xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision f5057be340e44f3edc0fe90fa875eb89a4c49b4f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdio.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <unistd.h>
12 #include <rte_atomic.h>
13 #include <rte_bus_pci.h>
14 #include <rte_common.h>
15 #include <rte_cycles.h>
16 #include <rte_dev.h>
17 #include <rte_eal.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_interrupts.h>
22 #include <rte_io.h>
23 #include <rte_log.h>
24 #include <rte_pci.h>
25 
26 #include "hns3_ethdev.h"
27 #include "hns3_logs.h"
28 #include "hns3_rxtx.h"
29 #include "hns3_intr.h"
30 #include "hns3_regs.h"
31 #include "hns3_dcb.h"
32 #include "hns3_mp.h"
33 
34 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE	32
35 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM	1
36 
37 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
38 #define HNS3_INVALID_PVID		0xFFFF
39 
40 #define HNS3_FILTER_TYPE_VF		0
41 #define HNS3_FILTER_TYPE_PORT		1
42 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
43 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
44 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
45 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
46 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
47 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
48 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
49 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
50 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
51 
52 /* Reset related Registers */
53 #define HNS3_GLOBAL_RESET_BIT		0
54 #define HNS3_CORE_RESET_BIT		1
55 #define HNS3_IMP_RESET_BIT		2
56 #define HNS3_FUN_RST_ING_B		0
57 
58 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
59 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
60 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
61 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
62 
63 #define HNS3_RESET_WAIT_MS	100
64 #define HNS3_RESET_WAIT_CNT	200
65 
66 enum hns3_evt_cause {
67 	HNS3_VECTOR0_EVENT_RST,
68 	HNS3_VECTOR0_EVENT_MBX,
69 	HNS3_VECTOR0_EVENT_ERR,
70 	HNS3_VECTOR0_EVENT_OTHER,
71 };
72 
73 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
74 						 uint64_t *levels);
75 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
76 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
77 				    int on);
78 static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
79 
80 static int hns3_add_mc_addr(struct hns3_hw *hw,
81 			    struct rte_ether_addr *mac_addr);
82 static int hns3_remove_mc_addr(struct hns3_hw *hw,
83 			    struct rte_ether_addr *mac_addr);
84 
85 static void
86 hns3_pf_disable_irq0(struct hns3_hw *hw)
87 {
88 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
89 }
90 
91 static void
92 hns3_pf_enable_irq0(struct hns3_hw *hw)
93 {
94 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
95 }
96 
97 static enum hns3_evt_cause
98 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
99 {
100 	struct hns3_hw *hw = &hns->hw;
101 	uint32_t vector0_int_stats;
102 	uint32_t cmdq_src_val;
103 	uint32_t hw_err_src_reg;
104 	uint32_t val;
105 	enum hns3_evt_cause ret;
106 
107 	/* fetch the events from their corresponding regs */
108 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
109 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
110 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
111 
112 	/*
113 	 * Assumption: If by any chance reset and mailbox events are reported
114 	 * together then we will only process reset event and defer the
115 	 * processing of the mailbox events. Since, we would have not cleared
116 	 * RX CMDQ event this time we would receive again another interrupt
117 	 * from H/W just for the mailbox.
118 	 */
119 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
120 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
121 		hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
122 		val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
123 		if (clearval) {
124 			hw->reset.stats.imp_cnt++;
125 			hns3_warn(hw, "IMP reset detected, clear reset status");
126 		} else {
127 			hns3_schedule_delayed_reset(hns);
128 			hns3_warn(hw, "IMP reset detected, don't clear reset status");
129 		}
130 
131 		ret = HNS3_VECTOR0_EVENT_RST;
132 		goto out;
133 	}
134 
135 	/* Global reset */
136 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
137 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
138 		hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
139 		val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
140 		if (clearval) {
141 			hw->reset.stats.global_cnt++;
142 			hns3_warn(hw, "Global reset detected, clear reset status");
143 		} else {
144 			hns3_schedule_delayed_reset(hns);
145 			hns3_warn(hw, "Global reset detected, don't clear reset status");
146 		}
147 
148 		ret = HNS3_VECTOR0_EVENT_RST;
149 		goto out;
150 	}
151 
152 	/* check for vector0 msix event source */
153 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
154 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
155 		val = vector0_int_stats | hw_err_src_reg;
156 		ret = HNS3_VECTOR0_EVENT_ERR;
157 		goto out;
158 	}
159 
160 	/* check for vector0 mailbox(=CMDQ RX) event source */
161 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
162 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
163 		val = cmdq_src_val;
164 		ret = HNS3_VECTOR0_EVENT_MBX;
165 		goto out;
166 	}
167 
168 	if (clearval && (vector0_int_stats || cmdq_src_val || hw_err_src_reg))
169 		hns3_warn(hw, "vector0_int_stats:0x%x cmdq_src_val:0x%x hw_err_src_reg:0x%x",
170 			  vector0_int_stats, cmdq_src_val, hw_err_src_reg);
171 	val = vector0_int_stats;
172 	ret = HNS3_VECTOR0_EVENT_OTHER;
173 out:
174 
175 	if (clearval)
176 		*clearval = val;
177 	return ret;
178 }
179 
180 static void
181 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
182 {
183 	if (event_type == HNS3_VECTOR0_EVENT_RST)
184 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
185 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
186 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
187 }
188 
189 static void
190 hns3_clear_all_event_cause(struct hns3_hw *hw)
191 {
192 	uint32_t vector0_int_stats;
193 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
194 
195 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
196 		hns3_warn(hw, "Probe during IMP reset interrupt");
197 
198 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
199 		hns3_warn(hw, "Probe during Global reset interrupt");
200 
201 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
202 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
203 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
204 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
205 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
206 }
207 
208 static void
209 hns3_interrupt_handler(void *param)
210 {
211 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
212 	struct hns3_adapter *hns = dev->data->dev_private;
213 	struct hns3_hw *hw = &hns->hw;
214 	enum hns3_evt_cause event_cause;
215 	uint32_t clearval = 0;
216 
217 	/* Disable interrupt */
218 	hns3_pf_disable_irq0(hw);
219 
220 	event_cause = hns3_check_event_cause(hns, &clearval);
221 
222 	/* vector 0 interrupt is shared with reset and mailbox source events. */
223 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
224 		hns3_warn(hw, "Received err interrupt");
225 		hns3_handle_msix_error(hns, &hw->reset.request);
226 		hns3_handle_ras_error(hns, &hw->reset.request);
227 		hns3_schedule_reset(hns);
228 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
229 		hns3_warn(hw, "Received reset interrupt");
230 		hns3_schedule_reset(hns);
231 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
232 		hns3_dev_handle_mbx_msg(hw);
233 	else
234 		hns3_err(hw, "Received unknown event");
235 
236 	hns3_clear_event_cause(hw, event_cause, clearval);
237 	/* Enable interrupt if it is not cause by reset */
238 	hns3_pf_enable_irq0(hw);
239 }
240 
241 static int
242 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
243 {
244 #define HNS3_VLAN_ID_OFFSET_STEP	160
245 #define HNS3_VLAN_BYTE_SIZE		8
246 	struct hns3_vlan_filter_pf_cfg_cmd *req;
247 	struct hns3_hw *hw = &hns->hw;
248 	uint8_t vlan_offset_byte_val;
249 	struct hns3_cmd_desc desc;
250 	uint8_t vlan_offset_byte;
251 	uint8_t vlan_offset_base;
252 	int ret;
253 
254 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
255 
256 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
257 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
258 			   HNS3_VLAN_BYTE_SIZE;
259 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
260 
261 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
262 	req->vlan_offset = vlan_offset_base;
263 	req->vlan_cfg = on ? 0 : 1;
264 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
265 
266 	ret = hns3_cmd_send(hw, &desc, 1);
267 	if (ret)
268 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
269 			 vlan_id, ret);
270 
271 	return ret;
272 }
273 
274 static void
275 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
276 {
277 	struct hns3_user_vlan_table *vlan_entry;
278 	struct hns3_pf *pf = &hns->pf;
279 
280 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
281 		if (vlan_entry->vlan_id == vlan_id) {
282 			if (vlan_entry->hd_tbl_status)
283 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
284 			LIST_REMOVE(vlan_entry, next);
285 			rte_free(vlan_entry);
286 			break;
287 		}
288 	}
289 }
290 
291 static void
292 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
293 			bool writen_to_tbl)
294 {
295 	struct hns3_user_vlan_table *vlan_entry;
296 	struct hns3_hw *hw = &hns->hw;
297 	struct hns3_pf *pf = &hns->pf;
298 
299 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
300 		if (vlan_entry->vlan_id == vlan_id)
301 			return;
302 	}
303 
304 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
305 	if (vlan_entry == NULL) {
306 		hns3_err(hw, "Failed to malloc hns3 vlan table");
307 		return;
308 	}
309 
310 	vlan_entry->hd_tbl_status = writen_to_tbl;
311 	vlan_entry->vlan_id = vlan_id;
312 
313 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
314 }
315 
316 static int
317 hns3_restore_vlan_table(struct hns3_adapter *hns)
318 {
319 	struct hns3_user_vlan_table *vlan_entry;
320 	struct hns3_hw *hw = &hns->hw;
321 	struct hns3_pf *pf = &hns->pf;
322 	uint16_t vlan_id;
323 	int ret = 0;
324 
325 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
326 		return hns3_vlan_pvid_configure(hns,
327 						hw->port_base_vlan_cfg.pvid, 1);
328 
329 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
330 		if (vlan_entry->hd_tbl_status) {
331 			vlan_id = vlan_entry->vlan_id;
332 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
333 			if (ret)
334 				break;
335 		}
336 	}
337 
338 	return ret;
339 }
340 
341 static int
342 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
343 {
344 	struct hns3_hw *hw = &hns->hw;
345 	bool writen_to_tbl = false;
346 	int ret = 0;
347 
348 	/*
349 	 * When vlan filter is enabled, hardware regards packets without vlan
350 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
351 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
352 	 */
353 	if (on == 0 && vlan_id == 0)
354 		return 0;
355 
356 	/*
357 	 * When port base vlan enabled, we use port base vlan as the vlan
358 	 * filter condition. In this case, we don't update vlan filter table
359 	 * when user add new vlan or remove exist vlan, just update the
360 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
361 	 * table until port base vlan disabled
362 	 */
363 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
364 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
365 		writen_to_tbl = true;
366 	}
367 
368 	if (ret == 0) {
369 		if (on)
370 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
371 		else
372 			hns3_rm_dev_vlan_table(hns, vlan_id);
373 	}
374 	return ret;
375 }
376 
377 static int
378 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
379 {
380 	struct hns3_adapter *hns = dev->data->dev_private;
381 	struct hns3_hw *hw = &hns->hw;
382 	int ret;
383 
384 	rte_spinlock_lock(&hw->lock);
385 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
386 	rte_spinlock_unlock(&hw->lock);
387 	return ret;
388 }
389 
390 static int
391 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
392 			 uint16_t tpid)
393 {
394 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
395 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
396 	struct hns3_hw *hw = &hns->hw;
397 	struct hns3_cmd_desc desc;
398 	int ret;
399 
400 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
401 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
402 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
403 		return -EINVAL;
404 	}
405 
406 	if (tpid != RTE_ETHER_TYPE_VLAN) {
407 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
408 		return -EINVAL;
409 	}
410 
411 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
412 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
413 
414 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
415 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
416 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
417 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
418 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
419 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
420 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
421 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
422 	}
423 
424 	ret = hns3_cmd_send(hw, &desc, 1);
425 	if (ret) {
426 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
427 			 ret);
428 		return ret;
429 	}
430 
431 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
432 
433 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
434 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
435 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
436 
437 	ret = hns3_cmd_send(hw, &desc, 1);
438 	if (ret)
439 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
440 			 ret);
441 	return ret;
442 }
443 
444 static int
445 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
446 		   uint16_t tpid)
447 {
448 	struct hns3_adapter *hns = dev->data->dev_private;
449 	struct hns3_hw *hw = &hns->hw;
450 	int ret;
451 
452 	rte_spinlock_lock(&hw->lock);
453 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
454 	rte_spinlock_unlock(&hw->lock);
455 	return ret;
456 }
457 
458 static int
459 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
460 			     struct hns3_rx_vtag_cfg *vcfg)
461 {
462 	struct hns3_vport_vtag_rx_cfg_cmd *req;
463 	struct hns3_hw *hw = &hns->hw;
464 	struct hns3_cmd_desc desc;
465 	uint16_t vport_id;
466 	uint8_t bitmap;
467 	int ret;
468 
469 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
470 
471 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
472 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
473 		     vcfg->strip_tag1_en ? 1 : 0);
474 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
475 		     vcfg->strip_tag2_en ? 1 : 0);
476 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
477 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
478 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
479 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
480 
481 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
482 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
483 		     vcfg->strip_tag1_discard_en ? 1 : 0);
484 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
485 		     vcfg->strip_tag2_discard_en ? 1 : 0);
486 	/*
487 	 * In current version VF is not supported when PF is driven by DPDK
488 	 * driver, just need to configure parameters for PF vport.
489 	 */
490 	vport_id = HNS3_PF_FUNC_ID;
491 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
492 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
493 	req->vf_bitmap[req->vf_offset] = bitmap;
494 
495 	ret = hns3_cmd_send(hw, &desc, 1);
496 	if (ret)
497 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
498 	return ret;
499 }
500 
501 static void
502 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
503 			   struct hns3_rx_vtag_cfg *vcfg)
504 {
505 	struct hns3_pf *pf = &hns->pf;
506 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
507 }
508 
509 static void
510 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
511 			   struct hns3_tx_vtag_cfg *vcfg)
512 {
513 	struct hns3_pf *pf = &hns->pf;
514 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
515 }
516 
517 static int
518 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
519 {
520 	struct hns3_rx_vtag_cfg rxvlan_cfg;
521 	struct hns3_hw *hw = &hns->hw;
522 	int ret;
523 
524 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
525 		rxvlan_cfg.strip_tag1_en = false;
526 		rxvlan_cfg.strip_tag2_en = enable;
527 		rxvlan_cfg.strip_tag2_discard_en = false;
528 	} else {
529 		rxvlan_cfg.strip_tag1_en = enable;
530 		rxvlan_cfg.strip_tag2_en = true;
531 		rxvlan_cfg.strip_tag2_discard_en = true;
532 	}
533 
534 	rxvlan_cfg.strip_tag1_discard_en = false;
535 	rxvlan_cfg.vlan1_vlan_prionly = false;
536 	rxvlan_cfg.vlan2_vlan_prionly = false;
537 	rxvlan_cfg.rx_vlan_offload_en = enable;
538 
539 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
540 	if (ret) {
541 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
542 		return ret;
543 	}
544 
545 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
546 
547 	return ret;
548 }
549 
550 static int
551 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
552 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
553 {
554 	struct hns3_vlan_filter_ctrl_cmd *req;
555 	struct hns3_cmd_desc desc;
556 	int ret;
557 
558 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
559 
560 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
561 	req->vlan_type = vlan_type;
562 	req->vlan_fe = filter_en ? fe_type : 0;
563 	req->vf_id = vf_id;
564 
565 	ret = hns3_cmd_send(hw, &desc, 1);
566 	if (ret)
567 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
568 
569 	return ret;
570 }
571 
572 static int
573 hns3_vlan_filter_init(struct hns3_adapter *hns)
574 {
575 	struct hns3_hw *hw = &hns->hw;
576 	int ret;
577 
578 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
579 					HNS3_FILTER_FE_EGRESS, false,
580 					HNS3_PF_FUNC_ID);
581 	if (ret) {
582 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
583 		return ret;
584 	}
585 
586 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
587 					HNS3_FILTER_FE_INGRESS, false,
588 					HNS3_PF_FUNC_ID);
589 	if (ret)
590 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
591 
592 	return ret;
593 }
594 
595 static int
596 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
597 {
598 	struct hns3_hw *hw = &hns->hw;
599 	int ret;
600 
601 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
602 					HNS3_FILTER_FE_INGRESS, enable,
603 					HNS3_PF_FUNC_ID);
604 	if (ret)
605 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
606 			 enable ? "enable" : "disable", ret);
607 
608 	return ret;
609 }
610 
611 static int
612 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
613 {
614 	struct hns3_adapter *hns = dev->data->dev_private;
615 	struct hns3_hw *hw = &hns->hw;
616 	struct rte_eth_rxmode *rxmode;
617 	unsigned int tmp_mask;
618 	bool enable;
619 	int ret = 0;
620 
621 	rte_spinlock_lock(&hw->lock);
622 	rxmode = &dev->data->dev_conf.rxmode;
623 	tmp_mask = (unsigned int)mask;
624 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
625 		/* ignore vlan filter configuration during promiscuous mode */
626 		if (!dev->data->promiscuous) {
627 			/* Enable or disable VLAN filter */
628 			enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
629 				 true : false;
630 
631 			ret = hns3_enable_vlan_filter(hns, enable);
632 			if (ret) {
633 				rte_spinlock_unlock(&hw->lock);
634 				hns3_err(hw, "failed to %s rx filter, ret = %d",
635 					 enable ? "enable" : "disable", ret);
636 				return ret;
637 			}
638 		}
639 	}
640 
641 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
642 		/* Enable or disable VLAN stripping */
643 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
644 		    true : false;
645 
646 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
647 		if (ret) {
648 			rte_spinlock_unlock(&hw->lock);
649 			hns3_err(hw, "failed to %s rx strip, ret = %d",
650 				 enable ? "enable" : "disable", ret);
651 			return ret;
652 		}
653 	}
654 
655 	rte_spinlock_unlock(&hw->lock);
656 
657 	return ret;
658 }
659 
660 static int
661 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
662 			     struct hns3_tx_vtag_cfg *vcfg)
663 {
664 	struct hns3_vport_vtag_tx_cfg_cmd *req;
665 	struct hns3_cmd_desc desc;
666 	struct hns3_hw *hw = &hns->hw;
667 	uint16_t vport_id;
668 	uint8_t bitmap;
669 	int ret;
670 
671 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
672 
673 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
674 	req->def_vlan_tag1 = vcfg->default_tag1;
675 	req->def_vlan_tag2 = vcfg->default_tag2;
676 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
677 		     vcfg->accept_tag1 ? 1 : 0);
678 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
679 		     vcfg->accept_untag1 ? 1 : 0);
680 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
681 		     vcfg->accept_tag2 ? 1 : 0);
682 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
683 		     vcfg->accept_untag2 ? 1 : 0);
684 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
685 		     vcfg->insert_tag1_en ? 1 : 0);
686 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
687 		     vcfg->insert_tag2_en ? 1 : 0);
688 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
689 
690 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
691 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
692 		     vcfg->tag_shift_mode_en ? 1 : 0);
693 
694 	/*
695 	 * In current version VF is not supported when PF is driven by DPDK
696 	 * driver, just need to configure parameters for PF vport.
697 	 */
698 	vport_id = HNS3_PF_FUNC_ID;
699 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
700 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
701 	req->vf_bitmap[req->vf_offset] = bitmap;
702 
703 	ret = hns3_cmd_send(hw, &desc, 1);
704 	if (ret)
705 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
706 
707 	return ret;
708 }
709 
710 static int
711 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
712 		     uint16_t pvid)
713 {
714 	struct hns3_hw *hw = &hns->hw;
715 	struct hns3_tx_vtag_cfg txvlan_cfg;
716 	int ret;
717 
718 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
719 		txvlan_cfg.accept_tag1 = true;
720 		txvlan_cfg.insert_tag1_en = false;
721 		txvlan_cfg.default_tag1 = 0;
722 	} else {
723 		txvlan_cfg.accept_tag1 =
724 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
725 		txvlan_cfg.insert_tag1_en = true;
726 		txvlan_cfg.default_tag1 = pvid;
727 	}
728 
729 	txvlan_cfg.accept_untag1 = true;
730 	txvlan_cfg.accept_tag2 = true;
731 	txvlan_cfg.accept_untag2 = true;
732 	txvlan_cfg.insert_tag2_en = false;
733 	txvlan_cfg.default_tag2 = 0;
734 	txvlan_cfg.tag_shift_mode_en = true;
735 
736 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
737 	if (ret) {
738 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
739 			 ret);
740 		return ret;
741 	}
742 
743 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
744 	return ret;
745 }
746 
747 
748 static void
749 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
750 {
751 	struct hns3_user_vlan_table *vlan_entry;
752 	struct hns3_pf *pf = &hns->pf;
753 
754 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
755 		if (vlan_entry->hd_tbl_status) {
756 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
757 			vlan_entry->hd_tbl_status = false;
758 		}
759 	}
760 
761 	if (is_del_list) {
762 		vlan_entry = LIST_FIRST(&pf->vlan_list);
763 		while (vlan_entry) {
764 			LIST_REMOVE(vlan_entry, next);
765 			rte_free(vlan_entry);
766 			vlan_entry = LIST_FIRST(&pf->vlan_list);
767 		}
768 	}
769 }
770 
771 static void
772 hns3_add_all_vlan_table(struct hns3_adapter *hns)
773 {
774 	struct hns3_user_vlan_table *vlan_entry;
775 	struct hns3_pf *pf = &hns->pf;
776 
777 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
778 		if (!vlan_entry->hd_tbl_status) {
779 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
780 			vlan_entry->hd_tbl_status = true;
781 		}
782 	}
783 }
784 
785 static void
786 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
787 {
788 	struct hns3_hw *hw = &hns->hw;
789 	int ret;
790 
791 	hns3_rm_all_vlan_table(hns, true);
792 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
793 		ret = hns3_set_port_vlan_filter(hns,
794 						hw->port_base_vlan_cfg.pvid, 0);
795 		if (ret) {
796 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
797 				 ret);
798 			return;
799 		}
800 	}
801 }
802 
803 static int
804 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
805 			uint16_t port_base_vlan_state, uint16_t new_pvid)
806 {
807 	struct hns3_hw *hw = &hns->hw;
808 	uint16_t old_pvid;
809 	int ret;
810 
811 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
812 		old_pvid = hw->port_base_vlan_cfg.pvid;
813 		if (old_pvid != HNS3_INVALID_PVID) {
814 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
815 			if (ret) {
816 				hns3_err(hw, "failed to remove old pvid %u, "
817 						"ret = %d", old_pvid, ret);
818 				return ret;
819 			}
820 		}
821 
822 		hns3_rm_all_vlan_table(hns, false);
823 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
824 		if (ret) {
825 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
826 					new_pvid, ret);
827 			return ret;
828 		}
829 	} else {
830 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
831 		if (ret) {
832 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
833 					new_pvid, ret);
834 			return ret;
835 		}
836 
837 		hns3_add_all_vlan_table(hns);
838 	}
839 	return 0;
840 }
841 
842 static int
843 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
844 {
845 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
846 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
847 	bool rx_strip_en;
848 	int ret;
849 
850 	rx_strip_en = old_cfg->rx_vlan_offload_en;
851 	if (on) {
852 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
853 		rx_vlan_cfg.strip_tag2_en = true;
854 		rx_vlan_cfg.strip_tag2_discard_en = true;
855 	} else {
856 		rx_vlan_cfg.strip_tag1_en = false;
857 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
858 		rx_vlan_cfg.strip_tag2_discard_en = false;
859 	}
860 	rx_vlan_cfg.strip_tag1_discard_en = false;
861 	rx_vlan_cfg.vlan1_vlan_prionly = false;
862 	rx_vlan_cfg.vlan2_vlan_prionly = false;
863 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
864 
865 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
866 	if (ret)
867 		return ret;
868 
869 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
870 	return ret;
871 }
872 
873 static int
874 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
875 {
876 	struct hns3_hw *hw = &hns->hw;
877 	uint16_t port_base_vlan_state;
878 	int ret;
879 
880 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
881 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
882 			hns3_warn(hw, "Invalid operation! As current pvid set "
883 				  "is %u, disable pvid %u is invalid",
884 				  hw->port_base_vlan_cfg.pvid, pvid);
885 		return 0;
886 	}
887 
888 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
889 				    HNS3_PORT_BASE_VLAN_DISABLE;
890 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
891 	if (ret) {
892 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
893 			 ret);
894 		return ret;
895 	}
896 
897 	ret = hns3_en_pvid_strip(hns, on);
898 	if (ret) {
899 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
900 			 "ret = %d", ret);
901 		return ret;
902 	}
903 
904 	if (pvid == HNS3_INVALID_PVID)
905 		goto out;
906 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
907 	if (ret) {
908 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
909 			 ret);
910 		return ret;
911 	}
912 
913 out:
914 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
915 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
916 	return ret;
917 }
918 
919 static int
920 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
921 {
922 	struct hns3_adapter *hns = dev->data->dev_private;
923 	struct hns3_hw *hw = &hns->hw;
924 	bool pvid_en_state_change;
925 	uint16_t pvid_state;
926 	int ret;
927 
928 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
929 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
930 			 RTE_ETHER_MAX_VLAN_ID);
931 		return -EINVAL;
932 	}
933 
934 	/*
935 	 * If PVID configuration state change, should refresh the PVID
936 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
937 	 */
938 	pvid_state = hw->port_base_vlan_cfg.state;
939 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
940 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
941 		pvid_en_state_change = false;
942 	else
943 		pvid_en_state_change = true;
944 
945 	rte_spinlock_lock(&hw->lock);
946 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
947 	rte_spinlock_unlock(&hw->lock);
948 	if (ret)
949 		return ret;
950 	/*
951 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
952 	 * need be processed by PMD driver.
953 	 */
954 	if (pvid_en_state_change &&
955 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
956 		hns3_update_all_queues_pvid_proc_en(hw);
957 
958 	return 0;
959 }
960 
961 static int
962 hns3_default_vlan_config(struct hns3_adapter *hns)
963 {
964 	struct hns3_hw *hw = &hns->hw;
965 	int ret;
966 
967 	/*
968 	 * When vlan filter is enabled, hardware regards packets without vlan
969 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
970 	 * table, packets without vlan won't be received. So, add vlan 0 as
971 	 * the default vlan.
972 	 */
973 	ret = hns3_vlan_filter_configure(hns, 0, 1);
974 	if (ret)
975 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
976 	return ret;
977 }
978 
979 static int
980 hns3_init_vlan_config(struct hns3_adapter *hns)
981 {
982 	struct hns3_hw *hw = &hns->hw;
983 	int ret;
984 
985 	/*
986 	 * This function can be called in the initialization and reset process,
987 	 * when in reset process, it means that hardware had been reseted
988 	 * successfully and we need to restore the hardware configuration to
989 	 * ensure that the hardware configuration remains unchanged before and
990 	 * after reset.
991 	 */
992 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
993 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
994 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
995 	}
996 
997 	ret = hns3_vlan_filter_init(hns);
998 	if (ret) {
999 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1000 		return ret;
1001 	}
1002 
1003 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1004 				       RTE_ETHER_TYPE_VLAN);
1005 	if (ret) {
1006 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1007 		return ret;
1008 	}
1009 
1010 	/*
1011 	 * When in the reinit dev stage of the reset process, the following
1012 	 * vlan-related configurations may differ from those at initialization,
1013 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1014 	 * and hns3_restore_vlan_conf later.
1015 	 */
1016 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1017 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1018 		if (ret) {
1019 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1020 			return ret;
1021 		}
1022 
1023 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1024 		if (ret) {
1025 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1026 				 ret);
1027 			return ret;
1028 		}
1029 	}
1030 
1031 	return hns3_default_vlan_config(hns);
1032 }
1033 
1034 static int
1035 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1036 {
1037 	struct hns3_pf *pf = &hns->pf;
1038 	struct hns3_hw *hw = &hns->hw;
1039 	uint64_t offloads;
1040 	bool enable;
1041 	int ret;
1042 
1043 	if (!hw->data->promiscuous) {
1044 		/* restore vlan filter states */
1045 		offloads = hw->data->dev_conf.rxmode.offloads;
1046 		enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1047 		ret = hns3_enable_vlan_filter(hns, enable);
1048 		if (ret) {
1049 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1050 				 "ret = %d", ret);
1051 			return ret;
1052 		}
1053 	}
1054 
1055 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1056 	if (ret) {
1057 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1058 		return ret;
1059 	}
1060 
1061 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1062 	if (ret)
1063 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1064 
1065 	return ret;
1066 }
1067 
1068 static int
1069 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1070 {
1071 	struct hns3_adapter *hns = dev->data->dev_private;
1072 	struct rte_eth_dev_data *data = dev->data;
1073 	struct rte_eth_txmode *txmode;
1074 	struct hns3_hw *hw = &hns->hw;
1075 	int mask;
1076 	int ret;
1077 
1078 	txmode = &data->dev_conf.txmode;
1079 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1080 		hns3_warn(hw,
1081 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1082 			  "configuration is not supported! Ignore these two "
1083 			  "parameters: hw_vlan_reject_tagged(%d), "
1084 			  "hw_vlan_reject_untagged(%d)",
1085 			  txmode->hw_vlan_reject_tagged,
1086 			  txmode->hw_vlan_reject_untagged);
1087 
1088 	/* Apply vlan offload setting */
1089 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1090 	ret = hns3_vlan_offload_set(dev, mask);
1091 	if (ret) {
1092 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1093 			 ret);
1094 		return ret;
1095 	}
1096 
1097 	/*
1098 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1099 	 * VLAN pvid related configuration to hardware.
1100 	 */
1101 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1102 		return 0;
1103 
1104 	/* Apply pvid setting */
1105 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1106 				 txmode->hw_vlan_insert_pvid);
1107 	if (ret)
1108 		hns3_err(hw, "dev config vlan pvid(%d) failed, ret = %d",
1109 			 txmode->pvid, ret);
1110 
1111 	return ret;
1112 }
1113 
1114 static int
1115 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1116 		unsigned int tso_mss_max)
1117 {
1118 	struct hns3_cfg_tso_status_cmd *req;
1119 	struct hns3_cmd_desc desc;
1120 	uint16_t tso_mss;
1121 
1122 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1123 
1124 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1125 
1126 	tso_mss = 0;
1127 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1128 		       tso_mss_min);
1129 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1130 
1131 	tso_mss = 0;
1132 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1133 		       tso_mss_max);
1134 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1135 
1136 	return hns3_cmd_send(hw, &desc, 1);
1137 }
1138 
1139 static int
1140 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1141 		   uint16_t *allocated_size, bool is_alloc)
1142 {
1143 	struct hns3_umv_spc_alc_cmd *req;
1144 	struct hns3_cmd_desc desc;
1145 	int ret;
1146 
1147 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1148 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1149 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1150 	req->space_size = rte_cpu_to_le_32(space_size);
1151 
1152 	ret = hns3_cmd_send(hw, &desc, 1);
1153 	if (ret) {
1154 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1155 			     is_alloc ? "allocate" : "free", ret);
1156 		return ret;
1157 	}
1158 
1159 	if (is_alloc && allocated_size)
1160 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1161 
1162 	return 0;
1163 }
1164 
1165 static int
1166 hns3_init_umv_space(struct hns3_hw *hw)
1167 {
1168 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1169 	struct hns3_pf *pf = &hns->pf;
1170 	uint16_t allocated_size = 0;
1171 	int ret;
1172 
1173 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1174 				 true);
1175 	if (ret)
1176 		return ret;
1177 
1178 	if (allocated_size < pf->wanted_umv_size)
1179 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1180 			     pf->wanted_umv_size, allocated_size);
1181 
1182 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1183 						pf->wanted_umv_size;
1184 	pf->used_umv_size = 0;
1185 	return 0;
1186 }
1187 
1188 static int
1189 hns3_uninit_umv_space(struct hns3_hw *hw)
1190 {
1191 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1192 	struct hns3_pf *pf = &hns->pf;
1193 	int ret;
1194 
1195 	if (pf->max_umv_size == 0)
1196 		return 0;
1197 
1198 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1199 	if (ret)
1200 		return ret;
1201 
1202 	pf->max_umv_size = 0;
1203 
1204 	return 0;
1205 }
1206 
1207 static bool
1208 hns3_is_umv_space_full(struct hns3_hw *hw)
1209 {
1210 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1211 	struct hns3_pf *pf = &hns->pf;
1212 	bool is_full;
1213 
1214 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1215 
1216 	return is_full;
1217 }
1218 
1219 static void
1220 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1221 {
1222 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1223 	struct hns3_pf *pf = &hns->pf;
1224 
1225 	if (is_free) {
1226 		if (pf->used_umv_size > 0)
1227 			pf->used_umv_size--;
1228 	} else
1229 		pf->used_umv_size++;
1230 }
1231 
1232 static void
1233 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1234 		      const uint8_t *addr, bool is_mc)
1235 {
1236 	const unsigned char *mac_addr = addr;
1237 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1238 			    ((uint32_t)mac_addr[2] << 16) |
1239 			    ((uint32_t)mac_addr[1] << 8) |
1240 			    (uint32_t)mac_addr[0];
1241 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1242 
1243 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1244 	if (is_mc) {
1245 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1246 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1247 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1248 	}
1249 
1250 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1251 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1252 }
1253 
1254 static int
1255 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1256 			     uint8_t resp_code,
1257 			     enum hns3_mac_vlan_tbl_opcode op)
1258 {
1259 	if (cmdq_resp) {
1260 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1261 			 cmdq_resp);
1262 		return -EIO;
1263 	}
1264 
1265 	if (op == HNS3_MAC_VLAN_ADD) {
1266 		if (resp_code == 0 || resp_code == 1) {
1267 			return 0;
1268 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1269 			hns3_err(hw, "add mac addr failed for uc_overflow");
1270 			return -ENOSPC;
1271 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1272 			hns3_err(hw, "add mac addr failed for mc_overflow");
1273 			return -ENOSPC;
1274 		}
1275 
1276 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1277 			 resp_code);
1278 		return -EIO;
1279 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1280 		if (resp_code == 0) {
1281 			return 0;
1282 		} else if (resp_code == 1) {
1283 			hns3_dbg(hw, "remove mac addr failed for miss");
1284 			return -ENOENT;
1285 		}
1286 
1287 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1288 			 resp_code);
1289 		return -EIO;
1290 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1291 		if (resp_code == 0) {
1292 			return 0;
1293 		} else if (resp_code == 1) {
1294 			hns3_dbg(hw, "lookup mac addr failed for miss");
1295 			return -ENOENT;
1296 		}
1297 
1298 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1299 			 resp_code);
1300 		return -EIO;
1301 	}
1302 
1303 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1304 		 op);
1305 
1306 	return -EINVAL;
1307 }
1308 
1309 static int
1310 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1311 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1312 			 struct hns3_cmd_desc *desc, bool is_mc)
1313 {
1314 	uint8_t resp_code;
1315 	uint16_t retval;
1316 	int ret;
1317 
1318 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1319 	if (is_mc) {
1320 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1321 		memcpy(desc[0].data, req,
1322 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1323 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1324 					  true);
1325 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1326 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1327 					  true);
1328 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1329 	} else {
1330 		memcpy(desc[0].data, req,
1331 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1332 		ret = hns3_cmd_send(hw, desc, 1);
1333 	}
1334 	if (ret) {
1335 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1336 			 ret);
1337 		return ret;
1338 	}
1339 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1340 	retval = rte_le_to_cpu_16(desc[0].retval);
1341 
1342 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1343 					    HNS3_MAC_VLAN_LKUP);
1344 }
1345 
1346 static int
1347 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1348 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1349 		      struct hns3_cmd_desc *mc_desc)
1350 {
1351 	uint8_t resp_code;
1352 	uint16_t retval;
1353 	int cfg_status;
1354 	int ret;
1355 
1356 	if (mc_desc == NULL) {
1357 		struct hns3_cmd_desc desc;
1358 
1359 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1360 		memcpy(desc.data, req,
1361 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1362 		ret = hns3_cmd_send(hw, &desc, 1);
1363 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1364 		retval = rte_le_to_cpu_16(desc.retval);
1365 
1366 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1367 							  HNS3_MAC_VLAN_ADD);
1368 	} else {
1369 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1370 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1371 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1372 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1373 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1374 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1375 		memcpy(mc_desc[0].data, req,
1376 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1377 		mc_desc[0].retval = 0;
1378 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1379 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1380 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1381 
1382 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1383 							  HNS3_MAC_VLAN_ADD);
1384 	}
1385 
1386 	if (ret) {
1387 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1388 		return ret;
1389 	}
1390 
1391 	return cfg_status;
1392 }
1393 
1394 static int
1395 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1396 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1397 {
1398 	struct hns3_cmd_desc desc;
1399 	uint8_t resp_code;
1400 	uint16_t retval;
1401 	int ret;
1402 
1403 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1404 
1405 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1406 
1407 	ret = hns3_cmd_send(hw, &desc, 1);
1408 	if (ret) {
1409 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1410 		return ret;
1411 	}
1412 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1413 	retval = rte_le_to_cpu_16(desc.retval);
1414 
1415 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1416 					    HNS3_MAC_VLAN_REMOVE);
1417 }
1418 
1419 static int
1420 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1421 {
1422 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1423 	struct hns3_mac_vlan_tbl_entry_cmd req;
1424 	struct hns3_pf *pf = &hns->pf;
1425 	struct hns3_cmd_desc desc[3];
1426 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1427 	uint16_t egress_port = 0;
1428 	uint8_t vf_id;
1429 	int ret;
1430 
1431 	/* check if mac addr is valid */
1432 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1433 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1434 				      mac_addr);
1435 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1436 			 mac_str);
1437 		return -EINVAL;
1438 	}
1439 
1440 	memset(&req, 0, sizeof(req));
1441 
1442 	/*
1443 	 * In current version VF is not supported when PF is driven by DPDK
1444 	 * driver, just need to configure parameters for PF vport.
1445 	 */
1446 	vf_id = HNS3_PF_FUNC_ID;
1447 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1448 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1449 
1450 	req.egress_port = rte_cpu_to_le_16(egress_port);
1451 
1452 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1453 
1454 	/*
1455 	 * Lookup the mac address in the mac_vlan table, and add
1456 	 * it if the entry is inexistent. Repeated unicast entry
1457 	 * is not allowed in the mac vlan table.
1458 	 */
1459 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1460 	if (ret == -ENOENT) {
1461 		if (!hns3_is_umv_space_full(hw)) {
1462 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1463 			if (!ret)
1464 				hns3_update_umv_space(hw, false);
1465 			return ret;
1466 		}
1467 
1468 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1469 
1470 		return -ENOSPC;
1471 	}
1472 
1473 	rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1474 
1475 	/* check if we just hit the duplicate */
1476 	if (ret == 0) {
1477 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1478 		return 0;
1479 	}
1480 
1481 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1482 		 mac_str);
1483 
1484 	return ret;
1485 }
1486 
1487 static int
1488 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1489 {
1490 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1491 	struct rte_ether_addr *addr;
1492 	int ret;
1493 	int i;
1494 
1495 	for (i = 0; i < hw->mc_addrs_num; i++) {
1496 		addr = &hw->mc_addrs[i];
1497 		/* Check if there are duplicate addresses */
1498 		if (rte_is_same_ether_addr(addr, mac_addr)) {
1499 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1500 					      addr);
1501 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1502 				 "(%s) is added by the set_mc_mac_addr_list "
1503 				 "API", mac_str);
1504 			return -EINVAL;
1505 		}
1506 	}
1507 
1508 	ret = hns3_add_mc_addr(hw, mac_addr);
1509 	if (ret) {
1510 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1511 				      mac_addr);
1512 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1513 			 mac_str, ret);
1514 	}
1515 	return ret;
1516 }
1517 
1518 static int
1519 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1520 {
1521 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1522 	int ret;
1523 
1524 	ret = hns3_remove_mc_addr(hw, mac_addr);
1525 	if (ret) {
1526 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1527 				      mac_addr);
1528 		hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1529 			 mac_str, ret);
1530 	}
1531 	return ret;
1532 }
1533 
1534 static int
1535 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1536 		  uint32_t idx, __rte_unused uint32_t pool)
1537 {
1538 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1539 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1540 	int ret;
1541 
1542 	rte_spinlock_lock(&hw->lock);
1543 
1544 	/*
1545 	 * In hns3 network engine adding UC and MC mac address with different
1546 	 * commands with firmware. We need to determine whether the input
1547 	 * address is a UC or a MC address to call different commands.
1548 	 * By the way, it is recommended calling the API function named
1549 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1550 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1551 	 * may affect the specifications of UC mac addresses.
1552 	 */
1553 	if (rte_is_multicast_ether_addr(mac_addr))
1554 		ret = hns3_add_mc_addr_common(hw, mac_addr);
1555 	else
1556 		ret = hns3_add_uc_addr_common(hw, mac_addr);
1557 
1558 	if (ret) {
1559 		rte_spinlock_unlock(&hw->lock);
1560 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1561 				      mac_addr);
1562 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1563 			 ret);
1564 		return ret;
1565 	}
1566 
1567 	if (idx == 0)
1568 		hw->mac.default_addr_setted = true;
1569 	rte_spinlock_unlock(&hw->lock);
1570 
1571 	return ret;
1572 }
1573 
1574 static int
1575 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1576 {
1577 	struct hns3_mac_vlan_tbl_entry_cmd req;
1578 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1579 	int ret;
1580 
1581 	/* check if mac addr is valid */
1582 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1583 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1584 				      mac_addr);
1585 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1586 			 mac_str);
1587 		return -EINVAL;
1588 	}
1589 
1590 	memset(&req, 0, sizeof(req));
1591 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1592 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1593 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1594 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1595 		return 0;
1596 	else if (ret == 0)
1597 		hns3_update_umv_space(hw, true);
1598 
1599 	return ret;
1600 }
1601 
1602 static void
1603 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1604 {
1605 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1606 	/* index will be checked by upper level rte interface */
1607 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1608 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1609 	int ret;
1610 
1611 	rte_spinlock_lock(&hw->lock);
1612 
1613 	if (rte_is_multicast_ether_addr(mac_addr))
1614 		ret = hns3_remove_mc_addr_common(hw, mac_addr);
1615 	else
1616 		ret = hns3_remove_uc_addr_common(hw, mac_addr);
1617 	rte_spinlock_unlock(&hw->lock);
1618 	if (ret) {
1619 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1620 				      mac_addr);
1621 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1622 			 ret);
1623 	}
1624 }
1625 
1626 static int
1627 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1628 			  struct rte_ether_addr *mac_addr)
1629 {
1630 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1631 	struct rte_ether_addr *oaddr;
1632 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1633 	bool default_addr_setted;
1634 	bool rm_succes = false;
1635 	int ret, ret_val;
1636 
1637 	/*
1638 	 * It has been guaranteed that input parameter named mac_addr is valid
1639 	 * address in the rte layer of DPDK framework.
1640 	 */
1641 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1642 	default_addr_setted = hw->mac.default_addr_setted;
1643 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1644 		return 0;
1645 
1646 	rte_spinlock_lock(&hw->lock);
1647 	if (default_addr_setted) {
1648 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1649 		if (ret) {
1650 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1651 					      oaddr);
1652 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1653 				  mac_str, ret);
1654 			rm_succes = false;
1655 		} else
1656 			rm_succes = true;
1657 	}
1658 
1659 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1660 	if (ret) {
1661 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1662 				      mac_addr);
1663 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1664 		goto err_add_uc_addr;
1665 	}
1666 
1667 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1668 	if (ret) {
1669 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1670 		goto err_pause_addr_cfg;
1671 	}
1672 
1673 	rte_ether_addr_copy(mac_addr,
1674 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1675 	hw->mac.default_addr_setted = true;
1676 	rte_spinlock_unlock(&hw->lock);
1677 
1678 	return 0;
1679 
1680 err_pause_addr_cfg:
1681 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1682 	if (ret_val) {
1683 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1684 				      mac_addr);
1685 		hns3_warn(hw,
1686 			  "Failed to roll back to del setted mac addr(%s): %d",
1687 			  mac_str, ret_val);
1688 	}
1689 
1690 err_add_uc_addr:
1691 	if (rm_succes) {
1692 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1693 		if (ret_val) {
1694 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1695 					      oaddr);
1696 			hns3_warn(hw,
1697 				  "Failed to restore old uc mac addr(%s): %d",
1698 				  mac_str, ret_val);
1699 			hw->mac.default_addr_setted = false;
1700 		}
1701 	}
1702 	rte_spinlock_unlock(&hw->lock);
1703 
1704 	return ret;
1705 }
1706 
1707 static int
1708 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1709 {
1710 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1711 	struct hns3_hw *hw = &hns->hw;
1712 	struct rte_ether_addr *addr;
1713 	int err = 0;
1714 	int ret;
1715 	int i;
1716 
1717 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1718 		addr = &hw->data->mac_addrs[i];
1719 		if (rte_is_zero_ether_addr(addr))
1720 			continue;
1721 		if (rte_is_multicast_ether_addr(addr))
1722 			ret = del ? hns3_remove_mc_addr(hw, addr) :
1723 			      hns3_add_mc_addr(hw, addr);
1724 		else
1725 			ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1726 			      hns3_add_uc_addr_common(hw, addr);
1727 
1728 		if (ret) {
1729 			err = ret;
1730 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1731 					      addr);
1732 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1733 				 "ret = %d.", del ? "remove" : "restore",
1734 				 mac_str, i, ret);
1735 		}
1736 	}
1737 	return err;
1738 }
1739 
1740 static void
1741 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1742 {
1743 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1744 	uint8_t word_num;
1745 	uint8_t bit_num;
1746 
1747 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1748 		word_num = vfid / 32;
1749 		bit_num = vfid % 32;
1750 		if (clr)
1751 			desc[1].data[word_num] &=
1752 			    rte_cpu_to_le_32(~(1UL << bit_num));
1753 		else
1754 			desc[1].data[word_num] |=
1755 			    rte_cpu_to_le_32(1UL << bit_num);
1756 	} else {
1757 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1758 		bit_num = vfid % 32;
1759 		if (clr)
1760 			desc[2].data[word_num] &=
1761 			    rte_cpu_to_le_32(~(1UL << bit_num));
1762 		else
1763 			desc[2].data[word_num] |=
1764 			    rte_cpu_to_le_32(1UL << bit_num);
1765 	}
1766 }
1767 
1768 static int
1769 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1770 {
1771 	struct hns3_mac_vlan_tbl_entry_cmd req;
1772 	struct hns3_cmd_desc desc[3];
1773 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1774 	uint8_t vf_id;
1775 	int ret;
1776 
1777 	/* Check if mac addr is valid */
1778 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1779 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1780 				      mac_addr);
1781 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1782 			 mac_str);
1783 		return -EINVAL;
1784 	}
1785 
1786 	memset(&req, 0, sizeof(req));
1787 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1788 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1789 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1790 	if (ret) {
1791 		/* This mac addr do not exist, add new entry for it */
1792 		memset(desc[0].data, 0, sizeof(desc[0].data));
1793 		memset(desc[1].data, 0, sizeof(desc[0].data));
1794 		memset(desc[2].data, 0, sizeof(desc[0].data));
1795 	}
1796 
1797 	/*
1798 	 * In current version VF is not supported when PF is driven by DPDK
1799 	 * driver, just need to configure parameters for PF vport.
1800 	 */
1801 	vf_id = HNS3_PF_FUNC_ID;
1802 	hns3_update_desc_vfid(desc, vf_id, false);
1803 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1804 	if (ret) {
1805 		if (ret == -ENOSPC)
1806 			hns3_err(hw, "mc mac vlan table is full");
1807 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1808 				      mac_addr);
1809 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1810 	}
1811 
1812 	return ret;
1813 }
1814 
1815 static int
1816 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1817 {
1818 	struct hns3_mac_vlan_tbl_entry_cmd req;
1819 	struct hns3_cmd_desc desc[3];
1820 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1821 	uint8_t vf_id;
1822 	int ret;
1823 
1824 	/* Check if mac addr is valid */
1825 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1826 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1827 				      mac_addr);
1828 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1829 			 mac_str);
1830 		return -EINVAL;
1831 	}
1832 
1833 	memset(&req, 0, sizeof(req));
1834 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1835 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1836 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1837 	if (ret == 0) {
1838 		/*
1839 		 * This mac addr exist, remove this handle's VFID for it.
1840 		 * In current version VF is not supported when PF is driven by
1841 		 * DPDK driver, just need to configure parameters for PF vport.
1842 		 */
1843 		vf_id = HNS3_PF_FUNC_ID;
1844 		hns3_update_desc_vfid(desc, vf_id, true);
1845 
1846 		/* All the vfid is zero, so need to delete this entry */
1847 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1848 	} else if (ret == -ENOENT) {
1849 		/* This mac addr doesn't exist. */
1850 		return 0;
1851 	}
1852 
1853 	if (ret) {
1854 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1855 				      mac_addr);
1856 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1857 	}
1858 
1859 	return ret;
1860 }
1861 
1862 static int
1863 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1864 			   struct rte_ether_addr *mc_addr_set,
1865 			   uint32_t nb_mc_addr)
1866 {
1867 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1868 	struct rte_ether_addr *addr;
1869 	uint32_t i;
1870 	uint32_t j;
1871 
1872 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1873 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
1874 			 "invalid. valid range: 0~%d",
1875 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1876 		return -EINVAL;
1877 	}
1878 
1879 	/* Check if input mac addresses are valid */
1880 	for (i = 0; i < nb_mc_addr; i++) {
1881 		addr = &mc_addr_set[i];
1882 		if (!rte_is_multicast_ether_addr(addr)) {
1883 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1884 					      addr);
1885 			hns3_err(hw,
1886 				 "failed to set mc mac addr, addr(%s) invalid.",
1887 				 mac_str);
1888 			return -EINVAL;
1889 		}
1890 
1891 		/* Check if there are duplicate addresses */
1892 		for (j = i + 1; j < nb_mc_addr; j++) {
1893 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1894 				rte_ether_format_addr(mac_str,
1895 						      RTE_ETHER_ADDR_FMT_SIZE,
1896 						      addr);
1897 				hns3_err(hw, "failed to set mc mac addr, "
1898 					 "addrs invalid. two same addrs(%s).",
1899 					 mac_str);
1900 				return -EINVAL;
1901 			}
1902 		}
1903 
1904 		/*
1905 		 * Check if there are duplicate addresses between mac_addrs
1906 		 * and mc_addr_set
1907 		 */
1908 		for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1909 			if (rte_is_same_ether_addr(addr,
1910 						   &hw->data->mac_addrs[j])) {
1911 				rte_ether_format_addr(mac_str,
1912 						      RTE_ETHER_ADDR_FMT_SIZE,
1913 						      addr);
1914 				hns3_err(hw, "failed to set mc mac addr, "
1915 					 "addrs invalid. addrs(%s) has already "
1916 					 "configured in mac_addr add API",
1917 					 mac_str);
1918 				return -EINVAL;
1919 			}
1920 		}
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 static void
1927 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
1928 			   struct rte_ether_addr *mc_addr_set,
1929 			   int mc_addr_num,
1930 			   struct rte_ether_addr *reserved_addr_list,
1931 			   int *reserved_addr_num,
1932 			   struct rte_ether_addr *add_addr_list,
1933 			   int *add_addr_num,
1934 			   struct rte_ether_addr *rm_addr_list,
1935 			   int *rm_addr_num)
1936 {
1937 	struct rte_ether_addr *addr;
1938 	int current_addr_num;
1939 	int reserved_num = 0;
1940 	int add_num = 0;
1941 	int rm_num = 0;
1942 	int num;
1943 	int i;
1944 	int j;
1945 	bool same_addr;
1946 
1947 	/* Calculate the mc mac address list that should be removed */
1948 	current_addr_num = hw->mc_addrs_num;
1949 	for (i = 0; i < current_addr_num; i++) {
1950 		addr = &hw->mc_addrs[i];
1951 		same_addr = false;
1952 		for (j = 0; j < mc_addr_num; j++) {
1953 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1954 				same_addr = true;
1955 				break;
1956 			}
1957 		}
1958 
1959 		if (!same_addr) {
1960 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
1961 			rm_num++;
1962 		} else {
1963 			rte_ether_addr_copy(addr,
1964 					    &reserved_addr_list[reserved_num]);
1965 			reserved_num++;
1966 		}
1967 	}
1968 
1969 	/* Calculate the mc mac address list that should be added */
1970 	for (i = 0; i < mc_addr_num; i++) {
1971 		addr = &mc_addr_set[i];
1972 		same_addr = false;
1973 		for (j = 0; j < current_addr_num; j++) {
1974 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
1975 				same_addr = true;
1976 				break;
1977 			}
1978 		}
1979 
1980 		if (!same_addr) {
1981 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
1982 			add_num++;
1983 		}
1984 	}
1985 
1986 	/* Reorder the mc mac address list maintained by driver */
1987 	for (i = 0; i < reserved_num; i++)
1988 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
1989 
1990 	for (i = 0; i < rm_num; i++) {
1991 		num = reserved_num + i;
1992 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
1993 	}
1994 
1995 	*reserved_addr_num = reserved_num;
1996 	*add_addr_num = add_num;
1997 	*rm_addr_num = rm_num;
1998 }
1999 
2000 static int
2001 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2002 			  struct rte_ether_addr *mc_addr_set,
2003 			  uint32_t nb_mc_addr)
2004 {
2005 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2006 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2007 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2008 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2009 	struct rte_ether_addr *addr;
2010 	int reserved_addr_num;
2011 	int add_addr_num;
2012 	int rm_addr_num;
2013 	int mc_addr_num;
2014 	int num;
2015 	int ret;
2016 	int i;
2017 
2018 	/* Check if input parameters are valid */
2019 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2020 	if (ret)
2021 		return ret;
2022 
2023 	rte_spinlock_lock(&hw->lock);
2024 
2025 	/*
2026 	 * Calculate the mc mac address lists those should be removed and be
2027 	 * added, Reorder the mc mac address list maintained by driver.
2028 	 */
2029 	mc_addr_num = (int)nb_mc_addr;
2030 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2031 				   reserved_addr_list, &reserved_addr_num,
2032 				   add_addr_list, &add_addr_num,
2033 				   rm_addr_list, &rm_addr_num);
2034 
2035 	/* Remove mc mac addresses */
2036 	for (i = 0; i < rm_addr_num; i++) {
2037 		num = rm_addr_num - i - 1;
2038 		addr = &rm_addr_list[num];
2039 		ret = hns3_remove_mc_addr(hw, addr);
2040 		if (ret) {
2041 			rte_spinlock_unlock(&hw->lock);
2042 			return ret;
2043 		}
2044 		hw->mc_addrs_num--;
2045 	}
2046 
2047 	/* Add mc mac addresses */
2048 	for (i = 0; i < add_addr_num; i++) {
2049 		addr = &add_addr_list[i];
2050 		ret = hns3_add_mc_addr(hw, addr);
2051 		if (ret) {
2052 			rte_spinlock_unlock(&hw->lock);
2053 			return ret;
2054 		}
2055 
2056 		num = reserved_addr_num + i;
2057 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2058 		hw->mc_addrs_num++;
2059 	}
2060 	rte_spinlock_unlock(&hw->lock);
2061 
2062 	return 0;
2063 }
2064 
2065 static int
2066 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2067 {
2068 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2069 	struct hns3_hw *hw = &hns->hw;
2070 	struct rte_ether_addr *addr;
2071 	int err = 0;
2072 	int ret;
2073 	int i;
2074 
2075 	for (i = 0; i < hw->mc_addrs_num; i++) {
2076 		addr = &hw->mc_addrs[i];
2077 		if (!rte_is_multicast_ether_addr(addr))
2078 			continue;
2079 		if (del)
2080 			ret = hns3_remove_mc_addr(hw, addr);
2081 		else
2082 			ret = hns3_add_mc_addr(hw, addr);
2083 		if (ret) {
2084 			err = ret;
2085 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2086 					      addr);
2087 			hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2088 				 del ? "Remove" : "Restore", mac_str, ret);
2089 		}
2090 	}
2091 	return err;
2092 }
2093 
2094 static int
2095 hns3_check_mq_mode(struct rte_eth_dev *dev)
2096 {
2097 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2098 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2099 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2100 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2101 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2102 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2103 	uint8_t num_tc;
2104 	int max_tc = 0;
2105 	int i;
2106 
2107 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2108 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2109 
2110 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2111 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2112 			 "rx_mq_mode = %d", rx_mq_mode);
2113 		return -EINVAL;
2114 	}
2115 
2116 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2117 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2118 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2119 			 "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2120 			 rx_mq_mode, tx_mq_mode);
2121 		return -EINVAL;
2122 	}
2123 
2124 	if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2125 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2126 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2127 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2128 			return -EINVAL;
2129 		}
2130 
2131 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2132 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2133 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2134 				 "nb_tcs(%d) != %d or %d in rx direction.",
2135 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2136 			return -EINVAL;
2137 		}
2138 
2139 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2140 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2141 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2142 			return -EINVAL;
2143 		}
2144 
2145 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2146 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2147 				hns3_err(hw, "dcb_tc[%d] = %d in rx direction, "
2148 					 "is not equal to one in tx direction.",
2149 					 i, dcb_rx_conf->dcb_tc[i]);
2150 				return -EINVAL;
2151 			}
2152 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2153 				max_tc = dcb_rx_conf->dcb_tc[i];
2154 		}
2155 
2156 		num_tc = max_tc + 1;
2157 		if (num_tc > dcb_rx_conf->nb_tcs) {
2158 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2159 				 num_tc, dcb_rx_conf->nb_tcs);
2160 			return -EINVAL;
2161 		}
2162 	}
2163 
2164 	return 0;
2165 }
2166 
2167 static int
2168 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2169 {
2170 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2171 
2172 	if (!hns3_dev_dcb_supported(hw)) {
2173 		hns3_err(hw, "this port does not support dcb configurations.");
2174 		return -EOPNOTSUPP;
2175 	}
2176 
2177 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2178 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2179 		return -EOPNOTSUPP;
2180 	}
2181 
2182 	/* Check multiple queue mode */
2183 	return hns3_check_mq_mode(dev);
2184 }
2185 
2186 static int
2187 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id, bool mmap,
2188 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2189 {
2190 	struct hns3_cmd_desc desc;
2191 	struct hns3_ctrl_vector_chain_cmd *req =
2192 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2193 	enum hns3_cmd_status status;
2194 	enum hns3_opcode_type op;
2195 	uint16_t tqp_type_and_id = 0;
2196 	const char *op_str;
2197 	uint16_t type;
2198 	uint16_t gl;
2199 
2200 	op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2201 	hns3_cmd_setup_basic_desc(&desc, op, false);
2202 	req->int_vector_id = vector_id;
2203 
2204 	if (queue_type == HNS3_RING_TYPE_RX)
2205 		gl = HNS3_RING_GL_RX;
2206 	else
2207 		gl = HNS3_RING_GL_TX;
2208 
2209 	type = queue_type;
2210 
2211 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2212 		       type);
2213 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2214 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2215 		       gl);
2216 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2217 	req->int_cause_num = 1;
2218 	op_str = mmap ? "Map" : "Unmap";
2219 	status = hns3_cmd_send(hw, &desc, 1);
2220 	if (status) {
2221 		hns3_err(hw, "%s TQP %d fail, vector_id is %d, status is %d.",
2222 			 op_str, queue_id, req->int_vector_id, status);
2223 		return status;
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 static int
2230 hns3_init_ring_with_vector(struct hns3_hw *hw)
2231 {
2232 	uint16_t vec;
2233 	int ret;
2234 	int i;
2235 
2236 	/*
2237 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2238 	 * function, vector 1~N can be used respectively for the queues of the
2239 	 * function. Tx and Rx queues with the same number share the interrupt
2240 	 * vector. In the initialization clearing the all hardware mapping
2241 	 * relationship configurations between queues and interrupt vectors is
2242 	 * needed, so some error caused by the residual configurations, such as
2243 	 * the unexpected Tx interrupt, can be avoid.
2244 	 */
2245 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2246 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2247 		vec = vec - 1; /* the last interrupt is reserved */
2248 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2249 	for (i = 0; i < hw->intr_tqps_num; i++) {
2250 		/*
2251 		 * Set gap limiter/rate limiter/quanity limiter algorithm
2252 		 * configuration for interrupt coalesce of queue's interrupt.
2253 		 */
2254 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2255 				       HNS3_TQP_INTR_GL_DEFAULT);
2256 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2257 				       HNS3_TQP_INTR_GL_DEFAULT);
2258 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2259 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2260 
2261 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2262 						 HNS3_RING_TYPE_TX, i);
2263 		if (ret) {
2264 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2265 					  "vector: %d, ret=%d", i, vec, ret);
2266 			return ret;
2267 		}
2268 
2269 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2270 						 HNS3_RING_TYPE_RX, i);
2271 		if (ret) {
2272 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2273 					  "vector: %d, ret=%d", i, vec, ret);
2274 			return ret;
2275 		}
2276 	}
2277 
2278 	return 0;
2279 }
2280 
2281 static int
2282 hns3_dev_configure(struct rte_eth_dev *dev)
2283 {
2284 	struct hns3_adapter *hns = dev->data->dev_private;
2285 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2286 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2287 	struct hns3_hw *hw = &hns->hw;
2288 	struct hns3_rss_conf *rss_cfg = &hw->rss_info;
2289 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2290 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2291 	struct rte_eth_rss_conf rss_conf;
2292 	uint16_t mtu;
2293 	bool gro_en;
2294 	int ret;
2295 
2296 	/*
2297 	 * Hardware does not support individually enable/disable/reset the Tx or
2298 	 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
2299 	 * and Rx queues at the same time. When the numbers of Tx queues
2300 	 * allocated by upper applications are not equal to the numbers of Rx
2301 	 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
2302 	 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
2303 	 * these fake queues are imperceptible, and can not be used by upper
2304 	 * applications.
2305 	 */
2306 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2307 	if (ret) {
2308 		hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
2309 		return ret;
2310 	}
2311 
2312 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2313 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2314 		hns3_err(hw, "setting link speed/duplex not supported");
2315 		ret = -EINVAL;
2316 		goto cfg_err;
2317 	}
2318 
2319 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2320 		ret = hns3_check_dcb_cfg(dev);
2321 		if (ret)
2322 			goto cfg_err;
2323 	}
2324 
2325 	/* When RSS is not configured, redirect the packet queue 0 */
2326 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2327 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2328 		rss_conf = conf->rx_adv_conf.rss_conf;
2329 		hw->rss_dis_flag = false;
2330 		if (rss_conf.rss_key == NULL) {
2331 			rss_conf.rss_key = rss_cfg->key;
2332 			rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
2333 		}
2334 
2335 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2336 		if (ret)
2337 			goto cfg_err;
2338 	}
2339 
2340 	/*
2341 	 * If jumbo frames are enabled, MTU needs to be refreshed
2342 	 * according to the maximum RX packet length.
2343 	 */
2344 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2345 		/*
2346 		 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
2347 		 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
2348 		 * can safely assign to "uint16_t" type variable.
2349 		 */
2350 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
2351 		ret = hns3_dev_mtu_set(dev, mtu);
2352 		if (ret)
2353 			goto cfg_err;
2354 		dev->data->mtu = mtu;
2355 	}
2356 
2357 	ret = hns3_dev_configure_vlan(dev);
2358 	if (ret)
2359 		goto cfg_err;
2360 
2361 	/* config hardware GRO */
2362 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2363 	ret = hns3_config_gro(hw, gro_en);
2364 	if (ret)
2365 		goto cfg_err;
2366 
2367 	hns->rx_simple_allowed = true;
2368 	hns->rx_vec_allowed = true;
2369 	hns->tx_simple_allowed = true;
2370 	hns->tx_vec_allowed = true;
2371 
2372 	hns3_init_rx_ptype_tble(dev);
2373 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2374 
2375 	return 0;
2376 
2377 cfg_err:
2378 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2379 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2380 
2381 	return ret;
2382 }
2383 
2384 static int
2385 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2386 {
2387 	struct hns3_config_max_frm_size_cmd *req;
2388 	struct hns3_cmd_desc desc;
2389 
2390 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2391 
2392 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2393 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2394 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2395 
2396 	return hns3_cmd_send(hw, &desc, 1);
2397 }
2398 
2399 static int
2400 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2401 {
2402 	int ret;
2403 
2404 	ret = hns3_set_mac_mtu(hw, mps);
2405 	if (ret) {
2406 		hns3_err(hw, "Failed to set mtu, ret = %d", ret);
2407 		return ret;
2408 	}
2409 
2410 	ret = hns3_buffer_alloc(hw);
2411 	if (ret)
2412 		hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
2413 
2414 	return ret;
2415 }
2416 
2417 static int
2418 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2419 {
2420 	struct hns3_adapter *hns = dev->data->dev_private;
2421 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2422 	struct hns3_hw *hw = &hns->hw;
2423 	bool is_jumbo_frame;
2424 	int ret;
2425 
2426 	if (dev->data->dev_started) {
2427 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2428 			 "before configuration", dev->data->port_id);
2429 		return -EBUSY;
2430 	}
2431 
2432 	rte_spinlock_lock(&hw->lock);
2433 	is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
2434 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2435 
2436 	/*
2437 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2438 	 * assign to "uint16_t" type variable.
2439 	 */
2440 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2441 	if (ret) {
2442 		rte_spinlock_unlock(&hw->lock);
2443 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2444 			 dev->data->port_id, mtu, ret);
2445 		return ret;
2446 	}
2447 	hns->pf.mps = (uint16_t)frame_size;
2448 	if (is_jumbo_frame)
2449 		dev->data->dev_conf.rxmode.offloads |=
2450 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2451 	else
2452 		dev->data->dev_conf.rxmode.offloads &=
2453 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2454 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2455 	rte_spinlock_unlock(&hw->lock);
2456 
2457 	return 0;
2458 }
2459 
2460 static int
2461 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2462 {
2463 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2464 	struct hns3_hw *hw = &hns->hw;
2465 	uint16_t queue_num = hw->tqps_num;
2466 
2467 	/*
2468 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2469 	 * MSI-X interrupt resources of the hardware.
2470 	 */
2471 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2472 		queue_num = hw->intr_tqps_num;
2473 
2474 	info->max_rx_queues = queue_num;
2475 	info->max_tx_queues = hw->tqps_num;
2476 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2477 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2478 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2479 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2480 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2481 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2482 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2483 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2484 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2485 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2486 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2487 				 DEV_RX_OFFLOAD_KEEP_CRC |
2488 				 DEV_RX_OFFLOAD_SCATTER |
2489 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2490 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2491 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
2492 				 DEV_RX_OFFLOAD_RSS_HASH |
2493 				 DEV_RX_OFFLOAD_TCP_LRO);
2494 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2495 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2496 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2497 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2498 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2499 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2500 				 DEV_TX_OFFLOAD_TCP_TSO |
2501 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2502 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
2503 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2504 				 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2505 				 hns3_txvlan_cap_get(hw));
2506 
2507 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2508 		.nb_max = HNS3_MAX_RING_DESC,
2509 		.nb_min = HNS3_MIN_RING_DESC,
2510 		.nb_align = HNS3_ALIGN_RING_DESC,
2511 	};
2512 
2513 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2514 		.nb_max = HNS3_MAX_RING_DESC,
2515 		.nb_min = HNS3_MIN_RING_DESC,
2516 		.nb_align = HNS3_ALIGN_RING_DESC,
2517 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2518 		.nb_mtu_seg_max = hw->max_non_tso_bd_num,
2519 	};
2520 
2521 	info->default_rxconf = (struct rte_eth_rxconf) {
2522 		.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2523 		/*
2524 		 * If there are no available Rx buffer descriptors, incoming
2525 		 * packets are always dropped by hardware based on hns3 network
2526 		 * engine.
2527 		 */
2528 		.rx_drop_en = 1,
2529 		.offloads = 0,
2530 	};
2531 	info->default_txconf = (struct rte_eth_txconf) {
2532 		.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2533 		.offloads = 0,
2534 	};
2535 
2536 	info->vmdq_queue_num = 0;
2537 
2538 	info->reta_size = HNS3_RSS_IND_TBL_SIZE;
2539 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2540 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2541 
2542 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2543 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2544 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2545 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2546 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2547 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2548 
2549 	return 0;
2550 }
2551 
2552 static int
2553 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2554 		    size_t fw_size)
2555 {
2556 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2557 	struct hns3_hw *hw = &hns->hw;
2558 	uint32_t version = hw->fw_version;
2559 	int ret;
2560 
2561 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2562 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2563 				      HNS3_FW_VERSION_BYTE3_S),
2564 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2565 				      HNS3_FW_VERSION_BYTE2_S),
2566 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2567 				      HNS3_FW_VERSION_BYTE1_S),
2568 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2569 				      HNS3_FW_VERSION_BYTE0_S));
2570 	ret += 1; /* add the size of '\0' */
2571 	if (fw_size < (uint32_t)ret)
2572 		return ret;
2573 	else
2574 		return 0;
2575 }
2576 
2577 static int
2578 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2579 		     __rte_unused int wait_to_complete)
2580 {
2581 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2582 	struct hns3_hw *hw = &hns->hw;
2583 	struct hns3_mac *mac = &hw->mac;
2584 	struct rte_eth_link new_link;
2585 
2586 	if (!hns3_is_reset_pending(hns)) {
2587 		hns3_update_speed_duplex(eth_dev);
2588 		hns3_update_link_status(hw);
2589 	}
2590 
2591 	memset(&new_link, 0, sizeof(new_link));
2592 	switch (mac->link_speed) {
2593 	case ETH_SPEED_NUM_10M:
2594 	case ETH_SPEED_NUM_100M:
2595 	case ETH_SPEED_NUM_1G:
2596 	case ETH_SPEED_NUM_10G:
2597 	case ETH_SPEED_NUM_25G:
2598 	case ETH_SPEED_NUM_40G:
2599 	case ETH_SPEED_NUM_50G:
2600 	case ETH_SPEED_NUM_100G:
2601 	case ETH_SPEED_NUM_200G:
2602 		new_link.link_speed = mac->link_speed;
2603 		break;
2604 	default:
2605 		new_link.link_speed = ETH_SPEED_NUM_100M;
2606 		break;
2607 	}
2608 
2609 	new_link.link_duplex = mac->link_duplex;
2610 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2611 	new_link.link_autoneg =
2612 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2613 
2614 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2615 }
2616 
2617 static int
2618 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2619 {
2620 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2621 	struct hns3_pf *pf = &hns->pf;
2622 
2623 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2624 		return -EINVAL;
2625 
2626 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2627 
2628 	return 0;
2629 }
2630 
2631 static int
2632 hns3_query_function_status(struct hns3_hw *hw)
2633 {
2634 #define HNS3_QUERY_MAX_CNT		10
2635 #define HNS3_QUERY_SLEEP_MSCOEND	1
2636 	struct hns3_func_status_cmd *req;
2637 	struct hns3_cmd_desc desc;
2638 	int timeout = 0;
2639 	int ret;
2640 
2641 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2642 	req = (struct hns3_func_status_cmd *)desc.data;
2643 
2644 	do {
2645 		ret = hns3_cmd_send(hw, &desc, 1);
2646 		if (ret) {
2647 			PMD_INIT_LOG(ERR, "query function status failed %d",
2648 				     ret);
2649 			return ret;
2650 		}
2651 
2652 		/* Check pf reset is done */
2653 		if (req->pf_state)
2654 			break;
2655 
2656 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2657 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2658 
2659 	return hns3_parse_func_status(hw, req);
2660 }
2661 
2662 static int
2663 hns3_query_pf_resource(struct hns3_hw *hw)
2664 {
2665 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2666 	struct hns3_pf *pf = &hns->pf;
2667 	struct hns3_pf_res_cmd *req;
2668 	struct hns3_cmd_desc desc;
2669 	int ret;
2670 
2671 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2672 	ret = hns3_cmd_send(hw, &desc, 1);
2673 	if (ret) {
2674 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2675 		return ret;
2676 	}
2677 
2678 	req = (struct hns3_pf_res_cmd *)desc.data;
2679 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num);
2680 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2681 	hw->tqps_num = RTE_MIN(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2682 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2683 
2684 	if (req->tx_buf_size)
2685 		pf->tx_buf_size =
2686 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2687 	else
2688 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2689 
2690 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2691 
2692 	if (req->dv_buf_size)
2693 		pf->dv_buf_size =
2694 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2695 	else
2696 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2697 
2698 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2699 
2700 	hw->num_msi =
2701 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2702 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2703 
2704 	return 0;
2705 }
2706 
2707 static void
2708 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2709 {
2710 	struct hns3_cfg_param_cmd *req;
2711 	uint64_t mac_addr_tmp_high;
2712 	uint64_t mac_addr_tmp;
2713 	uint32_t i;
2714 
2715 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2716 
2717 	/* get the configuration */
2718 	cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2719 					     HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2720 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2721 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2722 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2723 					   HNS3_CFG_TQP_DESC_N_M,
2724 					   HNS3_CFG_TQP_DESC_N_S);
2725 
2726 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2727 				       HNS3_CFG_PHY_ADDR_M,
2728 				       HNS3_CFG_PHY_ADDR_S);
2729 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2730 					 HNS3_CFG_MEDIA_TP_M,
2731 					 HNS3_CFG_MEDIA_TP_S);
2732 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2733 					 HNS3_CFG_RX_BUF_LEN_M,
2734 					 HNS3_CFG_RX_BUF_LEN_S);
2735 	/* get mac address */
2736 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2737 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2738 					   HNS3_CFG_MAC_ADDR_H_M,
2739 					   HNS3_CFG_MAC_ADDR_H_S);
2740 
2741 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2742 
2743 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2744 					    HNS3_CFG_DEFAULT_SPEED_M,
2745 					    HNS3_CFG_DEFAULT_SPEED_S);
2746 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2747 					   HNS3_CFG_RSS_SIZE_M,
2748 					   HNS3_CFG_RSS_SIZE_S);
2749 
2750 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2751 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2752 
2753 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2754 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2755 
2756 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2757 					    HNS3_CFG_SPEED_ABILITY_M,
2758 					    HNS3_CFG_SPEED_ABILITY_S);
2759 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2760 					HNS3_CFG_UMV_TBL_SPACE_M,
2761 					HNS3_CFG_UMV_TBL_SPACE_S);
2762 	if (!cfg->umv_space)
2763 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2764 }
2765 
2766 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2767  * @hw: pointer to struct hns3_hw
2768  * @hcfg: the config structure to be getted
2769  */
2770 static int
2771 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2772 {
2773 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2774 	struct hns3_cfg_param_cmd *req;
2775 	uint32_t offset;
2776 	uint32_t i;
2777 	int ret;
2778 
2779 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2780 		offset = 0;
2781 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2782 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2783 					  true);
2784 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2785 			       i * HNS3_CFG_RD_LEN_BYTES);
2786 		/* Len should be divided by 4 when send to hardware */
2787 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2788 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2789 		req->offset = rte_cpu_to_le_32(offset);
2790 	}
2791 
2792 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2793 	if (ret) {
2794 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2795 		return ret;
2796 	}
2797 
2798 	hns3_parse_cfg(hcfg, desc);
2799 
2800 	return 0;
2801 }
2802 
2803 static int
2804 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2805 {
2806 	switch (speed_cmd) {
2807 	case HNS3_CFG_SPEED_10M:
2808 		*speed = ETH_SPEED_NUM_10M;
2809 		break;
2810 	case HNS3_CFG_SPEED_100M:
2811 		*speed = ETH_SPEED_NUM_100M;
2812 		break;
2813 	case HNS3_CFG_SPEED_1G:
2814 		*speed = ETH_SPEED_NUM_1G;
2815 		break;
2816 	case HNS3_CFG_SPEED_10G:
2817 		*speed = ETH_SPEED_NUM_10G;
2818 		break;
2819 	case HNS3_CFG_SPEED_25G:
2820 		*speed = ETH_SPEED_NUM_25G;
2821 		break;
2822 	case HNS3_CFG_SPEED_40G:
2823 		*speed = ETH_SPEED_NUM_40G;
2824 		break;
2825 	case HNS3_CFG_SPEED_50G:
2826 		*speed = ETH_SPEED_NUM_50G;
2827 		break;
2828 	case HNS3_CFG_SPEED_100G:
2829 		*speed = ETH_SPEED_NUM_100G;
2830 		break;
2831 	case HNS3_CFG_SPEED_200G:
2832 		*speed = ETH_SPEED_NUM_200G;
2833 		break;
2834 	default:
2835 		return -EINVAL;
2836 	}
2837 
2838 	return 0;
2839 }
2840 
2841 static void
2842 hns3_set_default_dev_specifications(struct hns3_hw *hw)
2843 {
2844 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
2845 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
2846 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
2847 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
2848 }
2849 
2850 static void
2851 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
2852 {
2853 	struct hns3_dev_specs_0_cmd *req0;
2854 
2855 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
2856 
2857 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
2858 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
2859 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
2860 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
2861 }
2862 
2863 static int
2864 hns3_query_dev_specifications(struct hns3_hw *hw)
2865 {
2866 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
2867 	int ret;
2868 	int i;
2869 
2870 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2871 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
2872 					  true);
2873 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
2874 	}
2875 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
2876 
2877 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
2878 	if (ret)
2879 		return ret;
2880 
2881 	hns3_parse_dev_specifications(hw, desc);
2882 
2883 	return 0;
2884 }
2885 
2886 static int
2887 hns3_get_capability(struct hns3_hw *hw)
2888 {
2889 	struct rte_pci_device *pci_dev;
2890 	struct rte_eth_dev *eth_dev;
2891 	uint16_t device_id;
2892 	uint8_t revision;
2893 	int ret;
2894 
2895 	eth_dev = &rte_eth_devices[hw->data->port_id];
2896 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2897 	device_id = pci_dev->id.device_id;
2898 
2899 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
2900 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
2901 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
2902 	    device_id == HNS3_DEV_ID_200G_RDMA)
2903 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
2904 
2905 	/* Get PCI revision id */
2906 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
2907 				  HNS3_PCI_REVISION_ID);
2908 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
2909 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
2910 			     ret);
2911 		return -EIO;
2912 	}
2913 	hw->revision = revision;
2914 
2915 	if (revision < PCI_REVISION_ID_HIP09_A) {
2916 		hns3_set_default_dev_specifications(hw);
2917 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
2918 		hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
2919 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
2920 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
2921 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
2922 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
2923 		return 0;
2924 	}
2925 
2926 	ret = hns3_query_dev_specifications(hw);
2927 	if (ret) {
2928 		PMD_INIT_LOG(ERR,
2929 			     "failed to query dev specifications, ret = %d",
2930 			     ret);
2931 		return ret;
2932 	}
2933 
2934 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
2935 	hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
2936 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
2937 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
2938 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
2939 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
2940 
2941 	return 0;
2942 }
2943 
2944 static int
2945 hns3_get_board_configuration(struct hns3_hw *hw)
2946 {
2947 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2948 	struct hns3_pf *pf = &hns->pf;
2949 	struct hns3_cfg cfg;
2950 	int ret;
2951 
2952 	ret = hns3_get_board_cfg(hw, &cfg);
2953 	if (ret) {
2954 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2955 		return ret;
2956 	}
2957 
2958 	if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER &&
2959 	    !hns3_dev_copper_supported(hw)) {
2960 		PMD_INIT_LOG(ERR, "media type is copper, not supported.");
2961 		return -EOPNOTSUPP;
2962 	}
2963 
2964 	hw->mac.media_type = cfg.media_type;
2965 	hw->rss_size_max = cfg.rss_size_max;
2966 	hw->rss_dis_flag = false;
2967 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2968 	hw->mac.phy_addr = cfg.phy_addr;
2969 	hw->mac.default_addr_setted = false;
2970 	hw->num_tx_desc = cfg.tqp_desc_num;
2971 	hw->num_rx_desc = cfg.tqp_desc_num;
2972 	hw->dcb_info.num_pg = 1;
2973 	hw->dcb_info.hw_pfc_map = 0;
2974 
2975 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2976 	if (ret) {
2977 		PMD_INIT_LOG(ERR, "Get wrong speed %d, ret = %d",
2978 			     cfg.default_speed, ret);
2979 		return ret;
2980 	}
2981 
2982 	pf->tc_max = cfg.tc_num;
2983 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2984 		PMD_INIT_LOG(WARNING,
2985 			     "Get TC num(%u) from flash, set TC num to 1",
2986 			     pf->tc_max);
2987 		pf->tc_max = 1;
2988 	}
2989 
2990 	/* Dev does not support DCB */
2991 	if (!hns3_dev_dcb_supported(hw)) {
2992 		pf->tc_max = 1;
2993 		pf->pfc_max = 0;
2994 	} else
2995 		pf->pfc_max = pf->tc_max;
2996 
2997 	hw->dcb_info.num_tc = 1;
2998 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2999 				     hw->tqps_num / hw->dcb_info.num_tc);
3000 	hns3_set_bit(hw->hw_tc_map, 0, 1);
3001 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3002 
3003 	pf->wanted_umv_size = cfg.umv_space;
3004 
3005 	return ret;
3006 }
3007 
3008 static int
3009 hns3_get_configuration(struct hns3_hw *hw)
3010 {
3011 	int ret;
3012 
3013 	ret = hns3_query_function_status(hw);
3014 	if (ret) {
3015 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3016 		return ret;
3017 	}
3018 
3019 	/* Get device capability */
3020 	ret = hns3_get_capability(hw);
3021 	if (ret) {
3022 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3023 		return ret;
3024 	}
3025 
3026 	/* Get pf resource */
3027 	ret = hns3_query_pf_resource(hw);
3028 	if (ret) {
3029 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3030 		return ret;
3031 	}
3032 
3033 	ret = hns3_get_board_configuration(hw);
3034 	if (ret)
3035 		PMD_INIT_LOG(ERR, "Failed to get board configuration: %d", ret);
3036 
3037 	return ret;
3038 }
3039 
3040 static int
3041 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3042 		      uint16_t tqp_vid, bool is_pf)
3043 {
3044 	struct hns3_tqp_map_cmd *req;
3045 	struct hns3_cmd_desc desc;
3046 	int ret;
3047 
3048 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3049 
3050 	req = (struct hns3_tqp_map_cmd *)desc.data;
3051 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3052 	req->tqp_vf = func_id;
3053 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3054 	if (!is_pf)
3055 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3056 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3057 
3058 	ret = hns3_cmd_send(hw, &desc, 1);
3059 	if (ret)
3060 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3061 
3062 	return ret;
3063 }
3064 
3065 static int
3066 hns3_map_tqp(struct hns3_hw *hw)
3067 {
3068 	uint16_t tqps_num = hw->total_tqps_num;
3069 	uint16_t func_id;
3070 	uint16_t tqp_id;
3071 	bool is_pf;
3072 	int num;
3073 	int ret;
3074 	int i;
3075 
3076 	/*
3077 	 * In current version VF is not supported when PF is driven by DPDK
3078 	 * driver, so we allocate tqps to PF as much as possible.
3079 	 */
3080 	tqp_id = 0;
3081 	num = DIV_ROUND_UP(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
3082 	for (func_id = HNS3_PF_FUNC_ID; func_id < num; func_id++) {
3083 		is_pf = func_id == HNS3_PF_FUNC_ID ? true : false;
3084 		for (i = 0;
3085 		     i < HNS3_MAX_TQP_NUM_PER_FUNC && tqp_id < tqps_num; i++) {
3086 			ret = hns3_map_tqps_to_func(hw, func_id, tqp_id++, i,
3087 						    is_pf);
3088 			if (ret)
3089 				return ret;
3090 		}
3091 	}
3092 
3093 	return 0;
3094 }
3095 
3096 static int
3097 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3098 {
3099 	struct hns3_config_mac_speed_dup_cmd *req;
3100 	struct hns3_cmd_desc desc;
3101 	int ret;
3102 
3103 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3104 
3105 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3106 
3107 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3108 
3109 	switch (speed) {
3110 	case ETH_SPEED_NUM_10M:
3111 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3112 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3113 		break;
3114 	case ETH_SPEED_NUM_100M:
3115 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3116 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3117 		break;
3118 	case ETH_SPEED_NUM_1G:
3119 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3120 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3121 		break;
3122 	case ETH_SPEED_NUM_10G:
3123 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3124 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3125 		break;
3126 	case ETH_SPEED_NUM_25G:
3127 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3128 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3129 		break;
3130 	case ETH_SPEED_NUM_40G:
3131 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3132 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3133 		break;
3134 	case ETH_SPEED_NUM_50G:
3135 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3136 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3137 		break;
3138 	case ETH_SPEED_NUM_100G:
3139 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3140 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3141 		break;
3142 	case ETH_SPEED_NUM_200G:
3143 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3144 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3145 		break;
3146 	default:
3147 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3148 		return -EINVAL;
3149 	}
3150 
3151 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3152 
3153 	ret = hns3_cmd_send(hw, &desc, 1);
3154 	if (ret)
3155 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3156 
3157 	return ret;
3158 }
3159 
3160 static int
3161 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3162 {
3163 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3164 	struct hns3_pf *pf = &hns->pf;
3165 	struct hns3_priv_buf *priv;
3166 	uint32_t i, total_size;
3167 
3168 	total_size = pf->pkt_buf_size;
3169 
3170 	/* alloc tx buffer for all enabled tc */
3171 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3172 		priv = &buf_alloc->priv_buf[i];
3173 
3174 		if (hw->hw_tc_map & BIT(i)) {
3175 			if (total_size < pf->tx_buf_size)
3176 				return -ENOMEM;
3177 
3178 			priv->tx_buf_size = pf->tx_buf_size;
3179 		} else
3180 			priv->tx_buf_size = 0;
3181 
3182 		total_size -= priv->tx_buf_size;
3183 	}
3184 
3185 	return 0;
3186 }
3187 
3188 static int
3189 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3190 {
3191 /* TX buffer size is unit by 128 byte */
3192 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3193 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3194 	struct hns3_tx_buff_alloc_cmd *req;
3195 	struct hns3_cmd_desc desc;
3196 	uint32_t buf_size;
3197 	uint32_t i;
3198 	int ret;
3199 
3200 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3201 
3202 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3203 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3204 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3205 
3206 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3207 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3208 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3209 	}
3210 
3211 	ret = hns3_cmd_send(hw, &desc, 1);
3212 	if (ret)
3213 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3214 
3215 	return ret;
3216 }
3217 
3218 static int
3219 hns3_get_tc_num(struct hns3_hw *hw)
3220 {
3221 	int cnt = 0;
3222 	uint8_t i;
3223 
3224 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3225 		if (hw->hw_tc_map & BIT(i))
3226 			cnt++;
3227 	return cnt;
3228 }
3229 
3230 static uint32_t
3231 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3232 {
3233 	struct hns3_priv_buf *priv;
3234 	uint32_t rx_priv = 0;
3235 	int i;
3236 
3237 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3238 		priv = &buf_alloc->priv_buf[i];
3239 		if (priv->enable)
3240 			rx_priv += priv->buf_size;
3241 	}
3242 	return rx_priv;
3243 }
3244 
3245 static uint32_t
3246 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3247 {
3248 	uint32_t total_tx_size = 0;
3249 	uint32_t i;
3250 
3251 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3252 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3253 
3254 	return total_tx_size;
3255 }
3256 
3257 /* Get the number of pfc enabled TCs, which have private buffer */
3258 static int
3259 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3260 {
3261 	struct hns3_priv_buf *priv;
3262 	int cnt = 0;
3263 	uint8_t i;
3264 
3265 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3266 		priv = &buf_alloc->priv_buf[i];
3267 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3268 			cnt++;
3269 	}
3270 
3271 	return cnt;
3272 }
3273 
3274 /* Get the number of pfc disabled TCs, which have private buffer */
3275 static int
3276 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3277 			 struct hns3_pkt_buf_alloc *buf_alloc)
3278 {
3279 	struct hns3_priv_buf *priv;
3280 	int cnt = 0;
3281 	uint8_t i;
3282 
3283 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3284 		priv = &buf_alloc->priv_buf[i];
3285 		if (hw->hw_tc_map & BIT(i) &&
3286 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3287 			cnt++;
3288 	}
3289 
3290 	return cnt;
3291 }
3292 
3293 static bool
3294 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3295 		  uint32_t rx_all)
3296 {
3297 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3298 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3299 	struct hns3_pf *pf = &hns->pf;
3300 	uint32_t shared_buf, aligned_mps;
3301 	uint32_t rx_priv;
3302 	uint8_t tc_num;
3303 	uint8_t i;
3304 
3305 	tc_num = hns3_get_tc_num(hw);
3306 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3307 
3308 	if (hns3_dev_dcb_supported(hw))
3309 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3310 					pf->dv_buf_size;
3311 	else
3312 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3313 					+ pf->dv_buf_size;
3314 
3315 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3316 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3317 			     HNS3_BUF_SIZE_UNIT);
3318 
3319 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3320 	if (rx_all < rx_priv + shared_std)
3321 		return false;
3322 
3323 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3324 	buf_alloc->s_buf.buf_size = shared_buf;
3325 	if (hns3_dev_dcb_supported(hw)) {
3326 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3327 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3328 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3329 				  HNS3_BUF_SIZE_UNIT);
3330 	} else {
3331 		buf_alloc->s_buf.self.high =
3332 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3333 		buf_alloc->s_buf.self.low = aligned_mps;
3334 	}
3335 
3336 	if (hns3_dev_dcb_supported(hw)) {
3337 		hi_thrd = shared_buf - pf->dv_buf_size;
3338 
3339 		if (tc_num <= NEED_RESERVE_TC_NUM)
3340 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
3341 					/ BUF_MAX_PERCENT;
3342 
3343 		if (tc_num)
3344 			hi_thrd = hi_thrd / tc_num;
3345 
3346 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3347 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3348 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3349 	} else {
3350 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3351 		lo_thrd = aligned_mps;
3352 	}
3353 
3354 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3355 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3356 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3357 	}
3358 
3359 	return true;
3360 }
3361 
3362 static bool
3363 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3364 		     struct hns3_pkt_buf_alloc *buf_alloc)
3365 {
3366 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3367 	struct hns3_pf *pf = &hns->pf;
3368 	struct hns3_priv_buf *priv;
3369 	uint32_t aligned_mps;
3370 	uint32_t rx_all;
3371 	uint8_t i;
3372 
3373 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3374 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3375 
3376 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3377 		priv = &buf_alloc->priv_buf[i];
3378 
3379 		priv->enable = 0;
3380 		priv->wl.low = 0;
3381 		priv->wl.high = 0;
3382 		priv->buf_size = 0;
3383 
3384 		if (!(hw->hw_tc_map & BIT(i)))
3385 			continue;
3386 
3387 		priv->enable = 1;
3388 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3389 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3390 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3391 						HNS3_BUF_SIZE_UNIT);
3392 		} else {
3393 			priv->wl.low = 0;
3394 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3395 					aligned_mps;
3396 		}
3397 
3398 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3399 	}
3400 
3401 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3402 }
3403 
3404 static bool
3405 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3406 			     struct hns3_pkt_buf_alloc *buf_alloc)
3407 {
3408 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3409 	struct hns3_pf *pf = &hns->pf;
3410 	struct hns3_priv_buf *priv;
3411 	int no_pfc_priv_num;
3412 	uint32_t rx_all;
3413 	uint8_t mask;
3414 	int i;
3415 
3416 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3417 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3418 
3419 	/* let the last to be cleared first */
3420 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3421 		priv = &buf_alloc->priv_buf[i];
3422 		mask = BIT((uint8_t)i);
3423 
3424 		if (hw->hw_tc_map & mask &&
3425 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3426 			/* Clear the no pfc TC private buffer */
3427 			priv->wl.low = 0;
3428 			priv->wl.high = 0;
3429 			priv->buf_size = 0;
3430 			priv->enable = 0;
3431 			no_pfc_priv_num--;
3432 		}
3433 
3434 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3435 		    no_pfc_priv_num == 0)
3436 			break;
3437 	}
3438 
3439 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3440 }
3441 
3442 static bool
3443 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3444 			   struct hns3_pkt_buf_alloc *buf_alloc)
3445 {
3446 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3447 	struct hns3_pf *pf = &hns->pf;
3448 	struct hns3_priv_buf *priv;
3449 	uint32_t rx_all;
3450 	int pfc_priv_num;
3451 	uint8_t mask;
3452 	int i;
3453 
3454 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3455 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3456 
3457 	/* let the last to be cleared first */
3458 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3459 		priv = &buf_alloc->priv_buf[i];
3460 		mask = BIT((uint8_t)i);
3461 
3462 		if (hw->hw_tc_map & mask &&
3463 		    hw->dcb_info.hw_pfc_map & mask) {
3464 			/* Reduce the number of pfc TC with private buffer */
3465 			priv->wl.low = 0;
3466 			priv->enable = 0;
3467 			priv->wl.high = 0;
3468 			priv->buf_size = 0;
3469 			pfc_priv_num--;
3470 		}
3471 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3472 		    pfc_priv_num == 0)
3473 			break;
3474 	}
3475 
3476 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3477 }
3478 
3479 static bool
3480 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3481 			  struct hns3_pkt_buf_alloc *buf_alloc)
3482 {
3483 #define COMPENSATE_BUFFER	0x3C00
3484 #define COMPENSATE_HALF_MPS_NUM	5
3485 #define PRIV_WL_GAP		0x1800
3486 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3487 	struct hns3_pf *pf = &hns->pf;
3488 	uint32_t tc_num = hns3_get_tc_num(hw);
3489 	uint32_t half_mps = pf->mps >> 1;
3490 	struct hns3_priv_buf *priv;
3491 	uint32_t min_rx_priv;
3492 	uint32_t rx_priv;
3493 	uint8_t i;
3494 
3495 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3496 	if (tc_num)
3497 		rx_priv = rx_priv / tc_num;
3498 
3499 	if (tc_num <= NEED_RESERVE_TC_NUM)
3500 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3501 
3502 	/*
3503 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3504 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3505 	 * buffer if rx_priv is greater than min_rx_priv.
3506 	 */
3507 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3508 			COMPENSATE_HALF_MPS_NUM * half_mps;
3509 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3510 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3511 
3512 	if (rx_priv < min_rx_priv)
3513 		return false;
3514 
3515 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3516 		priv = &buf_alloc->priv_buf[i];
3517 
3518 		priv->enable = 0;
3519 		priv->wl.low = 0;
3520 		priv->wl.high = 0;
3521 		priv->buf_size = 0;
3522 
3523 		if (!(hw->hw_tc_map & BIT(i)))
3524 			continue;
3525 
3526 		priv->enable = 1;
3527 		priv->buf_size = rx_priv;
3528 		priv->wl.high = rx_priv - pf->dv_buf_size;
3529 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3530 	}
3531 
3532 	buf_alloc->s_buf.buf_size = 0;
3533 
3534 	return true;
3535 }
3536 
3537 /*
3538  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3539  * @hw: pointer to struct hns3_hw
3540  * @buf_alloc: pointer to buffer calculation data
3541  * @return: 0: calculate sucessful, negative: fail
3542  */
3543 static int
3544 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3545 {
3546 	/* When DCB is not supported, rx private buffer is not allocated. */
3547 	if (!hns3_dev_dcb_supported(hw)) {
3548 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3549 		struct hns3_pf *pf = &hns->pf;
3550 		uint32_t rx_all = pf->pkt_buf_size;
3551 
3552 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3553 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3554 			return -ENOMEM;
3555 
3556 		return 0;
3557 	}
3558 
3559 	/*
3560 	 * Try to allocate privated packet buffer for all TCs without share
3561 	 * buffer.
3562 	 */
3563 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3564 		return 0;
3565 
3566 	/*
3567 	 * Try to allocate privated packet buffer for all TCs with share
3568 	 * buffer.
3569 	 */
3570 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3571 		return 0;
3572 
3573 	/*
3574 	 * For different application scenes, the enabled port number, TC number
3575 	 * and no_drop TC number are different. In order to obtain the better
3576 	 * performance, software could allocate the buffer size and configure
3577 	 * the waterline by tring to decrease the private buffer size according
3578 	 * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3579 	 * enabled tc.
3580 	 */
3581 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3582 		return 0;
3583 
3584 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3585 		return 0;
3586 
3587 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3588 		return 0;
3589 
3590 	return -ENOMEM;
3591 }
3592 
3593 static int
3594 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3595 {
3596 	struct hns3_rx_priv_buff_cmd *req;
3597 	struct hns3_cmd_desc desc;
3598 	uint32_t buf_size;
3599 	int ret;
3600 	int i;
3601 
3602 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3603 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3604 
3605 	/* Alloc private buffer TCs */
3606 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3607 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3608 
3609 		req->buf_num[i] =
3610 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3611 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3612 	}
3613 
3614 	buf_size = buf_alloc->s_buf.buf_size;
3615 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3616 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3617 
3618 	ret = hns3_cmd_send(hw, &desc, 1);
3619 	if (ret)
3620 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3621 
3622 	return ret;
3623 }
3624 
3625 static int
3626 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3627 {
3628 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3629 	struct hns3_rx_priv_wl_buf *req;
3630 	struct hns3_priv_buf *priv;
3631 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3632 	int i, j;
3633 	int ret;
3634 
3635 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3636 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3637 					  false);
3638 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3639 
3640 		/* The first descriptor set the NEXT bit to 1 */
3641 		if (i == 0)
3642 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3643 		else
3644 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3645 
3646 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3647 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3648 
3649 			priv = &buf_alloc->priv_buf[idx];
3650 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3651 							HNS3_BUF_UNIT_S);
3652 			req->tc_wl[j].high |=
3653 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3654 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3655 							HNS3_BUF_UNIT_S);
3656 			req->tc_wl[j].low |=
3657 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3658 		}
3659 	}
3660 
3661 	/* Send 2 descriptor at one time */
3662 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3663 	if (ret)
3664 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3665 			     ret);
3666 	return ret;
3667 }
3668 
3669 static int
3670 hns3_common_thrd_config(struct hns3_hw *hw,
3671 			struct hns3_pkt_buf_alloc *buf_alloc)
3672 {
3673 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3674 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3675 	struct hns3_rx_com_thrd *req;
3676 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3677 	struct hns3_tc_thrd *tc;
3678 	int tc_idx;
3679 	int i, j;
3680 	int ret;
3681 
3682 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3683 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3684 					  false);
3685 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3686 
3687 		/* The first descriptor set the NEXT bit to 1 */
3688 		if (i == 0)
3689 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3690 		else
3691 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3692 
3693 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3694 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3695 			tc = &s_buf->tc_thrd[tc_idx];
3696 
3697 			req->com_thrd[j].high =
3698 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3699 			req->com_thrd[j].high |=
3700 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3701 			req->com_thrd[j].low =
3702 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3703 			req->com_thrd[j].low |=
3704 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3705 		}
3706 	}
3707 
3708 	/* Send 2 descriptors at one time */
3709 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3710 	if (ret)
3711 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3712 
3713 	return ret;
3714 }
3715 
3716 static int
3717 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3718 {
3719 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3720 	struct hns3_rx_com_wl *req;
3721 	struct hns3_cmd_desc desc;
3722 	int ret;
3723 
3724 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3725 
3726 	req = (struct hns3_rx_com_wl *)desc.data;
3727 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3728 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3729 
3730 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3731 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3732 
3733 	ret = hns3_cmd_send(hw, &desc, 1);
3734 	if (ret)
3735 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3736 
3737 	return ret;
3738 }
3739 
3740 int
3741 hns3_buffer_alloc(struct hns3_hw *hw)
3742 {
3743 	struct hns3_pkt_buf_alloc pkt_buf;
3744 	int ret;
3745 
3746 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3747 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3748 	if (ret) {
3749 		PMD_INIT_LOG(ERR,
3750 			     "could not calc tx buffer size for all TCs %d",
3751 			     ret);
3752 		return ret;
3753 	}
3754 
3755 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3756 	if (ret) {
3757 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3758 		return ret;
3759 	}
3760 
3761 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3762 	if (ret) {
3763 		PMD_INIT_LOG(ERR,
3764 			     "could not calc rx priv buffer size for all TCs %d",
3765 			     ret);
3766 		return ret;
3767 	}
3768 
3769 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3770 	if (ret) {
3771 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3772 		return ret;
3773 	}
3774 
3775 	if (hns3_dev_dcb_supported(hw)) {
3776 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3777 		if (ret) {
3778 			PMD_INIT_LOG(ERR,
3779 				     "could not configure rx private waterline %d",
3780 				     ret);
3781 			return ret;
3782 		}
3783 
3784 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3785 		if (ret) {
3786 			PMD_INIT_LOG(ERR,
3787 				     "could not configure common threshold %d",
3788 				     ret);
3789 			return ret;
3790 		}
3791 	}
3792 
3793 	ret = hns3_common_wl_config(hw, &pkt_buf);
3794 	if (ret)
3795 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3796 			     ret);
3797 
3798 	return ret;
3799 }
3800 
3801 static int
3802 hns3_mac_init(struct hns3_hw *hw)
3803 {
3804 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3805 	struct hns3_mac *mac = &hw->mac;
3806 	struct hns3_pf *pf = &hns->pf;
3807 	int ret;
3808 
3809 	pf->support_sfp_query = true;
3810 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
3811 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3812 	if (ret) {
3813 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3814 		return ret;
3815 	}
3816 
3817 	mac->link_status = ETH_LINK_DOWN;
3818 
3819 	return hns3_config_mtu(hw, pf->mps);
3820 }
3821 
3822 static int
3823 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3824 {
3825 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3826 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3827 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3828 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3829 	int return_status;
3830 
3831 	if (cmdq_resp) {
3832 		PMD_INIT_LOG(ERR,
3833 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
3834 			     cmdq_resp);
3835 		return -EIO;
3836 	}
3837 
3838 	switch (resp_code) {
3839 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3840 	case HNS3_ETHERTYPE_ALREADY_ADD:
3841 		return_status = 0;
3842 		break;
3843 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3844 		PMD_INIT_LOG(ERR,
3845 			     "add mac ethertype failed for manager table overflow.");
3846 		return_status = -EIO;
3847 		break;
3848 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3849 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3850 		return_status = -EIO;
3851 		break;
3852 	default:
3853 		PMD_INIT_LOG(ERR,
3854 			     "add mac ethertype failed for undefined, code=%d.",
3855 			     resp_code);
3856 		return_status = -EIO;
3857 		break;
3858 	}
3859 
3860 	return return_status;
3861 }
3862 
3863 static int
3864 hns3_add_mgr_tbl(struct hns3_hw *hw,
3865 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3866 {
3867 	struct hns3_cmd_desc desc;
3868 	uint8_t resp_code;
3869 	uint16_t retval;
3870 	int ret;
3871 
3872 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3873 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3874 
3875 	ret = hns3_cmd_send(hw, &desc, 1);
3876 	if (ret) {
3877 		PMD_INIT_LOG(ERR,
3878 			     "add mac ethertype failed for cmd_send, ret =%d.",
3879 			     ret);
3880 		return ret;
3881 	}
3882 
3883 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3884 	retval = rte_le_to_cpu_16(desc.retval);
3885 
3886 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3887 }
3888 
3889 static void
3890 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3891 		     int *table_item_num)
3892 {
3893 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3894 
3895 	/*
3896 	 * In current version, we add one item in management table as below:
3897 	 * 0x0180C200000E -- LLDP MC address
3898 	 */
3899 	tbl = mgr_table;
3900 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3901 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3902 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3903 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3904 	tbl->i_port_bitmap = 0x1;
3905 	*table_item_num = 1;
3906 }
3907 
3908 static int
3909 hns3_init_mgr_tbl(struct hns3_hw *hw)
3910 {
3911 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3912 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3913 	int table_item_num;
3914 	int ret;
3915 	int i;
3916 
3917 	memset(mgr_table, 0, sizeof(mgr_table));
3918 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3919 	for (i = 0; i < table_item_num; i++) {
3920 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3921 		if (ret) {
3922 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3923 				     ret);
3924 			return ret;
3925 		}
3926 	}
3927 
3928 	return 0;
3929 }
3930 
3931 static void
3932 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3933 			bool en_mc, bool en_bc, int vport_id)
3934 {
3935 	if (!param)
3936 		return;
3937 
3938 	memset(param, 0, sizeof(struct hns3_promisc_param));
3939 	if (en_uc)
3940 		param->enable = HNS3_PROMISC_EN_UC;
3941 	if (en_mc)
3942 		param->enable |= HNS3_PROMISC_EN_MC;
3943 	if (en_bc)
3944 		param->enable |= HNS3_PROMISC_EN_BC;
3945 	param->vf_id = vport_id;
3946 }
3947 
3948 static int
3949 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3950 {
3951 	struct hns3_promisc_cfg_cmd *req;
3952 	struct hns3_cmd_desc desc;
3953 	int ret;
3954 
3955 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3956 
3957 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3958 	req->vf_id = param->vf_id;
3959 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3960 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3961 
3962 	ret = hns3_cmd_send(hw, &desc, 1);
3963 	if (ret)
3964 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
3965 
3966 	return ret;
3967 }
3968 
3969 static int
3970 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3971 {
3972 	struct hns3_promisc_param param;
3973 	bool en_bc_pmc = true;
3974 	uint8_t vf_id;
3975 
3976 	/*
3977 	 * In current version VF is not supported when PF is driven by DPDK
3978 	 * driver, just need to configure parameters for PF vport.
3979 	 */
3980 	vf_id = HNS3_PF_FUNC_ID;
3981 
3982 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3983 	return hns3_cmd_set_promisc_mode(hw, &param);
3984 }
3985 
3986 static int
3987 hns3_promisc_init(struct hns3_hw *hw)
3988 {
3989 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3990 	struct hns3_pf *pf = &hns->pf;
3991 	struct hns3_promisc_param param;
3992 	uint16_t func_id;
3993 	int ret;
3994 
3995 	ret = hns3_set_promisc_mode(hw, false, false);
3996 	if (ret) {
3997 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
3998 		return ret;
3999 	}
4000 
4001 	/*
4002 	 * In current version VFs are not supported when PF is driven by DPDK
4003 	 * driver. After PF has been taken over by DPDK, the original VF will
4004 	 * be invalid. So, there is a possibility of entry residues. It should
4005 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4006 	 * during init.
4007 	 */
4008 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4009 		hns3_promisc_param_init(&param, false, false, false, func_id);
4010 		ret = hns3_cmd_set_promisc_mode(hw, &param);
4011 		if (ret) {
4012 			PMD_INIT_LOG(ERR, "failed to clear vf:%d promisc mode,"
4013 					" ret = %d", func_id, ret);
4014 			return ret;
4015 		}
4016 	}
4017 
4018 	return 0;
4019 }
4020 
4021 static void
4022 hns3_promisc_uninit(struct hns3_hw *hw)
4023 {
4024 	struct hns3_promisc_param param;
4025 	uint16_t func_id;
4026 	int ret;
4027 
4028 	func_id = HNS3_PF_FUNC_ID;
4029 
4030 	/*
4031 	 * In current version VFs are not supported when PF is driven by
4032 	 * DPDK driver, and VFs' promisc mode status has been cleared during
4033 	 * init and their status will not change. So just clear PF's promisc
4034 	 * mode status during uninit.
4035 	 */
4036 	hns3_promisc_param_init(&param, false, false, false, func_id);
4037 	ret = hns3_cmd_set_promisc_mode(hw, &param);
4038 	if (ret)
4039 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4040 				" uninit, ret = %d", ret);
4041 }
4042 
4043 static int
4044 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4045 {
4046 	bool allmulti = dev->data->all_multicast ? true : false;
4047 	struct hns3_adapter *hns = dev->data->dev_private;
4048 	struct hns3_hw *hw = &hns->hw;
4049 	uint64_t offloads;
4050 	int err;
4051 	int ret;
4052 
4053 	rte_spinlock_lock(&hw->lock);
4054 	ret = hns3_set_promisc_mode(hw, true, true);
4055 	if (ret) {
4056 		rte_spinlock_unlock(&hw->lock);
4057 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4058 			 ret);
4059 		return ret;
4060 	}
4061 
4062 	/*
4063 	 * When promiscuous mode was enabled, disable the vlan filter to let
4064 	 * all packets coming in in the receiving direction.
4065 	 */
4066 	offloads = dev->data->dev_conf.rxmode.offloads;
4067 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4068 		ret = hns3_enable_vlan_filter(hns, false);
4069 		if (ret) {
4070 			hns3_err(hw, "failed to enable promiscuous mode due to "
4071 				     "failure to disable vlan filter, ret = %d",
4072 				 ret);
4073 			err = hns3_set_promisc_mode(hw, false, allmulti);
4074 			if (err)
4075 				hns3_err(hw, "failed to restore promiscuous "
4076 					 "status after disable vlan filter "
4077 					 "failed during enabling promiscuous "
4078 					 "mode, ret = %d", ret);
4079 		}
4080 	}
4081 
4082 	rte_spinlock_unlock(&hw->lock);
4083 
4084 	return ret;
4085 }
4086 
4087 static int
4088 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4089 {
4090 	bool allmulti = dev->data->all_multicast ? true : false;
4091 	struct hns3_adapter *hns = dev->data->dev_private;
4092 	struct hns3_hw *hw = &hns->hw;
4093 	uint64_t offloads;
4094 	int err;
4095 	int ret;
4096 
4097 	/* If now in all_multicast mode, must remain in all_multicast mode. */
4098 	rte_spinlock_lock(&hw->lock);
4099 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4100 	if (ret) {
4101 		rte_spinlock_unlock(&hw->lock);
4102 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4103 			 ret);
4104 		return ret;
4105 	}
4106 	/* when promiscuous mode was disabled, restore the vlan filter status */
4107 	offloads = dev->data->dev_conf.rxmode.offloads;
4108 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4109 		ret = hns3_enable_vlan_filter(hns, true);
4110 		if (ret) {
4111 			hns3_err(hw, "failed to disable promiscuous mode due to"
4112 				 " failure to restore vlan filter, ret = %d",
4113 				 ret);
4114 			err = hns3_set_promisc_mode(hw, true, true);
4115 			if (err)
4116 				hns3_err(hw, "failed to restore promiscuous "
4117 					 "status after enabling vlan filter "
4118 					 "failed during disabling promiscuous "
4119 					 "mode, ret = %d", ret);
4120 		}
4121 	}
4122 	rte_spinlock_unlock(&hw->lock);
4123 
4124 	return ret;
4125 }
4126 
4127 static int
4128 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4129 {
4130 	struct hns3_adapter *hns = dev->data->dev_private;
4131 	struct hns3_hw *hw = &hns->hw;
4132 	int ret;
4133 
4134 	if (dev->data->promiscuous)
4135 		return 0;
4136 
4137 	rte_spinlock_lock(&hw->lock);
4138 	ret = hns3_set_promisc_mode(hw, false, true);
4139 	rte_spinlock_unlock(&hw->lock);
4140 	if (ret)
4141 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4142 			 ret);
4143 
4144 	return ret;
4145 }
4146 
4147 static int
4148 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4149 {
4150 	struct hns3_adapter *hns = dev->data->dev_private;
4151 	struct hns3_hw *hw = &hns->hw;
4152 	int ret;
4153 
4154 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4155 	if (dev->data->promiscuous)
4156 		return 0;
4157 
4158 	rte_spinlock_lock(&hw->lock);
4159 	ret = hns3_set_promisc_mode(hw, false, false);
4160 	rte_spinlock_unlock(&hw->lock);
4161 	if (ret)
4162 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4163 			 ret);
4164 
4165 	return ret;
4166 }
4167 
4168 static int
4169 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4170 {
4171 	struct hns3_hw *hw = &hns->hw;
4172 	bool allmulti = hw->data->all_multicast ? true : false;
4173 	int ret;
4174 
4175 	if (hw->data->promiscuous) {
4176 		ret = hns3_set_promisc_mode(hw, true, true);
4177 		if (ret)
4178 			hns3_err(hw, "failed to restore promiscuous mode, "
4179 				 "ret = %d", ret);
4180 		return ret;
4181 	}
4182 
4183 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4184 	if (ret)
4185 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4186 			 ret);
4187 	return ret;
4188 }
4189 
4190 static int
4191 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4192 {
4193 	struct hns3_sfp_speed_cmd *resp;
4194 	struct hns3_cmd_desc desc;
4195 	int ret;
4196 
4197 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4198 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
4199 	ret = hns3_cmd_send(hw, &desc, 1);
4200 	if (ret == -EOPNOTSUPP) {
4201 		hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4202 		return ret;
4203 	} else if (ret) {
4204 		hns3_err(hw, "get sfp speed failed %d", ret);
4205 		return ret;
4206 	}
4207 
4208 	*speed = resp->sfp_speed;
4209 
4210 	return 0;
4211 }
4212 
4213 static uint8_t
4214 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4215 {
4216 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4217 		duplex = ETH_LINK_FULL_DUPLEX;
4218 
4219 	return duplex;
4220 }
4221 
4222 static int
4223 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4224 {
4225 	struct hns3_mac *mac = &hw->mac;
4226 	int ret;
4227 
4228 	duplex = hns3_check_speed_dup(duplex, speed);
4229 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4230 		return 0;
4231 
4232 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4233 	if (ret)
4234 		return ret;
4235 
4236 	mac->link_speed = speed;
4237 	mac->link_duplex = duplex;
4238 
4239 	return 0;
4240 }
4241 
4242 static int
4243 hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
4244 {
4245 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4246 	struct hns3_hw *hw = &hns->hw;
4247 	struct hns3_pf *pf = &hns->pf;
4248 	uint32_t speed;
4249 	int ret;
4250 
4251 	/* If IMP do not support get SFP/qSFP speed, return directly */
4252 	if (!pf->support_sfp_query)
4253 		return 0;
4254 
4255 	ret = hns3_get_sfp_speed(hw, &speed);
4256 	if (ret == -EOPNOTSUPP) {
4257 		pf->support_sfp_query = false;
4258 		return ret;
4259 	} else if (ret)
4260 		return ret;
4261 
4262 	if (speed == ETH_SPEED_NUM_NONE)
4263 		return 0; /* do nothing if no SFP */
4264 
4265 	/* Config full duplex for SFP */
4266 	return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4267 }
4268 
4269 static int
4270 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4271 {
4272 	struct hns3_config_mac_mode_cmd *req;
4273 	struct hns3_cmd_desc desc;
4274 	uint32_t loop_en = 0;
4275 	uint8_t val = 0;
4276 	int ret;
4277 
4278 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4279 
4280 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4281 	if (enable)
4282 		val = 1;
4283 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4284 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4285 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4286 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4287 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4288 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4289 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4290 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4291 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4292 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4293 
4294 	/*
4295 	 * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4296 	 * when receiving frames. Otherwise, CRC will be stripped.
4297 	 */
4298 	if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4299 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4300 	else
4301 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4302 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4303 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4304 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4305 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4306 
4307 	ret = hns3_cmd_send(hw, &desc, 1);
4308 	if (ret)
4309 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4310 
4311 	return ret;
4312 }
4313 
4314 static int
4315 hns3_get_mac_link_status(struct hns3_hw *hw)
4316 {
4317 	struct hns3_link_status_cmd *req;
4318 	struct hns3_cmd_desc desc;
4319 	int link_status;
4320 	int ret;
4321 
4322 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4323 	ret = hns3_cmd_send(hw, &desc, 1);
4324 	if (ret) {
4325 		hns3_err(hw, "get link status cmd failed %d", ret);
4326 		return ETH_LINK_DOWN;
4327 	}
4328 
4329 	req = (struct hns3_link_status_cmd *)desc.data;
4330 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4331 
4332 	return !!link_status;
4333 }
4334 
4335 void
4336 hns3_update_link_status(struct hns3_hw *hw)
4337 {
4338 	int state;
4339 
4340 	state = hns3_get_mac_link_status(hw);
4341 	if (state != hw->mac.link_status) {
4342 		hw->mac.link_status = state;
4343 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4344 	}
4345 }
4346 
4347 static void
4348 hns3_service_handler(void *param)
4349 {
4350 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4351 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4352 	struct hns3_hw *hw = &hns->hw;
4353 
4354 	if (!hns3_is_reset_pending(hns)) {
4355 		hns3_update_speed_duplex(eth_dev);
4356 		hns3_update_link_status(hw);
4357 	} else
4358 		hns3_warn(hw, "Cancel the query when reset is pending");
4359 
4360 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4361 }
4362 
4363 static int
4364 hns3_init_hardware(struct hns3_adapter *hns)
4365 {
4366 	struct hns3_hw *hw = &hns->hw;
4367 	int ret;
4368 
4369 	ret = hns3_map_tqp(hw);
4370 	if (ret) {
4371 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4372 		return ret;
4373 	}
4374 
4375 	ret = hns3_init_umv_space(hw);
4376 	if (ret) {
4377 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4378 		return ret;
4379 	}
4380 
4381 	ret = hns3_mac_init(hw);
4382 	if (ret) {
4383 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4384 		goto err_mac_init;
4385 	}
4386 
4387 	ret = hns3_init_mgr_tbl(hw);
4388 	if (ret) {
4389 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4390 		goto err_mac_init;
4391 	}
4392 
4393 	ret = hns3_promisc_init(hw);
4394 	if (ret) {
4395 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4396 			     ret);
4397 		goto err_mac_init;
4398 	}
4399 
4400 	ret = hns3_init_vlan_config(hns);
4401 	if (ret) {
4402 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4403 		goto err_mac_init;
4404 	}
4405 
4406 	ret = hns3_dcb_init(hw);
4407 	if (ret) {
4408 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4409 		goto err_mac_init;
4410 	}
4411 
4412 	ret = hns3_init_fd_config(hns);
4413 	if (ret) {
4414 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4415 		goto err_mac_init;
4416 	}
4417 
4418 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4419 	if (ret) {
4420 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4421 		goto err_mac_init;
4422 	}
4423 
4424 	ret = hns3_config_gro(hw, false);
4425 	if (ret) {
4426 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4427 		goto err_mac_init;
4428 	}
4429 
4430 	/*
4431 	 * In the initialization clearing the all hardware mapping relationship
4432 	 * configurations between queues and interrupt vectors is needed, so
4433 	 * some error caused by the residual configurations, such as the
4434 	 * unexpected interrupt, can be avoid.
4435 	 */
4436 	ret = hns3_init_ring_with_vector(hw);
4437 	if (ret) {
4438 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4439 		goto err_mac_init;
4440 	}
4441 
4442 	return 0;
4443 
4444 err_mac_init:
4445 	hns3_uninit_umv_space(hw);
4446 	return ret;
4447 }
4448 
4449 static int
4450 hns3_clear_hw(struct hns3_hw *hw)
4451 {
4452 	struct hns3_cmd_desc desc;
4453 	int ret;
4454 
4455 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4456 
4457 	ret = hns3_cmd_send(hw, &desc, 1);
4458 	if (ret && ret != -EOPNOTSUPP)
4459 		return ret;
4460 
4461 	return 0;
4462 }
4463 
4464 static void
4465 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4466 {
4467 	uint32_t val;
4468 
4469 	/*
4470 	 * The new firmware support report more hardware error types by
4471 	 * msix mode. These errors are defined as RAS errors in hardware
4472 	 * and belong to a different type from the MSI-x errors processed
4473 	 * by the network driver.
4474 	 *
4475 	 * Network driver should open the new error report on initialition
4476 	 */
4477 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4478 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4479 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4480 }
4481 
4482 static int
4483 hns3_init_pf(struct rte_eth_dev *eth_dev)
4484 {
4485 	struct rte_device *dev = eth_dev->device;
4486 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4487 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4488 	struct hns3_hw *hw = &hns->hw;
4489 	int ret;
4490 
4491 	PMD_INIT_FUNC_TRACE();
4492 
4493 	/* Get hardware io base address from pcie BAR2 IO space */
4494 	hw->io_base = pci_dev->mem_resource[2].addr;
4495 
4496 	/* Firmware command queue initialize */
4497 	ret = hns3_cmd_init_queue(hw);
4498 	if (ret) {
4499 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4500 		goto err_cmd_init_queue;
4501 	}
4502 
4503 	hns3_clear_all_event_cause(hw);
4504 
4505 	/* Firmware command initialize */
4506 	ret = hns3_cmd_init(hw);
4507 	if (ret) {
4508 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4509 		goto err_cmd_init;
4510 	}
4511 
4512 	/*
4513 	 * To ensure that the hardware environment is clean during
4514 	 * initialization, the driver actively clear the hardware environment
4515 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4516 	 * flow table configurations, etc.
4517 	 */
4518 	ret = hns3_clear_hw(hw);
4519 	if (ret) {
4520 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4521 		goto err_cmd_init;
4522 	}
4523 
4524 	hns3_config_all_msix_error(hw, true);
4525 
4526 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
4527 					 hns3_interrupt_handler,
4528 					 eth_dev);
4529 	if (ret) {
4530 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4531 		goto err_intr_callback_register;
4532 	}
4533 
4534 	/* Enable interrupt */
4535 	rte_intr_enable(&pci_dev->intr_handle);
4536 	hns3_pf_enable_irq0(hw);
4537 
4538 	/* Get configuration */
4539 	ret = hns3_get_configuration(hw);
4540 	if (ret) {
4541 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4542 		goto err_get_config;
4543 	}
4544 
4545 	ret = hns3_init_hardware(hns);
4546 	if (ret) {
4547 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4548 		goto err_get_config;
4549 	}
4550 
4551 	/* Initialize flow director filter list & hash */
4552 	ret = hns3_fdir_filter_init(hns);
4553 	if (ret) {
4554 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4555 		goto err_hw_init;
4556 	}
4557 
4558 	hns3_set_default_rss_args(hw);
4559 
4560 	ret = hns3_enable_hw_error_intr(hns, true);
4561 	if (ret) {
4562 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4563 			     ret);
4564 		goto err_fdir;
4565 	}
4566 
4567 	return 0;
4568 
4569 err_fdir:
4570 	hns3_fdir_filter_uninit(hns);
4571 err_hw_init:
4572 	hns3_uninit_umv_space(hw);
4573 
4574 err_get_config:
4575 	hns3_pf_disable_irq0(hw);
4576 	rte_intr_disable(&pci_dev->intr_handle);
4577 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4578 			     eth_dev);
4579 err_intr_callback_register:
4580 err_cmd_init:
4581 	hns3_cmd_uninit(hw);
4582 	hns3_cmd_destroy_queue(hw);
4583 err_cmd_init_queue:
4584 	hw->io_base = NULL;
4585 
4586 	return ret;
4587 }
4588 
4589 static void
4590 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4591 {
4592 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4593 	struct rte_device *dev = eth_dev->device;
4594 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4595 	struct hns3_hw *hw = &hns->hw;
4596 
4597 	PMD_INIT_FUNC_TRACE();
4598 
4599 	hns3_enable_hw_error_intr(hns, false);
4600 	hns3_rss_uninit(hns);
4601 	(void)hns3_config_gro(hw, false);
4602 	hns3_promisc_uninit(hw);
4603 	hns3_fdir_filter_uninit(hns);
4604 	hns3_uninit_umv_space(hw);
4605 	hns3_pf_disable_irq0(hw);
4606 	rte_intr_disable(&pci_dev->intr_handle);
4607 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4608 			     eth_dev);
4609 	hns3_config_all_msix_error(hw, false);
4610 	hns3_cmd_uninit(hw);
4611 	hns3_cmd_destroy_queue(hw);
4612 	hw->io_base = NULL;
4613 }
4614 
4615 static int
4616 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
4617 {
4618 	struct hns3_hw *hw = &hns->hw;
4619 	int ret;
4620 
4621 	ret = hns3_dcb_cfg_update(hns);
4622 	if (ret)
4623 		return ret;
4624 
4625 	/* Enable queues */
4626 	ret = hns3_start_queues(hns, reset_queue);
4627 	if (ret) {
4628 		PMD_INIT_LOG(ERR, "Failed to start queues: %d", ret);
4629 		return ret;
4630 	}
4631 
4632 	/* Enable MAC */
4633 	ret = hns3_cfg_mac_mode(hw, true);
4634 	if (ret) {
4635 		PMD_INIT_LOG(ERR, "Failed to enable MAC: %d", ret);
4636 		goto err_config_mac_mode;
4637 	}
4638 	return 0;
4639 
4640 err_config_mac_mode:
4641 	hns3_stop_queues(hns, true);
4642 	return ret;
4643 }
4644 
4645 static int
4646 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
4647 {
4648 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4649 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4650 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4651 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4652 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4653 	uint32_t intr_vector;
4654 	uint16_t q_id;
4655 	int ret;
4656 
4657 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4658 		return 0;
4659 
4660 	/* disable uio/vfio intr/eventfd mapping */
4661 	rte_intr_disable(intr_handle);
4662 
4663 	/* check and configure queue intr-vector mapping */
4664 	if (rte_intr_cap_multiple(intr_handle) ||
4665 	    !RTE_ETH_DEV_SRIOV(dev).active) {
4666 		intr_vector = hw->used_rx_queues;
4667 		/* creates event fd for each intr vector when MSIX is used */
4668 		if (rte_intr_efd_enable(intr_handle, intr_vector))
4669 			return -EINVAL;
4670 	}
4671 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
4672 		intr_handle->intr_vec =
4673 			rte_zmalloc("intr_vec",
4674 				    hw->used_rx_queues * sizeof(int), 0);
4675 		if (intr_handle->intr_vec == NULL) {
4676 			hns3_err(hw, "Failed to allocate %d rx_queues"
4677 				     " intr_vec", hw->used_rx_queues);
4678 			ret = -ENOMEM;
4679 			goto alloc_intr_vec_error;
4680 		}
4681 	}
4682 
4683 	if (rte_intr_allow_others(intr_handle)) {
4684 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4685 		base = RTE_INTR_VEC_RXTX_OFFSET;
4686 	}
4687 	if (rte_intr_dp_is_en(intr_handle)) {
4688 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4689 			ret = hns3_bind_ring_with_vector(hw, vec, true,
4690 							 HNS3_RING_TYPE_RX,
4691 							 q_id);
4692 			if (ret)
4693 				goto bind_vector_error;
4694 			intr_handle->intr_vec[q_id] = vec;
4695 			if (vec < base + intr_handle->nb_efd - 1)
4696 				vec++;
4697 		}
4698 	}
4699 	rte_intr_enable(intr_handle);
4700 	return 0;
4701 
4702 bind_vector_error:
4703 	rte_intr_efd_disable(intr_handle);
4704 	if (intr_handle->intr_vec) {
4705 		free(intr_handle->intr_vec);
4706 		intr_handle->intr_vec = NULL;
4707 	}
4708 	return ret;
4709 alloc_intr_vec_error:
4710 	rte_intr_efd_disable(intr_handle);
4711 	return ret;
4712 }
4713 
4714 static int
4715 hns3_restore_rx_interrupt(struct hns3_hw *hw)
4716 {
4717 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4718 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4719 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4720 	uint16_t q_id;
4721 	int ret;
4722 
4723 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4724 		return 0;
4725 
4726 	if (rte_intr_dp_is_en(intr_handle)) {
4727 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4728 			ret = hns3_bind_ring_with_vector(hw,
4729 					intr_handle->intr_vec[q_id], true,
4730 					HNS3_RING_TYPE_RX, q_id);
4731 			if (ret)
4732 				return ret;
4733 		}
4734 	}
4735 
4736 	return 0;
4737 }
4738 
4739 static void
4740 hns3_restore_filter(struct rte_eth_dev *dev)
4741 {
4742 	hns3_restore_rss_filter(dev);
4743 }
4744 
4745 static int
4746 hns3_dev_start(struct rte_eth_dev *dev)
4747 {
4748 	struct hns3_adapter *hns = dev->data->dev_private;
4749 	struct hns3_hw *hw = &hns->hw;
4750 	int ret;
4751 
4752 	PMD_INIT_FUNC_TRACE();
4753 	if (rte_atomic16_read(&hw->reset.resetting))
4754 		return -EBUSY;
4755 
4756 	rte_spinlock_lock(&hw->lock);
4757 	hw->adapter_state = HNS3_NIC_STARTING;
4758 
4759 	ret = hns3_do_start(hns, true);
4760 	if (ret) {
4761 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4762 		rte_spinlock_unlock(&hw->lock);
4763 		return ret;
4764 	}
4765 	ret = hns3_map_rx_interrupt(dev);
4766 	if (ret) {
4767 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4768 		rte_spinlock_unlock(&hw->lock);
4769 		return ret;
4770 	}
4771 
4772 	hw->adapter_state = HNS3_NIC_STARTED;
4773 	rte_spinlock_unlock(&hw->lock);
4774 
4775 	hns3_rx_scattered_calc(dev);
4776 	hns3_set_rxtx_function(dev);
4777 	hns3_mp_req_start_rxtx(dev);
4778 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
4779 
4780 	hns3_restore_filter(dev);
4781 
4782 	/* Enable interrupt of all rx queues before enabling queues */
4783 	hns3_dev_all_rx_queue_intr_enable(hw, true);
4784 	/*
4785 	 * When finished the initialization, enable queues to receive/transmit
4786 	 * packets.
4787 	 */
4788 	hns3_enable_all_queues(hw, true);
4789 
4790 	hns3_info(hw, "hns3 dev start successful!");
4791 	return 0;
4792 }
4793 
4794 static int
4795 hns3_do_stop(struct hns3_adapter *hns)
4796 {
4797 	struct hns3_hw *hw = &hns->hw;
4798 	bool reset_queue;
4799 	int ret;
4800 
4801 	ret = hns3_cfg_mac_mode(hw, false);
4802 	if (ret)
4803 		return ret;
4804 	hw->mac.link_status = ETH_LINK_DOWN;
4805 
4806 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
4807 		hns3_configure_all_mac_addr(hns, true);
4808 		reset_queue = true;
4809 	} else
4810 		reset_queue = false;
4811 	hw->mac.default_addr_setted = false;
4812 	return hns3_stop_queues(hns, reset_queue);
4813 }
4814 
4815 static void
4816 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
4817 {
4818 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4819 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4820 	struct hns3_adapter *hns = dev->data->dev_private;
4821 	struct hns3_hw *hw = &hns->hw;
4822 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4823 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4824 	uint16_t q_id;
4825 
4826 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4827 		return;
4828 
4829 	/* unmap the ring with vector */
4830 	if (rte_intr_allow_others(intr_handle)) {
4831 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4832 		base = RTE_INTR_VEC_RXTX_OFFSET;
4833 	}
4834 	if (rte_intr_dp_is_en(intr_handle)) {
4835 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4836 			(void)hns3_bind_ring_with_vector(hw, vec, false,
4837 							 HNS3_RING_TYPE_RX,
4838 							 q_id);
4839 			if (vec < base + intr_handle->nb_efd - 1)
4840 				vec++;
4841 		}
4842 	}
4843 	/* Clean datapath event and queue/vec mapping */
4844 	rte_intr_efd_disable(intr_handle);
4845 	if (intr_handle->intr_vec) {
4846 		rte_free(intr_handle->intr_vec);
4847 		intr_handle->intr_vec = NULL;
4848 	}
4849 }
4850 
4851 static void
4852 hns3_dev_stop(struct rte_eth_dev *dev)
4853 {
4854 	struct hns3_adapter *hns = dev->data->dev_private;
4855 	struct hns3_hw *hw = &hns->hw;
4856 
4857 	PMD_INIT_FUNC_TRACE();
4858 
4859 	hw->adapter_state = HNS3_NIC_STOPPING;
4860 	hns3_set_rxtx_function(dev);
4861 	rte_wmb();
4862 	/* Disable datapath on secondary process. */
4863 	hns3_mp_req_stop_rxtx(dev);
4864 	/* Prevent crashes when queues are still in use. */
4865 	rte_delay_ms(hw->tqps_num);
4866 
4867 	rte_spinlock_lock(&hw->lock);
4868 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
4869 		hns3_do_stop(hns);
4870 		hns3_unmap_rx_interrupt(dev);
4871 		hns3_dev_release_mbufs(hns);
4872 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4873 	}
4874 	hns3_rx_scattered_reset(dev);
4875 	rte_eal_alarm_cancel(hns3_service_handler, dev);
4876 	rte_spinlock_unlock(&hw->lock);
4877 }
4878 
4879 static int
4880 hns3_dev_close(struct rte_eth_dev *eth_dev)
4881 {
4882 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4883 	struct hns3_hw *hw = &hns->hw;
4884 
4885 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
4886 		rte_free(eth_dev->process_private);
4887 		eth_dev->process_private = NULL;
4888 		return 0;
4889 	}
4890 
4891 	if (hw->adapter_state == HNS3_NIC_STARTED)
4892 		hns3_dev_stop(eth_dev);
4893 
4894 	hw->adapter_state = HNS3_NIC_CLOSING;
4895 	hns3_reset_abort(hns);
4896 	hw->adapter_state = HNS3_NIC_CLOSED;
4897 
4898 	hns3_configure_all_mc_mac_addr(hns, true);
4899 	hns3_remove_all_vlan_table(hns);
4900 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
4901 	hns3_uninit_pf(eth_dev);
4902 	hns3_free_all_queues(eth_dev);
4903 	rte_free(hw->reset.wait_data);
4904 	rte_free(eth_dev->process_private);
4905 	eth_dev->process_private = NULL;
4906 	hns3_mp_uninit_primary();
4907 	hns3_warn(hw, "Close port %d finished", hw->data->port_id);
4908 
4909 	return 0;
4910 }
4911 
4912 static int
4913 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4914 {
4915 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4916 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4917 
4918 	fc_conf->pause_time = pf->pause_time;
4919 
4920 	/* return fc current mode */
4921 	switch (hw->current_mode) {
4922 	case HNS3_FC_FULL:
4923 		fc_conf->mode = RTE_FC_FULL;
4924 		break;
4925 	case HNS3_FC_TX_PAUSE:
4926 		fc_conf->mode = RTE_FC_TX_PAUSE;
4927 		break;
4928 	case HNS3_FC_RX_PAUSE:
4929 		fc_conf->mode = RTE_FC_RX_PAUSE;
4930 		break;
4931 	case HNS3_FC_NONE:
4932 	default:
4933 		fc_conf->mode = RTE_FC_NONE;
4934 		break;
4935 	}
4936 
4937 	return 0;
4938 }
4939 
4940 static void
4941 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
4942 {
4943 	switch (mode) {
4944 	case RTE_FC_NONE:
4945 		hw->requested_mode = HNS3_FC_NONE;
4946 		break;
4947 	case RTE_FC_RX_PAUSE:
4948 		hw->requested_mode = HNS3_FC_RX_PAUSE;
4949 		break;
4950 	case RTE_FC_TX_PAUSE:
4951 		hw->requested_mode = HNS3_FC_TX_PAUSE;
4952 		break;
4953 	case RTE_FC_FULL:
4954 		hw->requested_mode = HNS3_FC_FULL;
4955 		break;
4956 	default:
4957 		hw->requested_mode = HNS3_FC_NONE;
4958 		hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
4959 			  "configured to RTE_FC_NONE", mode);
4960 		break;
4961 	}
4962 }
4963 
4964 static int
4965 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4966 {
4967 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4968 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4969 	int ret;
4970 
4971 	if (fc_conf->high_water || fc_conf->low_water ||
4972 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
4973 		hns3_err(hw, "Unsupported flow control settings specified, "
4974 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4975 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4976 			 fc_conf->high_water, fc_conf->low_water,
4977 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
4978 		return -EINVAL;
4979 	}
4980 	if (fc_conf->autoneg) {
4981 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4982 		return -EINVAL;
4983 	}
4984 	if (!fc_conf->pause_time) {
4985 		hns3_err(hw, "Invalid pause time %d setting.",
4986 			 fc_conf->pause_time);
4987 		return -EINVAL;
4988 	}
4989 
4990 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4991 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
4992 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
4993 			 "current_fc_status = %d", hw->current_fc_status);
4994 		return -EOPNOTSUPP;
4995 	}
4996 
4997 	hns3_get_fc_mode(hw, fc_conf->mode);
4998 	if (hw->requested_mode == hw->current_mode &&
4999 	    pf->pause_time == fc_conf->pause_time)
5000 		return 0;
5001 
5002 	rte_spinlock_lock(&hw->lock);
5003 	ret = hns3_fc_enable(dev, fc_conf);
5004 	rte_spinlock_unlock(&hw->lock);
5005 
5006 	return ret;
5007 }
5008 
5009 static int
5010 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5011 			    struct rte_eth_pfc_conf *pfc_conf)
5012 {
5013 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5014 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5015 	uint8_t priority;
5016 	int ret;
5017 
5018 	if (!hns3_dev_dcb_supported(hw)) {
5019 		hns3_err(hw, "This port does not support dcb configurations.");
5020 		return -EOPNOTSUPP;
5021 	}
5022 
5023 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5024 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5025 		hns3_err(hw, "Unsupported flow control settings specified, "
5026 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5027 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5028 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5029 			 pfc_conf->fc.send_xon,
5030 			 pfc_conf->fc.mac_ctrl_frame_fwd);
5031 		return -EINVAL;
5032 	}
5033 	if (pfc_conf->fc.autoneg) {
5034 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5035 		return -EINVAL;
5036 	}
5037 	if (pfc_conf->fc.pause_time == 0) {
5038 		hns3_err(hw, "Invalid pause time %d setting.",
5039 			 pfc_conf->fc.pause_time);
5040 		return -EINVAL;
5041 	}
5042 
5043 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5044 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5045 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5046 			     "current_fc_status = %d", hw->current_fc_status);
5047 		return -EOPNOTSUPP;
5048 	}
5049 
5050 	priority = pfc_conf->priority;
5051 	hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5052 	if (hw->dcb_info.pfc_en & BIT(priority) &&
5053 	    hw->requested_mode == hw->current_mode &&
5054 	    pfc_conf->fc.pause_time == pf->pause_time)
5055 		return 0;
5056 
5057 	rte_spinlock_lock(&hw->lock);
5058 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5059 	rte_spinlock_unlock(&hw->lock);
5060 
5061 	return ret;
5062 }
5063 
5064 static int
5065 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5066 {
5067 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5068 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5069 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5070 	int i;
5071 
5072 	rte_spinlock_lock(&hw->lock);
5073 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5074 		dcb_info->nb_tcs = pf->local_max_tc;
5075 	else
5076 		dcb_info->nb_tcs = 1;
5077 
5078 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5079 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5080 	for (i = 0; i < dcb_info->nb_tcs; i++)
5081 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5082 
5083 	for (i = 0; i < hw->num_tc; i++) {
5084 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5085 		dcb_info->tc_queue.tc_txq[0][i].base =
5086 						hw->tc_queue[i].tqp_offset;
5087 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5088 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5089 						hw->tc_queue[i].tqp_count;
5090 	}
5091 	rte_spinlock_unlock(&hw->lock);
5092 
5093 	return 0;
5094 }
5095 
5096 static int
5097 hns3_reinit_dev(struct hns3_adapter *hns)
5098 {
5099 	struct hns3_hw *hw = &hns->hw;
5100 	int ret;
5101 
5102 	ret = hns3_cmd_init(hw);
5103 	if (ret) {
5104 		hns3_err(hw, "Failed to init cmd: %d", ret);
5105 		return ret;
5106 	}
5107 
5108 	ret = hns3_reset_all_queues(hns);
5109 	if (ret) {
5110 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5111 		return ret;
5112 	}
5113 
5114 	ret = hns3_init_hardware(hns);
5115 	if (ret) {
5116 		hns3_err(hw, "Failed to init hardware: %d", ret);
5117 		return ret;
5118 	}
5119 
5120 	ret = hns3_enable_hw_error_intr(hns, true);
5121 	if (ret) {
5122 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5123 			     ret);
5124 		return ret;
5125 	}
5126 	hns3_info(hw, "Reset done, driver initialization finished.");
5127 
5128 	return 0;
5129 }
5130 
5131 static bool
5132 is_pf_reset_done(struct hns3_hw *hw)
5133 {
5134 	uint32_t val, reg, reg_bit;
5135 
5136 	switch (hw->reset.level) {
5137 	case HNS3_IMP_RESET:
5138 		reg = HNS3_GLOBAL_RESET_REG;
5139 		reg_bit = HNS3_IMP_RESET_BIT;
5140 		break;
5141 	case HNS3_GLOBAL_RESET:
5142 		reg = HNS3_GLOBAL_RESET_REG;
5143 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5144 		break;
5145 	case HNS3_FUNC_RESET:
5146 		reg = HNS3_FUN_RST_ING;
5147 		reg_bit = HNS3_FUN_RST_ING_B;
5148 		break;
5149 	case HNS3_FLR_RESET:
5150 	default:
5151 		hns3_err(hw, "Wait for unsupported reset level: %d",
5152 			 hw->reset.level);
5153 		return true;
5154 	}
5155 	val = hns3_read_dev(hw, reg);
5156 	if (hns3_get_bit(val, reg_bit))
5157 		return false;
5158 	else
5159 		return true;
5160 }
5161 
5162 bool
5163 hns3_is_reset_pending(struct hns3_adapter *hns)
5164 {
5165 	struct hns3_hw *hw = &hns->hw;
5166 	enum hns3_reset_level reset;
5167 
5168 	hns3_check_event_cause(hns, NULL);
5169 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5170 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5171 		hns3_warn(hw, "High level reset %d is pending", reset);
5172 		return true;
5173 	}
5174 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5175 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5176 		hns3_warn(hw, "High level reset %d is request", reset);
5177 		return true;
5178 	}
5179 	return false;
5180 }
5181 
5182 static int
5183 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5184 {
5185 	struct hns3_hw *hw = &hns->hw;
5186 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5187 	struct timeval tv;
5188 
5189 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5190 		return 0;
5191 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5192 		gettimeofday(&tv, NULL);
5193 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5194 			  tv.tv_sec, tv.tv_usec);
5195 		return -ETIME;
5196 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5197 		return -EAGAIN;
5198 
5199 	wait_data->hns = hns;
5200 	wait_data->check_completion = is_pf_reset_done;
5201 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5202 				      HNS3_RESET_WAIT_MS + get_timeofday_ms();
5203 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5204 	wait_data->count = HNS3_RESET_WAIT_CNT;
5205 	wait_data->result = HNS3_WAIT_REQUEST;
5206 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5207 	return -EAGAIN;
5208 }
5209 
5210 static int
5211 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5212 {
5213 	struct hns3_cmd_desc desc;
5214 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5215 
5216 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5217 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5218 	req->fun_reset_vfid = func_id;
5219 
5220 	return hns3_cmd_send(hw, &desc, 1);
5221 }
5222 
5223 static int
5224 hns3_imp_reset_cmd(struct hns3_hw *hw)
5225 {
5226 	struct hns3_cmd_desc desc;
5227 
5228 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5229 	desc.data[0] = 0xeedd;
5230 
5231 	return hns3_cmd_send(hw, &desc, 1);
5232 }
5233 
5234 static void
5235 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5236 {
5237 	struct hns3_hw *hw = &hns->hw;
5238 	struct timeval tv;
5239 	uint32_t val;
5240 
5241 	gettimeofday(&tv, NULL);
5242 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5243 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5244 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5245 			  tv.tv_sec, tv.tv_usec);
5246 		return;
5247 	}
5248 
5249 	switch (reset_level) {
5250 	case HNS3_IMP_RESET:
5251 		hns3_imp_reset_cmd(hw);
5252 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5253 			  tv.tv_sec, tv.tv_usec);
5254 		break;
5255 	case HNS3_GLOBAL_RESET:
5256 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5257 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5258 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5259 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5260 			  tv.tv_sec, tv.tv_usec);
5261 		break;
5262 	case HNS3_FUNC_RESET:
5263 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5264 			  tv.tv_sec, tv.tv_usec);
5265 		/* schedule again to check later */
5266 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5267 		hns3_schedule_reset(hns);
5268 		break;
5269 	default:
5270 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5271 		return;
5272 	}
5273 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5274 }
5275 
5276 static enum hns3_reset_level
5277 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5278 {
5279 	struct hns3_hw *hw = &hns->hw;
5280 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5281 
5282 	/* Return the highest priority reset level amongst all */
5283 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5284 		reset_level = HNS3_IMP_RESET;
5285 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5286 		reset_level = HNS3_GLOBAL_RESET;
5287 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5288 		reset_level = HNS3_FUNC_RESET;
5289 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5290 		reset_level = HNS3_FLR_RESET;
5291 
5292 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5293 		return HNS3_NONE_RESET;
5294 
5295 	return reset_level;
5296 }
5297 
5298 static void
5299 hns3_record_imp_error(struct hns3_adapter *hns)
5300 {
5301 	struct hns3_hw *hw = &hns->hw;
5302 	uint32_t reg_val;
5303 
5304 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5305 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5306 		hns3_warn(hw, "Detected IMP RD poison!");
5307 		hns3_error_int_stats_add(hns, "IMP_RD_POISON_INT_STS");
5308 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5309 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5310 	}
5311 
5312 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5313 		hns3_warn(hw, "Detected IMP CMDQ error!");
5314 		hns3_error_int_stats_add(hns, "CMDQ_MEM_ECC_INT_STS");
5315 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5316 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5317 	}
5318 }
5319 
5320 static int
5321 hns3_prepare_reset(struct hns3_adapter *hns)
5322 {
5323 	struct hns3_hw *hw = &hns->hw;
5324 	uint32_t reg_val;
5325 	int ret;
5326 
5327 	switch (hw->reset.level) {
5328 	case HNS3_FUNC_RESET:
5329 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5330 		if (ret)
5331 			return ret;
5332 
5333 		/*
5334 		 * After performaning pf reset, it is not necessary to do the
5335 		 * mailbox handling or send any command to firmware, because
5336 		 * any mailbox handling or command to firmware is only valid
5337 		 * after hns3_cmd_init is called.
5338 		 */
5339 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
5340 		hw->reset.stats.request_cnt++;
5341 		break;
5342 	case HNS3_IMP_RESET:
5343 		hns3_record_imp_error(hns);
5344 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5345 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5346 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5347 		break;
5348 	default:
5349 		break;
5350 	}
5351 	return 0;
5352 }
5353 
5354 static int
5355 hns3_set_rst_done(struct hns3_hw *hw)
5356 {
5357 	struct hns3_pf_rst_done_cmd *req;
5358 	struct hns3_cmd_desc desc;
5359 
5360 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5361 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5362 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5363 	return hns3_cmd_send(hw, &desc, 1);
5364 }
5365 
5366 static int
5367 hns3_stop_service(struct hns3_adapter *hns)
5368 {
5369 	struct hns3_hw *hw = &hns->hw;
5370 	struct rte_eth_dev *eth_dev;
5371 
5372 	eth_dev = &rte_eth_devices[hw->data->port_id];
5373 	if (hw->adapter_state == HNS3_NIC_STARTED)
5374 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5375 	hw->mac.link_status = ETH_LINK_DOWN;
5376 
5377 	hns3_set_rxtx_function(eth_dev);
5378 	rte_wmb();
5379 	/* Disable datapath on secondary process. */
5380 	hns3_mp_req_stop_rxtx(eth_dev);
5381 	rte_delay_ms(hw->tqps_num);
5382 
5383 	rte_spinlock_lock(&hw->lock);
5384 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5385 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5386 		hns3_do_stop(hns);
5387 		hw->reset.mbuf_deferred_free = true;
5388 	} else
5389 		hw->reset.mbuf_deferred_free = false;
5390 
5391 	/*
5392 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5393 	 * from table space. Hence, for function reset software intervention is
5394 	 * required to delete the entries
5395 	 */
5396 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
5397 		hns3_configure_all_mc_mac_addr(hns, true);
5398 	rte_spinlock_unlock(&hw->lock);
5399 
5400 	return 0;
5401 }
5402 
5403 static int
5404 hns3_start_service(struct hns3_adapter *hns)
5405 {
5406 	struct hns3_hw *hw = &hns->hw;
5407 	struct rte_eth_dev *eth_dev;
5408 
5409 	if (hw->reset.level == HNS3_IMP_RESET ||
5410 	    hw->reset.level == HNS3_GLOBAL_RESET)
5411 		hns3_set_rst_done(hw);
5412 	eth_dev = &rte_eth_devices[hw->data->port_id];
5413 	hns3_set_rxtx_function(eth_dev);
5414 	hns3_mp_req_start_rxtx(eth_dev);
5415 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5416 		hns3_service_handler(eth_dev);
5417 
5418 		/* Enable interrupt of all rx queues before enabling queues */
5419 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5420 		/*
5421 		 * When finished the initialization, enable queues to receive
5422 		 * and transmit packets.
5423 		 */
5424 		hns3_enable_all_queues(hw, true);
5425 	}
5426 
5427 	return 0;
5428 }
5429 
5430 static int
5431 hns3_restore_conf(struct hns3_adapter *hns)
5432 {
5433 	struct hns3_hw *hw = &hns->hw;
5434 	int ret;
5435 
5436 	ret = hns3_configure_all_mac_addr(hns, false);
5437 	if (ret)
5438 		return ret;
5439 
5440 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5441 	if (ret)
5442 		goto err_mc_mac;
5443 
5444 	ret = hns3_dev_promisc_restore(hns);
5445 	if (ret)
5446 		goto err_promisc;
5447 
5448 	ret = hns3_restore_vlan_table(hns);
5449 	if (ret)
5450 		goto err_promisc;
5451 
5452 	ret = hns3_restore_vlan_conf(hns);
5453 	if (ret)
5454 		goto err_promisc;
5455 
5456 	ret = hns3_restore_all_fdir_filter(hns);
5457 	if (ret)
5458 		goto err_promisc;
5459 
5460 	ret = hns3_restore_rx_interrupt(hw);
5461 	if (ret)
5462 		goto err_promisc;
5463 
5464 	ret = hns3_restore_gro_conf(hw);
5465 	if (ret)
5466 		goto err_promisc;
5467 
5468 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5469 		ret = hns3_do_start(hns, false);
5470 		if (ret)
5471 			goto err_promisc;
5472 		hns3_info(hw, "hns3 dev restart successful!");
5473 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5474 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5475 	return 0;
5476 
5477 err_promisc:
5478 	hns3_configure_all_mc_mac_addr(hns, true);
5479 err_mc_mac:
5480 	hns3_configure_all_mac_addr(hns, true);
5481 	return ret;
5482 }
5483 
5484 static void
5485 hns3_reset_service(void *param)
5486 {
5487 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5488 	struct hns3_hw *hw = &hns->hw;
5489 	enum hns3_reset_level reset_level;
5490 	struct timeval tv_delta;
5491 	struct timeval tv_start;
5492 	struct timeval tv;
5493 	uint64_t msec;
5494 	int ret;
5495 
5496 	/*
5497 	 * The interrupt is not triggered within the delay time.
5498 	 * The interrupt may have been lost. It is necessary to handle
5499 	 * the interrupt to recover from the error.
5500 	 */
5501 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
5502 		rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
5503 		hns3_err(hw, "Handling interrupts in delayed tasks");
5504 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5505 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5506 		if (reset_level == HNS3_NONE_RESET) {
5507 			hns3_err(hw, "No reset level is set, try IMP reset");
5508 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5509 		}
5510 	}
5511 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
5512 
5513 	/*
5514 	 * Check if there is any ongoing reset in the hardware. This status can
5515 	 * be checked from reset_pending. If there is then, we need to wait for
5516 	 * hardware to complete reset.
5517 	 *    a. If we are able to figure out in reasonable time that hardware
5518 	 *       has fully resetted then, we can proceed with driver, client
5519 	 *       reset.
5520 	 *    b. else, we can come back later to check this status so re-sched
5521 	 *       now.
5522 	 */
5523 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5524 	if (reset_level != HNS3_NONE_RESET) {
5525 		gettimeofday(&tv_start, NULL);
5526 		ret = hns3_reset_process(hns, reset_level);
5527 		gettimeofday(&tv, NULL);
5528 		timersub(&tv, &tv_start, &tv_delta);
5529 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
5530 		       tv_delta.tv_usec / USEC_PER_MSEC;
5531 		if (msec > HNS3_RESET_PROCESS_MS)
5532 			hns3_err(hw, "%d handle long time delta %" PRIx64
5533 				     " ms time=%ld.%.6ld",
5534 				 hw->reset.level, msec,
5535 				 tv.tv_sec, tv.tv_usec);
5536 		if (ret == -EAGAIN)
5537 			return;
5538 	}
5539 
5540 	/* Check if we got any *new* reset requests to be honored */
5541 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
5542 	if (reset_level != HNS3_NONE_RESET)
5543 		hns3_msix_process(hns, reset_level);
5544 }
5545 
5546 static const struct eth_dev_ops hns3_eth_dev_ops = {
5547 	.dev_configure      = hns3_dev_configure,
5548 	.dev_start          = hns3_dev_start,
5549 	.dev_stop           = hns3_dev_stop,
5550 	.dev_close          = hns3_dev_close,
5551 	.promiscuous_enable = hns3_dev_promiscuous_enable,
5552 	.promiscuous_disable = hns3_dev_promiscuous_disable,
5553 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
5554 	.allmulticast_disable = hns3_dev_allmulticast_disable,
5555 	.mtu_set            = hns3_dev_mtu_set,
5556 	.stats_get          = hns3_stats_get,
5557 	.stats_reset        = hns3_stats_reset,
5558 	.xstats_get         = hns3_dev_xstats_get,
5559 	.xstats_get_names   = hns3_dev_xstats_get_names,
5560 	.xstats_reset       = hns3_dev_xstats_reset,
5561 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
5562 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
5563 	.dev_infos_get          = hns3_dev_infos_get,
5564 	.fw_version_get         = hns3_fw_version_get,
5565 	.rx_queue_setup         = hns3_rx_queue_setup,
5566 	.tx_queue_setup         = hns3_tx_queue_setup,
5567 	.rx_queue_release       = hns3_dev_rx_queue_release,
5568 	.tx_queue_release       = hns3_dev_tx_queue_release,
5569 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
5570 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
5571 	.rxq_info_get           = hns3_rxq_info_get,
5572 	.txq_info_get           = hns3_txq_info_get,
5573 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
5574 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
5575 	.flow_ctrl_get          = hns3_flow_ctrl_get,
5576 	.flow_ctrl_set          = hns3_flow_ctrl_set,
5577 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
5578 	.mac_addr_add           = hns3_add_mac_addr,
5579 	.mac_addr_remove        = hns3_remove_mac_addr,
5580 	.mac_addr_set           = hns3_set_default_mac_addr,
5581 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
5582 	.link_update            = hns3_dev_link_update,
5583 	.rss_hash_update        = hns3_dev_rss_hash_update,
5584 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
5585 	.reta_update            = hns3_dev_rss_reta_update,
5586 	.reta_query             = hns3_dev_rss_reta_query,
5587 	.filter_ctrl            = hns3_dev_filter_ctrl,
5588 	.vlan_filter_set        = hns3_vlan_filter_set,
5589 	.vlan_tpid_set          = hns3_vlan_tpid_set,
5590 	.vlan_offload_set       = hns3_vlan_offload_set,
5591 	.vlan_pvid_set          = hns3_vlan_pvid_set,
5592 	.get_reg                = hns3_get_regs,
5593 	.get_dcb_info           = hns3_get_dcb_info,
5594 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
5595 };
5596 
5597 static const struct hns3_reset_ops hns3_reset_ops = {
5598 	.reset_service       = hns3_reset_service,
5599 	.stop_service        = hns3_stop_service,
5600 	.prepare_reset       = hns3_prepare_reset,
5601 	.wait_hardware_ready = hns3_wait_hardware_ready,
5602 	.reinit_dev          = hns3_reinit_dev,
5603 	.restore_conf	     = hns3_restore_conf,
5604 	.start_service       = hns3_start_service,
5605 };
5606 
5607 static int
5608 hns3_dev_init(struct rte_eth_dev *eth_dev)
5609 {
5610 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5611 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
5612 	struct rte_ether_addr *eth_addr;
5613 	struct hns3_hw *hw = &hns->hw;
5614 	int ret;
5615 
5616 	PMD_INIT_FUNC_TRACE();
5617 
5618 	eth_dev->process_private = (struct hns3_process_private *)
5619 	    rte_zmalloc_socket("hns3_filter_list",
5620 			       sizeof(struct hns3_process_private),
5621 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
5622 	if (eth_dev->process_private == NULL) {
5623 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
5624 		return -ENOMEM;
5625 	}
5626 	/* initialize flow filter lists */
5627 	hns3_filterlist_init(eth_dev);
5628 
5629 	hns3_set_rxtx_function(eth_dev);
5630 	eth_dev->dev_ops = &hns3_eth_dev_ops;
5631 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5632 		ret = hns3_mp_init_secondary();
5633 		if (ret) {
5634 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
5635 				     "process, ret = %d", ret);
5636 			goto err_mp_init_secondary;
5637 		}
5638 
5639 		hw->secondary_cnt++;
5640 		return 0;
5641 	}
5642 
5643 	ret = hns3_mp_init_primary();
5644 	if (ret) {
5645 		PMD_INIT_LOG(ERR,
5646 			     "Failed to init for primary process, ret = %d",
5647 			     ret);
5648 		goto err_mp_init_primary;
5649 	}
5650 
5651 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
5652 	hns->is_vf = false;
5653 	hw->data = eth_dev->data;
5654 
5655 	/*
5656 	 * Set default max packet size according to the mtu
5657 	 * default vale in DPDK frame.
5658 	 */
5659 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
5660 
5661 	ret = hns3_reset_init(hw);
5662 	if (ret)
5663 		goto err_init_reset;
5664 	hw->reset.ops = &hns3_reset_ops;
5665 
5666 	ret = hns3_init_pf(eth_dev);
5667 	if (ret) {
5668 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
5669 		goto err_init_pf;
5670 	}
5671 
5672 	/* Allocate memory for storing MAC addresses */
5673 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
5674 					       sizeof(struct rte_ether_addr) *
5675 					       HNS3_UC_MACADDR_NUM, 0);
5676 	if (eth_dev->data->mac_addrs == NULL) {
5677 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
5678 			     "to store MAC addresses",
5679 			     sizeof(struct rte_ether_addr) *
5680 			     HNS3_UC_MACADDR_NUM);
5681 		ret = -ENOMEM;
5682 		goto err_rte_zmalloc;
5683 	}
5684 
5685 	eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
5686 	if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
5687 		rte_eth_random_addr(hw->mac.mac_addr);
5688 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
5689 				(struct rte_ether_addr *)hw->mac.mac_addr);
5690 		hns3_warn(hw, "default mac_addr from firmware is an invalid "
5691 			  "unicast address, using random MAC address %s",
5692 			  mac_str);
5693 	}
5694 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
5695 			    &eth_dev->data->mac_addrs[0]);
5696 
5697 	hw->adapter_state = HNS3_NIC_INITIALIZED;
5698 
5699 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
5700 		hns3_err(hw, "Reschedule reset service after dev_init");
5701 		hns3_schedule_reset(hns);
5702 	} else {
5703 		/* IMP will wait ready flag before reset */
5704 		hns3_notify_reset_ready(hw, false);
5705 	}
5706 
5707 	hns3_info(hw, "hns3 dev initialization successful!");
5708 	return 0;
5709 
5710 err_rte_zmalloc:
5711 	hns3_uninit_pf(eth_dev);
5712 
5713 err_init_pf:
5714 	rte_free(hw->reset.wait_data);
5715 
5716 err_init_reset:
5717 	hns3_mp_uninit_primary();
5718 
5719 err_mp_init_primary:
5720 err_mp_init_secondary:
5721 	eth_dev->dev_ops = NULL;
5722 	eth_dev->rx_pkt_burst = NULL;
5723 	eth_dev->tx_pkt_burst = NULL;
5724 	eth_dev->tx_pkt_prepare = NULL;
5725 	rte_free(eth_dev->process_private);
5726 	eth_dev->process_private = NULL;
5727 	return ret;
5728 }
5729 
5730 static int
5731 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
5732 {
5733 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5734 	struct hns3_hw *hw = &hns->hw;
5735 
5736 	PMD_INIT_FUNC_TRACE();
5737 
5738 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5739 		return -EPERM;
5740 
5741 	eth_dev->dev_ops = NULL;
5742 	eth_dev->rx_pkt_burst = NULL;
5743 	eth_dev->tx_pkt_burst = NULL;
5744 	eth_dev->tx_pkt_prepare = NULL;
5745 	if (hw->adapter_state < HNS3_NIC_CLOSING)
5746 		hns3_dev_close(eth_dev);
5747 
5748 	hw->adapter_state = HNS3_NIC_REMOVED;
5749 	return 0;
5750 }
5751 
5752 static int
5753 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
5754 		   struct rte_pci_device *pci_dev)
5755 {
5756 	return rte_eth_dev_pci_generic_probe(pci_dev,
5757 					     sizeof(struct hns3_adapter),
5758 					     hns3_dev_init);
5759 }
5760 
5761 static int
5762 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
5763 {
5764 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
5765 }
5766 
5767 static const struct rte_pci_id pci_id_hns3_map[] = {
5768 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
5769 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
5770 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
5771 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
5772 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
5773 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
5774 	{ .vendor_id = 0, /* sentinel */ },
5775 };
5776 
5777 static struct rte_pci_driver rte_hns3_pmd = {
5778 	.id_table = pci_id_hns3_map,
5779 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
5780 	.probe = eth_hns3_pci_probe,
5781 	.remove = eth_hns3_pci_remove,
5782 };
5783 
5784 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
5785 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
5786 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
5787 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
5788 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);
5789