xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision db4e81351fb85ff623bd0438d1b5a8fb55fe9fee)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdio.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <unistd.h>
12 #include <rte_atomic.h>
13 #include <rte_bus_pci.h>
14 #include <rte_common.h>
15 #include <rte_cycles.h>
16 #include <rte_dev.h>
17 #include <rte_eal.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_interrupts.h>
22 #include <rte_io.h>
23 #include <rte_log.h>
24 #include <rte_pci.h>
25 
26 #include "hns3_ethdev.h"
27 #include "hns3_logs.h"
28 #include "hns3_rxtx.h"
29 #include "hns3_intr.h"
30 #include "hns3_regs.h"
31 #include "hns3_dcb.h"
32 #include "hns3_mp.h"
33 
34 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE	32
35 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM	1
36 
37 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
38 #define HNS3_INVLID_PVID		0xFFFF
39 
40 #define HNS3_FILTER_TYPE_VF		0
41 #define HNS3_FILTER_TYPE_PORT		1
42 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
43 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
44 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
45 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
46 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
47 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
48 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
49 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
50 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
51 
52 /* Reset related Registers */
53 #define HNS3_GLOBAL_RESET_BIT		0
54 #define HNS3_CORE_RESET_BIT		1
55 #define HNS3_IMP_RESET_BIT		2
56 #define HNS3_FUN_RST_ING_B		0
57 
58 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
59 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
60 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
61 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
62 
63 #define HNS3_RESET_WAIT_MS	100
64 #define HNS3_RESET_WAIT_CNT	200
65 
66 enum hns3_evt_cause {
67 	HNS3_VECTOR0_EVENT_RST,
68 	HNS3_VECTOR0_EVENT_MBX,
69 	HNS3_VECTOR0_EVENT_ERR,
70 	HNS3_VECTOR0_EVENT_OTHER,
71 };
72 
73 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
74 						 uint64_t *levels);
75 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
76 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
77 				    int on);
78 static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
79 
80 static int hns3_add_mc_addr(struct hns3_hw *hw,
81 			    struct rte_ether_addr *mac_addr);
82 static int hns3_remove_mc_addr(struct hns3_hw *hw,
83 			    struct rte_ether_addr *mac_addr);
84 
85 static void
86 hns3_pf_disable_irq0(struct hns3_hw *hw)
87 {
88 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
89 }
90 
91 static void
92 hns3_pf_enable_irq0(struct hns3_hw *hw)
93 {
94 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
95 }
96 
97 static enum hns3_evt_cause
98 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
99 {
100 	struct hns3_hw *hw = &hns->hw;
101 	uint32_t vector0_int_stats;
102 	uint32_t cmdq_src_val;
103 	uint32_t hw_err_src_reg;
104 	uint32_t val;
105 	enum hns3_evt_cause ret;
106 
107 	/* fetch the events from their corresponding regs */
108 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
109 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
110 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
111 
112 	/*
113 	 * Assumption: If by any chance reset and mailbox events are reported
114 	 * together then we will only process reset event and defer the
115 	 * processing of the mailbox events. Since, we would have not cleared
116 	 * RX CMDQ event this time we would receive again another interrupt
117 	 * from H/W just for the mailbox.
118 	 */
119 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
120 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
121 		hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
122 		val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
123 		if (clearval) {
124 			hw->reset.stats.imp_cnt++;
125 			hns3_warn(hw, "IMP reset detected, clear reset status");
126 		} else {
127 			hns3_schedule_delayed_reset(hns);
128 			hns3_warn(hw, "IMP reset detected, don't clear reset status");
129 		}
130 
131 		ret = HNS3_VECTOR0_EVENT_RST;
132 		goto out;
133 	}
134 
135 	/* Global reset */
136 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
137 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
138 		hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
139 		val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
140 		if (clearval) {
141 			hw->reset.stats.global_cnt++;
142 			hns3_warn(hw, "Global reset detected, clear reset status");
143 		} else {
144 			hns3_schedule_delayed_reset(hns);
145 			hns3_warn(hw, "Global reset detected, don't clear reset status");
146 		}
147 
148 		ret = HNS3_VECTOR0_EVENT_RST;
149 		goto out;
150 	}
151 
152 	/* check for vector0 msix event source */
153 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
154 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
155 		val = vector0_int_stats | hw_err_src_reg;
156 		ret = HNS3_VECTOR0_EVENT_ERR;
157 		goto out;
158 	}
159 
160 	/* check for vector0 mailbox(=CMDQ RX) event source */
161 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
162 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
163 		val = cmdq_src_val;
164 		ret = HNS3_VECTOR0_EVENT_MBX;
165 		goto out;
166 	}
167 
168 	if (clearval && (vector0_int_stats || cmdq_src_val || hw_err_src_reg))
169 		hns3_warn(hw, "vector0_int_stats:0x%x cmdq_src_val:0x%x hw_err_src_reg:0x%x",
170 			  vector0_int_stats, cmdq_src_val, hw_err_src_reg);
171 	val = vector0_int_stats;
172 	ret = HNS3_VECTOR0_EVENT_OTHER;
173 out:
174 
175 	if (clearval)
176 		*clearval = val;
177 	return ret;
178 }
179 
180 static void
181 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
182 {
183 	if (event_type == HNS3_VECTOR0_EVENT_RST)
184 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
185 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
186 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
187 }
188 
189 static void
190 hns3_clear_all_event_cause(struct hns3_hw *hw)
191 {
192 	uint32_t vector0_int_stats;
193 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
194 
195 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
196 		hns3_warn(hw, "Probe during IMP reset interrupt");
197 
198 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
199 		hns3_warn(hw, "Probe during Global reset interrupt");
200 
201 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
202 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
203 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
204 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
205 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
206 }
207 
208 static void
209 hns3_interrupt_handler(void *param)
210 {
211 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
212 	struct hns3_adapter *hns = dev->data->dev_private;
213 	struct hns3_hw *hw = &hns->hw;
214 	enum hns3_evt_cause event_cause;
215 	uint32_t clearval = 0;
216 
217 	/* Disable interrupt */
218 	hns3_pf_disable_irq0(hw);
219 
220 	event_cause = hns3_check_event_cause(hns, &clearval);
221 
222 	/* vector 0 interrupt is shared with reset and mailbox source events. */
223 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
224 		hns3_warn(hw, "Received err interrupt");
225 		hns3_handle_msix_error(hns, &hw->reset.request);
226 		hns3_handle_ras_error(hns, &hw->reset.request);
227 		hns3_schedule_reset(hns);
228 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
229 		hns3_warn(hw, "Received reset interrupt");
230 		hns3_schedule_reset(hns);
231 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
232 		hns3_dev_handle_mbx_msg(hw);
233 	else
234 		hns3_err(hw, "Received unknown event");
235 
236 	hns3_clear_event_cause(hw, event_cause, clearval);
237 	/* Enable interrupt if it is not cause by reset */
238 	hns3_pf_enable_irq0(hw);
239 }
240 
241 static int
242 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
243 {
244 #define HNS3_VLAN_ID_OFFSET_STEP	160
245 #define HNS3_VLAN_BYTE_SIZE		8
246 	struct hns3_vlan_filter_pf_cfg_cmd *req;
247 	struct hns3_hw *hw = &hns->hw;
248 	uint8_t vlan_offset_byte_val;
249 	struct hns3_cmd_desc desc;
250 	uint8_t vlan_offset_byte;
251 	uint8_t vlan_offset_base;
252 	int ret;
253 
254 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
255 
256 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
257 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
258 			   HNS3_VLAN_BYTE_SIZE;
259 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
260 
261 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
262 	req->vlan_offset = vlan_offset_base;
263 	req->vlan_cfg = on ? 0 : 1;
264 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
265 
266 	ret = hns3_cmd_send(hw, &desc, 1);
267 	if (ret)
268 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
269 			 vlan_id, ret);
270 
271 	return ret;
272 }
273 
274 static void
275 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
276 {
277 	struct hns3_user_vlan_table *vlan_entry;
278 	struct hns3_pf *pf = &hns->pf;
279 
280 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
281 		if (vlan_entry->vlan_id == vlan_id) {
282 			if (vlan_entry->hd_tbl_status)
283 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
284 			LIST_REMOVE(vlan_entry, next);
285 			rte_free(vlan_entry);
286 			break;
287 		}
288 	}
289 }
290 
291 static void
292 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
293 			bool writen_to_tbl)
294 {
295 	struct hns3_user_vlan_table *vlan_entry;
296 	struct hns3_hw *hw = &hns->hw;
297 	struct hns3_pf *pf = &hns->pf;
298 
299 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
300 		if (vlan_entry->vlan_id == vlan_id)
301 			return;
302 	}
303 
304 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
305 	if (vlan_entry == NULL) {
306 		hns3_err(hw, "Failed to malloc hns3 vlan table");
307 		return;
308 	}
309 
310 	vlan_entry->hd_tbl_status = writen_to_tbl;
311 	vlan_entry->vlan_id = vlan_id;
312 
313 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
314 }
315 
316 static int
317 hns3_restore_vlan_table(struct hns3_adapter *hns)
318 {
319 	struct hns3_user_vlan_table *vlan_entry;
320 	struct hns3_hw *hw = &hns->hw;
321 	struct hns3_pf *pf = &hns->pf;
322 	uint16_t vlan_id;
323 	int ret = 0;
324 
325 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
326 		return hns3_vlan_pvid_configure(hns,
327 						hw->port_base_vlan_cfg.pvid, 1);
328 
329 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
330 		if (vlan_entry->hd_tbl_status) {
331 			vlan_id = vlan_entry->vlan_id;
332 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
333 			if (ret)
334 				break;
335 		}
336 	}
337 
338 	return ret;
339 }
340 
341 static int
342 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
343 {
344 	struct hns3_hw *hw = &hns->hw;
345 	bool writen_to_tbl = false;
346 	int ret = 0;
347 
348 	/*
349 	 * When vlan filter is enabled, hardware regards vlan id 0 as the entry
350 	 * for normal packet, deleting vlan id 0 is not allowed.
351 	 */
352 	if (on == 0 && vlan_id == 0)
353 		return 0;
354 
355 	/*
356 	 * When port base vlan enabled, we use port base vlan as the vlan
357 	 * filter condition. In this case, we don't update vlan filter table
358 	 * when user add new vlan or remove exist vlan, just update the
359 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
360 	 * table until port base vlan disabled
361 	 */
362 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
363 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
364 		writen_to_tbl = true;
365 	}
366 
367 	if (ret == 0 && vlan_id) {
368 		if (on)
369 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
370 		else
371 			hns3_rm_dev_vlan_table(hns, vlan_id);
372 	}
373 	return ret;
374 }
375 
376 static int
377 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
378 {
379 	struct hns3_adapter *hns = dev->data->dev_private;
380 	struct hns3_hw *hw = &hns->hw;
381 	int ret;
382 
383 	rte_spinlock_lock(&hw->lock);
384 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
385 	rte_spinlock_unlock(&hw->lock);
386 	return ret;
387 }
388 
389 static int
390 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
391 			 uint16_t tpid)
392 {
393 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
394 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
395 	struct hns3_hw *hw = &hns->hw;
396 	struct hns3_cmd_desc desc;
397 	int ret;
398 
399 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
400 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
401 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
402 		return -EINVAL;
403 	}
404 
405 	if (tpid != RTE_ETHER_TYPE_VLAN) {
406 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
407 		return -EINVAL;
408 	}
409 
410 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
411 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
412 
413 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
414 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
415 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
416 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
417 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
418 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
419 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
420 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
421 	}
422 
423 	ret = hns3_cmd_send(hw, &desc, 1);
424 	if (ret) {
425 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
426 			 ret);
427 		return ret;
428 	}
429 
430 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
431 
432 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
433 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
434 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
435 
436 	ret = hns3_cmd_send(hw, &desc, 1);
437 	if (ret)
438 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
439 			 ret);
440 	return ret;
441 }
442 
443 static int
444 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
445 		   uint16_t tpid)
446 {
447 	struct hns3_adapter *hns = dev->data->dev_private;
448 	struct hns3_hw *hw = &hns->hw;
449 	int ret;
450 
451 	rte_spinlock_lock(&hw->lock);
452 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
453 	rte_spinlock_unlock(&hw->lock);
454 	return ret;
455 }
456 
457 static int
458 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
459 			     struct hns3_rx_vtag_cfg *vcfg)
460 {
461 	struct hns3_vport_vtag_rx_cfg_cmd *req;
462 	struct hns3_hw *hw = &hns->hw;
463 	struct hns3_cmd_desc desc;
464 	uint16_t vport_id;
465 	uint8_t bitmap;
466 	int ret;
467 
468 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
469 
470 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
471 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
472 		     vcfg->strip_tag1_en ? 1 : 0);
473 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
474 		     vcfg->strip_tag2_en ? 1 : 0);
475 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
476 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
477 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
478 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
479 
480 	/*
481 	 * In current version VF is not supported when PF is driven by DPDK
482 	 * driver, just need to configure parameters for PF vport.
483 	 */
484 	vport_id = HNS3_PF_FUNC_ID;
485 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
486 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
487 	req->vf_bitmap[req->vf_offset] = bitmap;
488 
489 	ret = hns3_cmd_send(hw, &desc, 1);
490 	if (ret)
491 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
492 	return ret;
493 }
494 
495 static void
496 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
497 			   struct hns3_rx_vtag_cfg *vcfg)
498 {
499 	struct hns3_pf *pf = &hns->pf;
500 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
501 }
502 
503 static void
504 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
505 			   struct hns3_tx_vtag_cfg *vcfg)
506 {
507 	struct hns3_pf *pf = &hns->pf;
508 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
509 }
510 
511 static int
512 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
513 {
514 	struct hns3_rx_vtag_cfg rxvlan_cfg;
515 	struct hns3_hw *hw = &hns->hw;
516 	int ret;
517 
518 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
519 		rxvlan_cfg.strip_tag1_en = false;
520 		rxvlan_cfg.strip_tag2_en = enable;
521 	} else {
522 		rxvlan_cfg.strip_tag1_en = enable;
523 		rxvlan_cfg.strip_tag2_en = true;
524 	}
525 
526 	rxvlan_cfg.vlan1_vlan_prionly = false;
527 	rxvlan_cfg.vlan2_vlan_prionly = false;
528 	rxvlan_cfg.rx_vlan_offload_en = enable;
529 
530 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
531 	if (ret) {
532 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
533 		return ret;
534 	}
535 
536 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
537 
538 	return ret;
539 }
540 
541 static int
542 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
543 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
544 {
545 	struct hns3_vlan_filter_ctrl_cmd *req;
546 	struct hns3_cmd_desc desc;
547 	int ret;
548 
549 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
550 
551 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
552 	req->vlan_type = vlan_type;
553 	req->vlan_fe = filter_en ? fe_type : 0;
554 	req->vf_id = vf_id;
555 
556 	ret = hns3_cmd_send(hw, &desc, 1);
557 	if (ret)
558 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
559 
560 	return ret;
561 }
562 
563 static int
564 hns3_vlan_filter_init(struct hns3_adapter *hns)
565 {
566 	struct hns3_hw *hw = &hns->hw;
567 	int ret;
568 
569 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
570 					HNS3_FILTER_FE_EGRESS, false,
571 					HNS3_PF_FUNC_ID);
572 	if (ret) {
573 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
574 		return ret;
575 	}
576 
577 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
578 					HNS3_FILTER_FE_INGRESS, false,
579 					HNS3_PF_FUNC_ID);
580 	if (ret)
581 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
582 
583 	return ret;
584 }
585 
586 static int
587 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
588 {
589 	struct hns3_hw *hw = &hns->hw;
590 	int ret;
591 
592 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
593 					HNS3_FILTER_FE_INGRESS, enable,
594 					HNS3_PF_FUNC_ID);
595 	if (ret)
596 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
597 			 enable ? "enable" : "disable", ret);
598 
599 	return ret;
600 }
601 
602 static int
603 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
604 {
605 	struct hns3_adapter *hns = dev->data->dev_private;
606 	struct hns3_hw *hw = &hns->hw;
607 	struct rte_eth_rxmode *rxmode;
608 	unsigned int tmp_mask;
609 	bool enable;
610 	int ret = 0;
611 
612 	rte_spinlock_lock(&hw->lock);
613 	rxmode = &dev->data->dev_conf.rxmode;
614 	tmp_mask = (unsigned int)mask;
615 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
616 		/* ignore vlan filter configuration during promiscuous mode */
617 		if (!dev->data->promiscuous) {
618 			/* Enable or disable VLAN filter */
619 			enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
620 				 true : false;
621 
622 			ret = hns3_enable_vlan_filter(hns, enable);
623 			if (ret) {
624 				rte_spinlock_unlock(&hw->lock);
625 				hns3_err(hw, "failed to %s rx filter, ret = %d",
626 					 enable ? "enable" : "disable", ret);
627 				return ret;
628 			}
629 		}
630 	}
631 
632 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
633 		/* Enable or disable VLAN stripping */
634 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
635 		    true : false;
636 
637 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
638 		if (ret) {
639 			rte_spinlock_unlock(&hw->lock);
640 			hns3_err(hw, "failed to %s rx strip, ret = %d",
641 				 enable ? "enable" : "disable", ret);
642 			return ret;
643 		}
644 	}
645 
646 	rte_spinlock_unlock(&hw->lock);
647 
648 	return ret;
649 }
650 
651 static int
652 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
653 			     struct hns3_tx_vtag_cfg *vcfg)
654 {
655 	struct hns3_vport_vtag_tx_cfg_cmd *req;
656 	struct hns3_cmd_desc desc;
657 	struct hns3_hw *hw = &hns->hw;
658 	uint16_t vport_id;
659 	uint8_t bitmap;
660 	int ret;
661 
662 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
663 
664 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
665 	req->def_vlan_tag1 = vcfg->default_tag1;
666 	req->def_vlan_tag2 = vcfg->default_tag2;
667 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
668 		     vcfg->accept_tag1 ? 1 : 0);
669 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
670 		     vcfg->accept_untag1 ? 1 : 0);
671 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
672 		     vcfg->accept_tag2 ? 1 : 0);
673 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
674 		     vcfg->accept_untag2 ? 1 : 0);
675 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
676 		     vcfg->insert_tag1_en ? 1 : 0);
677 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
678 		     vcfg->insert_tag2_en ? 1 : 0);
679 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
680 
681 	/*
682 	 * In current version VF is not supported when PF is driven by DPDK
683 	 * driver, just need to configure parameters for PF vport.
684 	 */
685 	vport_id = HNS3_PF_FUNC_ID;
686 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
687 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
688 	req->vf_bitmap[req->vf_offset] = bitmap;
689 
690 	ret = hns3_cmd_send(hw, &desc, 1);
691 	if (ret)
692 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
693 
694 	return ret;
695 }
696 
697 static int
698 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
699 		     uint16_t pvid)
700 {
701 	struct hns3_hw *hw = &hns->hw;
702 	struct hns3_tx_vtag_cfg txvlan_cfg;
703 	int ret;
704 
705 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
706 		txvlan_cfg.accept_tag1 = true;
707 		txvlan_cfg.insert_tag1_en = false;
708 		txvlan_cfg.default_tag1 = 0;
709 	} else {
710 		txvlan_cfg.accept_tag1 = false;
711 		txvlan_cfg.insert_tag1_en = true;
712 		txvlan_cfg.default_tag1 = pvid;
713 	}
714 
715 	txvlan_cfg.accept_untag1 = true;
716 	txvlan_cfg.accept_tag2 = true;
717 	txvlan_cfg.accept_untag2 = true;
718 	txvlan_cfg.insert_tag2_en = false;
719 	txvlan_cfg.default_tag2 = 0;
720 
721 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
722 	if (ret) {
723 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
724 			 ret);
725 		return ret;
726 	}
727 
728 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
729 	return ret;
730 }
731 
732 static void
733 hns3_store_port_base_vlan_info(struct hns3_adapter *hns, uint16_t pvid, int on)
734 {
735 	struct hns3_hw *hw = &hns->hw;
736 
737 	hw->port_base_vlan_cfg.state = on ?
738 	    HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
739 
740 	hw->port_base_vlan_cfg.pvid = pvid;
741 }
742 
743 static void
744 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
745 {
746 	struct hns3_user_vlan_table *vlan_entry;
747 	struct hns3_pf *pf = &hns->pf;
748 
749 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
750 		if (vlan_entry->hd_tbl_status)
751 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
752 
753 		vlan_entry->hd_tbl_status = false;
754 	}
755 
756 	if (is_del_list) {
757 		vlan_entry = LIST_FIRST(&pf->vlan_list);
758 		while (vlan_entry) {
759 			LIST_REMOVE(vlan_entry, next);
760 			rte_free(vlan_entry);
761 			vlan_entry = LIST_FIRST(&pf->vlan_list);
762 		}
763 	}
764 }
765 
766 static void
767 hns3_add_all_vlan_table(struct hns3_adapter *hns)
768 {
769 	struct hns3_user_vlan_table *vlan_entry;
770 	struct hns3_pf *pf = &hns->pf;
771 
772 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
773 		if (!vlan_entry->hd_tbl_status)
774 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
775 
776 		vlan_entry->hd_tbl_status = true;
777 	}
778 }
779 
780 static void
781 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
782 {
783 	struct hns3_hw *hw = &hns->hw;
784 	int ret;
785 
786 	hns3_rm_all_vlan_table(hns, true);
787 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID) {
788 		ret = hns3_set_port_vlan_filter(hns,
789 						hw->port_base_vlan_cfg.pvid, 0);
790 		if (ret) {
791 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
792 				 ret);
793 			return;
794 		}
795 	}
796 }
797 
798 static int
799 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
800 				uint16_t port_base_vlan_state,
801 				uint16_t new_pvid, uint16_t old_pvid)
802 {
803 	struct hns3_hw *hw = &hns->hw;
804 	int ret = 0;
805 
806 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
807 		if (old_pvid != HNS3_INVLID_PVID && old_pvid != 0) {
808 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
809 			if (ret) {
810 				hns3_err(hw,
811 					 "Failed to clear clear old pvid filter, ret =%d",
812 					 ret);
813 				return ret;
814 			}
815 		}
816 
817 		hns3_rm_all_vlan_table(hns, false);
818 		return hns3_set_port_vlan_filter(hns, new_pvid, 1);
819 	}
820 
821 	if (new_pvid != 0) {
822 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
823 		if (ret) {
824 			hns3_err(hw, "Failed to set port vlan filter, ret =%d",
825 				 ret);
826 			return ret;
827 		}
828 	}
829 
830 	if (new_pvid == hw->port_base_vlan_cfg.pvid)
831 		hns3_add_all_vlan_table(hns);
832 
833 	return ret;
834 }
835 
836 static int
837 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
838 {
839 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
840 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
841 	bool rx_strip_en;
842 	int ret;
843 
844 	rx_strip_en = old_cfg->rx_vlan_offload_en ? true : false;
845 	if (on) {
846 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
847 		rx_vlan_cfg.strip_tag2_en = true;
848 	} else {
849 		rx_vlan_cfg.strip_tag1_en = false;
850 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
851 	}
852 	rx_vlan_cfg.vlan1_vlan_prionly = false;
853 	rx_vlan_cfg.vlan2_vlan_prionly = false;
854 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
855 
856 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
857 	if (ret)
858 		return ret;
859 
860 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
861 	return ret;
862 }
863 
864 static int
865 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
866 {
867 	struct hns3_hw *hw = &hns->hw;
868 	uint16_t port_base_vlan_state;
869 	uint16_t old_pvid;
870 	int ret;
871 
872 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
873 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID)
874 			hns3_warn(hw, "Invalid operation! As current pvid set "
875 				  "is %u, disable pvid %u is invalid",
876 				  hw->port_base_vlan_cfg.pvid, pvid);
877 		return 0;
878 	}
879 
880 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
881 				    HNS3_PORT_BASE_VLAN_DISABLE;
882 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
883 	if (ret) {
884 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
885 			 ret);
886 		return ret;
887 	}
888 
889 	ret = hns3_en_pvid_strip(hns, on);
890 	if (ret) {
891 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
892 			 "ret = %d", ret);
893 		return ret;
894 	}
895 
896 	if (pvid == HNS3_INVLID_PVID)
897 		goto out;
898 	old_pvid = hw->port_base_vlan_cfg.pvid;
899 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid,
900 					      old_pvid);
901 	if (ret) {
902 		hns3_err(hw, "Failed to update vlan filter entries, ret =%d",
903 			 ret);
904 		return ret;
905 	}
906 
907 out:
908 	hns3_store_port_base_vlan_info(hns, pvid, on);
909 	return ret;
910 }
911 
912 static int
913 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
914 {
915 	struct hns3_adapter *hns = dev->data->dev_private;
916 	struct hns3_hw *hw = &hns->hw;
917 	bool pvid_en_state_change;
918 	uint16_t pvid_state;
919 	int ret;
920 
921 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
922 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
923 			 RTE_ETHER_MAX_VLAN_ID);
924 		return -EINVAL;
925 	}
926 
927 	/*
928 	 * If PVID configuration state change, should refresh the PVID
929 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
930 	 */
931 	pvid_state = hw->port_base_vlan_cfg.state;
932 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
933 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
934 		pvid_en_state_change = false;
935 	else
936 		pvid_en_state_change = true;
937 
938 	rte_spinlock_lock(&hw->lock);
939 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
940 	rte_spinlock_unlock(&hw->lock);
941 	if (ret)
942 		return ret;
943 
944 	if (pvid_en_state_change)
945 		hns3_update_all_queues_pvid_state(hw);
946 
947 	return 0;
948 }
949 
950 static void
951 init_port_base_vlan_info(struct hns3_hw *hw)
952 {
953 	hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
954 	hw->port_base_vlan_cfg.pvid = HNS3_INVLID_PVID;
955 }
956 
957 static int
958 hns3_default_vlan_config(struct hns3_adapter *hns)
959 {
960 	struct hns3_hw *hw = &hns->hw;
961 	int ret;
962 
963 	ret = hns3_set_port_vlan_filter(hns, 0, 1);
964 	if (ret)
965 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
966 	return ret;
967 }
968 
969 static int
970 hns3_init_vlan_config(struct hns3_adapter *hns)
971 {
972 	struct hns3_hw *hw = &hns->hw;
973 	int ret;
974 
975 	/*
976 	 * This function can be called in the initialization and reset process,
977 	 * when in reset process, it means that hardware had been reseted
978 	 * successfully and we need to restore the hardware configuration to
979 	 * ensure that the hardware configuration remains unchanged before and
980 	 * after reset.
981 	 */
982 	if (rte_atomic16_read(&hw->reset.resetting) == 0)
983 		init_port_base_vlan_info(hw);
984 
985 	ret = hns3_vlan_filter_init(hns);
986 	if (ret) {
987 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
988 		return ret;
989 	}
990 
991 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
992 				       RTE_ETHER_TYPE_VLAN);
993 	if (ret) {
994 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
995 		return ret;
996 	}
997 
998 	/*
999 	 * When in the reinit dev stage of the reset process, the following
1000 	 * vlan-related configurations may differ from those at initialization,
1001 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1002 	 * and hns3_restore_vlan_conf later.
1003 	 */
1004 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1005 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVLID_PVID, 0);
1006 		if (ret) {
1007 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1008 			return ret;
1009 		}
1010 
1011 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1012 		if (ret) {
1013 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1014 				 ret);
1015 			return ret;
1016 		}
1017 	}
1018 
1019 	return hns3_default_vlan_config(hns);
1020 }
1021 
1022 static int
1023 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1024 {
1025 	struct hns3_pf *pf = &hns->pf;
1026 	struct hns3_hw *hw = &hns->hw;
1027 	uint64_t offloads;
1028 	bool enable;
1029 	int ret;
1030 
1031 	if (!hw->data->promiscuous) {
1032 		/* restore vlan filter states */
1033 		offloads = hw->data->dev_conf.rxmode.offloads;
1034 		enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1035 		ret = hns3_enable_vlan_filter(hns, enable);
1036 		if (ret) {
1037 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1038 				 "ret = %d", ret);
1039 			return ret;
1040 		}
1041 	}
1042 
1043 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1044 	if (ret) {
1045 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1046 		return ret;
1047 	}
1048 
1049 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1050 	if (ret)
1051 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1052 
1053 	return ret;
1054 }
1055 
1056 static int
1057 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1058 {
1059 	struct hns3_adapter *hns = dev->data->dev_private;
1060 	struct rte_eth_dev_data *data = dev->data;
1061 	struct rte_eth_txmode *txmode;
1062 	struct hns3_hw *hw = &hns->hw;
1063 	int mask;
1064 	int ret;
1065 
1066 	txmode = &data->dev_conf.txmode;
1067 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1068 		hns3_warn(hw,
1069 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1070 			  "configuration is not supported! Ignore these two "
1071 			  "parameters: hw_vlan_reject_tagged(%d), "
1072 			  "hw_vlan_reject_untagged(%d)",
1073 			  txmode->hw_vlan_reject_tagged,
1074 			  txmode->hw_vlan_reject_untagged);
1075 
1076 	/* Apply vlan offload setting */
1077 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1078 	ret = hns3_vlan_offload_set(dev, mask);
1079 	if (ret) {
1080 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1081 			 ret);
1082 		return ret;
1083 	}
1084 
1085 	/*
1086 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1087 	 * VLAN pvid related configuration to hardware.
1088 	 */
1089 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1090 		return 0;
1091 
1092 	/* Apply pvid setting */
1093 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1094 				 txmode->hw_vlan_insert_pvid);
1095 	if (ret)
1096 		hns3_err(hw, "dev config vlan pvid(%d) failed, ret = %d",
1097 			 txmode->pvid, ret);
1098 
1099 	return ret;
1100 }
1101 
1102 static int
1103 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1104 		unsigned int tso_mss_max)
1105 {
1106 	struct hns3_cfg_tso_status_cmd *req;
1107 	struct hns3_cmd_desc desc;
1108 	uint16_t tso_mss;
1109 
1110 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1111 
1112 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1113 
1114 	tso_mss = 0;
1115 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1116 		       tso_mss_min);
1117 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1118 
1119 	tso_mss = 0;
1120 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1121 		       tso_mss_max);
1122 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1123 
1124 	return hns3_cmd_send(hw, &desc, 1);
1125 }
1126 
1127 static int
1128 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1129 		   uint16_t *allocated_size, bool is_alloc)
1130 {
1131 	struct hns3_umv_spc_alc_cmd *req;
1132 	struct hns3_cmd_desc desc;
1133 	int ret;
1134 
1135 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1136 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1137 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1138 	req->space_size = rte_cpu_to_le_32(space_size);
1139 
1140 	ret = hns3_cmd_send(hw, &desc, 1);
1141 	if (ret) {
1142 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1143 			     is_alloc ? "allocate" : "free", ret);
1144 		return ret;
1145 	}
1146 
1147 	if (is_alloc && allocated_size)
1148 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1149 
1150 	return 0;
1151 }
1152 
1153 static int
1154 hns3_init_umv_space(struct hns3_hw *hw)
1155 {
1156 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1157 	struct hns3_pf *pf = &hns->pf;
1158 	uint16_t allocated_size = 0;
1159 	int ret;
1160 
1161 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1162 				 true);
1163 	if (ret)
1164 		return ret;
1165 
1166 	if (allocated_size < pf->wanted_umv_size)
1167 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1168 			     pf->wanted_umv_size, allocated_size);
1169 
1170 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1171 						pf->wanted_umv_size;
1172 	pf->used_umv_size = 0;
1173 	return 0;
1174 }
1175 
1176 static int
1177 hns3_uninit_umv_space(struct hns3_hw *hw)
1178 {
1179 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1180 	struct hns3_pf *pf = &hns->pf;
1181 	int ret;
1182 
1183 	if (pf->max_umv_size == 0)
1184 		return 0;
1185 
1186 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1187 	if (ret)
1188 		return ret;
1189 
1190 	pf->max_umv_size = 0;
1191 
1192 	return 0;
1193 }
1194 
1195 static bool
1196 hns3_is_umv_space_full(struct hns3_hw *hw)
1197 {
1198 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1199 	struct hns3_pf *pf = &hns->pf;
1200 	bool is_full;
1201 
1202 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1203 
1204 	return is_full;
1205 }
1206 
1207 static void
1208 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1209 {
1210 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1211 	struct hns3_pf *pf = &hns->pf;
1212 
1213 	if (is_free) {
1214 		if (pf->used_umv_size > 0)
1215 			pf->used_umv_size--;
1216 	} else
1217 		pf->used_umv_size++;
1218 }
1219 
1220 static void
1221 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1222 		      const uint8_t *addr, bool is_mc)
1223 {
1224 	const unsigned char *mac_addr = addr;
1225 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1226 			    ((uint32_t)mac_addr[2] << 16) |
1227 			    ((uint32_t)mac_addr[1] << 8) |
1228 			    (uint32_t)mac_addr[0];
1229 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1230 
1231 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1232 	if (is_mc) {
1233 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1234 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1235 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1236 	}
1237 
1238 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1239 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1240 }
1241 
1242 static int
1243 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1244 			     uint8_t resp_code,
1245 			     enum hns3_mac_vlan_tbl_opcode op)
1246 {
1247 	if (cmdq_resp) {
1248 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1249 			 cmdq_resp);
1250 		return -EIO;
1251 	}
1252 
1253 	if (op == HNS3_MAC_VLAN_ADD) {
1254 		if (resp_code == 0 || resp_code == 1) {
1255 			return 0;
1256 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1257 			hns3_err(hw, "add mac addr failed for uc_overflow");
1258 			return -ENOSPC;
1259 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1260 			hns3_err(hw, "add mac addr failed for mc_overflow");
1261 			return -ENOSPC;
1262 		}
1263 
1264 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1265 			 resp_code);
1266 		return -EIO;
1267 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1268 		if (resp_code == 0) {
1269 			return 0;
1270 		} else if (resp_code == 1) {
1271 			hns3_dbg(hw, "remove mac addr failed for miss");
1272 			return -ENOENT;
1273 		}
1274 
1275 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1276 			 resp_code);
1277 		return -EIO;
1278 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1279 		if (resp_code == 0) {
1280 			return 0;
1281 		} else if (resp_code == 1) {
1282 			hns3_dbg(hw, "lookup mac addr failed for miss");
1283 			return -ENOENT;
1284 		}
1285 
1286 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1287 			 resp_code);
1288 		return -EIO;
1289 	}
1290 
1291 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1292 		 op);
1293 
1294 	return -EINVAL;
1295 }
1296 
1297 static int
1298 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1299 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1300 			 struct hns3_cmd_desc *desc, bool is_mc)
1301 {
1302 	uint8_t resp_code;
1303 	uint16_t retval;
1304 	int ret;
1305 
1306 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1307 	if (is_mc) {
1308 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1309 		memcpy(desc[0].data, req,
1310 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1311 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1312 					  true);
1313 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1314 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1315 					  true);
1316 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1317 	} else {
1318 		memcpy(desc[0].data, req,
1319 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1320 		ret = hns3_cmd_send(hw, desc, 1);
1321 	}
1322 	if (ret) {
1323 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1324 			 ret);
1325 		return ret;
1326 	}
1327 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1328 	retval = rte_le_to_cpu_16(desc[0].retval);
1329 
1330 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1331 					    HNS3_MAC_VLAN_LKUP);
1332 }
1333 
1334 static int
1335 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1336 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1337 		      struct hns3_cmd_desc *mc_desc)
1338 {
1339 	uint8_t resp_code;
1340 	uint16_t retval;
1341 	int cfg_status;
1342 	int ret;
1343 
1344 	if (mc_desc == NULL) {
1345 		struct hns3_cmd_desc desc;
1346 
1347 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1348 		memcpy(desc.data, req,
1349 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1350 		ret = hns3_cmd_send(hw, &desc, 1);
1351 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1352 		retval = rte_le_to_cpu_16(desc.retval);
1353 
1354 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1355 							  HNS3_MAC_VLAN_ADD);
1356 	} else {
1357 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1358 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1359 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1360 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1361 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1362 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1363 		memcpy(mc_desc[0].data, req,
1364 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1365 		mc_desc[0].retval = 0;
1366 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1367 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1368 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1369 
1370 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1371 							  HNS3_MAC_VLAN_ADD);
1372 	}
1373 
1374 	if (ret) {
1375 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1376 		return ret;
1377 	}
1378 
1379 	return cfg_status;
1380 }
1381 
1382 static int
1383 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1384 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1385 {
1386 	struct hns3_cmd_desc desc;
1387 	uint8_t resp_code;
1388 	uint16_t retval;
1389 	int ret;
1390 
1391 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1392 
1393 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1394 
1395 	ret = hns3_cmd_send(hw, &desc, 1);
1396 	if (ret) {
1397 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1398 		return ret;
1399 	}
1400 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1401 	retval = rte_le_to_cpu_16(desc.retval);
1402 
1403 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1404 					    HNS3_MAC_VLAN_REMOVE);
1405 }
1406 
1407 static int
1408 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1409 {
1410 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1411 	struct hns3_mac_vlan_tbl_entry_cmd req;
1412 	struct hns3_pf *pf = &hns->pf;
1413 	struct hns3_cmd_desc desc[3];
1414 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1415 	uint16_t egress_port = 0;
1416 	uint8_t vf_id;
1417 	int ret;
1418 
1419 	/* check if mac addr is valid */
1420 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1421 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1422 				      mac_addr);
1423 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1424 			 mac_str);
1425 		return -EINVAL;
1426 	}
1427 
1428 	memset(&req, 0, sizeof(req));
1429 
1430 	/*
1431 	 * In current version VF is not supported when PF is driven by DPDK
1432 	 * driver, just need to configure parameters for PF vport.
1433 	 */
1434 	vf_id = HNS3_PF_FUNC_ID;
1435 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1436 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1437 
1438 	req.egress_port = rte_cpu_to_le_16(egress_port);
1439 
1440 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1441 
1442 	/*
1443 	 * Lookup the mac address in the mac_vlan table, and add
1444 	 * it if the entry is inexistent. Repeated unicast entry
1445 	 * is not allowed in the mac vlan table.
1446 	 */
1447 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1448 	if (ret == -ENOENT) {
1449 		if (!hns3_is_umv_space_full(hw)) {
1450 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1451 			if (!ret)
1452 				hns3_update_umv_space(hw, false);
1453 			return ret;
1454 		}
1455 
1456 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1457 
1458 		return -ENOSPC;
1459 	}
1460 
1461 	rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1462 
1463 	/* check if we just hit the duplicate */
1464 	if (ret == 0) {
1465 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1466 		return 0;
1467 	}
1468 
1469 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1470 		 mac_str);
1471 
1472 	return ret;
1473 }
1474 
1475 static int
1476 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1477 {
1478 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1479 	struct rte_ether_addr *addr;
1480 	int ret;
1481 	int i;
1482 
1483 	for (i = 0; i < hw->mc_addrs_num; i++) {
1484 		addr = &hw->mc_addrs[i];
1485 		/* Check if there are duplicate addresses */
1486 		if (rte_is_same_ether_addr(addr, mac_addr)) {
1487 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1488 					      addr);
1489 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1490 				 "(%s) is added by the set_mc_mac_addr_list "
1491 				 "API", mac_str);
1492 			return -EINVAL;
1493 		}
1494 	}
1495 
1496 	ret = hns3_add_mc_addr(hw, mac_addr);
1497 	if (ret) {
1498 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1499 				      mac_addr);
1500 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1501 			 mac_str, ret);
1502 	}
1503 	return ret;
1504 }
1505 
1506 static int
1507 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1508 {
1509 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1510 	int ret;
1511 
1512 	ret = hns3_remove_mc_addr(hw, mac_addr);
1513 	if (ret) {
1514 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1515 				      mac_addr);
1516 		hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1517 			 mac_str, ret);
1518 	}
1519 	return ret;
1520 }
1521 
1522 static int
1523 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1524 		  uint32_t idx, __rte_unused uint32_t pool)
1525 {
1526 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1527 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1528 	int ret;
1529 
1530 	rte_spinlock_lock(&hw->lock);
1531 
1532 	/*
1533 	 * In hns3 network engine adding UC and MC mac address with different
1534 	 * commands with firmware. We need to determine whether the input
1535 	 * address is a UC or a MC address to call different commands.
1536 	 * By the way, it is recommended calling the API function named
1537 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1538 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1539 	 * may affect the specifications of UC mac addresses.
1540 	 */
1541 	if (rte_is_multicast_ether_addr(mac_addr))
1542 		ret = hns3_add_mc_addr_common(hw, mac_addr);
1543 	else
1544 		ret = hns3_add_uc_addr_common(hw, mac_addr);
1545 
1546 	if (ret) {
1547 		rte_spinlock_unlock(&hw->lock);
1548 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1549 				      mac_addr);
1550 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1551 			 ret);
1552 		return ret;
1553 	}
1554 
1555 	if (idx == 0)
1556 		hw->mac.default_addr_setted = true;
1557 	rte_spinlock_unlock(&hw->lock);
1558 
1559 	return ret;
1560 }
1561 
1562 static int
1563 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1564 {
1565 	struct hns3_mac_vlan_tbl_entry_cmd req;
1566 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1567 	int ret;
1568 
1569 	/* check if mac addr is valid */
1570 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1571 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1572 				      mac_addr);
1573 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1574 			 mac_str);
1575 		return -EINVAL;
1576 	}
1577 
1578 	memset(&req, 0, sizeof(req));
1579 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1580 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1581 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1582 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1583 		return 0;
1584 	else if (ret == 0)
1585 		hns3_update_umv_space(hw, true);
1586 
1587 	return ret;
1588 }
1589 
1590 static void
1591 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1592 {
1593 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1594 	/* index will be checked by upper level rte interface */
1595 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1596 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1597 	int ret;
1598 
1599 	rte_spinlock_lock(&hw->lock);
1600 
1601 	if (rte_is_multicast_ether_addr(mac_addr))
1602 		ret = hns3_remove_mc_addr_common(hw, mac_addr);
1603 	else
1604 		ret = hns3_remove_uc_addr_common(hw, mac_addr);
1605 	rte_spinlock_unlock(&hw->lock);
1606 	if (ret) {
1607 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1608 				      mac_addr);
1609 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1610 			 ret);
1611 	}
1612 }
1613 
1614 static int
1615 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1616 			  struct rte_ether_addr *mac_addr)
1617 {
1618 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1619 	struct rte_ether_addr *oaddr;
1620 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1621 	bool default_addr_setted;
1622 	bool rm_succes = false;
1623 	int ret, ret_val;
1624 
1625 	/*
1626 	 * It has been guaranteed that input parameter named mac_addr is valid
1627 	 * address in the rte layer of DPDK framework.
1628 	 */
1629 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1630 	default_addr_setted = hw->mac.default_addr_setted;
1631 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1632 		return 0;
1633 
1634 	rte_spinlock_lock(&hw->lock);
1635 	if (default_addr_setted) {
1636 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1637 		if (ret) {
1638 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1639 					      oaddr);
1640 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1641 				  mac_str, ret);
1642 			rm_succes = false;
1643 		} else
1644 			rm_succes = true;
1645 	}
1646 
1647 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1648 	if (ret) {
1649 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1650 				      mac_addr);
1651 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1652 		goto err_add_uc_addr;
1653 	}
1654 
1655 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1656 	if (ret) {
1657 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1658 		goto err_pause_addr_cfg;
1659 	}
1660 
1661 	rte_ether_addr_copy(mac_addr,
1662 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1663 	hw->mac.default_addr_setted = true;
1664 	rte_spinlock_unlock(&hw->lock);
1665 
1666 	return 0;
1667 
1668 err_pause_addr_cfg:
1669 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1670 	if (ret_val) {
1671 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1672 				      mac_addr);
1673 		hns3_warn(hw,
1674 			  "Failed to roll back to del setted mac addr(%s): %d",
1675 			  mac_str, ret_val);
1676 	}
1677 
1678 err_add_uc_addr:
1679 	if (rm_succes) {
1680 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1681 		if (ret_val) {
1682 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1683 					      oaddr);
1684 			hns3_warn(hw,
1685 				  "Failed to restore old uc mac addr(%s): %d",
1686 				  mac_str, ret_val);
1687 			hw->mac.default_addr_setted = false;
1688 		}
1689 	}
1690 	rte_spinlock_unlock(&hw->lock);
1691 
1692 	return ret;
1693 }
1694 
1695 static int
1696 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1697 {
1698 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1699 	struct hns3_hw *hw = &hns->hw;
1700 	struct rte_ether_addr *addr;
1701 	int err = 0;
1702 	int ret;
1703 	int i;
1704 
1705 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1706 		addr = &hw->data->mac_addrs[i];
1707 		if (rte_is_zero_ether_addr(addr))
1708 			continue;
1709 		if (rte_is_multicast_ether_addr(addr))
1710 			ret = del ? hns3_remove_mc_addr(hw, addr) :
1711 			      hns3_add_mc_addr(hw, addr);
1712 		else
1713 			ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1714 			      hns3_add_uc_addr_common(hw, addr);
1715 
1716 		if (ret) {
1717 			err = ret;
1718 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1719 					      addr);
1720 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1721 				 "ret = %d.", del ? "remove" : "restore",
1722 				 mac_str, i, ret);
1723 		}
1724 	}
1725 	return err;
1726 }
1727 
1728 static void
1729 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1730 {
1731 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1732 	uint8_t word_num;
1733 	uint8_t bit_num;
1734 
1735 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1736 		word_num = vfid / 32;
1737 		bit_num = vfid % 32;
1738 		if (clr)
1739 			desc[1].data[word_num] &=
1740 			    rte_cpu_to_le_32(~(1UL << bit_num));
1741 		else
1742 			desc[1].data[word_num] |=
1743 			    rte_cpu_to_le_32(1UL << bit_num);
1744 	} else {
1745 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1746 		bit_num = vfid % 32;
1747 		if (clr)
1748 			desc[2].data[word_num] &=
1749 			    rte_cpu_to_le_32(~(1UL << bit_num));
1750 		else
1751 			desc[2].data[word_num] |=
1752 			    rte_cpu_to_le_32(1UL << bit_num);
1753 	}
1754 }
1755 
1756 static int
1757 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1758 {
1759 	struct hns3_mac_vlan_tbl_entry_cmd req;
1760 	struct hns3_cmd_desc desc[3];
1761 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1762 	uint8_t vf_id;
1763 	int ret;
1764 
1765 	/* Check if mac addr is valid */
1766 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1767 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1768 				      mac_addr);
1769 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1770 			 mac_str);
1771 		return -EINVAL;
1772 	}
1773 
1774 	memset(&req, 0, sizeof(req));
1775 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1776 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1777 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1778 	if (ret) {
1779 		/* This mac addr do not exist, add new entry for it */
1780 		memset(desc[0].data, 0, sizeof(desc[0].data));
1781 		memset(desc[1].data, 0, sizeof(desc[0].data));
1782 		memset(desc[2].data, 0, sizeof(desc[0].data));
1783 	}
1784 
1785 	/*
1786 	 * In current version VF is not supported when PF is driven by DPDK
1787 	 * driver, just need to configure parameters for PF vport.
1788 	 */
1789 	vf_id = HNS3_PF_FUNC_ID;
1790 	hns3_update_desc_vfid(desc, vf_id, false);
1791 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1792 	if (ret) {
1793 		if (ret == -ENOSPC)
1794 			hns3_err(hw, "mc mac vlan table is full");
1795 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1796 				      mac_addr);
1797 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1798 	}
1799 
1800 	return ret;
1801 }
1802 
1803 static int
1804 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1805 {
1806 	struct hns3_mac_vlan_tbl_entry_cmd req;
1807 	struct hns3_cmd_desc desc[3];
1808 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1809 	uint8_t vf_id;
1810 	int ret;
1811 
1812 	/* Check if mac addr is valid */
1813 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1814 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1815 				      mac_addr);
1816 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1817 			 mac_str);
1818 		return -EINVAL;
1819 	}
1820 
1821 	memset(&req, 0, sizeof(req));
1822 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1823 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1824 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1825 	if (ret == 0) {
1826 		/*
1827 		 * This mac addr exist, remove this handle's VFID for it.
1828 		 * In current version VF is not supported when PF is driven by
1829 		 * DPDK driver, just need to configure parameters for PF vport.
1830 		 */
1831 		vf_id = HNS3_PF_FUNC_ID;
1832 		hns3_update_desc_vfid(desc, vf_id, true);
1833 
1834 		/* All the vfid is zero, so need to delete this entry */
1835 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1836 	} else if (ret == -ENOENT) {
1837 		/* This mac addr doesn't exist. */
1838 		return 0;
1839 	}
1840 
1841 	if (ret) {
1842 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1843 				      mac_addr);
1844 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1845 	}
1846 
1847 	return ret;
1848 }
1849 
1850 static int
1851 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1852 			   struct rte_ether_addr *mc_addr_set,
1853 			   uint32_t nb_mc_addr)
1854 {
1855 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1856 	struct rte_ether_addr *addr;
1857 	uint32_t i;
1858 	uint32_t j;
1859 
1860 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1861 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
1862 			 "invalid. valid range: 0~%d",
1863 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1864 		return -EINVAL;
1865 	}
1866 
1867 	/* Check if input mac addresses are valid */
1868 	for (i = 0; i < nb_mc_addr; i++) {
1869 		addr = &mc_addr_set[i];
1870 		if (!rte_is_multicast_ether_addr(addr)) {
1871 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1872 					      addr);
1873 			hns3_err(hw,
1874 				 "failed to set mc mac addr, addr(%s) invalid.",
1875 				 mac_str);
1876 			return -EINVAL;
1877 		}
1878 
1879 		/* Check if there are duplicate addresses */
1880 		for (j = i + 1; j < nb_mc_addr; j++) {
1881 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1882 				rte_ether_format_addr(mac_str,
1883 						      RTE_ETHER_ADDR_FMT_SIZE,
1884 						      addr);
1885 				hns3_err(hw, "failed to set mc mac addr, "
1886 					 "addrs invalid. two same addrs(%s).",
1887 					 mac_str);
1888 				return -EINVAL;
1889 			}
1890 		}
1891 
1892 		/*
1893 		 * Check if there are duplicate addresses between mac_addrs
1894 		 * and mc_addr_set
1895 		 */
1896 		for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1897 			if (rte_is_same_ether_addr(addr,
1898 						   &hw->data->mac_addrs[j])) {
1899 				rte_ether_format_addr(mac_str,
1900 						      RTE_ETHER_ADDR_FMT_SIZE,
1901 						      addr);
1902 				hns3_err(hw, "failed to set mc mac addr, "
1903 					 "addrs invalid. addrs(%s) has already "
1904 					 "configured in mac_addr add API",
1905 					 mac_str);
1906 				return -EINVAL;
1907 			}
1908 		}
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 static void
1915 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
1916 			   struct rte_ether_addr *mc_addr_set,
1917 			   int mc_addr_num,
1918 			   struct rte_ether_addr *reserved_addr_list,
1919 			   int *reserved_addr_num,
1920 			   struct rte_ether_addr *add_addr_list,
1921 			   int *add_addr_num,
1922 			   struct rte_ether_addr *rm_addr_list,
1923 			   int *rm_addr_num)
1924 {
1925 	struct rte_ether_addr *addr;
1926 	int current_addr_num;
1927 	int reserved_num = 0;
1928 	int add_num = 0;
1929 	int rm_num = 0;
1930 	int num;
1931 	int i;
1932 	int j;
1933 	bool same_addr;
1934 
1935 	/* Calculate the mc mac address list that should be removed */
1936 	current_addr_num = hw->mc_addrs_num;
1937 	for (i = 0; i < current_addr_num; i++) {
1938 		addr = &hw->mc_addrs[i];
1939 		same_addr = false;
1940 		for (j = 0; j < mc_addr_num; j++) {
1941 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1942 				same_addr = true;
1943 				break;
1944 			}
1945 		}
1946 
1947 		if (!same_addr) {
1948 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
1949 			rm_num++;
1950 		} else {
1951 			rte_ether_addr_copy(addr,
1952 					    &reserved_addr_list[reserved_num]);
1953 			reserved_num++;
1954 		}
1955 	}
1956 
1957 	/* Calculate the mc mac address list that should be added */
1958 	for (i = 0; i < mc_addr_num; i++) {
1959 		addr = &mc_addr_set[i];
1960 		same_addr = false;
1961 		for (j = 0; j < current_addr_num; j++) {
1962 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
1963 				same_addr = true;
1964 				break;
1965 			}
1966 		}
1967 
1968 		if (!same_addr) {
1969 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
1970 			add_num++;
1971 		}
1972 	}
1973 
1974 	/* Reorder the mc mac address list maintained by driver */
1975 	for (i = 0; i < reserved_num; i++)
1976 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
1977 
1978 	for (i = 0; i < rm_num; i++) {
1979 		num = reserved_num + i;
1980 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
1981 	}
1982 
1983 	*reserved_addr_num = reserved_num;
1984 	*add_addr_num = add_num;
1985 	*rm_addr_num = rm_num;
1986 }
1987 
1988 static int
1989 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
1990 			  struct rte_ether_addr *mc_addr_set,
1991 			  uint32_t nb_mc_addr)
1992 {
1993 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1994 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
1995 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
1996 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
1997 	struct rte_ether_addr *addr;
1998 	int reserved_addr_num;
1999 	int add_addr_num;
2000 	int rm_addr_num;
2001 	int mc_addr_num;
2002 	int num;
2003 	int ret;
2004 	int i;
2005 
2006 	/* Check if input parameters are valid */
2007 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2008 	if (ret)
2009 		return ret;
2010 
2011 	rte_spinlock_lock(&hw->lock);
2012 
2013 	/*
2014 	 * Calculate the mc mac address lists those should be removed and be
2015 	 * added, Reorder the mc mac address list maintained by driver.
2016 	 */
2017 	mc_addr_num = (int)nb_mc_addr;
2018 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2019 				   reserved_addr_list, &reserved_addr_num,
2020 				   add_addr_list, &add_addr_num,
2021 				   rm_addr_list, &rm_addr_num);
2022 
2023 	/* Remove mc mac addresses */
2024 	for (i = 0; i < rm_addr_num; i++) {
2025 		num = rm_addr_num - i - 1;
2026 		addr = &rm_addr_list[num];
2027 		ret = hns3_remove_mc_addr(hw, addr);
2028 		if (ret) {
2029 			rte_spinlock_unlock(&hw->lock);
2030 			return ret;
2031 		}
2032 		hw->mc_addrs_num--;
2033 	}
2034 
2035 	/* Add mc mac addresses */
2036 	for (i = 0; i < add_addr_num; i++) {
2037 		addr = &add_addr_list[i];
2038 		ret = hns3_add_mc_addr(hw, addr);
2039 		if (ret) {
2040 			rte_spinlock_unlock(&hw->lock);
2041 			return ret;
2042 		}
2043 
2044 		num = reserved_addr_num + i;
2045 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2046 		hw->mc_addrs_num++;
2047 	}
2048 	rte_spinlock_unlock(&hw->lock);
2049 
2050 	return 0;
2051 }
2052 
2053 static int
2054 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2055 {
2056 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2057 	struct hns3_hw *hw = &hns->hw;
2058 	struct rte_ether_addr *addr;
2059 	int err = 0;
2060 	int ret;
2061 	int i;
2062 
2063 	for (i = 0; i < hw->mc_addrs_num; i++) {
2064 		addr = &hw->mc_addrs[i];
2065 		if (!rte_is_multicast_ether_addr(addr))
2066 			continue;
2067 		if (del)
2068 			ret = hns3_remove_mc_addr(hw, addr);
2069 		else
2070 			ret = hns3_add_mc_addr(hw, addr);
2071 		if (ret) {
2072 			err = ret;
2073 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2074 					      addr);
2075 			hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2076 				 del ? "Remove" : "Restore", mac_str, ret);
2077 		}
2078 	}
2079 	return err;
2080 }
2081 
2082 static int
2083 hns3_check_mq_mode(struct rte_eth_dev *dev)
2084 {
2085 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2086 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2087 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2088 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2089 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2090 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2091 	uint8_t num_tc;
2092 	int max_tc = 0;
2093 	int i;
2094 
2095 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2096 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2097 
2098 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2099 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2100 			 "rx_mq_mode = %d", rx_mq_mode);
2101 		return -EINVAL;
2102 	}
2103 
2104 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2105 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2106 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2107 			 "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2108 			 rx_mq_mode, tx_mq_mode);
2109 		return -EINVAL;
2110 	}
2111 
2112 	if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2113 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2114 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2115 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2116 			return -EINVAL;
2117 		}
2118 
2119 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2120 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2121 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2122 				 "nb_tcs(%d) != %d or %d in rx direction.",
2123 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2124 			return -EINVAL;
2125 		}
2126 
2127 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2128 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2129 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2130 			return -EINVAL;
2131 		}
2132 
2133 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2134 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2135 				hns3_err(hw, "dcb_tc[%d] = %d in rx direction, "
2136 					 "is not equal to one in tx direction.",
2137 					 i, dcb_rx_conf->dcb_tc[i]);
2138 				return -EINVAL;
2139 			}
2140 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2141 				max_tc = dcb_rx_conf->dcb_tc[i];
2142 		}
2143 
2144 		num_tc = max_tc + 1;
2145 		if (num_tc > dcb_rx_conf->nb_tcs) {
2146 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2147 				 num_tc, dcb_rx_conf->nb_tcs);
2148 			return -EINVAL;
2149 		}
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 static int
2156 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2157 {
2158 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2159 
2160 	if (!hns3_dev_dcb_supported(hw)) {
2161 		hns3_err(hw, "this port does not support dcb configurations.");
2162 		return -EOPNOTSUPP;
2163 	}
2164 
2165 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2166 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2167 		return -EOPNOTSUPP;
2168 	}
2169 
2170 	/* Check multiple queue mode */
2171 	return hns3_check_mq_mode(dev);
2172 }
2173 
2174 static int
2175 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id, bool mmap,
2176 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2177 {
2178 	struct hns3_cmd_desc desc;
2179 	struct hns3_ctrl_vector_chain_cmd *req =
2180 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2181 	enum hns3_cmd_status status;
2182 	enum hns3_opcode_type op;
2183 	uint16_t tqp_type_and_id = 0;
2184 	const char *op_str;
2185 	uint16_t type;
2186 	uint16_t gl;
2187 
2188 	op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2189 	hns3_cmd_setup_basic_desc(&desc, op, false);
2190 	req->int_vector_id = vector_id;
2191 
2192 	if (queue_type == HNS3_RING_TYPE_RX)
2193 		gl = HNS3_RING_GL_RX;
2194 	else
2195 		gl = HNS3_RING_GL_TX;
2196 
2197 	type = queue_type;
2198 
2199 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2200 		       type);
2201 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2202 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2203 		       gl);
2204 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2205 	req->int_cause_num = 1;
2206 	op_str = mmap ? "Map" : "Unmap";
2207 	status = hns3_cmd_send(hw, &desc, 1);
2208 	if (status) {
2209 		hns3_err(hw, "%s TQP %d fail, vector_id is %d, status is %d.",
2210 			 op_str, queue_id, req->int_vector_id, status);
2211 		return status;
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static int
2218 hns3_init_ring_with_vector(struct hns3_hw *hw)
2219 {
2220 	uint16_t vec;
2221 	int ret;
2222 	int i;
2223 
2224 	/*
2225 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2226 	 * function, vector 1~N can be used respectively for the queues of the
2227 	 * function. Tx and Rx queues with the same number share the interrupt
2228 	 * vector. In the initialization clearing the all hardware mapping
2229 	 * relationship configurations between queues and interrupt vectors is
2230 	 * needed, so some error caused by the residual configurations, such as
2231 	 * the unexpected Tx interrupt, can be avoid.
2232 	 */
2233 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2234 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2235 		vec = vec - 1; /* the last interrupt is reserved */
2236 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2237 	for (i = 0; i < hw->intr_tqps_num; i++) {
2238 		/*
2239 		 * Set gap limiter/rate limiter/quanity limiter algorithm
2240 		 * configuration for interrupt coalesce of queue's interrupt.
2241 		 */
2242 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2243 				       HNS3_TQP_INTR_GL_DEFAULT);
2244 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2245 				       HNS3_TQP_INTR_GL_DEFAULT);
2246 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2247 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2248 
2249 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2250 						 HNS3_RING_TYPE_TX, i);
2251 		if (ret) {
2252 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2253 					  "vector: %d, ret=%d", i, vec, ret);
2254 			return ret;
2255 		}
2256 
2257 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2258 						 HNS3_RING_TYPE_RX, i);
2259 		if (ret) {
2260 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2261 					  "vector: %d, ret=%d", i, vec, ret);
2262 			return ret;
2263 		}
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 static int
2270 hns3_dev_configure(struct rte_eth_dev *dev)
2271 {
2272 	struct hns3_adapter *hns = dev->data->dev_private;
2273 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2274 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2275 	struct hns3_hw *hw = &hns->hw;
2276 	struct hns3_rss_conf *rss_cfg = &hw->rss_info;
2277 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2278 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2279 	struct rte_eth_rss_conf rss_conf;
2280 	uint16_t mtu;
2281 	bool gro_en;
2282 	int ret;
2283 
2284 	/*
2285 	 * Hardware does not support individually enable/disable/reset the Tx or
2286 	 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
2287 	 * and Rx queues at the same time. When the numbers of Tx queues
2288 	 * allocated by upper applications are not equal to the numbers of Rx
2289 	 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
2290 	 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
2291 	 * these fake queues are imperceptible, and can not be used by upper
2292 	 * applications.
2293 	 */
2294 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2295 	if (ret) {
2296 		hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
2297 		return ret;
2298 	}
2299 
2300 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2301 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2302 		hns3_err(hw, "setting link speed/duplex not supported");
2303 		ret = -EINVAL;
2304 		goto cfg_err;
2305 	}
2306 
2307 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2308 		ret = hns3_check_dcb_cfg(dev);
2309 		if (ret)
2310 			goto cfg_err;
2311 	}
2312 
2313 	/* When RSS is not configured, redirect the packet queue 0 */
2314 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2315 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2316 		rss_conf = conf->rx_adv_conf.rss_conf;
2317 		if (rss_conf.rss_key == NULL) {
2318 			rss_conf.rss_key = rss_cfg->key;
2319 			rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
2320 		}
2321 
2322 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2323 		if (ret)
2324 			goto cfg_err;
2325 	}
2326 
2327 	/*
2328 	 * If jumbo frames are enabled, MTU needs to be refreshed
2329 	 * according to the maximum RX packet length.
2330 	 */
2331 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2332 		/*
2333 		 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
2334 		 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
2335 		 * can safely assign to "uint16_t" type variable.
2336 		 */
2337 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
2338 		ret = hns3_dev_mtu_set(dev, mtu);
2339 		if (ret)
2340 			goto cfg_err;
2341 		dev->data->mtu = mtu;
2342 	}
2343 
2344 	ret = hns3_dev_configure_vlan(dev);
2345 	if (ret)
2346 		goto cfg_err;
2347 
2348 	/* config hardware GRO */
2349 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2350 	ret = hns3_config_gro(hw, gro_en);
2351 	if (ret)
2352 		goto cfg_err;
2353 
2354 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2355 
2356 	return 0;
2357 
2358 cfg_err:
2359 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2360 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2361 
2362 	return ret;
2363 }
2364 
2365 static int
2366 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2367 {
2368 	struct hns3_config_max_frm_size_cmd *req;
2369 	struct hns3_cmd_desc desc;
2370 
2371 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2372 
2373 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2374 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2375 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2376 
2377 	return hns3_cmd_send(hw, &desc, 1);
2378 }
2379 
2380 static int
2381 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2382 {
2383 	int ret;
2384 
2385 	ret = hns3_set_mac_mtu(hw, mps);
2386 	if (ret) {
2387 		hns3_err(hw, "Failed to set mtu, ret = %d", ret);
2388 		return ret;
2389 	}
2390 
2391 	ret = hns3_buffer_alloc(hw);
2392 	if (ret)
2393 		hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
2394 
2395 	return ret;
2396 }
2397 
2398 static int
2399 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2400 {
2401 	struct hns3_adapter *hns = dev->data->dev_private;
2402 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2403 	struct hns3_hw *hw = &hns->hw;
2404 	bool is_jumbo_frame;
2405 	int ret;
2406 
2407 	if (dev->data->dev_started) {
2408 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2409 			 "before configuration", dev->data->port_id);
2410 		return -EBUSY;
2411 	}
2412 
2413 	rte_spinlock_lock(&hw->lock);
2414 	is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
2415 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2416 
2417 	/*
2418 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2419 	 * assign to "uint16_t" type variable.
2420 	 */
2421 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2422 	if (ret) {
2423 		rte_spinlock_unlock(&hw->lock);
2424 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2425 			 dev->data->port_id, mtu, ret);
2426 		return ret;
2427 	}
2428 	hns->pf.mps = (uint16_t)frame_size;
2429 	if (is_jumbo_frame)
2430 		dev->data->dev_conf.rxmode.offloads |=
2431 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2432 	else
2433 		dev->data->dev_conf.rxmode.offloads &=
2434 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2435 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2436 	rte_spinlock_unlock(&hw->lock);
2437 
2438 	return 0;
2439 }
2440 
2441 static int
2442 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2443 {
2444 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2445 	struct hns3_hw *hw = &hns->hw;
2446 	uint16_t queue_num = hw->tqps_num;
2447 
2448 	/*
2449 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2450 	 * MSI-X interrupt resources of the hardware.
2451 	 */
2452 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2453 		queue_num = hw->intr_tqps_num;
2454 
2455 	info->max_rx_queues = queue_num;
2456 	info->max_tx_queues = hw->tqps_num;
2457 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2458 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2459 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2460 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2461 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2462 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2463 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2464 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2465 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2466 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2467 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2468 				 DEV_RX_OFFLOAD_KEEP_CRC |
2469 				 DEV_RX_OFFLOAD_SCATTER |
2470 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2471 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2472 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
2473 				 DEV_RX_OFFLOAD_RSS_HASH |
2474 				 DEV_RX_OFFLOAD_TCP_LRO);
2475 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2476 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2477 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2478 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2479 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2480 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2481 				 DEV_TX_OFFLOAD_TCP_TSO |
2482 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2483 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
2484 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2485 				 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2486 				 hns3_txvlan_cap_get(hw));
2487 
2488 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2489 		.nb_max = HNS3_MAX_RING_DESC,
2490 		.nb_min = HNS3_MIN_RING_DESC,
2491 		.nb_align = HNS3_ALIGN_RING_DESC,
2492 	};
2493 
2494 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2495 		.nb_max = HNS3_MAX_RING_DESC,
2496 		.nb_min = HNS3_MIN_RING_DESC,
2497 		.nb_align = HNS3_ALIGN_RING_DESC,
2498 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2499 		.nb_mtu_seg_max = HNS3_MAX_NON_TSO_BD_PER_PKT,
2500 	};
2501 
2502 	info->default_rxconf = (struct rte_eth_rxconf) {
2503 		/*
2504 		 * If there are no available Rx buffer descriptors, incoming
2505 		 * packets are always dropped by hardware based on hns3 network
2506 		 * engine.
2507 		 */
2508 		.rx_drop_en = 1,
2509 	};
2510 
2511 	info->vmdq_queue_num = 0;
2512 
2513 	info->reta_size = HNS3_RSS_IND_TBL_SIZE;
2514 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2515 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2516 
2517 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2518 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2519 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2520 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2521 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2522 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2523 
2524 	return 0;
2525 }
2526 
2527 static int
2528 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2529 		    size_t fw_size)
2530 {
2531 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2532 	struct hns3_hw *hw = &hns->hw;
2533 	uint32_t version = hw->fw_version;
2534 	int ret;
2535 
2536 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2537 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2538 				      HNS3_FW_VERSION_BYTE3_S),
2539 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2540 				      HNS3_FW_VERSION_BYTE2_S),
2541 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2542 				      HNS3_FW_VERSION_BYTE1_S),
2543 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2544 				      HNS3_FW_VERSION_BYTE0_S));
2545 	ret += 1; /* add the size of '\0' */
2546 	if (fw_size < (uint32_t)ret)
2547 		return ret;
2548 	else
2549 		return 0;
2550 }
2551 
2552 static int
2553 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2554 		     __rte_unused int wait_to_complete)
2555 {
2556 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2557 	struct hns3_hw *hw = &hns->hw;
2558 	struct hns3_mac *mac = &hw->mac;
2559 	struct rte_eth_link new_link;
2560 
2561 	if (!hns3_is_reset_pending(hns)) {
2562 		hns3_update_speed_duplex(eth_dev);
2563 		hns3_update_link_status(hw);
2564 	}
2565 
2566 	memset(&new_link, 0, sizeof(new_link));
2567 	switch (mac->link_speed) {
2568 	case ETH_SPEED_NUM_10M:
2569 	case ETH_SPEED_NUM_100M:
2570 	case ETH_SPEED_NUM_1G:
2571 	case ETH_SPEED_NUM_10G:
2572 	case ETH_SPEED_NUM_25G:
2573 	case ETH_SPEED_NUM_40G:
2574 	case ETH_SPEED_NUM_50G:
2575 	case ETH_SPEED_NUM_100G:
2576 	case ETH_SPEED_NUM_200G:
2577 		new_link.link_speed = mac->link_speed;
2578 		break;
2579 	default:
2580 		new_link.link_speed = ETH_SPEED_NUM_100M;
2581 		break;
2582 	}
2583 
2584 	new_link.link_duplex = mac->link_duplex;
2585 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2586 	new_link.link_autoneg =
2587 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2588 
2589 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2590 }
2591 
2592 static int
2593 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2594 {
2595 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2596 	struct hns3_pf *pf = &hns->pf;
2597 
2598 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2599 		return -EINVAL;
2600 
2601 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2602 
2603 	return 0;
2604 }
2605 
2606 static int
2607 hns3_query_function_status(struct hns3_hw *hw)
2608 {
2609 #define HNS3_QUERY_MAX_CNT		10
2610 #define HNS3_QUERY_SLEEP_MSCOEND	1
2611 	struct hns3_func_status_cmd *req;
2612 	struct hns3_cmd_desc desc;
2613 	int timeout = 0;
2614 	int ret;
2615 
2616 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2617 	req = (struct hns3_func_status_cmd *)desc.data;
2618 
2619 	do {
2620 		ret = hns3_cmd_send(hw, &desc, 1);
2621 		if (ret) {
2622 			PMD_INIT_LOG(ERR, "query function status failed %d",
2623 				     ret);
2624 			return ret;
2625 		}
2626 
2627 		/* Check pf reset is done */
2628 		if (req->pf_state)
2629 			break;
2630 
2631 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2632 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2633 
2634 	return hns3_parse_func_status(hw, req);
2635 }
2636 
2637 static int
2638 hns3_query_pf_resource(struct hns3_hw *hw)
2639 {
2640 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2641 	struct hns3_pf *pf = &hns->pf;
2642 	struct hns3_pf_res_cmd *req;
2643 	struct hns3_cmd_desc desc;
2644 	int ret;
2645 
2646 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2647 	ret = hns3_cmd_send(hw, &desc, 1);
2648 	if (ret) {
2649 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2650 		return ret;
2651 	}
2652 
2653 	req = (struct hns3_pf_res_cmd *)desc.data;
2654 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num);
2655 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2656 	hw->tqps_num = RTE_MIN(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2657 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2658 
2659 	if (req->tx_buf_size)
2660 		pf->tx_buf_size =
2661 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2662 	else
2663 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2664 
2665 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2666 
2667 	if (req->dv_buf_size)
2668 		pf->dv_buf_size =
2669 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2670 	else
2671 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2672 
2673 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2674 
2675 	hw->num_msi =
2676 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2677 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2678 
2679 	return 0;
2680 }
2681 
2682 static void
2683 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2684 {
2685 	struct hns3_cfg_param_cmd *req;
2686 	uint64_t mac_addr_tmp_high;
2687 	uint64_t mac_addr_tmp;
2688 	uint32_t i;
2689 
2690 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2691 
2692 	/* get the configuration */
2693 	cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2694 					     HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2695 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2696 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2697 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2698 					   HNS3_CFG_TQP_DESC_N_M,
2699 					   HNS3_CFG_TQP_DESC_N_S);
2700 
2701 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2702 				       HNS3_CFG_PHY_ADDR_M,
2703 				       HNS3_CFG_PHY_ADDR_S);
2704 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2705 					 HNS3_CFG_MEDIA_TP_M,
2706 					 HNS3_CFG_MEDIA_TP_S);
2707 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2708 					 HNS3_CFG_RX_BUF_LEN_M,
2709 					 HNS3_CFG_RX_BUF_LEN_S);
2710 	/* get mac address */
2711 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2712 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2713 					   HNS3_CFG_MAC_ADDR_H_M,
2714 					   HNS3_CFG_MAC_ADDR_H_S);
2715 
2716 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2717 
2718 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2719 					    HNS3_CFG_DEFAULT_SPEED_M,
2720 					    HNS3_CFG_DEFAULT_SPEED_S);
2721 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2722 					   HNS3_CFG_RSS_SIZE_M,
2723 					   HNS3_CFG_RSS_SIZE_S);
2724 
2725 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2726 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2727 
2728 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2729 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2730 
2731 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2732 					    HNS3_CFG_SPEED_ABILITY_M,
2733 					    HNS3_CFG_SPEED_ABILITY_S);
2734 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2735 					HNS3_CFG_UMV_TBL_SPACE_M,
2736 					HNS3_CFG_UMV_TBL_SPACE_S);
2737 	if (!cfg->umv_space)
2738 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2739 }
2740 
2741 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2742  * @hw: pointer to struct hns3_hw
2743  * @hcfg: the config structure to be getted
2744  */
2745 static int
2746 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2747 {
2748 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2749 	struct hns3_cfg_param_cmd *req;
2750 	uint32_t offset;
2751 	uint32_t i;
2752 	int ret;
2753 
2754 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2755 		offset = 0;
2756 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2757 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2758 					  true);
2759 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2760 			       i * HNS3_CFG_RD_LEN_BYTES);
2761 		/* Len should be divided by 4 when send to hardware */
2762 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2763 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2764 		req->offset = rte_cpu_to_le_32(offset);
2765 	}
2766 
2767 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2768 	if (ret) {
2769 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2770 		return ret;
2771 	}
2772 
2773 	hns3_parse_cfg(hcfg, desc);
2774 
2775 	return 0;
2776 }
2777 
2778 static int
2779 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2780 {
2781 	switch (speed_cmd) {
2782 	case HNS3_CFG_SPEED_10M:
2783 		*speed = ETH_SPEED_NUM_10M;
2784 		break;
2785 	case HNS3_CFG_SPEED_100M:
2786 		*speed = ETH_SPEED_NUM_100M;
2787 		break;
2788 	case HNS3_CFG_SPEED_1G:
2789 		*speed = ETH_SPEED_NUM_1G;
2790 		break;
2791 	case HNS3_CFG_SPEED_10G:
2792 		*speed = ETH_SPEED_NUM_10G;
2793 		break;
2794 	case HNS3_CFG_SPEED_25G:
2795 		*speed = ETH_SPEED_NUM_25G;
2796 		break;
2797 	case HNS3_CFG_SPEED_40G:
2798 		*speed = ETH_SPEED_NUM_40G;
2799 		break;
2800 	case HNS3_CFG_SPEED_50G:
2801 		*speed = ETH_SPEED_NUM_50G;
2802 		break;
2803 	case HNS3_CFG_SPEED_100G:
2804 		*speed = ETH_SPEED_NUM_100G;
2805 		break;
2806 	case HNS3_CFG_SPEED_200G:
2807 		*speed = ETH_SPEED_NUM_200G;
2808 		break;
2809 	default:
2810 		return -EINVAL;
2811 	}
2812 
2813 	return 0;
2814 }
2815 
2816 static void
2817 hns3_set_default_dev_specifications(struct hns3_hw *hw)
2818 {
2819 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
2820 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
2821 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
2822 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
2823 }
2824 
2825 static void
2826 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
2827 {
2828 	struct hns3_dev_specs_0_cmd *req0;
2829 
2830 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
2831 
2832 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
2833 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
2834 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
2835 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
2836 }
2837 
2838 static int
2839 hns3_query_dev_specifications(struct hns3_hw *hw)
2840 {
2841 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
2842 	int ret;
2843 	int i;
2844 
2845 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2846 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
2847 					  true);
2848 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
2849 	}
2850 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
2851 
2852 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
2853 	if (ret)
2854 		return ret;
2855 
2856 	hns3_parse_dev_specifications(hw, desc);
2857 
2858 	return 0;
2859 }
2860 
2861 static int
2862 hns3_get_capability(struct hns3_hw *hw)
2863 {
2864 	struct rte_pci_device *pci_dev;
2865 	struct rte_eth_dev *eth_dev;
2866 	uint16_t device_id;
2867 	uint8_t revision;
2868 	int ret;
2869 
2870 	eth_dev = &rte_eth_devices[hw->data->port_id];
2871 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2872 	device_id = pci_dev->id.device_id;
2873 
2874 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
2875 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
2876 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
2877 	    device_id == HNS3_DEV_ID_200G_RDMA)
2878 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
2879 
2880 	/* Get PCI revision id */
2881 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
2882 				  HNS3_PCI_REVISION_ID);
2883 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
2884 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
2885 			     ret);
2886 		return -EIO;
2887 	}
2888 	hw->revision = revision;
2889 
2890 	if (revision < PCI_REVISION_ID_HIP09_A) {
2891 		hns3_set_default_dev_specifications(hw);
2892 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
2893 		hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
2894 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
2895 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
2896 		return 0;
2897 	}
2898 
2899 	ret = hns3_query_dev_specifications(hw);
2900 	if (ret) {
2901 		PMD_INIT_LOG(ERR,
2902 			     "failed to query dev specifications, ret = %d",
2903 			     ret);
2904 		return ret;
2905 	}
2906 
2907 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
2908 	hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
2909 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
2910 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
2911 
2912 	return 0;
2913 }
2914 
2915 static int
2916 hns3_get_board_configuration(struct hns3_hw *hw)
2917 {
2918 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2919 	struct hns3_pf *pf = &hns->pf;
2920 	struct hns3_cfg cfg;
2921 	int ret;
2922 
2923 	ret = hns3_get_board_cfg(hw, &cfg);
2924 	if (ret) {
2925 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2926 		return ret;
2927 	}
2928 
2929 	if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER &&
2930 	    !hns3_dev_copper_supported(hw)) {
2931 		PMD_INIT_LOG(ERR, "media type is copper, not supported.");
2932 		return -EOPNOTSUPP;
2933 	}
2934 
2935 	hw->mac.media_type = cfg.media_type;
2936 	hw->rss_size_max = cfg.rss_size_max;
2937 	hw->rss_dis_flag = false;
2938 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2939 	hw->mac.phy_addr = cfg.phy_addr;
2940 	hw->mac.default_addr_setted = false;
2941 	hw->num_tx_desc = cfg.tqp_desc_num;
2942 	hw->num_rx_desc = cfg.tqp_desc_num;
2943 	hw->dcb_info.num_pg = 1;
2944 	hw->dcb_info.hw_pfc_map = 0;
2945 
2946 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2947 	if (ret) {
2948 		PMD_INIT_LOG(ERR, "Get wrong speed %d, ret = %d",
2949 			     cfg.default_speed, ret);
2950 		return ret;
2951 	}
2952 
2953 	pf->tc_max = cfg.tc_num;
2954 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2955 		PMD_INIT_LOG(WARNING,
2956 			     "Get TC num(%u) from flash, set TC num to 1",
2957 			     pf->tc_max);
2958 		pf->tc_max = 1;
2959 	}
2960 
2961 	/* Dev does not support DCB */
2962 	if (!hns3_dev_dcb_supported(hw)) {
2963 		pf->tc_max = 1;
2964 		pf->pfc_max = 0;
2965 	} else
2966 		pf->pfc_max = pf->tc_max;
2967 
2968 	hw->dcb_info.num_tc = 1;
2969 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2970 				     hw->tqps_num / hw->dcb_info.num_tc);
2971 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2972 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2973 
2974 	pf->wanted_umv_size = cfg.umv_space;
2975 
2976 	return ret;
2977 }
2978 
2979 static int
2980 hns3_get_configuration(struct hns3_hw *hw)
2981 {
2982 	int ret;
2983 
2984 	ret = hns3_query_function_status(hw);
2985 	if (ret) {
2986 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2987 		return ret;
2988 	}
2989 
2990 	/* Get device capability */
2991 	ret = hns3_get_capability(hw);
2992 	if (ret) {
2993 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
2994 		return ret;
2995 	}
2996 
2997 	/* Get pf resource */
2998 	ret = hns3_query_pf_resource(hw);
2999 	if (ret) {
3000 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3001 		return ret;
3002 	}
3003 
3004 	ret = hns3_get_board_configuration(hw);
3005 	if (ret)
3006 		PMD_INIT_LOG(ERR, "Failed to get board configuration: %d", ret);
3007 
3008 	return ret;
3009 }
3010 
3011 static int
3012 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3013 		      uint16_t tqp_vid, bool is_pf)
3014 {
3015 	struct hns3_tqp_map_cmd *req;
3016 	struct hns3_cmd_desc desc;
3017 	int ret;
3018 
3019 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3020 
3021 	req = (struct hns3_tqp_map_cmd *)desc.data;
3022 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3023 	req->tqp_vf = func_id;
3024 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3025 	if (!is_pf)
3026 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3027 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3028 
3029 	ret = hns3_cmd_send(hw, &desc, 1);
3030 	if (ret)
3031 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3032 
3033 	return ret;
3034 }
3035 
3036 static int
3037 hns3_map_tqp(struct hns3_hw *hw)
3038 {
3039 	uint16_t tqps_num = hw->total_tqps_num;
3040 	uint16_t func_id;
3041 	uint16_t tqp_id;
3042 	bool is_pf;
3043 	int num;
3044 	int ret;
3045 	int i;
3046 
3047 	/*
3048 	 * In current version VF is not supported when PF is driven by DPDK
3049 	 * driver, so we allocate tqps to PF as much as possible.
3050 	 */
3051 	tqp_id = 0;
3052 	num = DIV_ROUND_UP(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
3053 	for (func_id = HNS3_PF_FUNC_ID; func_id < num; func_id++) {
3054 		is_pf = func_id == HNS3_PF_FUNC_ID ? true : false;
3055 		for (i = 0;
3056 		     i < HNS3_MAX_TQP_NUM_PER_FUNC && tqp_id < tqps_num; i++) {
3057 			ret = hns3_map_tqps_to_func(hw, func_id, tqp_id++, i,
3058 						    is_pf);
3059 			if (ret)
3060 				return ret;
3061 		}
3062 	}
3063 
3064 	return 0;
3065 }
3066 
3067 static int
3068 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3069 {
3070 	struct hns3_config_mac_speed_dup_cmd *req;
3071 	struct hns3_cmd_desc desc;
3072 	int ret;
3073 
3074 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3075 
3076 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3077 
3078 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3079 
3080 	switch (speed) {
3081 	case ETH_SPEED_NUM_10M:
3082 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3083 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3084 		break;
3085 	case ETH_SPEED_NUM_100M:
3086 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3087 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3088 		break;
3089 	case ETH_SPEED_NUM_1G:
3090 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3091 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3092 		break;
3093 	case ETH_SPEED_NUM_10G:
3094 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3095 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3096 		break;
3097 	case ETH_SPEED_NUM_25G:
3098 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3099 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3100 		break;
3101 	case ETH_SPEED_NUM_40G:
3102 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3103 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3104 		break;
3105 	case ETH_SPEED_NUM_50G:
3106 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3107 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3108 		break;
3109 	case ETH_SPEED_NUM_100G:
3110 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3111 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3112 		break;
3113 	case ETH_SPEED_NUM_200G:
3114 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3115 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3116 		break;
3117 	default:
3118 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3119 		return -EINVAL;
3120 	}
3121 
3122 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3123 
3124 	ret = hns3_cmd_send(hw, &desc, 1);
3125 	if (ret)
3126 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3127 
3128 	return ret;
3129 }
3130 
3131 static int
3132 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3133 {
3134 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3135 	struct hns3_pf *pf = &hns->pf;
3136 	struct hns3_priv_buf *priv;
3137 	uint32_t i, total_size;
3138 
3139 	total_size = pf->pkt_buf_size;
3140 
3141 	/* alloc tx buffer for all enabled tc */
3142 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3143 		priv = &buf_alloc->priv_buf[i];
3144 
3145 		if (hw->hw_tc_map & BIT(i)) {
3146 			if (total_size < pf->tx_buf_size)
3147 				return -ENOMEM;
3148 
3149 			priv->tx_buf_size = pf->tx_buf_size;
3150 		} else
3151 			priv->tx_buf_size = 0;
3152 
3153 		total_size -= priv->tx_buf_size;
3154 	}
3155 
3156 	return 0;
3157 }
3158 
3159 static int
3160 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3161 {
3162 /* TX buffer size is unit by 128 byte */
3163 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3164 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3165 	struct hns3_tx_buff_alloc_cmd *req;
3166 	struct hns3_cmd_desc desc;
3167 	uint32_t buf_size;
3168 	uint32_t i;
3169 	int ret;
3170 
3171 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3172 
3173 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3174 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3175 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3176 
3177 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3178 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3179 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3180 	}
3181 
3182 	ret = hns3_cmd_send(hw, &desc, 1);
3183 	if (ret)
3184 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3185 
3186 	return ret;
3187 }
3188 
3189 static int
3190 hns3_get_tc_num(struct hns3_hw *hw)
3191 {
3192 	int cnt = 0;
3193 	uint8_t i;
3194 
3195 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3196 		if (hw->hw_tc_map & BIT(i))
3197 			cnt++;
3198 	return cnt;
3199 }
3200 
3201 static uint32_t
3202 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3203 {
3204 	struct hns3_priv_buf *priv;
3205 	uint32_t rx_priv = 0;
3206 	int i;
3207 
3208 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3209 		priv = &buf_alloc->priv_buf[i];
3210 		if (priv->enable)
3211 			rx_priv += priv->buf_size;
3212 	}
3213 	return rx_priv;
3214 }
3215 
3216 static uint32_t
3217 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3218 {
3219 	uint32_t total_tx_size = 0;
3220 	uint32_t i;
3221 
3222 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3223 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3224 
3225 	return total_tx_size;
3226 }
3227 
3228 /* Get the number of pfc enabled TCs, which have private buffer */
3229 static int
3230 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3231 {
3232 	struct hns3_priv_buf *priv;
3233 	int cnt = 0;
3234 	uint8_t i;
3235 
3236 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3237 		priv = &buf_alloc->priv_buf[i];
3238 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3239 			cnt++;
3240 	}
3241 
3242 	return cnt;
3243 }
3244 
3245 /* Get the number of pfc disabled TCs, which have private buffer */
3246 static int
3247 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3248 			 struct hns3_pkt_buf_alloc *buf_alloc)
3249 {
3250 	struct hns3_priv_buf *priv;
3251 	int cnt = 0;
3252 	uint8_t i;
3253 
3254 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3255 		priv = &buf_alloc->priv_buf[i];
3256 		if (hw->hw_tc_map & BIT(i) &&
3257 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3258 			cnt++;
3259 	}
3260 
3261 	return cnt;
3262 }
3263 
3264 static bool
3265 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3266 		  uint32_t rx_all)
3267 {
3268 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3269 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3270 	struct hns3_pf *pf = &hns->pf;
3271 	uint32_t shared_buf, aligned_mps;
3272 	uint32_t rx_priv;
3273 	uint8_t tc_num;
3274 	uint8_t i;
3275 
3276 	tc_num = hns3_get_tc_num(hw);
3277 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3278 
3279 	if (hns3_dev_dcb_supported(hw))
3280 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3281 					pf->dv_buf_size;
3282 	else
3283 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3284 					+ pf->dv_buf_size;
3285 
3286 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3287 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3288 			     HNS3_BUF_SIZE_UNIT);
3289 
3290 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3291 	if (rx_all < rx_priv + shared_std)
3292 		return false;
3293 
3294 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3295 	buf_alloc->s_buf.buf_size = shared_buf;
3296 	if (hns3_dev_dcb_supported(hw)) {
3297 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3298 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3299 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3300 				  HNS3_BUF_SIZE_UNIT);
3301 	} else {
3302 		buf_alloc->s_buf.self.high =
3303 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3304 		buf_alloc->s_buf.self.low = aligned_mps;
3305 	}
3306 
3307 	if (hns3_dev_dcb_supported(hw)) {
3308 		hi_thrd = shared_buf - pf->dv_buf_size;
3309 
3310 		if (tc_num <= NEED_RESERVE_TC_NUM)
3311 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
3312 					/ BUF_MAX_PERCENT;
3313 
3314 		if (tc_num)
3315 			hi_thrd = hi_thrd / tc_num;
3316 
3317 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3318 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3319 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3320 	} else {
3321 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3322 		lo_thrd = aligned_mps;
3323 	}
3324 
3325 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3326 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3327 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3328 	}
3329 
3330 	return true;
3331 }
3332 
3333 static bool
3334 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3335 		     struct hns3_pkt_buf_alloc *buf_alloc)
3336 {
3337 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3338 	struct hns3_pf *pf = &hns->pf;
3339 	struct hns3_priv_buf *priv;
3340 	uint32_t aligned_mps;
3341 	uint32_t rx_all;
3342 	uint8_t i;
3343 
3344 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3345 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3346 
3347 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3348 		priv = &buf_alloc->priv_buf[i];
3349 
3350 		priv->enable = 0;
3351 		priv->wl.low = 0;
3352 		priv->wl.high = 0;
3353 		priv->buf_size = 0;
3354 
3355 		if (!(hw->hw_tc_map & BIT(i)))
3356 			continue;
3357 
3358 		priv->enable = 1;
3359 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3360 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3361 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3362 						HNS3_BUF_SIZE_UNIT);
3363 		} else {
3364 			priv->wl.low = 0;
3365 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3366 					aligned_mps;
3367 		}
3368 
3369 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3370 	}
3371 
3372 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3373 }
3374 
3375 static bool
3376 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3377 			     struct hns3_pkt_buf_alloc *buf_alloc)
3378 {
3379 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3380 	struct hns3_pf *pf = &hns->pf;
3381 	struct hns3_priv_buf *priv;
3382 	int no_pfc_priv_num;
3383 	uint32_t rx_all;
3384 	uint8_t mask;
3385 	int i;
3386 
3387 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3388 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3389 
3390 	/* let the last to be cleared first */
3391 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3392 		priv = &buf_alloc->priv_buf[i];
3393 		mask = BIT((uint8_t)i);
3394 
3395 		if (hw->hw_tc_map & mask &&
3396 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3397 			/* Clear the no pfc TC private buffer */
3398 			priv->wl.low = 0;
3399 			priv->wl.high = 0;
3400 			priv->buf_size = 0;
3401 			priv->enable = 0;
3402 			no_pfc_priv_num--;
3403 		}
3404 
3405 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3406 		    no_pfc_priv_num == 0)
3407 			break;
3408 	}
3409 
3410 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3411 }
3412 
3413 static bool
3414 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3415 			   struct hns3_pkt_buf_alloc *buf_alloc)
3416 {
3417 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3418 	struct hns3_pf *pf = &hns->pf;
3419 	struct hns3_priv_buf *priv;
3420 	uint32_t rx_all;
3421 	int pfc_priv_num;
3422 	uint8_t mask;
3423 	int i;
3424 
3425 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3426 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3427 
3428 	/* let the last to be cleared first */
3429 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3430 		priv = &buf_alloc->priv_buf[i];
3431 		mask = BIT((uint8_t)i);
3432 
3433 		if (hw->hw_tc_map & mask &&
3434 		    hw->dcb_info.hw_pfc_map & mask) {
3435 			/* Reduce the number of pfc TC with private buffer */
3436 			priv->wl.low = 0;
3437 			priv->enable = 0;
3438 			priv->wl.high = 0;
3439 			priv->buf_size = 0;
3440 			pfc_priv_num--;
3441 		}
3442 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3443 		    pfc_priv_num == 0)
3444 			break;
3445 	}
3446 
3447 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3448 }
3449 
3450 static bool
3451 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3452 			  struct hns3_pkt_buf_alloc *buf_alloc)
3453 {
3454 #define COMPENSATE_BUFFER	0x3C00
3455 #define COMPENSATE_HALF_MPS_NUM	5
3456 #define PRIV_WL_GAP		0x1800
3457 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3458 	struct hns3_pf *pf = &hns->pf;
3459 	uint32_t tc_num = hns3_get_tc_num(hw);
3460 	uint32_t half_mps = pf->mps >> 1;
3461 	struct hns3_priv_buf *priv;
3462 	uint32_t min_rx_priv;
3463 	uint32_t rx_priv;
3464 	uint8_t i;
3465 
3466 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3467 	if (tc_num)
3468 		rx_priv = rx_priv / tc_num;
3469 
3470 	if (tc_num <= NEED_RESERVE_TC_NUM)
3471 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3472 
3473 	/*
3474 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3475 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3476 	 * buffer if rx_priv is greater than min_rx_priv.
3477 	 */
3478 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3479 			COMPENSATE_HALF_MPS_NUM * half_mps;
3480 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3481 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3482 
3483 	if (rx_priv < min_rx_priv)
3484 		return false;
3485 
3486 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3487 		priv = &buf_alloc->priv_buf[i];
3488 
3489 		priv->enable = 0;
3490 		priv->wl.low = 0;
3491 		priv->wl.high = 0;
3492 		priv->buf_size = 0;
3493 
3494 		if (!(hw->hw_tc_map & BIT(i)))
3495 			continue;
3496 
3497 		priv->enable = 1;
3498 		priv->buf_size = rx_priv;
3499 		priv->wl.high = rx_priv - pf->dv_buf_size;
3500 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3501 	}
3502 
3503 	buf_alloc->s_buf.buf_size = 0;
3504 
3505 	return true;
3506 }
3507 
3508 /*
3509  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3510  * @hw: pointer to struct hns3_hw
3511  * @buf_alloc: pointer to buffer calculation data
3512  * @return: 0: calculate sucessful, negative: fail
3513  */
3514 static int
3515 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3516 {
3517 	/* When DCB is not supported, rx private buffer is not allocated. */
3518 	if (!hns3_dev_dcb_supported(hw)) {
3519 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3520 		struct hns3_pf *pf = &hns->pf;
3521 		uint32_t rx_all = pf->pkt_buf_size;
3522 
3523 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3524 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3525 			return -ENOMEM;
3526 
3527 		return 0;
3528 	}
3529 
3530 	/*
3531 	 * Try to allocate privated packet buffer for all TCs without share
3532 	 * buffer.
3533 	 */
3534 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3535 		return 0;
3536 
3537 	/*
3538 	 * Try to allocate privated packet buffer for all TCs with share
3539 	 * buffer.
3540 	 */
3541 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3542 		return 0;
3543 
3544 	/*
3545 	 * For different application scenes, the enabled port number, TC number
3546 	 * and no_drop TC number are different. In order to obtain the better
3547 	 * performance, software could allocate the buffer size and configure
3548 	 * the waterline by tring to decrease the private buffer size according
3549 	 * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3550 	 * enabled tc.
3551 	 */
3552 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3553 		return 0;
3554 
3555 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3556 		return 0;
3557 
3558 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3559 		return 0;
3560 
3561 	return -ENOMEM;
3562 }
3563 
3564 static int
3565 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3566 {
3567 	struct hns3_rx_priv_buff_cmd *req;
3568 	struct hns3_cmd_desc desc;
3569 	uint32_t buf_size;
3570 	int ret;
3571 	int i;
3572 
3573 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3574 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3575 
3576 	/* Alloc private buffer TCs */
3577 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3578 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3579 
3580 		req->buf_num[i] =
3581 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3582 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3583 	}
3584 
3585 	buf_size = buf_alloc->s_buf.buf_size;
3586 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3587 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3588 
3589 	ret = hns3_cmd_send(hw, &desc, 1);
3590 	if (ret)
3591 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3592 
3593 	return ret;
3594 }
3595 
3596 static int
3597 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3598 {
3599 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3600 	struct hns3_rx_priv_wl_buf *req;
3601 	struct hns3_priv_buf *priv;
3602 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3603 	int i, j;
3604 	int ret;
3605 
3606 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3607 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3608 					  false);
3609 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3610 
3611 		/* The first descriptor set the NEXT bit to 1 */
3612 		if (i == 0)
3613 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3614 		else
3615 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3616 
3617 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3618 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3619 
3620 			priv = &buf_alloc->priv_buf[idx];
3621 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3622 							HNS3_BUF_UNIT_S);
3623 			req->tc_wl[j].high |=
3624 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3625 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3626 							HNS3_BUF_UNIT_S);
3627 			req->tc_wl[j].low |=
3628 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3629 		}
3630 	}
3631 
3632 	/* Send 2 descriptor at one time */
3633 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3634 	if (ret)
3635 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3636 			     ret);
3637 	return ret;
3638 }
3639 
3640 static int
3641 hns3_common_thrd_config(struct hns3_hw *hw,
3642 			struct hns3_pkt_buf_alloc *buf_alloc)
3643 {
3644 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3645 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3646 	struct hns3_rx_com_thrd *req;
3647 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3648 	struct hns3_tc_thrd *tc;
3649 	int tc_idx;
3650 	int i, j;
3651 	int ret;
3652 
3653 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3654 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3655 					  false);
3656 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3657 
3658 		/* The first descriptor set the NEXT bit to 1 */
3659 		if (i == 0)
3660 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3661 		else
3662 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3663 
3664 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3665 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3666 			tc = &s_buf->tc_thrd[tc_idx];
3667 
3668 			req->com_thrd[j].high =
3669 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3670 			req->com_thrd[j].high |=
3671 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3672 			req->com_thrd[j].low =
3673 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3674 			req->com_thrd[j].low |=
3675 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3676 		}
3677 	}
3678 
3679 	/* Send 2 descriptors at one time */
3680 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3681 	if (ret)
3682 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3683 
3684 	return ret;
3685 }
3686 
3687 static int
3688 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3689 {
3690 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3691 	struct hns3_rx_com_wl *req;
3692 	struct hns3_cmd_desc desc;
3693 	int ret;
3694 
3695 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3696 
3697 	req = (struct hns3_rx_com_wl *)desc.data;
3698 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3699 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3700 
3701 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3702 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3703 
3704 	ret = hns3_cmd_send(hw, &desc, 1);
3705 	if (ret)
3706 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3707 
3708 	return ret;
3709 }
3710 
3711 int
3712 hns3_buffer_alloc(struct hns3_hw *hw)
3713 {
3714 	struct hns3_pkt_buf_alloc pkt_buf;
3715 	int ret;
3716 
3717 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3718 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3719 	if (ret) {
3720 		PMD_INIT_LOG(ERR,
3721 			     "could not calc tx buffer size for all TCs %d",
3722 			     ret);
3723 		return ret;
3724 	}
3725 
3726 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3727 	if (ret) {
3728 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3729 		return ret;
3730 	}
3731 
3732 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3733 	if (ret) {
3734 		PMD_INIT_LOG(ERR,
3735 			     "could not calc rx priv buffer size for all TCs %d",
3736 			     ret);
3737 		return ret;
3738 	}
3739 
3740 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3741 	if (ret) {
3742 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3743 		return ret;
3744 	}
3745 
3746 	if (hns3_dev_dcb_supported(hw)) {
3747 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3748 		if (ret) {
3749 			PMD_INIT_LOG(ERR,
3750 				     "could not configure rx private waterline %d",
3751 				     ret);
3752 			return ret;
3753 		}
3754 
3755 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3756 		if (ret) {
3757 			PMD_INIT_LOG(ERR,
3758 				     "could not configure common threshold %d",
3759 				     ret);
3760 			return ret;
3761 		}
3762 	}
3763 
3764 	ret = hns3_common_wl_config(hw, &pkt_buf);
3765 	if (ret)
3766 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3767 			     ret);
3768 
3769 	return ret;
3770 }
3771 
3772 static int
3773 hns3_mac_init(struct hns3_hw *hw)
3774 {
3775 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3776 	struct hns3_mac *mac = &hw->mac;
3777 	struct hns3_pf *pf = &hns->pf;
3778 	int ret;
3779 
3780 	pf->support_sfp_query = true;
3781 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
3782 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3783 	if (ret) {
3784 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3785 		return ret;
3786 	}
3787 
3788 	mac->link_status = ETH_LINK_DOWN;
3789 
3790 	return hns3_config_mtu(hw, pf->mps);
3791 }
3792 
3793 static int
3794 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3795 {
3796 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3797 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3798 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3799 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3800 	int return_status;
3801 
3802 	if (cmdq_resp) {
3803 		PMD_INIT_LOG(ERR,
3804 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
3805 			     cmdq_resp);
3806 		return -EIO;
3807 	}
3808 
3809 	switch (resp_code) {
3810 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3811 	case HNS3_ETHERTYPE_ALREADY_ADD:
3812 		return_status = 0;
3813 		break;
3814 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3815 		PMD_INIT_LOG(ERR,
3816 			     "add mac ethertype failed for manager table overflow.");
3817 		return_status = -EIO;
3818 		break;
3819 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3820 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3821 		return_status = -EIO;
3822 		break;
3823 	default:
3824 		PMD_INIT_LOG(ERR,
3825 			     "add mac ethertype failed for undefined, code=%d.",
3826 			     resp_code);
3827 		return_status = -EIO;
3828 		break;
3829 	}
3830 
3831 	return return_status;
3832 }
3833 
3834 static int
3835 hns3_add_mgr_tbl(struct hns3_hw *hw,
3836 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3837 {
3838 	struct hns3_cmd_desc desc;
3839 	uint8_t resp_code;
3840 	uint16_t retval;
3841 	int ret;
3842 
3843 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3844 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3845 
3846 	ret = hns3_cmd_send(hw, &desc, 1);
3847 	if (ret) {
3848 		PMD_INIT_LOG(ERR,
3849 			     "add mac ethertype failed for cmd_send, ret =%d.",
3850 			     ret);
3851 		return ret;
3852 	}
3853 
3854 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3855 	retval = rte_le_to_cpu_16(desc.retval);
3856 
3857 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3858 }
3859 
3860 static void
3861 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3862 		     int *table_item_num)
3863 {
3864 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3865 
3866 	/*
3867 	 * In current version, we add one item in management table as below:
3868 	 * 0x0180C200000E -- LLDP MC address
3869 	 */
3870 	tbl = mgr_table;
3871 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3872 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3873 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3874 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3875 	tbl->i_port_bitmap = 0x1;
3876 	*table_item_num = 1;
3877 }
3878 
3879 static int
3880 hns3_init_mgr_tbl(struct hns3_hw *hw)
3881 {
3882 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3883 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3884 	int table_item_num;
3885 	int ret;
3886 	int i;
3887 
3888 	memset(mgr_table, 0, sizeof(mgr_table));
3889 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3890 	for (i = 0; i < table_item_num; i++) {
3891 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3892 		if (ret) {
3893 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3894 				     ret);
3895 			return ret;
3896 		}
3897 	}
3898 
3899 	return 0;
3900 }
3901 
3902 static void
3903 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3904 			bool en_mc, bool en_bc, int vport_id)
3905 {
3906 	if (!param)
3907 		return;
3908 
3909 	memset(param, 0, sizeof(struct hns3_promisc_param));
3910 	if (en_uc)
3911 		param->enable = HNS3_PROMISC_EN_UC;
3912 	if (en_mc)
3913 		param->enable |= HNS3_PROMISC_EN_MC;
3914 	if (en_bc)
3915 		param->enable |= HNS3_PROMISC_EN_BC;
3916 	param->vf_id = vport_id;
3917 }
3918 
3919 static int
3920 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3921 {
3922 	struct hns3_promisc_cfg_cmd *req;
3923 	struct hns3_cmd_desc desc;
3924 	int ret;
3925 
3926 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3927 
3928 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3929 	req->vf_id = param->vf_id;
3930 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3931 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3932 
3933 	ret = hns3_cmd_send(hw, &desc, 1);
3934 	if (ret)
3935 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
3936 
3937 	return ret;
3938 }
3939 
3940 static int
3941 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3942 {
3943 	struct hns3_promisc_param param;
3944 	bool en_bc_pmc = true;
3945 	uint8_t vf_id;
3946 
3947 	/*
3948 	 * In current version VF is not supported when PF is driven by DPDK
3949 	 * driver, just need to configure parameters for PF vport.
3950 	 */
3951 	vf_id = HNS3_PF_FUNC_ID;
3952 
3953 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3954 	return hns3_cmd_set_promisc_mode(hw, &param);
3955 }
3956 
3957 static int
3958 hns3_promisc_init(struct hns3_hw *hw)
3959 {
3960 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3961 	struct hns3_pf *pf = &hns->pf;
3962 	struct hns3_promisc_param param;
3963 	uint16_t func_id;
3964 	int ret;
3965 
3966 	ret = hns3_set_promisc_mode(hw, false, false);
3967 	if (ret) {
3968 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
3969 		return ret;
3970 	}
3971 
3972 	/*
3973 	 * In current version VFs are not supported when PF is driven by DPDK
3974 	 * driver. After PF has been taken over by DPDK, the original VF will
3975 	 * be invalid. So, there is a possibility of entry residues. It should
3976 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
3977 	 * during init.
3978 	 */
3979 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
3980 		hns3_promisc_param_init(&param, false, false, false, func_id);
3981 		ret = hns3_cmd_set_promisc_mode(hw, &param);
3982 		if (ret) {
3983 			PMD_INIT_LOG(ERR, "failed to clear vf:%d promisc mode,"
3984 					" ret = %d", func_id, ret);
3985 			return ret;
3986 		}
3987 	}
3988 
3989 	return 0;
3990 }
3991 
3992 static void
3993 hns3_promisc_uninit(struct hns3_hw *hw)
3994 {
3995 	struct hns3_promisc_param param;
3996 	uint16_t func_id;
3997 	int ret;
3998 
3999 	func_id = HNS3_PF_FUNC_ID;
4000 
4001 	/*
4002 	 * In current version VFs are not supported when PF is driven by
4003 	 * DPDK driver, and VFs' promisc mode status has been cleared during
4004 	 * init and their status will not change. So just clear PF's promisc
4005 	 * mode status during uninit.
4006 	 */
4007 	hns3_promisc_param_init(&param, false, false, false, func_id);
4008 	ret = hns3_cmd_set_promisc_mode(hw, &param);
4009 	if (ret)
4010 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4011 				" uninit, ret = %d", ret);
4012 }
4013 
4014 static int
4015 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4016 {
4017 	bool allmulti = dev->data->all_multicast ? true : false;
4018 	struct hns3_adapter *hns = dev->data->dev_private;
4019 	struct hns3_hw *hw = &hns->hw;
4020 	uint64_t offloads;
4021 	int err;
4022 	int ret;
4023 
4024 	rte_spinlock_lock(&hw->lock);
4025 	ret = hns3_set_promisc_mode(hw, true, true);
4026 	if (ret) {
4027 		rte_spinlock_unlock(&hw->lock);
4028 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4029 			 ret);
4030 		return ret;
4031 	}
4032 
4033 	/*
4034 	 * When promiscuous mode was enabled, disable the vlan filter to let
4035 	 * all packets coming in in the receiving direction.
4036 	 */
4037 	offloads = dev->data->dev_conf.rxmode.offloads;
4038 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4039 		ret = hns3_enable_vlan_filter(hns, false);
4040 		if (ret) {
4041 			hns3_err(hw, "failed to enable promiscuous mode due to "
4042 				     "failure to disable vlan filter, ret = %d",
4043 				 ret);
4044 			err = hns3_set_promisc_mode(hw, false, allmulti);
4045 			if (err)
4046 				hns3_err(hw, "failed to restore promiscuous "
4047 					 "status after disable vlan filter "
4048 					 "failed during enabling promiscuous "
4049 					 "mode, ret = %d", ret);
4050 		}
4051 	}
4052 
4053 	rte_spinlock_unlock(&hw->lock);
4054 
4055 	return ret;
4056 }
4057 
4058 static int
4059 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4060 {
4061 	bool allmulti = dev->data->all_multicast ? true : false;
4062 	struct hns3_adapter *hns = dev->data->dev_private;
4063 	struct hns3_hw *hw = &hns->hw;
4064 	uint64_t offloads;
4065 	int err;
4066 	int ret;
4067 
4068 	/* If now in all_multicast mode, must remain in all_multicast mode. */
4069 	rte_spinlock_lock(&hw->lock);
4070 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4071 	if (ret) {
4072 		rte_spinlock_unlock(&hw->lock);
4073 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4074 			 ret);
4075 		return ret;
4076 	}
4077 	/* when promiscuous mode was disabled, restore the vlan filter status */
4078 	offloads = dev->data->dev_conf.rxmode.offloads;
4079 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4080 		ret = hns3_enable_vlan_filter(hns, true);
4081 		if (ret) {
4082 			hns3_err(hw, "failed to disable promiscuous mode due to"
4083 				 " failure to restore vlan filter, ret = %d",
4084 				 ret);
4085 			err = hns3_set_promisc_mode(hw, true, true);
4086 			if (err)
4087 				hns3_err(hw, "failed to restore promiscuous "
4088 					 "status after enabling vlan filter "
4089 					 "failed during disabling promiscuous "
4090 					 "mode, ret = %d", ret);
4091 		}
4092 	}
4093 	rte_spinlock_unlock(&hw->lock);
4094 
4095 	return ret;
4096 }
4097 
4098 static int
4099 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4100 {
4101 	struct hns3_adapter *hns = dev->data->dev_private;
4102 	struct hns3_hw *hw = &hns->hw;
4103 	int ret;
4104 
4105 	if (dev->data->promiscuous)
4106 		return 0;
4107 
4108 	rte_spinlock_lock(&hw->lock);
4109 	ret = hns3_set_promisc_mode(hw, false, true);
4110 	rte_spinlock_unlock(&hw->lock);
4111 	if (ret)
4112 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4113 			 ret);
4114 
4115 	return ret;
4116 }
4117 
4118 static int
4119 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4120 {
4121 	struct hns3_adapter *hns = dev->data->dev_private;
4122 	struct hns3_hw *hw = &hns->hw;
4123 	int ret;
4124 
4125 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4126 	if (dev->data->promiscuous)
4127 		return 0;
4128 
4129 	rte_spinlock_lock(&hw->lock);
4130 	ret = hns3_set_promisc_mode(hw, false, false);
4131 	rte_spinlock_unlock(&hw->lock);
4132 	if (ret)
4133 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4134 			 ret);
4135 
4136 	return ret;
4137 }
4138 
4139 static int
4140 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4141 {
4142 	struct hns3_hw *hw = &hns->hw;
4143 	bool allmulti = hw->data->all_multicast ? true : false;
4144 	int ret;
4145 
4146 	if (hw->data->promiscuous) {
4147 		ret = hns3_set_promisc_mode(hw, true, true);
4148 		if (ret)
4149 			hns3_err(hw, "failed to restore promiscuous mode, "
4150 				 "ret = %d", ret);
4151 		return ret;
4152 	}
4153 
4154 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4155 	if (ret)
4156 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4157 			 ret);
4158 	return ret;
4159 }
4160 
4161 static int
4162 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4163 {
4164 	struct hns3_sfp_speed_cmd *resp;
4165 	struct hns3_cmd_desc desc;
4166 	int ret;
4167 
4168 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4169 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
4170 	ret = hns3_cmd_send(hw, &desc, 1);
4171 	if (ret == -EOPNOTSUPP) {
4172 		hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4173 		return ret;
4174 	} else if (ret) {
4175 		hns3_err(hw, "get sfp speed failed %d", ret);
4176 		return ret;
4177 	}
4178 
4179 	*speed = resp->sfp_speed;
4180 
4181 	return 0;
4182 }
4183 
4184 static uint8_t
4185 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4186 {
4187 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4188 		duplex = ETH_LINK_FULL_DUPLEX;
4189 
4190 	return duplex;
4191 }
4192 
4193 static int
4194 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4195 {
4196 	struct hns3_mac *mac = &hw->mac;
4197 	int ret;
4198 
4199 	duplex = hns3_check_speed_dup(duplex, speed);
4200 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4201 		return 0;
4202 
4203 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4204 	if (ret)
4205 		return ret;
4206 
4207 	mac->link_speed = speed;
4208 	mac->link_duplex = duplex;
4209 
4210 	return 0;
4211 }
4212 
4213 static int
4214 hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
4215 {
4216 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4217 	struct hns3_hw *hw = &hns->hw;
4218 	struct hns3_pf *pf = &hns->pf;
4219 	uint32_t speed;
4220 	int ret;
4221 
4222 	/* If IMP do not support get SFP/qSFP speed, return directly */
4223 	if (!pf->support_sfp_query)
4224 		return 0;
4225 
4226 	ret = hns3_get_sfp_speed(hw, &speed);
4227 	if (ret == -EOPNOTSUPP) {
4228 		pf->support_sfp_query = false;
4229 		return ret;
4230 	} else if (ret)
4231 		return ret;
4232 
4233 	if (speed == ETH_SPEED_NUM_NONE)
4234 		return 0; /* do nothing if no SFP */
4235 
4236 	/* Config full duplex for SFP */
4237 	return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4238 }
4239 
4240 static int
4241 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4242 {
4243 	struct hns3_config_mac_mode_cmd *req;
4244 	struct hns3_cmd_desc desc;
4245 	uint32_t loop_en = 0;
4246 	uint8_t val = 0;
4247 	int ret;
4248 
4249 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4250 
4251 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4252 	if (enable)
4253 		val = 1;
4254 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4255 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4256 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4257 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4258 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4259 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4260 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4261 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4262 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4263 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4264 
4265 	/*
4266 	 * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4267 	 * when receiving frames. Otherwise, CRC will be stripped.
4268 	 */
4269 	if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4270 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4271 	else
4272 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4273 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4274 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4275 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4276 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4277 
4278 	ret = hns3_cmd_send(hw, &desc, 1);
4279 	if (ret)
4280 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4281 
4282 	return ret;
4283 }
4284 
4285 static int
4286 hns3_get_mac_link_status(struct hns3_hw *hw)
4287 {
4288 	struct hns3_link_status_cmd *req;
4289 	struct hns3_cmd_desc desc;
4290 	int link_status;
4291 	int ret;
4292 
4293 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4294 	ret = hns3_cmd_send(hw, &desc, 1);
4295 	if (ret) {
4296 		hns3_err(hw, "get link status cmd failed %d", ret);
4297 		return ETH_LINK_DOWN;
4298 	}
4299 
4300 	req = (struct hns3_link_status_cmd *)desc.data;
4301 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4302 
4303 	return !!link_status;
4304 }
4305 
4306 void
4307 hns3_update_link_status(struct hns3_hw *hw)
4308 {
4309 	int state;
4310 
4311 	state = hns3_get_mac_link_status(hw);
4312 	if (state != hw->mac.link_status) {
4313 		hw->mac.link_status = state;
4314 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4315 	}
4316 }
4317 
4318 static void
4319 hns3_service_handler(void *param)
4320 {
4321 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4322 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4323 	struct hns3_hw *hw = &hns->hw;
4324 
4325 	if (!hns3_is_reset_pending(hns)) {
4326 		hns3_update_speed_duplex(eth_dev);
4327 		hns3_update_link_status(hw);
4328 	} else
4329 		hns3_warn(hw, "Cancel the query when reset is pending");
4330 
4331 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4332 }
4333 
4334 static int
4335 hns3_init_hardware(struct hns3_adapter *hns)
4336 {
4337 	struct hns3_hw *hw = &hns->hw;
4338 	int ret;
4339 
4340 	ret = hns3_map_tqp(hw);
4341 	if (ret) {
4342 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4343 		return ret;
4344 	}
4345 
4346 	ret = hns3_init_umv_space(hw);
4347 	if (ret) {
4348 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4349 		return ret;
4350 	}
4351 
4352 	ret = hns3_mac_init(hw);
4353 	if (ret) {
4354 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4355 		goto err_mac_init;
4356 	}
4357 
4358 	ret = hns3_init_mgr_tbl(hw);
4359 	if (ret) {
4360 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4361 		goto err_mac_init;
4362 	}
4363 
4364 	ret = hns3_promisc_init(hw);
4365 	if (ret) {
4366 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4367 			     ret);
4368 		goto err_mac_init;
4369 	}
4370 
4371 	ret = hns3_init_vlan_config(hns);
4372 	if (ret) {
4373 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4374 		goto err_mac_init;
4375 	}
4376 
4377 	ret = hns3_dcb_init(hw);
4378 	if (ret) {
4379 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4380 		goto err_mac_init;
4381 	}
4382 
4383 	ret = hns3_init_fd_config(hns);
4384 	if (ret) {
4385 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4386 		goto err_mac_init;
4387 	}
4388 
4389 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4390 	if (ret) {
4391 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4392 		goto err_mac_init;
4393 	}
4394 
4395 	ret = hns3_config_gro(hw, false);
4396 	if (ret) {
4397 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4398 		goto err_mac_init;
4399 	}
4400 
4401 	/*
4402 	 * In the initialization clearing the all hardware mapping relationship
4403 	 * configurations between queues and interrupt vectors is needed, so
4404 	 * some error caused by the residual configurations, such as the
4405 	 * unexpected interrupt, can be avoid.
4406 	 */
4407 	ret = hns3_init_ring_with_vector(hw);
4408 	if (ret) {
4409 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4410 		goto err_mac_init;
4411 	}
4412 
4413 	return 0;
4414 
4415 err_mac_init:
4416 	hns3_uninit_umv_space(hw);
4417 	return ret;
4418 }
4419 
4420 static int
4421 hns3_clear_hw(struct hns3_hw *hw)
4422 {
4423 	struct hns3_cmd_desc desc;
4424 	int ret;
4425 
4426 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4427 
4428 	ret = hns3_cmd_send(hw, &desc, 1);
4429 	if (ret && ret != -EOPNOTSUPP)
4430 		return ret;
4431 
4432 	return 0;
4433 }
4434 
4435 static void
4436 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4437 {
4438 	uint32_t val;
4439 
4440 	/*
4441 	 * The new firmware support report more hardware error types by
4442 	 * msix mode. These errors are defined as RAS errors in hardware
4443 	 * and belong to a different type from the MSI-x errors processed
4444 	 * by the network driver.
4445 	 *
4446 	 * Network driver should open the new error report on initialition
4447 	 */
4448 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4449 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4450 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4451 }
4452 
4453 static int
4454 hns3_init_pf(struct rte_eth_dev *eth_dev)
4455 {
4456 	struct rte_device *dev = eth_dev->device;
4457 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4458 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4459 	struct hns3_hw *hw = &hns->hw;
4460 	int ret;
4461 
4462 	PMD_INIT_FUNC_TRACE();
4463 
4464 	/* Get hardware io base address from pcie BAR2 IO space */
4465 	hw->io_base = pci_dev->mem_resource[2].addr;
4466 
4467 	/* Firmware command queue initialize */
4468 	ret = hns3_cmd_init_queue(hw);
4469 	if (ret) {
4470 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4471 		goto err_cmd_init_queue;
4472 	}
4473 
4474 	hns3_clear_all_event_cause(hw);
4475 
4476 	/* Firmware command initialize */
4477 	ret = hns3_cmd_init(hw);
4478 	if (ret) {
4479 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4480 		goto err_cmd_init;
4481 	}
4482 
4483 	/*
4484 	 * To ensure that the hardware environment is clean during
4485 	 * initialization, the driver actively clear the hardware environment
4486 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4487 	 * flow table configurations, etc.
4488 	 */
4489 	ret = hns3_clear_hw(hw);
4490 	if (ret) {
4491 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4492 		goto err_cmd_init;
4493 	}
4494 
4495 	hns3_config_all_msix_error(hw, true);
4496 
4497 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
4498 					 hns3_interrupt_handler,
4499 					 eth_dev);
4500 	if (ret) {
4501 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4502 		goto err_intr_callback_register;
4503 	}
4504 
4505 	/* Enable interrupt */
4506 	rte_intr_enable(&pci_dev->intr_handle);
4507 	hns3_pf_enable_irq0(hw);
4508 
4509 	/* Get configuration */
4510 	ret = hns3_get_configuration(hw);
4511 	if (ret) {
4512 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4513 		goto err_get_config;
4514 	}
4515 
4516 	ret = hns3_init_hardware(hns);
4517 	if (ret) {
4518 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4519 		goto err_get_config;
4520 	}
4521 
4522 	/* Initialize flow director filter list & hash */
4523 	ret = hns3_fdir_filter_init(hns);
4524 	if (ret) {
4525 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4526 		goto err_hw_init;
4527 	}
4528 
4529 	hns3_set_default_rss_args(hw);
4530 
4531 	ret = hns3_enable_hw_error_intr(hns, true);
4532 	if (ret) {
4533 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4534 			     ret);
4535 		goto err_fdir;
4536 	}
4537 
4538 	return 0;
4539 
4540 err_fdir:
4541 	hns3_fdir_filter_uninit(hns);
4542 err_hw_init:
4543 	hns3_uninit_umv_space(hw);
4544 
4545 err_get_config:
4546 	hns3_pf_disable_irq0(hw);
4547 	rte_intr_disable(&pci_dev->intr_handle);
4548 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4549 			     eth_dev);
4550 err_intr_callback_register:
4551 err_cmd_init:
4552 	hns3_cmd_uninit(hw);
4553 	hns3_cmd_destroy_queue(hw);
4554 err_cmd_init_queue:
4555 	hw->io_base = NULL;
4556 
4557 	return ret;
4558 }
4559 
4560 static void
4561 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4562 {
4563 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4564 	struct rte_device *dev = eth_dev->device;
4565 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4566 	struct hns3_hw *hw = &hns->hw;
4567 
4568 	PMD_INIT_FUNC_TRACE();
4569 
4570 	hns3_enable_hw_error_intr(hns, false);
4571 	hns3_rss_uninit(hns);
4572 	(void)hns3_config_gro(hw, false);
4573 	hns3_promisc_uninit(hw);
4574 	hns3_fdir_filter_uninit(hns);
4575 	hns3_uninit_umv_space(hw);
4576 	hns3_pf_disable_irq0(hw);
4577 	rte_intr_disable(&pci_dev->intr_handle);
4578 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4579 			     eth_dev);
4580 	hns3_config_all_msix_error(hw, false);
4581 	hns3_cmd_uninit(hw);
4582 	hns3_cmd_destroy_queue(hw);
4583 	hw->io_base = NULL;
4584 }
4585 
4586 static int
4587 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
4588 {
4589 	struct hns3_hw *hw = &hns->hw;
4590 	int ret;
4591 
4592 	ret = hns3_dcb_cfg_update(hns);
4593 	if (ret)
4594 		return ret;
4595 
4596 	/* Enable queues */
4597 	ret = hns3_start_queues(hns, reset_queue);
4598 	if (ret) {
4599 		PMD_INIT_LOG(ERR, "Failed to start queues: %d", ret);
4600 		return ret;
4601 	}
4602 
4603 	/* Enable MAC */
4604 	ret = hns3_cfg_mac_mode(hw, true);
4605 	if (ret) {
4606 		PMD_INIT_LOG(ERR, "Failed to enable MAC: %d", ret);
4607 		goto err_config_mac_mode;
4608 	}
4609 	return 0;
4610 
4611 err_config_mac_mode:
4612 	hns3_stop_queues(hns, true);
4613 	return ret;
4614 }
4615 
4616 static int
4617 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
4618 {
4619 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4620 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4621 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4622 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4623 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4624 	uint32_t intr_vector;
4625 	uint16_t q_id;
4626 	int ret;
4627 
4628 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4629 		return 0;
4630 
4631 	/* disable uio/vfio intr/eventfd mapping */
4632 	rte_intr_disable(intr_handle);
4633 
4634 	/* check and configure queue intr-vector mapping */
4635 	if (rte_intr_cap_multiple(intr_handle) ||
4636 	    !RTE_ETH_DEV_SRIOV(dev).active) {
4637 		intr_vector = hw->used_rx_queues;
4638 		/* creates event fd for each intr vector when MSIX is used */
4639 		if (rte_intr_efd_enable(intr_handle, intr_vector))
4640 			return -EINVAL;
4641 	}
4642 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
4643 		intr_handle->intr_vec =
4644 			rte_zmalloc("intr_vec",
4645 				    hw->used_rx_queues * sizeof(int), 0);
4646 		if (intr_handle->intr_vec == NULL) {
4647 			hns3_err(hw, "Failed to allocate %d rx_queues"
4648 				     " intr_vec", hw->used_rx_queues);
4649 			ret = -ENOMEM;
4650 			goto alloc_intr_vec_error;
4651 		}
4652 	}
4653 
4654 	if (rte_intr_allow_others(intr_handle)) {
4655 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4656 		base = RTE_INTR_VEC_RXTX_OFFSET;
4657 	}
4658 	if (rte_intr_dp_is_en(intr_handle)) {
4659 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4660 			ret = hns3_bind_ring_with_vector(hw, vec, true,
4661 							 HNS3_RING_TYPE_RX,
4662 							 q_id);
4663 			if (ret)
4664 				goto bind_vector_error;
4665 			intr_handle->intr_vec[q_id] = vec;
4666 			if (vec < base + intr_handle->nb_efd - 1)
4667 				vec++;
4668 		}
4669 	}
4670 	rte_intr_enable(intr_handle);
4671 	return 0;
4672 
4673 bind_vector_error:
4674 	rte_intr_efd_disable(intr_handle);
4675 	if (intr_handle->intr_vec) {
4676 		free(intr_handle->intr_vec);
4677 		intr_handle->intr_vec = NULL;
4678 	}
4679 	return ret;
4680 alloc_intr_vec_error:
4681 	rte_intr_efd_disable(intr_handle);
4682 	return ret;
4683 }
4684 
4685 static int
4686 hns3_restore_rx_interrupt(struct hns3_hw *hw)
4687 {
4688 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4689 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4690 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4691 	uint16_t q_id;
4692 	int ret;
4693 
4694 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4695 		return 0;
4696 
4697 	if (rte_intr_dp_is_en(intr_handle)) {
4698 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4699 			ret = hns3_bind_ring_with_vector(hw,
4700 					intr_handle->intr_vec[q_id], true,
4701 					HNS3_RING_TYPE_RX, q_id);
4702 			if (ret)
4703 				return ret;
4704 		}
4705 	}
4706 
4707 	return 0;
4708 }
4709 
4710 static void
4711 hns3_restore_filter(struct rte_eth_dev *dev)
4712 {
4713 	hns3_restore_rss_filter(dev);
4714 }
4715 
4716 static int
4717 hns3_dev_start(struct rte_eth_dev *dev)
4718 {
4719 	struct hns3_adapter *hns = dev->data->dev_private;
4720 	struct hns3_hw *hw = &hns->hw;
4721 	int ret;
4722 
4723 	PMD_INIT_FUNC_TRACE();
4724 	if (rte_atomic16_read(&hw->reset.resetting))
4725 		return -EBUSY;
4726 
4727 	rte_spinlock_lock(&hw->lock);
4728 	hw->adapter_state = HNS3_NIC_STARTING;
4729 
4730 	ret = hns3_do_start(hns, true);
4731 	if (ret) {
4732 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4733 		rte_spinlock_unlock(&hw->lock);
4734 		return ret;
4735 	}
4736 	ret = hns3_map_rx_interrupt(dev);
4737 	if (ret) {
4738 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4739 		rte_spinlock_unlock(&hw->lock);
4740 		return ret;
4741 	}
4742 
4743 	hw->adapter_state = HNS3_NIC_STARTED;
4744 	rte_spinlock_unlock(&hw->lock);
4745 
4746 	hns3_set_rxtx_function(dev);
4747 	hns3_mp_req_start_rxtx(dev);
4748 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
4749 
4750 	hns3_restore_filter(dev);
4751 
4752 	/* Enable interrupt of all rx queues before enabling queues */
4753 	hns3_dev_all_rx_queue_intr_enable(hw, true);
4754 	/*
4755 	 * When finished the initialization, enable queues to receive/transmit
4756 	 * packets.
4757 	 */
4758 	hns3_enable_all_queues(hw, true);
4759 
4760 	hns3_info(hw, "hns3 dev start successful!");
4761 	return 0;
4762 }
4763 
4764 static int
4765 hns3_do_stop(struct hns3_adapter *hns)
4766 {
4767 	struct hns3_hw *hw = &hns->hw;
4768 	bool reset_queue;
4769 	int ret;
4770 
4771 	ret = hns3_cfg_mac_mode(hw, false);
4772 	if (ret)
4773 		return ret;
4774 	hw->mac.link_status = ETH_LINK_DOWN;
4775 
4776 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
4777 		hns3_configure_all_mac_addr(hns, true);
4778 		reset_queue = true;
4779 	} else
4780 		reset_queue = false;
4781 	hw->mac.default_addr_setted = false;
4782 	return hns3_stop_queues(hns, reset_queue);
4783 }
4784 
4785 static void
4786 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
4787 {
4788 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4789 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4790 	struct hns3_adapter *hns = dev->data->dev_private;
4791 	struct hns3_hw *hw = &hns->hw;
4792 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4793 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4794 	uint16_t q_id;
4795 
4796 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4797 		return;
4798 
4799 	/* unmap the ring with vector */
4800 	if (rte_intr_allow_others(intr_handle)) {
4801 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4802 		base = RTE_INTR_VEC_RXTX_OFFSET;
4803 	}
4804 	if (rte_intr_dp_is_en(intr_handle)) {
4805 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4806 			(void)hns3_bind_ring_with_vector(hw, vec, false,
4807 							 HNS3_RING_TYPE_RX,
4808 							 q_id);
4809 			if (vec < base + intr_handle->nb_efd - 1)
4810 				vec++;
4811 		}
4812 	}
4813 	/* Clean datapath event and queue/vec mapping */
4814 	rte_intr_efd_disable(intr_handle);
4815 	if (intr_handle->intr_vec) {
4816 		rte_free(intr_handle->intr_vec);
4817 		intr_handle->intr_vec = NULL;
4818 	}
4819 }
4820 
4821 static void
4822 hns3_dev_stop(struct rte_eth_dev *dev)
4823 {
4824 	struct hns3_adapter *hns = dev->data->dev_private;
4825 	struct hns3_hw *hw = &hns->hw;
4826 
4827 	PMD_INIT_FUNC_TRACE();
4828 
4829 	hw->adapter_state = HNS3_NIC_STOPPING;
4830 	hns3_set_rxtx_function(dev);
4831 	rte_wmb();
4832 	/* Disable datapath on secondary process. */
4833 	hns3_mp_req_stop_rxtx(dev);
4834 	/* Prevent crashes when queues are still in use. */
4835 	rte_delay_ms(hw->tqps_num);
4836 
4837 	rte_spinlock_lock(&hw->lock);
4838 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
4839 		hns3_do_stop(hns);
4840 		hns3_unmap_rx_interrupt(dev);
4841 		hns3_dev_release_mbufs(hns);
4842 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4843 	}
4844 	rte_eal_alarm_cancel(hns3_service_handler, dev);
4845 	rte_spinlock_unlock(&hw->lock);
4846 }
4847 
4848 static void
4849 hns3_dev_close(struct rte_eth_dev *eth_dev)
4850 {
4851 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4852 	struct hns3_hw *hw = &hns->hw;
4853 
4854 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
4855 		rte_free(eth_dev->process_private);
4856 		eth_dev->process_private = NULL;
4857 		return;
4858 	}
4859 
4860 	if (hw->adapter_state == HNS3_NIC_STARTED)
4861 		hns3_dev_stop(eth_dev);
4862 
4863 	hw->adapter_state = HNS3_NIC_CLOSING;
4864 	hns3_reset_abort(hns);
4865 	hw->adapter_state = HNS3_NIC_CLOSED;
4866 
4867 	hns3_configure_all_mc_mac_addr(hns, true);
4868 	hns3_remove_all_vlan_table(hns);
4869 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
4870 	hns3_uninit_pf(eth_dev);
4871 	hns3_free_all_queues(eth_dev);
4872 	rte_free(hw->reset.wait_data);
4873 	rte_free(eth_dev->process_private);
4874 	eth_dev->process_private = NULL;
4875 	hns3_mp_uninit_primary();
4876 	hns3_warn(hw, "Close port %d finished", hw->data->port_id);
4877 }
4878 
4879 static int
4880 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4881 {
4882 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4883 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4884 
4885 	fc_conf->pause_time = pf->pause_time;
4886 
4887 	/* return fc current mode */
4888 	switch (hw->current_mode) {
4889 	case HNS3_FC_FULL:
4890 		fc_conf->mode = RTE_FC_FULL;
4891 		break;
4892 	case HNS3_FC_TX_PAUSE:
4893 		fc_conf->mode = RTE_FC_TX_PAUSE;
4894 		break;
4895 	case HNS3_FC_RX_PAUSE:
4896 		fc_conf->mode = RTE_FC_RX_PAUSE;
4897 		break;
4898 	case HNS3_FC_NONE:
4899 	default:
4900 		fc_conf->mode = RTE_FC_NONE;
4901 		break;
4902 	}
4903 
4904 	return 0;
4905 }
4906 
4907 static void
4908 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
4909 {
4910 	switch (mode) {
4911 	case RTE_FC_NONE:
4912 		hw->requested_mode = HNS3_FC_NONE;
4913 		break;
4914 	case RTE_FC_RX_PAUSE:
4915 		hw->requested_mode = HNS3_FC_RX_PAUSE;
4916 		break;
4917 	case RTE_FC_TX_PAUSE:
4918 		hw->requested_mode = HNS3_FC_TX_PAUSE;
4919 		break;
4920 	case RTE_FC_FULL:
4921 		hw->requested_mode = HNS3_FC_FULL;
4922 		break;
4923 	default:
4924 		hw->requested_mode = HNS3_FC_NONE;
4925 		hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
4926 			  "configured to RTE_FC_NONE", mode);
4927 		break;
4928 	}
4929 }
4930 
4931 static int
4932 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4933 {
4934 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4935 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4936 	int ret;
4937 
4938 	if (fc_conf->high_water || fc_conf->low_water ||
4939 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
4940 		hns3_err(hw, "Unsupported flow control settings specified, "
4941 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4942 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4943 			 fc_conf->high_water, fc_conf->low_water,
4944 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
4945 		return -EINVAL;
4946 	}
4947 	if (fc_conf->autoneg) {
4948 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4949 		return -EINVAL;
4950 	}
4951 	if (!fc_conf->pause_time) {
4952 		hns3_err(hw, "Invalid pause time %d setting.",
4953 			 fc_conf->pause_time);
4954 		return -EINVAL;
4955 	}
4956 
4957 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4958 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
4959 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
4960 			 "current_fc_status = %d", hw->current_fc_status);
4961 		return -EOPNOTSUPP;
4962 	}
4963 
4964 	hns3_get_fc_mode(hw, fc_conf->mode);
4965 	if (hw->requested_mode == hw->current_mode &&
4966 	    pf->pause_time == fc_conf->pause_time)
4967 		return 0;
4968 
4969 	rte_spinlock_lock(&hw->lock);
4970 	ret = hns3_fc_enable(dev, fc_conf);
4971 	rte_spinlock_unlock(&hw->lock);
4972 
4973 	return ret;
4974 }
4975 
4976 static int
4977 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
4978 			    struct rte_eth_pfc_conf *pfc_conf)
4979 {
4980 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4981 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4982 	uint8_t priority;
4983 	int ret;
4984 
4985 	if (!hns3_dev_dcb_supported(hw)) {
4986 		hns3_err(hw, "This port does not support dcb configurations.");
4987 		return -EOPNOTSUPP;
4988 	}
4989 
4990 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
4991 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
4992 		hns3_err(hw, "Unsupported flow control settings specified, "
4993 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4994 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4995 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
4996 			 pfc_conf->fc.send_xon,
4997 			 pfc_conf->fc.mac_ctrl_frame_fwd);
4998 		return -EINVAL;
4999 	}
5000 	if (pfc_conf->fc.autoneg) {
5001 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5002 		return -EINVAL;
5003 	}
5004 	if (pfc_conf->fc.pause_time == 0) {
5005 		hns3_err(hw, "Invalid pause time %d setting.",
5006 			 pfc_conf->fc.pause_time);
5007 		return -EINVAL;
5008 	}
5009 
5010 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5011 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5012 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5013 			     "current_fc_status = %d", hw->current_fc_status);
5014 		return -EOPNOTSUPP;
5015 	}
5016 
5017 	priority = pfc_conf->priority;
5018 	hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5019 	if (hw->dcb_info.pfc_en & BIT(priority) &&
5020 	    hw->requested_mode == hw->current_mode &&
5021 	    pfc_conf->fc.pause_time == pf->pause_time)
5022 		return 0;
5023 
5024 	rte_spinlock_lock(&hw->lock);
5025 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5026 	rte_spinlock_unlock(&hw->lock);
5027 
5028 	return ret;
5029 }
5030 
5031 static int
5032 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5033 {
5034 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5035 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5036 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5037 	int i;
5038 
5039 	rte_spinlock_lock(&hw->lock);
5040 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5041 		dcb_info->nb_tcs = pf->local_max_tc;
5042 	else
5043 		dcb_info->nb_tcs = 1;
5044 
5045 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5046 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5047 	for (i = 0; i < dcb_info->nb_tcs; i++)
5048 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5049 
5050 	for (i = 0; i < hw->num_tc; i++) {
5051 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5052 		dcb_info->tc_queue.tc_txq[0][i].base =
5053 						hw->tc_queue[i].tqp_offset;
5054 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5055 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5056 						hw->tc_queue[i].tqp_count;
5057 	}
5058 	rte_spinlock_unlock(&hw->lock);
5059 
5060 	return 0;
5061 }
5062 
5063 static int
5064 hns3_reinit_dev(struct hns3_adapter *hns)
5065 {
5066 	struct hns3_hw *hw = &hns->hw;
5067 	int ret;
5068 
5069 	ret = hns3_cmd_init(hw);
5070 	if (ret) {
5071 		hns3_err(hw, "Failed to init cmd: %d", ret);
5072 		return ret;
5073 	}
5074 
5075 	ret = hns3_reset_all_queues(hns);
5076 	if (ret) {
5077 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5078 		return ret;
5079 	}
5080 
5081 	ret = hns3_init_hardware(hns);
5082 	if (ret) {
5083 		hns3_err(hw, "Failed to init hardware: %d", ret);
5084 		return ret;
5085 	}
5086 
5087 	ret = hns3_enable_hw_error_intr(hns, true);
5088 	if (ret) {
5089 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5090 			     ret);
5091 		return ret;
5092 	}
5093 	hns3_info(hw, "Reset done, driver initialization finished.");
5094 
5095 	return 0;
5096 }
5097 
5098 static bool
5099 is_pf_reset_done(struct hns3_hw *hw)
5100 {
5101 	uint32_t val, reg, reg_bit;
5102 
5103 	switch (hw->reset.level) {
5104 	case HNS3_IMP_RESET:
5105 		reg = HNS3_GLOBAL_RESET_REG;
5106 		reg_bit = HNS3_IMP_RESET_BIT;
5107 		break;
5108 	case HNS3_GLOBAL_RESET:
5109 		reg = HNS3_GLOBAL_RESET_REG;
5110 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5111 		break;
5112 	case HNS3_FUNC_RESET:
5113 		reg = HNS3_FUN_RST_ING;
5114 		reg_bit = HNS3_FUN_RST_ING_B;
5115 		break;
5116 	case HNS3_FLR_RESET:
5117 	default:
5118 		hns3_err(hw, "Wait for unsupported reset level: %d",
5119 			 hw->reset.level);
5120 		return true;
5121 	}
5122 	val = hns3_read_dev(hw, reg);
5123 	if (hns3_get_bit(val, reg_bit))
5124 		return false;
5125 	else
5126 		return true;
5127 }
5128 
5129 bool
5130 hns3_is_reset_pending(struct hns3_adapter *hns)
5131 {
5132 	struct hns3_hw *hw = &hns->hw;
5133 	enum hns3_reset_level reset;
5134 
5135 	hns3_check_event_cause(hns, NULL);
5136 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5137 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5138 		hns3_warn(hw, "High level reset %d is pending", reset);
5139 		return true;
5140 	}
5141 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5142 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5143 		hns3_warn(hw, "High level reset %d is request", reset);
5144 		return true;
5145 	}
5146 	return false;
5147 }
5148 
5149 static int
5150 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5151 {
5152 	struct hns3_hw *hw = &hns->hw;
5153 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5154 	struct timeval tv;
5155 
5156 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5157 		return 0;
5158 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5159 		gettimeofday(&tv, NULL);
5160 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5161 			  tv.tv_sec, tv.tv_usec);
5162 		return -ETIME;
5163 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5164 		return -EAGAIN;
5165 
5166 	wait_data->hns = hns;
5167 	wait_data->check_completion = is_pf_reset_done;
5168 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5169 				      HNS3_RESET_WAIT_MS + get_timeofday_ms();
5170 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5171 	wait_data->count = HNS3_RESET_WAIT_CNT;
5172 	wait_data->result = HNS3_WAIT_REQUEST;
5173 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5174 	return -EAGAIN;
5175 }
5176 
5177 static int
5178 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5179 {
5180 	struct hns3_cmd_desc desc;
5181 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5182 
5183 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5184 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5185 	req->fun_reset_vfid = func_id;
5186 
5187 	return hns3_cmd_send(hw, &desc, 1);
5188 }
5189 
5190 static int
5191 hns3_imp_reset_cmd(struct hns3_hw *hw)
5192 {
5193 	struct hns3_cmd_desc desc;
5194 
5195 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5196 	desc.data[0] = 0xeedd;
5197 
5198 	return hns3_cmd_send(hw, &desc, 1);
5199 }
5200 
5201 static void
5202 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5203 {
5204 	struct hns3_hw *hw = &hns->hw;
5205 	struct timeval tv;
5206 	uint32_t val;
5207 
5208 	gettimeofday(&tv, NULL);
5209 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5210 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5211 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5212 			  tv.tv_sec, tv.tv_usec);
5213 		return;
5214 	}
5215 
5216 	switch (reset_level) {
5217 	case HNS3_IMP_RESET:
5218 		hns3_imp_reset_cmd(hw);
5219 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5220 			  tv.tv_sec, tv.tv_usec);
5221 		break;
5222 	case HNS3_GLOBAL_RESET:
5223 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5224 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5225 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5226 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5227 			  tv.tv_sec, tv.tv_usec);
5228 		break;
5229 	case HNS3_FUNC_RESET:
5230 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5231 			  tv.tv_sec, tv.tv_usec);
5232 		/* schedule again to check later */
5233 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5234 		hns3_schedule_reset(hns);
5235 		break;
5236 	default:
5237 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5238 		return;
5239 	}
5240 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5241 }
5242 
5243 static enum hns3_reset_level
5244 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5245 {
5246 	struct hns3_hw *hw = &hns->hw;
5247 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5248 
5249 	/* Return the highest priority reset level amongst all */
5250 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5251 		reset_level = HNS3_IMP_RESET;
5252 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5253 		reset_level = HNS3_GLOBAL_RESET;
5254 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5255 		reset_level = HNS3_FUNC_RESET;
5256 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5257 		reset_level = HNS3_FLR_RESET;
5258 
5259 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5260 		return HNS3_NONE_RESET;
5261 
5262 	return reset_level;
5263 }
5264 
5265 static void
5266 hns3_record_imp_error(struct hns3_adapter *hns)
5267 {
5268 	struct hns3_hw *hw = &hns->hw;
5269 	uint32_t reg_val;
5270 
5271 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5272 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5273 		hns3_warn(hw, "Detected IMP RD poison!");
5274 		hns3_error_int_stats_add(hns, "IMP_RD_POISON_INT_STS");
5275 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5276 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5277 	}
5278 
5279 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5280 		hns3_warn(hw, "Detected IMP CMDQ error!");
5281 		hns3_error_int_stats_add(hns, "CMDQ_MEM_ECC_INT_STS");
5282 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5283 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5284 	}
5285 }
5286 
5287 static int
5288 hns3_prepare_reset(struct hns3_adapter *hns)
5289 {
5290 	struct hns3_hw *hw = &hns->hw;
5291 	uint32_t reg_val;
5292 	int ret;
5293 
5294 	switch (hw->reset.level) {
5295 	case HNS3_FUNC_RESET:
5296 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5297 		if (ret)
5298 			return ret;
5299 
5300 		/*
5301 		 * After performaning pf reset, it is not necessary to do the
5302 		 * mailbox handling or send any command to firmware, because
5303 		 * any mailbox handling or command to firmware is only valid
5304 		 * after hns3_cmd_init is called.
5305 		 */
5306 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
5307 		hw->reset.stats.request_cnt++;
5308 		break;
5309 	case HNS3_IMP_RESET:
5310 		hns3_record_imp_error(hns);
5311 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5312 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5313 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5314 		break;
5315 	default:
5316 		break;
5317 	}
5318 	return 0;
5319 }
5320 
5321 static int
5322 hns3_set_rst_done(struct hns3_hw *hw)
5323 {
5324 	struct hns3_pf_rst_done_cmd *req;
5325 	struct hns3_cmd_desc desc;
5326 
5327 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5328 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5329 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5330 	return hns3_cmd_send(hw, &desc, 1);
5331 }
5332 
5333 static int
5334 hns3_stop_service(struct hns3_adapter *hns)
5335 {
5336 	struct hns3_hw *hw = &hns->hw;
5337 	struct rte_eth_dev *eth_dev;
5338 
5339 	eth_dev = &rte_eth_devices[hw->data->port_id];
5340 	if (hw->adapter_state == HNS3_NIC_STARTED)
5341 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5342 	hw->mac.link_status = ETH_LINK_DOWN;
5343 
5344 	hns3_set_rxtx_function(eth_dev);
5345 	rte_wmb();
5346 	/* Disable datapath on secondary process. */
5347 	hns3_mp_req_stop_rxtx(eth_dev);
5348 	rte_delay_ms(hw->tqps_num);
5349 
5350 	rte_spinlock_lock(&hw->lock);
5351 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5352 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5353 		hns3_do_stop(hns);
5354 		hw->reset.mbuf_deferred_free = true;
5355 	} else
5356 		hw->reset.mbuf_deferred_free = false;
5357 
5358 	/*
5359 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5360 	 * from table space. Hence, for function reset software intervention is
5361 	 * required to delete the entries
5362 	 */
5363 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
5364 		hns3_configure_all_mc_mac_addr(hns, true);
5365 	rte_spinlock_unlock(&hw->lock);
5366 
5367 	return 0;
5368 }
5369 
5370 static int
5371 hns3_start_service(struct hns3_adapter *hns)
5372 {
5373 	struct hns3_hw *hw = &hns->hw;
5374 	struct rte_eth_dev *eth_dev;
5375 
5376 	if (hw->reset.level == HNS3_IMP_RESET ||
5377 	    hw->reset.level == HNS3_GLOBAL_RESET)
5378 		hns3_set_rst_done(hw);
5379 	eth_dev = &rte_eth_devices[hw->data->port_id];
5380 	hns3_set_rxtx_function(eth_dev);
5381 	hns3_mp_req_start_rxtx(eth_dev);
5382 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5383 		hns3_service_handler(eth_dev);
5384 
5385 		/* Enable interrupt of all rx queues before enabling queues */
5386 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5387 		/*
5388 		 * When finished the initialization, enable queues to receive
5389 		 * and transmit packets.
5390 		 */
5391 		hns3_enable_all_queues(hw, true);
5392 	}
5393 
5394 	return 0;
5395 }
5396 
5397 static int
5398 hns3_restore_conf(struct hns3_adapter *hns)
5399 {
5400 	struct hns3_hw *hw = &hns->hw;
5401 	int ret;
5402 
5403 	ret = hns3_configure_all_mac_addr(hns, false);
5404 	if (ret)
5405 		return ret;
5406 
5407 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5408 	if (ret)
5409 		goto err_mc_mac;
5410 
5411 	ret = hns3_dev_promisc_restore(hns);
5412 	if (ret)
5413 		goto err_promisc;
5414 
5415 	ret = hns3_restore_vlan_table(hns);
5416 	if (ret)
5417 		goto err_promisc;
5418 
5419 	ret = hns3_restore_vlan_conf(hns);
5420 	if (ret)
5421 		goto err_promisc;
5422 
5423 	ret = hns3_restore_all_fdir_filter(hns);
5424 	if (ret)
5425 		goto err_promisc;
5426 
5427 	ret = hns3_restore_rx_interrupt(hw);
5428 	if (ret)
5429 		goto err_promisc;
5430 
5431 	ret = hns3_restore_gro_conf(hw);
5432 	if (ret)
5433 		goto err_promisc;
5434 
5435 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5436 		ret = hns3_do_start(hns, false);
5437 		if (ret)
5438 			goto err_promisc;
5439 		hns3_info(hw, "hns3 dev restart successful!");
5440 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5441 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5442 	return 0;
5443 
5444 err_promisc:
5445 	hns3_configure_all_mc_mac_addr(hns, true);
5446 err_mc_mac:
5447 	hns3_configure_all_mac_addr(hns, true);
5448 	return ret;
5449 }
5450 
5451 static void
5452 hns3_reset_service(void *param)
5453 {
5454 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5455 	struct hns3_hw *hw = &hns->hw;
5456 	enum hns3_reset_level reset_level;
5457 	struct timeval tv_delta;
5458 	struct timeval tv_start;
5459 	struct timeval tv;
5460 	uint64_t msec;
5461 	int ret;
5462 
5463 	/*
5464 	 * The interrupt is not triggered within the delay time.
5465 	 * The interrupt may have been lost. It is necessary to handle
5466 	 * the interrupt to recover from the error.
5467 	 */
5468 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
5469 		rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
5470 		hns3_err(hw, "Handling interrupts in delayed tasks");
5471 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5472 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5473 		if (reset_level == HNS3_NONE_RESET) {
5474 			hns3_err(hw, "No reset level is set, try IMP reset");
5475 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5476 		}
5477 	}
5478 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
5479 
5480 	/*
5481 	 * Check if there is any ongoing reset in the hardware. This status can
5482 	 * be checked from reset_pending. If there is then, we need to wait for
5483 	 * hardware to complete reset.
5484 	 *    a. If we are able to figure out in reasonable time that hardware
5485 	 *       has fully resetted then, we can proceed with driver, client
5486 	 *       reset.
5487 	 *    b. else, we can come back later to check this status so re-sched
5488 	 *       now.
5489 	 */
5490 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5491 	if (reset_level != HNS3_NONE_RESET) {
5492 		gettimeofday(&tv_start, NULL);
5493 		ret = hns3_reset_process(hns, reset_level);
5494 		gettimeofday(&tv, NULL);
5495 		timersub(&tv, &tv_start, &tv_delta);
5496 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
5497 		       tv_delta.tv_usec / USEC_PER_MSEC;
5498 		if (msec > HNS3_RESET_PROCESS_MS)
5499 			hns3_err(hw, "%d handle long time delta %" PRIx64
5500 				     " ms time=%ld.%.6ld",
5501 				 hw->reset.level, msec,
5502 				 tv.tv_sec, tv.tv_usec);
5503 		if (ret == -EAGAIN)
5504 			return;
5505 	}
5506 
5507 	/* Check if we got any *new* reset requests to be honored */
5508 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
5509 	if (reset_level != HNS3_NONE_RESET)
5510 		hns3_msix_process(hns, reset_level);
5511 }
5512 
5513 static const struct eth_dev_ops hns3_eth_dev_ops = {
5514 	.dev_start          = hns3_dev_start,
5515 	.dev_stop           = hns3_dev_stop,
5516 	.dev_close          = hns3_dev_close,
5517 	.promiscuous_enable = hns3_dev_promiscuous_enable,
5518 	.promiscuous_disable = hns3_dev_promiscuous_disable,
5519 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
5520 	.allmulticast_disable = hns3_dev_allmulticast_disable,
5521 	.mtu_set            = hns3_dev_mtu_set,
5522 	.stats_get          = hns3_stats_get,
5523 	.stats_reset        = hns3_stats_reset,
5524 	.xstats_get         = hns3_dev_xstats_get,
5525 	.xstats_get_names   = hns3_dev_xstats_get_names,
5526 	.xstats_reset       = hns3_dev_xstats_reset,
5527 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
5528 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
5529 	.dev_infos_get          = hns3_dev_infos_get,
5530 	.fw_version_get         = hns3_fw_version_get,
5531 	.rx_queue_setup         = hns3_rx_queue_setup,
5532 	.tx_queue_setup         = hns3_tx_queue_setup,
5533 	.rx_queue_release       = hns3_dev_rx_queue_release,
5534 	.tx_queue_release       = hns3_dev_tx_queue_release,
5535 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
5536 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
5537 	.rxq_info_get           = hns3_rxq_info_get,
5538 	.txq_info_get           = hns3_txq_info_get,
5539 	.dev_configure          = hns3_dev_configure,
5540 	.flow_ctrl_get          = hns3_flow_ctrl_get,
5541 	.flow_ctrl_set          = hns3_flow_ctrl_set,
5542 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
5543 	.mac_addr_add           = hns3_add_mac_addr,
5544 	.mac_addr_remove        = hns3_remove_mac_addr,
5545 	.mac_addr_set           = hns3_set_default_mac_addr,
5546 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
5547 	.link_update            = hns3_dev_link_update,
5548 	.rss_hash_update        = hns3_dev_rss_hash_update,
5549 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
5550 	.reta_update            = hns3_dev_rss_reta_update,
5551 	.reta_query             = hns3_dev_rss_reta_query,
5552 	.filter_ctrl            = hns3_dev_filter_ctrl,
5553 	.vlan_filter_set        = hns3_vlan_filter_set,
5554 	.vlan_tpid_set          = hns3_vlan_tpid_set,
5555 	.vlan_offload_set       = hns3_vlan_offload_set,
5556 	.vlan_pvid_set          = hns3_vlan_pvid_set,
5557 	.get_reg                = hns3_get_regs,
5558 	.get_dcb_info           = hns3_get_dcb_info,
5559 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
5560 };
5561 
5562 static const struct hns3_reset_ops hns3_reset_ops = {
5563 	.reset_service       = hns3_reset_service,
5564 	.stop_service        = hns3_stop_service,
5565 	.prepare_reset       = hns3_prepare_reset,
5566 	.wait_hardware_ready = hns3_wait_hardware_ready,
5567 	.reinit_dev          = hns3_reinit_dev,
5568 	.restore_conf	     = hns3_restore_conf,
5569 	.start_service       = hns3_start_service,
5570 };
5571 
5572 static int
5573 hns3_dev_init(struct rte_eth_dev *eth_dev)
5574 {
5575 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5576 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
5577 	struct rte_ether_addr *eth_addr;
5578 	struct hns3_hw *hw = &hns->hw;
5579 	int ret;
5580 
5581 	PMD_INIT_FUNC_TRACE();
5582 
5583 	eth_dev->process_private = (struct hns3_process_private *)
5584 	    rte_zmalloc_socket("hns3_filter_list",
5585 			       sizeof(struct hns3_process_private),
5586 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
5587 	if (eth_dev->process_private == NULL) {
5588 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
5589 		return -ENOMEM;
5590 	}
5591 	/* initialize flow filter lists */
5592 	hns3_filterlist_init(eth_dev);
5593 
5594 	hns3_set_rxtx_function(eth_dev);
5595 	eth_dev->dev_ops = &hns3_eth_dev_ops;
5596 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5597 		ret = hns3_mp_init_secondary();
5598 		if (ret) {
5599 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
5600 				     "process, ret = %d", ret);
5601 			goto err_mp_init_secondary;
5602 		}
5603 
5604 		hw->secondary_cnt++;
5605 		return 0;
5606 	}
5607 
5608 	ret = hns3_mp_init_primary();
5609 	if (ret) {
5610 		PMD_INIT_LOG(ERR,
5611 			     "Failed to init for primary process, ret = %d",
5612 			     ret);
5613 		goto err_mp_init_primary;
5614 	}
5615 
5616 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
5617 	hns->is_vf = false;
5618 	hw->data = eth_dev->data;
5619 
5620 	/*
5621 	 * Set default max packet size according to the mtu
5622 	 * default vale in DPDK frame.
5623 	 */
5624 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
5625 
5626 	ret = hns3_reset_init(hw);
5627 	if (ret)
5628 		goto err_init_reset;
5629 	hw->reset.ops = &hns3_reset_ops;
5630 
5631 	ret = hns3_init_pf(eth_dev);
5632 	if (ret) {
5633 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
5634 		goto err_init_pf;
5635 	}
5636 
5637 	/* Allocate memory for storing MAC addresses */
5638 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
5639 					       sizeof(struct rte_ether_addr) *
5640 					       HNS3_UC_MACADDR_NUM, 0);
5641 	if (eth_dev->data->mac_addrs == NULL) {
5642 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
5643 			     "to store MAC addresses",
5644 			     sizeof(struct rte_ether_addr) *
5645 			     HNS3_UC_MACADDR_NUM);
5646 		ret = -ENOMEM;
5647 		goto err_rte_zmalloc;
5648 	}
5649 
5650 	eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
5651 	if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
5652 		rte_eth_random_addr(hw->mac.mac_addr);
5653 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
5654 				(struct rte_ether_addr *)hw->mac.mac_addr);
5655 		hns3_warn(hw, "default mac_addr from firmware is an invalid "
5656 			  "unicast address, using random MAC address %s",
5657 			  mac_str);
5658 	}
5659 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
5660 			    &eth_dev->data->mac_addrs[0]);
5661 
5662 	hw->adapter_state = HNS3_NIC_INITIALIZED;
5663 	/*
5664 	 * Pass the information to the rte_eth_dev_close() that it should also
5665 	 * release the private port resources.
5666 	 */
5667 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
5668 
5669 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
5670 		hns3_err(hw, "Reschedule reset service after dev_init");
5671 		hns3_schedule_reset(hns);
5672 	} else {
5673 		/* IMP will wait ready flag before reset */
5674 		hns3_notify_reset_ready(hw, false);
5675 	}
5676 
5677 	hns3_info(hw, "hns3 dev initialization successful!");
5678 	return 0;
5679 
5680 err_rte_zmalloc:
5681 	hns3_uninit_pf(eth_dev);
5682 
5683 err_init_pf:
5684 	rte_free(hw->reset.wait_data);
5685 
5686 err_init_reset:
5687 	hns3_mp_uninit_primary();
5688 
5689 err_mp_init_primary:
5690 err_mp_init_secondary:
5691 	eth_dev->dev_ops = NULL;
5692 	eth_dev->rx_pkt_burst = NULL;
5693 	eth_dev->tx_pkt_burst = NULL;
5694 	eth_dev->tx_pkt_prepare = NULL;
5695 	rte_free(eth_dev->process_private);
5696 	eth_dev->process_private = NULL;
5697 	return ret;
5698 }
5699 
5700 static int
5701 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
5702 {
5703 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5704 	struct hns3_hw *hw = &hns->hw;
5705 
5706 	PMD_INIT_FUNC_TRACE();
5707 
5708 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5709 		return -EPERM;
5710 
5711 	eth_dev->dev_ops = NULL;
5712 	eth_dev->rx_pkt_burst = NULL;
5713 	eth_dev->tx_pkt_burst = NULL;
5714 	eth_dev->tx_pkt_prepare = NULL;
5715 	if (hw->adapter_state < HNS3_NIC_CLOSING)
5716 		hns3_dev_close(eth_dev);
5717 
5718 	hw->adapter_state = HNS3_NIC_REMOVED;
5719 	return 0;
5720 }
5721 
5722 static int
5723 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
5724 		   struct rte_pci_device *pci_dev)
5725 {
5726 	return rte_eth_dev_pci_generic_probe(pci_dev,
5727 					     sizeof(struct hns3_adapter),
5728 					     hns3_dev_init);
5729 }
5730 
5731 static int
5732 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
5733 {
5734 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
5735 }
5736 
5737 static const struct rte_pci_id pci_id_hns3_map[] = {
5738 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
5739 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
5740 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
5741 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
5742 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
5743 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
5744 	{ .vendor_id = 0, /* sentinel */ },
5745 };
5746 
5747 static struct rte_pci_driver rte_hns3_pmd = {
5748 	.id_table = pci_id_hns3_map,
5749 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
5750 	.probe = eth_hns3_pci_probe,
5751 	.remove = eth_hns3_pci_remove,
5752 };
5753 
5754 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
5755 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
5756 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
5757 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
5758 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);
5759