xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision cb440babbd45a80c059f8bc80e87c48d09086fd7)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdio.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <unistd.h>
12 #include <rte_atomic.h>
13 #include <rte_bus_pci.h>
14 #include <rte_common.h>
15 #include <rte_cycles.h>
16 #include <rte_dev.h>
17 #include <rte_eal.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_interrupts.h>
22 #include <rte_io.h>
23 #include <rte_log.h>
24 #include <rte_pci.h>
25 
26 #include "hns3_ethdev.h"
27 #include "hns3_logs.h"
28 #include "hns3_rxtx.h"
29 #include "hns3_intr.h"
30 #include "hns3_regs.h"
31 #include "hns3_dcb.h"
32 #include "hns3_mp.h"
33 
34 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE	32
35 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM	1
36 
37 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
38 #define HNS3_INVLID_PVID		0xFFFF
39 
40 #define HNS3_FILTER_TYPE_VF		0
41 #define HNS3_FILTER_TYPE_PORT		1
42 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
43 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
44 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
45 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
46 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
47 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
48 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
49 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
50 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
51 
52 /* Reset related Registers */
53 #define HNS3_GLOBAL_RESET_BIT		0
54 #define HNS3_CORE_RESET_BIT		1
55 #define HNS3_IMP_RESET_BIT		2
56 #define HNS3_FUN_RST_ING_B		0
57 
58 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
59 
60 #define HNS3_RESET_WAIT_MS	100
61 #define HNS3_RESET_WAIT_CNT	200
62 
63 enum hns3_evt_cause {
64 	HNS3_VECTOR0_EVENT_RST,
65 	HNS3_VECTOR0_EVENT_MBX,
66 	HNS3_VECTOR0_EVENT_ERR,
67 	HNS3_VECTOR0_EVENT_OTHER,
68 };
69 
70 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
71 						 uint64_t *levels);
72 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
73 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
74 				    int on);
75 static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
76 
77 static int hns3_add_mc_addr(struct hns3_hw *hw,
78 			    struct rte_ether_addr *mac_addr);
79 static int hns3_remove_mc_addr(struct hns3_hw *hw,
80 			    struct rte_ether_addr *mac_addr);
81 
82 static void
83 hns3_pf_disable_irq0(struct hns3_hw *hw)
84 {
85 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
86 }
87 
88 static void
89 hns3_pf_enable_irq0(struct hns3_hw *hw)
90 {
91 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
92 }
93 
94 static enum hns3_evt_cause
95 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
96 {
97 	struct hns3_hw *hw = &hns->hw;
98 	uint32_t vector0_int_stats;
99 	uint32_t cmdq_src_val;
100 	uint32_t val;
101 	enum hns3_evt_cause ret;
102 
103 	/* fetch the events from their corresponding regs */
104 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
105 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
106 
107 	/*
108 	 * Assumption: If by any chance reset and mailbox events are reported
109 	 * together then we will only process reset event and defer the
110 	 * processing of the mailbox events. Since, we would have not cleared
111 	 * RX CMDQ event this time we would receive again another interrupt
112 	 * from H/W just for the mailbox.
113 	 */
114 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
115 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
116 		hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
117 		val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
118 		if (clearval) {
119 			hw->reset.stats.imp_cnt++;
120 			hns3_warn(hw, "IMP reset detected, clear reset status");
121 		} else {
122 			hns3_schedule_delayed_reset(hns);
123 			hns3_warn(hw, "IMP reset detected, don't clear reset status");
124 		}
125 
126 		ret = HNS3_VECTOR0_EVENT_RST;
127 		goto out;
128 	}
129 
130 	/* Global reset */
131 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
132 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
133 		hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
134 		val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
135 		if (clearval) {
136 			hw->reset.stats.global_cnt++;
137 			hns3_warn(hw, "Global reset detected, clear reset status");
138 		} else {
139 			hns3_schedule_delayed_reset(hns);
140 			hns3_warn(hw, "Global reset detected, don't clear reset status");
141 		}
142 
143 		ret = HNS3_VECTOR0_EVENT_RST;
144 		goto out;
145 	}
146 
147 	/* check for vector0 msix event source */
148 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK) {
149 		val = vector0_int_stats;
150 		ret = HNS3_VECTOR0_EVENT_ERR;
151 		goto out;
152 	}
153 
154 	/* check for vector0 mailbox(=CMDQ RX) event source */
155 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
156 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
157 		val = cmdq_src_val;
158 		ret = HNS3_VECTOR0_EVENT_MBX;
159 		goto out;
160 	}
161 
162 	if (clearval && (vector0_int_stats || cmdq_src_val))
163 		hns3_warn(hw, "surprise irq ector0_int_stats:0x%x cmdq_src_val:0x%x",
164 			  vector0_int_stats, cmdq_src_val);
165 	val = vector0_int_stats;
166 	ret = HNS3_VECTOR0_EVENT_OTHER;
167 out:
168 
169 	if (clearval)
170 		*clearval = val;
171 	return ret;
172 }
173 
174 static void
175 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
176 {
177 	if (event_type == HNS3_VECTOR0_EVENT_RST)
178 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
179 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
180 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
181 }
182 
183 static void
184 hns3_clear_all_event_cause(struct hns3_hw *hw)
185 {
186 	uint32_t vector0_int_stats;
187 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
188 
189 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
190 		hns3_warn(hw, "Probe during IMP reset interrupt");
191 
192 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
193 		hns3_warn(hw, "Probe during Global reset interrupt");
194 
195 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
196 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
197 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
198 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
199 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
200 }
201 
202 static void
203 hns3_interrupt_handler(void *param)
204 {
205 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
206 	struct hns3_adapter *hns = dev->data->dev_private;
207 	struct hns3_hw *hw = &hns->hw;
208 	enum hns3_evt_cause event_cause;
209 	uint32_t clearval = 0;
210 
211 	/* Disable interrupt */
212 	hns3_pf_disable_irq0(hw);
213 
214 	event_cause = hns3_check_event_cause(hns, &clearval);
215 
216 	/* vector 0 interrupt is shared with reset and mailbox source events. */
217 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
218 		hns3_handle_msix_error(hns, &hw->reset.request);
219 		hns3_schedule_reset(hns);
220 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST)
221 		hns3_schedule_reset(hns);
222 	else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
223 		hns3_dev_handle_mbx_msg(hw);
224 	else
225 		hns3_err(hw, "Received unknown event");
226 
227 	hns3_clear_event_cause(hw, event_cause, clearval);
228 	/* Enable interrupt if it is not cause by reset */
229 	hns3_pf_enable_irq0(hw);
230 }
231 
232 static int
233 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
234 {
235 #define HNS3_VLAN_ID_OFFSET_STEP	160
236 #define HNS3_VLAN_BYTE_SIZE		8
237 	struct hns3_vlan_filter_pf_cfg_cmd *req;
238 	struct hns3_hw *hw = &hns->hw;
239 	uint8_t vlan_offset_byte_val;
240 	struct hns3_cmd_desc desc;
241 	uint8_t vlan_offset_byte;
242 	uint8_t vlan_offset_base;
243 	int ret;
244 
245 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
246 
247 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
248 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
249 			   HNS3_VLAN_BYTE_SIZE;
250 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
251 
252 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
253 	req->vlan_offset = vlan_offset_base;
254 	req->vlan_cfg = on ? 0 : 1;
255 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
256 
257 	ret = hns3_cmd_send(hw, &desc, 1);
258 	if (ret)
259 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
260 			 vlan_id, ret);
261 
262 	return ret;
263 }
264 
265 static void
266 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
267 {
268 	struct hns3_user_vlan_table *vlan_entry;
269 	struct hns3_pf *pf = &hns->pf;
270 
271 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
272 		if (vlan_entry->vlan_id == vlan_id) {
273 			if (vlan_entry->hd_tbl_status)
274 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
275 			LIST_REMOVE(vlan_entry, next);
276 			rte_free(vlan_entry);
277 			break;
278 		}
279 	}
280 }
281 
282 static void
283 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
284 			bool writen_to_tbl)
285 {
286 	struct hns3_user_vlan_table *vlan_entry;
287 	struct hns3_hw *hw = &hns->hw;
288 	struct hns3_pf *pf = &hns->pf;
289 
290 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
291 		if (vlan_entry->vlan_id == vlan_id)
292 			return;
293 	}
294 
295 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
296 	if (vlan_entry == NULL) {
297 		hns3_err(hw, "Failed to malloc hns3 vlan table");
298 		return;
299 	}
300 
301 	vlan_entry->hd_tbl_status = writen_to_tbl;
302 	vlan_entry->vlan_id = vlan_id;
303 
304 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
305 }
306 
307 static int
308 hns3_restore_vlan_table(struct hns3_adapter *hns)
309 {
310 	struct hns3_user_vlan_table *vlan_entry;
311 	struct hns3_hw *hw = &hns->hw;
312 	struct hns3_pf *pf = &hns->pf;
313 	uint16_t vlan_id;
314 	int ret = 0;
315 
316 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
317 		return hns3_vlan_pvid_configure(hns,
318 						hw->port_base_vlan_cfg.pvid, 1);
319 
320 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
321 		if (vlan_entry->hd_tbl_status) {
322 			vlan_id = vlan_entry->vlan_id;
323 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
324 			if (ret)
325 				break;
326 		}
327 	}
328 
329 	return ret;
330 }
331 
332 static int
333 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
334 {
335 	struct hns3_hw *hw = &hns->hw;
336 	bool writen_to_tbl = false;
337 	int ret = 0;
338 
339 	/*
340 	 * When vlan filter is enabled, hardware regards vlan id 0 as the entry
341 	 * for normal packet, deleting vlan id 0 is not allowed.
342 	 */
343 	if (on == 0 && vlan_id == 0)
344 		return 0;
345 
346 	/*
347 	 * When port base vlan enabled, we use port base vlan as the vlan
348 	 * filter condition. In this case, we don't update vlan filter table
349 	 * when user add new vlan or remove exist vlan, just update the
350 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
351 	 * table until port base vlan disabled
352 	 */
353 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
354 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
355 		writen_to_tbl = true;
356 	}
357 
358 	if (ret == 0 && vlan_id) {
359 		if (on)
360 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
361 		else
362 			hns3_rm_dev_vlan_table(hns, vlan_id);
363 	}
364 	return ret;
365 }
366 
367 static int
368 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
369 {
370 	struct hns3_adapter *hns = dev->data->dev_private;
371 	struct hns3_hw *hw = &hns->hw;
372 	int ret;
373 
374 	rte_spinlock_lock(&hw->lock);
375 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
376 	rte_spinlock_unlock(&hw->lock);
377 	return ret;
378 }
379 
380 static int
381 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
382 			 uint16_t tpid)
383 {
384 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
385 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
386 	struct hns3_hw *hw = &hns->hw;
387 	struct hns3_cmd_desc desc;
388 	int ret;
389 
390 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
391 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
392 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
393 		return -EINVAL;
394 	}
395 
396 	if (tpid != RTE_ETHER_TYPE_VLAN) {
397 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
398 		return -EINVAL;
399 	}
400 
401 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
402 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
403 
404 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
405 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
406 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
407 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
408 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
409 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
410 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
411 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
412 	}
413 
414 	ret = hns3_cmd_send(hw, &desc, 1);
415 	if (ret) {
416 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
417 			 ret);
418 		return ret;
419 	}
420 
421 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
422 
423 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
424 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
425 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
426 
427 	ret = hns3_cmd_send(hw, &desc, 1);
428 	if (ret)
429 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
430 			 ret);
431 	return ret;
432 }
433 
434 static int
435 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
436 		   uint16_t tpid)
437 {
438 	struct hns3_adapter *hns = dev->data->dev_private;
439 	struct hns3_hw *hw = &hns->hw;
440 	int ret;
441 
442 	rte_spinlock_lock(&hw->lock);
443 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
444 	rte_spinlock_unlock(&hw->lock);
445 	return ret;
446 }
447 
448 static int
449 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
450 			     struct hns3_rx_vtag_cfg *vcfg)
451 {
452 	struct hns3_vport_vtag_rx_cfg_cmd *req;
453 	struct hns3_hw *hw = &hns->hw;
454 	struct hns3_cmd_desc desc;
455 	uint16_t vport_id;
456 	uint8_t bitmap;
457 	int ret;
458 
459 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
460 
461 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
462 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
463 		     vcfg->strip_tag1_en ? 1 : 0);
464 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
465 		     vcfg->strip_tag2_en ? 1 : 0);
466 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
467 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
468 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
469 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
470 
471 	/*
472 	 * In current version VF is not supported when PF is driven by DPDK
473 	 * driver, just need to configure parameters for PF vport.
474 	 */
475 	vport_id = HNS3_PF_FUNC_ID;
476 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
477 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
478 	req->vf_bitmap[req->vf_offset] = bitmap;
479 
480 	ret = hns3_cmd_send(hw, &desc, 1);
481 	if (ret)
482 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
483 	return ret;
484 }
485 
486 static void
487 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
488 			   struct hns3_rx_vtag_cfg *vcfg)
489 {
490 	struct hns3_pf *pf = &hns->pf;
491 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
492 }
493 
494 static void
495 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
496 			   struct hns3_tx_vtag_cfg *vcfg)
497 {
498 	struct hns3_pf *pf = &hns->pf;
499 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
500 }
501 
502 static int
503 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
504 {
505 	struct hns3_rx_vtag_cfg rxvlan_cfg;
506 	struct hns3_hw *hw = &hns->hw;
507 	int ret;
508 
509 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
510 		rxvlan_cfg.strip_tag1_en = false;
511 		rxvlan_cfg.strip_tag2_en = enable;
512 	} else {
513 		rxvlan_cfg.strip_tag1_en = enable;
514 		rxvlan_cfg.strip_tag2_en = true;
515 	}
516 
517 	rxvlan_cfg.vlan1_vlan_prionly = false;
518 	rxvlan_cfg.vlan2_vlan_prionly = false;
519 	rxvlan_cfg.rx_vlan_offload_en = enable;
520 
521 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
522 	if (ret) {
523 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
524 		return ret;
525 	}
526 
527 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
528 
529 	return ret;
530 }
531 
532 static int
533 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
534 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
535 {
536 	struct hns3_vlan_filter_ctrl_cmd *req;
537 	struct hns3_cmd_desc desc;
538 	int ret;
539 
540 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
541 
542 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
543 	req->vlan_type = vlan_type;
544 	req->vlan_fe = filter_en ? fe_type : 0;
545 	req->vf_id = vf_id;
546 
547 	ret = hns3_cmd_send(hw, &desc, 1);
548 	if (ret)
549 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
550 
551 	return ret;
552 }
553 
554 static int
555 hns3_vlan_filter_init(struct hns3_adapter *hns)
556 {
557 	struct hns3_hw *hw = &hns->hw;
558 	int ret;
559 
560 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
561 					HNS3_FILTER_FE_EGRESS, false,
562 					HNS3_PF_FUNC_ID);
563 	if (ret) {
564 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
565 		return ret;
566 	}
567 
568 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
569 					HNS3_FILTER_FE_INGRESS, false,
570 					HNS3_PF_FUNC_ID);
571 	if (ret)
572 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
573 
574 	return ret;
575 }
576 
577 static int
578 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
579 {
580 	struct hns3_hw *hw = &hns->hw;
581 	int ret;
582 
583 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
584 					HNS3_FILTER_FE_INGRESS, enable,
585 					HNS3_PF_FUNC_ID);
586 	if (ret)
587 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
588 			 enable ? "enable" : "disable", ret);
589 
590 	return ret;
591 }
592 
593 static int
594 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
595 {
596 	struct hns3_adapter *hns = dev->data->dev_private;
597 	struct hns3_hw *hw = &hns->hw;
598 	struct rte_eth_rxmode *rxmode;
599 	unsigned int tmp_mask;
600 	bool enable;
601 	int ret = 0;
602 
603 	rte_spinlock_lock(&hw->lock);
604 	rxmode = &dev->data->dev_conf.rxmode;
605 	tmp_mask = (unsigned int)mask;
606 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
607 		/* ignore vlan filter configuration during promiscuous mode */
608 		if (!dev->data->promiscuous) {
609 			/* Enable or disable VLAN filter */
610 			enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
611 				 true : false;
612 
613 			ret = hns3_enable_vlan_filter(hns, enable);
614 			if (ret) {
615 				rte_spinlock_unlock(&hw->lock);
616 				hns3_err(hw, "failed to %s rx filter, ret = %d",
617 					 enable ? "enable" : "disable", ret);
618 				return ret;
619 			}
620 		}
621 	}
622 
623 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
624 		/* Enable or disable VLAN stripping */
625 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
626 		    true : false;
627 
628 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
629 		if (ret) {
630 			rte_spinlock_unlock(&hw->lock);
631 			hns3_err(hw, "failed to %s rx strip, ret = %d",
632 				 enable ? "enable" : "disable", ret);
633 			return ret;
634 		}
635 	}
636 
637 	rte_spinlock_unlock(&hw->lock);
638 
639 	return ret;
640 }
641 
642 static int
643 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
644 			     struct hns3_tx_vtag_cfg *vcfg)
645 {
646 	struct hns3_vport_vtag_tx_cfg_cmd *req;
647 	struct hns3_cmd_desc desc;
648 	struct hns3_hw *hw = &hns->hw;
649 	uint16_t vport_id;
650 	uint8_t bitmap;
651 	int ret;
652 
653 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
654 
655 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
656 	req->def_vlan_tag1 = vcfg->default_tag1;
657 	req->def_vlan_tag2 = vcfg->default_tag2;
658 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
659 		     vcfg->accept_tag1 ? 1 : 0);
660 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
661 		     vcfg->accept_untag1 ? 1 : 0);
662 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
663 		     vcfg->accept_tag2 ? 1 : 0);
664 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
665 		     vcfg->accept_untag2 ? 1 : 0);
666 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
667 		     vcfg->insert_tag1_en ? 1 : 0);
668 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
669 		     vcfg->insert_tag2_en ? 1 : 0);
670 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
671 
672 	/*
673 	 * In current version VF is not supported when PF is driven by DPDK
674 	 * driver, just need to configure parameters for PF vport.
675 	 */
676 	vport_id = HNS3_PF_FUNC_ID;
677 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
678 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
679 	req->vf_bitmap[req->vf_offset] = bitmap;
680 
681 	ret = hns3_cmd_send(hw, &desc, 1);
682 	if (ret)
683 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
684 
685 	return ret;
686 }
687 
688 static int
689 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
690 		     uint16_t pvid)
691 {
692 	struct hns3_hw *hw = &hns->hw;
693 	struct hns3_tx_vtag_cfg txvlan_cfg;
694 	int ret;
695 
696 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
697 		txvlan_cfg.accept_tag1 = true;
698 		txvlan_cfg.insert_tag1_en = false;
699 		txvlan_cfg.default_tag1 = 0;
700 	} else {
701 		txvlan_cfg.accept_tag1 = false;
702 		txvlan_cfg.insert_tag1_en = true;
703 		txvlan_cfg.default_tag1 = pvid;
704 	}
705 
706 	txvlan_cfg.accept_untag1 = true;
707 	txvlan_cfg.accept_tag2 = true;
708 	txvlan_cfg.accept_untag2 = true;
709 	txvlan_cfg.insert_tag2_en = false;
710 	txvlan_cfg.default_tag2 = 0;
711 
712 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
713 	if (ret) {
714 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
715 			 ret);
716 		return ret;
717 	}
718 
719 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
720 	return ret;
721 }
722 
723 static void
724 hns3_store_port_base_vlan_info(struct hns3_adapter *hns, uint16_t pvid, int on)
725 {
726 	struct hns3_hw *hw = &hns->hw;
727 
728 	hw->port_base_vlan_cfg.state = on ?
729 	    HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
730 
731 	hw->port_base_vlan_cfg.pvid = pvid;
732 }
733 
734 static void
735 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
736 {
737 	struct hns3_user_vlan_table *vlan_entry;
738 	struct hns3_pf *pf = &hns->pf;
739 
740 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
741 		if (vlan_entry->hd_tbl_status)
742 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
743 
744 		vlan_entry->hd_tbl_status = false;
745 	}
746 
747 	if (is_del_list) {
748 		vlan_entry = LIST_FIRST(&pf->vlan_list);
749 		while (vlan_entry) {
750 			LIST_REMOVE(vlan_entry, next);
751 			rte_free(vlan_entry);
752 			vlan_entry = LIST_FIRST(&pf->vlan_list);
753 		}
754 	}
755 }
756 
757 static void
758 hns3_add_all_vlan_table(struct hns3_adapter *hns)
759 {
760 	struct hns3_user_vlan_table *vlan_entry;
761 	struct hns3_pf *pf = &hns->pf;
762 
763 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
764 		if (!vlan_entry->hd_tbl_status)
765 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
766 
767 		vlan_entry->hd_tbl_status = true;
768 	}
769 }
770 
771 static void
772 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
773 {
774 	struct hns3_hw *hw = &hns->hw;
775 	int ret;
776 
777 	hns3_rm_all_vlan_table(hns, true);
778 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID) {
779 		ret = hns3_set_port_vlan_filter(hns,
780 						hw->port_base_vlan_cfg.pvid, 0);
781 		if (ret) {
782 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
783 				 ret);
784 			return;
785 		}
786 	}
787 }
788 
789 static int
790 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
791 				uint16_t port_base_vlan_state,
792 				uint16_t new_pvid, uint16_t old_pvid)
793 {
794 	struct hns3_hw *hw = &hns->hw;
795 	int ret = 0;
796 
797 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
798 		if (old_pvid != HNS3_INVLID_PVID && old_pvid != 0) {
799 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
800 			if (ret) {
801 				hns3_err(hw,
802 					 "Failed to clear clear old pvid filter, ret =%d",
803 					 ret);
804 				return ret;
805 			}
806 		}
807 
808 		hns3_rm_all_vlan_table(hns, false);
809 		return hns3_set_port_vlan_filter(hns, new_pvid, 1);
810 	}
811 
812 	if (new_pvid != 0) {
813 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
814 		if (ret) {
815 			hns3_err(hw, "Failed to set port vlan filter, ret =%d",
816 				 ret);
817 			return ret;
818 		}
819 	}
820 
821 	if (new_pvid == hw->port_base_vlan_cfg.pvid)
822 		hns3_add_all_vlan_table(hns);
823 
824 	return ret;
825 }
826 
827 static int
828 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
829 {
830 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
831 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
832 	bool rx_strip_en;
833 	int ret;
834 
835 	rx_strip_en = old_cfg->rx_vlan_offload_en ? true : false;
836 	if (on) {
837 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
838 		rx_vlan_cfg.strip_tag2_en = true;
839 	} else {
840 		rx_vlan_cfg.strip_tag1_en = false;
841 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
842 	}
843 	rx_vlan_cfg.vlan1_vlan_prionly = false;
844 	rx_vlan_cfg.vlan2_vlan_prionly = false;
845 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
846 
847 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
848 	if (ret)
849 		return ret;
850 
851 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
852 	return ret;
853 }
854 
855 static int
856 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
857 {
858 	struct hns3_hw *hw = &hns->hw;
859 	uint16_t port_base_vlan_state;
860 	uint16_t old_pvid;
861 	int ret;
862 
863 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
864 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID)
865 			hns3_warn(hw, "Invalid operation! As current pvid set "
866 				  "is %u, disable pvid %u is invalid",
867 				  hw->port_base_vlan_cfg.pvid, pvid);
868 		return 0;
869 	}
870 
871 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
872 				    HNS3_PORT_BASE_VLAN_DISABLE;
873 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
874 	if (ret) {
875 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
876 			 ret);
877 		return ret;
878 	}
879 
880 	ret = hns3_en_pvid_strip(hns, on);
881 	if (ret) {
882 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
883 			 "ret = %d", ret);
884 		return ret;
885 	}
886 
887 	if (pvid == HNS3_INVLID_PVID)
888 		goto out;
889 	old_pvid = hw->port_base_vlan_cfg.pvid;
890 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid,
891 					      old_pvid);
892 	if (ret) {
893 		hns3_err(hw, "Failed to update vlan filter entries, ret =%d",
894 			 ret);
895 		return ret;
896 	}
897 
898 out:
899 	hns3_store_port_base_vlan_info(hns, pvid, on);
900 	return ret;
901 }
902 
903 static int
904 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
905 {
906 	struct hns3_adapter *hns = dev->data->dev_private;
907 	struct hns3_hw *hw = &hns->hw;
908 	bool pvid_en_state_change;
909 	uint16_t pvid_state;
910 	int ret;
911 
912 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
913 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
914 			 RTE_ETHER_MAX_VLAN_ID);
915 		return -EINVAL;
916 	}
917 
918 	/*
919 	 * If PVID configuration state change, should refresh the PVID
920 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
921 	 */
922 	pvid_state = hw->port_base_vlan_cfg.state;
923 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
924 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
925 		pvid_en_state_change = false;
926 	else
927 		pvid_en_state_change = true;
928 
929 	rte_spinlock_lock(&hw->lock);
930 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
931 	rte_spinlock_unlock(&hw->lock);
932 	if (ret)
933 		return ret;
934 
935 	if (pvid_en_state_change)
936 		hns3_update_all_queues_pvid_state(hw);
937 
938 	return 0;
939 }
940 
941 static void
942 init_port_base_vlan_info(struct hns3_hw *hw)
943 {
944 	hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
945 	hw->port_base_vlan_cfg.pvid = HNS3_INVLID_PVID;
946 }
947 
948 static int
949 hns3_default_vlan_config(struct hns3_adapter *hns)
950 {
951 	struct hns3_hw *hw = &hns->hw;
952 	int ret;
953 
954 	ret = hns3_set_port_vlan_filter(hns, 0, 1);
955 	if (ret)
956 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
957 	return ret;
958 }
959 
960 static int
961 hns3_init_vlan_config(struct hns3_adapter *hns)
962 {
963 	struct hns3_hw *hw = &hns->hw;
964 	int ret;
965 
966 	/*
967 	 * This function can be called in the initialization and reset process,
968 	 * when in reset process, it means that hardware had been reseted
969 	 * successfully and we need to restore the hardware configuration to
970 	 * ensure that the hardware configuration remains unchanged before and
971 	 * after reset.
972 	 */
973 	if (rte_atomic16_read(&hw->reset.resetting) == 0)
974 		init_port_base_vlan_info(hw);
975 
976 	ret = hns3_vlan_filter_init(hns);
977 	if (ret) {
978 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
979 		return ret;
980 	}
981 
982 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
983 				       RTE_ETHER_TYPE_VLAN);
984 	if (ret) {
985 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
986 		return ret;
987 	}
988 
989 	/*
990 	 * When in the reinit dev stage of the reset process, the following
991 	 * vlan-related configurations may differ from those at initialization,
992 	 * we will restore configurations to hardware in hns3_restore_vlan_table
993 	 * and hns3_restore_vlan_conf later.
994 	 */
995 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
996 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVLID_PVID, 0);
997 		if (ret) {
998 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
999 			return ret;
1000 		}
1001 
1002 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1003 		if (ret) {
1004 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1005 				 ret);
1006 			return ret;
1007 		}
1008 	}
1009 
1010 	return hns3_default_vlan_config(hns);
1011 }
1012 
1013 static int
1014 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1015 {
1016 	struct hns3_pf *pf = &hns->pf;
1017 	struct hns3_hw *hw = &hns->hw;
1018 	uint64_t offloads;
1019 	bool enable;
1020 	int ret;
1021 
1022 	if (!hw->data->promiscuous) {
1023 		/* restore vlan filter states */
1024 		offloads = hw->data->dev_conf.rxmode.offloads;
1025 		enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1026 		ret = hns3_enable_vlan_filter(hns, enable);
1027 		if (ret) {
1028 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1029 				 "ret = %d", ret);
1030 			return ret;
1031 		}
1032 	}
1033 
1034 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1035 	if (ret) {
1036 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1037 		return ret;
1038 	}
1039 
1040 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1041 	if (ret)
1042 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1043 
1044 	return ret;
1045 }
1046 
1047 static int
1048 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1049 {
1050 	struct hns3_adapter *hns = dev->data->dev_private;
1051 	struct rte_eth_dev_data *data = dev->data;
1052 	struct rte_eth_txmode *txmode;
1053 	struct hns3_hw *hw = &hns->hw;
1054 	int mask;
1055 	int ret;
1056 
1057 	txmode = &data->dev_conf.txmode;
1058 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1059 		hns3_warn(hw,
1060 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1061 			  "configuration is not supported! Ignore these two "
1062 			  "parameters: hw_vlan_reject_tagged(%d), "
1063 			  "hw_vlan_reject_untagged(%d)",
1064 			  txmode->hw_vlan_reject_tagged,
1065 			  txmode->hw_vlan_reject_untagged);
1066 
1067 	/* Apply vlan offload setting */
1068 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1069 	ret = hns3_vlan_offload_set(dev, mask);
1070 	if (ret) {
1071 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1072 			 ret);
1073 		return ret;
1074 	}
1075 
1076 	/*
1077 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1078 	 * VLAN pvid related configuration to hardware.
1079 	 */
1080 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1081 		return 0;
1082 
1083 	/* Apply pvid setting */
1084 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1085 				 txmode->hw_vlan_insert_pvid);
1086 	if (ret)
1087 		hns3_err(hw, "dev config vlan pvid(%d) failed, ret = %d",
1088 			 txmode->pvid, ret);
1089 
1090 	return ret;
1091 }
1092 
1093 static int
1094 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1095 		unsigned int tso_mss_max)
1096 {
1097 	struct hns3_cfg_tso_status_cmd *req;
1098 	struct hns3_cmd_desc desc;
1099 	uint16_t tso_mss;
1100 
1101 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1102 
1103 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1104 
1105 	tso_mss = 0;
1106 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1107 		       tso_mss_min);
1108 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1109 
1110 	tso_mss = 0;
1111 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1112 		       tso_mss_max);
1113 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1114 
1115 	return hns3_cmd_send(hw, &desc, 1);
1116 }
1117 
1118 static int
1119 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1120 		   uint16_t *allocated_size, bool is_alloc)
1121 {
1122 	struct hns3_umv_spc_alc_cmd *req;
1123 	struct hns3_cmd_desc desc;
1124 	int ret;
1125 
1126 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1127 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1128 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1129 	req->space_size = rte_cpu_to_le_32(space_size);
1130 
1131 	ret = hns3_cmd_send(hw, &desc, 1);
1132 	if (ret) {
1133 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1134 			     is_alloc ? "allocate" : "free", ret);
1135 		return ret;
1136 	}
1137 
1138 	if (is_alloc && allocated_size)
1139 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1140 
1141 	return 0;
1142 }
1143 
1144 static int
1145 hns3_init_umv_space(struct hns3_hw *hw)
1146 {
1147 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1148 	struct hns3_pf *pf = &hns->pf;
1149 	uint16_t allocated_size = 0;
1150 	int ret;
1151 
1152 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1153 				 true);
1154 	if (ret)
1155 		return ret;
1156 
1157 	if (allocated_size < pf->wanted_umv_size)
1158 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1159 			     pf->wanted_umv_size, allocated_size);
1160 
1161 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1162 						pf->wanted_umv_size;
1163 	pf->used_umv_size = 0;
1164 	return 0;
1165 }
1166 
1167 static int
1168 hns3_uninit_umv_space(struct hns3_hw *hw)
1169 {
1170 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1171 	struct hns3_pf *pf = &hns->pf;
1172 	int ret;
1173 
1174 	if (pf->max_umv_size == 0)
1175 		return 0;
1176 
1177 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1178 	if (ret)
1179 		return ret;
1180 
1181 	pf->max_umv_size = 0;
1182 
1183 	return 0;
1184 }
1185 
1186 static bool
1187 hns3_is_umv_space_full(struct hns3_hw *hw)
1188 {
1189 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1190 	struct hns3_pf *pf = &hns->pf;
1191 	bool is_full;
1192 
1193 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1194 
1195 	return is_full;
1196 }
1197 
1198 static void
1199 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1200 {
1201 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1202 	struct hns3_pf *pf = &hns->pf;
1203 
1204 	if (is_free) {
1205 		if (pf->used_umv_size > 0)
1206 			pf->used_umv_size--;
1207 	} else
1208 		pf->used_umv_size++;
1209 }
1210 
1211 static void
1212 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1213 		      const uint8_t *addr, bool is_mc)
1214 {
1215 	const unsigned char *mac_addr = addr;
1216 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1217 			    ((uint32_t)mac_addr[2] << 16) |
1218 			    ((uint32_t)mac_addr[1] << 8) |
1219 			    (uint32_t)mac_addr[0];
1220 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1221 
1222 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1223 	if (is_mc) {
1224 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1225 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1226 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1227 	}
1228 
1229 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1230 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1231 }
1232 
1233 static int
1234 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1235 			     uint8_t resp_code,
1236 			     enum hns3_mac_vlan_tbl_opcode op)
1237 {
1238 	if (cmdq_resp) {
1239 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1240 			 cmdq_resp);
1241 		return -EIO;
1242 	}
1243 
1244 	if (op == HNS3_MAC_VLAN_ADD) {
1245 		if (resp_code == 0 || resp_code == 1) {
1246 			return 0;
1247 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1248 			hns3_err(hw, "add mac addr failed for uc_overflow");
1249 			return -ENOSPC;
1250 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1251 			hns3_err(hw, "add mac addr failed for mc_overflow");
1252 			return -ENOSPC;
1253 		}
1254 
1255 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1256 			 resp_code);
1257 		return -EIO;
1258 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1259 		if (resp_code == 0) {
1260 			return 0;
1261 		} else if (resp_code == 1) {
1262 			hns3_dbg(hw, "remove mac addr failed for miss");
1263 			return -ENOENT;
1264 		}
1265 
1266 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1267 			 resp_code);
1268 		return -EIO;
1269 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1270 		if (resp_code == 0) {
1271 			return 0;
1272 		} else if (resp_code == 1) {
1273 			hns3_dbg(hw, "lookup mac addr failed for miss");
1274 			return -ENOENT;
1275 		}
1276 
1277 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1278 			 resp_code);
1279 		return -EIO;
1280 	}
1281 
1282 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1283 		 op);
1284 
1285 	return -EINVAL;
1286 }
1287 
1288 static int
1289 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1290 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1291 			 struct hns3_cmd_desc *desc, bool is_mc)
1292 {
1293 	uint8_t resp_code;
1294 	uint16_t retval;
1295 	int ret;
1296 
1297 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1298 	if (is_mc) {
1299 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1300 		memcpy(desc[0].data, req,
1301 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1302 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1303 					  true);
1304 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1305 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1306 					  true);
1307 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1308 	} else {
1309 		memcpy(desc[0].data, req,
1310 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1311 		ret = hns3_cmd_send(hw, desc, 1);
1312 	}
1313 	if (ret) {
1314 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1315 			 ret);
1316 		return ret;
1317 	}
1318 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1319 	retval = rte_le_to_cpu_16(desc[0].retval);
1320 
1321 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1322 					    HNS3_MAC_VLAN_LKUP);
1323 }
1324 
1325 static int
1326 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1327 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1328 		      struct hns3_cmd_desc *mc_desc)
1329 {
1330 	uint8_t resp_code;
1331 	uint16_t retval;
1332 	int cfg_status;
1333 	int ret;
1334 
1335 	if (mc_desc == NULL) {
1336 		struct hns3_cmd_desc desc;
1337 
1338 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1339 		memcpy(desc.data, req,
1340 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1341 		ret = hns3_cmd_send(hw, &desc, 1);
1342 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1343 		retval = rte_le_to_cpu_16(desc.retval);
1344 
1345 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1346 							  HNS3_MAC_VLAN_ADD);
1347 	} else {
1348 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1349 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1350 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1351 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1352 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1353 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1354 		memcpy(mc_desc[0].data, req,
1355 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1356 		mc_desc[0].retval = 0;
1357 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1358 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1359 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1360 
1361 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1362 							  HNS3_MAC_VLAN_ADD);
1363 	}
1364 
1365 	if (ret) {
1366 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1367 		return ret;
1368 	}
1369 
1370 	return cfg_status;
1371 }
1372 
1373 static int
1374 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1375 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1376 {
1377 	struct hns3_cmd_desc desc;
1378 	uint8_t resp_code;
1379 	uint16_t retval;
1380 	int ret;
1381 
1382 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1383 
1384 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1385 
1386 	ret = hns3_cmd_send(hw, &desc, 1);
1387 	if (ret) {
1388 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1389 		return ret;
1390 	}
1391 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1392 	retval = rte_le_to_cpu_16(desc.retval);
1393 
1394 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1395 					    HNS3_MAC_VLAN_REMOVE);
1396 }
1397 
1398 static int
1399 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1400 {
1401 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1402 	struct hns3_mac_vlan_tbl_entry_cmd req;
1403 	struct hns3_pf *pf = &hns->pf;
1404 	struct hns3_cmd_desc desc;
1405 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1406 	uint16_t egress_port = 0;
1407 	uint8_t vf_id;
1408 	int ret;
1409 
1410 	/* check if mac addr is valid */
1411 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1412 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1413 				      mac_addr);
1414 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1415 			 mac_str);
1416 		return -EINVAL;
1417 	}
1418 
1419 	memset(&req, 0, sizeof(req));
1420 
1421 	/*
1422 	 * In current version VF is not supported when PF is driven by DPDK
1423 	 * driver, just need to configure parameters for PF vport.
1424 	 */
1425 	vf_id = HNS3_PF_FUNC_ID;
1426 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1427 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1428 
1429 	req.egress_port = rte_cpu_to_le_16(egress_port);
1430 
1431 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1432 
1433 	/*
1434 	 * Lookup the mac address in the mac_vlan table, and add
1435 	 * it if the entry is inexistent. Repeated unicast entry
1436 	 * is not allowed in the mac vlan table.
1437 	 */
1438 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc, false);
1439 	if (ret == -ENOENT) {
1440 		if (!hns3_is_umv_space_full(hw)) {
1441 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1442 			if (!ret)
1443 				hns3_update_umv_space(hw, false);
1444 			return ret;
1445 		}
1446 
1447 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1448 
1449 		return -ENOSPC;
1450 	}
1451 
1452 	rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1453 
1454 	/* check if we just hit the duplicate */
1455 	if (ret == 0) {
1456 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1457 		return 0;
1458 	}
1459 
1460 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1461 		 mac_str);
1462 
1463 	return ret;
1464 }
1465 
1466 static int
1467 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1468 {
1469 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1470 	struct rte_ether_addr *addr;
1471 	int ret;
1472 	int i;
1473 
1474 	for (i = 0; i < hw->mc_addrs_num; i++) {
1475 		addr = &hw->mc_addrs[i];
1476 		/* Check if there are duplicate addresses */
1477 		if (rte_is_same_ether_addr(addr, mac_addr)) {
1478 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1479 					      addr);
1480 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1481 				 "(%s) is added by the set_mc_mac_addr_list "
1482 				 "API", mac_str);
1483 			return -EINVAL;
1484 		}
1485 	}
1486 
1487 	ret = hns3_add_mc_addr(hw, mac_addr);
1488 	if (ret) {
1489 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1490 				      mac_addr);
1491 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1492 			 mac_str, ret);
1493 	}
1494 	return ret;
1495 }
1496 
1497 static int
1498 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1499 {
1500 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1501 	int ret;
1502 
1503 	ret = hns3_remove_mc_addr(hw, mac_addr);
1504 	if (ret) {
1505 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1506 				      mac_addr);
1507 		hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1508 			 mac_str, ret);
1509 	}
1510 	return ret;
1511 }
1512 
1513 static int
1514 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1515 		  uint32_t idx, __rte_unused uint32_t pool)
1516 {
1517 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1518 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1519 	int ret;
1520 
1521 	rte_spinlock_lock(&hw->lock);
1522 
1523 	/*
1524 	 * In hns3 network engine adding UC and MC mac address with different
1525 	 * commands with firmware. We need to determine whether the input
1526 	 * address is a UC or a MC address to call different commands.
1527 	 * By the way, it is recommended calling the API function named
1528 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1529 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1530 	 * may affect the specifications of UC mac addresses.
1531 	 */
1532 	if (rte_is_multicast_ether_addr(mac_addr))
1533 		ret = hns3_add_mc_addr_common(hw, mac_addr);
1534 	else
1535 		ret = hns3_add_uc_addr_common(hw, mac_addr);
1536 
1537 	if (ret) {
1538 		rte_spinlock_unlock(&hw->lock);
1539 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1540 				      mac_addr);
1541 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1542 			 ret);
1543 		return ret;
1544 	}
1545 
1546 	if (idx == 0)
1547 		hw->mac.default_addr_setted = true;
1548 	rte_spinlock_unlock(&hw->lock);
1549 
1550 	return ret;
1551 }
1552 
1553 static int
1554 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1555 {
1556 	struct hns3_mac_vlan_tbl_entry_cmd req;
1557 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1558 	int ret;
1559 
1560 	/* check if mac addr is valid */
1561 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1562 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1563 				      mac_addr);
1564 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1565 			 mac_str);
1566 		return -EINVAL;
1567 	}
1568 
1569 	memset(&req, 0, sizeof(req));
1570 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1571 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1572 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1573 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1574 		return 0;
1575 	else if (ret == 0)
1576 		hns3_update_umv_space(hw, true);
1577 
1578 	return ret;
1579 }
1580 
1581 static void
1582 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1583 {
1584 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1585 	/* index will be checked by upper level rte interface */
1586 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1587 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1588 	int ret;
1589 
1590 	rte_spinlock_lock(&hw->lock);
1591 
1592 	if (rte_is_multicast_ether_addr(mac_addr))
1593 		ret = hns3_remove_mc_addr_common(hw, mac_addr);
1594 	else
1595 		ret = hns3_remove_uc_addr_common(hw, mac_addr);
1596 	rte_spinlock_unlock(&hw->lock);
1597 	if (ret) {
1598 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1599 				      mac_addr);
1600 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1601 			 ret);
1602 	}
1603 }
1604 
1605 static int
1606 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1607 			  struct rte_ether_addr *mac_addr)
1608 {
1609 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1610 	struct rte_ether_addr *oaddr;
1611 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1612 	bool default_addr_setted;
1613 	bool rm_succes = false;
1614 	int ret, ret_val;
1615 
1616 	/*
1617 	 * It has been guaranteed that input parameter named mac_addr is valid
1618 	 * address in the rte layer of DPDK framework.
1619 	 */
1620 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1621 	default_addr_setted = hw->mac.default_addr_setted;
1622 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1623 		return 0;
1624 
1625 	rte_spinlock_lock(&hw->lock);
1626 	if (default_addr_setted) {
1627 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1628 		if (ret) {
1629 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1630 					      oaddr);
1631 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1632 				  mac_str, ret);
1633 			rm_succes = false;
1634 		} else
1635 			rm_succes = true;
1636 	}
1637 
1638 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1639 	if (ret) {
1640 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1641 				      mac_addr);
1642 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1643 		goto err_add_uc_addr;
1644 	}
1645 
1646 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1647 	if (ret) {
1648 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1649 		goto err_pause_addr_cfg;
1650 	}
1651 
1652 	rte_ether_addr_copy(mac_addr,
1653 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1654 	hw->mac.default_addr_setted = true;
1655 	rte_spinlock_unlock(&hw->lock);
1656 
1657 	return 0;
1658 
1659 err_pause_addr_cfg:
1660 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1661 	if (ret_val) {
1662 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1663 				      mac_addr);
1664 		hns3_warn(hw,
1665 			  "Failed to roll back to del setted mac addr(%s): %d",
1666 			  mac_str, ret_val);
1667 	}
1668 
1669 err_add_uc_addr:
1670 	if (rm_succes) {
1671 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1672 		if (ret_val) {
1673 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1674 					      oaddr);
1675 			hns3_warn(hw,
1676 				  "Failed to restore old uc mac addr(%s): %d",
1677 				  mac_str, ret_val);
1678 			hw->mac.default_addr_setted = false;
1679 		}
1680 	}
1681 	rte_spinlock_unlock(&hw->lock);
1682 
1683 	return ret;
1684 }
1685 
1686 static int
1687 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1688 {
1689 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1690 	struct hns3_hw *hw = &hns->hw;
1691 	struct rte_ether_addr *addr;
1692 	int err = 0;
1693 	int ret;
1694 	int i;
1695 
1696 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1697 		addr = &hw->data->mac_addrs[i];
1698 		if (rte_is_zero_ether_addr(addr))
1699 			continue;
1700 		if (rte_is_multicast_ether_addr(addr))
1701 			ret = del ? hns3_remove_mc_addr(hw, addr) :
1702 			      hns3_add_mc_addr(hw, addr);
1703 		else
1704 			ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1705 			      hns3_add_uc_addr_common(hw, addr);
1706 
1707 		if (ret) {
1708 			err = ret;
1709 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1710 					      addr);
1711 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1712 				 "ret = %d.", del ? "remove" : "restore",
1713 				 mac_str, i, ret);
1714 		}
1715 	}
1716 	return err;
1717 }
1718 
1719 static void
1720 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1721 {
1722 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1723 	uint8_t word_num;
1724 	uint8_t bit_num;
1725 
1726 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1727 		word_num = vfid / 32;
1728 		bit_num = vfid % 32;
1729 		if (clr)
1730 			desc[1].data[word_num] &=
1731 			    rte_cpu_to_le_32(~(1UL << bit_num));
1732 		else
1733 			desc[1].data[word_num] |=
1734 			    rte_cpu_to_le_32(1UL << bit_num);
1735 	} else {
1736 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1737 		bit_num = vfid % 32;
1738 		if (clr)
1739 			desc[2].data[word_num] &=
1740 			    rte_cpu_to_le_32(~(1UL << bit_num));
1741 		else
1742 			desc[2].data[word_num] |=
1743 			    rte_cpu_to_le_32(1UL << bit_num);
1744 	}
1745 }
1746 
1747 static int
1748 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1749 {
1750 	struct hns3_mac_vlan_tbl_entry_cmd req;
1751 	struct hns3_cmd_desc desc[3];
1752 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1753 	uint8_t vf_id;
1754 	int ret;
1755 
1756 	/* Check if mac addr is valid */
1757 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1758 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1759 				      mac_addr);
1760 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1761 			 mac_str);
1762 		return -EINVAL;
1763 	}
1764 
1765 	memset(&req, 0, sizeof(req));
1766 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1767 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1768 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1769 	if (ret) {
1770 		/* This mac addr do not exist, add new entry for it */
1771 		memset(desc[0].data, 0, sizeof(desc[0].data));
1772 		memset(desc[1].data, 0, sizeof(desc[0].data));
1773 		memset(desc[2].data, 0, sizeof(desc[0].data));
1774 	}
1775 
1776 	/*
1777 	 * In current version VF is not supported when PF is driven by DPDK
1778 	 * driver, just need to configure parameters for PF vport.
1779 	 */
1780 	vf_id = HNS3_PF_FUNC_ID;
1781 	hns3_update_desc_vfid(desc, vf_id, false);
1782 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1783 	if (ret) {
1784 		if (ret == -ENOSPC)
1785 			hns3_err(hw, "mc mac vlan table is full");
1786 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1787 				      mac_addr);
1788 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1789 	}
1790 
1791 	return ret;
1792 }
1793 
1794 static int
1795 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1796 {
1797 	struct hns3_mac_vlan_tbl_entry_cmd req;
1798 	struct hns3_cmd_desc desc[3];
1799 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1800 	uint8_t vf_id;
1801 	int ret;
1802 
1803 	/* Check if mac addr is valid */
1804 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1805 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1806 				      mac_addr);
1807 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1808 			 mac_str);
1809 		return -EINVAL;
1810 	}
1811 
1812 	memset(&req, 0, sizeof(req));
1813 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1814 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1815 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1816 	if (ret == 0) {
1817 		/*
1818 		 * This mac addr exist, remove this handle's VFID for it.
1819 		 * In current version VF is not supported when PF is driven by
1820 		 * DPDK driver, just need to configure parameters for PF vport.
1821 		 */
1822 		vf_id = HNS3_PF_FUNC_ID;
1823 		hns3_update_desc_vfid(desc, vf_id, true);
1824 
1825 		/* All the vfid is zero, so need to delete this entry */
1826 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1827 	} else if (ret == -ENOENT) {
1828 		/* This mac addr doesn't exist. */
1829 		return 0;
1830 	}
1831 
1832 	if (ret) {
1833 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1834 				      mac_addr);
1835 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1836 	}
1837 
1838 	return ret;
1839 }
1840 
1841 static int
1842 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1843 			   struct rte_ether_addr *mc_addr_set,
1844 			   uint32_t nb_mc_addr)
1845 {
1846 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1847 	struct rte_ether_addr *addr;
1848 	uint32_t i;
1849 	uint32_t j;
1850 
1851 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1852 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
1853 			 "invalid. valid range: 0~%d",
1854 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1855 		return -EINVAL;
1856 	}
1857 
1858 	/* Check if input mac addresses are valid */
1859 	for (i = 0; i < nb_mc_addr; i++) {
1860 		addr = &mc_addr_set[i];
1861 		if (!rte_is_multicast_ether_addr(addr)) {
1862 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1863 					      addr);
1864 			hns3_err(hw,
1865 				 "failed to set mc mac addr, addr(%s) invalid.",
1866 				 mac_str);
1867 			return -EINVAL;
1868 		}
1869 
1870 		/* Check if there are duplicate addresses */
1871 		for (j = i + 1; j < nb_mc_addr; j++) {
1872 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1873 				rte_ether_format_addr(mac_str,
1874 						      RTE_ETHER_ADDR_FMT_SIZE,
1875 						      addr);
1876 				hns3_err(hw, "failed to set mc mac addr, "
1877 					 "addrs invalid. two same addrs(%s).",
1878 					 mac_str);
1879 				return -EINVAL;
1880 			}
1881 		}
1882 
1883 		/*
1884 		 * Check if there are duplicate addresses between mac_addrs
1885 		 * and mc_addr_set
1886 		 */
1887 		for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1888 			if (rte_is_same_ether_addr(addr,
1889 						   &hw->data->mac_addrs[j])) {
1890 				rte_ether_format_addr(mac_str,
1891 						      RTE_ETHER_ADDR_FMT_SIZE,
1892 						      addr);
1893 				hns3_err(hw, "failed to set mc mac addr, "
1894 					 "addrs invalid. addrs(%s) has already "
1895 					 "configured in mac_addr add API",
1896 					 mac_str);
1897 				return -EINVAL;
1898 			}
1899 		}
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static void
1906 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
1907 			   struct rte_ether_addr *mc_addr_set,
1908 			   int mc_addr_num,
1909 			   struct rte_ether_addr *reserved_addr_list,
1910 			   int *reserved_addr_num,
1911 			   struct rte_ether_addr *add_addr_list,
1912 			   int *add_addr_num,
1913 			   struct rte_ether_addr *rm_addr_list,
1914 			   int *rm_addr_num)
1915 {
1916 	struct rte_ether_addr *addr;
1917 	int current_addr_num;
1918 	int reserved_num = 0;
1919 	int add_num = 0;
1920 	int rm_num = 0;
1921 	int num;
1922 	int i;
1923 	int j;
1924 	bool same_addr;
1925 
1926 	/* Calculate the mc mac address list that should be removed */
1927 	current_addr_num = hw->mc_addrs_num;
1928 	for (i = 0; i < current_addr_num; i++) {
1929 		addr = &hw->mc_addrs[i];
1930 		same_addr = false;
1931 		for (j = 0; j < mc_addr_num; j++) {
1932 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1933 				same_addr = true;
1934 				break;
1935 			}
1936 		}
1937 
1938 		if (!same_addr) {
1939 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
1940 			rm_num++;
1941 		} else {
1942 			rte_ether_addr_copy(addr,
1943 					    &reserved_addr_list[reserved_num]);
1944 			reserved_num++;
1945 		}
1946 	}
1947 
1948 	/* Calculate the mc mac address list that should be added */
1949 	for (i = 0; i < mc_addr_num; i++) {
1950 		addr = &mc_addr_set[i];
1951 		same_addr = false;
1952 		for (j = 0; j < current_addr_num; j++) {
1953 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
1954 				same_addr = true;
1955 				break;
1956 			}
1957 		}
1958 
1959 		if (!same_addr) {
1960 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
1961 			add_num++;
1962 		}
1963 	}
1964 
1965 	/* Reorder the mc mac address list maintained by driver */
1966 	for (i = 0; i < reserved_num; i++)
1967 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
1968 
1969 	for (i = 0; i < rm_num; i++) {
1970 		num = reserved_num + i;
1971 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
1972 	}
1973 
1974 	*reserved_addr_num = reserved_num;
1975 	*add_addr_num = add_num;
1976 	*rm_addr_num = rm_num;
1977 }
1978 
1979 static int
1980 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
1981 			  struct rte_ether_addr *mc_addr_set,
1982 			  uint32_t nb_mc_addr)
1983 {
1984 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1985 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
1986 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
1987 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
1988 	struct rte_ether_addr *addr;
1989 	int reserved_addr_num;
1990 	int add_addr_num;
1991 	int rm_addr_num;
1992 	int mc_addr_num;
1993 	int num;
1994 	int ret;
1995 	int i;
1996 
1997 	/* Check if input parameters are valid */
1998 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
1999 	if (ret)
2000 		return ret;
2001 
2002 	rte_spinlock_lock(&hw->lock);
2003 
2004 	/*
2005 	 * Calculate the mc mac address lists those should be removed and be
2006 	 * added, Reorder the mc mac address list maintained by driver.
2007 	 */
2008 	mc_addr_num = (int)nb_mc_addr;
2009 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2010 				   reserved_addr_list, &reserved_addr_num,
2011 				   add_addr_list, &add_addr_num,
2012 				   rm_addr_list, &rm_addr_num);
2013 
2014 	/* Remove mc mac addresses */
2015 	for (i = 0; i < rm_addr_num; i++) {
2016 		num = rm_addr_num - i - 1;
2017 		addr = &rm_addr_list[num];
2018 		ret = hns3_remove_mc_addr(hw, addr);
2019 		if (ret) {
2020 			rte_spinlock_unlock(&hw->lock);
2021 			return ret;
2022 		}
2023 		hw->mc_addrs_num--;
2024 	}
2025 
2026 	/* Add mc mac addresses */
2027 	for (i = 0; i < add_addr_num; i++) {
2028 		addr = &add_addr_list[i];
2029 		ret = hns3_add_mc_addr(hw, addr);
2030 		if (ret) {
2031 			rte_spinlock_unlock(&hw->lock);
2032 			return ret;
2033 		}
2034 
2035 		num = reserved_addr_num + i;
2036 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2037 		hw->mc_addrs_num++;
2038 	}
2039 	rte_spinlock_unlock(&hw->lock);
2040 
2041 	return 0;
2042 }
2043 
2044 static int
2045 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2046 {
2047 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2048 	struct hns3_hw *hw = &hns->hw;
2049 	struct rte_ether_addr *addr;
2050 	int err = 0;
2051 	int ret;
2052 	int i;
2053 
2054 	for (i = 0; i < hw->mc_addrs_num; i++) {
2055 		addr = &hw->mc_addrs[i];
2056 		if (!rte_is_multicast_ether_addr(addr))
2057 			continue;
2058 		if (del)
2059 			ret = hns3_remove_mc_addr(hw, addr);
2060 		else
2061 			ret = hns3_add_mc_addr(hw, addr);
2062 		if (ret) {
2063 			err = ret;
2064 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2065 					      addr);
2066 			hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2067 				 del ? "Remove" : "Restore", mac_str, ret);
2068 		}
2069 	}
2070 	return err;
2071 }
2072 
2073 static int
2074 hns3_check_mq_mode(struct rte_eth_dev *dev)
2075 {
2076 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2077 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2078 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2079 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2080 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2081 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2082 	uint8_t num_tc;
2083 	int max_tc = 0;
2084 	int i;
2085 
2086 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2087 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2088 
2089 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2090 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2091 			 "rx_mq_mode = %d", rx_mq_mode);
2092 		return -EINVAL;
2093 	}
2094 
2095 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2096 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2097 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2098 			 "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2099 			 rx_mq_mode, tx_mq_mode);
2100 		return -EINVAL;
2101 	}
2102 
2103 	if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2104 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2105 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2106 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2107 			return -EINVAL;
2108 		}
2109 
2110 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2111 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2112 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2113 				 "nb_tcs(%d) != %d or %d in rx direction.",
2114 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2115 			return -EINVAL;
2116 		}
2117 
2118 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2119 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2120 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2121 			return -EINVAL;
2122 		}
2123 
2124 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2125 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2126 				hns3_err(hw, "dcb_tc[%d] = %d in rx direction, "
2127 					 "is not equal to one in tx direction.",
2128 					 i, dcb_rx_conf->dcb_tc[i]);
2129 				return -EINVAL;
2130 			}
2131 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2132 				max_tc = dcb_rx_conf->dcb_tc[i];
2133 		}
2134 
2135 		num_tc = max_tc + 1;
2136 		if (num_tc > dcb_rx_conf->nb_tcs) {
2137 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2138 				 num_tc, dcb_rx_conf->nb_tcs);
2139 			return -EINVAL;
2140 		}
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 static int
2147 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2148 {
2149 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2150 
2151 	if (!hns3_dev_dcb_supported(hw)) {
2152 		hns3_err(hw, "this port does not support dcb configurations.");
2153 		return -EOPNOTSUPP;
2154 	}
2155 
2156 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2157 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2158 		return -EOPNOTSUPP;
2159 	}
2160 
2161 	/* Check multiple queue mode */
2162 	return hns3_check_mq_mode(dev);
2163 }
2164 
2165 static int
2166 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id, bool mmap,
2167 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2168 {
2169 	struct hns3_cmd_desc desc;
2170 	struct hns3_ctrl_vector_chain_cmd *req =
2171 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2172 	enum hns3_cmd_status status;
2173 	enum hns3_opcode_type op;
2174 	uint16_t tqp_type_and_id = 0;
2175 	const char *op_str;
2176 	uint16_t type;
2177 	uint16_t gl;
2178 
2179 	op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2180 	hns3_cmd_setup_basic_desc(&desc, op, false);
2181 	req->int_vector_id = vector_id;
2182 
2183 	if (queue_type == HNS3_RING_TYPE_RX)
2184 		gl = HNS3_RING_GL_RX;
2185 	else
2186 		gl = HNS3_RING_GL_TX;
2187 
2188 	type = queue_type;
2189 
2190 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2191 		       type);
2192 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2193 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2194 		       gl);
2195 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2196 	req->int_cause_num = 1;
2197 	op_str = mmap ? "Map" : "Unmap";
2198 	status = hns3_cmd_send(hw, &desc, 1);
2199 	if (status) {
2200 		hns3_err(hw, "%s TQP %d fail, vector_id is %d, status is %d.",
2201 			 op_str, queue_id, req->int_vector_id, status);
2202 		return status;
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 static int
2209 hns3_init_ring_with_vector(struct hns3_hw *hw)
2210 {
2211 	uint8_t vec;
2212 	int ret;
2213 	int i;
2214 
2215 	/*
2216 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2217 	 * function, vector 1~N can be used respectively for the queues of the
2218 	 * function. Tx and Rx queues with the same number share the interrupt
2219 	 * vector. In the initialization clearing the all hardware mapping
2220 	 * relationship configurations between queues and interrupt vectors is
2221 	 * needed, so some error caused by the residual configurations, such as
2222 	 * the unexpected Tx interrupt, can be avoid. Because of the hardware
2223 	 * constraints in hns3 hardware engine, we have to implement clearing
2224 	 * the mapping relationship configurations by binding all queues to the
2225 	 * last interrupt vector and reserving the last interrupt vector. This
2226 	 * method results in a decrease of the maximum queues when upper
2227 	 * applications call the rte_eth_dev_configure API function to enable
2228 	 * Rx interrupt.
2229 	 */
2230 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2231 	/* vec - 1: the last interrupt is reserved */
2232 	hw->intr_tqps_num = vec > hw->tqps_num ? hw->tqps_num : vec - 1;
2233 	for (i = 0; i < hw->intr_tqps_num; i++) {
2234 		/*
2235 		 * Set gap limiter and rate limiter configuration of queue's
2236 		 * interrupt.
2237 		 */
2238 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2239 				       HNS3_TQP_INTR_GL_DEFAULT);
2240 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2241 				       HNS3_TQP_INTR_GL_DEFAULT);
2242 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2243 
2244 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2245 						 HNS3_RING_TYPE_TX, i);
2246 		if (ret) {
2247 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2248 					  "vector: %d, ret=%d", i, vec, ret);
2249 			return ret;
2250 		}
2251 
2252 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2253 						 HNS3_RING_TYPE_RX, i);
2254 		if (ret) {
2255 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2256 					  "vector: %d, ret=%d", i, vec, ret);
2257 			return ret;
2258 		}
2259 	}
2260 
2261 	return 0;
2262 }
2263 
2264 static int
2265 hns3_dev_configure(struct rte_eth_dev *dev)
2266 {
2267 	struct hns3_adapter *hns = dev->data->dev_private;
2268 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2269 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2270 	struct hns3_hw *hw = &hns->hw;
2271 	struct hns3_rss_conf *rss_cfg = &hw->rss_info;
2272 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2273 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2274 	struct rte_eth_rss_conf rss_conf;
2275 	uint16_t mtu;
2276 	bool gro_en;
2277 	int ret;
2278 
2279 	/*
2280 	 * Hardware does not support individually enable/disable/reset the Tx or
2281 	 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
2282 	 * and Rx queues at the same time. When the numbers of Tx queues
2283 	 * allocated by upper applications are not equal to the numbers of Rx
2284 	 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
2285 	 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
2286 	 * these fake queues are imperceptible, and can not be used by upper
2287 	 * applications.
2288 	 */
2289 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2290 	if (ret) {
2291 		hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
2292 		return ret;
2293 	}
2294 
2295 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2296 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2297 		hns3_err(hw, "setting link speed/duplex not supported");
2298 		ret = -EINVAL;
2299 		goto cfg_err;
2300 	}
2301 
2302 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2303 		ret = hns3_check_dcb_cfg(dev);
2304 		if (ret)
2305 			goto cfg_err;
2306 	}
2307 
2308 	/* When RSS is not configured, redirect the packet queue 0 */
2309 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2310 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2311 		rss_conf = conf->rx_adv_conf.rss_conf;
2312 		if (rss_conf.rss_key == NULL) {
2313 			rss_conf.rss_key = rss_cfg->key;
2314 			rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
2315 		}
2316 
2317 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2318 		if (ret)
2319 			goto cfg_err;
2320 	}
2321 
2322 	/*
2323 	 * If jumbo frames are enabled, MTU needs to be refreshed
2324 	 * according to the maximum RX packet length.
2325 	 */
2326 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2327 		/*
2328 		 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
2329 		 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
2330 		 * can safely assign to "uint16_t" type variable.
2331 		 */
2332 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
2333 		ret = hns3_dev_mtu_set(dev, mtu);
2334 		if (ret)
2335 			goto cfg_err;
2336 		dev->data->mtu = mtu;
2337 	}
2338 
2339 	ret = hns3_dev_configure_vlan(dev);
2340 	if (ret)
2341 		goto cfg_err;
2342 
2343 	/* config hardware GRO */
2344 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2345 	ret = hns3_config_gro(hw, gro_en);
2346 	if (ret)
2347 		goto cfg_err;
2348 
2349 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2350 
2351 	return 0;
2352 
2353 cfg_err:
2354 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2355 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2356 
2357 	return ret;
2358 }
2359 
2360 static int
2361 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2362 {
2363 	struct hns3_config_max_frm_size_cmd *req;
2364 	struct hns3_cmd_desc desc;
2365 
2366 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2367 
2368 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2369 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2370 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2371 
2372 	return hns3_cmd_send(hw, &desc, 1);
2373 }
2374 
2375 static int
2376 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2377 {
2378 	int ret;
2379 
2380 	ret = hns3_set_mac_mtu(hw, mps);
2381 	if (ret) {
2382 		hns3_err(hw, "Failed to set mtu, ret = %d", ret);
2383 		return ret;
2384 	}
2385 
2386 	ret = hns3_buffer_alloc(hw);
2387 	if (ret)
2388 		hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
2389 
2390 	return ret;
2391 }
2392 
2393 static int
2394 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2395 {
2396 	struct hns3_adapter *hns = dev->data->dev_private;
2397 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2398 	struct hns3_hw *hw = &hns->hw;
2399 	bool is_jumbo_frame;
2400 	int ret;
2401 
2402 	if (dev->data->dev_started) {
2403 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2404 			 "before configuration", dev->data->port_id);
2405 		return -EBUSY;
2406 	}
2407 
2408 	rte_spinlock_lock(&hw->lock);
2409 	is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
2410 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2411 
2412 	/*
2413 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2414 	 * assign to "uint16_t" type variable.
2415 	 */
2416 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2417 	if (ret) {
2418 		rte_spinlock_unlock(&hw->lock);
2419 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2420 			 dev->data->port_id, mtu, ret);
2421 		return ret;
2422 	}
2423 	hns->pf.mps = (uint16_t)frame_size;
2424 	if (is_jumbo_frame)
2425 		dev->data->dev_conf.rxmode.offloads |=
2426 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2427 	else
2428 		dev->data->dev_conf.rxmode.offloads &=
2429 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2430 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2431 	rte_spinlock_unlock(&hw->lock);
2432 
2433 	return 0;
2434 }
2435 
2436 static int
2437 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2438 {
2439 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2440 	struct hns3_hw *hw = &hns->hw;
2441 	uint16_t queue_num = hw->tqps_num;
2442 
2443 	/*
2444 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2445 	 * MSI-X interrupt resources of the hardware.
2446 	 */
2447 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2448 		queue_num = hw->intr_tqps_num;
2449 
2450 	info->max_rx_queues = queue_num;
2451 	info->max_tx_queues = hw->tqps_num;
2452 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2453 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2454 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2455 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2456 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2457 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2458 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2459 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2460 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2461 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2462 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2463 				 DEV_RX_OFFLOAD_KEEP_CRC |
2464 				 DEV_RX_OFFLOAD_SCATTER |
2465 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2466 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2467 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
2468 				 DEV_RX_OFFLOAD_RSS_HASH |
2469 				 DEV_RX_OFFLOAD_TCP_LRO);
2470 	info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2471 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2472 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2473 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2474 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2475 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2476 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2477 				 DEV_TX_OFFLOAD_TCP_TSO |
2478 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2479 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
2480 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2481 				 info->tx_queue_offload_capa |
2482 				 hns3_txvlan_cap_get(hw));
2483 
2484 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2485 		.nb_max = HNS3_MAX_RING_DESC,
2486 		.nb_min = HNS3_MIN_RING_DESC,
2487 		.nb_align = HNS3_ALIGN_RING_DESC,
2488 	};
2489 
2490 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2491 		.nb_max = HNS3_MAX_RING_DESC,
2492 		.nb_min = HNS3_MIN_RING_DESC,
2493 		.nb_align = HNS3_ALIGN_RING_DESC,
2494 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2495 		.nb_mtu_seg_max = HNS3_MAX_NON_TSO_BD_PER_PKT,
2496 	};
2497 
2498 	info->vmdq_queue_num = 0;
2499 
2500 	info->reta_size = HNS3_RSS_IND_TBL_SIZE;
2501 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2502 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2503 
2504 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2505 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2506 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2507 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2508 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2509 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2510 
2511 	return 0;
2512 }
2513 
2514 static int
2515 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2516 		    size_t fw_size)
2517 {
2518 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2519 	struct hns3_hw *hw = &hns->hw;
2520 	uint32_t version = hw->fw_version;
2521 	int ret;
2522 
2523 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2524 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2525 				      HNS3_FW_VERSION_BYTE3_S),
2526 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2527 				      HNS3_FW_VERSION_BYTE2_S),
2528 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2529 				      HNS3_FW_VERSION_BYTE1_S),
2530 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2531 				      HNS3_FW_VERSION_BYTE0_S));
2532 	ret += 1; /* add the size of '\0' */
2533 	if (fw_size < (uint32_t)ret)
2534 		return ret;
2535 	else
2536 		return 0;
2537 }
2538 
2539 static int
2540 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2541 		     __rte_unused int wait_to_complete)
2542 {
2543 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2544 	struct hns3_hw *hw = &hns->hw;
2545 	struct hns3_mac *mac = &hw->mac;
2546 	struct rte_eth_link new_link;
2547 
2548 	if (!hns3_is_reset_pending(hns)) {
2549 		hns3_update_speed_duplex(eth_dev);
2550 		hns3_update_link_status(hw);
2551 	}
2552 
2553 	memset(&new_link, 0, sizeof(new_link));
2554 	switch (mac->link_speed) {
2555 	case ETH_SPEED_NUM_10M:
2556 	case ETH_SPEED_NUM_100M:
2557 	case ETH_SPEED_NUM_1G:
2558 	case ETH_SPEED_NUM_10G:
2559 	case ETH_SPEED_NUM_25G:
2560 	case ETH_SPEED_NUM_40G:
2561 	case ETH_SPEED_NUM_50G:
2562 	case ETH_SPEED_NUM_100G:
2563 		new_link.link_speed = mac->link_speed;
2564 		break;
2565 	default:
2566 		new_link.link_speed = ETH_SPEED_NUM_100M;
2567 		break;
2568 	}
2569 
2570 	new_link.link_duplex = mac->link_duplex;
2571 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2572 	new_link.link_autoneg =
2573 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2574 
2575 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2576 }
2577 
2578 static int
2579 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2580 {
2581 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2582 	struct hns3_pf *pf = &hns->pf;
2583 
2584 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2585 		return -EINVAL;
2586 
2587 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2588 
2589 	return 0;
2590 }
2591 
2592 static int
2593 hns3_query_function_status(struct hns3_hw *hw)
2594 {
2595 #define HNS3_QUERY_MAX_CNT		10
2596 #define HNS3_QUERY_SLEEP_MSCOEND	1
2597 	struct hns3_func_status_cmd *req;
2598 	struct hns3_cmd_desc desc;
2599 	int timeout = 0;
2600 	int ret;
2601 
2602 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2603 	req = (struct hns3_func_status_cmd *)desc.data;
2604 
2605 	do {
2606 		ret = hns3_cmd_send(hw, &desc, 1);
2607 		if (ret) {
2608 			PMD_INIT_LOG(ERR, "query function status failed %d",
2609 				     ret);
2610 			return ret;
2611 		}
2612 
2613 		/* Check pf reset is done */
2614 		if (req->pf_state)
2615 			break;
2616 
2617 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2618 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2619 
2620 	return hns3_parse_func_status(hw, req);
2621 }
2622 
2623 static int
2624 hns3_query_pf_resource(struct hns3_hw *hw)
2625 {
2626 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2627 	struct hns3_pf *pf = &hns->pf;
2628 	struct hns3_pf_res_cmd *req;
2629 	struct hns3_cmd_desc desc;
2630 	int ret;
2631 
2632 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2633 	ret = hns3_cmd_send(hw, &desc, 1);
2634 	if (ret) {
2635 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2636 		return ret;
2637 	}
2638 
2639 	req = (struct hns3_pf_res_cmd *)desc.data;
2640 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num);
2641 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2642 	hw->tqps_num = RTE_MIN(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2643 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2644 
2645 	if (req->tx_buf_size)
2646 		pf->tx_buf_size =
2647 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2648 	else
2649 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2650 
2651 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2652 
2653 	if (req->dv_buf_size)
2654 		pf->dv_buf_size =
2655 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2656 	else
2657 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2658 
2659 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2660 
2661 	hw->num_msi =
2662 	    hns3_get_field(rte_le_to_cpu_16(req->pf_intr_vector_number),
2663 			   HNS3_VEC_NUM_M, HNS3_VEC_NUM_S);
2664 
2665 	return 0;
2666 }
2667 
2668 static void
2669 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2670 {
2671 	struct hns3_cfg_param_cmd *req;
2672 	uint64_t mac_addr_tmp_high;
2673 	uint64_t mac_addr_tmp;
2674 	uint32_t i;
2675 
2676 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2677 
2678 	/* get the configuration */
2679 	cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2680 					     HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2681 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2682 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2683 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2684 					   HNS3_CFG_TQP_DESC_N_M,
2685 					   HNS3_CFG_TQP_DESC_N_S);
2686 
2687 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2688 				       HNS3_CFG_PHY_ADDR_M,
2689 				       HNS3_CFG_PHY_ADDR_S);
2690 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2691 					 HNS3_CFG_MEDIA_TP_M,
2692 					 HNS3_CFG_MEDIA_TP_S);
2693 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2694 					 HNS3_CFG_RX_BUF_LEN_M,
2695 					 HNS3_CFG_RX_BUF_LEN_S);
2696 	/* get mac address */
2697 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2698 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2699 					   HNS3_CFG_MAC_ADDR_H_M,
2700 					   HNS3_CFG_MAC_ADDR_H_S);
2701 
2702 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2703 
2704 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2705 					    HNS3_CFG_DEFAULT_SPEED_M,
2706 					    HNS3_CFG_DEFAULT_SPEED_S);
2707 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2708 					   HNS3_CFG_RSS_SIZE_M,
2709 					   HNS3_CFG_RSS_SIZE_S);
2710 
2711 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2712 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2713 
2714 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2715 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2716 
2717 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2718 					    HNS3_CFG_SPEED_ABILITY_M,
2719 					    HNS3_CFG_SPEED_ABILITY_S);
2720 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2721 					HNS3_CFG_UMV_TBL_SPACE_M,
2722 					HNS3_CFG_UMV_TBL_SPACE_S);
2723 	if (!cfg->umv_space)
2724 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2725 }
2726 
2727 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2728  * @hw: pointer to struct hns3_hw
2729  * @hcfg: the config structure to be getted
2730  */
2731 static int
2732 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2733 {
2734 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2735 	struct hns3_cfg_param_cmd *req;
2736 	uint32_t offset;
2737 	uint32_t i;
2738 	int ret;
2739 
2740 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2741 		offset = 0;
2742 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2743 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2744 					  true);
2745 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2746 			       i * HNS3_CFG_RD_LEN_BYTES);
2747 		/* Len should be divided by 4 when send to hardware */
2748 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2749 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2750 		req->offset = rte_cpu_to_le_32(offset);
2751 	}
2752 
2753 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2754 	if (ret) {
2755 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2756 		return ret;
2757 	}
2758 
2759 	hns3_parse_cfg(hcfg, desc);
2760 
2761 	return 0;
2762 }
2763 
2764 static int
2765 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2766 {
2767 	switch (speed_cmd) {
2768 	case HNS3_CFG_SPEED_10M:
2769 		*speed = ETH_SPEED_NUM_10M;
2770 		break;
2771 	case HNS3_CFG_SPEED_100M:
2772 		*speed = ETH_SPEED_NUM_100M;
2773 		break;
2774 	case HNS3_CFG_SPEED_1G:
2775 		*speed = ETH_SPEED_NUM_1G;
2776 		break;
2777 	case HNS3_CFG_SPEED_10G:
2778 		*speed = ETH_SPEED_NUM_10G;
2779 		break;
2780 	case HNS3_CFG_SPEED_25G:
2781 		*speed = ETH_SPEED_NUM_25G;
2782 		break;
2783 	case HNS3_CFG_SPEED_40G:
2784 		*speed = ETH_SPEED_NUM_40G;
2785 		break;
2786 	case HNS3_CFG_SPEED_50G:
2787 		*speed = ETH_SPEED_NUM_50G;
2788 		break;
2789 	case HNS3_CFG_SPEED_100G:
2790 		*speed = ETH_SPEED_NUM_100G;
2791 		break;
2792 	default:
2793 		return -EINVAL;
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 static int
2800 hns3_get_capability(struct hns3_hw *hw)
2801 {
2802 	struct rte_pci_device *pci_dev;
2803 	struct rte_eth_dev *eth_dev;
2804 	uint16_t device_id;
2805 	uint8_t revision;
2806 	int ret;
2807 
2808 	eth_dev = &rte_eth_devices[hw->data->port_id];
2809 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2810 	device_id = pci_dev->id.device_id;
2811 
2812 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
2813 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
2814 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC)
2815 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
2816 
2817 	/* Get PCI revision id */
2818 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
2819 				  HNS3_PCI_REVISION_ID);
2820 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
2821 		PMD_INIT_LOG(ERR, "failed to read pci revision id: %d", ret);
2822 		return -EIO;
2823 	}
2824 	hw->revision = revision;
2825 
2826 	return 0;
2827 }
2828 
2829 static int
2830 hns3_get_board_configuration(struct hns3_hw *hw)
2831 {
2832 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2833 	struct hns3_pf *pf = &hns->pf;
2834 	struct hns3_cfg cfg;
2835 	int ret;
2836 
2837 	ret = hns3_get_board_cfg(hw, &cfg);
2838 	if (ret) {
2839 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2840 		return ret;
2841 	}
2842 
2843 	if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER) {
2844 		PMD_INIT_LOG(ERR, "media type is copper, not supported.");
2845 		return -EOPNOTSUPP;
2846 	}
2847 
2848 	hw->mac.media_type = cfg.media_type;
2849 	hw->rss_size_max = cfg.rss_size_max;
2850 	hw->rss_dis_flag = false;
2851 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2852 	hw->mac.phy_addr = cfg.phy_addr;
2853 	hw->mac.default_addr_setted = false;
2854 	hw->num_tx_desc = cfg.tqp_desc_num;
2855 	hw->num_rx_desc = cfg.tqp_desc_num;
2856 	hw->dcb_info.num_pg = 1;
2857 	hw->dcb_info.hw_pfc_map = 0;
2858 
2859 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2860 	if (ret) {
2861 		PMD_INIT_LOG(ERR, "Get wrong speed %d, ret = %d",
2862 			     cfg.default_speed, ret);
2863 		return ret;
2864 	}
2865 
2866 	pf->tc_max = cfg.tc_num;
2867 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2868 		PMD_INIT_LOG(WARNING,
2869 			     "Get TC num(%u) from flash, set TC num to 1",
2870 			     pf->tc_max);
2871 		pf->tc_max = 1;
2872 	}
2873 
2874 	/* Dev does not support DCB */
2875 	if (!hns3_dev_dcb_supported(hw)) {
2876 		pf->tc_max = 1;
2877 		pf->pfc_max = 0;
2878 	} else
2879 		pf->pfc_max = pf->tc_max;
2880 
2881 	hw->dcb_info.num_tc = 1;
2882 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2883 				     hw->tqps_num / hw->dcb_info.num_tc);
2884 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2885 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2886 
2887 	pf->wanted_umv_size = cfg.umv_space;
2888 
2889 	return ret;
2890 }
2891 
2892 static int
2893 hns3_get_configuration(struct hns3_hw *hw)
2894 {
2895 	int ret;
2896 
2897 	ret = hns3_query_function_status(hw);
2898 	if (ret) {
2899 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2900 		return ret;
2901 	}
2902 
2903 	/* Get device capability */
2904 	ret = hns3_get_capability(hw);
2905 	if (ret) {
2906 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
2907 		return ret;
2908 	}
2909 
2910 	/* Get pf resource */
2911 	ret = hns3_query_pf_resource(hw);
2912 	if (ret) {
2913 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
2914 		return ret;
2915 	}
2916 
2917 	ret = hns3_get_board_configuration(hw);
2918 	if (ret)
2919 		PMD_INIT_LOG(ERR, "Failed to get board configuration: %d", ret);
2920 
2921 	return ret;
2922 }
2923 
2924 static int
2925 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
2926 		      uint16_t tqp_vid, bool is_pf)
2927 {
2928 	struct hns3_tqp_map_cmd *req;
2929 	struct hns3_cmd_desc desc;
2930 	int ret;
2931 
2932 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
2933 
2934 	req = (struct hns3_tqp_map_cmd *)desc.data;
2935 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
2936 	req->tqp_vf = func_id;
2937 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
2938 	if (!is_pf)
2939 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
2940 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
2941 
2942 	ret = hns3_cmd_send(hw, &desc, 1);
2943 	if (ret)
2944 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
2945 
2946 	return ret;
2947 }
2948 
2949 static int
2950 hns3_map_tqp(struct hns3_hw *hw)
2951 {
2952 	uint16_t tqps_num = hw->total_tqps_num;
2953 	uint16_t func_id;
2954 	uint16_t tqp_id;
2955 	bool is_pf;
2956 	int num;
2957 	int ret;
2958 	int i;
2959 
2960 	/*
2961 	 * In current version VF is not supported when PF is driven by DPDK
2962 	 * driver, so we allocate tqps to PF as much as possible.
2963 	 */
2964 	tqp_id = 0;
2965 	num = DIV_ROUND_UP(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2966 	for (func_id = HNS3_PF_FUNC_ID; func_id < num; func_id++) {
2967 		is_pf = func_id == HNS3_PF_FUNC_ID ? true : false;
2968 		for (i = 0;
2969 		     i < HNS3_MAX_TQP_NUM_PER_FUNC && tqp_id < tqps_num; i++) {
2970 			ret = hns3_map_tqps_to_func(hw, func_id, tqp_id++, i,
2971 						    is_pf);
2972 			if (ret)
2973 				return ret;
2974 		}
2975 	}
2976 
2977 	return 0;
2978 }
2979 
2980 static int
2981 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
2982 {
2983 	struct hns3_config_mac_speed_dup_cmd *req;
2984 	struct hns3_cmd_desc desc;
2985 	int ret;
2986 
2987 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
2988 
2989 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
2990 
2991 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
2992 
2993 	switch (speed) {
2994 	case ETH_SPEED_NUM_10M:
2995 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2996 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
2997 		break;
2998 	case ETH_SPEED_NUM_100M:
2999 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3000 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3001 		break;
3002 	case ETH_SPEED_NUM_1G:
3003 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3004 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3005 		break;
3006 	case ETH_SPEED_NUM_10G:
3007 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3008 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3009 		break;
3010 	case ETH_SPEED_NUM_25G:
3011 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3012 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3013 		break;
3014 	case ETH_SPEED_NUM_40G:
3015 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3016 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3017 		break;
3018 	case ETH_SPEED_NUM_50G:
3019 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3020 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3021 		break;
3022 	case ETH_SPEED_NUM_100G:
3023 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3024 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3025 		break;
3026 	default:
3027 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3028 		return -EINVAL;
3029 	}
3030 
3031 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3032 
3033 	ret = hns3_cmd_send(hw, &desc, 1);
3034 	if (ret)
3035 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3036 
3037 	return ret;
3038 }
3039 
3040 static int
3041 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3042 {
3043 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3044 	struct hns3_pf *pf = &hns->pf;
3045 	struct hns3_priv_buf *priv;
3046 	uint32_t i, total_size;
3047 
3048 	total_size = pf->pkt_buf_size;
3049 
3050 	/* alloc tx buffer for all enabled tc */
3051 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3052 		priv = &buf_alloc->priv_buf[i];
3053 
3054 		if (hw->hw_tc_map & BIT(i)) {
3055 			if (total_size < pf->tx_buf_size)
3056 				return -ENOMEM;
3057 
3058 			priv->tx_buf_size = pf->tx_buf_size;
3059 		} else
3060 			priv->tx_buf_size = 0;
3061 
3062 		total_size -= priv->tx_buf_size;
3063 	}
3064 
3065 	return 0;
3066 }
3067 
3068 static int
3069 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3070 {
3071 /* TX buffer size is unit by 128 byte */
3072 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3073 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3074 	struct hns3_tx_buff_alloc_cmd *req;
3075 	struct hns3_cmd_desc desc;
3076 	uint32_t buf_size;
3077 	uint32_t i;
3078 	int ret;
3079 
3080 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3081 
3082 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3083 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3084 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3085 
3086 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3087 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3088 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3089 	}
3090 
3091 	ret = hns3_cmd_send(hw, &desc, 1);
3092 	if (ret)
3093 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3094 
3095 	return ret;
3096 }
3097 
3098 static int
3099 hns3_get_tc_num(struct hns3_hw *hw)
3100 {
3101 	int cnt = 0;
3102 	uint8_t i;
3103 
3104 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3105 		if (hw->hw_tc_map & BIT(i))
3106 			cnt++;
3107 	return cnt;
3108 }
3109 
3110 static uint32_t
3111 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3112 {
3113 	struct hns3_priv_buf *priv;
3114 	uint32_t rx_priv = 0;
3115 	int i;
3116 
3117 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3118 		priv = &buf_alloc->priv_buf[i];
3119 		if (priv->enable)
3120 			rx_priv += priv->buf_size;
3121 	}
3122 	return rx_priv;
3123 }
3124 
3125 static uint32_t
3126 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3127 {
3128 	uint32_t total_tx_size = 0;
3129 	uint32_t i;
3130 
3131 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3132 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3133 
3134 	return total_tx_size;
3135 }
3136 
3137 /* Get the number of pfc enabled TCs, which have private buffer */
3138 static int
3139 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3140 {
3141 	struct hns3_priv_buf *priv;
3142 	int cnt = 0;
3143 	uint8_t i;
3144 
3145 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3146 		priv = &buf_alloc->priv_buf[i];
3147 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3148 			cnt++;
3149 	}
3150 
3151 	return cnt;
3152 }
3153 
3154 /* Get the number of pfc disabled TCs, which have private buffer */
3155 static int
3156 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3157 			 struct hns3_pkt_buf_alloc *buf_alloc)
3158 {
3159 	struct hns3_priv_buf *priv;
3160 	int cnt = 0;
3161 	uint8_t i;
3162 
3163 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3164 		priv = &buf_alloc->priv_buf[i];
3165 		if (hw->hw_tc_map & BIT(i) &&
3166 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3167 			cnt++;
3168 	}
3169 
3170 	return cnt;
3171 }
3172 
3173 static bool
3174 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3175 		  uint32_t rx_all)
3176 {
3177 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3178 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3179 	struct hns3_pf *pf = &hns->pf;
3180 	uint32_t shared_buf, aligned_mps;
3181 	uint32_t rx_priv;
3182 	uint8_t tc_num;
3183 	uint8_t i;
3184 
3185 	tc_num = hns3_get_tc_num(hw);
3186 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3187 
3188 	if (hns3_dev_dcb_supported(hw))
3189 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3190 					pf->dv_buf_size;
3191 	else
3192 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3193 					+ pf->dv_buf_size;
3194 
3195 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3196 	shared_std = roundup(max_t(uint32_t, shared_buf_min, shared_buf_tc),
3197 			     HNS3_BUF_SIZE_UNIT);
3198 
3199 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3200 	if (rx_all < rx_priv + shared_std)
3201 		return false;
3202 
3203 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3204 	buf_alloc->s_buf.buf_size = shared_buf;
3205 	if (hns3_dev_dcb_supported(hw)) {
3206 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3207 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3208 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3209 				  HNS3_BUF_SIZE_UNIT);
3210 	} else {
3211 		buf_alloc->s_buf.self.high =
3212 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3213 		buf_alloc->s_buf.self.low = aligned_mps;
3214 	}
3215 
3216 	if (hns3_dev_dcb_supported(hw)) {
3217 		hi_thrd = shared_buf - pf->dv_buf_size;
3218 
3219 		if (tc_num <= NEED_RESERVE_TC_NUM)
3220 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
3221 					/ BUF_MAX_PERCENT;
3222 
3223 		if (tc_num)
3224 			hi_thrd = hi_thrd / tc_num;
3225 
3226 		hi_thrd = max_t(uint32_t, hi_thrd,
3227 				HNS3_BUF_MUL_BY * aligned_mps);
3228 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3229 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3230 	} else {
3231 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3232 		lo_thrd = aligned_mps;
3233 	}
3234 
3235 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3236 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3237 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3238 	}
3239 
3240 	return true;
3241 }
3242 
3243 static bool
3244 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3245 		     struct hns3_pkt_buf_alloc *buf_alloc)
3246 {
3247 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3248 	struct hns3_pf *pf = &hns->pf;
3249 	struct hns3_priv_buf *priv;
3250 	uint32_t aligned_mps;
3251 	uint32_t rx_all;
3252 	uint8_t i;
3253 
3254 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3255 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3256 
3257 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3258 		priv = &buf_alloc->priv_buf[i];
3259 
3260 		priv->enable = 0;
3261 		priv->wl.low = 0;
3262 		priv->wl.high = 0;
3263 		priv->buf_size = 0;
3264 
3265 		if (!(hw->hw_tc_map & BIT(i)))
3266 			continue;
3267 
3268 		priv->enable = 1;
3269 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3270 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3271 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3272 						HNS3_BUF_SIZE_UNIT);
3273 		} else {
3274 			priv->wl.low = 0;
3275 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3276 					aligned_mps;
3277 		}
3278 
3279 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3280 	}
3281 
3282 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3283 }
3284 
3285 static bool
3286 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3287 			     struct hns3_pkt_buf_alloc *buf_alloc)
3288 {
3289 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3290 	struct hns3_pf *pf = &hns->pf;
3291 	struct hns3_priv_buf *priv;
3292 	int no_pfc_priv_num;
3293 	uint32_t rx_all;
3294 	uint8_t mask;
3295 	int i;
3296 
3297 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3298 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3299 
3300 	/* let the last to be cleared first */
3301 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3302 		priv = &buf_alloc->priv_buf[i];
3303 		mask = BIT((uint8_t)i);
3304 
3305 		if (hw->hw_tc_map & mask &&
3306 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3307 			/* Clear the no pfc TC private buffer */
3308 			priv->wl.low = 0;
3309 			priv->wl.high = 0;
3310 			priv->buf_size = 0;
3311 			priv->enable = 0;
3312 			no_pfc_priv_num--;
3313 		}
3314 
3315 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3316 		    no_pfc_priv_num == 0)
3317 			break;
3318 	}
3319 
3320 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3321 }
3322 
3323 static bool
3324 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3325 			   struct hns3_pkt_buf_alloc *buf_alloc)
3326 {
3327 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3328 	struct hns3_pf *pf = &hns->pf;
3329 	struct hns3_priv_buf *priv;
3330 	uint32_t rx_all;
3331 	int pfc_priv_num;
3332 	uint8_t mask;
3333 	int i;
3334 
3335 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3336 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3337 
3338 	/* let the last to be cleared first */
3339 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3340 		priv = &buf_alloc->priv_buf[i];
3341 		mask = BIT((uint8_t)i);
3342 
3343 		if (hw->hw_tc_map & mask &&
3344 		    hw->dcb_info.hw_pfc_map & mask) {
3345 			/* Reduce the number of pfc TC with private buffer */
3346 			priv->wl.low = 0;
3347 			priv->enable = 0;
3348 			priv->wl.high = 0;
3349 			priv->buf_size = 0;
3350 			pfc_priv_num--;
3351 		}
3352 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3353 		    pfc_priv_num == 0)
3354 			break;
3355 	}
3356 
3357 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3358 }
3359 
3360 static bool
3361 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3362 			  struct hns3_pkt_buf_alloc *buf_alloc)
3363 {
3364 #define COMPENSATE_BUFFER	0x3C00
3365 #define COMPENSATE_HALF_MPS_NUM	5
3366 #define PRIV_WL_GAP		0x1800
3367 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3368 	struct hns3_pf *pf = &hns->pf;
3369 	uint32_t tc_num = hns3_get_tc_num(hw);
3370 	uint32_t half_mps = pf->mps >> 1;
3371 	struct hns3_priv_buf *priv;
3372 	uint32_t min_rx_priv;
3373 	uint32_t rx_priv;
3374 	uint8_t i;
3375 
3376 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3377 	if (tc_num)
3378 		rx_priv = rx_priv / tc_num;
3379 
3380 	if (tc_num <= NEED_RESERVE_TC_NUM)
3381 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3382 
3383 	/*
3384 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3385 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3386 	 * buffer if rx_priv is greater than min_rx_priv.
3387 	 */
3388 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3389 			COMPENSATE_HALF_MPS_NUM * half_mps;
3390 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3391 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3392 
3393 	if (rx_priv < min_rx_priv)
3394 		return false;
3395 
3396 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3397 		priv = &buf_alloc->priv_buf[i];
3398 
3399 		priv->enable = 0;
3400 		priv->wl.low = 0;
3401 		priv->wl.high = 0;
3402 		priv->buf_size = 0;
3403 
3404 		if (!(hw->hw_tc_map & BIT(i)))
3405 			continue;
3406 
3407 		priv->enable = 1;
3408 		priv->buf_size = rx_priv;
3409 		priv->wl.high = rx_priv - pf->dv_buf_size;
3410 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3411 	}
3412 
3413 	buf_alloc->s_buf.buf_size = 0;
3414 
3415 	return true;
3416 }
3417 
3418 /*
3419  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3420  * @hw: pointer to struct hns3_hw
3421  * @buf_alloc: pointer to buffer calculation data
3422  * @return: 0: calculate sucessful, negative: fail
3423  */
3424 static int
3425 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3426 {
3427 	/* When DCB is not supported, rx private buffer is not allocated. */
3428 	if (!hns3_dev_dcb_supported(hw)) {
3429 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3430 		struct hns3_pf *pf = &hns->pf;
3431 		uint32_t rx_all = pf->pkt_buf_size;
3432 
3433 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3434 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3435 			return -ENOMEM;
3436 
3437 		return 0;
3438 	}
3439 
3440 	/*
3441 	 * Try to allocate privated packet buffer for all TCs without share
3442 	 * buffer.
3443 	 */
3444 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3445 		return 0;
3446 
3447 	/*
3448 	 * Try to allocate privated packet buffer for all TCs with share
3449 	 * buffer.
3450 	 */
3451 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3452 		return 0;
3453 
3454 	/*
3455 	 * For different application scenes, the enabled port number, TC number
3456 	 * and no_drop TC number are different. In order to obtain the better
3457 	 * performance, software could allocate the buffer size and configure
3458 	 * the waterline by tring to decrease the private buffer size according
3459 	 * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3460 	 * enabled tc.
3461 	 */
3462 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3463 		return 0;
3464 
3465 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3466 		return 0;
3467 
3468 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3469 		return 0;
3470 
3471 	return -ENOMEM;
3472 }
3473 
3474 static int
3475 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3476 {
3477 	struct hns3_rx_priv_buff_cmd *req;
3478 	struct hns3_cmd_desc desc;
3479 	uint32_t buf_size;
3480 	int ret;
3481 	int i;
3482 
3483 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3484 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3485 
3486 	/* Alloc private buffer TCs */
3487 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3488 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3489 
3490 		req->buf_num[i] =
3491 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3492 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3493 	}
3494 
3495 	buf_size = buf_alloc->s_buf.buf_size;
3496 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3497 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3498 
3499 	ret = hns3_cmd_send(hw, &desc, 1);
3500 	if (ret)
3501 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3502 
3503 	return ret;
3504 }
3505 
3506 static int
3507 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3508 {
3509 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3510 	struct hns3_rx_priv_wl_buf *req;
3511 	struct hns3_priv_buf *priv;
3512 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3513 	int i, j;
3514 	int ret;
3515 
3516 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3517 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3518 					  false);
3519 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3520 
3521 		/* The first descriptor set the NEXT bit to 1 */
3522 		if (i == 0)
3523 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3524 		else
3525 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3526 
3527 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3528 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3529 
3530 			priv = &buf_alloc->priv_buf[idx];
3531 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3532 							HNS3_BUF_UNIT_S);
3533 			req->tc_wl[j].high |=
3534 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3535 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3536 							HNS3_BUF_UNIT_S);
3537 			req->tc_wl[j].low |=
3538 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3539 		}
3540 	}
3541 
3542 	/* Send 2 descriptor at one time */
3543 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3544 	if (ret)
3545 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3546 			     ret);
3547 	return ret;
3548 }
3549 
3550 static int
3551 hns3_common_thrd_config(struct hns3_hw *hw,
3552 			struct hns3_pkt_buf_alloc *buf_alloc)
3553 {
3554 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3555 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3556 	struct hns3_rx_com_thrd *req;
3557 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3558 	struct hns3_tc_thrd *tc;
3559 	int tc_idx;
3560 	int i, j;
3561 	int ret;
3562 
3563 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3564 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3565 					  false);
3566 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3567 
3568 		/* The first descriptor set the NEXT bit to 1 */
3569 		if (i == 0)
3570 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3571 		else
3572 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3573 
3574 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3575 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3576 			tc = &s_buf->tc_thrd[tc_idx];
3577 
3578 			req->com_thrd[j].high =
3579 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3580 			req->com_thrd[j].high |=
3581 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3582 			req->com_thrd[j].low =
3583 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3584 			req->com_thrd[j].low |=
3585 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3586 		}
3587 	}
3588 
3589 	/* Send 2 descriptors at one time */
3590 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3591 	if (ret)
3592 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3593 
3594 	return ret;
3595 }
3596 
3597 static int
3598 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3599 {
3600 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3601 	struct hns3_rx_com_wl *req;
3602 	struct hns3_cmd_desc desc;
3603 	int ret;
3604 
3605 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3606 
3607 	req = (struct hns3_rx_com_wl *)desc.data;
3608 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3609 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3610 
3611 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3612 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3613 
3614 	ret = hns3_cmd_send(hw, &desc, 1);
3615 	if (ret)
3616 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3617 
3618 	return ret;
3619 }
3620 
3621 int
3622 hns3_buffer_alloc(struct hns3_hw *hw)
3623 {
3624 	struct hns3_pkt_buf_alloc pkt_buf;
3625 	int ret;
3626 
3627 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3628 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3629 	if (ret) {
3630 		PMD_INIT_LOG(ERR,
3631 			     "could not calc tx buffer size for all TCs %d",
3632 			     ret);
3633 		return ret;
3634 	}
3635 
3636 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3637 	if (ret) {
3638 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3639 		return ret;
3640 	}
3641 
3642 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3643 	if (ret) {
3644 		PMD_INIT_LOG(ERR,
3645 			     "could not calc rx priv buffer size for all TCs %d",
3646 			     ret);
3647 		return ret;
3648 	}
3649 
3650 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3651 	if (ret) {
3652 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3653 		return ret;
3654 	}
3655 
3656 	if (hns3_dev_dcb_supported(hw)) {
3657 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3658 		if (ret) {
3659 			PMD_INIT_LOG(ERR,
3660 				     "could not configure rx private waterline %d",
3661 				     ret);
3662 			return ret;
3663 		}
3664 
3665 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3666 		if (ret) {
3667 			PMD_INIT_LOG(ERR,
3668 				     "could not configure common threshold %d",
3669 				     ret);
3670 			return ret;
3671 		}
3672 	}
3673 
3674 	ret = hns3_common_wl_config(hw, &pkt_buf);
3675 	if (ret)
3676 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3677 			     ret);
3678 
3679 	return ret;
3680 }
3681 
3682 static int
3683 hns3_mac_init(struct hns3_hw *hw)
3684 {
3685 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3686 	struct hns3_mac *mac = &hw->mac;
3687 	struct hns3_pf *pf = &hns->pf;
3688 	int ret;
3689 
3690 	pf->support_sfp_query = true;
3691 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
3692 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3693 	if (ret) {
3694 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3695 		return ret;
3696 	}
3697 
3698 	mac->link_status = ETH_LINK_DOWN;
3699 
3700 	return hns3_config_mtu(hw, pf->mps);
3701 }
3702 
3703 static int
3704 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3705 {
3706 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3707 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3708 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3709 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3710 	int return_status;
3711 
3712 	if (cmdq_resp) {
3713 		PMD_INIT_LOG(ERR,
3714 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
3715 			     cmdq_resp);
3716 		return -EIO;
3717 	}
3718 
3719 	switch (resp_code) {
3720 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3721 	case HNS3_ETHERTYPE_ALREADY_ADD:
3722 		return_status = 0;
3723 		break;
3724 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3725 		PMD_INIT_LOG(ERR,
3726 			     "add mac ethertype failed for manager table overflow.");
3727 		return_status = -EIO;
3728 		break;
3729 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3730 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3731 		return_status = -EIO;
3732 		break;
3733 	default:
3734 		PMD_INIT_LOG(ERR,
3735 			     "add mac ethertype failed for undefined, code=%d.",
3736 			     resp_code);
3737 		return_status = -EIO;
3738 		break;
3739 	}
3740 
3741 	return return_status;
3742 }
3743 
3744 static int
3745 hns3_add_mgr_tbl(struct hns3_hw *hw,
3746 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3747 {
3748 	struct hns3_cmd_desc desc;
3749 	uint8_t resp_code;
3750 	uint16_t retval;
3751 	int ret;
3752 
3753 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3754 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3755 
3756 	ret = hns3_cmd_send(hw, &desc, 1);
3757 	if (ret) {
3758 		PMD_INIT_LOG(ERR,
3759 			     "add mac ethertype failed for cmd_send, ret =%d.",
3760 			     ret);
3761 		return ret;
3762 	}
3763 
3764 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3765 	retval = rte_le_to_cpu_16(desc.retval);
3766 
3767 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3768 }
3769 
3770 static void
3771 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3772 		     int *table_item_num)
3773 {
3774 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3775 
3776 	/*
3777 	 * In current version, we add one item in management table as below:
3778 	 * 0x0180C200000E -- LLDP MC address
3779 	 */
3780 	tbl = mgr_table;
3781 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3782 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3783 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3784 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3785 	tbl->i_port_bitmap = 0x1;
3786 	*table_item_num = 1;
3787 }
3788 
3789 static int
3790 hns3_init_mgr_tbl(struct hns3_hw *hw)
3791 {
3792 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3793 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3794 	int table_item_num;
3795 	int ret;
3796 	int i;
3797 
3798 	memset(mgr_table, 0, sizeof(mgr_table));
3799 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3800 	for (i = 0; i < table_item_num; i++) {
3801 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3802 		if (ret) {
3803 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3804 				     ret);
3805 			return ret;
3806 		}
3807 	}
3808 
3809 	return 0;
3810 }
3811 
3812 static void
3813 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3814 			bool en_mc, bool en_bc, int vport_id)
3815 {
3816 	if (!param)
3817 		return;
3818 
3819 	memset(param, 0, sizeof(struct hns3_promisc_param));
3820 	if (en_uc)
3821 		param->enable = HNS3_PROMISC_EN_UC;
3822 	if (en_mc)
3823 		param->enable |= HNS3_PROMISC_EN_MC;
3824 	if (en_bc)
3825 		param->enable |= HNS3_PROMISC_EN_BC;
3826 	param->vf_id = vport_id;
3827 }
3828 
3829 static int
3830 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3831 {
3832 	struct hns3_promisc_cfg_cmd *req;
3833 	struct hns3_cmd_desc desc;
3834 	int ret;
3835 
3836 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3837 
3838 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3839 	req->vf_id = param->vf_id;
3840 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3841 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3842 
3843 	ret = hns3_cmd_send(hw, &desc, 1);
3844 	if (ret)
3845 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
3846 
3847 	return ret;
3848 }
3849 
3850 static int
3851 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3852 {
3853 	struct hns3_promisc_param param;
3854 	bool en_bc_pmc = true;
3855 	uint8_t vf_id;
3856 
3857 	/*
3858 	 * In current version VF is not supported when PF is driven by DPDK
3859 	 * driver, just need to configure parameters for PF vport.
3860 	 */
3861 	vf_id = HNS3_PF_FUNC_ID;
3862 
3863 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3864 	return hns3_cmd_set_promisc_mode(hw, &param);
3865 }
3866 
3867 static int
3868 hns3_promisc_init(struct hns3_hw *hw)
3869 {
3870 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3871 	struct hns3_pf *pf = &hns->pf;
3872 	struct hns3_promisc_param param;
3873 	uint16_t func_id;
3874 	int ret;
3875 
3876 	ret = hns3_set_promisc_mode(hw, false, false);
3877 	if (ret) {
3878 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
3879 		return ret;
3880 	}
3881 
3882 	/*
3883 	 * In current version VFs are not supported when PF is driven by DPDK
3884 	 * driver. After PF has been taken over by DPDK, the original VF will
3885 	 * be invalid. So, there is a possibility of entry residues. It should
3886 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
3887 	 * during init.
3888 	 */
3889 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
3890 		hns3_promisc_param_init(&param, false, false, false, func_id);
3891 		ret = hns3_cmd_set_promisc_mode(hw, &param);
3892 		if (ret) {
3893 			PMD_INIT_LOG(ERR, "failed to clear vf:%d promisc mode,"
3894 					" ret = %d", func_id, ret);
3895 			return ret;
3896 		}
3897 	}
3898 
3899 	return 0;
3900 }
3901 
3902 static void
3903 hns3_promisc_uninit(struct hns3_hw *hw)
3904 {
3905 	struct hns3_promisc_param param;
3906 	uint16_t func_id;
3907 	int ret;
3908 
3909 	func_id = HNS3_PF_FUNC_ID;
3910 
3911 	/*
3912 	 * In current version VFs are not supported when PF is driven by
3913 	 * DPDK driver, and VFs' promisc mode status has been cleared during
3914 	 * init and their status will not change. So just clear PF's promisc
3915 	 * mode status during uninit.
3916 	 */
3917 	hns3_promisc_param_init(&param, false, false, false, func_id);
3918 	ret = hns3_cmd_set_promisc_mode(hw, &param);
3919 	if (ret)
3920 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
3921 				" uninit, ret = %d", ret);
3922 }
3923 
3924 static int
3925 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
3926 {
3927 	bool allmulti = dev->data->all_multicast ? true : false;
3928 	struct hns3_adapter *hns = dev->data->dev_private;
3929 	struct hns3_hw *hw = &hns->hw;
3930 	uint64_t offloads;
3931 	int err;
3932 	int ret;
3933 
3934 	rte_spinlock_lock(&hw->lock);
3935 	ret = hns3_set_promisc_mode(hw, true, true);
3936 	if (ret) {
3937 		rte_spinlock_unlock(&hw->lock);
3938 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
3939 			 ret);
3940 		return ret;
3941 	}
3942 
3943 	/*
3944 	 * When promiscuous mode was enabled, disable the vlan filter to let
3945 	 * all packets coming in in the receiving direction.
3946 	 */
3947 	offloads = dev->data->dev_conf.rxmode.offloads;
3948 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
3949 		ret = hns3_enable_vlan_filter(hns, false);
3950 		if (ret) {
3951 			hns3_err(hw, "failed to enable promiscuous mode due to "
3952 				     "failure to disable vlan filter, ret = %d",
3953 				 ret);
3954 			err = hns3_set_promisc_mode(hw, false, allmulti);
3955 			if (err)
3956 				hns3_err(hw, "failed to restore promiscuous "
3957 					 "status after disable vlan filter "
3958 					 "failed during enabling promiscuous "
3959 					 "mode, ret = %d", ret);
3960 		}
3961 	}
3962 
3963 	rte_spinlock_unlock(&hw->lock);
3964 
3965 	return ret;
3966 }
3967 
3968 static int
3969 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
3970 {
3971 	bool allmulti = dev->data->all_multicast ? true : false;
3972 	struct hns3_adapter *hns = dev->data->dev_private;
3973 	struct hns3_hw *hw = &hns->hw;
3974 	uint64_t offloads;
3975 	int err;
3976 	int ret;
3977 
3978 	/* If now in all_multicast mode, must remain in all_multicast mode. */
3979 	rte_spinlock_lock(&hw->lock);
3980 	ret = hns3_set_promisc_mode(hw, false, allmulti);
3981 	if (ret) {
3982 		rte_spinlock_unlock(&hw->lock);
3983 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
3984 			 ret);
3985 		return ret;
3986 	}
3987 	/* when promiscuous mode was disabled, restore the vlan filter status */
3988 	offloads = dev->data->dev_conf.rxmode.offloads;
3989 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
3990 		ret = hns3_enable_vlan_filter(hns, true);
3991 		if (ret) {
3992 			hns3_err(hw, "failed to disable promiscuous mode due to"
3993 				 " failure to restore vlan filter, ret = %d",
3994 				 ret);
3995 			err = hns3_set_promisc_mode(hw, true, true);
3996 			if (err)
3997 				hns3_err(hw, "failed to restore promiscuous "
3998 					 "status after enabling vlan filter "
3999 					 "failed during disabling promiscuous "
4000 					 "mode, ret = %d", ret);
4001 		}
4002 	}
4003 	rte_spinlock_unlock(&hw->lock);
4004 
4005 	return ret;
4006 }
4007 
4008 static int
4009 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4010 {
4011 	struct hns3_adapter *hns = dev->data->dev_private;
4012 	struct hns3_hw *hw = &hns->hw;
4013 	int ret;
4014 
4015 	if (dev->data->promiscuous)
4016 		return 0;
4017 
4018 	rte_spinlock_lock(&hw->lock);
4019 	ret = hns3_set_promisc_mode(hw, false, true);
4020 	rte_spinlock_unlock(&hw->lock);
4021 	if (ret)
4022 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4023 			 ret);
4024 
4025 	return ret;
4026 }
4027 
4028 static int
4029 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4030 {
4031 	struct hns3_adapter *hns = dev->data->dev_private;
4032 	struct hns3_hw *hw = &hns->hw;
4033 	int ret;
4034 
4035 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4036 	if (dev->data->promiscuous)
4037 		return 0;
4038 
4039 	rte_spinlock_lock(&hw->lock);
4040 	ret = hns3_set_promisc_mode(hw, false, false);
4041 	rte_spinlock_unlock(&hw->lock);
4042 	if (ret)
4043 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4044 			 ret);
4045 
4046 	return ret;
4047 }
4048 
4049 static int
4050 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4051 {
4052 	struct hns3_hw *hw = &hns->hw;
4053 	bool allmulti = hw->data->all_multicast ? true : false;
4054 	int ret;
4055 
4056 	if (hw->data->promiscuous) {
4057 		ret = hns3_set_promisc_mode(hw, true, true);
4058 		if (ret)
4059 			hns3_err(hw, "failed to restore promiscuous mode, "
4060 				 "ret = %d", ret);
4061 		return ret;
4062 	}
4063 
4064 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4065 	if (ret)
4066 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4067 			 ret);
4068 	return ret;
4069 }
4070 
4071 static int
4072 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4073 {
4074 	struct hns3_sfp_speed_cmd *resp;
4075 	struct hns3_cmd_desc desc;
4076 	int ret;
4077 
4078 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4079 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
4080 	ret = hns3_cmd_send(hw, &desc, 1);
4081 	if (ret == -EOPNOTSUPP) {
4082 		hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4083 		return ret;
4084 	} else if (ret) {
4085 		hns3_err(hw, "get sfp speed failed %d", ret);
4086 		return ret;
4087 	}
4088 
4089 	*speed = resp->sfp_speed;
4090 
4091 	return 0;
4092 }
4093 
4094 static uint8_t
4095 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4096 {
4097 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4098 		duplex = ETH_LINK_FULL_DUPLEX;
4099 
4100 	return duplex;
4101 }
4102 
4103 static int
4104 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4105 {
4106 	struct hns3_mac *mac = &hw->mac;
4107 	int ret;
4108 
4109 	duplex = hns3_check_speed_dup(duplex, speed);
4110 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4111 		return 0;
4112 
4113 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4114 	if (ret)
4115 		return ret;
4116 
4117 	mac->link_speed = speed;
4118 	mac->link_duplex = duplex;
4119 
4120 	return 0;
4121 }
4122 
4123 static int
4124 hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
4125 {
4126 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4127 	struct hns3_hw *hw = &hns->hw;
4128 	struct hns3_pf *pf = &hns->pf;
4129 	uint32_t speed;
4130 	int ret;
4131 
4132 	/* If IMP do not support get SFP/qSFP speed, return directly */
4133 	if (!pf->support_sfp_query)
4134 		return 0;
4135 
4136 	ret = hns3_get_sfp_speed(hw, &speed);
4137 	if (ret == -EOPNOTSUPP) {
4138 		pf->support_sfp_query = false;
4139 		return ret;
4140 	} else if (ret)
4141 		return ret;
4142 
4143 	if (speed == ETH_SPEED_NUM_NONE)
4144 		return 0; /* do nothing if no SFP */
4145 
4146 	/* Config full duplex for SFP */
4147 	return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4148 }
4149 
4150 static int
4151 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4152 {
4153 	struct hns3_config_mac_mode_cmd *req;
4154 	struct hns3_cmd_desc desc;
4155 	uint32_t loop_en = 0;
4156 	uint8_t val = 0;
4157 	int ret;
4158 
4159 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4160 
4161 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4162 	if (enable)
4163 		val = 1;
4164 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4165 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4166 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4167 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4168 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4169 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4170 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4171 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4172 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4173 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4174 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4175 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4176 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4177 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4178 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4179 
4180 	ret = hns3_cmd_send(hw, &desc, 1);
4181 	if (ret)
4182 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4183 
4184 	return ret;
4185 }
4186 
4187 static int
4188 hns3_get_mac_link_status(struct hns3_hw *hw)
4189 {
4190 	struct hns3_link_status_cmd *req;
4191 	struct hns3_cmd_desc desc;
4192 	int link_status;
4193 	int ret;
4194 
4195 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4196 	ret = hns3_cmd_send(hw, &desc, 1);
4197 	if (ret) {
4198 		hns3_err(hw, "get link status cmd failed %d", ret);
4199 		return ETH_LINK_DOWN;
4200 	}
4201 
4202 	req = (struct hns3_link_status_cmd *)desc.data;
4203 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4204 
4205 	return !!link_status;
4206 }
4207 
4208 void
4209 hns3_update_link_status(struct hns3_hw *hw)
4210 {
4211 	int state;
4212 
4213 	state = hns3_get_mac_link_status(hw);
4214 	if (state != hw->mac.link_status) {
4215 		hw->mac.link_status = state;
4216 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4217 	}
4218 }
4219 
4220 static void
4221 hns3_service_handler(void *param)
4222 {
4223 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4224 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4225 	struct hns3_hw *hw = &hns->hw;
4226 
4227 	if (!hns3_is_reset_pending(hns)) {
4228 		hns3_update_speed_duplex(eth_dev);
4229 		hns3_update_link_status(hw);
4230 	} else
4231 		hns3_warn(hw, "Cancel the query when reset is pending");
4232 
4233 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4234 }
4235 
4236 static int
4237 hns3_init_hardware(struct hns3_adapter *hns)
4238 {
4239 	struct hns3_hw *hw = &hns->hw;
4240 	int ret;
4241 
4242 	ret = hns3_map_tqp(hw);
4243 	if (ret) {
4244 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4245 		return ret;
4246 	}
4247 
4248 	ret = hns3_init_umv_space(hw);
4249 	if (ret) {
4250 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4251 		return ret;
4252 	}
4253 
4254 	ret = hns3_mac_init(hw);
4255 	if (ret) {
4256 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4257 		goto err_mac_init;
4258 	}
4259 
4260 	ret = hns3_init_mgr_tbl(hw);
4261 	if (ret) {
4262 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4263 		goto err_mac_init;
4264 	}
4265 
4266 	ret = hns3_promisc_init(hw);
4267 	if (ret) {
4268 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4269 			     ret);
4270 		goto err_mac_init;
4271 	}
4272 
4273 	ret = hns3_init_vlan_config(hns);
4274 	if (ret) {
4275 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4276 		goto err_mac_init;
4277 	}
4278 
4279 	ret = hns3_dcb_init(hw);
4280 	if (ret) {
4281 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4282 		goto err_mac_init;
4283 	}
4284 
4285 	ret = hns3_init_fd_config(hns);
4286 	if (ret) {
4287 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4288 		goto err_mac_init;
4289 	}
4290 
4291 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4292 	if (ret) {
4293 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4294 		goto err_mac_init;
4295 	}
4296 
4297 	ret = hns3_config_gro(hw, false);
4298 	if (ret) {
4299 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4300 		goto err_mac_init;
4301 	}
4302 
4303 	/*
4304 	 * In the initialization clearing the all hardware mapping relationship
4305 	 * configurations between queues and interrupt vectors is needed, so
4306 	 * some error caused by the residual configurations, such as the
4307 	 * unexpected interrupt, can be avoid.
4308 	 */
4309 	ret = hns3_init_ring_with_vector(hw);
4310 	if (ret) {
4311 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4312 		goto err_mac_init;
4313 	}
4314 
4315 	return 0;
4316 
4317 err_mac_init:
4318 	hns3_uninit_umv_space(hw);
4319 	return ret;
4320 }
4321 
4322 static int
4323 hns3_clear_hw(struct hns3_hw *hw)
4324 {
4325 	struct hns3_cmd_desc desc;
4326 	int ret;
4327 
4328 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4329 
4330 	ret = hns3_cmd_send(hw, &desc, 1);
4331 	if (ret && ret != -EOPNOTSUPP)
4332 		return ret;
4333 
4334 	return 0;
4335 }
4336 
4337 static int
4338 hns3_init_pf(struct rte_eth_dev *eth_dev)
4339 {
4340 	struct rte_device *dev = eth_dev->device;
4341 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4342 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4343 	struct hns3_hw *hw = &hns->hw;
4344 	int ret;
4345 
4346 	PMD_INIT_FUNC_TRACE();
4347 
4348 	/* Get hardware io base address from pcie BAR2 IO space */
4349 	hw->io_base = pci_dev->mem_resource[2].addr;
4350 
4351 	/* Firmware command queue initialize */
4352 	ret = hns3_cmd_init_queue(hw);
4353 	if (ret) {
4354 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4355 		goto err_cmd_init_queue;
4356 	}
4357 
4358 	hns3_clear_all_event_cause(hw);
4359 
4360 	/* Firmware command initialize */
4361 	ret = hns3_cmd_init(hw);
4362 	if (ret) {
4363 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4364 		goto err_cmd_init;
4365 	}
4366 
4367 	/*
4368 	 * To ensure that the hardware environment is clean during
4369 	 * initialization, the driver actively clear the hardware environment
4370 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4371 	 * flow table configurations, etc.
4372 	 */
4373 	ret = hns3_clear_hw(hw);
4374 	if (ret) {
4375 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4376 		goto err_cmd_init;
4377 	}
4378 
4379 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
4380 					 hns3_interrupt_handler,
4381 					 eth_dev);
4382 	if (ret) {
4383 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4384 		goto err_intr_callback_register;
4385 	}
4386 
4387 	/* Enable interrupt */
4388 	rte_intr_enable(&pci_dev->intr_handle);
4389 	hns3_pf_enable_irq0(hw);
4390 
4391 	/* Get configuration */
4392 	ret = hns3_get_configuration(hw);
4393 	if (ret) {
4394 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4395 		goto err_get_config;
4396 	}
4397 
4398 	ret = hns3_init_hardware(hns);
4399 	if (ret) {
4400 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4401 		goto err_get_config;
4402 	}
4403 
4404 	/* Initialize flow director filter list & hash */
4405 	ret = hns3_fdir_filter_init(hns);
4406 	if (ret) {
4407 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4408 		goto err_hw_init;
4409 	}
4410 
4411 	hns3_set_default_rss_args(hw);
4412 
4413 	ret = hns3_enable_hw_error_intr(hns, true);
4414 	if (ret) {
4415 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4416 			     ret);
4417 		goto err_fdir;
4418 	}
4419 
4420 	return 0;
4421 
4422 err_fdir:
4423 	hns3_fdir_filter_uninit(hns);
4424 err_hw_init:
4425 	hns3_uninit_umv_space(hw);
4426 
4427 err_get_config:
4428 	hns3_pf_disable_irq0(hw);
4429 	rte_intr_disable(&pci_dev->intr_handle);
4430 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4431 			     eth_dev);
4432 err_intr_callback_register:
4433 err_cmd_init:
4434 	hns3_cmd_uninit(hw);
4435 	hns3_cmd_destroy_queue(hw);
4436 err_cmd_init_queue:
4437 	hw->io_base = NULL;
4438 
4439 	return ret;
4440 }
4441 
4442 static void
4443 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4444 {
4445 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4446 	struct rte_device *dev = eth_dev->device;
4447 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4448 	struct hns3_hw *hw = &hns->hw;
4449 
4450 	PMD_INIT_FUNC_TRACE();
4451 
4452 	hns3_enable_hw_error_intr(hns, false);
4453 	hns3_rss_uninit(hns);
4454 	(void)hns3_config_gro(hw, false);
4455 	hns3_promisc_uninit(hw);
4456 	hns3_fdir_filter_uninit(hns);
4457 	hns3_uninit_umv_space(hw);
4458 	hns3_pf_disable_irq0(hw);
4459 	rte_intr_disable(&pci_dev->intr_handle);
4460 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4461 			     eth_dev);
4462 	hns3_cmd_uninit(hw);
4463 	hns3_cmd_destroy_queue(hw);
4464 	hw->io_base = NULL;
4465 }
4466 
4467 static int
4468 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
4469 {
4470 	struct hns3_hw *hw = &hns->hw;
4471 	int ret;
4472 
4473 	ret = hns3_dcb_cfg_update(hns);
4474 	if (ret)
4475 		return ret;
4476 
4477 	/* Enable queues */
4478 	ret = hns3_start_queues(hns, reset_queue);
4479 	if (ret) {
4480 		PMD_INIT_LOG(ERR, "Failed to start queues: %d", ret);
4481 		return ret;
4482 	}
4483 
4484 	/* Enable MAC */
4485 	ret = hns3_cfg_mac_mode(hw, true);
4486 	if (ret) {
4487 		PMD_INIT_LOG(ERR, "Failed to enable MAC: %d", ret);
4488 		goto err_config_mac_mode;
4489 	}
4490 	return 0;
4491 
4492 err_config_mac_mode:
4493 	hns3_stop_queues(hns, true);
4494 	return ret;
4495 }
4496 
4497 static int
4498 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
4499 {
4500 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4501 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4502 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4503 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4504 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4505 	uint32_t intr_vector;
4506 	uint16_t q_id;
4507 	int ret;
4508 
4509 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4510 		return 0;
4511 
4512 	/* disable uio/vfio intr/eventfd mapping */
4513 	rte_intr_disable(intr_handle);
4514 
4515 	/* check and configure queue intr-vector mapping */
4516 	if (rte_intr_cap_multiple(intr_handle) ||
4517 	    !RTE_ETH_DEV_SRIOV(dev).active) {
4518 		intr_vector = hw->used_rx_queues;
4519 		/* creates event fd for each intr vector when MSIX is used */
4520 		if (rte_intr_efd_enable(intr_handle, intr_vector))
4521 			return -EINVAL;
4522 	}
4523 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
4524 		intr_handle->intr_vec =
4525 			rte_zmalloc("intr_vec",
4526 				    hw->used_rx_queues * sizeof(int), 0);
4527 		if (intr_handle->intr_vec == NULL) {
4528 			hns3_err(hw, "Failed to allocate %d rx_queues"
4529 				     " intr_vec", hw->used_rx_queues);
4530 			ret = -ENOMEM;
4531 			goto alloc_intr_vec_error;
4532 		}
4533 	}
4534 
4535 	if (rte_intr_allow_others(intr_handle)) {
4536 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4537 		base = RTE_INTR_VEC_RXTX_OFFSET;
4538 	}
4539 	if (rte_intr_dp_is_en(intr_handle)) {
4540 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4541 			ret = hns3_bind_ring_with_vector(hw, vec, true,
4542 							 HNS3_RING_TYPE_RX,
4543 							 q_id);
4544 			if (ret)
4545 				goto bind_vector_error;
4546 			intr_handle->intr_vec[q_id] = vec;
4547 			if (vec < base + intr_handle->nb_efd - 1)
4548 				vec++;
4549 		}
4550 	}
4551 	rte_intr_enable(intr_handle);
4552 	return 0;
4553 
4554 bind_vector_error:
4555 	rte_intr_efd_disable(intr_handle);
4556 	if (intr_handle->intr_vec) {
4557 		free(intr_handle->intr_vec);
4558 		intr_handle->intr_vec = NULL;
4559 	}
4560 	return ret;
4561 alloc_intr_vec_error:
4562 	rte_intr_efd_disable(intr_handle);
4563 	return ret;
4564 }
4565 
4566 static int
4567 hns3_restore_rx_interrupt(struct hns3_hw *hw)
4568 {
4569 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4570 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4571 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4572 	uint16_t q_id;
4573 	int ret;
4574 
4575 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4576 		return 0;
4577 
4578 	if (rte_intr_dp_is_en(intr_handle)) {
4579 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4580 			ret = hns3_bind_ring_with_vector(hw,
4581 					intr_handle->intr_vec[q_id], true,
4582 					HNS3_RING_TYPE_RX, q_id);
4583 			if (ret)
4584 				return ret;
4585 		}
4586 	}
4587 
4588 	return 0;
4589 }
4590 
4591 static void
4592 hns3_restore_filter(struct rte_eth_dev *dev)
4593 {
4594 	hns3_restore_rss_filter(dev);
4595 }
4596 
4597 static int
4598 hns3_dev_start(struct rte_eth_dev *dev)
4599 {
4600 	struct hns3_adapter *hns = dev->data->dev_private;
4601 	struct hns3_hw *hw = &hns->hw;
4602 	int ret;
4603 
4604 	PMD_INIT_FUNC_TRACE();
4605 	if (rte_atomic16_read(&hw->reset.resetting))
4606 		return -EBUSY;
4607 
4608 	rte_spinlock_lock(&hw->lock);
4609 	hw->adapter_state = HNS3_NIC_STARTING;
4610 
4611 	ret = hns3_do_start(hns, true);
4612 	if (ret) {
4613 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4614 		rte_spinlock_unlock(&hw->lock);
4615 		return ret;
4616 	}
4617 	ret = hns3_map_rx_interrupt(dev);
4618 	if (ret) {
4619 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4620 		rte_spinlock_unlock(&hw->lock);
4621 		return ret;
4622 	}
4623 
4624 	hw->adapter_state = HNS3_NIC_STARTED;
4625 	rte_spinlock_unlock(&hw->lock);
4626 
4627 	hns3_set_rxtx_function(dev);
4628 	hns3_mp_req_start_rxtx(dev);
4629 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
4630 
4631 	hns3_restore_filter(dev);
4632 
4633 	/* Enable interrupt of all rx queues before enabling queues */
4634 	hns3_dev_all_rx_queue_intr_enable(hw, true);
4635 	/*
4636 	 * When finished the initialization, enable queues to receive/transmit
4637 	 * packets.
4638 	 */
4639 	hns3_enable_all_queues(hw, true);
4640 
4641 	hns3_info(hw, "hns3 dev start successful!");
4642 	return 0;
4643 }
4644 
4645 static int
4646 hns3_do_stop(struct hns3_adapter *hns)
4647 {
4648 	struct hns3_hw *hw = &hns->hw;
4649 	bool reset_queue;
4650 	int ret;
4651 
4652 	ret = hns3_cfg_mac_mode(hw, false);
4653 	if (ret)
4654 		return ret;
4655 	hw->mac.link_status = ETH_LINK_DOWN;
4656 
4657 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
4658 		hns3_configure_all_mac_addr(hns, true);
4659 		reset_queue = true;
4660 	} else
4661 		reset_queue = false;
4662 	hw->mac.default_addr_setted = false;
4663 	return hns3_stop_queues(hns, reset_queue);
4664 }
4665 
4666 static void
4667 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
4668 {
4669 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4670 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4671 	struct hns3_adapter *hns = dev->data->dev_private;
4672 	struct hns3_hw *hw = &hns->hw;
4673 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4674 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4675 	uint16_t q_id;
4676 
4677 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4678 		return;
4679 
4680 	/* unmap the ring with vector */
4681 	if (rte_intr_allow_others(intr_handle)) {
4682 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4683 		base = RTE_INTR_VEC_RXTX_OFFSET;
4684 	}
4685 	if (rte_intr_dp_is_en(intr_handle)) {
4686 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4687 			(void)hns3_bind_ring_with_vector(hw, vec, false,
4688 							 HNS3_RING_TYPE_RX,
4689 							 q_id);
4690 			if (vec < base + intr_handle->nb_efd - 1)
4691 				vec++;
4692 		}
4693 	}
4694 	/* Clean datapath event and queue/vec mapping */
4695 	rte_intr_efd_disable(intr_handle);
4696 	if (intr_handle->intr_vec) {
4697 		rte_free(intr_handle->intr_vec);
4698 		intr_handle->intr_vec = NULL;
4699 	}
4700 }
4701 
4702 static void
4703 hns3_dev_stop(struct rte_eth_dev *dev)
4704 {
4705 	struct hns3_adapter *hns = dev->data->dev_private;
4706 	struct hns3_hw *hw = &hns->hw;
4707 
4708 	PMD_INIT_FUNC_TRACE();
4709 
4710 	hw->adapter_state = HNS3_NIC_STOPPING;
4711 	hns3_set_rxtx_function(dev);
4712 	rte_wmb();
4713 	/* Disable datapath on secondary process. */
4714 	hns3_mp_req_stop_rxtx(dev);
4715 	/* Prevent crashes when queues are still in use. */
4716 	rte_delay_ms(hw->tqps_num);
4717 
4718 	rte_spinlock_lock(&hw->lock);
4719 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
4720 		hns3_do_stop(hns);
4721 		hns3_unmap_rx_interrupt(dev);
4722 		hns3_dev_release_mbufs(hns);
4723 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4724 	}
4725 	rte_eal_alarm_cancel(hns3_service_handler, dev);
4726 	rte_spinlock_unlock(&hw->lock);
4727 }
4728 
4729 static void
4730 hns3_dev_close(struct rte_eth_dev *eth_dev)
4731 {
4732 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4733 	struct hns3_hw *hw = &hns->hw;
4734 
4735 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
4736 		rte_free(eth_dev->process_private);
4737 		eth_dev->process_private = NULL;
4738 		return;
4739 	}
4740 
4741 	if (hw->adapter_state == HNS3_NIC_STARTED)
4742 		hns3_dev_stop(eth_dev);
4743 
4744 	hw->adapter_state = HNS3_NIC_CLOSING;
4745 	hns3_reset_abort(hns);
4746 	hw->adapter_state = HNS3_NIC_CLOSED;
4747 
4748 	hns3_configure_all_mc_mac_addr(hns, true);
4749 	hns3_remove_all_vlan_table(hns);
4750 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
4751 	hns3_uninit_pf(eth_dev);
4752 	hns3_free_all_queues(eth_dev);
4753 	rte_free(hw->reset.wait_data);
4754 	rte_free(eth_dev->process_private);
4755 	eth_dev->process_private = NULL;
4756 	hns3_mp_uninit_primary();
4757 	hns3_warn(hw, "Close port %d finished", hw->data->port_id);
4758 }
4759 
4760 static int
4761 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4762 {
4763 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4764 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4765 
4766 	fc_conf->pause_time = pf->pause_time;
4767 
4768 	/* return fc current mode */
4769 	switch (hw->current_mode) {
4770 	case HNS3_FC_FULL:
4771 		fc_conf->mode = RTE_FC_FULL;
4772 		break;
4773 	case HNS3_FC_TX_PAUSE:
4774 		fc_conf->mode = RTE_FC_TX_PAUSE;
4775 		break;
4776 	case HNS3_FC_RX_PAUSE:
4777 		fc_conf->mode = RTE_FC_RX_PAUSE;
4778 		break;
4779 	case HNS3_FC_NONE:
4780 	default:
4781 		fc_conf->mode = RTE_FC_NONE;
4782 		break;
4783 	}
4784 
4785 	return 0;
4786 }
4787 
4788 static void
4789 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
4790 {
4791 	switch (mode) {
4792 	case RTE_FC_NONE:
4793 		hw->requested_mode = HNS3_FC_NONE;
4794 		break;
4795 	case RTE_FC_RX_PAUSE:
4796 		hw->requested_mode = HNS3_FC_RX_PAUSE;
4797 		break;
4798 	case RTE_FC_TX_PAUSE:
4799 		hw->requested_mode = HNS3_FC_TX_PAUSE;
4800 		break;
4801 	case RTE_FC_FULL:
4802 		hw->requested_mode = HNS3_FC_FULL;
4803 		break;
4804 	default:
4805 		hw->requested_mode = HNS3_FC_NONE;
4806 		hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
4807 			  "configured to RTE_FC_NONE", mode);
4808 		break;
4809 	}
4810 }
4811 
4812 static int
4813 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4814 {
4815 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4816 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4817 	int ret;
4818 
4819 	if (fc_conf->high_water || fc_conf->low_water ||
4820 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
4821 		hns3_err(hw, "Unsupported flow control settings specified, "
4822 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4823 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4824 			 fc_conf->high_water, fc_conf->low_water,
4825 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
4826 		return -EINVAL;
4827 	}
4828 	if (fc_conf->autoneg) {
4829 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4830 		return -EINVAL;
4831 	}
4832 	if (!fc_conf->pause_time) {
4833 		hns3_err(hw, "Invalid pause time %d setting.",
4834 			 fc_conf->pause_time);
4835 		return -EINVAL;
4836 	}
4837 
4838 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4839 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
4840 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
4841 			 "current_fc_status = %d", hw->current_fc_status);
4842 		return -EOPNOTSUPP;
4843 	}
4844 
4845 	hns3_get_fc_mode(hw, fc_conf->mode);
4846 	if (hw->requested_mode == hw->current_mode &&
4847 	    pf->pause_time == fc_conf->pause_time)
4848 		return 0;
4849 
4850 	rte_spinlock_lock(&hw->lock);
4851 	ret = hns3_fc_enable(dev, fc_conf);
4852 	rte_spinlock_unlock(&hw->lock);
4853 
4854 	return ret;
4855 }
4856 
4857 static int
4858 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
4859 			    struct rte_eth_pfc_conf *pfc_conf)
4860 {
4861 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4862 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4863 	uint8_t priority;
4864 	int ret;
4865 
4866 	if (!hns3_dev_dcb_supported(hw)) {
4867 		hns3_err(hw, "This port does not support dcb configurations.");
4868 		return -EOPNOTSUPP;
4869 	}
4870 
4871 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
4872 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
4873 		hns3_err(hw, "Unsupported flow control settings specified, "
4874 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4875 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4876 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
4877 			 pfc_conf->fc.send_xon,
4878 			 pfc_conf->fc.mac_ctrl_frame_fwd);
4879 		return -EINVAL;
4880 	}
4881 	if (pfc_conf->fc.autoneg) {
4882 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4883 		return -EINVAL;
4884 	}
4885 	if (pfc_conf->fc.pause_time == 0) {
4886 		hns3_err(hw, "Invalid pause time %d setting.",
4887 			 pfc_conf->fc.pause_time);
4888 		return -EINVAL;
4889 	}
4890 
4891 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4892 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
4893 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
4894 			     "current_fc_status = %d", hw->current_fc_status);
4895 		return -EOPNOTSUPP;
4896 	}
4897 
4898 	priority = pfc_conf->priority;
4899 	hns3_get_fc_mode(hw, pfc_conf->fc.mode);
4900 	if (hw->dcb_info.pfc_en & BIT(priority) &&
4901 	    hw->requested_mode == hw->current_mode &&
4902 	    pfc_conf->fc.pause_time == pf->pause_time)
4903 		return 0;
4904 
4905 	rte_spinlock_lock(&hw->lock);
4906 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
4907 	rte_spinlock_unlock(&hw->lock);
4908 
4909 	return ret;
4910 }
4911 
4912 static int
4913 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
4914 {
4915 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4916 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4917 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
4918 	int i;
4919 
4920 	rte_spinlock_lock(&hw->lock);
4921 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
4922 		dcb_info->nb_tcs = pf->local_max_tc;
4923 	else
4924 		dcb_info->nb_tcs = 1;
4925 
4926 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
4927 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
4928 	for (i = 0; i < dcb_info->nb_tcs; i++)
4929 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
4930 
4931 	for (i = 0; i < hw->num_tc; i++) {
4932 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
4933 		dcb_info->tc_queue.tc_txq[0][i].base =
4934 						hw->tc_queue[i].tqp_offset;
4935 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
4936 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
4937 						hw->tc_queue[i].tqp_count;
4938 	}
4939 	rte_spinlock_unlock(&hw->lock);
4940 
4941 	return 0;
4942 }
4943 
4944 static int
4945 hns3_reinit_dev(struct hns3_adapter *hns)
4946 {
4947 	struct hns3_hw *hw = &hns->hw;
4948 	int ret;
4949 
4950 	ret = hns3_cmd_init(hw);
4951 	if (ret) {
4952 		hns3_err(hw, "Failed to init cmd: %d", ret);
4953 		return ret;
4954 	}
4955 
4956 	ret = hns3_reset_all_queues(hns);
4957 	if (ret) {
4958 		hns3_err(hw, "Failed to reset all queues: %d", ret);
4959 		return ret;
4960 	}
4961 
4962 	ret = hns3_init_hardware(hns);
4963 	if (ret) {
4964 		hns3_err(hw, "Failed to init hardware: %d", ret);
4965 		return ret;
4966 	}
4967 
4968 	ret = hns3_enable_hw_error_intr(hns, true);
4969 	if (ret) {
4970 		hns3_err(hw, "fail to enable hw error interrupts: %d",
4971 			     ret);
4972 		return ret;
4973 	}
4974 	hns3_info(hw, "Reset done, driver initialization finished.");
4975 
4976 	return 0;
4977 }
4978 
4979 static bool
4980 is_pf_reset_done(struct hns3_hw *hw)
4981 {
4982 	uint32_t val, reg, reg_bit;
4983 
4984 	switch (hw->reset.level) {
4985 	case HNS3_IMP_RESET:
4986 		reg = HNS3_GLOBAL_RESET_REG;
4987 		reg_bit = HNS3_IMP_RESET_BIT;
4988 		break;
4989 	case HNS3_GLOBAL_RESET:
4990 		reg = HNS3_GLOBAL_RESET_REG;
4991 		reg_bit = HNS3_GLOBAL_RESET_BIT;
4992 		break;
4993 	case HNS3_FUNC_RESET:
4994 		reg = HNS3_FUN_RST_ING;
4995 		reg_bit = HNS3_FUN_RST_ING_B;
4996 		break;
4997 	case HNS3_FLR_RESET:
4998 	default:
4999 		hns3_err(hw, "Wait for unsupported reset level: %d",
5000 			 hw->reset.level);
5001 		return true;
5002 	}
5003 	val = hns3_read_dev(hw, reg);
5004 	if (hns3_get_bit(val, reg_bit))
5005 		return false;
5006 	else
5007 		return true;
5008 }
5009 
5010 bool
5011 hns3_is_reset_pending(struct hns3_adapter *hns)
5012 {
5013 	struct hns3_hw *hw = &hns->hw;
5014 	enum hns3_reset_level reset;
5015 
5016 	hns3_check_event_cause(hns, NULL);
5017 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5018 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5019 		hns3_warn(hw, "High level reset %d is pending", reset);
5020 		return true;
5021 	}
5022 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5023 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5024 		hns3_warn(hw, "High level reset %d is request", reset);
5025 		return true;
5026 	}
5027 	return false;
5028 }
5029 
5030 static int
5031 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5032 {
5033 	struct hns3_hw *hw = &hns->hw;
5034 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5035 	struct timeval tv;
5036 
5037 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5038 		return 0;
5039 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5040 		gettimeofday(&tv, NULL);
5041 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5042 			  tv.tv_sec, tv.tv_usec);
5043 		return -ETIME;
5044 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5045 		return -EAGAIN;
5046 
5047 	wait_data->hns = hns;
5048 	wait_data->check_completion = is_pf_reset_done;
5049 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5050 				      HNS3_RESET_WAIT_MS + get_timeofday_ms();
5051 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5052 	wait_data->count = HNS3_RESET_WAIT_CNT;
5053 	wait_data->result = HNS3_WAIT_REQUEST;
5054 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5055 	return -EAGAIN;
5056 }
5057 
5058 static int
5059 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5060 {
5061 	struct hns3_cmd_desc desc;
5062 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5063 
5064 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5065 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5066 	req->fun_reset_vfid = func_id;
5067 
5068 	return hns3_cmd_send(hw, &desc, 1);
5069 }
5070 
5071 static int
5072 hns3_imp_reset_cmd(struct hns3_hw *hw)
5073 {
5074 	struct hns3_cmd_desc desc;
5075 
5076 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5077 	desc.data[0] = 0xeedd;
5078 
5079 	return hns3_cmd_send(hw, &desc, 1);
5080 }
5081 
5082 static void
5083 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5084 {
5085 	struct hns3_hw *hw = &hns->hw;
5086 	struct timeval tv;
5087 	uint32_t val;
5088 
5089 	gettimeofday(&tv, NULL);
5090 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5091 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5092 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5093 			  tv.tv_sec, tv.tv_usec);
5094 		return;
5095 	}
5096 
5097 	switch (reset_level) {
5098 	case HNS3_IMP_RESET:
5099 		hns3_imp_reset_cmd(hw);
5100 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5101 			  tv.tv_sec, tv.tv_usec);
5102 		break;
5103 	case HNS3_GLOBAL_RESET:
5104 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5105 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5106 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5107 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5108 			  tv.tv_sec, tv.tv_usec);
5109 		break;
5110 	case HNS3_FUNC_RESET:
5111 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5112 			  tv.tv_sec, tv.tv_usec);
5113 		/* schedule again to check later */
5114 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5115 		hns3_schedule_reset(hns);
5116 		break;
5117 	default:
5118 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5119 		return;
5120 	}
5121 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5122 }
5123 
5124 static enum hns3_reset_level
5125 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5126 {
5127 	struct hns3_hw *hw = &hns->hw;
5128 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5129 
5130 	/* Return the highest priority reset level amongst all */
5131 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5132 		reset_level = HNS3_IMP_RESET;
5133 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5134 		reset_level = HNS3_GLOBAL_RESET;
5135 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5136 		reset_level = HNS3_FUNC_RESET;
5137 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5138 		reset_level = HNS3_FLR_RESET;
5139 
5140 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5141 		return HNS3_NONE_RESET;
5142 
5143 	return reset_level;
5144 }
5145 
5146 static int
5147 hns3_prepare_reset(struct hns3_adapter *hns)
5148 {
5149 	struct hns3_hw *hw = &hns->hw;
5150 	uint32_t reg_val;
5151 	int ret;
5152 
5153 	switch (hw->reset.level) {
5154 	case HNS3_FUNC_RESET:
5155 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5156 		if (ret)
5157 			return ret;
5158 
5159 		/*
5160 		 * After performaning pf reset, it is not necessary to do the
5161 		 * mailbox handling or send any command to firmware, because
5162 		 * any mailbox handling or command to firmware is only valid
5163 		 * after hns3_cmd_init is called.
5164 		 */
5165 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
5166 		hw->reset.stats.request_cnt++;
5167 		break;
5168 	case HNS3_IMP_RESET:
5169 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5170 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5171 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5172 		break;
5173 	default:
5174 		break;
5175 	}
5176 	return 0;
5177 }
5178 
5179 static int
5180 hns3_set_rst_done(struct hns3_hw *hw)
5181 {
5182 	struct hns3_pf_rst_done_cmd *req;
5183 	struct hns3_cmd_desc desc;
5184 
5185 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5186 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5187 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5188 	return hns3_cmd_send(hw, &desc, 1);
5189 }
5190 
5191 static int
5192 hns3_stop_service(struct hns3_adapter *hns)
5193 {
5194 	struct hns3_hw *hw = &hns->hw;
5195 	struct rte_eth_dev *eth_dev;
5196 
5197 	eth_dev = &rte_eth_devices[hw->data->port_id];
5198 	if (hw->adapter_state == HNS3_NIC_STARTED)
5199 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5200 	hw->mac.link_status = ETH_LINK_DOWN;
5201 
5202 	hns3_set_rxtx_function(eth_dev);
5203 	rte_wmb();
5204 	/* Disable datapath on secondary process. */
5205 	hns3_mp_req_stop_rxtx(eth_dev);
5206 	rte_delay_ms(hw->tqps_num);
5207 
5208 	rte_spinlock_lock(&hw->lock);
5209 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5210 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5211 		hns3_do_stop(hns);
5212 		hw->reset.mbuf_deferred_free = true;
5213 	} else
5214 		hw->reset.mbuf_deferred_free = false;
5215 
5216 	/*
5217 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5218 	 * from table space. Hence, for function reset software intervention is
5219 	 * required to delete the entries
5220 	 */
5221 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
5222 		hns3_configure_all_mc_mac_addr(hns, true);
5223 	rte_spinlock_unlock(&hw->lock);
5224 
5225 	return 0;
5226 }
5227 
5228 static int
5229 hns3_start_service(struct hns3_adapter *hns)
5230 {
5231 	struct hns3_hw *hw = &hns->hw;
5232 	struct rte_eth_dev *eth_dev;
5233 
5234 	if (hw->reset.level == HNS3_IMP_RESET ||
5235 	    hw->reset.level == HNS3_GLOBAL_RESET)
5236 		hns3_set_rst_done(hw);
5237 	eth_dev = &rte_eth_devices[hw->data->port_id];
5238 	hns3_set_rxtx_function(eth_dev);
5239 	hns3_mp_req_start_rxtx(eth_dev);
5240 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5241 		hns3_service_handler(eth_dev);
5242 
5243 		/* Enable interrupt of all rx queues before enabling queues */
5244 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5245 		/*
5246 		 * When finished the initialization, enable queues to receive
5247 		 * and transmit packets.
5248 		 */
5249 		hns3_enable_all_queues(hw, true);
5250 	}
5251 
5252 	return 0;
5253 }
5254 
5255 static int
5256 hns3_restore_conf(struct hns3_adapter *hns)
5257 {
5258 	struct hns3_hw *hw = &hns->hw;
5259 	int ret;
5260 
5261 	ret = hns3_configure_all_mac_addr(hns, false);
5262 	if (ret)
5263 		return ret;
5264 
5265 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5266 	if (ret)
5267 		goto err_mc_mac;
5268 
5269 	ret = hns3_dev_promisc_restore(hns);
5270 	if (ret)
5271 		goto err_promisc;
5272 
5273 	ret = hns3_restore_vlan_table(hns);
5274 	if (ret)
5275 		goto err_promisc;
5276 
5277 	ret = hns3_restore_vlan_conf(hns);
5278 	if (ret)
5279 		goto err_promisc;
5280 
5281 	ret = hns3_restore_all_fdir_filter(hns);
5282 	if (ret)
5283 		goto err_promisc;
5284 
5285 	ret = hns3_restore_rx_interrupt(hw);
5286 	if (ret)
5287 		goto err_promisc;
5288 
5289 	ret = hns3_restore_gro_conf(hw);
5290 	if (ret)
5291 		goto err_promisc;
5292 
5293 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5294 		ret = hns3_do_start(hns, false);
5295 		if (ret)
5296 			goto err_promisc;
5297 		hns3_info(hw, "hns3 dev restart successful!");
5298 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5299 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5300 	return 0;
5301 
5302 err_promisc:
5303 	hns3_configure_all_mc_mac_addr(hns, true);
5304 err_mc_mac:
5305 	hns3_configure_all_mac_addr(hns, true);
5306 	return ret;
5307 }
5308 
5309 static void
5310 hns3_reset_service(void *param)
5311 {
5312 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5313 	struct hns3_hw *hw = &hns->hw;
5314 	enum hns3_reset_level reset_level;
5315 	struct timeval tv_delta;
5316 	struct timeval tv_start;
5317 	struct timeval tv;
5318 	uint64_t msec;
5319 	int ret;
5320 
5321 	/*
5322 	 * The interrupt is not triggered within the delay time.
5323 	 * The interrupt may have been lost. It is necessary to handle
5324 	 * the interrupt to recover from the error.
5325 	 */
5326 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
5327 		rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
5328 		hns3_err(hw, "Handling interrupts in delayed tasks");
5329 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5330 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5331 		if (reset_level == HNS3_NONE_RESET) {
5332 			hns3_err(hw, "No reset level is set, try IMP reset");
5333 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5334 		}
5335 	}
5336 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
5337 
5338 	/*
5339 	 * Check if there is any ongoing reset in the hardware. This status can
5340 	 * be checked from reset_pending. If there is then, we need to wait for
5341 	 * hardware to complete reset.
5342 	 *    a. If we are able to figure out in reasonable time that hardware
5343 	 *       has fully resetted then, we can proceed with driver, client
5344 	 *       reset.
5345 	 *    b. else, we can come back later to check this status so re-sched
5346 	 *       now.
5347 	 */
5348 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5349 	if (reset_level != HNS3_NONE_RESET) {
5350 		gettimeofday(&tv_start, NULL);
5351 		ret = hns3_reset_process(hns, reset_level);
5352 		gettimeofday(&tv, NULL);
5353 		timersub(&tv, &tv_start, &tv_delta);
5354 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
5355 		       tv_delta.tv_usec / USEC_PER_MSEC;
5356 		if (msec > HNS3_RESET_PROCESS_MS)
5357 			hns3_err(hw, "%d handle long time delta %" PRIx64
5358 				     " ms time=%ld.%.6ld",
5359 				 hw->reset.level, msec,
5360 				 tv.tv_sec, tv.tv_usec);
5361 		if (ret == -EAGAIN)
5362 			return;
5363 	}
5364 
5365 	/* Check if we got any *new* reset requests to be honored */
5366 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
5367 	if (reset_level != HNS3_NONE_RESET)
5368 		hns3_msix_process(hns, reset_level);
5369 }
5370 
5371 static const struct eth_dev_ops hns3_eth_dev_ops = {
5372 	.dev_start          = hns3_dev_start,
5373 	.dev_stop           = hns3_dev_stop,
5374 	.dev_close          = hns3_dev_close,
5375 	.promiscuous_enable = hns3_dev_promiscuous_enable,
5376 	.promiscuous_disable = hns3_dev_promiscuous_disable,
5377 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
5378 	.allmulticast_disable = hns3_dev_allmulticast_disable,
5379 	.mtu_set            = hns3_dev_mtu_set,
5380 	.stats_get          = hns3_stats_get,
5381 	.stats_reset        = hns3_stats_reset,
5382 	.xstats_get         = hns3_dev_xstats_get,
5383 	.xstats_get_names   = hns3_dev_xstats_get_names,
5384 	.xstats_reset       = hns3_dev_xstats_reset,
5385 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
5386 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
5387 	.dev_infos_get          = hns3_dev_infos_get,
5388 	.fw_version_get         = hns3_fw_version_get,
5389 	.rx_queue_setup         = hns3_rx_queue_setup,
5390 	.tx_queue_setup         = hns3_tx_queue_setup,
5391 	.rx_queue_release       = hns3_dev_rx_queue_release,
5392 	.tx_queue_release       = hns3_dev_tx_queue_release,
5393 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
5394 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
5395 	.dev_configure          = hns3_dev_configure,
5396 	.flow_ctrl_get          = hns3_flow_ctrl_get,
5397 	.flow_ctrl_set          = hns3_flow_ctrl_set,
5398 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
5399 	.mac_addr_add           = hns3_add_mac_addr,
5400 	.mac_addr_remove        = hns3_remove_mac_addr,
5401 	.mac_addr_set           = hns3_set_default_mac_addr,
5402 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
5403 	.link_update            = hns3_dev_link_update,
5404 	.rss_hash_update        = hns3_dev_rss_hash_update,
5405 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
5406 	.reta_update            = hns3_dev_rss_reta_update,
5407 	.reta_query             = hns3_dev_rss_reta_query,
5408 	.filter_ctrl            = hns3_dev_filter_ctrl,
5409 	.vlan_filter_set        = hns3_vlan_filter_set,
5410 	.vlan_tpid_set          = hns3_vlan_tpid_set,
5411 	.vlan_offload_set       = hns3_vlan_offload_set,
5412 	.vlan_pvid_set          = hns3_vlan_pvid_set,
5413 	.get_reg                = hns3_get_regs,
5414 	.get_dcb_info           = hns3_get_dcb_info,
5415 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
5416 };
5417 
5418 static const struct hns3_reset_ops hns3_reset_ops = {
5419 	.reset_service       = hns3_reset_service,
5420 	.stop_service        = hns3_stop_service,
5421 	.prepare_reset       = hns3_prepare_reset,
5422 	.wait_hardware_ready = hns3_wait_hardware_ready,
5423 	.reinit_dev          = hns3_reinit_dev,
5424 	.restore_conf	     = hns3_restore_conf,
5425 	.start_service       = hns3_start_service,
5426 };
5427 
5428 static int
5429 hns3_dev_init(struct rte_eth_dev *eth_dev)
5430 {
5431 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5432 	struct hns3_hw *hw = &hns->hw;
5433 	int ret;
5434 
5435 	PMD_INIT_FUNC_TRACE();
5436 
5437 	eth_dev->process_private = (struct hns3_process_private *)
5438 	    rte_zmalloc_socket("hns3_filter_list",
5439 			       sizeof(struct hns3_process_private),
5440 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
5441 	if (eth_dev->process_private == NULL) {
5442 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
5443 		return -ENOMEM;
5444 	}
5445 	/* initialize flow filter lists */
5446 	hns3_filterlist_init(eth_dev);
5447 
5448 	hns3_set_rxtx_function(eth_dev);
5449 	eth_dev->dev_ops = &hns3_eth_dev_ops;
5450 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5451 		ret = hns3_mp_init_secondary();
5452 		if (ret) {
5453 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
5454 				     "process, ret = %d", ret);
5455 			goto err_mp_init_secondary;
5456 		}
5457 
5458 		hw->secondary_cnt++;
5459 		return 0;
5460 	}
5461 
5462 	ret = hns3_mp_init_primary();
5463 	if (ret) {
5464 		PMD_INIT_LOG(ERR,
5465 			     "Failed to init for primary process, ret = %d",
5466 			     ret);
5467 		goto err_mp_init_primary;
5468 	}
5469 
5470 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
5471 	hns->is_vf = false;
5472 	hw->data = eth_dev->data;
5473 
5474 	/*
5475 	 * Set default max packet size according to the mtu
5476 	 * default vale in DPDK frame.
5477 	 */
5478 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
5479 
5480 	ret = hns3_reset_init(hw);
5481 	if (ret)
5482 		goto err_init_reset;
5483 	hw->reset.ops = &hns3_reset_ops;
5484 
5485 	ret = hns3_init_pf(eth_dev);
5486 	if (ret) {
5487 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
5488 		goto err_init_pf;
5489 	}
5490 
5491 	/* Allocate memory for storing MAC addresses */
5492 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
5493 					       sizeof(struct rte_ether_addr) *
5494 					       HNS3_UC_MACADDR_NUM, 0);
5495 	if (eth_dev->data->mac_addrs == NULL) {
5496 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
5497 			     "to store MAC addresses",
5498 			     sizeof(struct rte_ether_addr) *
5499 			     HNS3_UC_MACADDR_NUM);
5500 		ret = -ENOMEM;
5501 		goto err_rte_zmalloc;
5502 	}
5503 
5504 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
5505 			    &eth_dev->data->mac_addrs[0]);
5506 
5507 	hw->adapter_state = HNS3_NIC_INITIALIZED;
5508 	/*
5509 	 * Pass the information to the rte_eth_dev_close() that it should also
5510 	 * release the private port resources.
5511 	 */
5512 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
5513 
5514 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
5515 		hns3_err(hw, "Reschedule reset service after dev_init");
5516 		hns3_schedule_reset(hns);
5517 	} else {
5518 		/* IMP will wait ready flag before reset */
5519 		hns3_notify_reset_ready(hw, false);
5520 	}
5521 
5522 	hns3_info(hw, "hns3 dev initialization successful!");
5523 	return 0;
5524 
5525 err_rte_zmalloc:
5526 	hns3_uninit_pf(eth_dev);
5527 
5528 err_init_pf:
5529 	rte_free(hw->reset.wait_data);
5530 
5531 err_init_reset:
5532 	hns3_mp_uninit_primary();
5533 
5534 err_mp_init_primary:
5535 err_mp_init_secondary:
5536 	eth_dev->dev_ops = NULL;
5537 	eth_dev->rx_pkt_burst = NULL;
5538 	eth_dev->tx_pkt_burst = NULL;
5539 	eth_dev->tx_pkt_prepare = NULL;
5540 	rte_free(eth_dev->process_private);
5541 	eth_dev->process_private = NULL;
5542 	return ret;
5543 }
5544 
5545 static int
5546 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
5547 {
5548 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5549 	struct hns3_hw *hw = &hns->hw;
5550 
5551 	PMD_INIT_FUNC_TRACE();
5552 
5553 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5554 		return -EPERM;
5555 
5556 	eth_dev->dev_ops = NULL;
5557 	eth_dev->rx_pkt_burst = NULL;
5558 	eth_dev->tx_pkt_burst = NULL;
5559 	eth_dev->tx_pkt_prepare = NULL;
5560 	if (hw->adapter_state < HNS3_NIC_CLOSING)
5561 		hns3_dev_close(eth_dev);
5562 
5563 	hw->adapter_state = HNS3_NIC_REMOVED;
5564 	return 0;
5565 }
5566 
5567 static int
5568 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
5569 		   struct rte_pci_device *pci_dev)
5570 {
5571 	return rte_eth_dev_pci_generic_probe(pci_dev,
5572 					     sizeof(struct hns3_adapter),
5573 					     hns3_dev_init);
5574 }
5575 
5576 static int
5577 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
5578 {
5579 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
5580 }
5581 
5582 static const struct rte_pci_id pci_id_hns3_map[] = {
5583 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
5584 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
5585 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
5586 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
5587 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
5588 	{ .vendor_id = 0, /* sentinel */ },
5589 };
5590 
5591 static struct rte_pci_driver rte_hns3_pmd = {
5592 	.id_table = pci_id_hns3_map,
5593 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
5594 	.probe = eth_hns3_pci_probe,
5595 	.remove = eth_hns3_pci_remove,
5596 };
5597 
5598 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
5599 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
5600 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
5601 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
5602 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);
5603