xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision ac72aae60f71b8716f65d1e2daf531a5ca38c998)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <bus_pci_driver.h>
7 #include <ethdev_pci.h>
8 
9 #include "hns3_common.h"
10 #include "hns3_dump.h"
11 #include "hns3_logs.h"
12 #include "hns3_rxtx.h"
13 #include "hns3_intr.h"
14 #include "hns3_regs.h"
15 #include "hns3_dcb.h"
16 #include "hns3_mp.h"
17 #include "hns3_flow.h"
18 #include "hns3_ptp.h"
19 #include "hns3_ethdev.h"
20 
21 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
22 #define HNS3_SERVICE_QUICK_INTERVAL	10
23 #define HNS3_INVALID_PVID		0xFFFF
24 
25 #define HNS3_FILTER_TYPE_VF		0
26 #define HNS3_FILTER_TYPE_PORT		1
27 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
28 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
29 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
30 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
31 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
32 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
33 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
34 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
35 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
36 
37 /* Reset related Registers */
38 #define HNS3_GLOBAL_RESET_BIT		0
39 #define HNS3_CORE_RESET_BIT		1
40 #define HNS3_IMP_RESET_BIT		2
41 #define HNS3_FUN_RST_ING_B		0
42 
43 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
44 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
45 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
46 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
47 #define HNS3_VECTOR0_TRIGGER_IMP_RESET_B	7U
48 
49 #define HNS3_RESET_WAIT_MS	100
50 #define HNS3_RESET_WAIT_CNT	200
51 
52 enum hns3_evt_cause {
53 	HNS3_VECTOR0_EVENT_RST,
54 	HNS3_VECTOR0_EVENT_MBX,
55 	HNS3_VECTOR0_EVENT_ERR,
56 	HNS3_VECTOR0_EVENT_PTP,
57 	HNS3_VECTOR0_EVENT_OTHER,
58 };
59 
60 struct hns3_intr_state {
61 	uint32_t vector0_state;
62 	uint32_t cmdq_state;
63 	uint32_t hw_err_state;
64 };
65 
66 #define HNS3_SPEEDS_SUPP_FEC (RTE_ETH_LINK_SPEED_10G | \
67 			      RTE_ETH_LINK_SPEED_25G | \
68 			      RTE_ETH_LINK_SPEED_40G | \
69 			      RTE_ETH_LINK_SPEED_50G | \
70 			      RTE_ETH_LINK_SPEED_100G | \
71 			      RTE_ETH_LINK_SPEED_200G)
72 
73 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
74 	{ RTE_ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
75 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
76 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
77 
78 	{ RTE_ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
80 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
81 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
82 
83 	{ RTE_ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
84 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
85 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
86 
87 	{ RTE_ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
88 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
89 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
90 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
91 
92 	{ RTE_ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
93 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
94 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
95 
96 	{ RTE_ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
97 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) |
98 			      RTE_ETH_FEC_MODE_CAPA_MASK(LLRS) }
99 };
100 
101 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
102 						 RTE_ATOMIC(uint64_t) *levels);
103 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
104 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
105 				    int on);
106 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
107 static bool hns3_update_link_status(struct hns3_hw *hw);
108 
109 static int hns3_add_mc_mac_addr(struct hns3_hw *hw,
110 				struct rte_ether_addr *mac_addr);
111 static int hns3_remove_mc_mac_addr(struct hns3_hw *hw,
112 				   struct rte_ether_addr *mac_addr);
113 static int hns3_restore_fec(struct hns3_hw *hw);
114 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
115 static int hns3_do_stop(struct hns3_adapter *hns);
116 static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds);
117 static int hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable);
118 
119 
120 static void
121 hns3_pf_disable_irq0(struct hns3_hw *hw)
122 {
123 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
124 }
125 
126 static void
127 hns3_pf_enable_irq0(struct hns3_hw *hw)
128 {
129 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
130 }
131 
132 static enum hns3_evt_cause
133 hns3_proc_imp_reset_event(struct hns3_adapter *hns, uint32_t *vec_val)
134 {
135 	struct hns3_hw *hw = &hns->hw;
136 
137 	rte_atomic_store_explicit(&hw->reset.disable_cmd, 1, rte_memory_order_relaxed);
138 	hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
139 	*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
140 	hw->reset.stats.imp_cnt++;
141 	hns3_warn(hw, "IMP reset detected, clear reset status");
142 
143 	return HNS3_VECTOR0_EVENT_RST;
144 }
145 
146 static enum hns3_evt_cause
147 hns3_proc_global_reset_event(struct hns3_adapter *hns, uint32_t *vec_val)
148 {
149 	struct hns3_hw *hw = &hns->hw;
150 
151 	rte_atomic_store_explicit(&hw->reset.disable_cmd, 1, rte_memory_order_relaxed);
152 	hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
153 	*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
154 	hw->reset.stats.global_cnt++;
155 	hns3_warn(hw, "Global reset detected, clear reset status");
156 
157 	return HNS3_VECTOR0_EVENT_RST;
158 }
159 
160 static void
161 hns3_query_intr_state(struct hns3_hw *hw, struct hns3_intr_state *state)
162 {
163 	state->vector0_state = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
164 	state->cmdq_state = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
165 	state->hw_err_state = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
166 }
167 
168 static enum hns3_evt_cause
169 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
170 {
171 	struct hns3_hw *hw = &hns->hw;
172 	struct hns3_intr_state state;
173 	uint32_t val;
174 	enum hns3_evt_cause ret;
175 
176 	hns3_query_intr_state(hw, &state);
177 
178 	/*
179 	 * Assumption: If by any chance reset and mailbox events are reported
180 	 * together then we will only process reset event and defer the
181 	 * processing of the mailbox events. Since, we would have not cleared
182 	 * RX CMDQ event this time we would receive again another interrupt
183 	 * from H/W just for the mailbox.
184 	 */
185 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & state.vector0_state) { /* IMP */
186 		ret = hns3_proc_imp_reset_event(hns, &val);
187 		goto out;
188 	}
189 
190 	/* Global reset */
191 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & state.vector0_state) {
192 		ret = hns3_proc_global_reset_event(hns, &val);
193 		goto out;
194 	}
195 
196 	/* Check for vector0 1588 event source */
197 	if (BIT(HNS3_VECTOR0_1588_INT_B) & state.vector0_state) {
198 		val = BIT(HNS3_VECTOR0_1588_INT_B);
199 		ret = HNS3_VECTOR0_EVENT_PTP;
200 		goto out;
201 	}
202 
203 	/* check for vector0 msix event source */
204 	if (state.vector0_state & HNS3_VECTOR0_REG_MSIX_MASK ||
205 	    state.hw_err_state & HNS3_RAS_REG_NFE_MASK) {
206 		val = state.vector0_state | state.hw_err_state;
207 		ret = HNS3_VECTOR0_EVENT_ERR;
208 		goto out;
209 	}
210 
211 	/* check for vector0 mailbox(=CMDQ RX) event source */
212 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & state.cmdq_state) {
213 		state.cmdq_state &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
214 		val = state.cmdq_state;
215 		ret = HNS3_VECTOR0_EVENT_MBX;
216 		goto out;
217 	}
218 
219 	val = state.vector0_state;
220 	ret = HNS3_VECTOR0_EVENT_OTHER;
221 
222 out:
223 	*clearval = val;
224 	return ret;
225 }
226 
227 void
228 hns3_clear_reset_event(struct hns3_hw *hw)
229 {
230 	uint32_t clearval = 0;
231 
232 	switch (hw->reset.level) {
233 	case HNS3_IMP_RESET:
234 		clearval = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
235 		break;
236 	case HNS3_GLOBAL_RESET:
237 		clearval = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
238 		break;
239 	default:
240 		break;
241 	}
242 
243 	if (clearval == 0)
244 		return;
245 
246 	hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, clearval);
247 
248 	hns3_pf_enable_irq0(hw);
249 }
250 
251 static void
252 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
253 {
254 	if (event_type == HNS3_VECTOR0_EVENT_RST ||
255 	    event_type == HNS3_VECTOR0_EVENT_PTP)
256 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
257 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
258 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
259 }
260 
261 static void
262 hns3_clear_all_event_cause(struct hns3_hw *hw)
263 {
264 	uint32_t vector0_int_stats;
265 
266 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
267 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
268 		hns3_warn(hw, "Probe during IMP reset interrupt");
269 
270 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
271 		hns3_warn(hw, "Probe during Global reset interrupt");
272 
273 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
274 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
275 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
276 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
277 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
278 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
279 				BIT(HNS3_VECTOR0_1588_INT_B));
280 }
281 
282 static void
283 hns3_handle_mac_tnl(struct hns3_hw *hw)
284 {
285 	struct hns3_cmd_desc desc;
286 	uint32_t status;
287 	int ret;
288 
289 	/* query and clear mac tnl interrupt */
290 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
291 	ret = hns3_cmd_send(hw, &desc, 1);
292 	if (ret) {
293 		hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
294 		return;
295 	}
296 
297 	status = rte_le_to_cpu_32(desc.data[0]);
298 	if (status) {
299 		hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
300 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
301 					  false);
302 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
303 		ret = hns3_cmd_send(hw, &desc, 1);
304 		if (ret)
305 			hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
306 				 ret);
307 	}
308 }
309 
310 static void
311 hns3_delay_before_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
312 {
313 #define IMPRESET_WAIT_MS_TIME	5
314 
315 	if (event_type == HNS3_VECTOR0_EVENT_RST &&
316 	    regclr & BIT(HNS3_VECTOR0_IMPRESET_INT_B) &&
317 	    hw->revision >= PCI_REVISION_ID_HIP09_A) {
318 		rte_delay_ms(IMPRESET_WAIT_MS_TIME);
319 		hns3_dbg(hw, "wait firmware watchdog initialization completed.");
320 	}
321 }
322 
323 static bool
324 hns3_reset_event_valid(struct hns3_hw *hw)
325 {
326 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
327 	enum hns3_reset_level new_req = HNS3_NONE_RESET;
328 	enum hns3_reset_level last_req;
329 	uint32_t vector0_int;
330 
331 	vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
332 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int)
333 		new_req = HNS3_IMP_RESET;
334 	else if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int)
335 		new_req = HNS3_GLOBAL_RESET;
336 	if (new_req == HNS3_NONE_RESET)
337 		return true;
338 
339 	last_req = hns3_get_reset_level(hns, &hw->reset.pending);
340 	if (last_req == HNS3_NONE_RESET)
341 		return true;
342 
343 	if (new_req > last_req)
344 		return true;
345 
346 	hns3_warn(hw, "last_req (%u) less than or equal to new_req (%u) ignore",
347 		  last_req, new_req);
348 	return false;
349 }
350 
351 static void
352 hns3_interrupt_handler(void *param)
353 {
354 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
355 	struct hns3_adapter *hns = dev->data->dev_private;
356 	struct hns3_hw *hw = &hns->hw;
357 	enum hns3_evt_cause event_cause;
358 	struct hns3_intr_state state;
359 	uint32_t clearval = 0;
360 
361 	if (!hns3_reset_event_valid(hw))
362 		return;
363 
364 	/* Disable interrupt */
365 	hns3_pf_disable_irq0(hw);
366 
367 	event_cause = hns3_check_event_cause(hns, &clearval);
368 	hns3_query_intr_state(hw, &state);
369 	hns3_delay_before_clear_event_cause(hw, event_cause, clearval);
370 	hns3_clear_event_cause(hw, event_cause, clearval);
371 	/* vector 0 interrupt is shared with reset and mailbox source events. */
372 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
373 		hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
374 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
375 			  state.vector0_state, state.hw_err_state,
376 			  state.cmdq_state);
377 		hns3_handle_mac_tnl(hw);
378 		hns3_handle_error(hns);
379 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
380 		hns3_warn(hw, "received reset interrupt");
381 		hns3_schedule_reset(hns);
382 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
383 		hns3pf_handle_mbx_msg(hw);
384 	} else if (event_cause != HNS3_VECTOR0_EVENT_PTP) {
385 		hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
386 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
387 			  state.vector0_state, state.hw_err_state,
388 			  state.cmdq_state);
389 	}
390 
391 	/* Enable interrupt if it is not cause by reset */
392 	if (event_cause == HNS3_VECTOR0_EVENT_ERR ||
393 	    event_cause == HNS3_VECTOR0_EVENT_MBX ||
394 	    event_cause == HNS3_VECTOR0_EVENT_PTP ||
395 	    event_cause == HNS3_VECTOR0_EVENT_OTHER)
396 		hns3_pf_enable_irq0(hw);
397 }
398 
399 static int
400 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
401 {
402 #define HNS3_VLAN_ID_OFFSET_STEP	160
403 #define HNS3_VLAN_BYTE_SIZE		8
404 	struct hns3_vlan_filter_pf_cfg_cmd *req;
405 	struct hns3_hw *hw = &hns->hw;
406 	uint8_t vlan_offset_byte_val;
407 	struct hns3_cmd_desc desc;
408 	uint8_t vlan_offset_byte;
409 	uint8_t vlan_offset_base;
410 	int ret;
411 
412 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
413 
414 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
415 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
416 			   HNS3_VLAN_BYTE_SIZE;
417 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
418 
419 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
420 	req->vlan_offset = vlan_offset_base;
421 	req->vlan_cfg = on ? 0 : 1;
422 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
423 
424 	ret = hns3_cmd_send(hw, &desc, 1);
425 	if (ret)
426 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
427 			 vlan_id, ret);
428 
429 	return ret;
430 }
431 
432 static void
433 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
434 {
435 	struct hns3_user_vlan_table *vlan_entry;
436 	struct hns3_pf *pf = &hns->pf;
437 
438 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
439 		if (vlan_entry->vlan_id == vlan_id) {
440 			if (vlan_entry->hd_tbl_status)
441 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
442 			LIST_REMOVE(vlan_entry, next);
443 			rte_free(vlan_entry);
444 			break;
445 		}
446 	}
447 }
448 
449 static void
450 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
451 			bool writen_to_tbl)
452 {
453 	struct hns3_user_vlan_table *vlan_entry;
454 	struct hns3_hw *hw = &hns->hw;
455 	struct hns3_pf *pf = &hns->pf;
456 
457 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
458 		if (vlan_entry->vlan_id == vlan_id)
459 			return;
460 	}
461 
462 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
463 	if (vlan_entry == NULL) {
464 		hns3_err(hw, "Failed to malloc hns3 vlan table");
465 		return;
466 	}
467 
468 	vlan_entry->hd_tbl_status = writen_to_tbl;
469 	vlan_entry->vlan_id = vlan_id;
470 
471 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
472 }
473 
474 static int
475 hns3_restore_vlan_table(struct hns3_adapter *hns)
476 {
477 	struct hns3_user_vlan_table *vlan_entry;
478 	struct hns3_hw *hw = &hns->hw;
479 	struct hns3_pf *pf = &hns->pf;
480 	uint16_t vlan_id;
481 	int ret = 0;
482 
483 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
484 		return hns3_vlan_pvid_configure(hns,
485 						hw->port_base_vlan_cfg.pvid, 1);
486 
487 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
488 		if (vlan_entry->hd_tbl_status) {
489 			vlan_id = vlan_entry->vlan_id;
490 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
491 			if (ret)
492 				break;
493 		}
494 	}
495 
496 	return ret;
497 }
498 
499 static int
500 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
501 {
502 	struct hns3_hw *hw = &hns->hw;
503 	bool writen_to_tbl = false;
504 	int ret = 0;
505 
506 	/*
507 	 * When vlan filter is enabled, hardware regards packets without vlan
508 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
509 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
510 	 */
511 	if (on == 0 && vlan_id == 0)
512 		return 0;
513 
514 	/*
515 	 * When port base vlan enabled, we use port base vlan as the vlan
516 	 * filter condition. In this case, we don't update vlan filter table
517 	 * when user add new vlan or remove exist vlan, just update the
518 	 * vlan list. The vlan id in vlan list will be written in vlan filter
519 	 * table until port base vlan disabled
520 	 */
521 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
522 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
523 		writen_to_tbl = true;
524 	}
525 
526 	if (ret == 0) {
527 		if (on)
528 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
529 		else
530 			hns3_rm_dev_vlan_table(hns, vlan_id);
531 	}
532 	return ret;
533 }
534 
535 static int
536 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
537 {
538 	struct hns3_adapter *hns = dev->data->dev_private;
539 	struct hns3_hw *hw = &hns->hw;
540 	int ret;
541 
542 	rte_spinlock_lock(&hw->lock);
543 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
544 	rte_spinlock_unlock(&hw->lock);
545 	return ret;
546 }
547 
548 static int
549 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
550 			 uint16_t tpid)
551 {
552 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
553 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
554 	struct hns3_hw *hw = &hns->hw;
555 	struct hns3_cmd_desc desc;
556 	int ret;
557 
558 	if ((vlan_type != RTE_ETH_VLAN_TYPE_INNER &&
559 	     vlan_type != RTE_ETH_VLAN_TYPE_OUTER)) {
560 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
561 		return -EINVAL;
562 	}
563 
564 	if (tpid != RTE_ETHER_TYPE_VLAN) {
565 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
566 		return -EINVAL;
567 	}
568 
569 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
570 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
571 
572 	if (vlan_type == RTE_ETH_VLAN_TYPE_OUTER) {
573 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
574 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
575 	} else if (vlan_type == RTE_ETH_VLAN_TYPE_INNER) {
576 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
577 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
578 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
579 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
580 	}
581 
582 	ret = hns3_cmd_send(hw, &desc, 1);
583 	if (ret) {
584 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
585 			 ret);
586 		return ret;
587 	}
588 
589 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
590 
591 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
592 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
593 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
594 
595 	ret = hns3_cmd_send(hw, &desc, 1);
596 	if (ret)
597 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
598 			 ret);
599 	return ret;
600 }
601 
602 static int
603 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
604 		   uint16_t tpid)
605 {
606 	struct hns3_adapter *hns = dev->data->dev_private;
607 	struct hns3_hw *hw = &hns->hw;
608 	int ret;
609 
610 	rte_spinlock_lock(&hw->lock);
611 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
612 	rte_spinlock_unlock(&hw->lock);
613 	return ret;
614 }
615 
616 static int
617 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
618 			     struct hns3_rx_vtag_cfg *vcfg)
619 {
620 	struct hns3_vport_vtag_rx_cfg_cmd *req;
621 	struct hns3_hw *hw = &hns->hw;
622 	struct hns3_cmd_desc desc;
623 	uint16_t vport_id;
624 	uint8_t bitmap;
625 	int ret;
626 
627 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
628 
629 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
630 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
631 		     vcfg->strip_tag1_en ? 1 : 0);
632 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
633 		     vcfg->strip_tag2_en ? 1 : 0);
634 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
635 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
636 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
637 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
638 
639 	/* firmware will ignore this configuration for PCI_REVISION_ID_HIP08 */
640 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
641 		     vcfg->strip_tag1_discard_en ? 1 : 0);
642 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
643 		     vcfg->strip_tag2_discard_en ? 1 : 0);
644 	/*
645 	 * In current version VF is not supported when PF is driven by DPDK
646 	 * driver, just need to configure parameters for PF vport.
647 	 */
648 	vport_id = HNS3_PF_FUNC_ID;
649 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
650 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
651 	req->vf_bitmap[req->vf_offset] = bitmap;
652 
653 	ret = hns3_cmd_send(hw, &desc, 1);
654 	if (ret)
655 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
656 	return ret;
657 }
658 
659 static int
660 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
661 {
662 	struct hns3_rx_vtag_cfg rxvlan_cfg;
663 	struct hns3_hw *hw = &hns->hw;
664 	int ret;
665 
666 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
667 		rxvlan_cfg.strip_tag1_en = false;
668 		rxvlan_cfg.strip_tag2_en = enable;
669 		rxvlan_cfg.strip_tag2_discard_en = false;
670 	} else {
671 		rxvlan_cfg.strip_tag1_en = enable;
672 		rxvlan_cfg.strip_tag2_en = true;
673 		rxvlan_cfg.strip_tag2_discard_en = true;
674 	}
675 
676 	rxvlan_cfg.strip_tag1_discard_en = false;
677 	rxvlan_cfg.vlan1_vlan_prionly = false;
678 	rxvlan_cfg.vlan2_vlan_prionly = false;
679 	rxvlan_cfg.rx_vlan_offload_en = enable;
680 
681 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
682 	if (ret) {
683 		hns3_err(hw, "%s strip rx vtag failed, ret = %d.",
684 				enable ? "enable" : "disable", ret);
685 		return ret;
686 	}
687 
688 	memcpy(&hns->pf.vtag_config.rx_vcfg, &rxvlan_cfg,
689 	       sizeof(struct hns3_rx_vtag_cfg));
690 
691 	return ret;
692 }
693 
694 static int
695 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
696 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
697 {
698 	struct hns3_vlan_filter_ctrl_cmd *req;
699 	struct hns3_cmd_desc desc;
700 	int ret;
701 
702 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
703 
704 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
705 	req->vlan_type = vlan_type;
706 	req->vlan_fe = filter_en ? fe_type : 0;
707 	req->vf_id = vf_id;
708 
709 	ret = hns3_cmd_send(hw, &desc, 1);
710 	if (ret)
711 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
712 
713 	return ret;
714 }
715 
716 static int
717 hns3_vlan_filter_init(struct hns3_adapter *hns)
718 {
719 	struct hns3_hw *hw = &hns->hw;
720 	int ret;
721 
722 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
723 					HNS3_FILTER_FE_EGRESS, false,
724 					HNS3_PF_FUNC_ID);
725 	if (ret) {
726 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
727 		return ret;
728 	}
729 
730 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
731 					HNS3_FILTER_FE_INGRESS, false,
732 					HNS3_PF_FUNC_ID);
733 	if (ret)
734 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
735 
736 	return ret;
737 }
738 
739 static int
740 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
741 {
742 	struct hns3_hw *hw = &hns->hw;
743 	int ret;
744 
745 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
746 					HNS3_FILTER_FE_INGRESS, enable,
747 					HNS3_PF_FUNC_ID);
748 	if (ret)
749 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
750 			 enable ? "enable" : "disable", ret);
751 
752 	return ret;
753 }
754 
755 static int
756 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
757 {
758 	struct hns3_adapter *hns = dev->data->dev_private;
759 	struct hns3_hw *hw = &hns->hw;
760 	struct rte_eth_rxmode *rxmode;
761 	unsigned int tmp_mask;
762 	bool enable;
763 	int ret = 0;
764 
765 	rte_spinlock_lock(&hw->lock);
766 	rxmode = &dev->data->dev_conf.rxmode;
767 	tmp_mask = (unsigned int)mask;
768 	if (tmp_mask & RTE_ETH_VLAN_FILTER_MASK) {
769 		/* ignore vlan filter configuration during promiscuous mode */
770 		if (!dev->data->promiscuous) {
771 			/* Enable or disable VLAN filter */
772 			enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ?
773 				 true : false;
774 
775 			ret = hns3_enable_vlan_filter(hns, enable);
776 			if (ret) {
777 				rte_spinlock_unlock(&hw->lock);
778 				hns3_err(hw, "failed to %s rx filter, ret = %d",
779 					 enable ? "enable" : "disable", ret);
780 				return ret;
781 			}
782 		}
783 	}
784 
785 	if (tmp_mask & RTE_ETH_VLAN_STRIP_MASK) {
786 		/* Enable or disable VLAN stripping */
787 		enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP ?
788 		    true : false;
789 
790 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
791 		if (ret) {
792 			rte_spinlock_unlock(&hw->lock);
793 			hns3_err(hw, "failed to %s rx strip, ret = %d",
794 				 enable ? "enable" : "disable", ret);
795 			return ret;
796 		}
797 	}
798 
799 	rte_spinlock_unlock(&hw->lock);
800 
801 	return ret;
802 }
803 
804 static int
805 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
806 			     struct hns3_tx_vtag_cfg *vcfg)
807 {
808 	struct hns3_vport_vtag_tx_cfg_cmd *req;
809 	struct hns3_cmd_desc desc;
810 	struct hns3_hw *hw = &hns->hw;
811 	uint16_t vport_id;
812 	uint8_t bitmap;
813 	int ret;
814 
815 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
816 
817 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
818 	req->def_vlan_tag1 = vcfg->default_tag1;
819 	req->def_vlan_tag2 = vcfg->default_tag2;
820 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
821 		     vcfg->accept_tag1 ? 1 : 0);
822 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
823 		     vcfg->accept_untag1 ? 1 : 0);
824 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
825 		     vcfg->accept_tag2 ? 1 : 0);
826 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
827 		     vcfg->accept_untag2 ? 1 : 0);
828 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
829 		     vcfg->insert_tag1_en ? 1 : 0);
830 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
831 		     vcfg->insert_tag2_en ? 1 : 0);
832 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
833 
834 	/* firmware will ignore this configuration for PCI_REVISION_ID_HIP08 */
835 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
836 		     vcfg->tag_shift_mode_en ? 1 : 0);
837 
838 	/*
839 	 * In current version VF is not supported when PF is driven by DPDK
840 	 * driver, just need to configure parameters for PF vport.
841 	 */
842 	vport_id = HNS3_PF_FUNC_ID;
843 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
844 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
845 	req->vf_bitmap[req->vf_offset] = bitmap;
846 
847 	ret = hns3_cmd_send(hw, &desc, 1);
848 	if (ret)
849 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
850 
851 	return ret;
852 }
853 
854 static int
855 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
856 		     uint16_t pvid)
857 {
858 	struct hns3_hw *hw = &hns->hw;
859 	struct hns3_tx_vtag_cfg txvlan_cfg;
860 	int ret;
861 
862 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
863 		txvlan_cfg.accept_tag1 = true;
864 		txvlan_cfg.insert_tag1_en = false;
865 		txvlan_cfg.default_tag1 = 0;
866 	} else {
867 		txvlan_cfg.accept_tag1 =
868 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
869 		txvlan_cfg.insert_tag1_en = true;
870 		txvlan_cfg.default_tag1 = pvid;
871 	}
872 
873 	txvlan_cfg.accept_untag1 = true;
874 	txvlan_cfg.accept_tag2 = true;
875 	txvlan_cfg.accept_untag2 = true;
876 	txvlan_cfg.insert_tag2_en = false;
877 	txvlan_cfg.default_tag2 = 0;
878 	txvlan_cfg.tag_shift_mode_en = true;
879 
880 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
881 	if (ret) {
882 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
883 			 ret);
884 		return ret;
885 	}
886 
887 	memcpy(&hns->pf.vtag_config.tx_vcfg, &txvlan_cfg,
888 	       sizeof(struct hns3_tx_vtag_cfg));
889 
890 	return ret;
891 }
892 
893 
894 static void
895 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
896 {
897 	struct hns3_user_vlan_table *vlan_entry;
898 	struct hns3_pf *pf = &hns->pf;
899 
900 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
901 		if (vlan_entry->hd_tbl_status) {
902 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
903 			vlan_entry->hd_tbl_status = false;
904 		}
905 	}
906 
907 	if (is_del_list) {
908 		vlan_entry = LIST_FIRST(&pf->vlan_list);
909 		while (vlan_entry) {
910 			LIST_REMOVE(vlan_entry, next);
911 			rte_free(vlan_entry);
912 			vlan_entry = LIST_FIRST(&pf->vlan_list);
913 		}
914 	}
915 }
916 
917 static void
918 hns3_add_all_vlan_table(struct hns3_adapter *hns)
919 {
920 	struct hns3_user_vlan_table *vlan_entry;
921 	struct hns3_pf *pf = &hns->pf;
922 
923 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
924 		if (!vlan_entry->hd_tbl_status) {
925 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
926 			vlan_entry->hd_tbl_status = true;
927 		}
928 	}
929 }
930 
931 static void
932 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
933 {
934 	struct hns3_hw *hw = &hns->hw;
935 	int ret;
936 
937 	hns3_rm_all_vlan_table(hns, true);
938 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
939 		ret = hns3_set_port_vlan_filter(hns,
940 						hw->port_base_vlan_cfg.pvid, 0);
941 		if (ret) {
942 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
943 				 ret);
944 			return;
945 		}
946 	}
947 }
948 
949 static int
950 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
951 			uint16_t port_base_vlan_state, uint16_t new_pvid)
952 {
953 	struct hns3_hw *hw = &hns->hw;
954 	uint16_t old_pvid;
955 	int ret;
956 
957 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
958 		old_pvid = hw->port_base_vlan_cfg.pvid;
959 		if (old_pvid != HNS3_INVALID_PVID) {
960 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
961 			if (ret) {
962 				hns3_err(hw, "failed to remove old pvid %u, "
963 						"ret = %d", old_pvid, ret);
964 				return ret;
965 			}
966 		}
967 
968 		hns3_rm_all_vlan_table(hns, false);
969 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
970 		if (ret) {
971 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
972 					new_pvid, ret);
973 			return ret;
974 		}
975 	} else {
976 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
977 		if (ret) {
978 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
979 					new_pvid, ret);
980 			return ret;
981 		}
982 
983 		hns3_add_all_vlan_table(hns);
984 	}
985 	return 0;
986 }
987 
988 static int
989 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
990 {
991 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
992 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
993 	bool rx_strip_en;
994 	int ret;
995 
996 	rx_strip_en = old_cfg->rx_vlan_offload_en;
997 	if (on) {
998 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
999 		rx_vlan_cfg.strip_tag2_en = true;
1000 		rx_vlan_cfg.strip_tag2_discard_en = true;
1001 	} else {
1002 		rx_vlan_cfg.strip_tag1_en = false;
1003 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
1004 		rx_vlan_cfg.strip_tag2_discard_en = false;
1005 	}
1006 	rx_vlan_cfg.strip_tag1_discard_en = false;
1007 	rx_vlan_cfg.vlan1_vlan_prionly = false;
1008 	rx_vlan_cfg.vlan2_vlan_prionly = false;
1009 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
1010 
1011 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
1012 	if (ret)
1013 		return ret;
1014 
1015 	memcpy(&hns->pf.vtag_config.rx_vcfg, &rx_vlan_cfg,
1016 	       sizeof(struct hns3_rx_vtag_cfg));
1017 
1018 	return ret;
1019 }
1020 
1021 static int
1022 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
1023 {
1024 	struct hns3_hw *hw = &hns->hw;
1025 	uint16_t port_base_vlan_state;
1026 	int ret, err;
1027 
1028 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
1029 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
1030 			hns3_warn(hw, "Invalid operation! As current pvid set "
1031 				  "is %u, disable pvid %u is invalid",
1032 				  hw->port_base_vlan_cfg.pvid, pvid);
1033 		return 0;
1034 	}
1035 
1036 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
1037 				    HNS3_PORT_BASE_VLAN_DISABLE;
1038 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
1039 	if (ret) {
1040 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
1041 			 ret);
1042 		return ret;
1043 	}
1044 
1045 	ret = hns3_en_pvid_strip(hns, on);
1046 	if (ret) {
1047 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
1048 			 "ret = %d", ret);
1049 		goto pvid_vlan_strip_fail;
1050 	}
1051 
1052 	if (pvid == HNS3_INVALID_PVID)
1053 		goto out;
1054 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
1055 	if (ret) {
1056 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
1057 			 ret);
1058 		goto vlan_filter_set_fail;
1059 	}
1060 
1061 out:
1062 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
1063 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1064 	return ret;
1065 
1066 vlan_filter_set_fail:
1067 	err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
1068 					HNS3_PORT_BASE_VLAN_ENABLE);
1069 	if (err)
1070 		hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1071 
1072 pvid_vlan_strip_fail:
1073 	err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1074 					hw->port_base_vlan_cfg.pvid);
1075 	if (err)
1076 		hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1077 
1078 	return ret;
1079 }
1080 
1081 static int
1082 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1083 {
1084 	struct hns3_adapter *hns = dev->data->dev_private;
1085 	struct hns3_hw *hw = &hns->hw;
1086 	bool pvid_en_state_change;
1087 	uint16_t pvid_state;
1088 	int ret;
1089 
1090 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1091 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1092 			 RTE_ETHER_MAX_VLAN_ID);
1093 		return -EINVAL;
1094 	}
1095 
1096 	/*
1097 	 * If PVID configuration state change, should refresh the PVID
1098 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1099 	 */
1100 	pvid_state = hw->port_base_vlan_cfg.state;
1101 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1102 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1103 		pvid_en_state_change = false;
1104 	else
1105 		pvid_en_state_change = true;
1106 
1107 	rte_spinlock_lock(&hw->lock);
1108 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
1109 	rte_spinlock_unlock(&hw->lock);
1110 	if (ret)
1111 		return ret;
1112 	/*
1113 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1114 	 * need be processed by PMD.
1115 	 */
1116 	if (pvid_en_state_change &&
1117 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1118 		hns3_update_all_queues_pvid_proc_en(hw);
1119 
1120 	return 0;
1121 }
1122 
1123 static int
1124 hns3_default_vlan_config(struct hns3_adapter *hns)
1125 {
1126 	struct hns3_hw *hw = &hns->hw;
1127 	int ret;
1128 
1129 	/*
1130 	 * When vlan filter is enabled, hardware regards packets without vlan
1131 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1132 	 * table, packets without vlan won't be received. So, add vlan 0 as
1133 	 * the default vlan.
1134 	 */
1135 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1136 	if (ret)
1137 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1138 	return ret;
1139 }
1140 
1141 static int
1142 hns3_init_vlan_config(struct hns3_adapter *hns)
1143 {
1144 	struct hns3_hw *hw = &hns->hw;
1145 	int ret;
1146 
1147 	/*
1148 	 * This function can be called in the initialization and reset process,
1149 	 * when in reset process, it means that hardware had been reseted
1150 	 * successfully and we need to restore the hardware configuration to
1151 	 * ensure that the hardware configuration remains unchanged before and
1152 	 * after reset.
1153 	 */
1154 	if (rte_atomic_load_explicit(&hw->reset.resetting, rte_memory_order_relaxed) == 0) {
1155 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1156 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1157 	}
1158 
1159 	ret = hns3_vlan_filter_init(hns);
1160 	if (ret) {
1161 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1162 		return ret;
1163 	}
1164 
1165 	ret = hns3_vlan_tpid_configure(hns, RTE_ETH_VLAN_TYPE_INNER,
1166 				       RTE_ETHER_TYPE_VLAN);
1167 	if (ret) {
1168 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1169 		return ret;
1170 	}
1171 
1172 	/*
1173 	 * When in the reinit dev stage of the reset process, the following
1174 	 * vlan-related configurations may differ from those at initialization,
1175 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1176 	 * and hns3_restore_vlan_conf later.
1177 	 */
1178 	if (rte_atomic_load_explicit(&hw->reset.resetting, rte_memory_order_relaxed) == 0) {
1179 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1180 		if (ret) {
1181 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1182 			return ret;
1183 		}
1184 
1185 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1186 		if (ret) {
1187 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1188 				 ret);
1189 			return ret;
1190 		}
1191 	}
1192 
1193 	return hns3_default_vlan_config(hns);
1194 }
1195 
1196 static int
1197 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1198 {
1199 	struct hns3_pf *pf = &hns->pf;
1200 	struct hns3_hw *hw = &hns->hw;
1201 	uint64_t offloads;
1202 	bool enable;
1203 	int ret;
1204 
1205 	if (!hw->data->promiscuous) {
1206 		/* restore vlan filter states */
1207 		offloads = hw->data->dev_conf.rxmode.offloads;
1208 		enable = offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ? true : false;
1209 		ret = hns3_enable_vlan_filter(hns, enable);
1210 		if (ret) {
1211 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1212 				 "ret = %d", ret);
1213 			return ret;
1214 		}
1215 	}
1216 
1217 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1218 	if (ret) {
1219 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1220 		return ret;
1221 	}
1222 
1223 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1224 	if (ret)
1225 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1226 
1227 	return ret;
1228 }
1229 
1230 static int
1231 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1232 {
1233 	struct hns3_adapter *hns = dev->data->dev_private;
1234 	struct rte_eth_dev_data *data = dev->data;
1235 	struct rte_eth_txmode *txmode;
1236 	struct hns3_hw *hw = &hns->hw;
1237 	int mask;
1238 	int ret;
1239 
1240 	txmode = &data->dev_conf.txmode;
1241 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1242 		hns3_warn(hw,
1243 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1244 			  "configuration is not supported! Ignore these two "
1245 			  "parameters: hw_vlan_reject_tagged(%u), "
1246 			  "hw_vlan_reject_untagged(%u)",
1247 			  txmode->hw_vlan_reject_tagged,
1248 			  txmode->hw_vlan_reject_untagged);
1249 
1250 	/* Apply vlan offload setting */
1251 	mask = RTE_ETH_VLAN_STRIP_MASK | RTE_ETH_VLAN_FILTER_MASK;
1252 	ret = hns3_vlan_offload_set(dev, mask);
1253 	if (ret) {
1254 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1255 			 ret);
1256 		return ret;
1257 	}
1258 
1259 	/*
1260 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1261 	 * VLAN pvid related configuration to hardware.
1262 	 */
1263 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1264 		return 0;
1265 
1266 	/* Apply pvid setting */
1267 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1268 				 txmode->hw_vlan_insert_pvid);
1269 	if (ret)
1270 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1271 			 txmode->pvid, ret);
1272 
1273 	return ret;
1274 }
1275 
1276 static int
1277 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1278 		unsigned int tso_mss_max)
1279 {
1280 	struct hns3_cfg_tso_status_cmd *req;
1281 	struct hns3_cmd_desc desc;
1282 	uint16_t tso_mss;
1283 
1284 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1285 
1286 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1287 
1288 	tso_mss = 0;
1289 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1290 		       tso_mss_min);
1291 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1292 
1293 	tso_mss = 0;
1294 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1295 		       tso_mss_max);
1296 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1297 
1298 	return hns3_cmd_send(hw, &desc, 1);
1299 }
1300 
1301 static int
1302 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1303 		   uint16_t *allocated_size, bool is_alloc)
1304 {
1305 	struct hns3_umv_spc_alc_cmd *req;
1306 	struct hns3_cmd_desc desc;
1307 	int ret;
1308 
1309 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1310 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1311 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1312 	req->space_size = rte_cpu_to_le_32(space_size);
1313 
1314 	ret = hns3_cmd_send(hw, &desc, 1);
1315 	if (ret) {
1316 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1317 			     is_alloc ? "allocate" : "free", ret);
1318 		return ret;
1319 	}
1320 
1321 	if (is_alloc && allocated_size)
1322 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1323 
1324 	return 0;
1325 }
1326 
1327 static int
1328 hns3_init_umv_space(struct hns3_hw *hw)
1329 {
1330 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1331 	struct hns3_pf *pf = &hns->pf;
1332 	uint16_t allocated_size = 0;
1333 	int ret;
1334 
1335 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1336 				 true);
1337 	if (ret)
1338 		return ret;
1339 
1340 	if (allocated_size < pf->wanted_umv_size)
1341 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1342 			     pf->wanted_umv_size, allocated_size);
1343 
1344 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1345 						pf->wanted_umv_size;
1346 	pf->used_umv_size = 0;
1347 	return 0;
1348 }
1349 
1350 static int
1351 hns3_uninit_umv_space(struct hns3_hw *hw)
1352 {
1353 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1354 	struct hns3_pf *pf = &hns->pf;
1355 	int ret;
1356 
1357 	if (pf->max_umv_size == 0)
1358 		return 0;
1359 
1360 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1361 	if (ret)
1362 		return ret;
1363 
1364 	pf->max_umv_size = 0;
1365 
1366 	return 0;
1367 }
1368 
1369 static bool
1370 hns3_is_umv_space_full(struct hns3_hw *hw)
1371 {
1372 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1373 	struct hns3_pf *pf = &hns->pf;
1374 	bool is_full;
1375 
1376 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1377 
1378 	return is_full;
1379 }
1380 
1381 static void
1382 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1383 {
1384 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1385 	struct hns3_pf *pf = &hns->pf;
1386 
1387 	if (is_free) {
1388 		if (pf->used_umv_size > 0)
1389 			pf->used_umv_size--;
1390 	} else
1391 		pf->used_umv_size++;
1392 }
1393 
1394 static void
1395 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1396 		      const uint8_t *addr, bool is_mc)
1397 {
1398 	const unsigned char *mac_addr = addr;
1399 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1400 			    ((uint32_t)mac_addr[2] << 16) |
1401 			    ((uint32_t)mac_addr[1] << 8) |
1402 			    (uint32_t)mac_addr[0];
1403 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1404 
1405 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1406 	if (is_mc) {
1407 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1408 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1409 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1410 	}
1411 
1412 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1413 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1414 }
1415 
1416 static int
1417 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1418 			     uint8_t resp_code,
1419 			     enum hns3_mac_vlan_tbl_opcode op)
1420 {
1421 	if (cmdq_resp) {
1422 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1423 			 cmdq_resp);
1424 		return -EIO;
1425 	}
1426 
1427 	if (op == HNS3_MAC_VLAN_ADD) {
1428 		if (resp_code == 0 || resp_code == 1) {
1429 			return 0;
1430 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1431 			hns3_err(hw, "add mac addr failed for uc_overflow");
1432 			return -ENOSPC;
1433 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1434 			hns3_err(hw, "add mac addr failed for mc_overflow");
1435 			return -ENOSPC;
1436 		}
1437 
1438 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1439 			 resp_code);
1440 		return -EIO;
1441 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1442 		if (resp_code == 0) {
1443 			return 0;
1444 		} else if (resp_code == 1) {
1445 			hns3_dbg(hw, "remove mac addr failed for miss");
1446 			return -ENOENT;
1447 		}
1448 
1449 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1450 			 resp_code);
1451 		return -EIO;
1452 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1453 		if (resp_code == 0) {
1454 			return 0;
1455 		} else if (resp_code == 1) {
1456 			hns3_dbg(hw, "lookup mac addr failed for miss");
1457 			return -ENOENT;
1458 		}
1459 
1460 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1461 			 resp_code);
1462 		return -EIO;
1463 	}
1464 
1465 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1466 		 op);
1467 
1468 	return -EINVAL;
1469 }
1470 
1471 static int
1472 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1473 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1474 			 struct hns3_cmd_desc *desc, uint8_t desc_num)
1475 {
1476 	uint8_t resp_code;
1477 	uint16_t retval;
1478 	int ret;
1479 	int i;
1480 
1481 	if (desc_num == HNS3_MC_MAC_VLAN_OPS_DESC_NUM) {
1482 		for (i = 0; i < desc_num - 1; i++) {
1483 			hns3_cmd_setup_basic_desc(&desc[i],
1484 						  HNS3_OPC_MAC_VLAN_ADD, true);
1485 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1486 			if (i == 0)
1487 				memcpy(desc[i].data, req,
1488 				sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1489 		}
1490 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_MAC_VLAN_ADD,
1491 					  true);
1492 	} else {
1493 		hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD,
1494 					  true);
1495 		memcpy(desc[0].data, req,
1496 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1497 	}
1498 	ret = hns3_cmd_send(hw, desc, desc_num);
1499 	if (ret) {
1500 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1501 			 ret);
1502 		return ret;
1503 	}
1504 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1505 	retval = rte_le_to_cpu_16(desc[0].retval);
1506 
1507 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1508 					    HNS3_MAC_VLAN_LKUP);
1509 }
1510 
1511 static int
1512 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1513 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1514 		      struct hns3_cmd_desc *desc, uint8_t desc_num)
1515 {
1516 	uint8_t resp_code;
1517 	uint16_t retval;
1518 	int cfg_status;
1519 	int ret;
1520 	int i;
1521 
1522 	if (desc_num == HNS3_UC_MAC_VLAN_OPS_DESC_NUM) {
1523 		hns3_cmd_setup_basic_desc(desc, HNS3_OPC_MAC_VLAN_ADD, false);
1524 		memcpy(desc->data, req,
1525 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1526 		ret = hns3_cmd_send(hw, desc, desc_num);
1527 		resp_code = (rte_le_to_cpu_32(desc->data[0]) >> 8) & 0xff;
1528 		retval = rte_le_to_cpu_16(desc->retval);
1529 
1530 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1531 							  HNS3_MAC_VLAN_ADD);
1532 	} else {
1533 		for (i = 0; i < desc_num; i++) {
1534 			hns3_cmd_reuse_desc(&desc[i], false);
1535 			if (i == desc_num - 1)
1536 				desc[i].flag &=
1537 					rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1538 			else
1539 				desc[i].flag |=
1540 					rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1541 		}
1542 		memcpy(desc[0].data, req,
1543 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1544 		desc[0].retval = 0;
1545 		ret = hns3_cmd_send(hw, desc, desc_num);
1546 		resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1547 		retval = rte_le_to_cpu_16(desc[0].retval);
1548 
1549 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1550 							  HNS3_MAC_VLAN_ADD);
1551 	}
1552 
1553 	if (ret) {
1554 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1555 		return ret;
1556 	}
1557 
1558 	return cfg_status;
1559 }
1560 
1561 static int
1562 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1563 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1564 {
1565 	struct hns3_cmd_desc desc;
1566 	uint8_t resp_code;
1567 	uint16_t retval;
1568 	int ret;
1569 
1570 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1571 
1572 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1573 
1574 	ret = hns3_cmd_send(hw, &desc, 1);
1575 	if (ret) {
1576 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1577 		return ret;
1578 	}
1579 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1580 	retval = rte_le_to_cpu_16(desc.retval);
1581 
1582 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1583 					    HNS3_MAC_VLAN_REMOVE);
1584 }
1585 
1586 static int
1587 hns3_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1588 {
1589 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1590 	struct hns3_mac_vlan_tbl_entry_cmd req;
1591 	struct hns3_pf *pf = &hns->pf;
1592 	struct hns3_cmd_desc desc;
1593 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1594 	uint16_t egress_port = 0;
1595 	uint8_t vf_id;
1596 	int ret;
1597 
1598 	/* check if mac addr is valid */
1599 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1600 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1601 				      mac_addr);
1602 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1603 			 mac_str);
1604 		return -EINVAL;
1605 	}
1606 
1607 	memset(&req, 0, sizeof(req));
1608 
1609 	/*
1610 	 * In current version VF is not supported when PF is driven by DPDK
1611 	 * driver, just need to configure parameters for PF vport.
1612 	 */
1613 	vf_id = HNS3_PF_FUNC_ID;
1614 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1615 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1616 
1617 	req.egress_port = rte_cpu_to_le_16(egress_port);
1618 
1619 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1620 
1621 	/*
1622 	 * Lookup the mac address in the mac_vlan table, and add
1623 	 * it if the entry is inexistent. Repeated unicast entry
1624 	 * is not allowed in the mac vlan table.
1625 	 */
1626 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc,
1627 					HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1628 	if (ret == -ENOENT) {
1629 		if (!hns3_is_umv_space_full(hw)) {
1630 			ret = hns3_add_mac_vlan_tbl(hw, &req, &desc,
1631 						HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1632 			if (!ret)
1633 				hns3_update_umv_space(hw, false);
1634 			return ret;
1635 		}
1636 
1637 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1638 
1639 		return -ENOSPC;
1640 	}
1641 
1642 	hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1643 
1644 	/* check if we just hit the duplicate */
1645 	if (ret == 0) {
1646 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1647 		return 0;
1648 	}
1649 
1650 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1651 		 mac_str);
1652 
1653 	return ret;
1654 }
1655 
1656 static int
1657 hns3_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1658 {
1659 	struct hns3_mac_vlan_tbl_entry_cmd req;
1660 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1661 	int ret;
1662 
1663 	/* check if mac addr is valid */
1664 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1665 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1666 				      mac_addr);
1667 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1668 			 mac_str);
1669 		return -EINVAL;
1670 	}
1671 
1672 	memset(&req, 0, sizeof(req));
1673 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1674 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1675 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1676 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1677 		return 0;
1678 	else if (ret == 0)
1679 		hns3_update_umv_space(hw, true);
1680 
1681 	return ret;
1682 }
1683 
1684 static int
1685 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1686 			  struct rte_ether_addr *mac_addr)
1687 {
1688 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1689 	struct rte_ether_addr *oaddr;
1690 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1691 	int ret, ret_val;
1692 
1693 	rte_spinlock_lock(&hw->lock);
1694 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1695 	ret = hw->ops.del_uc_mac_addr(hw, oaddr);
1696 	if (ret) {
1697 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1698 				       oaddr);
1699 		hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1700 			  mac_str, ret);
1701 
1702 		rte_spinlock_unlock(&hw->lock);
1703 		return ret;
1704 	}
1705 
1706 	ret = hw->ops.add_uc_mac_addr(hw, mac_addr);
1707 	if (ret) {
1708 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1709 				      mac_addr);
1710 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1711 		goto err_add_uc_addr;
1712 	}
1713 
1714 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1715 	if (ret) {
1716 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1717 		goto err_pause_addr_cfg;
1718 	}
1719 
1720 	rte_ether_addr_copy(mac_addr,
1721 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1722 	rte_spinlock_unlock(&hw->lock);
1723 
1724 	return 0;
1725 
1726 err_pause_addr_cfg:
1727 	ret_val = hw->ops.del_uc_mac_addr(hw, mac_addr);
1728 	if (ret_val) {
1729 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1730 				       mac_addr);
1731 		hns3_warn(hw,
1732 			  "Failed to roll back to del set mac addr(%s): %d",
1733 			  mac_str, ret_val);
1734 	}
1735 
1736 err_add_uc_addr:
1737 	ret_val = hw->ops.add_uc_mac_addr(hw, oaddr);
1738 	if (ret_val) {
1739 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, oaddr);
1740 		hns3_warn(hw, "Failed to restore old uc mac addr(%s): %d",
1741 			  mac_str, ret_val);
1742 	}
1743 	rte_spinlock_unlock(&hw->lock);
1744 
1745 	return ret;
1746 }
1747 
1748 static void
1749 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1750 {
1751 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1752 	uint8_t word_num;
1753 	uint8_t bit_num;
1754 
1755 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1756 		word_num = vfid / 32;
1757 		bit_num = vfid % 32;
1758 		if (clr)
1759 			desc[1].data[word_num] &=
1760 			    rte_cpu_to_le_32(~(1UL << bit_num));
1761 		else
1762 			desc[1].data[word_num] |=
1763 			    rte_cpu_to_le_32(1UL << bit_num);
1764 	} else {
1765 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1766 		bit_num = vfid % 32;
1767 		if (clr)
1768 			desc[2].data[word_num] &=
1769 			    rte_cpu_to_le_32(~(1UL << bit_num));
1770 		else
1771 			desc[2].data[word_num] |=
1772 			    rte_cpu_to_le_32(1UL << bit_num);
1773 	}
1774 }
1775 
1776 static int
1777 hns3_add_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1778 {
1779 	struct hns3_cmd_desc desc[HNS3_MC_MAC_VLAN_OPS_DESC_NUM];
1780 	struct hns3_mac_vlan_tbl_entry_cmd req;
1781 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1782 	uint8_t vf_id;
1783 	int ret;
1784 	int idx;
1785 
1786 	/* Check if mac addr is valid */
1787 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1788 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1789 				      mac_addr);
1790 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1791 			 mac_str);
1792 		return -EINVAL;
1793 	}
1794 
1795 	memset(&req, 0, sizeof(req));
1796 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1797 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1798 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1799 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1800 	if (ret) {
1801 		/* This mac addr do not exist, add new entry for it */
1802 		for (idx = 0; idx < HNS3_MC_MAC_VLAN_OPS_DESC_NUM; idx++)
1803 			memset(desc[idx].data, 0, sizeof(desc[idx].data));
1804 	}
1805 
1806 	/*
1807 	 * In current version VF is not supported when PF is driven by DPDK
1808 	 * driver, just need to configure parameters for PF vport.
1809 	 */
1810 	vf_id = HNS3_PF_FUNC_ID;
1811 	hns3_update_desc_vfid(desc, vf_id, false);
1812 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc,
1813 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1814 	if (ret) {
1815 		if (ret == -ENOSPC)
1816 			hns3_err(hw, "mc mac vlan table is full");
1817 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1818 				       mac_addr);
1819 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1820 	}
1821 
1822 	return ret;
1823 }
1824 
1825 static int
1826 hns3_remove_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1827 {
1828 	struct hns3_mac_vlan_tbl_entry_cmd req;
1829 	struct hns3_cmd_desc desc[3];
1830 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1831 	uint8_t vf_id;
1832 	int ret;
1833 
1834 	/* Check if mac addr is valid */
1835 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1836 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1837 				      mac_addr);
1838 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1839 			 mac_str);
1840 		return -EINVAL;
1841 	}
1842 
1843 	memset(&req, 0, sizeof(req));
1844 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1845 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1846 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1847 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1848 	if (ret == 0) {
1849 		/*
1850 		 * This mac addr exist, remove this handle's VFID for it.
1851 		 * In current version VF is not supported when PF is driven by
1852 		 * DPDK driver, just need to configure parameters for PF vport.
1853 		 */
1854 		vf_id = HNS3_PF_FUNC_ID;
1855 		hns3_update_desc_vfid(desc, vf_id, true);
1856 
1857 		/* All the vfid is zero, so need to delete this entry */
1858 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1859 	} else if (ret == -ENOENT) {
1860 		/* This mac addr doesn't exist. */
1861 		return 0;
1862 	}
1863 
1864 	if (ret) {
1865 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1866 				      mac_addr);
1867 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1868 	}
1869 
1870 	return ret;
1871 }
1872 
1873 static int
1874 hns3_check_mq_mode(struct rte_eth_dev *dev)
1875 {
1876 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1877 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1878 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1879 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1880 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
1881 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
1882 	uint8_t num_tc;
1883 	int max_tc = 0;
1884 	int i;
1885 
1886 	if (((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_VMDQ_FLAG) ||
1887 	    (tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_DCB ||
1888 	     tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_ONLY)) {
1889 		hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.",
1890 			 rx_mq_mode, tx_mq_mode);
1891 		return -EOPNOTSUPP;
1892 	}
1893 
1894 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
1895 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
1896 	if ((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
1897 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
1898 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
1899 				 dcb_rx_conf->nb_tcs, pf->tc_max);
1900 			return -EINVAL;
1901 		}
1902 
1903 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
1904 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
1905 			hns3_err(hw, "on RTE_ETH_MQ_RX_DCB_RSS mode, "
1906 				 "nb_tcs(%d) != %d or %d in rx direction.",
1907 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
1908 			return -EINVAL;
1909 		}
1910 
1911 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
1912 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
1913 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
1914 			return -EINVAL;
1915 		}
1916 
1917 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
1918 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
1919 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
1920 					 "is not equal to one in tx direction.",
1921 					 i, dcb_rx_conf->dcb_tc[i]);
1922 				return -EINVAL;
1923 			}
1924 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
1925 				max_tc = dcb_rx_conf->dcb_tc[i];
1926 		}
1927 
1928 		num_tc = max_tc + 1;
1929 		if (num_tc > dcb_rx_conf->nb_tcs) {
1930 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
1931 				 num_tc, dcb_rx_conf->nb_tcs);
1932 			return -EINVAL;
1933 		}
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static int
1940 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
1941 			   enum hns3_ring_type queue_type, uint16_t queue_id)
1942 {
1943 	struct hns3_cmd_desc desc;
1944 	struct hns3_ctrl_vector_chain_cmd *req =
1945 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
1946 	enum hns3_opcode_type op;
1947 	uint16_t tqp_type_and_id = 0;
1948 	uint16_t type;
1949 	uint16_t gl;
1950 	int ret;
1951 
1952 	op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
1953 	hns3_cmd_setup_basic_desc(&desc, op, false);
1954 	req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
1955 					      HNS3_TQP_INT_ID_L_S);
1956 	req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
1957 					      HNS3_TQP_INT_ID_H_S);
1958 
1959 	if (queue_type == HNS3_RING_TYPE_RX)
1960 		gl = HNS3_RING_GL_RX;
1961 	else
1962 		gl = HNS3_RING_GL_TX;
1963 
1964 	type = queue_type;
1965 
1966 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
1967 		       type);
1968 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
1969 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
1970 		       gl);
1971 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
1972 	req->int_cause_num = 1;
1973 	ret = hns3_cmd_send(hw, &desc, 1);
1974 	if (ret) {
1975 		hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.",
1976 			 en ? "Map" : "Unmap", queue_id, vector_id, ret);
1977 		return ret;
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 static int
1984 hns3_setup_dcb(struct rte_eth_dev *dev)
1985 {
1986 	struct hns3_adapter *hns = dev->data->dev_private;
1987 	struct hns3_hw *hw = &hns->hw;
1988 	int ret;
1989 
1990 	if (!hns3_dev_get_support(hw, DCB)) {
1991 		hns3_err(hw, "this port does not support dcb configurations.");
1992 		return -EOPNOTSUPP;
1993 	}
1994 
1995 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
1996 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
1997 		return -EOPNOTSUPP;
1998 	}
1999 
2000 	ret = hns3_dcb_configure(hns);
2001 	if (ret)
2002 		hns3_err(hw, "failed to config dcb: %d", ret);
2003 
2004 	return ret;
2005 }
2006 
2007 static int
2008 hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds)
2009 {
2010 	int ret;
2011 
2012 	/*
2013 	 * Some hardware doesn't support auto-negotiation, but users may not
2014 	 * configure link_speeds (default 0), which means auto-negotiation.
2015 	 * In this case, it should return success.
2016 	 */
2017 	if (link_speeds == RTE_ETH_LINK_SPEED_AUTONEG &&
2018 	    hw->mac.support_autoneg == 0)
2019 		return 0;
2020 
2021 	if (link_speeds != RTE_ETH_LINK_SPEED_AUTONEG) {
2022 		ret = hns3_check_port_speed(hw, link_speeds);
2023 		if (ret)
2024 			return ret;
2025 	}
2026 
2027 	return 0;
2028 }
2029 
2030 static int
2031 hns3_check_dev_conf(struct rte_eth_dev *dev)
2032 {
2033 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2034 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2035 	int ret;
2036 
2037 	ret = hns3_check_mq_mode(dev);
2038 	if (ret)
2039 		return ret;
2040 
2041 	return hns3_check_link_speed(hw, conf->link_speeds);
2042 }
2043 
2044 static int
2045 hns3_dev_configure(struct rte_eth_dev *dev)
2046 {
2047 	struct hns3_adapter *hns = dev->data->dev_private;
2048 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2049 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2050 	struct hns3_hw *hw = &hns->hw;
2051 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2052 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2053 	struct rte_eth_rss_conf rss_conf;
2054 	bool gro_en;
2055 	int ret;
2056 
2057 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2058 
2059 	/*
2060 	 * Some versions of hardware network engine does not support
2061 	 * individually enable/disable/reset the Tx or Rx queue. These devices
2062 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
2063 	 * numbers of Tx queues allocated by upper applications are not equal to
2064 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2065 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2066 	 * work as usual. But these fake queues are imperceptible, and can not
2067 	 * be used by upper applications.
2068 	 */
2069 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2070 	if (ret) {
2071 		hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
2072 		hw->cfg_max_queues = 0;
2073 		return ret;
2074 	}
2075 
2076 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2077 	ret = hns3_check_dev_conf(dev);
2078 	if (ret)
2079 		goto cfg_err;
2080 
2081 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
2082 		ret = hns3_setup_dcb(dev);
2083 		if (ret)
2084 			goto cfg_err;
2085 	}
2086 
2087 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
2088 		conf->rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2089 		rss_conf = conf->rx_adv_conf.rss_conf;
2090 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2091 		if (ret)
2092 			goto cfg_err;
2093 	}
2094 
2095 	ret = hns3_dev_mtu_set(dev, conf->rxmode.mtu);
2096 	if (ret != 0)
2097 		goto cfg_err;
2098 
2099 	ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2100 	if (ret)
2101 		goto cfg_err;
2102 
2103 	ret = hns3_dev_configure_vlan(dev);
2104 	if (ret)
2105 		goto cfg_err;
2106 
2107 	/* config hardware GRO */
2108 	gro_en = conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO ? true : false;
2109 	ret = hns3_config_gro(hw, gro_en);
2110 	if (ret)
2111 		goto cfg_err;
2112 
2113 	hns3_init_rx_ptype_tble(dev);
2114 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2115 
2116 	return 0;
2117 
2118 cfg_err:
2119 	hw->cfg_max_queues = 0;
2120 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2121 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2122 
2123 	return ret;
2124 }
2125 
2126 static int
2127 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2128 {
2129 	struct hns3_config_max_frm_size_cmd *req;
2130 	struct hns3_cmd_desc desc;
2131 
2132 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2133 
2134 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2135 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2136 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2137 
2138 	return hns3_cmd_send(hw, &desc, 1);
2139 }
2140 
2141 static int
2142 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2143 {
2144 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2145 	int err;
2146 	int ret;
2147 
2148 	ret = hns3_set_mac_mtu(hw, mps);
2149 	if (ret) {
2150 		hns3_err(hw, "failed to set mtu, ret = %d", ret);
2151 		return ret;
2152 	}
2153 
2154 	ret = hns3_buffer_alloc(hw);
2155 	if (ret) {
2156 		hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2157 		goto rollback;
2158 	}
2159 
2160 	hns->pf.mps = mps;
2161 
2162 	return 0;
2163 
2164 rollback:
2165 	err = hns3_set_mac_mtu(hw, hns->pf.mps);
2166 	if (err)
2167 		hns3_err(hw, "fail to rollback MTU, err = %d", err);
2168 
2169 	return ret;
2170 }
2171 
2172 static int
2173 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2174 {
2175 	struct hns3_adapter *hns = dev->data->dev_private;
2176 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2177 	struct hns3_hw *hw = &hns->hw;
2178 	int ret;
2179 
2180 	if (dev->data->dev_started) {
2181 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2182 			 "before configuration", dev->data->port_id);
2183 		return -EBUSY;
2184 	}
2185 
2186 	rte_spinlock_lock(&hw->lock);
2187 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2188 
2189 	/*
2190 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2191 	 * assign to "uint16_t" type variable.
2192 	 */
2193 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2194 	if (ret) {
2195 		rte_spinlock_unlock(&hw->lock);
2196 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2197 			 dev->data->port_id, mtu, ret);
2198 		return ret;
2199 	}
2200 
2201 	rte_spinlock_unlock(&hw->lock);
2202 
2203 	return 0;
2204 }
2205 
2206 static uint32_t
2207 hns3_get_copper_port_speed_capa(uint32_t supported_speed)
2208 {
2209 	uint32_t speed_capa = 0;
2210 
2211 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT)
2212 		speed_capa |= RTE_ETH_LINK_SPEED_10M_HD;
2213 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT)
2214 		speed_capa |= RTE_ETH_LINK_SPEED_10M;
2215 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT)
2216 		speed_capa |= RTE_ETH_LINK_SPEED_100M_HD;
2217 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT)
2218 		speed_capa |= RTE_ETH_LINK_SPEED_100M;
2219 	if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT)
2220 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2221 
2222 	return speed_capa;
2223 }
2224 
2225 static uint32_t
2226 hns3_get_firber_port_speed_capa(uint32_t supported_speed)
2227 {
2228 	uint32_t speed_capa = 0;
2229 
2230 	if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT)
2231 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2232 	if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT)
2233 		speed_capa |= RTE_ETH_LINK_SPEED_10G;
2234 	if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT)
2235 		speed_capa |= RTE_ETH_LINK_SPEED_25G;
2236 	if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT)
2237 		speed_capa |= RTE_ETH_LINK_SPEED_40G;
2238 	if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT)
2239 		speed_capa |= RTE_ETH_LINK_SPEED_50G;
2240 	if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT)
2241 		speed_capa |= RTE_ETH_LINK_SPEED_100G;
2242 	if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT)
2243 		speed_capa |= RTE_ETH_LINK_SPEED_200G;
2244 
2245 	return speed_capa;
2246 }
2247 
2248 uint32_t
2249 hns3_get_speed_capa(struct hns3_hw *hw)
2250 {
2251 	struct hns3_mac *mac = &hw->mac;
2252 	uint32_t speed_capa;
2253 
2254 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
2255 		speed_capa =
2256 			hns3_get_copper_port_speed_capa(mac->supported_speed);
2257 	else
2258 		speed_capa =
2259 			hns3_get_firber_port_speed_capa(mac->supported_speed);
2260 
2261 	if (mac->support_autoneg == 0)
2262 		speed_capa |= RTE_ETH_LINK_SPEED_FIXED;
2263 
2264 	return speed_capa;
2265 }
2266 
2267 static int
2268 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2269 {
2270 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2271 	int ret;
2272 
2273 	(void)hns3_update_link_status(hw);
2274 
2275 	ret = hns3_update_link_info(eth_dev);
2276 	if (ret)
2277 		hw->mac.link_status = RTE_ETH_LINK_DOWN;
2278 
2279 	return ret;
2280 }
2281 
2282 static void
2283 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2284 		      struct rte_eth_link *new_link)
2285 {
2286 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2287 	struct hns3_mac *mac = &hw->mac;
2288 
2289 	switch (mac->link_speed) {
2290 	case RTE_ETH_SPEED_NUM_10M:
2291 	case RTE_ETH_SPEED_NUM_100M:
2292 	case RTE_ETH_SPEED_NUM_1G:
2293 	case RTE_ETH_SPEED_NUM_10G:
2294 	case RTE_ETH_SPEED_NUM_25G:
2295 	case RTE_ETH_SPEED_NUM_40G:
2296 	case RTE_ETH_SPEED_NUM_50G:
2297 	case RTE_ETH_SPEED_NUM_100G:
2298 	case RTE_ETH_SPEED_NUM_200G:
2299 		if (mac->link_status)
2300 			new_link->link_speed = mac->link_speed;
2301 		break;
2302 	default:
2303 		if (mac->link_status)
2304 			new_link->link_speed = RTE_ETH_SPEED_NUM_UNKNOWN;
2305 		break;
2306 	}
2307 
2308 	if (!mac->link_status)
2309 		new_link->link_speed = RTE_ETH_SPEED_NUM_NONE;
2310 
2311 	new_link->link_duplex = mac->link_duplex;
2312 	new_link->link_status = mac->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
2313 	new_link->link_autoneg = mac->link_autoneg;
2314 }
2315 
2316 static int
2317 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2318 {
2319 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2320 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2321 
2322 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2323 	uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2324 	struct hns3_mac *mac = &hw->mac;
2325 	struct rte_eth_link new_link;
2326 	int ret;
2327 
2328 	memset(&new_link, 0, sizeof(new_link));
2329 	/* When port is stopped, report link down. */
2330 	if (eth_dev->data->dev_started == 0) {
2331 		new_link.link_autoneg = mac->link_autoneg;
2332 		new_link.link_duplex = mac->link_duplex;
2333 		new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
2334 		new_link.link_status = RTE_ETH_LINK_DOWN;
2335 		goto out;
2336 	}
2337 
2338 	do {
2339 		ret = hns3_update_port_link_info(eth_dev);
2340 		if (ret) {
2341 			hns3_err(hw, "failed to get port link info, ret = %d.",
2342 				 ret);
2343 			break;
2344 		}
2345 
2346 		if (!wait_to_complete || mac->link_status == RTE_ETH_LINK_UP)
2347 			break;
2348 
2349 		rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2350 	} while (retry_cnt--);
2351 
2352 	hns3_setup_linkstatus(eth_dev, &new_link);
2353 
2354 out:
2355 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2356 }
2357 
2358 static int
2359 hns3_dev_set_link_up(struct rte_eth_dev *dev)
2360 {
2361 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2362 	int ret;
2363 
2364 	/*
2365 	 * The "tx_pkt_burst" will be restored. But the secondary process does
2366 	 * not support the mechanism for notifying the primary process.
2367 	 */
2368 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2369 		hns3_err(hw, "secondary process does not support to set link up.");
2370 		return -ENOTSUP;
2371 	}
2372 
2373 	/*
2374 	 * If device isn't started Rx/Tx function is still disabled, setting
2375 	 * link up is not allowed. But it is probably better to return success
2376 	 * to reduce the impact on the upper layer.
2377 	 */
2378 	if (hw->adapter_state != HNS3_NIC_STARTED) {
2379 		hns3_info(hw, "device isn't started, can't set link up.");
2380 		return 0;
2381 	}
2382 
2383 	if (!hw->set_link_down)
2384 		return 0;
2385 
2386 	rte_spinlock_lock(&hw->lock);
2387 	ret = hns3_cfg_mac_mode(hw, true);
2388 	if (ret) {
2389 		rte_spinlock_unlock(&hw->lock);
2390 		hns3_err(hw, "failed to set link up, ret = %d", ret);
2391 		return ret;
2392 	}
2393 
2394 	hw->set_link_down = false;
2395 	hns3_start_tx_datapath(dev);
2396 	rte_spinlock_unlock(&hw->lock);
2397 
2398 	return 0;
2399 }
2400 
2401 static int
2402 hns3_dev_set_link_down(struct rte_eth_dev *dev)
2403 {
2404 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2405 	int ret;
2406 
2407 	/*
2408 	 * The "tx_pkt_burst" will be set to dummy function. But the secondary
2409 	 * process does not support the mechanism for notifying the primary
2410 	 * process.
2411 	 */
2412 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2413 		hns3_err(hw, "secondary process does not support to set link down.");
2414 		return -ENOTSUP;
2415 	}
2416 
2417 	/*
2418 	 * If device isn't started or the API has been called, link status is
2419 	 * down, return success.
2420 	 */
2421 	if (hw->adapter_state != HNS3_NIC_STARTED || hw->set_link_down)
2422 		return 0;
2423 
2424 	rte_spinlock_lock(&hw->lock);
2425 	hns3_stop_tx_datapath(dev);
2426 	ret = hns3_cfg_mac_mode(hw, false);
2427 	if (ret) {
2428 		hns3_start_tx_datapath(dev);
2429 		rte_spinlock_unlock(&hw->lock);
2430 		hns3_err(hw, "failed to set link down, ret = %d", ret);
2431 		return ret;
2432 	}
2433 
2434 	hw->set_link_down = true;
2435 	rte_spinlock_unlock(&hw->lock);
2436 
2437 	return 0;
2438 }
2439 
2440 static int
2441 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2442 {
2443 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2444 	struct hns3_pf *pf = &hns->pf;
2445 
2446 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2447 		return -EINVAL;
2448 
2449 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2450 
2451 	return 0;
2452 }
2453 
2454 static int
2455 hns3_query_function_status(struct hns3_hw *hw)
2456 {
2457 #define HNS3_QUERY_MAX_CNT		10
2458 #define HNS3_QUERY_SLEEP_MSCOEND	1
2459 	struct hns3_func_status_cmd *req;
2460 	struct hns3_cmd_desc desc;
2461 	int timeout = 0;
2462 	int ret;
2463 
2464 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2465 	req = (struct hns3_func_status_cmd *)desc.data;
2466 
2467 	do {
2468 		ret = hns3_cmd_send(hw, &desc, 1);
2469 		if (ret) {
2470 			PMD_INIT_LOG(ERR, "query function status failed %d",
2471 				     ret);
2472 			return ret;
2473 		}
2474 
2475 		/* Check pf reset is done */
2476 		if (req->pf_state)
2477 			break;
2478 
2479 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2480 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2481 
2482 	return hns3_parse_func_status(hw, req);
2483 }
2484 
2485 static int
2486 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2487 {
2488 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2489 	struct hns3_pf *pf = &hns->pf;
2490 
2491 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2492 		/*
2493 		 * The total_tqps_num obtained from firmware is maximum tqp
2494 		 * numbers of this port, which should be used for PF and VFs.
2495 		 * There is no need for pf to have so many tqp numbers in
2496 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2497 		 * coming from config file, is assigned to maximum queue number
2498 		 * for the PF of this port by user. So users can modify the
2499 		 * maximum queue number of PF according to their own application
2500 		 * scenarios, which is more flexible to use. In addition, many
2501 		 * memories can be saved due to allocating queue statistics
2502 		 * room according to the actual number of queues required. The
2503 		 * maximum queue number of PF for network engine with
2504 		 * revision_id greater than 0x30 is assigned by config file.
2505 		 */
2506 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2507 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2508 				 "must be greater than 0.",
2509 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2510 			return -EINVAL;
2511 		}
2512 
2513 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2514 				       hw->total_tqps_num);
2515 	} else {
2516 		/*
2517 		 * Due to the limitation on the number of PF interrupts
2518 		 * available, the maximum queue number assigned to PF on
2519 		 * the network engine with revision_id 0x21 is 64.
2520 		 */
2521 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2522 				       HNS3_MAX_TQP_NUM_HIP08_PF);
2523 	}
2524 
2525 	return 0;
2526 }
2527 
2528 static int
2529 hns3_query_pf_resource(struct hns3_hw *hw)
2530 {
2531 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2532 	struct hns3_pf *pf = &hns->pf;
2533 	struct hns3_pf_res_cmd *req;
2534 	struct hns3_cmd_desc desc;
2535 	int ret;
2536 
2537 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2538 	ret = hns3_cmd_send(hw, &desc, 1);
2539 	if (ret) {
2540 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2541 		return ret;
2542 	}
2543 
2544 	req = (struct hns3_pf_res_cmd *)desc.data;
2545 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2546 			     rte_le_to_cpu_16(req->ext_tqp_num);
2547 	ret = hns3_get_pf_max_tqp_num(hw);
2548 	if (ret)
2549 		return ret;
2550 
2551 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2552 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2553 
2554 	if (req->tx_buf_size)
2555 		pf->tx_buf_size =
2556 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2557 	else
2558 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2559 
2560 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2561 
2562 	if (req->dv_buf_size)
2563 		pf->dv_buf_size =
2564 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2565 	else
2566 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2567 
2568 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2569 
2570 	hw->num_msi =
2571 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2572 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2573 
2574 	return 0;
2575 }
2576 
2577 static void
2578 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2579 {
2580 	struct hns3_cfg_param_cmd *req;
2581 	uint64_t mac_addr_tmp_high;
2582 	uint8_t ext_rss_size_max;
2583 	uint64_t mac_addr_tmp;
2584 	uint32_t i;
2585 
2586 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2587 
2588 	/* get the configuration */
2589 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2590 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2591 
2592 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2593 				       HNS3_CFG_PHY_ADDR_M,
2594 				       HNS3_CFG_PHY_ADDR_S);
2595 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2596 					 HNS3_CFG_MEDIA_TP_M,
2597 					 HNS3_CFG_MEDIA_TP_S);
2598 	/* get mac address */
2599 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2600 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2601 					   HNS3_CFG_MAC_ADDR_H_M,
2602 					   HNS3_CFG_MAC_ADDR_H_S);
2603 
2604 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2605 
2606 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2607 					    HNS3_CFG_DEFAULT_SPEED_M,
2608 					    HNS3_CFG_DEFAULT_SPEED_S);
2609 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2610 					   HNS3_CFG_RSS_SIZE_M,
2611 					   HNS3_CFG_RSS_SIZE_S);
2612 
2613 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2614 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2615 
2616 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2617 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2618 
2619 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2620 					    HNS3_CFG_SPEED_ABILITY_M,
2621 					    HNS3_CFG_SPEED_ABILITY_S);
2622 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2623 					HNS3_CFG_UMV_TBL_SPACE_M,
2624 					HNS3_CFG_UMV_TBL_SPACE_S);
2625 	if (!cfg->umv_space)
2626 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2627 
2628 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2629 					       HNS3_CFG_EXT_RSS_SIZE_M,
2630 					       HNS3_CFG_EXT_RSS_SIZE_S);
2631 	/*
2632 	 * Field ext_rss_size_max obtained from firmware will be more flexible
2633 	 * for future changes and expansions, which is an exponent of 2, instead
2634 	 * of reading out directly. If this field is not zero, hns3 PF PMD
2635 	 * uses it as rss_size_max under one TC. Device, whose revision
2636 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2637 	 * maximum number of queues supported under a TC through this field.
2638 	 */
2639 	if (ext_rss_size_max)
2640 		cfg->rss_size_max = 1U << ext_rss_size_max;
2641 }
2642 
2643 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2644  * @hw: pointer to struct hns3_hw
2645  * @hcfg: the config structure to be getted
2646  */
2647 static int
2648 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2649 {
2650 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2651 	struct hns3_cfg_param_cmd *req;
2652 	uint32_t offset;
2653 	uint32_t i;
2654 	int ret;
2655 
2656 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2657 		offset = 0;
2658 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2659 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2660 					  true);
2661 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2662 			       i * HNS3_CFG_RD_LEN_BYTES);
2663 		/* Len should be divided by 4 when send to hardware */
2664 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2665 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2666 		req->offset = rte_cpu_to_le_32(offset);
2667 	}
2668 
2669 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2670 	if (ret) {
2671 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2672 		return ret;
2673 	}
2674 
2675 	hns3_parse_cfg(hcfg, desc);
2676 
2677 	return 0;
2678 }
2679 
2680 static int
2681 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2682 {
2683 	switch (speed_cmd) {
2684 	case HNS3_CFG_SPEED_10M:
2685 		*speed = RTE_ETH_SPEED_NUM_10M;
2686 		break;
2687 	case HNS3_CFG_SPEED_100M:
2688 		*speed = RTE_ETH_SPEED_NUM_100M;
2689 		break;
2690 	case HNS3_CFG_SPEED_1G:
2691 		*speed = RTE_ETH_SPEED_NUM_1G;
2692 		break;
2693 	case HNS3_CFG_SPEED_10G:
2694 		*speed = RTE_ETH_SPEED_NUM_10G;
2695 		break;
2696 	case HNS3_CFG_SPEED_25G:
2697 		*speed = RTE_ETH_SPEED_NUM_25G;
2698 		break;
2699 	case HNS3_CFG_SPEED_40G:
2700 		*speed = RTE_ETH_SPEED_NUM_40G;
2701 		break;
2702 	case HNS3_CFG_SPEED_50G:
2703 		*speed = RTE_ETH_SPEED_NUM_50G;
2704 		break;
2705 	case HNS3_CFG_SPEED_100G:
2706 		*speed = RTE_ETH_SPEED_NUM_100G;
2707 		break;
2708 	case HNS3_CFG_SPEED_200G:
2709 		*speed = RTE_ETH_SPEED_NUM_200G;
2710 		break;
2711 	default:
2712 		return -EINVAL;
2713 	}
2714 
2715 	return 0;
2716 }
2717 
2718 static int
2719 hns3_get_capability(struct hns3_hw *hw)
2720 {
2721 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2722 	struct hns3_pf *pf = &hns->pf;
2723 	int ret;
2724 
2725 	ret = hns3_query_mac_stats_reg_num(hw);
2726 	if (ret)
2727 		return ret;
2728 
2729 	if (hw->revision < PCI_REVISION_ID_HIP09_A) {
2730 		hns3_set_default_dev_specifications(hw);
2731 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
2732 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
2733 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
2734 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
2735 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
2736 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
2737 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
2738 		hw->rss_info.ipv6_sctp_offload_supported = false;
2739 		hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
2740 		pf->support_multi_tc_pause = false;
2741 		hw->rx_dma_addr_align = HNS3_RX_DMA_ADDR_ALIGN_64;
2742 		return 0;
2743 	}
2744 
2745 	ret = hns3_query_dev_specifications(hw);
2746 	if (ret) {
2747 		PMD_INIT_LOG(ERR,
2748 			     "failed to query dev specifications, ret = %d",
2749 			     ret);
2750 		return ret;
2751 	}
2752 
2753 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
2754 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
2755 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
2756 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
2757 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
2758 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
2759 	hw->rss_info.ipv6_sctp_offload_supported = true;
2760 	hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
2761 	pf->support_multi_tc_pause = true;
2762 	hw->rx_dma_addr_align = HNS3_RX_DMA_ADDR_ALIGN_128;
2763 
2764 	return 0;
2765 }
2766 
2767 static int
2768 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
2769 {
2770 	int ret;
2771 
2772 	switch (media_type) {
2773 	case HNS3_MEDIA_TYPE_COPPER:
2774 		if (!hns3_dev_get_support(hw, COPPER)) {
2775 			PMD_INIT_LOG(ERR,
2776 				     "Media type is copper, not supported.");
2777 			ret = -EOPNOTSUPP;
2778 		} else {
2779 			ret = 0;
2780 		}
2781 		break;
2782 	case HNS3_MEDIA_TYPE_FIBER:
2783 	case HNS3_MEDIA_TYPE_BACKPLANE:
2784 		ret = 0;
2785 		break;
2786 	default:
2787 		PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
2788 		ret = -EINVAL;
2789 		break;
2790 	}
2791 
2792 	return ret;
2793 }
2794 
2795 static int
2796 hns3_get_board_configuration(struct hns3_hw *hw)
2797 {
2798 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2799 	struct hns3_pf *pf = &hns->pf;
2800 	struct hns3_cfg cfg;
2801 	int ret;
2802 
2803 	memset(&cfg, 0, sizeof(cfg));
2804 	ret = hns3_get_board_cfg(hw, &cfg);
2805 	if (ret) {
2806 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2807 		return ret;
2808 	}
2809 
2810 	ret = hns3_check_media_type(hw, cfg.media_type);
2811 	if (ret)
2812 		return ret;
2813 
2814 	hw->mac.media_type = cfg.media_type;
2815 	hw->rss_size_max = cfg.rss_size_max;
2816 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2817 	hw->mac.phy_addr = cfg.phy_addr;
2818 	hw->dcb_info.num_pg = 1;
2819 	hw->dcb_info.hw_pfc_map = 0;
2820 
2821 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2822 	if (ret) {
2823 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
2824 			     cfg.default_speed, ret);
2825 		return ret;
2826 	}
2827 
2828 	pf->tc_max = cfg.tc_num;
2829 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2830 		PMD_INIT_LOG(WARNING,
2831 			     "Get TC num(%u) from flash, set TC num to 1",
2832 			     pf->tc_max);
2833 		pf->tc_max = 1;
2834 	}
2835 
2836 	/* Dev does not support DCB */
2837 	if (!hns3_dev_get_support(hw, DCB)) {
2838 		pf->tc_max = 1;
2839 		pf->pfc_max = 0;
2840 	} else
2841 		pf->pfc_max = pf->tc_max;
2842 
2843 	hw->dcb_info.num_tc = 1;
2844 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2845 				     hw->tqps_num / hw->dcb_info.num_tc);
2846 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2847 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2848 
2849 	pf->wanted_umv_size = cfg.umv_space;
2850 
2851 	return ret;
2852 }
2853 
2854 static int
2855 hns3_get_configuration(struct hns3_hw *hw)
2856 {
2857 	int ret;
2858 
2859 	ret = hns3_query_function_status(hw);
2860 	if (ret) {
2861 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2862 		return ret;
2863 	}
2864 
2865 	/* Get device capability */
2866 	ret = hns3_get_capability(hw);
2867 	if (ret) {
2868 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
2869 		return ret;
2870 	}
2871 
2872 	/* Get pf resource */
2873 	ret = hns3_query_pf_resource(hw);
2874 	if (ret) {
2875 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
2876 		return ret;
2877 	}
2878 
2879 	ret = hns3_get_board_configuration(hw);
2880 	if (ret) {
2881 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
2882 		return ret;
2883 	}
2884 
2885 	ret = hns3_query_dev_fec_info(hw);
2886 	if (ret)
2887 		PMD_INIT_LOG(ERR,
2888 			     "failed to query FEC information, ret = %d", ret);
2889 
2890 	return ret;
2891 }
2892 
2893 static int
2894 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
2895 		      uint16_t tqp_vid, bool is_pf)
2896 {
2897 	struct hns3_tqp_map_cmd *req;
2898 	struct hns3_cmd_desc desc;
2899 	int ret;
2900 
2901 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
2902 
2903 	req = (struct hns3_tqp_map_cmd *)desc.data;
2904 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
2905 	req->tqp_vf = func_id;
2906 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
2907 	if (!is_pf)
2908 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
2909 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
2910 
2911 	ret = hns3_cmd_send(hw, &desc, 1);
2912 	if (ret)
2913 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
2914 
2915 	return ret;
2916 }
2917 
2918 static int
2919 hns3_map_tqp(struct hns3_hw *hw)
2920 {
2921 	uint16_t i;
2922 	int ret;
2923 
2924 	/*
2925 	 * In current version, VF is not supported when PF is driven by DPDK
2926 	 * driver, so we assign total tqps_num tqps allocated to this port
2927 	 * to PF.
2928 	 */
2929 	for (i = 0; i < hw->total_tqps_num; i++) {
2930 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
2931 		if (ret)
2932 			return ret;
2933 	}
2934 
2935 	return 0;
2936 }
2937 
2938 static int
2939 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
2940 {
2941 	struct hns3_config_mac_speed_dup_cmd *req;
2942 	struct hns3_cmd_desc desc;
2943 	int ret;
2944 
2945 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
2946 
2947 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
2948 
2949 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
2950 
2951 	switch (speed) {
2952 	case RTE_ETH_SPEED_NUM_10M:
2953 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2954 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
2955 		break;
2956 	case RTE_ETH_SPEED_NUM_100M:
2957 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2958 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
2959 		break;
2960 	case RTE_ETH_SPEED_NUM_1G:
2961 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2962 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
2963 		break;
2964 	case RTE_ETH_SPEED_NUM_10G:
2965 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2966 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
2967 		break;
2968 	case RTE_ETH_SPEED_NUM_25G:
2969 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2970 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
2971 		break;
2972 	case RTE_ETH_SPEED_NUM_40G:
2973 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2974 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
2975 		break;
2976 	case RTE_ETH_SPEED_NUM_50G:
2977 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2978 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
2979 		break;
2980 	case RTE_ETH_SPEED_NUM_100G:
2981 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2982 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
2983 		break;
2984 	case RTE_ETH_SPEED_NUM_200G:
2985 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2986 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
2987 		break;
2988 	default:
2989 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
2990 		return -EINVAL;
2991 	}
2992 
2993 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
2994 
2995 	ret = hns3_cmd_send(hw, &desc, 1);
2996 	if (ret)
2997 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
2998 
2999 	return ret;
3000 }
3001 
3002 static int
3003 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3004 {
3005 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3006 	struct hns3_pf *pf = &hns->pf;
3007 	struct hns3_priv_buf *priv;
3008 	uint32_t i, total_size;
3009 
3010 	total_size = pf->pkt_buf_size;
3011 
3012 	/* alloc tx buffer for all enabled tc */
3013 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3014 		priv = &buf_alloc->priv_buf[i];
3015 
3016 		if (hw->hw_tc_map & BIT(i)) {
3017 			if (total_size < pf->tx_buf_size)
3018 				return -ENOMEM;
3019 
3020 			priv->tx_buf_size = pf->tx_buf_size;
3021 		} else
3022 			priv->tx_buf_size = 0;
3023 
3024 		total_size -= priv->tx_buf_size;
3025 	}
3026 
3027 	return 0;
3028 }
3029 
3030 static int
3031 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3032 {
3033 /* TX buffer size is unit by 128 byte */
3034 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3035 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3036 	struct hns3_tx_buff_alloc_cmd *req;
3037 	struct hns3_cmd_desc desc;
3038 	uint32_t buf_size;
3039 	uint32_t i;
3040 	int ret;
3041 
3042 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3043 
3044 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3045 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3046 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3047 
3048 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3049 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3050 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3051 	}
3052 
3053 	ret = hns3_cmd_send(hw, &desc, 1);
3054 	if (ret)
3055 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3056 
3057 	return ret;
3058 }
3059 
3060 static int
3061 hns3_get_tc_num(struct hns3_hw *hw)
3062 {
3063 	int cnt = 0;
3064 	uint8_t i;
3065 
3066 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3067 		if (hw->hw_tc_map & BIT(i))
3068 			cnt++;
3069 	return cnt;
3070 }
3071 
3072 static uint32_t
3073 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3074 {
3075 	struct hns3_priv_buf *priv;
3076 	uint32_t rx_priv = 0;
3077 	int i;
3078 
3079 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3080 		priv = &buf_alloc->priv_buf[i];
3081 		if (priv->enable)
3082 			rx_priv += priv->buf_size;
3083 	}
3084 	return rx_priv;
3085 }
3086 
3087 static uint32_t
3088 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3089 {
3090 	uint32_t total_tx_size = 0;
3091 	uint32_t i;
3092 
3093 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3094 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3095 
3096 	return total_tx_size;
3097 }
3098 
3099 /* Get the number of pfc enabled TCs, which have private buffer */
3100 static int
3101 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3102 {
3103 	struct hns3_priv_buf *priv;
3104 	int cnt = 0;
3105 	uint8_t i;
3106 
3107 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3108 		priv = &buf_alloc->priv_buf[i];
3109 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3110 			cnt++;
3111 	}
3112 
3113 	return cnt;
3114 }
3115 
3116 /* Get the number of pfc disabled TCs, which have private buffer */
3117 static int
3118 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3119 			 struct hns3_pkt_buf_alloc *buf_alloc)
3120 {
3121 	struct hns3_priv_buf *priv;
3122 	int cnt = 0;
3123 	uint8_t i;
3124 
3125 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3126 		priv = &buf_alloc->priv_buf[i];
3127 		if (hw->hw_tc_map & BIT(i) &&
3128 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3129 			cnt++;
3130 	}
3131 
3132 	return cnt;
3133 }
3134 
3135 static bool
3136 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3137 		  uint32_t rx_all)
3138 {
3139 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3140 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3141 	struct hns3_pf *pf = &hns->pf;
3142 	uint32_t shared_buf, aligned_mps;
3143 	uint32_t rx_priv;
3144 	uint8_t tc_num;
3145 	uint8_t i;
3146 
3147 	tc_num = hns3_get_tc_num(hw);
3148 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3149 
3150 	if (hns3_dev_get_support(hw, DCB))
3151 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3152 					pf->dv_buf_size;
3153 	else
3154 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3155 					+ pf->dv_buf_size;
3156 
3157 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3158 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3159 			     HNS3_BUF_SIZE_UNIT);
3160 
3161 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3162 	if (rx_all < rx_priv + shared_std)
3163 		return false;
3164 
3165 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3166 	buf_alloc->s_buf.buf_size = shared_buf;
3167 	if (hns3_dev_get_support(hw, DCB)) {
3168 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3169 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3170 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3171 				  HNS3_BUF_SIZE_UNIT);
3172 	} else {
3173 		buf_alloc->s_buf.self.high =
3174 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3175 		buf_alloc->s_buf.self.low = aligned_mps;
3176 	}
3177 
3178 	if (hns3_dev_get_support(hw, DCB)) {
3179 		hi_thrd = shared_buf - pf->dv_buf_size;
3180 
3181 		if (tc_num <= NEED_RESERVE_TC_NUM)
3182 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3183 				  BUF_MAX_PERCENT;
3184 
3185 		if (tc_num)
3186 			hi_thrd = hi_thrd / tc_num;
3187 
3188 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3189 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3190 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3191 	} else {
3192 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3193 		lo_thrd = aligned_mps;
3194 	}
3195 
3196 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3197 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3198 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3199 	}
3200 
3201 	return true;
3202 }
3203 
3204 static bool
3205 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3206 		     struct hns3_pkt_buf_alloc *buf_alloc)
3207 {
3208 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3209 	struct hns3_pf *pf = &hns->pf;
3210 	struct hns3_priv_buf *priv;
3211 	uint32_t aligned_mps;
3212 	uint32_t rx_all;
3213 	uint8_t i;
3214 
3215 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3216 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3217 
3218 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3219 		priv = &buf_alloc->priv_buf[i];
3220 
3221 		priv->enable = 0;
3222 		priv->wl.low = 0;
3223 		priv->wl.high = 0;
3224 		priv->buf_size = 0;
3225 
3226 		if (!(hw->hw_tc_map & BIT(i)))
3227 			continue;
3228 
3229 		priv->enable = 1;
3230 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3231 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3232 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3233 						HNS3_BUF_SIZE_UNIT);
3234 		} else {
3235 			priv->wl.low = 0;
3236 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3237 					aligned_mps;
3238 		}
3239 
3240 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3241 	}
3242 
3243 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3244 }
3245 
3246 static bool
3247 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3248 			     struct hns3_pkt_buf_alloc *buf_alloc)
3249 {
3250 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3251 	struct hns3_pf *pf = &hns->pf;
3252 	struct hns3_priv_buf *priv;
3253 	int no_pfc_priv_num;
3254 	uint32_t rx_all;
3255 	uint8_t mask;
3256 	int i;
3257 
3258 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3259 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3260 
3261 	/* let the last to be cleared first */
3262 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3263 		priv = &buf_alloc->priv_buf[i];
3264 		mask = BIT((uint8_t)i);
3265 		if (hw->hw_tc_map & mask &&
3266 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3267 			/* Clear the no pfc TC private buffer */
3268 			priv->wl.low = 0;
3269 			priv->wl.high = 0;
3270 			priv->buf_size = 0;
3271 			priv->enable = 0;
3272 			no_pfc_priv_num--;
3273 		}
3274 
3275 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3276 		    no_pfc_priv_num == 0)
3277 			break;
3278 	}
3279 
3280 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3281 }
3282 
3283 static bool
3284 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3285 			   struct hns3_pkt_buf_alloc *buf_alloc)
3286 {
3287 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3288 	struct hns3_pf *pf = &hns->pf;
3289 	struct hns3_priv_buf *priv;
3290 	uint32_t rx_all;
3291 	int pfc_priv_num;
3292 	uint8_t mask;
3293 	int i;
3294 
3295 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3296 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3297 
3298 	/* let the last to be cleared first */
3299 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3300 		priv = &buf_alloc->priv_buf[i];
3301 		mask = BIT((uint8_t)i);
3302 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3303 			/* Reduce the number of pfc TC with private buffer */
3304 			priv->wl.low = 0;
3305 			priv->enable = 0;
3306 			priv->wl.high = 0;
3307 			priv->buf_size = 0;
3308 			pfc_priv_num--;
3309 		}
3310 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3311 		    pfc_priv_num == 0)
3312 			break;
3313 	}
3314 
3315 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3316 }
3317 
3318 static bool
3319 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3320 			  struct hns3_pkt_buf_alloc *buf_alloc)
3321 {
3322 #define COMPENSATE_BUFFER	0x3C00
3323 #define COMPENSATE_HALF_MPS_NUM	5
3324 #define PRIV_WL_GAP		0x1800
3325 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3326 	struct hns3_pf *pf = &hns->pf;
3327 	uint32_t tc_num = hns3_get_tc_num(hw);
3328 	uint32_t half_mps = pf->mps >> 1;
3329 	struct hns3_priv_buf *priv;
3330 	uint32_t min_rx_priv;
3331 	uint32_t rx_priv;
3332 	uint8_t i;
3333 
3334 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3335 	if (tc_num)
3336 		rx_priv = rx_priv / tc_num;
3337 
3338 	if (tc_num <= NEED_RESERVE_TC_NUM)
3339 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3340 
3341 	/*
3342 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3343 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3344 	 * buffer if rx_priv is greater than min_rx_priv.
3345 	 */
3346 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3347 			COMPENSATE_HALF_MPS_NUM * half_mps;
3348 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3349 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3350 	if (rx_priv < min_rx_priv)
3351 		return false;
3352 
3353 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3354 		priv = &buf_alloc->priv_buf[i];
3355 		priv->enable = 0;
3356 		priv->wl.low = 0;
3357 		priv->wl.high = 0;
3358 		priv->buf_size = 0;
3359 
3360 		if (!(hw->hw_tc_map & BIT(i)))
3361 			continue;
3362 
3363 		priv->enable = 1;
3364 		priv->buf_size = rx_priv;
3365 		priv->wl.high = rx_priv - pf->dv_buf_size;
3366 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3367 	}
3368 
3369 	buf_alloc->s_buf.buf_size = 0;
3370 
3371 	return true;
3372 }
3373 
3374 /*
3375  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3376  * @hw: pointer to struct hns3_hw
3377  * @buf_alloc: pointer to buffer calculation data
3378  * @return: 0: calculate successful, negative: fail
3379  */
3380 static int
3381 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3382 {
3383 	/* When DCB is not supported, rx private buffer is not allocated. */
3384 	if (!hns3_dev_get_support(hw, DCB)) {
3385 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3386 		struct hns3_pf *pf = &hns->pf;
3387 		uint32_t rx_all = pf->pkt_buf_size;
3388 
3389 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3390 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3391 			return -ENOMEM;
3392 
3393 		return 0;
3394 	}
3395 
3396 	/*
3397 	 * Try to allocate privated packet buffer for all TCs without share
3398 	 * buffer.
3399 	 */
3400 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3401 		return 0;
3402 
3403 	/*
3404 	 * Try to allocate privated packet buffer for all TCs with share
3405 	 * buffer.
3406 	 */
3407 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3408 		return 0;
3409 
3410 	/*
3411 	 * For different application scenes, the enabled port number, TC number
3412 	 * and no_drop TC number are different. In order to obtain the better
3413 	 * performance, software could allocate the buffer size and configure
3414 	 * the waterline by trying to decrease the private buffer size according
3415 	 * to the order, namely, waterline of valid tc, pfc disabled tc, pfc
3416 	 * enabled tc.
3417 	 */
3418 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3419 		return 0;
3420 
3421 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3422 		return 0;
3423 
3424 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3425 		return 0;
3426 
3427 	return -ENOMEM;
3428 }
3429 
3430 static int
3431 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3432 {
3433 	struct hns3_rx_priv_buff_cmd *req;
3434 	struct hns3_cmd_desc desc;
3435 	uint32_t buf_size;
3436 	int ret;
3437 	int i;
3438 
3439 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3440 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3441 
3442 	/* Alloc private buffer TCs */
3443 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3444 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3445 
3446 		req->buf_num[i] =
3447 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3448 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3449 	}
3450 
3451 	buf_size = buf_alloc->s_buf.buf_size;
3452 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3453 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3454 
3455 	ret = hns3_cmd_send(hw, &desc, 1);
3456 	if (ret)
3457 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3458 
3459 	return ret;
3460 }
3461 
3462 static int
3463 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3464 {
3465 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3466 	struct hns3_rx_priv_wl_buf *req;
3467 	struct hns3_priv_buf *priv;
3468 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3469 	int i, j;
3470 	int ret;
3471 
3472 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3473 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3474 					  false);
3475 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3476 
3477 		/* The first descriptor set the NEXT bit to 1 */
3478 		if (i == 0)
3479 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3480 		else
3481 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3482 
3483 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3484 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3485 
3486 			priv = &buf_alloc->priv_buf[idx];
3487 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3488 							HNS3_BUF_UNIT_S);
3489 			req->tc_wl[j].high |=
3490 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3491 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3492 							HNS3_BUF_UNIT_S);
3493 			req->tc_wl[j].low |=
3494 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3495 		}
3496 	}
3497 
3498 	/* Send 2 descriptor at one time */
3499 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3500 	if (ret)
3501 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3502 			     ret);
3503 	return ret;
3504 }
3505 
3506 static int
3507 hns3_common_thrd_config(struct hns3_hw *hw,
3508 			struct hns3_pkt_buf_alloc *buf_alloc)
3509 {
3510 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3511 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3512 	struct hns3_rx_com_thrd *req;
3513 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3514 	struct hns3_tc_thrd *tc;
3515 	int tc_idx;
3516 	int i, j;
3517 	int ret;
3518 
3519 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3520 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3521 					  false);
3522 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3523 
3524 		/* The first descriptor set the NEXT bit to 1 */
3525 		if (i == 0)
3526 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3527 		else
3528 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3529 
3530 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3531 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3532 			tc = &s_buf->tc_thrd[tc_idx];
3533 
3534 			req->com_thrd[j].high =
3535 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3536 			req->com_thrd[j].high |=
3537 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3538 			req->com_thrd[j].low =
3539 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3540 			req->com_thrd[j].low |=
3541 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3542 		}
3543 	}
3544 
3545 	/* Send 2 descriptors at one time */
3546 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3547 	if (ret)
3548 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3549 
3550 	return ret;
3551 }
3552 
3553 static int
3554 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3555 {
3556 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3557 	struct hns3_rx_com_wl *req;
3558 	struct hns3_cmd_desc desc;
3559 	int ret;
3560 
3561 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3562 
3563 	req = (struct hns3_rx_com_wl *)desc.data;
3564 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3565 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3566 
3567 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3568 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3569 
3570 	ret = hns3_cmd_send(hw, &desc, 1);
3571 	if (ret)
3572 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3573 
3574 	return ret;
3575 }
3576 
3577 int
3578 hns3_buffer_alloc(struct hns3_hw *hw)
3579 {
3580 	struct hns3_pkt_buf_alloc pkt_buf;
3581 	int ret;
3582 
3583 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3584 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3585 	if (ret) {
3586 		PMD_INIT_LOG(ERR,
3587 			     "could not calc tx buffer size for all TCs %d",
3588 			     ret);
3589 		return ret;
3590 	}
3591 
3592 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3593 	if (ret) {
3594 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3595 		return ret;
3596 	}
3597 
3598 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3599 	if (ret) {
3600 		PMD_INIT_LOG(ERR,
3601 			     "could not calc rx priv buffer size for all TCs %d",
3602 			     ret);
3603 		return ret;
3604 	}
3605 
3606 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3607 	if (ret) {
3608 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3609 		return ret;
3610 	}
3611 
3612 	if (hns3_dev_get_support(hw, DCB)) {
3613 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3614 		if (ret) {
3615 			PMD_INIT_LOG(ERR,
3616 				     "could not configure rx private waterline %d",
3617 				     ret);
3618 			return ret;
3619 		}
3620 
3621 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3622 		if (ret) {
3623 			PMD_INIT_LOG(ERR,
3624 				     "could not configure common threshold %d",
3625 				     ret);
3626 			return ret;
3627 		}
3628 	}
3629 
3630 	ret = hns3_common_wl_config(hw, &pkt_buf);
3631 	if (ret)
3632 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3633 			     ret);
3634 
3635 	return ret;
3636 }
3637 
3638 static int
3639 hns3_mac_init(struct hns3_hw *hw)
3640 {
3641 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3642 	struct hns3_mac *mac = &hw->mac;
3643 	struct hns3_pf *pf = &hns->pf;
3644 	int ret;
3645 
3646 	pf->support_sfp_query = true;
3647 	mac->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
3648 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3649 	if (ret) {
3650 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3651 		return ret;
3652 	}
3653 
3654 	mac->link_status = RTE_ETH_LINK_DOWN;
3655 
3656 	return hns3_config_mtu(hw, pf->mps);
3657 }
3658 
3659 static int
3660 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3661 {
3662 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3663 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3664 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3665 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3666 	int return_status;
3667 
3668 	if (cmdq_resp) {
3669 		PMD_INIT_LOG(ERR,
3670 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.",
3671 			     cmdq_resp);
3672 		return -EIO;
3673 	}
3674 
3675 	switch (resp_code) {
3676 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3677 	case HNS3_ETHERTYPE_ALREADY_ADD:
3678 		return_status = 0;
3679 		break;
3680 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3681 		PMD_INIT_LOG(ERR,
3682 			     "add mac ethertype failed for manager table overflow.");
3683 		return_status = -EIO;
3684 		break;
3685 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3686 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3687 		return_status = -EIO;
3688 		break;
3689 	default:
3690 		PMD_INIT_LOG(ERR,
3691 			     "add mac ethertype failed for undefined, code=%u.",
3692 			     resp_code);
3693 		return_status = -EIO;
3694 		break;
3695 	}
3696 
3697 	return return_status;
3698 }
3699 
3700 static int
3701 hns3_add_mgr_tbl(struct hns3_hw *hw,
3702 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3703 {
3704 	struct hns3_cmd_desc desc;
3705 	uint8_t resp_code;
3706 	uint16_t retval;
3707 	int ret;
3708 
3709 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3710 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3711 
3712 	ret = hns3_cmd_send(hw, &desc, 1);
3713 	if (ret) {
3714 		PMD_INIT_LOG(ERR,
3715 			     "add mac ethertype failed for cmd_send, ret =%d.",
3716 			     ret);
3717 		return ret;
3718 	}
3719 
3720 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3721 	retval = rte_le_to_cpu_16(desc.retval);
3722 
3723 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3724 }
3725 
3726 static void
3727 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3728 		     int *table_item_num)
3729 {
3730 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3731 
3732 	/*
3733 	 * In current version, we add one item in management table as below:
3734 	 * 0x0180C200000E -- LLDP MC address
3735 	 */
3736 	tbl = mgr_table;
3737 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3738 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3739 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3740 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3741 	tbl->i_port_bitmap = 0x1;
3742 	*table_item_num = 1;
3743 }
3744 
3745 static int
3746 hns3_init_mgr_tbl(struct hns3_hw *hw)
3747 {
3748 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3749 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3750 	int table_item_num;
3751 	int ret;
3752 	int i;
3753 
3754 	memset(mgr_table, 0, sizeof(mgr_table));
3755 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3756 	for (i = 0; i < table_item_num; i++) {
3757 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3758 		if (ret) {
3759 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3760 				     ret);
3761 			return ret;
3762 		}
3763 	}
3764 
3765 	return 0;
3766 }
3767 
3768 static void
3769 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3770 			bool en_mc, bool en_bc, int vport_id)
3771 {
3772 	if (!param)
3773 		return;
3774 
3775 	memset(param, 0, sizeof(struct hns3_promisc_param));
3776 	if (en_uc)
3777 		param->enable = HNS3_PROMISC_EN_UC;
3778 	if (en_mc)
3779 		param->enable |= HNS3_PROMISC_EN_MC;
3780 	if (en_bc)
3781 		param->enable |= HNS3_PROMISC_EN_BC;
3782 	param->vf_id = vport_id;
3783 }
3784 
3785 static int
3786 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3787 {
3788 	struct hns3_promisc_cfg_cmd *req;
3789 	struct hns3_cmd_desc desc;
3790 	int ret;
3791 
3792 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3793 
3794 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3795 	req->vf_id = param->vf_id;
3796 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3797 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3798 
3799 	ret = hns3_cmd_send(hw, &desc, 1);
3800 	if (ret)
3801 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
3802 
3803 	return ret;
3804 }
3805 
3806 static int
3807 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3808 {
3809 	struct hns3_promisc_param param;
3810 	bool en_bc_pmc = true;
3811 	uint8_t vf_id;
3812 
3813 	/*
3814 	 * In current version VF is not supported when PF is driven by DPDK
3815 	 * driver, just need to configure parameters for PF vport.
3816 	 */
3817 	vf_id = HNS3_PF_FUNC_ID;
3818 
3819 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3820 	return hns3_cmd_set_promisc_mode(hw, &param);
3821 }
3822 
3823 static int
3824 hns3_promisc_init(struct hns3_hw *hw)
3825 {
3826 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3827 	struct hns3_pf *pf = &hns->pf;
3828 	struct hns3_promisc_param param;
3829 	uint16_t func_id;
3830 	int ret;
3831 
3832 	ret = hns3_set_promisc_mode(hw, false, false);
3833 	if (ret) {
3834 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
3835 		return ret;
3836 	}
3837 
3838 	/*
3839 	 * In current version VFs are not supported when PF is driven by DPDK
3840 	 * driver. After PF has been taken over by DPDK, the original VF will
3841 	 * be invalid. So, there is a possibility of entry residues. It should
3842 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
3843 	 * during init.
3844 	 */
3845 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
3846 		hns3_promisc_param_init(&param, false, false, false, func_id);
3847 		ret = hns3_cmd_set_promisc_mode(hw, &param);
3848 		if (ret) {
3849 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
3850 					" ret = %d", func_id, ret);
3851 			return ret;
3852 		}
3853 	}
3854 
3855 	return 0;
3856 }
3857 
3858 static void
3859 hns3_promisc_uninit(struct hns3_hw *hw)
3860 {
3861 	struct hns3_promisc_param param;
3862 	uint16_t func_id;
3863 	int ret;
3864 
3865 	func_id = HNS3_PF_FUNC_ID;
3866 
3867 	/*
3868 	 * In current version VFs are not supported when PF is driven by
3869 	 * DPDK driver, and VFs' promisc mode status has been cleared during
3870 	 * init and their status will not change. So just clear PF's promisc
3871 	 * mode status during uninit.
3872 	 */
3873 	hns3_promisc_param_init(&param, false, false, false, func_id);
3874 	ret = hns3_cmd_set_promisc_mode(hw, &param);
3875 	if (ret)
3876 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
3877 				" uninit, ret = %d", ret);
3878 }
3879 
3880 static int
3881 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
3882 {
3883 	bool allmulti = dev->data->all_multicast ? true : false;
3884 	struct hns3_adapter *hns = dev->data->dev_private;
3885 	struct hns3_hw *hw = &hns->hw;
3886 	uint64_t offloads;
3887 	int err;
3888 	int ret;
3889 
3890 	rte_spinlock_lock(&hw->lock);
3891 	ret = hns3_set_promisc_mode(hw, true, true);
3892 	if (ret) {
3893 		rte_spinlock_unlock(&hw->lock);
3894 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
3895 			 ret);
3896 		return ret;
3897 	}
3898 
3899 	/*
3900 	 * When promiscuous mode was enabled, disable the vlan filter to let
3901 	 * all packets coming in the receiving direction.
3902 	 */
3903 	offloads = dev->data->dev_conf.rxmode.offloads;
3904 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
3905 		ret = hns3_enable_vlan_filter(hns, false);
3906 		if (ret) {
3907 			hns3_err(hw, "failed to enable promiscuous mode due to "
3908 				 "failure to disable vlan filter, ret = %d",
3909 				 ret);
3910 			err = hns3_set_promisc_mode(hw, false, allmulti);
3911 			if (err)
3912 				hns3_err(hw, "failed to restore promiscuous "
3913 					 "status after disable vlan filter "
3914 					 "failed during enabling promiscuous "
3915 					 "mode, ret = %d", ret);
3916 		}
3917 	}
3918 
3919 	rte_spinlock_unlock(&hw->lock);
3920 
3921 	return ret;
3922 }
3923 
3924 static int
3925 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
3926 {
3927 	bool allmulti = dev->data->all_multicast ? true : false;
3928 	struct hns3_adapter *hns = dev->data->dev_private;
3929 	struct hns3_hw *hw = &hns->hw;
3930 	uint64_t offloads;
3931 	int err;
3932 	int ret;
3933 
3934 	/* If now in all_multicast mode, must remain in all_multicast mode. */
3935 	rte_spinlock_lock(&hw->lock);
3936 	ret = hns3_set_promisc_mode(hw, false, allmulti);
3937 	if (ret) {
3938 		rte_spinlock_unlock(&hw->lock);
3939 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
3940 			 ret);
3941 		return ret;
3942 	}
3943 	/* when promiscuous mode was disabled, restore the vlan filter status */
3944 	offloads = dev->data->dev_conf.rxmode.offloads;
3945 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
3946 		ret = hns3_enable_vlan_filter(hns, true);
3947 		if (ret) {
3948 			hns3_err(hw, "failed to disable promiscuous mode due to"
3949 				 " failure to restore vlan filter, ret = %d",
3950 				 ret);
3951 			err = hns3_set_promisc_mode(hw, true, true);
3952 			if (err)
3953 				hns3_err(hw, "failed to restore promiscuous "
3954 					 "status after enabling vlan filter "
3955 					 "failed during disabling promiscuous "
3956 					 "mode, ret = %d", ret);
3957 		}
3958 	}
3959 	rte_spinlock_unlock(&hw->lock);
3960 
3961 	return ret;
3962 }
3963 
3964 static int
3965 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
3966 {
3967 	struct hns3_adapter *hns = dev->data->dev_private;
3968 	struct hns3_hw *hw = &hns->hw;
3969 	int ret;
3970 
3971 	if (dev->data->promiscuous)
3972 		return 0;
3973 
3974 	rte_spinlock_lock(&hw->lock);
3975 	ret = hns3_set_promisc_mode(hw, false, true);
3976 	rte_spinlock_unlock(&hw->lock);
3977 	if (ret)
3978 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
3979 			 ret);
3980 
3981 	return ret;
3982 }
3983 
3984 static int
3985 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
3986 {
3987 	struct hns3_adapter *hns = dev->data->dev_private;
3988 	struct hns3_hw *hw = &hns->hw;
3989 	int ret;
3990 
3991 	/* If now in promiscuous mode, must remain in all_multicast mode. */
3992 	if (dev->data->promiscuous)
3993 		return 0;
3994 
3995 	rte_spinlock_lock(&hw->lock);
3996 	ret = hns3_set_promisc_mode(hw, false, false);
3997 	rte_spinlock_unlock(&hw->lock);
3998 	if (ret)
3999 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4000 			 ret);
4001 
4002 	return ret;
4003 }
4004 
4005 static int
4006 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4007 {
4008 	struct hns3_hw *hw = &hns->hw;
4009 	bool allmulti = hw->data->all_multicast ? true : false;
4010 	int ret;
4011 
4012 	if (hw->data->promiscuous) {
4013 		ret = hns3_set_promisc_mode(hw, true, true);
4014 		if (ret)
4015 			hns3_err(hw, "failed to restore promiscuous mode, "
4016 				 "ret = %d", ret);
4017 		return ret;
4018 	}
4019 
4020 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4021 	if (ret)
4022 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4023 			 ret);
4024 	return ret;
4025 }
4026 
4027 static int
4028 hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info)
4029 {
4030 	struct hns3_sfp_info_cmd *resp;
4031 	uint32_t local_pause, lp_pause;
4032 	struct hns3_cmd_desc desc;
4033 	int ret;
4034 
4035 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
4036 	resp = (struct hns3_sfp_info_cmd *)desc.data;
4037 	resp->query_type = HNS3_ACTIVE_QUERY;
4038 
4039 	ret = hns3_cmd_send(hw, &desc, 1);
4040 	if (ret == -EOPNOTSUPP) {
4041 		hns3_warn(hw, "firmware does not support get SFP info,"
4042 			  " ret = %d.", ret);
4043 		return ret;
4044 	} else if (ret) {
4045 		hns3_err(hw, "get sfp info failed, ret = %d.", ret);
4046 		return ret;
4047 	}
4048 
4049 	/*
4050 	 * In some case, the speed of MAC obtained from firmware may be 0, it
4051 	 * shouldn't be set to mac->speed.
4052 	 */
4053 	if (!rte_le_to_cpu_32(resp->sfp_speed))
4054 		return 0;
4055 
4056 	mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed);
4057 	/*
4058 	 * if resp->supported_speed is 0, it means it's an old version
4059 	 * firmware, do not update these params.
4060 	 */
4061 	if (resp->supported_speed) {
4062 		mac_info->query_type = HNS3_ACTIVE_QUERY;
4063 		mac_info->supported_speed =
4064 					rte_le_to_cpu_32(resp->supported_speed);
4065 		mac_info->support_autoneg = resp->autoneg_ability;
4066 		mac_info->link_autoneg = (resp->autoneg == 0) ? RTE_ETH_LINK_FIXED
4067 					: RTE_ETH_LINK_AUTONEG;
4068 		mac_info->fec_capa = resp->fec_ability;
4069 		local_pause = resp->pause_status & HNS3_FIBER_LOCAL_PAUSE_MASK;
4070 		lp_pause = (resp->pause_status & HNS3_FIBER_LP_PAUSE_MASK) >>
4071 						HNS3_FIBER_LP_PAUSE_S;
4072 		mac_info->advertising =
4073 				local_pause << HNS3_PHY_LINK_MODE_PAUSE_S;
4074 		mac_info->lp_advertising =
4075 				lp_pause << HNS3_PHY_LINK_MODE_PAUSE_S;
4076 	} else {
4077 		mac_info->query_type = HNS3_DEFAULT_QUERY;
4078 	}
4079 
4080 	return 0;
4081 }
4082 
4083 static uint8_t
4084 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4085 {
4086 	if (!(speed == RTE_ETH_SPEED_NUM_10M || speed == RTE_ETH_SPEED_NUM_100M))
4087 		duplex = RTE_ETH_LINK_FULL_DUPLEX;
4088 
4089 	return duplex;
4090 }
4091 
4092 static int
4093 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4094 {
4095 	struct hns3_mac *mac = &hw->mac;
4096 	int ret;
4097 
4098 	duplex = hns3_check_speed_dup(duplex, speed);
4099 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4100 		return 0;
4101 
4102 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4103 	if (ret)
4104 		return ret;
4105 
4106 	ret = hns3_port_shaper_update(hw, speed);
4107 	if (ret)
4108 		return ret;
4109 
4110 	mac->link_speed = speed;
4111 	mac->link_duplex = duplex;
4112 
4113 	return 0;
4114 }
4115 
4116 static int
4117 hns3_update_fiber_link_info(struct hns3_hw *hw)
4118 {
4119 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4120 	struct hns3_mac *mac = &hw->mac;
4121 	struct hns3_mac mac_info;
4122 	int ret;
4123 
4124 	/* If firmware do not support get SFP/qSFP speed, return directly */
4125 	if (!pf->support_sfp_query)
4126 		return 0;
4127 
4128 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4129 	ret = hns3_get_sfp_info(hw, &mac_info);
4130 	if (ret == -EOPNOTSUPP) {
4131 		pf->support_sfp_query = false;
4132 		return ret;
4133 	} else if (ret)
4134 		return ret;
4135 
4136 	/* Do nothing if no SFP */
4137 	if (mac_info.link_speed == RTE_ETH_SPEED_NUM_NONE)
4138 		return 0;
4139 
4140 	/*
4141 	 * If query_type is HNS3_ACTIVE_QUERY, it is no need
4142 	 * to reconfigure the speed of MAC. Otherwise, it indicates
4143 	 * that the current firmware only supports to obtain the
4144 	 * speed of the SFP, and the speed of MAC needs to reconfigure.
4145 	 */
4146 	mac->query_type = mac_info.query_type;
4147 	if (mac->query_type == HNS3_ACTIVE_QUERY) {
4148 		if (mac_info.link_speed != mac->link_speed) {
4149 			ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4150 			if (ret)
4151 				return ret;
4152 		}
4153 
4154 		mac->link_speed = mac_info.link_speed;
4155 		mac->supported_speed = mac_info.supported_speed;
4156 		mac->support_autoneg = mac_info.support_autoneg;
4157 		mac->link_autoneg = mac_info.link_autoneg;
4158 		mac->fec_capa = mac_info.fec_capa;
4159 		mac->advertising = mac_info.advertising;
4160 		mac->lp_advertising = mac_info.lp_advertising;
4161 
4162 		return 0;
4163 	}
4164 
4165 	/* Config full duplex for SFP */
4166 	return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed,
4167 				      RTE_ETH_LINK_FULL_DUPLEX);
4168 }
4169 
4170 static void
4171 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4172 {
4173 #define HNS3_PHY_SUPPORTED_SPEED_MASK   0x2f
4174 
4175 	struct hns3_phy_params_bd0_cmd *req;
4176 	uint32_t supported;
4177 
4178 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4179 	mac->link_speed = rte_le_to_cpu_32(req->speed);
4180 	mac->link_duplex = hns3_get_bit(req->duplex,
4181 					   HNS3_PHY_DUPLEX_CFG_B);
4182 	mac->link_autoneg = hns3_get_bit(req->autoneg,
4183 					   HNS3_PHY_AUTONEG_CFG_B);
4184 	mac->advertising = rte_le_to_cpu_32(req->advertising);
4185 	mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4186 	supported = rte_le_to_cpu_32(req->supported);
4187 	mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK;
4188 	mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4189 }
4190 
4191 static int
4192 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4193 {
4194 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4195 	uint16_t i;
4196 	int ret;
4197 
4198 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4199 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4200 					  true);
4201 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4202 	}
4203 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4204 
4205 	ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4206 	if (ret) {
4207 		hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4208 		return ret;
4209 	}
4210 
4211 	hns3_parse_copper_phy_params(desc, mac);
4212 
4213 	return 0;
4214 }
4215 
4216 static int
4217 hns3_update_copper_link_info(struct hns3_hw *hw)
4218 {
4219 	struct hns3_mac *mac = &hw->mac;
4220 	struct hns3_mac mac_info;
4221 	int ret;
4222 
4223 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4224 	ret = hns3_get_copper_phy_params(hw, &mac_info);
4225 	if (ret)
4226 		return ret;
4227 
4228 	if (mac_info.link_speed != mac->link_speed) {
4229 		ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4230 		if (ret)
4231 			return ret;
4232 	}
4233 
4234 	mac->link_speed = mac_info.link_speed;
4235 	mac->link_duplex = mac_info.link_duplex;
4236 	mac->link_autoneg = mac_info.link_autoneg;
4237 	mac->supported_speed = mac_info.supported_speed;
4238 	mac->advertising = mac_info.advertising;
4239 	mac->lp_advertising = mac_info.lp_advertising;
4240 	mac->support_autoneg = mac_info.support_autoneg;
4241 
4242 	return 0;
4243 }
4244 
4245 static int
4246 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4247 {
4248 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4249 	struct hns3_hw *hw = &hns->hw;
4250 
4251 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4252 		return hns3_update_copper_link_info(hw);
4253 
4254 	return hns3_update_fiber_link_info(hw);
4255 }
4256 
4257 static int
4258 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4259 {
4260 	struct hns3_config_mac_mode_cmd *req;
4261 	struct hns3_cmd_desc desc;
4262 	uint32_t loop_en = 0;
4263 	uint8_t val = 0;
4264 	int ret;
4265 
4266 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4267 
4268 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4269 	if (enable)
4270 		val = 1;
4271 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4272 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4273 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4274 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4275 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4276 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4277 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4278 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4279 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4280 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4281 
4282 	/*
4283 	 * If RTE_ETH_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4284 	 * when receiving frames. Otherwise, CRC will be stripped.
4285 	 */
4286 	if (hw->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
4287 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4288 	else
4289 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4290 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4291 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4292 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4293 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4294 
4295 	ret = hns3_cmd_send(hw, &desc, 1);
4296 	if (ret)
4297 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4298 
4299 	return ret;
4300 }
4301 
4302 static int
4303 hns3_get_mac_link_status(struct hns3_hw *hw)
4304 {
4305 	struct hns3_link_status_cmd *req;
4306 	struct hns3_cmd_desc desc;
4307 	int link_status;
4308 	int ret;
4309 
4310 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4311 	ret = hns3_cmd_send(hw, &desc, 1);
4312 	if (ret) {
4313 		hns3_err(hw, "get link status cmd failed %d", ret);
4314 		return RTE_ETH_LINK_DOWN;
4315 	}
4316 
4317 	req = (struct hns3_link_status_cmd *)desc.data;
4318 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4319 
4320 	return !!link_status;
4321 }
4322 
4323 static bool
4324 hns3_update_link_status(struct hns3_hw *hw)
4325 {
4326 	int state;
4327 
4328 	state = hns3_get_mac_link_status(hw);
4329 	if (state != hw->mac.link_status) {
4330 		hw->mac.link_status = state;
4331 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4332 		return true;
4333 	}
4334 
4335 	return false;
4336 }
4337 
4338 void
4339 hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
4340 {
4341 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4342 	struct rte_eth_link new_link;
4343 	int ret;
4344 
4345 	if (query)
4346 		hns3_update_port_link_info(dev);
4347 
4348 	memset(&new_link, 0, sizeof(new_link));
4349 	hns3_setup_linkstatus(dev, &new_link);
4350 
4351 	ret = rte_eth_linkstatus_set(dev, &new_link);
4352 	if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
4353 		hns3_start_report_lse(dev);
4354 }
4355 
4356 static void
4357 hns3_service_handler(void *param)
4358 {
4359 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4360 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4361 	struct hns3_hw *hw = &hns->hw;
4362 
4363 	if (!hns3_is_reset_pending(hns)) {
4364 		hns3_update_linkstatus_and_event(hw, true);
4365 		hns3_update_hw_stats(hw);
4366 	} else {
4367 		hns3_warn(hw, "Cancel the query when reset is pending");
4368 	}
4369 
4370 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4371 }
4372 
4373 static int
4374 hns3_init_hardware(struct hns3_adapter *hns)
4375 {
4376 	struct hns3_hw *hw = &hns->hw;
4377 	int ret;
4378 
4379 	/*
4380 	 * All queue-related HW operations must be performed after the TCAM
4381 	 * table is configured.
4382 	 */
4383 	ret = hns3_map_tqp(hw);
4384 	if (ret) {
4385 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4386 		return ret;
4387 	}
4388 
4389 	ret = hns3_init_umv_space(hw);
4390 	if (ret) {
4391 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4392 		return ret;
4393 	}
4394 
4395 	ret = hns3_mac_init(hw);
4396 	if (ret) {
4397 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4398 		goto err_mac_init;
4399 	}
4400 
4401 	ret = hns3_init_mgr_tbl(hw);
4402 	if (ret) {
4403 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4404 		goto err_mac_init;
4405 	}
4406 
4407 	ret = hns3_promisc_init(hw);
4408 	if (ret) {
4409 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4410 			     ret);
4411 		goto err_mac_init;
4412 	}
4413 
4414 	ret = hns3_init_vlan_config(hns);
4415 	if (ret) {
4416 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4417 		goto err_mac_init;
4418 	}
4419 
4420 	ret = hns3_dcb_init(hw);
4421 	if (ret) {
4422 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4423 		goto err_mac_init;
4424 	}
4425 
4426 	ret = hns3_init_fd_config(hns);
4427 	if (ret) {
4428 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4429 		goto err_mac_init;
4430 	}
4431 
4432 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4433 	if (ret) {
4434 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4435 		goto err_mac_init;
4436 	}
4437 
4438 	ret = hns3_config_gro(hw, false);
4439 	if (ret) {
4440 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4441 		goto err_mac_init;
4442 	}
4443 
4444 	/*
4445 	 * In the initialization clearing the all hardware mapping relationship
4446 	 * configurations between queues and interrupt vectors is needed, so
4447 	 * some error caused by the residual configurations, such as the
4448 	 * unexpected interrupt, can be avoid.
4449 	 */
4450 	ret = hns3_init_ring_with_vector(hw);
4451 	if (ret) {
4452 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4453 		goto err_mac_init;
4454 	}
4455 
4456 	ret = hns3_ptp_init(hw);
4457 	if (ret) {
4458 		PMD_INIT_LOG(ERR, "Failed to init PTP, ret = %d", ret);
4459 		goto err_mac_init;
4460 	}
4461 
4462 	return 0;
4463 
4464 err_mac_init:
4465 	hns3_uninit_umv_space(hw);
4466 	return ret;
4467 }
4468 
4469 static int
4470 hns3_clear_hw(struct hns3_hw *hw)
4471 {
4472 	struct hns3_cmd_desc desc;
4473 	int ret;
4474 
4475 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4476 
4477 	ret = hns3_cmd_send(hw, &desc, 1);
4478 	if (ret && ret != -EOPNOTSUPP)
4479 		return ret;
4480 
4481 	return 0;
4482 }
4483 
4484 static void
4485 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4486 {
4487 	uint32_t val;
4488 
4489 	/*
4490 	 * The new firmware support report more hardware error types by
4491 	 * msix mode. These errors are defined as RAS errors in hardware
4492 	 * and belong to a different type from the MSI-x errors processed
4493 	 * by the network driver.
4494 	 *
4495 	 * Network driver should open the new error report on initialization.
4496 	 */
4497 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4498 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4499 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4500 }
4501 
4502 static uint32_t
4503 hns3_set_firber_default_support_speed(struct hns3_hw *hw)
4504 {
4505 	struct hns3_mac *mac = &hw->mac;
4506 
4507 	switch (mac->link_speed) {
4508 	case RTE_ETH_SPEED_NUM_1G:
4509 		return HNS3_FIBER_LINK_SPEED_1G_BIT;
4510 	case RTE_ETH_SPEED_NUM_10G:
4511 		return HNS3_FIBER_LINK_SPEED_10G_BIT;
4512 	case RTE_ETH_SPEED_NUM_25G:
4513 		return HNS3_FIBER_LINK_SPEED_25G_BIT;
4514 	case RTE_ETH_SPEED_NUM_40G:
4515 		return HNS3_FIBER_LINK_SPEED_40G_BIT;
4516 	case RTE_ETH_SPEED_NUM_50G:
4517 		return HNS3_FIBER_LINK_SPEED_50G_BIT;
4518 	case RTE_ETH_SPEED_NUM_100G:
4519 		return HNS3_FIBER_LINK_SPEED_100G_BIT;
4520 	case RTE_ETH_SPEED_NUM_200G:
4521 		return HNS3_FIBER_LINK_SPEED_200G_BIT;
4522 	default:
4523 		hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed);
4524 		return 0;
4525 	}
4526 }
4527 
4528 /*
4529  * Validity of supported_speed for fiber and copper media type can be
4530  * guaranteed by the following policy:
4531  * Copper:
4532  *       Although the initialization of the phy in the firmware may not be
4533  *       completed, the firmware can guarantees that the supported_speed is
4534  *       an valid value.
4535  * Firber:
4536  *       If the version of firmware supports the active query way of the
4537  *       HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained
4538  *       through it. If unsupported, use the SFP's speed as the value of the
4539  *       supported_speed.
4540  */
4541 static int
4542 hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev)
4543 {
4544 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4545 	struct hns3_hw *hw = &hns->hw;
4546 	struct hns3_mac *mac = &hw->mac;
4547 	int ret;
4548 
4549 	ret = hns3_update_link_info(eth_dev);
4550 	if (ret)
4551 		return ret;
4552 
4553 	if (mac->media_type == HNS3_MEDIA_TYPE_FIBER ||
4554 	    mac->media_type == HNS3_MEDIA_TYPE_BACKPLANE) {
4555 		/*
4556 		 * Some firmware does not support the report of supported_speed,
4557 		 * and only report the effective speed of SFP/backplane. In this
4558 		 * case, it is necessary to use the SFP/backplane's speed as the
4559 		 * supported_speed.
4560 		 */
4561 		if (mac->supported_speed == 0)
4562 			mac->supported_speed =
4563 				hns3_set_firber_default_support_speed(hw);
4564 	}
4565 
4566 	return 0;
4567 }
4568 
4569 static int
4570 hns3_init_pf(struct rte_eth_dev *eth_dev)
4571 {
4572 	struct rte_device *dev = eth_dev->device;
4573 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4574 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4575 	struct hns3_hw *hw = &hns->hw;
4576 	int ret;
4577 
4578 	PMD_INIT_FUNC_TRACE();
4579 
4580 	/* Get hardware io base address from pcie BAR2 IO space */
4581 	hw->io_base = pci_dev->mem_resource[2].addr;
4582 
4583 	ret = hns3_get_pci_revision_id(hw, &hw->revision);
4584 	if (ret)
4585 		return ret;
4586 
4587 	/* Firmware command queue initialize */
4588 	ret = hns3_cmd_init_queue(hw);
4589 	if (ret) {
4590 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4591 		goto err_cmd_init_queue;
4592 	}
4593 
4594 	hns3_clear_all_event_cause(hw);
4595 
4596 	/* Firmware command initialize */
4597 	ret = hns3_cmd_init(hw);
4598 	if (ret) {
4599 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4600 		goto err_cmd_init;
4601 	}
4602 
4603 	hns3_tx_push_init(eth_dev);
4604 
4605 	/*
4606 	 * To ensure that the hardware environment is clean during
4607 	 * initialization, the driver actively clear the hardware environment
4608 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4609 	 * flow table configurations, etc.
4610 	 */
4611 	ret = hns3_clear_hw(hw);
4612 	if (ret) {
4613 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4614 		goto err_cmd_init;
4615 	}
4616 
4617 	hns3_config_all_msix_error(hw, true);
4618 
4619 	ret = rte_intr_callback_register(pci_dev->intr_handle,
4620 					 hns3_interrupt_handler,
4621 					 eth_dev);
4622 	if (ret) {
4623 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4624 		goto err_intr_callback_register;
4625 	}
4626 
4627 	/* Enable interrupt */
4628 	rte_intr_enable(pci_dev->intr_handle);
4629 	hns3_pf_enable_irq0(hw);
4630 
4631 	/* Get configuration */
4632 	ret = hns3_get_configuration(hw);
4633 	if (ret) {
4634 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4635 		goto err_get_config;
4636 	}
4637 
4638 	ret = hns3_stats_init(hw);
4639 	if (ret)
4640 		goto err_get_config;
4641 
4642 	ret = hns3_init_hardware(hns);
4643 	if (ret) {
4644 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4645 		goto err_init_hw;
4646 	}
4647 
4648 	/* Initialize flow director filter list & hash */
4649 	ret = hns3_fdir_filter_init(hns);
4650 	if (ret) {
4651 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4652 		goto err_fdir;
4653 	}
4654 
4655 	hns3_rss_set_default_args(hw);
4656 
4657 	ret = hns3_enable_hw_error_intr(hns, true);
4658 	if (ret) {
4659 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4660 			     ret);
4661 		goto err_enable_intr;
4662 	}
4663 
4664 	ret = hns3_get_port_supported_speed(eth_dev);
4665 	if (ret) {
4666 		PMD_INIT_LOG(ERR, "failed to get speed capabilities supported "
4667 			     "by device, ret = %d.", ret);
4668 		goto err_supported_speed;
4669 	}
4670 
4671 	hns3_tm_conf_init(eth_dev);
4672 
4673 	return 0;
4674 
4675 err_supported_speed:
4676 	(void)hns3_enable_hw_error_intr(hns, false);
4677 err_enable_intr:
4678 	hns3_fdir_filter_uninit(hns);
4679 err_fdir:
4680 	hns3_uninit_umv_space(hw);
4681 	hns3_ptp_uninit(hw);
4682 err_init_hw:
4683 	hns3_stats_uninit(hw);
4684 err_get_config:
4685 	hns3_pf_disable_irq0(hw);
4686 	rte_intr_disable(pci_dev->intr_handle);
4687 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
4688 			     eth_dev);
4689 err_intr_callback_register:
4690 err_cmd_init:
4691 	hns3_cmd_uninit(hw);
4692 	hns3_cmd_destroy_queue(hw);
4693 err_cmd_init_queue:
4694 	hw->io_base = NULL;
4695 
4696 	return ret;
4697 }
4698 
4699 static void
4700 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4701 {
4702 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4703 	struct rte_device *dev = eth_dev->device;
4704 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4705 	struct hns3_hw *hw = &hns->hw;
4706 
4707 	PMD_INIT_FUNC_TRACE();
4708 
4709 	hns3_tm_conf_uninit(eth_dev);
4710 	hns3_enable_hw_error_intr(hns, false);
4711 	hns3_rss_uninit(hns);
4712 	(void)hns3_config_gro(hw, false);
4713 	hns3_promisc_uninit(hw);
4714 	hns3_flow_uninit(eth_dev);
4715 	hns3_fdir_filter_uninit(hns);
4716 	hns3_uninit_umv_space(hw);
4717 	hns3_ptp_uninit(hw);
4718 	hns3_stats_uninit(hw);
4719 	hns3_config_mac_tnl_int(hw, false);
4720 	hns3_pf_disable_irq0(hw);
4721 	rte_intr_disable(pci_dev->intr_handle);
4722 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
4723 			     eth_dev);
4724 	hns3_config_all_msix_error(hw, false);
4725 	hns3_cmd_uninit(hw);
4726 	hns3_cmd_destroy_queue(hw);
4727 	hw->io_base = NULL;
4728 }
4729 
4730 static uint32_t
4731 hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds)
4732 {
4733 	uint32_t speed_bit;
4734 
4735 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
4736 	case RTE_ETH_LINK_SPEED_10M:
4737 		speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT;
4738 		break;
4739 	case RTE_ETH_LINK_SPEED_10M_HD:
4740 		speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT;
4741 		break;
4742 	case RTE_ETH_LINK_SPEED_100M:
4743 		speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT;
4744 		break;
4745 	case RTE_ETH_LINK_SPEED_100M_HD:
4746 		speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT;
4747 		break;
4748 	case RTE_ETH_LINK_SPEED_1G:
4749 		speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT;
4750 		break;
4751 	default:
4752 		speed_bit = 0;
4753 		break;
4754 	}
4755 
4756 	return speed_bit;
4757 }
4758 
4759 static uint32_t
4760 hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds)
4761 {
4762 	uint32_t speed_bit;
4763 
4764 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
4765 	case RTE_ETH_LINK_SPEED_1G:
4766 		speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT;
4767 		break;
4768 	case RTE_ETH_LINK_SPEED_10G:
4769 		speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT;
4770 		break;
4771 	case RTE_ETH_LINK_SPEED_25G:
4772 		speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT;
4773 		break;
4774 	case RTE_ETH_LINK_SPEED_40G:
4775 		speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT;
4776 		break;
4777 	case RTE_ETH_LINK_SPEED_50G:
4778 		speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT;
4779 		break;
4780 	case RTE_ETH_LINK_SPEED_100G:
4781 		speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT;
4782 		break;
4783 	case RTE_ETH_LINK_SPEED_200G:
4784 		speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT;
4785 		break;
4786 	default:
4787 		speed_bit = 0;
4788 		break;
4789 	}
4790 
4791 	return speed_bit;
4792 }
4793 
4794 static int
4795 hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds)
4796 {
4797 	struct hns3_mac *mac = &hw->mac;
4798 	uint32_t supported_speed = mac->supported_speed;
4799 	uint32_t speed_bit = 0;
4800 
4801 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
4802 		speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds);
4803 	else
4804 		speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds);
4805 
4806 	if (!(speed_bit & supported_speed)) {
4807 		hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.",
4808 			 link_speeds);
4809 		return -EINVAL;
4810 	}
4811 
4812 	return 0;
4813 }
4814 
4815 static uint32_t
4816 hns3_get_link_speed(uint32_t link_speeds)
4817 {
4818 	uint32_t speed = RTE_ETH_SPEED_NUM_NONE;
4819 
4820 	if (link_speeds & RTE_ETH_LINK_SPEED_10M ||
4821 	    link_speeds & RTE_ETH_LINK_SPEED_10M_HD)
4822 		speed = RTE_ETH_SPEED_NUM_10M;
4823 	if (link_speeds & RTE_ETH_LINK_SPEED_100M ||
4824 	    link_speeds & RTE_ETH_LINK_SPEED_100M_HD)
4825 		speed = RTE_ETH_SPEED_NUM_100M;
4826 	if (link_speeds & RTE_ETH_LINK_SPEED_1G)
4827 		speed = RTE_ETH_SPEED_NUM_1G;
4828 	if (link_speeds & RTE_ETH_LINK_SPEED_10G)
4829 		speed = RTE_ETH_SPEED_NUM_10G;
4830 	if (link_speeds & RTE_ETH_LINK_SPEED_25G)
4831 		speed = RTE_ETH_SPEED_NUM_25G;
4832 	if (link_speeds & RTE_ETH_LINK_SPEED_40G)
4833 		speed = RTE_ETH_SPEED_NUM_40G;
4834 	if (link_speeds & RTE_ETH_LINK_SPEED_50G)
4835 		speed = RTE_ETH_SPEED_NUM_50G;
4836 	if (link_speeds & RTE_ETH_LINK_SPEED_100G)
4837 		speed = RTE_ETH_SPEED_NUM_100G;
4838 	if (link_speeds & RTE_ETH_LINK_SPEED_200G)
4839 		speed = RTE_ETH_SPEED_NUM_200G;
4840 
4841 	return speed;
4842 }
4843 
4844 static uint8_t
4845 hns3_get_link_duplex(uint32_t link_speeds)
4846 {
4847 	if ((link_speeds & RTE_ETH_LINK_SPEED_10M_HD) ||
4848 	    (link_speeds & RTE_ETH_LINK_SPEED_100M_HD))
4849 		return RTE_ETH_LINK_HALF_DUPLEX;
4850 	else
4851 		return RTE_ETH_LINK_FULL_DUPLEX;
4852 }
4853 
4854 static int
4855 hns3_set_copper_port_link_speed(struct hns3_hw *hw,
4856 				struct hns3_set_link_speed_cfg *cfg)
4857 {
4858 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4859 	struct hns3_phy_params_bd0_cmd *req;
4860 	uint16_t i;
4861 
4862 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4863 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4864 					  false);
4865 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4866 	}
4867 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false);
4868 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4869 	req->autoneg = cfg->autoneg;
4870 
4871 	/*
4872 	 * The full speed capability is used to negotiate when
4873 	 * auto-negotiation is enabled.
4874 	 */
4875 	if (cfg->autoneg) {
4876 		req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT |
4877 				    HNS3_PHY_LINK_SPEED_10M_HD_BIT |
4878 				    HNS3_PHY_LINK_SPEED_100M_BIT |
4879 				    HNS3_PHY_LINK_SPEED_100M_HD_BIT |
4880 				    HNS3_PHY_LINK_SPEED_1000M_BIT;
4881 	} else {
4882 		req->speed = cfg->speed;
4883 		req->duplex = cfg->duplex;
4884 	}
4885 
4886 	return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4887 }
4888 
4889 static int
4890 hns3_set_autoneg(struct hns3_hw *hw, bool enable)
4891 {
4892 	struct hns3_config_auto_neg_cmd *req;
4893 	struct hns3_cmd_desc desc;
4894 	uint32_t flag = 0;
4895 	int ret;
4896 
4897 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false);
4898 
4899 	req = (struct hns3_config_auto_neg_cmd *)desc.data;
4900 	if (enable)
4901 		hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1);
4902 	req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag);
4903 
4904 	ret = hns3_cmd_send(hw, &desc, 1);
4905 	if (ret)
4906 		hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret);
4907 
4908 	return ret;
4909 }
4910 
4911 static int
4912 hns3_set_fiber_port_link_speed(struct hns3_hw *hw,
4913 			       struct hns3_set_link_speed_cfg *cfg)
4914 {
4915 	int ret;
4916 
4917 	if (hw->mac.support_autoneg) {
4918 		ret = hns3_set_autoneg(hw, cfg->autoneg);
4919 		if (ret) {
4920 			hns3_err(hw, "failed to configure auto-negotiation.");
4921 			return ret;
4922 		}
4923 
4924 		/*
4925 		 * To enable auto-negotiation, we only need to open the switch
4926 		 * of auto-negotiation, then firmware sets all speed
4927 		 * capabilities.
4928 		 */
4929 		if (cfg->autoneg)
4930 			return 0;
4931 	}
4932 
4933 	/*
4934 	 * Some hardware doesn't support auto-negotiation, but users may not
4935 	 * configure link_speeds (default 0), which means auto-negotiation.
4936 	 * In this case, a warning message need to be printed, instead of
4937 	 * an error.
4938 	 */
4939 	if (cfg->autoneg) {
4940 		hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!");
4941 		return 0;
4942 	}
4943 
4944 	return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex);
4945 }
4946 
4947 const char *
4948 hns3_get_media_type_name(uint8_t media_type)
4949 {
4950 	if (media_type == HNS3_MEDIA_TYPE_FIBER)
4951 		return "fiber";
4952 	else if (media_type == HNS3_MEDIA_TYPE_COPPER)
4953 		return "copper";
4954 	else if (media_type == HNS3_MEDIA_TYPE_BACKPLANE)
4955 		return "backplane";
4956 	else
4957 		return "unknown";
4958 }
4959 
4960 static int
4961 hns3_set_port_link_speed(struct hns3_hw *hw,
4962 			 struct hns3_set_link_speed_cfg *cfg)
4963 {
4964 	int ret;
4965 
4966 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4967 		ret = hns3_set_copper_port_link_speed(hw, cfg);
4968 	else
4969 		ret = hns3_set_fiber_port_link_speed(hw, cfg);
4970 
4971 	if (ret) {
4972 		hns3_err(hw, "failed to set %s port link speed, ret = %d.",
4973 			 hns3_get_media_type_name(hw->mac.media_type),
4974 			 ret);
4975 		return ret;
4976 	}
4977 
4978 	return 0;
4979 }
4980 
4981 static int
4982 hns3_apply_link_speed(struct hns3_hw *hw)
4983 {
4984 	struct rte_eth_conf *conf = &hw->data->dev_conf;
4985 	struct hns3_set_link_speed_cfg cfg;
4986 
4987 	memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg));
4988 	cfg.autoneg = (conf->link_speeds == RTE_ETH_LINK_SPEED_AUTONEG) ?
4989 			RTE_ETH_LINK_AUTONEG : RTE_ETH_LINK_FIXED;
4990 	if (cfg.autoneg != RTE_ETH_LINK_AUTONEG) {
4991 		cfg.speed = hns3_get_link_speed(conf->link_speeds);
4992 		cfg.duplex = hns3_get_link_duplex(conf->link_speeds);
4993 	}
4994 
4995 	return hns3_set_port_link_speed(hw, &cfg);
4996 }
4997 
4998 static int
4999 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5000 {
5001 	struct hns3_hw *hw = &hns->hw;
5002 	bool link_en;
5003 	int ret;
5004 
5005 	ret = hns3_update_queue_map_configure(hns);
5006 	if (ret) {
5007 		hns3_err(hw, "failed to update queue mapping configuration, ret = %d",
5008 			 ret);
5009 		return ret;
5010 	}
5011 
5012 	/* Note: hns3_tm_conf_update must be called after configuring DCB. */
5013 	ret = hns3_tm_conf_update(hw);
5014 	if (ret) {
5015 		PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5016 		return ret;
5017 	}
5018 
5019 	hns3_enable_rxd_adv_layout(hw);
5020 
5021 	ret = hns3_init_queues(hns, reset_queue);
5022 	if (ret) {
5023 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5024 		return ret;
5025 	}
5026 
5027 	link_en = hw->set_link_down ? false : true;
5028 	ret = hns3_cfg_mac_mode(hw, link_en);
5029 	if (ret) {
5030 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5031 		goto err_config_mac_mode;
5032 	}
5033 
5034 	ret = hns3_apply_link_speed(hw);
5035 	if (ret)
5036 		goto err_set_link_speed;
5037 
5038 	return hns3_restore_filter(hns);
5039 
5040 err_set_link_speed:
5041 	(void)hns3_cfg_mac_mode(hw, false);
5042 
5043 err_config_mac_mode:
5044 	hns3_dev_release_mbufs(hns);
5045 	/*
5046 	 * Here is exception handling, hns3_reset_all_tqps will have the
5047 	 * corresponding error message if it is handled incorrectly, so it is
5048 	 * not necessary to check hns3_reset_all_tqps return value, here keep
5049 	 * ret as the error code causing the exception.
5050 	 */
5051 	(void)hns3_reset_all_tqps(hns);
5052 	return ret;
5053 }
5054 
5055 static int
5056 hns3_dev_start(struct rte_eth_dev *dev)
5057 {
5058 	struct hns3_adapter *hns = dev->data->dev_private;
5059 	struct hns3_hw *hw = &hns->hw;
5060 	bool old_state = hw->set_link_down;
5061 	int ret;
5062 
5063 	PMD_INIT_FUNC_TRACE();
5064 	if (rte_atomic_load_explicit(&hw->reset.resetting, rte_memory_order_relaxed))
5065 		return -EBUSY;
5066 
5067 	rte_spinlock_lock(&hw->lock);
5068 	hw->adapter_state = HNS3_NIC_STARTING;
5069 
5070 	/*
5071 	 * If the dev_set_link_down() API has been called, the "set_link_down"
5072 	 * flag can be cleared by dev_start() API. In addition, the flag should
5073 	 * also be cleared before calling hns3_do_start() so that MAC can be
5074 	 * enabled in dev_start stage.
5075 	 */
5076 	hw->set_link_down = false;
5077 	ret = hns3_do_start(hns, true);
5078 	if (ret)
5079 		goto do_start_fail;
5080 
5081 	ret = hns3_map_rx_interrupt(dev);
5082 	if (ret)
5083 		goto map_rx_inter_err;
5084 
5085 	/*
5086 	 * There are three register used to control the status of a TQP
5087 	 * (contains a pair of Tx queue and Rx queue) in the new version network
5088 	 * engine. One is used to control the enabling of Tx queue, the other is
5089 	 * used to control the enabling of Rx queue, and the last is the master
5090 	 * switch used to control the enabling of the tqp. The Tx register and
5091 	 * TQP register must be enabled at the same time to enable a Tx queue.
5092 	 * The same applies to the Rx queue. For the older network engine, this
5093 	 * function only refresh the enabled flag, and it is used to update the
5094 	 * status of queue in the dpdk framework.
5095 	 */
5096 	ret = hns3_start_all_txqs(dev);
5097 	if (ret)
5098 		goto map_rx_inter_err;
5099 
5100 	ret = hns3_start_all_rxqs(dev);
5101 	if (ret)
5102 		goto start_all_rxqs_fail;
5103 
5104 	hw->adapter_state = HNS3_NIC_STARTED;
5105 	rte_spinlock_unlock(&hw->lock);
5106 
5107 	hns3_rx_scattered_calc(dev);
5108 	hns3_start_rxtx_datapath(dev);
5109 
5110 	/* Enable interrupt of all rx queues before enabling queues */
5111 	hns3_dev_all_rx_queue_intr_enable(hw, true);
5112 
5113 	/*
5114 	 * After finished the initialization, enable tqps to receive/transmit
5115 	 * packets and refresh all queue status.
5116 	 */
5117 	hns3_start_tqps(hw);
5118 
5119 	hns3_tm_dev_start_proc(hw);
5120 
5121 	if (dev->data->dev_conf.intr_conf.lsc != 0)
5122 		hns3_dev_link_update(dev, 0);
5123 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5124 
5125 	hns3_info(hw, "hns3 dev start successful!");
5126 
5127 	return 0;
5128 
5129 start_all_rxqs_fail:
5130 	hns3_stop_all_txqs(dev);
5131 map_rx_inter_err:
5132 	(void)hns3_do_stop(hns);
5133 do_start_fail:
5134 	hw->set_link_down = old_state;
5135 	hw->adapter_state = HNS3_NIC_CONFIGURED;
5136 	rte_spinlock_unlock(&hw->lock);
5137 
5138 	return ret;
5139 }
5140 
5141 static int
5142 hns3_do_stop(struct hns3_adapter *hns)
5143 {
5144 	struct hns3_hw *hw = &hns->hw;
5145 	int ret;
5146 
5147 	/*
5148 	 * The "hns3_do_stop" function will also be called by .stop_service to
5149 	 * prepare reset. At the time of global or IMP reset, the command cannot
5150 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5151 	 * accessed during the reset process. So the mbuf can not be released
5152 	 * during reset and is required to be released after the reset is
5153 	 * completed.
5154 	 */
5155 	if (rte_atomic_load_explicit(&hw->reset.resetting,  rte_memory_order_relaxed) == 0)
5156 		hns3_dev_release_mbufs(hns);
5157 
5158 	ret = hns3_cfg_mac_mode(hw, false);
5159 	if (ret)
5160 		return ret;
5161 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5162 
5163 	if (rte_atomic_load_explicit(&hw->reset.disable_cmd, rte_memory_order_relaxed) == 0) {
5164 		hns3_configure_all_mac_addr(hns, true);
5165 		ret = hns3_reset_all_tqps(hns);
5166 		if (ret) {
5167 			hns3_err(hw, "failed to reset all queues ret = %d.",
5168 				 ret);
5169 			return ret;
5170 		}
5171 	}
5172 
5173 	return 0;
5174 }
5175 
5176 static int
5177 hns3_dev_stop(struct rte_eth_dev *dev)
5178 {
5179 	struct hns3_adapter *hns = dev->data->dev_private;
5180 	struct hns3_hw *hw = &hns->hw;
5181 
5182 	PMD_INIT_FUNC_TRACE();
5183 	dev->data->dev_started = 0;
5184 
5185 	hw->adapter_state = HNS3_NIC_STOPPING;
5186 	hns3_stop_rxtx_datapath(dev);
5187 
5188 	rte_spinlock_lock(&hw->lock);
5189 	if (rte_atomic_load_explicit(&hw->reset.resetting, rte_memory_order_relaxed) == 0) {
5190 		hns3_tm_dev_stop_proc(hw);
5191 		hns3_config_mac_tnl_int(hw, false);
5192 		hns3_stop_tqps(hw);
5193 		hns3_do_stop(hns);
5194 		hns3_unmap_rx_interrupt(dev);
5195 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5196 	}
5197 	hns3_rx_scattered_reset(dev);
5198 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5199 	hns3_stop_report_lse(dev);
5200 	rte_spinlock_unlock(&hw->lock);
5201 
5202 	return 0;
5203 }
5204 
5205 static int
5206 hns3_dev_close(struct rte_eth_dev *eth_dev)
5207 {
5208 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5209 	struct hns3_hw *hw = &hns->hw;
5210 	int ret = 0;
5211 
5212 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5213 		hns3_mp_uninit(eth_dev);
5214 		return 0;
5215 	}
5216 
5217 	if (hw->adapter_state == HNS3_NIC_STARTED)
5218 		ret = hns3_dev_stop(eth_dev);
5219 
5220 	hw->adapter_state = HNS3_NIC_CLOSING;
5221 	hns3_reset_abort(hns);
5222 	hw->adapter_state = HNS3_NIC_CLOSED;
5223 
5224 	hns3_configure_all_mc_mac_addr(hns, true);
5225 	hns3_remove_all_vlan_table(hns);
5226 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5227 	hns3_uninit_pf(eth_dev);
5228 	hns3_free_all_queues(eth_dev);
5229 	rte_free(hw->reset.wait_data);
5230 	hns3_mp_uninit(eth_dev);
5231 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5232 
5233 	return ret;
5234 }
5235 
5236 static void
5237 hns3_get_autoneg_rxtx_pause(struct hns3_hw *hw, bool *rx_pause, bool *tx_pause)
5238 {
5239 	struct hns3_mac *mac = &hw->mac;
5240 	uint32_t advertising = mac->advertising;
5241 	uint32_t lp_advertising = mac->lp_advertising;
5242 	*rx_pause = false;
5243 	*tx_pause = false;
5244 
5245 	if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) {
5246 		*rx_pause = true;
5247 		*tx_pause = true;
5248 	} else if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) {
5249 		if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5250 			*rx_pause = true;
5251 		else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5252 			*tx_pause = true;
5253 	}
5254 }
5255 
5256 static enum hns3_fc_mode
5257 hns3_get_autoneg_fc_mode(struct hns3_hw *hw)
5258 {
5259 	enum hns3_fc_mode current_mode;
5260 	bool rx_pause = false;
5261 	bool tx_pause = false;
5262 
5263 	hns3_get_autoneg_rxtx_pause(hw, &rx_pause, &tx_pause);
5264 
5265 	if (rx_pause && tx_pause)
5266 		current_mode = HNS3_FC_FULL;
5267 	else if (rx_pause)
5268 		current_mode = HNS3_FC_RX_PAUSE;
5269 	else if (tx_pause)
5270 		current_mode = HNS3_FC_TX_PAUSE;
5271 	else
5272 		current_mode = HNS3_FC_NONE;
5273 
5274 	return current_mode;
5275 }
5276 
5277 static enum hns3_fc_mode
5278 hns3_get_current_fc_mode(struct rte_eth_dev *dev)
5279 {
5280 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5281 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5282 	struct hns3_mac *mac = &hw->mac;
5283 
5284 	/*
5285 	 * When the flow control mode is obtained, the device may not complete
5286 	 * auto-negotiation. It is necessary to wait for link establishment.
5287 	 */
5288 	(void)hns3_dev_link_update(dev, 1);
5289 
5290 	/*
5291 	 * If the link auto-negotiation of the nic is disabled, or the flow
5292 	 * control auto-negotiation is not supported, the forced flow control
5293 	 * mode is used.
5294 	 */
5295 	if (mac->link_autoneg == 0 || !pf->support_fc_autoneg)
5296 		return hw->requested_fc_mode;
5297 
5298 	return hns3_get_autoneg_fc_mode(hw);
5299 }
5300 
5301 int
5302 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5303 {
5304 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5305 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5306 	enum hns3_fc_mode current_mode;
5307 
5308 	current_mode = hns3_get_current_fc_mode(dev);
5309 	switch (current_mode) {
5310 	case HNS3_FC_FULL:
5311 		fc_conf->mode = RTE_ETH_FC_FULL;
5312 		break;
5313 	case HNS3_FC_TX_PAUSE:
5314 		fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
5315 		break;
5316 	case HNS3_FC_RX_PAUSE:
5317 		fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
5318 		break;
5319 	case HNS3_FC_NONE:
5320 	default:
5321 		fc_conf->mode = RTE_ETH_FC_NONE;
5322 		break;
5323 	}
5324 
5325 	fc_conf->pause_time = pf->pause_time;
5326 	fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0;
5327 
5328 	return 0;
5329 }
5330 
5331 static int
5332 hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg)
5333 {
5334 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5335 
5336 	if (!pf->support_fc_autoneg) {
5337 		if (autoneg != 0) {
5338 			hns3_err(hw, "unsupported fc auto-negotiation.");
5339 			return -EOPNOTSUPP;
5340 		}
5341 
5342 		return 0;
5343 	}
5344 
5345 	/*
5346 	 * If flow control auto-negotiation of the NIC is supported, all
5347 	 * auto-negotiation features are supported.
5348 	 */
5349 	if (autoneg != hw->mac.link_autoneg) {
5350 		hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!");
5351 		return -EOPNOTSUPP;
5352 	}
5353 
5354 	return 0;
5355 }
5356 
5357 static int
5358 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5359 {
5360 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5361 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5362 	int ret;
5363 
5364 	if (fc_conf->high_water || fc_conf->low_water ||
5365 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5366 		hns3_err(hw, "Unsupported flow control settings specified, "
5367 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5368 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5369 			 fc_conf->high_water, fc_conf->low_water,
5370 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5371 		return -EINVAL;
5372 	}
5373 
5374 	ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg);
5375 	if (ret)
5376 		return ret;
5377 
5378 	if (!fc_conf->pause_time) {
5379 		hns3_err(hw, "Invalid pause time %u setting.",
5380 			 fc_conf->pause_time);
5381 		return -EINVAL;
5382 	}
5383 
5384 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5385 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5386 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5387 			 "current_fc_status = %d", hw->current_fc_status);
5388 		return -EOPNOTSUPP;
5389 	}
5390 
5391 	if (hw->num_tc > 1 && !pf->support_multi_tc_pause) {
5392 		hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
5393 		return -EOPNOTSUPP;
5394 	}
5395 
5396 	rte_spinlock_lock(&hw->lock);
5397 	ret = hns3_fc_enable(dev, fc_conf);
5398 	rte_spinlock_unlock(&hw->lock);
5399 
5400 	return ret;
5401 }
5402 
5403 static int
5404 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5405 			    struct rte_eth_pfc_conf *pfc_conf)
5406 {
5407 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5408 	int ret;
5409 
5410 	if (!hns3_dev_get_support(hw, DCB)) {
5411 		hns3_err(hw, "This port does not support dcb configurations.");
5412 		return -EOPNOTSUPP;
5413 	}
5414 
5415 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5416 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5417 		hns3_err(hw, "Unsupported flow control settings specified, "
5418 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5419 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5420 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5421 			 pfc_conf->fc.send_xon,
5422 			 pfc_conf->fc.mac_ctrl_frame_fwd);
5423 		return -EINVAL;
5424 	}
5425 	if (pfc_conf->fc.autoneg) {
5426 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5427 		return -EINVAL;
5428 	}
5429 	if (pfc_conf->fc.pause_time == 0) {
5430 		hns3_err(hw, "Invalid pause time %u setting.",
5431 			 pfc_conf->fc.pause_time);
5432 		return -EINVAL;
5433 	}
5434 
5435 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5436 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5437 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5438 			     "current_fc_status = %d", hw->current_fc_status);
5439 		return -EOPNOTSUPP;
5440 	}
5441 
5442 	rte_spinlock_lock(&hw->lock);
5443 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5444 	rte_spinlock_unlock(&hw->lock);
5445 
5446 	return ret;
5447 }
5448 
5449 static int
5450 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5451 {
5452 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5453 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5454 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5455 	int i;
5456 
5457 	rte_spinlock_lock(&hw->lock);
5458 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG)
5459 		dcb_info->nb_tcs = pf->local_max_tc;
5460 	else
5461 		dcb_info->nb_tcs = 1;
5462 
5463 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5464 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5465 	for (i = 0; i < dcb_info->nb_tcs; i++)
5466 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5467 
5468 	for (i = 0; i < hw->num_tc; i++) {
5469 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5470 		dcb_info->tc_queue.tc_txq[0][i].base =
5471 						hw->tc_queue[i].tqp_offset;
5472 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5473 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5474 						hw->tc_queue[i].tqp_count;
5475 	}
5476 	rte_spinlock_unlock(&hw->lock);
5477 
5478 	return 0;
5479 }
5480 
5481 static int
5482 hns3_reinit_dev(struct hns3_adapter *hns)
5483 {
5484 	struct hns3_hw *hw = &hns->hw;
5485 	int ret;
5486 
5487 	ret = hns3_cmd_init(hw);
5488 	if (ret) {
5489 		hns3_err(hw, "Failed to init cmd: %d", ret);
5490 		return ret;
5491 	}
5492 
5493 	ret = hns3_init_hardware(hns);
5494 	if (ret) {
5495 		hns3_err(hw, "Failed to init hardware: %d", ret);
5496 		return ret;
5497 	}
5498 
5499 	ret = hns3_reset_all_tqps(hns);
5500 	if (ret) {
5501 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5502 		return ret;
5503 	}
5504 
5505 	ret = hns3_enable_hw_error_intr(hns, true);
5506 	if (ret) {
5507 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5508 			     ret);
5509 		return ret;
5510 	}
5511 	hns3_info(hw, "Reset done, driver initialization finished.");
5512 
5513 	return 0;
5514 }
5515 
5516 static bool
5517 is_pf_reset_done(struct hns3_hw *hw)
5518 {
5519 	uint32_t val, reg, reg_bit;
5520 
5521 	switch (hw->reset.level) {
5522 	case HNS3_IMP_RESET:
5523 		reg = HNS3_GLOBAL_RESET_REG;
5524 		reg_bit = HNS3_IMP_RESET_BIT;
5525 		break;
5526 	case HNS3_GLOBAL_RESET:
5527 		reg = HNS3_GLOBAL_RESET_REG;
5528 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5529 		break;
5530 	case HNS3_FUNC_RESET:
5531 		reg = HNS3_FUN_RST_ING;
5532 		reg_bit = HNS3_FUN_RST_ING_B;
5533 		break;
5534 	case HNS3_FLR_RESET:
5535 	default:
5536 		hns3_err(hw, "Wait for unsupported reset level: %d",
5537 			 hw->reset.level);
5538 		return true;
5539 	}
5540 	val = hns3_read_dev(hw, reg);
5541 	if (hns3_get_bit(val, reg_bit))
5542 		return false;
5543 	else
5544 		return true;
5545 }
5546 
5547 static enum hns3_reset_level
5548 hns3_detect_reset_event(struct hns3_hw *hw)
5549 {
5550 	enum hns3_reset_level new_req = HNS3_NONE_RESET;
5551 	uint32_t vector0_intr_state;
5552 
5553 	vector0_intr_state = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
5554 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_intr_state)
5555 		new_req = HNS3_IMP_RESET;
5556 	else if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_intr_state)
5557 		new_req = HNS3_GLOBAL_RESET;
5558 
5559 	return new_req;
5560 }
5561 
5562 bool
5563 hns3_is_reset_pending(struct hns3_adapter *hns)
5564 {
5565 	enum hns3_reset_level new_req;
5566 	struct hns3_hw *hw = &hns->hw;
5567 	enum hns3_reset_level last_req;
5568 
5569 	/*
5570 	 * Only primary can process can process the reset event,
5571 	 * so don't check reset event in secondary.
5572 	 */
5573 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5574 		return false;
5575 
5576 	new_req = hns3_detect_reset_event(hw);
5577 	if (new_req == HNS3_NONE_RESET)
5578 		return false;
5579 
5580 	last_req = hns3_get_reset_level(hns, &hw->reset.pending);
5581 	if (last_req == HNS3_NONE_RESET || last_req < new_req) {
5582 		rte_atomic_store_explicit(&hw->reset.disable_cmd, 1, rte_memory_order_relaxed);
5583 		hns3_schedule_delayed_reset(hns);
5584 		hns3_warn(hw, "High level reset detected, delay do reset");
5585 		return true;
5586 	}
5587 	last_req = hns3_get_reset_level(hns, &hw->reset.request);
5588 	if (last_req != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
5589 	    hw->reset.level < last_req) {
5590 		hns3_warn(hw, "High level reset %d is request", last_req);
5591 		return true;
5592 	}
5593 	return false;
5594 }
5595 
5596 static int
5597 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5598 {
5599 	struct hns3_hw *hw = &hns->hw;
5600 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5601 	struct timeval tv;
5602 
5603 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5604 		return 0;
5605 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5606 		hns3_clock_gettime(&tv);
5607 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5608 			  tv.tv_sec, tv.tv_usec);
5609 		return -ETIME;
5610 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5611 		return -EAGAIN;
5612 
5613 	wait_data->hns = hns;
5614 	wait_data->check_completion = is_pf_reset_done;
5615 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5616 				HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms();
5617 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5618 	wait_data->count = HNS3_RESET_WAIT_CNT;
5619 	wait_data->result = HNS3_WAIT_REQUEST;
5620 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5621 	return -EAGAIN;
5622 }
5623 
5624 static int
5625 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5626 {
5627 	struct hns3_cmd_desc desc;
5628 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5629 
5630 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5631 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5632 	req->fun_reset_vfid = func_id;
5633 
5634 	return hns3_cmd_send(hw, &desc, 1);
5635 }
5636 
5637 static void
5638 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5639 {
5640 	struct hns3_hw *hw = &hns->hw;
5641 	struct timeval tv;
5642 	uint32_t val;
5643 
5644 	hns3_clock_gettime(&tv);
5645 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5646 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5647 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5648 			  tv.tv_sec, tv.tv_usec);
5649 		return;
5650 	}
5651 
5652 	switch (reset_level) {
5653 	case HNS3_IMP_RESET:
5654 		val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5655 		hns3_set_bit(val, HNS3_VECTOR0_TRIGGER_IMP_RESET_B, 1);
5656 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
5657 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5658 			  tv.tv_sec, tv.tv_usec);
5659 		break;
5660 	case HNS3_GLOBAL_RESET:
5661 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5662 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5663 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5664 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5665 			  tv.tv_sec, tv.tv_usec);
5666 		break;
5667 	case HNS3_FUNC_RESET:
5668 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5669 			  tv.tv_sec, tv.tv_usec);
5670 		/* schedule again to check later */
5671 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5672 		hns3_schedule_reset(hns);
5673 		break;
5674 	default:
5675 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5676 		return;
5677 	}
5678 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5679 }
5680 
5681 static enum hns3_reset_level
5682 hns3_get_reset_level(struct hns3_adapter *hns, RTE_ATOMIC(uint64_t) *levels)
5683 {
5684 	struct hns3_hw *hw = &hns->hw;
5685 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5686 
5687 	/* Return the highest priority reset level amongst all */
5688 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5689 		reset_level = HNS3_IMP_RESET;
5690 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5691 		reset_level = HNS3_GLOBAL_RESET;
5692 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5693 		reset_level = HNS3_FUNC_RESET;
5694 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5695 		reset_level = HNS3_FLR_RESET;
5696 
5697 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5698 		return HNS3_NONE_RESET;
5699 
5700 	return reset_level;
5701 }
5702 
5703 static void
5704 hns3_record_imp_error(struct hns3_adapter *hns)
5705 {
5706 	struct hns3_hw *hw = &hns->hw;
5707 	uint32_t reg_val;
5708 
5709 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5710 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5711 		hns3_warn(hw, "Detected IMP RD poison!");
5712 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5713 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5714 	}
5715 
5716 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5717 		hns3_warn(hw, "Detected IMP CMDQ error!");
5718 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5719 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5720 	}
5721 }
5722 
5723 static int
5724 hns3_prepare_reset(struct hns3_adapter *hns)
5725 {
5726 	struct hns3_hw *hw = &hns->hw;
5727 	uint32_t reg_val;
5728 	int ret;
5729 
5730 	switch (hw->reset.level) {
5731 	case HNS3_FUNC_RESET:
5732 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5733 		if (ret)
5734 			return ret;
5735 
5736 		/*
5737 		 * After performaning pf reset, it is not necessary to do the
5738 		 * mailbox handling or send any command to firmware, because
5739 		 * any mailbox handling or command to firmware is only valid
5740 		 * after hns3_cmd_init is called.
5741 		 */
5742 		rte_atomic_store_explicit(&hw->reset.disable_cmd, 1, rte_memory_order_relaxed);
5743 		hw->reset.stats.request_cnt++;
5744 		break;
5745 	case HNS3_IMP_RESET:
5746 		hns3_record_imp_error(hns);
5747 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5748 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5749 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5750 		break;
5751 	default:
5752 		break;
5753 	}
5754 	return 0;
5755 }
5756 
5757 static int
5758 hns3_set_rst_done(struct hns3_hw *hw)
5759 {
5760 	struct hns3_pf_rst_done_cmd *req;
5761 	struct hns3_cmd_desc desc;
5762 
5763 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5764 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5765 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5766 	return hns3_cmd_send(hw, &desc, 1);
5767 }
5768 
5769 static int
5770 hns3_stop_service(struct hns3_adapter *hns)
5771 {
5772 	struct hns3_hw *hw = &hns->hw;
5773 	struct rte_eth_dev *eth_dev;
5774 
5775 	eth_dev = &rte_eth_devices[hw->data->port_id];
5776 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5777 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5778 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5779 		hns3_update_linkstatus_and_event(hw, false);
5780 	}
5781 	hns3_stop_rxtx_datapath(eth_dev);
5782 
5783 	rte_spinlock_lock(&hw->lock);
5784 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5785 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5786 		hns3_enable_all_queues(hw, false);
5787 		hns3_do_stop(hns);
5788 		hw->reset.mbuf_deferred_free = true;
5789 	} else
5790 		hw->reset.mbuf_deferred_free = false;
5791 
5792 	/*
5793 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5794 	 * from table space. Hence, for function reset software intervention is
5795 	 * required to delete the entries
5796 	 */
5797 	if (rte_atomic_load_explicit(&hw->reset.disable_cmd, rte_memory_order_relaxed) == 0)
5798 		hns3_configure_all_mc_mac_addr(hns, true);
5799 	rte_spinlock_unlock(&hw->lock);
5800 
5801 	return 0;
5802 }
5803 
5804 static int
5805 hns3_start_service(struct hns3_adapter *hns)
5806 {
5807 	struct hns3_hw *hw = &hns->hw;
5808 	struct rte_eth_dev *eth_dev;
5809 
5810 	if (hw->reset.level == HNS3_IMP_RESET ||
5811 	    hw->reset.level == HNS3_GLOBAL_RESET)
5812 		hns3_set_rst_done(hw);
5813 	eth_dev = &rte_eth_devices[hw->data->port_id];
5814 	hns3_start_rxtx_datapath(eth_dev);
5815 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5816 		/*
5817 		 * This API parent function already hold the hns3_hw.lock, the
5818 		 * hns3_service_handler may report lse, in bonding application
5819 		 * it will call driver's ops which may acquire the hns3_hw.lock
5820 		 * again, thus lead to deadlock.
5821 		 * We defer calls hns3_service_handler to avoid the deadlock.
5822 		 */
5823 		rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5824 				  hns3_service_handler, eth_dev);
5825 
5826 		/* Enable interrupt of all rx queues before enabling queues */
5827 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5828 		/*
5829 		 * Enable state of each rxq and txq will be recovered after
5830 		 * reset, so we need to restore them before enable all tqps;
5831 		 */
5832 		hns3_restore_tqp_enable_state(hw);
5833 		/*
5834 		 * When finished the initialization, enable queues to receive
5835 		 * and transmit packets.
5836 		 */
5837 		hns3_enable_all_queues(hw, true);
5838 	}
5839 
5840 	return 0;
5841 }
5842 
5843 static int
5844 hns3_restore_conf(struct hns3_adapter *hns)
5845 {
5846 	struct hns3_hw *hw = &hns->hw;
5847 	int ret;
5848 
5849 	ret = hns3_configure_all_mac_addr(hns, false);
5850 	if (ret)
5851 		return ret;
5852 
5853 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5854 	if (ret)
5855 		goto err_mc_mac;
5856 
5857 	ret = hns3_dev_promisc_restore(hns);
5858 	if (ret)
5859 		goto err_promisc;
5860 
5861 	ret = hns3_restore_vlan_table(hns);
5862 	if (ret)
5863 		goto err_promisc;
5864 
5865 	ret = hns3_restore_vlan_conf(hns);
5866 	if (ret)
5867 		goto err_promisc;
5868 
5869 	ret = hns3_restore_ptp(hns);
5870 	if (ret)
5871 		goto err_promisc;
5872 
5873 	ret = hns3_restore_rx_interrupt(hw);
5874 	if (ret)
5875 		goto err_promisc;
5876 
5877 	ret = hns3_restore_gro_conf(hw);
5878 	if (ret)
5879 		goto err_promisc;
5880 
5881 	ret = hns3_restore_fec(hw);
5882 	if (ret)
5883 		goto err_promisc;
5884 
5885 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5886 		ret = hns3_do_start(hns, false);
5887 		if (ret)
5888 			goto err_promisc;
5889 		hns3_info(hw, "hns3 dev restart successful!");
5890 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5891 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5892 	return 0;
5893 
5894 err_promisc:
5895 	hns3_configure_all_mc_mac_addr(hns, true);
5896 err_mc_mac:
5897 	hns3_configure_all_mac_addr(hns, true);
5898 	return ret;
5899 }
5900 
5901 static void
5902 hns3_reset_service(void *param)
5903 {
5904 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5905 	struct hns3_hw *hw = &hns->hw;
5906 	enum hns3_reset_level reset_level;
5907 	struct timeval tv_delta;
5908 	struct timeval tv_start;
5909 	struct timeval tv;
5910 	uint64_t msec;
5911 	int ret;
5912 
5913 	/*
5914 	 * The interrupt is not triggered within the delay time.
5915 	 * The interrupt may have been lost. It is necessary to handle
5916 	 * the interrupt to recover from the error.
5917 	 */
5918 	if (rte_atomic_load_explicit(&hw->reset.schedule, rte_memory_order_relaxed) ==
5919 			    SCHEDULE_DEFERRED) {
5920 		rte_atomic_store_explicit(&hw->reset.schedule, SCHEDULE_REQUESTED,
5921 				  rte_memory_order_relaxed);
5922 		hns3_err(hw, "Handling interrupts in delayed tasks");
5923 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5924 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5925 		if (reset_level == HNS3_NONE_RESET) {
5926 			hns3_err(hw, "No reset level is set, try IMP reset");
5927 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5928 		}
5929 	}
5930 	rte_atomic_store_explicit(&hw->reset.schedule, SCHEDULE_NONE, rte_memory_order_relaxed);
5931 
5932 	/*
5933 	 * Check if there is any ongoing reset in the hardware. This status can
5934 	 * be checked from reset_pending. If there is then, we need to wait for
5935 	 * hardware to complete reset.
5936 	 *    a. If we are able to figure out in reasonable time that hardware
5937 	 *       has fully resetted then, we can proceed with driver, client
5938 	 *       reset.
5939 	 *    b. else, we can come back later to check this status so re-sched
5940 	 *       now.
5941 	 */
5942 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5943 	if (reset_level != HNS3_NONE_RESET) {
5944 		hns3_clock_gettime(&tv_start);
5945 		ret = hns3_reset_process(hns, reset_level);
5946 		hns3_clock_gettime(&tv);
5947 		timersub(&tv, &tv_start, &tv_delta);
5948 		msec = hns3_clock_calctime_ms(&tv_delta);
5949 		if (msec > HNS3_RESET_PROCESS_MS)
5950 			hns3_err(hw, "%d handle long time delta %" PRIu64 " ms time=%ld.%.6ld",
5951 				 hw->reset.level, msec,
5952 				 tv.tv_sec, tv.tv_usec);
5953 		if (ret == -EAGAIN)
5954 			return;
5955 	}
5956 
5957 	/* Check if we got any *new* reset requests to be honored */
5958 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
5959 	if (reset_level != HNS3_NONE_RESET)
5960 		hns3_msix_process(hns, reset_level);
5961 }
5962 
5963 static uint32_t
5964 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
5965 			uint32_t speed_capa)
5966 {
5967 	uint32_t speed_bit;
5968 	uint32_t num = 0;
5969 	uint32_t i;
5970 
5971 	for (i = 0; i < RTE_DIM(speed_fec_capa_tbl); i++) {
5972 		speed_bit =
5973 			rte_eth_speed_bitflag(speed_fec_capa_tbl[i].speed,
5974 					      RTE_ETH_LINK_FULL_DUPLEX);
5975 		if ((speed_capa & speed_bit) == 0)
5976 			continue;
5977 
5978 		speed_fec_capa[num].speed = speed_fec_capa_tbl[i].speed;
5979 		speed_fec_capa[num].capa = speed_fec_capa_tbl[i].capa;
5980 		num++;
5981 	}
5982 
5983 	return num;
5984 }
5985 
5986 static int
5987 hns3_fec_get_capability(struct rte_eth_dev *dev,
5988 			struct rte_eth_fec_capa *speed_fec_capa,
5989 			unsigned int num)
5990 {
5991 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5992 	unsigned int speed_num;
5993 	uint32_t speed_capa;
5994 
5995 	speed_capa = hns3_get_speed_capa(hw);
5996 	/* speed_num counts number of speed capabilities */
5997 	speed_num = rte_popcount32(speed_capa & HNS3_SPEEDS_SUPP_FEC);
5998 	if (speed_num == 0)
5999 		return -ENOTSUP;
6000 
6001 	if (speed_fec_capa == NULL)
6002 		return speed_num;
6003 
6004 	if (num < speed_num) {
6005 		hns3_err(hw, "not enough array size(%u) to store FEC capabilities, should not be less than %u",
6006 			 num, speed_num);
6007 		return -EINVAL;
6008 	}
6009 
6010 	return hns3_get_speed_fec_capa(speed_fec_capa, speed_capa);
6011 }
6012 
6013 
6014 static int
6015 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6016 {
6017 	struct hns3_config_fec_cmd *req;
6018 	struct hns3_cmd_desc desc;
6019 	int ret;
6020 
6021 	/*
6022 	 * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6023 	 * in device of link speed
6024 	 * below 10 Gbps.
6025 	 */
6026 	if (hw->mac.link_speed < RTE_ETH_SPEED_NUM_10G) {
6027 		*state = 0;
6028 		return 0;
6029 	}
6030 
6031 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6032 	req = (struct hns3_config_fec_cmd *)desc.data;
6033 	ret = hns3_cmd_send(hw, &desc, 1);
6034 	if (ret) {
6035 		hns3_err(hw, "get current fec auto state failed, ret = %d",
6036 			 ret);
6037 		return ret;
6038 	}
6039 
6040 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6041 	return 0;
6042 }
6043 
6044 static int
6045 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6046 {
6047 	struct hns3_sfp_info_cmd *resp;
6048 	uint32_t tmp_fec_capa;
6049 	uint8_t auto_state = 0;
6050 	struct hns3_cmd_desc desc;
6051 	int ret;
6052 
6053 	/*
6054 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6055 	 * configured FEC mode is returned.
6056 	 * If link is up, current FEC mode is returned.
6057 	 */
6058 	if (hw->mac.link_status == RTE_ETH_LINK_DOWN) {
6059 		ret = get_current_fec_auto_state(hw, &auto_state);
6060 		if (ret)
6061 			return ret;
6062 
6063 		if (auto_state == 0x1) {
6064 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6065 			return 0;
6066 		}
6067 	}
6068 
6069 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
6070 	resp = (struct hns3_sfp_info_cmd *)desc.data;
6071 	resp->query_type = HNS3_ACTIVE_QUERY;
6072 
6073 	ret = hns3_cmd_send(hw, &desc, 1);
6074 	if (ret == -EOPNOTSUPP) {
6075 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6076 		return ret;
6077 	} else if (ret) {
6078 		hns3_err(hw, "get FEC failed, ret = %d", ret);
6079 		return ret;
6080 	}
6081 
6082 	/*
6083 	 * FEC mode order defined in hns3 hardware is inconsistent with
6084 	 * that defined in the ethdev library. So the sequence needs
6085 	 * to be converted.
6086 	 */
6087 	switch (resp->active_fec) {
6088 	case HNS3_MAC_FEC_OFF:
6089 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6090 		break;
6091 	case HNS3_MAC_FEC_BASER:
6092 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6093 		break;
6094 	case HNS3_MAC_FEC_RS:
6095 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6096 		break;
6097 	case HNS3_MAC_FEC_LLRS:
6098 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(LLRS);
6099 		break;
6100 	default:
6101 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6102 		break;
6103 	}
6104 
6105 	*fec_capa = tmp_fec_capa;
6106 	return 0;
6107 }
6108 
6109 static int
6110 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6111 {
6112 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6113 
6114 	return hns3_fec_get_internal(hw, fec_capa);
6115 }
6116 
6117 static int
6118 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6119 {
6120 	struct hns3_config_fec_cmd *req;
6121 	struct hns3_cmd_desc desc;
6122 	int ret;
6123 
6124 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6125 
6126 	req = (struct hns3_config_fec_cmd *)desc.data;
6127 	switch (mode) {
6128 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6129 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6130 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6131 		break;
6132 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6133 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6134 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6135 		break;
6136 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6137 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6138 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6139 		break;
6140 	case RTE_ETH_FEC_MODE_CAPA_MASK(LLRS):
6141 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6142 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_LLRS);
6143 		break;
6144 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6145 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6146 		break;
6147 	default:
6148 		return 0;
6149 	}
6150 	ret = hns3_cmd_send(hw, &desc, 1);
6151 	if (ret)
6152 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
6153 
6154 	return ret;
6155 }
6156 
6157 static uint32_t
6158 hns3_parse_hw_fec_capa(uint8_t hw_fec_capa)
6159 {
6160 	const struct {
6161 		uint32_t hw_fec_capa;
6162 		uint32_t fec_capa;
6163 	} fec_capa_map[] = {
6164 		{ HNS3_FIBER_FEC_AUTO_BIT, RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) },
6165 		{ HNS3_FIBER_FEC_BASER_BIT, RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
6166 		{ HNS3_FIBER_FEC_RS_BIT, RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
6167 		{ HNS3_FIBER_FEC_LLRS_BIT, RTE_ETH_FEC_MODE_CAPA_MASK(LLRS) },
6168 		{ HNS3_FIBER_FEC_NOFEC_BIT, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) },
6169 	};
6170 	uint32_t capa = 0;
6171 	uint32_t i;
6172 
6173 	for (i = 0; i < RTE_DIM(fec_capa_map); i++) {
6174 		if ((hw_fec_capa & fec_capa_map[i].hw_fec_capa) != 0)
6175 			capa |= fec_capa_map[i].fec_capa;
6176 	}
6177 
6178 	return capa;
6179 }
6180 
6181 static uint32_t
6182 hns3_get_current_speed_fec_cap(struct hns3_mac *mac)
6183 {
6184 	uint32_t i;
6185 
6186 	if (mac->fec_capa != 0)
6187 		return hns3_parse_hw_fec_capa(mac->fec_capa);
6188 
6189 	for (i = 0; i < RTE_DIM(speed_fec_capa_tbl); i++) {
6190 		if (mac->link_speed == speed_fec_capa_tbl[i].speed)
6191 			return speed_fec_capa_tbl[i].capa;
6192 	}
6193 
6194 	return 0;
6195 }
6196 
6197 static int
6198 hns3_fec_mode_valid(struct rte_eth_dev *dev, uint32_t mode)
6199 {
6200 	struct hns3_adapter *hns = dev->data->dev_private;
6201 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6202 	uint32_t cur_capa;
6203 
6204 	if (rte_popcount32(mode) != 1) {
6205 		hns3_err(hw, "FEC mode(0x%x) should be only one bit set", mode);
6206 		return -EINVAL;
6207 	}
6208 
6209 	/*
6210 	 * Check whether the configured mode is within the FEC capability.
6211 	 * If not, the configured mode will not be supported.
6212 	 */
6213 	cur_capa = hns3_get_current_speed_fec_cap(&hw->mac);
6214 	if ((cur_capa & mode) == 0) {
6215 		hns3_err(hw, "unsupported FEC mode(0x%x)", mode);
6216 		return -EINVAL;
6217 	}
6218 
6219 	return 0;
6220 }
6221 
6222 static int
6223 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6224 {
6225 	struct hns3_adapter *hns = dev->data->dev_private;
6226 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6227 	struct hns3_pf *pf = &hns->pf;
6228 	int ret;
6229 
6230 	ret = hns3_fec_mode_valid(dev, mode);
6231 	if (ret != 0)
6232 		return ret;
6233 
6234 	rte_spinlock_lock(&hw->lock);
6235 	ret = hns3_set_fec_hw(hw, mode);
6236 	if (ret) {
6237 		rte_spinlock_unlock(&hw->lock);
6238 		return ret;
6239 	}
6240 
6241 	pf->fec_mode = mode;
6242 	rte_spinlock_unlock(&hw->lock);
6243 
6244 	return 0;
6245 }
6246 
6247 static int
6248 hns3_restore_fec(struct hns3_hw *hw)
6249 {
6250 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6251 	struct hns3_pf *pf = &hns->pf;
6252 	uint32_t mode = pf->fec_mode;
6253 	int ret;
6254 
6255 	ret = hns3_set_fec_hw(hw, mode);
6256 	if (ret)
6257 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6258 			 mode, ret);
6259 
6260 	return ret;
6261 }
6262 
6263 static int
6264 hns3_query_dev_fec_info(struct hns3_hw *hw)
6265 {
6266 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6267 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6268 	int ret;
6269 
6270 	ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6271 	if (ret)
6272 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6273 
6274 	return ret;
6275 }
6276 
6277 static bool
6278 hns3_optical_module_existed(struct hns3_hw *hw)
6279 {
6280 	struct hns3_cmd_desc desc;
6281 	bool existed;
6282 	int ret;
6283 
6284 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6285 	ret = hns3_cmd_send(hw, &desc, 1);
6286 	if (ret) {
6287 		hns3_err(hw,
6288 			 "fail to get optical module exist state, ret = %d.",
6289 			 ret);
6290 		return false;
6291 	}
6292 	existed = !!desc.data[0];
6293 
6294 	return existed;
6295 }
6296 
6297 static int
6298 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6299 				uint32_t len, uint8_t *data)
6300 {
6301 #define HNS3_SFP_INFO_CMD_NUM 6
6302 #define HNS3_SFP_INFO_MAX_LEN \
6303 	(HNS3_SFP_INFO_BD0_LEN + \
6304 	(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6305 	struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6306 	struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6307 	uint16_t read_len;
6308 	uint16_t copy_len;
6309 	int ret;
6310 	int i;
6311 
6312 	for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6313 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6314 					  true);
6315 		if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6316 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6317 	}
6318 
6319 	sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6320 	sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6321 	read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6322 	sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6323 
6324 	ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6325 	if (ret) {
6326 		hns3_err(hw, "fail to get module EEPROM info, ret = %d.",
6327 				ret);
6328 		return ret;
6329 	}
6330 
6331 	/* The data format in BD0 is different with the others. */
6332 	copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6333 	memcpy(data, sfp_info_bd0->data, copy_len);
6334 	read_len = copy_len;
6335 
6336 	for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6337 		if (read_len >= len)
6338 			break;
6339 
6340 		copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6341 		memcpy(data + read_len, desc[i].data, copy_len);
6342 		read_len += copy_len;
6343 	}
6344 
6345 	return (int)read_len;
6346 }
6347 
6348 static int
6349 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6350 		       struct rte_dev_eeprom_info *info)
6351 {
6352 	struct hns3_adapter *hns = dev->data->dev_private;
6353 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6354 	uint32_t offset = info->offset;
6355 	uint32_t len = info->length;
6356 	uint8_t *data = info->data;
6357 	uint32_t read_len = 0;
6358 
6359 	if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6360 		return -ENOTSUP;
6361 
6362 	if (!hns3_optical_module_existed(hw)) {
6363 		hns3_err(hw, "fail to read module EEPROM: no module is connected.");
6364 		return -EIO;
6365 	}
6366 
6367 	while (read_len < len) {
6368 		int ret;
6369 		ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6370 						  len - read_len,
6371 						  data + read_len);
6372 		if (ret < 0)
6373 			return -EIO;
6374 		read_len += ret;
6375 	}
6376 
6377 	return 0;
6378 }
6379 
6380 static int
6381 hns3_get_module_info(struct rte_eth_dev *dev,
6382 		     struct rte_eth_dev_module_info *modinfo)
6383 {
6384 #define HNS3_SFF8024_ID_SFP		0x03
6385 #define HNS3_SFF8024_ID_QSFP_8438	0x0c
6386 #define HNS3_SFF8024_ID_QSFP_8436_8636	0x0d
6387 #define HNS3_SFF8024_ID_QSFP28_8636	0x11
6388 #define HNS3_SFF_8636_V1_3		0x03
6389 	struct hns3_adapter *hns = dev->data->dev_private;
6390 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6391 	struct rte_dev_eeprom_info info;
6392 	struct hns3_sfp_type sfp_type;
6393 	int ret;
6394 
6395 	memset(&sfp_type, 0, sizeof(sfp_type));
6396 	memset(&info, 0, sizeof(info));
6397 	info.data = (uint8_t *)&sfp_type;
6398 	info.length = sizeof(sfp_type);
6399 	ret = hns3_get_module_eeprom(dev, &info);
6400 	if (ret)
6401 		return ret;
6402 
6403 	switch (sfp_type.type) {
6404 	case HNS3_SFF8024_ID_SFP:
6405 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
6406 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6407 		break;
6408 	case HNS3_SFF8024_ID_QSFP_8438:
6409 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
6410 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6411 		break;
6412 	case HNS3_SFF8024_ID_QSFP_8436_8636:
6413 		if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6414 			modinfo->type = RTE_ETH_MODULE_SFF_8436;
6415 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6416 		} else {
6417 			modinfo->type = RTE_ETH_MODULE_SFF_8636;
6418 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6419 		}
6420 		break;
6421 	case HNS3_SFF8024_ID_QSFP28_8636:
6422 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
6423 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6424 		break;
6425 	default:
6426 		hns3_err(hw, "unknown module, type = %u, extra_type = %u.",
6427 			 sfp_type.type, sfp_type.ext_type);
6428 		return -EINVAL;
6429 	}
6430 
6431 	return 0;
6432 }
6433 
6434 static const struct eth_dev_ops hns3_eth_dev_ops = {
6435 	.dev_configure      = hns3_dev_configure,
6436 	.dev_start          = hns3_dev_start,
6437 	.dev_stop           = hns3_dev_stop,
6438 	.dev_close          = hns3_dev_close,
6439 	.promiscuous_enable = hns3_dev_promiscuous_enable,
6440 	.promiscuous_disable = hns3_dev_promiscuous_disable,
6441 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
6442 	.allmulticast_disable = hns3_dev_allmulticast_disable,
6443 	.mtu_set            = hns3_dev_mtu_set,
6444 	.stats_get          = hns3_stats_get,
6445 	.stats_reset        = hns3_stats_reset,
6446 	.xstats_get         = hns3_dev_xstats_get,
6447 	.xstats_get_names   = hns3_dev_xstats_get_names,
6448 	.xstats_reset       = hns3_dev_xstats_reset,
6449 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6450 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6451 	.dev_infos_get          = hns3_dev_infos_get,
6452 	.fw_version_get         = hns3_fw_version_get,
6453 	.rx_queue_setup         = hns3_rx_queue_setup,
6454 	.tx_queue_setup         = hns3_tx_queue_setup,
6455 	.rx_queue_release       = hns3_dev_rx_queue_release,
6456 	.tx_queue_release       = hns3_dev_tx_queue_release,
6457 	.rx_queue_start         = hns3_dev_rx_queue_start,
6458 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
6459 	.tx_queue_start         = hns3_dev_tx_queue_start,
6460 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
6461 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6462 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6463 	.rxq_info_get           = hns3_rxq_info_get,
6464 	.txq_info_get           = hns3_txq_info_get,
6465 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
6466 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
6467 	.flow_ctrl_get          = hns3_flow_ctrl_get,
6468 	.flow_ctrl_set          = hns3_flow_ctrl_set,
6469 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6470 	.mac_addr_add           = hns3_add_mac_addr,
6471 	.mac_addr_remove        = hns3_remove_mac_addr,
6472 	.mac_addr_set           = hns3_set_default_mac_addr,
6473 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6474 	.link_update            = hns3_dev_link_update,
6475 	.dev_set_link_up        = hns3_dev_set_link_up,
6476 	.dev_set_link_down      = hns3_dev_set_link_down,
6477 	.rss_hash_update        = hns3_dev_rss_hash_update,
6478 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6479 	.reta_update            = hns3_dev_rss_reta_update,
6480 	.reta_query             = hns3_dev_rss_reta_query,
6481 	.flow_ops_get           = hns3_dev_flow_ops_get,
6482 	.vlan_filter_set        = hns3_vlan_filter_set,
6483 	.vlan_tpid_set          = hns3_vlan_tpid_set,
6484 	.vlan_offload_set       = hns3_vlan_offload_set,
6485 	.vlan_pvid_set          = hns3_vlan_pvid_set,
6486 	.get_reg                = hns3_get_regs,
6487 	.get_module_info        = hns3_get_module_info,
6488 	.get_module_eeprom      = hns3_get_module_eeprom,
6489 	.get_dcb_info           = hns3_get_dcb_info,
6490 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6491 	.fec_get_capability     = hns3_fec_get_capability,
6492 	.fec_get                = hns3_fec_get,
6493 	.fec_set                = hns3_fec_set,
6494 	.tm_ops_get             = hns3_tm_ops_get,
6495 	.tx_done_cleanup        = hns3_tx_done_cleanup,
6496 	.timesync_enable            = hns3_timesync_enable,
6497 	.timesync_disable           = hns3_timesync_disable,
6498 	.timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
6499 	.timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
6500 	.timesync_adjust_time       = hns3_timesync_adjust_time,
6501 	.timesync_read_time         = hns3_timesync_read_time,
6502 	.timesync_write_time        = hns3_timesync_write_time,
6503 	.eth_dev_priv_dump          = hns3_eth_dev_priv_dump,
6504 	.eth_rx_descriptor_dump     = hns3_rx_descriptor_dump,
6505 	.eth_tx_descriptor_dump     = hns3_tx_descriptor_dump,
6506 	.get_monitor_addr           = hns3_get_monitor_addr,
6507 };
6508 
6509 static const struct hns3_reset_ops hns3_reset_ops = {
6510 	.reset_service       = hns3_reset_service,
6511 	.stop_service        = hns3_stop_service,
6512 	.prepare_reset       = hns3_prepare_reset,
6513 	.wait_hardware_ready = hns3_wait_hardware_ready,
6514 	.reinit_dev          = hns3_reinit_dev,
6515 	.restore_conf	     = hns3_restore_conf,
6516 	.start_service       = hns3_start_service,
6517 };
6518 
6519 static void
6520 hns3_init_hw_ops(struct hns3_hw *hw)
6521 {
6522 	hw->ops.add_mc_mac_addr = hns3_add_mc_mac_addr;
6523 	hw->ops.del_mc_mac_addr = hns3_remove_mc_mac_addr;
6524 	hw->ops.add_uc_mac_addr = hns3_add_uc_mac_addr;
6525 	hw->ops.del_uc_mac_addr = hns3_remove_uc_mac_addr;
6526 	hw->ops.bind_ring_with_vector = hns3_bind_ring_with_vector;
6527 }
6528 
6529 static int
6530 hns3_dev_init(struct rte_eth_dev *eth_dev)
6531 {
6532 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6533 	struct hns3_hw *hw = &hns->hw;
6534 	int ret;
6535 
6536 	PMD_INIT_FUNC_TRACE();
6537 
6538 	hns3_flow_init(eth_dev);
6539 
6540 	hns3_set_rxtx_function(eth_dev);
6541 	eth_dev->dev_ops = &hns3_eth_dev_ops;
6542 	eth_dev->rx_queue_count = hns3_rx_queue_count;
6543 	ret = hns3_mp_init(eth_dev);
6544 	if (ret)
6545 		goto err_mp_init;
6546 
6547 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6548 		hns3_tx_push_init(eth_dev);
6549 		return 0;
6550 	}
6551 
6552 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6553 	hns->is_vf = false;
6554 	hw->data = eth_dev->data;
6555 	hns3_parse_devargs(eth_dev);
6556 
6557 	/*
6558 	 * Set default max packet size according to the mtu
6559 	 * default vale in DPDK frame.
6560 	 */
6561 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6562 
6563 	ret = hns3_reset_init(hw);
6564 	if (ret)
6565 		goto err_init_reset;
6566 	hw->reset.ops = &hns3_reset_ops;
6567 
6568 	hns3_init_hw_ops(hw);
6569 	ret = hns3_init_pf(eth_dev);
6570 	if (ret) {
6571 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6572 		goto err_init_pf;
6573 	}
6574 
6575 	ret = hns3_init_mac_addrs(eth_dev);
6576 	if (ret != 0)
6577 		goto err_init_mac_addrs;
6578 
6579 	hw->adapter_state = HNS3_NIC_INITIALIZED;
6580 
6581 	if (rte_atomic_load_explicit(&hw->reset.schedule, rte_memory_order_relaxed) ==
6582 			    SCHEDULE_PENDING) {
6583 		hns3_err(hw, "Reschedule reset service after dev_init");
6584 		hns3_schedule_reset(hns);
6585 	} else {
6586 		/* IMP will wait ready flag before reset */
6587 		hns3_notify_reset_ready(hw, false);
6588 	}
6589 
6590 	hns3_info(hw, "hns3 dev initialization successful!");
6591 	return 0;
6592 
6593 err_init_mac_addrs:
6594 	hns3_uninit_pf(eth_dev);
6595 
6596 err_init_pf:
6597 	rte_free(hw->reset.wait_data);
6598 
6599 err_init_reset:
6600 	hns3_mp_uninit(eth_dev);
6601 
6602 err_mp_init:
6603 	eth_dev->dev_ops = NULL;
6604 	eth_dev->rx_pkt_burst = NULL;
6605 	eth_dev->rx_descriptor_status = NULL;
6606 	eth_dev->tx_pkt_burst = NULL;
6607 	eth_dev->tx_pkt_prepare = NULL;
6608 	eth_dev->tx_descriptor_status = NULL;
6609 	return ret;
6610 }
6611 
6612 static int
6613 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6614 {
6615 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6616 	struct hns3_hw *hw = &hns->hw;
6617 
6618 	PMD_INIT_FUNC_TRACE();
6619 
6620 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6621 		hns3_mp_uninit(eth_dev);
6622 		return 0;
6623 	}
6624 
6625 	if (hw->adapter_state < HNS3_NIC_CLOSING)
6626 		hns3_dev_close(eth_dev);
6627 
6628 	hw->adapter_state = HNS3_NIC_REMOVED;
6629 	return 0;
6630 }
6631 
6632 static int
6633 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6634 		   struct rte_pci_device *pci_dev)
6635 {
6636 	return rte_eth_dev_pci_generic_probe(pci_dev,
6637 					     sizeof(struct hns3_adapter),
6638 					     hns3_dev_init);
6639 }
6640 
6641 static int
6642 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6643 {
6644 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6645 }
6646 
6647 static const struct rte_pci_id pci_id_hns3_map[] = {
6648 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6649 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6650 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6651 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6652 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6653 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6654 	{ .vendor_id = 0, }, /* sentinel */
6655 };
6656 
6657 static struct rte_pci_driver rte_hns3_pmd = {
6658 	.id_table = pci_id_hns3_map,
6659 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
6660 	.probe = eth_hns3_pci_probe,
6661 	.remove = eth_hns3_pci_remove,
6662 };
6663 
6664 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6665 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6666 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6667 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6668 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6669 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
6670 		HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> "
6671 		HNS3_DEVARG_MBX_TIME_LIMIT_MS "=<uint16> "
6672 		HNS3_DEVARG_FDIR_VLAN_MATCH_MODE "=strict|nostrict "
6673 		HNS3_DEVARG_FDIR_TUPLE_CONFIG "=+outvlan-insmac|+outvlan-indmac|"
6674 					      "+outvlan-insip|+outvlan-indip"
6675 					      "+outvlan-sctptag|+outvlan-tunvni "
6676 		HNS3_DEVARG_FDIR_INDEX_CONFIG "=hash|priority ");
6677 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE);
6678 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);
6679 #ifdef RTE_ETHDEV_DEBUG_RX
6680 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_rx, rx, DEBUG);
6681 #endif
6682 #ifdef RTE_ETHDEV_DEBUG_TX
6683 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_tx, tx, DEBUG);
6684 #endif
6685