xref: /dpdk/drivers/net/hns3/hns3_rxtx.c (revision 081e42dab11d1add2d038fdf2bd4c86b20043d08)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <rte_bus_pci.h>
6 #include <rte_common.h>
7 #include <rte_cycles.h>
8 #include <rte_geneve.h>
9 #include <rte_vxlan.h>
10 #include <ethdev_driver.h>
11 #include <rte_io.h>
12 #include <rte_net.h>
13 #include <rte_malloc.h>
14 #if defined(RTE_ARCH_ARM64)
15 #include <rte_cpuflags.h>
16 #include <rte_vect.h>
17 #endif
18 
19 #include "hns3_ethdev.h"
20 #include "hns3_rxtx.h"
21 #include "hns3_regs.h"
22 #include "hns3_logs.h"
23 #include "hns3_mp.h"
24 
25 #define HNS3_CFG_DESC_NUM(num)	((num) / 8 - 1)
26 #define HNS3_RX_RING_PREFETCTH_MASK	3
27 
28 static void
29 hns3_rx_queue_release_mbufs(struct hns3_rx_queue *rxq)
30 {
31 	uint16_t i;
32 
33 	/* Note: Fake rx queue will not enter here */
34 	if (rxq->sw_ring == NULL)
35 		return;
36 
37 	if (rxq->rx_rearm_nb == 0) {
38 		for (i = 0; i < rxq->nb_rx_desc; i++) {
39 			if (rxq->sw_ring[i].mbuf != NULL) {
40 				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
41 				rxq->sw_ring[i].mbuf = NULL;
42 			}
43 		}
44 	} else {
45 		for (i = rxq->next_to_use;
46 		     i != rxq->rx_rearm_start;
47 		     i = (i + 1) % rxq->nb_rx_desc) {
48 			if (rxq->sw_ring[i].mbuf != NULL) {
49 				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
50 				rxq->sw_ring[i].mbuf = NULL;
51 			}
52 		}
53 	}
54 
55 	for (i = 0; i < rxq->bulk_mbuf_num; i++)
56 		rte_pktmbuf_free_seg(rxq->bulk_mbuf[i]);
57 	rxq->bulk_mbuf_num = 0;
58 
59 	if (rxq->pkt_first_seg) {
60 		rte_pktmbuf_free(rxq->pkt_first_seg);
61 		rxq->pkt_first_seg = NULL;
62 	}
63 }
64 
65 static void
66 hns3_tx_queue_release_mbufs(struct hns3_tx_queue *txq)
67 {
68 	uint16_t i;
69 
70 	/* Note: Fake tx queue will not enter here */
71 	if (txq->sw_ring) {
72 		for (i = 0; i < txq->nb_tx_desc; i++) {
73 			if (txq->sw_ring[i].mbuf) {
74 				rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
75 				txq->sw_ring[i].mbuf = NULL;
76 			}
77 		}
78 	}
79 }
80 
81 static void
82 hns3_rx_queue_release(void *queue)
83 {
84 	struct hns3_rx_queue *rxq = queue;
85 	if (rxq) {
86 		hns3_rx_queue_release_mbufs(rxq);
87 		if (rxq->mz)
88 			rte_memzone_free(rxq->mz);
89 		if (rxq->sw_ring)
90 			rte_free(rxq->sw_ring);
91 		rte_free(rxq);
92 	}
93 }
94 
95 static void
96 hns3_tx_queue_release(void *queue)
97 {
98 	struct hns3_tx_queue *txq = queue;
99 	if (txq) {
100 		hns3_tx_queue_release_mbufs(txq);
101 		if (txq->mz)
102 			rte_memzone_free(txq->mz);
103 		if (txq->sw_ring)
104 			rte_free(txq->sw_ring);
105 		if (txq->free)
106 			rte_free(txq->free);
107 		rte_free(txq);
108 	}
109 }
110 
111 static void
112 hns3_rx_queue_release_lock(void *queue)
113 {
114 	struct hns3_rx_queue *rxq = queue;
115 	struct hns3_adapter *hns;
116 
117 	if (rxq == NULL)
118 		return;
119 
120 	hns = rxq->hns;
121 	rte_spinlock_lock(&hns->hw.lock);
122 	hns3_rx_queue_release(queue);
123 	rte_spinlock_unlock(&hns->hw.lock);
124 }
125 
126 void
127 hns3_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t queue_id)
128 {
129 	hns3_rx_queue_release_lock(dev->data->rx_queues[queue_id]);
130 }
131 
132 static void
133 hns3_tx_queue_release_lock(void *queue)
134 {
135 	struct hns3_tx_queue *txq = queue;
136 	struct hns3_adapter *hns;
137 
138 	if (txq == NULL)
139 		return;
140 
141 	hns = txq->hns;
142 	rte_spinlock_lock(&hns->hw.lock);
143 	hns3_tx_queue_release(queue);
144 	rte_spinlock_unlock(&hns->hw.lock);
145 }
146 
147 void
148 hns3_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t queue_id)
149 {
150 	hns3_tx_queue_release_lock(dev->data->tx_queues[queue_id]);
151 }
152 
153 static void
154 hns3_fake_rx_queue_release(struct hns3_rx_queue *queue)
155 {
156 	struct hns3_rx_queue *rxq = queue;
157 	struct hns3_adapter *hns;
158 	struct hns3_hw *hw;
159 	uint16_t idx;
160 
161 	if (rxq == NULL)
162 		return;
163 
164 	hns = rxq->hns;
165 	hw = &hns->hw;
166 	idx = rxq->queue_id;
167 	if (hw->fkq_data.rx_queues[idx]) {
168 		hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
169 		hw->fkq_data.rx_queues[idx] = NULL;
170 	}
171 
172 	/* free fake rx queue arrays */
173 	if (idx == (hw->fkq_data.nb_fake_rx_queues - 1)) {
174 		hw->fkq_data.nb_fake_rx_queues = 0;
175 		rte_free(hw->fkq_data.rx_queues);
176 		hw->fkq_data.rx_queues = NULL;
177 	}
178 }
179 
180 static void
181 hns3_fake_tx_queue_release(struct hns3_tx_queue *queue)
182 {
183 	struct hns3_tx_queue *txq = queue;
184 	struct hns3_adapter *hns;
185 	struct hns3_hw *hw;
186 	uint16_t idx;
187 
188 	if (txq == NULL)
189 		return;
190 
191 	hns = txq->hns;
192 	hw = &hns->hw;
193 	idx = txq->queue_id;
194 	if (hw->fkq_data.tx_queues[idx]) {
195 		hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
196 		hw->fkq_data.tx_queues[idx] = NULL;
197 	}
198 
199 	/* free fake tx queue arrays */
200 	if (idx == (hw->fkq_data.nb_fake_tx_queues - 1)) {
201 		hw->fkq_data.nb_fake_tx_queues = 0;
202 		rte_free(hw->fkq_data.tx_queues);
203 		hw->fkq_data.tx_queues = NULL;
204 	}
205 }
206 
207 static void
208 hns3_free_rx_queues(struct rte_eth_dev *dev)
209 {
210 	struct hns3_adapter *hns = dev->data->dev_private;
211 	struct hns3_fake_queue_data *fkq_data;
212 	struct hns3_hw *hw = &hns->hw;
213 	uint16_t nb_rx_q;
214 	uint16_t i;
215 
216 	nb_rx_q = hw->data->nb_rx_queues;
217 	for (i = 0; i < nb_rx_q; i++) {
218 		if (dev->data->rx_queues[i]) {
219 			hns3_rx_queue_release(dev->data->rx_queues[i]);
220 			dev->data->rx_queues[i] = NULL;
221 		}
222 	}
223 
224 	/* Free fake Rx queues */
225 	fkq_data = &hw->fkq_data;
226 	for (i = 0; i < fkq_data->nb_fake_rx_queues; i++) {
227 		if (fkq_data->rx_queues[i])
228 			hns3_fake_rx_queue_release(fkq_data->rx_queues[i]);
229 	}
230 }
231 
232 static void
233 hns3_free_tx_queues(struct rte_eth_dev *dev)
234 {
235 	struct hns3_adapter *hns = dev->data->dev_private;
236 	struct hns3_fake_queue_data *fkq_data;
237 	struct hns3_hw *hw = &hns->hw;
238 	uint16_t nb_tx_q;
239 	uint16_t i;
240 
241 	nb_tx_q = hw->data->nb_tx_queues;
242 	for (i = 0; i < nb_tx_q; i++) {
243 		if (dev->data->tx_queues[i]) {
244 			hns3_tx_queue_release(dev->data->tx_queues[i]);
245 			dev->data->tx_queues[i] = NULL;
246 		}
247 	}
248 
249 	/* Free fake Tx queues */
250 	fkq_data = &hw->fkq_data;
251 	for (i = 0; i < fkq_data->nb_fake_tx_queues; i++) {
252 		if (fkq_data->tx_queues[i])
253 			hns3_fake_tx_queue_release(fkq_data->tx_queues[i]);
254 	}
255 }
256 
257 void
258 hns3_free_all_queues(struct rte_eth_dev *dev)
259 {
260 	hns3_free_rx_queues(dev);
261 	hns3_free_tx_queues(dev);
262 }
263 
264 static int
265 hns3_alloc_rx_queue_mbufs(struct hns3_hw *hw, struct hns3_rx_queue *rxq)
266 {
267 	struct rte_mbuf *mbuf;
268 	uint64_t dma_addr;
269 	uint16_t i;
270 
271 	for (i = 0; i < rxq->nb_rx_desc; i++) {
272 		mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
273 		if (unlikely(mbuf == NULL)) {
274 			hns3_err(hw, "Failed to allocate RXD[%u] for rx queue!",
275 				 i);
276 			hns3_rx_queue_release_mbufs(rxq);
277 			return -ENOMEM;
278 		}
279 
280 		rte_mbuf_refcnt_set(mbuf, 1);
281 		mbuf->next = NULL;
282 		mbuf->data_off = RTE_PKTMBUF_HEADROOM;
283 		mbuf->nb_segs = 1;
284 		mbuf->port = rxq->port_id;
285 
286 		rxq->sw_ring[i].mbuf = mbuf;
287 		dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
288 		rxq->rx_ring[i].addr = dma_addr;
289 		rxq->rx_ring[i].rx.bd_base_info = 0;
290 	}
291 
292 	return 0;
293 }
294 
295 static int
296 hns3_buf_size2type(uint32_t buf_size)
297 {
298 	int bd_size_type;
299 
300 	switch (buf_size) {
301 	case 512:
302 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
303 		break;
304 	case 1024:
305 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
306 		break;
307 	case 4096:
308 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
309 		break;
310 	default:
311 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
312 	}
313 
314 	return bd_size_type;
315 }
316 
317 static void
318 hns3_init_rx_queue_hw(struct hns3_rx_queue *rxq)
319 {
320 	uint32_t rx_buf_len = rxq->rx_buf_len;
321 	uint64_t dma_addr = rxq->rx_ring_phys_addr;
322 
323 	hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_L_REG, (uint32_t)dma_addr);
324 	hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_H_REG,
325 		       (uint32_t)((dma_addr >> 31) >> 1));
326 
327 	hns3_write_dev(rxq, HNS3_RING_RX_BD_LEN_REG,
328 		       hns3_buf_size2type(rx_buf_len));
329 	hns3_write_dev(rxq, HNS3_RING_RX_BD_NUM_REG,
330 		       HNS3_CFG_DESC_NUM(rxq->nb_rx_desc));
331 }
332 
333 static void
334 hns3_init_tx_queue_hw(struct hns3_tx_queue *txq)
335 {
336 	uint64_t dma_addr = txq->tx_ring_phys_addr;
337 
338 	hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_L_REG, (uint32_t)dma_addr);
339 	hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_H_REG,
340 		       (uint32_t)((dma_addr >> 31) >> 1));
341 
342 	hns3_write_dev(txq, HNS3_RING_TX_BD_NUM_REG,
343 		       HNS3_CFG_DESC_NUM(txq->nb_tx_desc));
344 }
345 
346 void
347 hns3_update_all_queues_pvid_proc_en(struct hns3_hw *hw)
348 {
349 	uint16_t nb_rx_q = hw->data->nb_rx_queues;
350 	uint16_t nb_tx_q = hw->data->nb_tx_queues;
351 	struct hns3_rx_queue *rxq;
352 	struct hns3_tx_queue *txq;
353 	bool pvid_en;
354 	int i;
355 
356 	pvid_en = hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE;
357 	for (i = 0; i < hw->cfg_max_queues; i++) {
358 		if (i < nb_rx_q) {
359 			rxq = hw->data->rx_queues[i];
360 			if (rxq != NULL)
361 				rxq->pvid_sw_discard_en = pvid_en;
362 		}
363 		if (i < nb_tx_q) {
364 			txq = hw->data->tx_queues[i];
365 			if (txq != NULL)
366 				txq->pvid_sw_shift_en = pvid_en;
367 		}
368 	}
369 }
370 
371 static void
372 hns3_stop_unused_queue(void *tqp_base, enum hns3_ring_type queue_type)
373 {
374 	uint32_t reg_offset;
375 	uint32_t reg;
376 
377 	reg_offset = queue_type == HNS3_RING_TYPE_TX ?
378 				   HNS3_RING_TX_EN_REG : HNS3_RING_RX_EN_REG;
379 	reg = hns3_read_reg(tqp_base, reg_offset);
380 	reg &= ~BIT(HNS3_RING_EN_B);
381 	hns3_write_reg(tqp_base, reg_offset, reg);
382 }
383 
384 void
385 hns3_enable_all_queues(struct hns3_hw *hw, bool en)
386 {
387 	uint16_t nb_rx_q = hw->data->nb_rx_queues;
388 	uint16_t nb_tx_q = hw->data->nb_tx_queues;
389 	struct hns3_rx_queue *rxq;
390 	struct hns3_tx_queue *txq;
391 	uint32_t rcb_reg;
392 	void *tqp_base;
393 	int i;
394 
395 	for (i = 0; i < hw->cfg_max_queues; i++) {
396 		if (hns3_dev_get_support(hw, INDEP_TXRX)) {
397 			rxq = i < nb_rx_q ? hw->data->rx_queues[i] : NULL;
398 			txq = i < nb_tx_q ? hw->data->tx_queues[i] : NULL;
399 
400 			tqp_base = (void *)((char *)hw->io_base +
401 					hns3_get_tqp_reg_offset(i));
402 			/*
403 			 * If queue struct is not initialized, it means the
404 			 * related HW ring has not been initialized yet.
405 			 * So, these queues should be disabled before enable
406 			 * the tqps to avoid a HW exception since the queues
407 			 * are enabled by default.
408 			 */
409 			if (rxq == NULL)
410 				hns3_stop_unused_queue(tqp_base,
411 							HNS3_RING_TYPE_RX);
412 			if (txq == NULL)
413 				hns3_stop_unused_queue(tqp_base,
414 							HNS3_RING_TYPE_TX);
415 		} else {
416 			rxq = i < nb_rx_q ? hw->data->rx_queues[i] :
417 			      hw->fkq_data.rx_queues[i - nb_rx_q];
418 
419 			tqp_base = rxq->io_base;
420 		}
421 		/*
422 		 * This is the master switch that used to control the enabling
423 		 * of a pair of Tx and Rx queues. Both the Rx and Tx point to
424 		 * the same register
425 		 */
426 		rcb_reg = hns3_read_reg(tqp_base, HNS3_RING_EN_REG);
427 		if (en)
428 			rcb_reg |= BIT(HNS3_RING_EN_B);
429 		else
430 			rcb_reg &= ~BIT(HNS3_RING_EN_B);
431 		hns3_write_reg(tqp_base, HNS3_RING_EN_REG, rcb_reg);
432 	}
433 }
434 
435 static void
436 hns3_enable_txq(struct hns3_tx_queue *txq, bool en)
437 {
438 	struct hns3_hw *hw = &txq->hns->hw;
439 	uint32_t reg;
440 
441 	if (hns3_dev_get_support(hw, INDEP_TXRX)) {
442 		reg = hns3_read_dev(txq, HNS3_RING_TX_EN_REG);
443 		if (en)
444 			reg |= BIT(HNS3_RING_EN_B);
445 		else
446 			reg &= ~BIT(HNS3_RING_EN_B);
447 		hns3_write_dev(txq, HNS3_RING_TX_EN_REG, reg);
448 	}
449 	txq->enabled = en;
450 }
451 
452 static void
453 hns3_enable_rxq(struct hns3_rx_queue *rxq, bool en)
454 {
455 	struct hns3_hw *hw = &rxq->hns->hw;
456 	uint32_t reg;
457 
458 	if (hns3_dev_get_support(hw, INDEP_TXRX)) {
459 		reg = hns3_read_dev(rxq, HNS3_RING_RX_EN_REG);
460 		if (en)
461 			reg |= BIT(HNS3_RING_EN_B);
462 		else
463 			reg &= ~BIT(HNS3_RING_EN_B);
464 		hns3_write_dev(rxq, HNS3_RING_RX_EN_REG, reg);
465 	}
466 	rxq->enabled = en;
467 }
468 
469 int
470 hns3_start_all_txqs(struct rte_eth_dev *dev)
471 {
472 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
473 	struct hns3_tx_queue *txq;
474 	uint16_t i, j;
475 
476 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
477 		txq = hw->data->tx_queues[i];
478 		if (!txq) {
479 			hns3_err(hw, "Tx queue %u not available or setup.", i);
480 			goto start_txqs_fail;
481 		}
482 		/*
483 		 * Tx queue is enabled by default. Therefore, the Tx queues
484 		 * needs to be disabled when deferred_start is set. There is
485 		 * another master switch used to control the enabling of a pair
486 		 * of Tx and Rx queues. And the master switch is disabled by
487 		 * default.
488 		 */
489 		if (txq->tx_deferred_start)
490 			hns3_enable_txq(txq, false);
491 		else
492 			hns3_enable_txq(txq, true);
493 	}
494 	return 0;
495 
496 start_txqs_fail:
497 	for (j = 0; j < i; j++) {
498 		txq = hw->data->tx_queues[j];
499 		hns3_enable_txq(txq, false);
500 	}
501 	return -EINVAL;
502 }
503 
504 int
505 hns3_start_all_rxqs(struct rte_eth_dev *dev)
506 {
507 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
508 	struct hns3_rx_queue *rxq;
509 	uint16_t i, j;
510 
511 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
512 		rxq = hw->data->rx_queues[i];
513 		if (!rxq) {
514 			hns3_err(hw, "Rx queue %u not available or setup.", i);
515 			goto start_rxqs_fail;
516 		}
517 		/*
518 		 * Rx queue is enabled by default. Therefore, the Rx queues
519 		 * needs to be disabled when deferred_start is set. There is
520 		 * another master switch used to control the enabling of a pair
521 		 * of Tx and Rx queues. And the master switch is disabled by
522 		 * default.
523 		 */
524 		if (rxq->rx_deferred_start)
525 			hns3_enable_rxq(rxq, false);
526 		else
527 			hns3_enable_rxq(rxq, true);
528 	}
529 	return 0;
530 
531 start_rxqs_fail:
532 	for (j = 0; j < i; j++) {
533 		rxq = hw->data->rx_queues[j];
534 		hns3_enable_rxq(rxq, false);
535 	}
536 	return -EINVAL;
537 }
538 
539 void
540 hns3_restore_tqp_enable_state(struct hns3_hw *hw)
541 {
542 	struct hns3_rx_queue *rxq;
543 	struct hns3_tx_queue *txq;
544 	uint16_t i;
545 
546 	for (i = 0; i < hw->data->nb_rx_queues; i++) {
547 		rxq = hw->data->rx_queues[i];
548 		if (rxq != NULL)
549 			hns3_enable_rxq(rxq, rxq->enabled);
550 	}
551 
552 	for (i = 0; i < hw->data->nb_tx_queues; i++) {
553 		txq = hw->data->tx_queues[i];
554 		if (txq != NULL)
555 			hns3_enable_txq(txq, txq->enabled);
556 	}
557 }
558 
559 void
560 hns3_stop_all_txqs(struct rte_eth_dev *dev)
561 {
562 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
563 	struct hns3_tx_queue *txq;
564 	uint16_t i;
565 
566 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
567 		txq = hw->data->tx_queues[i];
568 		if (!txq)
569 			continue;
570 		hns3_enable_txq(txq, false);
571 	}
572 }
573 
574 static int
575 hns3_tqp_enable(struct hns3_hw *hw, uint16_t queue_id, bool enable)
576 {
577 	struct hns3_cfg_com_tqp_queue_cmd *req;
578 	struct hns3_cmd_desc desc;
579 	int ret;
580 
581 	req = (struct hns3_cfg_com_tqp_queue_cmd *)desc.data;
582 
583 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_COM_TQP_QUEUE, false);
584 	req->tqp_id = rte_cpu_to_le_16(queue_id);
585 	req->stream_id = 0;
586 	hns3_set_bit(req->enable, HNS3_TQP_ENABLE_B, enable ? 1 : 0);
587 
588 	ret = hns3_cmd_send(hw, &desc, 1);
589 	if (ret)
590 		hns3_err(hw, "TQP enable fail, ret = %d", ret);
591 
592 	return ret;
593 }
594 
595 static int
596 hns3_send_reset_tqp_cmd(struct hns3_hw *hw, uint16_t queue_id, bool enable)
597 {
598 	struct hns3_reset_tqp_queue_cmd *req;
599 	struct hns3_cmd_desc desc;
600 	int ret;
601 
602 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, false);
603 
604 	req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
605 	req->tqp_id = rte_cpu_to_le_16(queue_id);
606 	hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
607 	ret = hns3_cmd_send(hw, &desc, 1);
608 	if (ret)
609 		hns3_err(hw, "send tqp reset cmd error, queue_id = %u, "
610 			     "ret = %d", queue_id, ret);
611 
612 	return ret;
613 }
614 
615 static int
616 hns3_get_tqp_reset_status(struct hns3_hw *hw, uint16_t queue_id,
617 			  uint8_t *reset_status)
618 {
619 	struct hns3_reset_tqp_queue_cmd *req;
620 	struct hns3_cmd_desc desc;
621 	int ret;
622 
623 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, true);
624 
625 	req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
626 	req->tqp_id = rte_cpu_to_le_16(queue_id);
627 
628 	ret = hns3_cmd_send(hw, &desc, 1);
629 	if (ret) {
630 		hns3_err(hw, "get tqp reset status error, queue_id = %u, "
631 			     "ret = %d.", queue_id, ret);
632 		return ret;
633 	}
634 	*reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
635 	return ret;
636 }
637 
638 static int
639 hns3pf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
640 {
641 #define HNS3_TQP_RESET_TRY_MS	200
642 	uint16_t wait_time = 0;
643 	uint8_t reset_status;
644 	int ret;
645 
646 	/*
647 	 * In current version VF is not supported when PF is driven by DPDK
648 	 * driver, all task queue pairs are mapped to PF function, so PF's queue
649 	 * id is equals to the global queue id in PF range.
650 	 */
651 	ret = hns3_send_reset_tqp_cmd(hw, queue_id, true);
652 	if (ret) {
653 		hns3_err(hw, "Send reset tqp cmd fail, ret = %d", ret);
654 		return ret;
655 	}
656 
657 	do {
658 		/* Wait for tqp hw reset */
659 		rte_delay_ms(HNS3_POLL_RESPONE_MS);
660 		wait_time += HNS3_POLL_RESPONE_MS;
661 		ret = hns3_get_tqp_reset_status(hw, queue_id, &reset_status);
662 		if (ret)
663 			goto tqp_reset_fail;
664 
665 		if (reset_status)
666 			break;
667 	} while (wait_time < HNS3_TQP_RESET_TRY_MS);
668 
669 	if (!reset_status) {
670 		ret = -ETIMEDOUT;
671 		hns3_err(hw, "reset tqp timeout, queue_id = %u, ret = %d",
672 			     queue_id, ret);
673 		goto tqp_reset_fail;
674 	}
675 
676 	ret = hns3_send_reset_tqp_cmd(hw, queue_id, false);
677 	if (ret)
678 		hns3_err(hw, "Deassert the soft reset fail, ret = %d", ret);
679 
680 	return ret;
681 
682 tqp_reset_fail:
683 	hns3_send_reset_tqp_cmd(hw, queue_id, false);
684 	return ret;
685 }
686 
687 static int
688 hns3vf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
689 {
690 	uint8_t msg_data[2];
691 	int ret;
692 
693 	memcpy(msg_data, &queue_id, sizeof(uint16_t));
694 
695 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
696 				 sizeof(msg_data), true, NULL, 0);
697 	if (ret)
698 		hns3_err(hw, "fail to reset tqp, queue_id = %u, ret = %d.",
699 			 queue_id, ret);
700 	return ret;
701 }
702 
703 static int
704 hns3_reset_rcb_cmd(struct hns3_hw *hw, uint8_t *reset_status)
705 {
706 	struct hns3_reset_cmd *req;
707 	struct hns3_cmd_desc desc;
708 	int ret;
709 
710 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
711 	req = (struct hns3_reset_cmd *)desc.data;
712 	hns3_set_bit(req->fun_reset_rcb, HNS3_CFG_RESET_RCB_B, 1);
713 
714 	/*
715 	 * The start qid should be the global qid of the first tqp of the
716 	 * function which should be reset in this port. Since our PF not
717 	 * support take over of VFs, so we only need to reset function 0,
718 	 * and its start qid is always 0.
719 	 */
720 	req->fun_reset_rcb_vqid_start = rte_cpu_to_le_16(0);
721 	req->fun_reset_rcb_vqid_num = rte_cpu_to_le_16(hw->cfg_max_queues);
722 
723 	ret = hns3_cmd_send(hw, &desc, 1);
724 	if (ret) {
725 		hns3_err(hw, "fail to send rcb reset cmd, ret = %d.", ret);
726 		return ret;
727 	}
728 
729 	*reset_status = req->fun_reset_rcb_return_status;
730 	return 0;
731 }
732 
733 static int
734 hns3pf_reset_all_tqps(struct hns3_hw *hw)
735 {
736 #define HNS3_RESET_RCB_NOT_SUPPORT	0U
737 #define HNS3_RESET_ALL_TQP_SUCCESS	1U
738 	uint8_t reset_status;
739 	int ret;
740 	int i;
741 
742 	ret = hns3_reset_rcb_cmd(hw, &reset_status);
743 	if (ret)
744 		return ret;
745 
746 	/*
747 	 * If the firmware version is low, it may not support the rcb reset
748 	 * which means reset all the tqps at a time. In this case, we should
749 	 * reset tqps one by one.
750 	 */
751 	if (reset_status == HNS3_RESET_RCB_NOT_SUPPORT) {
752 		for (i = 0; i < hw->cfg_max_queues; i++) {
753 			ret = hns3pf_reset_tqp(hw, i);
754 			if (ret) {
755 				hns3_err(hw,
756 				  "fail to reset tqp, queue_id = %d, ret = %d.",
757 				  i, ret);
758 				return ret;
759 			}
760 		}
761 	} else if (reset_status != HNS3_RESET_ALL_TQP_SUCCESS) {
762 		hns3_err(hw, "fail to reset all tqps, reset_status = %u.",
763 				reset_status);
764 		return -EIO;
765 	}
766 
767 	return 0;
768 }
769 
770 static int
771 hns3vf_reset_all_tqps(struct hns3_hw *hw)
772 {
773 #define HNS3VF_RESET_ALL_TQP_DONE	1U
774 	uint8_t reset_status;
775 	uint8_t msg_data[2];
776 	int ret;
777 	int i;
778 
779 	memset(msg_data, 0, sizeof(uint16_t));
780 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
781 				sizeof(msg_data), true, &reset_status,
782 				sizeof(reset_status));
783 	if (ret) {
784 		hns3_err(hw, "fail to send rcb reset mbx, ret = %d.", ret);
785 		return ret;
786 	}
787 
788 	if (reset_status == HNS3VF_RESET_ALL_TQP_DONE)
789 		return 0;
790 
791 	/*
792 	 * If the firmware version or kernel PF version is low, it may not
793 	 * support the rcb reset which means reset all the tqps at a time.
794 	 * In this case, we should reset tqps one by one.
795 	 */
796 	for (i = 1; i < hw->cfg_max_queues; i++) {
797 		ret = hns3vf_reset_tqp(hw, i);
798 		if (ret)
799 			return ret;
800 	}
801 
802 	return 0;
803 }
804 
805 int
806 hns3_reset_all_tqps(struct hns3_adapter *hns)
807 {
808 	struct hns3_hw *hw = &hns->hw;
809 	int ret, i;
810 
811 	/* Disable all queues before reset all queues */
812 	for (i = 0; i < hw->cfg_max_queues; i++) {
813 		ret = hns3_tqp_enable(hw, i, false);
814 		if (ret) {
815 			hns3_err(hw,
816 			    "fail to disable tqps before tqps reset, ret = %d.",
817 			    ret);
818 			return ret;
819 		}
820 	}
821 
822 	if (hns->is_vf)
823 		return hns3vf_reset_all_tqps(hw);
824 	else
825 		return hns3pf_reset_all_tqps(hw);
826 }
827 
828 static int
829 hns3_send_reset_queue_cmd(struct hns3_hw *hw, uint16_t queue_id,
830 			  enum hns3_ring_type queue_type, bool enable)
831 {
832 	struct hns3_reset_tqp_queue_cmd *req;
833 	struct hns3_cmd_desc desc;
834 	int queue_direction;
835 	int ret;
836 
837 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, false);
838 
839 	req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
840 	req->tqp_id = rte_cpu_to_le_16(queue_id);
841 	queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1;
842 	req->queue_direction = rte_cpu_to_le_16(queue_direction);
843 	hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
844 
845 	ret = hns3_cmd_send(hw, &desc, 1);
846 	if (ret)
847 		hns3_err(hw, "send queue reset cmd error, queue_id = %u, "
848 			 "queue_type = %s, ret = %d.", queue_id,
849 			 queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret);
850 	return ret;
851 }
852 
853 static int
854 hns3_get_queue_reset_status(struct hns3_hw *hw, uint16_t queue_id,
855 			    enum hns3_ring_type queue_type,
856 			    uint8_t *reset_status)
857 {
858 	struct hns3_reset_tqp_queue_cmd *req;
859 	struct hns3_cmd_desc desc;
860 	int queue_direction;
861 	int ret;
862 
863 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, true);
864 
865 	req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
866 	req->tqp_id = rte_cpu_to_le_16(queue_id);
867 	queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1;
868 	req->queue_direction = rte_cpu_to_le_16(queue_direction);
869 
870 	ret = hns3_cmd_send(hw, &desc, 1);
871 	if (ret) {
872 		hns3_err(hw, "get queue reset status error, queue_id = %u "
873 			 "queue_type = %s, ret = %d.", queue_id,
874 			 queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret);
875 		return ret;
876 	}
877 
878 	*reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
879 	return  ret;
880 }
881 
882 static int
883 hns3_reset_queue(struct hns3_hw *hw, uint16_t queue_id,
884 		 enum hns3_ring_type queue_type)
885 {
886 #define HNS3_QUEUE_RESET_TRY_MS	200
887 	struct hns3_tx_queue *txq;
888 	struct hns3_rx_queue *rxq;
889 	uint32_t reset_wait_times;
890 	uint32_t max_wait_times;
891 	uint8_t reset_status;
892 	int ret;
893 
894 	if (queue_type == HNS3_RING_TYPE_TX) {
895 		txq = hw->data->tx_queues[queue_id];
896 		hns3_enable_txq(txq, false);
897 	} else {
898 		rxq = hw->data->rx_queues[queue_id];
899 		hns3_enable_rxq(rxq, false);
900 	}
901 
902 	ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, true);
903 	if (ret) {
904 		hns3_err(hw, "send reset queue cmd fail, ret = %d.", ret);
905 		return ret;
906 	}
907 
908 	reset_wait_times = 0;
909 	max_wait_times = HNS3_QUEUE_RESET_TRY_MS / HNS3_POLL_RESPONE_MS;
910 	while (reset_wait_times < max_wait_times) {
911 		/* Wait for queue hw reset */
912 		rte_delay_ms(HNS3_POLL_RESPONE_MS);
913 		ret = hns3_get_queue_reset_status(hw, queue_id,
914 						queue_type, &reset_status);
915 		if (ret)
916 			goto queue_reset_fail;
917 
918 		if (reset_status)
919 			break;
920 		reset_wait_times++;
921 	}
922 
923 	if (!reset_status) {
924 		hns3_err(hw, "reset queue timeout, queue_id = %u, "
925 			     "queue_type = %s", queue_id,
926 			     queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx");
927 		ret = -ETIMEDOUT;
928 		goto queue_reset_fail;
929 	}
930 
931 	ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false);
932 	if (ret)
933 		hns3_err(hw, "deassert queue reset fail, ret = %d.", ret);
934 
935 	return ret;
936 
937 queue_reset_fail:
938 	hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false);
939 	return ret;
940 }
941 
942 uint32_t
943 hns3_get_tqp_intr_reg_offset(uint16_t tqp_intr_id)
944 {
945 	uint32_t reg_offset;
946 
947 	/* Need an extend offset to config queues > 64 */
948 	if (tqp_intr_id < HNS3_MIN_EXT_TQP_INTR_ID)
949 		reg_offset = HNS3_TQP_INTR_REG_BASE +
950 			     tqp_intr_id * HNS3_TQP_INTR_LOW_ORDER_OFFSET;
951 	else
952 		reg_offset = HNS3_TQP_INTR_EXT_REG_BASE +
953 			     tqp_intr_id / HNS3_MIN_EXT_TQP_INTR_ID *
954 			     HNS3_TQP_INTR_HIGH_ORDER_OFFSET +
955 			     tqp_intr_id % HNS3_MIN_EXT_TQP_INTR_ID *
956 			     HNS3_TQP_INTR_LOW_ORDER_OFFSET;
957 
958 	return reg_offset;
959 }
960 
961 void
962 hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id,
963 		       uint8_t gl_idx, uint16_t gl_value)
964 {
965 	uint32_t offset[] = {HNS3_TQP_INTR_GL0_REG,
966 			     HNS3_TQP_INTR_GL1_REG,
967 			     HNS3_TQP_INTR_GL2_REG};
968 	uint32_t addr, value;
969 
970 	if (gl_idx >= RTE_DIM(offset) || gl_value > HNS3_TQP_INTR_GL_MAX)
971 		return;
972 
973 	addr = offset[gl_idx] + hns3_get_tqp_intr_reg_offset(queue_id);
974 	if (hw->intr.gl_unit == HNS3_INTR_COALESCE_GL_UINT_1US)
975 		value = gl_value | HNS3_TQP_INTR_GL_UNIT_1US;
976 	else
977 		value = HNS3_GL_USEC_TO_REG(gl_value);
978 
979 	hns3_write_dev(hw, addr, value);
980 }
981 
982 void
983 hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id, uint16_t rl_value)
984 {
985 	uint32_t addr, value;
986 
987 	if (rl_value > HNS3_TQP_INTR_RL_MAX)
988 		return;
989 
990 	addr = HNS3_TQP_INTR_RL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
991 	value = HNS3_RL_USEC_TO_REG(rl_value);
992 	if (value > 0)
993 		value |= HNS3_TQP_INTR_RL_ENABLE_MASK;
994 
995 	hns3_write_dev(hw, addr, value);
996 }
997 
998 void
999 hns3_set_queue_intr_ql(struct hns3_hw *hw, uint16_t queue_id, uint16_t ql_value)
1000 {
1001 	uint32_t addr;
1002 
1003 	/*
1004 	 * int_ql_max == 0 means the hardware does not support QL,
1005 	 * QL regs config is not permitted if QL is not supported,
1006 	 * here just return.
1007 	 */
1008 	if (hw->intr.int_ql_max == HNS3_INTR_QL_NONE)
1009 		return;
1010 
1011 	addr = HNS3_TQP_INTR_TX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
1012 	hns3_write_dev(hw, addr, ql_value);
1013 
1014 	addr = HNS3_TQP_INTR_RX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
1015 	hns3_write_dev(hw, addr, ql_value);
1016 }
1017 
1018 static void
1019 hns3_queue_intr_enable(struct hns3_hw *hw, uint16_t queue_id, bool en)
1020 {
1021 	uint32_t addr, value;
1022 
1023 	addr = HNS3_TQP_INTR_CTRL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
1024 	value = en ? 1 : 0;
1025 
1026 	hns3_write_dev(hw, addr, value);
1027 }
1028 
1029 /*
1030  * Enable all rx queue interrupt when in interrupt rx mode.
1031  * This api was called before enable queue rx&tx (in normal start or reset
1032  * recover scenes), used to fix hardware rx queue interrupt enable was clear
1033  * when FLR.
1034  */
1035 void
1036 hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en)
1037 {
1038 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1039 	uint16_t nb_rx_q = hw->data->nb_rx_queues;
1040 	int i;
1041 
1042 	if (dev->data->dev_conf.intr_conf.rxq == 0)
1043 		return;
1044 
1045 	for (i = 0; i < nb_rx_q; i++)
1046 		hns3_queue_intr_enable(hw, i, en);
1047 }
1048 
1049 int
1050 hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1051 {
1052 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1053 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1054 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1055 
1056 	if (dev->data->dev_conf.intr_conf.rxq == 0)
1057 		return -ENOTSUP;
1058 
1059 	hns3_queue_intr_enable(hw, queue_id, true);
1060 
1061 	return rte_intr_ack(intr_handle);
1062 }
1063 
1064 int
1065 hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1066 {
1067 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1068 
1069 	if (dev->data->dev_conf.intr_conf.rxq == 0)
1070 		return -ENOTSUP;
1071 
1072 	hns3_queue_intr_enable(hw, queue_id, false);
1073 
1074 	return 0;
1075 }
1076 
1077 static int
1078 hns3_init_rxq(struct hns3_adapter *hns, uint16_t idx)
1079 {
1080 	struct hns3_hw *hw = &hns->hw;
1081 	struct hns3_rx_queue *rxq;
1082 	int ret;
1083 
1084 	PMD_INIT_FUNC_TRACE();
1085 
1086 	rxq = (struct hns3_rx_queue *)hw->data->rx_queues[idx];
1087 	ret = hns3_alloc_rx_queue_mbufs(hw, rxq);
1088 	if (ret) {
1089 		hns3_err(hw, "fail to alloc mbuf for Rx queue %u, ret = %d.",
1090 			 idx, ret);
1091 		return ret;
1092 	}
1093 
1094 	rxq->next_to_use = 0;
1095 	rxq->rx_rearm_start = 0;
1096 	rxq->rx_free_hold = 0;
1097 	rxq->rx_rearm_nb = 0;
1098 	rxq->pkt_first_seg = NULL;
1099 	rxq->pkt_last_seg = NULL;
1100 	hns3_init_rx_queue_hw(rxq);
1101 	hns3_rxq_vec_setup(rxq);
1102 
1103 	return 0;
1104 }
1105 
1106 static void
1107 hns3_init_fake_rxq(struct hns3_adapter *hns, uint16_t idx)
1108 {
1109 	struct hns3_hw *hw = &hns->hw;
1110 	struct hns3_rx_queue *rxq;
1111 
1112 	rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[idx];
1113 	rxq->next_to_use = 0;
1114 	rxq->rx_free_hold = 0;
1115 	rxq->rx_rearm_start = 0;
1116 	rxq->rx_rearm_nb = 0;
1117 	hns3_init_rx_queue_hw(rxq);
1118 }
1119 
1120 static void
1121 hns3_init_txq(struct hns3_tx_queue *txq)
1122 {
1123 	struct hns3_desc *desc;
1124 	int i;
1125 
1126 	/* Clear tx bd */
1127 	desc = txq->tx_ring;
1128 	for (i = 0; i < txq->nb_tx_desc; i++) {
1129 		desc->tx.tp_fe_sc_vld_ra_ri = 0;
1130 		desc++;
1131 	}
1132 
1133 	txq->next_to_use = 0;
1134 	txq->next_to_clean = 0;
1135 	txq->tx_bd_ready = txq->nb_tx_desc - 1;
1136 	hns3_init_tx_queue_hw(txq);
1137 }
1138 
1139 static void
1140 hns3_init_tx_ring_tc(struct hns3_adapter *hns)
1141 {
1142 	struct hns3_hw *hw = &hns->hw;
1143 	struct hns3_tx_queue *txq;
1144 	int i, num;
1145 
1146 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1147 		struct hns3_tc_queue_info *tc_queue = &hw->tc_queue[i];
1148 		int j;
1149 
1150 		if (!tc_queue->enable)
1151 			continue;
1152 
1153 		for (j = 0; j < tc_queue->tqp_count; j++) {
1154 			num = tc_queue->tqp_offset + j;
1155 			txq = (struct hns3_tx_queue *)hw->data->tx_queues[num];
1156 			if (txq == NULL)
1157 				continue;
1158 
1159 			hns3_write_dev(txq, HNS3_RING_TX_TC_REG, tc_queue->tc);
1160 		}
1161 	}
1162 }
1163 
1164 static int
1165 hns3_init_rx_queues(struct hns3_adapter *hns)
1166 {
1167 	struct hns3_hw *hw = &hns->hw;
1168 	struct hns3_rx_queue *rxq;
1169 	uint16_t i, j;
1170 	int ret;
1171 
1172 	/* Initialize RSS for queues */
1173 	ret = hns3_config_rss(hns);
1174 	if (ret) {
1175 		hns3_err(hw, "failed to configure rss, ret = %d.", ret);
1176 		return ret;
1177 	}
1178 
1179 	for (i = 0; i < hw->data->nb_rx_queues; i++) {
1180 		rxq = (struct hns3_rx_queue *)hw->data->rx_queues[i];
1181 		if (!rxq) {
1182 			hns3_err(hw, "Rx queue %u not available or setup.", i);
1183 			goto out;
1184 		}
1185 
1186 		if (rxq->rx_deferred_start)
1187 			continue;
1188 
1189 		ret = hns3_init_rxq(hns, i);
1190 		if (ret) {
1191 			hns3_err(hw, "failed to init Rx queue %u, ret = %d.", i,
1192 				 ret);
1193 			goto out;
1194 		}
1195 	}
1196 
1197 	for (i = 0; i < hw->fkq_data.nb_fake_rx_queues; i++)
1198 		hns3_init_fake_rxq(hns, i);
1199 
1200 	return 0;
1201 
1202 out:
1203 	for (j = 0; j < i; j++) {
1204 		rxq = (struct hns3_rx_queue *)hw->data->rx_queues[j];
1205 		hns3_rx_queue_release_mbufs(rxq);
1206 	}
1207 
1208 	return ret;
1209 }
1210 
1211 static int
1212 hns3_init_tx_queues(struct hns3_adapter *hns)
1213 {
1214 	struct hns3_hw *hw = &hns->hw;
1215 	struct hns3_tx_queue *txq;
1216 	uint16_t i;
1217 
1218 	for (i = 0; i < hw->data->nb_tx_queues; i++) {
1219 		txq = (struct hns3_tx_queue *)hw->data->tx_queues[i];
1220 		if (!txq) {
1221 			hns3_err(hw, "Tx queue %u not available or setup.", i);
1222 			return -EINVAL;
1223 		}
1224 
1225 		if (txq->tx_deferred_start)
1226 			continue;
1227 		hns3_init_txq(txq);
1228 	}
1229 
1230 	for (i = 0; i < hw->fkq_data.nb_fake_tx_queues; i++) {
1231 		txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[i];
1232 		hns3_init_txq(txq);
1233 	}
1234 	hns3_init_tx_ring_tc(hns);
1235 
1236 	return 0;
1237 }
1238 
1239 /*
1240  * Init all queues.
1241  * Note: just init and setup queues, and don't enable tqps.
1242  */
1243 int
1244 hns3_init_queues(struct hns3_adapter *hns, bool reset_queue)
1245 {
1246 	struct hns3_hw *hw = &hns->hw;
1247 	int ret;
1248 
1249 	if (reset_queue) {
1250 		ret = hns3_reset_all_tqps(hns);
1251 		if (ret) {
1252 			hns3_err(hw, "failed to reset all queues, ret = %d.",
1253 				 ret);
1254 			return ret;
1255 		}
1256 	}
1257 
1258 	ret = hns3_init_rx_queues(hns);
1259 	if (ret) {
1260 		hns3_err(hw, "failed to init rx queues, ret = %d.", ret);
1261 		return ret;
1262 	}
1263 
1264 	ret = hns3_init_tx_queues(hns);
1265 	if (ret) {
1266 		hns3_dev_release_mbufs(hns);
1267 		hns3_err(hw, "failed to init tx queues, ret = %d.", ret);
1268 	}
1269 
1270 	return ret;
1271 }
1272 
1273 void
1274 hns3_start_tqps(struct hns3_hw *hw)
1275 {
1276 	struct hns3_tx_queue *txq;
1277 	struct hns3_rx_queue *rxq;
1278 	uint16_t i;
1279 
1280 	hns3_enable_all_queues(hw, true);
1281 
1282 	for (i = 0; i < hw->data->nb_tx_queues; i++) {
1283 		txq = hw->data->tx_queues[i];
1284 		if (txq->enabled)
1285 			hw->data->tx_queue_state[i] =
1286 				RTE_ETH_QUEUE_STATE_STARTED;
1287 	}
1288 
1289 	for (i = 0; i < hw->data->nb_rx_queues; i++) {
1290 		rxq = hw->data->rx_queues[i];
1291 		if (rxq->enabled)
1292 			hw->data->rx_queue_state[i] =
1293 				RTE_ETH_QUEUE_STATE_STARTED;
1294 	}
1295 }
1296 
1297 void
1298 hns3_stop_tqps(struct hns3_hw *hw)
1299 {
1300 	uint16_t i;
1301 
1302 	hns3_enable_all_queues(hw, false);
1303 
1304 	for (i = 0; i < hw->data->nb_tx_queues; i++)
1305 		hw->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1306 
1307 	for (i = 0; i < hw->data->nb_rx_queues; i++)
1308 		hw->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1309 }
1310 
1311 /*
1312  * Iterate over all Rx Queue, and call the callback() function for each Rx
1313  * queue.
1314  *
1315  * @param[in] dev
1316  *   The target eth dev.
1317  * @param[in] callback
1318  *   The function to call for each queue.
1319  *   if callback function return nonzero will stop iterate and return it's value
1320  * @param[in] arg
1321  *   The arguments to provide the callback function with.
1322  *
1323  * @return
1324  *   0 on success, otherwise with errno set.
1325  */
1326 int
1327 hns3_rxq_iterate(struct rte_eth_dev *dev,
1328 		 int (*callback)(struct hns3_rx_queue *, void *), void *arg)
1329 {
1330 	uint32_t i;
1331 	int ret;
1332 
1333 	if (dev->data->rx_queues == NULL)
1334 		return -EINVAL;
1335 
1336 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
1337 		ret = callback(dev->data->rx_queues[i], arg);
1338 		if (ret != 0)
1339 			return ret;
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 static void*
1346 hns3_alloc_rxq_and_dma_zone(struct rte_eth_dev *dev,
1347 			    struct hns3_queue_info *q_info)
1348 {
1349 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1350 	const struct rte_memzone *rx_mz;
1351 	struct hns3_rx_queue *rxq;
1352 	unsigned int rx_desc;
1353 
1354 	rxq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_rx_queue),
1355 				 RTE_CACHE_LINE_SIZE, q_info->socket_id);
1356 	if (rxq == NULL) {
1357 		hns3_err(hw, "Failed to allocate memory for No.%u rx ring!",
1358 			 q_info->idx);
1359 		return NULL;
1360 	}
1361 
1362 	/* Allocate rx ring hardware descriptors. */
1363 	rxq->queue_id = q_info->idx;
1364 	rxq->nb_rx_desc = q_info->nb_desc;
1365 
1366 	/*
1367 	 * Allocate a litter more memory because rx vector functions
1368 	 * don't check boundaries each time.
1369 	 */
1370 	rx_desc = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) *
1371 			sizeof(struct hns3_desc);
1372 	rx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
1373 					 rx_desc, HNS3_RING_BASE_ALIGN,
1374 					 q_info->socket_id);
1375 	if (rx_mz == NULL) {
1376 		hns3_err(hw, "Failed to reserve DMA memory for No.%u rx ring!",
1377 			 q_info->idx);
1378 		hns3_rx_queue_release(rxq);
1379 		return NULL;
1380 	}
1381 	rxq->mz = rx_mz;
1382 	rxq->rx_ring = (struct hns3_desc *)rx_mz->addr;
1383 	rxq->rx_ring_phys_addr = rx_mz->iova;
1384 
1385 	hns3_dbg(hw, "No.%u rx descriptors iova 0x%" PRIx64, q_info->idx,
1386 		 rxq->rx_ring_phys_addr);
1387 
1388 	return rxq;
1389 }
1390 
1391 static int
1392 hns3_fake_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
1393 			 uint16_t nb_desc, unsigned int socket_id)
1394 {
1395 	struct hns3_adapter *hns = dev->data->dev_private;
1396 	struct hns3_hw *hw = &hns->hw;
1397 	struct hns3_queue_info q_info;
1398 	struct hns3_rx_queue *rxq;
1399 	uint16_t nb_rx_q;
1400 
1401 	if (hw->fkq_data.rx_queues[idx]) {
1402 		hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
1403 		hw->fkq_data.rx_queues[idx] = NULL;
1404 	}
1405 
1406 	q_info.idx = idx;
1407 	q_info.socket_id = socket_id;
1408 	q_info.nb_desc = nb_desc;
1409 	q_info.type = "hns3 fake RX queue";
1410 	q_info.ring_name = "rx_fake_ring";
1411 	rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
1412 	if (rxq == NULL) {
1413 		hns3_err(hw, "Failed to setup No.%u fake rx ring.", idx);
1414 		return -ENOMEM;
1415 	}
1416 
1417 	/* Don't need alloc sw_ring, because upper applications don't use it */
1418 	rxq->sw_ring = NULL;
1419 
1420 	rxq->hns = hns;
1421 	rxq->rx_deferred_start = false;
1422 	rxq->port_id = dev->data->port_id;
1423 	rxq->configured = true;
1424 	nb_rx_q = dev->data->nb_rx_queues;
1425 	rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1426 				(nb_rx_q + idx) * HNS3_TQP_REG_SIZE);
1427 	rxq->rx_buf_len = HNS3_MIN_BD_BUF_SIZE;
1428 
1429 	rte_spinlock_lock(&hw->lock);
1430 	hw->fkq_data.rx_queues[idx] = rxq;
1431 	rte_spinlock_unlock(&hw->lock);
1432 
1433 	return 0;
1434 }
1435 
1436 static void*
1437 hns3_alloc_txq_and_dma_zone(struct rte_eth_dev *dev,
1438 			    struct hns3_queue_info *q_info)
1439 {
1440 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1441 	const struct rte_memzone *tx_mz;
1442 	struct hns3_tx_queue *txq;
1443 	struct hns3_desc *desc;
1444 	unsigned int tx_desc;
1445 	int i;
1446 
1447 	txq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_tx_queue),
1448 				 RTE_CACHE_LINE_SIZE, q_info->socket_id);
1449 	if (txq == NULL) {
1450 		hns3_err(hw, "Failed to allocate memory for No.%u tx ring!",
1451 			 q_info->idx);
1452 		return NULL;
1453 	}
1454 
1455 	/* Allocate tx ring hardware descriptors. */
1456 	txq->queue_id = q_info->idx;
1457 	txq->nb_tx_desc = q_info->nb_desc;
1458 	tx_desc = txq->nb_tx_desc * sizeof(struct hns3_desc);
1459 	tx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
1460 					 tx_desc, HNS3_RING_BASE_ALIGN,
1461 					 q_info->socket_id);
1462 	if (tx_mz == NULL) {
1463 		hns3_err(hw, "Failed to reserve DMA memory for No.%u tx ring!",
1464 			 q_info->idx);
1465 		hns3_tx_queue_release(txq);
1466 		return NULL;
1467 	}
1468 	txq->mz = tx_mz;
1469 	txq->tx_ring = (struct hns3_desc *)tx_mz->addr;
1470 	txq->tx_ring_phys_addr = tx_mz->iova;
1471 
1472 	hns3_dbg(hw, "No.%u tx descriptors iova 0x%" PRIx64, q_info->idx,
1473 		 txq->tx_ring_phys_addr);
1474 
1475 	/* Clear tx bd */
1476 	desc = txq->tx_ring;
1477 	for (i = 0; i < txq->nb_tx_desc; i++) {
1478 		desc->tx.tp_fe_sc_vld_ra_ri = 0;
1479 		desc++;
1480 	}
1481 
1482 	return txq;
1483 }
1484 
1485 static int
1486 hns3_fake_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
1487 			 uint16_t nb_desc, unsigned int socket_id)
1488 {
1489 	struct hns3_adapter *hns = dev->data->dev_private;
1490 	struct hns3_hw *hw = &hns->hw;
1491 	struct hns3_queue_info q_info;
1492 	struct hns3_tx_queue *txq;
1493 	uint16_t nb_tx_q;
1494 
1495 	if (hw->fkq_data.tx_queues[idx] != NULL) {
1496 		hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
1497 		hw->fkq_data.tx_queues[idx] = NULL;
1498 	}
1499 
1500 	q_info.idx = idx;
1501 	q_info.socket_id = socket_id;
1502 	q_info.nb_desc = nb_desc;
1503 	q_info.type = "hns3 fake TX queue";
1504 	q_info.ring_name = "tx_fake_ring";
1505 	txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
1506 	if (txq == NULL) {
1507 		hns3_err(hw, "Failed to setup No.%u fake tx ring.", idx);
1508 		return -ENOMEM;
1509 	}
1510 
1511 	/* Don't need alloc sw_ring, because upper applications don't use it */
1512 	txq->sw_ring = NULL;
1513 	txq->free = NULL;
1514 
1515 	txq->hns = hns;
1516 	txq->tx_deferred_start = false;
1517 	txq->port_id = dev->data->port_id;
1518 	txq->configured = true;
1519 	nb_tx_q = dev->data->nb_tx_queues;
1520 	txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1521 				(nb_tx_q + idx) * HNS3_TQP_REG_SIZE);
1522 
1523 	rte_spinlock_lock(&hw->lock);
1524 	hw->fkq_data.tx_queues[idx] = txq;
1525 	rte_spinlock_unlock(&hw->lock);
1526 
1527 	return 0;
1528 }
1529 
1530 static int
1531 hns3_fake_rx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
1532 {
1533 	uint16_t old_nb_queues = hw->fkq_data.nb_fake_rx_queues;
1534 	void **rxq;
1535 	uint16_t i;
1536 
1537 	if (hw->fkq_data.rx_queues == NULL && nb_queues != 0) {
1538 		/* first time configuration */
1539 		uint32_t size;
1540 		size = sizeof(hw->fkq_data.rx_queues[0]) * nb_queues;
1541 		hw->fkq_data.rx_queues = rte_zmalloc("fake_rx_queues", size,
1542 						     RTE_CACHE_LINE_SIZE);
1543 		if (hw->fkq_data.rx_queues == NULL) {
1544 			hw->fkq_data.nb_fake_rx_queues = 0;
1545 			return -ENOMEM;
1546 		}
1547 	} else if (hw->fkq_data.rx_queues != NULL && nb_queues != 0) {
1548 		/* re-configure */
1549 		rxq = hw->fkq_data.rx_queues;
1550 		for (i = nb_queues; i < old_nb_queues; i++)
1551 			hns3_rx_queue_release_lock(rxq[i]);
1552 
1553 		rxq = rte_realloc(rxq, sizeof(rxq[0]) * nb_queues,
1554 				  RTE_CACHE_LINE_SIZE);
1555 		if (rxq == NULL)
1556 			return -ENOMEM;
1557 		if (nb_queues > old_nb_queues) {
1558 			uint16_t new_qs = nb_queues - old_nb_queues;
1559 			memset(rxq + old_nb_queues, 0, sizeof(rxq[0]) * new_qs);
1560 		}
1561 
1562 		hw->fkq_data.rx_queues = rxq;
1563 	} else if (hw->fkq_data.rx_queues != NULL && nb_queues == 0) {
1564 		rxq = hw->fkq_data.rx_queues;
1565 		for (i = nb_queues; i < old_nb_queues; i++)
1566 			hns3_rx_queue_release_lock(rxq[i]);
1567 
1568 		rte_free(hw->fkq_data.rx_queues);
1569 		hw->fkq_data.rx_queues = NULL;
1570 	}
1571 
1572 	hw->fkq_data.nb_fake_rx_queues = nb_queues;
1573 
1574 	return 0;
1575 }
1576 
1577 static int
1578 hns3_fake_tx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
1579 {
1580 	uint16_t old_nb_queues = hw->fkq_data.nb_fake_tx_queues;
1581 	void **txq;
1582 	uint16_t i;
1583 
1584 	if (hw->fkq_data.tx_queues == NULL && nb_queues != 0) {
1585 		/* first time configuration */
1586 		uint32_t size;
1587 		size = sizeof(hw->fkq_data.tx_queues[0]) * nb_queues;
1588 		hw->fkq_data.tx_queues = rte_zmalloc("fake_tx_queues", size,
1589 						     RTE_CACHE_LINE_SIZE);
1590 		if (hw->fkq_data.tx_queues == NULL) {
1591 			hw->fkq_data.nb_fake_tx_queues = 0;
1592 			return -ENOMEM;
1593 		}
1594 	} else if (hw->fkq_data.tx_queues != NULL && nb_queues != 0) {
1595 		/* re-configure */
1596 		txq = hw->fkq_data.tx_queues;
1597 		for (i = nb_queues; i < old_nb_queues; i++)
1598 			hns3_tx_queue_release_lock(txq[i]);
1599 		txq = rte_realloc(txq, sizeof(txq[0]) * nb_queues,
1600 				  RTE_CACHE_LINE_SIZE);
1601 		if (txq == NULL)
1602 			return -ENOMEM;
1603 		if (nb_queues > old_nb_queues) {
1604 			uint16_t new_qs = nb_queues - old_nb_queues;
1605 			memset(txq + old_nb_queues, 0, sizeof(txq[0]) * new_qs);
1606 		}
1607 
1608 		hw->fkq_data.tx_queues = txq;
1609 	} else if (hw->fkq_data.tx_queues != NULL && nb_queues == 0) {
1610 		txq = hw->fkq_data.tx_queues;
1611 		for (i = nb_queues; i < old_nb_queues; i++)
1612 			hns3_tx_queue_release_lock(txq[i]);
1613 
1614 		rte_free(hw->fkq_data.tx_queues);
1615 		hw->fkq_data.tx_queues = NULL;
1616 	}
1617 	hw->fkq_data.nb_fake_tx_queues = nb_queues;
1618 
1619 	return 0;
1620 }
1621 
1622 int
1623 hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q,
1624 			      uint16_t nb_tx_q)
1625 {
1626 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1627 	uint16_t rx_need_add_nb_q;
1628 	uint16_t tx_need_add_nb_q;
1629 	uint16_t port_id;
1630 	uint16_t q;
1631 	int ret;
1632 
1633 	if (hns3_dev_get_support(hw, INDEP_TXRX))
1634 		return 0;
1635 
1636 	/* Setup new number of fake RX/TX queues and reconfigure device. */
1637 	rx_need_add_nb_q = hw->cfg_max_queues - nb_rx_q;
1638 	tx_need_add_nb_q = hw->cfg_max_queues - nb_tx_q;
1639 	ret = hns3_fake_rx_queue_config(hw, rx_need_add_nb_q);
1640 	if (ret) {
1641 		hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
1642 		return ret;
1643 	}
1644 
1645 	ret = hns3_fake_tx_queue_config(hw, tx_need_add_nb_q);
1646 	if (ret) {
1647 		hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
1648 		goto cfg_fake_tx_q_fail;
1649 	}
1650 
1651 	/* Allocate and set up fake RX queue per Ethernet port. */
1652 	port_id = hw->data->port_id;
1653 	for (q = 0; q < rx_need_add_nb_q; q++) {
1654 		ret = hns3_fake_rx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
1655 					       rte_eth_dev_socket_id(port_id));
1656 		if (ret)
1657 			goto setup_fake_rx_q_fail;
1658 	}
1659 
1660 	/* Allocate and set up fake TX queue per Ethernet port. */
1661 	for (q = 0; q < tx_need_add_nb_q; q++) {
1662 		ret = hns3_fake_tx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
1663 					       rte_eth_dev_socket_id(port_id));
1664 		if (ret)
1665 			goto setup_fake_tx_q_fail;
1666 	}
1667 
1668 	return 0;
1669 
1670 setup_fake_tx_q_fail:
1671 setup_fake_rx_q_fail:
1672 	(void)hns3_fake_tx_queue_config(hw, 0);
1673 cfg_fake_tx_q_fail:
1674 	(void)hns3_fake_rx_queue_config(hw, 0);
1675 
1676 	return ret;
1677 }
1678 
1679 void
1680 hns3_dev_release_mbufs(struct hns3_adapter *hns)
1681 {
1682 	struct rte_eth_dev_data *dev_data = hns->hw.data;
1683 	struct hns3_rx_queue *rxq;
1684 	struct hns3_tx_queue *txq;
1685 	int i;
1686 
1687 	if (dev_data->rx_queues)
1688 		for (i = 0; i < dev_data->nb_rx_queues; i++) {
1689 			rxq = dev_data->rx_queues[i];
1690 			if (rxq == NULL)
1691 				continue;
1692 			hns3_rx_queue_release_mbufs(rxq);
1693 		}
1694 
1695 	if (dev_data->tx_queues)
1696 		for (i = 0; i < dev_data->nb_tx_queues; i++) {
1697 			txq = dev_data->tx_queues[i];
1698 			if (txq == NULL)
1699 				continue;
1700 			hns3_tx_queue_release_mbufs(txq);
1701 		}
1702 }
1703 
1704 static int
1705 hns3_rx_buf_len_calc(struct rte_mempool *mp, uint16_t *rx_buf_len)
1706 {
1707 	uint16_t vld_buf_size;
1708 	uint16_t num_hw_specs;
1709 	uint16_t i;
1710 
1711 	/*
1712 	 * hns3 network engine only support to set 4 typical specification, and
1713 	 * different buffer size will affect the max packet_len and the max
1714 	 * number of segmentation when hw gro is turned on in receive side. The
1715 	 * relationship between them is as follows:
1716 	 *      rx_buf_size     |  max_gro_pkt_len  |  max_gro_nb_seg
1717 	 * ---------------------|-------------------|----------------
1718 	 * HNS3_4K_BD_BUF_SIZE  |        60KB       |       15
1719 	 * HNS3_2K_BD_BUF_SIZE  |        62KB       |       31
1720 	 * HNS3_1K_BD_BUF_SIZE  |        63KB       |       63
1721 	 * HNS3_512_BD_BUF_SIZE |      31.5KB       |       63
1722 	 */
1723 	static const uint16_t hw_rx_buf_size[] = {
1724 		HNS3_4K_BD_BUF_SIZE,
1725 		HNS3_2K_BD_BUF_SIZE,
1726 		HNS3_1K_BD_BUF_SIZE,
1727 		HNS3_512_BD_BUF_SIZE
1728 	};
1729 
1730 	vld_buf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) -
1731 			RTE_PKTMBUF_HEADROOM);
1732 	if (vld_buf_size < HNS3_MIN_BD_BUF_SIZE)
1733 		return -EINVAL;
1734 
1735 	num_hw_specs = RTE_DIM(hw_rx_buf_size);
1736 	for (i = 0; i < num_hw_specs; i++) {
1737 		if (vld_buf_size >= hw_rx_buf_size[i]) {
1738 			*rx_buf_len = hw_rx_buf_size[i];
1739 			break;
1740 		}
1741 	}
1742 	return 0;
1743 }
1744 
1745 static int
1746 hns3_rxq_conf_runtime_check(struct hns3_hw *hw, uint16_t buf_size,
1747 				uint16_t nb_desc)
1748 {
1749 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1750 	struct rte_eth_rxmode *rxmode = &hw->data->dev_conf.rxmode;
1751 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
1752 	uint16_t min_vec_bds;
1753 
1754 	/*
1755 	 * HNS3 hardware network engine set scattered as default. If the driver
1756 	 * is not work in scattered mode and the pkts greater than buf_size
1757 	 * but smaller than max_rx_pkt_len will be distributed to multiple BDs.
1758 	 * Driver cannot handle this situation.
1759 	 */
1760 	if (!hw->data->scattered_rx && rxmode->max_rx_pkt_len > buf_size) {
1761 		hns3_err(hw, "max_rx_pkt_len is not allowed to be set greater "
1762 			     "than rx_buf_len if scattered is off.");
1763 		return -EINVAL;
1764 	}
1765 
1766 	if (pkt_burst == hns3_recv_pkts_vec) {
1767 		min_vec_bds = HNS3_DEFAULT_RXQ_REARM_THRESH +
1768 			      HNS3_DEFAULT_RX_BURST;
1769 		if (nb_desc < min_vec_bds ||
1770 		    nb_desc % HNS3_DEFAULT_RXQ_REARM_THRESH) {
1771 			hns3_err(hw, "if Rx burst mode is vector, "
1772 				 "number of descriptor is required to be "
1773 				 "bigger than min vector bds:%u, and could be "
1774 				 "divided by rxq rearm thresh:%u.",
1775 				 min_vec_bds, HNS3_DEFAULT_RXQ_REARM_THRESH);
1776 			return -EINVAL;
1777 		}
1778 	}
1779 	return 0;
1780 }
1781 
1782 static int
1783 hns3_rx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_rxconf *conf,
1784 			 struct rte_mempool *mp, uint16_t nb_desc,
1785 			 uint16_t *buf_size)
1786 {
1787 	int ret;
1788 
1789 	if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
1790 	    nb_desc % HNS3_ALIGN_RING_DESC) {
1791 		hns3_err(hw, "Number (%u) of rx descriptors is invalid",
1792 			 nb_desc);
1793 		return -EINVAL;
1794 	}
1795 
1796 	if (conf->rx_drop_en == 0)
1797 		hns3_warn(hw, "if no descriptors available, packets are always "
1798 			  "dropped and rx_drop_en (1) is fixed on");
1799 
1800 	if (hns3_rx_buf_len_calc(mp, buf_size)) {
1801 		hns3_err(hw, "rxq mbufs' data room size (%u) is not enough! "
1802 				"minimal data room size (%u).",
1803 				rte_pktmbuf_data_room_size(mp),
1804 				HNS3_MIN_BD_BUF_SIZE + RTE_PKTMBUF_HEADROOM);
1805 		return -EINVAL;
1806 	}
1807 
1808 	if (hw->data->dev_started) {
1809 		ret = hns3_rxq_conf_runtime_check(hw, *buf_size, nb_desc);
1810 		if (ret) {
1811 			hns3_err(hw, "Rx queue runtime setup fail.");
1812 			return ret;
1813 		}
1814 	}
1815 
1816 	return 0;
1817 }
1818 
1819 uint32_t
1820 hns3_get_tqp_reg_offset(uint16_t queue_id)
1821 {
1822 	uint32_t reg_offset;
1823 
1824 	/* Need an extend offset to config queue > 1024 */
1825 	if (queue_id < HNS3_MIN_EXTEND_QUEUE_ID)
1826 		reg_offset = HNS3_TQP_REG_OFFSET + queue_id * HNS3_TQP_REG_SIZE;
1827 	else
1828 		reg_offset = HNS3_TQP_REG_OFFSET + HNS3_TQP_EXT_REG_OFFSET +
1829 			     (queue_id - HNS3_MIN_EXTEND_QUEUE_ID) *
1830 			     HNS3_TQP_REG_SIZE;
1831 
1832 	return reg_offset;
1833 }
1834 
1835 int
1836 hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
1837 		    unsigned int socket_id, const struct rte_eth_rxconf *conf,
1838 		    struct rte_mempool *mp)
1839 {
1840 	struct hns3_adapter *hns = dev->data->dev_private;
1841 	struct hns3_hw *hw = &hns->hw;
1842 	struct hns3_queue_info q_info;
1843 	struct hns3_rx_queue *rxq;
1844 	uint16_t rx_buf_size;
1845 	int rx_entry_len;
1846 	int ret;
1847 
1848 	ret = hns3_rx_queue_conf_check(hw, conf, mp, nb_desc, &rx_buf_size);
1849 	if (ret)
1850 		return ret;
1851 
1852 	if (dev->data->rx_queues[idx]) {
1853 		hns3_rx_queue_release(dev->data->rx_queues[idx]);
1854 		dev->data->rx_queues[idx] = NULL;
1855 	}
1856 
1857 	q_info.idx = idx;
1858 	q_info.socket_id = socket_id;
1859 	q_info.nb_desc = nb_desc;
1860 	q_info.type = "hns3 RX queue";
1861 	q_info.ring_name = "rx_ring";
1862 
1863 	rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
1864 	if (rxq == NULL) {
1865 		hns3_err(hw,
1866 			 "Failed to alloc mem and reserve DMA mem for rx ring!");
1867 		return -ENOMEM;
1868 	}
1869 
1870 	rxq->hns = hns;
1871 	rxq->ptype_tbl = &hns->ptype_tbl;
1872 	rxq->mb_pool = mp;
1873 	rxq->rx_free_thresh = (conf->rx_free_thresh > 0) ?
1874 		conf->rx_free_thresh : HNS3_DEFAULT_RX_FREE_THRESH;
1875 
1876 	rxq->rx_deferred_start = conf->rx_deferred_start;
1877 	if (rxq->rx_deferred_start && !hns3_dev_get_support(hw, INDEP_TXRX)) {
1878 		hns3_warn(hw, "deferred start is not supported.");
1879 		rxq->rx_deferred_start = false;
1880 	}
1881 
1882 	rx_entry_len = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) *
1883 			sizeof(struct hns3_entry);
1884 	rxq->sw_ring = rte_zmalloc_socket("hns3 RX sw ring", rx_entry_len,
1885 					  RTE_CACHE_LINE_SIZE, socket_id);
1886 	if (rxq->sw_ring == NULL) {
1887 		hns3_err(hw, "Failed to allocate memory for rx sw ring!");
1888 		hns3_rx_queue_release(rxq);
1889 		return -ENOMEM;
1890 	}
1891 
1892 	rxq->next_to_use = 0;
1893 	rxq->rx_free_hold = 0;
1894 	rxq->rx_rearm_start = 0;
1895 	rxq->rx_rearm_nb = 0;
1896 	rxq->pkt_first_seg = NULL;
1897 	rxq->pkt_last_seg = NULL;
1898 	rxq->port_id = dev->data->port_id;
1899 	/*
1900 	 * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE,
1901 	 * the pvid_sw_discard_en in the queue struct should not be changed,
1902 	 * because PVID-related operations do not need to be processed by PMD
1903 	 * driver. For hns3 VF device, whether it needs to process PVID depends
1904 	 * on the configuration of PF kernel mode netdevice driver. And the
1905 	 * related PF configuration is delivered through the mailbox and finally
1906 	 * reflectd in port_base_vlan_cfg.
1907 	 */
1908 	if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1909 		rxq->pvid_sw_discard_en = hw->port_base_vlan_cfg.state ==
1910 				       HNS3_PORT_BASE_VLAN_ENABLE;
1911 	else
1912 		rxq->pvid_sw_discard_en = false;
1913 	rxq->ptype_en = hns3_dev_get_support(hw, RXD_ADV_LAYOUT) ? true : false;
1914 	rxq->configured = true;
1915 	rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1916 				idx * HNS3_TQP_REG_SIZE);
1917 	rxq->io_base = (void *)((char *)hw->io_base +
1918 					hns3_get_tqp_reg_offset(idx));
1919 	rxq->io_head_reg = (volatile void *)((char *)rxq->io_base +
1920 			   HNS3_RING_RX_HEAD_REG);
1921 	rxq->rx_buf_len = rx_buf_size;
1922 	memset(&rxq->basic_stats, 0, sizeof(struct hns3_rx_basic_stats));
1923 	memset(&rxq->err_stats, 0, sizeof(struct hns3_rx_bd_errors_stats));
1924 	memset(&rxq->dfx_stats, 0, sizeof(struct hns3_rx_dfx_stats));
1925 
1926 	/* CRC len set here is used for amending packet length */
1927 	if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1928 		rxq->crc_len = RTE_ETHER_CRC_LEN;
1929 	else
1930 		rxq->crc_len = 0;
1931 
1932 	rxq->bulk_mbuf_num = 0;
1933 
1934 	rte_spinlock_lock(&hw->lock);
1935 	dev->data->rx_queues[idx] = rxq;
1936 	rte_spinlock_unlock(&hw->lock);
1937 
1938 	return 0;
1939 }
1940 
1941 void
1942 hns3_rx_scattered_reset(struct rte_eth_dev *dev)
1943 {
1944 	struct hns3_adapter *hns = dev->data->dev_private;
1945 	struct hns3_hw *hw = &hns->hw;
1946 
1947 	hw->rx_buf_len = 0;
1948 	dev->data->scattered_rx = false;
1949 }
1950 
1951 void
1952 hns3_rx_scattered_calc(struct rte_eth_dev *dev)
1953 {
1954 	struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1955 	struct hns3_adapter *hns = dev->data->dev_private;
1956 	struct hns3_hw *hw = &hns->hw;
1957 	struct hns3_rx_queue *rxq;
1958 	uint32_t queue_id;
1959 
1960 	if (dev->data->rx_queues == NULL)
1961 		return;
1962 
1963 	for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
1964 		rxq = dev->data->rx_queues[queue_id];
1965 		if (hw->rx_buf_len == 0)
1966 			hw->rx_buf_len = rxq->rx_buf_len;
1967 		else
1968 			hw->rx_buf_len = RTE_MIN(hw->rx_buf_len,
1969 						 rxq->rx_buf_len);
1970 	}
1971 
1972 	if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_SCATTER ||
1973 	    dev_conf->rxmode.max_rx_pkt_len > hw->rx_buf_len)
1974 		dev->data->scattered_rx = true;
1975 }
1976 
1977 const uint32_t *
1978 hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1979 {
1980 	static const uint32_t ptypes[] = {
1981 		RTE_PTYPE_L2_ETHER,
1982 		RTE_PTYPE_L2_ETHER_LLDP,
1983 		RTE_PTYPE_L2_ETHER_ARP,
1984 		RTE_PTYPE_L3_IPV4,
1985 		RTE_PTYPE_L3_IPV4_EXT,
1986 		RTE_PTYPE_L3_IPV6,
1987 		RTE_PTYPE_L3_IPV6_EXT,
1988 		RTE_PTYPE_L4_IGMP,
1989 		RTE_PTYPE_L4_ICMP,
1990 		RTE_PTYPE_L4_SCTP,
1991 		RTE_PTYPE_L4_TCP,
1992 		RTE_PTYPE_L4_UDP,
1993 		RTE_PTYPE_TUNNEL_GRE,
1994 		RTE_PTYPE_INNER_L2_ETHER,
1995 		RTE_PTYPE_INNER_L3_IPV4,
1996 		RTE_PTYPE_INNER_L3_IPV6,
1997 		RTE_PTYPE_INNER_L3_IPV4_EXT,
1998 		RTE_PTYPE_INNER_L3_IPV6_EXT,
1999 		RTE_PTYPE_INNER_L4_UDP,
2000 		RTE_PTYPE_INNER_L4_TCP,
2001 		RTE_PTYPE_INNER_L4_SCTP,
2002 		RTE_PTYPE_INNER_L4_ICMP,
2003 		RTE_PTYPE_TUNNEL_VXLAN,
2004 		RTE_PTYPE_TUNNEL_NVGRE,
2005 		RTE_PTYPE_UNKNOWN
2006 	};
2007 	static const uint32_t adv_layout_ptypes[] = {
2008 		RTE_PTYPE_L2_ETHER,
2009 		RTE_PTYPE_L2_ETHER_TIMESYNC,
2010 		RTE_PTYPE_L2_ETHER_LLDP,
2011 		RTE_PTYPE_L2_ETHER_ARP,
2012 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2013 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2014 		RTE_PTYPE_L4_FRAG,
2015 		RTE_PTYPE_L4_NONFRAG,
2016 		RTE_PTYPE_L4_UDP,
2017 		RTE_PTYPE_L4_TCP,
2018 		RTE_PTYPE_L4_SCTP,
2019 		RTE_PTYPE_L4_IGMP,
2020 		RTE_PTYPE_L4_ICMP,
2021 		RTE_PTYPE_TUNNEL_GRE,
2022 		RTE_PTYPE_TUNNEL_GRENAT,
2023 		RTE_PTYPE_INNER_L2_ETHER,
2024 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2025 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2026 		RTE_PTYPE_INNER_L4_FRAG,
2027 		RTE_PTYPE_INNER_L4_ICMP,
2028 		RTE_PTYPE_INNER_L4_NONFRAG,
2029 		RTE_PTYPE_INNER_L4_UDP,
2030 		RTE_PTYPE_INNER_L4_TCP,
2031 		RTE_PTYPE_INNER_L4_SCTP,
2032 		RTE_PTYPE_INNER_L4_ICMP,
2033 		RTE_PTYPE_UNKNOWN
2034 	};
2035 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2036 
2037 	if (dev->rx_pkt_burst == hns3_recv_pkts_simple ||
2038 	    dev->rx_pkt_burst == hns3_recv_scattered_pkts ||
2039 	    dev->rx_pkt_burst == hns3_recv_pkts_vec ||
2040 	    dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) {
2041 		if (hns3_dev_get_support(hw, RXD_ADV_LAYOUT))
2042 			return adv_layout_ptypes;
2043 		else
2044 			return ptypes;
2045 	}
2046 
2047 	return NULL;
2048 }
2049 
2050 static void
2051 hns3_init_non_tunnel_ptype_tbl(struct hns3_ptype_table *tbl)
2052 {
2053 	tbl->l3table[0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4;
2054 	tbl->l3table[1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6;
2055 	tbl->l3table[2] = RTE_PTYPE_L2_ETHER_ARP;
2056 	tbl->l3table[4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT;
2057 	tbl->l3table[5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT;
2058 	tbl->l3table[6] = RTE_PTYPE_L2_ETHER_LLDP;
2059 
2060 	tbl->l4table[0] = RTE_PTYPE_L4_UDP;
2061 	tbl->l4table[1] = RTE_PTYPE_L4_TCP;
2062 	tbl->l4table[2] = RTE_PTYPE_TUNNEL_GRE;
2063 	tbl->l4table[3] = RTE_PTYPE_L4_SCTP;
2064 	tbl->l4table[4] = RTE_PTYPE_L4_IGMP;
2065 	tbl->l4table[5] = RTE_PTYPE_L4_ICMP;
2066 }
2067 
2068 static void
2069 hns3_init_tunnel_ptype_tbl(struct hns3_ptype_table *tbl)
2070 {
2071 	tbl->inner_l3table[0] = RTE_PTYPE_INNER_L2_ETHER |
2072 				RTE_PTYPE_INNER_L3_IPV4;
2073 	tbl->inner_l3table[1] = RTE_PTYPE_INNER_L2_ETHER |
2074 				RTE_PTYPE_INNER_L3_IPV6;
2075 	/* There is not a ptype for inner ARP/RARP */
2076 	tbl->inner_l3table[2] = RTE_PTYPE_UNKNOWN;
2077 	tbl->inner_l3table[3] = RTE_PTYPE_UNKNOWN;
2078 	tbl->inner_l3table[4] = RTE_PTYPE_INNER_L2_ETHER |
2079 				RTE_PTYPE_INNER_L3_IPV4_EXT;
2080 	tbl->inner_l3table[5] = RTE_PTYPE_INNER_L2_ETHER |
2081 				RTE_PTYPE_INNER_L3_IPV6_EXT;
2082 
2083 	tbl->inner_l4table[0] = RTE_PTYPE_INNER_L4_UDP;
2084 	tbl->inner_l4table[1] = RTE_PTYPE_INNER_L4_TCP;
2085 	/* There is not a ptype for inner GRE */
2086 	tbl->inner_l4table[2] = RTE_PTYPE_UNKNOWN;
2087 	tbl->inner_l4table[3] = RTE_PTYPE_INNER_L4_SCTP;
2088 	/* There is not a ptype for inner IGMP */
2089 	tbl->inner_l4table[4] = RTE_PTYPE_UNKNOWN;
2090 	tbl->inner_l4table[5] = RTE_PTYPE_INNER_L4_ICMP;
2091 
2092 	tbl->ol3table[0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4;
2093 	tbl->ol3table[1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6;
2094 	tbl->ol3table[2] = RTE_PTYPE_UNKNOWN;
2095 	tbl->ol3table[3] = RTE_PTYPE_UNKNOWN;
2096 	tbl->ol3table[4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT;
2097 	tbl->ol3table[5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT;
2098 
2099 	tbl->ol4table[0] = RTE_PTYPE_UNKNOWN;
2100 	tbl->ol4table[1] = RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN;
2101 	tbl->ol4table[2] = RTE_PTYPE_TUNNEL_NVGRE;
2102 }
2103 
2104 static void
2105 hns3_init_adv_layout_ptype(struct hns3_ptype_table *tbl)
2106 {
2107 	uint32_t *ptype = tbl->ptype;
2108 
2109 	/* Non-tunnel L2 */
2110 	ptype[1] = RTE_PTYPE_L2_ETHER_ARP;
2111 	ptype[3] = RTE_PTYPE_L2_ETHER_LLDP;
2112 	ptype[8] = RTE_PTYPE_L2_ETHER_TIMESYNC;
2113 
2114 	/* Non-tunnel IPv4 */
2115 	ptype[17] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2116 		    RTE_PTYPE_L4_FRAG;
2117 	ptype[18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2118 		    RTE_PTYPE_L4_NONFRAG;
2119 	ptype[19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2120 		    RTE_PTYPE_L4_UDP;
2121 	ptype[20] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2122 		    RTE_PTYPE_L4_TCP;
2123 	ptype[21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2124 		    RTE_PTYPE_TUNNEL_GRE;
2125 	ptype[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2126 		    RTE_PTYPE_L4_SCTP;
2127 	ptype[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2128 		    RTE_PTYPE_L4_IGMP;
2129 	ptype[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2130 		    RTE_PTYPE_L4_ICMP;
2131 	/* The next ptype is PTP over IPv4 + UDP */
2132 	ptype[25] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2133 		    RTE_PTYPE_L4_UDP;
2134 
2135 	/* IPv4 --> GRE/Teredo/VXLAN */
2136 	ptype[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2137 		    RTE_PTYPE_TUNNEL_GRENAT;
2138 	/* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2139 	ptype[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2140 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER;
2141 
2142 	/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2143 	ptype[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2144 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2145 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2146 		    RTE_PTYPE_INNER_L4_FRAG;
2147 	ptype[32] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2148 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2149 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2150 		    RTE_PTYPE_INNER_L4_NONFRAG;
2151 	ptype[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2152 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2153 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2154 		    RTE_PTYPE_INNER_L4_UDP;
2155 	ptype[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2156 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2157 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2158 		    RTE_PTYPE_INNER_L4_TCP;
2159 	ptype[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2160 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2161 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2162 		    RTE_PTYPE_INNER_L4_SCTP;
2163 	/* The next ptype's inner L4 is IGMP */
2164 	ptype[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2165 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2166 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
2167 	ptype[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2168 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2169 		    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2170 		    RTE_PTYPE_INNER_L4_ICMP;
2171 
2172 	/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2173 	ptype[39] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2174 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2175 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2176 		    RTE_PTYPE_INNER_L4_FRAG;
2177 	ptype[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2178 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2179 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2180 		    RTE_PTYPE_INNER_L4_NONFRAG;
2181 	ptype[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2182 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2183 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2184 		    RTE_PTYPE_INNER_L4_UDP;
2185 	ptype[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2186 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2187 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2188 		    RTE_PTYPE_INNER_L4_TCP;
2189 	ptype[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2190 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2191 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2192 		    RTE_PTYPE_INNER_L4_SCTP;
2193 	/* The next ptype's inner L4 is IGMP */
2194 	ptype[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2195 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2196 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
2197 	ptype[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2198 		    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2199 		    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2200 		    RTE_PTYPE_INNER_L4_ICMP;
2201 
2202 	/* Non-tunnel IPv6 */
2203 	ptype[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2204 		     RTE_PTYPE_L4_FRAG;
2205 	ptype[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2206 		     RTE_PTYPE_L4_NONFRAG;
2207 	ptype[113] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2208 		     RTE_PTYPE_L4_UDP;
2209 	ptype[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2210 		     RTE_PTYPE_L4_TCP;
2211 	ptype[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2212 		     RTE_PTYPE_TUNNEL_GRE;
2213 	ptype[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2214 		     RTE_PTYPE_L4_SCTP;
2215 	ptype[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2216 		     RTE_PTYPE_L4_IGMP;
2217 	ptype[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2218 		     RTE_PTYPE_L4_ICMP;
2219 	/* Special for PTP over IPv6 + UDP */
2220 	ptype[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2221 		     RTE_PTYPE_L4_UDP;
2222 
2223 	/* IPv6 --> GRE/Teredo/VXLAN */
2224 	ptype[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2225 		     RTE_PTYPE_TUNNEL_GRENAT;
2226 	/* IPv6 --> GRE/Teredo/VXLAN --> MAC */
2227 	ptype[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2228 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER;
2229 
2230 	/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2231 	ptype[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2232 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2233 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2234 		     RTE_PTYPE_INNER_L4_FRAG;
2235 	ptype[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2236 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2237 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2238 		     RTE_PTYPE_INNER_L4_NONFRAG;
2239 	ptype[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2240 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2241 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2242 		     RTE_PTYPE_INNER_L4_UDP;
2243 	ptype[128] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2244 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2245 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2246 		     RTE_PTYPE_INNER_L4_TCP;
2247 	ptype[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2248 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2249 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2250 		     RTE_PTYPE_INNER_L4_SCTP;
2251 	/* The next ptype's inner L4 is IGMP */
2252 	ptype[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2253 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2254 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
2255 	ptype[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2256 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2257 		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2258 		     RTE_PTYPE_INNER_L4_ICMP;
2259 
2260 	/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2261 	ptype[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2262 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2263 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2264 		     RTE_PTYPE_INNER_L4_FRAG;
2265 	ptype[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2266 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2267 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2268 		     RTE_PTYPE_INNER_L4_NONFRAG;
2269 	ptype[135] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2270 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2271 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2272 		     RTE_PTYPE_INNER_L4_UDP;
2273 	ptype[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2274 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2275 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2276 		     RTE_PTYPE_INNER_L4_TCP;
2277 	ptype[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2278 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2279 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2280 		     RTE_PTYPE_INNER_L4_SCTP;
2281 	/* The next ptype's inner L4 is IGMP */
2282 	ptype[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2283 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2284 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
2285 	ptype[139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2286 		     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2287 		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2288 		     RTE_PTYPE_INNER_L4_ICMP;
2289 }
2290 
2291 void
2292 hns3_init_rx_ptype_tble(struct rte_eth_dev *dev)
2293 {
2294 	struct hns3_adapter *hns = dev->data->dev_private;
2295 	struct hns3_ptype_table *tbl = &hns->ptype_tbl;
2296 
2297 	memset(tbl, 0, sizeof(*tbl));
2298 
2299 	hns3_init_non_tunnel_ptype_tbl(tbl);
2300 	hns3_init_tunnel_ptype_tbl(tbl);
2301 	hns3_init_adv_layout_ptype(tbl);
2302 }
2303 
2304 static inline void
2305 hns3_rxd_to_vlan_tci(struct hns3_rx_queue *rxq, struct rte_mbuf *mb,
2306 		     uint32_t l234_info, const struct hns3_desc *rxd)
2307 {
2308 #define HNS3_STRP_STATUS_NUM		0x4
2309 
2310 #define HNS3_NO_STRP_VLAN_VLD		0x0
2311 #define HNS3_INNER_STRP_VLAN_VLD	0x1
2312 #define HNS3_OUTER_STRP_VLAN_VLD	0x2
2313 	uint32_t strip_status;
2314 	uint32_t report_mode;
2315 
2316 	/*
2317 	 * Since HW limitation, the vlan tag will always be inserted into RX
2318 	 * descriptor when strip the tag from packet, driver needs to determine
2319 	 * reporting which tag to mbuf according to the PVID configuration
2320 	 * and vlan striped status.
2321 	 */
2322 	static const uint32_t report_type[][HNS3_STRP_STATUS_NUM] = {
2323 		{
2324 			HNS3_NO_STRP_VLAN_VLD,
2325 			HNS3_OUTER_STRP_VLAN_VLD,
2326 			HNS3_INNER_STRP_VLAN_VLD,
2327 			HNS3_OUTER_STRP_VLAN_VLD
2328 		},
2329 		{
2330 			HNS3_NO_STRP_VLAN_VLD,
2331 			HNS3_NO_STRP_VLAN_VLD,
2332 			HNS3_NO_STRP_VLAN_VLD,
2333 			HNS3_INNER_STRP_VLAN_VLD
2334 		}
2335 	};
2336 	strip_status = hns3_get_field(l234_info, HNS3_RXD_STRP_TAGP_M,
2337 				      HNS3_RXD_STRP_TAGP_S);
2338 	report_mode = report_type[rxq->pvid_sw_discard_en][strip_status];
2339 	switch (report_mode) {
2340 	case HNS3_NO_STRP_VLAN_VLD:
2341 		mb->vlan_tci = 0;
2342 		return;
2343 	case HNS3_INNER_STRP_VLAN_VLD:
2344 		mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
2345 		mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.vlan_tag);
2346 		return;
2347 	case HNS3_OUTER_STRP_VLAN_VLD:
2348 		mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
2349 		mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.ot_vlan_tag);
2350 		return;
2351 	default:
2352 		mb->vlan_tci = 0;
2353 		return;
2354 	}
2355 }
2356 
2357 static inline void
2358 recalculate_data_len(struct rte_mbuf *first_seg, struct rte_mbuf *last_seg,
2359 		    struct rte_mbuf *rxm, struct hns3_rx_queue *rxq,
2360 		    uint16_t data_len)
2361 {
2362 	uint8_t crc_len = rxq->crc_len;
2363 
2364 	if (data_len <= crc_len) {
2365 		rte_pktmbuf_free_seg(rxm);
2366 		first_seg->nb_segs--;
2367 		last_seg->data_len = (uint16_t)(last_seg->data_len -
2368 			(crc_len - data_len));
2369 		last_seg->next = NULL;
2370 	} else
2371 		rxm->data_len = (uint16_t)(data_len - crc_len);
2372 }
2373 
2374 static inline struct rte_mbuf *
2375 hns3_rx_alloc_buffer(struct hns3_rx_queue *rxq)
2376 {
2377 	int ret;
2378 
2379 	if (likely(rxq->bulk_mbuf_num > 0))
2380 		return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
2381 
2382 	ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)rxq->bulk_mbuf,
2383 				   HNS3_BULK_ALLOC_MBUF_NUM);
2384 	if (likely(ret == 0)) {
2385 		rxq->bulk_mbuf_num = HNS3_BULK_ALLOC_MBUF_NUM;
2386 		return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
2387 	} else
2388 		return rte_mbuf_raw_alloc(rxq->mb_pool);
2389 }
2390 
2391 static inline void
2392 hns3_rx_ptp_timestamp_handle(struct hns3_rx_queue *rxq, struct rte_mbuf *mbuf,
2393 		  volatile struct hns3_desc *rxd)
2394 {
2395 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(rxq->hns);
2396 	uint64_t timestamp = rte_le_to_cpu_64(rxd->timestamp);
2397 
2398 	mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
2399 	if (hns3_timestamp_rx_dynflag > 0) {
2400 		*RTE_MBUF_DYNFIELD(mbuf, hns3_timestamp_dynfield_offset,
2401 			rte_mbuf_timestamp_t *) = timestamp;
2402 		mbuf->ol_flags |= hns3_timestamp_rx_dynflag;
2403 	}
2404 
2405 	pf->rx_timestamp = timestamp;
2406 }
2407 
2408 uint16_t
2409 hns3_recv_pkts_simple(void *rx_queue,
2410 		      struct rte_mbuf **rx_pkts,
2411 		      uint16_t nb_pkts)
2412 {
2413 	volatile struct hns3_desc *rx_ring;  /* RX ring (desc) */
2414 	volatile struct hns3_desc *rxdp;     /* pointer of the current desc */
2415 	struct hns3_rx_queue *rxq;      /* RX queue */
2416 	struct hns3_entry *sw_ring;
2417 	struct hns3_entry *rxe;
2418 	struct hns3_desc rxd;
2419 	struct rte_mbuf *nmb;           /* pointer of the new mbuf */
2420 	struct rte_mbuf *rxm;
2421 	uint32_t bd_base_info;
2422 	uint32_t l234_info;
2423 	uint32_t ol_info;
2424 	uint64_t dma_addr;
2425 	uint16_t nb_rx_bd;
2426 	uint16_t nb_rx;
2427 	uint16_t rx_id;
2428 	int ret;
2429 
2430 	nb_rx = 0;
2431 	nb_rx_bd = 0;
2432 	rxq = rx_queue;
2433 	rx_ring = rxq->rx_ring;
2434 	sw_ring = rxq->sw_ring;
2435 	rx_id = rxq->next_to_use;
2436 
2437 	while (nb_rx < nb_pkts) {
2438 		rxdp = &rx_ring[rx_id];
2439 		bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
2440 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2441 			break;
2442 
2443 		rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
2444 			   (1u << HNS3_RXD_VLD_B)];
2445 
2446 		nmb = hns3_rx_alloc_buffer(rxq);
2447 		if (unlikely(nmb == NULL)) {
2448 			uint16_t port_id;
2449 
2450 			port_id = rxq->port_id;
2451 			rte_eth_devices[port_id].data->rx_mbuf_alloc_failed++;
2452 			break;
2453 		}
2454 
2455 		nb_rx_bd++;
2456 		rxe = &sw_ring[rx_id];
2457 		rx_id++;
2458 		if (unlikely(rx_id == rxq->nb_rx_desc))
2459 			rx_id = 0;
2460 
2461 		rte_prefetch0(sw_ring[rx_id].mbuf);
2462 		if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
2463 			rte_prefetch0(&rx_ring[rx_id]);
2464 			rte_prefetch0(&sw_ring[rx_id]);
2465 		}
2466 
2467 		rxm = rxe->mbuf;
2468 		rxm->ol_flags = 0;
2469 		rxe->mbuf = nmb;
2470 
2471 		if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B)))
2472 			hns3_rx_ptp_timestamp_handle(rxq, rxm, rxdp);
2473 
2474 		dma_addr = rte_mbuf_data_iova_default(nmb);
2475 		rxdp->addr = rte_cpu_to_le_64(dma_addr);
2476 		rxdp->rx.bd_base_info = 0;
2477 
2478 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
2479 		rxm->pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.rx.pkt_len)) -
2480 				rxq->crc_len;
2481 		rxm->data_len = rxm->pkt_len;
2482 		rxm->port = rxq->port_id;
2483 		rxm->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
2484 		rxm->ol_flags |= PKT_RX_RSS_HASH;
2485 		if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
2486 			rxm->hash.fdir.hi =
2487 				rte_le_to_cpu_16(rxd.rx.fd_id);
2488 			rxm->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
2489 		}
2490 		rxm->nb_segs = 1;
2491 		rxm->next = NULL;
2492 
2493 		/* Load remained descriptor data and extract necessary fields */
2494 		l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
2495 		ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
2496 		ret = hns3_handle_bdinfo(rxq, rxm, bd_base_info, l234_info);
2497 		if (unlikely(ret))
2498 			goto pkt_err;
2499 
2500 		rxm->packet_type = hns3_rx_calc_ptype(rxq, l234_info, ol_info);
2501 
2502 		if (rxm->packet_type == RTE_PTYPE_L2_ETHER_TIMESYNC)
2503 			rxm->ol_flags |= PKT_RX_IEEE1588_PTP;
2504 
2505 		hns3_rxd_to_vlan_tci(rxq, rxm, l234_info, &rxd);
2506 
2507 		/* Increment bytes counter  */
2508 		rxq->basic_stats.bytes += rxm->pkt_len;
2509 
2510 		rx_pkts[nb_rx++] = rxm;
2511 		continue;
2512 pkt_err:
2513 		rte_pktmbuf_free(rxm);
2514 	}
2515 
2516 	rxq->next_to_use = rx_id;
2517 	rxq->rx_free_hold += nb_rx_bd;
2518 	if (rxq->rx_free_hold > rxq->rx_free_thresh) {
2519 		hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
2520 		rxq->rx_free_hold = 0;
2521 	}
2522 
2523 	return nb_rx;
2524 }
2525 
2526 uint16_t
2527 hns3_recv_scattered_pkts(void *rx_queue,
2528 			 struct rte_mbuf **rx_pkts,
2529 			 uint16_t nb_pkts)
2530 {
2531 	volatile struct hns3_desc *rx_ring;  /* RX ring (desc) */
2532 	volatile struct hns3_desc *rxdp;     /* pointer of the current desc */
2533 	struct hns3_rx_queue *rxq;      /* RX queue */
2534 	struct hns3_entry *sw_ring;
2535 	struct hns3_entry *rxe;
2536 	struct rte_mbuf *first_seg;
2537 	struct rte_mbuf *last_seg;
2538 	struct hns3_desc rxd;
2539 	struct rte_mbuf *nmb;           /* pointer of the new mbuf */
2540 	struct rte_mbuf *rxm;
2541 	struct rte_eth_dev *dev;
2542 	uint32_t bd_base_info;
2543 	uint32_t l234_info;
2544 	uint32_t gro_size;
2545 	uint32_t ol_info;
2546 	uint64_t dma_addr;
2547 	uint16_t nb_rx_bd;
2548 	uint16_t nb_rx;
2549 	uint16_t rx_id;
2550 	int ret;
2551 
2552 	nb_rx = 0;
2553 	nb_rx_bd = 0;
2554 	rxq = rx_queue;
2555 
2556 	rx_id = rxq->next_to_use;
2557 	rx_ring = rxq->rx_ring;
2558 	sw_ring = rxq->sw_ring;
2559 	first_seg = rxq->pkt_first_seg;
2560 	last_seg = rxq->pkt_last_seg;
2561 
2562 	while (nb_rx < nb_pkts) {
2563 		rxdp = &rx_ring[rx_id];
2564 		bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
2565 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2566 			break;
2567 
2568 		/*
2569 		 * The interactive process between software and hardware of
2570 		 * receiving a new packet in hns3 network engine:
2571 		 * 1. Hardware network engine firstly writes the packet content
2572 		 *    to the memory pointed by the 'addr' field of the Rx Buffer
2573 		 *    Descriptor, secondly fills the result of parsing the
2574 		 *    packet include the valid field into the Rx Buffer
2575 		 *    Descriptor in one write operation.
2576 		 * 2. Driver reads the Rx BD's valid field in the loop to check
2577 		 *    whether it's valid, if valid then assign a new address to
2578 		 *    the addr field, clear the valid field, get the other
2579 		 *    information of the packet by parsing Rx BD's other fields,
2580 		 *    finally write back the number of Rx BDs processed by the
2581 		 *    driver to the HNS3_RING_RX_HEAD_REG register to inform
2582 		 *    hardware.
2583 		 * In the above process, the ordering is very important. We must
2584 		 * make sure that CPU read Rx BD's other fields only after the
2585 		 * Rx BD is valid.
2586 		 *
2587 		 * There are two type of re-ordering: compiler re-ordering and
2588 		 * CPU re-ordering under the ARMv8 architecture.
2589 		 * 1. we use volatile to deal with compiler re-ordering, so you
2590 		 *    can see that rx_ring/rxdp defined with volatile.
2591 		 * 2. we commonly use memory barrier to deal with CPU
2592 		 *    re-ordering, but the cost is high.
2593 		 *
2594 		 * In order to solve the high cost of using memory barrier, we
2595 		 * use the data dependency order under the ARMv8 architecture,
2596 		 * for example:
2597 		 *      instr01: load A
2598 		 *      instr02: load B <- A
2599 		 * the instr02 will always execute after instr01.
2600 		 *
2601 		 * To construct the data dependency ordering, we use the
2602 		 * following assignment:
2603 		 *      rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
2604 		 *                 (1u<<HNS3_RXD_VLD_B)]
2605 		 * Using gcc compiler under the ARMv8 architecture, the related
2606 		 * assembly code example as follows:
2607 		 * note: (1u << HNS3_RXD_VLD_B) equal 0x10
2608 		 *      instr01: ldr w26, [x22, #28]  --read bd_base_info
2609 		 *      instr02: and w0, w26, #0x10   --calc bd_base_info & 0x10
2610 		 *      instr03: sub w0, w0, #0x10    --calc (bd_base_info &
2611 		 *                                            0x10) - 0x10
2612 		 *      instr04: add x0, x22, x0, lsl #5 --calc copy source addr
2613 		 *      instr05: ldp x2, x3, [x0]
2614 		 *      instr06: stp x2, x3, [x29, #256] --copy BD's [0 ~ 15]B
2615 		 *      instr07: ldp x4, x5, [x0, #16]
2616 		 *      instr08: stp x4, x5, [x29, #272] --copy BD's [16 ~ 31]B
2617 		 * the instr05~08 depend on x0's value, x0 depent on w26's
2618 		 * value, the w26 is the bd_base_info, this form the data
2619 		 * dependency ordering.
2620 		 * note: if BD is valid, (bd_base_info & (1u<<HNS3_RXD_VLD_B)) -
2621 		 *       (1u<<HNS3_RXD_VLD_B) will always zero, so the
2622 		 *       assignment is correct.
2623 		 *
2624 		 * So we use the data dependency ordering instead of memory
2625 		 * barrier to improve receive performance.
2626 		 */
2627 		rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
2628 			   (1u << HNS3_RXD_VLD_B)];
2629 
2630 		nmb = hns3_rx_alloc_buffer(rxq);
2631 		if (unlikely(nmb == NULL)) {
2632 			dev = &rte_eth_devices[rxq->port_id];
2633 			dev->data->rx_mbuf_alloc_failed++;
2634 			break;
2635 		}
2636 
2637 		nb_rx_bd++;
2638 		rxe = &sw_ring[rx_id];
2639 		rx_id++;
2640 		if (unlikely(rx_id == rxq->nb_rx_desc))
2641 			rx_id = 0;
2642 
2643 		rte_prefetch0(sw_ring[rx_id].mbuf);
2644 		if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
2645 			rte_prefetch0(&rx_ring[rx_id]);
2646 			rte_prefetch0(&sw_ring[rx_id]);
2647 		}
2648 
2649 		rxm = rxe->mbuf;
2650 		rxe->mbuf = nmb;
2651 
2652 		dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2653 		rxdp->rx.bd_base_info = 0;
2654 		rxdp->addr = dma_addr;
2655 
2656 		if (first_seg == NULL) {
2657 			first_seg = rxm;
2658 			first_seg->nb_segs = 1;
2659 		} else {
2660 			first_seg->nb_segs++;
2661 			last_seg->next = rxm;
2662 		}
2663 
2664 		rxm->data_off = RTE_PKTMBUF_HEADROOM;
2665 		rxm->data_len = rte_le_to_cpu_16(rxd.rx.size);
2666 
2667 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2668 			last_seg = rxm;
2669 			rxm->next = NULL;
2670 			continue;
2671 		}
2672 
2673 		if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B)))
2674 			hns3_rx_ptp_timestamp_handle(rxq, first_seg, rxdp);
2675 
2676 		/*
2677 		 * The last buffer of the received packet. packet len from
2678 		 * buffer description may contains CRC len, packet len should
2679 		 * subtract it, same as data len.
2680 		 */
2681 		first_seg->pkt_len = rte_le_to_cpu_16(rxd.rx.pkt_len);
2682 
2683 		/*
2684 		 * This is the last buffer of the received packet. If the CRC
2685 		 * is not stripped by the hardware:
2686 		 *  - Subtract the CRC length from the total packet length.
2687 		 *  - If the last buffer only contains the whole CRC or a part
2688 		 *  of it, free the mbuf associated to the last buffer. If part
2689 		 *  of the CRC is also contained in the previous mbuf, subtract
2690 		 *  the length of that CRC part from the data length of the
2691 		 *  previous mbuf.
2692 		 */
2693 		rxm->next = NULL;
2694 		if (unlikely(rxq->crc_len > 0)) {
2695 			first_seg->pkt_len -= rxq->crc_len;
2696 			recalculate_data_len(first_seg, last_seg, rxm, rxq,
2697 				rxm->data_len);
2698 		}
2699 
2700 		first_seg->port = rxq->port_id;
2701 		first_seg->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
2702 		first_seg->ol_flags = PKT_RX_RSS_HASH;
2703 		if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
2704 			first_seg->hash.fdir.hi =
2705 				rte_le_to_cpu_16(rxd.rx.fd_id);
2706 			first_seg->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
2707 		}
2708 
2709 		gro_size = hns3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M,
2710 					  HNS3_RXD_GRO_SIZE_S);
2711 		if (gro_size != 0) {
2712 			first_seg->ol_flags |= PKT_RX_LRO;
2713 			first_seg->tso_segsz = gro_size;
2714 		}
2715 
2716 		l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
2717 		ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
2718 		ret = hns3_handle_bdinfo(rxq, first_seg, bd_base_info,
2719 					 l234_info);
2720 		if (unlikely(ret))
2721 			goto pkt_err;
2722 
2723 		first_seg->packet_type = hns3_rx_calc_ptype(rxq,
2724 						l234_info, ol_info);
2725 
2726 		if (first_seg->packet_type == RTE_PTYPE_L2_ETHER_TIMESYNC)
2727 			rxm->ol_flags |= PKT_RX_IEEE1588_PTP;
2728 
2729 		hns3_rxd_to_vlan_tci(rxq, first_seg, l234_info, &rxd);
2730 
2731 		/* Increment bytes counter */
2732 		rxq->basic_stats.bytes += first_seg->pkt_len;
2733 
2734 		rx_pkts[nb_rx++] = first_seg;
2735 		first_seg = NULL;
2736 		continue;
2737 pkt_err:
2738 		rte_pktmbuf_free(first_seg);
2739 		first_seg = NULL;
2740 	}
2741 
2742 	rxq->next_to_use = rx_id;
2743 	rxq->pkt_first_seg = first_seg;
2744 	rxq->pkt_last_seg = last_seg;
2745 
2746 	rxq->rx_free_hold += nb_rx_bd;
2747 	if (rxq->rx_free_hold > rxq->rx_free_thresh) {
2748 		hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
2749 		rxq->rx_free_hold = 0;
2750 	}
2751 
2752 	return nb_rx;
2753 }
2754 
2755 void __rte_weak
2756 hns3_rxq_vec_setup(__rte_unused struct hns3_rx_queue *rxq)
2757 {
2758 }
2759 
2760 int __rte_weak
2761 hns3_rx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
2762 {
2763 	return -ENOTSUP;
2764 }
2765 
2766 uint16_t __rte_weak
2767 hns3_recv_pkts_vec(__rte_unused void *tx_queue,
2768 		   __rte_unused struct rte_mbuf **rx_pkts,
2769 		   __rte_unused uint16_t nb_pkts)
2770 {
2771 	return 0;
2772 }
2773 
2774 uint16_t __rte_weak
2775 hns3_recv_pkts_vec_sve(__rte_unused void *tx_queue,
2776 		       __rte_unused struct rte_mbuf **rx_pkts,
2777 		       __rte_unused uint16_t nb_pkts)
2778 {
2779 	return 0;
2780 }
2781 
2782 int
2783 hns3_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2784 		       struct rte_eth_burst_mode *mode)
2785 {
2786 	static const struct {
2787 		eth_rx_burst_t pkt_burst;
2788 		const char *info;
2789 	} burst_infos[] = {
2790 		{ hns3_recv_pkts_simple,	"Scalar Simple" },
2791 		{ hns3_recv_scattered_pkts,	"Scalar Scattered" },
2792 		{ hns3_recv_pkts_vec,		"Vector Neon"   },
2793 		{ hns3_recv_pkts_vec_sve,	"Vector Sve"    },
2794 	};
2795 
2796 	eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
2797 	int ret = -EINVAL;
2798 	unsigned int i;
2799 
2800 	for (i = 0; i < RTE_DIM(burst_infos); i++) {
2801 		if (pkt_burst == burst_infos[i].pkt_burst) {
2802 			snprintf(mode->info, sizeof(mode->info), "%s",
2803 				 burst_infos[i].info);
2804 			ret = 0;
2805 			break;
2806 		}
2807 	}
2808 
2809 	return ret;
2810 }
2811 
2812 static bool
2813 hns3_get_default_vec_support(void)
2814 {
2815 #if defined(RTE_ARCH_ARM64)
2816 	if (rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_128)
2817 		return false;
2818 	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON))
2819 		return true;
2820 #endif
2821 	return false;
2822 }
2823 
2824 static bool
2825 hns3_get_sve_support(void)
2826 {
2827 #if defined(RTE_HAS_SVE_ACLE)
2828 	if (rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_256)
2829 		return false;
2830 	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SVE))
2831 		return true;
2832 #endif
2833 	return false;
2834 }
2835 
2836 static eth_rx_burst_t
2837 hns3_get_rx_function(struct rte_eth_dev *dev)
2838 {
2839 	struct hns3_adapter *hns = dev->data->dev_private;
2840 	uint64_t offloads = dev->data->dev_conf.rxmode.offloads;
2841 	bool vec_allowed, sve_allowed, simple_allowed;
2842 	bool vec_support;
2843 
2844 	vec_support = hns3_rx_check_vec_support(dev) == 0;
2845 	vec_allowed = vec_support && hns3_get_default_vec_support();
2846 	sve_allowed = vec_support && hns3_get_sve_support();
2847 	simple_allowed = !dev->data->scattered_rx &&
2848 			 (offloads & DEV_RX_OFFLOAD_TCP_LRO) == 0;
2849 
2850 	if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_VEC && vec_allowed)
2851 		return hns3_recv_pkts_vec;
2852 	if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_SVE && sve_allowed)
2853 		return hns3_recv_pkts_vec_sve;
2854 	if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_SIMPLE && simple_allowed)
2855 		return hns3_recv_pkts_simple;
2856 	if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_COMMON)
2857 		return hns3_recv_scattered_pkts;
2858 
2859 	if (vec_allowed)
2860 		return hns3_recv_pkts_vec;
2861 	if (simple_allowed)
2862 		return hns3_recv_pkts_simple;
2863 
2864 	return hns3_recv_scattered_pkts;
2865 }
2866 
2867 static int
2868 hns3_tx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_txconf *conf,
2869 			 uint16_t nb_desc, uint16_t *tx_rs_thresh,
2870 			 uint16_t *tx_free_thresh, uint16_t idx)
2871 {
2872 #define HNS3_TX_RS_FREE_THRESH_GAP	8
2873 	uint16_t rs_thresh, free_thresh, fast_free_thresh;
2874 
2875 	if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
2876 	    nb_desc % HNS3_ALIGN_RING_DESC) {
2877 		hns3_err(hw, "number (%u) of tx descriptors is invalid",
2878 			 nb_desc);
2879 		return -EINVAL;
2880 	}
2881 
2882 	rs_thresh = (conf->tx_rs_thresh > 0) ?
2883 			conf->tx_rs_thresh : HNS3_DEFAULT_TX_RS_THRESH;
2884 	free_thresh = (conf->tx_free_thresh > 0) ?
2885 			conf->tx_free_thresh : HNS3_DEFAULT_TX_FREE_THRESH;
2886 	if (rs_thresh + free_thresh > nb_desc || nb_desc % rs_thresh ||
2887 	    rs_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP ||
2888 	    free_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP) {
2889 		hns3_err(hw, "tx_rs_thresh (%u) tx_free_thresh (%u) nb_desc "
2890 			 "(%u) of tx descriptors for port=%u queue=%u check "
2891 			 "fail!",
2892 			 rs_thresh, free_thresh, nb_desc, hw->data->port_id,
2893 			 idx);
2894 		return -EINVAL;
2895 	}
2896 
2897 	if (conf->tx_free_thresh == 0) {
2898 		/* Fast free Tx memory buffer to improve cache hit rate */
2899 		fast_free_thresh = nb_desc - rs_thresh;
2900 		if (fast_free_thresh >=
2901 		    HNS3_TX_FAST_FREE_AHEAD + HNS3_DEFAULT_TX_FREE_THRESH)
2902 			free_thresh = fast_free_thresh -
2903 					HNS3_TX_FAST_FREE_AHEAD;
2904 	}
2905 
2906 	*tx_rs_thresh = rs_thresh;
2907 	*tx_free_thresh = free_thresh;
2908 	return 0;
2909 }
2910 
2911 static void *
2912 hns3_tx_push_get_queue_tail_reg(struct rte_eth_dev *dev, uint16_t queue_id)
2913 {
2914 #define HNS3_TX_PUSH_TQP_REGION_SIZE		0x10000
2915 #define HNS3_TX_PUSH_QUICK_DOORBELL_OFFSET	64
2916 #define HNS3_TX_PUSH_PCI_BAR_INDEX		4
2917 
2918 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
2919 	uint8_t bar_id = HNS3_TX_PUSH_PCI_BAR_INDEX;
2920 
2921 	/*
2922 	 * If device support Tx push then its PCIe bar45 must exist, and DPDK
2923 	 * framework will mmap the bar45 default in PCI probe stage.
2924 	 *
2925 	 * In the bar45, the first half is for RoCE (RDMA over Converged
2926 	 * Ethernet), and the second half is for NIC, every TQP occupy 64KB.
2927 	 *
2928 	 * The quick doorbell located at 64B offset in the TQP region.
2929 	 */
2930 	return (char *)pci_dev->mem_resource[bar_id].addr +
2931 			(pci_dev->mem_resource[bar_id].len >> 1) +
2932 			HNS3_TX_PUSH_TQP_REGION_SIZE * queue_id +
2933 			HNS3_TX_PUSH_QUICK_DOORBELL_OFFSET;
2934 }
2935 
2936 void
2937 hns3_tx_push_init(struct rte_eth_dev *dev)
2938 {
2939 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2940 	volatile uint32_t *reg;
2941 	uint32_t val;
2942 
2943 	if (!hns3_dev_get_support(hw, TX_PUSH))
2944 		return;
2945 
2946 	reg = (volatile uint32_t *)hns3_tx_push_get_queue_tail_reg(dev, 0);
2947 	/*
2948 	 * Because the size of bar45 is about 8GB size, it may take a long time
2949 	 * to do the page fault in Tx process when work with vfio-pci, so use
2950 	 * one read operation to make kernel setup page table mapping for bar45
2951 	 * in the init stage.
2952 	 * Note: the bar45 is readable but the result is all 1.
2953 	 */
2954 	val = *reg;
2955 	RTE_SET_USED(val);
2956 }
2957 
2958 static void
2959 hns3_tx_push_queue_init(struct rte_eth_dev *dev,
2960 			uint16_t queue_id,
2961 			struct hns3_tx_queue *txq)
2962 {
2963 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2964 	if (!hns3_dev_get_support(hw, TX_PUSH)) {
2965 		txq->tx_push_enable = false;
2966 		return;
2967 	}
2968 
2969 	txq->io_tail_reg = (volatile void *)hns3_tx_push_get_queue_tail_reg(dev,
2970 						queue_id);
2971 	txq->tx_push_enable = true;
2972 }
2973 
2974 int
2975 hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
2976 		    unsigned int socket_id, const struct rte_eth_txconf *conf)
2977 {
2978 	struct hns3_adapter *hns = dev->data->dev_private;
2979 	uint16_t tx_rs_thresh, tx_free_thresh;
2980 	struct hns3_hw *hw = &hns->hw;
2981 	struct hns3_queue_info q_info;
2982 	struct hns3_tx_queue *txq;
2983 	int tx_entry_len;
2984 	int ret;
2985 
2986 	ret = hns3_tx_queue_conf_check(hw, conf, nb_desc,
2987 				       &tx_rs_thresh, &tx_free_thresh, idx);
2988 	if (ret)
2989 		return ret;
2990 
2991 	if (dev->data->tx_queues[idx] != NULL) {
2992 		hns3_tx_queue_release(dev->data->tx_queues[idx]);
2993 		dev->data->tx_queues[idx] = NULL;
2994 	}
2995 
2996 	q_info.idx = idx;
2997 	q_info.socket_id = socket_id;
2998 	q_info.nb_desc = nb_desc;
2999 	q_info.type = "hns3 TX queue";
3000 	q_info.ring_name = "tx_ring";
3001 	txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
3002 	if (txq == NULL) {
3003 		hns3_err(hw,
3004 			 "Failed to alloc mem and reserve DMA mem for tx ring!");
3005 		return -ENOMEM;
3006 	}
3007 
3008 	txq->tx_deferred_start = conf->tx_deferred_start;
3009 	if (txq->tx_deferred_start && !hns3_dev_get_support(hw, INDEP_TXRX)) {
3010 		hns3_warn(hw, "deferred start is not supported.");
3011 		txq->tx_deferred_start = false;
3012 	}
3013 
3014 	tx_entry_len = sizeof(struct hns3_entry) * txq->nb_tx_desc;
3015 	txq->sw_ring = rte_zmalloc_socket("hns3 TX sw ring", tx_entry_len,
3016 					  RTE_CACHE_LINE_SIZE, socket_id);
3017 	if (txq->sw_ring == NULL) {
3018 		hns3_err(hw, "Failed to allocate memory for tx sw ring!");
3019 		hns3_tx_queue_release(txq);
3020 		return -ENOMEM;
3021 	}
3022 
3023 	txq->hns = hns;
3024 	txq->next_to_use = 0;
3025 	txq->next_to_clean = 0;
3026 	txq->tx_bd_ready = txq->nb_tx_desc - 1;
3027 	txq->tx_free_thresh = tx_free_thresh;
3028 	txq->tx_rs_thresh = tx_rs_thresh;
3029 	txq->free = rte_zmalloc_socket("hns3 TX mbuf free array",
3030 				sizeof(struct rte_mbuf *) * txq->tx_rs_thresh,
3031 				RTE_CACHE_LINE_SIZE, socket_id);
3032 	if (!txq->free) {
3033 		hns3_err(hw, "failed to allocate tx mbuf free array!");
3034 		hns3_tx_queue_release(txq);
3035 		return -ENOMEM;
3036 	}
3037 
3038 	txq->port_id = dev->data->port_id;
3039 	/*
3040 	 * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE,
3041 	 * the pvid_sw_shift_en in the queue struct should not be changed,
3042 	 * because PVID-related operations do not need to be processed by PMD
3043 	 * driver. For hns3 VF device, whether it needs to process PVID depends
3044 	 * on the configuration of PF kernel mode netdev driver. And the
3045 	 * related PF configuration is delivered through the mailbox and finally
3046 	 * reflectd in port_base_vlan_cfg.
3047 	 */
3048 	if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
3049 		txq->pvid_sw_shift_en = hw->port_base_vlan_cfg.state ==
3050 					HNS3_PORT_BASE_VLAN_ENABLE;
3051 	else
3052 		txq->pvid_sw_shift_en = false;
3053 	txq->max_non_tso_bd_num = hw->max_non_tso_bd_num;
3054 	txq->configured = true;
3055 	txq->io_base = (void *)((char *)hw->io_base +
3056 						hns3_get_tqp_reg_offset(idx));
3057 	txq->io_tail_reg = (volatile void *)((char *)txq->io_base +
3058 					     HNS3_RING_TX_TAIL_REG);
3059 	txq->min_tx_pkt_len = hw->min_tx_pkt_len;
3060 	txq->tso_mode = hw->tso_mode;
3061 	txq->udp_cksum_mode = hw->udp_cksum_mode;
3062 	memset(&txq->basic_stats, 0, sizeof(struct hns3_tx_basic_stats));
3063 	memset(&txq->dfx_stats, 0, sizeof(struct hns3_tx_dfx_stats));
3064 
3065 	/*
3066 	 * Call hns3_tx_push_queue_init after assigned io_tail_reg field because
3067 	 * it may overwrite the io_tail_reg field.
3068 	 */
3069 	hns3_tx_push_queue_init(dev, idx, txq);
3070 
3071 	rte_spinlock_lock(&hw->lock);
3072 	dev->data->tx_queues[idx] = txq;
3073 	rte_spinlock_unlock(&hw->lock);
3074 
3075 	return 0;
3076 }
3077 
3078 static void
3079 hns3_tx_free_useless_buffer(struct hns3_tx_queue *txq)
3080 {
3081 	uint16_t tx_next_clean = txq->next_to_clean;
3082 	uint16_t tx_next_use   = txq->next_to_use;
3083 	uint16_t tx_bd_ready   = txq->tx_bd_ready;
3084 	uint16_t tx_bd_max     = txq->nb_tx_desc;
3085 	struct hns3_entry *tx_bak_pkt = &txq->sw_ring[tx_next_clean];
3086 	struct hns3_desc *desc = &txq->tx_ring[tx_next_clean];
3087 	struct rte_mbuf *mbuf;
3088 
3089 	while ((!(desc->tx.tp_fe_sc_vld_ra_ri &
3090 		rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))) &&
3091 		tx_next_use != tx_next_clean) {
3092 		mbuf = tx_bak_pkt->mbuf;
3093 		if (mbuf) {
3094 			rte_pktmbuf_free_seg(mbuf);
3095 			tx_bak_pkt->mbuf = NULL;
3096 		}
3097 
3098 		desc++;
3099 		tx_bak_pkt++;
3100 		tx_next_clean++;
3101 		tx_bd_ready++;
3102 
3103 		if (tx_next_clean >= tx_bd_max) {
3104 			tx_next_clean = 0;
3105 			desc = txq->tx_ring;
3106 			tx_bak_pkt = txq->sw_ring;
3107 		}
3108 	}
3109 
3110 	txq->next_to_clean = tx_next_clean;
3111 	txq->tx_bd_ready   = tx_bd_ready;
3112 }
3113 
3114 int
3115 hns3_config_gro(struct hns3_hw *hw, bool en)
3116 {
3117 	struct hns3_cfg_gro_status_cmd *req;
3118 	struct hns3_cmd_desc desc;
3119 	int ret;
3120 
3121 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false);
3122 	req = (struct hns3_cfg_gro_status_cmd *)desc.data;
3123 
3124 	req->gro_en = rte_cpu_to_le_16(en ? 1 : 0);
3125 
3126 	ret = hns3_cmd_send(hw, &desc, 1);
3127 	if (ret)
3128 		hns3_err(hw, "%s hardware GRO failed, ret = %d",
3129 			 en ? "enable" : "disable", ret);
3130 
3131 	return ret;
3132 }
3133 
3134 int
3135 hns3_restore_gro_conf(struct hns3_hw *hw)
3136 {
3137 	uint64_t offloads;
3138 	bool gro_en;
3139 	int ret;
3140 
3141 	offloads = hw->data->dev_conf.rxmode.offloads;
3142 	gro_en = offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
3143 	ret = hns3_config_gro(hw, gro_en);
3144 	if (ret)
3145 		hns3_err(hw, "restore hardware GRO to %s failed, ret = %d",
3146 			 gro_en ? "enabled" : "disabled", ret);
3147 
3148 	return ret;
3149 }
3150 
3151 static inline bool
3152 hns3_pkt_is_tso(struct rte_mbuf *m)
3153 {
3154 	return (m->tso_segsz != 0 && m->ol_flags & PKT_TX_TCP_SEG);
3155 }
3156 
3157 static void
3158 hns3_set_tso(struct hns3_desc *desc, uint32_t paylen, struct rte_mbuf *rxm)
3159 {
3160 	if (!hns3_pkt_is_tso(rxm))
3161 		return;
3162 
3163 	if (paylen <= rxm->tso_segsz)
3164 		return;
3165 
3166 	desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(BIT(HNS3_TXD_TSO_B));
3167 	desc->tx.mss = rte_cpu_to_le_16(rxm->tso_segsz);
3168 }
3169 
3170 static inline void
3171 hns3_fill_per_desc(struct hns3_desc *desc, struct rte_mbuf *rxm)
3172 {
3173 	desc->addr = rte_mbuf_data_iova(rxm);
3174 	desc->tx.send_size = rte_cpu_to_le_16(rte_pktmbuf_data_len(rxm));
3175 	desc->tx.tp_fe_sc_vld_ra_ri |= rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B));
3176 }
3177 
3178 static void
3179 hns3_fill_first_desc(struct hns3_tx_queue *txq, struct hns3_desc *desc,
3180 		     struct rte_mbuf *rxm)
3181 {
3182 	uint64_t ol_flags = rxm->ol_flags;
3183 	uint32_t hdr_len;
3184 	uint32_t paylen;
3185 
3186 	hdr_len = rxm->l2_len + rxm->l3_len + rxm->l4_len;
3187 	hdr_len += (ol_flags & PKT_TX_TUNNEL_MASK) ?
3188 			   rxm->outer_l2_len + rxm->outer_l3_len : 0;
3189 	paylen = rxm->pkt_len - hdr_len;
3190 	desc->tx.paylen_fd_dop_ol4cs |= rte_cpu_to_le_32(paylen);
3191 	hns3_set_tso(desc, paylen, rxm);
3192 
3193 	/*
3194 	 * Currently, hardware doesn't support more than two layers VLAN offload
3195 	 * in Tx direction based on hns3 network engine. So when the number of
3196 	 * VLANs in the packets represented by rxm plus the number of VLAN
3197 	 * offload by hardware such as PVID etc, exceeds two, the packets will
3198 	 * be discarded or the original VLAN of the packets will be overwitted
3199 	 * by hardware. When the PF PVID is enabled by calling the API function
3200 	 * named rte_eth_dev_set_vlan_pvid or the VF PVID is enabled by the hns3
3201 	 * PF kernel ether driver, the outer VLAN tag will always be the PVID.
3202 	 * To avoid the VLAN of Tx descriptor is overwritten by PVID, it should
3203 	 * be added to the position close to the IP header when PVID is enabled.
3204 	 */
3205 	if (!txq->pvid_sw_shift_en && ol_flags & (PKT_TX_VLAN_PKT |
3206 				PKT_TX_QINQ_PKT)) {
3207 		desc->tx.ol_type_vlan_len_msec |=
3208 				rte_cpu_to_le_32(BIT(HNS3_TXD_OVLAN_B));
3209 		if (ol_flags & PKT_TX_QINQ_PKT)
3210 			desc->tx.outer_vlan_tag =
3211 					rte_cpu_to_le_16(rxm->vlan_tci_outer);
3212 		else
3213 			desc->tx.outer_vlan_tag =
3214 					rte_cpu_to_le_16(rxm->vlan_tci);
3215 	}
3216 
3217 	if (ol_flags & PKT_TX_QINQ_PKT ||
3218 	    ((ol_flags & PKT_TX_VLAN_PKT) && txq->pvid_sw_shift_en)) {
3219 		desc->tx.type_cs_vlan_tso_len |=
3220 					rte_cpu_to_le_32(BIT(HNS3_TXD_VLAN_B));
3221 		desc->tx.vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci);
3222 	}
3223 
3224 	if (ol_flags & PKT_TX_IEEE1588_TMST)
3225 		desc->tx.tp_fe_sc_vld_ra_ri |=
3226 				rte_cpu_to_le_16(BIT(HNS3_TXD_TSYN_B));
3227 }
3228 
3229 static inline int
3230 hns3_tx_alloc_mbufs(struct rte_mempool *mb_pool, uint16_t nb_new_buf,
3231 			struct rte_mbuf **alloc_mbuf)
3232 {
3233 #define MAX_NON_TSO_BD_PER_PKT 18
3234 	struct rte_mbuf *pkt_segs[MAX_NON_TSO_BD_PER_PKT];
3235 	uint16_t i;
3236 
3237 	/* Allocate enough mbufs */
3238 	if (rte_mempool_get_bulk(mb_pool, (void **)pkt_segs, nb_new_buf))
3239 		return -ENOMEM;
3240 
3241 	for (i = 0; i < nb_new_buf - 1; i++)
3242 		pkt_segs[i]->next = pkt_segs[i + 1];
3243 
3244 	pkt_segs[nb_new_buf - 1]->next = NULL;
3245 	pkt_segs[0]->nb_segs = nb_new_buf;
3246 	*alloc_mbuf = pkt_segs[0];
3247 
3248 	return 0;
3249 }
3250 
3251 static inline void
3252 hns3_pktmbuf_copy_hdr(struct rte_mbuf *new_pkt, struct rte_mbuf *old_pkt)
3253 {
3254 	new_pkt->ol_flags = old_pkt->ol_flags;
3255 	new_pkt->pkt_len = rte_pktmbuf_pkt_len(old_pkt);
3256 	new_pkt->outer_l2_len = old_pkt->outer_l2_len;
3257 	new_pkt->outer_l3_len = old_pkt->outer_l3_len;
3258 	new_pkt->l2_len = old_pkt->l2_len;
3259 	new_pkt->l3_len = old_pkt->l3_len;
3260 	new_pkt->l4_len = old_pkt->l4_len;
3261 	new_pkt->vlan_tci_outer = old_pkt->vlan_tci_outer;
3262 	new_pkt->vlan_tci = old_pkt->vlan_tci;
3263 }
3264 
3265 static int
3266 hns3_reassemble_tx_pkts(struct rte_mbuf *tx_pkt, struct rte_mbuf **new_pkt,
3267 				  uint8_t max_non_tso_bd_num)
3268 {
3269 	struct rte_mempool *mb_pool;
3270 	struct rte_mbuf *new_mbuf;
3271 	struct rte_mbuf *temp_new;
3272 	struct rte_mbuf *temp;
3273 	uint16_t last_buf_len;
3274 	uint16_t nb_new_buf;
3275 	uint16_t buf_size;
3276 	uint16_t buf_len;
3277 	uint16_t len_s;
3278 	uint16_t len_d;
3279 	uint16_t len;
3280 	int ret;
3281 	char *s;
3282 	char *d;
3283 
3284 	mb_pool = tx_pkt->pool;
3285 	buf_size = tx_pkt->buf_len - RTE_PKTMBUF_HEADROOM;
3286 	nb_new_buf = (rte_pktmbuf_pkt_len(tx_pkt) - 1) / buf_size + 1;
3287 	if (nb_new_buf > max_non_tso_bd_num)
3288 		return -EINVAL;
3289 
3290 	last_buf_len = rte_pktmbuf_pkt_len(tx_pkt) % buf_size;
3291 	if (last_buf_len == 0)
3292 		last_buf_len = buf_size;
3293 
3294 	/* Allocate enough mbufs */
3295 	ret = hns3_tx_alloc_mbufs(mb_pool, nb_new_buf, &new_mbuf);
3296 	if (ret)
3297 		return ret;
3298 
3299 	/* Copy the original packet content to the new mbufs */
3300 	temp = tx_pkt;
3301 	s = rte_pktmbuf_mtod(temp, char *);
3302 	len_s = rte_pktmbuf_data_len(temp);
3303 	temp_new = new_mbuf;
3304 	while (temp != NULL && temp_new != NULL) {
3305 		d = rte_pktmbuf_mtod(temp_new, char *);
3306 		buf_len = temp_new->next == NULL ? last_buf_len : buf_size;
3307 		len_d = buf_len;
3308 
3309 		while (len_d) {
3310 			len = RTE_MIN(len_s, len_d);
3311 			memcpy(d, s, len);
3312 			s = s + len;
3313 			d = d + len;
3314 			len_d = len_d - len;
3315 			len_s = len_s - len;
3316 
3317 			if (len_s == 0) {
3318 				temp = temp->next;
3319 				if (temp == NULL)
3320 					break;
3321 				s = rte_pktmbuf_mtod(temp, char *);
3322 				len_s = rte_pktmbuf_data_len(temp);
3323 			}
3324 		}
3325 
3326 		temp_new->data_len = buf_len;
3327 		temp_new = temp_new->next;
3328 	}
3329 	hns3_pktmbuf_copy_hdr(new_mbuf, tx_pkt);
3330 
3331 	/* free original mbufs */
3332 	rte_pktmbuf_free(tx_pkt);
3333 
3334 	*new_pkt = new_mbuf;
3335 
3336 	return 0;
3337 }
3338 
3339 static void
3340 hns3_parse_outer_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec)
3341 {
3342 	uint32_t tmp = *ol_type_vlan_len_msec;
3343 	uint64_t ol_flags = m->ol_flags;
3344 
3345 	/* (outer) IP header type */
3346 	if (ol_flags & PKT_TX_OUTER_IPV4) {
3347 		if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
3348 			tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M,
3349 					HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM);
3350 		else
3351 			tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M,
3352 				HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_NO_CSUM);
3353 	} else if (ol_flags & PKT_TX_OUTER_IPV6) {
3354 		tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
3355 					HNS3_OL3T_IPV6);
3356 	}
3357 	/* OL3 header size, defined in 4 bytes */
3358 	tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
3359 				m->outer_l3_len >> HNS3_L3_LEN_UNIT);
3360 	*ol_type_vlan_len_msec = tmp;
3361 }
3362 
3363 static int
3364 hns3_parse_inner_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec,
3365 			uint32_t *type_cs_vlan_tso_len)
3366 {
3367 #define HNS3_NVGRE_HLEN 8
3368 	uint32_t tmp_outer = *ol_type_vlan_len_msec;
3369 	uint32_t tmp_inner = *type_cs_vlan_tso_len;
3370 	uint64_t ol_flags = m->ol_flags;
3371 	uint16_t inner_l2_len;
3372 
3373 	switch (ol_flags & PKT_TX_TUNNEL_MASK) {
3374 	case PKT_TX_TUNNEL_VXLAN_GPE:
3375 	case PKT_TX_TUNNEL_GENEVE:
3376 	case PKT_TX_TUNNEL_VXLAN:
3377 		/* MAC in UDP tunnelling packet, include VxLAN and GENEVE */
3378 		tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M,
3379 				HNS3_TXD_TUNTYPE_S, HNS3_TUN_MAC_IN_UDP);
3380 		/*
3381 		 * The inner l2 length of mbuf is the sum of outer l4 length,
3382 		 * tunneling header length and inner l2 length for a tunnel
3383 		 * packect. But in hns3 tx descriptor, the tunneling header
3384 		 * length is contained in the field of outer L4 length.
3385 		 * Therefore, driver need to calculate the outer L4 length and
3386 		 * inner L2 length.
3387 		 */
3388 		tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M,
3389 						HNS3_TXD_L4LEN_S,
3390 						(uint8_t)RTE_ETHER_VXLAN_HLEN >>
3391 						HNS3_L4_LEN_UNIT);
3392 
3393 		inner_l2_len = m->l2_len - RTE_ETHER_VXLAN_HLEN;
3394 		break;
3395 	case PKT_TX_TUNNEL_GRE:
3396 		tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M,
3397 					HNS3_TXD_TUNTYPE_S, HNS3_TUN_NVGRE);
3398 		/*
3399 		 * For NVGRE tunnel packect, the outer L4 is empty. So only
3400 		 * fill the NVGRE header length to the outer L4 field.
3401 		 */
3402 		tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M,
3403 				HNS3_TXD_L4LEN_S,
3404 				(uint8_t)HNS3_NVGRE_HLEN >> HNS3_L4_LEN_UNIT);
3405 
3406 		inner_l2_len = m->l2_len - HNS3_NVGRE_HLEN;
3407 		break;
3408 	default:
3409 		/* For non UDP / GRE tunneling, drop the tunnel packet */
3410 		return -EINVAL;
3411 	}
3412 
3413 	tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
3414 					inner_l2_len >> HNS3_L2_LEN_UNIT);
3415 	/* OL2 header size, defined in 2 bytes */
3416 	tmp_outer |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
3417 					m->outer_l2_len >> HNS3_L2_LEN_UNIT);
3418 
3419 	*type_cs_vlan_tso_len = tmp_inner;
3420 	*ol_type_vlan_len_msec = tmp_outer;
3421 
3422 	return 0;
3423 }
3424 
3425 static int
3426 hns3_parse_tunneling_params(struct hns3_tx_queue *txq, struct rte_mbuf *m,
3427 			    uint16_t tx_desc_id)
3428 {
3429 	struct hns3_desc *tx_ring = txq->tx_ring;
3430 	struct hns3_desc *desc = &tx_ring[tx_desc_id];
3431 	uint64_t ol_flags = m->ol_flags;
3432 	uint32_t tmp_outer = 0;
3433 	uint32_t tmp_inner = 0;
3434 	uint32_t tmp_ol4cs;
3435 	int ret;
3436 
3437 	/*
3438 	 * The tunnel header is contained in the inner L2 header field of the
3439 	 * mbuf, but for hns3 descriptor, it is contained in the outer L4. So,
3440 	 * there is a need that switching between them. To avoid multiple
3441 	 * calculations, the length of the L2 header include the outer and
3442 	 * inner, will be filled during the parsing of tunnel packects.
3443 	 */
3444 	if (!(ol_flags & PKT_TX_TUNNEL_MASK)) {
3445 		/*
3446 		 * For non tunnel type the tunnel type id is 0, so no need to
3447 		 * assign a value to it. Only the inner(normal) L2 header length
3448 		 * is assigned.
3449 		 */
3450 		tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M,
3451 			       HNS3_TXD_L2LEN_S, m->l2_len >> HNS3_L2_LEN_UNIT);
3452 	} else {
3453 		/*
3454 		 * If outer csum is not offload, the outer length may be filled
3455 		 * with 0. And the length of the outer header is added to the
3456 		 * inner l2_len. It would lead a cksum error. So driver has to
3457 		 * calculate the header length.
3458 		 */
3459 		if (unlikely(!(ol_flags &
3460 			(PKT_TX_OUTER_IP_CKSUM | PKT_TX_OUTER_UDP_CKSUM)) &&
3461 					m->outer_l2_len == 0)) {
3462 			struct rte_net_hdr_lens hdr_len;
3463 			(void)rte_net_get_ptype(m, &hdr_len,
3464 					RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);
3465 			m->outer_l3_len = hdr_len.l3_len;
3466 			m->outer_l2_len = hdr_len.l2_len;
3467 			m->l2_len = m->l2_len - hdr_len.l2_len - hdr_len.l3_len;
3468 		}
3469 		hns3_parse_outer_params(m, &tmp_outer);
3470 		ret = hns3_parse_inner_params(m, &tmp_outer, &tmp_inner);
3471 		if (ret)
3472 			return -EINVAL;
3473 	}
3474 
3475 	desc->tx.ol_type_vlan_len_msec = rte_cpu_to_le_32(tmp_outer);
3476 	desc->tx.type_cs_vlan_tso_len = rte_cpu_to_le_32(tmp_inner);
3477 	tmp_ol4cs = ol_flags & PKT_TX_OUTER_UDP_CKSUM ?
3478 			BIT(HNS3_TXD_OL4CS_B) : 0;
3479 	desc->tx.paylen_fd_dop_ol4cs = rte_cpu_to_le_32(tmp_ol4cs);
3480 
3481 	return 0;
3482 }
3483 
3484 static void
3485 hns3_parse_l3_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len)
3486 {
3487 	uint64_t ol_flags = m->ol_flags;
3488 	uint32_t l3_type;
3489 	uint32_t tmp;
3490 
3491 	tmp = *type_cs_vlan_tso_len;
3492 	if (ol_flags & PKT_TX_IPV4)
3493 		l3_type = HNS3_L3T_IPV4;
3494 	else if (ol_flags & PKT_TX_IPV6)
3495 		l3_type = HNS3_L3T_IPV6;
3496 	else
3497 		l3_type = HNS3_L3T_NONE;
3498 
3499 	/* inner(/normal) L3 header size, defined in 4 bytes */
3500 	tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
3501 					m->l3_len >> HNS3_L3_LEN_UNIT);
3502 
3503 	tmp |= hns3_gen_field_val(HNS3_TXD_L3T_M, HNS3_TXD_L3T_S, l3_type);
3504 
3505 	/* Enable L3 checksum offloads */
3506 	if (ol_flags & PKT_TX_IP_CKSUM)
3507 		tmp |= BIT(HNS3_TXD_L3CS_B);
3508 	*type_cs_vlan_tso_len = tmp;
3509 }
3510 
3511 static void
3512 hns3_parse_l4_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len)
3513 {
3514 	uint64_t ol_flags = m->ol_flags;
3515 	uint32_t tmp;
3516 	/* Enable L4 checksum offloads */
3517 	switch (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG)) {
3518 	case PKT_TX_TCP_CKSUM | PKT_TX_TCP_SEG:
3519 	case PKT_TX_TCP_CKSUM:
3520 	case PKT_TX_TCP_SEG:
3521 		tmp = *type_cs_vlan_tso_len;
3522 		tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
3523 					HNS3_L4T_TCP);
3524 		break;
3525 	case PKT_TX_UDP_CKSUM:
3526 		tmp = *type_cs_vlan_tso_len;
3527 		tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
3528 					HNS3_L4T_UDP);
3529 		break;
3530 	case PKT_TX_SCTP_CKSUM:
3531 		tmp = *type_cs_vlan_tso_len;
3532 		tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
3533 					HNS3_L4T_SCTP);
3534 		break;
3535 	default:
3536 		return;
3537 	}
3538 	tmp |= BIT(HNS3_TXD_L4CS_B);
3539 	tmp |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
3540 					m->l4_len >> HNS3_L4_LEN_UNIT);
3541 	*type_cs_vlan_tso_len = tmp;
3542 }
3543 
3544 static void
3545 hns3_txd_enable_checksum(struct hns3_tx_queue *txq, struct rte_mbuf *m,
3546 			 uint16_t tx_desc_id)
3547 {
3548 	struct hns3_desc *tx_ring = txq->tx_ring;
3549 	struct hns3_desc *desc = &tx_ring[tx_desc_id];
3550 	uint32_t value = 0;
3551 
3552 	hns3_parse_l3_cksum_params(m, &value);
3553 	hns3_parse_l4_cksum_params(m, &value);
3554 
3555 	desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(value);
3556 }
3557 
3558 static bool
3559 hns3_pkt_need_linearized(struct rte_mbuf *tx_pkts, uint32_t bd_num,
3560 				 uint32_t max_non_tso_bd_num)
3561 {
3562 	struct rte_mbuf *m_first = tx_pkts;
3563 	struct rte_mbuf *m_last = tx_pkts;
3564 	uint32_t tot_len = 0;
3565 	uint32_t hdr_len;
3566 	uint32_t i;
3567 
3568 	/*
3569 	 * Hardware requires that the sum of the data length of every 8
3570 	 * consecutive buffers is greater than MSS in hns3 network engine.
3571 	 * We simplify it by ensuring pkt_headlen + the first 8 consecutive
3572 	 * frags greater than gso header len + mss, and the remaining 7
3573 	 * consecutive frags greater than MSS except the last 7 frags.
3574 	 */
3575 	if (bd_num <= max_non_tso_bd_num)
3576 		return false;
3577 
3578 	for (i = 0; m_last && i < max_non_tso_bd_num - 1;
3579 	     i++, m_last = m_last->next)
3580 		tot_len += m_last->data_len;
3581 
3582 	if (!m_last)
3583 		return true;
3584 
3585 	/* ensure the first 8 frags is greater than mss + header */
3586 	hdr_len = tx_pkts->l2_len + tx_pkts->l3_len + tx_pkts->l4_len;
3587 	hdr_len += (tx_pkts->ol_flags & PKT_TX_TUNNEL_MASK) ?
3588 		   tx_pkts->outer_l2_len + tx_pkts->outer_l3_len : 0;
3589 	if (tot_len + m_last->data_len < tx_pkts->tso_segsz + hdr_len)
3590 		return true;
3591 
3592 	/*
3593 	 * ensure the sum of the data length of every 7 consecutive buffer
3594 	 * is greater than mss except the last one.
3595 	 */
3596 	for (i = 0; m_last && i < bd_num - max_non_tso_bd_num; i++) {
3597 		tot_len -= m_first->data_len;
3598 		tot_len += m_last->data_len;
3599 
3600 		if (tot_len < tx_pkts->tso_segsz)
3601 			return true;
3602 
3603 		m_first = m_first->next;
3604 		m_last = m_last->next;
3605 	}
3606 
3607 	return false;
3608 }
3609 
3610 static bool
3611 hns3_outer_ipv4_cksum_prepared(struct rte_mbuf *m, uint64_t ol_flags,
3612 				uint32_t *l4_proto)
3613 {
3614 	struct rte_ipv4_hdr *ipv4_hdr;
3615 	ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
3616 					   m->outer_l2_len);
3617 	if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
3618 		ipv4_hdr->hdr_checksum = 0;
3619 	if (ol_flags & PKT_TX_OUTER_UDP_CKSUM) {
3620 		struct rte_udp_hdr *udp_hdr;
3621 		/*
3622 		 * If OUTER_UDP_CKSUM is support, HW can caclulate the pseudo
3623 		 * header for TSO packets
3624 		 */
3625 		if (ol_flags & PKT_TX_TCP_SEG)
3626 			return true;
3627 		udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3628 				m->outer_l2_len + m->outer_l3_len);
3629 		udp_hdr->dgram_cksum = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
3630 
3631 		return true;
3632 	}
3633 	*l4_proto = ipv4_hdr->next_proto_id;
3634 	return false;
3635 }
3636 
3637 static bool
3638 hns3_outer_ipv6_cksum_prepared(struct rte_mbuf *m, uint64_t ol_flags,
3639 				uint32_t *l4_proto)
3640 {
3641 	struct rte_ipv6_hdr *ipv6_hdr;
3642 	ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
3643 					   m->outer_l2_len);
3644 	if (ol_flags & PKT_TX_OUTER_UDP_CKSUM) {
3645 		struct rte_udp_hdr *udp_hdr;
3646 		/*
3647 		 * If OUTER_UDP_CKSUM is support, HW can caclulate the pseudo
3648 		 * header for TSO packets
3649 		 */
3650 		if (ol_flags & PKT_TX_TCP_SEG)
3651 			return true;
3652 		udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3653 				m->outer_l2_len + m->outer_l3_len);
3654 		udp_hdr->dgram_cksum = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
3655 
3656 		return true;
3657 	}
3658 	*l4_proto = ipv6_hdr->proto;
3659 	return false;
3660 }
3661 
3662 static void
3663 hns3_outer_header_cksum_prepare(struct rte_mbuf *m)
3664 {
3665 	uint64_t ol_flags = m->ol_flags;
3666 	uint32_t paylen, hdr_len, l4_proto;
3667 	struct rte_udp_hdr *udp_hdr;
3668 
3669 	if (!(ol_flags & (PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6)))
3670 		return;
3671 
3672 	if (ol_flags & PKT_TX_OUTER_IPV4) {
3673 		if (hns3_outer_ipv4_cksum_prepared(m, ol_flags, &l4_proto))
3674 			return;
3675 	} else {
3676 		if (hns3_outer_ipv6_cksum_prepared(m, ol_flags, &l4_proto))
3677 			return;
3678 	}
3679 
3680 	/* driver should ensure the outer udp cksum is 0 for TUNNEL TSO */
3681 	if (l4_proto == IPPROTO_UDP && (ol_flags & PKT_TX_TCP_SEG)) {
3682 		hdr_len = m->l2_len + m->l3_len + m->l4_len;
3683 		hdr_len += m->outer_l2_len + m->outer_l3_len;
3684 		paylen = m->pkt_len - hdr_len;
3685 		if (paylen <= m->tso_segsz)
3686 			return;
3687 		udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3688 						  m->outer_l2_len +
3689 						  m->outer_l3_len);
3690 		udp_hdr->dgram_cksum = 0;
3691 	}
3692 }
3693 
3694 static int
3695 hns3_check_tso_pkt_valid(struct rte_mbuf *m)
3696 {
3697 	uint32_t tmp_data_len_sum = 0;
3698 	uint16_t nb_buf = m->nb_segs;
3699 	uint32_t paylen, hdr_len;
3700 	struct rte_mbuf *m_seg;
3701 	int i;
3702 
3703 	if (nb_buf > HNS3_MAX_TSO_BD_PER_PKT)
3704 		return -EINVAL;
3705 
3706 	hdr_len = m->l2_len + m->l3_len + m->l4_len;
3707 	hdr_len += (m->ol_flags & PKT_TX_TUNNEL_MASK) ?
3708 			m->outer_l2_len + m->outer_l3_len : 0;
3709 	if (hdr_len > HNS3_MAX_TSO_HDR_SIZE)
3710 		return -EINVAL;
3711 
3712 	paylen = m->pkt_len - hdr_len;
3713 	if (paylen > HNS3_MAX_BD_PAYLEN)
3714 		return -EINVAL;
3715 
3716 	/*
3717 	 * The TSO header (include outer and inner L2, L3 and L4 header)
3718 	 * should be provided by three descriptors in maximum in hns3 network
3719 	 * engine.
3720 	 */
3721 	m_seg = m;
3722 	for (i = 0; m_seg != NULL && i < HNS3_MAX_TSO_HDR_BD_NUM && i < nb_buf;
3723 	     i++, m_seg = m_seg->next) {
3724 		tmp_data_len_sum += m_seg->data_len;
3725 	}
3726 
3727 	if (hdr_len > tmp_data_len_sum)
3728 		return -EINVAL;
3729 
3730 	return 0;
3731 }
3732 
3733 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
3734 static inline int
3735 hns3_vld_vlan_chk(struct hns3_tx_queue *txq, struct rte_mbuf *m)
3736 {
3737 	struct rte_ether_hdr *eh;
3738 	struct rte_vlan_hdr *vh;
3739 
3740 	if (!txq->pvid_sw_shift_en)
3741 		return 0;
3742 
3743 	/*
3744 	 * Due to hardware limitations, we only support two-layer VLAN hardware
3745 	 * offload in Tx direction based on hns3 network engine, so when PVID is
3746 	 * enabled, QinQ insert is no longer supported.
3747 	 * And when PVID is enabled, in the following two cases:
3748 	 *  i) packets with more than two VLAN tags.
3749 	 *  ii) packets with one VLAN tag while the hardware VLAN insert is
3750 	 *      enabled.
3751 	 * The packets will be regarded as abnormal packets and discarded by
3752 	 * hardware in Tx direction. For debugging purposes, a validation check
3753 	 * for these types of packets is added to the '.tx_pkt_prepare' ops
3754 	 * implementation function named hns3_prep_pkts to inform users that
3755 	 * these packets will be discarded.
3756 	 */
3757 	if (m->ol_flags & PKT_TX_QINQ_PKT)
3758 		return -EINVAL;
3759 
3760 	eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
3761 	if (eh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) {
3762 		if (m->ol_flags & PKT_TX_VLAN_PKT)
3763 			return -EINVAL;
3764 
3765 		/* Ensure the incoming packet is not a QinQ packet */
3766 		vh = (struct rte_vlan_hdr *)(eh + 1);
3767 		if (vh->eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))
3768 			return -EINVAL;
3769 	}
3770 
3771 	return 0;
3772 }
3773 #endif
3774 
3775 static uint16_t
3776 hns3_udp_cksum_help(struct rte_mbuf *m)
3777 {
3778 	uint64_t ol_flags = m->ol_flags;
3779 	uint16_t cksum = 0;
3780 	uint32_t l4_len;
3781 
3782 	if (ol_flags & PKT_TX_IPV4) {
3783 		struct rte_ipv4_hdr *ipv4_hdr = rte_pktmbuf_mtod_offset(m,
3784 				struct rte_ipv4_hdr *, m->l2_len);
3785 		l4_len = rte_be_to_cpu_16(ipv4_hdr->total_length) - m->l3_len;
3786 	} else {
3787 		struct rte_ipv6_hdr *ipv6_hdr = rte_pktmbuf_mtod_offset(m,
3788 				struct rte_ipv6_hdr *, m->l2_len);
3789 		l4_len = rte_be_to_cpu_16(ipv6_hdr->payload_len);
3790 	}
3791 
3792 	rte_raw_cksum_mbuf(m, m->l2_len + m->l3_len, l4_len, &cksum);
3793 
3794 	cksum = ~cksum;
3795 	/*
3796 	 * RFC 768:If the computed checksum is zero for UDP, it is transmitted
3797 	 * as all ones
3798 	 */
3799 	if (cksum == 0)
3800 		cksum = 0xffff;
3801 
3802 	return (uint16_t)cksum;
3803 }
3804 
3805 static bool
3806 hns3_validate_tunnel_cksum(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m)
3807 {
3808 	uint64_t ol_flags = m->ol_flags;
3809 	struct rte_udp_hdr *udp_hdr;
3810 	uint16_t dst_port;
3811 
3812 	if (tx_queue->udp_cksum_mode == HNS3_SPECIAL_PORT_HW_CKSUM_MODE ||
3813 	    ol_flags & PKT_TX_TUNNEL_MASK ||
3814 	    (ol_flags & PKT_TX_L4_MASK) != PKT_TX_UDP_CKSUM)
3815 		return true;
3816 	/*
3817 	 * A UDP packet with the same dst_port as VXLAN\VXLAN_GPE\GENEVE will
3818 	 * be recognized as a tunnel packet in HW. In this case, if UDP CKSUM
3819 	 * offload is set and the tunnel mask has not been set, the CKSUM will
3820 	 * be wrong since the header length is wrong and driver should complete
3821 	 * the CKSUM to avoid CKSUM error.
3822 	 */
3823 	udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3824 						m->l2_len + m->l3_len);
3825 	dst_port = rte_be_to_cpu_16(udp_hdr->dst_port);
3826 	switch (dst_port) {
3827 	case RTE_VXLAN_DEFAULT_PORT:
3828 	case RTE_VXLAN_GPE_DEFAULT_PORT:
3829 	case RTE_GENEVE_DEFAULT_PORT:
3830 		udp_hdr->dgram_cksum = hns3_udp_cksum_help(m);
3831 		m->ol_flags = ol_flags & ~PKT_TX_L4_MASK;
3832 		return false;
3833 	default:
3834 		return true;
3835 	}
3836 }
3837 
3838 static int
3839 hns3_prep_pkt_proc(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m)
3840 {
3841 	int ret;
3842 
3843 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
3844 	ret = rte_validate_tx_offload(m);
3845 	if (ret != 0) {
3846 		rte_errno = -ret;
3847 		return ret;
3848 	}
3849 
3850 	ret = hns3_vld_vlan_chk(tx_queue, m);
3851 	if (ret != 0) {
3852 		rte_errno = EINVAL;
3853 		return ret;
3854 	}
3855 #endif
3856 	if (hns3_pkt_is_tso(m)) {
3857 		if (hns3_pkt_need_linearized(m, m->nb_segs,
3858 					     tx_queue->max_non_tso_bd_num) ||
3859 		    hns3_check_tso_pkt_valid(m)) {
3860 			rte_errno = EINVAL;
3861 			return -EINVAL;
3862 		}
3863 
3864 		if (tx_queue->tso_mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) {
3865 			/*
3866 			 * (tso mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) means
3867 			 * hardware support recalculate the TCP pseudo header
3868 			 * checksum of packets that need TSO, so network driver
3869 			 * software not need to recalculate it.
3870 			 */
3871 			hns3_outer_header_cksum_prepare(m);
3872 			return 0;
3873 		}
3874 	}
3875 
3876 	ret = rte_net_intel_cksum_prepare(m);
3877 	if (ret != 0) {
3878 		rte_errno = -ret;
3879 		return ret;
3880 	}
3881 
3882 	if (!hns3_validate_tunnel_cksum(tx_queue, m))
3883 		return 0;
3884 
3885 	hns3_outer_header_cksum_prepare(m);
3886 
3887 	return 0;
3888 }
3889 
3890 uint16_t
3891 hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
3892 	       uint16_t nb_pkts)
3893 {
3894 	struct rte_mbuf *m;
3895 	uint16_t i;
3896 
3897 	for (i = 0; i < nb_pkts; i++) {
3898 		m = tx_pkts[i];
3899 		if (hns3_prep_pkt_proc(tx_queue, m))
3900 			return i;
3901 	}
3902 
3903 	return i;
3904 }
3905 
3906 static int
3907 hns3_parse_cksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id,
3908 		 struct rte_mbuf *m)
3909 {
3910 	struct hns3_desc *tx_ring = txq->tx_ring;
3911 	struct hns3_desc *desc = &tx_ring[tx_desc_id];
3912 
3913 	/* Enable checksum offloading */
3914 	if (m->ol_flags & HNS3_TX_CKSUM_OFFLOAD_MASK) {
3915 		/* Fill in tunneling parameters if necessary */
3916 		if (hns3_parse_tunneling_params(txq, m, tx_desc_id)) {
3917 			txq->dfx_stats.unsupported_tunnel_pkt_cnt++;
3918 				return -EINVAL;
3919 		}
3920 
3921 		hns3_txd_enable_checksum(txq, m, tx_desc_id);
3922 	} else {
3923 		/* clear the control bit */
3924 		desc->tx.type_cs_vlan_tso_len  = 0;
3925 		desc->tx.ol_type_vlan_len_msec = 0;
3926 	}
3927 
3928 	return 0;
3929 }
3930 
3931 static int
3932 hns3_check_non_tso_pkt(uint16_t nb_buf, struct rte_mbuf **m_seg,
3933 		      struct rte_mbuf *tx_pkt, struct hns3_tx_queue *txq)
3934 {
3935 	uint8_t max_non_tso_bd_num;
3936 	struct rte_mbuf *new_pkt;
3937 	int ret;
3938 
3939 	if (hns3_pkt_is_tso(*m_seg))
3940 		return 0;
3941 
3942 	/*
3943 	 * If packet length is greater than HNS3_MAX_FRAME_LEN
3944 	 * driver support, the packet will be ignored.
3945 	 */
3946 	if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) > HNS3_MAX_FRAME_LEN)) {
3947 		txq->dfx_stats.over_length_pkt_cnt++;
3948 		return -EINVAL;
3949 	}
3950 
3951 	max_non_tso_bd_num = txq->max_non_tso_bd_num;
3952 	if (unlikely(nb_buf > max_non_tso_bd_num)) {
3953 		txq->dfx_stats.exceed_limit_bd_pkt_cnt++;
3954 		ret = hns3_reassemble_tx_pkts(tx_pkt, &new_pkt,
3955 					      max_non_tso_bd_num);
3956 		if (ret) {
3957 			txq->dfx_stats.exceed_limit_bd_reassem_fail++;
3958 			return ret;
3959 		}
3960 		*m_seg = new_pkt;
3961 	}
3962 
3963 	return 0;
3964 }
3965 
3966 static inline void
3967 hns3_tx_free_buffer_simple(struct hns3_tx_queue *txq)
3968 {
3969 	struct hns3_entry *tx_entry;
3970 	struct hns3_desc *desc;
3971 	uint16_t tx_next_clean;
3972 	int i;
3973 
3974 	while (1) {
3975 		if (HNS3_GET_TX_QUEUE_PEND_BD_NUM(txq) < txq->tx_rs_thresh)
3976 			break;
3977 
3978 		/*
3979 		 * All mbufs can be released only when the VLD bits of all
3980 		 * descriptors in a batch are cleared.
3981 		 */
3982 		tx_next_clean = (txq->next_to_clean + txq->tx_rs_thresh - 1) %
3983 				txq->nb_tx_desc;
3984 		desc = &txq->tx_ring[tx_next_clean];
3985 		for (i = 0; i < txq->tx_rs_thresh; i++) {
3986 			if (rte_le_to_cpu_16(desc->tx.tp_fe_sc_vld_ra_ri) &
3987 					BIT(HNS3_TXD_VLD_B))
3988 				return;
3989 			desc--;
3990 		}
3991 
3992 		tx_entry = &txq->sw_ring[txq->next_to_clean];
3993 
3994 		for (i = 0; i < txq->tx_rs_thresh; i++)
3995 			rte_prefetch0((tx_entry + i)->mbuf);
3996 		for (i = 0; i < txq->tx_rs_thresh; i++, tx_entry++) {
3997 			rte_mempool_put(tx_entry->mbuf->pool, tx_entry->mbuf);
3998 			tx_entry->mbuf = NULL;
3999 		}
4000 
4001 		txq->next_to_clean = (tx_next_clean + 1) % txq->nb_tx_desc;
4002 		txq->tx_bd_ready += txq->tx_rs_thresh;
4003 	}
4004 }
4005 
4006 static inline void
4007 hns3_tx_backup_1mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts)
4008 {
4009 	tx_entry->mbuf = pkts[0];
4010 }
4011 
4012 static inline void
4013 hns3_tx_backup_4mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts)
4014 {
4015 	hns3_tx_backup_1mbuf(&tx_entry[0], &pkts[0]);
4016 	hns3_tx_backup_1mbuf(&tx_entry[1], &pkts[1]);
4017 	hns3_tx_backup_1mbuf(&tx_entry[2], &pkts[2]);
4018 	hns3_tx_backup_1mbuf(&tx_entry[3], &pkts[3]);
4019 }
4020 
4021 static inline void
4022 hns3_tx_setup_4bd(struct hns3_desc *txdp, struct rte_mbuf **pkts)
4023 {
4024 #define PER_LOOP_NUM	4
4025 	const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B);
4026 	uint64_t dma_addr;
4027 	uint32_t i;
4028 
4029 	for (i = 0; i < PER_LOOP_NUM; i++, txdp++, pkts++) {
4030 		dma_addr = rte_mbuf_data_iova(*pkts);
4031 		txdp->addr = rte_cpu_to_le_64(dma_addr);
4032 		txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len);
4033 		txdp->tx.paylen_fd_dop_ol4cs = 0;
4034 		txdp->tx.type_cs_vlan_tso_len = 0;
4035 		txdp->tx.ol_type_vlan_len_msec = 0;
4036 		txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag);
4037 	}
4038 }
4039 
4040 static inline void
4041 hns3_tx_setup_1bd(struct hns3_desc *txdp, struct rte_mbuf **pkts)
4042 {
4043 	const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B);
4044 	uint64_t dma_addr;
4045 
4046 	dma_addr = rte_mbuf_data_iova(*pkts);
4047 	txdp->addr = rte_cpu_to_le_64(dma_addr);
4048 	txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len);
4049 	txdp->tx.paylen_fd_dop_ol4cs = 0;
4050 	txdp->tx.type_cs_vlan_tso_len = 0;
4051 	txdp->tx.ol_type_vlan_len_msec = 0;
4052 	txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag);
4053 }
4054 
4055 static inline void
4056 hns3_tx_fill_hw_ring(struct hns3_tx_queue *txq,
4057 		     struct rte_mbuf **pkts,
4058 		     uint16_t nb_pkts)
4059 {
4060 #define PER_LOOP_NUM	4
4061 #define PER_LOOP_MASK	(PER_LOOP_NUM - 1)
4062 	struct hns3_desc *txdp = &txq->tx_ring[txq->next_to_use];
4063 	struct hns3_entry *tx_entry = &txq->sw_ring[txq->next_to_use];
4064 	const uint32_t mainpart = (nb_pkts & ((uint32_t)~PER_LOOP_MASK));
4065 	const uint32_t leftover = (nb_pkts & ((uint32_t)PER_LOOP_MASK));
4066 	uint32_t i;
4067 
4068 	for (i = 0; i < mainpart; i += PER_LOOP_NUM) {
4069 		hns3_tx_backup_4mbuf(tx_entry + i, pkts + i);
4070 		hns3_tx_setup_4bd(txdp + i, pkts + i);
4071 
4072 		/* Increment bytes counter */
4073 		uint32_t j;
4074 		for (j = 0; j < PER_LOOP_NUM; j++)
4075 			txq->basic_stats.bytes += pkts[i + j]->pkt_len;
4076 	}
4077 	if (unlikely(leftover > 0)) {
4078 		for (i = 0; i < leftover; i++) {
4079 			hns3_tx_backup_1mbuf(tx_entry + mainpart + i,
4080 					     pkts + mainpart + i);
4081 			hns3_tx_setup_1bd(txdp + mainpart + i,
4082 					  pkts + mainpart + i);
4083 
4084 			/* Increment bytes counter */
4085 			txq->basic_stats.bytes += pkts[mainpart + i]->pkt_len;
4086 		}
4087 	}
4088 }
4089 
4090 uint16_t
4091 hns3_xmit_pkts_simple(void *tx_queue,
4092 		      struct rte_mbuf **tx_pkts,
4093 		      uint16_t nb_pkts)
4094 {
4095 	struct hns3_tx_queue *txq = tx_queue;
4096 	uint16_t nb_tx = 0;
4097 
4098 	hns3_tx_free_buffer_simple(txq);
4099 
4100 	nb_pkts = RTE_MIN(txq->tx_bd_ready, nb_pkts);
4101 	if (unlikely(nb_pkts == 0)) {
4102 		if (txq->tx_bd_ready == 0)
4103 			txq->dfx_stats.queue_full_cnt++;
4104 		return 0;
4105 	}
4106 
4107 	txq->tx_bd_ready -= nb_pkts;
4108 	if (txq->next_to_use + nb_pkts > txq->nb_tx_desc) {
4109 		nb_tx = txq->nb_tx_desc - txq->next_to_use;
4110 		hns3_tx_fill_hw_ring(txq, tx_pkts, nb_tx);
4111 		txq->next_to_use = 0;
4112 	}
4113 
4114 	hns3_tx_fill_hw_ring(txq, tx_pkts + nb_tx, nb_pkts - nb_tx);
4115 	txq->next_to_use += nb_pkts - nb_tx;
4116 
4117 	hns3_write_txq_tail_reg(txq, nb_pkts);
4118 
4119 	return nb_pkts;
4120 }
4121 
4122 uint16_t
4123 hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
4124 {
4125 	struct hns3_tx_queue *txq = tx_queue;
4126 	struct hns3_entry *tx_bak_pkt;
4127 	struct hns3_desc *tx_ring;
4128 	struct rte_mbuf *tx_pkt;
4129 	struct rte_mbuf *m_seg;
4130 	struct hns3_desc *desc;
4131 	uint32_t nb_hold = 0;
4132 	uint16_t tx_next_use;
4133 	uint16_t tx_pkt_num;
4134 	uint16_t tx_bd_max;
4135 	uint16_t nb_buf;
4136 	uint16_t nb_tx;
4137 	uint16_t i;
4138 
4139 	/* free useless buffer */
4140 	hns3_tx_free_useless_buffer(txq);
4141 
4142 	tx_next_use   = txq->next_to_use;
4143 	tx_bd_max     = txq->nb_tx_desc;
4144 	tx_pkt_num = nb_pkts;
4145 	tx_ring = txq->tx_ring;
4146 
4147 	/* send packets */
4148 	tx_bak_pkt = &txq->sw_ring[tx_next_use];
4149 	for (nb_tx = 0; nb_tx < tx_pkt_num; nb_tx++) {
4150 		tx_pkt = *tx_pkts++;
4151 
4152 		nb_buf = tx_pkt->nb_segs;
4153 
4154 		if (nb_buf > txq->tx_bd_ready) {
4155 			txq->dfx_stats.queue_full_cnt++;
4156 			if (nb_tx == 0)
4157 				return 0;
4158 
4159 			goto end_of_tx;
4160 		}
4161 
4162 		/*
4163 		 * If packet length is less than minimum packet length supported
4164 		 * by hardware in Tx direction, driver need to pad it to avoid
4165 		 * error.
4166 		 */
4167 		if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) <
4168 						txq->min_tx_pkt_len)) {
4169 			uint16_t add_len;
4170 			char *appended;
4171 
4172 			add_len = txq->min_tx_pkt_len -
4173 					 rte_pktmbuf_pkt_len(tx_pkt);
4174 			appended = rte_pktmbuf_append(tx_pkt, add_len);
4175 			if (appended == NULL) {
4176 				txq->dfx_stats.pkt_padding_fail_cnt++;
4177 				break;
4178 			}
4179 
4180 			memset(appended, 0, add_len);
4181 		}
4182 
4183 		m_seg = tx_pkt;
4184 
4185 		if (hns3_check_non_tso_pkt(nb_buf, &m_seg, tx_pkt, txq))
4186 			goto end_of_tx;
4187 
4188 		if (hns3_parse_cksum(txq, tx_next_use, m_seg))
4189 			goto end_of_tx;
4190 
4191 		i = 0;
4192 		desc = &tx_ring[tx_next_use];
4193 
4194 		/*
4195 		 * If the packet is divided into multiple Tx Buffer Descriptors,
4196 		 * only need to fill vlan, paylen and tso into the first Tx
4197 		 * Buffer Descriptor.
4198 		 */
4199 		hns3_fill_first_desc(txq, desc, m_seg);
4200 
4201 		do {
4202 			desc = &tx_ring[tx_next_use];
4203 			/*
4204 			 * Fill valid bits, DMA address and data length for each
4205 			 * Tx Buffer Descriptor.
4206 			 */
4207 			hns3_fill_per_desc(desc, m_seg);
4208 			tx_bak_pkt->mbuf = m_seg;
4209 			m_seg = m_seg->next;
4210 			tx_next_use++;
4211 			tx_bak_pkt++;
4212 			if (tx_next_use >= tx_bd_max) {
4213 				tx_next_use = 0;
4214 				tx_bak_pkt = txq->sw_ring;
4215 			}
4216 
4217 			i++;
4218 		} while (m_seg != NULL);
4219 
4220 		/* Add end flag for the last Tx Buffer Descriptor */
4221 		desc->tx.tp_fe_sc_vld_ra_ri |=
4222 				 rte_cpu_to_le_16(BIT(HNS3_TXD_FE_B));
4223 
4224 		/* Increment bytes counter */
4225 		txq->basic_stats.bytes += tx_pkt->pkt_len;
4226 		nb_hold += i;
4227 		txq->next_to_use = tx_next_use;
4228 		txq->tx_bd_ready -= i;
4229 	}
4230 
4231 end_of_tx:
4232 
4233 	if (likely(nb_tx))
4234 		hns3_write_txq_tail_reg(txq, nb_hold);
4235 
4236 	return nb_tx;
4237 }
4238 
4239 int __rte_weak
4240 hns3_tx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
4241 {
4242 	return -ENOTSUP;
4243 }
4244 
4245 uint16_t __rte_weak
4246 hns3_xmit_pkts_vec(__rte_unused void *tx_queue,
4247 		   __rte_unused struct rte_mbuf **tx_pkts,
4248 		   __rte_unused uint16_t nb_pkts)
4249 {
4250 	return 0;
4251 }
4252 
4253 uint16_t __rte_weak
4254 hns3_xmit_pkts_vec_sve(void __rte_unused * tx_queue,
4255 		       struct rte_mbuf __rte_unused **tx_pkts,
4256 		       uint16_t __rte_unused nb_pkts)
4257 {
4258 	return 0;
4259 }
4260 
4261 int
4262 hns3_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
4263 		       struct rte_eth_burst_mode *mode)
4264 {
4265 	eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
4266 	const char *info = NULL;
4267 
4268 	if (pkt_burst == hns3_xmit_pkts_simple)
4269 		info = "Scalar Simple";
4270 	else if (pkt_burst == hns3_xmit_pkts)
4271 		info = "Scalar";
4272 	else if (pkt_burst == hns3_xmit_pkts_vec)
4273 		info = "Vector Neon";
4274 	else if (pkt_burst == hns3_xmit_pkts_vec_sve)
4275 		info = "Vector Sve";
4276 
4277 	if (info == NULL)
4278 		return -EINVAL;
4279 
4280 	snprintf(mode->info, sizeof(mode->info), "%s", info);
4281 
4282 	return 0;
4283 }
4284 
4285 static bool
4286 hns3_tx_check_simple_support(struct rte_eth_dev *dev)
4287 {
4288 	uint64_t offloads = dev->data->dev_conf.txmode.offloads;
4289 
4290 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4291 	if (hns3_dev_get_support(hw, PTP))
4292 		return false;
4293 
4294 	return (offloads == (offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE));
4295 }
4296 
4297 static bool
4298 hns3_get_tx_prep_needed(struct rte_eth_dev *dev)
4299 {
4300 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
4301 	RTE_SET_USED(dev);
4302 	/* always perform tx_prepare when debug */
4303 	return true;
4304 #else
4305 #define HNS3_DEV_TX_CSKUM_TSO_OFFLOAD_MASK (\
4306 		DEV_TX_OFFLOAD_IPV4_CKSUM | \
4307 		DEV_TX_OFFLOAD_TCP_CKSUM | \
4308 		DEV_TX_OFFLOAD_UDP_CKSUM | \
4309 		DEV_TX_OFFLOAD_SCTP_CKSUM | \
4310 		DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | \
4311 		DEV_TX_OFFLOAD_OUTER_UDP_CKSUM | \
4312 		DEV_TX_OFFLOAD_TCP_TSO | \
4313 		DEV_TX_OFFLOAD_VXLAN_TNL_TSO | \
4314 		DEV_TX_OFFLOAD_GRE_TNL_TSO | \
4315 		DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
4316 
4317 	uint64_t tx_offload = dev->data->dev_conf.txmode.offloads;
4318 	if (tx_offload & HNS3_DEV_TX_CSKUM_TSO_OFFLOAD_MASK)
4319 		return true;
4320 
4321 	return false;
4322 #endif
4323 }
4324 
4325 eth_tx_burst_t
4326 hns3_get_tx_function(struct rte_eth_dev *dev, eth_tx_prep_t *prep)
4327 {
4328 	struct hns3_adapter *hns = dev->data->dev_private;
4329 	bool vec_allowed, sve_allowed, simple_allowed;
4330 	bool vec_support, tx_prepare_needed;
4331 
4332 	vec_support = hns3_tx_check_vec_support(dev) == 0;
4333 	vec_allowed = vec_support && hns3_get_default_vec_support();
4334 	sve_allowed = vec_support && hns3_get_sve_support();
4335 	simple_allowed = hns3_tx_check_simple_support(dev);
4336 	tx_prepare_needed = hns3_get_tx_prep_needed(dev);
4337 
4338 	*prep = NULL;
4339 
4340 	if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_VEC && vec_allowed)
4341 		return hns3_xmit_pkts_vec;
4342 	if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_SVE && sve_allowed)
4343 		return hns3_xmit_pkts_vec_sve;
4344 	if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_SIMPLE && simple_allowed)
4345 		return hns3_xmit_pkts_simple;
4346 	if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_COMMON) {
4347 		if (tx_prepare_needed)
4348 			*prep = hns3_prep_pkts;
4349 		return hns3_xmit_pkts;
4350 	}
4351 
4352 	if (vec_allowed)
4353 		return hns3_xmit_pkts_vec;
4354 	if (simple_allowed)
4355 		return hns3_xmit_pkts_simple;
4356 
4357 	if (tx_prepare_needed)
4358 		*prep = hns3_prep_pkts;
4359 	return hns3_xmit_pkts;
4360 }
4361 
4362 uint16_t
4363 hns3_dummy_rxtx_burst(void *dpdk_txq __rte_unused,
4364 		      struct rte_mbuf **pkts __rte_unused,
4365 		      uint16_t pkts_n __rte_unused)
4366 {
4367 	return 0;
4368 }
4369 
4370 static void
4371 hns3_trace_rxtx_function(struct rte_eth_dev *dev)
4372 {
4373 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4374 	struct rte_eth_burst_mode rx_mode;
4375 	struct rte_eth_burst_mode tx_mode;
4376 
4377 	memset(&rx_mode, 0, sizeof(rx_mode));
4378 	memset(&tx_mode, 0, sizeof(tx_mode));
4379 	(void)hns3_rx_burst_mode_get(dev, 0, &rx_mode);
4380 	(void)hns3_tx_burst_mode_get(dev, 0, &tx_mode);
4381 
4382 	hns3_dbg(hw, "using rx_pkt_burst: %s, tx_pkt_burst: %s.",
4383 		 rx_mode.info, tx_mode.info);
4384 }
4385 
4386 void hns3_set_rxtx_function(struct rte_eth_dev *eth_dev)
4387 {
4388 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
4389 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4390 	eth_tx_prep_t prep = NULL;
4391 
4392 	if (hns->hw.adapter_state == HNS3_NIC_STARTED &&
4393 	    __atomic_load_n(&hns->hw.reset.resetting, __ATOMIC_RELAXED) == 0) {
4394 		eth_dev->rx_pkt_burst = hns3_get_rx_function(eth_dev);
4395 		eth_dev->rx_descriptor_status = hns3_dev_rx_descriptor_status;
4396 		eth_dev->tx_pkt_burst = hw->set_link_down ?
4397 					hns3_dummy_rxtx_burst :
4398 					hns3_get_tx_function(eth_dev, &prep);
4399 		eth_dev->tx_pkt_prepare = prep;
4400 		eth_dev->tx_descriptor_status = hns3_dev_tx_descriptor_status;
4401 		hns3_trace_rxtx_function(eth_dev);
4402 	} else {
4403 		eth_dev->rx_pkt_burst = hns3_dummy_rxtx_burst;
4404 		eth_dev->tx_pkt_burst = hns3_dummy_rxtx_burst;
4405 		eth_dev->tx_pkt_prepare = NULL;
4406 	}
4407 }
4408 
4409 void
4410 hns3_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
4411 		  struct rte_eth_rxq_info *qinfo)
4412 {
4413 	struct hns3_rx_queue *rxq = dev->data->rx_queues[queue_id];
4414 
4415 	qinfo->mp = rxq->mb_pool;
4416 	qinfo->nb_desc = rxq->nb_rx_desc;
4417 	qinfo->scattered_rx = dev->data->scattered_rx;
4418 	/* Report the HW Rx buffer length to user */
4419 	qinfo->rx_buf_size = rxq->rx_buf_len;
4420 
4421 	/*
4422 	 * If there are no available Rx buffer descriptors, incoming packets
4423 	 * are always dropped by hardware based on hns3 network engine.
4424 	 */
4425 	qinfo->conf.rx_drop_en = 1;
4426 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
4427 	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
4428 	qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
4429 }
4430 
4431 void
4432 hns3_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
4433 		  struct rte_eth_txq_info *qinfo)
4434 {
4435 	struct hns3_tx_queue *txq = dev->data->tx_queues[queue_id];
4436 
4437 	qinfo->nb_desc = txq->nb_tx_desc;
4438 	qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
4439 	qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
4440 	qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
4441 	qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
4442 }
4443 
4444 int
4445 hns3_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
4446 {
4447 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4448 	struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
4449 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4450 	int ret;
4451 
4452 	if (!hns3_dev_get_support(hw, INDEP_TXRX))
4453 		return -ENOTSUP;
4454 
4455 	rte_spinlock_lock(&hw->lock);
4456 	ret = hns3_reset_queue(hw, rx_queue_id, HNS3_RING_TYPE_RX);
4457 	if (ret) {
4458 		hns3_err(hw, "fail to reset Rx queue %u, ret = %d.",
4459 			 rx_queue_id, ret);
4460 		rte_spinlock_unlock(&hw->lock);
4461 		return ret;
4462 	}
4463 
4464 	ret = hns3_init_rxq(hns, rx_queue_id);
4465 	if (ret) {
4466 		hns3_err(hw, "fail to init Rx queue %u, ret = %d.",
4467 			 rx_queue_id, ret);
4468 		rte_spinlock_unlock(&hw->lock);
4469 		return ret;
4470 	}
4471 
4472 	hns3_enable_rxq(rxq, true);
4473 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
4474 	rte_spinlock_unlock(&hw->lock);
4475 
4476 	return ret;
4477 }
4478 
4479 static void
4480 hns3_reset_sw_rxq(struct hns3_rx_queue *rxq)
4481 {
4482 	rxq->next_to_use = 0;
4483 	rxq->rx_rearm_start = 0;
4484 	rxq->rx_free_hold = 0;
4485 	rxq->rx_rearm_nb = 0;
4486 	rxq->pkt_first_seg = NULL;
4487 	rxq->pkt_last_seg = NULL;
4488 	memset(&rxq->rx_ring[0], 0, rxq->nb_rx_desc * sizeof(struct hns3_desc));
4489 	hns3_rxq_vec_setup(rxq);
4490 }
4491 
4492 int
4493 hns3_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
4494 {
4495 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4496 	struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
4497 
4498 	if (!hns3_dev_get_support(hw, INDEP_TXRX))
4499 		return -ENOTSUP;
4500 
4501 	rte_spinlock_lock(&hw->lock);
4502 	hns3_enable_rxq(rxq, false);
4503 
4504 	hns3_rx_queue_release_mbufs(rxq);
4505 
4506 	hns3_reset_sw_rxq(rxq);
4507 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
4508 	rte_spinlock_unlock(&hw->lock);
4509 
4510 	return 0;
4511 }
4512 
4513 int
4514 hns3_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
4515 {
4516 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4517 	struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
4518 	int ret;
4519 
4520 	if (!hns3_dev_get_support(hw, INDEP_TXRX))
4521 		return -ENOTSUP;
4522 
4523 	rte_spinlock_lock(&hw->lock);
4524 	ret = hns3_reset_queue(hw, tx_queue_id, HNS3_RING_TYPE_TX);
4525 	if (ret) {
4526 		hns3_err(hw, "fail to reset Tx queue %u, ret = %d.",
4527 			 tx_queue_id, ret);
4528 		rte_spinlock_unlock(&hw->lock);
4529 		return ret;
4530 	}
4531 
4532 	hns3_init_txq(txq);
4533 	hns3_enable_txq(txq, true);
4534 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
4535 	rte_spinlock_unlock(&hw->lock);
4536 
4537 	return ret;
4538 }
4539 
4540 int
4541 hns3_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
4542 {
4543 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4544 	struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
4545 
4546 	if (!hns3_dev_get_support(hw, INDEP_TXRX))
4547 		return -ENOTSUP;
4548 
4549 	rte_spinlock_lock(&hw->lock);
4550 	hns3_enable_txq(txq, false);
4551 	hns3_tx_queue_release_mbufs(txq);
4552 	/*
4553 	 * All the mbufs in sw_ring are released and all the pointers in sw_ring
4554 	 * are set to NULL. If this queue is still called by upper layer,
4555 	 * residual SW status of this txq may cause these pointers in sw_ring
4556 	 * which have been set to NULL to be released again. To avoid it,
4557 	 * reinit the txq.
4558 	 */
4559 	hns3_init_txq(txq);
4560 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
4561 	rte_spinlock_unlock(&hw->lock);
4562 
4563 	return 0;
4564 }
4565 
4566 static int
4567 hns3_tx_done_cleanup_full(struct hns3_tx_queue *txq, uint32_t free_cnt)
4568 {
4569 	uint16_t next_to_clean = txq->next_to_clean;
4570 	uint16_t next_to_use   = txq->next_to_use;
4571 	uint16_t tx_bd_ready   = txq->tx_bd_ready;
4572 	struct hns3_entry *tx_pkt = &txq->sw_ring[next_to_clean];
4573 	struct hns3_desc *desc = &txq->tx_ring[next_to_clean];
4574 	uint32_t idx;
4575 
4576 	if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
4577 		free_cnt = txq->nb_tx_desc;
4578 
4579 	for (idx = 0; idx < free_cnt; idx++) {
4580 		if (next_to_clean == next_to_use)
4581 			break;
4582 
4583 		if (desc->tx.tp_fe_sc_vld_ra_ri &
4584 		    rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))
4585 			break;
4586 
4587 		if (tx_pkt->mbuf != NULL) {
4588 			rte_pktmbuf_free_seg(tx_pkt->mbuf);
4589 			tx_pkt->mbuf = NULL;
4590 		}
4591 
4592 		next_to_clean++;
4593 		tx_bd_ready++;
4594 		tx_pkt++;
4595 		desc++;
4596 		if (next_to_clean == txq->nb_tx_desc) {
4597 			tx_pkt = txq->sw_ring;
4598 			desc = txq->tx_ring;
4599 			next_to_clean = 0;
4600 		}
4601 	}
4602 
4603 	if (idx > 0) {
4604 		txq->next_to_clean = next_to_clean;
4605 		txq->tx_bd_ready = tx_bd_ready;
4606 	}
4607 
4608 	return (int)idx;
4609 }
4610 
4611 int
4612 hns3_tx_done_cleanup(void *txq, uint32_t free_cnt)
4613 {
4614 	struct hns3_tx_queue *q = (struct hns3_tx_queue *)txq;
4615 	struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
4616 
4617 	if (dev->tx_pkt_burst == hns3_xmit_pkts)
4618 		return hns3_tx_done_cleanup_full(q, free_cnt);
4619 	else if (dev->tx_pkt_burst == hns3_dummy_rxtx_burst)
4620 		return 0;
4621 	else
4622 		return -ENOTSUP;
4623 }
4624 
4625 int
4626 hns3_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
4627 {
4628 	volatile struct hns3_desc *rxdp;
4629 	struct hns3_rx_queue *rxq;
4630 	struct rte_eth_dev *dev;
4631 	uint32_t bd_base_info;
4632 	uint16_t desc_id;
4633 
4634 	rxq = (struct hns3_rx_queue *)rx_queue;
4635 	if (offset >= rxq->nb_rx_desc)
4636 		return -EINVAL;
4637 
4638 	desc_id = (rxq->next_to_use + offset) % rxq->nb_rx_desc;
4639 	rxdp = &rxq->rx_ring[desc_id];
4640 	bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
4641 	dev = &rte_eth_devices[rxq->port_id];
4642 	if (dev->rx_pkt_burst == hns3_recv_pkts_simple ||
4643 	    dev->rx_pkt_burst == hns3_recv_scattered_pkts) {
4644 		if (offset >= rxq->nb_rx_desc - rxq->rx_free_hold)
4645 			return RTE_ETH_RX_DESC_UNAVAIL;
4646 	} else if (dev->rx_pkt_burst == hns3_recv_pkts_vec ||
4647 		   dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) {
4648 		if (offset >= rxq->nb_rx_desc - rxq->rx_rearm_nb)
4649 			return RTE_ETH_RX_DESC_UNAVAIL;
4650 	} else {
4651 		return RTE_ETH_RX_DESC_UNAVAIL;
4652 	}
4653 
4654 	if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
4655 		return RTE_ETH_RX_DESC_AVAIL;
4656 	else
4657 		return RTE_ETH_RX_DESC_DONE;
4658 }
4659 
4660 int
4661 hns3_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
4662 {
4663 	volatile struct hns3_desc *txdp;
4664 	struct hns3_tx_queue *txq;
4665 	struct rte_eth_dev *dev;
4666 	uint16_t desc_id;
4667 
4668 	txq = (struct hns3_tx_queue *)tx_queue;
4669 	if (offset >= txq->nb_tx_desc)
4670 		return -EINVAL;
4671 
4672 	dev = &rte_eth_devices[txq->port_id];
4673 	if (dev->tx_pkt_burst != hns3_xmit_pkts_simple &&
4674 	    dev->tx_pkt_burst != hns3_xmit_pkts &&
4675 	    dev->tx_pkt_burst != hns3_xmit_pkts_vec_sve &&
4676 	    dev->tx_pkt_burst != hns3_xmit_pkts_vec)
4677 		return RTE_ETH_TX_DESC_UNAVAIL;
4678 
4679 	desc_id = (txq->next_to_use + offset) % txq->nb_tx_desc;
4680 	txdp = &txq->tx_ring[desc_id];
4681 	if (txdp->tx.tp_fe_sc_vld_ra_ri & rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))
4682 		return RTE_ETH_TX_DESC_FULL;
4683 	else
4684 		return RTE_ETH_TX_DESC_DONE;
4685 }
4686 
4687 uint32_t
4688 hns3_rx_queue_count(void *rx_queue)
4689 {
4690 	/*
4691 	 * Number of BDs that have been processed by the driver
4692 	 * but have not been notified to the hardware.
4693 	 */
4694 	uint32_t driver_hold_bd_num;
4695 	struct hns3_rx_queue *rxq;
4696 	const struct rte_eth_dev *dev;
4697 	uint32_t fbd_num;
4698 
4699 	rxq = rx_queue;
4700 	dev = &rte_eth_devices[rxq->port_id];
4701 
4702 	fbd_num = hns3_read_dev(rxq, HNS3_RING_RX_FBDNUM_REG);
4703 	if (dev->rx_pkt_burst == hns3_recv_pkts_vec ||
4704 	    dev->rx_pkt_burst == hns3_recv_pkts_vec_sve)
4705 		driver_hold_bd_num = rxq->rx_rearm_nb;
4706 	else
4707 		driver_hold_bd_num = rxq->rx_free_hold;
4708 
4709 	if (fbd_num <= driver_hold_bd_num)
4710 		return 0;
4711 	else
4712 		return fbd_num - driver_hold_bd_num;
4713 }
4714 
4715 void
4716 hns3_enable_rxd_adv_layout(struct hns3_hw *hw)
4717 {
4718 	/*
4719 	 * If the hardware support rxd advanced layout, then driver enable it
4720 	 * default.
4721 	 */
4722 	if (hns3_dev_get_support(hw, RXD_ADV_LAYOUT))
4723 		hns3_write_dev(hw, HNS3_RXD_ADV_LAYOUT_EN_REG, 1);
4724 }
4725 
4726 void
4727 hns3_stop_tx_datapath(struct rte_eth_dev *dev)
4728 {
4729 	dev->tx_pkt_burst = hns3_dummy_rxtx_burst;
4730 	dev->tx_pkt_prepare = NULL;
4731 	rte_wmb();
4732 	/* Disable tx datapath on secondary process. */
4733 	hns3_mp_req_stop_tx(dev);
4734 	/* Prevent crashes when queues are still in use. */
4735 	rte_delay_ms(dev->data->nb_tx_queues);
4736 }
4737 
4738 void
4739 hns3_start_tx_datapath(struct rte_eth_dev *dev)
4740 {
4741 	eth_tx_prep_t prep = NULL;
4742 
4743 	dev->tx_pkt_burst = hns3_get_tx_function(dev, &prep);
4744 	dev->tx_pkt_prepare = prep;
4745 	hns3_mp_req_start_tx(dev);
4746 }
4747