HNS3_RING_TX_TAIL_REG); 2833 txq->min_tx_pkt_len = hw->min_tx_pkt_len; 2834 txq->tso_mode = hw->tso_mode; 2835 memset(&txq->basic_stats, 0, sizeof(struct hns3_tx_basic_stats)); 2836 memset(&txq->dfx_stats, 0, sizeof(struct hns3_tx_dfx_stats)); 2837 2838 rte_spinlock_lock(&hw->lock); 2839 dev->data->tx_queues[idx] = txq; 2840 rte_spinlock_unlock(&hw->lock); 2841 2842 return 0; 2843 } 2844 2845 static void 2846 hns3_tx_free_useless_buffer(struct hns3_tx_queue *txq) 2847 { 2848 uint16_t tx_next_clean = txq->next_to_clean; 2849 uint16_t tx_next_use = txq->next_to_use; 2850 uint16_t tx_bd_ready = txq->tx_bd_ready; 2851 uint16_t tx_bd_max = txq->nb_tx_desc; 2852 struct hns3_entry *tx_bak_pkt = &txq->sw_ring[tx_next_clean]; 2853 struct hns3_desc *desc = &txq->tx_ring[tx_next_clean]; 2854 struct rte_mbuf *mbuf; 2855 2856 while ((!(desc->tx.tp_fe_sc_vld_ra_ri & 2857 rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))) && 2858 tx_next_use != tx_next_clean) { 2859 mbuf = tx_bak_pkt->mbuf; 2860 if (mbuf) { 2861 rte_pktmbuf_free_seg(mbuf); 2862 tx_bak_pkt->mbuf = NULL; 2863 } 2864 2865 desc++; 2866 tx_bak_pkt++; 2867 tx_next_clean++; 2868 tx_bd_ready++; 2869 2870 if (tx_next_clean >= tx_bd_max) { 2871 tx_next_clean = 0; 2872 desc = txq->tx_ring; 2873 tx_bak_pkt = txq->sw_ring; 2874 } 2875 } 2876 2877 txq->next_to_clean = tx_next_clean; 2878 txq->tx_bd_ready = tx_bd_ready; 2879 } 2880 2881 int 2882 hns3_config_gro(struct hns3_hw *hw, bool en) 2883 { 2884 struct hns3_cfg_gro_status_cmd *req; 2885 struct hns3_cmd_desc desc; 2886 int ret; 2887 2888 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false); 2889 req = (struct hns3_cfg_gro_status_cmd *)desc.data; 2890 2891 req->gro_en = rte_cpu_to_le_16(en ? 1 : 0); 2892 2893 ret = hns3_cmd_send(hw, &desc, 1); 2894 if (ret) 2895 hns3_err(hw, "%s hardware GRO failed, ret = %d", 2896 en ? "enable" : "disable", ret); 2897 2898 return ret; 2899 } 2900 2901 int 2902 hns3_restore_gro_conf(struct hns3_hw *hw) 2903 { 2904 uint64_t offloads; 2905 bool gro_en; 2906 int ret; 2907 2908 offloads = hw->data->dev_conf.rxmode.offloads; 2909 gro_en = offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false; 2910 ret = hns3_config_gro(hw, gro_en); 2911 if (ret) 2912 hns3_err(hw, "restore hardware GRO to %s failed, ret = %d", 2913 gro_en ? "enabled" : "disabled", ret); 2914 2915 return ret; 2916 } 2917 2918 static inline bool 2919 hns3_pkt_is_tso(struct rte_mbuf *m) 2920 { 2921 return (m->tso_segsz != 0 && m->ol_flags & PKT_TX_TCP_SEG); 2922 } 2923 2924 static void 2925 hns3_set_tso(struct hns3_desc *desc, uint32_t paylen, struct rte_mbuf *rxm) 2926 { 2927 if (!hns3_pkt_is_tso(rxm)) 2928 return; 2929 2930 if (paylen <= rxm->tso_segsz) 2931 return; 2932 2933 desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(BIT(HNS3_TXD_TSO_B)); 2934 desc->tx.mss = rte_cpu_to_le_16(rxm->tso_segsz); 2935 } 2936 2937 static inline void 2938 hns3_fill_per_desc(struct hns3_desc *desc, struct rte_mbuf *rxm) 2939 { 2940 desc->addr = rte_mbuf_data_iova(rxm); 2941 desc->tx.send_size = rte_cpu_to_le_16(rte_pktmbuf_data_len(rxm)); 2942 desc->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)); 2943 } 2944 2945 static void 2946 hns3_fill_first_desc(struct hns3_tx_queue *txq, struct hns3_desc *desc, 2947 struct rte_mbuf *rxm) 2948 { 2949 uint64_t ol_flags = rxm->ol_flags; 2950 uint32_t hdr_len; 2951 uint32_t paylen; 2952 2953 hdr_len = rxm->l2_len + rxm->l3_len + rxm->l4_len; 2954 hdr_len += (ol_flags & PKT_TX_TUNNEL_MASK) ? 2955 rxm->outer_l2_len + rxm->outer_l3_len : 0; 2956 paylen = rxm->pkt_len - hdr_len; 2957 desc->tx.paylen = rte_cpu_to_le_32(paylen); 2958 hns3_set_tso(desc, paylen, rxm); 2959 2960 /* 2961 * Currently, hardware doesn't support more than two layers VLAN offload 2962 * in Tx direction based on hns3 network engine. So when the number of 2963 * VLANs in the packets represented by rxm plus the number of VLAN 2964 * offload by hardware such as PVID etc, exceeds two, the packets will 2965 * be discarded or the original VLAN of the packets will be overwitted 2966 * by hardware. When the PF PVID is enabled by calling the API function 2967 * named rte_eth_dev_set_vlan_pvid or the VF PVID is enabled by the hns3 2968 * PF kernel ether driver, the outer VLAN tag will always be the PVID. 2969 * To avoid the VLAN of Tx descriptor is overwritten by PVID, it should 2970 * be added to the position close to the IP header when PVID is enabled. 2971 */ 2972 if (!txq->pvid_sw_shift_en && ol_flags & (PKT_TX_VLAN_PKT | 2973 PKT_TX_QINQ_PKT)) { 2974 desc->tx.ol_type_vlan_len_msec |= 2975 rte_cpu_to_le_32(BIT(HNS3_TXD_OVLAN_B)); 2976 if (ol_flags & PKT_TX_QINQ_PKT) 2977 desc->tx.outer_vlan_tag = 2978 rte_cpu_to_le_16(rxm->vlan_tci_outer); 2979 else 2980 desc->tx.outer_vlan_tag = 2981 rte_cpu_to_le_16(rxm->vlan_tci); 2982 } 2983 2984 if (ol_flags & PKT_TX_QINQ_PKT || 2985 ((ol_flags & PKT_TX_VLAN_PKT) && txq->pvid_sw_shift_en)) { 2986 desc->tx.type_cs_vlan_tso_len |= 2987 rte_cpu_to_le_32(BIT(HNS3_TXD_VLAN_B)); 2988 desc->tx.vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci); 2989 } 2990 } 2991 2992 static inline int 2993 hns3_tx_alloc_mbufs(struct rte_mempool *mb_pool, uint16_t nb_new_buf, 2994 struct rte_mbuf **alloc_mbuf) 2995 { 2996 #define MAX_NON_TSO_BD_PER_PKT 18 2997 struct rte_mbuf *pkt_segs[MAX_NON_TSO_BD_PER_PKT]; 2998 uint16_t i; 2999 3000 /* Allocate enough mbufs */ 3001 if (rte_mempool_get_bulk(mb_pool, (void **)pkt_segs, nb_new_buf)) 3002 return -ENOMEM; 3003 3004 for (i = 0; i < nb_new_buf - 1; i++) 3005 pkt_segs[i]->next = pkt_segs[i + 1]; 3006 3007 pkt_segs[nb_new_buf - 1]->next = NULL; 3008 pkt_segs[0]->nb_segs = nb_new_buf; 3009 *alloc_mbuf = pkt_segs[0]; 3010 3011 return 0; 3012 } 3013 3014 static inline void 3015 hns3_pktmbuf_copy_hdr(struct rte_mbuf *new_pkt, struct rte_mbuf *old_pkt) 3016 { 3017 new_pkt->ol_flags = old_pkt->ol_flags; 3018 new_pkt->pkt_len = rte_pktmbuf_pkt_len(old_pkt); 3019 new_pkt->outer_l2_len = old_pkt->outer_l2_len; 3020 new_pkt->outer_l3_len = old_pkt->outer_l3_len; 3021 new_pkt->l2_len = old_pkt->l2_len; 3022 new_pkt->l3_len = old_pkt->l3_len; 3023 new_pkt->l4_len = old_pkt->l4_len; 3024 new_pkt->vlan_tci_outer = old_pkt->vlan_tci_outer; 3025 new_pkt->vlan_tci = old_pkt->vlan_tci; 3026 } 3027 3028 static int 3029 hns3_reassemble_tx_pkts(struct rte_mbuf *tx_pkt, struct rte_mbuf **new_pkt, 3030 uint8_t max_non_tso_bd_num) 3031 { 3032 struct rte_mempool *mb_pool; 3033 struct rte_mbuf *new_mbuf; 3034 struct rte_mbuf *temp_new; 3035 struct rte_mbuf *temp; 3036 uint16_t last_buf_len; 3037 uint16_t nb_new_buf; 3038 uint16_t buf_size; 3039 uint16_t buf_len; 3040 uint16_t len_s; 3041 uint16_t len_d; 3042 uint16_t len; 3043 int ret; 3044 char *s; 3045 char *d; 3046 3047 mb_pool = tx_pkt->pool; 3048 buf_size = tx_pkt->buf_len - RTE_PKTMBUF_HEADROOM; 3049 nb_new_buf = (rte_pktmbuf_pkt_len(tx_pkt) - 1) / buf_size + 1; 3050 if (nb_new_buf > max_non_tso_bd_num) 3051 return -EINVAL; 3052 3053 last_buf_len = rte_pktmbuf_pkt_len(tx_pkt) % buf_size; 3054 if (last_buf_len == 0) 3055 last_buf_len = buf_size; 3056 3057 /* Allocate enough mbufs */ 3058 ret = hns3_tx_alloc_mbufs(mb_pool, nb_new_buf, &new_mbuf); 3059 if (ret) 3060 return ret; 3061 3062 /* Copy the original packet content to the new mbufs */ 3063 temp = tx_pkt; 3064 s = rte_pktmbuf_mtod(temp, char *); 3065 len_s = rte_pktmbuf_data_len(temp); 3066 temp_new = new_mbuf; 3067 while (temp != NULL && temp_new != NULL) { 3068 d = rte_pktmbuf_mtod(temp_new, char *); 3069 buf_len = temp_new->next == NULL ? last_buf_len : buf_size; 3070 len_d = buf_len; 3071 3072 while (len_d) { 3073 len = RTE_MIN(len_s, len_d); 3074 memcpy(d, s, len); 3075 s = s + len; 3076 d = d + len; 3077 len_d = len_d - len; 3078 len_s = len_s - len; 3079 3080 if (len_s == 0) { 3081 temp = temp->next; 3082 if (temp == NULL) 3083 break; 3084 s = rte_pktmbuf_mtod(temp, char *); 3085 len_s = rte_pktmbuf_data_len(temp); 3086 } 3087 } 3088 3089 temp_new->data_len = buf_len; 3090 temp_new = temp_new->next; 3091 } 3092 hns3_pktmbuf_copy_hdr(new_mbuf, tx_pkt); 3093 3094 /* free original mbufs */ 3095 rte_pktmbuf_free(tx_pkt); 3096 3097 *new_pkt = new_mbuf; 3098 3099 return 0; 3100 } 3101 3102 static void 3103 hns3_parse_outer_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec) 3104 { 3105 uint32_t tmp = *ol_type_vlan_len_msec; 3106 uint64_t ol_flags = m->ol_flags; 3107 3108 /* (outer) IP header type */ 3109 if (ol_flags & PKT_TX_OUTER_IPV4) { 3110 if (ol_flags & PKT_TX_OUTER_IP_CKSUM) 3111 tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, 3112 HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM); 3113 else 3114 tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, 3115 HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_NO_CSUM); 3116 } else if (ol_flags & PKT_TX_OUTER_IPV6) { 3117 tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S, 3118 HNS3_OL3T_IPV6); 3119 } 3120 /* OL3 header size, defined in 4 bytes */ 3121 tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S, 3122 m->outer_l3_len >> HNS3_L3_LEN_UNIT); 3123 *ol_type_vlan_len_msec = tmp; 3124 } 3125 3126 static int 3127 hns3_parse_inner_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec, 3128 uint32_t *type_cs_vlan_tso_len) 3129 { 3130 #define HNS3_NVGRE_HLEN 8 3131 uint32_t tmp_outer = *ol_type_vlan_len_msec; 3132 uint32_t tmp_inner = *type_cs_vlan_tso_len; 3133 uint64_t ol_flags = m->ol_flags; 3134 uint16_t inner_l2_len; 3135 3136 switch (ol_flags & PKT_TX_TUNNEL_MASK) { 3137 case PKT_TX_TUNNEL_VXLAN_GPE: 3138 case PKT_TX_TUNNEL_GENEVE: 3139 case PKT_TX_TUNNEL_VXLAN: 3140 /* MAC in UDP tunnelling packet, include VxLAN and GENEVE */ 3141 tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M, 3142 HNS3_TXD_TUNTYPE_S, HNS3_TUN_MAC_IN_UDP); 3143 /* 3144 * The inner l2 length of mbuf is the sum of outer l4 length, 3145 * tunneling header length and inner l2 length for a tunnel 3146 * packect. But in hns3 tx descriptor, the tunneling header 3147 * length is contained in the field of outer L4 length. 3148 * Therefore, driver need to calculate the outer L4 length and 3149 * inner L2 length. 3150 */ 3151 tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, 3152 HNS3_TXD_L4LEN_S, 3153 (uint8_t)RTE_ETHER_VXLAN_HLEN >> 3154 HNS3_L4_LEN_UNIT); 3155 3156 inner_l2_len = m->l2_len - RTE_ETHER_VXLAN_HLEN; 3157 break; 3158 case PKT_TX_TUNNEL_GRE: 3159 tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M, 3160 HNS3_TXD_TUNTYPE_S, HNS3_TUN_NVGRE); 3161 /* 3162 * For NVGRE tunnel packect, the outer L4 is empty. So only 3163 * fill the NVGRE header length to the outer L4 field. 3164 */ 3165 tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, 3166 HNS3_TXD_L4LEN_S, 3167 (uint8_t)HNS3_NVGRE_HLEN >> HNS3_L4_LEN_UNIT); 3168 3169 inner_l2_len = m->l2_len - HNS3_NVGRE_HLEN; 3170 break; 3171 default: 3172 /* For non UDP / GRE tunneling, drop the tunnel packet */ 3173 return -EINVAL; 3174 } 3175 3176 tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S, 3177 inner_l2_len >> HNS3_L2_LEN_UNIT); 3178 /* OL2 header size, defined in 2 bytes */ 3179 tmp_outer |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S, 3180 m->outer_l2_len >> HNS3_L2_LEN_UNIT); 3181 3182 *type_cs_vlan_tso_len = tmp_inner; 3183 *ol_type_vlan_len_msec = tmp_outer; 3184 3185 return 0; 3186 } 3187 3188 static int 3189 hns3_parse_tunneling_params(struct hns3_tx_queue *txq, struct rte_mbuf *m, 3190 uint16_t tx_desc_id) 3191 { 3192 struct hns3_desc *tx_ring = txq->tx_ring; 3193 struct hns3_desc *desc = &tx_ring[tx_desc_id]; 3194 uint32_t tmp_outer = 0; 3195 uint32_t tmp_inner = 0; 3196 int ret; 3197 3198 /* 3199 * The tunnel header is contained in the inner L2 header field of the 3200 * mbuf, but for hns3 descriptor, it is contained in the outer L4. So, 3201 * there is a need that switching between them. To avoid multiple 3202 * calculations, the length of the L2 header include the outer and 3203 * inner, will be filled during the parsing of tunnel packects. 3204 */ 3205 if (!(m->ol_flags & PKT_TX_TUNNEL_MASK)) { 3206 /* 3207 * For non tunnel type the tunnel type id is 0, so no need to 3208 * assign a value to it. Only the inner(normal) L2 header length 3209 * is assigned. 3210 */ 3211 tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, 3212 HNS3_TXD_L2LEN_S, m->l2_len >> HNS3_L2_LEN_UNIT); 3213 } else { 3214 /* 3215 * If outer csum is not offload, the outer length may be filled 3216 * with 0. And the length of the outer header is added to the 3217 * inner l2_len. It would lead a cksum error. So driver has to 3218 * calculate the header length. 3219 */ 3220 if (unlikely(!(m->ol_flags & PKT_TX_OUTER_IP_CKSUM) && 3221 m->outer_l2_len == 0)) { 3222 struct rte_net_hdr_lens hdr_len; 3223 (void)rte_net_get_ptype(m, &hdr_len, 3224 RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK); 3225 m->outer_l3_len = hdr_len.l3_len; 3226 m->outer_l2_len = hdr_len.l2_len; 3227 m->l2_len = m->l2_len - hdr_len.l2_len - hdr_len.l3_len; 3228 } 3229 hns3_parse_outer_params(m, &tmp_outer); 3230 ret = hns3_parse_inner_params(m, &tmp_outer, &tmp_inner); 3231 if (ret) 3232 return -EINVAL; 3233 } 3234 3235 desc->tx.ol_type_vlan_len_msec = rte_cpu_to_le_32(tmp_outer); 3236 desc->tx.type_cs_vlan_tso_len = rte_cpu_to_le_32(tmp_inner); 3237 3238 return 0; 3239 } 3240 3241 static void 3242 hns3_parse_l3_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len) 3243 { 3244 uint64_t ol_flags = m->ol_flags; 3245 uint32_t l3_type; 3246 uint32_t tmp; 3247 3248 tmp = *type_cs_vlan_tso_len; 3249 if (ol_flags & PKT_TX_IPV4) 3250 l3_type = HNS3_L3T_IPV4; 3251 else if (ol_flags & PKT_TX_IPV6) 3252 l3_type = HNS3_L3T_IPV6; 3253 else 3254 l3_type = HNS3_L3T_NONE; 3255 3256 /* inner(/normal) L3 header size, defined in 4 bytes */ 3257 tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S, 3258 m->l3_len >> HNS3_L3_LEN_UNIT); 3259 3260 tmp |= hns3_gen_field_val(HNS3_TXD_L3T_M, HNS3_TXD_L3T_S, l3_type); 3261 3262 /* Enable L3 checksum offloads */ 3263 if (ol_flags & PKT_TX_IP_CKSUM) 3264 tmp |= BIT(HNS3_TXD_L3CS_B); 3265 *type_cs_vlan_tso_len = tmp; 3266 } 3267 3268 static void 3269 hns3_parse_l4_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len) 3270 { 3271 uint64_t ol_flags = m->ol_flags; 3272 uint32_t tmp; 3273 /* Enable L4 checksum offloads */ 3274 switch (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG)) { 3275 case PKT_TX_TCP_CKSUM: 3276 case PKT_TX_TCP_SEG: 3277 tmp = *type_cs_vlan_tso_len; 3278 tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S, 3279 HNS3_L4T_TCP); 3280 break; 3281 case PKT_TX_UDP_CKSUM: 3282 tmp = *type_cs_vlan_tso_len; 3283 tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S, 3284 HNS3_L4T_UDP); 3285 break; 3286 case PKT_TX_SCTP_CKSUM: 3287 tmp = *type_cs_vlan_tso_len; 3288 tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S, 3289 HNS3_L4T_SCTP); 3290 break; 3291 default: 3292 return; 3293 } 3294 tmp |= BIT(HNS3_TXD_L4CS_B); 3295 tmp |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S, 3296 m->l4_len >> HNS3_L4_LEN_UNIT); 3297 *type_cs_vlan_tso_len = tmp; 3298 } 3299 3300 static void 3301 hns3_txd_enable_checksum(struct hns3_tx_queue *txq, struct rte_mbuf *m, 3302 uint16_t tx_desc_id) 3303 { 3304 struct hns3_desc *tx_ring = txq->tx_ring; 3305 struct hns3_desc *desc = &tx_ring[tx_desc_id]; 3306 uint32_t value = 0; 3307 3308 hns3_parse_l3_cksum_params(m, &value); 3309 hns3_parse_l4_cksum_params(m, &value); 3310 3311 desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(value); 3312 } 3313 3314 static bool 3315 hns3_pkt_need_linearized(struct rte_mbuf *tx_pkts, uint32_t bd_num, 3316 uint32_t max_non_tso_bd_num) 3317 { 3318 struct rte_mbuf *m_first = tx_pkts; 3319 struct rte_mbuf *m_last = tx_pkts; 3320 uint32_t tot_len = 0; 3321 uint32_t hdr_len; 3322 uint32_t i; 3323 3324 /* 3325 * Hardware requires that the sum of the data length of every 8 3326 * consecutive buffers is greater than MSS in hns3 network engine. 3327 * We simplify it by ensuring pkt_headlen + the first 8 consecutive 3328 * frags greater than gso header len + mss, and the remaining 7 3329 * consecutive frags greater than MSS except the last 7 frags. 3330 */ 3331 if (bd_num <= max_non_tso_bd_num) 3332 return false; 3333 3334 for (i = 0; m_last && i < max_non_tso_bd_num - 1; 3335 i++, m_last = m_last->next) 3336 tot_len += m_last->data_len; 3337 3338 if (!m_last) 3339 return true; 3340 3341 /* ensure the first 8 frags is greater than mss + header */ 3342 hdr_len = tx_pkts->l2_len + tx_pkts->l3_len + tx_pkts->l4_len; 3343 hdr_len += (tx_pkts->ol_flags & PKT_TX_TUNNEL_MASK) ? 3344 tx_pkts->outer_l2_len + tx_pkts->outer_l3_len : 0; 3345 if (tot_len + m_last->data_len < tx_pkts->tso_segsz + hdr_len) 3346 return true; 3347 3348 /* 3349 * ensure the sum of the data length of every 7 consecutive buffer 3350 * is greater than mss except the last one. 3351 */ 3352 for (i = 0; m_last && i < bd_num - max_non_tso_bd_num; i++) { 3353 tot_len -= m_first->data_len; 3354 tot_len += m_last->data_len; 3355 3356 if (tot_len < tx_pkts->tso_segsz) 3357 return true; 3358 3359 m_first = m_first->next; 3360 m_last = m_last->next; 3361 } 3362 3363 return false; 3364 } 3365 3366 static void 3367 hns3_outer_header_cksum_prepare(struct rte_mbuf *m) 3368 { 3369 uint64_t ol_flags = m->ol_flags; 3370 uint32_t paylen, hdr_len, l4_proto; 3371 3372 if (!(ol_flags & (PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6))) 3373 return; 3374 3375 if (ol_flags & PKT_TX_OUTER_IPV4) { 3376 struct rte_ipv4_hdr *ipv4_hdr; 3377 ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *, 3378 m->outer_l2_len); 3379 l4_proto = ipv4_hdr->next_proto_id; 3380 if (ol_flags & PKT_TX_OUTER_IP_CKSUM) 3381 ipv4_hdr->hdr_checksum = 0; 3382 } else { 3383 struct rte_ipv6_hdr *ipv6_hdr; 3384 ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *, 3385 m->outer_l2_len); 3386 l4_proto = ipv6_hdr->proto; 3387 } 3388 /* driver should ensure the outer udp cksum is 0 for TUNNEL TSO */ 3389 if (l4_proto == IPPROTO_UDP && (ol_flags & PKT_TX_TCP_SEG)) { 3390 struct rte_udp_hdr *udp_hdr; 3391 hdr_len = m->l2_len + m->l3_len + m->l4_len; 3392 hdr_len += m->outer_l2_len + m->outer_l3_len; 3393 paylen = m->pkt_len - hdr_len; 3394 if (paylen <= m->tso_segsz) 3395 return; 3396 udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *, 3397 m->outer_l2_len + 3398 m->outer_l3_len); 3399 udp_hdr->dgram_cksum = 0; 3400 } 3401 } 3402 3403 static int 3404 hns3_check_tso_pkt_valid(struct rte_mbuf *m) 3405 { 3406 uint32_t tmp_data_len_sum = 0; 3407 uint16_t nb_buf = m->nb_segs; 3408 uint32_t paylen, hdr_len; 3409 struct rte_mbuf *m_seg; 3410 int i; 3411 3412 if (nb_buf > HNS3_MAX_TSO_BD_PER_PKT) 3413 return -EINVAL; 3414 3415 hdr_len = m->l2_len + m->l3_len + m->l4_len; 3416 hdr_len += (m->ol_flags & PKT_TX_TUNNEL_MASK) ? 3417 m->outer_l2_len + m->outer_l3_len : 0; 3418 if (hdr_len > HNS3_MAX_TSO_HDR_SIZE) 3419 return -EINVAL; 3420 3421 paylen = m->pkt_len - hdr_len; 3422 if (paylen > HNS3_MAX_BD_PAYLEN) 3423 return -EINVAL; 3424 3425 /* 3426 * The TSO header (include outer and inner L2, L3 and L4 header) 3427 * should be provided by three descriptors in maximum in hns3 network 3428 * engine. 3429 */ 3430 m_seg = m; 3431 for (i = 0; m_seg != NULL && i < HNS3_MAX_TSO_HDR_BD_NUM && i < nb_buf; 3432 i++, m_seg = m_seg->next) { 3433 tmp_data_len_sum += m_seg->data_len; 3434 } 3435 3436 if (hdr_len > tmp_data_len_sum) 3437 return -EINVAL; 3438 3439 return 0; 3440 } 3441 3442 #ifdef RTE_LIBRTE_ETHDEV_DEBUG 3443 static inline int 3444 hns3_vld_vlan_chk(struct hns3_tx_queue *txq, struct rte_mbuf *m) 3445 { 3446 struct rte_ether_hdr *eh; 3447 struct rte_vlan_hdr *vh; 3448 3449 if (!txq->pvid_sw_shift_en) 3450 return 0; 3451 3452 /* 3453 * Due to hardware limitations, we only support two-layer VLAN hardware 3454 * offload in Tx direction based on hns3 network engine, so when PVID is 3455 * enabled, QinQ insert is no longer supported. 3456 * And when PVID is enabled, in the following two cases: 3457 * i) packets with more than two VLAN tags. 3458 * ii) packets with one VLAN tag while the hardware VLAN insert is 3459 * enabled. 3460 * The packets will be regarded as abnormal packets and discarded by 3461 * hardware in Tx direction. For debugging purposes, a validation check 3462 * for these types of packets is added to the '.tx_pkt_prepare' ops 3463 * implementation function named hns3_prep_pkts to inform users that 3464 * these packets will be discarded. 3465 */ 3466 if (m->ol_flags & PKT_TX_QINQ_PKT) 3467 return -EINVAL; 3468 3469 eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 3470 if (eh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) { 3471 if (m->ol_flags & PKT_TX_VLAN_PKT) 3472 return -EINVAL; 3473 3474 /* Ensure the incoming packet is not a QinQ packet */ 3475 vh = (struct rte_vlan_hdr *)(eh + 1); 3476 if (vh->eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) 3477 return -EINVAL; 3478 } 3479 3480 return 0; 3481 } 3482 #endif 3483 3484 static int 3485 hns3_prep_pkt_proc(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m) 3486 { 3487 int ret; 3488 3489 #ifdef RTE_LIBRTE_ETHDEV_DEBUG 3490 ret = rte_validate_tx_offload(m); 3491 if (ret != 0) { 3492 rte_errno = -ret; 3493 return ret; 3494 } 3495 3496 ret = hns3_vld_vlan_chk(tx_queue, m); 3497 if (ret != 0) { 3498 rte_errno = EINVAL; 3499 return ret; 3500 } 3501 #endif 3502 if (hns3_pkt_is_tso(m)) { 3503 if (hns3_pkt_need_linearized(m, m->nb_segs, 3504 tx_queue->max_non_tso_bd_num) || 3505 hns3_check_tso_pkt_valid(m)) { 3506 rte_errno = EINVAL; 3507 return -EINVAL; 3508 } 3509 3510 if (tx_queue->tso_mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) { 3511 /* 3512 * (tso mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) means 3513 * hardware support recalculate the TCP pseudo header 3514 * checksum of packets that need TSO, so network driver 3515 * software not need to recalculate it. 3516 */ 3517 hns3_outer_header_cksum_prepare(m); 3518 return 0; 3519 } 3520 } 3521 3522 ret = rte_net_intel_cksum_prepare(m); 3523 if (ret != 0) { 3524 rte_errno = -ret; 3525 return ret; 3526 } 3527 3528 hns3_outer_header_cksum_prepare(m); 3529 3530 return 0; 3531 } 3532 3533 uint16_t 3534 hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts, 3535 uint16_t nb_pkts) 3536 { 3537 struct rte_mbuf *m; 3538 uint16_t i; 3539 3540 for (i = 0; i < nb_pkts; i++) { 3541 m = tx_pkts[i]; 3542 if (hns3_prep_pkt_proc(tx_queue, m)) 3543 return i; 3544 } 3545 3546 return i; 3547 } 3548 3549 static int 3550 hns3_parse_cksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id, 3551 struct rte_mbuf *m) 3552 { 3553 struct hns3_desc *tx_ring = txq->tx_ring; 3554 struct hns3_desc *desc = &tx_ring[tx_desc_id]; 3555 3556 /* Enable checksum offloading */ 3557 if (m->ol_flags & HNS3_TX_CKSUM_OFFLOAD_MASK) { 3558 /* Fill in tunneling parameters if necessary */ 3559 if (hns3_parse_tunneling_params(txq, m, tx_desc_id)) { 3560 txq->dfx_stats.unsupported_tunnel_pkt_cnt++; 3561 return -EINVAL; 3562 } 3563 3564 hns3_txd_enable_checksum(txq, m, tx_desc_id); 3565 } else { 3566 /* clear the control bit */ 3567 desc->tx.type_cs_vlan_tso_len = 0; 3568 desc->tx.ol_type_vlan_len_msec = 0; 3569 } 3570 3571 return 0; 3572 } 3573 3574 static int 3575 hns3_check_non_tso_pkt(uint16_t nb_buf, struct rte_mbuf **m_seg, 3576 struct rte_mbuf *tx_pkt, struct hns3_tx_queue *txq) 3577 { 3578 uint8_t max_non_tso_bd_num; 3579 struct rte_mbuf *new_pkt; 3580 int ret; 3581 3582 if (hns3_pkt_is_tso(*m_seg)) 3583 return 0; 3584 3585 /* 3586 * If packet length is greater than HNS3_MAX_FRAME_LEN 3587 * driver support, the packet will be ignored. 3588 */ 3589 if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) > HNS3_MAX_FRAME_LEN)) { 3590 txq->dfx_stats.over_length_pkt_cnt++; 3591 return -EINVAL; 3592 } 3593 3594 max_non_tso_bd_num = txq->max_non_tso_bd_num; 3595 if (unlikely(nb_buf > max_non_tso_bd_num)) { 3596 txq->dfx_stats.exceed_limit_bd_pkt_cnt++; 3597 ret = hns3_reassemble_tx_pkts(tx_pkt, &new_pkt, 3598 max_non_tso_bd_num); 3599 if (ret) { 3600 txq->dfx_stats.exceed_limit_bd_reassem_fail++; 3601 return ret; 3602 } 3603 *m_seg = new_pkt; 3604 } 3605 3606 return 0; 3607 } 3608 3609 static inline void 3610 hns3_tx_free_buffer_simple(struct hns3_tx_queue *txq) 3611 { 3612 struct hns3_entry *tx_entry; 3613 struct hns3_desc *desc; 3614 uint16_t tx_next_clean; 3615 int i; 3616 3617 while (1) { 3618 if (HNS3_GET_TX_QUEUE_PEND_BD_NUM(txq) < txq->tx_rs_thresh) 3619 break; 3620 3621 /* 3622 * All mbufs can be released only when the VLD bits of all 3623 * descriptors in a batch are cleared. 3624 */ 3625 tx_next_clean = (txq->next_to_clean + txq->tx_rs_thresh - 1) % 3626 txq->nb_tx_desc; 3627 desc = &txq->tx_ring[tx_next_clean]; 3628 for (i = 0; i < txq->tx_rs_thresh; i++) { 3629 if (rte_le_to_cpu_16(desc->tx.tp_fe_sc_vld_ra_ri) & 3630 BIT(HNS3_TXD_VLD_B)) 3631 return; 3632 desc--; 3633 } 3634 3635 tx_entry = &txq->sw_ring[txq->next_to_clean]; 3636 3637 for (i = 0; i < txq->tx_rs_thresh; i++) 3638 rte_prefetch0((tx_entry + i)->mbuf); 3639 for (i = 0; i < txq->tx_rs_thresh; i++, tx_entry++) { 3640 rte_mempool_put(tx_entry->mbuf->pool, tx_entry->mbuf); 3641 tx_entry->mbuf = NULL; 3642 } 3643 3644 txq->next_to_clean = (tx_next_clean + 1) % txq->nb_tx_desc; 3645 txq->tx_bd_ready += txq->tx_rs_thresh; 3646 } 3647 } 3648 3649 static inline void 3650 hns3_tx_backup_1mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts) 3651 { 3652 tx_entry->mbuf = pkts[0]; 3653 } 3654 3655 static inline void 3656 hns3_tx_backup_4mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts) 3657 { 3658 hns3_tx_backup_1mbuf(&tx_entry[0], &pkts[0]); 3659 hns3_tx_backup_1mbuf(&tx_entry[1], &pkts[1]); 3660 hns3_tx_backup_1mbuf(&tx_entry[2], &pkts[2]); 3661 hns3_tx_backup_1mbuf(&tx_entry[3], &pkts[3]); 3662 } 3663 3664 static inline void 3665 hns3_tx_setup_4bd(struct hns3_desc *txdp, struct rte_mbuf **pkts) 3666 { 3667 #define PER_LOOP_NUM 4 3668 const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B); 3669 uint64_t dma_addr; 3670 uint32_t i; 3671 3672 for (i = 0; i < PER_LOOP_NUM; i++, txdp++, pkts++) { 3673 dma_addr = rte_mbuf_data_iova(*pkts); 3674 txdp->addr = rte_cpu_to_le_64(dma_addr); 3675 txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len); 3676 txdp->tx.paylen = 0; 3677 txdp->tx.type_cs_vlan_tso_len = 0; 3678 txdp->tx.ol_type_vlan_len_msec = 0; 3679 txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag); 3680 } 3681 } 3682 3683 static inline void 3684 hns3_tx_setup_1bd(struct hns3_desc *txdp, struct rte_mbuf **pkts) 3685 { 3686 const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B); 3687 uint64_t dma_addr; 3688 3689 dma_addr = rte_mbuf_data_iova(*pkts); 3690 txdp->addr = rte_cpu_to_le_64(dma_addr); 3691 txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len); 3692 txdp->tx.paylen = 0; 3693 txdp->tx.type_cs_vlan_tso_len = 0; 3694 txdp->tx.ol_type_vlan_len_msec = 0; 3695 txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag); 3696 } 3697 3698 static inline void 3699 hns3_tx_fill_hw_ring(struct hns3_tx_queue *txq, 3700 struct rte_mbuf **pkts, 3701 uint16_t nb_pkts) 3702 { 3703 #define PER_LOOP_NUM 4 3704 #define PER_LOOP_MASK (PER_LOOP_NUM - 1) 3705 struct hns3_desc *txdp = &txq->tx_ring[txq->next_to_use]; 3706 struct hns3_entry *tx_entry = &txq->sw_ring[txq->next_to_use]; 3707 const uint32_t mainpart = (nb_pkts & ((uint32_t)~PER_LOOP_MASK)); 3708 const uint32_t leftover = (nb_pkts & ((uint32_t)PER_LOOP_MASK)); 3709 uint32_t i; 3710 3711 for (i = 0; i < mainpart; i += PER_LOOP_NUM) { 3712 hns3_tx_backup_4mbuf(tx_entry + i, pkts + i); 3713 hns3_tx_setup_4bd(txdp + i, pkts + i); 3714 3715 /* Increment bytes counter */ 3716 uint32_t j; 3717 for (j = 0; j < PER_LOOP_NUM; j++) 3718 txq->basic_stats.bytes += pkts[i + j]->pkt_len; 3719 } 3720 if (unlikely(leftover > 0)) { 3721 for (i = 0; i < leftover; i++) { 3722 hns3_tx_backup_1mbuf(tx_entry + mainpart + i, 3723 pkts + mainpart + i); 3724 hns3_tx_setup_1bd(txdp + mainpart + i, 3725 pkts + mainpart + i); 3726 3727 /* Increment bytes counter */ 3728 txq->basic_stats.bytes += pkts[mainpart + i]->pkt_len; 3729 } 3730 } 3731 } 3732 3733 uint16_t 3734 hns3_xmit_pkts_simple(void *tx_queue, 3735 struct rte_mbuf **tx_pkts, 3736 uint16_t nb_pkts) 3737 { 3738 struct hns3_tx_queue *txq = tx_queue; 3739 uint16_t nb_tx = 0; 3740 3741 hns3_tx_free_buffer_simple(txq); 3742 3743 nb_pkts = RTE_MIN(txq->tx_bd_ready, nb_pkts); 3744 if (unlikely(nb_pkts == 0)) { 3745 if (txq->tx_bd_ready == 0) 3746 txq->dfx_stats.queue_full_cnt++; 3747 return 0; 3748 } 3749 3750 txq->tx_bd_ready -= nb_pkts; 3751 if (txq->next_to_use + nb_pkts > txq->nb_tx_desc) { 3752 nb_tx = txq->nb_tx_desc - txq->next_to_use; 3753 hns3_tx_fill_hw_ring(txq, tx_pkts, nb_tx); 3754 txq->next_to_use = 0; 3755 } 3756 3757 hns3_tx_fill_hw_ring(txq, tx_pkts + nb_tx, nb_pkts - nb_tx); 3758 txq->next_to_use += nb_pkts - nb_tx; 3759 3760 hns3_write_reg_opt(txq->io_tail_reg, nb_pkts); 3761 3762 return nb_pkts; 3763 } 3764 3765 uint16_t 3766 hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) 3767 { 3768 struct hns3_tx_queue *txq = tx_queue; 3769 struct hns3_entry *tx_bak_pkt; 3770 struct hns3_desc *tx_ring; 3771 struct rte_mbuf *tx_pkt; 3772 struct rte_mbuf *m_seg; 3773 struct hns3_desc *desc; 3774 uint32_t nb_hold = 0; 3775 uint16_t tx_next_use; 3776 uint16_t tx_pkt_num; 3777 uint16_t tx_bd_max; 3778 uint16_t nb_buf; 3779 uint16_t nb_tx; 3780 uint16_t i; 3781 3782 /* free useless buffer */ 3783 hns3_tx_free_useless_buffer(txq); 3784 3785 tx_next_use = txq->next_to_use; 3786 tx_bd_max = txq->nb_tx_desc; 3787 tx_pkt_num = nb_pkts; 3788 tx_ring = txq->tx_ring; 3789 3790 /* send packets */ 3791 tx_bak_pkt = &txq->sw_ring[tx_next_use]; 3792 for (nb_tx = 0; nb_tx < tx_pkt_num; nb_tx++) { 3793 tx_pkt = *tx_pkts++; 3794 3795 nb_buf = tx_pkt->nb_segs; 3796 3797 if (nb_buf > txq->tx_bd_ready) { 3798 txq->dfx_stats.queue_full_cnt++; 3799 if (nb_tx == 0) 3800 return 0; 3801 3802 goto end_of_tx; 3803 } 3804 3805 /* 3806 * If packet length is less than minimum packet length supported 3807 * by hardware in Tx direction, driver need to pad it to avoid 3808 * error. 3809 */ 3810 if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) < 3811 txq->min_tx_pkt_len)) { 3812 uint16_t add_len; 3813 char *appended; 3814 3815 add_len = txq->min_tx_pkt_len - 3816 rte_pktmbuf_pkt_len(tx_pkt); 3817 appended = rte_pktmbuf_append(tx_pkt, add_len); 3818 if (appended == NULL) { 3819 txq->dfx_stats.pkt_padding_fail_cnt++; 3820 break; 3821 } 3822 3823 memset(appended, 0, add_len); 3824 } 3825 3826 m_seg = tx_pkt; 3827 3828 if (hns3_check_non_tso_pkt(nb_buf, &m_seg, tx_pkt, txq)) 3829 goto end_of_tx; 3830 3831 if (hns3_parse_cksum(txq, tx_next_use, m_seg)) 3832 goto end_of_tx; 3833 3834 i = 0; 3835 desc = &tx_ring[tx_next_use]; 3836 3837 /* 3838 * If the packet is divided into multiple Tx Buffer Descriptors, 3839 * only need to fill vlan, paylen and tso into the first Tx 3840 * Buffer Descriptor. 3841 */ 3842 hns3_fill_first_desc(txq, desc, m_seg); 3843 3844 do { 3845 desc = &tx_ring[tx_next_use]; 3846 /* 3847 * Fill valid bits, DMA address and data length for each 3848 * Tx Buffer Descriptor. 3849 */ 3850 hns3_fill_per_desc(desc, m_seg); 3851 tx_bak_pkt->mbuf = m_seg; 3852 m_seg = m_seg->next; 3853 tx_next_use++; 3854 tx_bak_pkt++; 3855 if (tx_next_use >= tx_bd_max) { 3856 tx_next_use = 0; 3857 tx_bak_pkt = txq->sw_ring; 3858 } 3859 3860 i++; 3861 } while (m_seg != NULL); 3862 3863 /* Add end flag for the last Tx Buffer Descriptor */ 3864 desc->tx.tp_fe_sc_vld_ra_ri |= 3865 rte_cpu_to_le_16(BIT(HNS3_TXD_FE_B)); 3866 3867 /* Increment bytes counter */ 3868 txq->basic_stats.bytes += tx_pkt->pkt_len; 3869 nb_hold += i; 3870 txq->next_to_use = tx_next_use; 3871 txq->tx_bd_ready -= i; 3872 } 3873 3874 end_of_tx: 3875 3876 if (likely(nb_tx)) 3877 hns3_write_reg_opt(txq->io_tail_reg, nb_hold); 3878 3879 return nb_tx; 3880 } 3881 3882 int __rte_weak 3883 hns3_tx_check_vec_support(__rte_unused struct rte_eth_dev *dev) 3884 { 3885 return -ENOTSUP; 3886 } 3887 3888 uint16_t __rte_weak 3889 hns3_xmit_pkts_vec(__rte_unused void *tx_queue, 3890 __rte_unused struct rte_mbuf **tx_pkts, 3891 __rte_unused uint16_t nb_pkts) 3892 { 3893 return 0; 3894 } 3895 3896 uint16_t __rte_weak 3897 hns3_xmit_pkts_vec_sve(void __rte_unused * tx_queue, 3898 struct rte_mbuf __rte_unused **tx_pkts, 3899 uint16_t __rte_unused nb_pkts) 3900 { 3901 return 0; 3902 } 3903 3904 int 3905 hns3_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, 3906 struct rte_eth_burst_mode *mode) 3907 { 3908 eth_tx_burst_t pkt_burst = dev->tx_pkt_burst; 3909 const char *info = NULL; 3910 3911 if (pkt_burst == hns3_xmit_pkts_simple) 3912 info = "Scalar Simple"; 3913 else if (pkt_burst == hns3_xmit_pkts) 3914 info = "Scalar"; 3915 else if (pkt_burst == hns3_xmit_pkts_vec) 3916 info = "Vector Neon"; 3917 else if (pkt_burst == hns3_xmit_pkts_vec_sve) 3918 info = "Vector Sve"; 3919 3920 if (info == NULL) 3921 return -EINVAL; 3922 3923 snprintf(mode->info, sizeof(mode->info), "%s", info); 3924 3925 return 0; 3926 } 3927 3928 static eth_tx_burst_t 3929 hns3_get_tx_function(struct rte_eth_dev *dev, eth_tx_prep_t *prep) 3930 { 3931 uint64_t offloads = dev->data->dev_conf.txmode.offloads; 3932 struct hns3_adapter *hns = dev->data->dev_private; 3933 3934 if (hns->tx_vec_allowed && hns3_tx_check_vec_support(dev) == 0) { 3935 *prep = NULL; 3936 return hns3_check_sve_support() ? hns3_xmit_pkts_vec_sve : 3937 hns3_xmit_pkts_vec; 3938 } 3939 3940 if (hns->tx_simple_allowed && 3941 offloads == (offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE)) { 3942 *prep = NULL; 3943 return hns3_xmit_pkts_simple; 3944 } 3945 3946 *prep = hns3_prep_pkts; 3947 return hns3_xmit_pkts; 3948 } 3949 3950 static uint16_t 3951 hns3_dummy_rxtx_burst(void *dpdk_txq __rte_unused, 3952 struct rte_mbuf **pkts __rte_unused, 3953 uint16_t pkts_n __rte_unused) 3954 { 3955 return 0; 3956 } 3957 3958 void hns3_set_rxtx_function(struct rte_eth_dev *eth_dev) 3959 { 3960 struct hns3_adapter *hns = eth_dev->data->dev_private; 3961 eth_tx_prep_t prep = NULL; 3962 3963 if (hns->hw.adapter_state == HNS3_NIC_STARTED && 3964 __atomic_load_n(&hns->hw.reset.resetting, __ATOMIC_RELAXED) == 0) { 3965 eth_dev->rx_pkt_burst = hns3_get_rx_function(eth_dev); 3966 eth_dev->tx_pkt_burst = hns3_get_tx_function(eth_dev, &prep); 3967 eth_dev->tx_pkt_prepare = prep; 3968 } else { 3969 eth_dev->rx_pkt_burst = hns3_dummy_rxtx_burst; 3970 eth_dev->tx_pkt_burst = hns3_dummy_rxtx_burst; 3971 eth_dev->tx_pkt_prepare = hns3_dummy_rxtx_burst; 3972 } 3973 } 3974 3975 void 3976 hns3_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, 3977 struct rte_eth_rxq_info *qinfo) 3978 { 3979 struct hns3_rx_queue *rxq = dev->data->rx_queues[queue_id]; 3980 3981 qinfo->mp = rxq->mb_pool; 3982 qinfo->nb_desc = rxq->nb_rx_desc; 3983 qinfo->scattered_rx = dev->data->scattered_rx; 3984 /* Report the HW Rx buffer length to user */ 3985 qinfo->rx_buf_size = rxq->rx_buf_len; 3986 3987 /* 3988 * If there are no available Rx buffer descriptors, incoming packets 3989 * are always dropped by hardware based on hns3 network engine. 3990 */ 3991 qinfo->conf.rx_drop_en = 1; 3992 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 3993 qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; 3994 qinfo->conf.rx_deferred_start = rxq->rx_deferred_start; 3995 } 3996 3997 void 3998 hns3_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, 3999 struct rte_eth_txq_info *qinfo) 4000 { 4001 struct hns3_tx_queue *txq = dev->data->tx_queues[queue_id]; 4002 4003 qinfo->nb_desc = txq->nb_tx_desc; 4004 qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads; 4005 qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh; 4006 qinfo->conf.tx_free_thresh = txq->tx_free_thresh; 4007 qinfo->conf.tx_deferred_start = txq->tx_deferred_start; 4008 } 4009 4010 int 4011 hns3_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 4012 { 4013 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 4014 struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id]; 4015 struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw); 4016 int ret; 4017 4018 if (!hns3_dev_indep_txrx_supported(hw)) 4019 return -ENOTSUP; 4020 4021 ret = hns3_reset_queue(hw, rx_queue_id, HNS3_RING_TYPE_RX); 4022 if (ret) { 4023 hns3_err(hw, "fail to reset Rx queue %u, ret = %d.", 4024 rx_queue_id, ret); 4025 return ret; 4026 } 4027 4028 ret = hns3_init_rxq(hns, rx_queue_id); 4029 if (ret) { 4030 hns3_err(hw, "fail to init Rx queue %u, ret = %d.", 4031 rx_queue_id, ret); 4032 return ret; 4033 } 4034 4035 hns3_enable_rxq(rxq, true); 4036 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; 4037 4038 return ret; 4039 } 4040 4041 static void 4042 hns3_reset_sw_rxq(struct hns3_rx_queue *rxq) 4043 { 4044 rxq->next_to_use = 0; 4045 rxq->rx_rearm_start = 0; 4046 rxq->rx_free_hold = 0; 4047 rxq->rx_rearm_nb = 0; 4048 rxq->pkt_first_seg = NULL; 4049 rxq->pkt_last_seg = NULL; 4050 memset(&rxq->rx_ring[0], 0, rxq->nb_rx_desc * sizeof(struct hns3_desc)); 4051 hns3_rxq_vec_setup(rxq); 4052 } 4053 4054 int 4055 hns3_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 4056 { 4057 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 4058 struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id]; 4059 4060 if (!hns3_dev_indep_txrx_supported(hw)) 4061 return -ENOTSUP; 4062 4063 hns3_enable_rxq(rxq, false); 4064 4065 hns3_rx_queue_release_mbufs(rxq); 4066 4067 hns3_reset_sw_rxq(rxq); 4068 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; 4069 4070 return 0; 4071 } 4072 4073 int 4074 hns3_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 4075 { 4076 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 4077 struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id]; 4078 int ret; 4079 4080 if (!hns3_dev_indep_txrx_supported(hw)) 4081 return -ENOTSUP; 4082 4083 ret = hns3_reset_queue(hw, tx_queue_id, HNS3_RING_TYPE_TX); 4084 if (ret) { 4085 hns3_err(hw, "fail to reset Tx queue %u, ret = %d.", 4086 tx_queue_id, ret); 4087 return ret; 4088 } 4089 4090 hns3_init_txq(txq); 4091 hns3_enable_txq(txq, true); 4092 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; 4093 4094 return ret; 4095 } 4096 4097 int 4098 hns3_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 4099 { 4100 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private); 4101 struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id]; 4102 4103 if (!hns3_dev_indep_txrx_supported(hw)) 4104 return -ENOTSUP; 4105 4106 hns3_enable_txq(txq, false); 4107 hns3_tx_queue_release_mbufs(txq); 4108 /* 4109 * All the mbufs in sw_ring are released and all the pointers in sw_ring 4110 * are set to NULL. If this queue is still called by upper layer, 4111 * residual SW status of this txq may cause these pointers in sw_ring 4112 * which have been set to NULL to be released again. To avoid it, 4113 * reinit the txq. 4114 */ 4115 hns3_init_txq(txq); 4116 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; 4117 4118 return 0; 4119 } 4120 4121 static int 4122 hns3_tx_done_cleanup_full(struct hns3_tx_queue *txq, uint32_t free_cnt) 4123 { 4124 uint16_t next_to_clean = txq->next_to_clean; 4125 uint16_t next_to_use = txq->next_to_use; 4126 uint16_t tx_bd_ready = txq->tx_bd_ready; 4127 struct hns3_entry *tx_pkt = &txq->sw_ring[next_to_clean]; 4128 struct hns3_desc *desc = &txq->tx_ring[next_to_clean]; 4129 uint32_t idx; 4130 4131 if (free_cnt == 0 || free_cnt > txq->nb_tx_desc) 4132 free_cnt = txq->nb_tx_desc; 4133 4134 for (idx = 0; idx < free_cnt; idx++) { 4135 if (next_to_clean == next_to_use) 4136 break; 4137 4138 if (desc->tx.tp_fe_sc_vld_ra_ri & 4139 rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B))) 4140 break; 4141 4142 if (tx_pkt->mbuf != NULL) { 4143 rte_pktmbuf_free_seg(tx_pkt->mbuf); 4144 tx_pkt->mbuf = NULL; 4145 } 4146 4147 next_to_clean++; 4148 tx_bd_ready++; 4149 tx_pkt++; 4150 desc++; 4151 if (next_to_clean == txq->nb_tx_desc) { 4152 tx_pkt = txq->sw_ring; 4153 desc = txq->tx_ring; 4154 next_to_clean = 0; 4155 } 4156 } 4157 4158 if (idx > 0) { 4159 txq->next_to_clean = next_to_clean; 4160 txq->tx_bd_ready = tx_bd_ready; 4161 } 4162 4163 return (int)idx; 4164 } 4165 4166 int 4167 hns3_tx_done_cleanup(void *txq, uint32_t free_cnt) 4168 { 4169 struct hns3_tx_queue *q = (struct hns3_tx_queue *)txq; 4170 struct rte_eth_dev *dev = &rte_eth_devices[q->port_id]; 4171 4172 if (dev->tx_pkt_burst == hns3_xmit_pkts) 4173 return hns3_tx_done_cleanup_full(q, free_cnt); 4174 else if (dev->tx_pkt_burst == hns3_dummy_rxtx_burst) 4175 return 0; 4176 else 4177 return -ENOTSUP; 4178 } 4179 4180 uint32_t 4181 hns3_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 4182 { 4183 /* 4184 * Number of BDs that have been processed by the driver 4185 * but have not been notified to the hardware. 4186 */ 4187 uint32_t driver_hold_bd_num; 4188 struct hns3_rx_queue *rxq; 4189 uint32_t fbd_num; 4190 4191 rxq = dev->data->rx_queues[rx_queue_id]; 4192 fbd_num = hns3_read_dev(rxq, HNS3_RING_RX_FBDNUM_REG); 4193 if (dev->rx_pkt_burst == hns3_recv_pkts_vec || 4194 dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) 4195 driver_hold_bd_num = rxq->rx_rearm_nb; 4196 else 4197 driver_hold_bd_num = rxq->rx_free_hold; 4198 4199 if (fbd_num <= driver_hold_bd_num) 4200 return 0; 4201 else 4202 return fbd_num - driver_hold_bd_num; 4203 } 4204 4205 void 4206 hns3_enable_rxd_adv_layout(struct hns3_hw *hw) 4207 { 4208 /* 4209 * If the hardware support rxd advanced layout, then driver enable it 4210 * default. 4211 */ 4212 if (hns3_dev_rxd_adv_layout_supported(hw)) 4213 hns3_write_dev(hw, HNS3_RXD_ADV_LAYOUT_EN_REG, 1); 4214 } 4215