xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision f8dbaebbf1c9efcbb2e2354b341ed62175466a57)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 
10 #include "hns3_ethdev.h"
11 #include "hns3_common.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18 #include "hns3_flow.h"
19 
20 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
21 #define HNS3_SERVICE_QUICK_INTERVAL	10
22 #define HNS3_INVALID_PVID		0xFFFF
23 
24 #define HNS3_FILTER_TYPE_VF		0
25 #define HNS3_FILTER_TYPE_PORT		1
26 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
27 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
28 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
29 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
30 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
31 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
32 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
33 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
34 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
35 
36 /* Reset related Registers */
37 #define HNS3_GLOBAL_RESET_BIT		0
38 #define HNS3_CORE_RESET_BIT		1
39 #define HNS3_IMP_RESET_BIT		2
40 #define HNS3_FUN_RST_ING_B		0
41 
42 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
43 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
44 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
45 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
46 
47 #define HNS3_RESET_WAIT_MS	100
48 #define HNS3_RESET_WAIT_CNT	200
49 
50 /* FEC mode order defined in HNS3 hardware */
51 #define HNS3_HW_FEC_MODE_NOFEC  0
52 #define HNS3_HW_FEC_MODE_BASER  1
53 #define HNS3_HW_FEC_MODE_RS     2
54 
55 enum hns3_evt_cause {
56 	HNS3_VECTOR0_EVENT_RST,
57 	HNS3_VECTOR0_EVENT_MBX,
58 	HNS3_VECTOR0_EVENT_ERR,
59 	HNS3_VECTOR0_EVENT_PTP,
60 	HNS3_VECTOR0_EVENT_OTHER,
61 };
62 
63 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
64 	{ RTE_ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
65 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
66 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
67 
68 	{ RTE_ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
69 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
70 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
71 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
72 
73 	{ RTE_ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
74 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
75 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
76 
77 	{ RTE_ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
78 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
80 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
81 
82 	{ RTE_ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
83 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
84 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
85 
86 	{ RTE_ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
87 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
88 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
89 };
90 
91 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
92 						 uint64_t *levels);
93 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
94 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
95 				    int on);
96 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
97 static bool hns3_update_link_status(struct hns3_hw *hw);
98 
99 static int hns3_add_mc_mac_addr(struct hns3_hw *hw,
100 				struct rte_ether_addr *mac_addr);
101 static int hns3_remove_mc_mac_addr(struct hns3_hw *hw,
102 				   struct rte_ether_addr *mac_addr);
103 static int hns3_restore_fec(struct hns3_hw *hw);
104 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
105 static int hns3_do_stop(struct hns3_adapter *hns);
106 static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds);
107 static int hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable);
108 
109 
110 static void
111 hns3_pf_disable_irq0(struct hns3_hw *hw)
112 {
113 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
114 }
115 
116 static void
117 hns3_pf_enable_irq0(struct hns3_hw *hw)
118 {
119 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
120 }
121 
122 static enum hns3_evt_cause
123 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
124 			  uint32_t *vec_val)
125 {
126 	struct hns3_hw *hw = &hns->hw;
127 
128 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
129 	hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
130 	*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
131 	if (!is_delay) {
132 		hw->reset.stats.imp_cnt++;
133 		hns3_warn(hw, "IMP reset detected, clear reset status");
134 	} else {
135 		hns3_schedule_delayed_reset(hns);
136 		hns3_warn(hw, "IMP reset detected, don't clear reset status");
137 	}
138 
139 	return HNS3_VECTOR0_EVENT_RST;
140 }
141 
142 static enum hns3_evt_cause
143 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
144 			     uint32_t *vec_val)
145 {
146 	struct hns3_hw *hw = &hns->hw;
147 
148 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
149 	hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
150 	*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
151 	if (!is_delay) {
152 		hw->reset.stats.global_cnt++;
153 		hns3_warn(hw, "Global reset detected, clear reset status");
154 	} else {
155 		hns3_schedule_delayed_reset(hns);
156 		hns3_warn(hw,
157 			  "Global reset detected, don't clear reset status");
158 	}
159 
160 	return HNS3_VECTOR0_EVENT_RST;
161 }
162 
163 static enum hns3_evt_cause
164 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
165 {
166 	struct hns3_hw *hw = &hns->hw;
167 	uint32_t vector0_int_stats;
168 	uint32_t cmdq_src_val;
169 	uint32_t hw_err_src_reg;
170 	uint32_t val;
171 	enum hns3_evt_cause ret;
172 	bool is_delay;
173 
174 	/* fetch the events from their corresponding regs */
175 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
176 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
177 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
178 
179 	is_delay = clearval == NULL ? true : false;
180 	/*
181 	 * Assumption: If by any chance reset and mailbox events are reported
182 	 * together then we will only process reset event and defer the
183 	 * processing of the mailbox events. Since, we would have not cleared
184 	 * RX CMDQ event this time we would receive again another interrupt
185 	 * from H/W just for the mailbox.
186 	 */
187 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
188 		ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
189 		goto out;
190 	}
191 
192 	/* Global reset */
193 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
194 		ret = hns3_proc_global_reset_event(hns, is_delay, &val);
195 		goto out;
196 	}
197 
198 	/* Check for vector0 1588 event source */
199 	if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
200 		val = BIT(HNS3_VECTOR0_1588_INT_B);
201 		ret = HNS3_VECTOR0_EVENT_PTP;
202 		goto out;
203 	}
204 
205 	/* check for vector0 msix event source */
206 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
207 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
208 		val = vector0_int_stats | hw_err_src_reg;
209 		ret = HNS3_VECTOR0_EVENT_ERR;
210 		goto out;
211 	}
212 
213 	/* check for vector0 mailbox(=CMDQ RX) event source */
214 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
215 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
216 		val = cmdq_src_val;
217 		ret = HNS3_VECTOR0_EVENT_MBX;
218 		goto out;
219 	}
220 
221 	val = vector0_int_stats;
222 	ret = HNS3_VECTOR0_EVENT_OTHER;
223 out:
224 
225 	if (clearval)
226 		*clearval = val;
227 	return ret;
228 }
229 
230 static bool
231 hns3_is_1588_event_type(uint32_t event_type)
232 {
233 	return (event_type == HNS3_VECTOR0_EVENT_PTP);
234 }
235 
236 static void
237 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
238 {
239 	if (event_type == HNS3_VECTOR0_EVENT_RST ||
240 	    hns3_is_1588_event_type(event_type))
241 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
242 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
243 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
244 }
245 
246 static void
247 hns3_clear_all_event_cause(struct hns3_hw *hw)
248 {
249 	uint32_t vector0_int_stats;
250 
251 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
252 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
253 		hns3_warn(hw, "Probe during IMP reset interrupt");
254 
255 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
256 		hns3_warn(hw, "Probe during Global reset interrupt");
257 
258 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
259 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
260 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
261 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
262 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
263 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
264 				BIT(HNS3_VECTOR0_1588_INT_B));
265 }
266 
267 static void
268 hns3_handle_mac_tnl(struct hns3_hw *hw)
269 {
270 	struct hns3_cmd_desc desc;
271 	uint32_t status;
272 	int ret;
273 
274 	/* query and clear mac tnl interrupt */
275 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
276 	ret = hns3_cmd_send(hw, &desc, 1);
277 	if (ret) {
278 		hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
279 		return;
280 	}
281 
282 	status = rte_le_to_cpu_32(desc.data[0]);
283 	if (status) {
284 		hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
285 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
286 					  false);
287 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
288 		ret = hns3_cmd_send(hw, &desc, 1);
289 		if (ret)
290 			hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
291 				 ret);
292 	}
293 }
294 
295 static void
296 hns3_interrupt_handler(void *param)
297 {
298 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
299 	struct hns3_adapter *hns = dev->data->dev_private;
300 	struct hns3_hw *hw = &hns->hw;
301 	enum hns3_evt_cause event_cause;
302 	uint32_t clearval = 0;
303 	uint32_t vector0_int;
304 	uint32_t ras_int;
305 	uint32_t cmdq_int;
306 
307 	/* Disable interrupt */
308 	hns3_pf_disable_irq0(hw);
309 
310 	event_cause = hns3_check_event_cause(hns, &clearval);
311 	vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
312 	ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
313 	cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
314 	hns3_clear_event_cause(hw, event_cause, clearval);
315 	/* vector 0 interrupt is shared with reset and mailbox source events. */
316 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
317 		hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
318 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
319 			  vector0_int, ras_int, cmdq_int);
320 		hns3_handle_mac_tnl(hw);
321 		hns3_handle_error(hns);
322 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
323 		hns3_warn(hw, "received reset interrupt");
324 		hns3_schedule_reset(hns);
325 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
326 		hns3_dev_handle_mbx_msg(hw);
327 	} else {
328 		hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
329 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
330 			  vector0_int, ras_int, cmdq_int);
331 	}
332 
333 	/* Enable interrupt if it is not cause by reset */
334 	hns3_pf_enable_irq0(hw);
335 }
336 
337 static int
338 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
339 {
340 #define HNS3_VLAN_ID_OFFSET_STEP	160
341 #define HNS3_VLAN_BYTE_SIZE		8
342 	struct hns3_vlan_filter_pf_cfg_cmd *req;
343 	struct hns3_hw *hw = &hns->hw;
344 	uint8_t vlan_offset_byte_val;
345 	struct hns3_cmd_desc desc;
346 	uint8_t vlan_offset_byte;
347 	uint8_t vlan_offset_base;
348 	int ret;
349 
350 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
351 
352 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
353 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
354 			   HNS3_VLAN_BYTE_SIZE;
355 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
356 
357 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
358 	req->vlan_offset = vlan_offset_base;
359 	req->vlan_cfg = on ? 0 : 1;
360 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
361 
362 	ret = hns3_cmd_send(hw, &desc, 1);
363 	if (ret)
364 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
365 			 vlan_id, ret);
366 
367 	return ret;
368 }
369 
370 static void
371 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
372 {
373 	struct hns3_user_vlan_table *vlan_entry;
374 	struct hns3_pf *pf = &hns->pf;
375 
376 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
377 		if (vlan_entry->vlan_id == vlan_id) {
378 			if (vlan_entry->hd_tbl_status)
379 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
380 			LIST_REMOVE(vlan_entry, next);
381 			rte_free(vlan_entry);
382 			break;
383 		}
384 	}
385 }
386 
387 static void
388 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
389 			bool writen_to_tbl)
390 {
391 	struct hns3_user_vlan_table *vlan_entry;
392 	struct hns3_hw *hw = &hns->hw;
393 	struct hns3_pf *pf = &hns->pf;
394 
395 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
396 		if (vlan_entry->vlan_id == vlan_id)
397 			return;
398 	}
399 
400 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
401 	if (vlan_entry == NULL) {
402 		hns3_err(hw, "Failed to malloc hns3 vlan table");
403 		return;
404 	}
405 
406 	vlan_entry->hd_tbl_status = writen_to_tbl;
407 	vlan_entry->vlan_id = vlan_id;
408 
409 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
410 }
411 
412 static int
413 hns3_restore_vlan_table(struct hns3_adapter *hns)
414 {
415 	struct hns3_user_vlan_table *vlan_entry;
416 	struct hns3_hw *hw = &hns->hw;
417 	struct hns3_pf *pf = &hns->pf;
418 	uint16_t vlan_id;
419 	int ret = 0;
420 
421 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
422 		return hns3_vlan_pvid_configure(hns,
423 						hw->port_base_vlan_cfg.pvid, 1);
424 
425 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
426 		if (vlan_entry->hd_tbl_status) {
427 			vlan_id = vlan_entry->vlan_id;
428 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
429 			if (ret)
430 				break;
431 		}
432 	}
433 
434 	return ret;
435 }
436 
437 static int
438 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
439 {
440 	struct hns3_hw *hw = &hns->hw;
441 	bool writen_to_tbl = false;
442 	int ret = 0;
443 
444 	/*
445 	 * When vlan filter is enabled, hardware regards packets without vlan
446 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
447 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
448 	 */
449 	if (on == 0 && vlan_id == 0)
450 		return 0;
451 
452 	/*
453 	 * When port base vlan enabled, we use port base vlan as the vlan
454 	 * filter condition. In this case, we don't update vlan filter table
455 	 * when user add new vlan or remove exist vlan, just update the
456 	 * vlan list. The vlan id in vlan list will be written in vlan filter
457 	 * table until port base vlan disabled
458 	 */
459 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
460 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
461 		writen_to_tbl = true;
462 	}
463 
464 	if (ret == 0) {
465 		if (on)
466 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
467 		else
468 			hns3_rm_dev_vlan_table(hns, vlan_id);
469 	}
470 	return ret;
471 }
472 
473 static int
474 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
475 {
476 	struct hns3_adapter *hns = dev->data->dev_private;
477 	struct hns3_hw *hw = &hns->hw;
478 	int ret;
479 
480 	rte_spinlock_lock(&hw->lock);
481 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
482 	rte_spinlock_unlock(&hw->lock);
483 	return ret;
484 }
485 
486 static int
487 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
488 			 uint16_t tpid)
489 {
490 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
491 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
492 	struct hns3_hw *hw = &hns->hw;
493 	struct hns3_cmd_desc desc;
494 	int ret;
495 
496 	if ((vlan_type != RTE_ETH_VLAN_TYPE_INNER &&
497 	     vlan_type != RTE_ETH_VLAN_TYPE_OUTER)) {
498 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
499 		return -EINVAL;
500 	}
501 
502 	if (tpid != RTE_ETHER_TYPE_VLAN) {
503 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
504 		return -EINVAL;
505 	}
506 
507 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
508 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
509 
510 	if (vlan_type == RTE_ETH_VLAN_TYPE_OUTER) {
511 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
512 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
513 	} else if (vlan_type == RTE_ETH_VLAN_TYPE_INNER) {
514 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
515 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
516 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
517 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
518 	}
519 
520 	ret = hns3_cmd_send(hw, &desc, 1);
521 	if (ret) {
522 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
523 			 ret);
524 		return ret;
525 	}
526 
527 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
528 
529 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
530 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
531 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
532 
533 	ret = hns3_cmd_send(hw, &desc, 1);
534 	if (ret)
535 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
536 			 ret);
537 	return ret;
538 }
539 
540 static int
541 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
542 		   uint16_t tpid)
543 {
544 	struct hns3_adapter *hns = dev->data->dev_private;
545 	struct hns3_hw *hw = &hns->hw;
546 	int ret;
547 
548 	rte_spinlock_lock(&hw->lock);
549 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
550 	rte_spinlock_unlock(&hw->lock);
551 	return ret;
552 }
553 
554 static int
555 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
556 			     struct hns3_rx_vtag_cfg *vcfg)
557 {
558 	struct hns3_vport_vtag_rx_cfg_cmd *req;
559 	struct hns3_hw *hw = &hns->hw;
560 	struct hns3_cmd_desc desc;
561 	uint16_t vport_id;
562 	uint8_t bitmap;
563 	int ret;
564 
565 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
566 
567 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
568 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
569 		     vcfg->strip_tag1_en ? 1 : 0);
570 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
571 		     vcfg->strip_tag2_en ? 1 : 0);
572 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
573 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
574 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
575 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
576 
577 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
578 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
579 		     vcfg->strip_tag1_discard_en ? 1 : 0);
580 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
581 		     vcfg->strip_tag2_discard_en ? 1 : 0);
582 	/*
583 	 * In current version VF is not supported when PF is driven by DPDK
584 	 * driver, just need to configure parameters for PF vport.
585 	 */
586 	vport_id = HNS3_PF_FUNC_ID;
587 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
588 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
589 	req->vf_bitmap[req->vf_offset] = bitmap;
590 
591 	ret = hns3_cmd_send(hw, &desc, 1);
592 	if (ret)
593 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
594 	return ret;
595 }
596 
597 static void
598 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
599 			   struct hns3_rx_vtag_cfg *vcfg)
600 {
601 	struct hns3_pf *pf = &hns->pf;
602 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
603 }
604 
605 static void
606 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
607 			   struct hns3_tx_vtag_cfg *vcfg)
608 {
609 	struct hns3_pf *pf = &hns->pf;
610 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
611 }
612 
613 static int
614 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
615 {
616 	struct hns3_rx_vtag_cfg rxvlan_cfg;
617 	struct hns3_hw *hw = &hns->hw;
618 	int ret;
619 
620 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
621 		rxvlan_cfg.strip_tag1_en = false;
622 		rxvlan_cfg.strip_tag2_en = enable;
623 		rxvlan_cfg.strip_tag2_discard_en = false;
624 	} else {
625 		rxvlan_cfg.strip_tag1_en = enable;
626 		rxvlan_cfg.strip_tag2_en = true;
627 		rxvlan_cfg.strip_tag2_discard_en = true;
628 	}
629 
630 	rxvlan_cfg.strip_tag1_discard_en = false;
631 	rxvlan_cfg.vlan1_vlan_prionly = false;
632 	rxvlan_cfg.vlan2_vlan_prionly = false;
633 	rxvlan_cfg.rx_vlan_offload_en = enable;
634 
635 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
636 	if (ret) {
637 		hns3_err(hw, "%s strip rx vtag failed, ret = %d.",
638 				enable ? "enable" : "disable", ret);
639 		return ret;
640 	}
641 
642 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
643 
644 	return ret;
645 }
646 
647 static int
648 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
649 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
650 {
651 	struct hns3_vlan_filter_ctrl_cmd *req;
652 	struct hns3_cmd_desc desc;
653 	int ret;
654 
655 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
656 
657 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
658 	req->vlan_type = vlan_type;
659 	req->vlan_fe = filter_en ? fe_type : 0;
660 	req->vf_id = vf_id;
661 
662 	ret = hns3_cmd_send(hw, &desc, 1);
663 	if (ret)
664 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
665 
666 	return ret;
667 }
668 
669 static int
670 hns3_vlan_filter_init(struct hns3_adapter *hns)
671 {
672 	struct hns3_hw *hw = &hns->hw;
673 	int ret;
674 
675 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
676 					HNS3_FILTER_FE_EGRESS, false,
677 					HNS3_PF_FUNC_ID);
678 	if (ret) {
679 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
680 		return ret;
681 	}
682 
683 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
684 					HNS3_FILTER_FE_INGRESS, false,
685 					HNS3_PF_FUNC_ID);
686 	if (ret)
687 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
688 
689 	return ret;
690 }
691 
692 static int
693 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
694 {
695 	struct hns3_hw *hw = &hns->hw;
696 	int ret;
697 
698 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
699 					HNS3_FILTER_FE_INGRESS, enable,
700 					HNS3_PF_FUNC_ID);
701 	if (ret)
702 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
703 			 enable ? "enable" : "disable", ret);
704 
705 	return ret;
706 }
707 
708 static int
709 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
710 {
711 	struct hns3_adapter *hns = dev->data->dev_private;
712 	struct hns3_hw *hw = &hns->hw;
713 	struct rte_eth_rxmode *rxmode;
714 	unsigned int tmp_mask;
715 	bool enable;
716 	int ret = 0;
717 
718 	rte_spinlock_lock(&hw->lock);
719 	rxmode = &dev->data->dev_conf.rxmode;
720 	tmp_mask = (unsigned int)mask;
721 	if (tmp_mask & RTE_ETH_VLAN_FILTER_MASK) {
722 		/* ignore vlan filter configuration during promiscuous mode */
723 		if (!dev->data->promiscuous) {
724 			/* Enable or disable VLAN filter */
725 			enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ?
726 				 true : false;
727 
728 			ret = hns3_enable_vlan_filter(hns, enable);
729 			if (ret) {
730 				rte_spinlock_unlock(&hw->lock);
731 				hns3_err(hw, "failed to %s rx filter, ret = %d",
732 					 enable ? "enable" : "disable", ret);
733 				return ret;
734 			}
735 		}
736 	}
737 
738 	if (tmp_mask & RTE_ETH_VLAN_STRIP_MASK) {
739 		/* Enable or disable VLAN stripping */
740 		enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP ?
741 		    true : false;
742 
743 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
744 		if (ret) {
745 			rte_spinlock_unlock(&hw->lock);
746 			hns3_err(hw, "failed to %s rx strip, ret = %d",
747 				 enable ? "enable" : "disable", ret);
748 			return ret;
749 		}
750 	}
751 
752 	rte_spinlock_unlock(&hw->lock);
753 
754 	return ret;
755 }
756 
757 static int
758 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
759 			     struct hns3_tx_vtag_cfg *vcfg)
760 {
761 	struct hns3_vport_vtag_tx_cfg_cmd *req;
762 	struct hns3_cmd_desc desc;
763 	struct hns3_hw *hw = &hns->hw;
764 	uint16_t vport_id;
765 	uint8_t bitmap;
766 	int ret;
767 
768 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
769 
770 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
771 	req->def_vlan_tag1 = vcfg->default_tag1;
772 	req->def_vlan_tag2 = vcfg->default_tag2;
773 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
774 		     vcfg->accept_tag1 ? 1 : 0);
775 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
776 		     vcfg->accept_untag1 ? 1 : 0);
777 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
778 		     vcfg->accept_tag2 ? 1 : 0);
779 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
780 		     vcfg->accept_untag2 ? 1 : 0);
781 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
782 		     vcfg->insert_tag1_en ? 1 : 0);
783 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
784 		     vcfg->insert_tag2_en ? 1 : 0);
785 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
786 
787 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
788 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
789 		     vcfg->tag_shift_mode_en ? 1 : 0);
790 
791 	/*
792 	 * In current version VF is not supported when PF is driven by DPDK
793 	 * driver, just need to configure parameters for PF vport.
794 	 */
795 	vport_id = HNS3_PF_FUNC_ID;
796 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
797 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
798 	req->vf_bitmap[req->vf_offset] = bitmap;
799 
800 	ret = hns3_cmd_send(hw, &desc, 1);
801 	if (ret)
802 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
803 
804 	return ret;
805 }
806 
807 static int
808 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
809 		     uint16_t pvid)
810 {
811 	struct hns3_hw *hw = &hns->hw;
812 	struct hns3_tx_vtag_cfg txvlan_cfg;
813 	int ret;
814 
815 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
816 		txvlan_cfg.accept_tag1 = true;
817 		txvlan_cfg.insert_tag1_en = false;
818 		txvlan_cfg.default_tag1 = 0;
819 	} else {
820 		txvlan_cfg.accept_tag1 =
821 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
822 		txvlan_cfg.insert_tag1_en = true;
823 		txvlan_cfg.default_tag1 = pvid;
824 	}
825 
826 	txvlan_cfg.accept_untag1 = true;
827 	txvlan_cfg.accept_tag2 = true;
828 	txvlan_cfg.accept_untag2 = true;
829 	txvlan_cfg.insert_tag2_en = false;
830 	txvlan_cfg.default_tag2 = 0;
831 	txvlan_cfg.tag_shift_mode_en = true;
832 
833 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
834 	if (ret) {
835 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
836 			 ret);
837 		return ret;
838 	}
839 
840 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
841 	return ret;
842 }
843 
844 
845 static void
846 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
847 {
848 	struct hns3_user_vlan_table *vlan_entry;
849 	struct hns3_pf *pf = &hns->pf;
850 
851 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
852 		if (vlan_entry->hd_tbl_status) {
853 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
854 			vlan_entry->hd_tbl_status = false;
855 		}
856 	}
857 
858 	if (is_del_list) {
859 		vlan_entry = LIST_FIRST(&pf->vlan_list);
860 		while (vlan_entry) {
861 			LIST_REMOVE(vlan_entry, next);
862 			rte_free(vlan_entry);
863 			vlan_entry = LIST_FIRST(&pf->vlan_list);
864 		}
865 	}
866 }
867 
868 static void
869 hns3_add_all_vlan_table(struct hns3_adapter *hns)
870 {
871 	struct hns3_user_vlan_table *vlan_entry;
872 	struct hns3_pf *pf = &hns->pf;
873 
874 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
875 		if (!vlan_entry->hd_tbl_status) {
876 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
877 			vlan_entry->hd_tbl_status = true;
878 		}
879 	}
880 }
881 
882 static void
883 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
884 {
885 	struct hns3_hw *hw = &hns->hw;
886 	int ret;
887 
888 	hns3_rm_all_vlan_table(hns, true);
889 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
890 		ret = hns3_set_port_vlan_filter(hns,
891 						hw->port_base_vlan_cfg.pvid, 0);
892 		if (ret) {
893 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
894 				 ret);
895 			return;
896 		}
897 	}
898 }
899 
900 static int
901 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
902 			uint16_t port_base_vlan_state, uint16_t new_pvid)
903 {
904 	struct hns3_hw *hw = &hns->hw;
905 	uint16_t old_pvid;
906 	int ret;
907 
908 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
909 		old_pvid = hw->port_base_vlan_cfg.pvid;
910 		if (old_pvid != HNS3_INVALID_PVID) {
911 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
912 			if (ret) {
913 				hns3_err(hw, "failed to remove old pvid %u, "
914 						"ret = %d", old_pvid, ret);
915 				return ret;
916 			}
917 		}
918 
919 		hns3_rm_all_vlan_table(hns, false);
920 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
921 		if (ret) {
922 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
923 					new_pvid, ret);
924 			return ret;
925 		}
926 	} else {
927 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
928 		if (ret) {
929 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
930 					new_pvid, ret);
931 			return ret;
932 		}
933 
934 		hns3_add_all_vlan_table(hns);
935 	}
936 	return 0;
937 }
938 
939 static int
940 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
941 {
942 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
943 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
944 	bool rx_strip_en;
945 	int ret;
946 
947 	rx_strip_en = old_cfg->rx_vlan_offload_en;
948 	if (on) {
949 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
950 		rx_vlan_cfg.strip_tag2_en = true;
951 		rx_vlan_cfg.strip_tag2_discard_en = true;
952 	} else {
953 		rx_vlan_cfg.strip_tag1_en = false;
954 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
955 		rx_vlan_cfg.strip_tag2_discard_en = false;
956 	}
957 	rx_vlan_cfg.strip_tag1_discard_en = false;
958 	rx_vlan_cfg.vlan1_vlan_prionly = false;
959 	rx_vlan_cfg.vlan2_vlan_prionly = false;
960 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
961 
962 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
963 	if (ret)
964 		return ret;
965 
966 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
967 	return ret;
968 }
969 
970 static int
971 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
972 {
973 	struct hns3_hw *hw = &hns->hw;
974 	uint16_t port_base_vlan_state;
975 	int ret, err;
976 
977 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
978 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
979 			hns3_warn(hw, "Invalid operation! As current pvid set "
980 				  "is %u, disable pvid %u is invalid",
981 				  hw->port_base_vlan_cfg.pvid, pvid);
982 		return 0;
983 	}
984 
985 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
986 				    HNS3_PORT_BASE_VLAN_DISABLE;
987 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
988 	if (ret) {
989 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
990 			 ret);
991 		return ret;
992 	}
993 
994 	ret = hns3_en_pvid_strip(hns, on);
995 	if (ret) {
996 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
997 			 "ret = %d", ret);
998 		goto pvid_vlan_strip_fail;
999 	}
1000 
1001 	if (pvid == HNS3_INVALID_PVID)
1002 		goto out;
1003 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
1004 	if (ret) {
1005 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
1006 			 ret);
1007 		goto vlan_filter_set_fail;
1008 	}
1009 
1010 out:
1011 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
1012 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1013 	return ret;
1014 
1015 vlan_filter_set_fail:
1016 	err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
1017 					HNS3_PORT_BASE_VLAN_ENABLE);
1018 	if (err)
1019 		hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1020 
1021 pvid_vlan_strip_fail:
1022 	err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1023 					hw->port_base_vlan_cfg.pvid);
1024 	if (err)
1025 		hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1026 
1027 	return ret;
1028 }
1029 
1030 static int
1031 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1032 {
1033 	struct hns3_adapter *hns = dev->data->dev_private;
1034 	struct hns3_hw *hw = &hns->hw;
1035 	bool pvid_en_state_change;
1036 	uint16_t pvid_state;
1037 	int ret;
1038 
1039 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1040 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1041 			 RTE_ETHER_MAX_VLAN_ID);
1042 		return -EINVAL;
1043 	}
1044 
1045 	/*
1046 	 * If PVID configuration state change, should refresh the PVID
1047 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1048 	 */
1049 	pvid_state = hw->port_base_vlan_cfg.state;
1050 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1051 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1052 		pvid_en_state_change = false;
1053 	else
1054 		pvid_en_state_change = true;
1055 
1056 	rte_spinlock_lock(&hw->lock);
1057 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
1058 	rte_spinlock_unlock(&hw->lock);
1059 	if (ret)
1060 		return ret;
1061 	/*
1062 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1063 	 * need be processed by PMD.
1064 	 */
1065 	if (pvid_en_state_change &&
1066 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1067 		hns3_update_all_queues_pvid_proc_en(hw);
1068 
1069 	return 0;
1070 }
1071 
1072 static int
1073 hns3_default_vlan_config(struct hns3_adapter *hns)
1074 {
1075 	struct hns3_hw *hw = &hns->hw;
1076 	int ret;
1077 
1078 	/*
1079 	 * When vlan filter is enabled, hardware regards packets without vlan
1080 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1081 	 * table, packets without vlan won't be received. So, add vlan 0 as
1082 	 * the default vlan.
1083 	 */
1084 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1085 	if (ret)
1086 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1087 	return ret;
1088 }
1089 
1090 static int
1091 hns3_init_vlan_config(struct hns3_adapter *hns)
1092 {
1093 	struct hns3_hw *hw = &hns->hw;
1094 	int ret;
1095 
1096 	/*
1097 	 * This function can be called in the initialization and reset process,
1098 	 * when in reset process, it means that hardware had been reseted
1099 	 * successfully and we need to restore the hardware configuration to
1100 	 * ensure that the hardware configuration remains unchanged before and
1101 	 * after reset.
1102 	 */
1103 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1104 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1105 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1106 	}
1107 
1108 	ret = hns3_vlan_filter_init(hns);
1109 	if (ret) {
1110 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1111 		return ret;
1112 	}
1113 
1114 	ret = hns3_vlan_tpid_configure(hns, RTE_ETH_VLAN_TYPE_INNER,
1115 				       RTE_ETHER_TYPE_VLAN);
1116 	if (ret) {
1117 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1118 		return ret;
1119 	}
1120 
1121 	/*
1122 	 * When in the reinit dev stage of the reset process, the following
1123 	 * vlan-related configurations may differ from those at initialization,
1124 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1125 	 * and hns3_restore_vlan_conf later.
1126 	 */
1127 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1128 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1129 		if (ret) {
1130 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1131 			return ret;
1132 		}
1133 
1134 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1135 		if (ret) {
1136 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1137 				 ret);
1138 			return ret;
1139 		}
1140 	}
1141 
1142 	return hns3_default_vlan_config(hns);
1143 }
1144 
1145 static int
1146 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1147 {
1148 	struct hns3_pf *pf = &hns->pf;
1149 	struct hns3_hw *hw = &hns->hw;
1150 	uint64_t offloads;
1151 	bool enable;
1152 	int ret;
1153 
1154 	if (!hw->data->promiscuous) {
1155 		/* restore vlan filter states */
1156 		offloads = hw->data->dev_conf.rxmode.offloads;
1157 		enable = offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ? true : false;
1158 		ret = hns3_enable_vlan_filter(hns, enable);
1159 		if (ret) {
1160 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1161 				 "ret = %d", ret);
1162 			return ret;
1163 		}
1164 	}
1165 
1166 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1167 	if (ret) {
1168 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1169 		return ret;
1170 	}
1171 
1172 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1173 	if (ret)
1174 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1175 
1176 	return ret;
1177 }
1178 
1179 static int
1180 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1181 {
1182 	struct hns3_adapter *hns = dev->data->dev_private;
1183 	struct rte_eth_dev_data *data = dev->data;
1184 	struct rte_eth_txmode *txmode;
1185 	struct hns3_hw *hw = &hns->hw;
1186 	int mask;
1187 	int ret;
1188 
1189 	txmode = &data->dev_conf.txmode;
1190 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1191 		hns3_warn(hw,
1192 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1193 			  "configuration is not supported! Ignore these two "
1194 			  "parameters: hw_vlan_reject_tagged(%u), "
1195 			  "hw_vlan_reject_untagged(%u)",
1196 			  txmode->hw_vlan_reject_tagged,
1197 			  txmode->hw_vlan_reject_untagged);
1198 
1199 	/* Apply vlan offload setting */
1200 	mask = RTE_ETH_VLAN_STRIP_MASK | RTE_ETH_VLAN_FILTER_MASK;
1201 	ret = hns3_vlan_offload_set(dev, mask);
1202 	if (ret) {
1203 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1204 			 ret);
1205 		return ret;
1206 	}
1207 
1208 	/*
1209 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1210 	 * VLAN pvid related configuration to hardware.
1211 	 */
1212 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1213 		return 0;
1214 
1215 	/* Apply pvid setting */
1216 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1217 				 txmode->hw_vlan_insert_pvid);
1218 	if (ret)
1219 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1220 			 txmode->pvid, ret);
1221 
1222 	return ret;
1223 }
1224 
1225 static int
1226 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1227 		unsigned int tso_mss_max)
1228 {
1229 	struct hns3_cfg_tso_status_cmd *req;
1230 	struct hns3_cmd_desc desc;
1231 	uint16_t tso_mss;
1232 
1233 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1234 
1235 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1236 
1237 	tso_mss = 0;
1238 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1239 		       tso_mss_min);
1240 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1241 
1242 	tso_mss = 0;
1243 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1244 		       tso_mss_max);
1245 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1246 
1247 	return hns3_cmd_send(hw, &desc, 1);
1248 }
1249 
1250 static int
1251 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1252 		   uint16_t *allocated_size, bool is_alloc)
1253 {
1254 	struct hns3_umv_spc_alc_cmd *req;
1255 	struct hns3_cmd_desc desc;
1256 	int ret;
1257 
1258 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1259 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1260 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1261 	req->space_size = rte_cpu_to_le_32(space_size);
1262 
1263 	ret = hns3_cmd_send(hw, &desc, 1);
1264 	if (ret) {
1265 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1266 			     is_alloc ? "allocate" : "free", ret);
1267 		return ret;
1268 	}
1269 
1270 	if (is_alloc && allocated_size)
1271 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1272 
1273 	return 0;
1274 }
1275 
1276 static int
1277 hns3_init_umv_space(struct hns3_hw *hw)
1278 {
1279 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1280 	struct hns3_pf *pf = &hns->pf;
1281 	uint16_t allocated_size = 0;
1282 	int ret;
1283 
1284 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1285 				 true);
1286 	if (ret)
1287 		return ret;
1288 
1289 	if (allocated_size < pf->wanted_umv_size)
1290 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1291 			     pf->wanted_umv_size, allocated_size);
1292 
1293 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1294 						pf->wanted_umv_size;
1295 	pf->used_umv_size = 0;
1296 	return 0;
1297 }
1298 
1299 static int
1300 hns3_uninit_umv_space(struct hns3_hw *hw)
1301 {
1302 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1303 	struct hns3_pf *pf = &hns->pf;
1304 	int ret;
1305 
1306 	if (pf->max_umv_size == 0)
1307 		return 0;
1308 
1309 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1310 	if (ret)
1311 		return ret;
1312 
1313 	pf->max_umv_size = 0;
1314 
1315 	return 0;
1316 }
1317 
1318 static bool
1319 hns3_is_umv_space_full(struct hns3_hw *hw)
1320 {
1321 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1322 	struct hns3_pf *pf = &hns->pf;
1323 	bool is_full;
1324 
1325 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1326 
1327 	return is_full;
1328 }
1329 
1330 static void
1331 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1332 {
1333 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1334 	struct hns3_pf *pf = &hns->pf;
1335 
1336 	if (is_free) {
1337 		if (pf->used_umv_size > 0)
1338 			pf->used_umv_size--;
1339 	} else
1340 		pf->used_umv_size++;
1341 }
1342 
1343 static void
1344 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1345 		      const uint8_t *addr, bool is_mc)
1346 {
1347 	const unsigned char *mac_addr = addr;
1348 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1349 			    ((uint32_t)mac_addr[2] << 16) |
1350 			    ((uint32_t)mac_addr[1] << 8) |
1351 			    (uint32_t)mac_addr[0];
1352 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1353 
1354 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1355 	if (is_mc) {
1356 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1357 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1358 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1359 	}
1360 
1361 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1362 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1363 }
1364 
1365 static int
1366 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1367 			     uint8_t resp_code,
1368 			     enum hns3_mac_vlan_tbl_opcode op)
1369 {
1370 	if (cmdq_resp) {
1371 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1372 			 cmdq_resp);
1373 		return -EIO;
1374 	}
1375 
1376 	if (op == HNS3_MAC_VLAN_ADD) {
1377 		if (resp_code == 0 || resp_code == 1) {
1378 			return 0;
1379 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1380 			hns3_err(hw, "add mac addr failed for uc_overflow");
1381 			return -ENOSPC;
1382 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1383 			hns3_err(hw, "add mac addr failed for mc_overflow");
1384 			return -ENOSPC;
1385 		}
1386 
1387 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1388 			 resp_code);
1389 		return -EIO;
1390 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1391 		if (resp_code == 0) {
1392 			return 0;
1393 		} else if (resp_code == 1) {
1394 			hns3_dbg(hw, "remove mac addr failed for miss");
1395 			return -ENOENT;
1396 		}
1397 
1398 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1399 			 resp_code);
1400 		return -EIO;
1401 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1402 		if (resp_code == 0) {
1403 			return 0;
1404 		} else if (resp_code == 1) {
1405 			hns3_dbg(hw, "lookup mac addr failed for miss");
1406 			return -ENOENT;
1407 		}
1408 
1409 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1410 			 resp_code);
1411 		return -EIO;
1412 	}
1413 
1414 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1415 		 op);
1416 
1417 	return -EINVAL;
1418 }
1419 
1420 static int
1421 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1422 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1423 			 struct hns3_cmd_desc *desc, uint8_t desc_num)
1424 {
1425 	uint8_t resp_code;
1426 	uint16_t retval;
1427 	int ret;
1428 	int i;
1429 
1430 	if (desc_num == HNS3_MC_MAC_VLAN_OPS_DESC_NUM) {
1431 		for (i = 0; i < desc_num - 1; i++) {
1432 			hns3_cmd_setup_basic_desc(&desc[i],
1433 						  HNS3_OPC_MAC_VLAN_ADD, true);
1434 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1435 			if (i == 0)
1436 				memcpy(desc[i].data, req,
1437 				sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1438 		}
1439 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_MAC_VLAN_ADD,
1440 					  true);
1441 	} else {
1442 		hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD,
1443 					  true);
1444 		memcpy(desc[0].data, req,
1445 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1446 	}
1447 	ret = hns3_cmd_send(hw, desc, desc_num);
1448 	if (ret) {
1449 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1450 			 ret);
1451 		return ret;
1452 	}
1453 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1454 	retval = rte_le_to_cpu_16(desc[0].retval);
1455 
1456 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1457 					    HNS3_MAC_VLAN_LKUP);
1458 }
1459 
1460 static int
1461 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1462 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1463 		      struct hns3_cmd_desc *desc, uint8_t desc_num)
1464 {
1465 	uint8_t resp_code;
1466 	uint16_t retval;
1467 	int cfg_status;
1468 	int ret;
1469 	int i;
1470 
1471 	if (desc_num == HNS3_UC_MAC_VLAN_OPS_DESC_NUM) {
1472 		hns3_cmd_setup_basic_desc(desc, HNS3_OPC_MAC_VLAN_ADD, false);
1473 		memcpy(desc->data, req,
1474 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1475 		ret = hns3_cmd_send(hw, desc, desc_num);
1476 		resp_code = (rte_le_to_cpu_32(desc->data[0]) >> 8) & 0xff;
1477 		retval = rte_le_to_cpu_16(desc->retval);
1478 
1479 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1480 							  HNS3_MAC_VLAN_ADD);
1481 	} else {
1482 		for (i = 0; i < desc_num; i++) {
1483 			hns3_cmd_reuse_desc(&desc[i], false);
1484 			if (i == desc_num - 1)
1485 				desc[i].flag &=
1486 					rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1487 			else
1488 				desc[i].flag |=
1489 					rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1490 		}
1491 		memcpy(desc[0].data, req,
1492 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1493 		desc[0].retval = 0;
1494 		ret = hns3_cmd_send(hw, desc, desc_num);
1495 		resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1496 		retval = rte_le_to_cpu_16(desc[0].retval);
1497 
1498 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1499 							  HNS3_MAC_VLAN_ADD);
1500 	}
1501 
1502 	if (ret) {
1503 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1504 		return ret;
1505 	}
1506 
1507 	return cfg_status;
1508 }
1509 
1510 static int
1511 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1512 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1513 {
1514 	struct hns3_cmd_desc desc;
1515 	uint8_t resp_code;
1516 	uint16_t retval;
1517 	int ret;
1518 
1519 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1520 
1521 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1522 
1523 	ret = hns3_cmd_send(hw, &desc, 1);
1524 	if (ret) {
1525 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1526 		return ret;
1527 	}
1528 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1529 	retval = rte_le_to_cpu_16(desc.retval);
1530 
1531 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1532 					    HNS3_MAC_VLAN_REMOVE);
1533 }
1534 
1535 static int
1536 hns3_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1537 {
1538 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1539 	struct hns3_mac_vlan_tbl_entry_cmd req;
1540 	struct hns3_pf *pf = &hns->pf;
1541 	struct hns3_cmd_desc desc;
1542 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1543 	uint16_t egress_port = 0;
1544 	uint8_t vf_id;
1545 	int ret;
1546 
1547 	/* check if mac addr is valid */
1548 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1549 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1550 				      mac_addr);
1551 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1552 			 mac_str);
1553 		return -EINVAL;
1554 	}
1555 
1556 	memset(&req, 0, sizeof(req));
1557 
1558 	/*
1559 	 * In current version VF is not supported when PF is driven by DPDK
1560 	 * driver, just need to configure parameters for PF vport.
1561 	 */
1562 	vf_id = HNS3_PF_FUNC_ID;
1563 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1564 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1565 
1566 	req.egress_port = rte_cpu_to_le_16(egress_port);
1567 
1568 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1569 
1570 	/*
1571 	 * Lookup the mac address in the mac_vlan table, and add
1572 	 * it if the entry is inexistent. Repeated unicast entry
1573 	 * is not allowed in the mac vlan table.
1574 	 */
1575 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc,
1576 					HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1577 	if (ret == -ENOENT) {
1578 		if (!hns3_is_umv_space_full(hw)) {
1579 			ret = hns3_add_mac_vlan_tbl(hw, &req, &desc,
1580 						HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1581 			if (!ret)
1582 				hns3_update_umv_space(hw, false);
1583 			return ret;
1584 		}
1585 
1586 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1587 
1588 		return -ENOSPC;
1589 	}
1590 
1591 	hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1592 
1593 	/* check if we just hit the duplicate */
1594 	if (ret == 0) {
1595 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1596 		return 0;
1597 	}
1598 
1599 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1600 		 mac_str);
1601 
1602 	return ret;
1603 }
1604 
1605 static int
1606 hns3_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1607 {
1608 	struct hns3_mac_vlan_tbl_entry_cmd req;
1609 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1610 	int ret;
1611 
1612 	/* check if mac addr is valid */
1613 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1614 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1615 				      mac_addr);
1616 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1617 			 mac_str);
1618 		return -EINVAL;
1619 	}
1620 
1621 	memset(&req, 0, sizeof(req));
1622 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1623 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1624 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1625 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1626 		return 0;
1627 	else if (ret == 0)
1628 		hns3_update_umv_space(hw, true);
1629 
1630 	return ret;
1631 }
1632 
1633 static int
1634 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1635 			  struct rte_ether_addr *mac_addr)
1636 {
1637 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1638 	struct rte_ether_addr *oaddr;
1639 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1640 	int ret, ret_val;
1641 
1642 	rte_spinlock_lock(&hw->lock);
1643 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1644 	ret = hw->ops.del_uc_mac_addr(hw, oaddr);
1645 	if (ret) {
1646 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1647 				      oaddr);
1648 		hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1649 			  mac_str, ret);
1650 
1651 		rte_spinlock_unlock(&hw->lock);
1652 		return ret;
1653 	}
1654 
1655 	ret = hw->ops.add_uc_mac_addr(hw, mac_addr);
1656 	if (ret) {
1657 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1658 				      mac_addr);
1659 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1660 		goto err_add_uc_addr;
1661 	}
1662 
1663 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1664 	if (ret) {
1665 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1666 		goto err_pause_addr_cfg;
1667 	}
1668 
1669 	rte_ether_addr_copy(mac_addr,
1670 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1671 	rte_spinlock_unlock(&hw->lock);
1672 
1673 	return 0;
1674 
1675 err_pause_addr_cfg:
1676 	ret_val = hw->ops.del_uc_mac_addr(hw, mac_addr);
1677 	if (ret_val) {
1678 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1679 				      mac_addr);
1680 		hns3_warn(hw,
1681 			  "Failed to roll back to del setted mac addr(%s): %d",
1682 			  mac_str, ret_val);
1683 	}
1684 
1685 err_add_uc_addr:
1686 	ret_val = hw->ops.add_uc_mac_addr(hw, oaddr);
1687 	if (ret_val) {
1688 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, oaddr);
1689 		hns3_warn(hw, "Failed to restore old uc mac addr(%s): %d",
1690 				  mac_str, ret_val);
1691 	}
1692 	rte_spinlock_unlock(&hw->lock);
1693 
1694 	return ret;
1695 }
1696 
1697 static void
1698 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1699 {
1700 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1701 	uint8_t word_num;
1702 	uint8_t bit_num;
1703 
1704 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1705 		word_num = vfid / 32;
1706 		bit_num = vfid % 32;
1707 		if (clr)
1708 			desc[1].data[word_num] &=
1709 			    rte_cpu_to_le_32(~(1UL << bit_num));
1710 		else
1711 			desc[1].data[word_num] |=
1712 			    rte_cpu_to_le_32(1UL << bit_num);
1713 	} else {
1714 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1715 		bit_num = vfid % 32;
1716 		if (clr)
1717 			desc[2].data[word_num] &=
1718 			    rte_cpu_to_le_32(~(1UL << bit_num));
1719 		else
1720 			desc[2].data[word_num] |=
1721 			    rte_cpu_to_le_32(1UL << bit_num);
1722 	}
1723 }
1724 
1725 static int
1726 hns3_add_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1727 {
1728 	struct hns3_cmd_desc desc[HNS3_MC_MAC_VLAN_OPS_DESC_NUM];
1729 	struct hns3_mac_vlan_tbl_entry_cmd req;
1730 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1731 	uint8_t vf_id;
1732 	int ret;
1733 
1734 	/* Check if mac addr is valid */
1735 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1736 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1737 				      mac_addr);
1738 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1739 			 mac_str);
1740 		return -EINVAL;
1741 	}
1742 
1743 	memset(&req, 0, sizeof(req));
1744 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1745 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1746 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1747 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1748 	if (ret) {
1749 		/* This mac addr do not exist, add new entry for it */
1750 		memset(desc[0].data, 0, sizeof(desc[0].data));
1751 		memset(desc[1].data, 0, sizeof(desc[0].data));
1752 		memset(desc[2].data, 0, sizeof(desc[0].data));
1753 	}
1754 
1755 	/*
1756 	 * In current version VF is not supported when PF is driven by DPDK
1757 	 * driver, just need to configure parameters for PF vport.
1758 	 */
1759 	vf_id = HNS3_PF_FUNC_ID;
1760 	hns3_update_desc_vfid(desc, vf_id, false);
1761 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc,
1762 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1763 	if (ret) {
1764 		if (ret == -ENOSPC)
1765 			hns3_err(hw, "mc mac vlan table is full");
1766 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1767 				      mac_addr);
1768 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1769 	}
1770 
1771 	return ret;
1772 }
1773 
1774 static int
1775 hns3_remove_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1776 {
1777 	struct hns3_mac_vlan_tbl_entry_cmd req;
1778 	struct hns3_cmd_desc desc[3];
1779 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1780 	uint8_t vf_id;
1781 	int ret;
1782 
1783 	/* Check if mac addr is valid */
1784 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1785 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1786 				      mac_addr);
1787 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1788 			 mac_str);
1789 		return -EINVAL;
1790 	}
1791 
1792 	memset(&req, 0, sizeof(req));
1793 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1794 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1795 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1796 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1797 	if (ret == 0) {
1798 		/*
1799 		 * This mac addr exist, remove this handle's VFID for it.
1800 		 * In current version VF is not supported when PF is driven by
1801 		 * DPDK driver, just need to configure parameters for PF vport.
1802 		 */
1803 		vf_id = HNS3_PF_FUNC_ID;
1804 		hns3_update_desc_vfid(desc, vf_id, true);
1805 
1806 		/* All the vfid is zero, so need to delete this entry */
1807 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1808 	} else if (ret == -ENOENT) {
1809 		/* This mac addr doesn't exist. */
1810 		return 0;
1811 	}
1812 
1813 	if (ret) {
1814 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1815 				      mac_addr);
1816 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1817 	}
1818 
1819 	return ret;
1820 }
1821 
1822 static int
1823 hns3_check_mq_mode(struct rte_eth_dev *dev)
1824 {
1825 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1826 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1827 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1828 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1829 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
1830 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
1831 	uint8_t num_tc;
1832 	int max_tc = 0;
1833 	int i;
1834 
1835 	if (((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_VMDQ_FLAG) ||
1836 	    (tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_DCB ||
1837 	     tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_ONLY)) {
1838 		hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.",
1839 			 rx_mq_mode, tx_mq_mode);
1840 		return -EOPNOTSUPP;
1841 	}
1842 
1843 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
1844 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
1845 	if ((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
1846 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
1847 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
1848 				 dcb_rx_conf->nb_tcs, pf->tc_max);
1849 			return -EINVAL;
1850 		}
1851 
1852 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
1853 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
1854 			hns3_err(hw, "on RTE_ETH_MQ_RX_DCB_RSS mode, "
1855 				 "nb_tcs(%d) != %d or %d in rx direction.",
1856 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
1857 			return -EINVAL;
1858 		}
1859 
1860 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
1861 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
1862 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
1863 			return -EINVAL;
1864 		}
1865 
1866 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
1867 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
1868 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
1869 					 "is not equal to one in tx direction.",
1870 					 i, dcb_rx_conf->dcb_tc[i]);
1871 				return -EINVAL;
1872 			}
1873 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
1874 				max_tc = dcb_rx_conf->dcb_tc[i];
1875 		}
1876 
1877 		num_tc = max_tc + 1;
1878 		if (num_tc > dcb_rx_conf->nb_tcs) {
1879 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
1880 				 num_tc, dcb_rx_conf->nb_tcs);
1881 			return -EINVAL;
1882 		}
1883 	}
1884 
1885 	return 0;
1886 }
1887 
1888 static int
1889 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
1890 			   enum hns3_ring_type queue_type, uint16_t queue_id)
1891 {
1892 	struct hns3_cmd_desc desc;
1893 	struct hns3_ctrl_vector_chain_cmd *req =
1894 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
1895 	enum hns3_opcode_type op;
1896 	uint16_t tqp_type_and_id = 0;
1897 	uint16_t type;
1898 	uint16_t gl;
1899 	int ret;
1900 
1901 	op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
1902 	hns3_cmd_setup_basic_desc(&desc, op, false);
1903 	req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
1904 					      HNS3_TQP_INT_ID_L_S);
1905 	req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
1906 					      HNS3_TQP_INT_ID_H_S);
1907 
1908 	if (queue_type == HNS3_RING_TYPE_RX)
1909 		gl = HNS3_RING_GL_RX;
1910 	else
1911 		gl = HNS3_RING_GL_TX;
1912 
1913 	type = queue_type;
1914 
1915 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
1916 		       type);
1917 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
1918 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
1919 		       gl);
1920 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
1921 	req->int_cause_num = 1;
1922 	ret = hns3_cmd_send(hw, &desc, 1);
1923 	if (ret) {
1924 		hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.",
1925 			 en ? "Map" : "Unmap", queue_id, vector_id, ret);
1926 		return ret;
1927 	}
1928 
1929 	return 0;
1930 }
1931 
1932 static int
1933 hns3_setup_dcb(struct rte_eth_dev *dev)
1934 {
1935 	struct hns3_adapter *hns = dev->data->dev_private;
1936 	struct hns3_hw *hw = &hns->hw;
1937 	int ret;
1938 
1939 	if (!hns3_dev_get_support(hw, DCB)) {
1940 		hns3_err(hw, "this port does not support dcb configurations.");
1941 		return -EOPNOTSUPP;
1942 	}
1943 
1944 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
1945 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
1946 		return -EOPNOTSUPP;
1947 	}
1948 
1949 	ret = hns3_dcb_configure(hns);
1950 	if (ret)
1951 		hns3_err(hw, "failed to config dcb: %d", ret);
1952 
1953 	return ret;
1954 }
1955 
1956 static int
1957 hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds)
1958 {
1959 	int ret;
1960 
1961 	/*
1962 	 * Some hardware doesn't support auto-negotiation, but users may not
1963 	 * configure link_speeds (default 0), which means auto-negotiation.
1964 	 * In this case, it should return success.
1965 	 */
1966 	if (link_speeds == RTE_ETH_LINK_SPEED_AUTONEG &&
1967 	    hw->mac.support_autoneg == 0)
1968 		return 0;
1969 
1970 	if (link_speeds != RTE_ETH_LINK_SPEED_AUTONEG) {
1971 		ret = hns3_check_port_speed(hw, link_speeds);
1972 		if (ret)
1973 			return ret;
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 static int
1980 hns3_check_dev_conf(struct rte_eth_dev *dev)
1981 {
1982 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1983 	struct rte_eth_conf *conf = &dev->data->dev_conf;
1984 	int ret;
1985 
1986 	ret = hns3_check_mq_mode(dev);
1987 	if (ret)
1988 		return ret;
1989 
1990 	return hns3_check_link_speed(hw, conf->link_speeds);
1991 }
1992 
1993 static int
1994 hns3_dev_configure(struct rte_eth_dev *dev)
1995 {
1996 	struct hns3_adapter *hns = dev->data->dev_private;
1997 	struct rte_eth_conf *conf = &dev->data->dev_conf;
1998 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
1999 	struct hns3_hw *hw = &hns->hw;
2000 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2001 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2002 	struct rte_eth_rss_conf rss_conf;
2003 	bool gro_en;
2004 	int ret;
2005 
2006 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2007 
2008 	/*
2009 	 * Some versions of hardware network engine does not support
2010 	 * individually enable/disable/reset the Tx or Rx queue. These devices
2011 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
2012 	 * numbers of Tx queues allocated by upper applications are not equal to
2013 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2014 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2015 	 * work as usual. But these fake queues are imperceptible, and can not
2016 	 * be used by upper applications.
2017 	 */
2018 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2019 	if (ret) {
2020 		hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
2021 		hw->cfg_max_queues = 0;
2022 		return ret;
2023 	}
2024 
2025 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2026 	ret = hns3_check_dev_conf(dev);
2027 	if (ret)
2028 		goto cfg_err;
2029 
2030 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
2031 		ret = hns3_setup_dcb(dev);
2032 		if (ret)
2033 			goto cfg_err;
2034 	}
2035 
2036 	/* When RSS is not configured, redirect the packet queue 0 */
2037 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
2038 		conf->rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2039 		rss_conf = conf->rx_adv_conf.rss_conf;
2040 		hw->rss_dis_flag = false;
2041 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2042 		if (ret)
2043 			goto cfg_err;
2044 	}
2045 
2046 	ret = hns3_dev_mtu_set(dev, conf->rxmode.mtu);
2047 	if (ret != 0)
2048 		goto cfg_err;
2049 
2050 	ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2051 	if (ret)
2052 		goto cfg_err;
2053 
2054 	ret = hns3_dev_configure_vlan(dev);
2055 	if (ret)
2056 		goto cfg_err;
2057 
2058 	/* config hardware GRO */
2059 	gro_en = conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO ? true : false;
2060 	ret = hns3_config_gro(hw, gro_en);
2061 	if (ret)
2062 		goto cfg_err;
2063 
2064 	hns3_init_rx_ptype_tble(dev);
2065 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2066 
2067 	return 0;
2068 
2069 cfg_err:
2070 	hw->cfg_max_queues = 0;
2071 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2072 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2073 
2074 	return ret;
2075 }
2076 
2077 static int
2078 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2079 {
2080 	struct hns3_config_max_frm_size_cmd *req;
2081 	struct hns3_cmd_desc desc;
2082 
2083 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2084 
2085 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2086 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2087 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2088 
2089 	return hns3_cmd_send(hw, &desc, 1);
2090 }
2091 
2092 static int
2093 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2094 {
2095 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2096 	uint16_t original_mps = hns->pf.mps;
2097 	int err;
2098 	int ret;
2099 
2100 	ret = hns3_set_mac_mtu(hw, mps);
2101 	if (ret) {
2102 		hns3_err(hw, "failed to set mtu, ret = %d", ret);
2103 		return ret;
2104 	}
2105 
2106 	hns->pf.mps = mps;
2107 	ret = hns3_buffer_alloc(hw);
2108 	if (ret) {
2109 		hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2110 		goto rollback;
2111 	}
2112 
2113 	return 0;
2114 
2115 rollback:
2116 	err = hns3_set_mac_mtu(hw, original_mps);
2117 	if (err) {
2118 		hns3_err(hw, "fail to rollback MTU, err = %d", err);
2119 		return ret;
2120 	}
2121 	hns->pf.mps = original_mps;
2122 
2123 	return ret;
2124 }
2125 
2126 static int
2127 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2128 {
2129 	struct hns3_adapter *hns = dev->data->dev_private;
2130 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2131 	struct hns3_hw *hw = &hns->hw;
2132 	int ret;
2133 
2134 	if (dev->data->dev_started) {
2135 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2136 			 "before configuration", dev->data->port_id);
2137 		return -EBUSY;
2138 	}
2139 
2140 	rte_spinlock_lock(&hw->lock);
2141 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2142 
2143 	/*
2144 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2145 	 * assign to "uint16_t" type variable.
2146 	 */
2147 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2148 	if (ret) {
2149 		rte_spinlock_unlock(&hw->lock);
2150 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2151 			 dev->data->port_id, mtu, ret);
2152 		return ret;
2153 	}
2154 
2155 	rte_spinlock_unlock(&hw->lock);
2156 
2157 	return 0;
2158 }
2159 
2160 static uint32_t
2161 hns3_get_copper_port_speed_capa(uint32_t supported_speed)
2162 {
2163 	uint32_t speed_capa = 0;
2164 
2165 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT)
2166 		speed_capa |= RTE_ETH_LINK_SPEED_10M_HD;
2167 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT)
2168 		speed_capa |= RTE_ETH_LINK_SPEED_10M;
2169 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT)
2170 		speed_capa |= RTE_ETH_LINK_SPEED_100M_HD;
2171 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT)
2172 		speed_capa |= RTE_ETH_LINK_SPEED_100M;
2173 	if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT)
2174 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2175 
2176 	return speed_capa;
2177 }
2178 
2179 static uint32_t
2180 hns3_get_firber_port_speed_capa(uint32_t supported_speed)
2181 {
2182 	uint32_t speed_capa = 0;
2183 
2184 	if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT)
2185 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2186 	if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT)
2187 		speed_capa |= RTE_ETH_LINK_SPEED_10G;
2188 	if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT)
2189 		speed_capa |= RTE_ETH_LINK_SPEED_25G;
2190 	if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT)
2191 		speed_capa |= RTE_ETH_LINK_SPEED_40G;
2192 	if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT)
2193 		speed_capa |= RTE_ETH_LINK_SPEED_50G;
2194 	if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT)
2195 		speed_capa |= RTE_ETH_LINK_SPEED_100G;
2196 	if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT)
2197 		speed_capa |= RTE_ETH_LINK_SPEED_200G;
2198 
2199 	return speed_capa;
2200 }
2201 
2202 uint32_t
2203 hns3_get_speed_capa(struct hns3_hw *hw)
2204 {
2205 	struct hns3_mac *mac = &hw->mac;
2206 	uint32_t speed_capa;
2207 
2208 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
2209 		speed_capa =
2210 			hns3_get_copper_port_speed_capa(mac->supported_speed);
2211 	else
2212 		speed_capa =
2213 			hns3_get_firber_port_speed_capa(mac->supported_speed);
2214 
2215 	if (mac->support_autoneg == 0)
2216 		speed_capa |= RTE_ETH_LINK_SPEED_FIXED;
2217 
2218 	return speed_capa;
2219 }
2220 
2221 static int
2222 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2223 {
2224 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2225 	int ret;
2226 
2227 	(void)hns3_update_link_status(hw);
2228 
2229 	ret = hns3_update_link_info(eth_dev);
2230 	if (ret)
2231 		hw->mac.link_status = RTE_ETH_LINK_DOWN;
2232 
2233 	return ret;
2234 }
2235 
2236 static void
2237 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2238 		      struct rte_eth_link *new_link)
2239 {
2240 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2241 	struct hns3_mac *mac = &hw->mac;
2242 
2243 	switch (mac->link_speed) {
2244 	case RTE_ETH_SPEED_NUM_10M:
2245 	case RTE_ETH_SPEED_NUM_100M:
2246 	case RTE_ETH_SPEED_NUM_1G:
2247 	case RTE_ETH_SPEED_NUM_10G:
2248 	case RTE_ETH_SPEED_NUM_25G:
2249 	case RTE_ETH_SPEED_NUM_40G:
2250 	case RTE_ETH_SPEED_NUM_50G:
2251 	case RTE_ETH_SPEED_NUM_100G:
2252 	case RTE_ETH_SPEED_NUM_200G:
2253 		if (mac->link_status)
2254 			new_link->link_speed = mac->link_speed;
2255 		break;
2256 	default:
2257 		if (mac->link_status)
2258 			new_link->link_speed = RTE_ETH_SPEED_NUM_UNKNOWN;
2259 		break;
2260 	}
2261 
2262 	if (!mac->link_status)
2263 		new_link->link_speed = RTE_ETH_SPEED_NUM_NONE;
2264 
2265 	new_link->link_duplex = mac->link_duplex;
2266 	new_link->link_status = mac->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
2267 	new_link->link_autoneg = mac->link_autoneg;
2268 }
2269 
2270 static int
2271 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2272 {
2273 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2274 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2275 
2276 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2277 	uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2278 	struct hns3_mac *mac = &hw->mac;
2279 	struct rte_eth_link new_link;
2280 	int ret;
2281 
2282 	/* When port is stopped, report link down. */
2283 	if (eth_dev->data->dev_started == 0) {
2284 		new_link.link_autoneg = mac->link_autoneg;
2285 		new_link.link_duplex = mac->link_duplex;
2286 		new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
2287 		new_link.link_status = RTE_ETH_LINK_DOWN;
2288 		goto out;
2289 	}
2290 
2291 	do {
2292 		ret = hns3_update_port_link_info(eth_dev);
2293 		if (ret) {
2294 			hns3_err(hw, "failed to get port link info, ret = %d.",
2295 				 ret);
2296 			break;
2297 		}
2298 
2299 		if (!wait_to_complete || mac->link_status == RTE_ETH_LINK_UP)
2300 			break;
2301 
2302 		rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2303 	} while (retry_cnt--);
2304 
2305 	memset(&new_link, 0, sizeof(new_link));
2306 	hns3_setup_linkstatus(eth_dev, &new_link);
2307 
2308 out:
2309 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2310 }
2311 
2312 static int
2313 hns3_dev_set_link_up(struct rte_eth_dev *dev)
2314 {
2315 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2316 	int ret;
2317 
2318 	/*
2319 	 * The "tx_pkt_burst" will be restored. But the secondary process does
2320 	 * not support the mechanism for notifying the primary process.
2321 	 */
2322 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2323 		hns3_err(hw, "secondary process does not support to set link up.");
2324 		return -ENOTSUP;
2325 	}
2326 
2327 	/*
2328 	 * If device isn't started Rx/Tx function is still disabled, setting
2329 	 * link up is not allowed. But it is probably better to return success
2330 	 * to reduce the impact on the upper layer.
2331 	 */
2332 	if (hw->adapter_state != HNS3_NIC_STARTED) {
2333 		hns3_info(hw, "device isn't started, can't set link up.");
2334 		return 0;
2335 	}
2336 
2337 	if (!hw->set_link_down)
2338 		return 0;
2339 
2340 	rte_spinlock_lock(&hw->lock);
2341 	ret = hns3_cfg_mac_mode(hw, true);
2342 	if (ret) {
2343 		rte_spinlock_unlock(&hw->lock);
2344 		hns3_err(hw, "failed to set link up, ret = %d", ret);
2345 		return ret;
2346 	}
2347 
2348 	hw->set_link_down = false;
2349 	hns3_start_tx_datapath(dev);
2350 	rte_spinlock_unlock(&hw->lock);
2351 
2352 	return 0;
2353 }
2354 
2355 static int
2356 hns3_dev_set_link_down(struct rte_eth_dev *dev)
2357 {
2358 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2359 	int ret;
2360 
2361 	/*
2362 	 * The "tx_pkt_burst" will be set to dummy function. But the secondary
2363 	 * process does not support the mechanism for notifying the primary
2364 	 * process.
2365 	 */
2366 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2367 		hns3_err(hw, "secondary process does not support to set link down.");
2368 		return -ENOTSUP;
2369 	}
2370 
2371 	/*
2372 	 * If device isn't started or the API has been called, link status is
2373 	 * down, return success.
2374 	 */
2375 	if (hw->adapter_state != HNS3_NIC_STARTED || hw->set_link_down)
2376 		return 0;
2377 
2378 	rte_spinlock_lock(&hw->lock);
2379 	hns3_stop_tx_datapath(dev);
2380 	ret = hns3_cfg_mac_mode(hw, false);
2381 	if (ret) {
2382 		hns3_start_tx_datapath(dev);
2383 		rte_spinlock_unlock(&hw->lock);
2384 		hns3_err(hw, "failed to set link down, ret = %d", ret);
2385 		return ret;
2386 	}
2387 
2388 	hw->set_link_down = true;
2389 	rte_spinlock_unlock(&hw->lock);
2390 
2391 	return 0;
2392 }
2393 
2394 static int
2395 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2396 {
2397 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2398 	struct hns3_pf *pf = &hns->pf;
2399 
2400 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2401 		return -EINVAL;
2402 
2403 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2404 
2405 	return 0;
2406 }
2407 
2408 static int
2409 hns3_query_function_status(struct hns3_hw *hw)
2410 {
2411 #define HNS3_QUERY_MAX_CNT		10
2412 #define HNS3_QUERY_SLEEP_MSCOEND	1
2413 	struct hns3_func_status_cmd *req;
2414 	struct hns3_cmd_desc desc;
2415 	int timeout = 0;
2416 	int ret;
2417 
2418 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2419 	req = (struct hns3_func_status_cmd *)desc.data;
2420 
2421 	do {
2422 		ret = hns3_cmd_send(hw, &desc, 1);
2423 		if (ret) {
2424 			PMD_INIT_LOG(ERR, "query function status failed %d",
2425 				     ret);
2426 			return ret;
2427 		}
2428 
2429 		/* Check pf reset is done */
2430 		if (req->pf_state)
2431 			break;
2432 
2433 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2434 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2435 
2436 	return hns3_parse_func_status(hw, req);
2437 }
2438 
2439 static int
2440 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2441 {
2442 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2443 	struct hns3_pf *pf = &hns->pf;
2444 
2445 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2446 		/*
2447 		 * The total_tqps_num obtained from firmware is maximum tqp
2448 		 * numbers of this port, which should be used for PF and VFs.
2449 		 * There is no need for pf to have so many tqp numbers in
2450 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2451 		 * coming from config file, is assigned to maximum queue number
2452 		 * for the PF of this port by user. So users can modify the
2453 		 * maximum queue number of PF according to their own application
2454 		 * scenarios, which is more flexible to use. In addition, many
2455 		 * memories can be saved due to allocating queue statistics
2456 		 * room according to the actual number of queues required. The
2457 		 * maximum queue number of PF for network engine with
2458 		 * revision_id greater than 0x30 is assigned by config file.
2459 		 */
2460 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2461 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2462 				 "must be greater than 0.",
2463 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2464 			return -EINVAL;
2465 		}
2466 
2467 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2468 				       hw->total_tqps_num);
2469 	} else {
2470 		/*
2471 		 * Due to the limitation on the number of PF interrupts
2472 		 * available, the maximum queue number assigned to PF on
2473 		 * the network engine with revision_id 0x21 is 64.
2474 		 */
2475 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2476 				       HNS3_MAX_TQP_NUM_HIP08_PF);
2477 	}
2478 
2479 	return 0;
2480 }
2481 
2482 static int
2483 hns3_query_pf_resource(struct hns3_hw *hw)
2484 {
2485 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2486 	struct hns3_pf *pf = &hns->pf;
2487 	struct hns3_pf_res_cmd *req;
2488 	struct hns3_cmd_desc desc;
2489 	int ret;
2490 
2491 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2492 	ret = hns3_cmd_send(hw, &desc, 1);
2493 	if (ret) {
2494 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2495 		return ret;
2496 	}
2497 
2498 	req = (struct hns3_pf_res_cmd *)desc.data;
2499 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2500 			     rte_le_to_cpu_16(req->ext_tqp_num);
2501 	ret = hns3_get_pf_max_tqp_num(hw);
2502 	if (ret)
2503 		return ret;
2504 
2505 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2506 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2507 
2508 	if (req->tx_buf_size)
2509 		pf->tx_buf_size =
2510 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2511 	else
2512 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2513 
2514 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2515 
2516 	if (req->dv_buf_size)
2517 		pf->dv_buf_size =
2518 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2519 	else
2520 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2521 
2522 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2523 
2524 	hw->num_msi =
2525 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2526 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2527 
2528 	return 0;
2529 }
2530 
2531 static void
2532 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2533 {
2534 	struct hns3_cfg_param_cmd *req;
2535 	uint64_t mac_addr_tmp_high;
2536 	uint8_t ext_rss_size_max;
2537 	uint64_t mac_addr_tmp;
2538 	uint32_t i;
2539 
2540 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2541 
2542 	/* get the configuration */
2543 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2544 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2545 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2546 					   HNS3_CFG_TQP_DESC_N_M,
2547 					   HNS3_CFG_TQP_DESC_N_S);
2548 
2549 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2550 				       HNS3_CFG_PHY_ADDR_M,
2551 				       HNS3_CFG_PHY_ADDR_S);
2552 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2553 					 HNS3_CFG_MEDIA_TP_M,
2554 					 HNS3_CFG_MEDIA_TP_S);
2555 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2556 					 HNS3_CFG_RX_BUF_LEN_M,
2557 					 HNS3_CFG_RX_BUF_LEN_S);
2558 	/* get mac address */
2559 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2560 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2561 					   HNS3_CFG_MAC_ADDR_H_M,
2562 					   HNS3_CFG_MAC_ADDR_H_S);
2563 
2564 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2565 
2566 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2567 					    HNS3_CFG_DEFAULT_SPEED_M,
2568 					    HNS3_CFG_DEFAULT_SPEED_S);
2569 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2570 					   HNS3_CFG_RSS_SIZE_M,
2571 					   HNS3_CFG_RSS_SIZE_S);
2572 
2573 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2574 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2575 
2576 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2577 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2578 
2579 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2580 					    HNS3_CFG_SPEED_ABILITY_M,
2581 					    HNS3_CFG_SPEED_ABILITY_S);
2582 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2583 					HNS3_CFG_UMV_TBL_SPACE_M,
2584 					HNS3_CFG_UMV_TBL_SPACE_S);
2585 	if (!cfg->umv_space)
2586 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2587 
2588 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2589 					       HNS3_CFG_EXT_RSS_SIZE_M,
2590 					       HNS3_CFG_EXT_RSS_SIZE_S);
2591 	/*
2592 	 * Field ext_rss_size_max obtained from firmware will be more flexible
2593 	 * for future changes and expansions, which is an exponent of 2, instead
2594 	 * of reading out directly. If this field is not zero, hns3 PF PMD
2595 	 * uses it as rss_size_max under one TC. Device, whose revision
2596 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2597 	 * maximum number of queues supported under a TC through this field.
2598 	 */
2599 	if (ext_rss_size_max)
2600 		cfg->rss_size_max = 1U << ext_rss_size_max;
2601 }
2602 
2603 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2604  * @hw: pointer to struct hns3_hw
2605  * @hcfg: the config structure to be getted
2606  */
2607 static int
2608 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2609 {
2610 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2611 	struct hns3_cfg_param_cmd *req;
2612 	uint32_t offset;
2613 	uint32_t i;
2614 	int ret;
2615 
2616 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2617 		offset = 0;
2618 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2619 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2620 					  true);
2621 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2622 			       i * HNS3_CFG_RD_LEN_BYTES);
2623 		/* Len should be divided by 4 when send to hardware */
2624 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2625 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2626 		req->offset = rte_cpu_to_le_32(offset);
2627 	}
2628 
2629 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2630 	if (ret) {
2631 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2632 		return ret;
2633 	}
2634 
2635 	hns3_parse_cfg(hcfg, desc);
2636 
2637 	return 0;
2638 }
2639 
2640 static int
2641 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2642 {
2643 	switch (speed_cmd) {
2644 	case HNS3_CFG_SPEED_10M:
2645 		*speed = RTE_ETH_SPEED_NUM_10M;
2646 		break;
2647 	case HNS3_CFG_SPEED_100M:
2648 		*speed = RTE_ETH_SPEED_NUM_100M;
2649 		break;
2650 	case HNS3_CFG_SPEED_1G:
2651 		*speed = RTE_ETH_SPEED_NUM_1G;
2652 		break;
2653 	case HNS3_CFG_SPEED_10G:
2654 		*speed = RTE_ETH_SPEED_NUM_10G;
2655 		break;
2656 	case HNS3_CFG_SPEED_25G:
2657 		*speed = RTE_ETH_SPEED_NUM_25G;
2658 		break;
2659 	case HNS3_CFG_SPEED_40G:
2660 		*speed = RTE_ETH_SPEED_NUM_40G;
2661 		break;
2662 	case HNS3_CFG_SPEED_50G:
2663 		*speed = RTE_ETH_SPEED_NUM_50G;
2664 		break;
2665 	case HNS3_CFG_SPEED_100G:
2666 		*speed = RTE_ETH_SPEED_NUM_100G;
2667 		break;
2668 	case HNS3_CFG_SPEED_200G:
2669 		*speed = RTE_ETH_SPEED_NUM_200G;
2670 		break;
2671 	default:
2672 		return -EINVAL;
2673 	}
2674 
2675 	return 0;
2676 }
2677 
2678 static void
2679 hns3_set_default_dev_specifications(struct hns3_hw *hw)
2680 {
2681 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
2682 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
2683 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
2684 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
2685 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
2686 }
2687 
2688 static void
2689 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
2690 {
2691 	struct hns3_dev_specs_0_cmd *req0;
2692 
2693 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
2694 
2695 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
2696 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
2697 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
2698 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
2699 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
2700 }
2701 
2702 static int
2703 hns3_check_dev_specifications(struct hns3_hw *hw)
2704 {
2705 	if (hw->rss_ind_tbl_size == 0 ||
2706 	    hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
2707 		hns3_err(hw, "the size of hash lookup table configured (%u)"
2708 			      " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
2709 			      HNS3_RSS_IND_TBL_SIZE_MAX);
2710 		return -EINVAL;
2711 	}
2712 
2713 	return 0;
2714 }
2715 
2716 static int
2717 hns3_query_dev_specifications(struct hns3_hw *hw)
2718 {
2719 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
2720 	int ret;
2721 	int i;
2722 
2723 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2724 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
2725 					  true);
2726 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
2727 	}
2728 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
2729 
2730 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
2731 	if (ret)
2732 		return ret;
2733 
2734 	hns3_parse_dev_specifications(hw, desc);
2735 
2736 	return hns3_check_dev_specifications(hw);
2737 }
2738 
2739 static int
2740 hns3_get_capability(struct hns3_hw *hw)
2741 {
2742 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2743 	struct rte_pci_device *pci_dev;
2744 	struct hns3_pf *pf = &hns->pf;
2745 	struct rte_eth_dev *eth_dev;
2746 	uint16_t device_id;
2747 	uint8_t revision;
2748 	int ret;
2749 
2750 	eth_dev = &rte_eth_devices[hw->data->port_id];
2751 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2752 	device_id = pci_dev->id.device_id;
2753 
2754 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
2755 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
2756 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
2757 	    device_id == HNS3_DEV_ID_200G_RDMA)
2758 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
2759 
2760 	/* Get PCI revision id */
2761 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
2762 				  HNS3_PCI_REVISION_ID);
2763 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
2764 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
2765 			     ret);
2766 		return -EIO;
2767 	}
2768 	hw->revision = revision;
2769 
2770 	if (revision < PCI_REVISION_ID_HIP09_A) {
2771 		hns3_set_default_dev_specifications(hw);
2772 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
2773 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
2774 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
2775 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
2776 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
2777 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
2778 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
2779 		hw->rss_info.ipv6_sctp_offload_supported = false;
2780 		hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
2781 		pf->support_multi_tc_pause = false;
2782 		return 0;
2783 	}
2784 
2785 	ret = hns3_query_dev_specifications(hw);
2786 	if (ret) {
2787 		PMD_INIT_LOG(ERR,
2788 			     "failed to query dev specifications, ret = %d",
2789 			     ret);
2790 		return ret;
2791 	}
2792 
2793 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
2794 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
2795 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
2796 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
2797 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
2798 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
2799 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
2800 	hw->rss_info.ipv6_sctp_offload_supported = true;
2801 	hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
2802 	pf->support_multi_tc_pause = true;
2803 
2804 	return 0;
2805 }
2806 
2807 static int
2808 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
2809 {
2810 	int ret;
2811 
2812 	switch (media_type) {
2813 	case HNS3_MEDIA_TYPE_COPPER:
2814 		if (!hns3_dev_get_support(hw, COPPER)) {
2815 			PMD_INIT_LOG(ERR,
2816 				     "Media type is copper, not supported.");
2817 			ret = -EOPNOTSUPP;
2818 		} else {
2819 			ret = 0;
2820 		}
2821 		break;
2822 	case HNS3_MEDIA_TYPE_FIBER:
2823 		ret = 0;
2824 		break;
2825 	case HNS3_MEDIA_TYPE_BACKPLANE:
2826 		PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
2827 		ret = -EOPNOTSUPP;
2828 		break;
2829 	default:
2830 		PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
2831 		ret = -EINVAL;
2832 		break;
2833 	}
2834 
2835 	return ret;
2836 }
2837 
2838 static int
2839 hns3_get_board_configuration(struct hns3_hw *hw)
2840 {
2841 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2842 	struct hns3_pf *pf = &hns->pf;
2843 	struct hns3_cfg cfg;
2844 	int ret;
2845 
2846 	ret = hns3_get_board_cfg(hw, &cfg);
2847 	if (ret) {
2848 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2849 		return ret;
2850 	}
2851 
2852 	ret = hns3_check_media_type(hw, cfg.media_type);
2853 	if (ret)
2854 		return ret;
2855 
2856 	hw->mac.media_type = cfg.media_type;
2857 	hw->rss_size_max = cfg.rss_size_max;
2858 	hw->rss_dis_flag = false;
2859 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2860 	hw->mac.phy_addr = cfg.phy_addr;
2861 	hw->num_tx_desc = cfg.tqp_desc_num;
2862 	hw->num_rx_desc = cfg.tqp_desc_num;
2863 	hw->dcb_info.num_pg = 1;
2864 	hw->dcb_info.hw_pfc_map = 0;
2865 
2866 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2867 	if (ret) {
2868 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
2869 			     cfg.default_speed, ret);
2870 		return ret;
2871 	}
2872 
2873 	pf->tc_max = cfg.tc_num;
2874 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2875 		PMD_INIT_LOG(WARNING,
2876 			     "Get TC num(%u) from flash, set TC num to 1",
2877 			     pf->tc_max);
2878 		pf->tc_max = 1;
2879 	}
2880 
2881 	/* Dev does not support DCB */
2882 	if (!hns3_dev_get_support(hw, DCB)) {
2883 		pf->tc_max = 1;
2884 		pf->pfc_max = 0;
2885 	} else
2886 		pf->pfc_max = pf->tc_max;
2887 
2888 	hw->dcb_info.num_tc = 1;
2889 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2890 				     hw->tqps_num / hw->dcb_info.num_tc);
2891 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2892 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2893 
2894 	pf->wanted_umv_size = cfg.umv_space;
2895 
2896 	return ret;
2897 }
2898 
2899 static int
2900 hns3_get_configuration(struct hns3_hw *hw)
2901 {
2902 	int ret;
2903 
2904 	ret = hns3_query_function_status(hw);
2905 	if (ret) {
2906 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2907 		return ret;
2908 	}
2909 
2910 	/* Get device capability */
2911 	ret = hns3_get_capability(hw);
2912 	if (ret) {
2913 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
2914 		return ret;
2915 	}
2916 
2917 	/* Get pf resource */
2918 	ret = hns3_query_pf_resource(hw);
2919 	if (ret) {
2920 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
2921 		return ret;
2922 	}
2923 
2924 	ret = hns3_get_board_configuration(hw);
2925 	if (ret) {
2926 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
2927 		return ret;
2928 	}
2929 
2930 	ret = hns3_query_dev_fec_info(hw);
2931 	if (ret)
2932 		PMD_INIT_LOG(ERR,
2933 			     "failed to query FEC information, ret = %d", ret);
2934 
2935 	return ret;
2936 }
2937 
2938 static int
2939 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
2940 		      uint16_t tqp_vid, bool is_pf)
2941 {
2942 	struct hns3_tqp_map_cmd *req;
2943 	struct hns3_cmd_desc desc;
2944 	int ret;
2945 
2946 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
2947 
2948 	req = (struct hns3_tqp_map_cmd *)desc.data;
2949 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
2950 	req->tqp_vf = func_id;
2951 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
2952 	if (!is_pf)
2953 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
2954 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
2955 
2956 	ret = hns3_cmd_send(hw, &desc, 1);
2957 	if (ret)
2958 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
2959 
2960 	return ret;
2961 }
2962 
2963 static int
2964 hns3_map_tqp(struct hns3_hw *hw)
2965 {
2966 	int ret;
2967 	int i;
2968 
2969 	/*
2970 	 * In current version, VF is not supported when PF is driven by DPDK
2971 	 * driver, so we assign total tqps_num tqps allocated to this port
2972 	 * to PF.
2973 	 */
2974 	for (i = 0; i < hw->total_tqps_num; i++) {
2975 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
2976 		if (ret)
2977 			return ret;
2978 	}
2979 
2980 	return 0;
2981 }
2982 
2983 static int
2984 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
2985 {
2986 	struct hns3_config_mac_speed_dup_cmd *req;
2987 	struct hns3_cmd_desc desc;
2988 	int ret;
2989 
2990 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
2991 
2992 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
2993 
2994 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
2995 
2996 	switch (speed) {
2997 	case RTE_ETH_SPEED_NUM_10M:
2998 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2999 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3000 		break;
3001 	case RTE_ETH_SPEED_NUM_100M:
3002 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3003 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3004 		break;
3005 	case RTE_ETH_SPEED_NUM_1G:
3006 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3007 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3008 		break;
3009 	case RTE_ETH_SPEED_NUM_10G:
3010 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3011 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3012 		break;
3013 	case RTE_ETH_SPEED_NUM_25G:
3014 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3015 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3016 		break;
3017 	case RTE_ETH_SPEED_NUM_40G:
3018 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3019 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3020 		break;
3021 	case RTE_ETH_SPEED_NUM_50G:
3022 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3023 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3024 		break;
3025 	case RTE_ETH_SPEED_NUM_100G:
3026 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3027 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3028 		break;
3029 	case RTE_ETH_SPEED_NUM_200G:
3030 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3031 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3032 		break;
3033 	default:
3034 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3035 		return -EINVAL;
3036 	}
3037 
3038 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3039 
3040 	ret = hns3_cmd_send(hw, &desc, 1);
3041 	if (ret)
3042 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3043 
3044 	return ret;
3045 }
3046 
3047 static int
3048 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3049 {
3050 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3051 	struct hns3_pf *pf = &hns->pf;
3052 	struct hns3_priv_buf *priv;
3053 	uint32_t i, total_size;
3054 
3055 	total_size = pf->pkt_buf_size;
3056 
3057 	/* alloc tx buffer for all enabled tc */
3058 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3059 		priv = &buf_alloc->priv_buf[i];
3060 
3061 		if (hw->hw_tc_map & BIT(i)) {
3062 			if (total_size < pf->tx_buf_size)
3063 				return -ENOMEM;
3064 
3065 			priv->tx_buf_size = pf->tx_buf_size;
3066 		} else
3067 			priv->tx_buf_size = 0;
3068 
3069 		total_size -= priv->tx_buf_size;
3070 	}
3071 
3072 	return 0;
3073 }
3074 
3075 static int
3076 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3077 {
3078 /* TX buffer size is unit by 128 byte */
3079 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3080 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3081 	struct hns3_tx_buff_alloc_cmd *req;
3082 	struct hns3_cmd_desc desc;
3083 	uint32_t buf_size;
3084 	uint32_t i;
3085 	int ret;
3086 
3087 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3088 
3089 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3090 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3091 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3092 
3093 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3094 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3095 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3096 	}
3097 
3098 	ret = hns3_cmd_send(hw, &desc, 1);
3099 	if (ret)
3100 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3101 
3102 	return ret;
3103 }
3104 
3105 static int
3106 hns3_get_tc_num(struct hns3_hw *hw)
3107 {
3108 	int cnt = 0;
3109 	uint8_t i;
3110 
3111 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3112 		if (hw->hw_tc_map & BIT(i))
3113 			cnt++;
3114 	return cnt;
3115 }
3116 
3117 static uint32_t
3118 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3119 {
3120 	struct hns3_priv_buf *priv;
3121 	uint32_t rx_priv = 0;
3122 	int i;
3123 
3124 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3125 		priv = &buf_alloc->priv_buf[i];
3126 		if (priv->enable)
3127 			rx_priv += priv->buf_size;
3128 	}
3129 	return rx_priv;
3130 }
3131 
3132 static uint32_t
3133 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3134 {
3135 	uint32_t total_tx_size = 0;
3136 	uint32_t i;
3137 
3138 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3139 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3140 
3141 	return total_tx_size;
3142 }
3143 
3144 /* Get the number of pfc enabled TCs, which have private buffer */
3145 static int
3146 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3147 {
3148 	struct hns3_priv_buf *priv;
3149 	int cnt = 0;
3150 	uint8_t i;
3151 
3152 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3153 		priv = &buf_alloc->priv_buf[i];
3154 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3155 			cnt++;
3156 	}
3157 
3158 	return cnt;
3159 }
3160 
3161 /* Get the number of pfc disabled TCs, which have private buffer */
3162 static int
3163 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3164 			 struct hns3_pkt_buf_alloc *buf_alloc)
3165 {
3166 	struct hns3_priv_buf *priv;
3167 	int cnt = 0;
3168 	uint8_t i;
3169 
3170 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3171 		priv = &buf_alloc->priv_buf[i];
3172 		if (hw->hw_tc_map & BIT(i) &&
3173 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3174 			cnt++;
3175 	}
3176 
3177 	return cnt;
3178 }
3179 
3180 static bool
3181 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3182 		  uint32_t rx_all)
3183 {
3184 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3185 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3186 	struct hns3_pf *pf = &hns->pf;
3187 	uint32_t shared_buf, aligned_mps;
3188 	uint32_t rx_priv;
3189 	uint8_t tc_num;
3190 	uint8_t i;
3191 
3192 	tc_num = hns3_get_tc_num(hw);
3193 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3194 
3195 	if (hns3_dev_get_support(hw, DCB))
3196 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3197 					pf->dv_buf_size;
3198 	else
3199 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3200 					+ pf->dv_buf_size;
3201 
3202 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3203 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3204 			     HNS3_BUF_SIZE_UNIT);
3205 
3206 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3207 	if (rx_all < rx_priv + shared_std)
3208 		return false;
3209 
3210 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3211 	buf_alloc->s_buf.buf_size = shared_buf;
3212 	if (hns3_dev_get_support(hw, DCB)) {
3213 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3214 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3215 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3216 				  HNS3_BUF_SIZE_UNIT);
3217 	} else {
3218 		buf_alloc->s_buf.self.high =
3219 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3220 		buf_alloc->s_buf.self.low = aligned_mps;
3221 	}
3222 
3223 	if (hns3_dev_get_support(hw, DCB)) {
3224 		hi_thrd = shared_buf - pf->dv_buf_size;
3225 
3226 		if (tc_num <= NEED_RESERVE_TC_NUM)
3227 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3228 				  BUF_MAX_PERCENT;
3229 
3230 		if (tc_num)
3231 			hi_thrd = hi_thrd / tc_num;
3232 
3233 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3234 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3235 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3236 	} else {
3237 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3238 		lo_thrd = aligned_mps;
3239 	}
3240 
3241 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3242 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3243 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3244 	}
3245 
3246 	return true;
3247 }
3248 
3249 static bool
3250 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3251 		     struct hns3_pkt_buf_alloc *buf_alloc)
3252 {
3253 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3254 	struct hns3_pf *pf = &hns->pf;
3255 	struct hns3_priv_buf *priv;
3256 	uint32_t aligned_mps;
3257 	uint32_t rx_all;
3258 	uint8_t i;
3259 
3260 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3261 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3262 
3263 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3264 		priv = &buf_alloc->priv_buf[i];
3265 
3266 		priv->enable = 0;
3267 		priv->wl.low = 0;
3268 		priv->wl.high = 0;
3269 		priv->buf_size = 0;
3270 
3271 		if (!(hw->hw_tc_map & BIT(i)))
3272 			continue;
3273 
3274 		priv->enable = 1;
3275 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3276 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3277 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3278 						HNS3_BUF_SIZE_UNIT);
3279 		} else {
3280 			priv->wl.low = 0;
3281 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3282 					aligned_mps;
3283 		}
3284 
3285 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3286 	}
3287 
3288 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3289 }
3290 
3291 static bool
3292 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3293 			     struct hns3_pkt_buf_alloc *buf_alloc)
3294 {
3295 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3296 	struct hns3_pf *pf = &hns->pf;
3297 	struct hns3_priv_buf *priv;
3298 	int no_pfc_priv_num;
3299 	uint32_t rx_all;
3300 	uint8_t mask;
3301 	int i;
3302 
3303 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3304 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3305 
3306 	/* let the last to be cleared first */
3307 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3308 		priv = &buf_alloc->priv_buf[i];
3309 		mask = BIT((uint8_t)i);
3310 		if (hw->hw_tc_map & mask &&
3311 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3312 			/* Clear the no pfc TC private buffer */
3313 			priv->wl.low = 0;
3314 			priv->wl.high = 0;
3315 			priv->buf_size = 0;
3316 			priv->enable = 0;
3317 			no_pfc_priv_num--;
3318 		}
3319 
3320 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3321 		    no_pfc_priv_num == 0)
3322 			break;
3323 	}
3324 
3325 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3326 }
3327 
3328 static bool
3329 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3330 			   struct hns3_pkt_buf_alloc *buf_alloc)
3331 {
3332 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3333 	struct hns3_pf *pf = &hns->pf;
3334 	struct hns3_priv_buf *priv;
3335 	uint32_t rx_all;
3336 	int pfc_priv_num;
3337 	uint8_t mask;
3338 	int i;
3339 
3340 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3341 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3342 
3343 	/* let the last to be cleared first */
3344 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3345 		priv = &buf_alloc->priv_buf[i];
3346 		mask = BIT((uint8_t)i);
3347 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3348 			/* Reduce the number of pfc TC with private buffer */
3349 			priv->wl.low = 0;
3350 			priv->enable = 0;
3351 			priv->wl.high = 0;
3352 			priv->buf_size = 0;
3353 			pfc_priv_num--;
3354 		}
3355 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3356 		    pfc_priv_num == 0)
3357 			break;
3358 	}
3359 
3360 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3361 }
3362 
3363 static bool
3364 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3365 			  struct hns3_pkt_buf_alloc *buf_alloc)
3366 {
3367 #define COMPENSATE_BUFFER	0x3C00
3368 #define COMPENSATE_HALF_MPS_NUM	5
3369 #define PRIV_WL_GAP		0x1800
3370 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3371 	struct hns3_pf *pf = &hns->pf;
3372 	uint32_t tc_num = hns3_get_tc_num(hw);
3373 	uint32_t half_mps = pf->mps >> 1;
3374 	struct hns3_priv_buf *priv;
3375 	uint32_t min_rx_priv;
3376 	uint32_t rx_priv;
3377 	uint8_t i;
3378 
3379 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3380 	if (tc_num)
3381 		rx_priv = rx_priv / tc_num;
3382 
3383 	if (tc_num <= NEED_RESERVE_TC_NUM)
3384 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3385 
3386 	/*
3387 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3388 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3389 	 * buffer if rx_priv is greater than min_rx_priv.
3390 	 */
3391 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3392 			COMPENSATE_HALF_MPS_NUM * half_mps;
3393 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3394 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3395 	if (rx_priv < min_rx_priv)
3396 		return false;
3397 
3398 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3399 		priv = &buf_alloc->priv_buf[i];
3400 		priv->enable = 0;
3401 		priv->wl.low = 0;
3402 		priv->wl.high = 0;
3403 		priv->buf_size = 0;
3404 
3405 		if (!(hw->hw_tc_map & BIT(i)))
3406 			continue;
3407 
3408 		priv->enable = 1;
3409 		priv->buf_size = rx_priv;
3410 		priv->wl.high = rx_priv - pf->dv_buf_size;
3411 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3412 	}
3413 
3414 	buf_alloc->s_buf.buf_size = 0;
3415 
3416 	return true;
3417 }
3418 
3419 /*
3420  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3421  * @hw: pointer to struct hns3_hw
3422  * @buf_alloc: pointer to buffer calculation data
3423  * @return: 0: calculate sucessful, negative: fail
3424  */
3425 static int
3426 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3427 {
3428 	/* When DCB is not supported, rx private buffer is not allocated. */
3429 	if (!hns3_dev_get_support(hw, DCB)) {
3430 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3431 		struct hns3_pf *pf = &hns->pf;
3432 		uint32_t rx_all = pf->pkt_buf_size;
3433 
3434 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3435 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3436 			return -ENOMEM;
3437 
3438 		return 0;
3439 	}
3440 
3441 	/*
3442 	 * Try to allocate privated packet buffer for all TCs without share
3443 	 * buffer.
3444 	 */
3445 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3446 		return 0;
3447 
3448 	/*
3449 	 * Try to allocate privated packet buffer for all TCs with share
3450 	 * buffer.
3451 	 */
3452 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3453 		return 0;
3454 
3455 	/*
3456 	 * For different application scenes, the enabled port number, TC number
3457 	 * and no_drop TC number are different. In order to obtain the better
3458 	 * performance, software could allocate the buffer size and configure
3459 	 * the waterline by trying to decrease the private buffer size according
3460 	 * to the order, namely, waterline of valid tc, pfc disabled tc, pfc
3461 	 * enabled tc.
3462 	 */
3463 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3464 		return 0;
3465 
3466 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3467 		return 0;
3468 
3469 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3470 		return 0;
3471 
3472 	return -ENOMEM;
3473 }
3474 
3475 static int
3476 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3477 {
3478 	struct hns3_rx_priv_buff_cmd *req;
3479 	struct hns3_cmd_desc desc;
3480 	uint32_t buf_size;
3481 	int ret;
3482 	int i;
3483 
3484 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3485 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3486 
3487 	/* Alloc private buffer TCs */
3488 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3489 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3490 
3491 		req->buf_num[i] =
3492 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3493 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3494 	}
3495 
3496 	buf_size = buf_alloc->s_buf.buf_size;
3497 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3498 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3499 
3500 	ret = hns3_cmd_send(hw, &desc, 1);
3501 	if (ret)
3502 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3503 
3504 	return ret;
3505 }
3506 
3507 static int
3508 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3509 {
3510 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3511 	struct hns3_rx_priv_wl_buf *req;
3512 	struct hns3_priv_buf *priv;
3513 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3514 	int i, j;
3515 	int ret;
3516 
3517 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3518 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3519 					  false);
3520 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3521 
3522 		/* The first descriptor set the NEXT bit to 1 */
3523 		if (i == 0)
3524 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3525 		else
3526 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3527 
3528 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3529 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3530 
3531 			priv = &buf_alloc->priv_buf[idx];
3532 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3533 							HNS3_BUF_UNIT_S);
3534 			req->tc_wl[j].high |=
3535 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3536 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3537 							HNS3_BUF_UNIT_S);
3538 			req->tc_wl[j].low |=
3539 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3540 		}
3541 	}
3542 
3543 	/* Send 2 descriptor at one time */
3544 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3545 	if (ret)
3546 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3547 			     ret);
3548 	return ret;
3549 }
3550 
3551 static int
3552 hns3_common_thrd_config(struct hns3_hw *hw,
3553 			struct hns3_pkt_buf_alloc *buf_alloc)
3554 {
3555 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3556 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3557 	struct hns3_rx_com_thrd *req;
3558 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3559 	struct hns3_tc_thrd *tc;
3560 	int tc_idx;
3561 	int i, j;
3562 	int ret;
3563 
3564 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3565 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3566 					  false);
3567 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3568 
3569 		/* The first descriptor set the NEXT bit to 1 */
3570 		if (i == 0)
3571 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3572 		else
3573 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3574 
3575 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3576 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3577 			tc = &s_buf->tc_thrd[tc_idx];
3578 
3579 			req->com_thrd[j].high =
3580 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3581 			req->com_thrd[j].high |=
3582 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3583 			req->com_thrd[j].low =
3584 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3585 			req->com_thrd[j].low |=
3586 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3587 		}
3588 	}
3589 
3590 	/* Send 2 descriptors at one time */
3591 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3592 	if (ret)
3593 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3594 
3595 	return ret;
3596 }
3597 
3598 static int
3599 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3600 {
3601 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3602 	struct hns3_rx_com_wl *req;
3603 	struct hns3_cmd_desc desc;
3604 	int ret;
3605 
3606 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3607 
3608 	req = (struct hns3_rx_com_wl *)desc.data;
3609 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3610 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3611 
3612 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3613 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3614 
3615 	ret = hns3_cmd_send(hw, &desc, 1);
3616 	if (ret)
3617 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3618 
3619 	return ret;
3620 }
3621 
3622 int
3623 hns3_buffer_alloc(struct hns3_hw *hw)
3624 {
3625 	struct hns3_pkt_buf_alloc pkt_buf;
3626 	int ret;
3627 
3628 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3629 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3630 	if (ret) {
3631 		PMD_INIT_LOG(ERR,
3632 			     "could not calc tx buffer size for all TCs %d",
3633 			     ret);
3634 		return ret;
3635 	}
3636 
3637 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3638 	if (ret) {
3639 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3640 		return ret;
3641 	}
3642 
3643 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3644 	if (ret) {
3645 		PMD_INIT_LOG(ERR,
3646 			     "could not calc rx priv buffer size for all TCs %d",
3647 			     ret);
3648 		return ret;
3649 	}
3650 
3651 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3652 	if (ret) {
3653 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3654 		return ret;
3655 	}
3656 
3657 	if (hns3_dev_get_support(hw, DCB)) {
3658 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3659 		if (ret) {
3660 			PMD_INIT_LOG(ERR,
3661 				     "could not configure rx private waterline %d",
3662 				     ret);
3663 			return ret;
3664 		}
3665 
3666 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3667 		if (ret) {
3668 			PMD_INIT_LOG(ERR,
3669 				     "could not configure common threshold %d",
3670 				     ret);
3671 			return ret;
3672 		}
3673 	}
3674 
3675 	ret = hns3_common_wl_config(hw, &pkt_buf);
3676 	if (ret)
3677 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3678 			     ret);
3679 
3680 	return ret;
3681 }
3682 
3683 static int
3684 hns3_mac_init(struct hns3_hw *hw)
3685 {
3686 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3687 	struct hns3_mac *mac = &hw->mac;
3688 	struct hns3_pf *pf = &hns->pf;
3689 	int ret;
3690 
3691 	pf->support_sfp_query = true;
3692 	mac->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
3693 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3694 	if (ret) {
3695 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3696 		return ret;
3697 	}
3698 
3699 	mac->link_status = RTE_ETH_LINK_DOWN;
3700 
3701 	return hns3_config_mtu(hw, pf->mps);
3702 }
3703 
3704 static int
3705 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3706 {
3707 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3708 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3709 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3710 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3711 	int return_status;
3712 
3713 	if (cmdq_resp) {
3714 		PMD_INIT_LOG(ERR,
3715 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
3716 			     cmdq_resp);
3717 		return -EIO;
3718 	}
3719 
3720 	switch (resp_code) {
3721 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3722 	case HNS3_ETHERTYPE_ALREADY_ADD:
3723 		return_status = 0;
3724 		break;
3725 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3726 		PMD_INIT_LOG(ERR,
3727 			     "add mac ethertype failed for manager table overflow.");
3728 		return_status = -EIO;
3729 		break;
3730 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3731 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3732 		return_status = -EIO;
3733 		break;
3734 	default:
3735 		PMD_INIT_LOG(ERR,
3736 			     "add mac ethertype failed for undefined, code=%u.",
3737 			     resp_code);
3738 		return_status = -EIO;
3739 		break;
3740 	}
3741 
3742 	return return_status;
3743 }
3744 
3745 static int
3746 hns3_add_mgr_tbl(struct hns3_hw *hw,
3747 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3748 {
3749 	struct hns3_cmd_desc desc;
3750 	uint8_t resp_code;
3751 	uint16_t retval;
3752 	int ret;
3753 
3754 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3755 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3756 
3757 	ret = hns3_cmd_send(hw, &desc, 1);
3758 	if (ret) {
3759 		PMD_INIT_LOG(ERR,
3760 			     "add mac ethertype failed for cmd_send, ret =%d.",
3761 			     ret);
3762 		return ret;
3763 	}
3764 
3765 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3766 	retval = rte_le_to_cpu_16(desc.retval);
3767 
3768 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3769 }
3770 
3771 static void
3772 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3773 		     int *table_item_num)
3774 {
3775 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3776 
3777 	/*
3778 	 * In current version, we add one item in management table as below:
3779 	 * 0x0180C200000E -- LLDP MC address
3780 	 */
3781 	tbl = mgr_table;
3782 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3783 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3784 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3785 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3786 	tbl->i_port_bitmap = 0x1;
3787 	*table_item_num = 1;
3788 }
3789 
3790 static int
3791 hns3_init_mgr_tbl(struct hns3_hw *hw)
3792 {
3793 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3794 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3795 	int table_item_num;
3796 	int ret;
3797 	int i;
3798 
3799 	memset(mgr_table, 0, sizeof(mgr_table));
3800 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3801 	for (i = 0; i < table_item_num; i++) {
3802 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3803 		if (ret) {
3804 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3805 				     ret);
3806 			return ret;
3807 		}
3808 	}
3809 
3810 	return 0;
3811 }
3812 
3813 static void
3814 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3815 			bool en_mc, bool en_bc, int vport_id)
3816 {
3817 	if (!param)
3818 		return;
3819 
3820 	memset(param, 0, sizeof(struct hns3_promisc_param));
3821 	if (en_uc)
3822 		param->enable = HNS3_PROMISC_EN_UC;
3823 	if (en_mc)
3824 		param->enable |= HNS3_PROMISC_EN_MC;
3825 	if (en_bc)
3826 		param->enable |= HNS3_PROMISC_EN_BC;
3827 	param->vf_id = vport_id;
3828 }
3829 
3830 static int
3831 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3832 {
3833 	struct hns3_promisc_cfg_cmd *req;
3834 	struct hns3_cmd_desc desc;
3835 	int ret;
3836 
3837 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3838 
3839 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3840 	req->vf_id = param->vf_id;
3841 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3842 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3843 
3844 	ret = hns3_cmd_send(hw, &desc, 1);
3845 	if (ret)
3846 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
3847 
3848 	return ret;
3849 }
3850 
3851 static int
3852 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3853 {
3854 	struct hns3_promisc_param param;
3855 	bool en_bc_pmc = true;
3856 	uint8_t vf_id;
3857 
3858 	/*
3859 	 * In current version VF is not supported when PF is driven by DPDK
3860 	 * driver, just need to configure parameters for PF vport.
3861 	 */
3862 	vf_id = HNS3_PF_FUNC_ID;
3863 
3864 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3865 	return hns3_cmd_set_promisc_mode(hw, &param);
3866 }
3867 
3868 static int
3869 hns3_promisc_init(struct hns3_hw *hw)
3870 {
3871 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3872 	struct hns3_pf *pf = &hns->pf;
3873 	struct hns3_promisc_param param;
3874 	uint16_t func_id;
3875 	int ret;
3876 
3877 	ret = hns3_set_promisc_mode(hw, false, false);
3878 	if (ret) {
3879 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
3880 		return ret;
3881 	}
3882 
3883 	/*
3884 	 * In current version VFs are not supported when PF is driven by DPDK
3885 	 * driver. After PF has been taken over by DPDK, the original VF will
3886 	 * be invalid. So, there is a possibility of entry residues. It should
3887 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
3888 	 * during init.
3889 	 */
3890 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
3891 		hns3_promisc_param_init(&param, false, false, false, func_id);
3892 		ret = hns3_cmd_set_promisc_mode(hw, &param);
3893 		if (ret) {
3894 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
3895 					" ret = %d", func_id, ret);
3896 			return ret;
3897 		}
3898 	}
3899 
3900 	return 0;
3901 }
3902 
3903 static void
3904 hns3_promisc_uninit(struct hns3_hw *hw)
3905 {
3906 	struct hns3_promisc_param param;
3907 	uint16_t func_id;
3908 	int ret;
3909 
3910 	func_id = HNS3_PF_FUNC_ID;
3911 
3912 	/*
3913 	 * In current version VFs are not supported when PF is driven by
3914 	 * DPDK driver, and VFs' promisc mode status has been cleared during
3915 	 * init and their status will not change. So just clear PF's promisc
3916 	 * mode status during uninit.
3917 	 */
3918 	hns3_promisc_param_init(&param, false, false, false, func_id);
3919 	ret = hns3_cmd_set_promisc_mode(hw, &param);
3920 	if (ret)
3921 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
3922 				" uninit, ret = %d", ret);
3923 }
3924 
3925 static int
3926 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
3927 {
3928 	bool allmulti = dev->data->all_multicast ? true : false;
3929 	struct hns3_adapter *hns = dev->data->dev_private;
3930 	struct hns3_hw *hw = &hns->hw;
3931 	uint64_t offloads;
3932 	int err;
3933 	int ret;
3934 
3935 	rte_spinlock_lock(&hw->lock);
3936 	ret = hns3_set_promisc_mode(hw, true, true);
3937 	if (ret) {
3938 		rte_spinlock_unlock(&hw->lock);
3939 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
3940 			 ret);
3941 		return ret;
3942 	}
3943 
3944 	/*
3945 	 * When promiscuous mode was enabled, disable the vlan filter to let
3946 	 * all packets coming in in the receiving direction.
3947 	 */
3948 	offloads = dev->data->dev_conf.rxmode.offloads;
3949 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
3950 		ret = hns3_enable_vlan_filter(hns, false);
3951 		if (ret) {
3952 			hns3_err(hw, "failed to enable promiscuous mode due to "
3953 				     "failure to disable vlan filter, ret = %d",
3954 				 ret);
3955 			err = hns3_set_promisc_mode(hw, false, allmulti);
3956 			if (err)
3957 				hns3_err(hw, "failed to restore promiscuous "
3958 					 "status after disable vlan filter "
3959 					 "failed during enabling promiscuous "
3960 					 "mode, ret = %d", ret);
3961 		}
3962 	}
3963 
3964 	rte_spinlock_unlock(&hw->lock);
3965 
3966 	return ret;
3967 }
3968 
3969 static int
3970 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
3971 {
3972 	bool allmulti = dev->data->all_multicast ? true : false;
3973 	struct hns3_adapter *hns = dev->data->dev_private;
3974 	struct hns3_hw *hw = &hns->hw;
3975 	uint64_t offloads;
3976 	int err;
3977 	int ret;
3978 
3979 	/* If now in all_multicast mode, must remain in all_multicast mode. */
3980 	rte_spinlock_lock(&hw->lock);
3981 	ret = hns3_set_promisc_mode(hw, false, allmulti);
3982 	if (ret) {
3983 		rte_spinlock_unlock(&hw->lock);
3984 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
3985 			 ret);
3986 		return ret;
3987 	}
3988 	/* when promiscuous mode was disabled, restore the vlan filter status */
3989 	offloads = dev->data->dev_conf.rxmode.offloads;
3990 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
3991 		ret = hns3_enable_vlan_filter(hns, true);
3992 		if (ret) {
3993 			hns3_err(hw, "failed to disable promiscuous mode due to"
3994 				 " failure to restore vlan filter, ret = %d",
3995 				 ret);
3996 			err = hns3_set_promisc_mode(hw, true, true);
3997 			if (err)
3998 				hns3_err(hw, "failed to restore promiscuous "
3999 					 "status after enabling vlan filter "
4000 					 "failed during disabling promiscuous "
4001 					 "mode, ret = %d", ret);
4002 		}
4003 	}
4004 	rte_spinlock_unlock(&hw->lock);
4005 
4006 	return ret;
4007 }
4008 
4009 static int
4010 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4011 {
4012 	struct hns3_adapter *hns = dev->data->dev_private;
4013 	struct hns3_hw *hw = &hns->hw;
4014 	int ret;
4015 
4016 	if (dev->data->promiscuous)
4017 		return 0;
4018 
4019 	rte_spinlock_lock(&hw->lock);
4020 	ret = hns3_set_promisc_mode(hw, false, true);
4021 	rte_spinlock_unlock(&hw->lock);
4022 	if (ret)
4023 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4024 			 ret);
4025 
4026 	return ret;
4027 }
4028 
4029 static int
4030 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4031 {
4032 	struct hns3_adapter *hns = dev->data->dev_private;
4033 	struct hns3_hw *hw = &hns->hw;
4034 	int ret;
4035 
4036 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4037 	if (dev->data->promiscuous)
4038 		return 0;
4039 
4040 	rte_spinlock_lock(&hw->lock);
4041 	ret = hns3_set_promisc_mode(hw, false, false);
4042 	rte_spinlock_unlock(&hw->lock);
4043 	if (ret)
4044 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4045 			 ret);
4046 
4047 	return ret;
4048 }
4049 
4050 static int
4051 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4052 {
4053 	struct hns3_hw *hw = &hns->hw;
4054 	bool allmulti = hw->data->all_multicast ? true : false;
4055 	int ret;
4056 
4057 	if (hw->data->promiscuous) {
4058 		ret = hns3_set_promisc_mode(hw, true, true);
4059 		if (ret)
4060 			hns3_err(hw, "failed to restore promiscuous mode, "
4061 				 "ret = %d", ret);
4062 		return ret;
4063 	}
4064 
4065 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4066 	if (ret)
4067 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4068 			 ret);
4069 	return ret;
4070 }
4071 
4072 static int
4073 hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info)
4074 {
4075 	struct hns3_sfp_info_cmd *resp;
4076 	struct hns3_cmd_desc desc;
4077 	int ret;
4078 
4079 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
4080 	resp = (struct hns3_sfp_info_cmd *)desc.data;
4081 	resp->query_type = HNS3_ACTIVE_QUERY;
4082 
4083 	ret = hns3_cmd_send(hw, &desc, 1);
4084 	if (ret == -EOPNOTSUPP) {
4085 		hns3_warn(hw, "firmware does not support get SFP info,"
4086 			  " ret = %d.", ret);
4087 		return ret;
4088 	} else if (ret) {
4089 		hns3_err(hw, "get sfp info failed, ret = %d.", ret);
4090 		return ret;
4091 	}
4092 
4093 	/*
4094 	 * In some case, the speed of MAC obtained from firmware may be 0, it
4095 	 * shouldn't be set to mac->speed.
4096 	 */
4097 	if (!rte_le_to_cpu_32(resp->sfp_speed))
4098 		return 0;
4099 
4100 	mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed);
4101 	/*
4102 	 * if resp->supported_speed is 0, it means it's an old version
4103 	 * firmware, do not update these params.
4104 	 */
4105 	if (resp->supported_speed) {
4106 		mac_info->query_type = HNS3_ACTIVE_QUERY;
4107 		mac_info->supported_speed =
4108 					rte_le_to_cpu_32(resp->supported_speed);
4109 		mac_info->support_autoneg = resp->autoneg_ability;
4110 		mac_info->link_autoneg = (resp->autoneg == 0) ? RTE_ETH_LINK_FIXED
4111 					: RTE_ETH_LINK_AUTONEG;
4112 	} else {
4113 		mac_info->query_type = HNS3_DEFAULT_QUERY;
4114 	}
4115 
4116 	return 0;
4117 }
4118 
4119 static uint8_t
4120 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4121 {
4122 	if (!(speed == RTE_ETH_SPEED_NUM_10M || speed == RTE_ETH_SPEED_NUM_100M))
4123 		duplex = RTE_ETH_LINK_FULL_DUPLEX;
4124 
4125 	return duplex;
4126 }
4127 
4128 static int
4129 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4130 {
4131 	struct hns3_mac *mac = &hw->mac;
4132 	int ret;
4133 
4134 	duplex = hns3_check_speed_dup(duplex, speed);
4135 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4136 		return 0;
4137 
4138 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4139 	if (ret)
4140 		return ret;
4141 
4142 	ret = hns3_port_shaper_update(hw, speed);
4143 	if (ret)
4144 		return ret;
4145 
4146 	mac->link_speed = speed;
4147 	mac->link_duplex = duplex;
4148 
4149 	return 0;
4150 }
4151 
4152 static int
4153 hns3_update_fiber_link_info(struct hns3_hw *hw)
4154 {
4155 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4156 	struct hns3_mac *mac = &hw->mac;
4157 	struct hns3_mac mac_info;
4158 	int ret;
4159 
4160 	/* If firmware do not support get SFP/qSFP speed, return directly */
4161 	if (!pf->support_sfp_query)
4162 		return 0;
4163 
4164 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4165 	ret = hns3_get_sfp_info(hw, &mac_info);
4166 	if (ret == -EOPNOTSUPP) {
4167 		pf->support_sfp_query = false;
4168 		return ret;
4169 	} else if (ret)
4170 		return ret;
4171 
4172 	/* Do nothing if no SFP */
4173 	if (mac_info.link_speed == RTE_ETH_SPEED_NUM_NONE)
4174 		return 0;
4175 
4176 	/*
4177 	 * If query_type is HNS3_ACTIVE_QUERY, it is no need
4178 	 * to reconfigure the speed of MAC. Otherwise, it indicates
4179 	 * that the current firmware only supports to obtain the
4180 	 * speed of the SFP, and the speed of MAC needs to reconfigure.
4181 	 */
4182 	mac->query_type = mac_info.query_type;
4183 	if (mac->query_type == HNS3_ACTIVE_QUERY) {
4184 		if (mac_info.link_speed != mac->link_speed) {
4185 			ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4186 			if (ret)
4187 				return ret;
4188 		}
4189 
4190 		mac->link_speed = mac_info.link_speed;
4191 		mac->supported_speed = mac_info.supported_speed;
4192 		mac->support_autoneg = mac_info.support_autoneg;
4193 		mac->link_autoneg = mac_info.link_autoneg;
4194 
4195 		return 0;
4196 	}
4197 
4198 	/* Config full duplex for SFP */
4199 	return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed,
4200 				      RTE_ETH_LINK_FULL_DUPLEX);
4201 }
4202 
4203 static void
4204 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4205 {
4206 #define HNS3_PHY_SUPPORTED_SPEED_MASK   0x2f
4207 
4208 	struct hns3_phy_params_bd0_cmd *req;
4209 	uint32_t supported;
4210 
4211 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4212 	mac->link_speed = rte_le_to_cpu_32(req->speed);
4213 	mac->link_duplex = hns3_get_bit(req->duplex,
4214 					   HNS3_PHY_DUPLEX_CFG_B);
4215 	mac->link_autoneg = hns3_get_bit(req->autoneg,
4216 					   HNS3_PHY_AUTONEG_CFG_B);
4217 	mac->advertising = rte_le_to_cpu_32(req->advertising);
4218 	mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4219 	supported = rte_le_to_cpu_32(req->supported);
4220 	mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK;
4221 	mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4222 }
4223 
4224 static int
4225 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4226 {
4227 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4228 	uint16_t i;
4229 	int ret;
4230 
4231 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4232 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4233 					  true);
4234 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4235 	}
4236 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4237 
4238 	ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4239 	if (ret) {
4240 		hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4241 		return ret;
4242 	}
4243 
4244 	hns3_parse_copper_phy_params(desc, mac);
4245 
4246 	return 0;
4247 }
4248 
4249 static int
4250 hns3_update_copper_link_info(struct hns3_hw *hw)
4251 {
4252 	struct hns3_mac *mac = &hw->mac;
4253 	struct hns3_mac mac_info;
4254 	int ret;
4255 
4256 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4257 	ret = hns3_get_copper_phy_params(hw, &mac_info);
4258 	if (ret)
4259 		return ret;
4260 
4261 	if (mac_info.link_speed != mac->link_speed) {
4262 		ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4263 		if (ret)
4264 			return ret;
4265 	}
4266 
4267 	mac->link_speed = mac_info.link_speed;
4268 	mac->link_duplex = mac_info.link_duplex;
4269 	mac->link_autoneg = mac_info.link_autoneg;
4270 	mac->supported_speed = mac_info.supported_speed;
4271 	mac->advertising = mac_info.advertising;
4272 	mac->lp_advertising = mac_info.lp_advertising;
4273 	mac->support_autoneg = mac_info.support_autoneg;
4274 
4275 	return 0;
4276 }
4277 
4278 static int
4279 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4280 {
4281 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4282 	struct hns3_hw *hw = &hns->hw;
4283 	int ret = 0;
4284 
4285 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4286 		ret = hns3_update_copper_link_info(hw);
4287 	else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4288 		ret = hns3_update_fiber_link_info(hw);
4289 
4290 	return ret;
4291 }
4292 
4293 static int
4294 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4295 {
4296 	struct hns3_config_mac_mode_cmd *req;
4297 	struct hns3_cmd_desc desc;
4298 	uint32_t loop_en = 0;
4299 	uint8_t val = 0;
4300 	int ret;
4301 
4302 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4303 
4304 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4305 	if (enable)
4306 		val = 1;
4307 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4308 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4309 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4310 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4311 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4312 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4313 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4314 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4315 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4316 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4317 
4318 	/*
4319 	 * If RTE_ETH_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4320 	 * when receiving frames. Otherwise, CRC will be stripped.
4321 	 */
4322 	if (hw->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
4323 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4324 	else
4325 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4326 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4327 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4328 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4329 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4330 
4331 	ret = hns3_cmd_send(hw, &desc, 1);
4332 	if (ret)
4333 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4334 
4335 	return ret;
4336 }
4337 
4338 static int
4339 hns3_get_mac_link_status(struct hns3_hw *hw)
4340 {
4341 	struct hns3_link_status_cmd *req;
4342 	struct hns3_cmd_desc desc;
4343 	int link_status;
4344 	int ret;
4345 
4346 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4347 	ret = hns3_cmd_send(hw, &desc, 1);
4348 	if (ret) {
4349 		hns3_err(hw, "get link status cmd failed %d", ret);
4350 		return RTE_ETH_LINK_DOWN;
4351 	}
4352 
4353 	req = (struct hns3_link_status_cmd *)desc.data;
4354 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4355 
4356 	return !!link_status;
4357 }
4358 
4359 static bool
4360 hns3_update_link_status(struct hns3_hw *hw)
4361 {
4362 	int state;
4363 
4364 	state = hns3_get_mac_link_status(hw);
4365 	if (state != hw->mac.link_status) {
4366 		hw->mac.link_status = state;
4367 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4368 		return true;
4369 	}
4370 
4371 	return false;
4372 }
4373 
4374 void
4375 hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
4376 {
4377 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4378 	struct rte_eth_link new_link;
4379 	int ret;
4380 
4381 	if (query)
4382 		hns3_update_port_link_info(dev);
4383 
4384 	memset(&new_link, 0, sizeof(new_link));
4385 	hns3_setup_linkstatus(dev, &new_link);
4386 
4387 	ret = rte_eth_linkstatus_set(dev, &new_link);
4388 	if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
4389 		hns3_start_report_lse(dev);
4390 }
4391 
4392 static void
4393 hns3_service_handler(void *param)
4394 {
4395 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4396 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4397 	struct hns3_hw *hw = &hns->hw;
4398 
4399 	if (!hns3_is_reset_pending(hns))
4400 		hns3_update_linkstatus_and_event(hw, true);
4401 	else
4402 		hns3_warn(hw, "Cancel the query when reset is pending");
4403 
4404 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4405 }
4406 
4407 static int
4408 hns3_init_hardware(struct hns3_adapter *hns)
4409 {
4410 	struct hns3_hw *hw = &hns->hw;
4411 	int ret;
4412 
4413 	ret = hns3_map_tqp(hw);
4414 	if (ret) {
4415 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4416 		return ret;
4417 	}
4418 
4419 	ret = hns3_init_umv_space(hw);
4420 	if (ret) {
4421 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4422 		return ret;
4423 	}
4424 
4425 	ret = hns3_mac_init(hw);
4426 	if (ret) {
4427 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4428 		goto err_mac_init;
4429 	}
4430 
4431 	ret = hns3_init_mgr_tbl(hw);
4432 	if (ret) {
4433 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4434 		goto err_mac_init;
4435 	}
4436 
4437 	ret = hns3_promisc_init(hw);
4438 	if (ret) {
4439 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4440 			     ret);
4441 		goto err_mac_init;
4442 	}
4443 
4444 	ret = hns3_init_vlan_config(hns);
4445 	if (ret) {
4446 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4447 		goto err_mac_init;
4448 	}
4449 
4450 	ret = hns3_dcb_init(hw);
4451 	if (ret) {
4452 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4453 		goto err_mac_init;
4454 	}
4455 
4456 	ret = hns3_init_fd_config(hns);
4457 	if (ret) {
4458 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4459 		goto err_mac_init;
4460 	}
4461 
4462 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4463 	if (ret) {
4464 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4465 		goto err_mac_init;
4466 	}
4467 
4468 	ret = hns3_config_gro(hw, false);
4469 	if (ret) {
4470 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4471 		goto err_mac_init;
4472 	}
4473 
4474 	/*
4475 	 * In the initialization clearing the all hardware mapping relationship
4476 	 * configurations between queues and interrupt vectors is needed, so
4477 	 * some error caused by the residual configurations, such as the
4478 	 * unexpected interrupt, can be avoid.
4479 	 */
4480 	ret = hns3_init_ring_with_vector(hw);
4481 	if (ret) {
4482 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4483 		goto err_mac_init;
4484 	}
4485 
4486 	return 0;
4487 
4488 err_mac_init:
4489 	hns3_uninit_umv_space(hw);
4490 	return ret;
4491 }
4492 
4493 static int
4494 hns3_clear_hw(struct hns3_hw *hw)
4495 {
4496 	struct hns3_cmd_desc desc;
4497 	int ret;
4498 
4499 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4500 
4501 	ret = hns3_cmd_send(hw, &desc, 1);
4502 	if (ret && ret != -EOPNOTSUPP)
4503 		return ret;
4504 
4505 	return 0;
4506 }
4507 
4508 static void
4509 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4510 {
4511 	uint32_t val;
4512 
4513 	/*
4514 	 * The new firmware support report more hardware error types by
4515 	 * msix mode. These errors are defined as RAS errors in hardware
4516 	 * and belong to a different type from the MSI-x errors processed
4517 	 * by the network driver.
4518 	 *
4519 	 * Network driver should open the new error report on initialization.
4520 	 */
4521 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4522 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4523 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4524 }
4525 
4526 static uint32_t
4527 hns3_set_firber_default_support_speed(struct hns3_hw *hw)
4528 {
4529 	struct hns3_mac *mac = &hw->mac;
4530 
4531 	switch (mac->link_speed) {
4532 	case RTE_ETH_SPEED_NUM_1G:
4533 		return HNS3_FIBER_LINK_SPEED_1G_BIT;
4534 	case RTE_ETH_SPEED_NUM_10G:
4535 		return HNS3_FIBER_LINK_SPEED_10G_BIT;
4536 	case RTE_ETH_SPEED_NUM_25G:
4537 		return HNS3_FIBER_LINK_SPEED_25G_BIT;
4538 	case RTE_ETH_SPEED_NUM_40G:
4539 		return HNS3_FIBER_LINK_SPEED_40G_BIT;
4540 	case RTE_ETH_SPEED_NUM_50G:
4541 		return HNS3_FIBER_LINK_SPEED_50G_BIT;
4542 	case RTE_ETH_SPEED_NUM_100G:
4543 		return HNS3_FIBER_LINK_SPEED_100G_BIT;
4544 	case RTE_ETH_SPEED_NUM_200G:
4545 		return HNS3_FIBER_LINK_SPEED_200G_BIT;
4546 	default:
4547 		hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed);
4548 		return 0;
4549 	}
4550 }
4551 
4552 /*
4553  * Validity of supported_speed for firber and copper media type can be
4554  * guaranteed by the following policy:
4555  * Copper:
4556  *       Although the initialization of the phy in the firmware may not be
4557  *       completed, the firmware can guarantees that the supported_speed is
4558  *       an valid value.
4559  * Firber:
4560  *       If the version of firmware supports the acitive query way of the
4561  *       HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained
4562  *       through it. If unsupported, use the SFP's speed as the value of the
4563  *       supported_speed.
4564  */
4565 static int
4566 hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev)
4567 {
4568 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4569 	struct hns3_hw *hw = &hns->hw;
4570 	struct hns3_mac *mac = &hw->mac;
4571 	int ret;
4572 
4573 	ret = hns3_update_link_info(eth_dev);
4574 	if (ret)
4575 		return ret;
4576 
4577 	if (mac->media_type == HNS3_MEDIA_TYPE_FIBER) {
4578 		/*
4579 		 * Some firmware does not support the report of supported_speed,
4580 		 * and only report the effective speed of SFP. In this case, it
4581 		 * is necessary to use the SFP's speed as the supported_speed.
4582 		 */
4583 		if (mac->supported_speed == 0)
4584 			mac->supported_speed =
4585 				hns3_set_firber_default_support_speed(hw);
4586 	}
4587 
4588 	return 0;
4589 }
4590 
4591 static void
4592 hns3_get_fc_autoneg_capability(struct hns3_adapter *hns)
4593 {
4594 	struct hns3_mac *mac = &hns->hw.mac;
4595 
4596 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) {
4597 		hns->pf.support_fc_autoneg = true;
4598 		return;
4599 	}
4600 
4601 	/*
4602 	 * Flow control auto-negotiation requires the cooperation of the driver
4603 	 * and firmware. Currently, the optical port does not support flow
4604 	 * control auto-negotiation.
4605 	 */
4606 	hns->pf.support_fc_autoneg = false;
4607 }
4608 
4609 static int
4610 hns3_init_pf(struct rte_eth_dev *eth_dev)
4611 {
4612 	struct rte_device *dev = eth_dev->device;
4613 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4614 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4615 	struct hns3_hw *hw = &hns->hw;
4616 	int ret;
4617 
4618 	PMD_INIT_FUNC_TRACE();
4619 
4620 	/* Get hardware io base address from pcie BAR2 IO space */
4621 	hw->io_base = pci_dev->mem_resource[2].addr;
4622 
4623 	/* Firmware command queue initialize */
4624 	ret = hns3_cmd_init_queue(hw);
4625 	if (ret) {
4626 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4627 		goto err_cmd_init_queue;
4628 	}
4629 
4630 	hns3_clear_all_event_cause(hw);
4631 
4632 	/* Firmware command initialize */
4633 	ret = hns3_cmd_init(hw);
4634 	if (ret) {
4635 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4636 		goto err_cmd_init;
4637 	}
4638 
4639 	hns3_tx_push_init(eth_dev);
4640 
4641 	/*
4642 	 * To ensure that the hardware environment is clean during
4643 	 * initialization, the driver actively clear the hardware environment
4644 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4645 	 * flow table configurations, etc.
4646 	 */
4647 	ret = hns3_clear_hw(hw);
4648 	if (ret) {
4649 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4650 		goto err_cmd_init;
4651 	}
4652 
4653 	/* Hardware statistics of imissed registers cleared. */
4654 	ret = hns3_update_imissed_stats(hw, true);
4655 	if (ret) {
4656 		hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
4657 		goto err_cmd_init;
4658 	}
4659 
4660 	hns3_config_all_msix_error(hw, true);
4661 
4662 	ret = rte_intr_callback_register(pci_dev->intr_handle,
4663 					 hns3_interrupt_handler,
4664 					 eth_dev);
4665 	if (ret) {
4666 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4667 		goto err_intr_callback_register;
4668 	}
4669 
4670 	ret = hns3_ptp_init(hw);
4671 	if (ret)
4672 		goto err_get_config;
4673 
4674 	/* Enable interrupt */
4675 	rte_intr_enable(pci_dev->intr_handle);
4676 	hns3_pf_enable_irq0(hw);
4677 
4678 	/* Get configuration */
4679 	ret = hns3_get_configuration(hw);
4680 	if (ret) {
4681 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4682 		goto err_get_config;
4683 	}
4684 
4685 	ret = hns3_tqp_stats_init(hw);
4686 	if (ret)
4687 		goto err_get_config;
4688 
4689 	ret = hns3_init_hardware(hns);
4690 	if (ret) {
4691 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4692 		goto err_init_hw;
4693 	}
4694 
4695 	/* Initialize flow director filter list & hash */
4696 	ret = hns3_fdir_filter_init(hns);
4697 	if (ret) {
4698 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4699 		goto err_fdir;
4700 	}
4701 
4702 	hns3_rss_set_default_args(hw);
4703 
4704 	ret = hns3_enable_hw_error_intr(hns, true);
4705 	if (ret) {
4706 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4707 			     ret);
4708 		goto err_enable_intr;
4709 	}
4710 
4711 	ret = hns3_get_port_supported_speed(eth_dev);
4712 	if (ret) {
4713 		PMD_INIT_LOG(ERR, "failed to get speed capabilities supported "
4714 			     "by device, ret = %d.", ret);
4715 		goto err_supported_speed;
4716 	}
4717 
4718 	hns3_get_fc_autoneg_capability(hns);
4719 
4720 	hns3_tm_conf_init(eth_dev);
4721 
4722 	return 0;
4723 
4724 err_supported_speed:
4725 	(void)hns3_enable_hw_error_intr(hns, false);
4726 err_enable_intr:
4727 	hns3_fdir_filter_uninit(hns);
4728 err_fdir:
4729 	hns3_uninit_umv_space(hw);
4730 err_init_hw:
4731 	hns3_tqp_stats_uninit(hw);
4732 err_get_config:
4733 	hns3_pf_disable_irq0(hw);
4734 	rte_intr_disable(pci_dev->intr_handle);
4735 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
4736 			     eth_dev);
4737 err_intr_callback_register:
4738 err_cmd_init:
4739 	hns3_cmd_uninit(hw);
4740 	hns3_cmd_destroy_queue(hw);
4741 err_cmd_init_queue:
4742 	hw->io_base = NULL;
4743 
4744 	return ret;
4745 }
4746 
4747 static void
4748 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4749 {
4750 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4751 	struct rte_device *dev = eth_dev->device;
4752 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4753 	struct hns3_hw *hw = &hns->hw;
4754 
4755 	PMD_INIT_FUNC_TRACE();
4756 
4757 	hns3_tm_conf_uninit(eth_dev);
4758 	hns3_enable_hw_error_intr(hns, false);
4759 	hns3_rss_uninit(hns);
4760 	(void)hns3_config_gro(hw, false);
4761 	hns3_promisc_uninit(hw);
4762 	hns3_flow_uninit(eth_dev);
4763 	hns3_fdir_filter_uninit(hns);
4764 	hns3_uninit_umv_space(hw);
4765 	hns3_tqp_stats_uninit(hw);
4766 	hns3_config_mac_tnl_int(hw, false);
4767 	hns3_pf_disable_irq0(hw);
4768 	rte_intr_disable(pci_dev->intr_handle);
4769 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
4770 			     eth_dev);
4771 	hns3_config_all_msix_error(hw, false);
4772 	hns3_cmd_uninit(hw);
4773 	hns3_cmd_destroy_queue(hw);
4774 	hw->io_base = NULL;
4775 }
4776 
4777 static uint32_t
4778 hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds)
4779 {
4780 	uint32_t speed_bit;
4781 
4782 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
4783 	case RTE_ETH_LINK_SPEED_10M:
4784 		speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT;
4785 		break;
4786 	case RTE_ETH_LINK_SPEED_10M_HD:
4787 		speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT;
4788 		break;
4789 	case RTE_ETH_LINK_SPEED_100M:
4790 		speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT;
4791 		break;
4792 	case RTE_ETH_LINK_SPEED_100M_HD:
4793 		speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT;
4794 		break;
4795 	case RTE_ETH_LINK_SPEED_1G:
4796 		speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT;
4797 		break;
4798 	default:
4799 		speed_bit = 0;
4800 		break;
4801 	}
4802 
4803 	return speed_bit;
4804 }
4805 
4806 static uint32_t
4807 hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds)
4808 {
4809 	uint32_t speed_bit;
4810 
4811 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
4812 	case RTE_ETH_LINK_SPEED_1G:
4813 		speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT;
4814 		break;
4815 	case RTE_ETH_LINK_SPEED_10G:
4816 		speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT;
4817 		break;
4818 	case RTE_ETH_LINK_SPEED_25G:
4819 		speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT;
4820 		break;
4821 	case RTE_ETH_LINK_SPEED_40G:
4822 		speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT;
4823 		break;
4824 	case RTE_ETH_LINK_SPEED_50G:
4825 		speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT;
4826 		break;
4827 	case RTE_ETH_LINK_SPEED_100G:
4828 		speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT;
4829 		break;
4830 	case RTE_ETH_LINK_SPEED_200G:
4831 		speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT;
4832 		break;
4833 	default:
4834 		speed_bit = 0;
4835 		break;
4836 	}
4837 
4838 	return speed_bit;
4839 }
4840 
4841 static int
4842 hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds)
4843 {
4844 	struct hns3_mac *mac = &hw->mac;
4845 	uint32_t supported_speed = mac->supported_speed;
4846 	uint32_t speed_bit = 0;
4847 
4848 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
4849 		speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds);
4850 	else if (mac->media_type == HNS3_MEDIA_TYPE_FIBER)
4851 		speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds);
4852 
4853 	if (!(speed_bit & supported_speed)) {
4854 		hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.",
4855 			 link_speeds);
4856 		return -EINVAL;
4857 	}
4858 
4859 	return 0;
4860 }
4861 
4862 static inline uint32_t
4863 hns3_get_link_speed(uint32_t link_speeds)
4864 {
4865 	uint32_t speed = RTE_ETH_SPEED_NUM_NONE;
4866 
4867 	if (link_speeds & RTE_ETH_LINK_SPEED_10M ||
4868 	    link_speeds & RTE_ETH_LINK_SPEED_10M_HD)
4869 		speed = RTE_ETH_SPEED_NUM_10M;
4870 	if (link_speeds & RTE_ETH_LINK_SPEED_100M ||
4871 	    link_speeds & RTE_ETH_LINK_SPEED_100M_HD)
4872 		speed = RTE_ETH_SPEED_NUM_100M;
4873 	if (link_speeds & RTE_ETH_LINK_SPEED_1G)
4874 		speed = RTE_ETH_SPEED_NUM_1G;
4875 	if (link_speeds & RTE_ETH_LINK_SPEED_10G)
4876 		speed = RTE_ETH_SPEED_NUM_10G;
4877 	if (link_speeds & RTE_ETH_LINK_SPEED_25G)
4878 		speed = RTE_ETH_SPEED_NUM_25G;
4879 	if (link_speeds & RTE_ETH_LINK_SPEED_40G)
4880 		speed = RTE_ETH_SPEED_NUM_40G;
4881 	if (link_speeds & RTE_ETH_LINK_SPEED_50G)
4882 		speed = RTE_ETH_SPEED_NUM_50G;
4883 	if (link_speeds & RTE_ETH_LINK_SPEED_100G)
4884 		speed = RTE_ETH_SPEED_NUM_100G;
4885 	if (link_speeds & RTE_ETH_LINK_SPEED_200G)
4886 		speed = RTE_ETH_SPEED_NUM_200G;
4887 
4888 	return speed;
4889 }
4890 
4891 static uint8_t
4892 hns3_get_link_duplex(uint32_t link_speeds)
4893 {
4894 	if ((link_speeds & RTE_ETH_LINK_SPEED_10M_HD) ||
4895 	    (link_speeds & RTE_ETH_LINK_SPEED_100M_HD))
4896 		return RTE_ETH_LINK_HALF_DUPLEX;
4897 	else
4898 		return RTE_ETH_LINK_FULL_DUPLEX;
4899 }
4900 
4901 static int
4902 hns3_set_copper_port_link_speed(struct hns3_hw *hw,
4903 				struct hns3_set_link_speed_cfg *cfg)
4904 {
4905 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4906 	struct hns3_phy_params_bd0_cmd *req;
4907 	uint16_t i;
4908 
4909 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4910 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4911 					  false);
4912 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4913 	}
4914 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false);
4915 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4916 	req->autoneg = cfg->autoneg;
4917 
4918 	/*
4919 	 * The full speed capability is used to negotiate when
4920 	 * auto-negotiation is enabled.
4921 	 */
4922 	if (cfg->autoneg) {
4923 		req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT |
4924 				    HNS3_PHY_LINK_SPEED_10M_HD_BIT |
4925 				    HNS3_PHY_LINK_SPEED_100M_BIT |
4926 				    HNS3_PHY_LINK_SPEED_100M_HD_BIT |
4927 				    HNS3_PHY_LINK_SPEED_1000M_BIT;
4928 	} else {
4929 		req->speed = cfg->speed;
4930 		req->duplex = cfg->duplex;
4931 	}
4932 
4933 	return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4934 }
4935 
4936 static int
4937 hns3_set_autoneg(struct hns3_hw *hw, bool enable)
4938 {
4939 	struct hns3_config_auto_neg_cmd *req;
4940 	struct hns3_cmd_desc desc;
4941 	uint32_t flag = 0;
4942 	int ret;
4943 
4944 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false);
4945 
4946 	req = (struct hns3_config_auto_neg_cmd *)desc.data;
4947 	if (enable)
4948 		hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1);
4949 	req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag);
4950 
4951 	ret = hns3_cmd_send(hw, &desc, 1);
4952 	if (ret)
4953 		hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret);
4954 
4955 	return ret;
4956 }
4957 
4958 static int
4959 hns3_set_fiber_port_link_speed(struct hns3_hw *hw,
4960 			       struct hns3_set_link_speed_cfg *cfg)
4961 {
4962 	int ret;
4963 
4964 	if (hw->mac.support_autoneg) {
4965 		ret = hns3_set_autoneg(hw, cfg->autoneg);
4966 		if (ret) {
4967 			hns3_err(hw, "failed to configure auto-negotiation.");
4968 			return ret;
4969 		}
4970 
4971 		/*
4972 		 * To enable auto-negotiation, we only need to open the switch
4973 		 * of auto-negotiation, then firmware sets all speed
4974 		 * capabilities.
4975 		 */
4976 		if (cfg->autoneg)
4977 			return 0;
4978 	}
4979 
4980 	/*
4981 	 * Some hardware doesn't support auto-negotiation, but users may not
4982 	 * configure link_speeds (default 0), which means auto-negotiation.
4983 	 * In this case, a warning message need to be printed, instead of
4984 	 * an error.
4985 	 */
4986 	if (cfg->autoneg) {
4987 		hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!");
4988 		return 0;
4989 	}
4990 
4991 	return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex);
4992 }
4993 
4994 static int
4995 hns3_set_port_link_speed(struct hns3_hw *hw,
4996 			 struct hns3_set_link_speed_cfg *cfg)
4997 {
4998 	int ret;
4999 
5000 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER) {
5001 #if defined(RTE_HNS3_ONLY_1630_FPGA)
5002 		struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5003 		if (pf->is_tmp_phy)
5004 			return 0;
5005 #endif
5006 
5007 		ret = hns3_set_copper_port_link_speed(hw, cfg);
5008 		if (ret) {
5009 			hns3_err(hw, "failed to set copper port link speed,"
5010 				 "ret = %d.", ret);
5011 			return ret;
5012 		}
5013 	} else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER) {
5014 		ret = hns3_set_fiber_port_link_speed(hw, cfg);
5015 		if (ret) {
5016 			hns3_err(hw, "failed to set fiber port link speed,"
5017 				 "ret = %d.", ret);
5018 			return ret;
5019 		}
5020 	}
5021 
5022 	return 0;
5023 }
5024 
5025 static int
5026 hns3_apply_link_speed(struct hns3_hw *hw)
5027 {
5028 	struct rte_eth_conf *conf = &hw->data->dev_conf;
5029 	struct hns3_set_link_speed_cfg cfg;
5030 
5031 	memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg));
5032 	cfg.autoneg = (conf->link_speeds == RTE_ETH_LINK_SPEED_AUTONEG) ?
5033 			RTE_ETH_LINK_AUTONEG : RTE_ETH_LINK_FIXED;
5034 	if (cfg.autoneg != RTE_ETH_LINK_AUTONEG) {
5035 		cfg.speed = hns3_get_link_speed(conf->link_speeds);
5036 		cfg.duplex = hns3_get_link_duplex(conf->link_speeds);
5037 	}
5038 
5039 	return hns3_set_port_link_speed(hw, &cfg);
5040 }
5041 
5042 static int
5043 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5044 {
5045 	struct hns3_hw *hw = &hns->hw;
5046 	bool link_en;
5047 	int ret;
5048 
5049 	ret = hns3_update_queue_map_configure(hns);
5050 	if (ret) {
5051 		hns3_err(hw, "failed to update queue mapping configuration, ret = %d",
5052 			 ret);
5053 		return ret;
5054 	}
5055 
5056 	/* Note: hns3_tm_conf_update must be called after configuring DCB. */
5057 	ret = hns3_tm_conf_update(hw);
5058 	if (ret) {
5059 		PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5060 		return ret;
5061 	}
5062 
5063 	hns3_enable_rxd_adv_layout(hw);
5064 
5065 	ret = hns3_init_queues(hns, reset_queue);
5066 	if (ret) {
5067 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5068 		return ret;
5069 	}
5070 
5071 	link_en = hw->set_link_down ? false : true;
5072 	ret = hns3_cfg_mac_mode(hw, link_en);
5073 	if (ret) {
5074 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5075 		goto err_config_mac_mode;
5076 	}
5077 
5078 	ret = hns3_apply_link_speed(hw);
5079 	if (ret)
5080 		goto err_set_link_speed;
5081 
5082 	return 0;
5083 
5084 err_set_link_speed:
5085 	(void)hns3_cfg_mac_mode(hw, false);
5086 
5087 err_config_mac_mode:
5088 	hns3_dev_release_mbufs(hns);
5089 	/*
5090 	 * Here is exception handling, hns3_reset_all_tqps will have the
5091 	 * corresponding error message if it is handled incorrectly, so it is
5092 	 * not necessary to check hns3_reset_all_tqps return value, here keep
5093 	 * ret as the error code causing the exception.
5094 	 */
5095 	(void)hns3_reset_all_tqps(hns);
5096 	return ret;
5097 }
5098 
5099 static void
5100 hns3_restore_filter(struct rte_eth_dev *dev)
5101 {
5102 	hns3_restore_rss_filter(dev);
5103 }
5104 
5105 static int
5106 hns3_dev_start(struct rte_eth_dev *dev)
5107 {
5108 	struct hns3_adapter *hns = dev->data->dev_private;
5109 	struct hns3_hw *hw = &hns->hw;
5110 	bool old_state = hw->set_link_down;
5111 	int ret;
5112 
5113 	PMD_INIT_FUNC_TRACE();
5114 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5115 		return -EBUSY;
5116 
5117 	rte_spinlock_lock(&hw->lock);
5118 	hw->adapter_state = HNS3_NIC_STARTING;
5119 
5120 	/*
5121 	 * If the dev_set_link_down() API has been called, the "set_link_down"
5122 	 * flag can be cleared by dev_start() API. In addition, the flag should
5123 	 * also be cleared before calling hns3_do_start() so that MAC can be
5124 	 * enabled in dev_start stage.
5125 	 */
5126 	hw->set_link_down = false;
5127 	ret = hns3_do_start(hns, true);
5128 	if (ret)
5129 		goto do_start_fail;
5130 
5131 	ret = hns3_map_rx_interrupt(dev);
5132 	if (ret)
5133 		goto map_rx_inter_err;
5134 
5135 	/*
5136 	 * There are three register used to control the status of a TQP
5137 	 * (contains a pair of Tx queue and Rx queue) in the new version network
5138 	 * engine. One is used to control the enabling of Tx queue, the other is
5139 	 * used to control the enabling of Rx queue, and the last is the master
5140 	 * switch used to control the enabling of the tqp. The Tx register and
5141 	 * TQP register must be enabled at the same time to enable a Tx queue.
5142 	 * The same applies to the Rx queue. For the older network engine, this
5143 	 * function only refresh the enabled flag, and it is used to update the
5144 	 * status of queue in the dpdk framework.
5145 	 */
5146 	ret = hns3_start_all_txqs(dev);
5147 	if (ret)
5148 		goto map_rx_inter_err;
5149 
5150 	ret = hns3_start_all_rxqs(dev);
5151 	if (ret)
5152 		goto start_all_rxqs_fail;
5153 
5154 	hw->adapter_state = HNS3_NIC_STARTED;
5155 	rte_spinlock_unlock(&hw->lock);
5156 
5157 	hns3_rx_scattered_calc(dev);
5158 	hns3_set_rxtx_function(dev);
5159 	hns3_mp_req_start_rxtx(dev);
5160 
5161 	hns3_restore_filter(dev);
5162 
5163 	/* Enable interrupt of all rx queues before enabling queues */
5164 	hns3_dev_all_rx_queue_intr_enable(hw, true);
5165 
5166 	/*
5167 	 * After finished the initialization, enable tqps to receive/transmit
5168 	 * packets and refresh all queue status.
5169 	 */
5170 	hns3_start_tqps(hw);
5171 
5172 	hns3_tm_dev_start_proc(hw);
5173 
5174 	if (dev->data->dev_conf.intr_conf.lsc != 0)
5175 		hns3_dev_link_update(dev, 0);
5176 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5177 
5178 	hns3_info(hw, "hns3 dev start successful!");
5179 
5180 	return 0;
5181 
5182 start_all_rxqs_fail:
5183 	hns3_stop_all_txqs(dev);
5184 map_rx_inter_err:
5185 	(void)hns3_do_stop(hns);
5186 do_start_fail:
5187 	hw->set_link_down = old_state;
5188 	hw->adapter_state = HNS3_NIC_CONFIGURED;
5189 	rte_spinlock_unlock(&hw->lock);
5190 
5191 	return ret;
5192 }
5193 
5194 static int
5195 hns3_do_stop(struct hns3_adapter *hns)
5196 {
5197 	struct hns3_hw *hw = &hns->hw;
5198 	int ret;
5199 
5200 	/*
5201 	 * The "hns3_do_stop" function will also be called by .stop_service to
5202 	 * prepare reset. At the time of global or IMP reset, the command cannot
5203 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5204 	 * accessed during the reset process. So the mbuf can not be released
5205 	 * during reset and is required to be released after the reset is
5206 	 * completed.
5207 	 */
5208 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5209 		hns3_dev_release_mbufs(hns);
5210 
5211 	ret = hns3_cfg_mac_mode(hw, false);
5212 	if (ret)
5213 		return ret;
5214 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5215 
5216 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5217 		hns3_configure_all_mac_addr(hns, true);
5218 		ret = hns3_reset_all_tqps(hns);
5219 		if (ret) {
5220 			hns3_err(hw, "failed to reset all queues ret = %d.",
5221 				 ret);
5222 			return ret;
5223 		}
5224 	}
5225 
5226 	return 0;
5227 }
5228 
5229 static int
5230 hns3_dev_stop(struct rte_eth_dev *dev)
5231 {
5232 	struct hns3_adapter *hns = dev->data->dev_private;
5233 	struct hns3_hw *hw = &hns->hw;
5234 
5235 	PMD_INIT_FUNC_TRACE();
5236 	dev->data->dev_started = 0;
5237 
5238 	hw->adapter_state = HNS3_NIC_STOPPING;
5239 	hns3_set_rxtx_function(dev);
5240 	rte_wmb();
5241 	/* Disable datapath on secondary process. */
5242 	hns3_mp_req_stop_rxtx(dev);
5243 	/* Prevent crashes when queues are still in use. */
5244 	rte_delay_ms(hw->cfg_max_queues);
5245 
5246 	rte_spinlock_lock(&hw->lock);
5247 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5248 		hns3_tm_dev_stop_proc(hw);
5249 		hns3_config_mac_tnl_int(hw, false);
5250 		hns3_stop_tqps(hw);
5251 		hns3_do_stop(hns);
5252 		hns3_unmap_rx_interrupt(dev);
5253 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5254 	}
5255 	hns3_rx_scattered_reset(dev);
5256 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5257 	hns3_stop_report_lse(dev);
5258 	rte_spinlock_unlock(&hw->lock);
5259 
5260 	return 0;
5261 }
5262 
5263 static int
5264 hns3_dev_close(struct rte_eth_dev *eth_dev)
5265 {
5266 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5267 	struct hns3_hw *hw = &hns->hw;
5268 	int ret = 0;
5269 
5270 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5271 		hns3_mp_uninit(eth_dev);
5272 		return 0;
5273 	}
5274 
5275 	if (hw->adapter_state == HNS3_NIC_STARTED)
5276 		ret = hns3_dev_stop(eth_dev);
5277 
5278 	hw->adapter_state = HNS3_NIC_CLOSING;
5279 	hns3_reset_abort(hns);
5280 	hw->adapter_state = HNS3_NIC_CLOSED;
5281 
5282 	hns3_configure_all_mc_mac_addr(hns, true);
5283 	hns3_remove_all_vlan_table(hns);
5284 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5285 	hns3_uninit_pf(eth_dev);
5286 	hns3_free_all_queues(eth_dev);
5287 	rte_free(hw->reset.wait_data);
5288 	hns3_mp_uninit(eth_dev);
5289 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5290 
5291 	return ret;
5292 }
5293 
5294 static void
5295 hns3_get_autoneg_rxtx_pause_copper(struct hns3_hw *hw, bool *rx_pause,
5296 				   bool *tx_pause)
5297 {
5298 	struct hns3_mac *mac = &hw->mac;
5299 	uint32_t advertising = mac->advertising;
5300 	uint32_t lp_advertising = mac->lp_advertising;
5301 	*rx_pause = false;
5302 	*tx_pause = false;
5303 
5304 	if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) {
5305 		*rx_pause = true;
5306 		*tx_pause = true;
5307 	} else if (advertising & lp_advertising &
5308 		   HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) {
5309 		if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5310 			*rx_pause = true;
5311 		else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5312 			*tx_pause = true;
5313 	}
5314 }
5315 
5316 static enum hns3_fc_mode
5317 hns3_get_autoneg_fc_mode(struct hns3_hw *hw)
5318 {
5319 	enum hns3_fc_mode current_mode;
5320 	bool rx_pause = false;
5321 	bool tx_pause = false;
5322 
5323 	switch (hw->mac.media_type) {
5324 	case HNS3_MEDIA_TYPE_COPPER:
5325 		hns3_get_autoneg_rxtx_pause_copper(hw, &rx_pause, &tx_pause);
5326 		break;
5327 
5328 	/*
5329 	 * Flow control auto-negotiation is not supported for fiber and
5330 	 * backpalne media type.
5331 	 */
5332 	case HNS3_MEDIA_TYPE_FIBER:
5333 	case HNS3_MEDIA_TYPE_BACKPLANE:
5334 		hns3_err(hw, "autoneg FC mode can't be obtained, but flow control auto-negotiation is enabled.");
5335 		current_mode = hw->requested_fc_mode;
5336 		goto out;
5337 	default:
5338 		hns3_err(hw, "autoneg FC mode can't be obtained for unknown media type(%u).",
5339 			 hw->mac.media_type);
5340 		current_mode = HNS3_FC_NONE;
5341 		goto out;
5342 	}
5343 
5344 	if (rx_pause && tx_pause)
5345 		current_mode = HNS3_FC_FULL;
5346 	else if (rx_pause)
5347 		current_mode = HNS3_FC_RX_PAUSE;
5348 	else if (tx_pause)
5349 		current_mode = HNS3_FC_TX_PAUSE;
5350 	else
5351 		current_mode = HNS3_FC_NONE;
5352 
5353 out:
5354 	return current_mode;
5355 }
5356 
5357 static enum hns3_fc_mode
5358 hns3_get_current_fc_mode(struct rte_eth_dev *dev)
5359 {
5360 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5361 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5362 	struct hns3_mac *mac = &hw->mac;
5363 
5364 	/*
5365 	 * When the flow control mode is obtained, the device may not complete
5366 	 * auto-negotiation. It is necessary to wait for link establishment.
5367 	 */
5368 	(void)hns3_dev_link_update(dev, 1);
5369 
5370 	/*
5371 	 * If the link auto-negotiation of the nic is disabled, or the flow
5372 	 * control auto-negotiation is not supported, the forced flow control
5373 	 * mode is used.
5374 	 */
5375 	if (mac->link_autoneg == 0 || !pf->support_fc_autoneg)
5376 		return hw->requested_fc_mode;
5377 
5378 	return hns3_get_autoneg_fc_mode(hw);
5379 }
5380 
5381 static int
5382 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5383 {
5384 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5385 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5386 	enum hns3_fc_mode current_mode;
5387 
5388 	current_mode = hns3_get_current_fc_mode(dev);
5389 	switch (current_mode) {
5390 	case HNS3_FC_FULL:
5391 		fc_conf->mode = RTE_ETH_FC_FULL;
5392 		break;
5393 	case HNS3_FC_TX_PAUSE:
5394 		fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
5395 		break;
5396 	case HNS3_FC_RX_PAUSE:
5397 		fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
5398 		break;
5399 	case HNS3_FC_NONE:
5400 	default:
5401 		fc_conf->mode = RTE_ETH_FC_NONE;
5402 		break;
5403 	}
5404 
5405 	fc_conf->pause_time = pf->pause_time;
5406 	fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0;
5407 
5408 	return 0;
5409 }
5410 
5411 static int
5412 hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg)
5413 {
5414 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5415 
5416 	if (!pf->support_fc_autoneg) {
5417 		if (autoneg != 0) {
5418 			hns3_err(hw, "unsupported fc auto-negotiation setting.");
5419 			return -EOPNOTSUPP;
5420 		}
5421 
5422 		/*
5423 		 * Flow control auto-negotiation of the NIC is not supported,
5424 		 * but other auto-negotiation features may be supported.
5425 		 */
5426 		if (autoneg != hw->mac.link_autoneg) {
5427 			hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to disable autoneg!");
5428 			return -EOPNOTSUPP;
5429 		}
5430 
5431 		return 0;
5432 	}
5433 
5434 	/*
5435 	 * If flow control auto-negotiation of the NIC is supported, all
5436 	 * auto-negotiation features are supported.
5437 	 */
5438 	if (autoneg != hw->mac.link_autoneg) {
5439 		hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!");
5440 		return -EOPNOTSUPP;
5441 	}
5442 
5443 	return 0;
5444 }
5445 
5446 static int
5447 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5448 {
5449 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5450 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5451 	int ret;
5452 
5453 	if (fc_conf->high_water || fc_conf->low_water ||
5454 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5455 		hns3_err(hw, "Unsupported flow control settings specified, "
5456 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5457 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5458 			 fc_conf->high_water, fc_conf->low_water,
5459 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5460 		return -EINVAL;
5461 	}
5462 
5463 	ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg);
5464 	if (ret)
5465 		return ret;
5466 
5467 	if (!fc_conf->pause_time) {
5468 		hns3_err(hw, "Invalid pause time %u setting.",
5469 			 fc_conf->pause_time);
5470 		return -EINVAL;
5471 	}
5472 
5473 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5474 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5475 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5476 			 "current_fc_status = %d", hw->current_fc_status);
5477 		return -EOPNOTSUPP;
5478 	}
5479 
5480 	if (hw->num_tc > 1 && !pf->support_multi_tc_pause) {
5481 		hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
5482 		return -EOPNOTSUPP;
5483 	}
5484 
5485 	rte_spinlock_lock(&hw->lock);
5486 	ret = hns3_fc_enable(dev, fc_conf);
5487 	rte_spinlock_unlock(&hw->lock);
5488 
5489 	return ret;
5490 }
5491 
5492 static int
5493 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5494 			    struct rte_eth_pfc_conf *pfc_conf)
5495 {
5496 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5497 	int ret;
5498 
5499 	if (!hns3_dev_get_support(hw, DCB)) {
5500 		hns3_err(hw, "This port does not support dcb configurations.");
5501 		return -EOPNOTSUPP;
5502 	}
5503 
5504 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5505 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5506 		hns3_err(hw, "Unsupported flow control settings specified, "
5507 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5508 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5509 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5510 			 pfc_conf->fc.send_xon,
5511 			 pfc_conf->fc.mac_ctrl_frame_fwd);
5512 		return -EINVAL;
5513 	}
5514 	if (pfc_conf->fc.autoneg) {
5515 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5516 		return -EINVAL;
5517 	}
5518 	if (pfc_conf->fc.pause_time == 0) {
5519 		hns3_err(hw, "Invalid pause time %u setting.",
5520 			 pfc_conf->fc.pause_time);
5521 		return -EINVAL;
5522 	}
5523 
5524 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5525 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5526 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5527 			     "current_fc_status = %d", hw->current_fc_status);
5528 		return -EOPNOTSUPP;
5529 	}
5530 
5531 	rte_spinlock_lock(&hw->lock);
5532 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5533 	rte_spinlock_unlock(&hw->lock);
5534 
5535 	return ret;
5536 }
5537 
5538 static int
5539 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5540 {
5541 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5542 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5543 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5544 	int i;
5545 
5546 	rte_spinlock_lock(&hw->lock);
5547 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG)
5548 		dcb_info->nb_tcs = pf->local_max_tc;
5549 	else
5550 		dcb_info->nb_tcs = 1;
5551 
5552 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5553 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5554 	for (i = 0; i < dcb_info->nb_tcs; i++)
5555 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5556 
5557 	for (i = 0; i < hw->num_tc; i++) {
5558 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5559 		dcb_info->tc_queue.tc_txq[0][i].base =
5560 						hw->tc_queue[i].tqp_offset;
5561 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5562 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5563 						hw->tc_queue[i].tqp_count;
5564 	}
5565 	rte_spinlock_unlock(&hw->lock);
5566 
5567 	return 0;
5568 }
5569 
5570 static int
5571 hns3_reinit_dev(struct hns3_adapter *hns)
5572 {
5573 	struct hns3_hw *hw = &hns->hw;
5574 	int ret;
5575 
5576 	ret = hns3_cmd_init(hw);
5577 	if (ret) {
5578 		hns3_err(hw, "Failed to init cmd: %d", ret);
5579 		return ret;
5580 	}
5581 
5582 	ret = hns3_reset_all_tqps(hns);
5583 	if (ret) {
5584 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5585 		return ret;
5586 	}
5587 
5588 	ret = hns3_init_hardware(hns);
5589 	if (ret) {
5590 		hns3_err(hw, "Failed to init hardware: %d", ret);
5591 		return ret;
5592 	}
5593 
5594 	ret = hns3_enable_hw_error_intr(hns, true);
5595 	if (ret) {
5596 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5597 			     ret);
5598 		return ret;
5599 	}
5600 	hns3_info(hw, "Reset done, driver initialization finished.");
5601 
5602 	return 0;
5603 }
5604 
5605 static bool
5606 is_pf_reset_done(struct hns3_hw *hw)
5607 {
5608 	uint32_t val, reg, reg_bit;
5609 
5610 	switch (hw->reset.level) {
5611 	case HNS3_IMP_RESET:
5612 		reg = HNS3_GLOBAL_RESET_REG;
5613 		reg_bit = HNS3_IMP_RESET_BIT;
5614 		break;
5615 	case HNS3_GLOBAL_RESET:
5616 		reg = HNS3_GLOBAL_RESET_REG;
5617 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5618 		break;
5619 	case HNS3_FUNC_RESET:
5620 		reg = HNS3_FUN_RST_ING;
5621 		reg_bit = HNS3_FUN_RST_ING_B;
5622 		break;
5623 	case HNS3_FLR_RESET:
5624 	default:
5625 		hns3_err(hw, "Wait for unsupported reset level: %d",
5626 			 hw->reset.level);
5627 		return true;
5628 	}
5629 	val = hns3_read_dev(hw, reg);
5630 	if (hns3_get_bit(val, reg_bit))
5631 		return false;
5632 	else
5633 		return true;
5634 }
5635 
5636 bool
5637 hns3_is_reset_pending(struct hns3_adapter *hns)
5638 {
5639 	struct hns3_hw *hw = &hns->hw;
5640 	enum hns3_reset_level reset;
5641 
5642 	hns3_check_event_cause(hns, NULL);
5643 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5644 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
5645 	    hw->reset.level < reset) {
5646 		hns3_warn(hw, "High level reset %d is pending", reset);
5647 		return true;
5648 	}
5649 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5650 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
5651 	    hw->reset.level < reset) {
5652 		hns3_warn(hw, "High level reset %d is request", reset);
5653 		return true;
5654 	}
5655 	return false;
5656 }
5657 
5658 static int
5659 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5660 {
5661 	struct hns3_hw *hw = &hns->hw;
5662 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5663 	struct timeval tv;
5664 
5665 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5666 		return 0;
5667 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5668 		hns3_clock_gettime(&tv);
5669 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5670 			  tv.tv_sec, tv.tv_usec);
5671 		return -ETIME;
5672 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5673 		return -EAGAIN;
5674 
5675 	wait_data->hns = hns;
5676 	wait_data->check_completion = is_pf_reset_done;
5677 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5678 				HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms();
5679 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5680 	wait_data->count = HNS3_RESET_WAIT_CNT;
5681 	wait_data->result = HNS3_WAIT_REQUEST;
5682 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5683 	return -EAGAIN;
5684 }
5685 
5686 static int
5687 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5688 {
5689 	struct hns3_cmd_desc desc;
5690 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5691 
5692 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5693 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5694 	req->fun_reset_vfid = func_id;
5695 
5696 	return hns3_cmd_send(hw, &desc, 1);
5697 }
5698 
5699 static int
5700 hns3_imp_reset_cmd(struct hns3_hw *hw)
5701 {
5702 	struct hns3_cmd_desc desc;
5703 
5704 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5705 	desc.data[0] = 0xeedd;
5706 
5707 	return hns3_cmd_send(hw, &desc, 1);
5708 }
5709 
5710 static void
5711 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5712 {
5713 	struct hns3_hw *hw = &hns->hw;
5714 	struct timeval tv;
5715 	uint32_t val;
5716 
5717 	hns3_clock_gettime(&tv);
5718 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5719 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5720 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5721 			  tv.tv_sec, tv.tv_usec);
5722 		return;
5723 	}
5724 
5725 	switch (reset_level) {
5726 	case HNS3_IMP_RESET:
5727 		hns3_imp_reset_cmd(hw);
5728 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5729 			  tv.tv_sec, tv.tv_usec);
5730 		break;
5731 	case HNS3_GLOBAL_RESET:
5732 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5733 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5734 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5735 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5736 			  tv.tv_sec, tv.tv_usec);
5737 		break;
5738 	case HNS3_FUNC_RESET:
5739 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5740 			  tv.tv_sec, tv.tv_usec);
5741 		/* schedule again to check later */
5742 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5743 		hns3_schedule_reset(hns);
5744 		break;
5745 	default:
5746 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5747 		return;
5748 	}
5749 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5750 }
5751 
5752 static enum hns3_reset_level
5753 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5754 {
5755 	struct hns3_hw *hw = &hns->hw;
5756 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5757 
5758 	/* Return the highest priority reset level amongst all */
5759 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5760 		reset_level = HNS3_IMP_RESET;
5761 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5762 		reset_level = HNS3_GLOBAL_RESET;
5763 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5764 		reset_level = HNS3_FUNC_RESET;
5765 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5766 		reset_level = HNS3_FLR_RESET;
5767 
5768 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5769 		return HNS3_NONE_RESET;
5770 
5771 	return reset_level;
5772 }
5773 
5774 static void
5775 hns3_record_imp_error(struct hns3_adapter *hns)
5776 {
5777 	struct hns3_hw *hw = &hns->hw;
5778 	uint32_t reg_val;
5779 
5780 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5781 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5782 		hns3_warn(hw, "Detected IMP RD poison!");
5783 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5784 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5785 	}
5786 
5787 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5788 		hns3_warn(hw, "Detected IMP CMDQ error!");
5789 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5790 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5791 	}
5792 }
5793 
5794 static int
5795 hns3_prepare_reset(struct hns3_adapter *hns)
5796 {
5797 	struct hns3_hw *hw = &hns->hw;
5798 	uint32_t reg_val;
5799 	int ret;
5800 
5801 	switch (hw->reset.level) {
5802 	case HNS3_FUNC_RESET:
5803 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5804 		if (ret)
5805 			return ret;
5806 
5807 		/*
5808 		 * After performaning pf reset, it is not necessary to do the
5809 		 * mailbox handling or send any command to firmware, because
5810 		 * any mailbox handling or command to firmware is only valid
5811 		 * after hns3_cmd_init is called.
5812 		 */
5813 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5814 		hw->reset.stats.request_cnt++;
5815 		break;
5816 	case HNS3_IMP_RESET:
5817 		hns3_record_imp_error(hns);
5818 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5819 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5820 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5821 		break;
5822 	default:
5823 		break;
5824 	}
5825 	return 0;
5826 }
5827 
5828 static int
5829 hns3_set_rst_done(struct hns3_hw *hw)
5830 {
5831 	struct hns3_pf_rst_done_cmd *req;
5832 	struct hns3_cmd_desc desc;
5833 
5834 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5835 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5836 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5837 	return hns3_cmd_send(hw, &desc, 1);
5838 }
5839 
5840 static int
5841 hns3_stop_service(struct hns3_adapter *hns)
5842 {
5843 	struct hns3_hw *hw = &hns->hw;
5844 	struct rte_eth_dev *eth_dev;
5845 
5846 	eth_dev = &rte_eth_devices[hw->data->port_id];
5847 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5848 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5849 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5850 		hns3_update_linkstatus_and_event(hw, false);
5851 	}
5852 
5853 	hns3_set_rxtx_function(eth_dev);
5854 	rte_wmb();
5855 	/* Disable datapath on secondary process. */
5856 	hns3_mp_req_stop_rxtx(eth_dev);
5857 	rte_delay_ms(hw->cfg_max_queues);
5858 
5859 	rte_spinlock_lock(&hw->lock);
5860 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5861 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5862 		hns3_enable_all_queues(hw, false);
5863 		hns3_do_stop(hns);
5864 		hw->reset.mbuf_deferred_free = true;
5865 	} else
5866 		hw->reset.mbuf_deferred_free = false;
5867 
5868 	/*
5869 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5870 	 * from table space. Hence, for function reset software intervention is
5871 	 * required to delete the entries
5872 	 */
5873 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5874 		hns3_configure_all_mc_mac_addr(hns, true);
5875 	rte_spinlock_unlock(&hw->lock);
5876 
5877 	return 0;
5878 }
5879 
5880 static int
5881 hns3_start_service(struct hns3_adapter *hns)
5882 {
5883 	struct hns3_hw *hw = &hns->hw;
5884 	struct rte_eth_dev *eth_dev;
5885 
5886 	if (hw->reset.level == HNS3_IMP_RESET ||
5887 	    hw->reset.level == HNS3_GLOBAL_RESET)
5888 		hns3_set_rst_done(hw);
5889 	eth_dev = &rte_eth_devices[hw->data->port_id];
5890 	hns3_set_rxtx_function(eth_dev);
5891 	hns3_mp_req_start_rxtx(eth_dev);
5892 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5893 		/*
5894 		 * This API parent function already hold the hns3_hw.lock, the
5895 		 * hns3_service_handler may report lse, in bonding application
5896 		 * it will call driver's ops which may acquire the hns3_hw.lock
5897 		 * again, thus lead to deadlock.
5898 		 * We defer calls hns3_service_handler to avoid the deadlock.
5899 		 */
5900 		rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5901 				  hns3_service_handler, eth_dev);
5902 
5903 		/* Enable interrupt of all rx queues before enabling queues */
5904 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5905 		/*
5906 		 * Enable state of each rxq and txq will be recovered after
5907 		 * reset, so we need to restore them before enable all tqps;
5908 		 */
5909 		hns3_restore_tqp_enable_state(hw);
5910 		/*
5911 		 * When finished the initialization, enable queues to receive
5912 		 * and transmit packets.
5913 		 */
5914 		hns3_enable_all_queues(hw, true);
5915 	}
5916 
5917 	return 0;
5918 }
5919 
5920 static int
5921 hns3_restore_conf(struct hns3_adapter *hns)
5922 {
5923 	struct hns3_hw *hw = &hns->hw;
5924 	int ret;
5925 
5926 	ret = hns3_configure_all_mac_addr(hns, false);
5927 	if (ret)
5928 		return ret;
5929 
5930 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5931 	if (ret)
5932 		goto err_mc_mac;
5933 
5934 	ret = hns3_dev_promisc_restore(hns);
5935 	if (ret)
5936 		goto err_promisc;
5937 
5938 	ret = hns3_restore_vlan_table(hns);
5939 	if (ret)
5940 		goto err_promisc;
5941 
5942 	ret = hns3_restore_vlan_conf(hns);
5943 	if (ret)
5944 		goto err_promisc;
5945 
5946 	ret = hns3_restore_all_fdir_filter(hns);
5947 	if (ret)
5948 		goto err_promisc;
5949 
5950 	ret = hns3_restore_ptp(hns);
5951 	if (ret)
5952 		goto err_promisc;
5953 
5954 	ret = hns3_restore_rx_interrupt(hw);
5955 	if (ret)
5956 		goto err_promisc;
5957 
5958 	ret = hns3_restore_gro_conf(hw);
5959 	if (ret)
5960 		goto err_promisc;
5961 
5962 	ret = hns3_restore_fec(hw);
5963 	if (ret)
5964 		goto err_promisc;
5965 
5966 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5967 		ret = hns3_do_start(hns, false);
5968 		if (ret)
5969 			goto err_promisc;
5970 		hns3_info(hw, "hns3 dev restart successful!");
5971 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5972 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5973 	return 0;
5974 
5975 err_promisc:
5976 	hns3_configure_all_mc_mac_addr(hns, true);
5977 err_mc_mac:
5978 	hns3_configure_all_mac_addr(hns, true);
5979 	return ret;
5980 }
5981 
5982 static void
5983 hns3_reset_service(void *param)
5984 {
5985 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5986 	struct hns3_hw *hw = &hns->hw;
5987 	enum hns3_reset_level reset_level;
5988 	struct timeval tv_delta;
5989 	struct timeval tv_start;
5990 	struct timeval tv;
5991 	uint64_t msec;
5992 	int ret;
5993 
5994 	/*
5995 	 * The interrupt is not triggered within the delay time.
5996 	 * The interrupt may have been lost. It is necessary to handle
5997 	 * the interrupt to recover from the error.
5998 	 */
5999 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6000 			    SCHEDULE_DEFERRED) {
6001 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
6002 				  __ATOMIC_RELAXED);
6003 		hns3_err(hw, "Handling interrupts in delayed tasks");
6004 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
6005 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6006 		if (reset_level == HNS3_NONE_RESET) {
6007 			hns3_err(hw, "No reset level is set, try IMP reset");
6008 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
6009 		}
6010 	}
6011 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
6012 
6013 	/*
6014 	 * Check if there is any ongoing reset in the hardware. This status can
6015 	 * be checked from reset_pending. If there is then, we need to wait for
6016 	 * hardware to complete reset.
6017 	 *    a. If we are able to figure out in reasonable time that hardware
6018 	 *       has fully resetted then, we can proceed with driver, client
6019 	 *       reset.
6020 	 *    b. else, we can come back later to check this status so re-sched
6021 	 *       now.
6022 	 */
6023 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6024 	if (reset_level != HNS3_NONE_RESET) {
6025 		hns3_clock_gettime(&tv_start);
6026 		ret = hns3_reset_process(hns, reset_level);
6027 		hns3_clock_gettime(&tv);
6028 		timersub(&tv, &tv_start, &tv_delta);
6029 		msec = hns3_clock_calctime_ms(&tv_delta);
6030 		if (msec > HNS3_RESET_PROCESS_MS)
6031 			hns3_err(hw, "%d handle long time delta %" PRIu64
6032 				     " ms time=%ld.%.6ld",
6033 				 hw->reset.level, msec,
6034 				 tv.tv_sec, tv.tv_usec);
6035 		if (ret == -EAGAIN)
6036 			return;
6037 	}
6038 
6039 	/* Check if we got any *new* reset requests to be honored */
6040 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6041 	if (reset_level != HNS3_NONE_RESET)
6042 		hns3_msix_process(hns, reset_level);
6043 }
6044 
6045 static unsigned int
6046 hns3_get_speed_capa_num(uint16_t device_id)
6047 {
6048 	unsigned int num;
6049 
6050 	switch (device_id) {
6051 	case HNS3_DEV_ID_25GE:
6052 	case HNS3_DEV_ID_25GE_RDMA:
6053 		num = 2;
6054 		break;
6055 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6056 	case HNS3_DEV_ID_200G_RDMA:
6057 		num = 1;
6058 		break;
6059 	default:
6060 		num = 0;
6061 		break;
6062 	}
6063 
6064 	return num;
6065 }
6066 
6067 static int
6068 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6069 			uint16_t device_id)
6070 {
6071 	switch (device_id) {
6072 	case HNS3_DEV_ID_25GE:
6073 	/* fallthrough */
6074 	case HNS3_DEV_ID_25GE_RDMA:
6075 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6076 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6077 
6078 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
6079 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6080 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6081 		break;
6082 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6083 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6084 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6085 		break;
6086 	case HNS3_DEV_ID_200G_RDMA:
6087 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6088 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6089 		break;
6090 	default:
6091 		return -ENOTSUP;
6092 	}
6093 
6094 	return 0;
6095 }
6096 
6097 static int
6098 hns3_fec_get_capability(struct rte_eth_dev *dev,
6099 			struct rte_eth_fec_capa *speed_fec_capa,
6100 			unsigned int num)
6101 {
6102 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6103 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6104 	uint16_t device_id = pci_dev->id.device_id;
6105 	unsigned int capa_num;
6106 	int ret;
6107 
6108 	capa_num = hns3_get_speed_capa_num(device_id);
6109 	if (capa_num == 0) {
6110 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6111 			 device_id);
6112 		return -ENOTSUP;
6113 	}
6114 
6115 	if (speed_fec_capa == NULL || num < capa_num)
6116 		return capa_num;
6117 
6118 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6119 	if (ret)
6120 		return -ENOTSUP;
6121 
6122 	return capa_num;
6123 }
6124 
6125 static int
6126 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6127 {
6128 	struct hns3_config_fec_cmd *req;
6129 	struct hns3_cmd_desc desc;
6130 	int ret;
6131 
6132 	/*
6133 	 * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6134 	 * in device of link speed
6135 	 * below 10 Gbps.
6136 	 */
6137 	if (hw->mac.link_speed < RTE_ETH_SPEED_NUM_10G) {
6138 		*state = 0;
6139 		return 0;
6140 	}
6141 
6142 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6143 	req = (struct hns3_config_fec_cmd *)desc.data;
6144 	ret = hns3_cmd_send(hw, &desc, 1);
6145 	if (ret) {
6146 		hns3_err(hw, "get current fec auto state failed, ret = %d",
6147 			 ret);
6148 		return ret;
6149 	}
6150 
6151 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6152 	return 0;
6153 }
6154 
6155 static int
6156 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6157 {
6158 	struct hns3_sfp_info_cmd *resp;
6159 	uint32_t tmp_fec_capa;
6160 	uint8_t auto_state;
6161 	struct hns3_cmd_desc desc;
6162 	int ret;
6163 
6164 	/*
6165 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6166 	 * configured FEC mode is returned.
6167 	 * If link is up, current FEC mode is returned.
6168 	 */
6169 	if (hw->mac.link_status == RTE_ETH_LINK_DOWN) {
6170 		ret = get_current_fec_auto_state(hw, &auto_state);
6171 		if (ret)
6172 			return ret;
6173 
6174 		if (auto_state == 0x1) {
6175 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6176 			return 0;
6177 		}
6178 	}
6179 
6180 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
6181 	resp = (struct hns3_sfp_info_cmd *)desc.data;
6182 	resp->query_type = HNS3_ACTIVE_QUERY;
6183 
6184 	ret = hns3_cmd_send(hw, &desc, 1);
6185 	if (ret == -EOPNOTSUPP) {
6186 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6187 		return ret;
6188 	} else if (ret) {
6189 		hns3_err(hw, "get FEC failed, ret = %d", ret);
6190 		return ret;
6191 	}
6192 
6193 	/*
6194 	 * FEC mode order defined in hns3 hardware is inconsistend with
6195 	 * that defined in the ethdev library. So the sequence needs
6196 	 * to be converted.
6197 	 */
6198 	switch (resp->active_fec) {
6199 	case HNS3_HW_FEC_MODE_NOFEC:
6200 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6201 		break;
6202 	case HNS3_HW_FEC_MODE_BASER:
6203 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6204 		break;
6205 	case HNS3_HW_FEC_MODE_RS:
6206 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6207 		break;
6208 	default:
6209 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6210 		break;
6211 	}
6212 
6213 	*fec_capa = tmp_fec_capa;
6214 	return 0;
6215 }
6216 
6217 static int
6218 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6219 {
6220 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6221 
6222 	return hns3_fec_get_internal(hw, fec_capa);
6223 }
6224 
6225 static int
6226 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6227 {
6228 	struct hns3_config_fec_cmd *req;
6229 	struct hns3_cmd_desc desc;
6230 	int ret;
6231 
6232 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6233 
6234 	req = (struct hns3_config_fec_cmd *)desc.data;
6235 	switch (mode) {
6236 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6237 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6238 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6239 		break;
6240 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6241 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6242 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6243 		break;
6244 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6245 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6246 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6247 		break;
6248 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6249 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6250 		break;
6251 	default:
6252 		return 0;
6253 	}
6254 	ret = hns3_cmd_send(hw, &desc, 1);
6255 	if (ret)
6256 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
6257 
6258 	return ret;
6259 }
6260 
6261 static uint32_t
6262 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6263 {
6264 	struct hns3_mac *mac = &hw->mac;
6265 	uint32_t cur_capa;
6266 
6267 	switch (mac->link_speed) {
6268 	case RTE_ETH_SPEED_NUM_10G:
6269 		cur_capa = fec_capa[1].capa;
6270 		break;
6271 	case RTE_ETH_SPEED_NUM_25G:
6272 	case RTE_ETH_SPEED_NUM_100G:
6273 	case RTE_ETH_SPEED_NUM_200G:
6274 		cur_capa = fec_capa[0].capa;
6275 		break;
6276 	default:
6277 		cur_capa = 0;
6278 		break;
6279 	}
6280 
6281 	return cur_capa;
6282 }
6283 
6284 static bool
6285 is_fec_mode_one_bit_set(uint32_t mode)
6286 {
6287 	int cnt = 0;
6288 	uint8_t i;
6289 
6290 	for (i = 0; i < sizeof(mode); i++)
6291 		if (mode >> i & 0x1)
6292 			cnt++;
6293 
6294 	return cnt == 1 ? true : false;
6295 }
6296 
6297 static int
6298 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6299 {
6300 #define FEC_CAPA_NUM 2
6301 	struct hns3_adapter *hns = dev->data->dev_private;
6302 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6303 	struct hns3_pf *pf = &hns->pf;
6304 
6305 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6306 	uint32_t cur_capa;
6307 	uint32_t num = FEC_CAPA_NUM;
6308 	int ret;
6309 
6310 	ret = hns3_fec_get_capability(dev, fec_capa, num);
6311 	if (ret < 0)
6312 		return ret;
6313 
6314 	/* HNS3 PMD only support one bit set mode, e.g. 0x1, 0x4 */
6315 	if (!is_fec_mode_one_bit_set(mode)) {
6316 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD, "
6317 			     "FEC mode should be only one bit set", mode);
6318 		return -EINVAL;
6319 	}
6320 
6321 	/*
6322 	 * Check whether the configured mode is within the FEC capability.
6323 	 * If not, the configured mode will not be supported.
6324 	 */
6325 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6326 	if (!(cur_capa & mode)) {
6327 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6328 		return -EINVAL;
6329 	}
6330 
6331 	rte_spinlock_lock(&hw->lock);
6332 	ret = hns3_set_fec_hw(hw, mode);
6333 	if (ret) {
6334 		rte_spinlock_unlock(&hw->lock);
6335 		return ret;
6336 	}
6337 
6338 	pf->fec_mode = mode;
6339 	rte_spinlock_unlock(&hw->lock);
6340 
6341 	return 0;
6342 }
6343 
6344 static int
6345 hns3_restore_fec(struct hns3_hw *hw)
6346 {
6347 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6348 	struct hns3_pf *pf = &hns->pf;
6349 	uint32_t mode = pf->fec_mode;
6350 	int ret;
6351 
6352 	ret = hns3_set_fec_hw(hw, mode);
6353 	if (ret)
6354 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6355 			 mode, ret);
6356 
6357 	return ret;
6358 }
6359 
6360 static int
6361 hns3_query_dev_fec_info(struct hns3_hw *hw)
6362 {
6363 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6364 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6365 	int ret;
6366 
6367 	ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6368 	if (ret)
6369 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6370 
6371 	return ret;
6372 }
6373 
6374 static bool
6375 hns3_optical_module_existed(struct hns3_hw *hw)
6376 {
6377 	struct hns3_cmd_desc desc;
6378 	bool existed;
6379 	int ret;
6380 
6381 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6382 	ret = hns3_cmd_send(hw, &desc, 1);
6383 	if (ret) {
6384 		hns3_err(hw,
6385 			 "fail to get optical module exist state, ret = %d.\n",
6386 			 ret);
6387 		return false;
6388 	}
6389 	existed = !!desc.data[0];
6390 
6391 	return existed;
6392 }
6393 
6394 static int
6395 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6396 				uint32_t len, uint8_t *data)
6397 {
6398 #define HNS3_SFP_INFO_CMD_NUM 6
6399 #define HNS3_SFP_INFO_MAX_LEN \
6400 	(HNS3_SFP_INFO_BD0_LEN + \
6401 	(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6402 	struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6403 	struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6404 	uint16_t read_len;
6405 	uint16_t copy_len;
6406 	int ret;
6407 	int i;
6408 
6409 	for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6410 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6411 					  true);
6412 		if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6413 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6414 	}
6415 
6416 	sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6417 	sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6418 	read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6419 	sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6420 
6421 	ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6422 	if (ret) {
6423 		hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6424 				ret);
6425 		return ret;
6426 	}
6427 
6428 	/* The data format in BD0 is different with the others. */
6429 	copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6430 	memcpy(data, sfp_info_bd0->data, copy_len);
6431 	read_len = copy_len;
6432 
6433 	for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6434 		if (read_len >= len)
6435 			break;
6436 
6437 		copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6438 		memcpy(data + read_len, desc[i].data, copy_len);
6439 		read_len += copy_len;
6440 	}
6441 
6442 	return (int)read_len;
6443 }
6444 
6445 static int
6446 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6447 		       struct rte_dev_eeprom_info *info)
6448 {
6449 	struct hns3_adapter *hns = dev->data->dev_private;
6450 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6451 	uint32_t offset = info->offset;
6452 	uint32_t len = info->length;
6453 	uint8_t *data = info->data;
6454 	uint32_t read_len = 0;
6455 
6456 	if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6457 		return -ENOTSUP;
6458 
6459 	if (!hns3_optical_module_existed(hw)) {
6460 		hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6461 		return -EIO;
6462 	}
6463 
6464 	while (read_len < len) {
6465 		int ret;
6466 		ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6467 						  len - read_len,
6468 						  data + read_len);
6469 		if (ret < 0)
6470 			return -EIO;
6471 		read_len += ret;
6472 	}
6473 
6474 	return 0;
6475 }
6476 
6477 static int
6478 hns3_get_module_info(struct rte_eth_dev *dev,
6479 		     struct rte_eth_dev_module_info *modinfo)
6480 {
6481 #define HNS3_SFF8024_ID_SFP		0x03
6482 #define HNS3_SFF8024_ID_QSFP_8438	0x0c
6483 #define HNS3_SFF8024_ID_QSFP_8436_8636	0x0d
6484 #define HNS3_SFF8024_ID_QSFP28_8636	0x11
6485 #define HNS3_SFF_8636_V1_3		0x03
6486 	struct hns3_adapter *hns = dev->data->dev_private;
6487 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6488 	struct rte_dev_eeprom_info info;
6489 	struct hns3_sfp_type sfp_type;
6490 	int ret;
6491 
6492 	memset(&sfp_type, 0, sizeof(sfp_type));
6493 	memset(&info, 0, sizeof(info));
6494 	info.data = (uint8_t *)&sfp_type;
6495 	info.length = sizeof(sfp_type);
6496 	ret = hns3_get_module_eeprom(dev, &info);
6497 	if (ret)
6498 		return ret;
6499 
6500 	switch (sfp_type.type) {
6501 	case HNS3_SFF8024_ID_SFP:
6502 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
6503 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6504 		break;
6505 	case HNS3_SFF8024_ID_QSFP_8438:
6506 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
6507 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6508 		break;
6509 	case HNS3_SFF8024_ID_QSFP_8436_8636:
6510 		if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6511 			modinfo->type = RTE_ETH_MODULE_SFF_8436;
6512 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6513 		} else {
6514 			modinfo->type = RTE_ETH_MODULE_SFF_8636;
6515 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6516 		}
6517 		break;
6518 	case HNS3_SFF8024_ID_QSFP28_8636:
6519 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
6520 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6521 		break;
6522 	default:
6523 		hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6524 			 sfp_type.type, sfp_type.ext_type);
6525 		return -EINVAL;
6526 	}
6527 
6528 	return 0;
6529 }
6530 
6531 static const struct eth_dev_ops hns3_eth_dev_ops = {
6532 	.dev_configure      = hns3_dev_configure,
6533 	.dev_start          = hns3_dev_start,
6534 	.dev_stop           = hns3_dev_stop,
6535 	.dev_close          = hns3_dev_close,
6536 	.promiscuous_enable = hns3_dev_promiscuous_enable,
6537 	.promiscuous_disable = hns3_dev_promiscuous_disable,
6538 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
6539 	.allmulticast_disable = hns3_dev_allmulticast_disable,
6540 	.mtu_set            = hns3_dev_mtu_set,
6541 	.stats_get          = hns3_stats_get,
6542 	.stats_reset        = hns3_stats_reset,
6543 	.xstats_get         = hns3_dev_xstats_get,
6544 	.xstats_get_names   = hns3_dev_xstats_get_names,
6545 	.xstats_reset       = hns3_dev_xstats_reset,
6546 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6547 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6548 	.dev_infos_get          = hns3_dev_infos_get,
6549 	.fw_version_get         = hns3_fw_version_get,
6550 	.rx_queue_setup         = hns3_rx_queue_setup,
6551 	.tx_queue_setup         = hns3_tx_queue_setup,
6552 	.rx_queue_release       = hns3_dev_rx_queue_release,
6553 	.tx_queue_release       = hns3_dev_tx_queue_release,
6554 	.rx_queue_start         = hns3_dev_rx_queue_start,
6555 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
6556 	.tx_queue_start         = hns3_dev_tx_queue_start,
6557 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
6558 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6559 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6560 	.rxq_info_get           = hns3_rxq_info_get,
6561 	.txq_info_get           = hns3_txq_info_get,
6562 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
6563 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
6564 	.flow_ctrl_get          = hns3_flow_ctrl_get,
6565 	.flow_ctrl_set          = hns3_flow_ctrl_set,
6566 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6567 	.mac_addr_add           = hns3_add_mac_addr,
6568 	.mac_addr_remove        = hns3_remove_mac_addr,
6569 	.mac_addr_set           = hns3_set_default_mac_addr,
6570 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6571 	.link_update            = hns3_dev_link_update,
6572 	.dev_set_link_up        = hns3_dev_set_link_up,
6573 	.dev_set_link_down      = hns3_dev_set_link_down,
6574 	.rss_hash_update        = hns3_dev_rss_hash_update,
6575 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6576 	.reta_update            = hns3_dev_rss_reta_update,
6577 	.reta_query             = hns3_dev_rss_reta_query,
6578 	.flow_ops_get           = hns3_dev_flow_ops_get,
6579 	.vlan_filter_set        = hns3_vlan_filter_set,
6580 	.vlan_tpid_set          = hns3_vlan_tpid_set,
6581 	.vlan_offload_set       = hns3_vlan_offload_set,
6582 	.vlan_pvid_set          = hns3_vlan_pvid_set,
6583 	.get_reg                = hns3_get_regs,
6584 	.get_module_info        = hns3_get_module_info,
6585 	.get_module_eeprom      = hns3_get_module_eeprom,
6586 	.get_dcb_info           = hns3_get_dcb_info,
6587 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6588 	.fec_get_capability     = hns3_fec_get_capability,
6589 	.fec_get                = hns3_fec_get,
6590 	.fec_set                = hns3_fec_set,
6591 	.tm_ops_get             = hns3_tm_ops_get,
6592 	.tx_done_cleanup        = hns3_tx_done_cleanup,
6593 	.timesync_enable            = hns3_timesync_enable,
6594 	.timesync_disable           = hns3_timesync_disable,
6595 	.timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
6596 	.timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
6597 	.timesync_adjust_time       = hns3_timesync_adjust_time,
6598 	.timesync_read_time         = hns3_timesync_read_time,
6599 	.timesync_write_time        = hns3_timesync_write_time,
6600 };
6601 
6602 static const struct hns3_reset_ops hns3_reset_ops = {
6603 	.reset_service       = hns3_reset_service,
6604 	.stop_service        = hns3_stop_service,
6605 	.prepare_reset       = hns3_prepare_reset,
6606 	.wait_hardware_ready = hns3_wait_hardware_ready,
6607 	.reinit_dev          = hns3_reinit_dev,
6608 	.restore_conf	     = hns3_restore_conf,
6609 	.start_service       = hns3_start_service,
6610 };
6611 
6612 static void
6613 hns3_init_hw_ops(struct hns3_hw *hw)
6614 {
6615 	hw->ops.add_mc_mac_addr = hns3_add_mc_mac_addr;
6616 	hw->ops.del_mc_mac_addr = hns3_remove_mc_mac_addr;
6617 	hw->ops.add_uc_mac_addr = hns3_add_uc_mac_addr;
6618 	hw->ops.del_uc_mac_addr = hns3_remove_uc_mac_addr;
6619 	hw->ops.bind_ring_with_vector = hns3_bind_ring_with_vector;
6620 }
6621 
6622 static int
6623 hns3_dev_init(struct rte_eth_dev *eth_dev)
6624 {
6625 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6626 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
6627 	struct rte_ether_addr *eth_addr;
6628 	struct hns3_hw *hw = &hns->hw;
6629 	int ret;
6630 
6631 	PMD_INIT_FUNC_TRACE();
6632 
6633 	hns3_flow_init(eth_dev);
6634 
6635 	hns3_set_rxtx_function(eth_dev);
6636 	eth_dev->dev_ops = &hns3_eth_dev_ops;
6637 	eth_dev->rx_queue_count = hns3_rx_queue_count;
6638 	ret = hns3_mp_init(eth_dev);
6639 	if (ret)
6640 		goto err_mp_init;
6641 
6642 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6643 		hns3_tx_push_init(eth_dev);
6644 		return 0;
6645 	}
6646 
6647 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6648 	hns->is_vf = false;
6649 	hw->data = eth_dev->data;
6650 	hns3_parse_devargs(eth_dev);
6651 
6652 	/*
6653 	 * Set default max packet size according to the mtu
6654 	 * default vale in DPDK frame.
6655 	 */
6656 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6657 
6658 	ret = hns3_reset_init(hw);
6659 	if (ret)
6660 		goto err_init_reset;
6661 	hw->reset.ops = &hns3_reset_ops;
6662 
6663 	hns3_init_hw_ops(hw);
6664 	ret = hns3_init_pf(eth_dev);
6665 	if (ret) {
6666 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6667 		goto err_init_pf;
6668 	}
6669 
6670 	/* Allocate memory for storing MAC addresses */
6671 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
6672 					       sizeof(struct rte_ether_addr) *
6673 					       HNS3_UC_MACADDR_NUM, 0);
6674 	if (eth_dev->data->mac_addrs == NULL) {
6675 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
6676 			     "to store MAC addresses",
6677 			     sizeof(struct rte_ether_addr) *
6678 			     HNS3_UC_MACADDR_NUM);
6679 		ret = -ENOMEM;
6680 		goto err_rte_zmalloc;
6681 	}
6682 
6683 	eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
6684 	if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
6685 		rte_eth_random_addr(hw->mac.mac_addr);
6686 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
6687 				(struct rte_ether_addr *)hw->mac.mac_addr);
6688 		hns3_warn(hw, "default mac_addr from firmware is an invalid "
6689 			  "unicast address, using random MAC address %s",
6690 			  mac_str);
6691 	}
6692 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
6693 			    &eth_dev->data->mac_addrs[0]);
6694 
6695 	hw->adapter_state = HNS3_NIC_INITIALIZED;
6696 
6697 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6698 			    SCHEDULE_PENDING) {
6699 		hns3_err(hw, "Reschedule reset service after dev_init");
6700 		hns3_schedule_reset(hns);
6701 	} else {
6702 		/* IMP will wait ready flag before reset */
6703 		hns3_notify_reset_ready(hw, false);
6704 	}
6705 
6706 	hns3_info(hw, "hns3 dev initialization successful!");
6707 	return 0;
6708 
6709 err_rte_zmalloc:
6710 	hns3_uninit_pf(eth_dev);
6711 
6712 err_init_pf:
6713 	rte_free(hw->reset.wait_data);
6714 
6715 err_init_reset:
6716 	hns3_mp_uninit(eth_dev);
6717 
6718 err_mp_init:
6719 	eth_dev->dev_ops = NULL;
6720 	eth_dev->rx_pkt_burst = NULL;
6721 	eth_dev->rx_descriptor_status = NULL;
6722 	eth_dev->tx_pkt_burst = NULL;
6723 	eth_dev->tx_pkt_prepare = NULL;
6724 	eth_dev->tx_descriptor_status = NULL;
6725 	return ret;
6726 }
6727 
6728 static int
6729 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6730 {
6731 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6732 	struct hns3_hw *hw = &hns->hw;
6733 
6734 	PMD_INIT_FUNC_TRACE();
6735 
6736 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6737 		hns3_mp_uninit(eth_dev);
6738 		return 0;
6739 	}
6740 
6741 	if (hw->adapter_state < HNS3_NIC_CLOSING)
6742 		hns3_dev_close(eth_dev);
6743 
6744 	hw->adapter_state = HNS3_NIC_REMOVED;
6745 	return 0;
6746 }
6747 
6748 static int
6749 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6750 		   struct rte_pci_device *pci_dev)
6751 {
6752 	return rte_eth_dev_pci_generic_probe(pci_dev,
6753 					     sizeof(struct hns3_adapter),
6754 					     hns3_dev_init);
6755 }
6756 
6757 static int
6758 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6759 {
6760 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6761 }
6762 
6763 static const struct rte_pci_id pci_id_hns3_map[] = {
6764 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6765 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6766 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6767 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6768 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6769 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6770 	{ .vendor_id = 0, }, /* sentinel */
6771 };
6772 
6773 static struct rte_pci_driver rte_hns3_pmd = {
6774 	.id_table = pci_id_hns3_map,
6775 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
6776 	.probe = eth_hns3_pci_probe,
6777 	.remove = eth_hns3_pci_remove,
6778 };
6779 
6780 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6781 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6782 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6783 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6784 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6785 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
6786 		HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> "
6787 		HNS3_DEVARG_MBX_TIME_LIMIT_MS "=<uint16> ");
6788 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE);
6789 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);
6790