xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision d38febb08d57fec29fed27a2d12a507fc6fcdfa1)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 #include <rte_kvargs.h>
10 
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18 
19 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
20 #define HNS3_SERVICE_QUICK_INTERVAL	10
21 #define HNS3_INVALID_PVID		0xFFFF
22 
23 #define HNS3_FILTER_TYPE_VF		0
24 #define HNS3_FILTER_TYPE_PORT		1
25 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
26 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
27 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
28 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
29 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
30 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
31 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
32 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
33 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
34 
35 /* Reset related Registers */
36 #define HNS3_GLOBAL_RESET_BIT		0
37 #define HNS3_CORE_RESET_BIT		1
38 #define HNS3_IMP_RESET_BIT		2
39 #define HNS3_FUN_RST_ING_B		0
40 
41 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
42 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
43 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
44 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
45 
46 #define HNS3_RESET_WAIT_MS	100
47 #define HNS3_RESET_WAIT_CNT	200
48 
49 /* FEC mode order defined in HNS3 hardware */
50 #define HNS3_HW_FEC_MODE_NOFEC  0
51 #define HNS3_HW_FEC_MODE_BASER  1
52 #define HNS3_HW_FEC_MODE_RS     2
53 
54 enum hns3_evt_cause {
55 	HNS3_VECTOR0_EVENT_RST,
56 	HNS3_VECTOR0_EVENT_MBX,
57 	HNS3_VECTOR0_EVENT_ERR,
58 	HNS3_VECTOR0_EVENT_PTP,
59 	HNS3_VECTOR0_EVENT_OTHER,
60 };
61 
62 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
63 	{ ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
64 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
65 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
66 
67 	{ ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
68 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
69 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
70 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
71 
72 	{ ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
73 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
74 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
75 
76 	{ ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
77 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
78 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
80 
81 	{ ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
82 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
83 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
84 
85 	{ ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
86 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
87 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
88 };
89 
90 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
91 						 uint64_t *levels);
92 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
93 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
94 				    int on);
95 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
96 static bool hns3_update_link_status(struct hns3_hw *hw);
97 
98 static int hns3_add_mc_addr(struct hns3_hw *hw,
99 			    struct rte_ether_addr *mac_addr);
100 static int hns3_remove_mc_addr(struct hns3_hw *hw,
101 			    struct rte_ether_addr *mac_addr);
102 static int hns3_restore_fec(struct hns3_hw *hw);
103 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
104 static int hns3_do_stop(struct hns3_adapter *hns);
105 static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds);
106 static int hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable);
107 
108 void hns3_ether_format_addr(char *buf, uint16_t size,
109 			    const struct rte_ether_addr *ether_addr)
110 {
111 	snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
112 		ether_addr->addr_bytes[0],
113 		ether_addr->addr_bytes[4],
114 		ether_addr->addr_bytes[5]);
115 }
116 
117 static void
118 hns3_pf_disable_irq0(struct hns3_hw *hw)
119 {
120 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
121 }
122 
123 static void
124 hns3_pf_enable_irq0(struct hns3_hw *hw)
125 {
126 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
127 }
128 
129 static enum hns3_evt_cause
130 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
131 			  uint32_t *vec_val)
132 {
133 	struct hns3_hw *hw = &hns->hw;
134 
135 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
136 	hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
137 	*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
138 	if (!is_delay) {
139 		hw->reset.stats.imp_cnt++;
140 		hns3_warn(hw, "IMP reset detected, clear reset status");
141 	} else {
142 		hns3_schedule_delayed_reset(hns);
143 		hns3_warn(hw, "IMP reset detected, don't clear reset status");
144 	}
145 
146 	return HNS3_VECTOR0_EVENT_RST;
147 }
148 
149 static enum hns3_evt_cause
150 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
151 			     uint32_t *vec_val)
152 {
153 	struct hns3_hw *hw = &hns->hw;
154 
155 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
156 	hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
157 	*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
158 	if (!is_delay) {
159 		hw->reset.stats.global_cnt++;
160 		hns3_warn(hw, "Global reset detected, clear reset status");
161 	} else {
162 		hns3_schedule_delayed_reset(hns);
163 		hns3_warn(hw,
164 			  "Global reset detected, don't clear reset status");
165 	}
166 
167 	return HNS3_VECTOR0_EVENT_RST;
168 }
169 
170 static enum hns3_evt_cause
171 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
172 {
173 	struct hns3_hw *hw = &hns->hw;
174 	uint32_t vector0_int_stats;
175 	uint32_t cmdq_src_val;
176 	uint32_t hw_err_src_reg;
177 	uint32_t val;
178 	enum hns3_evt_cause ret;
179 	bool is_delay;
180 
181 	/* fetch the events from their corresponding regs */
182 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
183 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
184 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
185 
186 	is_delay = clearval == NULL ? true : false;
187 	/*
188 	 * Assumption: If by any chance reset and mailbox events are reported
189 	 * together then we will only process reset event and defer the
190 	 * processing of the mailbox events. Since, we would have not cleared
191 	 * RX CMDQ event this time we would receive again another interrupt
192 	 * from H/W just for the mailbox.
193 	 */
194 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
195 		ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
196 		goto out;
197 	}
198 
199 	/* Global reset */
200 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
201 		ret = hns3_proc_global_reset_event(hns, is_delay, &val);
202 		goto out;
203 	}
204 
205 	/* Check for vector0 1588 event source */
206 	if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
207 		val = BIT(HNS3_VECTOR0_1588_INT_B);
208 		ret = HNS3_VECTOR0_EVENT_PTP;
209 		goto out;
210 	}
211 
212 	/* check for vector0 msix event source */
213 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
214 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
215 		val = vector0_int_stats | hw_err_src_reg;
216 		ret = HNS3_VECTOR0_EVENT_ERR;
217 		goto out;
218 	}
219 
220 	/* check for vector0 mailbox(=CMDQ RX) event source */
221 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
222 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
223 		val = cmdq_src_val;
224 		ret = HNS3_VECTOR0_EVENT_MBX;
225 		goto out;
226 	}
227 
228 	val = vector0_int_stats;
229 	ret = HNS3_VECTOR0_EVENT_OTHER;
230 out:
231 
232 	if (clearval)
233 		*clearval = val;
234 	return ret;
235 }
236 
237 static bool
238 hns3_is_1588_event_type(uint32_t event_type)
239 {
240 	return (event_type == HNS3_VECTOR0_EVENT_PTP);
241 }
242 
243 static void
244 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
245 {
246 	if (event_type == HNS3_VECTOR0_EVENT_RST ||
247 	    hns3_is_1588_event_type(event_type))
248 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
249 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
250 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
251 }
252 
253 static void
254 hns3_clear_all_event_cause(struct hns3_hw *hw)
255 {
256 	uint32_t vector0_int_stats;
257 
258 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
259 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
260 		hns3_warn(hw, "Probe during IMP reset interrupt");
261 
262 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
263 		hns3_warn(hw, "Probe during Global reset interrupt");
264 
265 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
266 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
267 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
268 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
269 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
270 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
271 				BIT(HNS3_VECTOR0_1588_INT_B));
272 }
273 
274 static void
275 hns3_handle_mac_tnl(struct hns3_hw *hw)
276 {
277 	struct hns3_cmd_desc desc;
278 	uint32_t status;
279 	int ret;
280 
281 	/* query and clear mac tnl interrupt */
282 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
283 	ret = hns3_cmd_send(hw, &desc, 1);
284 	if (ret) {
285 		hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
286 		return;
287 	}
288 
289 	status = rte_le_to_cpu_32(desc.data[0]);
290 	if (status) {
291 		hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
292 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
293 					  false);
294 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
295 		ret = hns3_cmd_send(hw, &desc, 1);
296 		if (ret)
297 			hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
298 				 ret);
299 	}
300 }
301 
302 static void
303 hns3_interrupt_handler(void *param)
304 {
305 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
306 	struct hns3_adapter *hns = dev->data->dev_private;
307 	struct hns3_hw *hw = &hns->hw;
308 	enum hns3_evt_cause event_cause;
309 	uint32_t clearval = 0;
310 	uint32_t vector0_int;
311 	uint32_t ras_int;
312 	uint32_t cmdq_int;
313 
314 	/* Disable interrupt */
315 	hns3_pf_disable_irq0(hw);
316 
317 	event_cause = hns3_check_event_cause(hns, &clearval);
318 	vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
319 	ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
320 	cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
321 	hns3_clear_event_cause(hw, event_cause, clearval);
322 	/* vector 0 interrupt is shared with reset and mailbox source events. */
323 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
324 		hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
325 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
326 			  vector0_int, ras_int, cmdq_int);
327 		hns3_handle_mac_tnl(hw);
328 		hns3_handle_error(hns);
329 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
330 		hns3_warn(hw, "received reset interrupt");
331 		hns3_schedule_reset(hns);
332 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
333 		hns3_dev_handle_mbx_msg(hw);
334 	} else {
335 		hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
336 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
337 			  vector0_int, ras_int, cmdq_int);
338 	}
339 
340 	/* Enable interrupt if it is not cause by reset */
341 	hns3_pf_enable_irq0(hw);
342 }
343 
344 static int
345 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
346 {
347 #define HNS3_VLAN_ID_OFFSET_STEP	160
348 #define HNS3_VLAN_BYTE_SIZE		8
349 	struct hns3_vlan_filter_pf_cfg_cmd *req;
350 	struct hns3_hw *hw = &hns->hw;
351 	uint8_t vlan_offset_byte_val;
352 	struct hns3_cmd_desc desc;
353 	uint8_t vlan_offset_byte;
354 	uint8_t vlan_offset_base;
355 	int ret;
356 
357 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
358 
359 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
360 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
361 			   HNS3_VLAN_BYTE_SIZE;
362 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
363 
364 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
365 	req->vlan_offset = vlan_offset_base;
366 	req->vlan_cfg = on ? 0 : 1;
367 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
368 
369 	ret = hns3_cmd_send(hw, &desc, 1);
370 	if (ret)
371 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
372 			 vlan_id, ret);
373 
374 	return ret;
375 }
376 
377 static void
378 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
379 {
380 	struct hns3_user_vlan_table *vlan_entry;
381 	struct hns3_pf *pf = &hns->pf;
382 
383 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
384 		if (vlan_entry->vlan_id == vlan_id) {
385 			if (vlan_entry->hd_tbl_status)
386 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
387 			LIST_REMOVE(vlan_entry, next);
388 			rte_free(vlan_entry);
389 			break;
390 		}
391 	}
392 }
393 
394 static void
395 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
396 			bool writen_to_tbl)
397 {
398 	struct hns3_user_vlan_table *vlan_entry;
399 	struct hns3_hw *hw = &hns->hw;
400 	struct hns3_pf *pf = &hns->pf;
401 
402 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
403 		if (vlan_entry->vlan_id == vlan_id)
404 			return;
405 	}
406 
407 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
408 	if (vlan_entry == NULL) {
409 		hns3_err(hw, "Failed to malloc hns3 vlan table");
410 		return;
411 	}
412 
413 	vlan_entry->hd_tbl_status = writen_to_tbl;
414 	vlan_entry->vlan_id = vlan_id;
415 
416 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
417 }
418 
419 static int
420 hns3_restore_vlan_table(struct hns3_adapter *hns)
421 {
422 	struct hns3_user_vlan_table *vlan_entry;
423 	struct hns3_hw *hw = &hns->hw;
424 	struct hns3_pf *pf = &hns->pf;
425 	uint16_t vlan_id;
426 	int ret = 0;
427 
428 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
429 		return hns3_vlan_pvid_configure(hns,
430 						hw->port_base_vlan_cfg.pvid, 1);
431 
432 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
433 		if (vlan_entry->hd_tbl_status) {
434 			vlan_id = vlan_entry->vlan_id;
435 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
436 			if (ret)
437 				break;
438 		}
439 	}
440 
441 	return ret;
442 }
443 
444 static int
445 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
446 {
447 	struct hns3_hw *hw = &hns->hw;
448 	bool writen_to_tbl = false;
449 	int ret = 0;
450 
451 	/*
452 	 * When vlan filter is enabled, hardware regards packets without vlan
453 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
454 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
455 	 */
456 	if (on == 0 && vlan_id == 0)
457 		return 0;
458 
459 	/*
460 	 * When port base vlan enabled, we use port base vlan as the vlan
461 	 * filter condition. In this case, we don't update vlan filter table
462 	 * when user add new vlan or remove exist vlan, just update the
463 	 * vlan list. The vlan id in vlan list will be written in vlan filter
464 	 * table until port base vlan disabled
465 	 */
466 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
467 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
468 		writen_to_tbl = true;
469 	}
470 
471 	if (ret == 0) {
472 		if (on)
473 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
474 		else
475 			hns3_rm_dev_vlan_table(hns, vlan_id);
476 	}
477 	return ret;
478 }
479 
480 static int
481 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
482 {
483 	struct hns3_adapter *hns = dev->data->dev_private;
484 	struct hns3_hw *hw = &hns->hw;
485 	int ret;
486 
487 	rte_spinlock_lock(&hw->lock);
488 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
489 	rte_spinlock_unlock(&hw->lock);
490 	return ret;
491 }
492 
493 static int
494 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
495 			 uint16_t tpid)
496 {
497 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
498 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
499 	struct hns3_hw *hw = &hns->hw;
500 	struct hns3_cmd_desc desc;
501 	int ret;
502 
503 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
504 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
505 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
506 		return -EINVAL;
507 	}
508 
509 	if (tpid != RTE_ETHER_TYPE_VLAN) {
510 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
511 		return -EINVAL;
512 	}
513 
514 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
515 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
516 
517 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
518 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
519 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
520 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
521 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
522 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
523 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
524 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
525 	}
526 
527 	ret = hns3_cmd_send(hw, &desc, 1);
528 	if (ret) {
529 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
530 			 ret);
531 		return ret;
532 	}
533 
534 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
535 
536 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
537 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
538 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
539 
540 	ret = hns3_cmd_send(hw, &desc, 1);
541 	if (ret)
542 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
543 			 ret);
544 	return ret;
545 }
546 
547 static int
548 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
549 		   uint16_t tpid)
550 {
551 	struct hns3_adapter *hns = dev->data->dev_private;
552 	struct hns3_hw *hw = &hns->hw;
553 	int ret;
554 
555 	rte_spinlock_lock(&hw->lock);
556 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
557 	rte_spinlock_unlock(&hw->lock);
558 	return ret;
559 }
560 
561 static int
562 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
563 			     struct hns3_rx_vtag_cfg *vcfg)
564 {
565 	struct hns3_vport_vtag_rx_cfg_cmd *req;
566 	struct hns3_hw *hw = &hns->hw;
567 	struct hns3_cmd_desc desc;
568 	uint16_t vport_id;
569 	uint8_t bitmap;
570 	int ret;
571 
572 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
573 
574 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
575 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
576 		     vcfg->strip_tag1_en ? 1 : 0);
577 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
578 		     vcfg->strip_tag2_en ? 1 : 0);
579 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
580 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
581 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
582 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
583 
584 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
585 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
586 		     vcfg->strip_tag1_discard_en ? 1 : 0);
587 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
588 		     vcfg->strip_tag2_discard_en ? 1 : 0);
589 	/*
590 	 * In current version VF is not supported when PF is driven by DPDK
591 	 * driver, just need to configure parameters for PF vport.
592 	 */
593 	vport_id = HNS3_PF_FUNC_ID;
594 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
595 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
596 	req->vf_bitmap[req->vf_offset] = bitmap;
597 
598 	ret = hns3_cmd_send(hw, &desc, 1);
599 	if (ret)
600 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
601 	return ret;
602 }
603 
604 static void
605 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
606 			   struct hns3_rx_vtag_cfg *vcfg)
607 {
608 	struct hns3_pf *pf = &hns->pf;
609 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
610 }
611 
612 static void
613 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
614 			   struct hns3_tx_vtag_cfg *vcfg)
615 {
616 	struct hns3_pf *pf = &hns->pf;
617 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
618 }
619 
620 static int
621 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
622 {
623 	struct hns3_rx_vtag_cfg rxvlan_cfg;
624 	struct hns3_hw *hw = &hns->hw;
625 	int ret;
626 
627 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
628 		rxvlan_cfg.strip_tag1_en = false;
629 		rxvlan_cfg.strip_tag2_en = enable;
630 		rxvlan_cfg.strip_tag2_discard_en = false;
631 	} else {
632 		rxvlan_cfg.strip_tag1_en = enable;
633 		rxvlan_cfg.strip_tag2_en = true;
634 		rxvlan_cfg.strip_tag2_discard_en = true;
635 	}
636 
637 	rxvlan_cfg.strip_tag1_discard_en = false;
638 	rxvlan_cfg.vlan1_vlan_prionly = false;
639 	rxvlan_cfg.vlan2_vlan_prionly = false;
640 	rxvlan_cfg.rx_vlan_offload_en = enable;
641 
642 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
643 	if (ret) {
644 		hns3_err(hw, "%s strip rx vtag failed, ret = %d.",
645 				enable ? "enable" : "disable", ret);
646 		return ret;
647 	}
648 
649 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
650 
651 	return ret;
652 }
653 
654 static int
655 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
656 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
657 {
658 	struct hns3_vlan_filter_ctrl_cmd *req;
659 	struct hns3_cmd_desc desc;
660 	int ret;
661 
662 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
663 
664 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
665 	req->vlan_type = vlan_type;
666 	req->vlan_fe = filter_en ? fe_type : 0;
667 	req->vf_id = vf_id;
668 
669 	ret = hns3_cmd_send(hw, &desc, 1);
670 	if (ret)
671 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
672 
673 	return ret;
674 }
675 
676 static int
677 hns3_vlan_filter_init(struct hns3_adapter *hns)
678 {
679 	struct hns3_hw *hw = &hns->hw;
680 	int ret;
681 
682 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
683 					HNS3_FILTER_FE_EGRESS, false,
684 					HNS3_PF_FUNC_ID);
685 	if (ret) {
686 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
687 		return ret;
688 	}
689 
690 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
691 					HNS3_FILTER_FE_INGRESS, false,
692 					HNS3_PF_FUNC_ID);
693 	if (ret)
694 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
695 
696 	return ret;
697 }
698 
699 static int
700 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
701 {
702 	struct hns3_hw *hw = &hns->hw;
703 	int ret;
704 
705 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
706 					HNS3_FILTER_FE_INGRESS, enable,
707 					HNS3_PF_FUNC_ID);
708 	if (ret)
709 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
710 			 enable ? "enable" : "disable", ret);
711 
712 	return ret;
713 }
714 
715 static int
716 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
717 {
718 	struct hns3_adapter *hns = dev->data->dev_private;
719 	struct hns3_hw *hw = &hns->hw;
720 	struct rte_eth_rxmode *rxmode;
721 	unsigned int tmp_mask;
722 	bool enable;
723 	int ret = 0;
724 
725 	rte_spinlock_lock(&hw->lock);
726 	rxmode = &dev->data->dev_conf.rxmode;
727 	tmp_mask = (unsigned int)mask;
728 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
729 		/* ignore vlan filter configuration during promiscuous mode */
730 		if (!dev->data->promiscuous) {
731 			/* Enable or disable VLAN filter */
732 			enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
733 				 true : false;
734 
735 			ret = hns3_enable_vlan_filter(hns, enable);
736 			if (ret) {
737 				rte_spinlock_unlock(&hw->lock);
738 				hns3_err(hw, "failed to %s rx filter, ret = %d",
739 					 enable ? "enable" : "disable", ret);
740 				return ret;
741 			}
742 		}
743 	}
744 
745 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
746 		/* Enable or disable VLAN stripping */
747 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
748 		    true : false;
749 
750 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
751 		if (ret) {
752 			rte_spinlock_unlock(&hw->lock);
753 			hns3_err(hw, "failed to %s rx strip, ret = %d",
754 				 enable ? "enable" : "disable", ret);
755 			return ret;
756 		}
757 	}
758 
759 	rte_spinlock_unlock(&hw->lock);
760 
761 	return ret;
762 }
763 
764 static int
765 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
766 			     struct hns3_tx_vtag_cfg *vcfg)
767 {
768 	struct hns3_vport_vtag_tx_cfg_cmd *req;
769 	struct hns3_cmd_desc desc;
770 	struct hns3_hw *hw = &hns->hw;
771 	uint16_t vport_id;
772 	uint8_t bitmap;
773 	int ret;
774 
775 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
776 
777 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
778 	req->def_vlan_tag1 = vcfg->default_tag1;
779 	req->def_vlan_tag2 = vcfg->default_tag2;
780 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
781 		     vcfg->accept_tag1 ? 1 : 0);
782 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
783 		     vcfg->accept_untag1 ? 1 : 0);
784 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
785 		     vcfg->accept_tag2 ? 1 : 0);
786 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
787 		     vcfg->accept_untag2 ? 1 : 0);
788 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
789 		     vcfg->insert_tag1_en ? 1 : 0);
790 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
791 		     vcfg->insert_tag2_en ? 1 : 0);
792 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
793 
794 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
795 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
796 		     vcfg->tag_shift_mode_en ? 1 : 0);
797 
798 	/*
799 	 * In current version VF is not supported when PF is driven by DPDK
800 	 * driver, just need to configure parameters for PF vport.
801 	 */
802 	vport_id = HNS3_PF_FUNC_ID;
803 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
804 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
805 	req->vf_bitmap[req->vf_offset] = bitmap;
806 
807 	ret = hns3_cmd_send(hw, &desc, 1);
808 	if (ret)
809 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
810 
811 	return ret;
812 }
813 
814 static int
815 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
816 		     uint16_t pvid)
817 {
818 	struct hns3_hw *hw = &hns->hw;
819 	struct hns3_tx_vtag_cfg txvlan_cfg;
820 	int ret;
821 
822 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
823 		txvlan_cfg.accept_tag1 = true;
824 		txvlan_cfg.insert_tag1_en = false;
825 		txvlan_cfg.default_tag1 = 0;
826 	} else {
827 		txvlan_cfg.accept_tag1 =
828 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
829 		txvlan_cfg.insert_tag1_en = true;
830 		txvlan_cfg.default_tag1 = pvid;
831 	}
832 
833 	txvlan_cfg.accept_untag1 = true;
834 	txvlan_cfg.accept_tag2 = true;
835 	txvlan_cfg.accept_untag2 = true;
836 	txvlan_cfg.insert_tag2_en = false;
837 	txvlan_cfg.default_tag2 = 0;
838 	txvlan_cfg.tag_shift_mode_en = true;
839 
840 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
841 	if (ret) {
842 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
843 			 ret);
844 		return ret;
845 	}
846 
847 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
848 	return ret;
849 }
850 
851 
852 static void
853 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
854 {
855 	struct hns3_user_vlan_table *vlan_entry;
856 	struct hns3_pf *pf = &hns->pf;
857 
858 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
859 		if (vlan_entry->hd_tbl_status) {
860 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
861 			vlan_entry->hd_tbl_status = false;
862 		}
863 	}
864 
865 	if (is_del_list) {
866 		vlan_entry = LIST_FIRST(&pf->vlan_list);
867 		while (vlan_entry) {
868 			LIST_REMOVE(vlan_entry, next);
869 			rte_free(vlan_entry);
870 			vlan_entry = LIST_FIRST(&pf->vlan_list);
871 		}
872 	}
873 }
874 
875 static void
876 hns3_add_all_vlan_table(struct hns3_adapter *hns)
877 {
878 	struct hns3_user_vlan_table *vlan_entry;
879 	struct hns3_pf *pf = &hns->pf;
880 
881 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
882 		if (!vlan_entry->hd_tbl_status) {
883 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
884 			vlan_entry->hd_tbl_status = true;
885 		}
886 	}
887 }
888 
889 static void
890 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
891 {
892 	struct hns3_hw *hw = &hns->hw;
893 	int ret;
894 
895 	hns3_rm_all_vlan_table(hns, true);
896 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
897 		ret = hns3_set_port_vlan_filter(hns,
898 						hw->port_base_vlan_cfg.pvid, 0);
899 		if (ret) {
900 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
901 				 ret);
902 			return;
903 		}
904 	}
905 }
906 
907 static int
908 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
909 			uint16_t port_base_vlan_state, uint16_t new_pvid)
910 {
911 	struct hns3_hw *hw = &hns->hw;
912 	uint16_t old_pvid;
913 	int ret;
914 
915 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
916 		old_pvid = hw->port_base_vlan_cfg.pvid;
917 		if (old_pvid != HNS3_INVALID_PVID) {
918 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
919 			if (ret) {
920 				hns3_err(hw, "failed to remove old pvid %u, "
921 						"ret = %d", old_pvid, ret);
922 				return ret;
923 			}
924 		}
925 
926 		hns3_rm_all_vlan_table(hns, false);
927 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
928 		if (ret) {
929 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
930 					new_pvid, ret);
931 			return ret;
932 		}
933 	} else {
934 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
935 		if (ret) {
936 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
937 					new_pvid, ret);
938 			return ret;
939 		}
940 
941 		hns3_add_all_vlan_table(hns);
942 	}
943 	return 0;
944 }
945 
946 static int
947 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
948 {
949 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
950 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
951 	bool rx_strip_en;
952 	int ret;
953 
954 	rx_strip_en = old_cfg->rx_vlan_offload_en;
955 	if (on) {
956 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
957 		rx_vlan_cfg.strip_tag2_en = true;
958 		rx_vlan_cfg.strip_tag2_discard_en = true;
959 	} else {
960 		rx_vlan_cfg.strip_tag1_en = false;
961 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
962 		rx_vlan_cfg.strip_tag2_discard_en = false;
963 	}
964 	rx_vlan_cfg.strip_tag1_discard_en = false;
965 	rx_vlan_cfg.vlan1_vlan_prionly = false;
966 	rx_vlan_cfg.vlan2_vlan_prionly = false;
967 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
968 
969 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
970 	if (ret)
971 		return ret;
972 
973 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
974 	return ret;
975 }
976 
977 static int
978 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
979 {
980 	struct hns3_hw *hw = &hns->hw;
981 	uint16_t port_base_vlan_state;
982 	int ret, err;
983 
984 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
985 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
986 			hns3_warn(hw, "Invalid operation! As current pvid set "
987 				  "is %u, disable pvid %u is invalid",
988 				  hw->port_base_vlan_cfg.pvid, pvid);
989 		return 0;
990 	}
991 
992 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
993 				    HNS3_PORT_BASE_VLAN_DISABLE;
994 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
995 	if (ret) {
996 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
997 			 ret);
998 		return ret;
999 	}
1000 
1001 	ret = hns3_en_pvid_strip(hns, on);
1002 	if (ret) {
1003 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
1004 			 "ret = %d", ret);
1005 		goto pvid_vlan_strip_fail;
1006 	}
1007 
1008 	if (pvid == HNS3_INVALID_PVID)
1009 		goto out;
1010 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
1011 	if (ret) {
1012 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
1013 			 ret);
1014 		goto vlan_filter_set_fail;
1015 	}
1016 
1017 out:
1018 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
1019 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1020 	return ret;
1021 
1022 vlan_filter_set_fail:
1023 	err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
1024 					HNS3_PORT_BASE_VLAN_ENABLE);
1025 	if (err)
1026 		hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1027 
1028 pvid_vlan_strip_fail:
1029 	err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1030 					hw->port_base_vlan_cfg.pvid);
1031 	if (err)
1032 		hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1033 
1034 	return ret;
1035 }
1036 
1037 static int
1038 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1039 {
1040 	struct hns3_adapter *hns = dev->data->dev_private;
1041 	struct hns3_hw *hw = &hns->hw;
1042 	bool pvid_en_state_change;
1043 	uint16_t pvid_state;
1044 	int ret;
1045 
1046 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1047 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1048 			 RTE_ETHER_MAX_VLAN_ID);
1049 		return -EINVAL;
1050 	}
1051 
1052 	/*
1053 	 * If PVID configuration state change, should refresh the PVID
1054 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1055 	 */
1056 	pvid_state = hw->port_base_vlan_cfg.state;
1057 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1058 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1059 		pvid_en_state_change = false;
1060 	else
1061 		pvid_en_state_change = true;
1062 
1063 	rte_spinlock_lock(&hw->lock);
1064 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
1065 	rte_spinlock_unlock(&hw->lock);
1066 	if (ret)
1067 		return ret;
1068 	/*
1069 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1070 	 * need be processed by PMD driver.
1071 	 */
1072 	if (pvid_en_state_change &&
1073 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1074 		hns3_update_all_queues_pvid_proc_en(hw);
1075 
1076 	return 0;
1077 }
1078 
1079 static int
1080 hns3_default_vlan_config(struct hns3_adapter *hns)
1081 {
1082 	struct hns3_hw *hw = &hns->hw;
1083 	int ret;
1084 
1085 	/*
1086 	 * When vlan filter is enabled, hardware regards packets without vlan
1087 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1088 	 * table, packets without vlan won't be received. So, add vlan 0 as
1089 	 * the default vlan.
1090 	 */
1091 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1092 	if (ret)
1093 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1094 	return ret;
1095 }
1096 
1097 static int
1098 hns3_init_vlan_config(struct hns3_adapter *hns)
1099 {
1100 	struct hns3_hw *hw = &hns->hw;
1101 	int ret;
1102 
1103 	/*
1104 	 * This function can be called in the initialization and reset process,
1105 	 * when in reset process, it means that hardware had been reseted
1106 	 * successfully and we need to restore the hardware configuration to
1107 	 * ensure that the hardware configuration remains unchanged before and
1108 	 * after reset.
1109 	 */
1110 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1111 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1112 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1113 	}
1114 
1115 	ret = hns3_vlan_filter_init(hns);
1116 	if (ret) {
1117 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1118 		return ret;
1119 	}
1120 
1121 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1122 				       RTE_ETHER_TYPE_VLAN);
1123 	if (ret) {
1124 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1125 		return ret;
1126 	}
1127 
1128 	/*
1129 	 * When in the reinit dev stage of the reset process, the following
1130 	 * vlan-related configurations may differ from those at initialization,
1131 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1132 	 * and hns3_restore_vlan_conf later.
1133 	 */
1134 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1135 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1136 		if (ret) {
1137 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1138 			return ret;
1139 		}
1140 
1141 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1142 		if (ret) {
1143 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1144 				 ret);
1145 			return ret;
1146 		}
1147 	}
1148 
1149 	return hns3_default_vlan_config(hns);
1150 }
1151 
1152 static int
1153 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1154 {
1155 	struct hns3_pf *pf = &hns->pf;
1156 	struct hns3_hw *hw = &hns->hw;
1157 	uint64_t offloads;
1158 	bool enable;
1159 	int ret;
1160 
1161 	if (!hw->data->promiscuous) {
1162 		/* restore vlan filter states */
1163 		offloads = hw->data->dev_conf.rxmode.offloads;
1164 		enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1165 		ret = hns3_enable_vlan_filter(hns, enable);
1166 		if (ret) {
1167 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1168 				 "ret = %d", ret);
1169 			return ret;
1170 		}
1171 	}
1172 
1173 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1174 	if (ret) {
1175 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1176 		return ret;
1177 	}
1178 
1179 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1180 	if (ret)
1181 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1182 
1183 	return ret;
1184 }
1185 
1186 static int
1187 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1188 {
1189 	struct hns3_adapter *hns = dev->data->dev_private;
1190 	struct rte_eth_dev_data *data = dev->data;
1191 	struct rte_eth_txmode *txmode;
1192 	struct hns3_hw *hw = &hns->hw;
1193 	int mask;
1194 	int ret;
1195 
1196 	txmode = &data->dev_conf.txmode;
1197 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1198 		hns3_warn(hw,
1199 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1200 			  "configuration is not supported! Ignore these two "
1201 			  "parameters: hw_vlan_reject_tagged(%u), "
1202 			  "hw_vlan_reject_untagged(%u)",
1203 			  txmode->hw_vlan_reject_tagged,
1204 			  txmode->hw_vlan_reject_untagged);
1205 
1206 	/* Apply vlan offload setting */
1207 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1208 	ret = hns3_vlan_offload_set(dev, mask);
1209 	if (ret) {
1210 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1211 			 ret);
1212 		return ret;
1213 	}
1214 
1215 	/*
1216 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1217 	 * VLAN pvid related configuration to hardware.
1218 	 */
1219 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1220 		return 0;
1221 
1222 	/* Apply pvid setting */
1223 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1224 				 txmode->hw_vlan_insert_pvid);
1225 	if (ret)
1226 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1227 			 txmode->pvid, ret);
1228 
1229 	return ret;
1230 }
1231 
1232 static int
1233 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1234 		unsigned int tso_mss_max)
1235 {
1236 	struct hns3_cfg_tso_status_cmd *req;
1237 	struct hns3_cmd_desc desc;
1238 	uint16_t tso_mss;
1239 
1240 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1241 
1242 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1243 
1244 	tso_mss = 0;
1245 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1246 		       tso_mss_min);
1247 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1248 
1249 	tso_mss = 0;
1250 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1251 		       tso_mss_max);
1252 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1253 
1254 	return hns3_cmd_send(hw, &desc, 1);
1255 }
1256 
1257 static int
1258 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1259 		   uint16_t *allocated_size, bool is_alloc)
1260 {
1261 	struct hns3_umv_spc_alc_cmd *req;
1262 	struct hns3_cmd_desc desc;
1263 	int ret;
1264 
1265 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1266 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1267 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1268 	req->space_size = rte_cpu_to_le_32(space_size);
1269 
1270 	ret = hns3_cmd_send(hw, &desc, 1);
1271 	if (ret) {
1272 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1273 			     is_alloc ? "allocate" : "free", ret);
1274 		return ret;
1275 	}
1276 
1277 	if (is_alloc && allocated_size)
1278 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1279 
1280 	return 0;
1281 }
1282 
1283 static int
1284 hns3_init_umv_space(struct hns3_hw *hw)
1285 {
1286 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1287 	struct hns3_pf *pf = &hns->pf;
1288 	uint16_t allocated_size = 0;
1289 	int ret;
1290 
1291 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1292 				 true);
1293 	if (ret)
1294 		return ret;
1295 
1296 	if (allocated_size < pf->wanted_umv_size)
1297 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1298 			     pf->wanted_umv_size, allocated_size);
1299 
1300 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1301 						pf->wanted_umv_size;
1302 	pf->used_umv_size = 0;
1303 	return 0;
1304 }
1305 
1306 static int
1307 hns3_uninit_umv_space(struct hns3_hw *hw)
1308 {
1309 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1310 	struct hns3_pf *pf = &hns->pf;
1311 	int ret;
1312 
1313 	if (pf->max_umv_size == 0)
1314 		return 0;
1315 
1316 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1317 	if (ret)
1318 		return ret;
1319 
1320 	pf->max_umv_size = 0;
1321 
1322 	return 0;
1323 }
1324 
1325 static bool
1326 hns3_is_umv_space_full(struct hns3_hw *hw)
1327 {
1328 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1329 	struct hns3_pf *pf = &hns->pf;
1330 	bool is_full;
1331 
1332 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1333 
1334 	return is_full;
1335 }
1336 
1337 static void
1338 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1339 {
1340 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1341 	struct hns3_pf *pf = &hns->pf;
1342 
1343 	if (is_free) {
1344 		if (pf->used_umv_size > 0)
1345 			pf->used_umv_size--;
1346 	} else
1347 		pf->used_umv_size++;
1348 }
1349 
1350 static void
1351 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1352 		      const uint8_t *addr, bool is_mc)
1353 {
1354 	const unsigned char *mac_addr = addr;
1355 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1356 			    ((uint32_t)mac_addr[2] << 16) |
1357 			    ((uint32_t)mac_addr[1] << 8) |
1358 			    (uint32_t)mac_addr[0];
1359 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1360 
1361 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1362 	if (is_mc) {
1363 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1364 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1365 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1366 	}
1367 
1368 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1369 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1370 }
1371 
1372 static int
1373 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1374 			     uint8_t resp_code,
1375 			     enum hns3_mac_vlan_tbl_opcode op)
1376 {
1377 	if (cmdq_resp) {
1378 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1379 			 cmdq_resp);
1380 		return -EIO;
1381 	}
1382 
1383 	if (op == HNS3_MAC_VLAN_ADD) {
1384 		if (resp_code == 0 || resp_code == 1) {
1385 			return 0;
1386 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1387 			hns3_err(hw, "add mac addr failed for uc_overflow");
1388 			return -ENOSPC;
1389 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1390 			hns3_err(hw, "add mac addr failed for mc_overflow");
1391 			return -ENOSPC;
1392 		}
1393 
1394 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1395 			 resp_code);
1396 		return -EIO;
1397 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1398 		if (resp_code == 0) {
1399 			return 0;
1400 		} else if (resp_code == 1) {
1401 			hns3_dbg(hw, "remove mac addr failed for miss");
1402 			return -ENOENT;
1403 		}
1404 
1405 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1406 			 resp_code);
1407 		return -EIO;
1408 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1409 		if (resp_code == 0) {
1410 			return 0;
1411 		} else if (resp_code == 1) {
1412 			hns3_dbg(hw, "lookup mac addr failed for miss");
1413 			return -ENOENT;
1414 		}
1415 
1416 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1417 			 resp_code);
1418 		return -EIO;
1419 	}
1420 
1421 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1422 		 op);
1423 
1424 	return -EINVAL;
1425 }
1426 
1427 static int
1428 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1429 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1430 			 struct hns3_cmd_desc *desc, bool is_mc)
1431 {
1432 	uint8_t resp_code;
1433 	uint16_t retval;
1434 	int ret;
1435 
1436 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1437 	if (is_mc) {
1438 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1439 		memcpy(desc[0].data, req,
1440 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1441 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1442 					  true);
1443 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1444 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1445 					  true);
1446 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1447 	} else {
1448 		memcpy(desc[0].data, req,
1449 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1450 		ret = hns3_cmd_send(hw, desc, 1);
1451 	}
1452 	if (ret) {
1453 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1454 			 ret);
1455 		return ret;
1456 	}
1457 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1458 	retval = rte_le_to_cpu_16(desc[0].retval);
1459 
1460 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1461 					    HNS3_MAC_VLAN_LKUP);
1462 }
1463 
1464 static int
1465 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1466 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1467 		      struct hns3_cmd_desc *mc_desc)
1468 {
1469 	uint8_t resp_code;
1470 	uint16_t retval;
1471 	int cfg_status;
1472 	int ret;
1473 
1474 	if (mc_desc == NULL) {
1475 		struct hns3_cmd_desc desc;
1476 
1477 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1478 		memcpy(desc.data, req,
1479 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1480 		ret = hns3_cmd_send(hw, &desc, 1);
1481 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1482 		retval = rte_le_to_cpu_16(desc.retval);
1483 
1484 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1485 							  HNS3_MAC_VLAN_ADD);
1486 	} else {
1487 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1488 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1489 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1490 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1491 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1492 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1493 		memcpy(mc_desc[0].data, req,
1494 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1495 		mc_desc[0].retval = 0;
1496 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1497 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1498 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1499 
1500 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1501 							  HNS3_MAC_VLAN_ADD);
1502 	}
1503 
1504 	if (ret) {
1505 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1506 		return ret;
1507 	}
1508 
1509 	return cfg_status;
1510 }
1511 
1512 static int
1513 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1514 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1515 {
1516 	struct hns3_cmd_desc desc;
1517 	uint8_t resp_code;
1518 	uint16_t retval;
1519 	int ret;
1520 
1521 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1522 
1523 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1524 
1525 	ret = hns3_cmd_send(hw, &desc, 1);
1526 	if (ret) {
1527 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1528 		return ret;
1529 	}
1530 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1531 	retval = rte_le_to_cpu_16(desc.retval);
1532 
1533 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1534 					    HNS3_MAC_VLAN_REMOVE);
1535 }
1536 
1537 static int
1538 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1539 {
1540 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1541 	struct hns3_mac_vlan_tbl_entry_cmd req;
1542 	struct hns3_pf *pf = &hns->pf;
1543 	struct hns3_cmd_desc desc[3];
1544 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1545 	uint16_t egress_port = 0;
1546 	uint8_t vf_id;
1547 	int ret;
1548 
1549 	/* check if mac addr is valid */
1550 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1551 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1552 				      mac_addr);
1553 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1554 			 mac_str);
1555 		return -EINVAL;
1556 	}
1557 
1558 	memset(&req, 0, sizeof(req));
1559 
1560 	/*
1561 	 * In current version VF is not supported when PF is driven by DPDK
1562 	 * driver, just need to configure parameters for PF vport.
1563 	 */
1564 	vf_id = HNS3_PF_FUNC_ID;
1565 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1566 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1567 
1568 	req.egress_port = rte_cpu_to_le_16(egress_port);
1569 
1570 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1571 
1572 	/*
1573 	 * Lookup the mac address in the mac_vlan table, and add
1574 	 * it if the entry is inexistent. Repeated unicast entry
1575 	 * is not allowed in the mac vlan table.
1576 	 */
1577 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1578 	if (ret == -ENOENT) {
1579 		if (!hns3_is_umv_space_full(hw)) {
1580 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1581 			if (!ret)
1582 				hns3_update_umv_space(hw, false);
1583 			return ret;
1584 		}
1585 
1586 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1587 
1588 		return -ENOSPC;
1589 	}
1590 
1591 	hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1592 
1593 	/* check if we just hit the duplicate */
1594 	if (ret == 0) {
1595 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1596 		return 0;
1597 	}
1598 
1599 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1600 		 mac_str);
1601 
1602 	return ret;
1603 }
1604 
1605 static int
1606 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1607 {
1608 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1609 	struct rte_ether_addr *addr;
1610 	int ret;
1611 	int i;
1612 
1613 	for (i = 0; i < hw->mc_addrs_num; i++) {
1614 		addr = &hw->mc_addrs[i];
1615 		/* Check if there are duplicate addresses */
1616 		if (rte_is_same_ether_addr(addr, mac_addr)) {
1617 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1618 					      addr);
1619 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1620 				 "(%s) is added by the set_mc_mac_addr_list "
1621 				 "API", mac_str);
1622 			return -EINVAL;
1623 		}
1624 	}
1625 
1626 	ret = hns3_add_mc_addr(hw, mac_addr);
1627 	if (ret) {
1628 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1629 				      mac_addr);
1630 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1631 			 mac_str, ret);
1632 	}
1633 	return ret;
1634 }
1635 
1636 static int
1637 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1638 {
1639 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1640 	int ret;
1641 
1642 	ret = hns3_remove_mc_addr(hw, mac_addr);
1643 	if (ret) {
1644 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1645 				      mac_addr);
1646 		hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1647 			 mac_str, ret);
1648 	}
1649 	return ret;
1650 }
1651 
1652 static int
1653 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1654 		  uint32_t idx, __rte_unused uint32_t pool)
1655 {
1656 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1657 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1658 	int ret;
1659 
1660 	rte_spinlock_lock(&hw->lock);
1661 
1662 	/*
1663 	 * In hns3 network engine adding UC and MC mac address with different
1664 	 * commands with firmware. We need to determine whether the input
1665 	 * address is a UC or a MC address to call different commands.
1666 	 * By the way, it is recommended calling the API function named
1667 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1668 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1669 	 * may affect the specifications of UC mac addresses.
1670 	 */
1671 	if (rte_is_multicast_ether_addr(mac_addr))
1672 		ret = hns3_add_mc_addr_common(hw, mac_addr);
1673 	else
1674 		ret = hns3_add_uc_addr_common(hw, mac_addr);
1675 
1676 	if (ret) {
1677 		rte_spinlock_unlock(&hw->lock);
1678 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1679 				      mac_addr);
1680 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1681 			 ret);
1682 		return ret;
1683 	}
1684 
1685 	if (idx == 0)
1686 		hw->mac.default_addr_setted = true;
1687 	rte_spinlock_unlock(&hw->lock);
1688 
1689 	return ret;
1690 }
1691 
1692 static int
1693 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1694 {
1695 	struct hns3_mac_vlan_tbl_entry_cmd req;
1696 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1697 	int ret;
1698 
1699 	/* check if mac addr is valid */
1700 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1701 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1702 				      mac_addr);
1703 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1704 			 mac_str);
1705 		return -EINVAL;
1706 	}
1707 
1708 	memset(&req, 0, sizeof(req));
1709 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1710 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1711 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1712 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1713 		return 0;
1714 	else if (ret == 0)
1715 		hns3_update_umv_space(hw, true);
1716 
1717 	return ret;
1718 }
1719 
1720 static void
1721 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1722 {
1723 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1724 	/* index will be checked by upper level rte interface */
1725 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1726 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1727 	int ret;
1728 
1729 	rte_spinlock_lock(&hw->lock);
1730 
1731 	if (rte_is_multicast_ether_addr(mac_addr))
1732 		ret = hns3_remove_mc_addr_common(hw, mac_addr);
1733 	else
1734 		ret = hns3_remove_uc_addr_common(hw, mac_addr);
1735 	rte_spinlock_unlock(&hw->lock);
1736 	if (ret) {
1737 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1738 				      mac_addr);
1739 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1740 			 ret);
1741 	}
1742 }
1743 
1744 static int
1745 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1746 			  struct rte_ether_addr *mac_addr)
1747 {
1748 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1749 	struct rte_ether_addr *oaddr;
1750 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1751 	bool default_addr_setted;
1752 	int ret, ret_val;
1753 
1754 	/*
1755 	 * It has been guaranteed that input parameter named mac_addr is valid
1756 	 * address in the rte layer of DPDK framework.
1757 	 */
1758 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1759 	default_addr_setted = hw->mac.default_addr_setted;
1760 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1761 		return 0;
1762 
1763 	rte_spinlock_lock(&hw->lock);
1764 	if (default_addr_setted) {
1765 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1766 		if (ret) {
1767 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1768 					      oaddr);
1769 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1770 				  mac_str, ret);
1771 
1772 			rte_spinlock_unlock(&hw->lock);
1773 			return ret;
1774 		}
1775 	}
1776 
1777 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1778 	if (ret) {
1779 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1780 				      mac_addr);
1781 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1782 		goto err_add_uc_addr;
1783 	}
1784 
1785 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1786 	if (ret) {
1787 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1788 		goto err_pause_addr_cfg;
1789 	}
1790 
1791 	rte_ether_addr_copy(mac_addr,
1792 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1793 	hw->mac.default_addr_setted = true;
1794 	rte_spinlock_unlock(&hw->lock);
1795 
1796 	return 0;
1797 
1798 err_pause_addr_cfg:
1799 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1800 	if (ret_val) {
1801 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1802 				      mac_addr);
1803 		hns3_warn(hw,
1804 			  "Failed to roll back to del setted mac addr(%s): %d",
1805 			  mac_str, ret_val);
1806 	}
1807 
1808 err_add_uc_addr:
1809 	ret_val = hns3_add_uc_addr_common(hw, oaddr);
1810 	if (ret_val) {
1811 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, oaddr);
1812 		hns3_warn(hw, "Failed to restore old uc mac addr(%s): %d",
1813 				  mac_str, ret_val);
1814 		hw->mac.default_addr_setted = false;
1815 	}
1816 	rte_spinlock_unlock(&hw->lock);
1817 
1818 	return ret;
1819 }
1820 
1821 static int
1822 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1823 {
1824 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1825 	struct hns3_hw *hw = &hns->hw;
1826 	struct rte_ether_addr *addr;
1827 	int err = 0;
1828 	int ret;
1829 	int i;
1830 
1831 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1832 		addr = &hw->data->mac_addrs[i];
1833 		if (rte_is_zero_ether_addr(addr))
1834 			continue;
1835 		if (rte_is_multicast_ether_addr(addr))
1836 			ret = del ? hns3_remove_mc_addr(hw, addr) :
1837 			      hns3_add_mc_addr(hw, addr);
1838 		else
1839 			ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1840 			      hns3_add_uc_addr_common(hw, addr);
1841 
1842 		if (ret) {
1843 			err = ret;
1844 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1845 					      addr);
1846 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1847 				 "ret = %d.", del ? "remove" : "restore",
1848 				 mac_str, i, ret);
1849 		}
1850 	}
1851 	return err;
1852 }
1853 
1854 static void
1855 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1856 {
1857 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1858 	uint8_t word_num;
1859 	uint8_t bit_num;
1860 
1861 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1862 		word_num = vfid / 32;
1863 		bit_num = vfid % 32;
1864 		if (clr)
1865 			desc[1].data[word_num] &=
1866 			    rte_cpu_to_le_32(~(1UL << bit_num));
1867 		else
1868 			desc[1].data[word_num] |=
1869 			    rte_cpu_to_le_32(1UL << bit_num);
1870 	} else {
1871 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1872 		bit_num = vfid % 32;
1873 		if (clr)
1874 			desc[2].data[word_num] &=
1875 			    rte_cpu_to_le_32(~(1UL << bit_num));
1876 		else
1877 			desc[2].data[word_num] |=
1878 			    rte_cpu_to_le_32(1UL << bit_num);
1879 	}
1880 }
1881 
1882 static int
1883 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1884 {
1885 	struct hns3_mac_vlan_tbl_entry_cmd req;
1886 	struct hns3_cmd_desc desc[3];
1887 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1888 	uint8_t vf_id;
1889 	int ret;
1890 
1891 	/* Check if mac addr is valid */
1892 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1893 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1894 				      mac_addr);
1895 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1896 			 mac_str);
1897 		return -EINVAL;
1898 	}
1899 
1900 	memset(&req, 0, sizeof(req));
1901 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1902 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1903 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1904 	if (ret) {
1905 		/* This mac addr do not exist, add new entry for it */
1906 		memset(desc[0].data, 0, sizeof(desc[0].data));
1907 		memset(desc[1].data, 0, sizeof(desc[0].data));
1908 		memset(desc[2].data, 0, sizeof(desc[0].data));
1909 	}
1910 
1911 	/*
1912 	 * In current version VF is not supported when PF is driven by DPDK
1913 	 * driver, just need to configure parameters for PF vport.
1914 	 */
1915 	vf_id = HNS3_PF_FUNC_ID;
1916 	hns3_update_desc_vfid(desc, vf_id, false);
1917 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1918 	if (ret) {
1919 		if (ret == -ENOSPC)
1920 			hns3_err(hw, "mc mac vlan table is full");
1921 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1922 				      mac_addr);
1923 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1924 	}
1925 
1926 	return ret;
1927 }
1928 
1929 static int
1930 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1931 {
1932 	struct hns3_mac_vlan_tbl_entry_cmd req;
1933 	struct hns3_cmd_desc desc[3];
1934 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1935 	uint8_t vf_id;
1936 	int ret;
1937 
1938 	/* Check if mac addr is valid */
1939 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1940 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1941 				      mac_addr);
1942 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1943 			 mac_str);
1944 		return -EINVAL;
1945 	}
1946 
1947 	memset(&req, 0, sizeof(req));
1948 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1949 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1950 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1951 	if (ret == 0) {
1952 		/*
1953 		 * This mac addr exist, remove this handle's VFID for it.
1954 		 * In current version VF is not supported when PF is driven by
1955 		 * DPDK driver, just need to configure parameters for PF vport.
1956 		 */
1957 		vf_id = HNS3_PF_FUNC_ID;
1958 		hns3_update_desc_vfid(desc, vf_id, true);
1959 
1960 		/* All the vfid is zero, so need to delete this entry */
1961 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1962 	} else if (ret == -ENOENT) {
1963 		/* This mac addr doesn't exist. */
1964 		return 0;
1965 	}
1966 
1967 	if (ret) {
1968 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1969 				      mac_addr);
1970 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1971 	}
1972 
1973 	return ret;
1974 }
1975 
1976 static int
1977 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1978 			   struct rte_ether_addr *mc_addr_set,
1979 			   uint32_t nb_mc_addr)
1980 {
1981 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1982 	struct rte_ether_addr *addr;
1983 	uint32_t i;
1984 	uint32_t j;
1985 
1986 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1987 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1988 			 "invalid. valid range: 0~%d",
1989 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1990 		return -EINVAL;
1991 	}
1992 
1993 	/* Check if input mac addresses are valid */
1994 	for (i = 0; i < nb_mc_addr; i++) {
1995 		addr = &mc_addr_set[i];
1996 		if (!rte_is_multicast_ether_addr(addr)) {
1997 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1998 					      addr);
1999 			hns3_err(hw,
2000 				 "failed to set mc mac addr, addr(%s) invalid.",
2001 				 mac_str);
2002 			return -EINVAL;
2003 		}
2004 
2005 		/* Check if there are duplicate addresses */
2006 		for (j = i + 1; j < nb_mc_addr; j++) {
2007 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2008 				hns3_ether_format_addr(mac_str,
2009 						      RTE_ETHER_ADDR_FMT_SIZE,
2010 						      addr);
2011 				hns3_err(hw, "failed to set mc mac addr, "
2012 					 "addrs invalid. two same addrs(%s).",
2013 					 mac_str);
2014 				return -EINVAL;
2015 			}
2016 		}
2017 
2018 		/*
2019 		 * Check if there are duplicate addresses between mac_addrs
2020 		 * and mc_addr_set
2021 		 */
2022 		for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
2023 			if (rte_is_same_ether_addr(addr,
2024 						   &hw->data->mac_addrs[j])) {
2025 				hns3_ether_format_addr(mac_str,
2026 						      RTE_ETHER_ADDR_FMT_SIZE,
2027 						      addr);
2028 				hns3_err(hw, "failed to set mc mac addr, "
2029 					 "addrs invalid. addrs(%s) has already "
2030 					 "configured in mac_addr add API",
2031 					 mac_str);
2032 				return -EINVAL;
2033 			}
2034 		}
2035 	}
2036 
2037 	return 0;
2038 }
2039 
2040 static void
2041 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
2042 			   struct rte_ether_addr *mc_addr_set,
2043 			   int mc_addr_num,
2044 			   struct rte_ether_addr *reserved_addr_list,
2045 			   int *reserved_addr_num,
2046 			   struct rte_ether_addr *add_addr_list,
2047 			   int *add_addr_num,
2048 			   struct rte_ether_addr *rm_addr_list,
2049 			   int *rm_addr_num)
2050 {
2051 	struct rte_ether_addr *addr;
2052 	int current_addr_num;
2053 	int reserved_num = 0;
2054 	int add_num = 0;
2055 	int rm_num = 0;
2056 	int num;
2057 	int i;
2058 	int j;
2059 	bool same_addr;
2060 
2061 	/* Calculate the mc mac address list that should be removed */
2062 	current_addr_num = hw->mc_addrs_num;
2063 	for (i = 0; i < current_addr_num; i++) {
2064 		addr = &hw->mc_addrs[i];
2065 		same_addr = false;
2066 		for (j = 0; j < mc_addr_num; j++) {
2067 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2068 				same_addr = true;
2069 				break;
2070 			}
2071 		}
2072 
2073 		if (!same_addr) {
2074 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
2075 			rm_num++;
2076 		} else {
2077 			rte_ether_addr_copy(addr,
2078 					    &reserved_addr_list[reserved_num]);
2079 			reserved_num++;
2080 		}
2081 	}
2082 
2083 	/* Calculate the mc mac address list that should be added */
2084 	for (i = 0; i < mc_addr_num; i++) {
2085 		addr = &mc_addr_set[i];
2086 		same_addr = false;
2087 		for (j = 0; j < current_addr_num; j++) {
2088 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2089 				same_addr = true;
2090 				break;
2091 			}
2092 		}
2093 
2094 		if (!same_addr) {
2095 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2096 			add_num++;
2097 		}
2098 	}
2099 
2100 	/* Reorder the mc mac address list maintained by driver */
2101 	for (i = 0; i < reserved_num; i++)
2102 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2103 
2104 	for (i = 0; i < rm_num; i++) {
2105 		num = reserved_num + i;
2106 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2107 	}
2108 
2109 	*reserved_addr_num = reserved_num;
2110 	*add_addr_num = add_num;
2111 	*rm_addr_num = rm_num;
2112 }
2113 
2114 static int
2115 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2116 			  struct rte_ether_addr *mc_addr_set,
2117 			  uint32_t nb_mc_addr)
2118 {
2119 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2120 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2121 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2122 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2123 	struct rte_ether_addr *addr;
2124 	int reserved_addr_num;
2125 	int add_addr_num;
2126 	int rm_addr_num;
2127 	int mc_addr_num;
2128 	int num;
2129 	int ret;
2130 	int i;
2131 
2132 	/* Check if input parameters are valid */
2133 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2134 	if (ret)
2135 		return ret;
2136 
2137 	rte_spinlock_lock(&hw->lock);
2138 
2139 	/*
2140 	 * Calculate the mc mac address lists those should be removed and be
2141 	 * added, Reorder the mc mac address list maintained by driver.
2142 	 */
2143 	mc_addr_num = (int)nb_mc_addr;
2144 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2145 				   reserved_addr_list, &reserved_addr_num,
2146 				   add_addr_list, &add_addr_num,
2147 				   rm_addr_list, &rm_addr_num);
2148 
2149 	/* Remove mc mac addresses */
2150 	for (i = 0; i < rm_addr_num; i++) {
2151 		num = rm_addr_num - i - 1;
2152 		addr = &rm_addr_list[num];
2153 		ret = hns3_remove_mc_addr(hw, addr);
2154 		if (ret) {
2155 			rte_spinlock_unlock(&hw->lock);
2156 			return ret;
2157 		}
2158 		hw->mc_addrs_num--;
2159 	}
2160 
2161 	/* Add mc mac addresses */
2162 	for (i = 0; i < add_addr_num; i++) {
2163 		addr = &add_addr_list[i];
2164 		ret = hns3_add_mc_addr(hw, addr);
2165 		if (ret) {
2166 			rte_spinlock_unlock(&hw->lock);
2167 			return ret;
2168 		}
2169 
2170 		num = reserved_addr_num + i;
2171 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2172 		hw->mc_addrs_num++;
2173 	}
2174 	rte_spinlock_unlock(&hw->lock);
2175 
2176 	return 0;
2177 }
2178 
2179 static int
2180 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2181 {
2182 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2183 	struct hns3_hw *hw = &hns->hw;
2184 	struct rte_ether_addr *addr;
2185 	int err = 0;
2186 	int ret;
2187 	int i;
2188 
2189 	for (i = 0; i < hw->mc_addrs_num; i++) {
2190 		addr = &hw->mc_addrs[i];
2191 		if (!rte_is_multicast_ether_addr(addr))
2192 			continue;
2193 		if (del)
2194 			ret = hns3_remove_mc_addr(hw, addr);
2195 		else
2196 			ret = hns3_add_mc_addr(hw, addr);
2197 		if (ret) {
2198 			err = ret;
2199 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2200 					      addr);
2201 			hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2202 				 del ? "Remove" : "Restore", mac_str, ret);
2203 		}
2204 	}
2205 	return err;
2206 }
2207 
2208 static int
2209 hns3_check_mq_mode(struct rte_eth_dev *dev)
2210 {
2211 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2212 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2213 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2214 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2215 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2216 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2217 	uint8_t num_tc;
2218 	int max_tc = 0;
2219 	int i;
2220 
2221 	if ((rx_mq_mode & ETH_MQ_RX_VMDQ_FLAG) ||
2222 	    (tx_mq_mode == ETH_MQ_TX_VMDQ_DCB ||
2223 	     tx_mq_mode == ETH_MQ_TX_VMDQ_ONLY)) {
2224 		hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.",
2225 			 rx_mq_mode, tx_mq_mode);
2226 		return -EOPNOTSUPP;
2227 	}
2228 
2229 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2230 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2231 	if (rx_mq_mode & ETH_MQ_RX_DCB_FLAG) {
2232 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2233 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2234 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2235 			return -EINVAL;
2236 		}
2237 
2238 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2239 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2240 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2241 				 "nb_tcs(%d) != %d or %d in rx direction.",
2242 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2243 			return -EINVAL;
2244 		}
2245 
2246 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2247 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2248 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2249 			return -EINVAL;
2250 		}
2251 
2252 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2253 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2254 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2255 					 "is not equal to one in tx direction.",
2256 					 i, dcb_rx_conf->dcb_tc[i]);
2257 				return -EINVAL;
2258 			}
2259 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2260 				max_tc = dcb_rx_conf->dcb_tc[i];
2261 		}
2262 
2263 		num_tc = max_tc + 1;
2264 		if (num_tc > dcb_rx_conf->nb_tcs) {
2265 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2266 				 num_tc, dcb_rx_conf->nb_tcs);
2267 			return -EINVAL;
2268 		}
2269 	}
2270 
2271 	return 0;
2272 }
2273 
2274 static int
2275 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2276 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2277 {
2278 	struct hns3_cmd_desc desc;
2279 	struct hns3_ctrl_vector_chain_cmd *req =
2280 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2281 	enum hns3_opcode_type op;
2282 	uint16_t tqp_type_and_id = 0;
2283 	uint16_t type;
2284 	uint16_t gl;
2285 	int ret;
2286 
2287 	op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2288 	hns3_cmd_setup_basic_desc(&desc, op, false);
2289 	req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2290 					      HNS3_TQP_INT_ID_L_S);
2291 	req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2292 					      HNS3_TQP_INT_ID_H_S);
2293 
2294 	if (queue_type == HNS3_RING_TYPE_RX)
2295 		gl = HNS3_RING_GL_RX;
2296 	else
2297 		gl = HNS3_RING_GL_TX;
2298 
2299 	type = queue_type;
2300 
2301 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2302 		       type);
2303 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2304 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2305 		       gl);
2306 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2307 	req->int_cause_num = 1;
2308 	ret = hns3_cmd_send(hw, &desc, 1);
2309 	if (ret) {
2310 		hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.",
2311 			 en ? "Map" : "Unmap", queue_id, vector_id, ret);
2312 		return ret;
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 static int
2319 hns3_init_ring_with_vector(struct hns3_hw *hw)
2320 {
2321 	uint16_t vec;
2322 	int ret;
2323 	int i;
2324 
2325 	/*
2326 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2327 	 * function, vector 1~N can be used respectively for the queues of the
2328 	 * function. Tx and Rx queues with the same number share the interrupt
2329 	 * vector. In the initialization clearing the all hardware mapping
2330 	 * relationship configurations between queues and interrupt vectors is
2331 	 * needed, so some error caused by the residual configurations, such as
2332 	 * the unexpected Tx interrupt, can be avoid.
2333 	 */
2334 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2335 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2336 		vec = vec - 1; /* the last interrupt is reserved */
2337 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2338 	for (i = 0; i < hw->intr_tqps_num; i++) {
2339 		/*
2340 		 * Set gap limiter/rate limiter/quanity limiter algorithm
2341 		 * configuration for interrupt coalesce of queue's interrupt.
2342 		 */
2343 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2344 				       HNS3_TQP_INTR_GL_DEFAULT);
2345 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2346 				       HNS3_TQP_INTR_GL_DEFAULT);
2347 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2348 		/*
2349 		 * QL(quantity limiter) is not used currently, just set 0 to
2350 		 * close it.
2351 		 */
2352 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2353 
2354 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2355 						 HNS3_RING_TYPE_TX, i);
2356 		if (ret) {
2357 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2358 					  "vector: %u, ret=%d", i, vec, ret);
2359 			return ret;
2360 		}
2361 
2362 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2363 						 HNS3_RING_TYPE_RX, i);
2364 		if (ret) {
2365 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2366 					  "vector: %u, ret=%d", i, vec, ret);
2367 			return ret;
2368 		}
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 static int
2375 hns3_refresh_mtu(struct rte_eth_dev *dev, struct rte_eth_conf *conf)
2376 {
2377 	struct hns3_adapter *hns = dev->data->dev_private;
2378 	struct hns3_hw *hw = &hns->hw;
2379 	uint32_t max_rx_pkt_len;
2380 	uint16_t mtu;
2381 	int ret;
2382 
2383 	if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME))
2384 		return 0;
2385 
2386 	/*
2387 	 * If jumbo frames are enabled, MTU needs to be refreshed
2388 	 * according to the maximum RX packet length.
2389 	 */
2390 	max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
2391 	if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
2392 	    max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
2393 		hns3_err(hw, "maximum Rx packet length must be greater than %u "
2394 			 "and no more than %u when jumbo frame enabled.",
2395 			 (uint16_t)HNS3_DEFAULT_FRAME_LEN,
2396 			 (uint16_t)HNS3_MAX_FRAME_LEN);
2397 		return -EINVAL;
2398 	}
2399 
2400 	mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
2401 	ret = hns3_dev_mtu_set(dev, mtu);
2402 	if (ret)
2403 		return ret;
2404 	dev->data->mtu = mtu;
2405 
2406 	return 0;
2407 }
2408 
2409 static int
2410 hns3_setup_dcb(struct rte_eth_dev *dev)
2411 {
2412 	struct hns3_adapter *hns = dev->data->dev_private;
2413 	struct hns3_hw *hw = &hns->hw;
2414 	int ret;
2415 
2416 	if (!hns3_dev_dcb_supported(hw)) {
2417 		hns3_err(hw, "this port does not support dcb configurations.");
2418 		return -EOPNOTSUPP;
2419 	}
2420 
2421 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2422 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2423 		return -EOPNOTSUPP;
2424 	}
2425 
2426 	ret = hns3_dcb_configure(hns);
2427 	if (ret)
2428 		hns3_err(hw, "failed to config dcb: %d", ret);
2429 
2430 	return ret;
2431 }
2432 
2433 static int
2434 hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds)
2435 {
2436 	int ret;
2437 
2438 	/*
2439 	 * Some hardware doesn't support auto-negotiation, but users may not
2440 	 * configure link_speeds (default 0), which means auto-negotiation.
2441 	 * In this case, it should return success.
2442 	 */
2443 	if (link_speeds == ETH_LINK_SPEED_AUTONEG &&
2444 	    hw->mac.support_autoneg == 0)
2445 		return 0;
2446 
2447 	if (link_speeds != ETH_LINK_SPEED_AUTONEG) {
2448 		ret = hns3_check_port_speed(hw, link_speeds);
2449 		if (ret)
2450 			return ret;
2451 	}
2452 
2453 	return 0;
2454 }
2455 
2456 static int
2457 hns3_check_dev_conf(struct rte_eth_dev *dev)
2458 {
2459 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2460 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2461 	int ret;
2462 
2463 	ret = hns3_check_mq_mode(dev);
2464 	if (ret)
2465 		return ret;
2466 
2467 	return hns3_check_link_speed(hw, conf->link_speeds);
2468 }
2469 
2470 static int
2471 hns3_dev_configure(struct rte_eth_dev *dev)
2472 {
2473 	struct hns3_adapter *hns = dev->data->dev_private;
2474 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2475 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2476 	struct hns3_hw *hw = &hns->hw;
2477 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2478 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2479 	struct rte_eth_rss_conf rss_conf;
2480 	bool gro_en;
2481 	int ret;
2482 
2483 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2484 
2485 	/*
2486 	 * Some versions of hardware network engine does not support
2487 	 * individually enable/disable/reset the Tx or Rx queue. These devices
2488 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
2489 	 * numbers of Tx queues allocated by upper applications are not equal to
2490 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2491 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2492 	 * work as usual. But these fake queues are imperceptible, and can not
2493 	 * be used by upper applications.
2494 	 */
2495 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2496 	if (ret) {
2497 		hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
2498 		hw->cfg_max_queues = 0;
2499 		return ret;
2500 	}
2501 
2502 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2503 	ret = hns3_check_dev_conf(dev);
2504 	if (ret)
2505 		goto cfg_err;
2506 
2507 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2508 		ret = hns3_setup_dcb(dev);
2509 		if (ret)
2510 			goto cfg_err;
2511 	}
2512 
2513 	/* When RSS is not configured, redirect the packet queue 0 */
2514 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2515 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2516 		rss_conf = conf->rx_adv_conf.rss_conf;
2517 		hw->rss_dis_flag = false;
2518 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2519 		if (ret)
2520 			goto cfg_err;
2521 	}
2522 
2523 	ret = hns3_refresh_mtu(dev, conf);
2524 	if (ret)
2525 		goto cfg_err;
2526 
2527 	ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2528 	if (ret)
2529 		goto cfg_err;
2530 
2531 	ret = hns3_dev_configure_vlan(dev);
2532 	if (ret)
2533 		goto cfg_err;
2534 
2535 	/* config hardware GRO */
2536 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2537 	ret = hns3_config_gro(hw, gro_en);
2538 	if (ret)
2539 		goto cfg_err;
2540 
2541 	hns3_init_rx_ptype_tble(dev);
2542 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2543 
2544 	return 0;
2545 
2546 cfg_err:
2547 	hw->cfg_max_queues = 0;
2548 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2549 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2550 
2551 	return ret;
2552 }
2553 
2554 static int
2555 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2556 {
2557 	struct hns3_config_max_frm_size_cmd *req;
2558 	struct hns3_cmd_desc desc;
2559 
2560 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2561 
2562 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2563 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2564 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2565 
2566 	return hns3_cmd_send(hw, &desc, 1);
2567 }
2568 
2569 static int
2570 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2571 {
2572 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2573 	uint16_t original_mps = hns->pf.mps;
2574 	int err;
2575 	int ret;
2576 
2577 	ret = hns3_set_mac_mtu(hw, mps);
2578 	if (ret) {
2579 		hns3_err(hw, "failed to set mtu, ret = %d", ret);
2580 		return ret;
2581 	}
2582 
2583 	hns->pf.mps = mps;
2584 	ret = hns3_buffer_alloc(hw);
2585 	if (ret) {
2586 		hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2587 		goto rollback;
2588 	}
2589 
2590 	return 0;
2591 
2592 rollback:
2593 	err = hns3_set_mac_mtu(hw, original_mps);
2594 	if (err) {
2595 		hns3_err(hw, "fail to rollback MTU, err = %d", err);
2596 		return ret;
2597 	}
2598 	hns->pf.mps = original_mps;
2599 
2600 	return ret;
2601 }
2602 
2603 static int
2604 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2605 {
2606 	struct hns3_adapter *hns = dev->data->dev_private;
2607 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2608 	struct hns3_hw *hw = &hns->hw;
2609 	bool is_jumbo_frame;
2610 	int ret;
2611 
2612 	if (dev->data->dev_started) {
2613 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2614 			 "before configuration", dev->data->port_id);
2615 		return -EBUSY;
2616 	}
2617 
2618 	rte_spinlock_lock(&hw->lock);
2619 	is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
2620 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2621 
2622 	/*
2623 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2624 	 * assign to "uint16_t" type variable.
2625 	 */
2626 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2627 	if (ret) {
2628 		rte_spinlock_unlock(&hw->lock);
2629 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2630 			 dev->data->port_id, mtu, ret);
2631 		return ret;
2632 	}
2633 
2634 	if (is_jumbo_frame)
2635 		dev->data->dev_conf.rxmode.offloads |=
2636 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2637 	else
2638 		dev->data->dev_conf.rxmode.offloads &=
2639 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2640 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2641 	rte_spinlock_unlock(&hw->lock);
2642 
2643 	return 0;
2644 }
2645 
2646 static uint32_t
2647 hns3_get_copper_port_speed_capa(uint32_t supported_speed)
2648 {
2649 	uint32_t speed_capa = 0;
2650 
2651 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT)
2652 		speed_capa |= ETH_LINK_SPEED_10M_HD;
2653 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT)
2654 		speed_capa |= ETH_LINK_SPEED_10M;
2655 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT)
2656 		speed_capa |= ETH_LINK_SPEED_100M_HD;
2657 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT)
2658 		speed_capa |= ETH_LINK_SPEED_100M;
2659 	if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT)
2660 		speed_capa |= ETH_LINK_SPEED_1G;
2661 
2662 	return speed_capa;
2663 }
2664 
2665 static uint32_t
2666 hns3_get_firber_port_speed_capa(uint32_t supported_speed)
2667 {
2668 	uint32_t speed_capa = 0;
2669 
2670 	if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT)
2671 		speed_capa |= ETH_LINK_SPEED_1G;
2672 	if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT)
2673 		speed_capa |= ETH_LINK_SPEED_10G;
2674 	if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT)
2675 		speed_capa |= ETH_LINK_SPEED_25G;
2676 	if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT)
2677 		speed_capa |= ETH_LINK_SPEED_40G;
2678 	if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT)
2679 		speed_capa |= ETH_LINK_SPEED_50G;
2680 	if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT)
2681 		speed_capa |= ETH_LINK_SPEED_100G;
2682 	if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT)
2683 		speed_capa |= ETH_LINK_SPEED_200G;
2684 
2685 	return speed_capa;
2686 }
2687 
2688 static uint32_t
2689 hns3_get_speed_capa(struct hns3_hw *hw)
2690 {
2691 	struct hns3_mac *mac = &hw->mac;
2692 	uint32_t speed_capa;
2693 
2694 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
2695 		speed_capa =
2696 			hns3_get_copper_port_speed_capa(mac->supported_speed);
2697 	else
2698 		speed_capa =
2699 			hns3_get_firber_port_speed_capa(mac->supported_speed);
2700 
2701 	if (mac->support_autoneg == 0)
2702 		speed_capa |= ETH_LINK_SPEED_FIXED;
2703 
2704 	return speed_capa;
2705 }
2706 
2707 int
2708 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2709 {
2710 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2711 	struct hns3_hw *hw = &hns->hw;
2712 	uint16_t queue_num = hw->tqps_num;
2713 
2714 	/*
2715 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2716 	 * MSI-X interrupt resources of the hardware.
2717 	 */
2718 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2719 		queue_num = hw->intr_tqps_num;
2720 
2721 	info->max_rx_queues = queue_num;
2722 	info->max_tx_queues = hw->tqps_num;
2723 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2724 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2725 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2726 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2727 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2728 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2729 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2730 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2731 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2732 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2733 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2734 				 DEV_RX_OFFLOAD_KEEP_CRC |
2735 				 DEV_RX_OFFLOAD_SCATTER |
2736 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2737 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2738 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
2739 				 DEV_RX_OFFLOAD_RSS_HASH |
2740 				 DEV_RX_OFFLOAD_TCP_LRO);
2741 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2742 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2743 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2744 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2745 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2746 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2747 				 DEV_TX_OFFLOAD_TCP_TSO |
2748 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2749 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
2750 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2751 				 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2752 				 hns3_txvlan_cap_get(hw));
2753 
2754 	if (hns3_dev_outer_udp_cksum_supported(hw))
2755 		info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
2756 
2757 	if (hns3_dev_indep_txrx_supported(hw))
2758 		info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2759 				 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2760 
2761 	if (hns3_dev_ptp_supported(hw))
2762 		info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
2763 
2764 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2765 		.nb_max = HNS3_MAX_RING_DESC,
2766 		.nb_min = HNS3_MIN_RING_DESC,
2767 		.nb_align = HNS3_ALIGN_RING_DESC,
2768 	};
2769 
2770 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2771 		.nb_max = HNS3_MAX_RING_DESC,
2772 		.nb_min = HNS3_MIN_RING_DESC,
2773 		.nb_align = HNS3_ALIGN_RING_DESC,
2774 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2775 		.nb_mtu_seg_max = hw->max_non_tso_bd_num,
2776 	};
2777 
2778 	info->speed_capa = hns3_get_speed_capa(hw);
2779 	info->default_rxconf = (struct rte_eth_rxconf) {
2780 		.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2781 		/*
2782 		 * If there are no available Rx buffer descriptors, incoming
2783 		 * packets are always dropped by hardware based on hns3 network
2784 		 * engine.
2785 		 */
2786 		.rx_drop_en = 1,
2787 		.offloads = 0,
2788 	};
2789 	info->default_txconf = (struct rte_eth_txconf) {
2790 		.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2791 		.offloads = 0,
2792 	};
2793 
2794 	info->reta_size = hw->rss_ind_tbl_size;
2795 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2796 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2797 
2798 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2799 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2800 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2801 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2802 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2803 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2804 
2805 	return 0;
2806 }
2807 
2808 static int
2809 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2810 		    size_t fw_size)
2811 {
2812 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2813 	struct hns3_hw *hw = &hns->hw;
2814 	uint32_t version = hw->fw_version;
2815 	int ret;
2816 
2817 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2818 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2819 				      HNS3_FW_VERSION_BYTE3_S),
2820 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2821 				      HNS3_FW_VERSION_BYTE2_S),
2822 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2823 				      HNS3_FW_VERSION_BYTE1_S),
2824 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2825 				      HNS3_FW_VERSION_BYTE0_S));
2826 	if (ret < 0)
2827 		return -EINVAL;
2828 
2829 	ret += 1; /* add the size of '\0' */
2830 	if (fw_size < (size_t)ret)
2831 		return ret;
2832 	else
2833 		return 0;
2834 }
2835 
2836 static int
2837 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2838 {
2839 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2840 	int ret;
2841 
2842 	(void)hns3_update_link_status(hw);
2843 
2844 	ret = hns3_update_link_info(eth_dev);
2845 	if (ret)
2846 		hw->mac.link_status = ETH_LINK_DOWN;
2847 
2848 	return ret;
2849 }
2850 
2851 static void
2852 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2853 		      struct rte_eth_link *new_link)
2854 {
2855 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2856 	struct hns3_mac *mac = &hw->mac;
2857 
2858 	switch (mac->link_speed) {
2859 	case ETH_SPEED_NUM_10M:
2860 	case ETH_SPEED_NUM_100M:
2861 	case ETH_SPEED_NUM_1G:
2862 	case ETH_SPEED_NUM_10G:
2863 	case ETH_SPEED_NUM_25G:
2864 	case ETH_SPEED_NUM_40G:
2865 	case ETH_SPEED_NUM_50G:
2866 	case ETH_SPEED_NUM_100G:
2867 	case ETH_SPEED_NUM_200G:
2868 		if (mac->link_status)
2869 			new_link->link_speed = mac->link_speed;
2870 		break;
2871 	default:
2872 		if (mac->link_status)
2873 			new_link->link_speed = ETH_SPEED_NUM_UNKNOWN;
2874 		break;
2875 	}
2876 
2877 	if (!mac->link_status)
2878 		new_link->link_speed = ETH_SPEED_NUM_NONE;
2879 
2880 	new_link->link_duplex = mac->link_duplex;
2881 	new_link->link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2882 	new_link->link_autoneg = mac->link_autoneg;
2883 }
2884 
2885 static int
2886 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2887 {
2888 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2889 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2890 
2891 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2892 	uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2893 	struct hns3_mac *mac = &hw->mac;
2894 	struct rte_eth_link new_link;
2895 	int ret;
2896 
2897 	/* When port is stopped, report link down. */
2898 	if (eth_dev->data->dev_started == 0) {
2899 		new_link.link_autoneg = mac->link_autoneg;
2900 		new_link.link_duplex = mac->link_duplex;
2901 		new_link.link_speed = ETH_SPEED_NUM_NONE;
2902 		new_link.link_status = ETH_LINK_DOWN;
2903 		goto out;
2904 	}
2905 
2906 	do {
2907 		ret = hns3_update_port_link_info(eth_dev);
2908 		if (ret) {
2909 			hns3_err(hw, "failed to get port link info, ret = %d.",
2910 				 ret);
2911 			break;
2912 		}
2913 
2914 		if (!wait_to_complete || mac->link_status == ETH_LINK_UP)
2915 			break;
2916 
2917 		rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2918 	} while (retry_cnt--);
2919 
2920 	memset(&new_link, 0, sizeof(new_link));
2921 	hns3_setup_linkstatus(eth_dev, &new_link);
2922 
2923 out:
2924 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2925 }
2926 
2927 static int
2928 hns3_dev_set_link_up(struct rte_eth_dev *dev)
2929 {
2930 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2931 	int ret;
2932 
2933 	/*
2934 	 * The "tx_pkt_burst" will be restored. But the secondary process does
2935 	 * not support the mechanism for notifying the primary process.
2936 	 */
2937 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2938 		hns3_err(hw, "secondary process does not support to set link up.");
2939 		return -ENOTSUP;
2940 	}
2941 
2942 	/*
2943 	 * If device isn't started Rx/Tx function is still disabled, setting
2944 	 * link up is not allowed. But it is probably better to return success
2945 	 * to reduce the impact on the upper layer.
2946 	 */
2947 	if (hw->adapter_state != HNS3_NIC_STARTED) {
2948 		hns3_info(hw, "device isn't started, can't set link up.");
2949 		return 0;
2950 	}
2951 
2952 	if (!hw->set_link_down)
2953 		return 0;
2954 
2955 	rte_spinlock_lock(&hw->lock);
2956 	ret = hns3_cfg_mac_mode(hw, true);
2957 	if (ret) {
2958 		rte_spinlock_unlock(&hw->lock);
2959 		hns3_err(hw, "failed to set link up, ret = %d", ret);
2960 		return ret;
2961 	}
2962 
2963 	hw->set_link_down = false;
2964 	hns3_start_tx_datapath(dev);
2965 	rte_spinlock_unlock(&hw->lock);
2966 
2967 	return 0;
2968 }
2969 
2970 static int
2971 hns3_dev_set_link_down(struct rte_eth_dev *dev)
2972 {
2973 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2974 	int ret;
2975 
2976 	/*
2977 	 * The "tx_pkt_burst" will be set to dummy function. But the secondary
2978 	 * process does not support the mechanism for notifying the primary
2979 	 * process.
2980 	 */
2981 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2982 		hns3_err(hw, "secondary process does not support to set link down.");
2983 		return -ENOTSUP;
2984 	}
2985 
2986 	/*
2987 	 * If device isn't started or the API has been called, link status is
2988 	 * down, return success.
2989 	 */
2990 	if (hw->adapter_state != HNS3_NIC_STARTED || hw->set_link_down)
2991 		return 0;
2992 
2993 	rte_spinlock_lock(&hw->lock);
2994 	hns3_stop_tx_datapath(dev);
2995 	ret = hns3_cfg_mac_mode(hw, false);
2996 	if (ret) {
2997 		hns3_start_tx_datapath(dev);
2998 		rte_spinlock_unlock(&hw->lock);
2999 		hns3_err(hw, "failed to set link down, ret = %d", ret);
3000 		return ret;
3001 	}
3002 
3003 	hw->set_link_down = true;
3004 	rte_spinlock_unlock(&hw->lock);
3005 
3006 	return 0;
3007 }
3008 
3009 static int
3010 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
3011 {
3012 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3013 	struct hns3_pf *pf = &hns->pf;
3014 
3015 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
3016 		return -EINVAL;
3017 
3018 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
3019 
3020 	return 0;
3021 }
3022 
3023 static int
3024 hns3_query_function_status(struct hns3_hw *hw)
3025 {
3026 #define HNS3_QUERY_MAX_CNT		10
3027 #define HNS3_QUERY_SLEEP_MSCOEND	1
3028 	struct hns3_func_status_cmd *req;
3029 	struct hns3_cmd_desc desc;
3030 	int timeout = 0;
3031 	int ret;
3032 
3033 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
3034 	req = (struct hns3_func_status_cmd *)desc.data;
3035 
3036 	do {
3037 		ret = hns3_cmd_send(hw, &desc, 1);
3038 		if (ret) {
3039 			PMD_INIT_LOG(ERR, "query function status failed %d",
3040 				     ret);
3041 			return ret;
3042 		}
3043 
3044 		/* Check pf reset is done */
3045 		if (req->pf_state)
3046 			break;
3047 
3048 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
3049 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
3050 
3051 	return hns3_parse_func_status(hw, req);
3052 }
3053 
3054 static int
3055 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
3056 {
3057 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3058 	struct hns3_pf *pf = &hns->pf;
3059 
3060 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
3061 		/*
3062 		 * The total_tqps_num obtained from firmware is maximum tqp
3063 		 * numbers of this port, which should be used for PF and VFs.
3064 		 * There is no need for pf to have so many tqp numbers in
3065 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
3066 		 * coming from config file, is assigned to maximum queue number
3067 		 * for the PF of this port by user. So users can modify the
3068 		 * maximum queue number of PF according to their own application
3069 		 * scenarios, which is more flexible to use. In addition, many
3070 		 * memories can be saved due to allocating queue statistics
3071 		 * room according to the actual number of queues required. The
3072 		 * maximum queue number of PF for network engine with
3073 		 * revision_id greater than 0x30 is assigned by config file.
3074 		 */
3075 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
3076 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
3077 				 "must be greater than 0.",
3078 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
3079 			return -EINVAL;
3080 		}
3081 
3082 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
3083 				       hw->total_tqps_num);
3084 	} else {
3085 		/*
3086 		 * Due to the limitation on the number of PF interrupts
3087 		 * available, the maximum queue number assigned to PF on
3088 		 * the network engine with revision_id 0x21 is 64.
3089 		 */
3090 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
3091 				       HNS3_MAX_TQP_NUM_HIP08_PF);
3092 	}
3093 
3094 	return 0;
3095 }
3096 
3097 static int
3098 hns3_query_pf_resource(struct hns3_hw *hw)
3099 {
3100 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3101 	struct hns3_pf *pf = &hns->pf;
3102 	struct hns3_pf_res_cmd *req;
3103 	struct hns3_cmd_desc desc;
3104 	int ret;
3105 
3106 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
3107 	ret = hns3_cmd_send(hw, &desc, 1);
3108 	if (ret) {
3109 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
3110 		return ret;
3111 	}
3112 
3113 	req = (struct hns3_pf_res_cmd *)desc.data;
3114 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
3115 			     rte_le_to_cpu_16(req->ext_tqp_num);
3116 	ret = hns3_get_pf_max_tqp_num(hw);
3117 	if (ret)
3118 		return ret;
3119 
3120 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
3121 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
3122 
3123 	if (req->tx_buf_size)
3124 		pf->tx_buf_size =
3125 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
3126 	else
3127 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
3128 
3129 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
3130 
3131 	if (req->dv_buf_size)
3132 		pf->dv_buf_size =
3133 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
3134 	else
3135 		pf->dv_buf_size = HNS3_DEFAULT_DV;
3136 
3137 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
3138 
3139 	hw->num_msi =
3140 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
3141 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
3142 
3143 	return 0;
3144 }
3145 
3146 static void
3147 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
3148 {
3149 	struct hns3_cfg_param_cmd *req;
3150 	uint64_t mac_addr_tmp_high;
3151 	uint8_t ext_rss_size_max;
3152 	uint64_t mac_addr_tmp;
3153 	uint32_t i;
3154 
3155 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
3156 
3157 	/* get the configuration */
3158 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
3159 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
3160 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
3161 					   HNS3_CFG_TQP_DESC_N_M,
3162 					   HNS3_CFG_TQP_DESC_N_S);
3163 
3164 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3165 				       HNS3_CFG_PHY_ADDR_M,
3166 				       HNS3_CFG_PHY_ADDR_S);
3167 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3168 					 HNS3_CFG_MEDIA_TP_M,
3169 					 HNS3_CFG_MEDIA_TP_S);
3170 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3171 					 HNS3_CFG_RX_BUF_LEN_M,
3172 					 HNS3_CFG_RX_BUF_LEN_S);
3173 	/* get mac address */
3174 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
3175 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3176 					   HNS3_CFG_MAC_ADDR_H_M,
3177 					   HNS3_CFG_MAC_ADDR_H_S);
3178 
3179 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
3180 
3181 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3182 					    HNS3_CFG_DEFAULT_SPEED_M,
3183 					    HNS3_CFG_DEFAULT_SPEED_S);
3184 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3185 					   HNS3_CFG_RSS_SIZE_M,
3186 					   HNS3_CFG_RSS_SIZE_S);
3187 
3188 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
3189 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
3190 
3191 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
3192 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
3193 
3194 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3195 					    HNS3_CFG_SPEED_ABILITY_M,
3196 					    HNS3_CFG_SPEED_ABILITY_S);
3197 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3198 					HNS3_CFG_UMV_TBL_SPACE_M,
3199 					HNS3_CFG_UMV_TBL_SPACE_S);
3200 	if (!cfg->umv_space)
3201 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
3202 
3203 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
3204 					       HNS3_CFG_EXT_RSS_SIZE_M,
3205 					       HNS3_CFG_EXT_RSS_SIZE_S);
3206 	/*
3207 	 * Field ext_rss_size_max obtained from firmware will be more flexible
3208 	 * for future changes and expansions, which is an exponent of 2, instead
3209 	 * of reading out directly. If this field is not zero, hns3 PF PMD
3210 	 * driver uses it as rss_size_max under one TC. Device, whose revision
3211 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
3212 	 * maximum number of queues supported under a TC through this field.
3213 	 */
3214 	if (ext_rss_size_max)
3215 		cfg->rss_size_max = 1U << ext_rss_size_max;
3216 }
3217 
3218 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
3219  * @hw: pointer to struct hns3_hw
3220  * @hcfg: the config structure to be getted
3221  */
3222 static int
3223 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
3224 {
3225 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
3226 	struct hns3_cfg_param_cmd *req;
3227 	uint32_t offset;
3228 	uint32_t i;
3229 	int ret;
3230 
3231 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
3232 		offset = 0;
3233 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
3234 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
3235 					  true);
3236 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
3237 			       i * HNS3_CFG_RD_LEN_BYTES);
3238 		/* Len should be divided by 4 when send to hardware */
3239 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
3240 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
3241 		req->offset = rte_cpu_to_le_32(offset);
3242 	}
3243 
3244 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
3245 	if (ret) {
3246 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
3247 		return ret;
3248 	}
3249 
3250 	hns3_parse_cfg(hcfg, desc);
3251 
3252 	return 0;
3253 }
3254 
3255 static int
3256 hns3_parse_speed(int speed_cmd, uint32_t *speed)
3257 {
3258 	switch (speed_cmd) {
3259 	case HNS3_CFG_SPEED_10M:
3260 		*speed = ETH_SPEED_NUM_10M;
3261 		break;
3262 	case HNS3_CFG_SPEED_100M:
3263 		*speed = ETH_SPEED_NUM_100M;
3264 		break;
3265 	case HNS3_CFG_SPEED_1G:
3266 		*speed = ETH_SPEED_NUM_1G;
3267 		break;
3268 	case HNS3_CFG_SPEED_10G:
3269 		*speed = ETH_SPEED_NUM_10G;
3270 		break;
3271 	case HNS3_CFG_SPEED_25G:
3272 		*speed = ETH_SPEED_NUM_25G;
3273 		break;
3274 	case HNS3_CFG_SPEED_40G:
3275 		*speed = ETH_SPEED_NUM_40G;
3276 		break;
3277 	case HNS3_CFG_SPEED_50G:
3278 		*speed = ETH_SPEED_NUM_50G;
3279 		break;
3280 	case HNS3_CFG_SPEED_100G:
3281 		*speed = ETH_SPEED_NUM_100G;
3282 		break;
3283 	case HNS3_CFG_SPEED_200G:
3284 		*speed = ETH_SPEED_NUM_200G;
3285 		break;
3286 	default:
3287 		return -EINVAL;
3288 	}
3289 
3290 	return 0;
3291 }
3292 
3293 static void
3294 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3295 {
3296 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3297 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3298 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3299 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3300 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3301 }
3302 
3303 static void
3304 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3305 {
3306 	struct hns3_dev_specs_0_cmd *req0;
3307 
3308 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3309 
3310 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3311 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3312 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3313 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3314 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3315 }
3316 
3317 static int
3318 hns3_check_dev_specifications(struct hns3_hw *hw)
3319 {
3320 	if (hw->rss_ind_tbl_size == 0 ||
3321 	    hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3322 		hns3_err(hw, "the size of hash lookup table configured (%u)"
3323 			      " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3324 			      HNS3_RSS_IND_TBL_SIZE_MAX);
3325 		return -EINVAL;
3326 	}
3327 
3328 	return 0;
3329 }
3330 
3331 static int
3332 hns3_query_dev_specifications(struct hns3_hw *hw)
3333 {
3334 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3335 	int ret;
3336 	int i;
3337 
3338 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3339 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3340 					  true);
3341 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3342 	}
3343 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3344 
3345 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3346 	if (ret)
3347 		return ret;
3348 
3349 	hns3_parse_dev_specifications(hw, desc);
3350 
3351 	return hns3_check_dev_specifications(hw);
3352 }
3353 
3354 static int
3355 hns3_get_capability(struct hns3_hw *hw)
3356 {
3357 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3358 	struct rte_pci_device *pci_dev;
3359 	struct hns3_pf *pf = &hns->pf;
3360 	struct rte_eth_dev *eth_dev;
3361 	uint16_t device_id;
3362 	uint8_t revision;
3363 	int ret;
3364 
3365 	eth_dev = &rte_eth_devices[hw->data->port_id];
3366 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3367 	device_id = pci_dev->id.device_id;
3368 
3369 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3370 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
3371 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3372 	    device_id == HNS3_DEV_ID_200G_RDMA)
3373 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3374 
3375 	/* Get PCI revision id */
3376 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3377 				  HNS3_PCI_REVISION_ID);
3378 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
3379 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3380 			     ret);
3381 		return -EIO;
3382 	}
3383 	hw->revision = revision;
3384 
3385 	if (revision < PCI_REVISION_ID_HIP09_A) {
3386 		hns3_set_default_dev_specifications(hw);
3387 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3388 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3389 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3390 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3391 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
3392 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3393 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3394 		hw->rss_info.ipv6_sctp_offload_supported = false;
3395 		hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
3396 		pf->support_multi_tc_pause = false;
3397 		return 0;
3398 	}
3399 
3400 	ret = hns3_query_dev_specifications(hw);
3401 	if (ret) {
3402 		PMD_INIT_LOG(ERR,
3403 			     "failed to query dev specifications, ret = %d",
3404 			     ret);
3405 		return ret;
3406 	}
3407 
3408 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3409 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3410 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3411 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3412 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
3413 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3414 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3415 	hw->rss_info.ipv6_sctp_offload_supported = true;
3416 	hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
3417 	pf->support_multi_tc_pause = true;
3418 
3419 	return 0;
3420 }
3421 
3422 static int
3423 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3424 {
3425 	int ret;
3426 
3427 	switch (media_type) {
3428 	case HNS3_MEDIA_TYPE_COPPER:
3429 		if (!hns3_dev_copper_supported(hw)) {
3430 			PMD_INIT_LOG(ERR,
3431 				     "Media type is copper, not supported.");
3432 			ret = -EOPNOTSUPP;
3433 		} else {
3434 			ret = 0;
3435 		}
3436 		break;
3437 	case HNS3_MEDIA_TYPE_FIBER:
3438 		ret = 0;
3439 		break;
3440 	case HNS3_MEDIA_TYPE_BACKPLANE:
3441 		PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3442 		ret = -EOPNOTSUPP;
3443 		break;
3444 	default:
3445 		PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3446 		ret = -EINVAL;
3447 		break;
3448 	}
3449 
3450 	return ret;
3451 }
3452 
3453 static int
3454 hns3_get_board_configuration(struct hns3_hw *hw)
3455 {
3456 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3457 	struct hns3_pf *pf = &hns->pf;
3458 	struct hns3_cfg cfg;
3459 	int ret;
3460 
3461 	ret = hns3_get_board_cfg(hw, &cfg);
3462 	if (ret) {
3463 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3464 		return ret;
3465 	}
3466 
3467 	ret = hns3_check_media_type(hw, cfg.media_type);
3468 	if (ret)
3469 		return ret;
3470 
3471 	hw->mac.media_type = cfg.media_type;
3472 	hw->rss_size_max = cfg.rss_size_max;
3473 	hw->rss_dis_flag = false;
3474 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3475 	hw->mac.phy_addr = cfg.phy_addr;
3476 	hw->mac.default_addr_setted = false;
3477 	hw->num_tx_desc = cfg.tqp_desc_num;
3478 	hw->num_rx_desc = cfg.tqp_desc_num;
3479 	hw->dcb_info.num_pg = 1;
3480 	hw->dcb_info.hw_pfc_map = 0;
3481 
3482 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3483 	if (ret) {
3484 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3485 			     cfg.default_speed, ret);
3486 		return ret;
3487 	}
3488 
3489 	pf->tc_max = cfg.tc_num;
3490 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3491 		PMD_INIT_LOG(WARNING,
3492 			     "Get TC num(%u) from flash, set TC num to 1",
3493 			     pf->tc_max);
3494 		pf->tc_max = 1;
3495 	}
3496 
3497 	/* Dev does not support DCB */
3498 	if (!hns3_dev_dcb_supported(hw)) {
3499 		pf->tc_max = 1;
3500 		pf->pfc_max = 0;
3501 	} else
3502 		pf->pfc_max = pf->tc_max;
3503 
3504 	hw->dcb_info.num_tc = 1;
3505 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3506 				     hw->tqps_num / hw->dcb_info.num_tc);
3507 	hns3_set_bit(hw->hw_tc_map, 0, 1);
3508 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3509 
3510 	pf->wanted_umv_size = cfg.umv_space;
3511 
3512 	return ret;
3513 }
3514 
3515 static int
3516 hns3_get_configuration(struct hns3_hw *hw)
3517 {
3518 	int ret;
3519 
3520 	ret = hns3_query_function_status(hw);
3521 	if (ret) {
3522 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3523 		return ret;
3524 	}
3525 
3526 	/* Get device capability */
3527 	ret = hns3_get_capability(hw);
3528 	if (ret) {
3529 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3530 		return ret;
3531 	}
3532 
3533 	/* Get pf resource */
3534 	ret = hns3_query_pf_resource(hw);
3535 	if (ret) {
3536 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3537 		return ret;
3538 	}
3539 
3540 	ret = hns3_get_board_configuration(hw);
3541 	if (ret) {
3542 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3543 		return ret;
3544 	}
3545 
3546 	ret = hns3_query_dev_fec_info(hw);
3547 	if (ret)
3548 		PMD_INIT_LOG(ERR,
3549 			     "failed to query FEC information, ret = %d", ret);
3550 
3551 	return ret;
3552 }
3553 
3554 static int
3555 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3556 		      uint16_t tqp_vid, bool is_pf)
3557 {
3558 	struct hns3_tqp_map_cmd *req;
3559 	struct hns3_cmd_desc desc;
3560 	int ret;
3561 
3562 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3563 
3564 	req = (struct hns3_tqp_map_cmd *)desc.data;
3565 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3566 	req->tqp_vf = func_id;
3567 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3568 	if (!is_pf)
3569 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3570 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3571 
3572 	ret = hns3_cmd_send(hw, &desc, 1);
3573 	if (ret)
3574 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3575 
3576 	return ret;
3577 }
3578 
3579 static int
3580 hns3_map_tqp(struct hns3_hw *hw)
3581 {
3582 	int ret;
3583 	int i;
3584 
3585 	/*
3586 	 * In current version, VF is not supported when PF is driven by DPDK
3587 	 * driver, so we assign total tqps_num tqps allocated to this port
3588 	 * to PF.
3589 	 */
3590 	for (i = 0; i < hw->total_tqps_num; i++) {
3591 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3592 		if (ret)
3593 			return ret;
3594 	}
3595 
3596 	return 0;
3597 }
3598 
3599 static int
3600 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3601 {
3602 	struct hns3_config_mac_speed_dup_cmd *req;
3603 	struct hns3_cmd_desc desc;
3604 	int ret;
3605 
3606 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3607 
3608 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3609 
3610 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3611 
3612 	switch (speed) {
3613 	case ETH_SPEED_NUM_10M:
3614 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3615 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3616 		break;
3617 	case ETH_SPEED_NUM_100M:
3618 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3619 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3620 		break;
3621 	case ETH_SPEED_NUM_1G:
3622 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3623 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3624 		break;
3625 	case ETH_SPEED_NUM_10G:
3626 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3627 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3628 		break;
3629 	case ETH_SPEED_NUM_25G:
3630 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3631 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3632 		break;
3633 	case ETH_SPEED_NUM_40G:
3634 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3635 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3636 		break;
3637 	case ETH_SPEED_NUM_50G:
3638 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3639 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3640 		break;
3641 	case ETH_SPEED_NUM_100G:
3642 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3643 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3644 		break;
3645 	case ETH_SPEED_NUM_200G:
3646 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3647 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3648 		break;
3649 	default:
3650 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3651 		return -EINVAL;
3652 	}
3653 
3654 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3655 
3656 	ret = hns3_cmd_send(hw, &desc, 1);
3657 	if (ret)
3658 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3659 
3660 	return ret;
3661 }
3662 
3663 static int
3664 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3665 {
3666 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3667 	struct hns3_pf *pf = &hns->pf;
3668 	struct hns3_priv_buf *priv;
3669 	uint32_t i, total_size;
3670 
3671 	total_size = pf->pkt_buf_size;
3672 
3673 	/* alloc tx buffer for all enabled tc */
3674 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3675 		priv = &buf_alloc->priv_buf[i];
3676 
3677 		if (hw->hw_tc_map & BIT(i)) {
3678 			if (total_size < pf->tx_buf_size)
3679 				return -ENOMEM;
3680 
3681 			priv->tx_buf_size = pf->tx_buf_size;
3682 		} else
3683 			priv->tx_buf_size = 0;
3684 
3685 		total_size -= priv->tx_buf_size;
3686 	}
3687 
3688 	return 0;
3689 }
3690 
3691 static int
3692 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3693 {
3694 /* TX buffer size is unit by 128 byte */
3695 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3696 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3697 	struct hns3_tx_buff_alloc_cmd *req;
3698 	struct hns3_cmd_desc desc;
3699 	uint32_t buf_size;
3700 	uint32_t i;
3701 	int ret;
3702 
3703 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3704 
3705 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3706 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3707 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3708 
3709 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3710 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3711 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3712 	}
3713 
3714 	ret = hns3_cmd_send(hw, &desc, 1);
3715 	if (ret)
3716 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3717 
3718 	return ret;
3719 }
3720 
3721 static int
3722 hns3_get_tc_num(struct hns3_hw *hw)
3723 {
3724 	int cnt = 0;
3725 	uint8_t i;
3726 
3727 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3728 		if (hw->hw_tc_map & BIT(i))
3729 			cnt++;
3730 	return cnt;
3731 }
3732 
3733 static uint32_t
3734 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3735 {
3736 	struct hns3_priv_buf *priv;
3737 	uint32_t rx_priv = 0;
3738 	int i;
3739 
3740 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3741 		priv = &buf_alloc->priv_buf[i];
3742 		if (priv->enable)
3743 			rx_priv += priv->buf_size;
3744 	}
3745 	return rx_priv;
3746 }
3747 
3748 static uint32_t
3749 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3750 {
3751 	uint32_t total_tx_size = 0;
3752 	uint32_t i;
3753 
3754 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3755 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3756 
3757 	return total_tx_size;
3758 }
3759 
3760 /* Get the number of pfc enabled TCs, which have private buffer */
3761 static int
3762 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3763 {
3764 	struct hns3_priv_buf *priv;
3765 	int cnt = 0;
3766 	uint8_t i;
3767 
3768 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3769 		priv = &buf_alloc->priv_buf[i];
3770 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3771 			cnt++;
3772 	}
3773 
3774 	return cnt;
3775 }
3776 
3777 /* Get the number of pfc disabled TCs, which have private buffer */
3778 static int
3779 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3780 			 struct hns3_pkt_buf_alloc *buf_alloc)
3781 {
3782 	struct hns3_priv_buf *priv;
3783 	int cnt = 0;
3784 	uint8_t i;
3785 
3786 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3787 		priv = &buf_alloc->priv_buf[i];
3788 		if (hw->hw_tc_map & BIT(i) &&
3789 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3790 			cnt++;
3791 	}
3792 
3793 	return cnt;
3794 }
3795 
3796 static bool
3797 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3798 		  uint32_t rx_all)
3799 {
3800 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3801 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3802 	struct hns3_pf *pf = &hns->pf;
3803 	uint32_t shared_buf, aligned_mps;
3804 	uint32_t rx_priv;
3805 	uint8_t tc_num;
3806 	uint8_t i;
3807 
3808 	tc_num = hns3_get_tc_num(hw);
3809 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3810 
3811 	if (hns3_dev_dcb_supported(hw))
3812 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3813 					pf->dv_buf_size;
3814 	else
3815 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3816 					+ pf->dv_buf_size;
3817 
3818 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3819 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3820 			     HNS3_BUF_SIZE_UNIT);
3821 
3822 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3823 	if (rx_all < rx_priv + shared_std)
3824 		return false;
3825 
3826 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3827 	buf_alloc->s_buf.buf_size = shared_buf;
3828 	if (hns3_dev_dcb_supported(hw)) {
3829 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3830 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3831 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3832 				  HNS3_BUF_SIZE_UNIT);
3833 	} else {
3834 		buf_alloc->s_buf.self.high =
3835 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3836 		buf_alloc->s_buf.self.low = aligned_mps;
3837 	}
3838 
3839 	if (hns3_dev_dcb_supported(hw)) {
3840 		hi_thrd = shared_buf - pf->dv_buf_size;
3841 
3842 		if (tc_num <= NEED_RESERVE_TC_NUM)
3843 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3844 				  BUF_MAX_PERCENT;
3845 
3846 		if (tc_num)
3847 			hi_thrd = hi_thrd / tc_num;
3848 
3849 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3850 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3851 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3852 	} else {
3853 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3854 		lo_thrd = aligned_mps;
3855 	}
3856 
3857 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3858 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3859 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3860 	}
3861 
3862 	return true;
3863 }
3864 
3865 static bool
3866 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3867 		     struct hns3_pkt_buf_alloc *buf_alloc)
3868 {
3869 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3870 	struct hns3_pf *pf = &hns->pf;
3871 	struct hns3_priv_buf *priv;
3872 	uint32_t aligned_mps;
3873 	uint32_t rx_all;
3874 	uint8_t i;
3875 
3876 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3877 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3878 
3879 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3880 		priv = &buf_alloc->priv_buf[i];
3881 
3882 		priv->enable = 0;
3883 		priv->wl.low = 0;
3884 		priv->wl.high = 0;
3885 		priv->buf_size = 0;
3886 
3887 		if (!(hw->hw_tc_map & BIT(i)))
3888 			continue;
3889 
3890 		priv->enable = 1;
3891 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3892 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3893 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3894 						HNS3_BUF_SIZE_UNIT);
3895 		} else {
3896 			priv->wl.low = 0;
3897 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3898 					aligned_mps;
3899 		}
3900 
3901 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3902 	}
3903 
3904 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3905 }
3906 
3907 static bool
3908 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3909 			     struct hns3_pkt_buf_alloc *buf_alloc)
3910 {
3911 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3912 	struct hns3_pf *pf = &hns->pf;
3913 	struct hns3_priv_buf *priv;
3914 	int no_pfc_priv_num;
3915 	uint32_t rx_all;
3916 	uint8_t mask;
3917 	int i;
3918 
3919 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3920 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3921 
3922 	/* let the last to be cleared first */
3923 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3924 		priv = &buf_alloc->priv_buf[i];
3925 		mask = BIT((uint8_t)i);
3926 		if (hw->hw_tc_map & mask &&
3927 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3928 			/* Clear the no pfc TC private buffer */
3929 			priv->wl.low = 0;
3930 			priv->wl.high = 0;
3931 			priv->buf_size = 0;
3932 			priv->enable = 0;
3933 			no_pfc_priv_num--;
3934 		}
3935 
3936 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3937 		    no_pfc_priv_num == 0)
3938 			break;
3939 	}
3940 
3941 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3942 }
3943 
3944 static bool
3945 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3946 			   struct hns3_pkt_buf_alloc *buf_alloc)
3947 {
3948 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3949 	struct hns3_pf *pf = &hns->pf;
3950 	struct hns3_priv_buf *priv;
3951 	uint32_t rx_all;
3952 	int pfc_priv_num;
3953 	uint8_t mask;
3954 	int i;
3955 
3956 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3957 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3958 
3959 	/* let the last to be cleared first */
3960 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3961 		priv = &buf_alloc->priv_buf[i];
3962 		mask = BIT((uint8_t)i);
3963 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3964 			/* Reduce the number of pfc TC with private buffer */
3965 			priv->wl.low = 0;
3966 			priv->enable = 0;
3967 			priv->wl.high = 0;
3968 			priv->buf_size = 0;
3969 			pfc_priv_num--;
3970 		}
3971 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3972 		    pfc_priv_num == 0)
3973 			break;
3974 	}
3975 
3976 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3977 }
3978 
3979 static bool
3980 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3981 			  struct hns3_pkt_buf_alloc *buf_alloc)
3982 {
3983 #define COMPENSATE_BUFFER	0x3C00
3984 #define COMPENSATE_HALF_MPS_NUM	5
3985 #define PRIV_WL_GAP		0x1800
3986 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3987 	struct hns3_pf *pf = &hns->pf;
3988 	uint32_t tc_num = hns3_get_tc_num(hw);
3989 	uint32_t half_mps = pf->mps >> 1;
3990 	struct hns3_priv_buf *priv;
3991 	uint32_t min_rx_priv;
3992 	uint32_t rx_priv;
3993 	uint8_t i;
3994 
3995 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3996 	if (tc_num)
3997 		rx_priv = rx_priv / tc_num;
3998 
3999 	if (tc_num <= NEED_RESERVE_TC_NUM)
4000 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
4001 
4002 	/*
4003 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
4004 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
4005 	 * buffer if rx_priv is greater than min_rx_priv.
4006 	 */
4007 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
4008 			COMPENSATE_HALF_MPS_NUM * half_mps;
4009 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
4010 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
4011 	if (rx_priv < min_rx_priv)
4012 		return false;
4013 
4014 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
4015 		priv = &buf_alloc->priv_buf[i];
4016 		priv->enable = 0;
4017 		priv->wl.low = 0;
4018 		priv->wl.high = 0;
4019 		priv->buf_size = 0;
4020 
4021 		if (!(hw->hw_tc_map & BIT(i)))
4022 			continue;
4023 
4024 		priv->enable = 1;
4025 		priv->buf_size = rx_priv;
4026 		priv->wl.high = rx_priv - pf->dv_buf_size;
4027 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
4028 	}
4029 
4030 	buf_alloc->s_buf.buf_size = 0;
4031 
4032 	return true;
4033 }
4034 
4035 /*
4036  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
4037  * @hw: pointer to struct hns3_hw
4038  * @buf_alloc: pointer to buffer calculation data
4039  * @return: 0: calculate sucessful, negative: fail
4040  */
4041 static int
4042 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4043 {
4044 	/* When DCB is not supported, rx private buffer is not allocated. */
4045 	if (!hns3_dev_dcb_supported(hw)) {
4046 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4047 		struct hns3_pf *pf = &hns->pf;
4048 		uint32_t rx_all = pf->pkt_buf_size;
4049 
4050 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
4051 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
4052 			return -ENOMEM;
4053 
4054 		return 0;
4055 	}
4056 
4057 	/*
4058 	 * Try to allocate privated packet buffer for all TCs without share
4059 	 * buffer.
4060 	 */
4061 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
4062 		return 0;
4063 
4064 	/*
4065 	 * Try to allocate privated packet buffer for all TCs with share
4066 	 * buffer.
4067 	 */
4068 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
4069 		return 0;
4070 
4071 	/*
4072 	 * For different application scenes, the enabled port number, TC number
4073 	 * and no_drop TC number are different. In order to obtain the better
4074 	 * performance, software could allocate the buffer size and configure
4075 	 * the waterline by trying to decrease the private buffer size according
4076 	 * to the order, namely, waterline of valid tc, pfc disabled tc, pfc
4077 	 * enabled tc.
4078 	 */
4079 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
4080 		return 0;
4081 
4082 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
4083 		return 0;
4084 
4085 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
4086 		return 0;
4087 
4088 	return -ENOMEM;
4089 }
4090 
4091 static int
4092 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4093 {
4094 	struct hns3_rx_priv_buff_cmd *req;
4095 	struct hns3_cmd_desc desc;
4096 	uint32_t buf_size;
4097 	int ret;
4098 	int i;
4099 
4100 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
4101 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
4102 
4103 	/* Alloc private buffer TCs */
4104 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
4105 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
4106 
4107 		req->buf_num[i] =
4108 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
4109 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
4110 	}
4111 
4112 	buf_size = buf_alloc->s_buf.buf_size;
4113 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
4114 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
4115 
4116 	ret = hns3_cmd_send(hw, &desc, 1);
4117 	if (ret)
4118 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
4119 
4120 	return ret;
4121 }
4122 
4123 static int
4124 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4125 {
4126 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
4127 	struct hns3_rx_priv_wl_buf *req;
4128 	struct hns3_priv_buf *priv;
4129 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
4130 	int i, j;
4131 	int ret;
4132 
4133 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
4134 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
4135 					  false);
4136 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
4137 
4138 		/* The first descriptor set the NEXT bit to 1 */
4139 		if (i == 0)
4140 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4141 		else
4142 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4143 
4144 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
4145 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
4146 
4147 			priv = &buf_alloc->priv_buf[idx];
4148 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
4149 							HNS3_BUF_UNIT_S);
4150 			req->tc_wl[j].high |=
4151 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4152 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
4153 							HNS3_BUF_UNIT_S);
4154 			req->tc_wl[j].low |=
4155 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4156 		}
4157 	}
4158 
4159 	/* Send 2 descriptor at one time */
4160 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
4161 	if (ret)
4162 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
4163 			     ret);
4164 	return ret;
4165 }
4166 
4167 static int
4168 hns3_common_thrd_config(struct hns3_hw *hw,
4169 			struct hns3_pkt_buf_alloc *buf_alloc)
4170 {
4171 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
4172 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
4173 	struct hns3_rx_com_thrd *req;
4174 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
4175 	struct hns3_tc_thrd *tc;
4176 	int tc_idx;
4177 	int i, j;
4178 	int ret;
4179 
4180 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
4181 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
4182 					  false);
4183 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
4184 
4185 		/* The first descriptor set the NEXT bit to 1 */
4186 		if (i == 0)
4187 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4188 		else
4189 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4190 
4191 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
4192 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
4193 			tc = &s_buf->tc_thrd[tc_idx];
4194 
4195 			req->com_thrd[j].high =
4196 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
4197 			req->com_thrd[j].high |=
4198 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4199 			req->com_thrd[j].low =
4200 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
4201 			req->com_thrd[j].low |=
4202 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4203 		}
4204 	}
4205 
4206 	/* Send 2 descriptors at one time */
4207 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
4208 	if (ret)
4209 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
4210 
4211 	return ret;
4212 }
4213 
4214 static int
4215 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4216 {
4217 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
4218 	struct hns3_rx_com_wl *req;
4219 	struct hns3_cmd_desc desc;
4220 	int ret;
4221 
4222 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
4223 
4224 	req = (struct hns3_rx_com_wl *)desc.data;
4225 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
4226 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4227 
4228 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
4229 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4230 
4231 	ret = hns3_cmd_send(hw, &desc, 1);
4232 	if (ret)
4233 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
4234 
4235 	return ret;
4236 }
4237 
4238 int
4239 hns3_buffer_alloc(struct hns3_hw *hw)
4240 {
4241 	struct hns3_pkt_buf_alloc pkt_buf;
4242 	int ret;
4243 
4244 	memset(&pkt_buf, 0, sizeof(pkt_buf));
4245 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
4246 	if (ret) {
4247 		PMD_INIT_LOG(ERR,
4248 			     "could not calc tx buffer size for all TCs %d",
4249 			     ret);
4250 		return ret;
4251 	}
4252 
4253 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
4254 	if (ret) {
4255 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
4256 		return ret;
4257 	}
4258 
4259 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
4260 	if (ret) {
4261 		PMD_INIT_LOG(ERR,
4262 			     "could not calc rx priv buffer size for all TCs %d",
4263 			     ret);
4264 		return ret;
4265 	}
4266 
4267 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
4268 	if (ret) {
4269 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
4270 		return ret;
4271 	}
4272 
4273 	if (hns3_dev_dcb_supported(hw)) {
4274 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4275 		if (ret) {
4276 			PMD_INIT_LOG(ERR,
4277 				     "could not configure rx private waterline %d",
4278 				     ret);
4279 			return ret;
4280 		}
4281 
4282 		ret = hns3_common_thrd_config(hw, &pkt_buf);
4283 		if (ret) {
4284 			PMD_INIT_LOG(ERR,
4285 				     "could not configure common threshold %d",
4286 				     ret);
4287 			return ret;
4288 		}
4289 	}
4290 
4291 	ret = hns3_common_wl_config(hw, &pkt_buf);
4292 	if (ret)
4293 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4294 			     ret);
4295 
4296 	return ret;
4297 }
4298 
4299 static int
4300 hns3_mac_init(struct hns3_hw *hw)
4301 {
4302 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4303 	struct hns3_mac *mac = &hw->mac;
4304 	struct hns3_pf *pf = &hns->pf;
4305 	int ret;
4306 
4307 	pf->support_sfp_query = true;
4308 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
4309 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4310 	if (ret) {
4311 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4312 		return ret;
4313 	}
4314 
4315 	mac->link_status = ETH_LINK_DOWN;
4316 
4317 	return hns3_config_mtu(hw, pf->mps);
4318 }
4319 
4320 static int
4321 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4322 {
4323 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
4324 #define HNS3_ETHERTYPE_ALREADY_ADD		1
4325 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
4326 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
4327 	int return_status;
4328 
4329 	if (cmdq_resp) {
4330 		PMD_INIT_LOG(ERR,
4331 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4332 			     cmdq_resp);
4333 		return -EIO;
4334 	}
4335 
4336 	switch (resp_code) {
4337 	case HNS3_ETHERTYPE_SUCCESS_ADD:
4338 	case HNS3_ETHERTYPE_ALREADY_ADD:
4339 		return_status = 0;
4340 		break;
4341 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4342 		PMD_INIT_LOG(ERR,
4343 			     "add mac ethertype failed for manager table overflow.");
4344 		return_status = -EIO;
4345 		break;
4346 	case HNS3_ETHERTYPE_KEY_CONFLICT:
4347 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4348 		return_status = -EIO;
4349 		break;
4350 	default:
4351 		PMD_INIT_LOG(ERR,
4352 			     "add mac ethertype failed for undefined, code=%u.",
4353 			     resp_code);
4354 		return_status = -EIO;
4355 		break;
4356 	}
4357 
4358 	return return_status;
4359 }
4360 
4361 static int
4362 hns3_add_mgr_tbl(struct hns3_hw *hw,
4363 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
4364 {
4365 	struct hns3_cmd_desc desc;
4366 	uint8_t resp_code;
4367 	uint16_t retval;
4368 	int ret;
4369 
4370 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4371 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4372 
4373 	ret = hns3_cmd_send(hw, &desc, 1);
4374 	if (ret) {
4375 		PMD_INIT_LOG(ERR,
4376 			     "add mac ethertype failed for cmd_send, ret =%d.",
4377 			     ret);
4378 		return ret;
4379 	}
4380 
4381 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4382 	retval = rte_le_to_cpu_16(desc.retval);
4383 
4384 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4385 }
4386 
4387 static void
4388 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4389 		     int *table_item_num)
4390 {
4391 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4392 
4393 	/*
4394 	 * In current version, we add one item in management table as below:
4395 	 * 0x0180C200000E -- LLDP MC address
4396 	 */
4397 	tbl = mgr_table;
4398 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4399 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4400 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4401 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4402 	tbl->i_port_bitmap = 0x1;
4403 	*table_item_num = 1;
4404 }
4405 
4406 static int
4407 hns3_init_mgr_tbl(struct hns3_hw *hw)
4408 {
4409 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
4410 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4411 	int table_item_num;
4412 	int ret;
4413 	int i;
4414 
4415 	memset(mgr_table, 0, sizeof(mgr_table));
4416 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4417 	for (i = 0; i < table_item_num; i++) {
4418 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4419 		if (ret) {
4420 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4421 				     ret);
4422 			return ret;
4423 		}
4424 	}
4425 
4426 	return 0;
4427 }
4428 
4429 static void
4430 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4431 			bool en_mc, bool en_bc, int vport_id)
4432 {
4433 	if (!param)
4434 		return;
4435 
4436 	memset(param, 0, sizeof(struct hns3_promisc_param));
4437 	if (en_uc)
4438 		param->enable = HNS3_PROMISC_EN_UC;
4439 	if (en_mc)
4440 		param->enable |= HNS3_PROMISC_EN_MC;
4441 	if (en_bc)
4442 		param->enable |= HNS3_PROMISC_EN_BC;
4443 	param->vf_id = vport_id;
4444 }
4445 
4446 static int
4447 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4448 {
4449 	struct hns3_promisc_cfg_cmd *req;
4450 	struct hns3_cmd_desc desc;
4451 	int ret;
4452 
4453 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4454 
4455 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
4456 	req->vf_id = param->vf_id;
4457 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4458 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4459 
4460 	ret = hns3_cmd_send(hw, &desc, 1);
4461 	if (ret)
4462 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4463 
4464 	return ret;
4465 }
4466 
4467 static int
4468 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4469 {
4470 	struct hns3_promisc_param param;
4471 	bool en_bc_pmc = true;
4472 	uint8_t vf_id;
4473 
4474 	/*
4475 	 * In current version VF is not supported when PF is driven by DPDK
4476 	 * driver, just need to configure parameters for PF vport.
4477 	 */
4478 	vf_id = HNS3_PF_FUNC_ID;
4479 
4480 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4481 	return hns3_cmd_set_promisc_mode(hw, &param);
4482 }
4483 
4484 static int
4485 hns3_promisc_init(struct hns3_hw *hw)
4486 {
4487 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4488 	struct hns3_pf *pf = &hns->pf;
4489 	struct hns3_promisc_param param;
4490 	uint16_t func_id;
4491 	int ret;
4492 
4493 	ret = hns3_set_promisc_mode(hw, false, false);
4494 	if (ret) {
4495 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4496 		return ret;
4497 	}
4498 
4499 	/*
4500 	 * In current version VFs are not supported when PF is driven by DPDK
4501 	 * driver. After PF has been taken over by DPDK, the original VF will
4502 	 * be invalid. So, there is a possibility of entry residues. It should
4503 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4504 	 * during init.
4505 	 */
4506 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4507 		hns3_promisc_param_init(&param, false, false, false, func_id);
4508 		ret = hns3_cmd_set_promisc_mode(hw, &param);
4509 		if (ret) {
4510 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4511 					" ret = %d", func_id, ret);
4512 			return ret;
4513 		}
4514 	}
4515 
4516 	return 0;
4517 }
4518 
4519 static void
4520 hns3_promisc_uninit(struct hns3_hw *hw)
4521 {
4522 	struct hns3_promisc_param param;
4523 	uint16_t func_id;
4524 	int ret;
4525 
4526 	func_id = HNS3_PF_FUNC_ID;
4527 
4528 	/*
4529 	 * In current version VFs are not supported when PF is driven by
4530 	 * DPDK driver, and VFs' promisc mode status has been cleared during
4531 	 * init and their status will not change. So just clear PF's promisc
4532 	 * mode status during uninit.
4533 	 */
4534 	hns3_promisc_param_init(&param, false, false, false, func_id);
4535 	ret = hns3_cmd_set_promisc_mode(hw, &param);
4536 	if (ret)
4537 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4538 				" uninit, ret = %d", ret);
4539 }
4540 
4541 static int
4542 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4543 {
4544 	bool allmulti = dev->data->all_multicast ? true : false;
4545 	struct hns3_adapter *hns = dev->data->dev_private;
4546 	struct hns3_hw *hw = &hns->hw;
4547 	uint64_t offloads;
4548 	int err;
4549 	int ret;
4550 
4551 	rte_spinlock_lock(&hw->lock);
4552 	ret = hns3_set_promisc_mode(hw, true, true);
4553 	if (ret) {
4554 		rte_spinlock_unlock(&hw->lock);
4555 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4556 			 ret);
4557 		return ret;
4558 	}
4559 
4560 	/*
4561 	 * When promiscuous mode was enabled, disable the vlan filter to let
4562 	 * all packets coming in in the receiving direction.
4563 	 */
4564 	offloads = dev->data->dev_conf.rxmode.offloads;
4565 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4566 		ret = hns3_enable_vlan_filter(hns, false);
4567 		if (ret) {
4568 			hns3_err(hw, "failed to enable promiscuous mode due to "
4569 				     "failure to disable vlan filter, ret = %d",
4570 				 ret);
4571 			err = hns3_set_promisc_mode(hw, false, allmulti);
4572 			if (err)
4573 				hns3_err(hw, "failed to restore promiscuous "
4574 					 "status after disable vlan filter "
4575 					 "failed during enabling promiscuous "
4576 					 "mode, ret = %d", ret);
4577 		}
4578 	}
4579 
4580 	rte_spinlock_unlock(&hw->lock);
4581 
4582 	return ret;
4583 }
4584 
4585 static int
4586 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4587 {
4588 	bool allmulti = dev->data->all_multicast ? true : false;
4589 	struct hns3_adapter *hns = dev->data->dev_private;
4590 	struct hns3_hw *hw = &hns->hw;
4591 	uint64_t offloads;
4592 	int err;
4593 	int ret;
4594 
4595 	/* If now in all_multicast mode, must remain in all_multicast mode. */
4596 	rte_spinlock_lock(&hw->lock);
4597 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4598 	if (ret) {
4599 		rte_spinlock_unlock(&hw->lock);
4600 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4601 			 ret);
4602 		return ret;
4603 	}
4604 	/* when promiscuous mode was disabled, restore the vlan filter status */
4605 	offloads = dev->data->dev_conf.rxmode.offloads;
4606 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4607 		ret = hns3_enable_vlan_filter(hns, true);
4608 		if (ret) {
4609 			hns3_err(hw, "failed to disable promiscuous mode due to"
4610 				 " failure to restore vlan filter, ret = %d",
4611 				 ret);
4612 			err = hns3_set_promisc_mode(hw, true, true);
4613 			if (err)
4614 				hns3_err(hw, "failed to restore promiscuous "
4615 					 "status after enabling vlan filter "
4616 					 "failed during disabling promiscuous "
4617 					 "mode, ret = %d", ret);
4618 		}
4619 	}
4620 	rte_spinlock_unlock(&hw->lock);
4621 
4622 	return ret;
4623 }
4624 
4625 static int
4626 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4627 {
4628 	struct hns3_adapter *hns = dev->data->dev_private;
4629 	struct hns3_hw *hw = &hns->hw;
4630 	int ret;
4631 
4632 	if (dev->data->promiscuous)
4633 		return 0;
4634 
4635 	rte_spinlock_lock(&hw->lock);
4636 	ret = hns3_set_promisc_mode(hw, false, true);
4637 	rte_spinlock_unlock(&hw->lock);
4638 	if (ret)
4639 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4640 			 ret);
4641 
4642 	return ret;
4643 }
4644 
4645 static int
4646 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4647 {
4648 	struct hns3_adapter *hns = dev->data->dev_private;
4649 	struct hns3_hw *hw = &hns->hw;
4650 	int ret;
4651 
4652 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4653 	if (dev->data->promiscuous)
4654 		return 0;
4655 
4656 	rte_spinlock_lock(&hw->lock);
4657 	ret = hns3_set_promisc_mode(hw, false, false);
4658 	rte_spinlock_unlock(&hw->lock);
4659 	if (ret)
4660 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4661 			 ret);
4662 
4663 	return ret;
4664 }
4665 
4666 static int
4667 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4668 {
4669 	struct hns3_hw *hw = &hns->hw;
4670 	bool allmulti = hw->data->all_multicast ? true : false;
4671 	int ret;
4672 
4673 	if (hw->data->promiscuous) {
4674 		ret = hns3_set_promisc_mode(hw, true, true);
4675 		if (ret)
4676 			hns3_err(hw, "failed to restore promiscuous mode, "
4677 				 "ret = %d", ret);
4678 		return ret;
4679 	}
4680 
4681 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4682 	if (ret)
4683 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4684 			 ret);
4685 	return ret;
4686 }
4687 
4688 static int
4689 hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info)
4690 {
4691 	struct hns3_sfp_info_cmd *resp;
4692 	struct hns3_cmd_desc desc;
4693 	int ret;
4694 
4695 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
4696 	resp = (struct hns3_sfp_info_cmd *)desc.data;
4697 	resp->query_type = HNS3_ACTIVE_QUERY;
4698 
4699 	ret = hns3_cmd_send(hw, &desc, 1);
4700 	if (ret == -EOPNOTSUPP) {
4701 		hns3_warn(hw, "firmware does not support get SFP info,"
4702 			  " ret = %d.", ret);
4703 		return ret;
4704 	} else if (ret) {
4705 		hns3_err(hw, "get sfp info failed, ret = %d.", ret);
4706 		return ret;
4707 	}
4708 
4709 	/*
4710 	 * In some case, the speed of MAC obtained from firmware may be 0, it
4711 	 * shouldn't be set to mac->speed.
4712 	 */
4713 	if (!rte_le_to_cpu_32(resp->sfp_speed))
4714 		return 0;
4715 
4716 	mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed);
4717 	/*
4718 	 * if resp->supported_speed is 0, it means it's an old version
4719 	 * firmware, do not update these params.
4720 	 */
4721 	if (resp->supported_speed) {
4722 		mac_info->query_type = HNS3_ACTIVE_QUERY;
4723 		mac_info->supported_speed =
4724 					rte_le_to_cpu_32(resp->supported_speed);
4725 		mac_info->support_autoneg = resp->autoneg_ability;
4726 		mac_info->link_autoneg = (resp->autoneg == 0) ? ETH_LINK_FIXED
4727 					: ETH_LINK_AUTONEG;
4728 	} else {
4729 		mac_info->query_type = HNS3_DEFAULT_QUERY;
4730 	}
4731 
4732 	return 0;
4733 }
4734 
4735 static uint8_t
4736 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4737 {
4738 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4739 		duplex = ETH_LINK_FULL_DUPLEX;
4740 
4741 	return duplex;
4742 }
4743 
4744 static int
4745 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4746 {
4747 	struct hns3_mac *mac = &hw->mac;
4748 	int ret;
4749 
4750 	duplex = hns3_check_speed_dup(duplex, speed);
4751 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4752 		return 0;
4753 
4754 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4755 	if (ret)
4756 		return ret;
4757 
4758 	ret = hns3_port_shaper_update(hw, speed);
4759 	if (ret)
4760 		return ret;
4761 
4762 	mac->link_speed = speed;
4763 	mac->link_duplex = duplex;
4764 
4765 	return 0;
4766 }
4767 
4768 static int
4769 hns3_update_fiber_link_info(struct hns3_hw *hw)
4770 {
4771 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4772 	struct hns3_mac *mac = &hw->mac;
4773 	struct hns3_mac mac_info;
4774 	int ret;
4775 
4776 	/* If firmware do not support get SFP/qSFP speed, return directly */
4777 	if (!pf->support_sfp_query)
4778 		return 0;
4779 
4780 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4781 	ret = hns3_get_sfp_info(hw, &mac_info);
4782 	if (ret == -EOPNOTSUPP) {
4783 		pf->support_sfp_query = false;
4784 		return ret;
4785 	} else if (ret)
4786 		return ret;
4787 
4788 	/* Do nothing if no SFP */
4789 	if (mac_info.link_speed == ETH_SPEED_NUM_NONE)
4790 		return 0;
4791 
4792 	/*
4793 	 * If query_type is HNS3_ACTIVE_QUERY, it is no need
4794 	 * to reconfigure the speed of MAC. Otherwise, it indicates
4795 	 * that the current firmware only supports to obtain the
4796 	 * speed of the SFP, and the speed of MAC needs to reconfigure.
4797 	 */
4798 	mac->query_type = mac_info.query_type;
4799 	if (mac->query_type == HNS3_ACTIVE_QUERY) {
4800 		if (mac_info.link_speed != mac->link_speed) {
4801 			ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4802 			if (ret)
4803 				return ret;
4804 		}
4805 
4806 		mac->link_speed = mac_info.link_speed;
4807 		mac->supported_speed = mac_info.supported_speed;
4808 		mac->support_autoneg = mac_info.support_autoneg;
4809 		mac->link_autoneg = mac_info.link_autoneg;
4810 
4811 		return 0;
4812 	}
4813 
4814 	/* Config full duplex for SFP */
4815 	return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed,
4816 				      ETH_LINK_FULL_DUPLEX);
4817 }
4818 
4819 static void
4820 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4821 {
4822 #define HNS3_PHY_SUPPORTED_SPEED_MASK   0x2f
4823 
4824 	struct hns3_phy_params_bd0_cmd *req;
4825 	uint32_t supported;
4826 
4827 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4828 	mac->link_speed = rte_le_to_cpu_32(req->speed);
4829 	mac->link_duplex = hns3_get_bit(req->duplex,
4830 					   HNS3_PHY_DUPLEX_CFG_B);
4831 	mac->link_autoneg = hns3_get_bit(req->autoneg,
4832 					   HNS3_PHY_AUTONEG_CFG_B);
4833 	mac->advertising = rte_le_to_cpu_32(req->advertising);
4834 	mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4835 	supported = rte_le_to_cpu_32(req->supported);
4836 	mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK;
4837 	mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4838 }
4839 
4840 static int
4841 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4842 {
4843 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4844 	uint16_t i;
4845 	int ret;
4846 
4847 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4848 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4849 					  true);
4850 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4851 	}
4852 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4853 
4854 	ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4855 	if (ret) {
4856 		hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4857 		return ret;
4858 	}
4859 
4860 	hns3_parse_copper_phy_params(desc, mac);
4861 
4862 	return 0;
4863 }
4864 
4865 static int
4866 hns3_update_copper_link_info(struct hns3_hw *hw)
4867 {
4868 	struct hns3_mac *mac = &hw->mac;
4869 	struct hns3_mac mac_info;
4870 	int ret;
4871 
4872 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4873 	ret = hns3_get_copper_phy_params(hw, &mac_info);
4874 	if (ret)
4875 		return ret;
4876 
4877 	if (mac_info.link_speed != mac->link_speed) {
4878 		ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4879 		if (ret)
4880 			return ret;
4881 	}
4882 
4883 	mac->link_speed = mac_info.link_speed;
4884 	mac->link_duplex = mac_info.link_duplex;
4885 	mac->link_autoneg = mac_info.link_autoneg;
4886 	mac->supported_speed = mac_info.supported_speed;
4887 	mac->advertising = mac_info.advertising;
4888 	mac->lp_advertising = mac_info.lp_advertising;
4889 	mac->support_autoneg = mac_info.support_autoneg;
4890 
4891 	return 0;
4892 }
4893 
4894 static int
4895 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4896 {
4897 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4898 	struct hns3_hw *hw = &hns->hw;
4899 	int ret = 0;
4900 
4901 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4902 		ret = hns3_update_copper_link_info(hw);
4903 	else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4904 		ret = hns3_update_fiber_link_info(hw);
4905 
4906 	return ret;
4907 }
4908 
4909 static int
4910 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4911 {
4912 	struct hns3_config_mac_mode_cmd *req;
4913 	struct hns3_cmd_desc desc;
4914 	uint32_t loop_en = 0;
4915 	uint8_t val = 0;
4916 	int ret;
4917 
4918 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4919 
4920 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4921 	if (enable)
4922 		val = 1;
4923 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4924 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4925 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4926 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4927 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4928 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4929 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4930 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4931 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4932 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4933 
4934 	/*
4935 	 * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4936 	 * when receiving frames. Otherwise, CRC will be stripped.
4937 	 */
4938 	if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4939 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4940 	else
4941 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4942 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4943 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4944 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4945 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4946 
4947 	ret = hns3_cmd_send(hw, &desc, 1);
4948 	if (ret)
4949 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4950 
4951 	return ret;
4952 }
4953 
4954 static int
4955 hns3_get_mac_link_status(struct hns3_hw *hw)
4956 {
4957 	struct hns3_link_status_cmd *req;
4958 	struct hns3_cmd_desc desc;
4959 	int link_status;
4960 	int ret;
4961 
4962 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4963 	ret = hns3_cmd_send(hw, &desc, 1);
4964 	if (ret) {
4965 		hns3_err(hw, "get link status cmd failed %d", ret);
4966 		return ETH_LINK_DOWN;
4967 	}
4968 
4969 	req = (struct hns3_link_status_cmd *)desc.data;
4970 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4971 
4972 	return !!link_status;
4973 }
4974 
4975 static bool
4976 hns3_update_link_status(struct hns3_hw *hw)
4977 {
4978 	int state;
4979 
4980 	state = hns3_get_mac_link_status(hw);
4981 	if (state != hw->mac.link_status) {
4982 		hw->mac.link_status = state;
4983 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4984 		return true;
4985 	}
4986 
4987 	return false;
4988 }
4989 
4990 void
4991 hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
4992 {
4993 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4994 	struct rte_eth_link new_link;
4995 	int ret;
4996 
4997 	if (query)
4998 		hns3_update_port_link_info(dev);
4999 
5000 	memset(&new_link, 0, sizeof(new_link));
5001 	hns3_setup_linkstatus(dev, &new_link);
5002 
5003 	ret = rte_eth_linkstatus_set(dev, &new_link);
5004 	if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
5005 		hns3_start_report_lse(dev);
5006 }
5007 
5008 static void
5009 hns3_service_handler(void *param)
5010 {
5011 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
5012 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5013 	struct hns3_hw *hw = &hns->hw;
5014 
5015 	if (!hns3_is_reset_pending(hns))
5016 		hns3_update_linkstatus_and_event(hw, true);
5017 	else
5018 		hns3_warn(hw, "Cancel the query when reset is pending");
5019 
5020 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
5021 }
5022 
5023 static int
5024 hns3_init_hardware(struct hns3_adapter *hns)
5025 {
5026 	struct hns3_hw *hw = &hns->hw;
5027 	int ret;
5028 
5029 	ret = hns3_map_tqp(hw);
5030 	if (ret) {
5031 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
5032 		return ret;
5033 	}
5034 
5035 	ret = hns3_init_umv_space(hw);
5036 	if (ret) {
5037 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
5038 		return ret;
5039 	}
5040 
5041 	ret = hns3_mac_init(hw);
5042 	if (ret) {
5043 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
5044 		goto err_mac_init;
5045 	}
5046 
5047 	ret = hns3_init_mgr_tbl(hw);
5048 	if (ret) {
5049 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
5050 		goto err_mac_init;
5051 	}
5052 
5053 	ret = hns3_promisc_init(hw);
5054 	if (ret) {
5055 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
5056 			     ret);
5057 		goto err_mac_init;
5058 	}
5059 
5060 	ret = hns3_init_vlan_config(hns);
5061 	if (ret) {
5062 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
5063 		goto err_mac_init;
5064 	}
5065 
5066 	ret = hns3_dcb_init(hw);
5067 	if (ret) {
5068 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
5069 		goto err_mac_init;
5070 	}
5071 
5072 	ret = hns3_init_fd_config(hns);
5073 	if (ret) {
5074 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
5075 		goto err_mac_init;
5076 	}
5077 
5078 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
5079 	if (ret) {
5080 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
5081 		goto err_mac_init;
5082 	}
5083 
5084 	ret = hns3_config_gro(hw, false);
5085 	if (ret) {
5086 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
5087 		goto err_mac_init;
5088 	}
5089 
5090 	/*
5091 	 * In the initialization clearing the all hardware mapping relationship
5092 	 * configurations between queues and interrupt vectors is needed, so
5093 	 * some error caused by the residual configurations, such as the
5094 	 * unexpected interrupt, can be avoid.
5095 	 */
5096 	ret = hns3_init_ring_with_vector(hw);
5097 	if (ret) {
5098 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
5099 		goto err_mac_init;
5100 	}
5101 
5102 	return 0;
5103 
5104 err_mac_init:
5105 	hns3_uninit_umv_space(hw);
5106 	return ret;
5107 }
5108 
5109 static int
5110 hns3_clear_hw(struct hns3_hw *hw)
5111 {
5112 	struct hns3_cmd_desc desc;
5113 	int ret;
5114 
5115 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
5116 
5117 	ret = hns3_cmd_send(hw, &desc, 1);
5118 	if (ret && ret != -EOPNOTSUPP)
5119 		return ret;
5120 
5121 	return 0;
5122 }
5123 
5124 static void
5125 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
5126 {
5127 	uint32_t val;
5128 
5129 	/*
5130 	 * The new firmware support report more hardware error types by
5131 	 * msix mode. These errors are defined as RAS errors in hardware
5132 	 * and belong to a different type from the MSI-x errors processed
5133 	 * by the network driver.
5134 	 *
5135 	 * Network driver should open the new error report on initialization.
5136 	 */
5137 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5138 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
5139 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
5140 }
5141 
5142 static uint32_t
5143 hns3_set_firber_default_support_speed(struct hns3_hw *hw)
5144 {
5145 	struct hns3_mac *mac = &hw->mac;
5146 
5147 	switch (mac->link_speed) {
5148 	case ETH_SPEED_NUM_1G:
5149 		return HNS3_FIBER_LINK_SPEED_1G_BIT;
5150 	case ETH_SPEED_NUM_10G:
5151 		return HNS3_FIBER_LINK_SPEED_10G_BIT;
5152 	case ETH_SPEED_NUM_25G:
5153 		return HNS3_FIBER_LINK_SPEED_25G_BIT;
5154 	case ETH_SPEED_NUM_40G:
5155 		return HNS3_FIBER_LINK_SPEED_40G_BIT;
5156 	case ETH_SPEED_NUM_50G:
5157 		return HNS3_FIBER_LINK_SPEED_50G_BIT;
5158 	case ETH_SPEED_NUM_100G:
5159 		return HNS3_FIBER_LINK_SPEED_100G_BIT;
5160 	case ETH_SPEED_NUM_200G:
5161 		return HNS3_FIBER_LINK_SPEED_200G_BIT;
5162 	default:
5163 		hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed);
5164 		return 0;
5165 	}
5166 }
5167 
5168 /*
5169  * Validity of supported_speed for firber and copper media type can be
5170  * guaranteed by the following policy:
5171  * Copper:
5172  *       Although the initialization of the phy in the firmware may not be
5173  *       completed, the firmware can guarantees that the supported_speed is
5174  *       an valid value.
5175  * Firber:
5176  *       If the version of firmware supports the acitive query way of the
5177  *       HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained
5178  *       through it. If unsupported, use the SFP's speed as the value of the
5179  *       supported_speed.
5180  */
5181 static int
5182 hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev)
5183 {
5184 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5185 	struct hns3_hw *hw = &hns->hw;
5186 	struct hns3_mac *mac = &hw->mac;
5187 	int ret;
5188 
5189 	ret = hns3_update_link_info(eth_dev);
5190 	if (ret)
5191 		return ret;
5192 
5193 	if (mac->media_type == HNS3_MEDIA_TYPE_FIBER) {
5194 		/*
5195 		 * Some firmware does not support the report of supported_speed,
5196 		 * and only report the effective speed of SFP. In this case, it
5197 		 * is necessary to use the SFP's speed as the supported_speed.
5198 		 */
5199 		if (mac->supported_speed == 0)
5200 			mac->supported_speed =
5201 				hns3_set_firber_default_support_speed(hw);
5202 	}
5203 
5204 	return 0;
5205 }
5206 
5207 static void
5208 hns3_get_fc_autoneg_capability(struct hns3_adapter *hns)
5209 {
5210 	struct hns3_mac *mac = &hns->hw.mac;
5211 
5212 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) {
5213 		hns->pf.support_fc_autoneg = true;
5214 		return;
5215 	}
5216 
5217 	/*
5218 	 * Flow control auto-negotiation requires the cooperation of the driver
5219 	 * and firmware. Currently, the optical port does not support flow
5220 	 * control auto-negotiation.
5221 	 */
5222 	hns->pf.support_fc_autoneg = false;
5223 }
5224 
5225 static int
5226 hns3_init_pf(struct rte_eth_dev *eth_dev)
5227 {
5228 	struct rte_device *dev = eth_dev->device;
5229 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5230 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5231 	struct hns3_hw *hw = &hns->hw;
5232 	int ret;
5233 
5234 	PMD_INIT_FUNC_TRACE();
5235 
5236 	/* Get hardware io base address from pcie BAR2 IO space */
5237 	hw->io_base = pci_dev->mem_resource[2].addr;
5238 
5239 	/* Firmware command queue initialize */
5240 	ret = hns3_cmd_init_queue(hw);
5241 	if (ret) {
5242 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
5243 		goto err_cmd_init_queue;
5244 	}
5245 
5246 	hns3_clear_all_event_cause(hw);
5247 
5248 	/* Firmware command initialize */
5249 	ret = hns3_cmd_init(hw);
5250 	if (ret) {
5251 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
5252 		goto err_cmd_init;
5253 	}
5254 
5255 	hns3_tx_push_init(eth_dev);
5256 
5257 	/*
5258 	 * To ensure that the hardware environment is clean during
5259 	 * initialization, the driver actively clear the hardware environment
5260 	 * during initialization, including PF and corresponding VFs' vlan, mac,
5261 	 * flow table configurations, etc.
5262 	 */
5263 	ret = hns3_clear_hw(hw);
5264 	if (ret) {
5265 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
5266 		goto err_cmd_init;
5267 	}
5268 
5269 	/* Hardware statistics of imissed registers cleared. */
5270 	ret = hns3_update_imissed_stats(hw, true);
5271 	if (ret) {
5272 		hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
5273 		goto err_cmd_init;
5274 	}
5275 
5276 	hns3_config_all_msix_error(hw, true);
5277 
5278 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
5279 					 hns3_interrupt_handler,
5280 					 eth_dev);
5281 	if (ret) {
5282 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
5283 		goto err_intr_callback_register;
5284 	}
5285 
5286 	ret = hns3_ptp_init(hw);
5287 	if (ret)
5288 		goto err_get_config;
5289 
5290 	/* Enable interrupt */
5291 	rte_intr_enable(&pci_dev->intr_handle);
5292 	hns3_pf_enable_irq0(hw);
5293 
5294 	/* Get configuration */
5295 	ret = hns3_get_configuration(hw);
5296 	if (ret) {
5297 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
5298 		goto err_get_config;
5299 	}
5300 
5301 	ret = hns3_tqp_stats_init(hw);
5302 	if (ret)
5303 		goto err_get_config;
5304 
5305 	ret = hns3_init_hardware(hns);
5306 	if (ret) {
5307 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
5308 		goto err_init_hw;
5309 	}
5310 
5311 	/* Initialize flow director filter list & hash */
5312 	ret = hns3_fdir_filter_init(hns);
5313 	if (ret) {
5314 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
5315 		goto err_fdir;
5316 	}
5317 
5318 	hns3_rss_set_default_args(hw);
5319 
5320 	ret = hns3_enable_hw_error_intr(hns, true);
5321 	if (ret) {
5322 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
5323 			     ret);
5324 		goto err_enable_intr;
5325 	}
5326 
5327 	ret = hns3_get_port_supported_speed(eth_dev);
5328 	if (ret) {
5329 		PMD_INIT_LOG(ERR, "failed to get speed capabilities supported "
5330 			     "by device, ret = %d.", ret);
5331 		goto err_supported_speed;
5332 	}
5333 
5334 	hns3_get_fc_autoneg_capability(hns);
5335 
5336 	hns3_tm_conf_init(eth_dev);
5337 
5338 	return 0;
5339 
5340 err_supported_speed:
5341 	(void)hns3_enable_hw_error_intr(hns, false);
5342 err_enable_intr:
5343 	hns3_fdir_filter_uninit(hns);
5344 err_fdir:
5345 	hns3_uninit_umv_space(hw);
5346 err_init_hw:
5347 	hns3_tqp_stats_uninit(hw);
5348 err_get_config:
5349 	hns3_pf_disable_irq0(hw);
5350 	rte_intr_disable(&pci_dev->intr_handle);
5351 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5352 			     eth_dev);
5353 err_intr_callback_register:
5354 err_cmd_init:
5355 	hns3_cmd_uninit(hw);
5356 	hns3_cmd_destroy_queue(hw);
5357 err_cmd_init_queue:
5358 	hw->io_base = NULL;
5359 
5360 	return ret;
5361 }
5362 
5363 static void
5364 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
5365 {
5366 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5367 	struct rte_device *dev = eth_dev->device;
5368 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5369 	struct hns3_hw *hw = &hns->hw;
5370 
5371 	PMD_INIT_FUNC_TRACE();
5372 
5373 	hns3_tm_conf_uninit(eth_dev);
5374 	hns3_enable_hw_error_intr(hns, false);
5375 	hns3_rss_uninit(hns);
5376 	(void)hns3_config_gro(hw, false);
5377 	hns3_promisc_uninit(hw);
5378 	hns3_flow_uninit(eth_dev);
5379 	hns3_fdir_filter_uninit(hns);
5380 	hns3_uninit_umv_space(hw);
5381 	hns3_tqp_stats_uninit(hw);
5382 	hns3_config_mac_tnl_int(hw, false);
5383 	hns3_pf_disable_irq0(hw);
5384 	rte_intr_disable(&pci_dev->intr_handle);
5385 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5386 			     eth_dev);
5387 	hns3_config_all_msix_error(hw, false);
5388 	hns3_cmd_uninit(hw);
5389 	hns3_cmd_destroy_queue(hw);
5390 	hw->io_base = NULL;
5391 }
5392 
5393 static uint32_t
5394 hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds)
5395 {
5396 	uint32_t speed_bit;
5397 
5398 	switch (link_speeds & ~ETH_LINK_SPEED_FIXED) {
5399 	case ETH_LINK_SPEED_10M:
5400 		speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT;
5401 		break;
5402 	case ETH_LINK_SPEED_10M_HD:
5403 		speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT;
5404 		break;
5405 	case ETH_LINK_SPEED_100M:
5406 		speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT;
5407 		break;
5408 	case ETH_LINK_SPEED_100M_HD:
5409 		speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT;
5410 		break;
5411 	case ETH_LINK_SPEED_1G:
5412 		speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT;
5413 		break;
5414 	default:
5415 		speed_bit = 0;
5416 		break;
5417 	}
5418 
5419 	return speed_bit;
5420 }
5421 
5422 static uint32_t
5423 hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds)
5424 {
5425 	uint32_t speed_bit;
5426 
5427 	switch (link_speeds & ~ETH_LINK_SPEED_FIXED) {
5428 	case ETH_LINK_SPEED_1G:
5429 		speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT;
5430 		break;
5431 	case ETH_LINK_SPEED_10G:
5432 		speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT;
5433 		break;
5434 	case ETH_LINK_SPEED_25G:
5435 		speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT;
5436 		break;
5437 	case ETH_LINK_SPEED_40G:
5438 		speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT;
5439 		break;
5440 	case ETH_LINK_SPEED_50G:
5441 		speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT;
5442 		break;
5443 	case ETH_LINK_SPEED_100G:
5444 		speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT;
5445 		break;
5446 	case ETH_LINK_SPEED_200G:
5447 		speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT;
5448 		break;
5449 	default:
5450 		speed_bit = 0;
5451 		break;
5452 	}
5453 
5454 	return speed_bit;
5455 }
5456 
5457 static int
5458 hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds)
5459 {
5460 	struct hns3_mac *mac = &hw->mac;
5461 	uint32_t supported_speed = mac->supported_speed;
5462 	uint32_t speed_bit = 0;
5463 
5464 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
5465 		speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds);
5466 	else if (mac->media_type == HNS3_MEDIA_TYPE_FIBER)
5467 		speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds);
5468 
5469 	if (!(speed_bit & supported_speed)) {
5470 		hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.",
5471 			 link_speeds);
5472 		return -EINVAL;
5473 	}
5474 
5475 	return 0;
5476 }
5477 
5478 static inline uint32_t
5479 hns3_get_link_speed(uint32_t link_speeds)
5480 {
5481 	uint32_t speed = ETH_SPEED_NUM_NONE;
5482 
5483 	if (link_speeds & ETH_LINK_SPEED_10M ||
5484 	    link_speeds & ETH_LINK_SPEED_10M_HD)
5485 		speed = ETH_SPEED_NUM_10M;
5486 	if (link_speeds & ETH_LINK_SPEED_100M ||
5487 	    link_speeds & ETH_LINK_SPEED_100M_HD)
5488 		speed = ETH_SPEED_NUM_100M;
5489 	if (link_speeds & ETH_LINK_SPEED_1G)
5490 		speed = ETH_SPEED_NUM_1G;
5491 	if (link_speeds & ETH_LINK_SPEED_10G)
5492 		speed = ETH_SPEED_NUM_10G;
5493 	if (link_speeds & ETH_LINK_SPEED_25G)
5494 		speed = ETH_SPEED_NUM_25G;
5495 	if (link_speeds & ETH_LINK_SPEED_40G)
5496 		speed = ETH_SPEED_NUM_40G;
5497 	if (link_speeds & ETH_LINK_SPEED_50G)
5498 		speed = ETH_SPEED_NUM_50G;
5499 	if (link_speeds & ETH_LINK_SPEED_100G)
5500 		speed = ETH_SPEED_NUM_100G;
5501 	if (link_speeds & ETH_LINK_SPEED_200G)
5502 		speed = ETH_SPEED_NUM_200G;
5503 
5504 	return speed;
5505 }
5506 
5507 static uint8_t
5508 hns3_get_link_duplex(uint32_t link_speeds)
5509 {
5510 	if ((link_speeds & ETH_LINK_SPEED_10M_HD) ||
5511 	    (link_speeds & ETH_LINK_SPEED_100M_HD))
5512 		return ETH_LINK_HALF_DUPLEX;
5513 	else
5514 		return ETH_LINK_FULL_DUPLEX;
5515 }
5516 
5517 static int
5518 hns3_set_copper_port_link_speed(struct hns3_hw *hw,
5519 				struct hns3_set_link_speed_cfg *cfg)
5520 {
5521 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
5522 	struct hns3_phy_params_bd0_cmd *req;
5523 	uint16_t i;
5524 
5525 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
5526 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
5527 					  false);
5528 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
5529 	}
5530 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false);
5531 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
5532 	req->autoneg = cfg->autoneg;
5533 
5534 	/*
5535 	 * The full speed capability is used to negotiate when
5536 	 * auto-negotiation is enabled.
5537 	 */
5538 	if (cfg->autoneg) {
5539 		req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT |
5540 				    HNS3_PHY_LINK_SPEED_10M_HD_BIT |
5541 				    HNS3_PHY_LINK_SPEED_100M_BIT |
5542 				    HNS3_PHY_LINK_SPEED_100M_HD_BIT |
5543 				    HNS3_PHY_LINK_SPEED_1000M_BIT;
5544 	} else {
5545 		req->speed = cfg->speed;
5546 		req->duplex = cfg->duplex;
5547 	}
5548 
5549 	return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
5550 }
5551 
5552 static int
5553 hns3_set_autoneg(struct hns3_hw *hw, bool enable)
5554 {
5555 	struct hns3_config_auto_neg_cmd *req;
5556 	struct hns3_cmd_desc desc;
5557 	uint32_t flag = 0;
5558 	int ret;
5559 
5560 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false);
5561 
5562 	req = (struct hns3_config_auto_neg_cmd *)desc.data;
5563 	if (enable)
5564 		hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1);
5565 	req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag);
5566 
5567 	ret = hns3_cmd_send(hw, &desc, 1);
5568 	if (ret)
5569 		hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret);
5570 
5571 	return ret;
5572 }
5573 
5574 static int
5575 hns3_set_fiber_port_link_speed(struct hns3_hw *hw,
5576 			       struct hns3_set_link_speed_cfg *cfg)
5577 {
5578 	int ret;
5579 
5580 	if (hw->mac.support_autoneg) {
5581 		ret = hns3_set_autoneg(hw, cfg->autoneg);
5582 		if (ret) {
5583 			hns3_err(hw, "failed to configure auto-negotiation.");
5584 			return ret;
5585 		}
5586 
5587 		/*
5588 		 * To enable auto-negotiation, we only need to open the switch
5589 		 * of auto-negotiation, then firmware sets all speed
5590 		 * capabilities.
5591 		 */
5592 		if (cfg->autoneg)
5593 			return 0;
5594 	}
5595 
5596 	/*
5597 	 * Some hardware doesn't support auto-negotiation, but users may not
5598 	 * configure link_speeds (default 0), which means auto-negotiation.
5599 	 * In this case, a warning message need to be printed, instead of
5600 	 * an error.
5601 	 */
5602 	if (cfg->autoneg) {
5603 		hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!");
5604 		return 0;
5605 	}
5606 
5607 	return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex);
5608 }
5609 
5610 static int
5611 hns3_set_port_link_speed(struct hns3_hw *hw,
5612 			 struct hns3_set_link_speed_cfg *cfg)
5613 {
5614 	int ret;
5615 
5616 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER) {
5617 #if defined(RTE_HNS3_ONLY_1630_FPGA)
5618 		struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5619 		if (pf->is_tmp_phy)
5620 			return 0;
5621 #endif
5622 
5623 		ret = hns3_set_copper_port_link_speed(hw, cfg);
5624 		if (ret) {
5625 			hns3_err(hw, "failed to set copper port link speed,"
5626 				 "ret = %d.", ret);
5627 			return ret;
5628 		}
5629 	} else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER) {
5630 		ret = hns3_set_fiber_port_link_speed(hw, cfg);
5631 		if (ret) {
5632 			hns3_err(hw, "failed to set fiber port link speed,"
5633 				 "ret = %d.", ret);
5634 			return ret;
5635 		}
5636 	}
5637 
5638 	return 0;
5639 }
5640 
5641 static int
5642 hns3_apply_link_speed(struct hns3_hw *hw)
5643 {
5644 	struct rte_eth_conf *conf = &hw->data->dev_conf;
5645 	struct hns3_set_link_speed_cfg cfg;
5646 
5647 	memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg));
5648 	cfg.autoneg = (conf->link_speeds == ETH_LINK_SPEED_AUTONEG) ?
5649 			ETH_LINK_AUTONEG : ETH_LINK_FIXED;
5650 	if (cfg.autoneg != ETH_LINK_AUTONEG) {
5651 		cfg.speed = hns3_get_link_speed(conf->link_speeds);
5652 		cfg.duplex = hns3_get_link_duplex(conf->link_speeds);
5653 	}
5654 
5655 	return hns3_set_port_link_speed(hw, &cfg);
5656 }
5657 
5658 static int
5659 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5660 {
5661 	struct hns3_hw *hw = &hns->hw;
5662 	bool link_en;
5663 	int ret;
5664 
5665 	ret = hns3_update_queue_map_configure(hns);
5666 	if (ret) {
5667 		hns3_err(hw, "failed to update queue mapping configuration, ret = %d",
5668 			 ret);
5669 		return ret;
5670 	}
5671 
5672 	/* Note: hns3_tm_conf_update must be called after configuring DCB. */
5673 	ret = hns3_tm_conf_update(hw);
5674 	if (ret) {
5675 		PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5676 		return ret;
5677 	}
5678 
5679 	hns3_enable_rxd_adv_layout(hw);
5680 
5681 	ret = hns3_init_queues(hns, reset_queue);
5682 	if (ret) {
5683 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5684 		return ret;
5685 	}
5686 
5687 	link_en = hw->set_link_down ? false : true;
5688 	ret = hns3_cfg_mac_mode(hw, link_en);
5689 	if (ret) {
5690 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5691 		goto err_config_mac_mode;
5692 	}
5693 
5694 	ret = hns3_apply_link_speed(hw);
5695 	if (ret)
5696 		goto err_set_link_speed;
5697 
5698 	return 0;
5699 
5700 err_set_link_speed:
5701 	(void)hns3_cfg_mac_mode(hw, false);
5702 
5703 err_config_mac_mode:
5704 	hns3_dev_release_mbufs(hns);
5705 	/*
5706 	 * Here is exception handling, hns3_reset_all_tqps will have the
5707 	 * corresponding error message if it is handled incorrectly, so it is
5708 	 * not necessary to check hns3_reset_all_tqps return value, here keep
5709 	 * ret as the error code causing the exception.
5710 	 */
5711 	(void)hns3_reset_all_tqps(hns);
5712 	return ret;
5713 }
5714 
5715 static int
5716 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5717 {
5718 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5719 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5720 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5721 	uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5722 	uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5723 	uint32_t intr_vector;
5724 	uint16_t q_id;
5725 	int ret;
5726 
5727 	/*
5728 	 * hns3 needs a separate interrupt to be used as event interrupt which
5729 	 * could not be shared with task queue pair, so KERNEL drivers need
5730 	 * support multiple interrupt vectors.
5731 	 */
5732 	if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5733 	    !rte_intr_cap_multiple(intr_handle))
5734 		return 0;
5735 
5736 	rte_intr_disable(intr_handle);
5737 	intr_vector = hw->used_rx_queues;
5738 	/* creates event fd for each intr vector when MSIX is used */
5739 	if (rte_intr_efd_enable(intr_handle, intr_vector))
5740 		return -EINVAL;
5741 
5742 	if (intr_handle->intr_vec == NULL) {
5743 		intr_handle->intr_vec =
5744 			rte_zmalloc("intr_vec",
5745 				    hw->used_rx_queues * sizeof(int), 0);
5746 		if (intr_handle->intr_vec == NULL) {
5747 			hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5748 					hw->used_rx_queues);
5749 			ret = -ENOMEM;
5750 			goto alloc_intr_vec_error;
5751 		}
5752 	}
5753 
5754 	if (rte_intr_allow_others(intr_handle)) {
5755 		vec = RTE_INTR_VEC_RXTX_OFFSET;
5756 		base = RTE_INTR_VEC_RXTX_OFFSET;
5757 	}
5758 
5759 	for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5760 		ret = hns3_bind_ring_with_vector(hw, vec, true,
5761 						 HNS3_RING_TYPE_RX, q_id);
5762 		if (ret)
5763 			goto bind_vector_error;
5764 		intr_handle->intr_vec[q_id] = vec;
5765 		/*
5766 		 * If there are not enough efds (e.g. not enough interrupt),
5767 		 * remaining queues will be bond to the last interrupt.
5768 		 */
5769 		if (vec < base + intr_handle->nb_efd - 1)
5770 			vec++;
5771 	}
5772 	rte_intr_enable(intr_handle);
5773 	return 0;
5774 
5775 bind_vector_error:
5776 	rte_free(intr_handle->intr_vec);
5777 	intr_handle->intr_vec = NULL;
5778 alloc_intr_vec_error:
5779 	rte_intr_efd_disable(intr_handle);
5780 	return ret;
5781 }
5782 
5783 static int
5784 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5785 {
5786 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5787 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5788 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5789 	uint16_t q_id;
5790 	int ret;
5791 
5792 	if (dev->data->dev_conf.intr_conf.rxq == 0)
5793 		return 0;
5794 
5795 	if (rte_intr_dp_is_en(intr_handle)) {
5796 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5797 			ret = hns3_bind_ring_with_vector(hw,
5798 					intr_handle->intr_vec[q_id], true,
5799 					HNS3_RING_TYPE_RX, q_id);
5800 			if (ret)
5801 				return ret;
5802 		}
5803 	}
5804 
5805 	return 0;
5806 }
5807 
5808 static void
5809 hns3_restore_filter(struct rte_eth_dev *dev)
5810 {
5811 	hns3_restore_rss_filter(dev);
5812 }
5813 
5814 static int
5815 hns3_dev_start(struct rte_eth_dev *dev)
5816 {
5817 	struct hns3_adapter *hns = dev->data->dev_private;
5818 	struct hns3_hw *hw = &hns->hw;
5819 	bool old_state = hw->set_link_down;
5820 	int ret;
5821 
5822 	PMD_INIT_FUNC_TRACE();
5823 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5824 		return -EBUSY;
5825 
5826 	rte_spinlock_lock(&hw->lock);
5827 	hw->adapter_state = HNS3_NIC_STARTING;
5828 
5829 	/*
5830 	 * If the dev_set_link_down() API has been called, the "set_link_down"
5831 	 * flag can be cleared by dev_start() API. In addition, the flag should
5832 	 * also be cleared before calling hns3_do_start() so that MAC can be
5833 	 * enabled in dev_start stage.
5834 	 */
5835 	hw->set_link_down = false;
5836 	ret = hns3_do_start(hns, true);
5837 	if (ret)
5838 		goto do_start_fail;
5839 
5840 	ret = hns3_map_rx_interrupt(dev);
5841 	if (ret)
5842 		goto map_rx_inter_err;
5843 
5844 	/*
5845 	 * There are three register used to control the status of a TQP
5846 	 * (contains a pair of Tx queue and Rx queue) in the new version network
5847 	 * engine. One is used to control the enabling of Tx queue, the other is
5848 	 * used to control the enabling of Rx queue, and the last is the master
5849 	 * switch used to control the enabling of the tqp. The Tx register and
5850 	 * TQP register must be enabled at the same time to enable a Tx queue.
5851 	 * The same applies to the Rx queue. For the older network engine, this
5852 	 * function only refresh the enabled flag, and it is used to update the
5853 	 * status of queue in the dpdk framework.
5854 	 */
5855 	ret = hns3_start_all_txqs(dev);
5856 	if (ret)
5857 		goto map_rx_inter_err;
5858 
5859 	ret = hns3_start_all_rxqs(dev);
5860 	if (ret)
5861 		goto start_all_rxqs_fail;
5862 
5863 	hw->adapter_state = HNS3_NIC_STARTED;
5864 	rte_spinlock_unlock(&hw->lock);
5865 
5866 	hns3_rx_scattered_calc(dev);
5867 	hns3_set_rxtx_function(dev);
5868 	hns3_mp_req_start_rxtx(dev);
5869 
5870 	hns3_restore_filter(dev);
5871 
5872 	/* Enable interrupt of all rx queues before enabling queues */
5873 	hns3_dev_all_rx_queue_intr_enable(hw, true);
5874 
5875 	/*
5876 	 * After finished the initialization, enable tqps to receive/transmit
5877 	 * packets and refresh all queue status.
5878 	 */
5879 	hns3_start_tqps(hw);
5880 
5881 	hns3_tm_dev_start_proc(hw);
5882 
5883 	if (dev->data->dev_conf.intr_conf.lsc != 0)
5884 		hns3_dev_link_update(dev, 0);
5885 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5886 
5887 	hns3_info(hw, "hns3 dev start successful!");
5888 
5889 	return 0;
5890 
5891 start_all_rxqs_fail:
5892 	hns3_stop_all_txqs(dev);
5893 map_rx_inter_err:
5894 	(void)hns3_do_stop(hns);
5895 do_start_fail:
5896 	hw->set_link_down = old_state;
5897 	hw->adapter_state = HNS3_NIC_CONFIGURED;
5898 	rte_spinlock_unlock(&hw->lock);
5899 
5900 	return ret;
5901 }
5902 
5903 static int
5904 hns3_do_stop(struct hns3_adapter *hns)
5905 {
5906 	struct hns3_hw *hw = &hns->hw;
5907 	int ret;
5908 
5909 	/*
5910 	 * The "hns3_do_stop" function will also be called by .stop_service to
5911 	 * prepare reset. At the time of global or IMP reset, the command cannot
5912 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5913 	 * accessed during the reset process. So the mbuf can not be released
5914 	 * during reset and is required to be released after the reset is
5915 	 * completed.
5916 	 */
5917 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5918 		hns3_dev_release_mbufs(hns);
5919 
5920 	ret = hns3_cfg_mac_mode(hw, false);
5921 	if (ret)
5922 		return ret;
5923 	hw->mac.link_status = ETH_LINK_DOWN;
5924 
5925 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5926 		hns3_configure_all_mac_addr(hns, true);
5927 		ret = hns3_reset_all_tqps(hns);
5928 		if (ret) {
5929 			hns3_err(hw, "failed to reset all queues ret = %d.",
5930 				 ret);
5931 			return ret;
5932 		}
5933 	}
5934 	hw->mac.default_addr_setted = false;
5935 	return 0;
5936 }
5937 
5938 static void
5939 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5940 {
5941 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5942 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5943 	struct hns3_adapter *hns = dev->data->dev_private;
5944 	struct hns3_hw *hw = &hns->hw;
5945 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5946 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5947 	uint16_t q_id;
5948 
5949 	if (dev->data->dev_conf.intr_conf.rxq == 0)
5950 		return;
5951 
5952 	/* unmap the ring with vector */
5953 	if (rte_intr_allow_others(intr_handle)) {
5954 		vec = RTE_INTR_VEC_RXTX_OFFSET;
5955 		base = RTE_INTR_VEC_RXTX_OFFSET;
5956 	}
5957 	if (rte_intr_dp_is_en(intr_handle)) {
5958 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5959 			(void)hns3_bind_ring_with_vector(hw, vec, false,
5960 							 HNS3_RING_TYPE_RX,
5961 							 q_id);
5962 			if (vec < base + intr_handle->nb_efd - 1)
5963 				vec++;
5964 		}
5965 	}
5966 	/* Clean datapath event and queue/vec mapping */
5967 	rte_intr_efd_disable(intr_handle);
5968 	if (intr_handle->intr_vec) {
5969 		rte_free(intr_handle->intr_vec);
5970 		intr_handle->intr_vec = NULL;
5971 	}
5972 }
5973 
5974 static int
5975 hns3_dev_stop(struct rte_eth_dev *dev)
5976 {
5977 	struct hns3_adapter *hns = dev->data->dev_private;
5978 	struct hns3_hw *hw = &hns->hw;
5979 
5980 	PMD_INIT_FUNC_TRACE();
5981 	dev->data->dev_started = 0;
5982 
5983 	hw->adapter_state = HNS3_NIC_STOPPING;
5984 	hns3_set_rxtx_function(dev);
5985 	rte_wmb();
5986 	/* Disable datapath on secondary process. */
5987 	hns3_mp_req_stop_rxtx(dev);
5988 	/* Prevent crashes when queues are still in use. */
5989 	rte_delay_ms(hw->cfg_max_queues);
5990 
5991 	rte_spinlock_lock(&hw->lock);
5992 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5993 		hns3_tm_dev_stop_proc(hw);
5994 		hns3_config_mac_tnl_int(hw, false);
5995 		hns3_stop_tqps(hw);
5996 		hns3_do_stop(hns);
5997 		hns3_unmap_rx_interrupt(dev);
5998 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5999 	}
6000 	hns3_rx_scattered_reset(dev);
6001 	rte_eal_alarm_cancel(hns3_service_handler, dev);
6002 	hns3_stop_report_lse(dev);
6003 	rte_spinlock_unlock(&hw->lock);
6004 
6005 	return 0;
6006 }
6007 
6008 static int
6009 hns3_dev_close(struct rte_eth_dev *eth_dev)
6010 {
6011 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6012 	struct hns3_hw *hw = &hns->hw;
6013 	int ret = 0;
6014 
6015 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
6016 		return 0;
6017 
6018 	if (hw->adapter_state == HNS3_NIC_STARTED)
6019 		ret = hns3_dev_stop(eth_dev);
6020 
6021 	hw->adapter_state = HNS3_NIC_CLOSING;
6022 	hns3_reset_abort(hns);
6023 	hw->adapter_state = HNS3_NIC_CLOSED;
6024 
6025 	hns3_configure_all_mc_mac_addr(hns, true);
6026 	hns3_remove_all_vlan_table(hns);
6027 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
6028 	hns3_uninit_pf(eth_dev);
6029 	hns3_free_all_queues(eth_dev);
6030 	rte_free(hw->reset.wait_data);
6031 	hns3_mp_uninit_primary();
6032 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
6033 
6034 	return ret;
6035 }
6036 
6037 static void
6038 hns3_get_autoneg_rxtx_pause_copper(struct hns3_hw *hw, bool *rx_pause,
6039 				   bool *tx_pause)
6040 {
6041 	struct hns3_mac *mac = &hw->mac;
6042 	uint32_t advertising = mac->advertising;
6043 	uint32_t lp_advertising = mac->lp_advertising;
6044 	*rx_pause = false;
6045 	*tx_pause = false;
6046 
6047 	if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) {
6048 		*rx_pause = true;
6049 		*tx_pause = true;
6050 	} else if (advertising & lp_advertising &
6051 		   HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) {
6052 		if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
6053 			*rx_pause = true;
6054 		else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
6055 			*tx_pause = true;
6056 	}
6057 }
6058 
6059 static enum hns3_fc_mode
6060 hns3_get_autoneg_fc_mode(struct hns3_hw *hw)
6061 {
6062 	enum hns3_fc_mode current_mode;
6063 	bool rx_pause = false;
6064 	bool tx_pause = false;
6065 
6066 	switch (hw->mac.media_type) {
6067 	case HNS3_MEDIA_TYPE_COPPER:
6068 		hns3_get_autoneg_rxtx_pause_copper(hw, &rx_pause, &tx_pause);
6069 		break;
6070 
6071 	/*
6072 	 * Flow control auto-negotiation is not supported for fiber and
6073 	 * backpalne media type.
6074 	 */
6075 	case HNS3_MEDIA_TYPE_FIBER:
6076 	case HNS3_MEDIA_TYPE_BACKPLANE:
6077 		hns3_err(hw, "autoneg FC mode can't be obtained, but flow control auto-negotiation is enabled.");
6078 		current_mode = hw->requested_fc_mode;
6079 		goto out;
6080 	default:
6081 		hns3_err(hw, "autoneg FC mode can't be obtained for unknown media type(%u).",
6082 			 hw->mac.media_type);
6083 		current_mode = HNS3_FC_NONE;
6084 		goto out;
6085 	}
6086 
6087 	if (rx_pause && tx_pause)
6088 		current_mode = HNS3_FC_FULL;
6089 	else if (rx_pause)
6090 		current_mode = HNS3_FC_RX_PAUSE;
6091 	else if (tx_pause)
6092 		current_mode = HNS3_FC_TX_PAUSE;
6093 	else
6094 		current_mode = HNS3_FC_NONE;
6095 
6096 out:
6097 	return current_mode;
6098 }
6099 
6100 static enum hns3_fc_mode
6101 hns3_get_current_fc_mode(struct rte_eth_dev *dev)
6102 {
6103 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6104 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6105 	struct hns3_mac *mac = &hw->mac;
6106 
6107 	/*
6108 	 * When the flow control mode is obtained, the device may not complete
6109 	 * auto-negotiation. It is necessary to wait for link establishment.
6110 	 */
6111 	(void)hns3_dev_link_update(dev, 1);
6112 
6113 	/*
6114 	 * If the link auto-negotiation of the nic is disabled, or the flow
6115 	 * control auto-negotiation is not supported, the forced flow control
6116 	 * mode is used.
6117 	 */
6118 	if (mac->link_autoneg == 0 || !pf->support_fc_autoneg)
6119 		return hw->requested_fc_mode;
6120 
6121 	return hns3_get_autoneg_fc_mode(hw);
6122 }
6123 
6124 static int
6125 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
6126 {
6127 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6128 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6129 	enum hns3_fc_mode current_mode;
6130 
6131 	current_mode = hns3_get_current_fc_mode(dev);
6132 	switch (current_mode) {
6133 	case HNS3_FC_FULL:
6134 		fc_conf->mode = RTE_FC_FULL;
6135 		break;
6136 	case HNS3_FC_TX_PAUSE:
6137 		fc_conf->mode = RTE_FC_TX_PAUSE;
6138 		break;
6139 	case HNS3_FC_RX_PAUSE:
6140 		fc_conf->mode = RTE_FC_RX_PAUSE;
6141 		break;
6142 	case HNS3_FC_NONE:
6143 	default:
6144 		fc_conf->mode = RTE_FC_NONE;
6145 		break;
6146 	}
6147 
6148 	fc_conf->pause_time = pf->pause_time;
6149 	fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0;
6150 
6151 	return 0;
6152 }
6153 
6154 static int
6155 hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg)
6156 {
6157 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
6158 
6159 	if (!pf->support_fc_autoneg) {
6160 		if (autoneg != 0) {
6161 			hns3_err(hw, "unsupported fc auto-negotiation setting.");
6162 			return -EOPNOTSUPP;
6163 		}
6164 
6165 		/*
6166 		 * Flow control auto-negotiation of the NIC is not supported,
6167 		 * but other auto-negotiation features may be supported.
6168 		 */
6169 		if (autoneg != hw->mac.link_autoneg) {
6170 			hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to disable autoneg!");
6171 			return -EOPNOTSUPP;
6172 		}
6173 
6174 		return 0;
6175 	}
6176 
6177 	/*
6178 	 * If flow control auto-negotiation of the NIC is supported, all
6179 	 * auto-negotiation features are supported.
6180 	 */
6181 	if (autoneg != hw->mac.link_autoneg) {
6182 		hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!");
6183 		return -EOPNOTSUPP;
6184 	}
6185 
6186 	return 0;
6187 }
6188 
6189 static int
6190 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
6191 {
6192 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6193 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6194 	int ret;
6195 
6196 	if (fc_conf->high_water || fc_conf->low_water ||
6197 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
6198 		hns3_err(hw, "Unsupported flow control settings specified, "
6199 			 "high_water(%u), low_water(%u), send_xon(%u) and "
6200 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
6201 			 fc_conf->high_water, fc_conf->low_water,
6202 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
6203 		return -EINVAL;
6204 	}
6205 
6206 	ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg);
6207 	if (ret)
6208 		return ret;
6209 
6210 	if (!fc_conf->pause_time) {
6211 		hns3_err(hw, "Invalid pause time %u setting.",
6212 			 fc_conf->pause_time);
6213 		return -EINVAL;
6214 	}
6215 
6216 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
6217 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
6218 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
6219 			 "current_fc_status = %d", hw->current_fc_status);
6220 		return -EOPNOTSUPP;
6221 	}
6222 
6223 	if (hw->num_tc > 1 && !pf->support_multi_tc_pause) {
6224 		hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
6225 		return -EOPNOTSUPP;
6226 	}
6227 
6228 	rte_spinlock_lock(&hw->lock);
6229 	ret = hns3_fc_enable(dev, fc_conf);
6230 	rte_spinlock_unlock(&hw->lock);
6231 
6232 	return ret;
6233 }
6234 
6235 static int
6236 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
6237 			    struct rte_eth_pfc_conf *pfc_conf)
6238 {
6239 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6240 	int ret;
6241 
6242 	if (!hns3_dev_dcb_supported(hw)) {
6243 		hns3_err(hw, "This port does not support dcb configurations.");
6244 		return -EOPNOTSUPP;
6245 	}
6246 
6247 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
6248 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
6249 		hns3_err(hw, "Unsupported flow control settings specified, "
6250 			 "high_water(%u), low_water(%u), send_xon(%u) and "
6251 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
6252 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
6253 			 pfc_conf->fc.send_xon,
6254 			 pfc_conf->fc.mac_ctrl_frame_fwd);
6255 		return -EINVAL;
6256 	}
6257 	if (pfc_conf->fc.autoneg) {
6258 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
6259 		return -EINVAL;
6260 	}
6261 	if (pfc_conf->fc.pause_time == 0) {
6262 		hns3_err(hw, "Invalid pause time %u setting.",
6263 			 pfc_conf->fc.pause_time);
6264 		return -EINVAL;
6265 	}
6266 
6267 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
6268 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
6269 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
6270 			     "current_fc_status = %d", hw->current_fc_status);
6271 		return -EOPNOTSUPP;
6272 	}
6273 
6274 	rte_spinlock_lock(&hw->lock);
6275 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
6276 	rte_spinlock_unlock(&hw->lock);
6277 
6278 	return ret;
6279 }
6280 
6281 static int
6282 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
6283 {
6284 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6285 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6286 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
6287 	int i;
6288 
6289 	rte_spinlock_lock(&hw->lock);
6290 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
6291 		dcb_info->nb_tcs = pf->local_max_tc;
6292 	else
6293 		dcb_info->nb_tcs = 1;
6294 
6295 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
6296 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
6297 	for (i = 0; i < dcb_info->nb_tcs; i++)
6298 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
6299 
6300 	for (i = 0; i < hw->num_tc; i++) {
6301 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
6302 		dcb_info->tc_queue.tc_txq[0][i].base =
6303 						hw->tc_queue[i].tqp_offset;
6304 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
6305 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
6306 						hw->tc_queue[i].tqp_count;
6307 	}
6308 	rte_spinlock_unlock(&hw->lock);
6309 
6310 	return 0;
6311 }
6312 
6313 static int
6314 hns3_reinit_dev(struct hns3_adapter *hns)
6315 {
6316 	struct hns3_hw *hw = &hns->hw;
6317 	int ret;
6318 
6319 	ret = hns3_cmd_init(hw);
6320 	if (ret) {
6321 		hns3_err(hw, "Failed to init cmd: %d", ret);
6322 		return ret;
6323 	}
6324 
6325 	ret = hns3_reset_all_tqps(hns);
6326 	if (ret) {
6327 		hns3_err(hw, "Failed to reset all queues: %d", ret);
6328 		return ret;
6329 	}
6330 
6331 	ret = hns3_init_hardware(hns);
6332 	if (ret) {
6333 		hns3_err(hw, "Failed to init hardware: %d", ret);
6334 		return ret;
6335 	}
6336 
6337 	ret = hns3_enable_hw_error_intr(hns, true);
6338 	if (ret) {
6339 		hns3_err(hw, "fail to enable hw error interrupts: %d",
6340 			     ret);
6341 		return ret;
6342 	}
6343 	hns3_info(hw, "Reset done, driver initialization finished.");
6344 
6345 	return 0;
6346 }
6347 
6348 static bool
6349 is_pf_reset_done(struct hns3_hw *hw)
6350 {
6351 	uint32_t val, reg, reg_bit;
6352 
6353 	switch (hw->reset.level) {
6354 	case HNS3_IMP_RESET:
6355 		reg = HNS3_GLOBAL_RESET_REG;
6356 		reg_bit = HNS3_IMP_RESET_BIT;
6357 		break;
6358 	case HNS3_GLOBAL_RESET:
6359 		reg = HNS3_GLOBAL_RESET_REG;
6360 		reg_bit = HNS3_GLOBAL_RESET_BIT;
6361 		break;
6362 	case HNS3_FUNC_RESET:
6363 		reg = HNS3_FUN_RST_ING;
6364 		reg_bit = HNS3_FUN_RST_ING_B;
6365 		break;
6366 	case HNS3_FLR_RESET:
6367 	default:
6368 		hns3_err(hw, "Wait for unsupported reset level: %d",
6369 			 hw->reset.level);
6370 		return true;
6371 	}
6372 	val = hns3_read_dev(hw, reg);
6373 	if (hns3_get_bit(val, reg_bit))
6374 		return false;
6375 	else
6376 		return true;
6377 }
6378 
6379 bool
6380 hns3_is_reset_pending(struct hns3_adapter *hns)
6381 {
6382 	struct hns3_hw *hw = &hns->hw;
6383 	enum hns3_reset_level reset;
6384 
6385 	hns3_check_event_cause(hns, NULL);
6386 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
6387 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
6388 	    hw->reset.level < reset) {
6389 		hns3_warn(hw, "High level reset %d is pending", reset);
6390 		return true;
6391 	}
6392 	reset = hns3_get_reset_level(hns, &hw->reset.request);
6393 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
6394 	    hw->reset.level < reset) {
6395 		hns3_warn(hw, "High level reset %d is request", reset);
6396 		return true;
6397 	}
6398 	return false;
6399 }
6400 
6401 static int
6402 hns3_wait_hardware_ready(struct hns3_adapter *hns)
6403 {
6404 	struct hns3_hw *hw = &hns->hw;
6405 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
6406 	struct timeval tv;
6407 
6408 	if (wait_data->result == HNS3_WAIT_SUCCESS)
6409 		return 0;
6410 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
6411 		hns3_clock_gettime(&tv);
6412 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
6413 			  tv.tv_sec, tv.tv_usec);
6414 		return -ETIME;
6415 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
6416 		return -EAGAIN;
6417 
6418 	wait_data->hns = hns;
6419 	wait_data->check_completion = is_pf_reset_done;
6420 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
6421 				HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms();
6422 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
6423 	wait_data->count = HNS3_RESET_WAIT_CNT;
6424 	wait_data->result = HNS3_WAIT_REQUEST;
6425 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
6426 	return -EAGAIN;
6427 }
6428 
6429 static int
6430 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
6431 {
6432 	struct hns3_cmd_desc desc;
6433 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
6434 
6435 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
6436 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
6437 	req->fun_reset_vfid = func_id;
6438 
6439 	return hns3_cmd_send(hw, &desc, 1);
6440 }
6441 
6442 static int
6443 hns3_imp_reset_cmd(struct hns3_hw *hw)
6444 {
6445 	struct hns3_cmd_desc desc;
6446 
6447 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
6448 	desc.data[0] = 0xeedd;
6449 
6450 	return hns3_cmd_send(hw, &desc, 1);
6451 }
6452 
6453 static void
6454 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
6455 {
6456 	struct hns3_hw *hw = &hns->hw;
6457 	struct timeval tv;
6458 	uint32_t val;
6459 
6460 	hns3_clock_gettime(&tv);
6461 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
6462 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
6463 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
6464 			  tv.tv_sec, tv.tv_usec);
6465 		return;
6466 	}
6467 
6468 	switch (reset_level) {
6469 	case HNS3_IMP_RESET:
6470 		hns3_imp_reset_cmd(hw);
6471 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
6472 			  tv.tv_sec, tv.tv_usec);
6473 		break;
6474 	case HNS3_GLOBAL_RESET:
6475 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
6476 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
6477 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
6478 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
6479 			  tv.tv_sec, tv.tv_usec);
6480 		break;
6481 	case HNS3_FUNC_RESET:
6482 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
6483 			  tv.tv_sec, tv.tv_usec);
6484 		/* schedule again to check later */
6485 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
6486 		hns3_schedule_reset(hns);
6487 		break;
6488 	default:
6489 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
6490 		return;
6491 	}
6492 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
6493 }
6494 
6495 static enum hns3_reset_level
6496 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
6497 {
6498 	struct hns3_hw *hw = &hns->hw;
6499 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
6500 
6501 	/* Return the highest priority reset level amongst all */
6502 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
6503 		reset_level = HNS3_IMP_RESET;
6504 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
6505 		reset_level = HNS3_GLOBAL_RESET;
6506 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
6507 		reset_level = HNS3_FUNC_RESET;
6508 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
6509 		reset_level = HNS3_FLR_RESET;
6510 
6511 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
6512 		return HNS3_NONE_RESET;
6513 
6514 	return reset_level;
6515 }
6516 
6517 static void
6518 hns3_record_imp_error(struct hns3_adapter *hns)
6519 {
6520 	struct hns3_hw *hw = &hns->hw;
6521 	uint32_t reg_val;
6522 
6523 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
6524 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
6525 		hns3_warn(hw, "Detected IMP RD poison!");
6526 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
6527 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
6528 	}
6529 
6530 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
6531 		hns3_warn(hw, "Detected IMP CMDQ error!");
6532 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
6533 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
6534 	}
6535 }
6536 
6537 static int
6538 hns3_prepare_reset(struct hns3_adapter *hns)
6539 {
6540 	struct hns3_hw *hw = &hns->hw;
6541 	uint32_t reg_val;
6542 	int ret;
6543 
6544 	switch (hw->reset.level) {
6545 	case HNS3_FUNC_RESET:
6546 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
6547 		if (ret)
6548 			return ret;
6549 
6550 		/*
6551 		 * After performaning pf reset, it is not necessary to do the
6552 		 * mailbox handling or send any command to firmware, because
6553 		 * any mailbox handling or command to firmware is only valid
6554 		 * after hns3_cmd_init is called.
6555 		 */
6556 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
6557 		hw->reset.stats.request_cnt++;
6558 		break;
6559 	case HNS3_IMP_RESET:
6560 		hns3_record_imp_error(hns);
6561 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
6562 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
6563 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
6564 		break;
6565 	default:
6566 		break;
6567 	}
6568 	return 0;
6569 }
6570 
6571 static int
6572 hns3_set_rst_done(struct hns3_hw *hw)
6573 {
6574 	struct hns3_pf_rst_done_cmd *req;
6575 	struct hns3_cmd_desc desc;
6576 
6577 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
6578 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
6579 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
6580 	return hns3_cmd_send(hw, &desc, 1);
6581 }
6582 
6583 static int
6584 hns3_stop_service(struct hns3_adapter *hns)
6585 {
6586 	struct hns3_hw *hw = &hns->hw;
6587 	struct rte_eth_dev *eth_dev;
6588 
6589 	eth_dev = &rte_eth_devices[hw->data->port_id];
6590 	hw->mac.link_status = ETH_LINK_DOWN;
6591 	if (hw->adapter_state == HNS3_NIC_STARTED) {
6592 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
6593 		hns3_update_linkstatus_and_event(hw, false);
6594 	}
6595 
6596 	hns3_set_rxtx_function(eth_dev);
6597 	rte_wmb();
6598 	/* Disable datapath on secondary process. */
6599 	hns3_mp_req_stop_rxtx(eth_dev);
6600 	rte_delay_ms(hw->cfg_max_queues);
6601 
6602 	rte_spinlock_lock(&hw->lock);
6603 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
6604 	    hw->adapter_state == HNS3_NIC_STOPPING) {
6605 		hns3_enable_all_queues(hw, false);
6606 		hns3_do_stop(hns);
6607 		hw->reset.mbuf_deferred_free = true;
6608 	} else
6609 		hw->reset.mbuf_deferred_free = false;
6610 
6611 	/*
6612 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
6613 	 * from table space. Hence, for function reset software intervention is
6614 	 * required to delete the entries
6615 	 */
6616 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
6617 		hns3_configure_all_mc_mac_addr(hns, true);
6618 	rte_spinlock_unlock(&hw->lock);
6619 
6620 	return 0;
6621 }
6622 
6623 static int
6624 hns3_start_service(struct hns3_adapter *hns)
6625 {
6626 	struct hns3_hw *hw = &hns->hw;
6627 	struct rte_eth_dev *eth_dev;
6628 
6629 	if (hw->reset.level == HNS3_IMP_RESET ||
6630 	    hw->reset.level == HNS3_GLOBAL_RESET)
6631 		hns3_set_rst_done(hw);
6632 	eth_dev = &rte_eth_devices[hw->data->port_id];
6633 	hns3_set_rxtx_function(eth_dev);
6634 	hns3_mp_req_start_rxtx(eth_dev);
6635 	if (hw->adapter_state == HNS3_NIC_STARTED) {
6636 		/*
6637 		 * This API parent function already hold the hns3_hw.lock, the
6638 		 * hns3_service_handler may report lse, in bonding application
6639 		 * it will call driver's ops which may acquire the hns3_hw.lock
6640 		 * again, thus lead to deadlock.
6641 		 * We defer calls hns3_service_handler to avoid the deadlock.
6642 		 */
6643 		rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
6644 				  hns3_service_handler, eth_dev);
6645 
6646 		/* Enable interrupt of all rx queues before enabling queues */
6647 		hns3_dev_all_rx_queue_intr_enable(hw, true);
6648 		/*
6649 		 * Enable state of each rxq and txq will be recovered after
6650 		 * reset, so we need to restore them before enable all tqps;
6651 		 */
6652 		hns3_restore_tqp_enable_state(hw);
6653 		/*
6654 		 * When finished the initialization, enable queues to receive
6655 		 * and transmit packets.
6656 		 */
6657 		hns3_enable_all_queues(hw, true);
6658 	}
6659 
6660 	return 0;
6661 }
6662 
6663 static int
6664 hns3_restore_conf(struct hns3_adapter *hns)
6665 {
6666 	struct hns3_hw *hw = &hns->hw;
6667 	int ret;
6668 
6669 	ret = hns3_configure_all_mac_addr(hns, false);
6670 	if (ret)
6671 		return ret;
6672 
6673 	ret = hns3_configure_all_mc_mac_addr(hns, false);
6674 	if (ret)
6675 		goto err_mc_mac;
6676 
6677 	ret = hns3_dev_promisc_restore(hns);
6678 	if (ret)
6679 		goto err_promisc;
6680 
6681 	ret = hns3_restore_vlan_table(hns);
6682 	if (ret)
6683 		goto err_promisc;
6684 
6685 	ret = hns3_restore_vlan_conf(hns);
6686 	if (ret)
6687 		goto err_promisc;
6688 
6689 	ret = hns3_restore_all_fdir_filter(hns);
6690 	if (ret)
6691 		goto err_promisc;
6692 
6693 	ret = hns3_restore_ptp(hns);
6694 	if (ret)
6695 		goto err_promisc;
6696 
6697 	ret = hns3_restore_rx_interrupt(hw);
6698 	if (ret)
6699 		goto err_promisc;
6700 
6701 	ret = hns3_restore_gro_conf(hw);
6702 	if (ret)
6703 		goto err_promisc;
6704 
6705 	ret = hns3_restore_fec(hw);
6706 	if (ret)
6707 		goto err_promisc;
6708 
6709 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
6710 		ret = hns3_do_start(hns, false);
6711 		if (ret)
6712 			goto err_promisc;
6713 		hns3_info(hw, "hns3 dev restart successful!");
6714 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
6715 		hw->adapter_state = HNS3_NIC_CONFIGURED;
6716 	return 0;
6717 
6718 err_promisc:
6719 	hns3_configure_all_mc_mac_addr(hns, true);
6720 err_mc_mac:
6721 	hns3_configure_all_mac_addr(hns, true);
6722 	return ret;
6723 }
6724 
6725 static void
6726 hns3_reset_service(void *param)
6727 {
6728 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
6729 	struct hns3_hw *hw = &hns->hw;
6730 	enum hns3_reset_level reset_level;
6731 	struct timeval tv_delta;
6732 	struct timeval tv_start;
6733 	struct timeval tv;
6734 	uint64_t msec;
6735 	int ret;
6736 
6737 	/*
6738 	 * The interrupt is not triggered within the delay time.
6739 	 * The interrupt may have been lost. It is necessary to handle
6740 	 * the interrupt to recover from the error.
6741 	 */
6742 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6743 			    SCHEDULE_DEFERRED) {
6744 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
6745 				  __ATOMIC_RELAXED);
6746 		hns3_err(hw, "Handling interrupts in delayed tasks");
6747 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
6748 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6749 		if (reset_level == HNS3_NONE_RESET) {
6750 			hns3_err(hw, "No reset level is set, try IMP reset");
6751 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
6752 		}
6753 	}
6754 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
6755 
6756 	/*
6757 	 * Check if there is any ongoing reset in the hardware. This status can
6758 	 * be checked from reset_pending. If there is then, we need to wait for
6759 	 * hardware to complete reset.
6760 	 *    a. If we are able to figure out in reasonable time that hardware
6761 	 *       has fully resetted then, we can proceed with driver, client
6762 	 *       reset.
6763 	 *    b. else, we can come back later to check this status so re-sched
6764 	 *       now.
6765 	 */
6766 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6767 	if (reset_level != HNS3_NONE_RESET) {
6768 		hns3_clock_gettime(&tv_start);
6769 		ret = hns3_reset_process(hns, reset_level);
6770 		hns3_clock_gettime(&tv);
6771 		timersub(&tv, &tv_start, &tv_delta);
6772 		msec = hns3_clock_calctime_ms(&tv_delta);
6773 		if (msec > HNS3_RESET_PROCESS_MS)
6774 			hns3_err(hw, "%d handle long time delta %" PRIu64
6775 				     " ms time=%ld.%.6ld",
6776 				 hw->reset.level, msec,
6777 				 tv.tv_sec, tv.tv_usec);
6778 		if (ret == -EAGAIN)
6779 			return;
6780 	}
6781 
6782 	/* Check if we got any *new* reset requests to be honored */
6783 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6784 	if (reset_level != HNS3_NONE_RESET)
6785 		hns3_msix_process(hns, reset_level);
6786 }
6787 
6788 static unsigned int
6789 hns3_get_speed_capa_num(uint16_t device_id)
6790 {
6791 	unsigned int num;
6792 
6793 	switch (device_id) {
6794 	case HNS3_DEV_ID_25GE:
6795 	case HNS3_DEV_ID_25GE_RDMA:
6796 		num = 2;
6797 		break;
6798 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6799 	case HNS3_DEV_ID_200G_RDMA:
6800 		num = 1;
6801 		break;
6802 	default:
6803 		num = 0;
6804 		break;
6805 	}
6806 
6807 	return num;
6808 }
6809 
6810 static int
6811 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6812 			uint16_t device_id)
6813 {
6814 	switch (device_id) {
6815 	case HNS3_DEV_ID_25GE:
6816 	/* fallthrough */
6817 	case HNS3_DEV_ID_25GE_RDMA:
6818 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6819 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6820 
6821 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
6822 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6823 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6824 		break;
6825 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6826 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6827 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6828 		break;
6829 	case HNS3_DEV_ID_200G_RDMA:
6830 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6831 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6832 		break;
6833 	default:
6834 		return -ENOTSUP;
6835 	}
6836 
6837 	return 0;
6838 }
6839 
6840 static int
6841 hns3_fec_get_capability(struct rte_eth_dev *dev,
6842 			struct rte_eth_fec_capa *speed_fec_capa,
6843 			unsigned int num)
6844 {
6845 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6846 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6847 	uint16_t device_id = pci_dev->id.device_id;
6848 	unsigned int capa_num;
6849 	int ret;
6850 
6851 	capa_num = hns3_get_speed_capa_num(device_id);
6852 	if (capa_num == 0) {
6853 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6854 			 device_id);
6855 		return -ENOTSUP;
6856 	}
6857 
6858 	if (speed_fec_capa == NULL || num < capa_num)
6859 		return capa_num;
6860 
6861 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6862 	if (ret)
6863 		return -ENOTSUP;
6864 
6865 	return capa_num;
6866 }
6867 
6868 static int
6869 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6870 {
6871 	struct hns3_config_fec_cmd *req;
6872 	struct hns3_cmd_desc desc;
6873 	int ret;
6874 
6875 	/*
6876 	 * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6877 	 * in device of link speed
6878 	 * below 10 Gbps.
6879 	 */
6880 	if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
6881 		*state = 0;
6882 		return 0;
6883 	}
6884 
6885 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6886 	req = (struct hns3_config_fec_cmd *)desc.data;
6887 	ret = hns3_cmd_send(hw, &desc, 1);
6888 	if (ret) {
6889 		hns3_err(hw, "get current fec auto state failed, ret = %d",
6890 			 ret);
6891 		return ret;
6892 	}
6893 
6894 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6895 	return 0;
6896 }
6897 
6898 static int
6899 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6900 {
6901 	struct hns3_sfp_info_cmd *resp;
6902 	uint32_t tmp_fec_capa;
6903 	uint8_t auto_state;
6904 	struct hns3_cmd_desc desc;
6905 	int ret;
6906 
6907 	/*
6908 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6909 	 * configured FEC mode is returned.
6910 	 * If link is up, current FEC mode is returned.
6911 	 */
6912 	if (hw->mac.link_status == ETH_LINK_DOWN) {
6913 		ret = get_current_fec_auto_state(hw, &auto_state);
6914 		if (ret)
6915 			return ret;
6916 
6917 		if (auto_state == 0x1) {
6918 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6919 			return 0;
6920 		}
6921 	}
6922 
6923 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
6924 	resp = (struct hns3_sfp_info_cmd *)desc.data;
6925 	resp->query_type = HNS3_ACTIVE_QUERY;
6926 
6927 	ret = hns3_cmd_send(hw, &desc, 1);
6928 	if (ret == -EOPNOTSUPP) {
6929 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6930 		return ret;
6931 	} else if (ret) {
6932 		hns3_err(hw, "get FEC failed, ret = %d", ret);
6933 		return ret;
6934 	}
6935 
6936 	/*
6937 	 * FEC mode order defined in hns3 hardware is inconsistend with
6938 	 * that defined in the ethdev library. So the sequence needs
6939 	 * to be converted.
6940 	 */
6941 	switch (resp->active_fec) {
6942 	case HNS3_HW_FEC_MODE_NOFEC:
6943 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6944 		break;
6945 	case HNS3_HW_FEC_MODE_BASER:
6946 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6947 		break;
6948 	case HNS3_HW_FEC_MODE_RS:
6949 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6950 		break;
6951 	default:
6952 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6953 		break;
6954 	}
6955 
6956 	*fec_capa = tmp_fec_capa;
6957 	return 0;
6958 }
6959 
6960 static int
6961 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6962 {
6963 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6964 
6965 	return hns3_fec_get_internal(hw, fec_capa);
6966 }
6967 
6968 static int
6969 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6970 {
6971 	struct hns3_config_fec_cmd *req;
6972 	struct hns3_cmd_desc desc;
6973 	int ret;
6974 
6975 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6976 
6977 	req = (struct hns3_config_fec_cmd *)desc.data;
6978 	switch (mode) {
6979 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6980 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6981 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6982 		break;
6983 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6984 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6985 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6986 		break;
6987 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6988 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6989 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6990 		break;
6991 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6992 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6993 		break;
6994 	default:
6995 		return 0;
6996 	}
6997 	ret = hns3_cmd_send(hw, &desc, 1);
6998 	if (ret)
6999 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
7000 
7001 	return ret;
7002 }
7003 
7004 static uint32_t
7005 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
7006 {
7007 	struct hns3_mac *mac = &hw->mac;
7008 	uint32_t cur_capa;
7009 
7010 	switch (mac->link_speed) {
7011 	case ETH_SPEED_NUM_10G:
7012 		cur_capa = fec_capa[1].capa;
7013 		break;
7014 	case ETH_SPEED_NUM_25G:
7015 	case ETH_SPEED_NUM_100G:
7016 	case ETH_SPEED_NUM_200G:
7017 		cur_capa = fec_capa[0].capa;
7018 		break;
7019 	default:
7020 		cur_capa = 0;
7021 		break;
7022 	}
7023 
7024 	return cur_capa;
7025 }
7026 
7027 static bool
7028 is_fec_mode_one_bit_set(uint32_t mode)
7029 {
7030 	int cnt = 0;
7031 	uint8_t i;
7032 
7033 	for (i = 0; i < sizeof(mode); i++)
7034 		if (mode >> i & 0x1)
7035 			cnt++;
7036 
7037 	return cnt == 1 ? true : false;
7038 }
7039 
7040 static int
7041 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
7042 {
7043 #define FEC_CAPA_NUM 2
7044 	struct hns3_adapter *hns = dev->data->dev_private;
7045 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
7046 	struct hns3_pf *pf = &hns->pf;
7047 
7048 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
7049 	uint32_t cur_capa;
7050 	uint32_t num = FEC_CAPA_NUM;
7051 	int ret;
7052 
7053 	ret = hns3_fec_get_capability(dev, fec_capa, num);
7054 	if (ret < 0)
7055 		return ret;
7056 
7057 	/* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
7058 	if (!is_fec_mode_one_bit_set(mode)) {
7059 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD, "
7060 			     "FEC mode should be only one bit set", mode);
7061 		return -EINVAL;
7062 	}
7063 
7064 	/*
7065 	 * Check whether the configured mode is within the FEC capability.
7066 	 * If not, the configured mode will not be supported.
7067 	 */
7068 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
7069 	if (!(cur_capa & mode)) {
7070 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
7071 		return -EINVAL;
7072 	}
7073 
7074 	rte_spinlock_lock(&hw->lock);
7075 	ret = hns3_set_fec_hw(hw, mode);
7076 	if (ret) {
7077 		rte_spinlock_unlock(&hw->lock);
7078 		return ret;
7079 	}
7080 
7081 	pf->fec_mode = mode;
7082 	rte_spinlock_unlock(&hw->lock);
7083 
7084 	return 0;
7085 }
7086 
7087 static int
7088 hns3_restore_fec(struct hns3_hw *hw)
7089 {
7090 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
7091 	struct hns3_pf *pf = &hns->pf;
7092 	uint32_t mode = pf->fec_mode;
7093 	int ret;
7094 
7095 	ret = hns3_set_fec_hw(hw, mode);
7096 	if (ret)
7097 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
7098 			 mode, ret);
7099 
7100 	return ret;
7101 }
7102 
7103 static int
7104 hns3_query_dev_fec_info(struct hns3_hw *hw)
7105 {
7106 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
7107 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
7108 	int ret;
7109 
7110 	ret = hns3_fec_get_internal(hw, &pf->fec_mode);
7111 	if (ret)
7112 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
7113 
7114 	return ret;
7115 }
7116 
7117 static bool
7118 hns3_optical_module_existed(struct hns3_hw *hw)
7119 {
7120 	struct hns3_cmd_desc desc;
7121 	bool existed;
7122 	int ret;
7123 
7124 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
7125 	ret = hns3_cmd_send(hw, &desc, 1);
7126 	if (ret) {
7127 		hns3_err(hw,
7128 			 "fail to get optical module exist state, ret = %d.\n",
7129 			 ret);
7130 		return false;
7131 	}
7132 	existed = !!desc.data[0];
7133 
7134 	return existed;
7135 }
7136 
7137 static int
7138 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
7139 				uint32_t len, uint8_t *data)
7140 {
7141 #define HNS3_SFP_INFO_CMD_NUM 6
7142 #define HNS3_SFP_INFO_MAX_LEN \
7143 	(HNS3_SFP_INFO_BD0_LEN + \
7144 	(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
7145 	struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
7146 	struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
7147 	uint16_t read_len;
7148 	uint16_t copy_len;
7149 	int ret;
7150 	int i;
7151 
7152 	for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
7153 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
7154 					  true);
7155 		if (i < HNS3_SFP_INFO_CMD_NUM - 1)
7156 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
7157 	}
7158 
7159 	sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
7160 	sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
7161 	read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
7162 	sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
7163 
7164 	ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
7165 	if (ret) {
7166 		hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
7167 				ret);
7168 		return ret;
7169 	}
7170 
7171 	/* The data format in BD0 is different with the others. */
7172 	copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
7173 	memcpy(data, sfp_info_bd0->data, copy_len);
7174 	read_len = copy_len;
7175 
7176 	for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
7177 		if (read_len >= len)
7178 			break;
7179 
7180 		copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
7181 		memcpy(data + read_len, desc[i].data, copy_len);
7182 		read_len += copy_len;
7183 	}
7184 
7185 	return (int)read_len;
7186 }
7187 
7188 static int
7189 hns3_get_module_eeprom(struct rte_eth_dev *dev,
7190 		       struct rte_dev_eeprom_info *info)
7191 {
7192 	struct hns3_adapter *hns = dev->data->dev_private;
7193 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
7194 	uint32_t offset = info->offset;
7195 	uint32_t len = info->length;
7196 	uint8_t *data = info->data;
7197 	uint32_t read_len = 0;
7198 
7199 	if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
7200 		return -ENOTSUP;
7201 
7202 	if (!hns3_optical_module_existed(hw)) {
7203 		hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
7204 		return -EIO;
7205 	}
7206 
7207 	while (read_len < len) {
7208 		int ret;
7209 		ret = hns3_get_module_eeprom_data(hw, offset + read_len,
7210 						  len - read_len,
7211 						  data + read_len);
7212 		if (ret < 0)
7213 			return -EIO;
7214 		read_len += ret;
7215 	}
7216 
7217 	return 0;
7218 }
7219 
7220 static int
7221 hns3_get_module_info(struct rte_eth_dev *dev,
7222 		     struct rte_eth_dev_module_info *modinfo)
7223 {
7224 #define HNS3_SFF8024_ID_SFP		0x03
7225 #define HNS3_SFF8024_ID_QSFP_8438	0x0c
7226 #define HNS3_SFF8024_ID_QSFP_8436_8636	0x0d
7227 #define HNS3_SFF8024_ID_QSFP28_8636	0x11
7228 #define HNS3_SFF_8636_V1_3		0x03
7229 	struct hns3_adapter *hns = dev->data->dev_private;
7230 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
7231 	struct rte_dev_eeprom_info info;
7232 	struct hns3_sfp_type sfp_type;
7233 	int ret;
7234 
7235 	memset(&sfp_type, 0, sizeof(sfp_type));
7236 	memset(&info, 0, sizeof(info));
7237 	info.data = (uint8_t *)&sfp_type;
7238 	info.length = sizeof(sfp_type);
7239 	ret = hns3_get_module_eeprom(dev, &info);
7240 	if (ret)
7241 		return ret;
7242 
7243 	switch (sfp_type.type) {
7244 	case HNS3_SFF8024_ID_SFP:
7245 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
7246 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
7247 		break;
7248 	case HNS3_SFF8024_ID_QSFP_8438:
7249 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
7250 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
7251 		break;
7252 	case HNS3_SFF8024_ID_QSFP_8436_8636:
7253 		if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
7254 			modinfo->type = RTE_ETH_MODULE_SFF_8436;
7255 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
7256 		} else {
7257 			modinfo->type = RTE_ETH_MODULE_SFF_8636;
7258 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
7259 		}
7260 		break;
7261 	case HNS3_SFF8024_ID_QSFP28_8636:
7262 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
7263 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
7264 		break;
7265 	default:
7266 		hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
7267 			 sfp_type.type, sfp_type.ext_type);
7268 		return -EINVAL;
7269 	}
7270 
7271 	return 0;
7272 }
7273 
7274 void
7275 hns3_clock_gettime(struct timeval *tv)
7276 {
7277 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
7278 #define CLOCK_TYPE CLOCK_MONOTONIC_RAW
7279 #else
7280 #define CLOCK_TYPE CLOCK_MONOTONIC
7281 #endif
7282 #define NSEC_TO_USEC_DIV 1000
7283 
7284 	struct timespec spec;
7285 	(void)clock_gettime(CLOCK_TYPE, &spec);
7286 
7287 	tv->tv_sec = spec.tv_sec;
7288 	tv->tv_usec = spec.tv_nsec / NSEC_TO_USEC_DIV;
7289 }
7290 
7291 uint64_t
7292 hns3_clock_calctime_ms(struct timeval *tv)
7293 {
7294 	return (uint64_t)tv->tv_sec * MSEC_PER_SEC +
7295 		tv->tv_usec / USEC_PER_MSEC;
7296 }
7297 
7298 uint64_t
7299 hns3_clock_gettime_ms(void)
7300 {
7301 	struct timeval tv;
7302 
7303 	hns3_clock_gettime(&tv);
7304 	return hns3_clock_calctime_ms(&tv);
7305 }
7306 
7307 static int
7308 hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
7309 {
7310 	uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
7311 
7312 	RTE_SET_USED(key);
7313 
7314 	if (strcmp(value, "vec") == 0)
7315 		hint = HNS3_IO_FUNC_HINT_VEC;
7316 	else if (strcmp(value, "sve") == 0)
7317 		hint = HNS3_IO_FUNC_HINT_SVE;
7318 	else if (strcmp(value, "simple") == 0)
7319 		hint = HNS3_IO_FUNC_HINT_SIMPLE;
7320 	else if (strcmp(value, "common") == 0)
7321 		hint = HNS3_IO_FUNC_HINT_COMMON;
7322 
7323 	/* If the hint is valid then update output parameters */
7324 	if (hint != HNS3_IO_FUNC_HINT_NONE)
7325 		*(uint32_t *)extra_args = hint;
7326 
7327 	return 0;
7328 }
7329 
7330 static const char *
7331 hns3_get_io_hint_func_name(uint32_t hint)
7332 {
7333 	switch (hint) {
7334 	case HNS3_IO_FUNC_HINT_VEC:
7335 		return "vec";
7336 	case HNS3_IO_FUNC_HINT_SVE:
7337 		return "sve";
7338 	case HNS3_IO_FUNC_HINT_SIMPLE:
7339 		return "simple";
7340 	case HNS3_IO_FUNC_HINT_COMMON:
7341 		return "common";
7342 	default:
7343 		return "none";
7344 	}
7345 }
7346 
7347 static int
7348 hns3_parse_dev_caps_mask(const char *key, const char *value, void *extra_args)
7349 {
7350 	uint64_t val;
7351 
7352 	RTE_SET_USED(key);
7353 
7354 	val = strtoull(value, NULL, 16);
7355 	*(uint64_t *)extra_args = val;
7356 
7357 	return 0;
7358 }
7359 
7360 void
7361 hns3_parse_devargs(struct rte_eth_dev *dev)
7362 {
7363 	struct hns3_adapter *hns = dev->data->dev_private;
7364 	uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
7365 	uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
7366 	struct hns3_hw *hw = &hns->hw;
7367 	uint64_t dev_caps_mask = 0;
7368 	struct rte_kvargs *kvlist;
7369 
7370 	if (dev->device->devargs == NULL)
7371 		return;
7372 
7373 	kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
7374 	if (!kvlist)
7375 		return;
7376 
7377 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
7378 			   &hns3_parse_io_hint_func, &rx_func_hint);
7379 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
7380 			   &hns3_parse_io_hint_func, &tx_func_hint);
7381 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_DEV_CAPS_MASK,
7382 			   &hns3_parse_dev_caps_mask, &dev_caps_mask);
7383 	rte_kvargs_free(kvlist);
7384 
7385 	if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
7386 		hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
7387 			  hns3_get_io_hint_func_name(rx_func_hint));
7388 	hns->rx_func_hint = rx_func_hint;
7389 	if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
7390 		hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
7391 			  hns3_get_io_hint_func_name(tx_func_hint));
7392 	hns->tx_func_hint = tx_func_hint;
7393 
7394 	if (dev_caps_mask != 0)
7395 		hns3_warn(hw, "parsed %s = 0x%" PRIx64 ".",
7396 			  HNS3_DEVARG_DEV_CAPS_MASK, dev_caps_mask);
7397 	hns->dev_caps_mask = dev_caps_mask;
7398 }
7399 
7400 static const struct eth_dev_ops hns3_eth_dev_ops = {
7401 	.dev_configure      = hns3_dev_configure,
7402 	.dev_start          = hns3_dev_start,
7403 	.dev_stop           = hns3_dev_stop,
7404 	.dev_close          = hns3_dev_close,
7405 	.promiscuous_enable = hns3_dev_promiscuous_enable,
7406 	.promiscuous_disable = hns3_dev_promiscuous_disable,
7407 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
7408 	.allmulticast_disable = hns3_dev_allmulticast_disable,
7409 	.mtu_set            = hns3_dev_mtu_set,
7410 	.stats_get          = hns3_stats_get,
7411 	.stats_reset        = hns3_stats_reset,
7412 	.xstats_get         = hns3_dev_xstats_get,
7413 	.xstats_get_names   = hns3_dev_xstats_get_names,
7414 	.xstats_reset       = hns3_dev_xstats_reset,
7415 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
7416 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
7417 	.dev_infos_get          = hns3_dev_infos_get,
7418 	.fw_version_get         = hns3_fw_version_get,
7419 	.rx_queue_setup         = hns3_rx_queue_setup,
7420 	.tx_queue_setup         = hns3_tx_queue_setup,
7421 	.rx_queue_release       = hns3_dev_rx_queue_release,
7422 	.tx_queue_release       = hns3_dev_tx_queue_release,
7423 	.rx_queue_start         = hns3_dev_rx_queue_start,
7424 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
7425 	.tx_queue_start         = hns3_dev_tx_queue_start,
7426 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
7427 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
7428 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
7429 	.rxq_info_get           = hns3_rxq_info_get,
7430 	.txq_info_get           = hns3_txq_info_get,
7431 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
7432 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
7433 	.flow_ctrl_get          = hns3_flow_ctrl_get,
7434 	.flow_ctrl_set          = hns3_flow_ctrl_set,
7435 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
7436 	.mac_addr_add           = hns3_add_mac_addr,
7437 	.mac_addr_remove        = hns3_remove_mac_addr,
7438 	.mac_addr_set           = hns3_set_default_mac_addr,
7439 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
7440 	.link_update            = hns3_dev_link_update,
7441 	.dev_set_link_up        = hns3_dev_set_link_up,
7442 	.dev_set_link_down      = hns3_dev_set_link_down,
7443 	.rss_hash_update        = hns3_dev_rss_hash_update,
7444 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
7445 	.reta_update            = hns3_dev_rss_reta_update,
7446 	.reta_query             = hns3_dev_rss_reta_query,
7447 	.flow_ops_get           = hns3_dev_flow_ops_get,
7448 	.vlan_filter_set        = hns3_vlan_filter_set,
7449 	.vlan_tpid_set          = hns3_vlan_tpid_set,
7450 	.vlan_offload_set       = hns3_vlan_offload_set,
7451 	.vlan_pvid_set          = hns3_vlan_pvid_set,
7452 	.get_reg                = hns3_get_regs,
7453 	.get_module_info        = hns3_get_module_info,
7454 	.get_module_eeprom      = hns3_get_module_eeprom,
7455 	.get_dcb_info           = hns3_get_dcb_info,
7456 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
7457 	.fec_get_capability     = hns3_fec_get_capability,
7458 	.fec_get                = hns3_fec_get,
7459 	.fec_set                = hns3_fec_set,
7460 	.tm_ops_get             = hns3_tm_ops_get,
7461 	.tx_done_cleanup        = hns3_tx_done_cleanup,
7462 	.timesync_enable            = hns3_timesync_enable,
7463 	.timesync_disable           = hns3_timesync_disable,
7464 	.timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
7465 	.timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
7466 	.timesync_adjust_time       = hns3_timesync_adjust_time,
7467 	.timesync_read_time         = hns3_timesync_read_time,
7468 	.timesync_write_time        = hns3_timesync_write_time,
7469 };
7470 
7471 static const struct hns3_reset_ops hns3_reset_ops = {
7472 	.reset_service       = hns3_reset_service,
7473 	.stop_service        = hns3_stop_service,
7474 	.prepare_reset       = hns3_prepare_reset,
7475 	.wait_hardware_ready = hns3_wait_hardware_ready,
7476 	.reinit_dev          = hns3_reinit_dev,
7477 	.restore_conf	     = hns3_restore_conf,
7478 	.start_service       = hns3_start_service,
7479 };
7480 
7481 static int
7482 hns3_dev_init(struct rte_eth_dev *eth_dev)
7483 {
7484 	struct hns3_adapter *hns = eth_dev->data->dev_private;
7485 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
7486 	struct rte_ether_addr *eth_addr;
7487 	struct hns3_hw *hw = &hns->hw;
7488 	int ret;
7489 
7490 	PMD_INIT_FUNC_TRACE();
7491 
7492 	hns3_flow_init(eth_dev);
7493 
7494 	hns3_set_rxtx_function(eth_dev);
7495 	eth_dev->dev_ops = &hns3_eth_dev_ops;
7496 	eth_dev->rx_queue_count = hns3_rx_queue_count;
7497 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
7498 		ret = hns3_mp_init_secondary();
7499 		if (ret) {
7500 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
7501 				     "process, ret = %d", ret);
7502 			goto err_mp_init_secondary;
7503 		}
7504 		hw->secondary_cnt++;
7505 		hns3_tx_push_init(eth_dev);
7506 		return 0;
7507 	}
7508 
7509 	ret = hns3_mp_init_primary();
7510 	if (ret) {
7511 		PMD_INIT_LOG(ERR,
7512 			     "Failed to init for primary process, ret = %d",
7513 			     ret);
7514 		goto err_mp_init_primary;
7515 	}
7516 
7517 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
7518 	hns->is_vf = false;
7519 	hw->data = eth_dev->data;
7520 	hns3_parse_devargs(eth_dev);
7521 
7522 	/*
7523 	 * Set default max packet size according to the mtu
7524 	 * default vale in DPDK frame.
7525 	 */
7526 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
7527 
7528 	ret = hns3_reset_init(hw);
7529 	if (ret)
7530 		goto err_init_reset;
7531 	hw->reset.ops = &hns3_reset_ops;
7532 
7533 	ret = hns3_init_pf(eth_dev);
7534 	if (ret) {
7535 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
7536 		goto err_init_pf;
7537 	}
7538 
7539 	/* Allocate memory for storing MAC addresses */
7540 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
7541 					       sizeof(struct rte_ether_addr) *
7542 					       HNS3_UC_MACADDR_NUM, 0);
7543 	if (eth_dev->data->mac_addrs == NULL) {
7544 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
7545 			     "to store MAC addresses",
7546 			     sizeof(struct rte_ether_addr) *
7547 			     HNS3_UC_MACADDR_NUM);
7548 		ret = -ENOMEM;
7549 		goto err_rte_zmalloc;
7550 	}
7551 
7552 	eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
7553 	if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
7554 		rte_eth_random_addr(hw->mac.mac_addr);
7555 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
7556 				(struct rte_ether_addr *)hw->mac.mac_addr);
7557 		hns3_warn(hw, "default mac_addr from firmware is an invalid "
7558 			  "unicast address, using random MAC address %s",
7559 			  mac_str);
7560 	}
7561 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
7562 			    &eth_dev->data->mac_addrs[0]);
7563 
7564 	hw->adapter_state = HNS3_NIC_INITIALIZED;
7565 
7566 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
7567 			    SCHEDULE_PENDING) {
7568 		hns3_err(hw, "Reschedule reset service after dev_init");
7569 		hns3_schedule_reset(hns);
7570 	} else {
7571 		/* IMP will wait ready flag before reset */
7572 		hns3_notify_reset_ready(hw, false);
7573 	}
7574 
7575 	hns3_info(hw, "hns3 dev initialization successful!");
7576 	return 0;
7577 
7578 err_rte_zmalloc:
7579 	hns3_uninit_pf(eth_dev);
7580 
7581 err_init_pf:
7582 	rte_free(hw->reset.wait_data);
7583 
7584 err_init_reset:
7585 	hns3_mp_uninit_primary();
7586 
7587 err_mp_init_primary:
7588 err_mp_init_secondary:
7589 	eth_dev->dev_ops = NULL;
7590 	eth_dev->rx_pkt_burst = NULL;
7591 	eth_dev->rx_descriptor_status = NULL;
7592 	eth_dev->tx_pkt_burst = NULL;
7593 	eth_dev->tx_pkt_prepare = NULL;
7594 	eth_dev->tx_descriptor_status = NULL;
7595 	return ret;
7596 }
7597 
7598 static int
7599 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
7600 {
7601 	struct hns3_adapter *hns = eth_dev->data->dev_private;
7602 	struct hns3_hw *hw = &hns->hw;
7603 
7604 	PMD_INIT_FUNC_TRACE();
7605 
7606 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
7607 		return 0;
7608 
7609 	if (hw->adapter_state < HNS3_NIC_CLOSING)
7610 		hns3_dev_close(eth_dev);
7611 
7612 	hw->adapter_state = HNS3_NIC_REMOVED;
7613 	return 0;
7614 }
7615 
7616 static int
7617 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
7618 		   struct rte_pci_device *pci_dev)
7619 {
7620 	return rte_eth_dev_pci_generic_probe(pci_dev,
7621 					     sizeof(struct hns3_adapter),
7622 					     hns3_dev_init);
7623 }
7624 
7625 static int
7626 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
7627 {
7628 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
7629 }
7630 
7631 static const struct rte_pci_id pci_id_hns3_map[] = {
7632 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
7633 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
7634 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
7635 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
7636 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
7637 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
7638 	{ .vendor_id = 0, }, /* sentinel */
7639 };
7640 
7641 static struct rte_pci_driver rte_hns3_pmd = {
7642 	.id_table = pci_id_hns3_map,
7643 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
7644 	.probe = eth_hns3_pci_probe,
7645 	.remove = eth_hns3_pci_remove,
7646 };
7647 
7648 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
7649 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
7650 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
7651 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
7652 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
7653 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
7654 		HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");
7655 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE);
7656 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);
7657