xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision e4373bf1b3f51715bf66e87c0134e2c217e4612c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdio.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <unistd.h>
12 #include <rte_atomic.h>
13 #include <rte_bus_pci.h>
14 #include <rte_common.h>
15 #include <rte_cycles.h>
16 #include <rte_dev.h>
17 #include <rte_eal.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_interrupts.h>
22 #include <rte_io.h>
23 #include <rte_log.h>
24 #include <rte_pci.h>
25 
26 #include "hns3_ethdev.h"
27 #include "hns3_logs.h"
28 #include "hns3_rxtx.h"
29 #include "hns3_intr.h"
30 #include "hns3_regs.h"
31 #include "hns3_dcb.h"
32 #include "hns3_mp.h"
33 
34 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE	32
35 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM	1
36 
37 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
38 #define HNS3_PORT_BASE_VLAN_DISABLE	0
39 #define HNS3_PORT_BASE_VLAN_ENABLE	1
40 #define HNS3_INVLID_PVID		0xFFFF
41 
42 #define HNS3_FILTER_TYPE_VF		0
43 #define HNS3_FILTER_TYPE_PORT		1
44 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
45 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
46 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
47 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
48 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
49 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
50 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
51 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
52 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
53 
54 /* Reset related Registers */
55 #define HNS3_GLOBAL_RESET_BIT		0
56 #define HNS3_CORE_RESET_BIT		1
57 #define HNS3_IMP_RESET_BIT		2
58 #define HNS3_FUN_RST_ING_B		0
59 
60 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
61 
62 #define HNS3_RESET_WAIT_MS	100
63 #define HNS3_RESET_WAIT_CNT	200
64 
65 int hns3_logtype_init;
66 int hns3_logtype_driver;
67 
68 enum hns3_evt_cause {
69 	HNS3_VECTOR0_EVENT_RST,
70 	HNS3_VECTOR0_EVENT_MBX,
71 	HNS3_VECTOR0_EVENT_ERR,
72 	HNS3_VECTOR0_EVENT_OTHER,
73 };
74 
75 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
76 						 uint64_t *levels);
77 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
78 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
79 				    int on);
80 static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
81 
82 static void
83 hns3_pf_disable_irq0(struct hns3_hw *hw)
84 {
85 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
86 }
87 
88 static void
89 hns3_pf_enable_irq0(struct hns3_hw *hw)
90 {
91 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
92 }
93 
94 static enum hns3_evt_cause
95 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
96 {
97 	struct hns3_hw *hw = &hns->hw;
98 	uint32_t vector0_int_stats;
99 	uint32_t cmdq_src_val;
100 	uint32_t val;
101 	enum hns3_evt_cause ret;
102 
103 	/* fetch the events from their corresponding regs */
104 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
105 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
106 
107 	/*
108 	 * Assumption: If by any chance reset and mailbox events are reported
109 	 * together then we will only process reset event and defer the
110 	 * processing of the mailbox events. Since, we would have not cleared
111 	 * RX CMDQ event this time we would receive again another interrupt
112 	 * from H/W just for the mailbox.
113 	 */
114 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
115 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
116 		hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
117 		val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
118 		if (clearval) {
119 			hw->reset.stats.imp_cnt++;
120 			hns3_warn(hw, "IMP reset detected, clear reset status");
121 		} else {
122 			hns3_schedule_delayed_reset(hns);
123 			hns3_warn(hw, "IMP reset detected, don't clear reset status");
124 		}
125 
126 		ret = HNS3_VECTOR0_EVENT_RST;
127 		goto out;
128 	}
129 
130 	/* Global reset */
131 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
132 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
133 		hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
134 		val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
135 		if (clearval) {
136 			hw->reset.stats.global_cnt++;
137 			hns3_warn(hw, "Global reset detected, clear reset status");
138 		} else {
139 			hns3_schedule_delayed_reset(hns);
140 			hns3_warn(hw, "Global reset detected, don't clear reset status");
141 		}
142 
143 		ret = HNS3_VECTOR0_EVENT_RST;
144 		goto out;
145 	}
146 
147 	/* check for vector0 msix event source */
148 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK) {
149 		val = vector0_int_stats;
150 		ret = HNS3_VECTOR0_EVENT_ERR;
151 		goto out;
152 	}
153 
154 	/* check for vector0 mailbox(=CMDQ RX) event source */
155 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
156 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
157 		val = cmdq_src_val;
158 		ret = HNS3_VECTOR0_EVENT_MBX;
159 		goto out;
160 	}
161 
162 	if (clearval && (vector0_int_stats || cmdq_src_val))
163 		hns3_warn(hw, "surprise irq ector0_int_stats:0x%x cmdq_src_val:0x%x",
164 			  vector0_int_stats, cmdq_src_val);
165 	val = vector0_int_stats;
166 	ret = HNS3_VECTOR0_EVENT_OTHER;
167 out:
168 
169 	if (clearval)
170 		*clearval = val;
171 	return ret;
172 }
173 
174 static void
175 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
176 {
177 	if (event_type == HNS3_VECTOR0_EVENT_RST)
178 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
179 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
180 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
181 }
182 
183 static void
184 hns3_clear_all_event_cause(struct hns3_hw *hw)
185 {
186 	uint32_t vector0_int_stats;
187 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
188 
189 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
190 		hns3_warn(hw, "Probe during IMP reset interrupt");
191 
192 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
193 		hns3_warn(hw, "Probe during Global reset interrupt");
194 
195 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
196 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
197 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
198 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
199 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
200 }
201 
202 static void
203 hns3_interrupt_handler(void *param)
204 {
205 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
206 	struct hns3_adapter *hns = dev->data->dev_private;
207 	struct hns3_hw *hw = &hns->hw;
208 	enum hns3_evt_cause event_cause;
209 	uint32_t clearval = 0;
210 
211 	/* Disable interrupt */
212 	hns3_pf_disable_irq0(hw);
213 
214 	event_cause = hns3_check_event_cause(hns, &clearval);
215 
216 	/* vector 0 interrupt is shared with reset and mailbox source events. */
217 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
218 		hns3_handle_msix_error(hns, &hw->reset.request);
219 		hns3_schedule_reset(hns);
220 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST)
221 		hns3_schedule_reset(hns);
222 	else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
223 		hns3_dev_handle_mbx_msg(hw);
224 	else
225 		hns3_err(hw, "Received unknown event");
226 
227 	hns3_clear_event_cause(hw, event_cause, clearval);
228 	/* Enable interrupt if it is not cause by reset */
229 	hns3_pf_enable_irq0(hw);
230 }
231 
232 static int
233 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
234 {
235 #define HNS3_VLAN_OFFSET_160		160
236 	struct hns3_vlan_filter_pf_cfg_cmd *req;
237 	struct hns3_hw *hw = &hns->hw;
238 	uint8_t vlan_offset_byte_val;
239 	struct hns3_cmd_desc desc;
240 	uint8_t vlan_offset_byte;
241 	uint8_t vlan_offset_160;
242 	int ret;
243 
244 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
245 
246 	vlan_offset_160 = vlan_id / HNS3_VLAN_OFFSET_160;
247 	vlan_offset_byte = (vlan_id % HNS3_VLAN_OFFSET_160) / 8;
248 	vlan_offset_byte_val = 1 << (vlan_id % 8);
249 
250 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
251 	req->vlan_offset = vlan_offset_160;
252 	req->vlan_cfg = on ? 0 : 1;
253 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
254 
255 	ret = hns3_cmd_send(hw, &desc, 1);
256 	if (ret)
257 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
258 			 vlan_id, ret);
259 
260 	return ret;
261 }
262 
263 static void
264 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
265 {
266 	struct hns3_user_vlan_table *vlan_entry;
267 	struct hns3_pf *pf = &hns->pf;
268 
269 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
270 		if (vlan_entry->vlan_id == vlan_id) {
271 			if (vlan_entry->hd_tbl_status)
272 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
273 			LIST_REMOVE(vlan_entry, next);
274 			rte_free(vlan_entry);
275 			break;
276 		}
277 	}
278 }
279 
280 static void
281 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
282 			bool writen_to_tbl)
283 {
284 	struct hns3_user_vlan_table *vlan_entry;
285 	struct hns3_hw *hw = &hns->hw;
286 	struct hns3_pf *pf = &hns->pf;
287 
288 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
289 		if (vlan_entry->vlan_id == vlan_id)
290 			return;
291 	}
292 
293 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
294 	if (vlan_entry == NULL) {
295 		hns3_err(hw, "Failed to malloc hns3 vlan table");
296 		return;
297 	}
298 
299 	vlan_entry->hd_tbl_status = writen_to_tbl;
300 	vlan_entry->vlan_id = vlan_id;
301 
302 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
303 }
304 
305 static int
306 hns3_restore_vlan_table(struct hns3_adapter *hns)
307 {
308 	struct hns3_user_vlan_table *vlan_entry;
309 	struct hns3_pf *pf = &hns->pf;
310 	uint16_t vlan_id;
311 	int ret = 0;
312 
313 	if (pf->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE) {
314 		ret = hns3_vlan_pvid_configure(hns, pf->port_base_vlan_cfg.pvid,
315 					       1);
316 		return ret;
317 	}
318 
319 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
320 		if (vlan_entry->hd_tbl_status) {
321 			vlan_id = vlan_entry->vlan_id;
322 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
323 			if (ret)
324 				break;
325 		}
326 	}
327 
328 	return ret;
329 }
330 
331 static int
332 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
333 {
334 	struct hns3_pf *pf = &hns->pf;
335 	bool writen_to_tbl = false;
336 	int ret = 0;
337 
338 	/*
339 	 * When vlan filter is enabled, hardware regards vlan id 0 as the entry
340 	 * for normal packet, deleting vlan id 0 is not allowed.
341 	 */
342 	if (on == 0 && vlan_id == 0)
343 		return 0;
344 
345 	/*
346 	 * When port base vlan enabled, we use port base vlan as the vlan
347 	 * filter condition. In this case, we don't update vlan filter table
348 	 * when user add new vlan or remove exist vlan, just update the
349 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
350 	 * table until port base vlan disabled
351 	 */
352 	if (pf->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
353 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
354 		writen_to_tbl = true;
355 	}
356 
357 	if (ret == 0 && vlan_id) {
358 		if (on)
359 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
360 		else
361 			hns3_rm_dev_vlan_table(hns, vlan_id);
362 	}
363 	return ret;
364 }
365 
366 static int
367 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
368 {
369 	struct hns3_adapter *hns = dev->data->dev_private;
370 	struct hns3_hw *hw = &hns->hw;
371 	int ret;
372 
373 	rte_spinlock_lock(&hw->lock);
374 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
375 	rte_spinlock_unlock(&hw->lock);
376 	return ret;
377 }
378 
379 static int
380 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
381 			 uint16_t tpid)
382 {
383 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
384 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
385 	struct hns3_hw *hw = &hns->hw;
386 	struct hns3_cmd_desc desc;
387 	int ret;
388 
389 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
390 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
391 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
392 		return -EINVAL;
393 	}
394 
395 	if (tpid != RTE_ETHER_TYPE_VLAN) {
396 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
397 		return -EINVAL;
398 	}
399 
400 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
401 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
402 
403 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
404 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
405 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
406 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
407 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
408 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
409 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
410 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
411 	}
412 
413 	ret = hns3_cmd_send(hw, &desc, 1);
414 	if (ret) {
415 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
416 			 ret);
417 		return ret;
418 	}
419 
420 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
421 
422 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
423 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
424 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
425 
426 	ret = hns3_cmd_send(hw, &desc, 1);
427 	if (ret)
428 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
429 			 ret);
430 	return ret;
431 }
432 
433 static int
434 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
435 		   uint16_t tpid)
436 {
437 	struct hns3_adapter *hns = dev->data->dev_private;
438 	struct hns3_hw *hw = &hns->hw;
439 	int ret;
440 
441 	rte_spinlock_lock(&hw->lock);
442 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
443 	rte_spinlock_unlock(&hw->lock);
444 	return ret;
445 }
446 
447 static int
448 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
449 			     struct hns3_rx_vtag_cfg *vcfg)
450 {
451 	struct hns3_vport_vtag_rx_cfg_cmd *req;
452 	struct hns3_hw *hw = &hns->hw;
453 	struct hns3_cmd_desc desc;
454 	uint16_t vport_id;
455 	uint8_t bitmap;
456 	int ret;
457 
458 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
459 
460 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
461 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
462 		     vcfg->strip_tag1_en ? 1 : 0);
463 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
464 		     vcfg->strip_tag2_en ? 1 : 0);
465 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
466 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
467 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
468 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
469 
470 	/*
471 	 * In current version VF is not supported when PF is driven by DPDK
472 	 * driver, the PF-related vf_id is 0, just need to configure parameters
473 	 * for vport_id 0.
474 	 */
475 	vport_id = 0;
476 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
477 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
478 	req->vf_bitmap[req->vf_offset] = bitmap;
479 
480 	ret = hns3_cmd_send(hw, &desc, 1);
481 	if (ret)
482 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
483 	return ret;
484 }
485 
486 static void
487 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
488 			   struct hns3_rx_vtag_cfg *vcfg)
489 {
490 	struct hns3_pf *pf = &hns->pf;
491 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
492 }
493 
494 static void
495 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
496 			   struct hns3_tx_vtag_cfg *vcfg)
497 {
498 	struct hns3_pf *pf = &hns->pf;
499 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
500 }
501 
502 static int
503 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
504 {
505 	struct hns3_rx_vtag_cfg rxvlan_cfg;
506 	struct hns3_pf *pf = &hns->pf;
507 	struct hns3_hw *hw = &hns->hw;
508 	int ret;
509 
510 	if (pf->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
511 		rxvlan_cfg.strip_tag1_en = false;
512 		rxvlan_cfg.strip_tag2_en = enable;
513 	} else {
514 		rxvlan_cfg.strip_tag1_en = enable;
515 		rxvlan_cfg.strip_tag2_en = true;
516 	}
517 
518 	rxvlan_cfg.vlan1_vlan_prionly = false;
519 	rxvlan_cfg.vlan2_vlan_prionly = false;
520 	rxvlan_cfg.rx_vlan_offload_en = enable;
521 
522 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
523 	if (ret) {
524 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
525 		return ret;
526 	}
527 
528 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
529 
530 	return ret;
531 }
532 
533 static int
534 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
535 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
536 {
537 	struct hns3_vlan_filter_ctrl_cmd *req;
538 	struct hns3_cmd_desc desc;
539 	int ret;
540 
541 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
542 
543 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
544 	req->vlan_type = vlan_type;
545 	req->vlan_fe = filter_en ? fe_type : 0;
546 	req->vf_id = vf_id;
547 
548 	ret = hns3_cmd_send(hw, &desc, 1);
549 	if (ret)
550 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
551 
552 	return ret;
553 }
554 
555 static int
556 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
557 {
558 	struct hns3_hw *hw = &hns->hw;
559 	int ret;
560 
561 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
562 					HNS3_FILTER_FE_EGRESS, false, 0);
563 	if (ret) {
564 		hns3_err(hw, "hns3 enable filter fail, ret =%d", ret);
565 		return ret;
566 	}
567 
568 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
569 					HNS3_FILTER_FE_INGRESS, enable, 0);
570 	if (ret)
571 		hns3_err(hw, "hns3 enable filter fail, ret =%d", ret);
572 
573 	return ret;
574 }
575 
576 static int
577 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
578 {
579 	struct hns3_adapter *hns = dev->data->dev_private;
580 	struct hns3_hw *hw = &hns->hw;
581 	struct rte_eth_rxmode *rxmode;
582 	unsigned int tmp_mask;
583 	bool enable;
584 	int ret = 0;
585 
586 	rte_spinlock_lock(&hw->lock);
587 	rxmode = &dev->data->dev_conf.rxmode;
588 	tmp_mask = (unsigned int)mask;
589 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
590 		/* Enable or disable VLAN stripping */
591 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
592 		    true : false;
593 
594 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
595 		if (ret) {
596 			rte_spinlock_unlock(&hw->lock);
597 			hns3_err(hw, "failed to enable rx strip, ret =%d", ret);
598 			return ret;
599 		}
600 	}
601 
602 	rte_spinlock_unlock(&hw->lock);
603 
604 	return ret;
605 }
606 
607 static int
608 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
609 			     struct hns3_tx_vtag_cfg *vcfg)
610 {
611 	struct hns3_vport_vtag_tx_cfg_cmd *req;
612 	struct hns3_cmd_desc desc;
613 	struct hns3_hw *hw = &hns->hw;
614 	uint16_t vport_id;
615 	uint8_t bitmap;
616 	int ret;
617 
618 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
619 
620 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
621 	req->def_vlan_tag1 = vcfg->default_tag1;
622 	req->def_vlan_tag2 = vcfg->default_tag2;
623 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
624 		     vcfg->accept_tag1 ? 1 : 0);
625 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
626 		     vcfg->accept_untag1 ? 1 : 0);
627 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
628 		     vcfg->accept_tag2 ? 1 : 0);
629 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
630 		     vcfg->accept_untag2 ? 1 : 0);
631 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
632 		     vcfg->insert_tag1_en ? 1 : 0);
633 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
634 		     vcfg->insert_tag2_en ? 1 : 0);
635 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
636 
637 	/*
638 	 * In current version VF is not supported when PF is driven by DPDK
639 	 * driver, the PF-related vf_id is 0, just need to configure parameters
640 	 * for vport_id 0.
641 	 */
642 	vport_id = 0;
643 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
644 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
645 	req->vf_bitmap[req->vf_offset] = bitmap;
646 
647 	ret = hns3_cmd_send(hw, &desc, 1);
648 	if (ret)
649 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
650 
651 	return ret;
652 }
653 
654 static int
655 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
656 		     uint16_t pvid)
657 {
658 	struct hns3_hw *hw = &hns->hw;
659 	struct hns3_tx_vtag_cfg txvlan_cfg;
660 	int ret;
661 
662 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
663 		txvlan_cfg.accept_tag1 = true;
664 		txvlan_cfg.insert_tag1_en = false;
665 		txvlan_cfg.default_tag1 = 0;
666 	} else {
667 		txvlan_cfg.accept_tag1 = false;
668 		txvlan_cfg.insert_tag1_en = true;
669 		txvlan_cfg.default_tag1 = pvid;
670 	}
671 
672 	txvlan_cfg.accept_untag1 = true;
673 	txvlan_cfg.accept_tag2 = true;
674 	txvlan_cfg.accept_untag2 = true;
675 	txvlan_cfg.insert_tag2_en = false;
676 	txvlan_cfg.default_tag2 = 0;
677 
678 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
679 	if (ret) {
680 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
681 			 ret);
682 		return ret;
683 	}
684 
685 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
686 	return ret;
687 }
688 
689 static void
690 hns3_store_port_base_vlan_info(struct hns3_adapter *hns, uint16_t pvid, int on)
691 {
692 	struct hns3_pf *pf = &hns->pf;
693 
694 	pf->port_base_vlan_cfg.state = on ?
695 	    HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
696 
697 	pf->port_base_vlan_cfg.pvid = pvid;
698 }
699 
700 static void
701 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
702 {
703 	struct hns3_user_vlan_table *vlan_entry;
704 	struct hns3_pf *pf = &hns->pf;
705 
706 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
707 		if (vlan_entry->hd_tbl_status)
708 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
709 
710 		vlan_entry->hd_tbl_status = false;
711 	}
712 
713 	if (is_del_list) {
714 		vlan_entry = LIST_FIRST(&pf->vlan_list);
715 		while (vlan_entry) {
716 			LIST_REMOVE(vlan_entry, next);
717 			rte_free(vlan_entry);
718 			vlan_entry = LIST_FIRST(&pf->vlan_list);
719 		}
720 	}
721 }
722 
723 static void
724 hns3_add_all_vlan_table(struct hns3_adapter *hns)
725 {
726 	struct hns3_user_vlan_table *vlan_entry;
727 	struct hns3_pf *pf = &hns->pf;
728 
729 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
730 		if (!vlan_entry->hd_tbl_status)
731 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
732 
733 		vlan_entry->hd_tbl_status = true;
734 	}
735 }
736 
737 static void
738 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
739 {
740 	struct hns3_hw *hw = &hns->hw;
741 	struct hns3_pf *pf = &hns->pf;
742 	int ret;
743 
744 	hns3_rm_all_vlan_table(hns, true);
745 	if (pf->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID) {
746 		ret = hns3_set_port_vlan_filter(hns,
747 						pf->port_base_vlan_cfg.pvid, 0);
748 		if (ret) {
749 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
750 				 ret);
751 			return;
752 		}
753 	}
754 }
755 
756 static int
757 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
758 				uint16_t port_base_vlan_state,
759 				uint16_t new_pvid, uint16_t old_pvid)
760 {
761 	struct hns3_pf *pf = &hns->pf;
762 	struct hns3_hw *hw = &hns->hw;
763 	int ret = 0;
764 
765 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
766 		if (old_pvid != HNS3_INVLID_PVID && old_pvid != 0) {
767 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
768 			if (ret) {
769 				hns3_err(hw,
770 					 "Failed to clear clear old pvid filter, ret =%d",
771 					 ret);
772 				return ret;
773 			}
774 		}
775 
776 		hns3_rm_all_vlan_table(hns, false);
777 		return hns3_set_port_vlan_filter(hns, new_pvid, 1);
778 	}
779 
780 	if (new_pvid != 0) {
781 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
782 		if (ret) {
783 			hns3_err(hw, "Failed to set port vlan filter, ret =%d",
784 				 ret);
785 			return ret;
786 		}
787 	}
788 
789 	if (new_pvid == pf->port_base_vlan_cfg.pvid)
790 		hns3_add_all_vlan_table(hns);
791 
792 	return ret;
793 }
794 
795 static int
796 hns3_en_rx_strip_all(struct hns3_adapter *hns, int on)
797 {
798 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
799 	struct hns3_hw *hw = &hns->hw;
800 	bool rx_strip_en;
801 	int ret;
802 
803 	rx_strip_en = on ? true : false;
804 	rx_vlan_cfg.strip_tag1_en = rx_strip_en;
805 	rx_vlan_cfg.strip_tag2_en = rx_strip_en;
806 	rx_vlan_cfg.vlan1_vlan_prionly = false;
807 	rx_vlan_cfg.vlan2_vlan_prionly = false;
808 	rx_vlan_cfg.rx_vlan_offload_en = rx_strip_en;
809 
810 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
811 	if (ret) {
812 		hns3_err(hw, "enable strip rx failed, ret =%d", ret);
813 		return ret;
814 	}
815 
816 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
817 	return ret;
818 }
819 
820 static int
821 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
822 {
823 	struct hns3_pf *pf = &hns->pf;
824 	struct hns3_hw *hw = &hns->hw;
825 	uint16_t port_base_vlan_state;
826 	uint16_t old_pvid;
827 	int ret;
828 
829 	if (on == 0 && pvid != pf->port_base_vlan_cfg.pvid) {
830 		if (pf->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID)
831 			hns3_warn(hw, "Invalid operation! As current pvid set "
832 				  "is %u, disable pvid %u is invalid",
833 				  pf->port_base_vlan_cfg.pvid, pvid);
834 		return 0;
835 	}
836 
837 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
838 				    HNS3_PORT_BASE_VLAN_DISABLE;
839 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
840 	if (ret) {
841 		hns3_err(hw, "Failed to config tx vlan, ret =%d", ret);
842 		return ret;
843 	}
844 
845 	ret = hns3_en_rx_strip_all(hns, on);
846 	if (ret) {
847 		hns3_err(hw, "Failed to config rx vlan strip, ret =%d", ret);
848 		return ret;
849 	}
850 
851 	if (pvid == HNS3_INVLID_PVID)
852 		goto out;
853 	old_pvid = pf->port_base_vlan_cfg.pvid;
854 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid,
855 					      old_pvid);
856 	if (ret) {
857 		hns3_err(hw, "Failed to update vlan filter entries, ret =%d",
858 			 ret);
859 		return ret;
860 	}
861 
862 out:
863 	hns3_store_port_base_vlan_info(hns, pvid, on);
864 	return ret;
865 }
866 
867 static int
868 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
869 {
870 	struct hns3_adapter *hns = dev->data->dev_private;
871 	struct hns3_hw *hw = &hns->hw;
872 	int ret;
873 
874 	rte_spinlock_lock(&hw->lock);
875 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
876 	rte_spinlock_unlock(&hw->lock);
877 	return ret;
878 }
879 
880 static void
881 init_port_base_vlan_info(struct hns3_hw *hw)
882 {
883 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
884 	struct hns3_pf *pf = &hns->pf;
885 
886 	pf->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
887 	pf->port_base_vlan_cfg.pvid = HNS3_INVLID_PVID;
888 }
889 
890 static int
891 hns3_default_vlan_config(struct hns3_adapter *hns)
892 {
893 	struct hns3_hw *hw = &hns->hw;
894 	int ret;
895 
896 	ret = hns3_set_port_vlan_filter(hns, 0, 1);
897 	if (ret)
898 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
899 	return ret;
900 }
901 
902 static int
903 hns3_init_vlan_config(struct hns3_adapter *hns)
904 {
905 	struct hns3_hw *hw = &hns->hw;
906 	int ret;
907 
908 	/*
909 	 * This function can be called in the initialization and reset process,
910 	 * when in reset process, it means that hardware had been reseted
911 	 * successfully and we need to restore the hardware configuration to
912 	 * ensure that the hardware configuration remains unchanged before and
913 	 * after reset.
914 	 */
915 	if (rte_atomic16_read(&hw->reset.resetting) == 0)
916 		init_port_base_vlan_info(hw);
917 
918 	ret = hns3_enable_vlan_filter(hns, true);
919 	if (ret) {
920 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
921 		return ret;
922 	}
923 
924 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
925 				       RTE_ETHER_TYPE_VLAN);
926 	if (ret) {
927 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
928 		return ret;
929 	}
930 
931 	/*
932 	 * When in the reinit dev stage of the reset process, the following
933 	 * vlan-related configurations may differ from those at initialization,
934 	 * we will restore configurations to hardware in hns3_restore_vlan_table
935 	 * and hns3_restore_vlan_conf later.
936 	 */
937 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
938 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVLID_PVID, 0);
939 		if (ret) {
940 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
941 			return ret;
942 		}
943 
944 		ret = hns3_en_hw_strip_rxvtag(hns, false);
945 		if (ret) {
946 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
947 				 ret);
948 			return ret;
949 		}
950 	}
951 
952 	return hns3_default_vlan_config(hns);
953 }
954 
955 static int
956 hns3_restore_vlan_conf(struct hns3_adapter *hns)
957 {
958 	struct hns3_pf *pf = &hns->pf;
959 	struct hns3_hw *hw = &hns->hw;
960 	int ret;
961 
962 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
963 	if (ret) {
964 		hns3_err(hw, "hns3 restore vlan rx conf fail, ret =%d", ret);
965 		return ret;
966 	}
967 
968 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
969 	if (ret)
970 		hns3_err(hw, "hns3 restore vlan tx conf fail, ret =%d", ret);
971 
972 	return ret;
973 }
974 
975 static int
976 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
977 {
978 	struct hns3_adapter *hns = dev->data->dev_private;
979 	struct rte_eth_dev_data *data = dev->data;
980 	struct rte_eth_txmode *txmode;
981 	struct hns3_hw *hw = &hns->hw;
982 	int ret;
983 
984 	txmode = &data->dev_conf.txmode;
985 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
986 		hns3_warn(hw,
987 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
988 			  "configuration is not supported! Ignore these two "
989 			  "parameters: hw_vlan_reject_tagged(%d), "
990 			  "hw_vlan_reject_untagged(%d)",
991 			  txmode->hw_vlan_reject_tagged,
992 			  txmode->hw_vlan_reject_untagged);
993 
994 	/* Apply vlan offload setting */
995 	ret = hns3_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
996 	if (ret) {
997 		hns3_err(hw, "dev config vlan Strip failed, ret =%d", ret);
998 		return ret;
999 	}
1000 
1001 	/* Apply pvid setting */
1002 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1003 				 txmode->hw_vlan_insert_pvid);
1004 	if (ret)
1005 		hns3_err(hw, "dev config vlan pvid(%d) failed, ret =%d",
1006 			 txmode->pvid, ret);
1007 
1008 	return ret;
1009 }
1010 
1011 static int
1012 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1013 		unsigned int tso_mss_max)
1014 {
1015 	struct hns3_cfg_tso_status_cmd *req;
1016 	struct hns3_cmd_desc desc;
1017 	uint16_t tso_mss;
1018 
1019 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1020 
1021 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1022 
1023 	tso_mss = 0;
1024 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1025 		       tso_mss_min);
1026 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1027 
1028 	tso_mss = 0;
1029 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1030 		       tso_mss_max);
1031 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1032 
1033 	return hns3_cmd_send(hw, &desc, 1);
1034 }
1035 
1036 int
1037 hns3_config_gro(struct hns3_hw *hw, bool en)
1038 {
1039 	struct hns3_cfg_gro_status_cmd *req;
1040 	struct hns3_cmd_desc desc;
1041 	int ret;
1042 
1043 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false);
1044 	req = (struct hns3_cfg_gro_status_cmd *)desc.data;
1045 
1046 	req->gro_en = rte_cpu_to_le_16(en ? 1 : 0);
1047 
1048 	ret = hns3_cmd_send(hw, &desc, 1);
1049 	if (ret)
1050 		hns3_err(hw, "GRO hardware config cmd failed, ret = %d", ret);
1051 
1052 	return ret;
1053 }
1054 
1055 static int
1056 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1057 		   uint16_t *allocated_size, bool is_alloc)
1058 {
1059 	struct hns3_umv_spc_alc_cmd *req;
1060 	struct hns3_cmd_desc desc;
1061 	int ret;
1062 
1063 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1064 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1065 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1066 	req->space_size = rte_cpu_to_le_32(space_size);
1067 
1068 	ret = hns3_cmd_send(hw, &desc, 1);
1069 	if (ret) {
1070 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1071 			     is_alloc ? "allocate" : "free", ret);
1072 		return ret;
1073 	}
1074 
1075 	if (is_alloc && allocated_size)
1076 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1077 
1078 	return 0;
1079 }
1080 
1081 static int
1082 hns3_init_umv_space(struct hns3_hw *hw)
1083 {
1084 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1085 	struct hns3_pf *pf = &hns->pf;
1086 	uint16_t allocated_size = 0;
1087 	int ret;
1088 
1089 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1090 				 true);
1091 	if (ret)
1092 		return ret;
1093 
1094 	if (allocated_size < pf->wanted_umv_size)
1095 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1096 			     pf->wanted_umv_size, allocated_size);
1097 
1098 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1099 						pf->wanted_umv_size;
1100 	pf->used_umv_size = 0;
1101 	return 0;
1102 }
1103 
1104 static int
1105 hns3_uninit_umv_space(struct hns3_hw *hw)
1106 {
1107 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1108 	struct hns3_pf *pf = &hns->pf;
1109 	int ret;
1110 
1111 	if (pf->max_umv_size == 0)
1112 		return 0;
1113 
1114 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1115 	if (ret)
1116 		return ret;
1117 
1118 	pf->max_umv_size = 0;
1119 
1120 	return 0;
1121 }
1122 
1123 static bool
1124 hns3_is_umv_space_full(struct hns3_hw *hw)
1125 {
1126 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1127 	struct hns3_pf *pf = &hns->pf;
1128 	bool is_full;
1129 
1130 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1131 
1132 	return is_full;
1133 }
1134 
1135 static void
1136 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1137 {
1138 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1139 	struct hns3_pf *pf = &hns->pf;
1140 
1141 	if (is_free) {
1142 		if (pf->used_umv_size > 0)
1143 			pf->used_umv_size--;
1144 	} else
1145 		pf->used_umv_size++;
1146 }
1147 
1148 static void
1149 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1150 		      const uint8_t *addr, bool is_mc)
1151 {
1152 	const unsigned char *mac_addr = addr;
1153 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1154 			    ((uint32_t)mac_addr[2] << 16) |
1155 			    ((uint32_t)mac_addr[1] << 8) |
1156 			    (uint32_t)mac_addr[0];
1157 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1158 
1159 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1160 	if (is_mc) {
1161 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1162 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1163 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1164 	}
1165 
1166 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1167 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1168 }
1169 
1170 static int
1171 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1172 			     uint8_t resp_code,
1173 			     enum hns3_mac_vlan_tbl_opcode op)
1174 {
1175 	if (cmdq_resp) {
1176 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1177 			 cmdq_resp);
1178 		return -EIO;
1179 	}
1180 
1181 	if (op == HNS3_MAC_VLAN_ADD) {
1182 		if (resp_code == 0 || resp_code == 1) {
1183 			return 0;
1184 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1185 			hns3_err(hw, "add mac addr failed for uc_overflow");
1186 			return -ENOSPC;
1187 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1188 			hns3_err(hw, "add mac addr failed for mc_overflow");
1189 			return -ENOSPC;
1190 		}
1191 
1192 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1193 			 resp_code);
1194 		return -EIO;
1195 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1196 		if (resp_code == 0) {
1197 			return 0;
1198 		} else if (resp_code == 1) {
1199 			hns3_dbg(hw, "remove mac addr failed for miss");
1200 			return -ENOENT;
1201 		}
1202 
1203 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1204 			 resp_code);
1205 		return -EIO;
1206 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1207 		if (resp_code == 0) {
1208 			return 0;
1209 		} else if (resp_code == 1) {
1210 			hns3_dbg(hw, "lookup mac addr failed for miss");
1211 			return -ENOENT;
1212 		}
1213 
1214 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1215 			 resp_code);
1216 		return -EIO;
1217 	}
1218 
1219 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1220 		 op);
1221 
1222 	return -EINVAL;
1223 }
1224 
1225 static int
1226 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1227 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1228 			 struct hns3_cmd_desc *desc, bool is_mc)
1229 {
1230 	uint8_t resp_code;
1231 	uint16_t retval;
1232 	int ret;
1233 
1234 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1235 	if (is_mc) {
1236 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1237 		memcpy(desc[0].data, req,
1238 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1239 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1240 					  true);
1241 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1242 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1243 					  true);
1244 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1245 	} else {
1246 		memcpy(desc[0].data, req,
1247 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1248 		ret = hns3_cmd_send(hw, desc, 1);
1249 	}
1250 	if (ret) {
1251 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1252 			 ret);
1253 		return ret;
1254 	}
1255 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1256 	retval = rte_le_to_cpu_16(desc[0].retval);
1257 
1258 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1259 					    HNS3_MAC_VLAN_LKUP);
1260 }
1261 
1262 static int
1263 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1264 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1265 		      struct hns3_cmd_desc *mc_desc)
1266 {
1267 	uint8_t resp_code;
1268 	uint16_t retval;
1269 	int cfg_status;
1270 	int ret;
1271 
1272 	if (mc_desc == NULL) {
1273 		struct hns3_cmd_desc desc;
1274 
1275 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1276 		memcpy(desc.data, req,
1277 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1278 		ret = hns3_cmd_send(hw, &desc, 1);
1279 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1280 		retval = rte_le_to_cpu_16(desc.retval);
1281 
1282 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1283 							  HNS3_MAC_VLAN_ADD);
1284 	} else {
1285 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1286 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1287 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1288 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1289 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1290 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1291 		memcpy(mc_desc[0].data, req,
1292 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1293 		mc_desc[0].retval = 0;
1294 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1295 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1296 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1297 
1298 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1299 							  HNS3_MAC_VLAN_ADD);
1300 	}
1301 
1302 	if (ret) {
1303 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1304 		return ret;
1305 	}
1306 
1307 	return cfg_status;
1308 }
1309 
1310 static int
1311 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1312 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1313 {
1314 	struct hns3_cmd_desc desc;
1315 	uint8_t resp_code;
1316 	uint16_t retval;
1317 	int ret;
1318 
1319 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1320 
1321 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1322 
1323 	ret = hns3_cmd_send(hw, &desc, 1);
1324 	if (ret) {
1325 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1326 		return ret;
1327 	}
1328 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1329 	retval = rte_le_to_cpu_16(desc.retval);
1330 
1331 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1332 					    HNS3_MAC_VLAN_REMOVE);
1333 }
1334 
1335 static int
1336 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1337 {
1338 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1339 	struct hns3_mac_vlan_tbl_entry_cmd req;
1340 	struct hns3_pf *pf = &hns->pf;
1341 	struct hns3_cmd_desc desc;
1342 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1343 	uint16_t egress_port = 0;
1344 	uint8_t vf_id;
1345 	int ret;
1346 
1347 	/* check if mac addr is valid */
1348 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1349 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1350 				      mac_addr);
1351 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1352 			 mac_str);
1353 		return -EINVAL;
1354 	}
1355 
1356 	memset(&req, 0, sizeof(req));
1357 
1358 	/*
1359 	 * In current version VF is not supported when PF is driven by DPDK
1360 	 * driver, the PF-related vf_id is 0, just need to configure parameters
1361 	 * for vf_id 0.
1362 	 */
1363 	vf_id = 0;
1364 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1365 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1366 
1367 	req.egress_port = rte_cpu_to_le_16(egress_port);
1368 
1369 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1370 
1371 	/*
1372 	 * Lookup the mac address in the mac_vlan table, and add
1373 	 * it if the entry is inexistent. Repeated unicast entry
1374 	 * is not allowed in the mac vlan table.
1375 	 */
1376 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc, false);
1377 	if (ret == -ENOENT) {
1378 		if (!hns3_is_umv_space_full(hw)) {
1379 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1380 			if (!ret)
1381 				hns3_update_umv_space(hw, false);
1382 			return ret;
1383 		}
1384 
1385 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1386 
1387 		return -ENOSPC;
1388 	}
1389 
1390 	rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1391 
1392 	/* check if we just hit the duplicate */
1393 	if (ret == 0) {
1394 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1395 		return 0;
1396 	}
1397 
1398 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1399 		 mac_str);
1400 
1401 	return ret;
1402 }
1403 
1404 static int
1405 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1406 		  uint32_t idx, __attribute__ ((unused)) uint32_t pool)
1407 {
1408 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1409 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1410 	int ret;
1411 
1412 	rte_spinlock_lock(&hw->lock);
1413 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1414 	if (ret) {
1415 		rte_spinlock_unlock(&hw->lock);
1416 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1417 				      mac_addr);
1418 		hns3_err(hw, "Failed to add mac addr(%s): %d", mac_str, ret);
1419 		return ret;
1420 	}
1421 
1422 	if (idx == 0)
1423 		hw->mac.default_addr_setted = true;
1424 	rte_spinlock_unlock(&hw->lock);
1425 
1426 	return ret;
1427 }
1428 
1429 static int
1430 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1431 {
1432 	struct hns3_mac_vlan_tbl_entry_cmd req;
1433 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1434 	int ret;
1435 
1436 	/* check if mac addr is valid */
1437 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1438 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1439 				      mac_addr);
1440 		hns3_err(hw, "Remove unicast mac addr err! addr(%s) invalid",
1441 			 mac_str);
1442 		return -EINVAL;
1443 	}
1444 
1445 	memset(&req, 0, sizeof(req));
1446 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1447 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1448 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1449 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1450 		return 0;
1451 	else if (ret == 0)
1452 		hns3_update_umv_space(hw, true);
1453 
1454 	return ret;
1455 }
1456 
1457 static void
1458 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1459 {
1460 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1461 	/* index will be checked by upper level rte interface */
1462 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1463 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1464 	int ret;
1465 
1466 	rte_spinlock_lock(&hw->lock);
1467 	ret = hns3_remove_uc_addr_common(hw, mac_addr);
1468 	if (ret) {
1469 		rte_spinlock_unlock(&hw->lock);
1470 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1471 				      mac_addr);
1472 		hns3_err(hw, "Failed to remove mac addr(%s): %d", mac_str, ret);
1473 		return;
1474 	}
1475 
1476 	if (idx == 0)
1477 		hw->mac.default_addr_setted = false;
1478 	rte_spinlock_unlock(&hw->lock);
1479 }
1480 
1481 static int
1482 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1483 			  struct rte_ether_addr *mac_addr)
1484 {
1485 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1486 	struct rte_ether_addr *oaddr;
1487 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1488 	bool default_addr_setted;
1489 	bool rm_succes = false;
1490 	int ret, ret_val;
1491 
1492 	/* check if mac addr is valid */
1493 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1494 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1495 				      mac_addr);
1496 		hns3_err(hw, "Failed to set mac addr, addr(%s) invalid",
1497 			 mac_str);
1498 		return -EINVAL;
1499 	}
1500 
1501 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1502 	default_addr_setted = hw->mac.default_addr_setted;
1503 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1504 		return 0;
1505 
1506 	rte_spinlock_lock(&hw->lock);
1507 	if (default_addr_setted) {
1508 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1509 		if (ret) {
1510 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1511 					      oaddr);
1512 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1513 				  mac_str, ret);
1514 			rm_succes = false;
1515 		} else
1516 			rm_succes = true;
1517 	}
1518 
1519 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1520 	if (ret) {
1521 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1522 				      mac_addr);
1523 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1524 		goto err_add_uc_addr;
1525 	}
1526 
1527 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1528 	if (ret) {
1529 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1530 		goto err_pause_addr_cfg;
1531 	}
1532 
1533 	rte_ether_addr_copy(mac_addr,
1534 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1535 	hw->mac.default_addr_setted = true;
1536 	rte_spinlock_unlock(&hw->lock);
1537 
1538 	return 0;
1539 
1540 err_pause_addr_cfg:
1541 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1542 	if (ret_val) {
1543 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1544 				      mac_addr);
1545 		hns3_warn(hw,
1546 			  "Failed to roll back to del setted mac addr(%s): %d",
1547 			  mac_str, ret_val);
1548 	}
1549 
1550 err_add_uc_addr:
1551 	if (rm_succes) {
1552 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1553 		if (ret_val) {
1554 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1555 					      oaddr);
1556 			hns3_warn(hw,
1557 				  "Failed to restore old uc mac addr(%s): %d",
1558 				  mac_str, ret_val);
1559 			hw->mac.default_addr_setted = false;
1560 		}
1561 	}
1562 	rte_spinlock_unlock(&hw->lock);
1563 
1564 	return ret;
1565 }
1566 
1567 static int
1568 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1569 {
1570 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1571 	struct hns3_hw *hw = &hns->hw;
1572 	struct rte_ether_addr *addr;
1573 	int err = 0;
1574 	int ret;
1575 	int i;
1576 
1577 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1578 		addr = &hw->data->mac_addrs[i];
1579 		if (!rte_is_valid_assigned_ether_addr(addr))
1580 			continue;
1581 		if (del)
1582 			ret = hns3_remove_uc_addr_common(hw, addr);
1583 		else
1584 			ret = hns3_add_uc_addr_common(hw, addr);
1585 		if (ret) {
1586 			err = ret;
1587 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1588 					      addr);
1589 			hns3_dbg(hw,
1590 				 "Failed to %s mac addr(%s). ret:%d i:%d",
1591 				 del ? "remove" : "restore", mac_str, ret, i);
1592 		}
1593 	}
1594 	return err;
1595 }
1596 
1597 static void
1598 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1599 {
1600 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1601 	uint8_t word_num;
1602 	uint8_t bit_num;
1603 
1604 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1605 		word_num = vfid / 32;
1606 		bit_num = vfid % 32;
1607 		if (clr)
1608 			desc[1].data[word_num] &=
1609 			    rte_cpu_to_le_32(~(1UL << bit_num));
1610 		else
1611 			desc[1].data[word_num] |=
1612 			    rte_cpu_to_le_32(1UL << bit_num);
1613 	} else {
1614 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1615 		bit_num = vfid % 32;
1616 		if (clr)
1617 			desc[2].data[word_num] &=
1618 			    rte_cpu_to_le_32(~(1UL << bit_num));
1619 		else
1620 			desc[2].data[word_num] |=
1621 			    rte_cpu_to_le_32(1UL << bit_num);
1622 	}
1623 }
1624 
1625 static int
1626 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1627 {
1628 	struct hns3_mac_vlan_tbl_entry_cmd req;
1629 	struct hns3_cmd_desc desc[3];
1630 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1631 	uint8_t vf_id;
1632 	int ret;
1633 
1634 	/* Check if mac addr is valid */
1635 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1636 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1637 				      mac_addr);
1638 		hns3_err(hw, "Failed to add mc mac addr, addr(%s) invalid",
1639 			 mac_str);
1640 		return -EINVAL;
1641 	}
1642 
1643 	memset(&req, 0, sizeof(req));
1644 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1645 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1646 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1647 	if (ret) {
1648 		/* This mac addr do not exist, add new entry for it */
1649 		memset(desc[0].data, 0, sizeof(desc[0].data));
1650 		memset(desc[1].data, 0, sizeof(desc[0].data));
1651 		memset(desc[2].data, 0, sizeof(desc[0].data));
1652 	}
1653 
1654 	/*
1655 	 * In current version VF is not supported when PF is driven by DPDK
1656 	 * driver, the PF-related vf_id is 0, just need to configure parameters
1657 	 * for vf_id 0.
1658 	 */
1659 	vf_id = 0;
1660 	hns3_update_desc_vfid(desc, vf_id, false);
1661 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1662 	if (ret) {
1663 		if (ret == -ENOSPC)
1664 			hns3_err(hw, "mc mac vlan table is full");
1665 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1666 				      mac_addr);
1667 		hns3_err(hw, "Failed to add mc mac addr(%s): %d", mac_str, ret);
1668 	}
1669 
1670 	return ret;
1671 }
1672 
1673 static int
1674 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1675 {
1676 	struct hns3_mac_vlan_tbl_entry_cmd req;
1677 	struct hns3_cmd_desc desc[3];
1678 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1679 	uint8_t vf_id;
1680 	int ret;
1681 
1682 	/* Check if mac addr is valid */
1683 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1684 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1685 				      mac_addr);
1686 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1687 			 mac_str);
1688 		return -EINVAL;
1689 	}
1690 
1691 	memset(&req, 0, sizeof(req));
1692 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1693 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1694 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1695 	if (ret == 0) {
1696 		/*
1697 		 * This mac addr exist, remove this handle's VFID for it.
1698 		 * In current version VF is not supported when PF is driven by
1699 		 * DPDK driver, the PF-related vf_id is 0, just need to
1700 		 * configure parameters for vf_id 0.
1701 		 */
1702 		vf_id = 0;
1703 		hns3_update_desc_vfid(desc, vf_id, true);
1704 
1705 		/* All the vfid is zero, so need to delete this entry */
1706 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1707 	} else if (ret == -ENOENT) {
1708 		/* This mac addr doesn't exist. */
1709 		return 0;
1710 	}
1711 
1712 	if (ret) {
1713 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1714 				      mac_addr);
1715 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1716 	}
1717 
1718 	return ret;
1719 }
1720 
1721 static int
1722 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1723 			   struct rte_ether_addr *mc_addr_set,
1724 			   uint32_t nb_mc_addr)
1725 {
1726 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1727 	struct rte_ether_addr *addr;
1728 	uint32_t i;
1729 	uint32_t j;
1730 
1731 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1732 		hns3_err(hw, "Failed to set mc mac addr, nb_mc_addr(%d) "
1733 			 "invalid. valid range: 0~%d",
1734 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1735 		return -EINVAL;
1736 	}
1737 
1738 	/* Check if input mac addresses are valid */
1739 	for (i = 0; i < nb_mc_addr; i++) {
1740 		addr = &mc_addr_set[i];
1741 		if (!rte_is_multicast_ether_addr(addr)) {
1742 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1743 					      addr);
1744 			hns3_err(hw,
1745 				 "Failed to set mc mac addr, addr(%s) invalid.",
1746 				 mac_str);
1747 			return -EINVAL;
1748 		}
1749 
1750 		/* Check if there are duplicate addresses */
1751 		for (j = i + 1; j < nb_mc_addr; j++) {
1752 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1753 				rte_ether_format_addr(mac_str,
1754 						      RTE_ETHER_ADDR_FMT_SIZE,
1755 						      addr);
1756 				hns3_err(hw, "Failed to set mc mac addr, "
1757 					 "addrs invalid. two same addrs(%s).",
1758 					 mac_str);
1759 				return -EINVAL;
1760 			}
1761 		}
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 static void
1768 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
1769 			   struct rte_ether_addr *mc_addr_set,
1770 			   int mc_addr_num,
1771 			   struct rte_ether_addr *reserved_addr_list,
1772 			   int *reserved_addr_num,
1773 			   struct rte_ether_addr *add_addr_list,
1774 			   int *add_addr_num,
1775 			   struct rte_ether_addr *rm_addr_list,
1776 			   int *rm_addr_num)
1777 {
1778 	struct rte_ether_addr *addr;
1779 	int current_addr_num;
1780 	int reserved_num = 0;
1781 	int add_num = 0;
1782 	int rm_num = 0;
1783 	int num;
1784 	int i;
1785 	int j;
1786 	bool same_addr;
1787 
1788 	/* Calculate the mc mac address list that should be removed */
1789 	current_addr_num = hw->mc_addrs_num;
1790 	for (i = 0; i < current_addr_num; i++) {
1791 		addr = &hw->mc_addrs[i];
1792 		same_addr = false;
1793 		for (j = 0; j < mc_addr_num; j++) {
1794 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1795 				same_addr = true;
1796 				break;
1797 			}
1798 		}
1799 
1800 		if (!same_addr) {
1801 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
1802 			rm_num++;
1803 		} else {
1804 			rte_ether_addr_copy(addr,
1805 					    &reserved_addr_list[reserved_num]);
1806 			reserved_num++;
1807 		}
1808 	}
1809 
1810 	/* Calculate the mc mac address list that should be added */
1811 	for (i = 0; i < mc_addr_num; i++) {
1812 		addr = &mc_addr_set[i];
1813 		same_addr = false;
1814 		for (j = 0; j < current_addr_num; j++) {
1815 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
1816 				same_addr = true;
1817 				break;
1818 			}
1819 		}
1820 
1821 		if (!same_addr) {
1822 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
1823 			add_num++;
1824 		}
1825 	}
1826 
1827 	/* Reorder the mc mac address list maintained by driver */
1828 	for (i = 0; i < reserved_num; i++)
1829 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
1830 
1831 	for (i = 0; i < rm_num; i++) {
1832 		num = reserved_num + i;
1833 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
1834 	}
1835 
1836 	*reserved_addr_num = reserved_num;
1837 	*add_addr_num = add_num;
1838 	*rm_addr_num = rm_num;
1839 }
1840 
1841 static int
1842 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
1843 			  struct rte_ether_addr *mc_addr_set,
1844 			  uint32_t nb_mc_addr)
1845 {
1846 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1847 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
1848 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
1849 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
1850 	struct rte_ether_addr *addr;
1851 	int reserved_addr_num;
1852 	int add_addr_num;
1853 	int rm_addr_num;
1854 	int mc_addr_num;
1855 	int num;
1856 	int ret;
1857 	int i;
1858 
1859 	/* Check if input parameters are valid */
1860 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
1861 	if (ret)
1862 		return ret;
1863 
1864 	rte_spinlock_lock(&hw->lock);
1865 
1866 	/*
1867 	 * Calculate the mc mac address lists those should be removed and be
1868 	 * added, Reorder the mc mac address list maintained by driver.
1869 	 */
1870 	mc_addr_num = (int)nb_mc_addr;
1871 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
1872 				   reserved_addr_list, &reserved_addr_num,
1873 				   add_addr_list, &add_addr_num,
1874 				   rm_addr_list, &rm_addr_num);
1875 
1876 	/* Remove mc mac addresses */
1877 	for (i = 0; i < rm_addr_num; i++) {
1878 		num = rm_addr_num - i - 1;
1879 		addr = &rm_addr_list[num];
1880 		ret = hns3_remove_mc_addr(hw, addr);
1881 		if (ret) {
1882 			rte_spinlock_unlock(&hw->lock);
1883 			return ret;
1884 		}
1885 		hw->mc_addrs_num--;
1886 	}
1887 
1888 	/* Add mc mac addresses */
1889 	for (i = 0; i < add_addr_num; i++) {
1890 		addr = &add_addr_list[i];
1891 		ret = hns3_add_mc_addr(hw, addr);
1892 		if (ret) {
1893 			rte_spinlock_unlock(&hw->lock);
1894 			return ret;
1895 		}
1896 
1897 		num = reserved_addr_num + i;
1898 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
1899 		hw->mc_addrs_num++;
1900 	}
1901 	rte_spinlock_unlock(&hw->lock);
1902 
1903 	return 0;
1904 }
1905 
1906 static int
1907 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
1908 {
1909 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1910 	struct hns3_hw *hw = &hns->hw;
1911 	struct rte_ether_addr *addr;
1912 	int err = 0;
1913 	int ret;
1914 	int i;
1915 
1916 	for (i = 0; i < hw->mc_addrs_num; i++) {
1917 		addr = &hw->mc_addrs[i];
1918 		if (!rte_is_multicast_ether_addr(addr))
1919 			continue;
1920 		if (del)
1921 			ret = hns3_remove_mc_addr(hw, addr);
1922 		else
1923 			ret = hns3_add_mc_addr(hw, addr);
1924 		if (ret) {
1925 			err = ret;
1926 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1927 					      addr);
1928 			hns3_dbg(hw, "%s mc mac addr: %s failed",
1929 				 del ? "Remove" : "Restore", mac_str);
1930 		}
1931 	}
1932 	return err;
1933 }
1934 
1935 static int
1936 hns3_check_mq_mode(struct rte_eth_dev *dev)
1937 {
1938 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1939 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1940 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1941 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1942 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
1943 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
1944 	uint8_t num_tc;
1945 	int max_tc = 0;
1946 	int i;
1947 
1948 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
1949 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
1950 
1951 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
1952 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
1953 			 "rx_mq_mode = %d", rx_mq_mode);
1954 		return -EINVAL;
1955 	}
1956 
1957 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
1958 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1959 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
1960 			 "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
1961 			 rx_mq_mode, tx_mq_mode);
1962 		return -EINVAL;
1963 	}
1964 
1965 	if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
1966 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
1967 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
1968 				 dcb_rx_conf->nb_tcs, pf->tc_max);
1969 			return -EINVAL;
1970 		}
1971 
1972 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
1973 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
1974 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
1975 				 "nb_tcs(%d) != %d or %d in rx direction.",
1976 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
1977 			return -EINVAL;
1978 		}
1979 
1980 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
1981 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
1982 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
1983 			return -EINVAL;
1984 		}
1985 
1986 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
1987 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
1988 				hns3_err(hw, "dcb_tc[%d] = %d in rx direction, "
1989 					 "is not equal to one in tx direction.",
1990 					 i, dcb_rx_conf->dcb_tc[i]);
1991 				return -EINVAL;
1992 			}
1993 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
1994 				max_tc = dcb_rx_conf->dcb_tc[i];
1995 		}
1996 
1997 		num_tc = max_tc + 1;
1998 		if (num_tc > dcb_rx_conf->nb_tcs) {
1999 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2000 				 num_tc, dcb_rx_conf->nb_tcs);
2001 			return -EINVAL;
2002 		}
2003 	}
2004 
2005 	return 0;
2006 }
2007 
2008 static int
2009 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2010 {
2011 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2012 
2013 	if (!hns3_dev_dcb_supported(hw)) {
2014 		hns3_err(hw, "this port does not support dcb configurations.");
2015 		return -EOPNOTSUPP;
2016 	}
2017 
2018 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2019 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2020 		return -EOPNOTSUPP;
2021 	}
2022 
2023 	/* Check multiple queue mode */
2024 	return hns3_check_mq_mode(dev);
2025 }
2026 
2027 static int
2028 hns3_bind_ring_with_vector(struct rte_eth_dev *dev, uint8_t vector_id,
2029 			   bool mmap, uint16_t queue_id)
2030 {
2031 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2032 	struct hns3_cmd_desc desc;
2033 	struct hns3_ctrl_vector_chain_cmd *req =
2034 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2035 	enum hns3_cmd_status status;
2036 	enum hns3_opcode_type op;
2037 	uint16_t tqp_type_and_id = 0;
2038 
2039 	op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2040 	hns3_cmd_setup_basic_desc(&desc, op, false);
2041 	req->int_vector_id = vector_id;
2042 
2043 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2044 		       HNS3_RING_TYPE_RX);
2045 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2046 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2047 		       HNS3_RING_GL_RX);
2048 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2049 
2050 	req->int_cause_num = 1;
2051 	status = hns3_cmd_send(hw, &desc, 1);
2052 	if (status) {
2053 		hns3_err(hw, "Map TQP %d fail, vector_id is %d, status is %d.",
2054 			 queue_id, vector_id, status);
2055 		return -EIO;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 static int
2062 hns3_dev_configure(struct rte_eth_dev *dev)
2063 {
2064 	struct hns3_adapter *hns = dev->data->dev_private;
2065 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2066 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2067 	struct hns3_hw *hw = &hns->hw;
2068 	struct hns3_rss_conf *rss_cfg = &hw->rss_info;
2069 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2070 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2071 	struct rte_eth_rss_conf rss_conf;
2072 	uint16_t mtu;
2073 	int ret;
2074 
2075 	/*
2076 	 * Hardware does not support individually enable/disable/reset the Tx or
2077 	 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
2078 	 * and Rx queues at the same time. When the numbers of Tx queues
2079 	 * allocated by upper applications are not equal to the numbers of Rx
2080 	 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
2081 	 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
2082 	 * these fake queues are imperceptible, and can not be used by upper
2083 	 * applications.
2084 	 */
2085 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2086 	if (ret) {
2087 		hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
2088 		return ret;
2089 	}
2090 
2091 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2092 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2093 		hns3_err(hw, "setting link speed/duplex not supported");
2094 		ret = -EINVAL;
2095 		goto cfg_err;
2096 	}
2097 
2098 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2099 		ret = hns3_check_dcb_cfg(dev);
2100 		if (ret)
2101 			goto cfg_err;
2102 	}
2103 
2104 	/* When RSS is not configured, redirect the packet queue 0 */
2105 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2106 		rss_conf = conf->rx_adv_conf.rss_conf;
2107 		if (rss_conf.rss_key == NULL) {
2108 			rss_conf.rss_key = rss_cfg->key;
2109 			rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
2110 		}
2111 
2112 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2113 		if (ret)
2114 			goto cfg_err;
2115 	}
2116 
2117 	/*
2118 	 * If jumbo frames are enabled, MTU needs to be refreshed
2119 	 * according to the maximum RX packet length.
2120 	 */
2121 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2122 		/*
2123 		 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
2124 		 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
2125 		 * can safely assign to "uint16_t" type variable.
2126 		 */
2127 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
2128 		ret = hns3_dev_mtu_set(dev, mtu);
2129 		if (ret)
2130 			goto cfg_err;
2131 		dev->data->mtu = mtu;
2132 	}
2133 
2134 	ret = hns3_dev_configure_vlan(dev);
2135 	if (ret)
2136 		goto cfg_err;
2137 
2138 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2139 
2140 	return 0;
2141 
2142 cfg_err:
2143 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2144 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2145 
2146 	return ret;
2147 }
2148 
2149 static int
2150 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2151 {
2152 	struct hns3_config_max_frm_size_cmd *req;
2153 	struct hns3_cmd_desc desc;
2154 
2155 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2156 
2157 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2158 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2159 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2160 
2161 	return hns3_cmd_send(hw, &desc, 1);
2162 }
2163 
2164 static int
2165 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2166 {
2167 	int ret;
2168 
2169 	ret = hns3_set_mac_mtu(hw, mps);
2170 	if (ret) {
2171 		hns3_err(hw, "Failed to set mtu, ret = %d", ret);
2172 		return ret;
2173 	}
2174 
2175 	ret = hns3_buffer_alloc(hw);
2176 	if (ret) {
2177 		hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
2178 		return ret;
2179 	}
2180 
2181 	return 0;
2182 }
2183 
2184 static int
2185 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2186 {
2187 	struct hns3_adapter *hns = dev->data->dev_private;
2188 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2189 	struct hns3_hw *hw = &hns->hw;
2190 	bool is_jumbo_frame;
2191 	int ret;
2192 
2193 	if (dev->data->dev_started) {
2194 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2195 			 "before configuration", dev->data->port_id);
2196 		return -EBUSY;
2197 	}
2198 
2199 	rte_spinlock_lock(&hw->lock);
2200 	is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
2201 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2202 
2203 	/*
2204 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2205 	 * assign to "uint16_t" type variable.
2206 	 */
2207 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2208 	if (ret) {
2209 		rte_spinlock_unlock(&hw->lock);
2210 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2211 			 dev->data->port_id, mtu, ret);
2212 		return ret;
2213 	}
2214 	hns->pf.mps = (uint16_t)frame_size;
2215 	if (is_jumbo_frame)
2216 		dev->data->dev_conf.rxmode.offloads |=
2217 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2218 	else
2219 		dev->data->dev_conf.rxmode.offloads &=
2220 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2221 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2222 	rte_spinlock_unlock(&hw->lock);
2223 
2224 	return 0;
2225 }
2226 
2227 static int
2228 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2229 {
2230 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2231 	struct hns3_hw *hw = &hns->hw;
2232 
2233 	info->max_rx_queues = hw->tqps_num;
2234 	info->max_tx_queues = hw->tqps_num;
2235 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2236 	info->min_rx_bufsize = hw->rx_buf_len;
2237 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2238 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2239 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2240 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2241 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2242 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2243 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2244 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2245 				 DEV_RX_OFFLOAD_KEEP_CRC |
2246 				 DEV_RX_OFFLOAD_SCATTER |
2247 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2248 				 DEV_RX_OFFLOAD_QINQ_STRIP |
2249 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2250 				 DEV_RX_OFFLOAD_VLAN_EXTEND |
2251 				 DEV_RX_OFFLOAD_JUMBO_FRAME);
2252 	info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2253 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2254 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2255 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2256 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2257 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2258 				 DEV_TX_OFFLOAD_VLAN_INSERT |
2259 				 DEV_TX_OFFLOAD_QINQ_INSERT |
2260 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2261 				 info->tx_queue_offload_capa);
2262 
2263 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2264 		.nb_max = HNS3_MAX_RING_DESC,
2265 		.nb_min = HNS3_MIN_RING_DESC,
2266 		.nb_align = HNS3_ALIGN_RING_DESC,
2267 	};
2268 
2269 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2270 		.nb_max = HNS3_MAX_RING_DESC,
2271 		.nb_min = HNS3_MIN_RING_DESC,
2272 		.nb_align = HNS3_ALIGN_RING_DESC,
2273 	};
2274 
2275 	info->vmdq_queue_num = 0;
2276 
2277 	info->reta_size = HNS3_RSS_IND_TBL_SIZE;
2278 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2279 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2280 
2281 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2282 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2283 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2284 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2285 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2286 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2287 
2288 	return 0;
2289 }
2290 
2291 static int
2292 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2293 		    size_t fw_size)
2294 {
2295 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2296 	struct hns3_hw *hw = &hns->hw;
2297 	int ret;
2298 
2299 	ret = snprintf(fw_version, fw_size, "0x%08x", hw->fw_version);
2300 	ret += 1; /* add the size of '\0' */
2301 	if (fw_size < (uint32_t)ret)
2302 		return ret;
2303 	else
2304 		return 0;
2305 }
2306 
2307 static int
2308 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2309 		     __rte_unused int wait_to_complete)
2310 {
2311 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2312 	struct hns3_hw *hw = &hns->hw;
2313 	struct hns3_mac *mac = &hw->mac;
2314 	struct rte_eth_link new_link;
2315 
2316 	if (!hns3_is_reset_pending(hns)) {
2317 		hns3_update_speed_duplex(eth_dev);
2318 		hns3_update_link_status(hw);
2319 	}
2320 
2321 	memset(&new_link, 0, sizeof(new_link));
2322 	switch (mac->link_speed) {
2323 	case ETH_SPEED_NUM_10M:
2324 	case ETH_SPEED_NUM_100M:
2325 	case ETH_SPEED_NUM_1G:
2326 	case ETH_SPEED_NUM_10G:
2327 	case ETH_SPEED_NUM_25G:
2328 	case ETH_SPEED_NUM_40G:
2329 	case ETH_SPEED_NUM_50G:
2330 	case ETH_SPEED_NUM_100G:
2331 		new_link.link_speed = mac->link_speed;
2332 		break;
2333 	default:
2334 		new_link.link_speed = ETH_SPEED_NUM_100M;
2335 		break;
2336 	}
2337 
2338 	new_link.link_duplex = mac->link_duplex;
2339 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2340 	new_link.link_autoneg =
2341 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2342 
2343 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2344 }
2345 
2346 static int
2347 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2348 {
2349 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2350 	struct hns3_pf *pf = &hns->pf;
2351 
2352 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2353 		return -EINVAL;
2354 
2355 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2356 
2357 	return 0;
2358 }
2359 
2360 static int
2361 hns3_query_function_status(struct hns3_hw *hw)
2362 {
2363 #define HNS3_QUERY_MAX_CNT		10
2364 #define HNS3_QUERY_SLEEP_MSCOEND	1
2365 	struct hns3_func_status_cmd *req;
2366 	struct hns3_cmd_desc desc;
2367 	int timeout = 0;
2368 	int ret;
2369 
2370 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2371 	req = (struct hns3_func_status_cmd *)desc.data;
2372 
2373 	do {
2374 		ret = hns3_cmd_send(hw, &desc, 1);
2375 		if (ret) {
2376 			PMD_INIT_LOG(ERR, "query function status failed %d",
2377 				     ret);
2378 			return ret;
2379 		}
2380 
2381 		/* Check pf reset is done */
2382 		if (req->pf_state)
2383 			break;
2384 
2385 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2386 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2387 
2388 	return hns3_parse_func_status(hw, req);
2389 }
2390 
2391 static int
2392 hns3_query_pf_resource(struct hns3_hw *hw)
2393 {
2394 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2395 	struct hns3_pf *pf = &hns->pf;
2396 	struct hns3_pf_res_cmd *req;
2397 	struct hns3_cmd_desc desc;
2398 	int ret;
2399 
2400 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2401 	ret = hns3_cmd_send(hw, &desc, 1);
2402 	if (ret) {
2403 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2404 		return ret;
2405 	}
2406 
2407 	req = (struct hns3_pf_res_cmd *)desc.data;
2408 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num);
2409 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2410 	hw->tqps_num = RTE_MIN(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2411 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2412 
2413 	if (req->tx_buf_size)
2414 		pf->tx_buf_size =
2415 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2416 	else
2417 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2418 
2419 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2420 
2421 	if (req->dv_buf_size)
2422 		pf->dv_buf_size =
2423 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2424 	else
2425 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2426 
2427 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2428 
2429 	hw->num_msi =
2430 	    hns3_get_field(rte_le_to_cpu_16(req->pf_intr_vector_number),
2431 			   HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2432 
2433 	return 0;
2434 }
2435 
2436 static void
2437 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2438 {
2439 	struct hns3_cfg_param_cmd *req;
2440 	uint64_t mac_addr_tmp_high;
2441 	uint64_t mac_addr_tmp;
2442 	uint32_t i;
2443 
2444 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2445 
2446 	/* get the configuration */
2447 	cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2448 					     HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2449 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2450 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2451 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2452 					   HNS3_CFG_TQP_DESC_N_M,
2453 					   HNS3_CFG_TQP_DESC_N_S);
2454 
2455 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2456 				       HNS3_CFG_PHY_ADDR_M,
2457 				       HNS3_CFG_PHY_ADDR_S);
2458 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2459 					 HNS3_CFG_MEDIA_TP_M,
2460 					 HNS3_CFG_MEDIA_TP_S);
2461 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2462 					 HNS3_CFG_RX_BUF_LEN_M,
2463 					 HNS3_CFG_RX_BUF_LEN_S);
2464 	/* get mac address */
2465 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2466 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2467 					   HNS3_CFG_MAC_ADDR_H_M,
2468 					   HNS3_CFG_MAC_ADDR_H_S);
2469 
2470 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2471 
2472 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2473 					    HNS3_CFG_DEFAULT_SPEED_M,
2474 					    HNS3_CFG_DEFAULT_SPEED_S);
2475 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2476 					   HNS3_CFG_RSS_SIZE_M,
2477 					   HNS3_CFG_RSS_SIZE_S);
2478 
2479 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2480 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2481 
2482 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2483 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2484 
2485 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2486 					    HNS3_CFG_SPEED_ABILITY_M,
2487 					    HNS3_CFG_SPEED_ABILITY_S);
2488 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2489 					HNS3_CFG_UMV_TBL_SPACE_M,
2490 					HNS3_CFG_UMV_TBL_SPACE_S);
2491 	if (!cfg->umv_space)
2492 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2493 }
2494 
2495 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2496  * @hw: pointer to struct hns3_hw
2497  * @hcfg: the config structure to be getted
2498  */
2499 static int
2500 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2501 {
2502 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2503 	struct hns3_cfg_param_cmd *req;
2504 	uint32_t offset;
2505 	uint32_t i;
2506 	int ret;
2507 
2508 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2509 		offset = 0;
2510 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2511 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2512 					  true);
2513 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2514 			       i * HNS3_CFG_RD_LEN_BYTES);
2515 		/* Len should be divided by 4 when send to hardware */
2516 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2517 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2518 		req->offset = rte_cpu_to_le_32(offset);
2519 	}
2520 
2521 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2522 	if (ret) {
2523 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2524 		return ret;
2525 	}
2526 
2527 	hns3_parse_cfg(hcfg, desc);
2528 
2529 	return 0;
2530 }
2531 
2532 static int
2533 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2534 {
2535 	switch (speed_cmd) {
2536 	case HNS3_CFG_SPEED_10M:
2537 		*speed = ETH_SPEED_NUM_10M;
2538 		break;
2539 	case HNS3_CFG_SPEED_100M:
2540 		*speed = ETH_SPEED_NUM_100M;
2541 		break;
2542 	case HNS3_CFG_SPEED_1G:
2543 		*speed = ETH_SPEED_NUM_1G;
2544 		break;
2545 	case HNS3_CFG_SPEED_10G:
2546 		*speed = ETH_SPEED_NUM_10G;
2547 		break;
2548 	case HNS3_CFG_SPEED_25G:
2549 		*speed = ETH_SPEED_NUM_25G;
2550 		break;
2551 	case HNS3_CFG_SPEED_40G:
2552 		*speed = ETH_SPEED_NUM_40G;
2553 		break;
2554 	case HNS3_CFG_SPEED_50G:
2555 		*speed = ETH_SPEED_NUM_50G;
2556 		break;
2557 	case HNS3_CFG_SPEED_100G:
2558 		*speed = ETH_SPEED_NUM_100G;
2559 		break;
2560 	default:
2561 		return -EINVAL;
2562 	}
2563 
2564 	return 0;
2565 }
2566 
2567 static int
2568 hns3_get_board_configuration(struct hns3_hw *hw)
2569 {
2570 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2571 	struct hns3_pf *pf = &hns->pf;
2572 	struct hns3_cfg cfg;
2573 	int ret;
2574 
2575 	ret = hns3_get_board_cfg(hw, &cfg);
2576 	if (ret) {
2577 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2578 		return ret;
2579 	}
2580 
2581 	if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER) {
2582 		PMD_INIT_LOG(ERR, "media type is copper, not supported.");
2583 		return -EOPNOTSUPP;
2584 	}
2585 
2586 	hw->mac.media_type = cfg.media_type;
2587 	hw->rss_size_max = cfg.rss_size_max;
2588 	hw->rx_buf_len = cfg.rx_buf_len;
2589 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2590 	hw->mac.phy_addr = cfg.phy_addr;
2591 	hw->mac.default_addr_setted = false;
2592 	hw->num_tx_desc = cfg.tqp_desc_num;
2593 	hw->num_rx_desc = cfg.tqp_desc_num;
2594 	hw->dcb_info.num_pg = 1;
2595 	hw->dcb_info.hw_pfc_map = 0;
2596 
2597 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2598 	if (ret) {
2599 		PMD_INIT_LOG(ERR, "Get wrong speed %d, ret = %d",
2600 			     cfg.default_speed, ret);
2601 		return ret;
2602 	}
2603 
2604 	pf->tc_max = cfg.tc_num;
2605 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2606 		PMD_INIT_LOG(WARNING,
2607 			     "Get TC num(%u) from flash, set TC num to 1",
2608 			     pf->tc_max);
2609 		pf->tc_max = 1;
2610 	}
2611 
2612 	/* Dev does not support DCB */
2613 	if (!hns3_dev_dcb_supported(hw)) {
2614 		pf->tc_max = 1;
2615 		pf->pfc_max = 0;
2616 	} else
2617 		pf->pfc_max = pf->tc_max;
2618 
2619 	hw->dcb_info.num_tc = 1;
2620 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2621 				     hw->tqps_num / hw->dcb_info.num_tc);
2622 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2623 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2624 
2625 	pf->wanted_umv_size = cfg.umv_space;
2626 
2627 	return ret;
2628 }
2629 
2630 static int
2631 hns3_get_configuration(struct hns3_hw *hw)
2632 {
2633 	int ret;
2634 
2635 	ret = hns3_query_function_status(hw);
2636 	if (ret) {
2637 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2638 		return ret;
2639 	}
2640 
2641 	/* Get pf resource */
2642 	ret = hns3_query_pf_resource(hw);
2643 	if (ret) {
2644 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
2645 		return ret;
2646 	}
2647 
2648 	ret = hns3_get_board_configuration(hw);
2649 	if (ret) {
2650 		PMD_INIT_LOG(ERR, "Failed to get board configuration: %d", ret);
2651 		return ret;
2652 	}
2653 
2654 	return 0;
2655 }
2656 
2657 static int
2658 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
2659 		      uint16_t tqp_vid, bool is_pf)
2660 {
2661 	struct hns3_tqp_map_cmd *req;
2662 	struct hns3_cmd_desc desc;
2663 	int ret;
2664 
2665 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
2666 
2667 	req = (struct hns3_tqp_map_cmd *)desc.data;
2668 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
2669 	req->tqp_vf = func_id;
2670 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
2671 	if (!is_pf)
2672 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
2673 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
2674 
2675 	ret = hns3_cmd_send(hw, &desc, 1);
2676 	if (ret)
2677 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
2678 
2679 	return ret;
2680 }
2681 
2682 static int
2683 hns3_map_tqp(struct hns3_hw *hw)
2684 {
2685 	uint16_t tqps_num = hw->total_tqps_num;
2686 	uint16_t func_id;
2687 	uint16_t tqp_id;
2688 	bool is_pf;
2689 	int num;
2690 	int ret;
2691 	int i;
2692 
2693 	/*
2694 	 * In current version VF is not supported when PF is driven by DPDK
2695 	 * driver, so we allocate tqps to PF as much as possible.
2696 	 */
2697 	tqp_id = 0;
2698 	num = DIV_ROUND_UP(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2699 	for (func_id = 0; func_id < num; func_id++) {
2700 		is_pf = func_id == 0 ? true : false;
2701 		for (i = 0;
2702 		     i < HNS3_MAX_TQP_NUM_PER_FUNC && tqp_id < tqps_num; i++) {
2703 			ret = hns3_map_tqps_to_func(hw, func_id, tqp_id++, i,
2704 						    is_pf);
2705 			if (ret)
2706 				return ret;
2707 		}
2708 	}
2709 
2710 	return 0;
2711 }
2712 
2713 static int
2714 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
2715 {
2716 	struct hns3_config_mac_speed_dup_cmd *req;
2717 	struct hns3_cmd_desc desc;
2718 	int ret;
2719 
2720 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
2721 
2722 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
2723 
2724 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
2725 
2726 	switch (speed) {
2727 	case ETH_SPEED_NUM_10M:
2728 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2729 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
2730 		break;
2731 	case ETH_SPEED_NUM_100M:
2732 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2733 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
2734 		break;
2735 	case ETH_SPEED_NUM_1G:
2736 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2737 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
2738 		break;
2739 	case ETH_SPEED_NUM_10G:
2740 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2741 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
2742 		break;
2743 	case ETH_SPEED_NUM_25G:
2744 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2745 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
2746 		break;
2747 	case ETH_SPEED_NUM_40G:
2748 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2749 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
2750 		break;
2751 	case ETH_SPEED_NUM_50G:
2752 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2753 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
2754 		break;
2755 	case ETH_SPEED_NUM_100G:
2756 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2757 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
2758 		break;
2759 	default:
2760 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
2761 		return -EINVAL;
2762 	}
2763 
2764 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
2765 
2766 	ret = hns3_cmd_send(hw, &desc, 1);
2767 	if (ret)
2768 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
2769 
2770 	return ret;
2771 }
2772 
2773 static int
2774 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
2775 {
2776 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2777 	struct hns3_pf *pf = &hns->pf;
2778 	struct hns3_priv_buf *priv;
2779 	uint32_t i, total_size;
2780 
2781 	total_size = pf->pkt_buf_size;
2782 
2783 	/* alloc tx buffer for all enabled tc */
2784 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2785 		priv = &buf_alloc->priv_buf[i];
2786 
2787 		if (hw->hw_tc_map & BIT(i)) {
2788 			if (total_size < pf->tx_buf_size)
2789 				return -ENOMEM;
2790 
2791 			priv->tx_buf_size = pf->tx_buf_size;
2792 		} else
2793 			priv->tx_buf_size = 0;
2794 
2795 		total_size -= priv->tx_buf_size;
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 static int
2802 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
2803 {
2804 /* TX buffer size is unit by 128 byte */
2805 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
2806 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
2807 	struct hns3_tx_buff_alloc_cmd *req;
2808 	struct hns3_cmd_desc desc;
2809 	uint32_t buf_size;
2810 	uint32_t i;
2811 	int ret;
2812 
2813 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
2814 
2815 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
2816 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2817 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
2818 
2819 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
2820 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
2821 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
2822 	}
2823 
2824 	ret = hns3_cmd_send(hw, &desc, 1);
2825 	if (ret)
2826 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
2827 
2828 	return ret;
2829 }
2830 
2831 static int
2832 hns3_get_tc_num(struct hns3_hw *hw)
2833 {
2834 	int cnt = 0;
2835 	uint8_t i;
2836 
2837 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
2838 		if (hw->hw_tc_map & BIT(i))
2839 			cnt++;
2840 	return cnt;
2841 }
2842 
2843 static uint32_t
2844 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
2845 {
2846 	struct hns3_priv_buf *priv;
2847 	uint32_t rx_priv = 0;
2848 	int i;
2849 
2850 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2851 		priv = &buf_alloc->priv_buf[i];
2852 		if (priv->enable)
2853 			rx_priv += priv->buf_size;
2854 	}
2855 	return rx_priv;
2856 }
2857 
2858 static uint32_t
2859 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
2860 {
2861 	uint32_t total_tx_size = 0;
2862 	uint32_t i;
2863 
2864 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
2865 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
2866 
2867 	return total_tx_size;
2868 }
2869 
2870 /* Get the number of pfc enabled TCs, which have private buffer */
2871 static int
2872 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
2873 {
2874 	struct hns3_priv_buf *priv;
2875 	int cnt = 0;
2876 	uint8_t i;
2877 
2878 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2879 		priv = &buf_alloc->priv_buf[i];
2880 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
2881 			cnt++;
2882 	}
2883 
2884 	return cnt;
2885 }
2886 
2887 /* Get the number of pfc disabled TCs, which have private buffer */
2888 static int
2889 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
2890 			 struct hns3_pkt_buf_alloc *buf_alloc)
2891 {
2892 	struct hns3_priv_buf *priv;
2893 	int cnt = 0;
2894 	uint8_t i;
2895 
2896 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2897 		priv = &buf_alloc->priv_buf[i];
2898 		if (hw->hw_tc_map & BIT(i) &&
2899 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
2900 			cnt++;
2901 	}
2902 
2903 	return cnt;
2904 }
2905 
2906 static bool
2907 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
2908 		  uint32_t rx_all)
2909 {
2910 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
2911 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2912 	struct hns3_pf *pf = &hns->pf;
2913 	uint32_t shared_buf, aligned_mps;
2914 	uint32_t rx_priv;
2915 	uint8_t tc_num;
2916 	uint8_t i;
2917 
2918 	tc_num = hns3_get_tc_num(hw);
2919 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
2920 
2921 	if (hns3_dev_dcb_supported(hw))
2922 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
2923 					pf->dv_buf_size;
2924 	else
2925 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
2926 					+ pf->dv_buf_size;
2927 
2928 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
2929 	shared_std = roundup(max_t(uint32_t, shared_buf_min, shared_buf_tc),
2930 			     HNS3_BUF_SIZE_UNIT);
2931 
2932 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
2933 	if (rx_all < rx_priv + shared_std)
2934 		return false;
2935 
2936 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
2937 	buf_alloc->s_buf.buf_size = shared_buf;
2938 	if (hns3_dev_dcb_supported(hw)) {
2939 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
2940 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
2941 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
2942 				  HNS3_BUF_SIZE_UNIT);
2943 	} else {
2944 		buf_alloc->s_buf.self.high =
2945 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
2946 		buf_alloc->s_buf.self.low = aligned_mps;
2947 	}
2948 
2949 	if (hns3_dev_dcb_supported(hw)) {
2950 		hi_thrd = shared_buf - pf->dv_buf_size;
2951 
2952 		if (tc_num <= NEED_RESERVE_TC_NUM)
2953 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
2954 					/ BUF_MAX_PERCENT;
2955 
2956 		if (tc_num)
2957 			hi_thrd = hi_thrd / tc_num;
2958 
2959 		hi_thrd = max_t(uint32_t, hi_thrd,
2960 				HNS3_BUF_MUL_BY * aligned_mps);
2961 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
2962 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
2963 	} else {
2964 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
2965 		lo_thrd = aligned_mps;
2966 	}
2967 
2968 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2969 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
2970 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
2971 	}
2972 
2973 	return true;
2974 }
2975 
2976 static bool
2977 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
2978 		     struct hns3_pkt_buf_alloc *buf_alloc)
2979 {
2980 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2981 	struct hns3_pf *pf = &hns->pf;
2982 	struct hns3_priv_buf *priv;
2983 	uint32_t aligned_mps;
2984 	uint32_t rx_all;
2985 	uint8_t i;
2986 
2987 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
2988 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
2989 
2990 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2991 		priv = &buf_alloc->priv_buf[i];
2992 
2993 		priv->enable = 0;
2994 		priv->wl.low = 0;
2995 		priv->wl.high = 0;
2996 		priv->buf_size = 0;
2997 
2998 		if (!(hw->hw_tc_map & BIT(i)))
2999 			continue;
3000 
3001 		priv->enable = 1;
3002 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3003 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3004 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3005 						HNS3_BUF_SIZE_UNIT);
3006 		} else {
3007 			priv->wl.low = 0;
3008 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3009 					aligned_mps;
3010 		}
3011 
3012 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3013 	}
3014 
3015 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3016 }
3017 
3018 static bool
3019 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3020 			     struct hns3_pkt_buf_alloc *buf_alloc)
3021 {
3022 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3023 	struct hns3_pf *pf = &hns->pf;
3024 	struct hns3_priv_buf *priv;
3025 	int no_pfc_priv_num;
3026 	uint32_t rx_all;
3027 	uint8_t mask;
3028 	int i;
3029 
3030 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3031 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3032 
3033 	/* let the last to be cleared first */
3034 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3035 		priv = &buf_alloc->priv_buf[i];
3036 		mask = BIT((uint8_t)i);
3037 
3038 		if (hw->hw_tc_map & mask &&
3039 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3040 			/* Clear the no pfc TC private buffer */
3041 			priv->wl.low = 0;
3042 			priv->wl.high = 0;
3043 			priv->buf_size = 0;
3044 			priv->enable = 0;
3045 			no_pfc_priv_num--;
3046 		}
3047 
3048 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3049 		    no_pfc_priv_num == 0)
3050 			break;
3051 	}
3052 
3053 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3054 }
3055 
3056 static bool
3057 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3058 			   struct hns3_pkt_buf_alloc *buf_alloc)
3059 {
3060 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3061 	struct hns3_pf *pf = &hns->pf;
3062 	struct hns3_priv_buf *priv;
3063 	uint32_t rx_all;
3064 	int pfc_priv_num;
3065 	uint8_t mask;
3066 	int i;
3067 
3068 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3069 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3070 
3071 	/* let the last to be cleared first */
3072 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3073 		priv = &buf_alloc->priv_buf[i];
3074 		mask = BIT((uint8_t)i);
3075 
3076 		if (hw->hw_tc_map & mask &&
3077 		    hw->dcb_info.hw_pfc_map & mask) {
3078 			/* Reduce the number of pfc TC with private buffer */
3079 			priv->wl.low = 0;
3080 			priv->enable = 0;
3081 			priv->wl.high = 0;
3082 			priv->buf_size = 0;
3083 			pfc_priv_num--;
3084 		}
3085 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3086 		    pfc_priv_num == 0)
3087 			break;
3088 	}
3089 
3090 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3091 }
3092 
3093 static bool
3094 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3095 			  struct hns3_pkt_buf_alloc *buf_alloc)
3096 {
3097 #define COMPENSATE_BUFFER	0x3C00
3098 #define COMPENSATE_HALF_MPS_NUM	5
3099 #define PRIV_WL_GAP		0x1800
3100 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3101 	struct hns3_pf *pf = &hns->pf;
3102 	uint32_t tc_num = hns3_get_tc_num(hw);
3103 	uint32_t half_mps = pf->mps >> 1;
3104 	struct hns3_priv_buf *priv;
3105 	uint32_t min_rx_priv;
3106 	uint32_t rx_priv;
3107 	uint8_t i;
3108 
3109 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3110 	if (tc_num)
3111 		rx_priv = rx_priv / tc_num;
3112 
3113 	if (tc_num <= NEED_RESERVE_TC_NUM)
3114 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3115 
3116 	/*
3117 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3118 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3119 	 * buffer if rx_priv is greater than min_rx_priv.
3120 	 */
3121 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3122 			COMPENSATE_HALF_MPS_NUM * half_mps;
3123 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3124 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3125 
3126 	if (rx_priv < min_rx_priv)
3127 		return false;
3128 
3129 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3130 		priv = &buf_alloc->priv_buf[i];
3131 
3132 		priv->enable = 0;
3133 		priv->wl.low = 0;
3134 		priv->wl.high = 0;
3135 		priv->buf_size = 0;
3136 
3137 		if (!(hw->hw_tc_map & BIT(i)))
3138 			continue;
3139 
3140 		priv->enable = 1;
3141 		priv->buf_size = rx_priv;
3142 		priv->wl.high = rx_priv - pf->dv_buf_size;
3143 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3144 	}
3145 
3146 	buf_alloc->s_buf.buf_size = 0;
3147 
3148 	return true;
3149 }
3150 
3151 /*
3152  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3153  * @hw: pointer to struct hns3_hw
3154  * @buf_alloc: pointer to buffer calculation data
3155  * @return: 0: calculate sucessful, negative: fail
3156  */
3157 static int
3158 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3159 {
3160 	/* When DCB is not supported, rx private buffer is not allocated. */
3161 	if (!hns3_dev_dcb_supported(hw)) {
3162 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3163 		struct hns3_pf *pf = &hns->pf;
3164 		uint32_t rx_all = pf->pkt_buf_size;
3165 
3166 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3167 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3168 			return -ENOMEM;
3169 
3170 		return 0;
3171 	}
3172 
3173 	/*
3174 	 * Try to allocate privated packet buffer for all TCs without share
3175 	 * buffer.
3176 	 */
3177 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3178 		return 0;
3179 
3180 	/*
3181 	 * Try to allocate privated packet buffer for all TCs with share
3182 	 * buffer.
3183 	 */
3184 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3185 		return 0;
3186 
3187 	/*
3188 	 * For different application scenes, the enabled port number, TC number
3189 	 * and no_drop TC number are different. In order to obtain the better
3190 	 * performance, software could allocate the buffer size and configure
3191 	 * the waterline by tring to decrease the private buffer size according
3192 	 * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3193 	 * enabled tc.
3194 	 */
3195 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3196 		return 0;
3197 
3198 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3199 		return 0;
3200 
3201 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3202 		return 0;
3203 
3204 	return -ENOMEM;
3205 }
3206 
3207 static int
3208 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3209 {
3210 	struct hns3_rx_priv_buff_cmd *req;
3211 	struct hns3_cmd_desc desc;
3212 	uint32_t buf_size;
3213 	int ret;
3214 	int i;
3215 
3216 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3217 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3218 
3219 	/* Alloc private buffer TCs */
3220 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3221 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3222 
3223 		req->buf_num[i] =
3224 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3225 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3226 	}
3227 
3228 	buf_size = buf_alloc->s_buf.buf_size;
3229 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3230 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3231 
3232 	ret = hns3_cmd_send(hw, &desc, 1);
3233 	if (ret)
3234 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3235 
3236 	return ret;
3237 }
3238 
3239 static int
3240 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3241 {
3242 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3243 	struct hns3_rx_priv_wl_buf *req;
3244 	struct hns3_priv_buf *priv;
3245 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3246 	int i, j;
3247 	int ret;
3248 
3249 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3250 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3251 					  false);
3252 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3253 
3254 		/* The first descriptor set the NEXT bit to 1 */
3255 		if (i == 0)
3256 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3257 		else
3258 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3259 
3260 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3261 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3262 
3263 			priv = &buf_alloc->priv_buf[idx];
3264 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3265 							HNS3_BUF_UNIT_S);
3266 			req->tc_wl[j].high |=
3267 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3268 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3269 							HNS3_BUF_UNIT_S);
3270 			req->tc_wl[j].low |=
3271 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3272 		}
3273 	}
3274 
3275 	/* Send 2 descriptor at one time */
3276 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3277 	if (ret)
3278 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3279 			     ret);
3280 	return ret;
3281 }
3282 
3283 static int
3284 hns3_common_thrd_config(struct hns3_hw *hw,
3285 			struct hns3_pkt_buf_alloc *buf_alloc)
3286 {
3287 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3288 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3289 	struct hns3_rx_com_thrd *req;
3290 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3291 	struct hns3_tc_thrd *tc;
3292 	int tc_idx;
3293 	int i, j;
3294 	int ret;
3295 
3296 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3297 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3298 					  false);
3299 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3300 
3301 		/* The first descriptor set the NEXT bit to 1 */
3302 		if (i == 0)
3303 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3304 		else
3305 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3306 
3307 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3308 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3309 			tc = &s_buf->tc_thrd[tc_idx];
3310 
3311 			req->com_thrd[j].high =
3312 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3313 			req->com_thrd[j].high |=
3314 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3315 			req->com_thrd[j].low =
3316 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3317 			req->com_thrd[j].low |=
3318 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3319 		}
3320 	}
3321 
3322 	/* Send 2 descriptors at one time */
3323 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3324 	if (ret)
3325 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3326 
3327 	return ret;
3328 }
3329 
3330 static int
3331 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3332 {
3333 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3334 	struct hns3_rx_com_wl *req;
3335 	struct hns3_cmd_desc desc;
3336 	int ret;
3337 
3338 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3339 
3340 	req = (struct hns3_rx_com_wl *)desc.data;
3341 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3342 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3343 
3344 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3345 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3346 
3347 	ret = hns3_cmd_send(hw, &desc, 1);
3348 	if (ret)
3349 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3350 
3351 	return ret;
3352 }
3353 
3354 int
3355 hns3_buffer_alloc(struct hns3_hw *hw)
3356 {
3357 	struct hns3_pkt_buf_alloc pkt_buf;
3358 	int ret;
3359 
3360 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3361 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3362 	if (ret) {
3363 		PMD_INIT_LOG(ERR,
3364 			     "could not calc tx buffer size for all TCs %d",
3365 			     ret);
3366 		return ret;
3367 	}
3368 
3369 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3370 	if (ret) {
3371 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3372 		return ret;
3373 	}
3374 
3375 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3376 	if (ret) {
3377 		PMD_INIT_LOG(ERR,
3378 			     "could not calc rx priv buffer size for all TCs %d",
3379 			     ret);
3380 		return ret;
3381 	}
3382 
3383 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3384 	if (ret) {
3385 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3386 		return ret;
3387 	}
3388 
3389 	if (hns3_dev_dcb_supported(hw)) {
3390 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3391 		if (ret) {
3392 			PMD_INIT_LOG(ERR,
3393 				     "could not configure rx private waterline %d",
3394 				     ret);
3395 			return ret;
3396 		}
3397 
3398 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3399 		if (ret) {
3400 			PMD_INIT_LOG(ERR,
3401 				     "could not configure common threshold %d",
3402 				     ret);
3403 			return ret;
3404 		}
3405 	}
3406 
3407 	ret = hns3_common_wl_config(hw, &pkt_buf);
3408 	if (ret)
3409 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3410 			     ret);
3411 
3412 	return ret;
3413 }
3414 
3415 static int
3416 hns3_mac_init(struct hns3_hw *hw)
3417 {
3418 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3419 	struct hns3_mac *mac = &hw->mac;
3420 	struct hns3_pf *pf = &hns->pf;
3421 	int ret;
3422 
3423 	pf->support_sfp_query = true;
3424 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
3425 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3426 	if (ret) {
3427 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3428 		return ret;
3429 	}
3430 
3431 	mac->link_status = ETH_LINK_DOWN;
3432 
3433 	return hns3_config_mtu(hw, pf->mps);
3434 }
3435 
3436 static int
3437 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3438 {
3439 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3440 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3441 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3442 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3443 	int return_status;
3444 
3445 	if (cmdq_resp) {
3446 		PMD_INIT_LOG(ERR,
3447 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
3448 			     cmdq_resp);
3449 		return -EIO;
3450 	}
3451 
3452 	switch (resp_code) {
3453 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3454 	case HNS3_ETHERTYPE_ALREADY_ADD:
3455 		return_status = 0;
3456 		break;
3457 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3458 		PMD_INIT_LOG(ERR,
3459 			     "add mac ethertype failed for manager table overflow.");
3460 		return_status = -EIO;
3461 		break;
3462 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3463 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3464 		return_status = -EIO;
3465 		break;
3466 	default:
3467 		PMD_INIT_LOG(ERR,
3468 			     "add mac ethertype failed for undefined, code=%d.",
3469 			     resp_code);
3470 		return_status = -EIO;
3471 	}
3472 
3473 	return return_status;
3474 }
3475 
3476 static int
3477 hns3_add_mgr_tbl(struct hns3_hw *hw,
3478 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3479 {
3480 	struct hns3_cmd_desc desc;
3481 	uint8_t resp_code;
3482 	uint16_t retval;
3483 	int ret;
3484 
3485 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3486 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3487 
3488 	ret = hns3_cmd_send(hw, &desc, 1);
3489 	if (ret) {
3490 		PMD_INIT_LOG(ERR,
3491 			     "add mac ethertype failed for cmd_send, ret =%d.",
3492 			     ret);
3493 		return ret;
3494 	}
3495 
3496 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3497 	retval = rte_le_to_cpu_16(desc.retval);
3498 
3499 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3500 }
3501 
3502 static void
3503 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3504 		     int *table_item_num)
3505 {
3506 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3507 
3508 	/*
3509 	 * In current version, we add one item in management table as below:
3510 	 * 0x0180C200000E -- LLDP MC address
3511 	 */
3512 	tbl = mgr_table;
3513 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3514 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3515 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3516 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3517 	tbl->i_port_bitmap = 0x1;
3518 	*table_item_num = 1;
3519 }
3520 
3521 static int
3522 hns3_init_mgr_tbl(struct hns3_hw *hw)
3523 {
3524 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3525 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3526 	int table_item_num;
3527 	int ret;
3528 	int i;
3529 
3530 	memset(mgr_table, 0, sizeof(mgr_table));
3531 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3532 	for (i = 0; i < table_item_num; i++) {
3533 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3534 		if (ret) {
3535 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3536 				     ret);
3537 			return ret;
3538 		}
3539 	}
3540 
3541 	return 0;
3542 }
3543 
3544 static void
3545 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3546 			bool en_mc, bool en_bc, int vport_id)
3547 {
3548 	if (!param)
3549 		return;
3550 
3551 	memset(param, 0, sizeof(struct hns3_promisc_param));
3552 	if (en_uc)
3553 		param->enable = HNS3_PROMISC_EN_UC;
3554 	if (en_mc)
3555 		param->enable |= HNS3_PROMISC_EN_MC;
3556 	if (en_bc)
3557 		param->enable |= HNS3_PROMISC_EN_BC;
3558 	param->vf_id = vport_id;
3559 }
3560 
3561 static int
3562 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3563 {
3564 	struct hns3_promisc_cfg_cmd *req;
3565 	struct hns3_cmd_desc desc;
3566 	int ret;
3567 
3568 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3569 
3570 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3571 	req->vf_id = param->vf_id;
3572 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3573 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3574 
3575 	ret = hns3_cmd_send(hw, &desc, 1);
3576 	if (ret)
3577 		PMD_INIT_LOG(ERR, "Set promisc mode fail, status is %d", ret);
3578 
3579 	return ret;
3580 }
3581 
3582 static int
3583 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3584 {
3585 	struct hns3_promisc_param param;
3586 	bool en_bc_pmc = true;
3587 	uint8_t vf_id;
3588 	int ret;
3589 
3590 	/*
3591 	 * In current version VF is not supported when PF is driven by DPDK
3592 	 * driver, the PF-related vf_id is 0, just need to configure parameters
3593 	 * for vf_id 0.
3594 	 */
3595 	vf_id = 0;
3596 
3597 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3598 	ret = hns3_cmd_set_promisc_mode(hw, &param);
3599 	if (ret)
3600 		return ret;
3601 
3602 	return 0;
3603 }
3604 
3605 static int
3606 hns3_clear_all_vfs_promisc_mode(struct hns3_hw *hw)
3607 {
3608 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3609 	struct hns3_pf *pf = &hns->pf;
3610 	struct hns3_promisc_param param;
3611 	uint16_t func_id;
3612 	int ret;
3613 
3614 	/* func_id 0 is denoted PF, the VFs start from 1 */
3615 	for (func_id = 1; func_id < pf->func_num; func_id++) {
3616 		hns3_promisc_param_init(&param, false, false, false, func_id);
3617 		ret = hns3_cmd_set_promisc_mode(hw, &param);
3618 		if (ret)
3619 			return ret;
3620 	}
3621 
3622 	return 0;
3623 }
3624 
3625 static int
3626 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
3627 {
3628 	struct hns3_adapter *hns = dev->data->dev_private;
3629 	struct hns3_hw *hw = &hns->hw;
3630 	bool en_mc_pmc = (dev->data->all_multicast == 1) ? true : false;
3631 	int ret;
3632 
3633 	rte_spinlock_lock(&hw->lock);
3634 	ret = hns3_set_promisc_mode(hw, true, en_mc_pmc);
3635 	rte_spinlock_unlock(&hw->lock);
3636 	if (ret)
3637 		hns3_err(hw, "Failed to enable promiscuous mode: %d", ret);
3638 
3639 	return ret;
3640 }
3641 
3642 static int
3643 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
3644 {
3645 	struct hns3_adapter *hns = dev->data->dev_private;
3646 	struct hns3_hw *hw = &hns->hw;
3647 	bool en_mc_pmc = (dev->data->all_multicast == 1) ? true : false;
3648 	int ret;
3649 
3650 	/* If now in all_multicast mode, must remain in all_multicast mode. */
3651 	rte_spinlock_lock(&hw->lock);
3652 	ret = hns3_set_promisc_mode(hw, false, en_mc_pmc);
3653 	rte_spinlock_unlock(&hw->lock);
3654 	if (ret)
3655 		hns3_err(hw, "Failed to disable promiscuous mode: %d", ret);
3656 
3657 	return ret;
3658 }
3659 
3660 static int
3661 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
3662 {
3663 	struct hns3_adapter *hns = dev->data->dev_private;
3664 	struct hns3_hw *hw = &hns->hw;
3665 	bool en_uc_pmc = (dev->data->promiscuous == 1) ? true : false;
3666 	int ret;
3667 
3668 	rte_spinlock_lock(&hw->lock);
3669 	ret = hns3_set_promisc_mode(hw, en_uc_pmc, true);
3670 	rte_spinlock_unlock(&hw->lock);
3671 	if (ret)
3672 		hns3_err(hw, "Failed to enable allmulticast mode: %d", ret);
3673 
3674 	return ret;
3675 }
3676 
3677 static int
3678 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
3679 {
3680 	struct hns3_adapter *hns = dev->data->dev_private;
3681 	struct hns3_hw *hw = &hns->hw;
3682 	bool en_uc_pmc = (dev->data->promiscuous == 1) ? true : false;
3683 	int ret;
3684 
3685 	/* If now in promiscuous mode, must remain in all_multicast mode. */
3686 	if (dev->data->promiscuous == 1)
3687 		return 0;
3688 
3689 	rte_spinlock_lock(&hw->lock);
3690 	ret = hns3_set_promisc_mode(hw, en_uc_pmc, false);
3691 	rte_spinlock_unlock(&hw->lock);
3692 	if (ret)
3693 		hns3_err(hw, "Failed to disable allmulticast mode: %d", ret);
3694 
3695 	return ret;
3696 }
3697 
3698 static int
3699 hns3_dev_promisc_restore(struct hns3_adapter *hns)
3700 {
3701 	struct hns3_hw *hw = &hns->hw;
3702 	bool en_mc_pmc;
3703 	bool en_uc_pmc;
3704 
3705 	en_uc_pmc = (hw->data->promiscuous == 1) ? true : false;
3706 	en_mc_pmc = (hw->data->all_multicast == 1) ? true : false;
3707 
3708 	return hns3_set_promisc_mode(hw, en_uc_pmc, en_mc_pmc);
3709 }
3710 
3711 static int
3712 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
3713 {
3714 	struct hns3_sfp_speed_cmd *resp;
3715 	struct hns3_cmd_desc desc;
3716 	int ret;
3717 
3718 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
3719 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
3720 	ret = hns3_cmd_send(hw, &desc, 1);
3721 	if (ret == -EOPNOTSUPP) {
3722 		hns3_err(hw, "IMP do not support get SFP speed %d", ret);
3723 		return ret;
3724 	} else if (ret) {
3725 		hns3_err(hw, "get sfp speed failed %d", ret);
3726 		return ret;
3727 	}
3728 
3729 	*speed = resp->sfp_speed;
3730 
3731 	return 0;
3732 }
3733 
3734 static uint8_t
3735 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
3736 {
3737 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
3738 		duplex = ETH_LINK_FULL_DUPLEX;
3739 
3740 	return duplex;
3741 }
3742 
3743 static int
3744 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3745 {
3746 	struct hns3_mac *mac = &hw->mac;
3747 	int ret;
3748 
3749 	duplex = hns3_check_speed_dup(duplex, speed);
3750 	if (mac->link_speed == speed && mac->link_duplex == duplex)
3751 		return 0;
3752 
3753 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
3754 	if (ret)
3755 		return ret;
3756 
3757 	mac->link_speed = speed;
3758 	mac->link_duplex = duplex;
3759 
3760 	return 0;
3761 }
3762 
3763 static int
3764 hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
3765 {
3766 	struct hns3_adapter *hns = eth_dev->data->dev_private;
3767 	struct hns3_hw *hw = &hns->hw;
3768 	struct hns3_pf *pf = &hns->pf;
3769 	uint32_t speed;
3770 	int ret;
3771 
3772 	/* If IMP do not support get SFP/qSFP speed, return directly */
3773 	if (!pf->support_sfp_query)
3774 		return 0;
3775 
3776 	ret = hns3_get_sfp_speed(hw, &speed);
3777 	if (ret == -EOPNOTSUPP) {
3778 		pf->support_sfp_query = false;
3779 		return ret;
3780 	} else if (ret)
3781 		return ret;
3782 
3783 	if (speed == ETH_SPEED_NUM_NONE)
3784 		return 0; /* do nothing if no SFP */
3785 
3786 	/* Config full duplex for SFP */
3787 	return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
3788 }
3789 
3790 static int
3791 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
3792 {
3793 	struct hns3_config_mac_mode_cmd *req;
3794 	struct hns3_cmd_desc desc;
3795 	uint32_t loop_en = 0;
3796 	uint8_t val = 0;
3797 	int ret;
3798 
3799 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
3800 
3801 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
3802 	if (enable)
3803 		val = 1;
3804 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
3805 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
3806 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
3807 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
3808 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
3809 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
3810 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
3811 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
3812 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
3813 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
3814 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
3815 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
3816 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
3817 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
3818 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
3819 
3820 	ret = hns3_cmd_send(hw, &desc, 1);
3821 	if (ret)
3822 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
3823 
3824 	return ret;
3825 }
3826 
3827 static int
3828 hns3_get_mac_link_status(struct hns3_hw *hw)
3829 {
3830 	struct hns3_link_status_cmd *req;
3831 	struct hns3_cmd_desc desc;
3832 	int link_status;
3833 	int ret;
3834 
3835 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
3836 	ret = hns3_cmd_send(hw, &desc, 1);
3837 	if (ret) {
3838 		hns3_err(hw, "get link status cmd failed %d", ret);
3839 		return ETH_LINK_DOWN;
3840 	}
3841 
3842 	req = (struct hns3_link_status_cmd *)desc.data;
3843 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
3844 
3845 	return !!link_status;
3846 }
3847 
3848 void
3849 hns3_update_link_status(struct hns3_hw *hw)
3850 {
3851 	int state;
3852 
3853 	state = hns3_get_mac_link_status(hw);
3854 	if (state != hw->mac.link_status) {
3855 		hw->mac.link_status = state;
3856 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
3857 	}
3858 }
3859 
3860 static void
3861 hns3_service_handler(void *param)
3862 {
3863 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
3864 	struct hns3_adapter *hns = eth_dev->data->dev_private;
3865 	struct hns3_hw *hw = &hns->hw;
3866 
3867 	if (!hns3_is_reset_pending(hns)) {
3868 		hns3_update_speed_duplex(eth_dev);
3869 		hns3_update_link_status(hw);
3870 	} else
3871 		hns3_warn(hw, "Cancel the query when reset is pending");
3872 
3873 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
3874 }
3875 
3876 static int
3877 hns3_init_hardware(struct hns3_adapter *hns)
3878 {
3879 	struct hns3_hw *hw = &hns->hw;
3880 	int ret;
3881 
3882 	ret = hns3_map_tqp(hw);
3883 	if (ret) {
3884 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
3885 		return ret;
3886 	}
3887 
3888 	ret = hns3_init_umv_space(hw);
3889 	if (ret) {
3890 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
3891 		return ret;
3892 	}
3893 
3894 	ret = hns3_mac_init(hw);
3895 	if (ret) {
3896 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
3897 		goto err_mac_init;
3898 	}
3899 
3900 	ret = hns3_init_mgr_tbl(hw);
3901 	if (ret) {
3902 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
3903 		goto err_mac_init;
3904 	}
3905 
3906 	ret = hns3_set_promisc_mode(hw, false, false);
3907 	if (ret) {
3908 		PMD_INIT_LOG(ERR, "Failed to set promisc mode: %d", ret);
3909 		goto err_mac_init;
3910 	}
3911 
3912 	ret = hns3_clear_all_vfs_promisc_mode(hw);
3913 	if (ret) {
3914 		PMD_INIT_LOG(ERR, "Failed to clear all vfs promisc mode: %d",
3915 			     ret);
3916 		goto err_mac_init;
3917 	}
3918 
3919 	ret = hns3_init_vlan_config(hns);
3920 	if (ret) {
3921 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
3922 		goto err_mac_init;
3923 	}
3924 
3925 	ret = hns3_dcb_init(hw);
3926 	if (ret) {
3927 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
3928 		goto err_mac_init;
3929 	}
3930 
3931 	ret = hns3_init_fd_config(hns);
3932 	if (ret) {
3933 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
3934 		goto err_mac_init;
3935 	}
3936 
3937 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
3938 	if (ret) {
3939 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
3940 		goto err_mac_init;
3941 	}
3942 
3943 	ret = hns3_config_gro(hw, false);
3944 	if (ret) {
3945 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
3946 		goto err_mac_init;
3947 	}
3948 	return 0;
3949 
3950 err_mac_init:
3951 	hns3_uninit_umv_space(hw);
3952 	return ret;
3953 }
3954 
3955 static int
3956 hns3_init_pf(struct rte_eth_dev *eth_dev)
3957 {
3958 	struct rte_device *dev = eth_dev->device;
3959 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
3960 	struct hns3_adapter *hns = eth_dev->data->dev_private;
3961 	struct hns3_hw *hw = &hns->hw;
3962 	int ret;
3963 
3964 	PMD_INIT_FUNC_TRACE();
3965 
3966 	/* Get hardware io base address from pcie BAR2 IO space */
3967 	hw->io_base = pci_dev->mem_resource[2].addr;
3968 
3969 	/* Firmware command queue initialize */
3970 	ret = hns3_cmd_init_queue(hw);
3971 	if (ret) {
3972 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
3973 		goto err_cmd_init_queue;
3974 	}
3975 
3976 	hns3_clear_all_event_cause(hw);
3977 
3978 	/* Firmware command initialize */
3979 	ret = hns3_cmd_init(hw);
3980 	if (ret) {
3981 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
3982 		goto err_cmd_init;
3983 	}
3984 
3985 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
3986 					 hns3_interrupt_handler,
3987 					 eth_dev);
3988 	if (ret) {
3989 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
3990 		goto err_intr_callback_register;
3991 	}
3992 
3993 	/* Enable interrupt */
3994 	rte_intr_enable(&pci_dev->intr_handle);
3995 	hns3_pf_enable_irq0(hw);
3996 
3997 	/* Get configuration */
3998 	ret = hns3_get_configuration(hw);
3999 	if (ret) {
4000 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4001 		goto err_get_config;
4002 	}
4003 
4004 	ret = hns3_init_hardware(hns);
4005 	if (ret) {
4006 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4007 		goto err_get_config;
4008 	}
4009 
4010 	/* Initialize flow director filter list & hash */
4011 	ret = hns3_fdir_filter_init(hns);
4012 	if (ret) {
4013 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4014 		goto err_hw_init;
4015 	}
4016 
4017 	hns3_set_default_rss_args(hw);
4018 
4019 	ret = hns3_enable_hw_error_intr(hns, true);
4020 	if (ret) {
4021 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4022 			     ret);
4023 		goto err_fdir;
4024 	}
4025 
4026 	return 0;
4027 
4028 err_fdir:
4029 	hns3_fdir_filter_uninit(hns);
4030 err_hw_init:
4031 	hns3_uninit_umv_space(hw);
4032 
4033 err_get_config:
4034 	hns3_pf_disable_irq0(hw);
4035 	rte_intr_disable(&pci_dev->intr_handle);
4036 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4037 			     eth_dev);
4038 
4039 err_intr_callback_register:
4040 	hns3_cmd_uninit(hw);
4041 
4042 err_cmd_init:
4043 	hns3_cmd_destroy_queue(hw);
4044 
4045 err_cmd_init_queue:
4046 	hw->io_base = NULL;
4047 
4048 	return ret;
4049 }
4050 
4051 static void
4052 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4053 {
4054 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4055 	struct rte_device *dev = eth_dev->device;
4056 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4057 	struct hns3_hw *hw = &hns->hw;
4058 
4059 	PMD_INIT_FUNC_TRACE();
4060 
4061 	hns3_enable_hw_error_intr(hns, false);
4062 	hns3_rss_uninit(hns);
4063 	hns3_fdir_filter_uninit(hns);
4064 	hns3_uninit_umv_space(hw);
4065 	hns3_pf_disable_irq0(hw);
4066 	rte_intr_disable(&pci_dev->intr_handle);
4067 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4068 			     eth_dev);
4069 	hns3_cmd_uninit(hw);
4070 	hns3_cmd_destroy_queue(hw);
4071 	hw->io_base = NULL;
4072 }
4073 
4074 static int
4075 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
4076 {
4077 	struct hns3_hw *hw = &hns->hw;
4078 	int ret;
4079 
4080 	ret = hns3_dcb_cfg_update(hns);
4081 	if (ret)
4082 		return ret;
4083 
4084 	/* Enable queues */
4085 	ret = hns3_start_queues(hns, reset_queue);
4086 	if (ret) {
4087 		PMD_INIT_LOG(ERR, "Failed to start queues: %d", ret);
4088 		return ret;
4089 	}
4090 
4091 	/* Enable MAC */
4092 	ret = hns3_cfg_mac_mode(hw, true);
4093 	if (ret) {
4094 		PMD_INIT_LOG(ERR, "Failed to enable MAC: %d", ret);
4095 		goto err_config_mac_mode;
4096 	}
4097 	return 0;
4098 
4099 err_config_mac_mode:
4100 	hns3_stop_queues(hns, true);
4101 	return ret;
4102 }
4103 
4104 static int
4105 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
4106 {
4107 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4108 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4109 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4110 	uint32_t intr_vector;
4111 	uint8_t base = 0;
4112 	uint8_t vec = 0;
4113 	uint16_t q_id;
4114 	int ret;
4115 
4116 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4117 		return 0;
4118 
4119 	/* disable uio/vfio intr/eventfd mapping */
4120 	rte_intr_disable(intr_handle);
4121 
4122 	/* check and configure queue intr-vector mapping */
4123 	if (rte_intr_cap_multiple(intr_handle) ||
4124 	    !RTE_ETH_DEV_SRIOV(dev).active) {
4125 		intr_vector = hw->used_rx_queues;
4126 		/* creates event fd for each intr vector when MSIX is used */
4127 		if (rte_intr_efd_enable(intr_handle, intr_vector))
4128 			return -EINVAL;
4129 	}
4130 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
4131 		intr_handle->intr_vec =
4132 			rte_zmalloc("intr_vec",
4133 				    hw->used_rx_queues * sizeof(int), 0);
4134 		if (intr_handle->intr_vec == NULL) {
4135 			hns3_err(hw, "Failed to allocate %d rx_queues"
4136 				     " intr_vec", hw->used_rx_queues);
4137 			ret = -ENOMEM;
4138 			goto alloc_intr_vec_error;
4139 		}
4140 	}
4141 
4142 	if (rte_intr_allow_others(intr_handle)) {
4143 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4144 		base = RTE_INTR_VEC_RXTX_OFFSET;
4145 	}
4146 	if (rte_intr_dp_is_en(intr_handle)) {
4147 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4148 			ret = hns3_bind_ring_with_vector(dev, vec, true, q_id);
4149 			if (ret)
4150 				goto bind_vector_error;
4151 			intr_handle->intr_vec[q_id] = vec;
4152 			if (vec < base + intr_handle->nb_efd - 1)
4153 				vec++;
4154 		}
4155 	}
4156 	rte_intr_enable(intr_handle);
4157 	return 0;
4158 
4159 bind_vector_error:
4160 	rte_intr_efd_disable(intr_handle);
4161 	if (intr_handle->intr_vec) {
4162 		free(intr_handle->intr_vec);
4163 		intr_handle->intr_vec = NULL;
4164 	}
4165 	return ret;
4166 alloc_intr_vec_error:
4167 	rte_intr_efd_disable(intr_handle);
4168 	return ret;
4169 }
4170 
4171 static int
4172 hns3_dev_start(struct rte_eth_dev *dev)
4173 {
4174 	struct hns3_adapter *hns = dev->data->dev_private;
4175 	struct hns3_hw *hw = &hns->hw;
4176 	int ret;
4177 
4178 	PMD_INIT_FUNC_TRACE();
4179 	if (rte_atomic16_read(&hw->reset.resetting))
4180 		return -EBUSY;
4181 
4182 	rte_spinlock_lock(&hw->lock);
4183 	hw->adapter_state = HNS3_NIC_STARTING;
4184 
4185 	ret = hns3_do_start(hns, true);
4186 	if (ret) {
4187 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4188 		rte_spinlock_unlock(&hw->lock);
4189 		return ret;
4190 	}
4191 
4192 	hw->adapter_state = HNS3_NIC_STARTED;
4193 	rte_spinlock_unlock(&hw->lock);
4194 
4195 	ret = hns3_map_rx_interrupt(dev);
4196 	if (ret)
4197 		return ret;
4198 	hns3_set_rxtx_function(dev);
4199 	hns3_mp_req_start_rxtx(dev);
4200 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
4201 
4202 	hns3_info(hw, "hns3 dev start successful!");
4203 	return 0;
4204 }
4205 
4206 static int
4207 hns3_do_stop(struct hns3_adapter *hns)
4208 {
4209 	struct hns3_hw *hw = &hns->hw;
4210 	bool reset_queue;
4211 	int ret;
4212 
4213 	ret = hns3_cfg_mac_mode(hw, false);
4214 	if (ret)
4215 		return ret;
4216 	hw->mac.link_status = ETH_LINK_DOWN;
4217 
4218 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
4219 		hns3_configure_all_mac_addr(hns, true);
4220 		reset_queue = true;
4221 	} else
4222 		reset_queue = false;
4223 	hw->mac.default_addr_setted = false;
4224 	return hns3_stop_queues(hns, reset_queue);
4225 }
4226 
4227 static void
4228 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
4229 {
4230 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4231 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4232 	struct hns3_adapter *hns = dev->data->dev_private;
4233 	struct hns3_hw *hw = &hns->hw;
4234 	uint8_t base = 0;
4235 	uint8_t vec = 0;
4236 	uint16_t q_id;
4237 
4238 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4239 		return;
4240 
4241 	/* unmap the ring with vector */
4242 	if (rte_intr_allow_others(intr_handle)) {
4243 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4244 		base = RTE_INTR_VEC_RXTX_OFFSET;
4245 	}
4246 	if (rte_intr_dp_is_en(intr_handle)) {
4247 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4248 			(void)hns3_bind_ring_with_vector(dev, vec, false, q_id);
4249 			if (vec < base + intr_handle->nb_efd - 1)
4250 				vec++;
4251 		}
4252 	}
4253 	/* Clean datapath event and queue/vec mapping */
4254 	rte_intr_efd_disable(intr_handle);
4255 	if (intr_handle->intr_vec) {
4256 		rte_free(intr_handle->intr_vec);
4257 		intr_handle->intr_vec = NULL;
4258 	}
4259 }
4260 
4261 static void
4262 hns3_dev_stop(struct rte_eth_dev *dev)
4263 {
4264 	struct hns3_adapter *hns = dev->data->dev_private;
4265 	struct hns3_hw *hw = &hns->hw;
4266 
4267 	PMD_INIT_FUNC_TRACE();
4268 
4269 	hw->adapter_state = HNS3_NIC_STOPPING;
4270 	hns3_set_rxtx_function(dev);
4271 	rte_wmb();
4272 	/* Disable datapath on secondary process. */
4273 	hns3_mp_req_stop_rxtx(dev);
4274 	/* Prevent crashes when queues are still in use. */
4275 	rte_delay_ms(hw->tqps_num);
4276 
4277 	rte_spinlock_lock(&hw->lock);
4278 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
4279 		hns3_do_stop(hns);
4280 		hns3_dev_release_mbufs(hns);
4281 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4282 	}
4283 	rte_eal_alarm_cancel(hns3_service_handler, dev);
4284 	rte_spinlock_unlock(&hw->lock);
4285 	hns3_unmap_rx_interrupt(dev);
4286 }
4287 
4288 static void
4289 hns3_dev_close(struct rte_eth_dev *eth_dev)
4290 {
4291 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4292 	struct hns3_hw *hw = &hns->hw;
4293 
4294 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
4295 		rte_free(eth_dev->process_private);
4296 		eth_dev->process_private = NULL;
4297 		return;
4298 	}
4299 
4300 	if (hw->adapter_state == HNS3_NIC_STARTED)
4301 		hns3_dev_stop(eth_dev);
4302 
4303 	hw->adapter_state = HNS3_NIC_CLOSING;
4304 	hns3_reset_abort(hns);
4305 	hw->adapter_state = HNS3_NIC_CLOSED;
4306 
4307 	hns3_configure_all_mc_mac_addr(hns, true);
4308 	hns3_remove_all_vlan_table(hns);
4309 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
4310 	hns3_uninit_pf(eth_dev);
4311 	hns3_free_all_queues(eth_dev);
4312 	rte_free(hw->reset.wait_data);
4313 	rte_free(eth_dev->process_private);
4314 	eth_dev->process_private = NULL;
4315 	hns3_mp_uninit_primary();
4316 	hns3_warn(hw, "Close port %d finished", hw->data->port_id);
4317 }
4318 
4319 static int
4320 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4321 {
4322 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4323 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4324 
4325 	fc_conf->pause_time = pf->pause_time;
4326 
4327 	/* return fc current mode */
4328 	switch (hw->current_mode) {
4329 	case HNS3_FC_FULL:
4330 		fc_conf->mode = RTE_FC_FULL;
4331 		break;
4332 	case HNS3_FC_TX_PAUSE:
4333 		fc_conf->mode = RTE_FC_TX_PAUSE;
4334 		break;
4335 	case HNS3_FC_RX_PAUSE:
4336 		fc_conf->mode = RTE_FC_RX_PAUSE;
4337 		break;
4338 	case HNS3_FC_NONE:
4339 	default:
4340 		fc_conf->mode = RTE_FC_NONE;
4341 		break;
4342 	}
4343 
4344 	return 0;
4345 }
4346 
4347 static void
4348 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
4349 {
4350 	switch (mode) {
4351 	case RTE_FC_NONE:
4352 		hw->requested_mode = HNS3_FC_NONE;
4353 		break;
4354 	case RTE_FC_RX_PAUSE:
4355 		hw->requested_mode = HNS3_FC_RX_PAUSE;
4356 		break;
4357 	case RTE_FC_TX_PAUSE:
4358 		hw->requested_mode = HNS3_FC_TX_PAUSE;
4359 		break;
4360 	case RTE_FC_FULL:
4361 		hw->requested_mode = HNS3_FC_FULL;
4362 		break;
4363 	default:
4364 		hw->requested_mode = HNS3_FC_NONE;
4365 		hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
4366 			  "configured to RTE_FC_NONE", mode);
4367 		break;
4368 	}
4369 }
4370 
4371 static int
4372 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4373 {
4374 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4375 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4376 	int ret;
4377 
4378 	if (fc_conf->high_water || fc_conf->low_water ||
4379 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
4380 		hns3_err(hw, "Unsupported flow control settings specified, "
4381 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4382 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4383 			 fc_conf->high_water, fc_conf->low_water,
4384 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
4385 		return -EINVAL;
4386 	}
4387 	if (fc_conf->autoneg) {
4388 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4389 		return -EINVAL;
4390 	}
4391 	if (!fc_conf->pause_time) {
4392 		hns3_err(hw, "Invalid pause time %d setting.",
4393 			 fc_conf->pause_time);
4394 		return -EINVAL;
4395 	}
4396 
4397 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4398 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
4399 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
4400 			 "current_fc_status = %d", hw->current_fc_status);
4401 		return -EOPNOTSUPP;
4402 	}
4403 
4404 	hns3_get_fc_mode(hw, fc_conf->mode);
4405 	if (hw->requested_mode == hw->current_mode &&
4406 	    pf->pause_time == fc_conf->pause_time)
4407 		return 0;
4408 
4409 	rte_spinlock_lock(&hw->lock);
4410 	ret = hns3_fc_enable(dev, fc_conf);
4411 	rte_spinlock_unlock(&hw->lock);
4412 
4413 	return ret;
4414 }
4415 
4416 static int
4417 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
4418 			    struct rte_eth_pfc_conf *pfc_conf)
4419 {
4420 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4421 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4422 	uint8_t priority;
4423 	int ret;
4424 
4425 	if (!hns3_dev_dcb_supported(hw)) {
4426 		hns3_err(hw, "This port does not support dcb configurations.");
4427 		return -EOPNOTSUPP;
4428 	}
4429 
4430 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
4431 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
4432 		hns3_err(hw, "Unsupported flow control settings specified, "
4433 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4434 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4435 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
4436 			 pfc_conf->fc.send_xon,
4437 			 pfc_conf->fc.mac_ctrl_frame_fwd);
4438 		return -EINVAL;
4439 	}
4440 	if (pfc_conf->fc.autoneg) {
4441 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4442 		return -EINVAL;
4443 	}
4444 	if (pfc_conf->fc.pause_time == 0) {
4445 		hns3_err(hw, "Invalid pause time %d setting.",
4446 			 pfc_conf->fc.pause_time);
4447 		return -EINVAL;
4448 	}
4449 
4450 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4451 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
4452 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
4453 			     "current_fc_status = %d", hw->current_fc_status);
4454 		return -EOPNOTSUPP;
4455 	}
4456 
4457 	priority = pfc_conf->priority;
4458 	hns3_get_fc_mode(hw, pfc_conf->fc.mode);
4459 	if (hw->dcb_info.pfc_en & BIT(priority) &&
4460 	    hw->requested_mode == hw->current_mode &&
4461 	    pfc_conf->fc.pause_time == pf->pause_time)
4462 		return 0;
4463 
4464 	rte_spinlock_lock(&hw->lock);
4465 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
4466 	rte_spinlock_unlock(&hw->lock);
4467 
4468 	return ret;
4469 }
4470 
4471 static int
4472 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
4473 {
4474 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4475 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4476 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
4477 	int i;
4478 
4479 	rte_spinlock_lock(&hw->lock);
4480 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
4481 		dcb_info->nb_tcs = pf->local_max_tc;
4482 	else
4483 		dcb_info->nb_tcs = 1;
4484 
4485 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
4486 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
4487 	for (i = 0; i < dcb_info->nb_tcs; i++)
4488 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
4489 
4490 	for (i = 0; i < hw->num_tc; i++) {
4491 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
4492 		dcb_info->tc_queue.tc_txq[0][i].base =
4493 						hw->tc_queue[i].tqp_offset;
4494 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
4495 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
4496 						hw->tc_queue[i].tqp_count;
4497 	}
4498 	rte_spinlock_unlock(&hw->lock);
4499 
4500 	return 0;
4501 }
4502 
4503 static int
4504 hns3_reinit_dev(struct hns3_adapter *hns)
4505 {
4506 	struct hns3_hw *hw = &hns->hw;
4507 	int ret;
4508 
4509 	ret = hns3_cmd_init(hw);
4510 	if (ret) {
4511 		hns3_err(hw, "Failed to init cmd: %d", ret);
4512 		return ret;
4513 	}
4514 
4515 	ret = hns3_reset_all_queues(hns);
4516 	if (ret) {
4517 		hns3_err(hw, "Failed to reset all queues: %d", ret);
4518 		goto err_init;
4519 	}
4520 
4521 	ret = hns3_init_hardware(hns);
4522 	if (ret) {
4523 		hns3_err(hw, "Failed to init hardware: %d", ret);
4524 		goto err_init;
4525 	}
4526 
4527 	ret = hns3_enable_hw_error_intr(hns, true);
4528 	if (ret) {
4529 		hns3_err(hw, "fail to enable hw error interrupts: %d",
4530 			     ret);
4531 		goto err_mac_init;
4532 	}
4533 	hns3_info(hw, "Reset done, driver initialization finished.");
4534 
4535 	return 0;
4536 
4537 err_mac_init:
4538 	hns3_uninit_umv_space(hw);
4539 err_init:
4540 	hns3_cmd_uninit(hw);
4541 
4542 	return ret;
4543 }
4544 
4545 static bool
4546 is_pf_reset_done(struct hns3_hw *hw)
4547 {
4548 	uint32_t val, reg, reg_bit;
4549 
4550 	switch (hw->reset.level) {
4551 	case HNS3_IMP_RESET:
4552 		reg = HNS3_GLOBAL_RESET_REG;
4553 		reg_bit = HNS3_IMP_RESET_BIT;
4554 		break;
4555 	case HNS3_GLOBAL_RESET:
4556 		reg = HNS3_GLOBAL_RESET_REG;
4557 		reg_bit = HNS3_GLOBAL_RESET_BIT;
4558 		break;
4559 	case HNS3_FUNC_RESET:
4560 		reg = HNS3_FUN_RST_ING;
4561 		reg_bit = HNS3_FUN_RST_ING_B;
4562 		break;
4563 	case HNS3_FLR_RESET:
4564 	default:
4565 		hns3_err(hw, "Wait for unsupported reset level: %d",
4566 			 hw->reset.level);
4567 		return true;
4568 	}
4569 	val = hns3_read_dev(hw, reg);
4570 	if (hns3_get_bit(val, reg_bit))
4571 		return false;
4572 	else
4573 		return true;
4574 }
4575 
4576 bool
4577 hns3_is_reset_pending(struct hns3_adapter *hns)
4578 {
4579 	struct hns3_hw *hw = &hns->hw;
4580 	enum hns3_reset_level reset;
4581 
4582 	hns3_check_event_cause(hns, NULL);
4583 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
4584 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
4585 		hns3_warn(hw, "High level reset %d is pending", reset);
4586 		return true;
4587 	}
4588 	reset = hns3_get_reset_level(hns, &hw->reset.request);
4589 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
4590 		hns3_warn(hw, "High level reset %d is request", reset);
4591 		return true;
4592 	}
4593 	return false;
4594 }
4595 
4596 static int
4597 hns3_wait_hardware_ready(struct hns3_adapter *hns)
4598 {
4599 	struct hns3_hw *hw = &hns->hw;
4600 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
4601 	struct timeval tv;
4602 
4603 	if (wait_data->result == HNS3_WAIT_SUCCESS)
4604 		return 0;
4605 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
4606 		gettimeofday(&tv, NULL);
4607 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
4608 			  tv.tv_sec, tv.tv_usec);
4609 		return -ETIME;
4610 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
4611 		return -EAGAIN;
4612 
4613 	wait_data->hns = hns;
4614 	wait_data->check_completion = is_pf_reset_done;
4615 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
4616 				      HNS3_RESET_WAIT_MS + get_timeofday_ms();
4617 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
4618 	wait_data->count = HNS3_RESET_WAIT_CNT;
4619 	wait_data->result = HNS3_WAIT_REQUEST;
4620 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
4621 	return -EAGAIN;
4622 }
4623 
4624 static int
4625 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
4626 {
4627 	struct hns3_cmd_desc desc;
4628 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
4629 
4630 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
4631 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
4632 	req->fun_reset_vfid = func_id;
4633 
4634 	return hns3_cmd_send(hw, &desc, 1);
4635 }
4636 
4637 static int
4638 hns3_imp_reset_cmd(struct hns3_hw *hw)
4639 {
4640 	struct hns3_cmd_desc desc;
4641 
4642 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
4643 	desc.data[0] = 0xeedd;
4644 
4645 	return hns3_cmd_send(hw, &desc, 1);
4646 }
4647 
4648 static void
4649 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
4650 {
4651 	struct hns3_hw *hw = &hns->hw;
4652 	struct timeval tv;
4653 	uint32_t val;
4654 
4655 	gettimeofday(&tv, NULL);
4656 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
4657 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
4658 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
4659 			  tv.tv_sec, tv.tv_usec);
4660 		return;
4661 	}
4662 
4663 	switch (reset_level) {
4664 	case HNS3_IMP_RESET:
4665 		hns3_imp_reset_cmd(hw);
4666 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
4667 			  tv.tv_sec, tv.tv_usec);
4668 		break;
4669 	case HNS3_GLOBAL_RESET:
4670 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
4671 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
4672 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
4673 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
4674 			  tv.tv_sec, tv.tv_usec);
4675 		break;
4676 	case HNS3_FUNC_RESET:
4677 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
4678 			  tv.tv_sec, tv.tv_usec);
4679 		/* schedule again to check later */
4680 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
4681 		hns3_schedule_reset(hns);
4682 		break;
4683 	default:
4684 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
4685 		return;
4686 	}
4687 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
4688 }
4689 
4690 static enum hns3_reset_level
4691 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
4692 {
4693 	struct hns3_hw *hw = &hns->hw;
4694 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
4695 
4696 	/* Return the highest priority reset level amongst all */
4697 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
4698 		reset_level = HNS3_IMP_RESET;
4699 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
4700 		reset_level = HNS3_GLOBAL_RESET;
4701 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
4702 		reset_level = HNS3_FUNC_RESET;
4703 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
4704 		reset_level = HNS3_FLR_RESET;
4705 
4706 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
4707 		return HNS3_NONE_RESET;
4708 
4709 	return reset_level;
4710 }
4711 
4712 static int
4713 hns3_prepare_reset(struct hns3_adapter *hns)
4714 {
4715 	struct hns3_hw *hw = &hns->hw;
4716 	uint32_t reg_val;
4717 	int ret;
4718 
4719 	switch (hw->reset.level) {
4720 	case HNS3_FUNC_RESET:
4721 		ret = hns3_func_reset_cmd(hw, 0);
4722 		if (ret)
4723 			return ret;
4724 
4725 		/*
4726 		 * After performaning pf reset, it is not necessary to do the
4727 		 * mailbox handling or send any command to firmware, because
4728 		 * any mailbox handling or command to firmware is only valid
4729 		 * after hns3_cmd_init is called.
4730 		 */
4731 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
4732 		hw->reset.stats.request_cnt++;
4733 		break;
4734 	case HNS3_IMP_RESET:
4735 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4736 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
4737 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
4738 		break;
4739 	default:
4740 		break;
4741 	}
4742 	return 0;
4743 }
4744 
4745 static int
4746 hns3_set_rst_done(struct hns3_hw *hw)
4747 {
4748 	struct hns3_pf_rst_done_cmd *req;
4749 	struct hns3_cmd_desc desc;
4750 
4751 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
4752 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
4753 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
4754 	return hns3_cmd_send(hw, &desc, 1);
4755 }
4756 
4757 static int
4758 hns3_stop_service(struct hns3_adapter *hns)
4759 {
4760 	struct hns3_hw *hw = &hns->hw;
4761 	struct rte_eth_dev *eth_dev;
4762 
4763 	eth_dev = &rte_eth_devices[hw->data->port_id];
4764 	if (hw->adapter_state == HNS3_NIC_STARTED)
4765 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
4766 	hw->mac.link_status = ETH_LINK_DOWN;
4767 
4768 	hns3_set_rxtx_function(eth_dev);
4769 	rte_wmb();
4770 	/* Disable datapath on secondary process. */
4771 	hns3_mp_req_stop_rxtx(eth_dev);
4772 	rte_delay_ms(hw->tqps_num);
4773 
4774 	rte_spinlock_lock(&hw->lock);
4775 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
4776 	    hw->adapter_state == HNS3_NIC_STOPPING) {
4777 		hns3_do_stop(hns);
4778 		hw->reset.mbuf_deferred_free = true;
4779 	} else
4780 		hw->reset.mbuf_deferred_free = false;
4781 
4782 	/*
4783 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
4784 	 * from table space. Hence, for function reset software intervention is
4785 	 * required to delete the entries
4786 	 */
4787 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
4788 		hns3_configure_all_mc_mac_addr(hns, true);
4789 	rte_spinlock_unlock(&hw->lock);
4790 
4791 	return 0;
4792 }
4793 
4794 static int
4795 hns3_start_service(struct hns3_adapter *hns)
4796 {
4797 	struct hns3_hw *hw = &hns->hw;
4798 	struct rte_eth_dev *eth_dev;
4799 
4800 	if (hw->reset.level == HNS3_IMP_RESET ||
4801 	    hw->reset.level == HNS3_GLOBAL_RESET)
4802 		hns3_set_rst_done(hw);
4803 	eth_dev = &rte_eth_devices[hw->data->port_id];
4804 	hns3_set_rxtx_function(eth_dev);
4805 	hns3_mp_req_start_rxtx(eth_dev);
4806 	if (hw->adapter_state == HNS3_NIC_STARTED)
4807 		hns3_service_handler(eth_dev);
4808 
4809 	return 0;
4810 }
4811 
4812 static int
4813 hns3_restore_conf(struct hns3_adapter *hns)
4814 {
4815 	struct hns3_hw *hw = &hns->hw;
4816 	int ret;
4817 
4818 	ret = hns3_configure_all_mac_addr(hns, false);
4819 	if (ret)
4820 		return ret;
4821 
4822 	ret = hns3_configure_all_mc_mac_addr(hns, false);
4823 	if (ret)
4824 		goto err_mc_mac;
4825 
4826 	ret = hns3_dev_promisc_restore(hns);
4827 	if (ret)
4828 		goto err_promisc;
4829 
4830 	ret = hns3_restore_vlan_table(hns);
4831 	if (ret)
4832 		goto err_promisc;
4833 
4834 	ret = hns3_restore_vlan_conf(hns);
4835 	if (ret)
4836 		goto err_promisc;
4837 
4838 	ret = hns3_restore_all_fdir_filter(hns);
4839 	if (ret)
4840 		goto err_promisc;
4841 
4842 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
4843 		ret = hns3_do_start(hns, false);
4844 		if (ret)
4845 			goto err_promisc;
4846 		hns3_info(hw, "hns3 dev restart successful!");
4847 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
4848 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4849 	return 0;
4850 
4851 err_promisc:
4852 	hns3_configure_all_mc_mac_addr(hns, true);
4853 err_mc_mac:
4854 	hns3_configure_all_mac_addr(hns, true);
4855 	return ret;
4856 }
4857 
4858 static void
4859 hns3_reset_service(void *param)
4860 {
4861 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
4862 	struct hns3_hw *hw = &hns->hw;
4863 	enum hns3_reset_level reset_level;
4864 	struct timeval tv_delta;
4865 	struct timeval tv_start;
4866 	struct timeval tv;
4867 	uint64_t msec;
4868 	int ret;
4869 
4870 	/*
4871 	 * The interrupt is not triggered within the delay time.
4872 	 * The interrupt may have been lost. It is necessary to handle
4873 	 * the interrupt to recover from the error.
4874 	 */
4875 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
4876 		rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
4877 		hns3_err(hw, "Handling interrupts in delayed tasks");
4878 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
4879 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
4880 		if (reset_level == HNS3_NONE_RESET) {
4881 			hns3_err(hw, "No reset level is set, try IMP reset");
4882 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
4883 		}
4884 	}
4885 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
4886 
4887 	/*
4888 	 * Check if there is any ongoing reset in the hardware. This status can
4889 	 * be checked from reset_pending. If there is then, we need to wait for
4890 	 * hardware to complete reset.
4891 	 *    a. If we are able to figure out in reasonable time that hardware
4892 	 *       has fully resetted then, we can proceed with driver, client
4893 	 *       reset.
4894 	 *    b. else, we can come back later to check this status so re-sched
4895 	 *       now.
4896 	 */
4897 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
4898 	if (reset_level != HNS3_NONE_RESET) {
4899 		gettimeofday(&tv_start, NULL);
4900 		ret = hns3_reset_process(hns, reset_level);
4901 		gettimeofday(&tv, NULL);
4902 		timersub(&tv, &tv_start, &tv_delta);
4903 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
4904 		       tv_delta.tv_usec / USEC_PER_MSEC;
4905 		if (msec > HNS3_RESET_PROCESS_MS)
4906 			hns3_err(hw, "%d handle long time delta %" PRIx64
4907 				     " ms time=%ld.%.6ld",
4908 				 hw->reset.level, msec,
4909 				 tv.tv_sec, tv.tv_usec);
4910 		if (ret == -EAGAIN)
4911 			return;
4912 	}
4913 
4914 	/* Check if we got any *new* reset requests to be honored */
4915 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
4916 	if (reset_level != HNS3_NONE_RESET)
4917 		hns3_msix_process(hns, reset_level);
4918 }
4919 
4920 static const struct eth_dev_ops hns3_eth_dev_ops = {
4921 	.dev_start          = hns3_dev_start,
4922 	.dev_stop           = hns3_dev_stop,
4923 	.dev_close          = hns3_dev_close,
4924 	.promiscuous_enable = hns3_dev_promiscuous_enable,
4925 	.promiscuous_disable = hns3_dev_promiscuous_disable,
4926 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
4927 	.allmulticast_disable = hns3_dev_allmulticast_disable,
4928 	.mtu_set            = hns3_dev_mtu_set,
4929 	.stats_get          = hns3_stats_get,
4930 	.stats_reset        = hns3_stats_reset,
4931 	.xstats_get         = hns3_dev_xstats_get,
4932 	.xstats_get_names   = hns3_dev_xstats_get_names,
4933 	.xstats_reset       = hns3_dev_xstats_reset,
4934 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
4935 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
4936 	.dev_infos_get          = hns3_dev_infos_get,
4937 	.fw_version_get         = hns3_fw_version_get,
4938 	.rx_queue_setup         = hns3_rx_queue_setup,
4939 	.tx_queue_setup         = hns3_tx_queue_setup,
4940 	.rx_queue_release       = hns3_dev_rx_queue_release,
4941 	.tx_queue_release       = hns3_dev_tx_queue_release,
4942 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
4943 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
4944 	.dev_configure          = hns3_dev_configure,
4945 	.flow_ctrl_get          = hns3_flow_ctrl_get,
4946 	.flow_ctrl_set          = hns3_flow_ctrl_set,
4947 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
4948 	.mac_addr_add           = hns3_add_mac_addr,
4949 	.mac_addr_remove        = hns3_remove_mac_addr,
4950 	.mac_addr_set           = hns3_set_default_mac_addr,
4951 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
4952 	.link_update            = hns3_dev_link_update,
4953 	.rss_hash_update        = hns3_dev_rss_hash_update,
4954 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
4955 	.reta_update            = hns3_dev_rss_reta_update,
4956 	.reta_query             = hns3_dev_rss_reta_query,
4957 	.filter_ctrl            = hns3_dev_filter_ctrl,
4958 	.vlan_filter_set        = hns3_vlan_filter_set,
4959 	.vlan_tpid_set          = hns3_vlan_tpid_set,
4960 	.vlan_offload_set       = hns3_vlan_offload_set,
4961 	.vlan_pvid_set          = hns3_vlan_pvid_set,
4962 	.get_reg                = hns3_get_regs,
4963 	.get_dcb_info           = hns3_get_dcb_info,
4964 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
4965 };
4966 
4967 static const struct hns3_reset_ops hns3_reset_ops = {
4968 	.reset_service       = hns3_reset_service,
4969 	.stop_service        = hns3_stop_service,
4970 	.prepare_reset       = hns3_prepare_reset,
4971 	.wait_hardware_ready = hns3_wait_hardware_ready,
4972 	.reinit_dev          = hns3_reinit_dev,
4973 	.restore_conf	     = hns3_restore_conf,
4974 	.start_service       = hns3_start_service,
4975 };
4976 
4977 static int
4978 hns3_dev_init(struct rte_eth_dev *eth_dev)
4979 {
4980 	struct rte_device *dev = eth_dev->device;
4981 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4982 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4983 	struct hns3_hw *hw = &hns->hw;
4984 	uint16_t device_id = pci_dev->id.device_id;
4985 	int ret;
4986 
4987 	PMD_INIT_FUNC_TRACE();
4988 	eth_dev->process_private = (struct hns3_process_private *)
4989 	    rte_zmalloc_socket("hns3_filter_list",
4990 			       sizeof(struct hns3_process_private),
4991 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
4992 	if (eth_dev->process_private == NULL) {
4993 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
4994 		return -ENOMEM;
4995 	}
4996 	/* initialize flow filter lists */
4997 	hns3_filterlist_init(eth_dev);
4998 
4999 	hns3_set_rxtx_function(eth_dev);
5000 	eth_dev->dev_ops = &hns3_eth_dev_ops;
5001 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5002 		hns3_mp_init_secondary();
5003 		hw->secondary_cnt++;
5004 		return 0;
5005 	}
5006 
5007 	hns3_mp_init_primary();
5008 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
5009 
5010 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
5011 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
5012 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC)
5013 		hns3_set_bit(hw->flag, HNS3_DEV_SUPPORT_DCB_B, 1);
5014 
5015 	hns->is_vf = false;
5016 	hw->data = eth_dev->data;
5017 
5018 	/*
5019 	 * Set default max packet size according to the mtu
5020 	 * default vale in DPDK frame.
5021 	 */
5022 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
5023 
5024 	ret = hns3_reset_init(hw);
5025 	if (ret)
5026 		goto err_init_reset;
5027 	hw->reset.ops = &hns3_reset_ops;
5028 
5029 	ret = hns3_init_pf(eth_dev);
5030 	if (ret) {
5031 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
5032 		goto err_init_pf;
5033 	}
5034 
5035 	/* Allocate memory for storing MAC addresses */
5036 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
5037 					       sizeof(struct rte_ether_addr) *
5038 					       HNS3_UC_MACADDR_NUM, 0);
5039 	if (eth_dev->data->mac_addrs == NULL) {
5040 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
5041 			     "to store MAC addresses",
5042 			     sizeof(struct rte_ether_addr) *
5043 			     HNS3_UC_MACADDR_NUM);
5044 		ret = -ENOMEM;
5045 		goto err_rte_zmalloc;
5046 	}
5047 
5048 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
5049 			    &eth_dev->data->mac_addrs[0]);
5050 
5051 	hw->adapter_state = HNS3_NIC_INITIALIZED;
5052 	/*
5053 	 * Pass the information to the rte_eth_dev_close() that it should also
5054 	 * release the private port resources.
5055 	 */
5056 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
5057 
5058 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
5059 		hns3_err(hw, "Reschedule reset service after dev_init");
5060 		hns3_schedule_reset(hns);
5061 	} else {
5062 		/* IMP will wait ready flag before reset */
5063 		hns3_notify_reset_ready(hw, false);
5064 	}
5065 
5066 	hns3_info(hw, "hns3 dev initialization successful!");
5067 	return 0;
5068 
5069 err_rte_zmalloc:
5070 	hns3_uninit_pf(eth_dev);
5071 
5072 err_init_pf:
5073 	rte_free(hw->reset.wait_data);
5074 err_init_reset:
5075 	eth_dev->dev_ops = NULL;
5076 	eth_dev->rx_pkt_burst = NULL;
5077 	eth_dev->tx_pkt_burst = NULL;
5078 	eth_dev->tx_pkt_prepare = NULL;
5079 	rte_free(eth_dev->process_private);
5080 	eth_dev->process_private = NULL;
5081 	return ret;
5082 }
5083 
5084 static int
5085 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
5086 {
5087 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5088 	struct hns3_hw *hw = &hns->hw;
5089 
5090 	PMD_INIT_FUNC_TRACE();
5091 
5092 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5093 		return -EPERM;
5094 
5095 	eth_dev->dev_ops = NULL;
5096 	eth_dev->rx_pkt_burst = NULL;
5097 	eth_dev->tx_pkt_burst = NULL;
5098 	eth_dev->tx_pkt_prepare = NULL;
5099 	if (hw->adapter_state < HNS3_NIC_CLOSING)
5100 		hns3_dev_close(eth_dev);
5101 
5102 	hw->adapter_state = HNS3_NIC_REMOVED;
5103 	return 0;
5104 }
5105 
5106 static int
5107 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
5108 		   struct rte_pci_device *pci_dev)
5109 {
5110 	return rte_eth_dev_pci_generic_probe(pci_dev,
5111 					     sizeof(struct hns3_adapter),
5112 					     hns3_dev_init);
5113 }
5114 
5115 static int
5116 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
5117 {
5118 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
5119 }
5120 
5121 static const struct rte_pci_id pci_id_hns3_map[] = {
5122 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
5123 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
5124 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
5125 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
5126 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
5127 	{ .vendor_id = 0, /* sentinel */ },
5128 };
5129 
5130 static struct rte_pci_driver rte_hns3_pmd = {
5131 	.id_table = pci_id_hns3_map,
5132 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
5133 	.probe = eth_hns3_pci_probe,
5134 	.remove = eth_hns3_pci_remove,
5135 };
5136 
5137 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
5138 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
5139 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
5140 
5141 RTE_INIT(hns3_init_log)
5142 {
5143 	hns3_logtype_init = rte_log_register("pmd.net.hns3.init");
5144 	if (hns3_logtype_init >= 0)
5145 		rte_log_set_level(hns3_logtype_init, RTE_LOG_NOTICE);
5146 	hns3_logtype_driver = rte_log_register("pmd.net.hns3.driver");
5147 	if (hns3_logtype_driver >= 0)
5148 		rte_log_set_level(hns3_logtype_driver, RTE_LOG_NOTICE);
5149 }
5150