xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision fdf7471cccb8be023037c218d1402c0549eb2c8e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdio.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <unistd.h>
12 #include <rte_atomic.h>
13 #include <rte_bus_pci.h>
14 #include <rte_common.h>
15 #include <rte_cycles.h>
16 #include <rte_dev.h>
17 #include <rte_eal.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_interrupts.h>
22 #include <rte_io.h>
23 #include <rte_log.h>
24 #include <rte_pci.h>
25 
26 #include "hns3_ethdev.h"
27 #include "hns3_logs.h"
28 #include "hns3_rxtx.h"
29 #include "hns3_intr.h"
30 #include "hns3_regs.h"
31 #include "hns3_dcb.h"
32 #include "hns3_mp.h"
33 
34 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE	32
35 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM	1
36 
37 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
38 #define HNS3_PORT_BASE_VLAN_DISABLE	0
39 #define HNS3_PORT_BASE_VLAN_ENABLE	1
40 #define HNS3_INVLID_PVID		0xFFFF
41 
42 #define HNS3_FILTER_TYPE_VF		0
43 #define HNS3_FILTER_TYPE_PORT		1
44 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
45 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
46 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
47 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
48 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
49 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
50 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
51 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
52 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
53 
54 /* Reset related Registers */
55 #define HNS3_GLOBAL_RESET_BIT		0
56 #define HNS3_CORE_RESET_BIT		1
57 #define HNS3_IMP_RESET_BIT		2
58 #define HNS3_FUN_RST_ING_B		0
59 
60 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
61 
62 #define HNS3_RESET_WAIT_MS	100
63 #define HNS3_RESET_WAIT_CNT	200
64 
65 int hns3_logtype_init;
66 int hns3_logtype_driver;
67 
68 enum hns3_evt_cause {
69 	HNS3_VECTOR0_EVENT_RST,
70 	HNS3_VECTOR0_EVENT_MBX,
71 	HNS3_VECTOR0_EVENT_ERR,
72 	HNS3_VECTOR0_EVENT_OTHER,
73 };
74 
75 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
76 						 uint64_t *levels);
77 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
78 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
79 				    int on);
80 
81 static void
82 hns3_pf_disable_irq0(struct hns3_hw *hw)
83 {
84 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
85 }
86 
87 static void
88 hns3_pf_enable_irq0(struct hns3_hw *hw)
89 {
90 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
91 }
92 
93 static enum hns3_evt_cause
94 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
95 {
96 	struct hns3_hw *hw = &hns->hw;
97 	uint32_t vector0_int_stats;
98 	uint32_t cmdq_src_val;
99 	uint32_t val;
100 	enum hns3_evt_cause ret;
101 
102 	/* fetch the events from their corresponding regs */
103 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
104 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
105 
106 	/*
107 	 * Assumption: If by any chance reset and mailbox events are reported
108 	 * together then we will only process reset event and defer the
109 	 * processing of the mailbox events. Since, we would have not cleared
110 	 * RX CMDQ event this time we would receive again another interrupt
111 	 * from H/W just for the mailbox.
112 	 */
113 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
114 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
115 		hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
116 		val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
117 		if (clearval) {
118 			hw->reset.stats.imp_cnt++;
119 			hns3_warn(hw, "IMP reset detected, clear reset status");
120 		} else {
121 			hns3_schedule_delayed_reset(hns);
122 			hns3_warn(hw, "IMP reset detected, don't clear reset status");
123 		}
124 
125 		ret = HNS3_VECTOR0_EVENT_RST;
126 		goto out;
127 	}
128 
129 	/* Global reset */
130 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
131 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
132 		hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
133 		val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
134 		if (clearval) {
135 			hw->reset.stats.global_cnt++;
136 			hns3_warn(hw, "Global reset detected, clear reset status");
137 		} else {
138 			hns3_schedule_delayed_reset(hns);
139 			hns3_warn(hw, "Global reset detected, don't clear reset status");
140 		}
141 
142 		ret = HNS3_VECTOR0_EVENT_RST;
143 		goto out;
144 	}
145 
146 	/* check for vector0 msix event source */
147 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK) {
148 		val = vector0_int_stats;
149 		ret = HNS3_VECTOR0_EVENT_ERR;
150 		goto out;
151 	}
152 
153 	/* check for vector0 mailbox(=CMDQ RX) event source */
154 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
155 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
156 		val = cmdq_src_val;
157 		ret = HNS3_VECTOR0_EVENT_MBX;
158 		goto out;
159 	}
160 
161 	if (clearval && (vector0_int_stats || cmdq_src_val))
162 		hns3_warn(hw, "surprise irq ector0_int_stats:0x%x cmdq_src_val:0x%x",
163 			  vector0_int_stats, cmdq_src_val);
164 	val = vector0_int_stats;
165 	ret = HNS3_VECTOR0_EVENT_OTHER;
166 out:
167 
168 	if (clearval)
169 		*clearval = val;
170 	return ret;
171 }
172 
173 static void
174 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
175 {
176 	if (event_type == HNS3_VECTOR0_EVENT_RST)
177 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
178 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
179 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
180 }
181 
182 static void
183 hns3_clear_all_event_cause(struct hns3_hw *hw)
184 {
185 	uint32_t vector0_int_stats;
186 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
187 
188 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
189 		hns3_warn(hw, "Probe during IMP reset interrupt");
190 
191 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
192 		hns3_warn(hw, "Probe during Global reset interrupt");
193 
194 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
195 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
196 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
197 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
198 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
199 }
200 
201 static void
202 hns3_interrupt_handler(void *param)
203 {
204 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
205 	struct hns3_adapter *hns = dev->data->dev_private;
206 	struct hns3_hw *hw = &hns->hw;
207 	enum hns3_evt_cause event_cause;
208 	uint32_t clearval = 0;
209 
210 	/* Disable interrupt */
211 	hns3_pf_disable_irq0(hw);
212 
213 	event_cause = hns3_check_event_cause(hns, &clearval);
214 
215 	/* vector 0 interrupt is shared with reset and mailbox source events. */
216 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
217 		hns3_handle_msix_error(hns, &hw->reset.request);
218 		hns3_schedule_reset(hns);
219 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST)
220 		hns3_schedule_reset(hns);
221 	else
222 		hns3_err(hw, "Received unknown event");
223 
224 	hns3_clear_event_cause(hw, event_cause, clearval);
225 	/* Enable interrupt if it is not cause by reset */
226 	hns3_pf_enable_irq0(hw);
227 }
228 
229 static int
230 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
231 {
232 #define HNS3_VLAN_OFFSET_160		160
233 	struct hns3_vlan_filter_pf_cfg_cmd *req;
234 	struct hns3_hw *hw = &hns->hw;
235 	uint8_t vlan_offset_byte_val;
236 	struct hns3_cmd_desc desc;
237 	uint8_t vlan_offset_byte;
238 	uint8_t vlan_offset_160;
239 	int ret;
240 
241 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
242 
243 	vlan_offset_160 = vlan_id / HNS3_VLAN_OFFSET_160;
244 	vlan_offset_byte = (vlan_id % HNS3_VLAN_OFFSET_160) / 8;
245 	vlan_offset_byte_val = 1 << (vlan_id % 8);
246 
247 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
248 	req->vlan_offset = vlan_offset_160;
249 	req->vlan_cfg = on ? 0 : 1;
250 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
251 
252 	ret = hns3_cmd_send(hw, &desc, 1);
253 	if (ret)
254 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
255 			 vlan_id, ret);
256 
257 	return ret;
258 }
259 
260 static void
261 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
262 {
263 	struct hns3_user_vlan_table *vlan_entry;
264 	struct hns3_pf *pf = &hns->pf;
265 
266 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
267 		if (vlan_entry->vlan_id == vlan_id) {
268 			if (vlan_entry->hd_tbl_status)
269 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
270 			LIST_REMOVE(vlan_entry, next);
271 			rte_free(vlan_entry);
272 			break;
273 		}
274 	}
275 }
276 
277 static void
278 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
279 			bool writen_to_tbl)
280 {
281 	struct hns3_user_vlan_table *vlan_entry;
282 	struct hns3_hw *hw = &hns->hw;
283 	struct hns3_pf *pf = &hns->pf;
284 
285 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
286 	if (vlan_entry == NULL) {
287 		hns3_err(hw, "Failed to malloc hns3 vlan table");
288 		return;
289 	}
290 
291 	vlan_entry->hd_tbl_status = writen_to_tbl;
292 	vlan_entry->vlan_id = vlan_id;
293 
294 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
295 }
296 
297 static int
298 hns3_restore_vlan_table(struct hns3_adapter *hns)
299 {
300 	struct hns3_user_vlan_table *vlan_entry;
301 	struct hns3_pf *pf = &hns->pf;
302 	uint16_t vlan_id;
303 	int ret = 0;
304 
305 	if (pf->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE) {
306 		ret = hns3_vlan_pvid_configure(hns, pf->port_base_vlan_cfg.pvid,
307 					       1);
308 		return ret;
309 	}
310 
311 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
312 		if (vlan_entry->hd_tbl_status) {
313 			vlan_id = vlan_entry->vlan_id;
314 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
315 			if (ret)
316 				break;
317 		}
318 	}
319 
320 	return ret;
321 }
322 
323 static int
324 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
325 {
326 	struct hns3_pf *pf = &hns->pf;
327 	bool writen_to_tbl = false;
328 	int ret = 0;
329 
330 	/*
331 	 * When vlan filter is enabled, hardware regards vlan id 0 as the entry
332 	 * for normal packet, deleting vlan id 0 is not allowed.
333 	 */
334 	if (on == 0 && vlan_id == 0)
335 		return 0;
336 
337 	/*
338 	 * When port base vlan enabled, we use port base vlan as the vlan
339 	 * filter condition. In this case, we don't update vlan filter table
340 	 * when user add new vlan or remove exist vlan, just update the
341 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
342 	 * table until port base vlan disabled
343 	 */
344 	if (pf->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
345 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
346 		writen_to_tbl = true;
347 	}
348 
349 	if (ret == 0 && vlan_id) {
350 		if (on)
351 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
352 		else
353 			hns3_rm_dev_vlan_table(hns, vlan_id);
354 	}
355 	return ret;
356 }
357 
358 static int
359 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
360 {
361 	struct hns3_adapter *hns = dev->data->dev_private;
362 	struct hns3_hw *hw = &hns->hw;
363 	int ret;
364 
365 	rte_spinlock_lock(&hw->lock);
366 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
367 	rte_spinlock_unlock(&hw->lock);
368 	return ret;
369 }
370 
371 static int
372 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
373 			 uint16_t tpid)
374 {
375 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
376 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
377 	struct hns3_hw *hw = &hns->hw;
378 	struct hns3_cmd_desc desc;
379 	int ret;
380 
381 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
382 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
383 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
384 		return -EINVAL;
385 	}
386 
387 	if (tpid != RTE_ETHER_TYPE_VLAN) {
388 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
389 		return -EINVAL;
390 	}
391 
392 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
393 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
394 
395 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
396 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
397 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
398 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
399 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
400 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
401 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
402 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
403 	}
404 
405 	ret = hns3_cmd_send(hw, &desc, 1);
406 	if (ret) {
407 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
408 			 ret);
409 		return ret;
410 	}
411 
412 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
413 
414 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
415 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
416 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
417 
418 	ret = hns3_cmd_send(hw, &desc, 1);
419 	if (ret)
420 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
421 			 ret);
422 	return ret;
423 }
424 
425 static int
426 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
427 		   uint16_t tpid)
428 {
429 	struct hns3_adapter *hns = dev->data->dev_private;
430 	struct hns3_hw *hw = &hns->hw;
431 	int ret;
432 
433 	rte_spinlock_lock(&hw->lock);
434 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
435 	rte_spinlock_unlock(&hw->lock);
436 	return ret;
437 }
438 
439 static int
440 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
441 			     struct hns3_rx_vtag_cfg *vcfg)
442 {
443 	struct hns3_vport_vtag_rx_cfg_cmd *req;
444 	struct hns3_hw *hw = &hns->hw;
445 	struct hns3_cmd_desc desc;
446 	uint16_t vport_id;
447 	uint8_t bitmap;
448 	int ret;
449 
450 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
451 
452 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
453 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
454 		     vcfg->strip_tag1_en ? 1 : 0);
455 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
456 		     vcfg->strip_tag2_en ? 1 : 0);
457 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
458 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
459 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
460 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
461 
462 	/*
463 	 * In current version VF is not supported when PF is driven by DPDK
464 	 * driver, the PF-related vf_id is 0, just need to configure parameters
465 	 * for vport_id 0.
466 	 */
467 	vport_id = 0;
468 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
469 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
470 	req->vf_bitmap[req->vf_offset] = bitmap;
471 
472 	ret = hns3_cmd_send(hw, &desc, 1);
473 	if (ret)
474 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
475 	return ret;
476 }
477 
478 static void
479 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
480 			   struct hns3_rx_vtag_cfg *vcfg)
481 {
482 	struct hns3_pf *pf = &hns->pf;
483 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
484 }
485 
486 static void
487 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
488 			   struct hns3_tx_vtag_cfg *vcfg)
489 {
490 	struct hns3_pf *pf = &hns->pf;
491 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
492 }
493 
494 static int
495 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
496 {
497 	struct hns3_rx_vtag_cfg rxvlan_cfg;
498 	struct hns3_pf *pf = &hns->pf;
499 	struct hns3_hw *hw = &hns->hw;
500 	int ret;
501 
502 	if (pf->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
503 		rxvlan_cfg.strip_tag1_en = false;
504 		rxvlan_cfg.strip_tag2_en = enable;
505 	} else {
506 		rxvlan_cfg.strip_tag1_en = enable;
507 		rxvlan_cfg.strip_tag2_en = true;
508 	}
509 
510 	rxvlan_cfg.vlan1_vlan_prionly = false;
511 	rxvlan_cfg.vlan2_vlan_prionly = false;
512 	rxvlan_cfg.rx_vlan_offload_en = enable;
513 
514 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
515 	if (ret) {
516 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
517 		return ret;
518 	}
519 
520 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
521 
522 	return ret;
523 }
524 
525 static int
526 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
527 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
528 {
529 	struct hns3_vlan_filter_ctrl_cmd *req;
530 	struct hns3_cmd_desc desc;
531 	int ret;
532 
533 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
534 
535 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
536 	req->vlan_type = vlan_type;
537 	req->vlan_fe = filter_en ? fe_type : 0;
538 	req->vf_id = vf_id;
539 
540 	ret = hns3_cmd_send(hw, &desc, 1);
541 	if (ret)
542 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
543 
544 	return ret;
545 }
546 
547 static int
548 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
549 {
550 	struct hns3_hw *hw = &hns->hw;
551 	int ret;
552 
553 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
554 					HNS3_FILTER_FE_EGRESS, false, 0);
555 	if (ret) {
556 		hns3_err(hw, "hns3 enable filter fail, ret =%d", ret);
557 		return ret;
558 	}
559 
560 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
561 					HNS3_FILTER_FE_INGRESS, enable, 0);
562 	if (ret)
563 		hns3_err(hw, "hns3 enable filter fail, ret =%d", ret);
564 
565 	return ret;
566 }
567 
568 static int
569 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
570 {
571 	struct hns3_adapter *hns = dev->data->dev_private;
572 	struct hns3_hw *hw = &hns->hw;
573 	struct rte_eth_rxmode *rxmode;
574 	unsigned int tmp_mask;
575 	bool enable;
576 	int ret = 0;
577 
578 	rte_spinlock_lock(&hw->lock);
579 	rxmode = &dev->data->dev_conf.rxmode;
580 	tmp_mask = (unsigned int)mask;
581 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
582 		/* Enable or disable VLAN stripping */
583 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
584 		    true : false;
585 
586 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
587 		if (ret) {
588 			rte_spinlock_unlock(&hw->lock);
589 			hns3_err(hw, "failed to enable rx strip, ret =%d", ret);
590 			return ret;
591 		}
592 	}
593 
594 	rte_spinlock_unlock(&hw->lock);
595 
596 	return ret;
597 }
598 
599 static int
600 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
601 			     struct hns3_tx_vtag_cfg *vcfg)
602 {
603 	struct hns3_vport_vtag_tx_cfg_cmd *req;
604 	struct hns3_cmd_desc desc;
605 	struct hns3_hw *hw = &hns->hw;
606 	uint16_t vport_id;
607 	uint8_t bitmap;
608 	int ret;
609 
610 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
611 
612 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
613 	req->def_vlan_tag1 = vcfg->default_tag1;
614 	req->def_vlan_tag2 = vcfg->default_tag2;
615 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
616 		     vcfg->accept_tag1 ? 1 : 0);
617 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
618 		     vcfg->accept_untag1 ? 1 : 0);
619 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
620 		     vcfg->accept_tag2 ? 1 : 0);
621 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
622 		     vcfg->accept_untag2 ? 1 : 0);
623 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
624 		     vcfg->insert_tag1_en ? 1 : 0);
625 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
626 		     vcfg->insert_tag2_en ? 1 : 0);
627 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
628 
629 	/*
630 	 * In current version VF is not supported when PF is driven by DPDK
631 	 * driver, the PF-related vf_id is 0, just need to configure parameters
632 	 * for vport_id 0.
633 	 */
634 	vport_id = 0;
635 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
636 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
637 	req->vf_bitmap[req->vf_offset] = bitmap;
638 
639 	ret = hns3_cmd_send(hw, &desc, 1);
640 	if (ret)
641 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
642 
643 	return ret;
644 }
645 
646 static int
647 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
648 		     uint16_t pvid)
649 {
650 	struct hns3_hw *hw = &hns->hw;
651 	struct hns3_tx_vtag_cfg txvlan_cfg;
652 	int ret;
653 
654 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
655 		txvlan_cfg.accept_tag1 = true;
656 		txvlan_cfg.insert_tag1_en = false;
657 		txvlan_cfg.default_tag1 = 0;
658 	} else {
659 		txvlan_cfg.accept_tag1 = false;
660 		txvlan_cfg.insert_tag1_en = true;
661 		txvlan_cfg.default_tag1 = pvid;
662 	}
663 
664 	txvlan_cfg.accept_untag1 = true;
665 	txvlan_cfg.accept_tag2 = true;
666 	txvlan_cfg.accept_untag2 = true;
667 	txvlan_cfg.insert_tag2_en = false;
668 	txvlan_cfg.default_tag2 = 0;
669 
670 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
671 	if (ret) {
672 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
673 			 ret);
674 		return ret;
675 	}
676 
677 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
678 	return ret;
679 }
680 
681 static void
682 hns3_store_port_base_vlan_info(struct hns3_adapter *hns, uint16_t pvid, int on)
683 {
684 	struct hns3_pf *pf = &hns->pf;
685 
686 	pf->port_base_vlan_cfg.state = on ?
687 	    HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
688 
689 	pf->port_base_vlan_cfg.pvid = pvid;
690 }
691 
692 static void
693 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
694 {
695 	struct hns3_user_vlan_table *vlan_entry;
696 	struct hns3_pf *pf = &hns->pf;
697 
698 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
699 		if (vlan_entry->hd_tbl_status)
700 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
701 
702 		vlan_entry->hd_tbl_status = false;
703 	}
704 
705 	if (is_del_list) {
706 		vlan_entry = LIST_FIRST(&pf->vlan_list);
707 		while (vlan_entry) {
708 			LIST_REMOVE(vlan_entry, next);
709 			rte_free(vlan_entry);
710 			vlan_entry = LIST_FIRST(&pf->vlan_list);
711 		}
712 	}
713 }
714 
715 static void
716 hns3_add_all_vlan_table(struct hns3_adapter *hns)
717 {
718 	struct hns3_user_vlan_table *vlan_entry;
719 	struct hns3_pf *pf = &hns->pf;
720 
721 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
722 		if (!vlan_entry->hd_tbl_status)
723 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
724 
725 		vlan_entry->hd_tbl_status = true;
726 	}
727 }
728 
729 static void
730 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
731 {
732 	struct hns3_hw *hw = &hns->hw;
733 	struct hns3_pf *pf = &hns->pf;
734 	int ret;
735 
736 	hns3_rm_all_vlan_table(hns, true);
737 	if (pf->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID) {
738 		ret = hns3_set_port_vlan_filter(hns,
739 						pf->port_base_vlan_cfg.pvid, 0);
740 		if (ret) {
741 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
742 				 ret);
743 			return;
744 		}
745 	}
746 }
747 
748 static int
749 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
750 				uint16_t port_base_vlan_state,
751 				uint16_t new_pvid, uint16_t old_pvid)
752 {
753 	struct hns3_pf *pf = &hns->pf;
754 	struct hns3_hw *hw = &hns->hw;
755 	int ret = 0;
756 
757 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
758 		if (old_pvid != HNS3_INVLID_PVID && old_pvid != 0) {
759 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
760 			if (ret) {
761 				hns3_err(hw,
762 					 "Failed to clear clear old pvid filter, ret =%d",
763 					 ret);
764 				return ret;
765 			}
766 		}
767 
768 		hns3_rm_all_vlan_table(hns, false);
769 		return hns3_set_port_vlan_filter(hns, new_pvid, 1);
770 	}
771 
772 	if (new_pvid != 0) {
773 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
774 		if (ret) {
775 			hns3_err(hw, "Failed to set port vlan filter, ret =%d",
776 				 ret);
777 			return ret;
778 		}
779 	}
780 
781 	if (new_pvid == pf->port_base_vlan_cfg.pvid)
782 		hns3_add_all_vlan_table(hns);
783 
784 	return ret;
785 }
786 
787 static int
788 hns3_en_rx_strip_all(struct hns3_adapter *hns, int on)
789 {
790 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
791 	struct hns3_hw *hw = &hns->hw;
792 	bool rx_strip_en;
793 	int ret;
794 
795 	rx_strip_en = on ? true : false;
796 	rx_vlan_cfg.strip_tag1_en = rx_strip_en;
797 	rx_vlan_cfg.strip_tag2_en = rx_strip_en;
798 	rx_vlan_cfg.vlan1_vlan_prionly = false;
799 	rx_vlan_cfg.vlan2_vlan_prionly = false;
800 	rx_vlan_cfg.rx_vlan_offload_en = rx_strip_en;
801 
802 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
803 	if (ret) {
804 		hns3_err(hw, "enable strip rx failed, ret =%d", ret);
805 		return ret;
806 	}
807 
808 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
809 	return ret;
810 }
811 
812 static int
813 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
814 {
815 	struct hns3_pf *pf = &hns->pf;
816 	struct hns3_hw *hw = &hns->hw;
817 	uint16_t port_base_vlan_state;
818 	uint16_t old_pvid;
819 	int ret;
820 
821 	if (on == 0 && pvid != pf->port_base_vlan_cfg.pvid) {
822 		if (pf->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID)
823 			hns3_warn(hw, "Invalid operation! As current pvid set "
824 				  "is %u, disable pvid %u is invalid",
825 				  pf->port_base_vlan_cfg.pvid, pvid);
826 		return 0;
827 	}
828 
829 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
830 				    HNS3_PORT_BASE_VLAN_DISABLE;
831 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
832 	if (ret) {
833 		hns3_err(hw, "Failed to config tx vlan, ret =%d", ret);
834 		return ret;
835 	}
836 
837 	ret = hns3_en_rx_strip_all(hns, on);
838 	if (ret) {
839 		hns3_err(hw, "Failed to config rx vlan strip, ret =%d", ret);
840 		return ret;
841 	}
842 
843 	if (pvid == HNS3_INVLID_PVID)
844 		goto out;
845 	old_pvid = pf->port_base_vlan_cfg.pvid;
846 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid,
847 					      old_pvid);
848 	if (ret) {
849 		hns3_err(hw, "Failed to update vlan filter entries, ret =%d",
850 			 ret);
851 		return ret;
852 	}
853 
854 out:
855 	hns3_store_port_base_vlan_info(hns, pvid, on);
856 	return ret;
857 }
858 
859 static int
860 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
861 {
862 	struct hns3_adapter *hns = dev->data->dev_private;
863 	struct hns3_hw *hw = &hns->hw;
864 	int ret;
865 
866 	rte_spinlock_lock(&hw->lock);
867 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
868 	rte_spinlock_unlock(&hw->lock);
869 	return ret;
870 }
871 
872 static void
873 init_port_base_vlan_info(struct hns3_hw *hw)
874 {
875 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
876 	struct hns3_pf *pf = &hns->pf;
877 
878 	pf->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
879 	pf->port_base_vlan_cfg.pvid = HNS3_INVLID_PVID;
880 }
881 
882 static int
883 hns3_default_vlan_config(struct hns3_adapter *hns)
884 {
885 	struct hns3_hw *hw = &hns->hw;
886 	int ret;
887 
888 	ret = hns3_set_port_vlan_filter(hns, 0, 1);
889 	if (ret)
890 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
891 	return ret;
892 }
893 
894 static int
895 hns3_init_vlan_config(struct hns3_adapter *hns)
896 {
897 	struct hns3_hw *hw = &hns->hw;
898 	int ret;
899 
900 	/*
901 	 * This function can be called in the initialization and reset process,
902 	 * when in reset process, it means that hardware had been reseted
903 	 * successfully and we need to restore the hardware configuration to
904 	 * ensure that the hardware configuration remains unchanged before and
905 	 * after reset.
906 	 */
907 	if (rte_atomic16_read(&hw->reset.resetting) == 0)
908 		init_port_base_vlan_info(hw);
909 
910 	ret = hns3_enable_vlan_filter(hns, true);
911 	if (ret) {
912 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
913 		return ret;
914 	}
915 
916 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
917 				       RTE_ETHER_TYPE_VLAN);
918 	if (ret) {
919 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
920 		return ret;
921 	}
922 
923 	/*
924 	 * When in the reinit dev stage of the reset process, the following
925 	 * vlan-related configurations may differ from those at initialization,
926 	 * we will restore configurations to hardware in hns3_restore_vlan_table
927 	 * and hns3_restore_vlan_conf later.
928 	 */
929 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
930 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVLID_PVID, 0);
931 		if (ret) {
932 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
933 			return ret;
934 		}
935 
936 		ret = hns3_en_hw_strip_rxvtag(hns, false);
937 		if (ret) {
938 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
939 				 ret);
940 			return ret;
941 		}
942 	}
943 
944 	return hns3_default_vlan_config(hns);
945 }
946 
947 static int
948 hns3_restore_vlan_conf(struct hns3_adapter *hns)
949 {
950 	struct hns3_pf *pf = &hns->pf;
951 	struct hns3_hw *hw = &hns->hw;
952 	int ret;
953 
954 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
955 	if (ret) {
956 		hns3_err(hw, "hns3 restore vlan rx conf fail, ret =%d", ret);
957 		return ret;
958 	}
959 
960 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
961 	if (ret)
962 		hns3_err(hw, "hns3 restore vlan tx conf fail, ret =%d", ret);
963 
964 	return ret;
965 }
966 
967 static int
968 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
969 {
970 	struct hns3_adapter *hns = dev->data->dev_private;
971 	struct rte_eth_dev_data *data = dev->data;
972 	struct rte_eth_txmode *txmode;
973 	struct hns3_hw *hw = &hns->hw;
974 	int ret;
975 
976 	txmode = &data->dev_conf.txmode;
977 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
978 		hns3_warn(hw,
979 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
980 			  "configuration is not supported! Ignore these two "
981 			  "parameters: hw_vlan_reject_tagged(%d), "
982 			  "hw_vlan_reject_untagged(%d)",
983 			  txmode->hw_vlan_reject_tagged,
984 			  txmode->hw_vlan_reject_untagged);
985 
986 	/* Apply vlan offload setting */
987 	ret = hns3_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
988 	if (ret) {
989 		hns3_err(hw, "dev config vlan Strip failed, ret =%d", ret);
990 		return ret;
991 	}
992 
993 	/* Apply pvid setting */
994 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
995 				 txmode->hw_vlan_insert_pvid);
996 	if (ret)
997 		hns3_err(hw, "dev config vlan pvid(%d) failed, ret =%d",
998 			 txmode->pvid, ret);
999 
1000 	return ret;
1001 }
1002 
1003 static int
1004 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1005 		unsigned int tso_mss_max)
1006 {
1007 	struct hns3_cfg_tso_status_cmd *req;
1008 	struct hns3_cmd_desc desc;
1009 	uint16_t tso_mss;
1010 
1011 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1012 
1013 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1014 
1015 	tso_mss = 0;
1016 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1017 		       tso_mss_min);
1018 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1019 
1020 	tso_mss = 0;
1021 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1022 		       tso_mss_max);
1023 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1024 
1025 	return hns3_cmd_send(hw, &desc, 1);
1026 }
1027 
1028 int
1029 hns3_config_gro(struct hns3_hw *hw, bool en)
1030 {
1031 	struct hns3_cfg_gro_status_cmd *req;
1032 	struct hns3_cmd_desc desc;
1033 	int ret;
1034 
1035 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false);
1036 	req = (struct hns3_cfg_gro_status_cmd *)desc.data;
1037 
1038 	req->gro_en = rte_cpu_to_le_16(en ? 1 : 0);
1039 
1040 	ret = hns3_cmd_send(hw, &desc, 1);
1041 	if (ret)
1042 		hns3_err(hw, "GRO hardware config cmd failed, ret = %d", ret);
1043 
1044 	return ret;
1045 }
1046 
1047 static int
1048 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1049 		   uint16_t *allocated_size, bool is_alloc)
1050 {
1051 	struct hns3_umv_spc_alc_cmd *req;
1052 	struct hns3_cmd_desc desc;
1053 	int ret;
1054 
1055 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1056 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1057 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1058 	req->space_size = rte_cpu_to_le_32(space_size);
1059 
1060 	ret = hns3_cmd_send(hw, &desc, 1);
1061 	if (ret) {
1062 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1063 			     is_alloc ? "allocate" : "free", ret);
1064 		return ret;
1065 	}
1066 
1067 	if (is_alloc && allocated_size)
1068 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1069 
1070 	return 0;
1071 }
1072 
1073 static int
1074 hns3_init_umv_space(struct hns3_hw *hw)
1075 {
1076 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1077 	struct hns3_pf *pf = &hns->pf;
1078 	uint16_t allocated_size = 0;
1079 	int ret;
1080 
1081 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1082 				 true);
1083 	if (ret)
1084 		return ret;
1085 
1086 	if (allocated_size < pf->wanted_umv_size)
1087 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1088 			     pf->wanted_umv_size, allocated_size);
1089 
1090 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1091 						pf->wanted_umv_size;
1092 	pf->used_umv_size = 0;
1093 	return 0;
1094 }
1095 
1096 static int
1097 hns3_uninit_umv_space(struct hns3_hw *hw)
1098 {
1099 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1100 	struct hns3_pf *pf = &hns->pf;
1101 	int ret;
1102 
1103 	if (pf->max_umv_size == 0)
1104 		return 0;
1105 
1106 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1107 	if (ret)
1108 		return ret;
1109 
1110 	pf->max_umv_size = 0;
1111 
1112 	return 0;
1113 }
1114 
1115 static bool
1116 hns3_is_umv_space_full(struct hns3_hw *hw)
1117 {
1118 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1119 	struct hns3_pf *pf = &hns->pf;
1120 	bool is_full;
1121 
1122 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1123 
1124 	return is_full;
1125 }
1126 
1127 static void
1128 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1129 {
1130 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1131 	struct hns3_pf *pf = &hns->pf;
1132 
1133 	if (is_free) {
1134 		if (pf->used_umv_size > 0)
1135 			pf->used_umv_size--;
1136 	} else
1137 		pf->used_umv_size++;
1138 }
1139 
1140 static void
1141 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1142 		      const uint8_t *addr, bool is_mc)
1143 {
1144 	const unsigned char *mac_addr = addr;
1145 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1146 			    ((uint32_t)mac_addr[2] << 16) |
1147 			    ((uint32_t)mac_addr[1] << 8) |
1148 			    (uint32_t)mac_addr[0];
1149 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1150 
1151 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1152 	if (is_mc) {
1153 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1154 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1155 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1156 	}
1157 
1158 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1159 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1160 }
1161 
1162 static int
1163 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1164 			     uint8_t resp_code,
1165 			     enum hns3_mac_vlan_tbl_opcode op)
1166 {
1167 	if (cmdq_resp) {
1168 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1169 			 cmdq_resp);
1170 		return -EIO;
1171 	}
1172 
1173 	if (op == HNS3_MAC_VLAN_ADD) {
1174 		if (resp_code == 0 || resp_code == 1) {
1175 			return 0;
1176 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1177 			hns3_err(hw, "add mac addr failed for uc_overflow");
1178 			return -ENOSPC;
1179 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1180 			hns3_err(hw, "add mac addr failed for mc_overflow");
1181 			return -ENOSPC;
1182 		}
1183 
1184 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1185 			 resp_code);
1186 		return -EIO;
1187 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1188 		if (resp_code == 0) {
1189 			return 0;
1190 		} else if (resp_code == 1) {
1191 			hns3_dbg(hw, "remove mac addr failed for miss");
1192 			return -ENOENT;
1193 		}
1194 
1195 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1196 			 resp_code);
1197 		return -EIO;
1198 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1199 		if (resp_code == 0) {
1200 			return 0;
1201 		} else if (resp_code == 1) {
1202 			hns3_dbg(hw, "lookup mac addr failed for miss");
1203 			return -ENOENT;
1204 		}
1205 
1206 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1207 			 resp_code);
1208 		return -EIO;
1209 	}
1210 
1211 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1212 		 op);
1213 
1214 	return -EINVAL;
1215 }
1216 
1217 static int
1218 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1219 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1220 			 struct hns3_cmd_desc *desc, bool is_mc)
1221 {
1222 	uint8_t resp_code;
1223 	uint16_t retval;
1224 	int ret;
1225 
1226 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1227 	if (is_mc) {
1228 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1229 		memcpy(desc[0].data, req,
1230 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1231 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1232 					  true);
1233 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1234 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1235 					  true);
1236 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1237 	} else {
1238 		memcpy(desc[0].data, req,
1239 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1240 		ret = hns3_cmd_send(hw, desc, 1);
1241 	}
1242 	if (ret) {
1243 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1244 			 ret);
1245 		return ret;
1246 	}
1247 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1248 	retval = rte_le_to_cpu_16(desc[0].retval);
1249 
1250 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1251 					    HNS3_MAC_VLAN_LKUP);
1252 }
1253 
1254 static int
1255 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1256 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1257 		      struct hns3_cmd_desc *mc_desc)
1258 {
1259 	uint8_t resp_code;
1260 	uint16_t retval;
1261 	int cfg_status;
1262 	int ret;
1263 
1264 	if (mc_desc == NULL) {
1265 		struct hns3_cmd_desc desc;
1266 
1267 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1268 		memcpy(desc.data, req,
1269 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1270 		ret = hns3_cmd_send(hw, &desc, 1);
1271 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1272 		retval = rte_le_to_cpu_16(desc.retval);
1273 
1274 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1275 							  HNS3_MAC_VLAN_ADD);
1276 	} else {
1277 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1278 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1279 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1280 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1281 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1282 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1283 		memcpy(mc_desc[0].data, req,
1284 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1285 		mc_desc[0].retval = 0;
1286 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1287 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1288 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1289 
1290 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1291 							  HNS3_MAC_VLAN_ADD);
1292 	}
1293 
1294 	if (ret) {
1295 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1296 		return ret;
1297 	}
1298 
1299 	return cfg_status;
1300 }
1301 
1302 static int
1303 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1304 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1305 {
1306 	struct hns3_cmd_desc desc;
1307 	uint8_t resp_code;
1308 	uint16_t retval;
1309 	int ret;
1310 
1311 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1312 
1313 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1314 
1315 	ret = hns3_cmd_send(hw, &desc, 1);
1316 	if (ret) {
1317 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1318 		return ret;
1319 	}
1320 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1321 	retval = rte_le_to_cpu_16(desc.retval);
1322 
1323 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1324 					    HNS3_MAC_VLAN_REMOVE);
1325 }
1326 
1327 static int
1328 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1329 {
1330 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1331 	struct hns3_mac_vlan_tbl_entry_cmd req;
1332 	struct hns3_pf *pf = &hns->pf;
1333 	struct hns3_cmd_desc desc;
1334 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1335 	uint16_t egress_port = 0;
1336 	uint8_t vf_id;
1337 	int ret;
1338 
1339 	/* check if mac addr is valid */
1340 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1341 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1342 				      mac_addr);
1343 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1344 			 mac_str);
1345 		return -EINVAL;
1346 	}
1347 
1348 	memset(&req, 0, sizeof(req));
1349 
1350 	/*
1351 	 * In current version VF is not supported when PF is driven by DPDK
1352 	 * driver, the PF-related vf_id is 0, just need to configure parameters
1353 	 * for vf_id 0.
1354 	 */
1355 	vf_id = 0;
1356 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1357 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1358 
1359 	req.egress_port = rte_cpu_to_le_16(egress_port);
1360 
1361 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1362 
1363 	/*
1364 	 * Lookup the mac address in the mac_vlan table, and add
1365 	 * it if the entry is inexistent. Repeated unicast entry
1366 	 * is not allowed in the mac vlan table.
1367 	 */
1368 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc, false);
1369 	if (ret == -ENOENT) {
1370 		if (!hns3_is_umv_space_full(hw)) {
1371 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1372 			if (!ret)
1373 				hns3_update_umv_space(hw, false);
1374 			return ret;
1375 		}
1376 
1377 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1378 
1379 		return -ENOSPC;
1380 	}
1381 
1382 	rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1383 
1384 	/* check if we just hit the duplicate */
1385 	if (ret == 0) {
1386 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1387 		return 0;
1388 	}
1389 
1390 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1391 		 mac_str);
1392 
1393 	return ret;
1394 }
1395 
1396 static int
1397 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1398 		  uint32_t idx, __attribute__ ((unused)) uint32_t pool)
1399 {
1400 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1401 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1402 	int ret;
1403 
1404 	rte_spinlock_lock(&hw->lock);
1405 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1406 	if (ret) {
1407 		rte_spinlock_unlock(&hw->lock);
1408 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1409 				      mac_addr);
1410 		hns3_err(hw, "Failed to add mac addr(%s): %d", mac_str, ret);
1411 		return ret;
1412 	}
1413 
1414 	if (idx == 0)
1415 		hw->mac.default_addr_setted = true;
1416 	rte_spinlock_unlock(&hw->lock);
1417 
1418 	return ret;
1419 }
1420 
1421 static int
1422 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1423 {
1424 	struct hns3_mac_vlan_tbl_entry_cmd req;
1425 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1426 	int ret;
1427 
1428 	/* check if mac addr is valid */
1429 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1430 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1431 				      mac_addr);
1432 		hns3_err(hw, "Remove unicast mac addr err! addr(%s) invalid",
1433 			 mac_str);
1434 		return -EINVAL;
1435 	}
1436 
1437 	memset(&req, 0, sizeof(req));
1438 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1439 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1440 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1441 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1442 		return 0;
1443 	else if (ret == 0)
1444 		hns3_update_umv_space(hw, true);
1445 
1446 	return ret;
1447 }
1448 
1449 static void
1450 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1451 {
1452 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1453 	/* index will be checked by upper level rte interface */
1454 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1455 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1456 	int ret;
1457 
1458 	rte_spinlock_lock(&hw->lock);
1459 	ret = hns3_remove_uc_addr_common(hw, mac_addr);
1460 	if (ret) {
1461 		rte_spinlock_unlock(&hw->lock);
1462 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1463 				      mac_addr);
1464 		hns3_err(hw, "Failed to remove mac addr(%s): %d", mac_str, ret);
1465 		return;
1466 	}
1467 
1468 	if (idx == 0)
1469 		hw->mac.default_addr_setted = false;
1470 	rte_spinlock_unlock(&hw->lock);
1471 }
1472 
1473 static int
1474 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1475 			  struct rte_ether_addr *mac_addr)
1476 {
1477 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1478 	struct rte_ether_addr *oaddr;
1479 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1480 	bool default_addr_setted;
1481 	bool rm_succes = false;
1482 	int ret, ret_val;
1483 
1484 	/* check if mac addr is valid */
1485 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1486 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1487 				      mac_addr);
1488 		hns3_err(hw, "Failed to set mac addr, addr(%s) invalid",
1489 			 mac_str);
1490 		return -EINVAL;
1491 	}
1492 
1493 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1494 	default_addr_setted = hw->mac.default_addr_setted;
1495 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1496 		return 0;
1497 
1498 	rte_spinlock_lock(&hw->lock);
1499 	if (default_addr_setted) {
1500 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1501 		if (ret) {
1502 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1503 					      oaddr);
1504 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1505 				  mac_str, ret);
1506 			rm_succes = false;
1507 		} else
1508 			rm_succes = true;
1509 	}
1510 
1511 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1512 	if (ret) {
1513 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1514 				      mac_addr);
1515 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1516 		goto err_add_uc_addr;
1517 	}
1518 
1519 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1520 	if (ret) {
1521 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1522 		goto err_pause_addr_cfg;
1523 	}
1524 
1525 	rte_ether_addr_copy(mac_addr,
1526 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1527 	hw->mac.default_addr_setted = true;
1528 	rte_spinlock_unlock(&hw->lock);
1529 
1530 	return 0;
1531 
1532 err_pause_addr_cfg:
1533 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1534 	if (ret_val) {
1535 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1536 				      mac_addr);
1537 		hns3_warn(hw,
1538 			  "Failed to roll back to del setted mac addr(%s): %d",
1539 			  mac_str, ret_val);
1540 	}
1541 
1542 err_add_uc_addr:
1543 	if (rm_succes) {
1544 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1545 		if (ret_val) {
1546 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1547 					      oaddr);
1548 			hns3_warn(hw,
1549 				  "Failed to restore old uc mac addr(%s): %d",
1550 				  mac_str, ret_val);
1551 			hw->mac.default_addr_setted = false;
1552 		}
1553 	}
1554 	rte_spinlock_unlock(&hw->lock);
1555 
1556 	return ret;
1557 }
1558 
1559 static int
1560 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1561 {
1562 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1563 	struct hns3_hw *hw = &hns->hw;
1564 	struct rte_ether_addr *addr;
1565 	int err = 0;
1566 	int ret;
1567 	int i;
1568 
1569 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1570 		addr = &hw->data->mac_addrs[i];
1571 		if (!rte_is_valid_assigned_ether_addr(addr))
1572 			continue;
1573 		if (del)
1574 			ret = hns3_remove_uc_addr_common(hw, addr);
1575 		else
1576 			ret = hns3_add_uc_addr_common(hw, addr);
1577 		if (ret) {
1578 			err = ret;
1579 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1580 					      addr);
1581 			hns3_dbg(hw,
1582 				 "Failed to %s mac addr(%s). ret:%d i:%d",
1583 				 del ? "remove" : "restore", mac_str, ret, i);
1584 		}
1585 	}
1586 	return err;
1587 }
1588 
1589 static void
1590 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1591 {
1592 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1593 	uint8_t word_num;
1594 	uint8_t bit_num;
1595 
1596 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1597 		word_num = vfid / 32;
1598 		bit_num = vfid % 32;
1599 		if (clr)
1600 			desc[1].data[word_num] &=
1601 			    rte_cpu_to_le_32(~(1UL << bit_num));
1602 		else
1603 			desc[1].data[word_num] |=
1604 			    rte_cpu_to_le_32(1UL << bit_num);
1605 	} else {
1606 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1607 		bit_num = vfid % 32;
1608 		if (clr)
1609 			desc[2].data[word_num] &=
1610 			    rte_cpu_to_le_32(~(1UL << bit_num));
1611 		else
1612 			desc[2].data[word_num] |=
1613 			    rte_cpu_to_le_32(1UL << bit_num);
1614 	}
1615 }
1616 
1617 static int
1618 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1619 {
1620 	struct hns3_mac_vlan_tbl_entry_cmd req;
1621 	struct hns3_cmd_desc desc[3];
1622 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1623 	uint8_t vf_id;
1624 	int ret;
1625 
1626 	/* Check if mac addr is valid */
1627 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1628 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1629 				      mac_addr);
1630 		hns3_err(hw, "Failed to add mc mac addr, addr(%s) invalid",
1631 			 mac_str);
1632 		return -EINVAL;
1633 	}
1634 
1635 	memset(&req, 0, sizeof(req));
1636 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1637 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1638 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1639 	if (ret) {
1640 		/* This mac addr do not exist, add new entry for it */
1641 		memset(desc[0].data, 0, sizeof(desc[0].data));
1642 		memset(desc[1].data, 0, sizeof(desc[0].data));
1643 		memset(desc[2].data, 0, sizeof(desc[0].data));
1644 	}
1645 
1646 	/*
1647 	 * In current version VF is not supported when PF is driven by DPDK
1648 	 * driver, the PF-related vf_id is 0, just need to configure parameters
1649 	 * for vf_id 0.
1650 	 */
1651 	vf_id = 0;
1652 	hns3_update_desc_vfid(desc, vf_id, false);
1653 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1654 	if (ret) {
1655 		if (ret == -ENOSPC)
1656 			hns3_err(hw, "mc mac vlan table is full");
1657 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1658 				      mac_addr);
1659 		hns3_err(hw, "Failed to add mc mac addr(%s): %d", mac_str, ret);
1660 	}
1661 
1662 	return ret;
1663 }
1664 
1665 static int
1666 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1667 {
1668 	struct hns3_mac_vlan_tbl_entry_cmd req;
1669 	struct hns3_cmd_desc desc[3];
1670 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1671 	uint8_t vf_id;
1672 	int ret;
1673 
1674 	/* Check if mac addr is valid */
1675 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1676 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1677 				      mac_addr);
1678 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1679 			 mac_str);
1680 		return -EINVAL;
1681 	}
1682 
1683 	memset(&req, 0, sizeof(req));
1684 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1685 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1686 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1687 	if (ret == 0) {
1688 		/*
1689 		 * This mac addr exist, remove this handle's VFID for it.
1690 		 * In current version VF is not supported when PF is driven by
1691 		 * DPDK driver, the PF-related vf_id is 0, just need to
1692 		 * configure parameters for vf_id 0.
1693 		 */
1694 		vf_id = 0;
1695 		hns3_update_desc_vfid(desc, vf_id, true);
1696 
1697 		/* All the vfid is zero, so need to delete this entry */
1698 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1699 	} else if (ret == -ENOENT) {
1700 		/* This mac addr doesn't exist. */
1701 		return 0;
1702 	}
1703 
1704 	if (ret) {
1705 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1706 				      mac_addr);
1707 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1708 	}
1709 
1710 	return ret;
1711 }
1712 
1713 static int
1714 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1715 			   struct rte_ether_addr *mc_addr_set,
1716 			   uint32_t nb_mc_addr)
1717 {
1718 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1719 	struct rte_ether_addr *addr;
1720 	uint32_t i;
1721 	uint32_t j;
1722 
1723 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1724 		hns3_err(hw, "Failed to set mc mac addr, nb_mc_addr(%d) "
1725 			 "invalid. valid range: 0~%d",
1726 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1727 		return -EINVAL;
1728 	}
1729 
1730 	/* Check if input mac addresses are valid */
1731 	for (i = 0; i < nb_mc_addr; i++) {
1732 		addr = &mc_addr_set[i];
1733 		if (!rte_is_multicast_ether_addr(addr)) {
1734 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1735 					      addr);
1736 			hns3_err(hw,
1737 				 "Failed to set mc mac addr, addr(%s) invalid.",
1738 				 mac_str);
1739 			return -EINVAL;
1740 		}
1741 
1742 		/* Check if there are duplicate addresses */
1743 		for (j = i + 1; j < nb_mc_addr; j++) {
1744 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1745 				rte_ether_format_addr(mac_str,
1746 						      RTE_ETHER_ADDR_FMT_SIZE,
1747 						      addr);
1748 				hns3_err(hw, "Failed to set mc mac addr, "
1749 					 "addrs invalid. two same addrs(%s).",
1750 					 mac_str);
1751 				return -EINVAL;
1752 			}
1753 		}
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 static void
1760 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
1761 			   struct rte_ether_addr *mc_addr_set,
1762 			   int mc_addr_num,
1763 			   struct rte_ether_addr *reserved_addr_list,
1764 			   int *reserved_addr_num,
1765 			   struct rte_ether_addr *add_addr_list,
1766 			   int *add_addr_num,
1767 			   struct rte_ether_addr *rm_addr_list,
1768 			   int *rm_addr_num)
1769 {
1770 	struct rte_ether_addr *addr;
1771 	int current_addr_num;
1772 	int reserved_num = 0;
1773 	int add_num = 0;
1774 	int rm_num = 0;
1775 	int num;
1776 	int i;
1777 	int j;
1778 	bool same_addr;
1779 
1780 	/* Calculate the mc mac address list that should be removed */
1781 	current_addr_num = hw->mc_addrs_num;
1782 	for (i = 0; i < current_addr_num; i++) {
1783 		addr = &hw->mc_addrs[i];
1784 		same_addr = false;
1785 		for (j = 0; j < mc_addr_num; j++) {
1786 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1787 				same_addr = true;
1788 				break;
1789 			}
1790 		}
1791 
1792 		if (!same_addr) {
1793 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
1794 			rm_num++;
1795 		} else {
1796 			rte_ether_addr_copy(addr,
1797 					    &reserved_addr_list[reserved_num]);
1798 			reserved_num++;
1799 		}
1800 	}
1801 
1802 	/* Calculate the mc mac address list that should be added */
1803 	for (i = 0; i < mc_addr_num; i++) {
1804 		addr = &mc_addr_set[i];
1805 		same_addr = false;
1806 		for (j = 0; j < current_addr_num; j++) {
1807 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
1808 				same_addr = true;
1809 				break;
1810 			}
1811 		}
1812 
1813 		if (!same_addr) {
1814 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
1815 			add_num++;
1816 		}
1817 	}
1818 
1819 	/* Reorder the mc mac address list maintained by driver */
1820 	for (i = 0; i < reserved_num; i++)
1821 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
1822 
1823 	for (i = 0; i < rm_num; i++) {
1824 		num = reserved_num + i;
1825 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
1826 	}
1827 
1828 	*reserved_addr_num = reserved_num;
1829 	*add_addr_num = add_num;
1830 	*rm_addr_num = rm_num;
1831 }
1832 
1833 static int
1834 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
1835 			  struct rte_ether_addr *mc_addr_set,
1836 			  uint32_t nb_mc_addr)
1837 {
1838 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1839 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
1840 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
1841 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
1842 	struct rte_ether_addr *addr;
1843 	int reserved_addr_num;
1844 	int add_addr_num;
1845 	int rm_addr_num;
1846 	int mc_addr_num;
1847 	int num;
1848 	int ret;
1849 	int i;
1850 
1851 	/* Check if input parameters are valid */
1852 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
1853 	if (ret)
1854 		return ret;
1855 
1856 	rte_spinlock_lock(&hw->lock);
1857 
1858 	/*
1859 	 * Calculate the mc mac address lists those should be removed and be
1860 	 * added, Reorder the mc mac address list maintained by driver.
1861 	 */
1862 	mc_addr_num = (int)nb_mc_addr;
1863 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
1864 				   reserved_addr_list, &reserved_addr_num,
1865 				   add_addr_list, &add_addr_num,
1866 				   rm_addr_list, &rm_addr_num);
1867 
1868 	/* Remove mc mac addresses */
1869 	for (i = 0; i < rm_addr_num; i++) {
1870 		num = rm_addr_num - i - 1;
1871 		addr = &rm_addr_list[num];
1872 		ret = hns3_remove_mc_addr(hw, addr);
1873 		if (ret) {
1874 			rte_spinlock_unlock(&hw->lock);
1875 			return ret;
1876 		}
1877 		hw->mc_addrs_num--;
1878 	}
1879 
1880 	/* Add mc mac addresses */
1881 	for (i = 0; i < add_addr_num; i++) {
1882 		addr = &add_addr_list[i];
1883 		ret = hns3_add_mc_addr(hw, addr);
1884 		if (ret) {
1885 			rte_spinlock_unlock(&hw->lock);
1886 			return ret;
1887 		}
1888 
1889 		num = reserved_addr_num + i;
1890 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
1891 		hw->mc_addrs_num++;
1892 	}
1893 	rte_spinlock_unlock(&hw->lock);
1894 
1895 	return 0;
1896 }
1897 
1898 static int
1899 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
1900 {
1901 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1902 	struct hns3_hw *hw = &hns->hw;
1903 	struct rte_ether_addr *addr;
1904 	int err = 0;
1905 	int ret;
1906 	int i;
1907 
1908 	for (i = 0; i < hw->mc_addrs_num; i++) {
1909 		addr = &hw->mc_addrs[i];
1910 		if (!rte_is_multicast_ether_addr(addr))
1911 			continue;
1912 		if (del)
1913 			ret = hns3_remove_mc_addr(hw, addr);
1914 		else
1915 			ret = hns3_add_mc_addr(hw, addr);
1916 		if (ret) {
1917 			err = ret;
1918 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1919 					      addr);
1920 			hns3_dbg(hw, "%s mc mac addr: %s failed",
1921 				 del ? "Remove" : "Restore", mac_str);
1922 		}
1923 	}
1924 	return err;
1925 }
1926 
1927 static int
1928 hns3_check_mq_mode(struct rte_eth_dev *dev)
1929 {
1930 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1931 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1932 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1933 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1934 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
1935 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
1936 	uint8_t num_tc;
1937 	int max_tc = 0;
1938 	int i;
1939 
1940 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
1941 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
1942 
1943 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
1944 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
1945 			 "rx_mq_mode = %d", rx_mq_mode);
1946 		return -EINVAL;
1947 	}
1948 
1949 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
1950 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1951 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
1952 			 "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
1953 			 rx_mq_mode, tx_mq_mode);
1954 		return -EINVAL;
1955 	}
1956 
1957 	if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
1958 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
1959 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
1960 				 dcb_rx_conf->nb_tcs, pf->tc_max);
1961 			return -EINVAL;
1962 		}
1963 
1964 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
1965 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
1966 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
1967 				 "nb_tcs(%d) != %d or %d in rx direction.",
1968 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
1969 			return -EINVAL;
1970 		}
1971 
1972 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
1973 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
1974 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
1975 			return -EINVAL;
1976 		}
1977 
1978 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
1979 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
1980 				hns3_err(hw, "dcb_tc[%d] = %d in rx direction, "
1981 					 "is not equal to one in tx direction.",
1982 					 i, dcb_rx_conf->dcb_tc[i]);
1983 				return -EINVAL;
1984 			}
1985 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
1986 				max_tc = dcb_rx_conf->dcb_tc[i];
1987 		}
1988 
1989 		num_tc = max_tc + 1;
1990 		if (num_tc > dcb_rx_conf->nb_tcs) {
1991 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
1992 				 num_tc, dcb_rx_conf->nb_tcs);
1993 			return -EINVAL;
1994 		}
1995 	}
1996 
1997 	return 0;
1998 }
1999 
2000 static int
2001 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2002 {
2003 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2004 
2005 	if (!hns3_dev_dcb_supported(hw)) {
2006 		hns3_err(hw, "this port does not support dcb configurations.");
2007 		return -EOPNOTSUPP;
2008 	}
2009 
2010 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2011 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2012 		return -EOPNOTSUPP;
2013 	}
2014 
2015 	/* Check multiple queue mode */
2016 	return hns3_check_mq_mode(dev);
2017 }
2018 
2019 static int
2020 hns3_dev_configure(struct rte_eth_dev *dev)
2021 {
2022 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2023 	struct hns3_rss_conf *rss_cfg = &hw->rss_info;
2024 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2025 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2026 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2027 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2028 	struct rte_eth_rss_conf rss_conf;
2029 	uint16_t mtu;
2030 	int ret;
2031 
2032 	/*
2033 	 * Hardware does not support where the number of rx and tx queues is
2034 	 * not equal in hip08.
2035 	 */
2036 	if (nb_rx_q != nb_tx_q) {
2037 		hns3_err(hw,
2038 			 "nb_rx_queues(%u) not equal with nb_tx_queues(%u)! "
2039 			 "Hardware does not support this configuration!",
2040 			 nb_rx_q, nb_tx_q);
2041 		return -EINVAL;
2042 	}
2043 
2044 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2045 		hns3_err(hw, "setting link speed/duplex not supported");
2046 		return -EINVAL;
2047 	}
2048 
2049 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2050 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2051 		ret = hns3_check_dcb_cfg(dev);
2052 		if (ret)
2053 			goto cfg_err;
2054 	}
2055 
2056 	/* When RSS is not configured, redirect the packet queue 0 */
2057 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2058 		rss_conf = conf->rx_adv_conf.rss_conf;
2059 		if (rss_conf.rss_key == NULL) {
2060 			rss_conf.rss_key = rss_cfg->key;
2061 			rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
2062 		}
2063 
2064 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2065 		if (ret)
2066 			goto cfg_err;
2067 	}
2068 
2069 	/*
2070 	 * If jumbo frames are enabled, MTU needs to be refreshed
2071 	 * according to the maximum RX packet length.
2072 	 */
2073 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2074 		/*
2075 		 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
2076 		 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
2077 		 * can safely assign to "uint16_t" type variable.
2078 		 */
2079 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
2080 		ret = hns3_dev_mtu_set(dev, mtu);
2081 		if (ret)
2082 			goto cfg_err;
2083 		dev->data->mtu = mtu;
2084 	}
2085 
2086 	ret = hns3_dev_configure_vlan(dev);
2087 	if (ret)
2088 		goto cfg_err;
2089 
2090 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2091 
2092 	return 0;
2093 
2094 cfg_err:
2095 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2096 	return ret;
2097 }
2098 
2099 static int
2100 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2101 {
2102 	struct hns3_config_max_frm_size_cmd *req;
2103 	struct hns3_cmd_desc desc;
2104 
2105 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2106 
2107 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2108 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2109 	req->min_frm_size = HNS3_MIN_FRAME_LEN;
2110 
2111 	return hns3_cmd_send(hw, &desc, 1);
2112 }
2113 
2114 static int
2115 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2116 {
2117 	int ret;
2118 
2119 	ret = hns3_set_mac_mtu(hw, mps);
2120 	if (ret) {
2121 		hns3_err(hw, "Failed to set mtu, ret = %d", ret);
2122 		return ret;
2123 	}
2124 
2125 	ret = hns3_buffer_alloc(hw);
2126 	if (ret) {
2127 		hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
2128 		return ret;
2129 	}
2130 
2131 	return 0;
2132 }
2133 
2134 static int
2135 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2136 {
2137 	struct hns3_adapter *hns = dev->data->dev_private;
2138 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2139 	struct hns3_hw *hw = &hns->hw;
2140 	bool is_jumbo_frame;
2141 	int ret;
2142 
2143 	if (dev->data->dev_started) {
2144 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2145 			 "before configuration", dev->data->port_id);
2146 		return -EBUSY;
2147 	}
2148 
2149 	rte_spinlock_lock(&hw->lock);
2150 	is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
2151 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2152 
2153 	/*
2154 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2155 	 * assign to "uint16_t" type variable.
2156 	 */
2157 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2158 	if (ret) {
2159 		rte_spinlock_unlock(&hw->lock);
2160 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2161 			 dev->data->port_id, mtu, ret);
2162 		return ret;
2163 	}
2164 	hns->pf.mps = (uint16_t)frame_size;
2165 	if (is_jumbo_frame)
2166 		dev->data->dev_conf.rxmode.offloads |=
2167 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2168 	else
2169 		dev->data->dev_conf.rxmode.offloads &=
2170 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2171 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2172 	rte_spinlock_unlock(&hw->lock);
2173 
2174 	return 0;
2175 }
2176 
2177 static int
2178 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2179 {
2180 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2181 	struct hns3_hw *hw = &hns->hw;
2182 
2183 	info->max_rx_queues = hw->tqps_num;
2184 	info->max_tx_queues = hw->tqps_num;
2185 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2186 	info->min_rx_bufsize = hw->rx_buf_len;
2187 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2188 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2189 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2190 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2191 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2192 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2193 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2194 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2195 				 DEV_RX_OFFLOAD_KEEP_CRC |
2196 				 DEV_RX_OFFLOAD_SCATTER |
2197 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2198 				 DEV_RX_OFFLOAD_QINQ_STRIP |
2199 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2200 				 DEV_RX_OFFLOAD_VLAN_EXTEND |
2201 				 DEV_RX_OFFLOAD_JUMBO_FRAME);
2202 	info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2203 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2204 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2205 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2206 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2207 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2208 				 DEV_TX_OFFLOAD_VLAN_INSERT |
2209 				 DEV_TX_OFFLOAD_QINQ_INSERT |
2210 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2211 				 info->tx_queue_offload_capa);
2212 
2213 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2214 		.nb_max = HNS3_MAX_RING_DESC,
2215 		.nb_min = HNS3_MIN_RING_DESC,
2216 		.nb_align = HNS3_ALIGN_RING_DESC,
2217 	};
2218 
2219 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2220 		.nb_max = HNS3_MAX_RING_DESC,
2221 		.nb_min = HNS3_MIN_RING_DESC,
2222 		.nb_align = HNS3_ALIGN_RING_DESC,
2223 	};
2224 
2225 	info->vmdq_queue_num = 0;
2226 
2227 	info->reta_size = HNS3_RSS_IND_TBL_SIZE;
2228 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2229 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2230 
2231 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2232 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2233 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2234 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2235 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2236 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2237 
2238 	return 0;
2239 }
2240 
2241 static int
2242 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2243 		    size_t fw_size)
2244 {
2245 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2246 	struct hns3_hw *hw = &hns->hw;
2247 	int ret;
2248 
2249 	ret = snprintf(fw_version, fw_size, "0x%08x", hw->fw_version);
2250 	ret += 1; /* add the size of '\0' */
2251 	if (fw_size < (uint32_t)ret)
2252 		return ret;
2253 	else
2254 		return 0;
2255 }
2256 
2257 static int
2258 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2259 		     __rte_unused int wait_to_complete)
2260 {
2261 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2262 	struct hns3_hw *hw = &hns->hw;
2263 	struct hns3_mac *mac = &hw->mac;
2264 	struct rte_eth_link new_link;
2265 
2266 	memset(&new_link, 0, sizeof(new_link));
2267 	switch (mac->link_speed) {
2268 	case ETH_SPEED_NUM_10M:
2269 	case ETH_SPEED_NUM_100M:
2270 	case ETH_SPEED_NUM_1G:
2271 	case ETH_SPEED_NUM_10G:
2272 	case ETH_SPEED_NUM_25G:
2273 	case ETH_SPEED_NUM_40G:
2274 	case ETH_SPEED_NUM_50G:
2275 	case ETH_SPEED_NUM_100G:
2276 		new_link.link_speed = mac->link_speed;
2277 		break;
2278 	default:
2279 		new_link.link_speed = ETH_SPEED_NUM_100M;
2280 		break;
2281 	}
2282 
2283 	new_link.link_duplex = mac->link_duplex;
2284 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2285 	new_link.link_autoneg =
2286 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2287 
2288 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2289 }
2290 
2291 static int
2292 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2293 {
2294 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2295 	struct hns3_pf *pf = &hns->pf;
2296 
2297 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2298 		return -EINVAL;
2299 
2300 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2301 
2302 	return 0;
2303 }
2304 
2305 static int
2306 hns3_query_function_status(struct hns3_hw *hw)
2307 {
2308 #define HNS3_QUERY_MAX_CNT		10
2309 #define HNS3_QUERY_SLEEP_MSCOEND	1
2310 	struct hns3_func_status_cmd *req;
2311 	struct hns3_cmd_desc desc;
2312 	int timeout = 0;
2313 	int ret;
2314 
2315 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2316 	req = (struct hns3_func_status_cmd *)desc.data;
2317 
2318 	do {
2319 		ret = hns3_cmd_send(hw, &desc, 1);
2320 		if (ret) {
2321 			PMD_INIT_LOG(ERR, "query function status failed %d",
2322 				     ret);
2323 			return ret;
2324 		}
2325 
2326 		/* Check pf reset is done */
2327 		if (req->pf_state)
2328 			break;
2329 
2330 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2331 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2332 
2333 	return hns3_parse_func_status(hw, req);
2334 }
2335 
2336 static int
2337 hns3_query_pf_resource(struct hns3_hw *hw)
2338 {
2339 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2340 	struct hns3_pf *pf = &hns->pf;
2341 	struct hns3_pf_res_cmd *req;
2342 	struct hns3_cmd_desc desc;
2343 	int ret;
2344 
2345 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2346 	ret = hns3_cmd_send(hw, &desc, 1);
2347 	if (ret) {
2348 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2349 		return ret;
2350 	}
2351 
2352 	req = (struct hns3_pf_res_cmd *)desc.data;
2353 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num);
2354 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2355 	hw->tqps_num = RTE_MIN(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2356 
2357 	if (req->tx_buf_size)
2358 		pf->tx_buf_size =
2359 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2360 	else
2361 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2362 
2363 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2364 
2365 	if (req->dv_buf_size)
2366 		pf->dv_buf_size =
2367 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2368 	else
2369 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2370 
2371 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2372 
2373 	hw->num_msi =
2374 	    hns3_get_field(rte_le_to_cpu_16(req->pf_intr_vector_number),
2375 			   HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2376 
2377 	return 0;
2378 }
2379 
2380 static void
2381 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2382 {
2383 	struct hns3_cfg_param_cmd *req;
2384 	uint64_t mac_addr_tmp_high;
2385 	uint64_t mac_addr_tmp;
2386 	uint32_t i;
2387 
2388 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2389 
2390 	/* get the configuration */
2391 	cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2392 					     HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2393 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2394 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2395 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2396 					   HNS3_CFG_TQP_DESC_N_M,
2397 					   HNS3_CFG_TQP_DESC_N_S);
2398 
2399 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2400 				       HNS3_CFG_PHY_ADDR_M,
2401 				       HNS3_CFG_PHY_ADDR_S);
2402 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2403 					 HNS3_CFG_MEDIA_TP_M,
2404 					 HNS3_CFG_MEDIA_TP_S);
2405 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2406 					 HNS3_CFG_RX_BUF_LEN_M,
2407 					 HNS3_CFG_RX_BUF_LEN_S);
2408 	/* get mac address */
2409 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2410 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2411 					   HNS3_CFG_MAC_ADDR_H_M,
2412 					   HNS3_CFG_MAC_ADDR_H_S);
2413 
2414 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2415 
2416 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2417 					    HNS3_CFG_DEFAULT_SPEED_M,
2418 					    HNS3_CFG_DEFAULT_SPEED_S);
2419 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2420 					   HNS3_CFG_RSS_SIZE_M,
2421 					   HNS3_CFG_RSS_SIZE_S);
2422 
2423 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2424 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2425 
2426 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2427 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2428 
2429 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2430 					    HNS3_CFG_SPEED_ABILITY_M,
2431 					    HNS3_CFG_SPEED_ABILITY_S);
2432 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2433 					HNS3_CFG_UMV_TBL_SPACE_M,
2434 					HNS3_CFG_UMV_TBL_SPACE_S);
2435 	if (!cfg->umv_space)
2436 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2437 }
2438 
2439 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2440  * @hw: pointer to struct hns3_hw
2441  * @hcfg: the config structure to be getted
2442  */
2443 static int
2444 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2445 {
2446 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2447 	struct hns3_cfg_param_cmd *req;
2448 	uint32_t offset;
2449 	uint32_t i;
2450 	int ret;
2451 
2452 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2453 		offset = 0;
2454 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2455 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2456 					  true);
2457 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2458 			       i * HNS3_CFG_RD_LEN_BYTES);
2459 		/* Len should be divided by 4 when send to hardware */
2460 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2461 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2462 		req->offset = rte_cpu_to_le_32(offset);
2463 	}
2464 
2465 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2466 	if (ret) {
2467 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2468 		return ret;
2469 	}
2470 
2471 	hns3_parse_cfg(hcfg, desc);
2472 
2473 	return 0;
2474 }
2475 
2476 static int
2477 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2478 {
2479 	switch (speed_cmd) {
2480 	case HNS3_CFG_SPEED_10M:
2481 		*speed = ETH_SPEED_NUM_10M;
2482 		break;
2483 	case HNS3_CFG_SPEED_100M:
2484 		*speed = ETH_SPEED_NUM_100M;
2485 		break;
2486 	case HNS3_CFG_SPEED_1G:
2487 		*speed = ETH_SPEED_NUM_1G;
2488 		break;
2489 	case HNS3_CFG_SPEED_10G:
2490 		*speed = ETH_SPEED_NUM_10G;
2491 		break;
2492 	case HNS3_CFG_SPEED_25G:
2493 		*speed = ETH_SPEED_NUM_25G;
2494 		break;
2495 	case HNS3_CFG_SPEED_40G:
2496 		*speed = ETH_SPEED_NUM_40G;
2497 		break;
2498 	case HNS3_CFG_SPEED_50G:
2499 		*speed = ETH_SPEED_NUM_50G;
2500 		break;
2501 	case HNS3_CFG_SPEED_100G:
2502 		*speed = ETH_SPEED_NUM_100G;
2503 		break;
2504 	default:
2505 		return -EINVAL;
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 static int
2512 hns3_get_board_configuration(struct hns3_hw *hw)
2513 {
2514 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2515 	struct hns3_pf *pf = &hns->pf;
2516 	struct hns3_cfg cfg;
2517 	int ret;
2518 
2519 	ret = hns3_get_board_cfg(hw, &cfg);
2520 	if (ret) {
2521 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2522 		return ret;
2523 	}
2524 
2525 	if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER) {
2526 		PMD_INIT_LOG(ERR, "media type is copper, not supported.");
2527 		return -EOPNOTSUPP;
2528 	}
2529 
2530 	hw->mac.media_type = cfg.media_type;
2531 	hw->rss_size_max = cfg.rss_size_max;
2532 	hw->rx_buf_len = cfg.rx_buf_len;
2533 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2534 	hw->mac.phy_addr = cfg.phy_addr;
2535 	hw->mac.default_addr_setted = false;
2536 	hw->num_tx_desc = cfg.tqp_desc_num;
2537 	hw->num_rx_desc = cfg.tqp_desc_num;
2538 	hw->dcb_info.num_pg = 1;
2539 	hw->dcb_info.hw_pfc_map = 0;
2540 
2541 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2542 	if (ret) {
2543 		PMD_INIT_LOG(ERR, "Get wrong speed %d, ret = %d",
2544 			     cfg.default_speed, ret);
2545 		return ret;
2546 	}
2547 
2548 	pf->tc_max = cfg.tc_num;
2549 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2550 		PMD_INIT_LOG(WARNING,
2551 			     "Get TC num(%u) from flash, set TC num to 1",
2552 			     pf->tc_max);
2553 		pf->tc_max = 1;
2554 	}
2555 
2556 	/* Dev does not support DCB */
2557 	if (!hns3_dev_dcb_supported(hw)) {
2558 		pf->tc_max = 1;
2559 		pf->pfc_max = 0;
2560 	} else
2561 		pf->pfc_max = pf->tc_max;
2562 
2563 	hw->dcb_info.num_tc = 1;
2564 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2565 				     hw->tqps_num / hw->dcb_info.num_tc);
2566 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2567 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2568 
2569 	pf->wanted_umv_size = cfg.umv_space;
2570 
2571 	return ret;
2572 }
2573 
2574 static int
2575 hns3_get_configuration(struct hns3_hw *hw)
2576 {
2577 	int ret;
2578 
2579 	ret = hns3_query_function_status(hw);
2580 	if (ret) {
2581 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2582 		return ret;
2583 	}
2584 
2585 	/* Get pf resource */
2586 	ret = hns3_query_pf_resource(hw);
2587 	if (ret) {
2588 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
2589 		return ret;
2590 	}
2591 
2592 	ret = hns3_get_board_configuration(hw);
2593 	if (ret) {
2594 		PMD_INIT_LOG(ERR, "Failed to get board configuration: %d", ret);
2595 		return ret;
2596 	}
2597 
2598 	return 0;
2599 }
2600 
2601 static int
2602 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
2603 		      uint16_t tqp_vid, bool is_pf)
2604 {
2605 	struct hns3_tqp_map_cmd *req;
2606 	struct hns3_cmd_desc desc;
2607 	int ret;
2608 
2609 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
2610 
2611 	req = (struct hns3_tqp_map_cmd *)desc.data;
2612 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
2613 	req->tqp_vf = func_id;
2614 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
2615 	if (!is_pf)
2616 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
2617 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
2618 
2619 	ret = hns3_cmd_send(hw, &desc, 1);
2620 	if (ret)
2621 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
2622 
2623 	return ret;
2624 }
2625 
2626 static int
2627 hns3_map_tqp(struct hns3_hw *hw)
2628 {
2629 	uint16_t tqps_num = hw->total_tqps_num;
2630 	uint16_t func_id;
2631 	uint16_t tqp_id;
2632 	int num;
2633 	int ret;
2634 	int i;
2635 
2636 	/*
2637 	 * In current version VF is not supported when PF is driven by DPDK
2638 	 * driver, so we allocate tqps to PF as much as possible.
2639 	 */
2640 	tqp_id = 0;
2641 	num = DIV_ROUND_UP(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2642 	for (func_id = 0; func_id < num; func_id++) {
2643 		for (i = 0;
2644 		     i < HNS3_MAX_TQP_NUM_PER_FUNC && tqp_id < tqps_num; i++) {
2645 			ret = hns3_map_tqps_to_func(hw, func_id, tqp_id++, i,
2646 						    true);
2647 			if (ret)
2648 				return ret;
2649 		}
2650 	}
2651 
2652 	return 0;
2653 }
2654 
2655 static int
2656 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
2657 {
2658 	struct hns3_config_mac_speed_dup_cmd *req;
2659 	struct hns3_cmd_desc desc;
2660 	int ret;
2661 
2662 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
2663 
2664 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
2665 
2666 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
2667 
2668 	switch (speed) {
2669 	case ETH_SPEED_NUM_10M:
2670 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2671 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
2672 		break;
2673 	case ETH_SPEED_NUM_100M:
2674 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2675 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
2676 		break;
2677 	case ETH_SPEED_NUM_1G:
2678 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2679 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
2680 		break;
2681 	case ETH_SPEED_NUM_10G:
2682 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2683 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
2684 		break;
2685 	case ETH_SPEED_NUM_25G:
2686 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2687 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
2688 		break;
2689 	case ETH_SPEED_NUM_40G:
2690 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2691 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
2692 		break;
2693 	case ETH_SPEED_NUM_50G:
2694 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2695 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
2696 		break;
2697 	case ETH_SPEED_NUM_100G:
2698 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2699 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
2700 		break;
2701 	default:
2702 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
2703 		return -EINVAL;
2704 	}
2705 
2706 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
2707 
2708 	ret = hns3_cmd_send(hw, &desc, 1);
2709 	if (ret)
2710 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
2711 
2712 	return ret;
2713 }
2714 
2715 static int
2716 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
2717 {
2718 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2719 	struct hns3_pf *pf = &hns->pf;
2720 	struct hns3_priv_buf *priv;
2721 	uint32_t i, total_size;
2722 
2723 	total_size = pf->pkt_buf_size;
2724 
2725 	/* alloc tx buffer for all enabled tc */
2726 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2727 		priv = &buf_alloc->priv_buf[i];
2728 
2729 		if (hw->hw_tc_map & BIT(i)) {
2730 			if (total_size < pf->tx_buf_size)
2731 				return -ENOMEM;
2732 
2733 			priv->tx_buf_size = pf->tx_buf_size;
2734 		} else
2735 			priv->tx_buf_size = 0;
2736 
2737 		total_size -= priv->tx_buf_size;
2738 	}
2739 
2740 	return 0;
2741 }
2742 
2743 static int
2744 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
2745 {
2746 /* TX buffer size is unit by 128 byte */
2747 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
2748 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
2749 	struct hns3_tx_buff_alloc_cmd *req;
2750 	struct hns3_cmd_desc desc;
2751 	uint32_t buf_size;
2752 	uint32_t i;
2753 	int ret;
2754 
2755 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
2756 
2757 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
2758 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2759 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
2760 
2761 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
2762 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
2763 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
2764 	}
2765 
2766 	ret = hns3_cmd_send(hw, &desc, 1);
2767 	if (ret)
2768 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
2769 
2770 	return ret;
2771 }
2772 
2773 static int
2774 hns3_get_tc_num(struct hns3_hw *hw)
2775 {
2776 	int cnt = 0;
2777 	uint8_t i;
2778 
2779 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
2780 		if (hw->hw_tc_map & BIT(i))
2781 			cnt++;
2782 	return cnt;
2783 }
2784 
2785 static uint32_t
2786 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
2787 {
2788 	struct hns3_priv_buf *priv;
2789 	uint32_t rx_priv = 0;
2790 	int i;
2791 
2792 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2793 		priv = &buf_alloc->priv_buf[i];
2794 		if (priv->enable)
2795 			rx_priv += priv->buf_size;
2796 	}
2797 	return rx_priv;
2798 }
2799 
2800 static uint32_t
2801 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
2802 {
2803 	uint32_t total_tx_size = 0;
2804 	uint32_t i;
2805 
2806 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
2807 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
2808 
2809 	return total_tx_size;
2810 }
2811 
2812 /* Get the number of pfc enabled TCs, which have private buffer */
2813 static int
2814 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
2815 {
2816 	struct hns3_priv_buf *priv;
2817 	int cnt = 0;
2818 	uint8_t i;
2819 
2820 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2821 		priv = &buf_alloc->priv_buf[i];
2822 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
2823 			cnt++;
2824 	}
2825 
2826 	return cnt;
2827 }
2828 
2829 /* Get the number of pfc disabled TCs, which have private buffer */
2830 static int
2831 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
2832 			 struct hns3_pkt_buf_alloc *buf_alloc)
2833 {
2834 	struct hns3_priv_buf *priv;
2835 	int cnt = 0;
2836 	uint8_t i;
2837 
2838 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2839 		priv = &buf_alloc->priv_buf[i];
2840 		if (hw->hw_tc_map & BIT(i) &&
2841 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
2842 			cnt++;
2843 	}
2844 
2845 	return cnt;
2846 }
2847 
2848 static bool
2849 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
2850 		  uint32_t rx_all)
2851 {
2852 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
2853 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2854 	struct hns3_pf *pf = &hns->pf;
2855 	uint32_t shared_buf, aligned_mps;
2856 	uint32_t rx_priv;
2857 	uint8_t tc_num;
2858 	uint8_t i;
2859 
2860 	tc_num = hns3_get_tc_num(hw);
2861 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
2862 
2863 	if (hns3_dev_dcb_supported(hw))
2864 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
2865 					pf->dv_buf_size;
2866 	else
2867 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
2868 					+ pf->dv_buf_size;
2869 
2870 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
2871 	shared_std = roundup(max_t(uint32_t, shared_buf_min, shared_buf_tc),
2872 			     HNS3_BUF_SIZE_UNIT);
2873 
2874 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
2875 	if (rx_all < rx_priv + shared_std)
2876 		return false;
2877 
2878 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
2879 	buf_alloc->s_buf.buf_size = shared_buf;
2880 	if (hns3_dev_dcb_supported(hw)) {
2881 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
2882 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
2883 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
2884 				  HNS3_BUF_SIZE_UNIT);
2885 	} else {
2886 		buf_alloc->s_buf.self.high =
2887 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
2888 		buf_alloc->s_buf.self.low = aligned_mps;
2889 	}
2890 
2891 	if (hns3_dev_dcb_supported(hw)) {
2892 		hi_thrd = shared_buf - pf->dv_buf_size;
2893 
2894 		if (tc_num <= NEED_RESERVE_TC_NUM)
2895 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
2896 					/ BUF_MAX_PERCENT;
2897 
2898 		if (tc_num)
2899 			hi_thrd = hi_thrd / tc_num;
2900 
2901 		hi_thrd = max_t(uint32_t, hi_thrd,
2902 				HNS3_BUF_MUL_BY * aligned_mps);
2903 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
2904 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
2905 	} else {
2906 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
2907 		lo_thrd = aligned_mps;
2908 	}
2909 
2910 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2911 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
2912 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
2913 	}
2914 
2915 	return true;
2916 }
2917 
2918 static bool
2919 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
2920 		     struct hns3_pkt_buf_alloc *buf_alloc)
2921 {
2922 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2923 	struct hns3_pf *pf = &hns->pf;
2924 	struct hns3_priv_buf *priv;
2925 	uint32_t aligned_mps;
2926 	uint32_t rx_all;
2927 	uint8_t i;
2928 
2929 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
2930 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
2931 
2932 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2933 		priv = &buf_alloc->priv_buf[i];
2934 
2935 		priv->enable = 0;
2936 		priv->wl.low = 0;
2937 		priv->wl.high = 0;
2938 		priv->buf_size = 0;
2939 
2940 		if (!(hw->hw_tc_map & BIT(i)))
2941 			continue;
2942 
2943 		priv->enable = 1;
2944 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
2945 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
2946 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
2947 						HNS3_BUF_SIZE_UNIT);
2948 		} else {
2949 			priv->wl.low = 0;
2950 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
2951 					aligned_mps;
2952 		}
2953 
2954 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
2955 	}
2956 
2957 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
2958 }
2959 
2960 static bool
2961 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
2962 			     struct hns3_pkt_buf_alloc *buf_alloc)
2963 {
2964 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2965 	struct hns3_pf *pf = &hns->pf;
2966 	struct hns3_priv_buf *priv;
2967 	int no_pfc_priv_num;
2968 	uint32_t rx_all;
2969 	uint8_t mask;
2970 	int i;
2971 
2972 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
2973 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
2974 
2975 	/* let the last to be cleared first */
2976 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
2977 		priv = &buf_alloc->priv_buf[i];
2978 		mask = BIT((uint8_t)i);
2979 
2980 		if (hw->hw_tc_map & mask &&
2981 		    !(hw->dcb_info.hw_pfc_map & mask)) {
2982 			/* Clear the no pfc TC private buffer */
2983 			priv->wl.low = 0;
2984 			priv->wl.high = 0;
2985 			priv->buf_size = 0;
2986 			priv->enable = 0;
2987 			no_pfc_priv_num--;
2988 		}
2989 
2990 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
2991 		    no_pfc_priv_num == 0)
2992 			break;
2993 	}
2994 
2995 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
2996 }
2997 
2998 static bool
2999 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3000 			   struct hns3_pkt_buf_alloc *buf_alloc)
3001 {
3002 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3003 	struct hns3_pf *pf = &hns->pf;
3004 	struct hns3_priv_buf *priv;
3005 	uint32_t rx_all;
3006 	int pfc_priv_num;
3007 	uint8_t mask;
3008 	int i;
3009 
3010 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3011 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3012 
3013 	/* let the last to be cleared first */
3014 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3015 		priv = &buf_alloc->priv_buf[i];
3016 		mask = BIT((uint8_t)i);
3017 
3018 		if (hw->hw_tc_map & mask &&
3019 		    hw->dcb_info.hw_pfc_map & mask) {
3020 			/* Reduce the number of pfc TC with private buffer */
3021 			priv->wl.low = 0;
3022 			priv->enable = 0;
3023 			priv->wl.high = 0;
3024 			priv->buf_size = 0;
3025 			pfc_priv_num--;
3026 		}
3027 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3028 		    pfc_priv_num == 0)
3029 			break;
3030 	}
3031 
3032 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3033 }
3034 
3035 static bool
3036 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3037 			  struct hns3_pkt_buf_alloc *buf_alloc)
3038 {
3039 #define COMPENSATE_BUFFER	0x3C00
3040 #define COMPENSATE_HALF_MPS_NUM	5
3041 #define PRIV_WL_GAP		0x1800
3042 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3043 	struct hns3_pf *pf = &hns->pf;
3044 	uint32_t tc_num = hns3_get_tc_num(hw);
3045 	uint32_t half_mps = pf->mps >> 1;
3046 	struct hns3_priv_buf *priv;
3047 	uint32_t min_rx_priv;
3048 	uint32_t rx_priv;
3049 	uint8_t i;
3050 
3051 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3052 	if (tc_num)
3053 		rx_priv = rx_priv / tc_num;
3054 
3055 	if (tc_num <= NEED_RESERVE_TC_NUM)
3056 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3057 
3058 	/*
3059 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3060 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3061 	 * buffer if rx_priv is greater than min_rx_priv.
3062 	 */
3063 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3064 			COMPENSATE_HALF_MPS_NUM * half_mps;
3065 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3066 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3067 
3068 	if (rx_priv < min_rx_priv)
3069 		return false;
3070 
3071 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3072 		priv = &buf_alloc->priv_buf[i];
3073 
3074 		priv->enable = 0;
3075 		priv->wl.low = 0;
3076 		priv->wl.high = 0;
3077 		priv->buf_size = 0;
3078 
3079 		if (!(hw->hw_tc_map & BIT(i)))
3080 			continue;
3081 
3082 		priv->enable = 1;
3083 		priv->buf_size = rx_priv;
3084 		priv->wl.high = rx_priv - pf->dv_buf_size;
3085 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3086 	}
3087 
3088 	buf_alloc->s_buf.buf_size = 0;
3089 
3090 	return true;
3091 }
3092 
3093 /*
3094  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3095  * @hw: pointer to struct hns3_hw
3096  * @buf_alloc: pointer to buffer calculation data
3097  * @return: 0: calculate sucessful, negative: fail
3098  */
3099 static int
3100 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3101 {
3102 	/* When DCB is not supported, rx private buffer is not allocated. */
3103 	if (!hns3_dev_dcb_supported(hw)) {
3104 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3105 		struct hns3_pf *pf = &hns->pf;
3106 		uint32_t rx_all = pf->pkt_buf_size;
3107 
3108 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3109 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3110 			return -ENOMEM;
3111 
3112 		return 0;
3113 	}
3114 
3115 	/*
3116 	 * Try to allocate privated packet buffer for all TCs without share
3117 	 * buffer.
3118 	 */
3119 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3120 		return 0;
3121 
3122 	/*
3123 	 * Try to allocate privated packet buffer for all TCs with share
3124 	 * buffer.
3125 	 */
3126 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3127 		return 0;
3128 
3129 	/*
3130 	 * For different application scenes, the enabled port number, TC number
3131 	 * and no_drop TC number are different. In order to obtain the better
3132 	 * performance, software could allocate the buffer size and configure
3133 	 * the waterline by tring to decrease the private buffer size according
3134 	 * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3135 	 * enabled tc.
3136 	 */
3137 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3138 		return 0;
3139 
3140 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3141 		return 0;
3142 
3143 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3144 		return 0;
3145 
3146 	return -ENOMEM;
3147 }
3148 
3149 static int
3150 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3151 {
3152 	struct hns3_rx_priv_buff_cmd *req;
3153 	struct hns3_cmd_desc desc;
3154 	uint32_t buf_size;
3155 	int ret;
3156 	int i;
3157 
3158 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3159 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3160 
3161 	/* Alloc private buffer TCs */
3162 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3163 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3164 
3165 		req->buf_num[i] =
3166 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3167 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3168 	}
3169 
3170 	buf_size = buf_alloc->s_buf.buf_size;
3171 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3172 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3173 
3174 	ret = hns3_cmd_send(hw, &desc, 1);
3175 	if (ret)
3176 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3177 
3178 	return ret;
3179 }
3180 
3181 static int
3182 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3183 {
3184 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3185 	struct hns3_rx_priv_wl_buf *req;
3186 	struct hns3_priv_buf *priv;
3187 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3188 	int i, j;
3189 	int ret;
3190 
3191 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3192 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3193 					  false);
3194 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3195 
3196 		/* The first descriptor set the NEXT bit to 1 */
3197 		if (i == 0)
3198 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3199 		else
3200 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3201 
3202 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3203 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3204 
3205 			priv = &buf_alloc->priv_buf[idx];
3206 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3207 							HNS3_BUF_UNIT_S);
3208 			req->tc_wl[j].high |=
3209 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3210 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3211 							HNS3_BUF_UNIT_S);
3212 			req->tc_wl[j].low |=
3213 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3214 		}
3215 	}
3216 
3217 	/* Send 2 descriptor at one time */
3218 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3219 	if (ret)
3220 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3221 			     ret);
3222 	return ret;
3223 }
3224 
3225 static int
3226 hns3_common_thrd_config(struct hns3_hw *hw,
3227 			struct hns3_pkt_buf_alloc *buf_alloc)
3228 {
3229 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3230 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3231 	struct hns3_rx_com_thrd *req;
3232 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3233 	struct hns3_tc_thrd *tc;
3234 	int tc_idx;
3235 	int i, j;
3236 	int ret;
3237 
3238 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3239 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3240 					  false);
3241 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3242 
3243 		/* The first descriptor set the NEXT bit to 1 */
3244 		if (i == 0)
3245 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3246 		else
3247 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3248 
3249 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3250 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3251 			tc = &s_buf->tc_thrd[tc_idx];
3252 
3253 			req->com_thrd[j].high =
3254 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3255 			req->com_thrd[j].high |=
3256 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3257 			req->com_thrd[j].low =
3258 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3259 			req->com_thrd[j].low |=
3260 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3261 		}
3262 	}
3263 
3264 	/* Send 2 descriptors at one time */
3265 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3266 	if (ret)
3267 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3268 
3269 	return ret;
3270 }
3271 
3272 static int
3273 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3274 {
3275 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3276 	struct hns3_rx_com_wl *req;
3277 	struct hns3_cmd_desc desc;
3278 	int ret;
3279 
3280 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3281 
3282 	req = (struct hns3_rx_com_wl *)desc.data;
3283 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3284 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3285 
3286 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3287 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3288 
3289 	ret = hns3_cmd_send(hw, &desc, 1);
3290 	if (ret)
3291 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3292 
3293 	return ret;
3294 }
3295 
3296 int
3297 hns3_buffer_alloc(struct hns3_hw *hw)
3298 {
3299 	struct hns3_pkt_buf_alloc pkt_buf;
3300 	int ret;
3301 
3302 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3303 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3304 	if (ret) {
3305 		PMD_INIT_LOG(ERR,
3306 			     "could not calc tx buffer size for all TCs %d",
3307 			     ret);
3308 		return ret;
3309 	}
3310 
3311 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3312 	if (ret) {
3313 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3314 		return ret;
3315 	}
3316 
3317 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3318 	if (ret) {
3319 		PMD_INIT_LOG(ERR,
3320 			     "could not calc rx priv buffer size for all TCs %d",
3321 			     ret);
3322 		return ret;
3323 	}
3324 
3325 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3326 	if (ret) {
3327 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3328 		return ret;
3329 	}
3330 
3331 	if (hns3_dev_dcb_supported(hw)) {
3332 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3333 		if (ret) {
3334 			PMD_INIT_LOG(ERR,
3335 				     "could not configure rx private waterline %d",
3336 				     ret);
3337 			return ret;
3338 		}
3339 
3340 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3341 		if (ret) {
3342 			PMD_INIT_LOG(ERR,
3343 				     "could not configure common threshold %d",
3344 				     ret);
3345 			return ret;
3346 		}
3347 	}
3348 
3349 	ret = hns3_common_wl_config(hw, &pkt_buf);
3350 	if (ret)
3351 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3352 			     ret);
3353 
3354 	return ret;
3355 }
3356 
3357 static int
3358 hns3_mac_init(struct hns3_hw *hw)
3359 {
3360 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3361 	struct hns3_mac *mac = &hw->mac;
3362 	struct hns3_pf *pf = &hns->pf;
3363 	int ret;
3364 
3365 	pf->support_sfp_query = true;
3366 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
3367 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3368 	if (ret) {
3369 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3370 		return ret;
3371 	}
3372 
3373 	mac->link_status = ETH_LINK_DOWN;
3374 
3375 	return hns3_config_mtu(hw, pf->mps);
3376 }
3377 
3378 static int
3379 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3380 {
3381 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3382 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3383 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3384 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3385 	int return_status;
3386 
3387 	if (cmdq_resp) {
3388 		PMD_INIT_LOG(ERR,
3389 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
3390 			     cmdq_resp);
3391 		return -EIO;
3392 	}
3393 
3394 	switch (resp_code) {
3395 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3396 	case HNS3_ETHERTYPE_ALREADY_ADD:
3397 		return_status = 0;
3398 		break;
3399 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3400 		PMD_INIT_LOG(ERR,
3401 			     "add mac ethertype failed for manager table overflow.");
3402 		return_status = -EIO;
3403 		break;
3404 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3405 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3406 		return_status = -EIO;
3407 		break;
3408 	default:
3409 		PMD_INIT_LOG(ERR,
3410 			     "add mac ethertype failed for undefined, code=%d.",
3411 			     resp_code);
3412 		return_status = -EIO;
3413 	}
3414 
3415 	return return_status;
3416 }
3417 
3418 static int
3419 hns3_add_mgr_tbl(struct hns3_hw *hw,
3420 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3421 {
3422 	struct hns3_cmd_desc desc;
3423 	uint8_t resp_code;
3424 	uint16_t retval;
3425 	int ret;
3426 
3427 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3428 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3429 
3430 	ret = hns3_cmd_send(hw, &desc, 1);
3431 	if (ret) {
3432 		PMD_INIT_LOG(ERR,
3433 			     "add mac ethertype failed for cmd_send, ret =%d.",
3434 			     ret);
3435 		return ret;
3436 	}
3437 
3438 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3439 	retval = rte_le_to_cpu_16(desc.retval);
3440 
3441 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3442 }
3443 
3444 static void
3445 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3446 		     int *table_item_num)
3447 {
3448 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3449 
3450 	/*
3451 	 * In current version, we add one item in management table as below:
3452 	 * 0x0180C200000E -- LLDP MC address
3453 	 */
3454 	tbl = mgr_table;
3455 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3456 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3457 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3458 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3459 	tbl->i_port_bitmap = 0x1;
3460 	*table_item_num = 1;
3461 }
3462 
3463 static int
3464 hns3_init_mgr_tbl(struct hns3_hw *hw)
3465 {
3466 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3467 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3468 	int table_item_num;
3469 	int ret;
3470 	int i;
3471 
3472 	memset(mgr_table, 0, sizeof(mgr_table));
3473 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3474 	for (i = 0; i < table_item_num; i++) {
3475 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3476 		if (ret) {
3477 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3478 				     ret);
3479 			return ret;
3480 		}
3481 	}
3482 
3483 	return 0;
3484 }
3485 
3486 static void
3487 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3488 			bool en_mc, bool en_bc, int vport_id)
3489 {
3490 	if (!param)
3491 		return;
3492 
3493 	memset(param, 0, sizeof(struct hns3_promisc_param));
3494 	if (en_uc)
3495 		param->enable = HNS3_PROMISC_EN_UC;
3496 	if (en_mc)
3497 		param->enable |= HNS3_PROMISC_EN_MC;
3498 	if (en_bc)
3499 		param->enable |= HNS3_PROMISC_EN_BC;
3500 	param->vf_id = vport_id;
3501 }
3502 
3503 static int
3504 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3505 {
3506 	struct hns3_promisc_cfg_cmd *req;
3507 	struct hns3_cmd_desc desc;
3508 	int ret;
3509 
3510 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3511 
3512 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3513 	req->vf_id = param->vf_id;
3514 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3515 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3516 
3517 	ret = hns3_cmd_send(hw, &desc, 1);
3518 	if (ret)
3519 		PMD_INIT_LOG(ERR, "Set promisc mode fail, status is %d", ret);
3520 
3521 	return ret;
3522 }
3523 
3524 static int
3525 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3526 {
3527 	struct hns3_promisc_param param;
3528 	bool en_bc_pmc = true;
3529 	uint8_t vf_id;
3530 	int ret;
3531 
3532 	/*
3533 	 * In current version VF is not supported when PF is driven by DPDK
3534 	 * driver, the PF-related vf_id is 0, just need to configure parameters
3535 	 * for vf_id 0.
3536 	 */
3537 	vf_id = 0;
3538 
3539 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3540 	ret = hns3_cmd_set_promisc_mode(hw, &param);
3541 	if (ret)
3542 		return ret;
3543 
3544 	return 0;
3545 }
3546 
3547 static int
3548 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
3549 {
3550 	struct hns3_adapter *hns = dev->data->dev_private;
3551 	struct hns3_hw *hw = &hns->hw;
3552 	bool en_mc_pmc = (dev->data->all_multicast == 1) ? true : false;
3553 	int ret = 0;
3554 
3555 	rte_spinlock_lock(&hw->lock);
3556 	ret = hns3_set_promisc_mode(hw, true, en_mc_pmc);
3557 	rte_spinlock_unlock(&hw->lock);
3558 	if (ret)
3559 		hns3_err(hw, "Failed to enable promiscuous mode: %d", ret);
3560 
3561 	return ret;
3562 }
3563 
3564 static int
3565 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
3566 {
3567 	struct hns3_adapter *hns = dev->data->dev_private;
3568 	struct hns3_hw *hw = &hns->hw;
3569 	bool en_mc_pmc = (dev->data->all_multicast == 1) ? true : false;
3570 	int ret = 0;
3571 
3572 	/* If now in all_multicast mode, must remain in all_multicast mode. */
3573 	rte_spinlock_lock(&hw->lock);
3574 	ret = hns3_set_promisc_mode(hw, false, en_mc_pmc);
3575 	rte_spinlock_unlock(&hw->lock);
3576 	if (ret)
3577 		hns3_err(hw, "Failed to disable promiscuous mode: %d", ret);
3578 
3579 	return ret;
3580 }
3581 
3582 static int
3583 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
3584 {
3585 	struct hns3_adapter *hns = dev->data->dev_private;
3586 	struct hns3_hw *hw = &hns->hw;
3587 	bool en_uc_pmc = (dev->data->promiscuous == 1) ? true : false;
3588 	int ret = 0;
3589 
3590 	rte_spinlock_lock(&hw->lock);
3591 	ret = hns3_set_promisc_mode(hw, en_uc_pmc, true);
3592 	rte_spinlock_unlock(&hw->lock);
3593 	if (ret)
3594 		hns3_err(hw, "Failed to enable allmulticast mode: %d", ret);
3595 
3596 	return ret;
3597 }
3598 
3599 static int
3600 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
3601 {
3602 	struct hns3_adapter *hns = dev->data->dev_private;
3603 	struct hns3_hw *hw = &hns->hw;
3604 	bool en_uc_pmc = (dev->data->promiscuous == 1) ? true : false;
3605 	int ret = 0;
3606 
3607 	/* If now in promiscuous mode, must remain in all_multicast mode. */
3608 	if (dev->data->promiscuous == 1)
3609 		return 0;
3610 
3611 	rte_spinlock_lock(&hw->lock);
3612 	ret = hns3_set_promisc_mode(hw, en_uc_pmc, false);
3613 	rte_spinlock_unlock(&hw->lock);
3614 	if (ret)
3615 		hns3_err(hw, "Failed to disable allmulticast mode: %d", ret);
3616 
3617 	return ret;
3618 }
3619 
3620 static int
3621 hns3_dev_promisc_restore(struct hns3_adapter *hns)
3622 {
3623 	struct hns3_hw *hw = &hns->hw;
3624 	bool en_mc_pmc;
3625 	bool en_uc_pmc;
3626 
3627 	en_uc_pmc = (hw->data->promiscuous == 1) ? true : false;
3628 	en_mc_pmc = (hw->data->all_multicast == 1) ? true : false;
3629 
3630 	return hns3_set_promisc_mode(hw, en_uc_pmc, en_mc_pmc);
3631 }
3632 
3633 static int
3634 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
3635 {
3636 	struct hns3_sfp_speed_cmd *resp;
3637 	struct hns3_cmd_desc desc;
3638 	int ret;
3639 
3640 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
3641 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
3642 	ret = hns3_cmd_send(hw, &desc, 1);
3643 	if (ret == -EOPNOTSUPP) {
3644 		hns3_err(hw, "IMP do not support get SFP speed %d", ret);
3645 		return ret;
3646 	} else if (ret) {
3647 		hns3_err(hw, "get sfp speed failed %d", ret);
3648 		return ret;
3649 	}
3650 
3651 	*speed = resp->sfp_speed;
3652 
3653 	return 0;
3654 }
3655 
3656 static uint8_t
3657 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
3658 {
3659 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
3660 		duplex = ETH_LINK_FULL_DUPLEX;
3661 
3662 	return duplex;
3663 }
3664 
3665 static int
3666 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3667 {
3668 	struct hns3_mac *mac = &hw->mac;
3669 	int ret;
3670 
3671 	duplex = hns3_check_speed_dup(duplex, speed);
3672 	if (mac->link_speed == speed && mac->link_duplex == duplex)
3673 		return 0;
3674 
3675 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
3676 	if (ret)
3677 		return ret;
3678 
3679 	mac->link_speed = speed;
3680 	mac->link_duplex = duplex;
3681 
3682 	return 0;
3683 }
3684 
3685 static int
3686 hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
3687 {
3688 	struct hns3_adapter *hns = eth_dev->data->dev_private;
3689 	struct hns3_hw *hw = &hns->hw;
3690 	struct hns3_pf *pf = &hns->pf;
3691 	uint32_t speed;
3692 	int ret;
3693 
3694 	/* If IMP do not support get SFP/qSFP speed, return directly */
3695 	if (!pf->support_sfp_query)
3696 		return 0;
3697 
3698 	ret = hns3_get_sfp_speed(hw, &speed);
3699 	if (ret == -EOPNOTSUPP) {
3700 		pf->support_sfp_query = false;
3701 		return ret;
3702 	} else if (ret)
3703 		return ret;
3704 
3705 	if (speed == ETH_SPEED_NUM_NONE)
3706 		return 0; /* do nothing if no SFP */
3707 
3708 	/* Config full duplex for SFP */
3709 	return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
3710 }
3711 
3712 static int
3713 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
3714 {
3715 	struct hns3_config_mac_mode_cmd *req;
3716 	struct hns3_cmd_desc desc;
3717 	uint32_t loop_en = 0;
3718 	uint8_t val = 0;
3719 	int ret;
3720 
3721 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
3722 
3723 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
3724 	if (enable)
3725 		val = 1;
3726 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
3727 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
3728 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
3729 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
3730 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
3731 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
3732 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
3733 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
3734 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
3735 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
3736 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
3737 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
3738 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
3739 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
3740 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
3741 
3742 	ret = hns3_cmd_send(hw, &desc, 1);
3743 	if (ret)
3744 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
3745 
3746 	return ret;
3747 }
3748 
3749 static int
3750 hns3_get_mac_link_status(struct hns3_hw *hw)
3751 {
3752 	struct hns3_link_status_cmd *req;
3753 	struct hns3_cmd_desc desc;
3754 	int link_status;
3755 	int ret;
3756 
3757 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
3758 	ret = hns3_cmd_send(hw, &desc, 1);
3759 	if (ret) {
3760 		hns3_err(hw, "get link status cmd failed %d", ret);
3761 		return ret;
3762 	}
3763 
3764 	req = (struct hns3_link_status_cmd *)desc.data;
3765 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
3766 
3767 	return !!link_status;
3768 }
3769 
3770 static void
3771 hns3_update_link_status(struct hns3_hw *hw)
3772 {
3773 	int state;
3774 
3775 	state = hns3_get_mac_link_status(hw);
3776 	if (state != hw->mac.link_status)
3777 		hw->mac.link_status = state;
3778 }
3779 
3780 static void
3781 hns3_service_handler(void *param)
3782 {
3783 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
3784 	struct hns3_adapter *hns = eth_dev->data->dev_private;
3785 	struct hns3_hw *hw = &hns->hw;
3786 
3787 	if (!hns3_is_reset_pending(hns)) {
3788 		hns3_update_speed_duplex(eth_dev);
3789 		hns3_update_link_status(hw);
3790 	} else
3791 		hns3_warn(hw, "Cancel the query when reset is pending");
3792 
3793 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
3794 }
3795 
3796 static int
3797 hns3_init_hardware(struct hns3_adapter *hns)
3798 {
3799 	struct hns3_hw *hw = &hns->hw;
3800 	int ret;
3801 
3802 	ret = hns3_map_tqp(hw);
3803 	if (ret) {
3804 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
3805 		return ret;
3806 	}
3807 
3808 	ret = hns3_init_umv_space(hw);
3809 	if (ret) {
3810 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
3811 		return ret;
3812 	}
3813 
3814 	ret = hns3_mac_init(hw);
3815 	if (ret) {
3816 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
3817 		goto err_mac_init;
3818 	}
3819 
3820 	ret = hns3_init_mgr_tbl(hw);
3821 	if (ret) {
3822 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
3823 		goto err_mac_init;
3824 	}
3825 
3826 	ret = hns3_set_promisc_mode(hw, false, false);
3827 	if (ret) {
3828 		PMD_INIT_LOG(ERR, "Failed to set promisc mode: %d", ret);
3829 		goto err_mac_init;
3830 	}
3831 
3832 	ret = hns3_init_vlan_config(hns);
3833 	if (ret) {
3834 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
3835 		goto err_mac_init;
3836 	}
3837 
3838 	ret = hns3_dcb_init(hw);
3839 	if (ret) {
3840 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
3841 		goto err_mac_init;
3842 	}
3843 
3844 	ret = hns3_init_fd_config(hns);
3845 	if (ret) {
3846 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
3847 		goto err_mac_init;
3848 	}
3849 
3850 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
3851 	if (ret) {
3852 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
3853 		goto err_mac_init;
3854 	}
3855 
3856 	ret = hns3_config_gro(hw, false);
3857 	if (ret) {
3858 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
3859 		goto err_mac_init;
3860 	}
3861 	return 0;
3862 
3863 err_mac_init:
3864 	hns3_uninit_umv_space(hw);
3865 	return ret;
3866 }
3867 
3868 static int
3869 hns3_init_pf(struct rte_eth_dev *eth_dev)
3870 {
3871 	struct rte_device *dev = eth_dev->device;
3872 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
3873 	struct hns3_adapter *hns = eth_dev->data->dev_private;
3874 	struct hns3_hw *hw = &hns->hw;
3875 	int ret;
3876 
3877 	PMD_INIT_FUNC_TRACE();
3878 
3879 	/* Get hardware io base address from pcie BAR2 IO space */
3880 	hw->io_base = pci_dev->mem_resource[2].addr;
3881 
3882 	/* Firmware command queue initialize */
3883 	ret = hns3_cmd_init_queue(hw);
3884 	if (ret) {
3885 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
3886 		goto err_cmd_init_queue;
3887 	}
3888 
3889 	hns3_clear_all_event_cause(hw);
3890 
3891 	/* Firmware command initialize */
3892 	ret = hns3_cmd_init(hw);
3893 	if (ret) {
3894 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
3895 		goto err_cmd_init;
3896 	}
3897 
3898 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
3899 					 hns3_interrupt_handler,
3900 					 eth_dev);
3901 	if (ret) {
3902 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
3903 		goto err_intr_callback_register;
3904 	}
3905 
3906 	/* Enable interrupt */
3907 	rte_intr_enable(&pci_dev->intr_handle);
3908 	hns3_pf_enable_irq0(hw);
3909 
3910 	/* Get configuration */
3911 	ret = hns3_get_configuration(hw);
3912 	if (ret) {
3913 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
3914 		goto err_get_config;
3915 	}
3916 
3917 	ret = hns3_init_hardware(hns);
3918 	if (ret) {
3919 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
3920 		goto err_get_config;
3921 	}
3922 
3923 	/* Initialize flow director filter list & hash */
3924 	ret = hns3_fdir_filter_init(hns);
3925 	if (ret) {
3926 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
3927 		goto err_hw_init;
3928 	}
3929 
3930 	hns3_set_default_rss_args(hw);
3931 
3932 	ret = hns3_enable_hw_error_intr(hns, true);
3933 	if (ret) {
3934 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
3935 			     ret);
3936 		goto err_fdir;
3937 	}
3938 
3939 	return 0;
3940 
3941 err_fdir:
3942 	hns3_fdir_filter_uninit(hns);
3943 err_hw_init:
3944 	hns3_uninit_umv_space(hw);
3945 
3946 err_get_config:
3947 	hns3_pf_disable_irq0(hw);
3948 	rte_intr_disable(&pci_dev->intr_handle);
3949 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
3950 			     eth_dev);
3951 
3952 err_intr_callback_register:
3953 	hns3_cmd_uninit(hw);
3954 
3955 err_cmd_init:
3956 	hns3_cmd_destroy_queue(hw);
3957 
3958 err_cmd_init_queue:
3959 	hw->io_base = NULL;
3960 
3961 	return ret;
3962 }
3963 
3964 static void
3965 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
3966 {
3967 	struct hns3_adapter *hns = eth_dev->data->dev_private;
3968 	struct rte_device *dev = eth_dev->device;
3969 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
3970 	struct hns3_hw *hw = &hns->hw;
3971 
3972 	PMD_INIT_FUNC_TRACE();
3973 
3974 	hns3_enable_hw_error_intr(hns, false);
3975 	hns3_rss_uninit(hns);
3976 	hns3_fdir_filter_uninit(hns);
3977 	hns3_uninit_umv_space(hw);
3978 	hns3_pf_disable_irq0(hw);
3979 	rte_intr_disable(&pci_dev->intr_handle);
3980 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
3981 			     eth_dev);
3982 	hns3_cmd_uninit(hw);
3983 	hns3_cmd_destroy_queue(hw);
3984 	hw->io_base = NULL;
3985 }
3986 
3987 static int
3988 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
3989 {
3990 	struct hns3_hw *hw = &hns->hw;
3991 	int ret;
3992 
3993 	ret = hns3_dcb_cfg_update(hns);
3994 	if (ret)
3995 		return ret;
3996 
3997 	/* Enable queues */
3998 	ret = hns3_start_queues(hns, reset_queue);
3999 	if (ret) {
4000 		PMD_INIT_LOG(ERR, "Failed to start queues: %d", ret);
4001 		return ret;
4002 	}
4003 
4004 	/* Enable MAC */
4005 	ret = hns3_cfg_mac_mode(hw, true);
4006 	if (ret) {
4007 		PMD_INIT_LOG(ERR, "Failed to enable MAC: %d", ret);
4008 		goto err_config_mac_mode;
4009 	}
4010 	return 0;
4011 
4012 err_config_mac_mode:
4013 	hns3_stop_queues(hns, true);
4014 	return ret;
4015 }
4016 
4017 static int
4018 hns3_dev_start(struct rte_eth_dev *eth_dev)
4019 {
4020 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4021 	struct hns3_hw *hw = &hns->hw;
4022 	int ret;
4023 
4024 	PMD_INIT_FUNC_TRACE();
4025 	if (rte_atomic16_read(&hw->reset.resetting))
4026 		return -EBUSY;
4027 	rte_spinlock_lock(&hw->lock);
4028 	hw->adapter_state = HNS3_NIC_STARTING;
4029 
4030 	ret = hns3_do_start(hns, true);
4031 	if (ret) {
4032 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4033 		rte_spinlock_unlock(&hw->lock);
4034 		return ret;
4035 	}
4036 
4037 	hw->adapter_state = HNS3_NIC_STARTED;
4038 	rte_spinlock_unlock(&hw->lock);
4039 	hns3_set_rxtx_function(eth_dev);
4040 	hns3_mp_req_start_rxtx(eth_dev);
4041 
4042 	hns3_info(hw, "hns3 dev start successful!");
4043 	return 0;
4044 }
4045 
4046 static int
4047 hns3_do_stop(struct hns3_adapter *hns)
4048 {
4049 	struct hns3_hw *hw = &hns->hw;
4050 	bool reset_queue;
4051 	int ret;
4052 
4053 	ret = hns3_cfg_mac_mode(hw, false);
4054 	if (ret)
4055 		return ret;
4056 	hw->mac.link_status = ETH_LINK_DOWN;
4057 
4058 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
4059 		hns3_configure_all_mac_addr(hns, true);
4060 		reset_queue = true;
4061 	} else
4062 		reset_queue = false;
4063 	hw->mac.default_addr_setted = false;
4064 	return hns3_stop_queues(hns, reset_queue);
4065 }
4066 
4067 static void
4068 hns3_dev_stop(struct rte_eth_dev *eth_dev)
4069 {
4070 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4071 	struct hns3_hw *hw = &hns->hw;
4072 
4073 	PMD_INIT_FUNC_TRACE();
4074 
4075 	hw->adapter_state = HNS3_NIC_STOPPING;
4076 	hns3_set_rxtx_function(eth_dev);
4077 	rte_wmb();
4078 	/* Disable datapath on secondary process. */
4079 	hns3_mp_req_stop_rxtx(eth_dev);
4080 	/* Prevent crashes when queues are still in use. */
4081 	rte_delay_ms(hw->tqps_num);
4082 
4083 	rte_spinlock_lock(&hw->lock);
4084 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
4085 		hns3_do_stop(hns);
4086 		hns3_dev_release_mbufs(hns);
4087 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4088 	}
4089 	rte_spinlock_unlock(&hw->lock);
4090 }
4091 
4092 static void
4093 hns3_dev_close(struct rte_eth_dev *eth_dev)
4094 {
4095 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4096 	struct hns3_hw *hw = &hns->hw;
4097 
4098 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
4099 		rte_free(eth_dev->process_private);
4100 		eth_dev->process_private = NULL;
4101 		return;
4102 	}
4103 
4104 	if (hw->adapter_state == HNS3_NIC_STARTED)
4105 		hns3_dev_stop(eth_dev);
4106 
4107 	hw->adapter_state = HNS3_NIC_CLOSING;
4108 	hns3_reset_abort(hns);
4109 	hw->adapter_state = HNS3_NIC_CLOSED;
4110 	rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
4111 
4112 	hns3_configure_all_mc_mac_addr(hns, true);
4113 	hns3_remove_all_vlan_table(hns);
4114 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
4115 	hns3_uninit_pf(eth_dev);
4116 	hns3_free_all_queues(eth_dev);
4117 	rte_free(hw->reset.wait_data);
4118 	rte_free(eth_dev->process_private);
4119 	eth_dev->process_private = NULL;
4120 	hns3_mp_uninit_primary();
4121 	hns3_warn(hw, "Close port %d finished", hw->data->port_id);
4122 }
4123 
4124 static int
4125 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4126 {
4127 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4128 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4129 
4130 	fc_conf->pause_time = pf->pause_time;
4131 
4132 	/* return fc current mode */
4133 	switch (hw->current_mode) {
4134 	case HNS3_FC_FULL:
4135 		fc_conf->mode = RTE_FC_FULL;
4136 		break;
4137 	case HNS3_FC_TX_PAUSE:
4138 		fc_conf->mode = RTE_FC_TX_PAUSE;
4139 		break;
4140 	case HNS3_FC_RX_PAUSE:
4141 		fc_conf->mode = RTE_FC_RX_PAUSE;
4142 		break;
4143 	case HNS3_FC_NONE:
4144 	default:
4145 		fc_conf->mode = RTE_FC_NONE;
4146 		break;
4147 	}
4148 
4149 	return 0;
4150 }
4151 
4152 static void
4153 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
4154 {
4155 	switch (mode) {
4156 	case RTE_FC_NONE:
4157 		hw->requested_mode = HNS3_FC_NONE;
4158 		break;
4159 	case RTE_FC_RX_PAUSE:
4160 		hw->requested_mode = HNS3_FC_RX_PAUSE;
4161 		break;
4162 	case RTE_FC_TX_PAUSE:
4163 		hw->requested_mode = HNS3_FC_TX_PAUSE;
4164 		break;
4165 	case RTE_FC_FULL:
4166 		hw->requested_mode = HNS3_FC_FULL;
4167 		break;
4168 	default:
4169 		hw->requested_mode = HNS3_FC_NONE;
4170 		hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
4171 			  "configured to RTE_FC_NONE", mode);
4172 		break;
4173 	}
4174 }
4175 
4176 static int
4177 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4178 {
4179 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4180 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4181 	int ret;
4182 
4183 	if (fc_conf->high_water || fc_conf->low_water ||
4184 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
4185 		hns3_err(hw, "Unsupported flow control settings specified, "
4186 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4187 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4188 			 fc_conf->high_water, fc_conf->low_water,
4189 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
4190 		return -EINVAL;
4191 	}
4192 	if (fc_conf->autoneg) {
4193 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4194 		return -EINVAL;
4195 	}
4196 	if (!fc_conf->pause_time) {
4197 		hns3_err(hw, "Invalid pause time %d setting.",
4198 			 fc_conf->pause_time);
4199 		return -EINVAL;
4200 	}
4201 
4202 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4203 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
4204 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
4205 			 "current_fc_status = %d", hw->current_fc_status);
4206 		return -EOPNOTSUPP;
4207 	}
4208 
4209 	hns3_get_fc_mode(hw, fc_conf->mode);
4210 	if (hw->requested_mode == hw->current_mode &&
4211 	    pf->pause_time == fc_conf->pause_time)
4212 		return 0;
4213 
4214 	rte_spinlock_lock(&hw->lock);
4215 	ret = hns3_fc_enable(dev, fc_conf);
4216 	rte_spinlock_unlock(&hw->lock);
4217 
4218 	return ret;
4219 }
4220 
4221 static int
4222 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
4223 			    struct rte_eth_pfc_conf *pfc_conf)
4224 {
4225 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4226 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4227 	uint8_t priority;
4228 	int ret;
4229 
4230 	if (!hns3_dev_dcb_supported(hw)) {
4231 		hns3_err(hw, "This port does not support dcb configurations.");
4232 		return -EOPNOTSUPP;
4233 	}
4234 
4235 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
4236 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
4237 		hns3_err(hw, "Unsupported flow control settings specified, "
4238 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4239 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4240 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
4241 			 pfc_conf->fc.send_xon,
4242 			 pfc_conf->fc.mac_ctrl_frame_fwd);
4243 		return -EINVAL;
4244 	}
4245 	if (pfc_conf->fc.autoneg) {
4246 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4247 		return -EINVAL;
4248 	}
4249 	if (pfc_conf->fc.pause_time == 0) {
4250 		hns3_err(hw, "Invalid pause time %d setting.",
4251 			 pfc_conf->fc.pause_time);
4252 		return -EINVAL;
4253 	}
4254 
4255 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4256 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
4257 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
4258 			     "current_fc_status = %d", hw->current_fc_status);
4259 		return -EOPNOTSUPP;
4260 	}
4261 
4262 	priority = pfc_conf->priority;
4263 	hns3_get_fc_mode(hw, pfc_conf->fc.mode);
4264 	if (hw->dcb_info.pfc_en & BIT(priority) &&
4265 	    hw->requested_mode == hw->current_mode &&
4266 	    pfc_conf->fc.pause_time == pf->pause_time)
4267 		return 0;
4268 
4269 	rte_spinlock_lock(&hw->lock);
4270 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
4271 	rte_spinlock_unlock(&hw->lock);
4272 
4273 	return ret;
4274 }
4275 
4276 static int
4277 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
4278 {
4279 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4280 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4281 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
4282 	int i;
4283 
4284 	rte_spinlock_lock(&hw->lock);
4285 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
4286 		dcb_info->nb_tcs = pf->local_max_tc;
4287 	else
4288 		dcb_info->nb_tcs = 1;
4289 
4290 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
4291 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
4292 	for (i = 0; i < dcb_info->nb_tcs; i++)
4293 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
4294 
4295 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
4296 		dcb_info->tc_queue.tc_rxq[0][i].base =
4297 					hw->tc_queue[i].tqp_offset;
4298 		dcb_info->tc_queue.tc_txq[0][i].base =
4299 					hw->tc_queue[i].tqp_offset;
4300 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue =
4301 					hw->tc_queue[i].tqp_count;
4302 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
4303 					hw->tc_queue[i].tqp_count;
4304 	}
4305 	rte_spinlock_unlock(&hw->lock);
4306 
4307 	return 0;
4308 }
4309 
4310 static int
4311 hns3_reinit_dev(struct hns3_adapter *hns)
4312 {
4313 	struct hns3_hw *hw = &hns->hw;
4314 	int ret;
4315 
4316 	ret = hns3_cmd_init(hw);
4317 	if (ret) {
4318 		hns3_err(hw, "Failed to init cmd: %d", ret);
4319 		return ret;
4320 	}
4321 
4322 	ret = hns3_reset_all_queues(hns);
4323 	if (ret) {
4324 		hns3_err(hw, "Failed to reset all queues: %d", ret);
4325 		goto err_init;
4326 	}
4327 
4328 	ret = hns3_init_hardware(hns);
4329 	if (ret) {
4330 		hns3_err(hw, "Failed to init hardware: %d", ret);
4331 		goto err_init;
4332 	}
4333 
4334 	ret = hns3_enable_hw_error_intr(hns, true);
4335 	if (ret) {
4336 		hns3_err(hw, "fail to enable hw error interrupts: %d",
4337 			     ret);
4338 		goto err_mac_init;
4339 	}
4340 	hns3_info(hw, "Reset done, driver initialization finished.");
4341 
4342 	return 0;
4343 
4344 err_mac_init:
4345 	hns3_uninit_umv_space(hw);
4346 err_init:
4347 	hns3_cmd_uninit(hw);
4348 
4349 	return ret;
4350 }
4351 
4352 static bool
4353 is_pf_reset_done(struct hns3_hw *hw)
4354 {
4355 	uint32_t val, reg, reg_bit;
4356 
4357 	switch (hw->reset.level) {
4358 	case HNS3_IMP_RESET:
4359 		reg = HNS3_GLOBAL_RESET_REG;
4360 		reg_bit = HNS3_IMP_RESET_BIT;
4361 		break;
4362 	case HNS3_GLOBAL_RESET:
4363 		reg = HNS3_GLOBAL_RESET_REG;
4364 		reg_bit = HNS3_GLOBAL_RESET_BIT;
4365 		break;
4366 	case HNS3_FUNC_RESET:
4367 		reg = HNS3_FUN_RST_ING;
4368 		reg_bit = HNS3_FUN_RST_ING_B;
4369 		break;
4370 	case HNS3_FLR_RESET:
4371 	default:
4372 		hns3_err(hw, "Wait for unsupported reset level: %d",
4373 			 hw->reset.level);
4374 		return true;
4375 	}
4376 	val = hns3_read_dev(hw, reg);
4377 	if (hns3_get_bit(val, reg_bit))
4378 		return false;
4379 	else
4380 		return true;
4381 }
4382 
4383 bool
4384 hns3_is_reset_pending(struct hns3_adapter *hns)
4385 {
4386 	struct hns3_hw *hw = &hns->hw;
4387 	enum hns3_reset_level reset;
4388 
4389 	hns3_check_event_cause(hns, NULL);
4390 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
4391 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
4392 		hns3_warn(hw, "High level reset %d is pending", reset);
4393 		return true;
4394 	}
4395 	reset = hns3_get_reset_level(hns, &hw->reset.request);
4396 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
4397 		hns3_warn(hw, "High level reset %d is request", reset);
4398 		return true;
4399 	}
4400 	return false;
4401 }
4402 
4403 static int
4404 hns3_wait_hardware_ready(struct hns3_adapter *hns)
4405 {
4406 	struct hns3_hw *hw = &hns->hw;
4407 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
4408 	struct timeval tv;
4409 
4410 	if (wait_data->result == HNS3_WAIT_SUCCESS)
4411 		return 0;
4412 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
4413 		gettimeofday(&tv, NULL);
4414 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
4415 			  tv.tv_sec, tv.tv_usec);
4416 		return -ETIME;
4417 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
4418 		return -EAGAIN;
4419 
4420 	wait_data->hns = hns;
4421 	wait_data->check_completion = is_pf_reset_done;
4422 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
4423 				      HNS3_RESET_WAIT_MS + get_timeofday_ms();
4424 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
4425 	wait_data->count = HNS3_RESET_WAIT_CNT;
4426 	wait_data->result = HNS3_WAIT_REQUEST;
4427 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
4428 	return -EAGAIN;
4429 }
4430 
4431 static int
4432 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
4433 {
4434 	struct hns3_cmd_desc desc;
4435 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
4436 
4437 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
4438 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
4439 	req->fun_reset_vfid = func_id;
4440 
4441 	return hns3_cmd_send(hw, &desc, 1);
4442 }
4443 
4444 static int
4445 hns3_imp_reset_cmd(struct hns3_hw *hw)
4446 {
4447 	struct hns3_cmd_desc desc;
4448 
4449 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
4450 	desc.data[0] = 0xeedd;
4451 
4452 	return hns3_cmd_send(hw, &desc, 1);
4453 }
4454 
4455 static void
4456 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
4457 {
4458 	struct hns3_hw *hw = &hns->hw;
4459 	struct timeval tv;
4460 	uint32_t val;
4461 
4462 	gettimeofday(&tv, NULL);
4463 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
4464 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
4465 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
4466 			  tv.tv_sec, tv.tv_usec);
4467 		return;
4468 	}
4469 
4470 	switch (reset_level) {
4471 	case HNS3_IMP_RESET:
4472 		hns3_imp_reset_cmd(hw);
4473 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
4474 			  tv.tv_sec, tv.tv_usec);
4475 		break;
4476 	case HNS3_GLOBAL_RESET:
4477 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
4478 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
4479 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
4480 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
4481 			  tv.tv_sec, tv.tv_usec);
4482 		break;
4483 	case HNS3_FUNC_RESET:
4484 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
4485 			  tv.tv_sec, tv.tv_usec);
4486 		/* schedule again to check later */
4487 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
4488 		hns3_schedule_reset(hns);
4489 		break;
4490 	default:
4491 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
4492 		return;
4493 	}
4494 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
4495 }
4496 
4497 static enum hns3_reset_level
4498 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
4499 {
4500 	struct hns3_hw *hw = &hns->hw;
4501 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
4502 
4503 	/* Return the highest priority reset level amongst all */
4504 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
4505 		reset_level = HNS3_IMP_RESET;
4506 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
4507 		reset_level = HNS3_GLOBAL_RESET;
4508 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
4509 		reset_level = HNS3_FUNC_RESET;
4510 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
4511 		reset_level = HNS3_FLR_RESET;
4512 
4513 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
4514 		return HNS3_NONE_RESET;
4515 
4516 	return reset_level;
4517 }
4518 
4519 static int
4520 hns3_prepare_reset(struct hns3_adapter *hns)
4521 {
4522 	struct hns3_hw *hw = &hns->hw;
4523 	uint32_t reg_val;
4524 	int ret;
4525 
4526 	switch (hw->reset.level) {
4527 	case HNS3_FUNC_RESET:
4528 		ret = hns3_func_reset_cmd(hw, 0);
4529 		if (ret)
4530 			return ret;
4531 
4532 		/*
4533 		 * After performaning pf reset, it is not necessary to do the
4534 		 * mailbox handling or send any command to firmware, because
4535 		 * any mailbox handling or command to firmware is only valid
4536 		 * after hns3_cmd_init is called.
4537 		 */
4538 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
4539 		hw->reset.stats.request_cnt++;
4540 		break;
4541 	case HNS3_IMP_RESET:
4542 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4543 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
4544 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
4545 		break;
4546 	default:
4547 		break;
4548 	}
4549 	return 0;
4550 }
4551 
4552 static int
4553 hns3_set_rst_done(struct hns3_hw *hw)
4554 {
4555 	struct hns3_pf_rst_done_cmd *req;
4556 	struct hns3_cmd_desc desc;
4557 
4558 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
4559 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
4560 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
4561 	return hns3_cmd_send(hw, &desc, 1);
4562 }
4563 
4564 static int
4565 hns3_stop_service(struct hns3_adapter *hns)
4566 {
4567 	struct hns3_hw *hw = &hns->hw;
4568 	struct rte_eth_dev *eth_dev;
4569 
4570 	eth_dev = &rte_eth_devices[hw->data->port_id];
4571 	rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
4572 	hw->mac.link_status = ETH_LINK_DOWN;
4573 
4574 	hns3_set_rxtx_function(eth_dev);
4575 	rte_wmb();
4576 	/* Disable datapath on secondary process. */
4577 	hns3_mp_req_stop_rxtx(eth_dev);
4578 	rte_delay_ms(hw->tqps_num);
4579 
4580 	rte_spinlock_lock(&hw->lock);
4581 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
4582 	    hw->adapter_state == HNS3_NIC_STOPPING) {
4583 		hns3_do_stop(hns);
4584 		hw->reset.mbuf_deferred_free = true;
4585 	} else
4586 		hw->reset.mbuf_deferred_free = false;
4587 
4588 	/*
4589 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
4590 	 * from table space. Hence, for function reset software intervention is
4591 	 * required to delete the entries
4592 	 */
4593 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
4594 		hns3_configure_all_mc_mac_addr(hns, true);
4595 	rte_spinlock_unlock(&hw->lock);
4596 
4597 	return 0;
4598 }
4599 
4600 static int
4601 hns3_start_service(struct hns3_adapter *hns)
4602 {
4603 	struct hns3_hw *hw = &hns->hw;
4604 	struct rte_eth_dev *eth_dev;
4605 
4606 	if (hw->reset.level == HNS3_IMP_RESET ||
4607 	    hw->reset.level == HNS3_GLOBAL_RESET)
4608 		hns3_set_rst_done(hw);
4609 	eth_dev = &rte_eth_devices[hw->data->port_id];
4610 	hns3_set_rxtx_function(eth_dev);
4611 	hns3_mp_req_start_rxtx(eth_dev);
4612 	hns3_service_handler(eth_dev);
4613 	return 0;
4614 }
4615 
4616 static int
4617 hns3_restore_conf(struct hns3_adapter *hns)
4618 {
4619 	struct hns3_hw *hw = &hns->hw;
4620 	int ret;
4621 
4622 	ret = hns3_configure_all_mac_addr(hns, false);
4623 	if (ret)
4624 		return ret;
4625 
4626 	ret = hns3_configure_all_mc_mac_addr(hns, false);
4627 	if (ret)
4628 		goto err_mc_mac;
4629 
4630 	ret = hns3_dev_promisc_restore(hns);
4631 	if (ret)
4632 		goto err_promisc;
4633 
4634 	ret = hns3_restore_vlan_table(hns);
4635 	if (ret)
4636 		goto err_promisc;
4637 
4638 	ret = hns3_restore_vlan_conf(hns);
4639 	if (ret)
4640 		goto err_promisc;
4641 
4642 	ret = hns3_restore_all_fdir_filter(hns);
4643 	if (ret)
4644 		goto err_promisc;
4645 
4646 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
4647 		ret = hns3_do_start(hns, false);
4648 		if (ret)
4649 			goto err_promisc;
4650 		hns3_info(hw, "hns3 dev restart successful!");
4651 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
4652 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4653 	return 0;
4654 
4655 err_promisc:
4656 	hns3_configure_all_mc_mac_addr(hns, true);
4657 err_mc_mac:
4658 	hns3_configure_all_mac_addr(hns, true);
4659 	return ret;
4660 }
4661 
4662 static void
4663 hns3_reset_service(void *param)
4664 {
4665 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
4666 	struct hns3_hw *hw = &hns->hw;
4667 	enum hns3_reset_level reset_level;
4668 	struct timeval tv_delta;
4669 	struct timeval tv_start;
4670 	struct timeval tv;
4671 	uint64_t msec;
4672 	int ret;
4673 
4674 	/*
4675 	 * The interrupt is not triggered within the delay time.
4676 	 * The interrupt may have been lost. It is necessary to handle
4677 	 * the interrupt to recover from the error.
4678 	 */
4679 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
4680 		rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
4681 		hns3_err(hw, "Handling interrupts in delayed tasks");
4682 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
4683 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
4684 		if (reset_level == HNS3_NONE_RESET) {
4685 			hns3_err(hw, "No reset level is set, try IMP reset");
4686 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
4687 		}
4688 	}
4689 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
4690 
4691 	/*
4692 	 * Check if there is any ongoing reset in the hardware. This status can
4693 	 * be checked from reset_pending. If there is then, we need to wait for
4694 	 * hardware to complete reset.
4695 	 *    a. If we are able to figure out in reasonable time that hardware
4696 	 *       has fully resetted then, we can proceed with driver, client
4697 	 *       reset.
4698 	 *    b. else, we can come back later to check this status so re-sched
4699 	 *       now.
4700 	 */
4701 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
4702 	if (reset_level != HNS3_NONE_RESET) {
4703 		gettimeofday(&tv_start, NULL);
4704 		ret = hns3_reset_process(hns, reset_level);
4705 		gettimeofday(&tv, NULL);
4706 		timersub(&tv, &tv_start, &tv_delta);
4707 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
4708 		       tv_delta.tv_usec / USEC_PER_MSEC;
4709 		if (msec > HNS3_RESET_PROCESS_MS)
4710 			hns3_err(hw, "%d handle long time delta %" PRIx64
4711 				     " ms time=%ld.%.6ld",
4712 				 hw->reset.level, msec,
4713 				 tv.tv_sec, tv.tv_usec);
4714 		if (ret == -EAGAIN)
4715 			return;
4716 	}
4717 
4718 	/* Check if we got any *new* reset requests to be honored */
4719 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
4720 	if (reset_level != HNS3_NONE_RESET)
4721 		hns3_msix_process(hns, reset_level);
4722 }
4723 
4724 static const struct eth_dev_ops hns3_eth_dev_ops = {
4725 	.dev_start          = hns3_dev_start,
4726 	.dev_stop           = hns3_dev_stop,
4727 	.dev_close          = hns3_dev_close,
4728 	.promiscuous_enable = hns3_dev_promiscuous_enable,
4729 	.promiscuous_disable = hns3_dev_promiscuous_disable,
4730 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
4731 	.allmulticast_disable = hns3_dev_allmulticast_disable,
4732 	.mtu_set            = hns3_dev_mtu_set,
4733 	.stats_get          = hns3_stats_get,
4734 	.stats_reset        = hns3_stats_reset,
4735 	.xstats_get         = hns3_dev_xstats_get,
4736 	.xstats_get_names   = hns3_dev_xstats_get_names,
4737 	.xstats_reset       = hns3_dev_xstats_reset,
4738 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
4739 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
4740 	.dev_infos_get          = hns3_dev_infos_get,
4741 	.fw_version_get         = hns3_fw_version_get,
4742 	.rx_queue_setup         = hns3_rx_queue_setup,
4743 	.tx_queue_setup         = hns3_tx_queue_setup,
4744 	.rx_queue_release       = hns3_dev_rx_queue_release,
4745 	.tx_queue_release       = hns3_dev_tx_queue_release,
4746 	.dev_configure          = hns3_dev_configure,
4747 	.flow_ctrl_get          = hns3_flow_ctrl_get,
4748 	.flow_ctrl_set          = hns3_flow_ctrl_set,
4749 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
4750 	.mac_addr_add           = hns3_add_mac_addr,
4751 	.mac_addr_remove        = hns3_remove_mac_addr,
4752 	.mac_addr_set           = hns3_set_default_mac_addr,
4753 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
4754 	.link_update            = hns3_dev_link_update,
4755 	.rss_hash_update        = hns3_dev_rss_hash_update,
4756 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
4757 	.reta_update            = hns3_dev_rss_reta_update,
4758 	.reta_query             = hns3_dev_rss_reta_query,
4759 	.filter_ctrl            = hns3_dev_filter_ctrl,
4760 	.vlan_filter_set        = hns3_vlan_filter_set,
4761 	.vlan_tpid_set          = hns3_vlan_tpid_set,
4762 	.vlan_offload_set       = hns3_vlan_offload_set,
4763 	.vlan_pvid_set          = hns3_vlan_pvid_set,
4764 	.get_reg                = hns3_get_regs,
4765 	.get_dcb_info           = hns3_get_dcb_info,
4766 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
4767 };
4768 
4769 static const struct hns3_reset_ops hns3_reset_ops = {
4770 	.reset_service       = hns3_reset_service,
4771 	.stop_service        = hns3_stop_service,
4772 	.prepare_reset       = hns3_prepare_reset,
4773 	.wait_hardware_ready = hns3_wait_hardware_ready,
4774 	.reinit_dev          = hns3_reinit_dev,
4775 	.restore_conf	     = hns3_restore_conf,
4776 	.start_service       = hns3_start_service,
4777 };
4778 
4779 static int
4780 hns3_dev_init(struct rte_eth_dev *eth_dev)
4781 {
4782 	struct rte_device *dev = eth_dev->device;
4783 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4784 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4785 	struct hns3_hw *hw = &hns->hw;
4786 	uint16_t device_id = pci_dev->id.device_id;
4787 	int ret;
4788 
4789 	PMD_INIT_FUNC_TRACE();
4790 	eth_dev->process_private = (struct hns3_process_private *)
4791 	    rte_zmalloc_socket("hns3_filter_list",
4792 			       sizeof(struct hns3_process_private),
4793 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
4794 	if (eth_dev->process_private == NULL) {
4795 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
4796 		return -ENOMEM;
4797 	}
4798 	/* initialize flow filter lists */
4799 	hns3_filterlist_init(eth_dev);
4800 
4801 	hns3_set_rxtx_function(eth_dev);
4802 	eth_dev->dev_ops = &hns3_eth_dev_ops;
4803 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
4804 		hns3_mp_init_secondary();
4805 		hw->secondary_cnt++;
4806 		return 0;
4807 	}
4808 
4809 	hns3_mp_init_primary();
4810 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
4811 
4812 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
4813 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
4814 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC)
4815 		hns3_set_bit(hw->flag, HNS3_DEV_SUPPORT_DCB_B, 1);
4816 
4817 	hns->is_vf = false;
4818 	hw->data = eth_dev->data;
4819 
4820 	/*
4821 	 * Set default max packet size according to the mtu
4822 	 * default vale in DPDK frame.
4823 	 */
4824 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
4825 
4826 	ret = hns3_reset_init(hw);
4827 	if (ret)
4828 		goto err_init_reset;
4829 	hw->reset.ops = &hns3_reset_ops;
4830 
4831 	ret = hns3_init_pf(eth_dev);
4832 	if (ret) {
4833 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
4834 		goto err_init_pf;
4835 	}
4836 
4837 	/* Allocate memory for storing MAC addresses */
4838 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
4839 					       sizeof(struct rte_ether_addr) *
4840 					       HNS3_UC_MACADDR_NUM, 0);
4841 	if (eth_dev->data->mac_addrs == NULL) {
4842 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
4843 			     "to store MAC addresses",
4844 			     sizeof(struct rte_ether_addr) *
4845 			     HNS3_UC_MACADDR_NUM);
4846 		ret = -ENOMEM;
4847 		goto err_rte_zmalloc;
4848 	}
4849 
4850 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
4851 			    &eth_dev->data->mac_addrs[0]);
4852 
4853 	hw->adapter_state = HNS3_NIC_INITIALIZED;
4854 	/*
4855 	 * Pass the information to the rte_eth_dev_close() that it should also
4856 	 * release the private port resources.
4857 	 */
4858 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
4859 
4860 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
4861 		hns3_err(hw, "Reschedule reset service after dev_init");
4862 		hns3_schedule_reset(hns);
4863 	} else {
4864 		/* IMP will wait ready flag before reset */
4865 		hns3_notify_reset_ready(hw, false);
4866 	}
4867 
4868 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4869 	hns3_info(hw, "hns3 dev initialization successful!");
4870 	return 0;
4871 
4872 err_rte_zmalloc:
4873 	hns3_uninit_pf(eth_dev);
4874 
4875 err_init_pf:
4876 	rte_free(hw->reset.wait_data);
4877 err_init_reset:
4878 	eth_dev->dev_ops = NULL;
4879 	eth_dev->rx_pkt_burst = NULL;
4880 	eth_dev->tx_pkt_burst = NULL;
4881 	eth_dev->tx_pkt_prepare = NULL;
4882 	rte_free(eth_dev->process_private);
4883 	eth_dev->process_private = NULL;
4884 	return ret;
4885 }
4886 
4887 static int
4888 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
4889 {
4890 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4891 	struct hns3_hw *hw = &hns->hw;
4892 
4893 	PMD_INIT_FUNC_TRACE();
4894 
4895 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
4896 		return -EPERM;
4897 
4898 	eth_dev->dev_ops = NULL;
4899 	eth_dev->rx_pkt_burst = NULL;
4900 	eth_dev->tx_pkt_burst = NULL;
4901 	eth_dev->tx_pkt_prepare = NULL;
4902 	if (hw->adapter_state < HNS3_NIC_CLOSING)
4903 		hns3_dev_close(eth_dev);
4904 
4905 	hw->adapter_state = HNS3_NIC_REMOVED;
4906 	return 0;
4907 }
4908 
4909 static int
4910 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
4911 		   struct rte_pci_device *pci_dev)
4912 {
4913 	return rte_eth_dev_pci_generic_probe(pci_dev,
4914 					     sizeof(struct hns3_adapter),
4915 					     hns3_dev_init);
4916 }
4917 
4918 static int
4919 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
4920 {
4921 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
4922 }
4923 
4924 static const struct rte_pci_id pci_id_hns3_map[] = {
4925 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
4926 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
4927 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
4928 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
4929 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
4930 	{ .vendor_id = 0, /* sentinel */ },
4931 };
4932 
4933 static struct rte_pci_driver rte_hns3_pmd = {
4934 	.id_table = pci_id_hns3_map,
4935 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
4936 	.probe = eth_hns3_pci_probe,
4937 	.remove = eth_hns3_pci_remove,
4938 };
4939 
4940 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
4941 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
4942 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
4943 
4944 RTE_INIT(hns3_init_log)
4945 {
4946 	hns3_logtype_init = rte_log_register("pmd.net.hns3.init");
4947 	if (hns3_logtype_init >= 0)
4948 		rte_log_set_level(hns3_logtype_init, RTE_LOG_NOTICE);
4949 	hns3_logtype_driver = rte_log_register("pmd.net.hns3.driver");
4950 	if (hns3_logtype_driver >= 0)
4951 		rte_log_set_level(hns3_logtype_driver, RTE_LOG_NOTICE);
4952 }
4953