xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision bc8e32473cc3978d763a1387eaa8244bcf75e77d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <rte_ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18 
19 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE	32
20 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM	1
21 
22 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
23 #define HNS3_INVALID_PVID		0xFFFF
24 
25 #define HNS3_FILTER_TYPE_VF		0
26 #define HNS3_FILTER_TYPE_PORT		1
27 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
28 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
29 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
30 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
31 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
32 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
33 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
34 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
35 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
36 
37 /* Reset related Registers */
38 #define HNS3_GLOBAL_RESET_BIT		0
39 #define HNS3_CORE_RESET_BIT		1
40 #define HNS3_IMP_RESET_BIT		2
41 #define HNS3_FUN_RST_ING_B		0
42 
43 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
44 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
45 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
46 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
47 
48 #define HNS3_RESET_WAIT_MS	100
49 #define HNS3_RESET_WAIT_CNT	200
50 
51 /* FEC mode order defined in HNS3 hardware */
52 #define HNS3_HW_FEC_MODE_NOFEC  0
53 #define HNS3_HW_FEC_MODE_BASER  1
54 #define HNS3_HW_FEC_MODE_RS     2
55 
56 enum hns3_evt_cause {
57 	HNS3_VECTOR0_EVENT_RST,
58 	HNS3_VECTOR0_EVENT_MBX,
59 	HNS3_VECTOR0_EVENT_ERR,
60 	HNS3_VECTOR0_EVENT_OTHER,
61 };
62 
63 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
64 	{ ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
65 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
66 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
67 
68 	{ ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
69 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
70 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
71 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
72 
73 	{ ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
74 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
75 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
76 
77 	{ ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
78 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
80 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
81 
82 	{ ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
83 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
84 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
85 
86 	{ ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
87 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
88 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
89 };
90 
91 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
92 						 uint64_t *levels);
93 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
94 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
95 				    int on);
96 static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
97 
98 static int hns3_add_mc_addr(struct hns3_hw *hw,
99 			    struct rte_ether_addr *mac_addr);
100 static int hns3_remove_mc_addr(struct hns3_hw *hw,
101 			    struct rte_ether_addr *mac_addr);
102 static int hns3_restore_fec(struct hns3_hw *hw);
103 static int hns3_query_dev_fec_info(struct rte_eth_dev *dev);
104 
105 static void
106 hns3_pf_disable_irq0(struct hns3_hw *hw)
107 {
108 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
109 }
110 
111 static void
112 hns3_pf_enable_irq0(struct hns3_hw *hw)
113 {
114 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
115 }
116 
117 static enum hns3_evt_cause
118 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
119 {
120 	struct hns3_hw *hw = &hns->hw;
121 	uint32_t vector0_int_stats;
122 	uint32_t cmdq_src_val;
123 	uint32_t hw_err_src_reg;
124 	uint32_t val;
125 	enum hns3_evt_cause ret;
126 
127 	/* fetch the events from their corresponding regs */
128 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
129 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
130 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
131 
132 	/*
133 	 * Assumption: If by any chance reset and mailbox events are reported
134 	 * together then we will only process reset event and defer the
135 	 * processing of the mailbox events. Since, we would have not cleared
136 	 * RX CMDQ event this time we would receive again another interrupt
137 	 * from H/W just for the mailbox.
138 	 */
139 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
140 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
141 		hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
142 		val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
143 		if (clearval) {
144 			hw->reset.stats.imp_cnt++;
145 			hns3_warn(hw, "IMP reset detected, clear reset status");
146 		} else {
147 			hns3_schedule_delayed_reset(hns);
148 			hns3_warn(hw, "IMP reset detected, don't clear reset status");
149 		}
150 
151 		ret = HNS3_VECTOR0_EVENT_RST;
152 		goto out;
153 	}
154 
155 	/* Global reset */
156 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
157 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
158 		hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
159 		val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
160 		if (clearval) {
161 			hw->reset.stats.global_cnt++;
162 			hns3_warn(hw, "Global reset detected, clear reset status");
163 		} else {
164 			hns3_schedule_delayed_reset(hns);
165 			hns3_warn(hw, "Global reset detected, don't clear reset status");
166 		}
167 
168 		ret = HNS3_VECTOR0_EVENT_RST;
169 		goto out;
170 	}
171 
172 	/* check for vector0 msix event source */
173 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
174 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
175 		val = vector0_int_stats | hw_err_src_reg;
176 		ret = HNS3_VECTOR0_EVENT_ERR;
177 		goto out;
178 	}
179 
180 	/* check for vector0 mailbox(=CMDQ RX) event source */
181 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
182 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
183 		val = cmdq_src_val;
184 		ret = HNS3_VECTOR0_EVENT_MBX;
185 		goto out;
186 	}
187 
188 	if (clearval && (vector0_int_stats || cmdq_src_val || hw_err_src_reg))
189 		hns3_warn(hw, "vector0_int_stats:0x%x cmdq_src_val:0x%x hw_err_src_reg:0x%x",
190 			  vector0_int_stats, cmdq_src_val, hw_err_src_reg);
191 	val = vector0_int_stats;
192 	ret = HNS3_VECTOR0_EVENT_OTHER;
193 out:
194 
195 	if (clearval)
196 		*clearval = val;
197 	return ret;
198 }
199 
200 static void
201 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
202 {
203 	if (event_type == HNS3_VECTOR0_EVENT_RST)
204 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
205 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
206 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
207 }
208 
209 static void
210 hns3_clear_all_event_cause(struct hns3_hw *hw)
211 {
212 	uint32_t vector0_int_stats;
213 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
214 
215 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
216 		hns3_warn(hw, "Probe during IMP reset interrupt");
217 
218 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
219 		hns3_warn(hw, "Probe during Global reset interrupt");
220 
221 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
222 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
223 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
224 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
225 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
226 }
227 
228 static void
229 hns3_interrupt_handler(void *param)
230 {
231 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
232 	struct hns3_adapter *hns = dev->data->dev_private;
233 	struct hns3_hw *hw = &hns->hw;
234 	enum hns3_evt_cause event_cause;
235 	uint32_t clearval = 0;
236 
237 	/* Disable interrupt */
238 	hns3_pf_disable_irq0(hw);
239 
240 	event_cause = hns3_check_event_cause(hns, &clearval);
241 	/* vector 0 interrupt is shared with reset and mailbox source events. */
242 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
243 		hns3_warn(hw, "Received err interrupt");
244 		hns3_handle_msix_error(hns, &hw->reset.request);
245 		hns3_handle_ras_error(hns, &hw->reset.request);
246 		hns3_schedule_reset(hns);
247 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
248 		hns3_warn(hw, "Received reset interrupt");
249 		hns3_schedule_reset(hns);
250 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
251 		hns3_dev_handle_mbx_msg(hw);
252 	else
253 		hns3_err(hw, "Received unknown event");
254 
255 	hns3_clear_event_cause(hw, event_cause, clearval);
256 	/* Enable interrupt if it is not cause by reset */
257 	hns3_pf_enable_irq0(hw);
258 }
259 
260 static int
261 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
262 {
263 #define HNS3_VLAN_ID_OFFSET_STEP	160
264 #define HNS3_VLAN_BYTE_SIZE		8
265 	struct hns3_vlan_filter_pf_cfg_cmd *req;
266 	struct hns3_hw *hw = &hns->hw;
267 	uint8_t vlan_offset_byte_val;
268 	struct hns3_cmd_desc desc;
269 	uint8_t vlan_offset_byte;
270 	uint8_t vlan_offset_base;
271 	int ret;
272 
273 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
274 
275 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
276 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
277 			   HNS3_VLAN_BYTE_SIZE;
278 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
279 
280 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
281 	req->vlan_offset = vlan_offset_base;
282 	req->vlan_cfg = on ? 0 : 1;
283 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
284 
285 	ret = hns3_cmd_send(hw, &desc, 1);
286 	if (ret)
287 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
288 			 vlan_id, ret);
289 
290 	return ret;
291 }
292 
293 static void
294 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
295 {
296 	struct hns3_user_vlan_table *vlan_entry;
297 	struct hns3_pf *pf = &hns->pf;
298 
299 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
300 		if (vlan_entry->vlan_id == vlan_id) {
301 			if (vlan_entry->hd_tbl_status)
302 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
303 			LIST_REMOVE(vlan_entry, next);
304 			rte_free(vlan_entry);
305 			break;
306 		}
307 	}
308 }
309 
310 static void
311 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
312 			bool writen_to_tbl)
313 {
314 	struct hns3_user_vlan_table *vlan_entry;
315 	struct hns3_hw *hw = &hns->hw;
316 	struct hns3_pf *pf = &hns->pf;
317 
318 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
319 		if (vlan_entry->vlan_id == vlan_id)
320 			return;
321 	}
322 
323 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
324 	if (vlan_entry == NULL) {
325 		hns3_err(hw, "Failed to malloc hns3 vlan table");
326 		return;
327 	}
328 
329 	vlan_entry->hd_tbl_status = writen_to_tbl;
330 	vlan_entry->vlan_id = vlan_id;
331 
332 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
333 }
334 
335 static int
336 hns3_restore_vlan_table(struct hns3_adapter *hns)
337 {
338 	struct hns3_user_vlan_table *vlan_entry;
339 	struct hns3_hw *hw = &hns->hw;
340 	struct hns3_pf *pf = &hns->pf;
341 	uint16_t vlan_id;
342 	int ret = 0;
343 
344 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
345 		return hns3_vlan_pvid_configure(hns,
346 						hw->port_base_vlan_cfg.pvid, 1);
347 
348 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
349 		if (vlan_entry->hd_tbl_status) {
350 			vlan_id = vlan_entry->vlan_id;
351 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
352 			if (ret)
353 				break;
354 		}
355 	}
356 
357 	return ret;
358 }
359 
360 static int
361 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
362 {
363 	struct hns3_hw *hw = &hns->hw;
364 	bool writen_to_tbl = false;
365 	int ret = 0;
366 
367 	/*
368 	 * When vlan filter is enabled, hardware regards packets without vlan
369 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
370 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
371 	 */
372 	if (on == 0 && vlan_id == 0)
373 		return 0;
374 
375 	/*
376 	 * When port base vlan enabled, we use port base vlan as the vlan
377 	 * filter condition. In this case, we don't update vlan filter table
378 	 * when user add new vlan or remove exist vlan, just update the
379 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
380 	 * table until port base vlan disabled
381 	 */
382 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
383 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
384 		writen_to_tbl = true;
385 	}
386 
387 	if (ret == 0) {
388 		if (on)
389 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
390 		else
391 			hns3_rm_dev_vlan_table(hns, vlan_id);
392 	}
393 	return ret;
394 }
395 
396 static int
397 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
398 {
399 	struct hns3_adapter *hns = dev->data->dev_private;
400 	struct hns3_hw *hw = &hns->hw;
401 	int ret;
402 
403 	rte_spinlock_lock(&hw->lock);
404 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
405 	rte_spinlock_unlock(&hw->lock);
406 	return ret;
407 }
408 
409 static int
410 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
411 			 uint16_t tpid)
412 {
413 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
414 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
415 	struct hns3_hw *hw = &hns->hw;
416 	struct hns3_cmd_desc desc;
417 	int ret;
418 
419 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
420 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
421 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
422 		return -EINVAL;
423 	}
424 
425 	if (tpid != RTE_ETHER_TYPE_VLAN) {
426 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
427 		return -EINVAL;
428 	}
429 
430 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
431 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
432 
433 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
434 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
435 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
436 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
437 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
438 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
439 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
440 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
441 	}
442 
443 	ret = hns3_cmd_send(hw, &desc, 1);
444 	if (ret) {
445 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
446 			 ret);
447 		return ret;
448 	}
449 
450 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
451 
452 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
453 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
454 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
455 
456 	ret = hns3_cmd_send(hw, &desc, 1);
457 	if (ret)
458 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
459 			 ret);
460 	return ret;
461 }
462 
463 static int
464 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
465 		   uint16_t tpid)
466 {
467 	struct hns3_adapter *hns = dev->data->dev_private;
468 	struct hns3_hw *hw = &hns->hw;
469 	int ret;
470 
471 	rte_spinlock_lock(&hw->lock);
472 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
473 	rte_spinlock_unlock(&hw->lock);
474 	return ret;
475 }
476 
477 static int
478 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
479 			     struct hns3_rx_vtag_cfg *vcfg)
480 {
481 	struct hns3_vport_vtag_rx_cfg_cmd *req;
482 	struct hns3_hw *hw = &hns->hw;
483 	struct hns3_cmd_desc desc;
484 	uint16_t vport_id;
485 	uint8_t bitmap;
486 	int ret;
487 
488 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
489 
490 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
491 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
492 		     vcfg->strip_tag1_en ? 1 : 0);
493 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
494 		     vcfg->strip_tag2_en ? 1 : 0);
495 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
496 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
497 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
498 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
499 
500 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
501 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
502 		     vcfg->strip_tag1_discard_en ? 1 : 0);
503 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
504 		     vcfg->strip_tag2_discard_en ? 1 : 0);
505 	/*
506 	 * In current version VF is not supported when PF is driven by DPDK
507 	 * driver, just need to configure parameters for PF vport.
508 	 */
509 	vport_id = HNS3_PF_FUNC_ID;
510 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
511 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
512 	req->vf_bitmap[req->vf_offset] = bitmap;
513 
514 	ret = hns3_cmd_send(hw, &desc, 1);
515 	if (ret)
516 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
517 	return ret;
518 }
519 
520 static void
521 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
522 			   struct hns3_rx_vtag_cfg *vcfg)
523 {
524 	struct hns3_pf *pf = &hns->pf;
525 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
526 }
527 
528 static void
529 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
530 			   struct hns3_tx_vtag_cfg *vcfg)
531 {
532 	struct hns3_pf *pf = &hns->pf;
533 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
534 }
535 
536 static int
537 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
538 {
539 	struct hns3_rx_vtag_cfg rxvlan_cfg;
540 	struct hns3_hw *hw = &hns->hw;
541 	int ret;
542 
543 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
544 		rxvlan_cfg.strip_tag1_en = false;
545 		rxvlan_cfg.strip_tag2_en = enable;
546 		rxvlan_cfg.strip_tag2_discard_en = false;
547 	} else {
548 		rxvlan_cfg.strip_tag1_en = enable;
549 		rxvlan_cfg.strip_tag2_en = true;
550 		rxvlan_cfg.strip_tag2_discard_en = true;
551 	}
552 
553 	rxvlan_cfg.strip_tag1_discard_en = false;
554 	rxvlan_cfg.vlan1_vlan_prionly = false;
555 	rxvlan_cfg.vlan2_vlan_prionly = false;
556 	rxvlan_cfg.rx_vlan_offload_en = enable;
557 
558 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
559 	if (ret) {
560 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
561 		return ret;
562 	}
563 
564 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
565 
566 	return ret;
567 }
568 
569 static int
570 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
571 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
572 {
573 	struct hns3_vlan_filter_ctrl_cmd *req;
574 	struct hns3_cmd_desc desc;
575 	int ret;
576 
577 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
578 
579 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
580 	req->vlan_type = vlan_type;
581 	req->vlan_fe = filter_en ? fe_type : 0;
582 	req->vf_id = vf_id;
583 
584 	ret = hns3_cmd_send(hw, &desc, 1);
585 	if (ret)
586 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
587 
588 	return ret;
589 }
590 
591 static int
592 hns3_vlan_filter_init(struct hns3_adapter *hns)
593 {
594 	struct hns3_hw *hw = &hns->hw;
595 	int ret;
596 
597 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
598 					HNS3_FILTER_FE_EGRESS, false,
599 					HNS3_PF_FUNC_ID);
600 	if (ret) {
601 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
602 		return ret;
603 	}
604 
605 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
606 					HNS3_FILTER_FE_INGRESS, false,
607 					HNS3_PF_FUNC_ID);
608 	if (ret)
609 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
610 
611 	return ret;
612 }
613 
614 static int
615 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
616 {
617 	struct hns3_hw *hw = &hns->hw;
618 	int ret;
619 
620 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
621 					HNS3_FILTER_FE_INGRESS, enable,
622 					HNS3_PF_FUNC_ID);
623 	if (ret)
624 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
625 			 enable ? "enable" : "disable", ret);
626 
627 	return ret;
628 }
629 
630 static int
631 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
632 {
633 	struct hns3_adapter *hns = dev->data->dev_private;
634 	struct hns3_hw *hw = &hns->hw;
635 	struct rte_eth_rxmode *rxmode;
636 	unsigned int tmp_mask;
637 	bool enable;
638 	int ret = 0;
639 
640 	rte_spinlock_lock(&hw->lock);
641 	rxmode = &dev->data->dev_conf.rxmode;
642 	tmp_mask = (unsigned int)mask;
643 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
644 		/* ignore vlan filter configuration during promiscuous mode */
645 		if (!dev->data->promiscuous) {
646 			/* Enable or disable VLAN filter */
647 			enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
648 				 true : false;
649 
650 			ret = hns3_enable_vlan_filter(hns, enable);
651 			if (ret) {
652 				rte_spinlock_unlock(&hw->lock);
653 				hns3_err(hw, "failed to %s rx filter, ret = %d",
654 					 enable ? "enable" : "disable", ret);
655 				return ret;
656 			}
657 		}
658 	}
659 
660 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
661 		/* Enable or disable VLAN stripping */
662 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
663 		    true : false;
664 
665 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
666 		if (ret) {
667 			rte_spinlock_unlock(&hw->lock);
668 			hns3_err(hw, "failed to %s rx strip, ret = %d",
669 				 enable ? "enable" : "disable", ret);
670 			return ret;
671 		}
672 	}
673 
674 	rte_spinlock_unlock(&hw->lock);
675 
676 	return ret;
677 }
678 
679 static int
680 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
681 			     struct hns3_tx_vtag_cfg *vcfg)
682 {
683 	struct hns3_vport_vtag_tx_cfg_cmd *req;
684 	struct hns3_cmd_desc desc;
685 	struct hns3_hw *hw = &hns->hw;
686 	uint16_t vport_id;
687 	uint8_t bitmap;
688 	int ret;
689 
690 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
691 
692 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
693 	req->def_vlan_tag1 = vcfg->default_tag1;
694 	req->def_vlan_tag2 = vcfg->default_tag2;
695 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
696 		     vcfg->accept_tag1 ? 1 : 0);
697 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
698 		     vcfg->accept_untag1 ? 1 : 0);
699 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
700 		     vcfg->accept_tag2 ? 1 : 0);
701 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
702 		     vcfg->accept_untag2 ? 1 : 0);
703 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
704 		     vcfg->insert_tag1_en ? 1 : 0);
705 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
706 		     vcfg->insert_tag2_en ? 1 : 0);
707 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
708 
709 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
710 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
711 		     vcfg->tag_shift_mode_en ? 1 : 0);
712 
713 	/*
714 	 * In current version VF is not supported when PF is driven by DPDK
715 	 * driver, just need to configure parameters for PF vport.
716 	 */
717 	vport_id = HNS3_PF_FUNC_ID;
718 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
719 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
720 	req->vf_bitmap[req->vf_offset] = bitmap;
721 
722 	ret = hns3_cmd_send(hw, &desc, 1);
723 	if (ret)
724 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
725 
726 	return ret;
727 }
728 
729 static int
730 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
731 		     uint16_t pvid)
732 {
733 	struct hns3_hw *hw = &hns->hw;
734 	struct hns3_tx_vtag_cfg txvlan_cfg;
735 	int ret;
736 
737 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
738 		txvlan_cfg.accept_tag1 = true;
739 		txvlan_cfg.insert_tag1_en = false;
740 		txvlan_cfg.default_tag1 = 0;
741 	} else {
742 		txvlan_cfg.accept_tag1 =
743 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
744 		txvlan_cfg.insert_tag1_en = true;
745 		txvlan_cfg.default_tag1 = pvid;
746 	}
747 
748 	txvlan_cfg.accept_untag1 = true;
749 	txvlan_cfg.accept_tag2 = true;
750 	txvlan_cfg.accept_untag2 = true;
751 	txvlan_cfg.insert_tag2_en = false;
752 	txvlan_cfg.default_tag2 = 0;
753 	txvlan_cfg.tag_shift_mode_en = true;
754 
755 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
756 	if (ret) {
757 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
758 			 ret);
759 		return ret;
760 	}
761 
762 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
763 	return ret;
764 }
765 
766 
767 static void
768 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
769 {
770 	struct hns3_user_vlan_table *vlan_entry;
771 	struct hns3_pf *pf = &hns->pf;
772 
773 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
774 		if (vlan_entry->hd_tbl_status) {
775 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
776 			vlan_entry->hd_tbl_status = false;
777 		}
778 	}
779 
780 	if (is_del_list) {
781 		vlan_entry = LIST_FIRST(&pf->vlan_list);
782 		while (vlan_entry) {
783 			LIST_REMOVE(vlan_entry, next);
784 			rte_free(vlan_entry);
785 			vlan_entry = LIST_FIRST(&pf->vlan_list);
786 		}
787 	}
788 }
789 
790 static void
791 hns3_add_all_vlan_table(struct hns3_adapter *hns)
792 {
793 	struct hns3_user_vlan_table *vlan_entry;
794 	struct hns3_pf *pf = &hns->pf;
795 
796 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
797 		if (!vlan_entry->hd_tbl_status) {
798 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
799 			vlan_entry->hd_tbl_status = true;
800 		}
801 	}
802 }
803 
804 static void
805 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
806 {
807 	struct hns3_hw *hw = &hns->hw;
808 	int ret;
809 
810 	hns3_rm_all_vlan_table(hns, true);
811 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
812 		ret = hns3_set_port_vlan_filter(hns,
813 						hw->port_base_vlan_cfg.pvid, 0);
814 		if (ret) {
815 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
816 				 ret);
817 			return;
818 		}
819 	}
820 }
821 
822 static int
823 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
824 			uint16_t port_base_vlan_state, uint16_t new_pvid)
825 {
826 	struct hns3_hw *hw = &hns->hw;
827 	uint16_t old_pvid;
828 	int ret;
829 
830 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
831 		old_pvid = hw->port_base_vlan_cfg.pvid;
832 		if (old_pvid != HNS3_INVALID_PVID) {
833 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
834 			if (ret) {
835 				hns3_err(hw, "failed to remove old pvid %u, "
836 						"ret = %d", old_pvid, ret);
837 				return ret;
838 			}
839 		}
840 
841 		hns3_rm_all_vlan_table(hns, false);
842 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
843 		if (ret) {
844 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
845 					new_pvid, ret);
846 			return ret;
847 		}
848 	} else {
849 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
850 		if (ret) {
851 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
852 					new_pvid, ret);
853 			return ret;
854 		}
855 
856 		hns3_add_all_vlan_table(hns);
857 	}
858 	return 0;
859 }
860 
861 static int
862 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
863 {
864 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
865 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
866 	bool rx_strip_en;
867 	int ret;
868 
869 	rx_strip_en = old_cfg->rx_vlan_offload_en;
870 	if (on) {
871 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
872 		rx_vlan_cfg.strip_tag2_en = true;
873 		rx_vlan_cfg.strip_tag2_discard_en = true;
874 	} else {
875 		rx_vlan_cfg.strip_tag1_en = false;
876 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
877 		rx_vlan_cfg.strip_tag2_discard_en = false;
878 	}
879 	rx_vlan_cfg.strip_tag1_discard_en = false;
880 	rx_vlan_cfg.vlan1_vlan_prionly = false;
881 	rx_vlan_cfg.vlan2_vlan_prionly = false;
882 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
883 
884 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
885 	if (ret)
886 		return ret;
887 
888 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
889 	return ret;
890 }
891 
892 static int
893 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
894 {
895 	struct hns3_hw *hw = &hns->hw;
896 	uint16_t port_base_vlan_state;
897 	int ret;
898 
899 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
900 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
901 			hns3_warn(hw, "Invalid operation! As current pvid set "
902 				  "is %u, disable pvid %u is invalid",
903 				  hw->port_base_vlan_cfg.pvid, pvid);
904 		return 0;
905 	}
906 
907 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
908 				    HNS3_PORT_BASE_VLAN_DISABLE;
909 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
910 	if (ret) {
911 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
912 			 ret);
913 		return ret;
914 	}
915 
916 	ret = hns3_en_pvid_strip(hns, on);
917 	if (ret) {
918 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
919 			 "ret = %d", ret);
920 		return ret;
921 	}
922 
923 	if (pvid == HNS3_INVALID_PVID)
924 		goto out;
925 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
926 	if (ret) {
927 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
928 			 ret);
929 		return ret;
930 	}
931 
932 out:
933 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
934 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
935 	return ret;
936 }
937 
938 static int
939 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
940 {
941 	struct hns3_adapter *hns = dev->data->dev_private;
942 	struct hns3_hw *hw = &hns->hw;
943 	bool pvid_en_state_change;
944 	uint16_t pvid_state;
945 	int ret;
946 
947 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
948 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
949 			 RTE_ETHER_MAX_VLAN_ID);
950 		return -EINVAL;
951 	}
952 
953 	/*
954 	 * If PVID configuration state change, should refresh the PVID
955 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
956 	 */
957 	pvid_state = hw->port_base_vlan_cfg.state;
958 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
959 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
960 		pvid_en_state_change = false;
961 	else
962 		pvid_en_state_change = true;
963 
964 	rte_spinlock_lock(&hw->lock);
965 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
966 	rte_spinlock_unlock(&hw->lock);
967 	if (ret)
968 		return ret;
969 	/*
970 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
971 	 * need be processed by PMD driver.
972 	 */
973 	if (pvid_en_state_change &&
974 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
975 		hns3_update_all_queues_pvid_proc_en(hw);
976 
977 	return 0;
978 }
979 
980 static int
981 hns3_default_vlan_config(struct hns3_adapter *hns)
982 {
983 	struct hns3_hw *hw = &hns->hw;
984 	int ret;
985 
986 	/*
987 	 * When vlan filter is enabled, hardware regards packets without vlan
988 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
989 	 * table, packets without vlan won't be received. So, add vlan 0 as
990 	 * the default vlan.
991 	 */
992 	ret = hns3_vlan_filter_configure(hns, 0, 1);
993 	if (ret)
994 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
995 	return ret;
996 }
997 
998 static int
999 hns3_init_vlan_config(struct hns3_adapter *hns)
1000 {
1001 	struct hns3_hw *hw = &hns->hw;
1002 	int ret;
1003 
1004 	/*
1005 	 * This function can be called in the initialization and reset process,
1006 	 * when in reset process, it means that hardware had been reseted
1007 	 * successfully and we need to restore the hardware configuration to
1008 	 * ensure that the hardware configuration remains unchanged before and
1009 	 * after reset.
1010 	 */
1011 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1012 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1013 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1014 	}
1015 
1016 	ret = hns3_vlan_filter_init(hns);
1017 	if (ret) {
1018 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1019 		return ret;
1020 	}
1021 
1022 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1023 				       RTE_ETHER_TYPE_VLAN);
1024 	if (ret) {
1025 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1026 		return ret;
1027 	}
1028 
1029 	/*
1030 	 * When in the reinit dev stage of the reset process, the following
1031 	 * vlan-related configurations may differ from those at initialization,
1032 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1033 	 * and hns3_restore_vlan_conf later.
1034 	 */
1035 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1036 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1037 		if (ret) {
1038 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1039 			return ret;
1040 		}
1041 
1042 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1043 		if (ret) {
1044 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1045 				 ret);
1046 			return ret;
1047 		}
1048 	}
1049 
1050 	return hns3_default_vlan_config(hns);
1051 }
1052 
1053 static int
1054 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1055 {
1056 	struct hns3_pf *pf = &hns->pf;
1057 	struct hns3_hw *hw = &hns->hw;
1058 	uint64_t offloads;
1059 	bool enable;
1060 	int ret;
1061 
1062 	if (!hw->data->promiscuous) {
1063 		/* restore vlan filter states */
1064 		offloads = hw->data->dev_conf.rxmode.offloads;
1065 		enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1066 		ret = hns3_enable_vlan_filter(hns, enable);
1067 		if (ret) {
1068 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1069 				 "ret = %d", ret);
1070 			return ret;
1071 		}
1072 	}
1073 
1074 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1075 	if (ret) {
1076 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1077 		return ret;
1078 	}
1079 
1080 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1081 	if (ret)
1082 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1083 
1084 	return ret;
1085 }
1086 
1087 static int
1088 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1089 {
1090 	struct hns3_adapter *hns = dev->data->dev_private;
1091 	struct rte_eth_dev_data *data = dev->data;
1092 	struct rte_eth_txmode *txmode;
1093 	struct hns3_hw *hw = &hns->hw;
1094 	int mask;
1095 	int ret;
1096 
1097 	txmode = &data->dev_conf.txmode;
1098 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1099 		hns3_warn(hw,
1100 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1101 			  "configuration is not supported! Ignore these two "
1102 			  "parameters: hw_vlan_reject_tagged(%u), "
1103 			  "hw_vlan_reject_untagged(%u)",
1104 			  txmode->hw_vlan_reject_tagged,
1105 			  txmode->hw_vlan_reject_untagged);
1106 
1107 	/* Apply vlan offload setting */
1108 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1109 	ret = hns3_vlan_offload_set(dev, mask);
1110 	if (ret) {
1111 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1112 			 ret);
1113 		return ret;
1114 	}
1115 
1116 	/*
1117 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1118 	 * VLAN pvid related configuration to hardware.
1119 	 */
1120 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1121 		return 0;
1122 
1123 	/* Apply pvid setting */
1124 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1125 				 txmode->hw_vlan_insert_pvid);
1126 	if (ret)
1127 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1128 			 txmode->pvid, ret);
1129 
1130 	return ret;
1131 }
1132 
1133 static int
1134 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1135 		unsigned int tso_mss_max)
1136 {
1137 	struct hns3_cfg_tso_status_cmd *req;
1138 	struct hns3_cmd_desc desc;
1139 	uint16_t tso_mss;
1140 
1141 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1142 
1143 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1144 
1145 	tso_mss = 0;
1146 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1147 		       tso_mss_min);
1148 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1149 
1150 	tso_mss = 0;
1151 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1152 		       tso_mss_max);
1153 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1154 
1155 	return hns3_cmd_send(hw, &desc, 1);
1156 }
1157 
1158 static int
1159 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1160 		   uint16_t *allocated_size, bool is_alloc)
1161 {
1162 	struct hns3_umv_spc_alc_cmd *req;
1163 	struct hns3_cmd_desc desc;
1164 	int ret;
1165 
1166 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1167 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1168 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1169 	req->space_size = rte_cpu_to_le_32(space_size);
1170 
1171 	ret = hns3_cmd_send(hw, &desc, 1);
1172 	if (ret) {
1173 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1174 			     is_alloc ? "allocate" : "free", ret);
1175 		return ret;
1176 	}
1177 
1178 	if (is_alloc && allocated_size)
1179 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1180 
1181 	return 0;
1182 }
1183 
1184 static int
1185 hns3_init_umv_space(struct hns3_hw *hw)
1186 {
1187 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1188 	struct hns3_pf *pf = &hns->pf;
1189 	uint16_t allocated_size = 0;
1190 	int ret;
1191 
1192 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1193 				 true);
1194 	if (ret)
1195 		return ret;
1196 
1197 	if (allocated_size < pf->wanted_umv_size)
1198 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1199 			     pf->wanted_umv_size, allocated_size);
1200 
1201 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1202 						pf->wanted_umv_size;
1203 	pf->used_umv_size = 0;
1204 	return 0;
1205 }
1206 
1207 static int
1208 hns3_uninit_umv_space(struct hns3_hw *hw)
1209 {
1210 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1211 	struct hns3_pf *pf = &hns->pf;
1212 	int ret;
1213 
1214 	if (pf->max_umv_size == 0)
1215 		return 0;
1216 
1217 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1218 	if (ret)
1219 		return ret;
1220 
1221 	pf->max_umv_size = 0;
1222 
1223 	return 0;
1224 }
1225 
1226 static bool
1227 hns3_is_umv_space_full(struct hns3_hw *hw)
1228 {
1229 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1230 	struct hns3_pf *pf = &hns->pf;
1231 	bool is_full;
1232 
1233 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1234 
1235 	return is_full;
1236 }
1237 
1238 static void
1239 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1240 {
1241 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1242 	struct hns3_pf *pf = &hns->pf;
1243 
1244 	if (is_free) {
1245 		if (pf->used_umv_size > 0)
1246 			pf->used_umv_size--;
1247 	} else
1248 		pf->used_umv_size++;
1249 }
1250 
1251 static void
1252 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1253 		      const uint8_t *addr, bool is_mc)
1254 {
1255 	const unsigned char *mac_addr = addr;
1256 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1257 			    ((uint32_t)mac_addr[2] << 16) |
1258 			    ((uint32_t)mac_addr[1] << 8) |
1259 			    (uint32_t)mac_addr[0];
1260 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1261 
1262 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1263 	if (is_mc) {
1264 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1265 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1266 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1267 	}
1268 
1269 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1270 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1271 }
1272 
1273 static int
1274 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1275 			     uint8_t resp_code,
1276 			     enum hns3_mac_vlan_tbl_opcode op)
1277 {
1278 	if (cmdq_resp) {
1279 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1280 			 cmdq_resp);
1281 		return -EIO;
1282 	}
1283 
1284 	if (op == HNS3_MAC_VLAN_ADD) {
1285 		if (resp_code == 0 || resp_code == 1) {
1286 			return 0;
1287 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1288 			hns3_err(hw, "add mac addr failed for uc_overflow");
1289 			return -ENOSPC;
1290 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1291 			hns3_err(hw, "add mac addr failed for mc_overflow");
1292 			return -ENOSPC;
1293 		}
1294 
1295 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1296 			 resp_code);
1297 		return -EIO;
1298 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1299 		if (resp_code == 0) {
1300 			return 0;
1301 		} else if (resp_code == 1) {
1302 			hns3_dbg(hw, "remove mac addr failed for miss");
1303 			return -ENOENT;
1304 		}
1305 
1306 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1307 			 resp_code);
1308 		return -EIO;
1309 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1310 		if (resp_code == 0) {
1311 			return 0;
1312 		} else if (resp_code == 1) {
1313 			hns3_dbg(hw, "lookup mac addr failed for miss");
1314 			return -ENOENT;
1315 		}
1316 
1317 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1318 			 resp_code);
1319 		return -EIO;
1320 	}
1321 
1322 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1323 		 op);
1324 
1325 	return -EINVAL;
1326 }
1327 
1328 static int
1329 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1330 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1331 			 struct hns3_cmd_desc *desc, bool is_mc)
1332 {
1333 	uint8_t resp_code;
1334 	uint16_t retval;
1335 	int ret;
1336 
1337 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1338 	if (is_mc) {
1339 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1340 		memcpy(desc[0].data, req,
1341 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1342 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1343 					  true);
1344 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1345 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1346 					  true);
1347 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1348 	} else {
1349 		memcpy(desc[0].data, req,
1350 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1351 		ret = hns3_cmd_send(hw, desc, 1);
1352 	}
1353 	if (ret) {
1354 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1355 			 ret);
1356 		return ret;
1357 	}
1358 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1359 	retval = rte_le_to_cpu_16(desc[0].retval);
1360 
1361 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1362 					    HNS3_MAC_VLAN_LKUP);
1363 }
1364 
1365 static int
1366 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1367 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1368 		      struct hns3_cmd_desc *mc_desc)
1369 {
1370 	uint8_t resp_code;
1371 	uint16_t retval;
1372 	int cfg_status;
1373 	int ret;
1374 
1375 	if (mc_desc == NULL) {
1376 		struct hns3_cmd_desc desc;
1377 
1378 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1379 		memcpy(desc.data, req,
1380 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1381 		ret = hns3_cmd_send(hw, &desc, 1);
1382 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1383 		retval = rte_le_to_cpu_16(desc.retval);
1384 
1385 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1386 							  HNS3_MAC_VLAN_ADD);
1387 	} else {
1388 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1389 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1390 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1391 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1392 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1393 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1394 		memcpy(mc_desc[0].data, req,
1395 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1396 		mc_desc[0].retval = 0;
1397 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1398 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1399 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1400 
1401 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1402 							  HNS3_MAC_VLAN_ADD);
1403 	}
1404 
1405 	if (ret) {
1406 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1407 		return ret;
1408 	}
1409 
1410 	return cfg_status;
1411 }
1412 
1413 static int
1414 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1415 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1416 {
1417 	struct hns3_cmd_desc desc;
1418 	uint8_t resp_code;
1419 	uint16_t retval;
1420 	int ret;
1421 
1422 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1423 
1424 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1425 
1426 	ret = hns3_cmd_send(hw, &desc, 1);
1427 	if (ret) {
1428 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1429 		return ret;
1430 	}
1431 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1432 	retval = rte_le_to_cpu_16(desc.retval);
1433 
1434 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1435 					    HNS3_MAC_VLAN_REMOVE);
1436 }
1437 
1438 static int
1439 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1440 {
1441 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1442 	struct hns3_mac_vlan_tbl_entry_cmd req;
1443 	struct hns3_pf *pf = &hns->pf;
1444 	struct hns3_cmd_desc desc[3];
1445 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1446 	uint16_t egress_port = 0;
1447 	uint8_t vf_id;
1448 	int ret;
1449 
1450 	/* check if mac addr is valid */
1451 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1452 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1453 				      mac_addr);
1454 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1455 			 mac_str);
1456 		return -EINVAL;
1457 	}
1458 
1459 	memset(&req, 0, sizeof(req));
1460 
1461 	/*
1462 	 * In current version VF is not supported when PF is driven by DPDK
1463 	 * driver, just need to configure parameters for PF vport.
1464 	 */
1465 	vf_id = HNS3_PF_FUNC_ID;
1466 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1467 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1468 
1469 	req.egress_port = rte_cpu_to_le_16(egress_port);
1470 
1471 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1472 
1473 	/*
1474 	 * Lookup the mac address in the mac_vlan table, and add
1475 	 * it if the entry is inexistent. Repeated unicast entry
1476 	 * is not allowed in the mac vlan table.
1477 	 */
1478 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1479 	if (ret == -ENOENT) {
1480 		if (!hns3_is_umv_space_full(hw)) {
1481 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1482 			if (!ret)
1483 				hns3_update_umv_space(hw, false);
1484 			return ret;
1485 		}
1486 
1487 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1488 
1489 		return -ENOSPC;
1490 	}
1491 
1492 	rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1493 
1494 	/* check if we just hit the duplicate */
1495 	if (ret == 0) {
1496 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1497 		return 0;
1498 	}
1499 
1500 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1501 		 mac_str);
1502 
1503 	return ret;
1504 }
1505 
1506 static int
1507 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1508 {
1509 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1510 	struct rte_ether_addr *addr;
1511 	int ret;
1512 	int i;
1513 
1514 	for (i = 0; i < hw->mc_addrs_num; i++) {
1515 		addr = &hw->mc_addrs[i];
1516 		/* Check if there are duplicate addresses */
1517 		if (rte_is_same_ether_addr(addr, mac_addr)) {
1518 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1519 					      addr);
1520 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1521 				 "(%s) is added by the set_mc_mac_addr_list "
1522 				 "API", mac_str);
1523 			return -EINVAL;
1524 		}
1525 	}
1526 
1527 	ret = hns3_add_mc_addr(hw, mac_addr);
1528 	if (ret) {
1529 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1530 				      mac_addr);
1531 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1532 			 mac_str, ret);
1533 	}
1534 	return ret;
1535 }
1536 
1537 static int
1538 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1539 {
1540 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1541 	int ret;
1542 
1543 	ret = hns3_remove_mc_addr(hw, mac_addr);
1544 	if (ret) {
1545 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1546 				      mac_addr);
1547 		hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1548 			 mac_str, ret);
1549 	}
1550 	return ret;
1551 }
1552 
1553 static int
1554 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1555 		  uint32_t idx, __rte_unused uint32_t pool)
1556 {
1557 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1558 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1559 	int ret;
1560 
1561 	rte_spinlock_lock(&hw->lock);
1562 
1563 	/*
1564 	 * In hns3 network engine adding UC and MC mac address with different
1565 	 * commands with firmware. We need to determine whether the input
1566 	 * address is a UC or a MC address to call different commands.
1567 	 * By the way, it is recommended calling the API function named
1568 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1569 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1570 	 * may affect the specifications of UC mac addresses.
1571 	 */
1572 	if (rte_is_multicast_ether_addr(mac_addr))
1573 		ret = hns3_add_mc_addr_common(hw, mac_addr);
1574 	else
1575 		ret = hns3_add_uc_addr_common(hw, mac_addr);
1576 
1577 	if (ret) {
1578 		rte_spinlock_unlock(&hw->lock);
1579 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1580 				      mac_addr);
1581 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1582 			 ret);
1583 		return ret;
1584 	}
1585 
1586 	if (idx == 0)
1587 		hw->mac.default_addr_setted = true;
1588 	rte_spinlock_unlock(&hw->lock);
1589 
1590 	return ret;
1591 }
1592 
1593 static int
1594 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1595 {
1596 	struct hns3_mac_vlan_tbl_entry_cmd req;
1597 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1598 	int ret;
1599 
1600 	/* check if mac addr is valid */
1601 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1602 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1603 				      mac_addr);
1604 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1605 			 mac_str);
1606 		return -EINVAL;
1607 	}
1608 
1609 	memset(&req, 0, sizeof(req));
1610 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1611 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1612 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1613 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1614 		return 0;
1615 	else if (ret == 0)
1616 		hns3_update_umv_space(hw, true);
1617 
1618 	return ret;
1619 }
1620 
1621 static void
1622 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1623 {
1624 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1625 	/* index will be checked by upper level rte interface */
1626 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1627 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1628 	int ret;
1629 
1630 	rte_spinlock_lock(&hw->lock);
1631 
1632 	if (rte_is_multicast_ether_addr(mac_addr))
1633 		ret = hns3_remove_mc_addr_common(hw, mac_addr);
1634 	else
1635 		ret = hns3_remove_uc_addr_common(hw, mac_addr);
1636 	rte_spinlock_unlock(&hw->lock);
1637 	if (ret) {
1638 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1639 				      mac_addr);
1640 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1641 			 ret);
1642 	}
1643 }
1644 
1645 static int
1646 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1647 			  struct rte_ether_addr *mac_addr)
1648 {
1649 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1650 	struct rte_ether_addr *oaddr;
1651 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1652 	bool default_addr_setted;
1653 	bool rm_succes = false;
1654 	int ret, ret_val;
1655 
1656 	/*
1657 	 * It has been guaranteed that input parameter named mac_addr is valid
1658 	 * address in the rte layer of DPDK framework.
1659 	 */
1660 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1661 	default_addr_setted = hw->mac.default_addr_setted;
1662 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1663 		return 0;
1664 
1665 	rte_spinlock_lock(&hw->lock);
1666 	if (default_addr_setted) {
1667 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1668 		if (ret) {
1669 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1670 					      oaddr);
1671 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1672 				  mac_str, ret);
1673 			rm_succes = false;
1674 		} else
1675 			rm_succes = true;
1676 	}
1677 
1678 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1679 	if (ret) {
1680 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1681 				      mac_addr);
1682 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1683 		goto err_add_uc_addr;
1684 	}
1685 
1686 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1687 	if (ret) {
1688 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1689 		goto err_pause_addr_cfg;
1690 	}
1691 
1692 	rte_ether_addr_copy(mac_addr,
1693 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1694 	hw->mac.default_addr_setted = true;
1695 	rte_spinlock_unlock(&hw->lock);
1696 
1697 	return 0;
1698 
1699 err_pause_addr_cfg:
1700 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1701 	if (ret_val) {
1702 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1703 				      mac_addr);
1704 		hns3_warn(hw,
1705 			  "Failed to roll back to del setted mac addr(%s): %d",
1706 			  mac_str, ret_val);
1707 	}
1708 
1709 err_add_uc_addr:
1710 	if (rm_succes) {
1711 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1712 		if (ret_val) {
1713 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1714 					      oaddr);
1715 			hns3_warn(hw,
1716 				  "Failed to restore old uc mac addr(%s): %d",
1717 				  mac_str, ret_val);
1718 			hw->mac.default_addr_setted = false;
1719 		}
1720 	}
1721 	rte_spinlock_unlock(&hw->lock);
1722 
1723 	return ret;
1724 }
1725 
1726 static int
1727 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1728 {
1729 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1730 	struct hns3_hw *hw = &hns->hw;
1731 	struct rte_ether_addr *addr;
1732 	int err = 0;
1733 	int ret;
1734 	int i;
1735 
1736 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1737 		addr = &hw->data->mac_addrs[i];
1738 		if (rte_is_zero_ether_addr(addr))
1739 			continue;
1740 		if (rte_is_multicast_ether_addr(addr))
1741 			ret = del ? hns3_remove_mc_addr(hw, addr) :
1742 			      hns3_add_mc_addr(hw, addr);
1743 		else
1744 			ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1745 			      hns3_add_uc_addr_common(hw, addr);
1746 
1747 		if (ret) {
1748 			err = ret;
1749 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1750 					      addr);
1751 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1752 				 "ret = %d.", del ? "remove" : "restore",
1753 				 mac_str, i, ret);
1754 		}
1755 	}
1756 	return err;
1757 }
1758 
1759 static void
1760 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1761 {
1762 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1763 	uint8_t word_num;
1764 	uint8_t bit_num;
1765 
1766 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1767 		word_num = vfid / 32;
1768 		bit_num = vfid % 32;
1769 		if (clr)
1770 			desc[1].data[word_num] &=
1771 			    rte_cpu_to_le_32(~(1UL << bit_num));
1772 		else
1773 			desc[1].data[word_num] |=
1774 			    rte_cpu_to_le_32(1UL << bit_num);
1775 	} else {
1776 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1777 		bit_num = vfid % 32;
1778 		if (clr)
1779 			desc[2].data[word_num] &=
1780 			    rte_cpu_to_le_32(~(1UL << bit_num));
1781 		else
1782 			desc[2].data[word_num] |=
1783 			    rte_cpu_to_le_32(1UL << bit_num);
1784 	}
1785 }
1786 
1787 static int
1788 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1789 {
1790 	struct hns3_mac_vlan_tbl_entry_cmd req;
1791 	struct hns3_cmd_desc desc[3];
1792 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1793 	uint8_t vf_id;
1794 	int ret;
1795 
1796 	/* Check if mac addr is valid */
1797 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1798 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1799 				      mac_addr);
1800 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1801 			 mac_str);
1802 		return -EINVAL;
1803 	}
1804 
1805 	memset(&req, 0, sizeof(req));
1806 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1807 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1808 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1809 	if (ret) {
1810 		/* This mac addr do not exist, add new entry for it */
1811 		memset(desc[0].data, 0, sizeof(desc[0].data));
1812 		memset(desc[1].data, 0, sizeof(desc[0].data));
1813 		memset(desc[2].data, 0, sizeof(desc[0].data));
1814 	}
1815 
1816 	/*
1817 	 * In current version VF is not supported when PF is driven by DPDK
1818 	 * driver, just need to configure parameters for PF vport.
1819 	 */
1820 	vf_id = HNS3_PF_FUNC_ID;
1821 	hns3_update_desc_vfid(desc, vf_id, false);
1822 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1823 	if (ret) {
1824 		if (ret == -ENOSPC)
1825 			hns3_err(hw, "mc mac vlan table is full");
1826 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1827 				      mac_addr);
1828 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1829 	}
1830 
1831 	return ret;
1832 }
1833 
1834 static int
1835 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1836 {
1837 	struct hns3_mac_vlan_tbl_entry_cmd req;
1838 	struct hns3_cmd_desc desc[3];
1839 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1840 	uint8_t vf_id;
1841 	int ret;
1842 
1843 	/* Check if mac addr is valid */
1844 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1845 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1846 				      mac_addr);
1847 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1848 			 mac_str);
1849 		return -EINVAL;
1850 	}
1851 
1852 	memset(&req, 0, sizeof(req));
1853 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1854 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1855 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1856 	if (ret == 0) {
1857 		/*
1858 		 * This mac addr exist, remove this handle's VFID for it.
1859 		 * In current version VF is not supported when PF is driven by
1860 		 * DPDK driver, just need to configure parameters for PF vport.
1861 		 */
1862 		vf_id = HNS3_PF_FUNC_ID;
1863 		hns3_update_desc_vfid(desc, vf_id, true);
1864 
1865 		/* All the vfid is zero, so need to delete this entry */
1866 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1867 	} else if (ret == -ENOENT) {
1868 		/* This mac addr doesn't exist. */
1869 		return 0;
1870 	}
1871 
1872 	if (ret) {
1873 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1874 				      mac_addr);
1875 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1876 	}
1877 
1878 	return ret;
1879 }
1880 
1881 static int
1882 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1883 			   struct rte_ether_addr *mc_addr_set,
1884 			   uint32_t nb_mc_addr)
1885 {
1886 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1887 	struct rte_ether_addr *addr;
1888 	uint32_t i;
1889 	uint32_t j;
1890 
1891 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1892 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1893 			 "invalid. valid range: 0~%d",
1894 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1895 		return -EINVAL;
1896 	}
1897 
1898 	/* Check if input mac addresses are valid */
1899 	for (i = 0; i < nb_mc_addr; i++) {
1900 		addr = &mc_addr_set[i];
1901 		if (!rte_is_multicast_ether_addr(addr)) {
1902 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1903 					      addr);
1904 			hns3_err(hw,
1905 				 "failed to set mc mac addr, addr(%s) invalid.",
1906 				 mac_str);
1907 			return -EINVAL;
1908 		}
1909 
1910 		/* Check if there are duplicate addresses */
1911 		for (j = i + 1; j < nb_mc_addr; j++) {
1912 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1913 				rte_ether_format_addr(mac_str,
1914 						      RTE_ETHER_ADDR_FMT_SIZE,
1915 						      addr);
1916 				hns3_err(hw, "failed to set mc mac addr, "
1917 					 "addrs invalid. two same addrs(%s).",
1918 					 mac_str);
1919 				return -EINVAL;
1920 			}
1921 		}
1922 
1923 		/*
1924 		 * Check if there are duplicate addresses between mac_addrs
1925 		 * and mc_addr_set
1926 		 */
1927 		for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1928 			if (rte_is_same_ether_addr(addr,
1929 						   &hw->data->mac_addrs[j])) {
1930 				rte_ether_format_addr(mac_str,
1931 						      RTE_ETHER_ADDR_FMT_SIZE,
1932 						      addr);
1933 				hns3_err(hw, "failed to set mc mac addr, "
1934 					 "addrs invalid. addrs(%s) has already "
1935 					 "configured in mac_addr add API",
1936 					 mac_str);
1937 				return -EINVAL;
1938 			}
1939 		}
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 static void
1946 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
1947 			   struct rte_ether_addr *mc_addr_set,
1948 			   int mc_addr_num,
1949 			   struct rte_ether_addr *reserved_addr_list,
1950 			   int *reserved_addr_num,
1951 			   struct rte_ether_addr *add_addr_list,
1952 			   int *add_addr_num,
1953 			   struct rte_ether_addr *rm_addr_list,
1954 			   int *rm_addr_num)
1955 {
1956 	struct rte_ether_addr *addr;
1957 	int current_addr_num;
1958 	int reserved_num = 0;
1959 	int add_num = 0;
1960 	int rm_num = 0;
1961 	int num;
1962 	int i;
1963 	int j;
1964 	bool same_addr;
1965 
1966 	/* Calculate the mc mac address list that should be removed */
1967 	current_addr_num = hw->mc_addrs_num;
1968 	for (i = 0; i < current_addr_num; i++) {
1969 		addr = &hw->mc_addrs[i];
1970 		same_addr = false;
1971 		for (j = 0; j < mc_addr_num; j++) {
1972 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1973 				same_addr = true;
1974 				break;
1975 			}
1976 		}
1977 
1978 		if (!same_addr) {
1979 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
1980 			rm_num++;
1981 		} else {
1982 			rte_ether_addr_copy(addr,
1983 					    &reserved_addr_list[reserved_num]);
1984 			reserved_num++;
1985 		}
1986 	}
1987 
1988 	/* Calculate the mc mac address list that should be added */
1989 	for (i = 0; i < mc_addr_num; i++) {
1990 		addr = &mc_addr_set[i];
1991 		same_addr = false;
1992 		for (j = 0; j < current_addr_num; j++) {
1993 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
1994 				same_addr = true;
1995 				break;
1996 			}
1997 		}
1998 
1999 		if (!same_addr) {
2000 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2001 			add_num++;
2002 		}
2003 	}
2004 
2005 	/* Reorder the mc mac address list maintained by driver */
2006 	for (i = 0; i < reserved_num; i++)
2007 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2008 
2009 	for (i = 0; i < rm_num; i++) {
2010 		num = reserved_num + i;
2011 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2012 	}
2013 
2014 	*reserved_addr_num = reserved_num;
2015 	*add_addr_num = add_num;
2016 	*rm_addr_num = rm_num;
2017 }
2018 
2019 static int
2020 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2021 			  struct rte_ether_addr *mc_addr_set,
2022 			  uint32_t nb_mc_addr)
2023 {
2024 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2025 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2026 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2027 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2028 	struct rte_ether_addr *addr;
2029 	int reserved_addr_num;
2030 	int add_addr_num;
2031 	int rm_addr_num;
2032 	int mc_addr_num;
2033 	int num;
2034 	int ret;
2035 	int i;
2036 
2037 	/* Check if input parameters are valid */
2038 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2039 	if (ret)
2040 		return ret;
2041 
2042 	rte_spinlock_lock(&hw->lock);
2043 
2044 	/*
2045 	 * Calculate the mc mac address lists those should be removed and be
2046 	 * added, Reorder the mc mac address list maintained by driver.
2047 	 */
2048 	mc_addr_num = (int)nb_mc_addr;
2049 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2050 				   reserved_addr_list, &reserved_addr_num,
2051 				   add_addr_list, &add_addr_num,
2052 				   rm_addr_list, &rm_addr_num);
2053 
2054 	/* Remove mc mac addresses */
2055 	for (i = 0; i < rm_addr_num; i++) {
2056 		num = rm_addr_num - i - 1;
2057 		addr = &rm_addr_list[num];
2058 		ret = hns3_remove_mc_addr(hw, addr);
2059 		if (ret) {
2060 			rte_spinlock_unlock(&hw->lock);
2061 			return ret;
2062 		}
2063 		hw->mc_addrs_num--;
2064 	}
2065 
2066 	/* Add mc mac addresses */
2067 	for (i = 0; i < add_addr_num; i++) {
2068 		addr = &add_addr_list[i];
2069 		ret = hns3_add_mc_addr(hw, addr);
2070 		if (ret) {
2071 			rte_spinlock_unlock(&hw->lock);
2072 			return ret;
2073 		}
2074 
2075 		num = reserved_addr_num + i;
2076 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2077 		hw->mc_addrs_num++;
2078 	}
2079 	rte_spinlock_unlock(&hw->lock);
2080 
2081 	return 0;
2082 }
2083 
2084 static int
2085 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2086 {
2087 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2088 	struct hns3_hw *hw = &hns->hw;
2089 	struct rte_ether_addr *addr;
2090 	int err = 0;
2091 	int ret;
2092 	int i;
2093 
2094 	for (i = 0; i < hw->mc_addrs_num; i++) {
2095 		addr = &hw->mc_addrs[i];
2096 		if (!rte_is_multicast_ether_addr(addr))
2097 			continue;
2098 		if (del)
2099 			ret = hns3_remove_mc_addr(hw, addr);
2100 		else
2101 			ret = hns3_add_mc_addr(hw, addr);
2102 		if (ret) {
2103 			err = ret;
2104 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2105 					      addr);
2106 			hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2107 				 del ? "Remove" : "Restore", mac_str, ret);
2108 		}
2109 	}
2110 	return err;
2111 }
2112 
2113 static int
2114 hns3_check_mq_mode(struct rte_eth_dev *dev)
2115 {
2116 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2117 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2118 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2119 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2120 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2121 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2122 	uint8_t num_tc;
2123 	int max_tc = 0;
2124 	int i;
2125 
2126 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2127 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2128 
2129 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2130 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2131 			 "rx_mq_mode = %d", rx_mq_mode);
2132 		return -EINVAL;
2133 	}
2134 
2135 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2136 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2137 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2138 			 "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2139 			 rx_mq_mode, tx_mq_mode);
2140 		return -EINVAL;
2141 	}
2142 
2143 	if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2144 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2145 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2146 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2147 			return -EINVAL;
2148 		}
2149 
2150 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2151 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2152 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2153 				 "nb_tcs(%d) != %d or %d in rx direction.",
2154 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2155 			return -EINVAL;
2156 		}
2157 
2158 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2159 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2160 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2161 			return -EINVAL;
2162 		}
2163 
2164 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2165 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2166 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2167 					 "is not equal to one in tx direction.",
2168 					 i, dcb_rx_conf->dcb_tc[i]);
2169 				return -EINVAL;
2170 			}
2171 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2172 				max_tc = dcb_rx_conf->dcb_tc[i];
2173 		}
2174 
2175 		num_tc = max_tc + 1;
2176 		if (num_tc > dcb_rx_conf->nb_tcs) {
2177 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2178 				 num_tc, dcb_rx_conf->nb_tcs);
2179 			return -EINVAL;
2180 		}
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 static int
2187 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2188 {
2189 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2190 
2191 	if (!hns3_dev_dcb_supported(hw)) {
2192 		hns3_err(hw, "this port does not support dcb configurations.");
2193 		return -EOPNOTSUPP;
2194 	}
2195 
2196 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2197 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2198 		return -EOPNOTSUPP;
2199 	}
2200 
2201 	/* Check multiple queue mode */
2202 	return hns3_check_mq_mode(dev);
2203 }
2204 
2205 static int
2206 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id, bool mmap,
2207 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2208 {
2209 	struct hns3_cmd_desc desc;
2210 	struct hns3_ctrl_vector_chain_cmd *req =
2211 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2212 	enum hns3_cmd_status status;
2213 	enum hns3_opcode_type op;
2214 	uint16_t tqp_type_and_id = 0;
2215 	const char *op_str;
2216 	uint16_t type;
2217 	uint16_t gl;
2218 
2219 	op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2220 	hns3_cmd_setup_basic_desc(&desc, op, false);
2221 	req->int_vector_id = vector_id;
2222 
2223 	if (queue_type == HNS3_RING_TYPE_RX)
2224 		gl = HNS3_RING_GL_RX;
2225 	else
2226 		gl = HNS3_RING_GL_TX;
2227 
2228 	type = queue_type;
2229 
2230 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2231 		       type);
2232 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2233 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2234 		       gl);
2235 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2236 	req->int_cause_num = 1;
2237 	op_str = mmap ? "Map" : "Unmap";
2238 	status = hns3_cmd_send(hw, &desc, 1);
2239 	if (status) {
2240 		hns3_err(hw, "%s TQP %u fail, vector_id is %u, status is %d.",
2241 			 op_str, queue_id, req->int_vector_id, status);
2242 		return status;
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 static int
2249 hns3_init_ring_with_vector(struct hns3_hw *hw)
2250 {
2251 	uint16_t vec;
2252 	int ret;
2253 	int i;
2254 
2255 	/*
2256 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2257 	 * function, vector 1~N can be used respectively for the queues of the
2258 	 * function. Tx and Rx queues with the same number share the interrupt
2259 	 * vector. In the initialization clearing the all hardware mapping
2260 	 * relationship configurations between queues and interrupt vectors is
2261 	 * needed, so some error caused by the residual configurations, such as
2262 	 * the unexpected Tx interrupt, can be avoid.
2263 	 */
2264 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2265 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2266 		vec = vec - 1; /* the last interrupt is reserved */
2267 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2268 	for (i = 0; i < hw->intr_tqps_num; i++) {
2269 		/*
2270 		 * Set gap limiter/rate limiter/quanity limiter algorithm
2271 		 * configuration for interrupt coalesce of queue's interrupt.
2272 		 */
2273 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2274 				       HNS3_TQP_INTR_GL_DEFAULT);
2275 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2276 				       HNS3_TQP_INTR_GL_DEFAULT);
2277 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2278 		/*
2279 		 * QL(quantity limiter) is not used currently, just set 0 to
2280 		 * close it.
2281 		 */
2282 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2283 
2284 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2285 						 HNS3_RING_TYPE_TX, i);
2286 		if (ret) {
2287 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2288 					  "vector: %u, ret=%d", i, vec, ret);
2289 			return ret;
2290 		}
2291 
2292 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2293 						 HNS3_RING_TYPE_RX, i);
2294 		if (ret) {
2295 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2296 					  "vector: %u, ret=%d", i, vec, ret);
2297 			return ret;
2298 		}
2299 	}
2300 
2301 	return 0;
2302 }
2303 
2304 static int
2305 hns3_dev_configure(struct rte_eth_dev *dev)
2306 {
2307 	struct hns3_adapter *hns = dev->data->dev_private;
2308 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2309 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2310 	struct hns3_hw *hw = &hns->hw;
2311 	struct hns3_rss_conf *rss_cfg = &hw->rss_info;
2312 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2313 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2314 	struct rte_eth_rss_conf rss_conf;
2315 	uint16_t mtu;
2316 	bool gro_en;
2317 	int ret;
2318 
2319 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2320 
2321 	/*
2322 	 * Some versions of hardware network engine does not support
2323 	 * individually enable/disable/reset the Tx or Rx queue. These devices
2324 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
2325 	 * numbers of Tx queues allocated by upper applications are not equal to
2326 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2327 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2328 	 * work as usual. But these fake queues are imperceptible, and can not
2329 	 * be used by upper applications.
2330 	 */
2331 	if (!hns3_dev_indep_txrx_supported(hw)) {
2332 		ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2333 		if (ret) {
2334 			hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
2335 				 ret);
2336 			return ret;
2337 		}
2338 	}
2339 
2340 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2341 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2342 		hns3_err(hw, "setting link speed/duplex not supported");
2343 		ret = -EINVAL;
2344 		goto cfg_err;
2345 	}
2346 
2347 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2348 		ret = hns3_check_dcb_cfg(dev);
2349 		if (ret)
2350 			goto cfg_err;
2351 	}
2352 
2353 	/* When RSS is not configured, redirect the packet queue 0 */
2354 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2355 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2356 		rss_conf = conf->rx_adv_conf.rss_conf;
2357 		hw->rss_dis_flag = false;
2358 		if (rss_conf.rss_key == NULL) {
2359 			rss_conf.rss_key = rss_cfg->key;
2360 			rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
2361 		}
2362 
2363 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2364 		if (ret)
2365 			goto cfg_err;
2366 	}
2367 
2368 	/*
2369 	 * If jumbo frames are enabled, MTU needs to be refreshed
2370 	 * according to the maximum RX packet length.
2371 	 */
2372 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2373 		/*
2374 		 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
2375 		 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
2376 		 * can safely assign to "uint16_t" type variable.
2377 		 */
2378 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
2379 		ret = hns3_dev_mtu_set(dev, mtu);
2380 		if (ret)
2381 			goto cfg_err;
2382 		dev->data->mtu = mtu;
2383 	}
2384 
2385 	ret = hns3_dev_configure_vlan(dev);
2386 	if (ret)
2387 		goto cfg_err;
2388 
2389 	/* config hardware GRO */
2390 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2391 	ret = hns3_config_gro(hw, gro_en);
2392 	if (ret)
2393 		goto cfg_err;
2394 
2395 	hns->rx_simple_allowed = true;
2396 	hns->rx_vec_allowed = true;
2397 	hns->tx_simple_allowed = true;
2398 	hns->tx_vec_allowed = true;
2399 
2400 	hns3_init_rx_ptype_tble(dev);
2401 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2402 
2403 	return 0;
2404 
2405 cfg_err:
2406 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2407 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2408 
2409 	return ret;
2410 }
2411 
2412 static int
2413 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2414 {
2415 	struct hns3_config_max_frm_size_cmd *req;
2416 	struct hns3_cmd_desc desc;
2417 
2418 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2419 
2420 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2421 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2422 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2423 
2424 	return hns3_cmd_send(hw, &desc, 1);
2425 }
2426 
2427 static int
2428 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2429 {
2430 	int ret;
2431 
2432 	ret = hns3_set_mac_mtu(hw, mps);
2433 	if (ret) {
2434 		hns3_err(hw, "Failed to set mtu, ret = %d", ret);
2435 		return ret;
2436 	}
2437 
2438 	ret = hns3_buffer_alloc(hw);
2439 	if (ret)
2440 		hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
2441 
2442 	return ret;
2443 }
2444 
2445 static int
2446 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2447 {
2448 	struct hns3_adapter *hns = dev->data->dev_private;
2449 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2450 	struct hns3_hw *hw = &hns->hw;
2451 	bool is_jumbo_frame;
2452 	int ret;
2453 
2454 	if (dev->data->dev_started) {
2455 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2456 			 "before configuration", dev->data->port_id);
2457 		return -EBUSY;
2458 	}
2459 
2460 	rte_spinlock_lock(&hw->lock);
2461 	is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
2462 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2463 
2464 	/*
2465 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2466 	 * assign to "uint16_t" type variable.
2467 	 */
2468 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2469 	if (ret) {
2470 		rte_spinlock_unlock(&hw->lock);
2471 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2472 			 dev->data->port_id, mtu, ret);
2473 		return ret;
2474 	}
2475 	hns->pf.mps = (uint16_t)frame_size;
2476 	if (is_jumbo_frame)
2477 		dev->data->dev_conf.rxmode.offloads |=
2478 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2479 	else
2480 		dev->data->dev_conf.rxmode.offloads &=
2481 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2482 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2483 	rte_spinlock_unlock(&hw->lock);
2484 
2485 	return 0;
2486 }
2487 
2488 static int
2489 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2490 {
2491 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2492 	struct hns3_hw *hw = &hns->hw;
2493 	uint16_t queue_num = hw->tqps_num;
2494 
2495 	/*
2496 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2497 	 * MSI-X interrupt resources of the hardware.
2498 	 */
2499 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2500 		queue_num = hw->intr_tqps_num;
2501 
2502 	info->max_rx_queues = queue_num;
2503 	info->max_tx_queues = hw->tqps_num;
2504 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2505 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2506 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2507 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2508 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2509 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2510 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2511 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2512 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2513 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2514 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2515 				 DEV_RX_OFFLOAD_KEEP_CRC |
2516 				 DEV_RX_OFFLOAD_SCATTER |
2517 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2518 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2519 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
2520 				 DEV_RX_OFFLOAD_RSS_HASH |
2521 				 DEV_RX_OFFLOAD_TCP_LRO);
2522 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2523 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2524 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2525 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2526 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2527 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2528 				 DEV_TX_OFFLOAD_TCP_TSO |
2529 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2530 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
2531 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2532 				 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2533 				 hns3_txvlan_cap_get(hw));
2534 
2535 	if (hns3_dev_indep_txrx_supported(hw))
2536 		info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2537 				 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2538 
2539 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2540 		.nb_max = HNS3_MAX_RING_DESC,
2541 		.nb_min = HNS3_MIN_RING_DESC,
2542 		.nb_align = HNS3_ALIGN_RING_DESC,
2543 	};
2544 
2545 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2546 		.nb_max = HNS3_MAX_RING_DESC,
2547 		.nb_min = HNS3_MIN_RING_DESC,
2548 		.nb_align = HNS3_ALIGN_RING_DESC,
2549 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2550 		.nb_mtu_seg_max = hw->max_non_tso_bd_num,
2551 	};
2552 
2553 	info->default_rxconf = (struct rte_eth_rxconf) {
2554 		.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2555 		/*
2556 		 * If there are no available Rx buffer descriptors, incoming
2557 		 * packets are always dropped by hardware based on hns3 network
2558 		 * engine.
2559 		 */
2560 		.rx_drop_en = 1,
2561 		.offloads = 0,
2562 	};
2563 	info->default_txconf = (struct rte_eth_txconf) {
2564 		.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2565 		.offloads = 0,
2566 	};
2567 
2568 	info->vmdq_queue_num = 0;
2569 
2570 	info->reta_size = HNS3_RSS_IND_TBL_SIZE;
2571 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2572 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2573 
2574 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2575 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2576 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2577 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2578 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2579 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2580 
2581 	return 0;
2582 }
2583 
2584 static int
2585 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2586 		    size_t fw_size)
2587 {
2588 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2589 	struct hns3_hw *hw = &hns->hw;
2590 	uint32_t version = hw->fw_version;
2591 	int ret;
2592 
2593 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2594 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2595 				      HNS3_FW_VERSION_BYTE3_S),
2596 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2597 				      HNS3_FW_VERSION_BYTE2_S),
2598 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2599 				      HNS3_FW_VERSION_BYTE1_S),
2600 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2601 				      HNS3_FW_VERSION_BYTE0_S));
2602 	ret += 1; /* add the size of '\0' */
2603 	if (fw_size < (uint32_t)ret)
2604 		return ret;
2605 	else
2606 		return 0;
2607 }
2608 
2609 static int
2610 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2611 		     __rte_unused int wait_to_complete)
2612 {
2613 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2614 	struct hns3_hw *hw = &hns->hw;
2615 	struct hns3_mac *mac = &hw->mac;
2616 	struct rte_eth_link new_link;
2617 
2618 	if (!hns3_is_reset_pending(hns)) {
2619 		hns3_update_speed_duplex(eth_dev);
2620 		hns3_update_link_status(hw);
2621 	}
2622 
2623 	memset(&new_link, 0, sizeof(new_link));
2624 	switch (mac->link_speed) {
2625 	case ETH_SPEED_NUM_10M:
2626 	case ETH_SPEED_NUM_100M:
2627 	case ETH_SPEED_NUM_1G:
2628 	case ETH_SPEED_NUM_10G:
2629 	case ETH_SPEED_NUM_25G:
2630 	case ETH_SPEED_NUM_40G:
2631 	case ETH_SPEED_NUM_50G:
2632 	case ETH_SPEED_NUM_100G:
2633 	case ETH_SPEED_NUM_200G:
2634 		new_link.link_speed = mac->link_speed;
2635 		break;
2636 	default:
2637 		new_link.link_speed = ETH_SPEED_NUM_100M;
2638 		break;
2639 	}
2640 
2641 	new_link.link_duplex = mac->link_duplex;
2642 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2643 	new_link.link_autoneg =
2644 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2645 
2646 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2647 }
2648 
2649 static int
2650 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2651 {
2652 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2653 	struct hns3_pf *pf = &hns->pf;
2654 
2655 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2656 		return -EINVAL;
2657 
2658 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2659 
2660 	return 0;
2661 }
2662 
2663 static int
2664 hns3_query_function_status(struct hns3_hw *hw)
2665 {
2666 #define HNS3_QUERY_MAX_CNT		10
2667 #define HNS3_QUERY_SLEEP_MSCOEND	1
2668 	struct hns3_func_status_cmd *req;
2669 	struct hns3_cmd_desc desc;
2670 	int timeout = 0;
2671 	int ret;
2672 
2673 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2674 	req = (struct hns3_func_status_cmd *)desc.data;
2675 
2676 	do {
2677 		ret = hns3_cmd_send(hw, &desc, 1);
2678 		if (ret) {
2679 			PMD_INIT_LOG(ERR, "query function status failed %d",
2680 				     ret);
2681 			return ret;
2682 		}
2683 
2684 		/* Check pf reset is done */
2685 		if (req->pf_state)
2686 			break;
2687 
2688 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2689 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2690 
2691 	return hns3_parse_func_status(hw, req);
2692 }
2693 
2694 static int
2695 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2696 {
2697 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2698 	struct hns3_pf *pf = &hns->pf;
2699 
2700 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2701 		/*
2702 		 * The total_tqps_num obtained from firmware is maximum tqp
2703 		 * numbers of this port, which should be used for PF and VFs.
2704 		 * There is no need for pf to have so many tqp numbers in
2705 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2706 		 * coming from config file, is assigned to maximum queue number
2707 		 * for the PF of this port by user. So users can modify the
2708 		 * maximum queue number of PF according to their own application
2709 		 * scenarios, which is more flexible to use. In addition, many
2710 		 * memories can be saved due to allocating queue statistics
2711 		 * room according to the actual number of queues required. The
2712 		 * maximum queue number of PF for network engine with
2713 		 * revision_id greater than 0x30 is assigned by config file.
2714 		 */
2715 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2716 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2717 				 "must be greater than 0.",
2718 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2719 			return -EINVAL;
2720 		}
2721 
2722 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2723 				       hw->total_tqps_num);
2724 	} else {
2725 		/*
2726 		 * Due to the limitation on the number of PF interrupts
2727 		 * available, the maximum queue number assigned to PF on
2728 		 * the network engine with revision_id 0x21 is 64.
2729 		 */
2730 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2731 				       HNS3_MAX_TQP_NUM_HIP08_PF);
2732 	}
2733 
2734 	return 0;
2735 }
2736 
2737 static int
2738 hns3_query_pf_resource(struct hns3_hw *hw)
2739 {
2740 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2741 	struct hns3_pf *pf = &hns->pf;
2742 	struct hns3_pf_res_cmd *req;
2743 	struct hns3_cmd_desc desc;
2744 	int ret;
2745 
2746 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2747 	ret = hns3_cmd_send(hw, &desc, 1);
2748 	if (ret) {
2749 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2750 		return ret;
2751 	}
2752 
2753 	req = (struct hns3_pf_res_cmd *)desc.data;
2754 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2755 			     rte_le_to_cpu_16(req->ext_tqp_num);
2756 	ret = hns3_get_pf_max_tqp_num(hw);
2757 	if (ret)
2758 		return ret;
2759 
2760 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2761 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2762 
2763 	if (req->tx_buf_size)
2764 		pf->tx_buf_size =
2765 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2766 	else
2767 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2768 
2769 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2770 
2771 	if (req->dv_buf_size)
2772 		pf->dv_buf_size =
2773 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2774 	else
2775 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2776 
2777 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2778 
2779 	hw->num_msi =
2780 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2781 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2782 
2783 	return 0;
2784 }
2785 
2786 static void
2787 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2788 {
2789 	struct hns3_cfg_param_cmd *req;
2790 	uint64_t mac_addr_tmp_high;
2791 	uint8_t ext_rss_size_max;
2792 	uint64_t mac_addr_tmp;
2793 	uint32_t i;
2794 
2795 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2796 
2797 	/* get the configuration */
2798 	cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2799 					     HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2800 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2801 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2802 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2803 					   HNS3_CFG_TQP_DESC_N_M,
2804 					   HNS3_CFG_TQP_DESC_N_S);
2805 
2806 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2807 				       HNS3_CFG_PHY_ADDR_M,
2808 				       HNS3_CFG_PHY_ADDR_S);
2809 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2810 					 HNS3_CFG_MEDIA_TP_M,
2811 					 HNS3_CFG_MEDIA_TP_S);
2812 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2813 					 HNS3_CFG_RX_BUF_LEN_M,
2814 					 HNS3_CFG_RX_BUF_LEN_S);
2815 	/* get mac address */
2816 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2817 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2818 					   HNS3_CFG_MAC_ADDR_H_M,
2819 					   HNS3_CFG_MAC_ADDR_H_S);
2820 
2821 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2822 
2823 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2824 					    HNS3_CFG_DEFAULT_SPEED_M,
2825 					    HNS3_CFG_DEFAULT_SPEED_S);
2826 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2827 					   HNS3_CFG_RSS_SIZE_M,
2828 					   HNS3_CFG_RSS_SIZE_S);
2829 
2830 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2831 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2832 
2833 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2834 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2835 
2836 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2837 					    HNS3_CFG_SPEED_ABILITY_M,
2838 					    HNS3_CFG_SPEED_ABILITY_S);
2839 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2840 					HNS3_CFG_UMV_TBL_SPACE_M,
2841 					HNS3_CFG_UMV_TBL_SPACE_S);
2842 	if (!cfg->umv_space)
2843 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2844 
2845 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2846 					       HNS3_CFG_EXT_RSS_SIZE_M,
2847 					       HNS3_CFG_EXT_RSS_SIZE_S);
2848 
2849 	/*
2850 	 * Field ext_rss_size_max obtained from firmware will be more flexible
2851 	 * for future changes and expansions, which is an exponent of 2, instead
2852 	 * of reading out directly. If this field is not zero, hns3 PF PMD
2853 	 * driver uses it as rss_size_max under one TC. Device, whose revision
2854 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2855 	 * maximum number of queues supported under a TC through this field.
2856 	 */
2857 	if (ext_rss_size_max)
2858 		cfg->rss_size_max = 1U << ext_rss_size_max;
2859 }
2860 
2861 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2862  * @hw: pointer to struct hns3_hw
2863  * @hcfg: the config structure to be getted
2864  */
2865 static int
2866 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2867 {
2868 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2869 	struct hns3_cfg_param_cmd *req;
2870 	uint32_t offset;
2871 	uint32_t i;
2872 	int ret;
2873 
2874 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2875 		offset = 0;
2876 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2877 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2878 					  true);
2879 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2880 			       i * HNS3_CFG_RD_LEN_BYTES);
2881 		/* Len should be divided by 4 when send to hardware */
2882 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2883 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2884 		req->offset = rte_cpu_to_le_32(offset);
2885 	}
2886 
2887 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2888 	if (ret) {
2889 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2890 		return ret;
2891 	}
2892 
2893 	hns3_parse_cfg(hcfg, desc);
2894 
2895 	return 0;
2896 }
2897 
2898 static int
2899 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2900 {
2901 	switch (speed_cmd) {
2902 	case HNS3_CFG_SPEED_10M:
2903 		*speed = ETH_SPEED_NUM_10M;
2904 		break;
2905 	case HNS3_CFG_SPEED_100M:
2906 		*speed = ETH_SPEED_NUM_100M;
2907 		break;
2908 	case HNS3_CFG_SPEED_1G:
2909 		*speed = ETH_SPEED_NUM_1G;
2910 		break;
2911 	case HNS3_CFG_SPEED_10G:
2912 		*speed = ETH_SPEED_NUM_10G;
2913 		break;
2914 	case HNS3_CFG_SPEED_25G:
2915 		*speed = ETH_SPEED_NUM_25G;
2916 		break;
2917 	case HNS3_CFG_SPEED_40G:
2918 		*speed = ETH_SPEED_NUM_40G;
2919 		break;
2920 	case HNS3_CFG_SPEED_50G:
2921 		*speed = ETH_SPEED_NUM_50G;
2922 		break;
2923 	case HNS3_CFG_SPEED_100G:
2924 		*speed = ETH_SPEED_NUM_100G;
2925 		break;
2926 	case HNS3_CFG_SPEED_200G:
2927 		*speed = ETH_SPEED_NUM_200G;
2928 		break;
2929 	default:
2930 		return -EINVAL;
2931 	}
2932 
2933 	return 0;
2934 }
2935 
2936 static void
2937 hns3_set_default_dev_specifications(struct hns3_hw *hw)
2938 {
2939 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
2940 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
2941 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
2942 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
2943 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
2944 }
2945 
2946 static void
2947 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
2948 {
2949 	struct hns3_dev_specs_0_cmd *req0;
2950 
2951 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
2952 
2953 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
2954 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
2955 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
2956 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
2957 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
2958 }
2959 
2960 static int
2961 hns3_query_dev_specifications(struct hns3_hw *hw)
2962 {
2963 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
2964 	int ret;
2965 	int i;
2966 
2967 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2968 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
2969 					  true);
2970 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
2971 	}
2972 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
2973 
2974 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
2975 	if (ret)
2976 		return ret;
2977 
2978 	hns3_parse_dev_specifications(hw, desc);
2979 
2980 	return 0;
2981 }
2982 
2983 static int
2984 hns3_get_capability(struct hns3_hw *hw)
2985 {
2986 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2987 	struct rte_pci_device *pci_dev;
2988 	struct hns3_pf *pf = &hns->pf;
2989 	struct rte_eth_dev *eth_dev;
2990 	uint16_t device_id;
2991 	uint8_t revision;
2992 	int ret;
2993 
2994 	eth_dev = &rte_eth_devices[hw->data->port_id];
2995 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2996 	device_id = pci_dev->id.device_id;
2997 
2998 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
2999 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
3000 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3001 	    device_id == HNS3_DEV_ID_200G_RDMA)
3002 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3003 
3004 	ret = hns3_query_dev_fec_info(eth_dev);
3005 	if (ret) {
3006 		PMD_INIT_LOG(ERR,
3007 			     "failed to query FEC information, ret = %d", ret);
3008 		return ret;
3009 	}
3010 
3011 	/* Get PCI revision id */
3012 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3013 				  HNS3_PCI_REVISION_ID);
3014 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
3015 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3016 			     ret);
3017 		return -EIO;
3018 	}
3019 	hw->revision = revision;
3020 
3021 	if (revision < PCI_REVISION_ID_HIP09_A) {
3022 		hns3_set_default_dev_specifications(hw);
3023 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3024 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3025 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3026 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3027 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3028 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3029 		hw->rss_info.ipv6_sctp_offload_supported = false;
3030 		return 0;
3031 	}
3032 
3033 	ret = hns3_query_dev_specifications(hw);
3034 	if (ret) {
3035 		PMD_INIT_LOG(ERR,
3036 			     "failed to query dev specifications, ret = %d",
3037 			     ret);
3038 		return ret;
3039 	}
3040 
3041 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3042 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3043 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3044 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3045 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3046 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3047 	hw->rss_info.ipv6_sctp_offload_supported = true;
3048 
3049 	return 0;
3050 }
3051 
3052 static int
3053 hns3_get_board_configuration(struct hns3_hw *hw)
3054 {
3055 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3056 	struct hns3_pf *pf = &hns->pf;
3057 	struct hns3_cfg cfg;
3058 	int ret;
3059 
3060 	ret = hns3_get_board_cfg(hw, &cfg);
3061 	if (ret) {
3062 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3063 		return ret;
3064 	}
3065 
3066 	if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER &&
3067 	    !hns3_dev_copper_supported(hw)) {
3068 		PMD_INIT_LOG(ERR, "media type is copper, not supported.");
3069 		return -EOPNOTSUPP;
3070 	}
3071 
3072 	hw->mac.media_type = cfg.media_type;
3073 	hw->rss_size_max = cfg.rss_size_max;
3074 	hw->rss_dis_flag = false;
3075 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3076 	hw->mac.phy_addr = cfg.phy_addr;
3077 	hw->mac.default_addr_setted = false;
3078 	hw->num_tx_desc = cfg.tqp_desc_num;
3079 	hw->num_rx_desc = cfg.tqp_desc_num;
3080 	hw->dcb_info.num_pg = 1;
3081 	hw->dcb_info.hw_pfc_map = 0;
3082 
3083 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3084 	if (ret) {
3085 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3086 			     cfg.default_speed, ret);
3087 		return ret;
3088 	}
3089 
3090 	pf->tc_max = cfg.tc_num;
3091 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3092 		PMD_INIT_LOG(WARNING,
3093 			     "Get TC num(%u) from flash, set TC num to 1",
3094 			     pf->tc_max);
3095 		pf->tc_max = 1;
3096 	}
3097 
3098 	/* Dev does not support DCB */
3099 	if (!hns3_dev_dcb_supported(hw)) {
3100 		pf->tc_max = 1;
3101 		pf->pfc_max = 0;
3102 	} else
3103 		pf->pfc_max = pf->tc_max;
3104 
3105 	hw->dcb_info.num_tc = 1;
3106 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3107 				     hw->tqps_num / hw->dcb_info.num_tc);
3108 	hns3_set_bit(hw->hw_tc_map, 0, 1);
3109 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3110 
3111 	pf->wanted_umv_size = cfg.umv_space;
3112 
3113 	return ret;
3114 }
3115 
3116 static int
3117 hns3_get_configuration(struct hns3_hw *hw)
3118 {
3119 	int ret;
3120 
3121 	ret = hns3_query_function_status(hw);
3122 	if (ret) {
3123 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3124 		return ret;
3125 	}
3126 
3127 	/* Get device capability */
3128 	ret = hns3_get_capability(hw);
3129 	if (ret) {
3130 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3131 		return ret;
3132 	}
3133 
3134 	/* Get pf resource */
3135 	ret = hns3_query_pf_resource(hw);
3136 	if (ret) {
3137 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3138 		return ret;
3139 	}
3140 
3141 	ret = hns3_get_board_configuration(hw);
3142 	if (ret)
3143 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3144 
3145 	return ret;
3146 }
3147 
3148 static int
3149 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3150 		      uint16_t tqp_vid, bool is_pf)
3151 {
3152 	struct hns3_tqp_map_cmd *req;
3153 	struct hns3_cmd_desc desc;
3154 	int ret;
3155 
3156 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3157 
3158 	req = (struct hns3_tqp_map_cmd *)desc.data;
3159 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3160 	req->tqp_vf = func_id;
3161 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3162 	if (!is_pf)
3163 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3164 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3165 
3166 	ret = hns3_cmd_send(hw, &desc, 1);
3167 	if (ret)
3168 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3169 
3170 	return ret;
3171 }
3172 
3173 static int
3174 hns3_map_tqp(struct hns3_hw *hw)
3175 {
3176 	int ret;
3177 	int i;
3178 
3179 	/*
3180 	 * In current version, VF is not supported when PF is driven by DPDK
3181 	 * driver, so we assign total tqps_num tqps allocated to this port
3182 	 * to PF.
3183 	 */
3184 	for (i = 0; i < hw->total_tqps_num; i++) {
3185 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3186 		if (ret)
3187 			return ret;
3188 	}
3189 
3190 	return 0;
3191 }
3192 
3193 static int
3194 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3195 {
3196 	struct hns3_config_mac_speed_dup_cmd *req;
3197 	struct hns3_cmd_desc desc;
3198 	int ret;
3199 
3200 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3201 
3202 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3203 
3204 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3205 
3206 	switch (speed) {
3207 	case ETH_SPEED_NUM_10M:
3208 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3209 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3210 		break;
3211 	case ETH_SPEED_NUM_100M:
3212 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3213 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3214 		break;
3215 	case ETH_SPEED_NUM_1G:
3216 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3217 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3218 		break;
3219 	case ETH_SPEED_NUM_10G:
3220 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3221 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3222 		break;
3223 	case ETH_SPEED_NUM_25G:
3224 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3225 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3226 		break;
3227 	case ETH_SPEED_NUM_40G:
3228 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3229 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3230 		break;
3231 	case ETH_SPEED_NUM_50G:
3232 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3233 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3234 		break;
3235 	case ETH_SPEED_NUM_100G:
3236 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3237 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3238 		break;
3239 	case ETH_SPEED_NUM_200G:
3240 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3241 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3242 		break;
3243 	default:
3244 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3245 		return -EINVAL;
3246 	}
3247 
3248 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3249 
3250 	ret = hns3_cmd_send(hw, &desc, 1);
3251 	if (ret)
3252 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3253 
3254 	return ret;
3255 }
3256 
3257 static int
3258 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3259 {
3260 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3261 	struct hns3_pf *pf = &hns->pf;
3262 	struct hns3_priv_buf *priv;
3263 	uint32_t i, total_size;
3264 
3265 	total_size = pf->pkt_buf_size;
3266 
3267 	/* alloc tx buffer for all enabled tc */
3268 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3269 		priv = &buf_alloc->priv_buf[i];
3270 
3271 		if (hw->hw_tc_map & BIT(i)) {
3272 			if (total_size < pf->tx_buf_size)
3273 				return -ENOMEM;
3274 
3275 			priv->tx_buf_size = pf->tx_buf_size;
3276 		} else
3277 			priv->tx_buf_size = 0;
3278 
3279 		total_size -= priv->tx_buf_size;
3280 	}
3281 
3282 	return 0;
3283 }
3284 
3285 static int
3286 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3287 {
3288 /* TX buffer size is unit by 128 byte */
3289 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3290 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3291 	struct hns3_tx_buff_alloc_cmd *req;
3292 	struct hns3_cmd_desc desc;
3293 	uint32_t buf_size;
3294 	uint32_t i;
3295 	int ret;
3296 
3297 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3298 
3299 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3300 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3301 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3302 
3303 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3304 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3305 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3306 	}
3307 
3308 	ret = hns3_cmd_send(hw, &desc, 1);
3309 	if (ret)
3310 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3311 
3312 	return ret;
3313 }
3314 
3315 static int
3316 hns3_get_tc_num(struct hns3_hw *hw)
3317 {
3318 	int cnt = 0;
3319 	uint8_t i;
3320 
3321 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3322 		if (hw->hw_tc_map & BIT(i))
3323 			cnt++;
3324 	return cnt;
3325 }
3326 
3327 static uint32_t
3328 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3329 {
3330 	struct hns3_priv_buf *priv;
3331 	uint32_t rx_priv = 0;
3332 	int i;
3333 
3334 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3335 		priv = &buf_alloc->priv_buf[i];
3336 		if (priv->enable)
3337 			rx_priv += priv->buf_size;
3338 	}
3339 	return rx_priv;
3340 }
3341 
3342 static uint32_t
3343 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3344 {
3345 	uint32_t total_tx_size = 0;
3346 	uint32_t i;
3347 
3348 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3349 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3350 
3351 	return total_tx_size;
3352 }
3353 
3354 /* Get the number of pfc enabled TCs, which have private buffer */
3355 static int
3356 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3357 {
3358 	struct hns3_priv_buf *priv;
3359 	int cnt = 0;
3360 	uint8_t i;
3361 
3362 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3363 		priv = &buf_alloc->priv_buf[i];
3364 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3365 			cnt++;
3366 	}
3367 
3368 	return cnt;
3369 }
3370 
3371 /* Get the number of pfc disabled TCs, which have private buffer */
3372 static int
3373 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3374 			 struct hns3_pkt_buf_alloc *buf_alloc)
3375 {
3376 	struct hns3_priv_buf *priv;
3377 	int cnt = 0;
3378 	uint8_t i;
3379 
3380 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3381 		priv = &buf_alloc->priv_buf[i];
3382 		if (hw->hw_tc_map & BIT(i) &&
3383 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3384 			cnt++;
3385 	}
3386 
3387 	return cnt;
3388 }
3389 
3390 static bool
3391 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3392 		  uint32_t rx_all)
3393 {
3394 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3395 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3396 	struct hns3_pf *pf = &hns->pf;
3397 	uint32_t shared_buf, aligned_mps;
3398 	uint32_t rx_priv;
3399 	uint8_t tc_num;
3400 	uint8_t i;
3401 
3402 	tc_num = hns3_get_tc_num(hw);
3403 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3404 
3405 	if (hns3_dev_dcb_supported(hw))
3406 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3407 					pf->dv_buf_size;
3408 	else
3409 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3410 					+ pf->dv_buf_size;
3411 
3412 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3413 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3414 			     HNS3_BUF_SIZE_UNIT);
3415 
3416 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3417 	if (rx_all < rx_priv + shared_std)
3418 		return false;
3419 
3420 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3421 	buf_alloc->s_buf.buf_size = shared_buf;
3422 	if (hns3_dev_dcb_supported(hw)) {
3423 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3424 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3425 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3426 				  HNS3_BUF_SIZE_UNIT);
3427 	} else {
3428 		buf_alloc->s_buf.self.high =
3429 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3430 		buf_alloc->s_buf.self.low = aligned_mps;
3431 	}
3432 
3433 	if (hns3_dev_dcb_supported(hw)) {
3434 		hi_thrd = shared_buf - pf->dv_buf_size;
3435 
3436 		if (tc_num <= NEED_RESERVE_TC_NUM)
3437 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3438 				  BUF_MAX_PERCENT;
3439 
3440 		if (tc_num)
3441 			hi_thrd = hi_thrd / tc_num;
3442 
3443 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3444 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3445 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3446 	} else {
3447 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3448 		lo_thrd = aligned_mps;
3449 	}
3450 
3451 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3452 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3453 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3454 	}
3455 
3456 	return true;
3457 }
3458 
3459 static bool
3460 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3461 		     struct hns3_pkt_buf_alloc *buf_alloc)
3462 {
3463 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3464 	struct hns3_pf *pf = &hns->pf;
3465 	struct hns3_priv_buf *priv;
3466 	uint32_t aligned_mps;
3467 	uint32_t rx_all;
3468 	uint8_t i;
3469 
3470 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3471 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3472 
3473 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3474 		priv = &buf_alloc->priv_buf[i];
3475 
3476 		priv->enable = 0;
3477 		priv->wl.low = 0;
3478 		priv->wl.high = 0;
3479 		priv->buf_size = 0;
3480 
3481 		if (!(hw->hw_tc_map & BIT(i)))
3482 			continue;
3483 
3484 		priv->enable = 1;
3485 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3486 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3487 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3488 						HNS3_BUF_SIZE_UNIT);
3489 		} else {
3490 			priv->wl.low = 0;
3491 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3492 					aligned_mps;
3493 		}
3494 
3495 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3496 	}
3497 
3498 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3499 }
3500 
3501 static bool
3502 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3503 			     struct hns3_pkt_buf_alloc *buf_alloc)
3504 {
3505 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3506 	struct hns3_pf *pf = &hns->pf;
3507 	struct hns3_priv_buf *priv;
3508 	int no_pfc_priv_num;
3509 	uint32_t rx_all;
3510 	uint8_t mask;
3511 	int i;
3512 
3513 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3514 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3515 
3516 	/* let the last to be cleared first */
3517 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3518 		priv = &buf_alloc->priv_buf[i];
3519 		mask = BIT((uint8_t)i);
3520 
3521 		if (hw->hw_tc_map & mask &&
3522 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3523 			/* Clear the no pfc TC private buffer */
3524 			priv->wl.low = 0;
3525 			priv->wl.high = 0;
3526 			priv->buf_size = 0;
3527 			priv->enable = 0;
3528 			no_pfc_priv_num--;
3529 		}
3530 
3531 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3532 		    no_pfc_priv_num == 0)
3533 			break;
3534 	}
3535 
3536 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3537 }
3538 
3539 static bool
3540 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3541 			   struct hns3_pkt_buf_alloc *buf_alloc)
3542 {
3543 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3544 	struct hns3_pf *pf = &hns->pf;
3545 	struct hns3_priv_buf *priv;
3546 	uint32_t rx_all;
3547 	int pfc_priv_num;
3548 	uint8_t mask;
3549 	int i;
3550 
3551 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3552 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3553 
3554 	/* let the last to be cleared first */
3555 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3556 		priv = &buf_alloc->priv_buf[i];
3557 		mask = BIT((uint8_t)i);
3558 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3559 			/* Reduce the number of pfc TC with private buffer */
3560 			priv->wl.low = 0;
3561 			priv->enable = 0;
3562 			priv->wl.high = 0;
3563 			priv->buf_size = 0;
3564 			pfc_priv_num--;
3565 		}
3566 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3567 		    pfc_priv_num == 0)
3568 			break;
3569 	}
3570 
3571 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3572 }
3573 
3574 static bool
3575 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3576 			  struct hns3_pkt_buf_alloc *buf_alloc)
3577 {
3578 #define COMPENSATE_BUFFER	0x3C00
3579 #define COMPENSATE_HALF_MPS_NUM	5
3580 #define PRIV_WL_GAP		0x1800
3581 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3582 	struct hns3_pf *pf = &hns->pf;
3583 	uint32_t tc_num = hns3_get_tc_num(hw);
3584 	uint32_t half_mps = pf->mps >> 1;
3585 	struct hns3_priv_buf *priv;
3586 	uint32_t min_rx_priv;
3587 	uint32_t rx_priv;
3588 	uint8_t i;
3589 
3590 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3591 	if (tc_num)
3592 		rx_priv = rx_priv / tc_num;
3593 
3594 	if (tc_num <= NEED_RESERVE_TC_NUM)
3595 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3596 
3597 	/*
3598 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3599 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3600 	 * buffer if rx_priv is greater than min_rx_priv.
3601 	 */
3602 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3603 			COMPENSATE_HALF_MPS_NUM * half_mps;
3604 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3605 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3606 
3607 	if (rx_priv < min_rx_priv)
3608 		return false;
3609 
3610 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3611 		priv = &buf_alloc->priv_buf[i];
3612 		priv->enable = 0;
3613 		priv->wl.low = 0;
3614 		priv->wl.high = 0;
3615 		priv->buf_size = 0;
3616 
3617 		if (!(hw->hw_tc_map & BIT(i)))
3618 			continue;
3619 
3620 		priv->enable = 1;
3621 		priv->buf_size = rx_priv;
3622 		priv->wl.high = rx_priv - pf->dv_buf_size;
3623 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3624 	}
3625 
3626 	buf_alloc->s_buf.buf_size = 0;
3627 
3628 	return true;
3629 }
3630 
3631 /*
3632  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3633  * @hw: pointer to struct hns3_hw
3634  * @buf_alloc: pointer to buffer calculation data
3635  * @return: 0: calculate sucessful, negative: fail
3636  */
3637 static int
3638 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3639 {
3640 	/* When DCB is not supported, rx private buffer is not allocated. */
3641 	if (!hns3_dev_dcb_supported(hw)) {
3642 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3643 		struct hns3_pf *pf = &hns->pf;
3644 		uint32_t rx_all = pf->pkt_buf_size;
3645 
3646 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3647 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3648 			return -ENOMEM;
3649 
3650 		return 0;
3651 	}
3652 
3653 	/*
3654 	 * Try to allocate privated packet buffer for all TCs without share
3655 	 * buffer.
3656 	 */
3657 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3658 		return 0;
3659 
3660 	/*
3661 	 * Try to allocate privated packet buffer for all TCs with share
3662 	 * buffer.
3663 	 */
3664 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3665 		return 0;
3666 
3667 	/*
3668 	 * For different application scenes, the enabled port number, TC number
3669 	 * and no_drop TC number are different. In order to obtain the better
3670 	 * performance, software could allocate the buffer size and configure
3671 	 * the waterline by tring to decrease the private buffer size according
3672 	 * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3673 	 * enabled tc.
3674 	 */
3675 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3676 		return 0;
3677 
3678 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3679 		return 0;
3680 
3681 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3682 		return 0;
3683 
3684 	return -ENOMEM;
3685 }
3686 
3687 static int
3688 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3689 {
3690 	struct hns3_rx_priv_buff_cmd *req;
3691 	struct hns3_cmd_desc desc;
3692 	uint32_t buf_size;
3693 	int ret;
3694 	int i;
3695 
3696 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3697 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3698 
3699 	/* Alloc private buffer TCs */
3700 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3701 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3702 
3703 		req->buf_num[i] =
3704 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3705 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3706 	}
3707 
3708 	buf_size = buf_alloc->s_buf.buf_size;
3709 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3710 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3711 
3712 	ret = hns3_cmd_send(hw, &desc, 1);
3713 	if (ret)
3714 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3715 
3716 	return ret;
3717 }
3718 
3719 static int
3720 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3721 {
3722 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3723 	struct hns3_rx_priv_wl_buf *req;
3724 	struct hns3_priv_buf *priv;
3725 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3726 	int i, j;
3727 	int ret;
3728 
3729 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3730 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3731 					  false);
3732 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3733 
3734 		/* The first descriptor set the NEXT bit to 1 */
3735 		if (i == 0)
3736 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3737 		else
3738 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3739 
3740 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3741 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3742 
3743 			priv = &buf_alloc->priv_buf[idx];
3744 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3745 							HNS3_BUF_UNIT_S);
3746 			req->tc_wl[j].high |=
3747 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3748 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3749 							HNS3_BUF_UNIT_S);
3750 			req->tc_wl[j].low |=
3751 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3752 		}
3753 	}
3754 
3755 	/* Send 2 descriptor at one time */
3756 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3757 	if (ret)
3758 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3759 			     ret);
3760 	return ret;
3761 }
3762 
3763 static int
3764 hns3_common_thrd_config(struct hns3_hw *hw,
3765 			struct hns3_pkt_buf_alloc *buf_alloc)
3766 {
3767 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3768 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3769 	struct hns3_rx_com_thrd *req;
3770 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3771 	struct hns3_tc_thrd *tc;
3772 	int tc_idx;
3773 	int i, j;
3774 	int ret;
3775 
3776 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3777 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3778 					  false);
3779 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3780 
3781 		/* The first descriptor set the NEXT bit to 1 */
3782 		if (i == 0)
3783 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3784 		else
3785 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3786 
3787 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3788 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3789 			tc = &s_buf->tc_thrd[tc_idx];
3790 
3791 			req->com_thrd[j].high =
3792 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3793 			req->com_thrd[j].high |=
3794 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3795 			req->com_thrd[j].low =
3796 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3797 			req->com_thrd[j].low |=
3798 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3799 		}
3800 	}
3801 
3802 	/* Send 2 descriptors at one time */
3803 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3804 	if (ret)
3805 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3806 
3807 	return ret;
3808 }
3809 
3810 static int
3811 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3812 {
3813 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3814 	struct hns3_rx_com_wl *req;
3815 	struct hns3_cmd_desc desc;
3816 	int ret;
3817 
3818 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3819 
3820 	req = (struct hns3_rx_com_wl *)desc.data;
3821 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3822 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3823 
3824 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3825 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3826 
3827 	ret = hns3_cmd_send(hw, &desc, 1);
3828 	if (ret)
3829 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3830 
3831 	return ret;
3832 }
3833 
3834 int
3835 hns3_buffer_alloc(struct hns3_hw *hw)
3836 {
3837 	struct hns3_pkt_buf_alloc pkt_buf;
3838 	int ret;
3839 
3840 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3841 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3842 	if (ret) {
3843 		PMD_INIT_LOG(ERR,
3844 			     "could not calc tx buffer size for all TCs %d",
3845 			     ret);
3846 		return ret;
3847 	}
3848 
3849 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3850 	if (ret) {
3851 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3852 		return ret;
3853 	}
3854 
3855 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3856 	if (ret) {
3857 		PMD_INIT_LOG(ERR,
3858 			     "could not calc rx priv buffer size for all TCs %d",
3859 			     ret);
3860 		return ret;
3861 	}
3862 
3863 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3864 	if (ret) {
3865 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3866 		return ret;
3867 	}
3868 
3869 	if (hns3_dev_dcb_supported(hw)) {
3870 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3871 		if (ret) {
3872 			PMD_INIT_LOG(ERR,
3873 				     "could not configure rx private waterline %d",
3874 				     ret);
3875 			return ret;
3876 		}
3877 
3878 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3879 		if (ret) {
3880 			PMD_INIT_LOG(ERR,
3881 				     "could not configure common threshold %d",
3882 				     ret);
3883 			return ret;
3884 		}
3885 	}
3886 
3887 	ret = hns3_common_wl_config(hw, &pkt_buf);
3888 	if (ret)
3889 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3890 			     ret);
3891 
3892 	return ret;
3893 }
3894 
3895 static int
3896 hns3_mac_init(struct hns3_hw *hw)
3897 {
3898 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3899 	struct hns3_mac *mac = &hw->mac;
3900 	struct hns3_pf *pf = &hns->pf;
3901 	int ret;
3902 
3903 	pf->support_sfp_query = true;
3904 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
3905 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3906 	if (ret) {
3907 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3908 		return ret;
3909 	}
3910 
3911 	mac->link_status = ETH_LINK_DOWN;
3912 
3913 	return hns3_config_mtu(hw, pf->mps);
3914 }
3915 
3916 static int
3917 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3918 {
3919 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3920 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3921 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3922 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3923 	int return_status;
3924 
3925 	if (cmdq_resp) {
3926 		PMD_INIT_LOG(ERR,
3927 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
3928 			     cmdq_resp);
3929 		return -EIO;
3930 	}
3931 
3932 	switch (resp_code) {
3933 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3934 	case HNS3_ETHERTYPE_ALREADY_ADD:
3935 		return_status = 0;
3936 		break;
3937 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3938 		PMD_INIT_LOG(ERR,
3939 			     "add mac ethertype failed for manager table overflow.");
3940 		return_status = -EIO;
3941 		break;
3942 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3943 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3944 		return_status = -EIO;
3945 		break;
3946 	default:
3947 		PMD_INIT_LOG(ERR,
3948 			     "add mac ethertype failed for undefined, code=%u.",
3949 			     resp_code);
3950 		return_status = -EIO;
3951 		break;
3952 	}
3953 
3954 	return return_status;
3955 }
3956 
3957 static int
3958 hns3_add_mgr_tbl(struct hns3_hw *hw,
3959 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3960 {
3961 	struct hns3_cmd_desc desc;
3962 	uint8_t resp_code;
3963 	uint16_t retval;
3964 	int ret;
3965 
3966 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3967 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3968 
3969 	ret = hns3_cmd_send(hw, &desc, 1);
3970 	if (ret) {
3971 		PMD_INIT_LOG(ERR,
3972 			     "add mac ethertype failed for cmd_send, ret =%d.",
3973 			     ret);
3974 		return ret;
3975 	}
3976 
3977 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3978 	retval = rte_le_to_cpu_16(desc.retval);
3979 
3980 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3981 }
3982 
3983 static void
3984 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3985 		     int *table_item_num)
3986 {
3987 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3988 
3989 	/*
3990 	 * In current version, we add one item in management table as below:
3991 	 * 0x0180C200000E -- LLDP MC address
3992 	 */
3993 	tbl = mgr_table;
3994 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3995 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3996 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3997 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3998 	tbl->i_port_bitmap = 0x1;
3999 	*table_item_num = 1;
4000 }
4001 
4002 static int
4003 hns3_init_mgr_tbl(struct hns3_hw *hw)
4004 {
4005 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
4006 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4007 	int table_item_num;
4008 	int ret;
4009 	int i;
4010 
4011 	memset(mgr_table, 0, sizeof(mgr_table));
4012 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4013 	for (i = 0; i < table_item_num; i++) {
4014 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4015 		if (ret) {
4016 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4017 				     ret);
4018 			return ret;
4019 		}
4020 	}
4021 
4022 	return 0;
4023 }
4024 
4025 static void
4026 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4027 			bool en_mc, bool en_bc, int vport_id)
4028 {
4029 	if (!param)
4030 		return;
4031 
4032 	memset(param, 0, sizeof(struct hns3_promisc_param));
4033 	if (en_uc)
4034 		param->enable = HNS3_PROMISC_EN_UC;
4035 	if (en_mc)
4036 		param->enable |= HNS3_PROMISC_EN_MC;
4037 	if (en_bc)
4038 		param->enable |= HNS3_PROMISC_EN_BC;
4039 	param->vf_id = vport_id;
4040 }
4041 
4042 static int
4043 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4044 {
4045 	struct hns3_promisc_cfg_cmd *req;
4046 	struct hns3_cmd_desc desc;
4047 	int ret;
4048 
4049 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4050 
4051 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
4052 	req->vf_id = param->vf_id;
4053 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4054 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4055 
4056 	ret = hns3_cmd_send(hw, &desc, 1);
4057 	if (ret)
4058 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4059 
4060 	return ret;
4061 }
4062 
4063 static int
4064 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4065 {
4066 	struct hns3_promisc_param param;
4067 	bool en_bc_pmc = true;
4068 	uint8_t vf_id;
4069 
4070 	/*
4071 	 * In current version VF is not supported when PF is driven by DPDK
4072 	 * driver, just need to configure parameters for PF vport.
4073 	 */
4074 	vf_id = HNS3_PF_FUNC_ID;
4075 
4076 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4077 	return hns3_cmd_set_promisc_mode(hw, &param);
4078 }
4079 
4080 static int
4081 hns3_promisc_init(struct hns3_hw *hw)
4082 {
4083 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4084 	struct hns3_pf *pf = &hns->pf;
4085 	struct hns3_promisc_param param;
4086 	uint16_t func_id;
4087 	int ret;
4088 
4089 	ret = hns3_set_promisc_mode(hw, false, false);
4090 	if (ret) {
4091 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4092 		return ret;
4093 	}
4094 
4095 	/*
4096 	 * In current version VFs are not supported when PF is driven by DPDK
4097 	 * driver. After PF has been taken over by DPDK, the original VF will
4098 	 * be invalid. So, there is a possibility of entry residues. It should
4099 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4100 	 * during init.
4101 	 */
4102 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4103 		hns3_promisc_param_init(&param, false, false, false, func_id);
4104 		ret = hns3_cmd_set_promisc_mode(hw, &param);
4105 		if (ret) {
4106 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4107 					" ret = %d", func_id, ret);
4108 			return ret;
4109 		}
4110 	}
4111 
4112 	return 0;
4113 }
4114 
4115 static void
4116 hns3_promisc_uninit(struct hns3_hw *hw)
4117 {
4118 	struct hns3_promisc_param param;
4119 	uint16_t func_id;
4120 	int ret;
4121 
4122 	func_id = HNS3_PF_FUNC_ID;
4123 
4124 	/*
4125 	 * In current version VFs are not supported when PF is driven by
4126 	 * DPDK driver, and VFs' promisc mode status has been cleared during
4127 	 * init and their status will not change. So just clear PF's promisc
4128 	 * mode status during uninit.
4129 	 */
4130 	hns3_promisc_param_init(&param, false, false, false, func_id);
4131 	ret = hns3_cmd_set_promisc_mode(hw, &param);
4132 	if (ret)
4133 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4134 				" uninit, ret = %d", ret);
4135 }
4136 
4137 static int
4138 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4139 {
4140 	bool allmulti = dev->data->all_multicast ? true : false;
4141 	struct hns3_adapter *hns = dev->data->dev_private;
4142 	struct hns3_hw *hw = &hns->hw;
4143 	uint64_t offloads;
4144 	int err;
4145 	int ret;
4146 
4147 	rte_spinlock_lock(&hw->lock);
4148 	ret = hns3_set_promisc_mode(hw, true, true);
4149 	if (ret) {
4150 		rte_spinlock_unlock(&hw->lock);
4151 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4152 			 ret);
4153 		return ret;
4154 	}
4155 
4156 	/*
4157 	 * When promiscuous mode was enabled, disable the vlan filter to let
4158 	 * all packets coming in in the receiving direction.
4159 	 */
4160 	offloads = dev->data->dev_conf.rxmode.offloads;
4161 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4162 		ret = hns3_enable_vlan_filter(hns, false);
4163 		if (ret) {
4164 			hns3_err(hw, "failed to enable promiscuous mode due to "
4165 				     "failure to disable vlan filter, ret = %d",
4166 				 ret);
4167 			err = hns3_set_promisc_mode(hw, false, allmulti);
4168 			if (err)
4169 				hns3_err(hw, "failed to restore promiscuous "
4170 					 "status after disable vlan filter "
4171 					 "failed during enabling promiscuous "
4172 					 "mode, ret = %d", ret);
4173 		}
4174 	}
4175 
4176 	rte_spinlock_unlock(&hw->lock);
4177 
4178 	return ret;
4179 }
4180 
4181 static int
4182 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4183 {
4184 	bool allmulti = dev->data->all_multicast ? true : false;
4185 	struct hns3_adapter *hns = dev->data->dev_private;
4186 	struct hns3_hw *hw = &hns->hw;
4187 	uint64_t offloads;
4188 	int err;
4189 	int ret;
4190 
4191 	/* If now in all_multicast mode, must remain in all_multicast mode. */
4192 	rte_spinlock_lock(&hw->lock);
4193 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4194 	if (ret) {
4195 		rte_spinlock_unlock(&hw->lock);
4196 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4197 			 ret);
4198 		return ret;
4199 	}
4200 	/* when promiscuous mode was disabled, restore the vlan filter status */
4201 	offloads = dev->data->dev_conf.rxmode.offloads;
4202 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4203 		ret = hns3_enable_vlan_filter(hns, true);
4204 		if (ret) {
4205 			hns3_err(hw, "failed to disable promiscuous mode due to"
4206 				 " failure to restore vlan filter, ret = %d",
4207 				 ret);
4208 			err = hns3_set_promisc_mode(hw, true, true);
4209 			if (err)
4210 				hns3_err(hw, "failed to restore promiscuous "
4211 					 "status after enabling vlan filter "
4212 					 "failed during disabling promiscuous "
4213 					 "mode, ret = %d", ret);
4214 		}
4215 	}
4216 	rte_spinlock_unlock(&hw->lock);
4217 
4218 	return ret;
4219 }
4220 
4221 static int
4222 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4223 {
4224 	struct hns3_adapter *hns = dev->data->dev_private;
4225 	struct hns3_hw *hw = &hns->hw;
4226 	int ret;
4227 
4228 	if (dev->data->promiscuous)
4229 		return 0;
4230 
4231 	rte_spinlock_lock(&hw->lock);
4232 	ret = hns3_set_promisc_mode(hw, false, true);
4233 	rte_spinlock_unlock(&hw->lock);
4234 	if (ret)
4235 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4236 			 ret);
4237 
4238 	return ret;
4239 }
4240 
4241 static int
4242 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4243 {
4244 	struct hns3_adapter *hns = dev->data->dev_private;
4245 	struct hns3_hw *hw = &hns->hw;
4246 	int ret;
4247 
4248 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4249 	if (dev->data->promiscuous)
4250 		return 0;
4251 
4252 	rte_spinlock_lock(&hw->lock);
4253 	ret = hns3_set_promisc_mode(hw, false, false);
4254 	rte_spinlock_unlock(&hw->lock);
4255 	if (ret)
4256 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4257 			 ret);
4258 
4259 	return ret;
4260 }
4261 
4262 static int
4263 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4264 {
4265 	struct hns3_hw *hw = &hns->hw;
4266 	bool allmulti = hw->data->all_multicast ? true : false;
4267 	int ret;
4268 
4269 	if (hw->data->promiscuous) {
4270 		ret = hns3_set_promisc_mode(hw, true, true);
4271 		if (ret)
4272 			hns3_err(hw, "failed to restore promiscuous mode, "
4273 				 "ret = %d", ret);
4274 		return ret;
4275 	}
4276 
4277 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4278 	if (ret)
4279 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4280 			 ret);
4281 	return ret;
4282 }
4283 
4284 static int
4285 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4286 {
4287 	struct hns3_sfp_speed_cmd *resp;
4288 	struct hns3_cmd_desc desc;
4289 	int ret;
4290 
4291 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4292 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
4293 	ret = hns3_cmd_send(hw, &desc, 1);
4294 	if (ret == -EOPNOTSUPP) {
4295 		hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4296 		return ret;
4297 	} else if (ret) {
4298 		hns3_err(hw, "get sfp speed failed %d", ret);
4299 		return ret;
4300 	}
4301 
4302 	*speed = resp->sfp_speed;
4303 
4304 	return 0;
4305 }
4306 
4307 static uint8_t
4308 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4309 {
4310 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4311 		duplex = ETH_LINK_FULL_DUPLEX;
4312 
4313 	return duplex;
4314 }
4315 
4316 static int
4317 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4318 {
4319 	struct hns3_mac *mac = &hw->mac;
4320 	uint32_t cur_speed = mac->link_speed;
4321 	int ret;
4322 
4323 	duplex = hns3_check_speed_dup(duplex, speed);
4324 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4325 		return 0;
4326 
4327 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4328 	if (ret)
4329 		return ret;
4330 
4331 	mac->link_speed = speed;
4332 	ret = hns3_dcb_port_shaper_cfg(hw);
4333 	if (ret) {
4334 		hns3_err(hw, "failed to configure port shaper, ret = %d.", ret);
4335 		mac->link_speed = cur_speed;
4336 		return ret;
4337 	}
4338 
4339 	mac->link_duplex = duplex;
4340 
4341 	return 0;
4342 }
4343 
4344 static int
4345 hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
4346 {
4347 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4348 	struct hns3_hw *hw = &hns->hw;
4349 	struct hns3_pf *pf = &hns->pf;
4350 	uint32_t speed;
4351 	int ret;
4352 
4353 	/* If IMP do not support get SFP/qSFP speed, return directly */
4354 	if (!pf->support_sfp_query)
4355 		return 0;
4356 
4357 	ret = hns3_get_sfp_speed(hw, &speed);
4358 	if (ret == -EOPNOTSUPP) {
4359 		pf->support_sfp_query = false;
4360 		return ret;
4361 	} else if (ret)
4362 		return ret;
4363 
4364 	if (speed == ETH_SPEED_NUM_NONE)
4365 		return 0; /* do nothing if no SFP */
4366 
4367 	/* Config full duplex for SFP */
4368 	return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4369 }
4370 
4371 static int
4372 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4373 {
4374 	struct hns3_config_mac_mode_cmd *req;
4375 	struct hns3_cmd_desc desc;
4376 	uint32_t loop_en = 0;
4377 	uint8_t val = 0;
4378 	int ret;
4379 
4380 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4381 
4382 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4383 	if (enable)
4384 		val = 1;
4385 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4386 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4387 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4388 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4389 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4390 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4391 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4392 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4393 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4394 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4395 
4396 	/*
4397 	 * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4398 	 * when receiving frames. Otherwise, CRC will be stripped.
4399 	 */
4400 	if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4401 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4402 	else
4403 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4404 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4405 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4406 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4407 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4408 
4409 	ret = hns3_cmd_send(hw, &desc, 1);
4410 	if (ret)
4411 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4412 
4413 	return ret;
4414 }
4415 
4416 static int
4417 hns3_get_mac_link_status(struct hns3_hw *hw)
4418 {
4419 	struct hns3_link_status_cmd *req;
4420 	struct hns3_cmd_desc desc;
4421 	int link_status;
4422 	int ret;
4423 
4424 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4425 	ret = hns3_cmd_send(hw, &desc, 1);
4426 	if (ret) {
4427 		hns3_err(hw, "get link status cmd failed %d", ret);
4428 		return ETH_LINK_DOWN;
4429 	}
4430 
4431 	req = (struct hns3_link_status_cmd *)desc.data;
4432 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4433 
4434 	return !!link_status;
4435 }
4436 
4437 void
4438 hns3_update_link_status(struct hns3_hw *hw)
4439 {
4440 	int state;
4441 
4442 	state = hns3_get_mac_link_status(hw);
4443 	if (state != hw->mac.link_status) {
4444 		hw->mac.link_status = state;
4445 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4446 	}
4447 }
4448 
4449 static void
4450 hns3_service_handler(void *param)
4451 {
4452 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4453 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4454 	struct hns3_hw *hw = &hns->hw;
4455 
4456 	if (!hns3_is_reset_pending(hns)) {
4457 		hns3_update_speed_duplex(eth_dev);
4458 		hns3_update_link_status(hw);
4459 	} else
4460 		hns3_warn(hw, "Cancel the query when reset is pending");
4461 
4462 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4463 }
4464 
4465 static int
4466 hns3_init_hardware(struct hns3_adapter *hns)
4467 {
4468 	struct hns3_hw *hw = &hns->hw;
4469 	int ret;
4470 
4471 	ret = hns3_map_tqp(hw);
4472 	if (ret) {
4473 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4474 		return ret;
4475 	}
4476 
4477 	ret = hns3_init_umv_space(hw);
4478 	if (ret) {
4479 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4480 		return ret;
4481 	}
4482 
4483 	ret = hns3_mac_init(hw);
4484 	if (ret) {
4485 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4486 		goto err_mac_init;
4487 	}
4488 
4489 	ret = hns3_init_mgr_tbl(hw);
4490 	if (ret) {
4491 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4492 		goto err_mac_init;
4493 	}
4494 
4495 	ret = hns3_promisc_init(hw);
4496 	if (ret) {
4497 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4498 			     ret);
4499 		goto err_mac_init;
4500 	}
4501 
4502 	ret = hns3_init_vlan_config(hns);
4503 	if (ret) {
4504 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4505 		goto err_mac_init;
4506 	}
4507 
4508 	ret = hns3_dcb_init(hw);
4509 	if (ret) {
4510 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4511 		goto err_mac_init;
4512 	}
4513 
4514 	ret = hns3_init_fd_config(hns);
4515 	if (ret) {
4516 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4517 		goto err_mac_init;
4518 	}
4519 
4520 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4521 	if (ret) {
4522 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4523 		goto err_mac_init;
4524 	}
4525 
4526 	ret = hns3_config_gro(hw, false);
4527 	if (ret) {
4528 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4529 		goto err_mac_init;
4530 	}
4531 
4532 	/*
4533 	 * In the initialization clearing the all hardware mapping relationship
4534 	 * configurations between queues and interrupt vectors is needed, so
4535 	 * some error caused by the residual configurations, such as the
4536 	 * unexpected interrupt, can be avoid.
4537 	 */
4538 	ret = hns3_init_ring_with_vector(hw);
4539 	if (ret) {
4540 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4541 		goto err_mac_init;
4542 	}
4543 
4544 	return 0;
4545 
4546 err_mac_init:
4547 	hns3_uninit_umv_space(hw);
4548 	return ret;
4549 }
4550 
4551 static int
4552 hns3_clear_hw(struct hns3_hw *hw)
4553 {
4554 	struct hns3_cmd_desc desc;
4555 	int ret;
4556 
4557 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4558 
4559 	ret = hns3_cmd_send(hw, &desc, 1);
4560 	if (ret && ret != -EOPNOTSUPP)
4561 		return ret;
4562 
4563 	return 0;
4564 }
4565 
4566 static void
4567 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4568 {
4569 	uint32_t val;
4570 
4571 	/*
4572 	 * The new firmware support report more hardware error types by
4573 	 * msix mode. These errors are defined as RAS errors in hardware
4574 	 * and belong to a different type from the MSI-x errors processed
4575 	 * by the network driver.
4576 	 *
4577 	 * Network driver should open the new error report on initialition
4578 	 */
4579 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4580 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4581 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4582 }
4583 
4584 static int
4585 hns3_init_pf(struct rte_eth_dev *eth_dev)
4586 {
4587 	struct rte_device *dev = eth_dev->device;
4588 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4589 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4590 	struct hns3_hw *hw = &hns->hw;
4591 	int ret;
4592 
4593 	PMD_INIT_FUNC_TRACE();
4594 
4595 	/* Get hardware io base address from pcie BAR2 IO space */
4596 	hw->io_base = pci_dev->mem_resource[2].addr;
4597 
4598 	/* Firmware command queue initialize */
4599 	ret = hns3_cmd_init_queue(hw);
4600 	if (ret) {
4601 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4602 		goto err_cmd_init_queue;
4603 	}
4604 
4605 	hns3_clear_all_event_cause(hw);
4606 
4607 	/* Firmware command initialize */
4608 	ret = hns3_cmd_init(hw);
4609 	if (ret) {
4610 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4611 		goto err_cmd_init;
4612 	}
4613 
4614 	/*
4615 	 * To ensure that the hardware environment is clean during
4616 	 * initialization, the driver actively clear the hardware environment
4617 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4618 	 * flow table configurations, etc.
4619 	 */
4620 	ret = hns3_clear_hw(hw);
4621 	if (ret) {
4622 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4623 		goto err_cmd_init;
4624 	}
4625 
4626 	hns3_config_all_msix_error(hw, true);
4627 
4628 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
4629 					 hns3_interrupt_handler,
4630 					 eth_dev);
4631 	if (ret) {
4632 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4633 		goto err_intr_callback_register;
4634 	}
4635 
4636 	/* Enable interrupt */
4637 	rte_intr_enable(&pci_dev->intr_handle);
4638 	hns3_pf_enable_irq0(hw);
4639 
4640 	/* Get configuration */
4641 	ret = hns3_get_configuration(hw);
4642 	if (ret) {
4643 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4644 		goto err_get_config;
4645 	}
4646 
4647 	ret = hns3_tqp_stats_init(hw);
4648 	if (ret)
4649 		goto err_get_config;
4650 
4651 	ret = hns3_init_hardware(hns);
4652 	if (ret) {
4653 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4654 		goto err_init_hw;
4655 	}
4656 
4657 	/* Initialize flow director filter list & hash */
4658 	ret = hns3_fdir_filter_init(hns);
4659 	if (ret) {
4660 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4661 		goto err_fdir;
4662 	}
4663 
4664 	hns3_set_default_rss_args(hw);
4665 
4666 	ret = hns3_enable_hw_error_intr(hns, true);
4667 	if (ret) {
4668 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4669 			     ret);
4670 		goto err_enable_intr;
4671 	}
4672 
4673 	return 0;
4674 
4675 err_enable_intr:
4676 	hns3_fdir_filter_uninit(hns);
4677 err_fdir:
4678 	hns3_uninit_umv_space(hw);
4679 err_init_hw:
4680 	hns3_tqp_stats_uninit(hw);
4681 err_get_config:
4682 	hns3_pf_disable_irq0(hw);
4683 	rte_intr_disable(&pci_dev->intr_handle);
4684 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4685 			     eth_dev);
4686 err_intr_callback_register:
4687 err_cmd_init:
4688 	hns3_cmd_uninit(hw);
4689 	hns3_cmd_destroy_queue(hw);
4690 err_cmd_init_queue:
4691 	hw->io_base = NULL;
4692 
4693 	return ret;
4694 }
4695 
4696 static void
4697 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4698 {
4699 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4700 	struct rte_device *dev = eth_dev->device;
4701 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4702 	struct hns3_hw *hw = &hns->hw;
4703 
4704 	PMD_INIT_FUNC_TRACE();
4705 
4706 	hns3_enable_hw_error_intr(hns, false);
4707 	hns3_rss_uninit(hns);
4708 	(void)hns3_config_gro(hw, false);
4709 	hns3_promisc_uninit(hw);
4710 	hns3_fdir_filter_uninit(hns);
4711 	hns3_uninit_umv_space(hw);
4712 	hns3_tqp_stats_uninit(hw);
4713 	hns3_pf_disable_irq0(hw);
4714 	rte_intr_disable(&pci_dev->intr_handle);
4715 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4716 			     eth_dev);
4717 	hns3_config_all_msix_error(hw, false);
4718 	hns3_cmd_uninit(hw);
4719 	hns3_cmd_destroy_queue(hw);
4720 	hw->io_base = NULL;
4721 }
4722 
4723 static int
4724 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
4725 {
4726 	struct hns3_hw *hw = &hns->hw;
4727 	int ret;
4728 
4729 	ret = hns3_dcb_cfg_update(hns);
4730 	if (ret)
4731 		return ret;
4732 
4733 	ret = hns3_init_queues(hns, reset_queue);
4734 	if (ret) {
4735 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
4736 		return ret;
4737 	}
4738 
4739 	ret = hns3_cfg_mac_mode(hw, true);
4740 	if (ret) {
4741 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
4742 		goto err_config_mac_mode;
4743 	}
4744 	return 0;
4745 
4746 err_config_mac_mode:
4747 	hns3_dev_release_mbufs(hns);
4748 	/*
4749 	 * Here is exception handling, hns3_reset_all_tqps will have the
4750 	 * corresponding error message if it is handled incorrectly, so it is
4751 	 * not necessary to check hns3_reset_all_tqps return value, here keep
4752 	 * ret as the error code causing the exception.
4753 	 */
4754 	(void)hns3_reset_all_tqps(hns);
4755 	return ret;
4756 }
4757 
4758 static int
4759 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
4760 {
4761 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4762 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4763 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4764 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4765 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4766 	uint32_t intr_vector;
4767 	uint16_t q_id;
4768 	int ret;
4769 
4770 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4771 		return 0;
4772 
4773 	/* disable uio/vfio intr/eventfd mapping */
4774 	rte_intr_disable(intr_handle);
4775 
4776 	/* check and configure queue intr-vector mapping */
4777 	if (rte_intr_cap_multiple(intr_handle) ||
4778 	    !RTE_ETH_DEV_SRIOV(dev).active) {
4779 		intr_vector = hw->used_rx_queues;
4780 		/* creates event fd for each intr vector when MSIX is used */
4781 		if (rte_intr_efd_enable(intr_handle, intr_vector))
4782 			return -EINVAL;
4783 	}
4784 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
4785 		intr_handle->intr_vec =
4786 			rte_zmalloc("intr_vec",
4787 				    hw->used_rx_queues * sizeof(int), 0);
4788 		if (intr_handle->intr_vec == NULL) {
4789 			hns3_err(hw, "Failed to allocate %u rx_queues"
4790 				     " intr_vec", hw->used_rx_queues);
4791 			ret = -ENOMEM;
4792 			goto alloc_intr_vec_error;
4793 		}
4794 	}
4795 
4796 	if (rte_intr_allow_others(intr_handle)) {
4797 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4798 		base = RTE_INTR_VEC_RXTX_OFFSET;
4799 	}
4800 	if (rte_intr_dp_is_en(intr_handle)) {
4801 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4802 			ret = hns3_bind_ring_with_vector(hw, vec, true,
4803 							 HNS3_RING_TYPE_RX,
4804 							 q_id);
4805 			if (ret)
4806 				goto bind_vector_error;
4807 			intr_handle->intr_vec[q_id] = vec;
4808 			if (vec < base + intr_handle->nb_efd - 1)
4809 				vec++;
4810 		}
4811 	}
4812 	rte_intr_enable(intr_handle);
4813 	return 0;
4814 
4815 bind_vector_error:
4816 	rte_intr_efd_disable(intr_handle);
4817 	if (intr_handle->intr_vec) {
4818 		free(intr_handle->intr_vec);
4819 		intr_handle->intr_vec = NULL;
4820 	}
4821 	return ret;
4822 alloc_intr_vec_error:
4823 	rte_intr_efd_disable(intr_handle);
4824 	return ret;
4825 }
4826 
4827 static int
4828 hns3_restore_rx_interrupt(struct hns3_hw *hw)
4829 {
4830 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4831 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4832 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4833 	uint16_t q_id;
4834 	int ret;
4835 
4836 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4837 		return 0;
4838 
4839 	if (rte_intr_dp_is_en(intr_handle)) {
4840 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4841 			ret = hns3_bind_ring_with_vector(hw,
4842 					intr_handle->intr_vec[q_id], true,
4843 					HNS3_RING_TYPE_RX, q_id);
4844 			if (ret)
4845 				return ret;
4846 		}
4847 	}
4848 
4849 	return 0;
4850 }
4851 
4852 static void
4853 hns3_restore_filter(struct rte_eth_dev *dev)
4854 {
4855 	hns3_restore_rss_filter(dev);
4856 }
4857 
4858 static int
4859 hns3_dev_start(struct rte_eth_dev *dev)
4860 {
4861 	struct hns3_adapter *hns = dev->data->dev_private;
4862 	struct hns3_hw *hw = &hns->hw;
4863 	int ret;
4864 
4865 	PMD_INIT_FUNC_TRACE();
4866 	if (rte_atomic16_read(&hw->reset.resetting))
4867 		return -EBUSY;
4868 
4869 	rte_spinlock_lock(&hw->lock);
4870 	hw->adapter_state = HNS3_NIC_STARTING;
4871 
4872 	ret = hns3_do_start(hns, true);
4873 	if (ret) {
4874 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4875 		rte_spinlock_unlock(&hw->lock);
4876 		return ret;
4877 	}
4878 	ret = hns3_map_rx_interrupt(dev);
4879 	if (ret) {
4880 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4881 		rte_spinlock_unlock(&hw->lock);
4882 		return ret;
4883 	}
4884 
4885 	/*
4886 	 * There are three register used to control the status of a TQP
4887 	 * (contains a pair of Tx queue and Rx queue) in the new version network
4888 	 * engine. One is used to control the enabling of Tx queue, the other is
4889 	 * used to control the enabling of Rx queue, and the last is the master
4890 	 * switch used to control the enabling of the tqp. The Tx register and
4891 	 * TQP register must be enabled at the same time to enable a Tx queue.
4892 	 * The same applies to the Rx queue. For the older network engine, this
4893 	 * function only refresh the enabled flag, and it is used to update the
4894 	 * status of queue in the dpdk framework.
4895 	 */
4896 	ret = hns3_start_all_txqs(dev);
4897 	if (ret) {
4898 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4899 		rte_spinlock_unlock(&hw->lock);
4900 		return ret;
4901 	}
4902 
4903 	ret = hns3_start_all_rxqs(dev);
4904 	if (ret) {
4905 		hns3_stop_all_txqs(dev);
4906 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4907 		rte_spinlock_unlock(&hw->lock);
4908 		return ret;
4909 	}
4910 
4911 	hw->adapter_state = HNS3_NIC_STARTED;
4912 	rte_spinlock_unlock(&hw->lock);
4913 
4914 	hns3_rx_scattered_calc(dev);
4915 	hns3_set_rxtx_function(dev);
4916 	hns3_mp_req_start_rxtx(dev);
4917 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
4918 
4919 	hns3_restore_filter(dev);
4920 
4921 	/* Enable interrupt of all rx queues before enabling queues */
4922 	hns3_dev_all_rx_queue_intr_enable(hw, true);
4923 
4924 	/*
4925 	 * After finished the initialization, enable tqps to receive/transmit
4926 	 * packets and refresh all queue status.
4927 	 */
4928 	hns3_start_tqps(hw);
4929 
4930 	hns3_info(hw, "hns3 dev start successful!");
4931 	return 0;
4932 }
4933 
4934 static int
4935 hns3_do_stop(struct hns3_adapter *hns)
4936 {
4937 	struct hns3_hw *hw = &hns->hw;
4938 	int ret;
4939 
4940 	ret = hns3_cfg_mac_mode(hw, false);
4941 	if (ret)
4942 		return ret;
4943 	hw->mac.link_status = ETH_LINK_DOWN;
4944 
4945 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
4946 		hns3_configure_all_mac_addr(hns, true);
4947 		ret = hns3_reset_all_tqps(hns);
4948 		if (ret) {
4949 			hns3_err(hw, "failed to reset all queues ret = %d.",
4950 				 ret);
4951 			return ret;
4952 		}
4953 	}
4954 	hw->mac.default_addr_setted = false;
4955 	return 0;
4956 }
4957 
4958 static void
4959 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
4960 {
4961 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4962 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4963 	struct hns3_adapter *hns = dev->data->dev_private;
4964 	struct hns3_hw *hw = &hns->hw;
4965 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4966 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4967 	uint16_t q_id;
4968 
4969 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4970 		return;
4971 
4972 	/* unmap the ring with vector */
4973 	if (rte_intr_allow_others(intr_handle)) {
4974 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4975 		base = RTE_INTR_VEC_RXTX_OFFSET;
4976 	}
4977 	if (rte_intr_dp_is_en(intr_handle)) {
4978 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4979 			(void)hns3_bind_ring_with_vector(hw, vec, false,
4980 							 HNS3_RING_TYPE_RX,
4981 							 q_id);
4982 			if (vec < base + intr_handle->nb_efd - 1)
4983 				vec++;
4984 		}
4985 	}
4986 	/* Clean datapath event and queue/vec mapping */
4987 	rte_intr_efd_disable(intr_handle);
4988 	if (intr_handle->intr_vec) {
4989 		rte_free(intr_handle->intr_vec);
4990 		intr_handle->intr_vec = NULL;
4991 	}
4992 }
4993 
4994 static int
4995 hns3_dev_stop(struct rte_eth_dev *dev)
4996 {
4997 	struct hns3_adapter *hns = dev->data->dev_private;
4998 	struct hns3_hw *hw = &hns->hw;
4999 
5000 	PMD_INIT_FUNC_TRACE();
5001 	dev->data->dev_started = 0;
5002 
5003 	hw->adapter_state = HNS3_NIC_STOPPING;
5004 	hns3_set_rxtx_function(dev);
5005 	rte_wmb();
5006 	/* Disable datapath on secondary process. */
5007 	hns3_mp_req_stop_rxtx(dev);
5008 	/* Prevent crashes when queues are still in use. */
5009 	rte_delay_ms(hw->tqps_num);
5010 
5011 	rte_spinlock_lock(&hw->lock);
5012 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
5013 		hns3_stop_tqps(hw);
5014 		hns3_do_stop(hns);
5015 		hns3_unmap_rx_interrupt(dev);
5016 		hns3_dev_release_mbufs(hns);
5017 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5018 	}
5019 	hns3_rx_scattered_reset(dev);
5020 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5021 	rte_spinlock_unlock(&hw->lock);
5022 
5023 	return 0;
5024 }
5025 
5026 static int
5027 hns3_dev_close(struct rte_eth_dev *eth_dev)
5028 {
5029 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5030 	struct hns3_hw *hw = &hns->hw;
5031 	int ret = 0;
5032 
5033 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5034 		rte_free(eth_dev->process_private);
5035 		eth_dev->process_private = NULL;
5036 		return 0;
5037 	}
5038 
5039 	if (hw->adapter_state == HNS3_NIC_STARTED)
5040 		ret = hns3_dev_stop(eth_dev);
5041 
5042 	hw->adapter_state = HNS3_NIC_CLOSING;
5043 	hns3_reset_abort(hns);
5044 	hw->adapter_state = HNS3_NIC_CLOSED;
5045 
5046 	hns3_configure_all_mc_mac_addr(hns, true);
5047 	hns3_remove_all_vlan_table(hns);
5048 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5049 	hns3_uninit_pf(eth_dev);
5050 	hns3_free_all_queues(eth_dev);
5051 	rte_free(hw->reset.wait_data);
5052 	rte_free(eth_dev->process_private);
5053 	eth_dev->process_private = NULL;
5054 	hns3_mp_uninit_primary();
5055 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5056 
5057 	return ret;
5058 }
5059 
5060 static int
5061 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5062 {
5063 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5064 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5065 
5066 	fc_conf->pause_time = pf->pause_time;
5067 
5068 	/* return fc current mode */
5069 	switch (hw->current_mode) {
5070 	case HNS3_FC_FULL:
5071 		fc_conf->mode = RTE_FC_FULL;
5072 		break;
5073 	case HNS3_FC_TX_PAUSE:
5074 		fc_conf->mode = RTE_FC_TX_PAUSE;
5075 		break;
5076 	case HNS3_FC_RX_PAUSE:
5077 		fc_conf->mode = RTE_FC_RX_PAUSE;
5078 		break;
5079 	case HNS3_FC_NONE:
5080 	default:
5081 		fc_conf->mode = RTE_FC_NONE;
5082 		break;
5083 	}
5084 
5085 	return 0;
5086 }
5087 
5088 static void
5089 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
5090 {
5091 	switch (mode) {
5092 	case RTE_FC_NONE:
5093 		hw->requested_mode = HNS3_FC_NONE;
5094 		break;
5095 	case RTE_FC_RX_PAUSE:
5096 		hw->requested_mode = HNS3_FC_RX_PAUSE;
5097 		break;
5098 	case RTE_FC_TX_PAUSE:
5099 		hw->requested_mode = HNS3_FC_TX_PAUSE;
5100 		break;
5101 	case RTE_FC_FULL:
5102 		hw->requested_mode = HNS3_FC_FULL;
5103 		break;
5104 	default:
5105 		hw->requested_mode = HNS3_FC_NONE;
5106 		hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
5107 			  "configured to RTE_FC_NONE", mode);
5108 		break;
5109 	}
5110 }
5111 
5112 static int
5113 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5114 {
5115 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5116 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5117 	int ret;
5118 
5119 	if (fc_conf->high_water || fc_conf->low_water ||
5120 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5121 		hns3_err(hw, "Unsupported flow control settings specified, "
5122 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5123 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5124 			 fc_conf->high_water, fc_conf->low_water,
5125 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5126 		return -EINVAL;
5127 	}
5128 	if (fc_conf->autoneg) {
5129 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5130 		return -EINVAL;
5131 	}
5132 	if (!fc_conf->pause_time) {
5133 		hns3_err(hw, "Invalid pause time %u setting.",
5134 			 fc_conf->pause_time);
5135 		return -EINVAL;
5136 	}
5137 
5138 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5139 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5140 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5141 			 "current_fc_status = %d", hw->current_fc_status);
5142 		return -EOPNOTSUPP;
5143 	}
5144 
5145 	hns3_get_fc_mode(hw, fc_conf->mode);
5146 	if (hw->requested_mode == hw->current_mode &&
5147 	    pf->pause_time == fc_conf->pause_time)
5148 		return 0;
5149 
5150 	rte_spinlock_lock(&hw->lock);
5151 	ret = hns3_fc_enable(dev, fc_conf);
5152 	rte_spinlock_unlock(&hw->lock);
5153 
5154 	return ret;
5155 }
5156 
5157 static int
5158 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5159 			    struct rte_eth_pfc_conf *pfc_conf)
5160 {
5161 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5162 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5163 	uint8_t priority;
5164 	int ret;
5165 
5166 	if (!hns3_dev_dcb_supported(hw)) {
5167 		hns3_err(hw, "This port does not support dcb configurations.");
5168 		return -EOPNOTSUPP;
5169 	}
5170 
5171 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5172 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5173 		hns3_err(hw, "Unsupported flow control settings specified, "
5174 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5175 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5176 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5177 			 pfc_conf->fc.send_xon,
5178 			 pfc_conf->fc.mac_ctrl_frame_fwd);
5179 		return -EINVAL;
5180 	}
5181 	if (pfc_conf->fc.autoneg) {
5182 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5183 		return -EINVAL;
5184 	}
5185 	if (pfc_conf->fc.pause_time == 0) {
5186 		hns3_err(hw, "Invalid pause time %u setting.",
5187 			 pfc_conf->fc.pause_time);
5188 		return -EINVAL;
5189 	}
5190 
5191 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5192 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5193 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5194 			     "current_fc_status = %d", hw->current_fc_status);
5195 		return -EOPNOTSUPP;
5196 	}
5197 
5198 	priority = pfc_conf->priority;
5199 	hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5200 	if (hw->dcb_info.pfc_en & BIT(priority) &&
5201 	    hw->requested_mode == hw->current_mode &&
5202 	    pfc_conf->fc.pause_time == pf->pause_time)
5203 		return 0;
5204 
5205 	rte_spinlock_lock(&hw->lock);
5206 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5207 	rte_spinlock_unlock(&hw->lock);
5208 
5209 	return ret;
5210 }
5211 
5212 static int
5213 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5214 {
5215 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5216 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5217 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5218 	int i;
5219 
5220 	rte_spinlock_lock(&hw->lock);
5221 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5222 		dcb_info->nb_tcs = pf->local_max_tc;
5223 	else
5224 		dcb_info->nb_tcs = 1;
5225 
5226 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5227 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5228 	for (i = 0; i < dcb_info->nb_tcs; i++)
5229 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5230 
5231 	for (i = 0; i < hw->num_tc; i++) {
5232 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5233 		dcb_info->tc_queue.tc_txq[0][i].base =
5234 						hw->tc_queue[i].tqp_offset;
5235 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5236 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5237 						hw->tc_queue[i].tqp_count;
5238 	}
5239 	rte_spinlock_unlock(&hw->lock);
5240 
5241 	return 0;
5242 }
5243 
5244 static int
5245 hns3_reinit_dev(struct hns3_adapter *hns)
5246 {
5247 	struct hns3_hw *hw = &hns->hw;
5248 	int ret;
5249 
5250 	ret = hns3_cmd_init(hw);
5251 	if (ret) {
5252 		hns3_err(hw, "Failed to init cmd: %d", ret);
5253 		return ret;
5254 	}
5255 
5256 	ret = hns3_reset_all_tqps(hns);
5257 	if (ret) {
5258 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5259 		return ret;
5260 	}
5261 
5262 	ret = hns3_init_hardware(hns);
5263 	if (ret) {
5264 		hns3_err(hw, "Failed to init hardware: %d", ret);
5265 		return ret;
5266 	}
5267 
5268 	ret = hns3_enable_hw_error_intr(hns, true);
5269 	if (ret) {
5270 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5271 			     ret);
5272 		return ret;
5273 	}
5274 	hns3_info(hw, "Reset done, driver initialization finished.");
5275 
5276 	return 0;
5277 }
5278 
5279 static bool
5280 is_pf_reset_done(struct hns3_hw *hw)
5281 {
5282 	uint32_t val, reg, reg_bit;
5283 
5284 	switch (hw->reset.level) {
5285 	case HNS3_IMP_RESET:
5286 		reg = HNS3_GLOBAL_RESET_REG;
5287 		reg_bit = HNS3_IMP_RESET_BIT;
5288 		break;
5289 	case HNS3_GLOBAL_RESET:
5290 		reg = HNS3_GLOBAL_RESET_REG;
5291 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5292 		break;
5293 	case HNS3_FUNC_RESET:
5294 		reg = HNS3_FUN_RST_ING;
5295 		reg_bit = HNS3_FUN_RST_ING_B;
5296 		break;
5297 	case HNS3_FLR_RESET:
5298 	default:
5299 		hns3_err(hw, "Wait for unsupported reset level: %d",
5300 			 hw->reset.level);
5301 		return true;
5302 	}
5303 	val = hns3_read_dev(hw, reg);
5304 	if (hns3_get_bit(val, reg_bit))
5305 		return false;
5306 	else
5307 		return true;
5308 }
5309 
5310 bool
5311 hns3_is_reset_pending(struct hns3_adapter *hns)
5312 {
5313 	struct hns3_hw *hw = &hns->hw;
5314 	enum hns3_reset_level reset;
5315 
5316 	hns3_check_event_cause(hns, NULL);
5317 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5318 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5319 		hns3_warn(hw, "High level reset %d is pending", reset);
5320 		return true;
5321 	}
5322 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5323 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5324 		hns3_warn(hw, "High level reset %d is request", reset);
5325 		return true;
5326 	}
5327 	return false;
5328 }
5329 
5330 static int
5331 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5332 {
5333 	struct hns3_hw *hw = &hns->hw;
5334 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5335 	struct timeval tv;
5336 
5337 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5338 		return 0;
5339 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5340 		gettimeofday(&tv, NULL);
5341 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5342 			  tv.tv_sec, tv.tv_usec);
5343 		return -ETIME;
5344 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5345 		return -EAGAIN;
5346 
5347 	wait_data->hns = hns;
5348 	wait_data->check_completion = is_pf_reset_done;
5349 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5350 				      HNS3_RESET_WAIT_MS + get_timeofday_ms();
5351 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5352 	wait_data->count = HNS3_RESET_WAIT_CNT;
5353 	wait_data->result = HNS3_WAIT_REQUEST;
5354 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5355 	return -EAGAIN;
5356 }
5357 
5358 static int
5359 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5360 {
5361 	struct hns3_cmd_desc desc;
5362 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5363 
5364 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5365 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5366 	req->fun_reset_vfid = func_id;
5367 
5368 	return hns3_cmd_send(hw, &desc, 1);
5369 }
5370 
5371 static int
5372 hns3_imp_reset_cmd(struct hns3_hw *hw)
5373 {
5374 	struct hns3_cmd_desc desc;
5375 
5376 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5377 	desc.data[0] = 0xeedd;
5378 
5379 	return hns3_cmd_send(hw, &desc, 1);
5380 }
5381 
5382 static void
5383 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5384 {
5385 	struct hns3_hw *hw = &hns->hw;
5386 	struct timeval tv;
5387 	uint32_t val;
5388 
5389 	gettimeofday(&tv, NULL);
5390 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5391 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5392 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5393 			  tv.tv_sec, tv.tv_usec);
5394 		return;
5395 	}
5396 
5397 	switch (reset_level) {
5398 	case HNS3_IMP_RESET:
5399 		hns3_imp_reset_cmd(hw);
5400 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5401 			  tv.tv_sec, tv.tv_usec);
5402 		break;
5403 	case HNS3_GLOBAL_RESET:
5404 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5405 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5406 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5407 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5408 			  tv.tv_sec, tv.tv_usec);
5409 		break;
5410 	case HNS3_FUNC_RESET:
5411 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5412 			  tv.tv_sec, tv.tv_usec);
5413 		/* schedule again to check later */
5414 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5415 		hns3_schedule_reset(hns);
5416 		break;
5417 	default:
5418 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5419 		return;
5420 	}
5421 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5422 }
5423 
5424 static enum hns3_reset_level
5425 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5426 {
5427 	struct hns3_hw *hw = &hns->hw;
5428 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5429 
5430 	/* Return the highest priority reset level amongst all */
5431 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5432 		reset_level = HNS3_IMP_RESET;
5433 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5434 		reset_level = HNS3_GLOBAL_RESET;
5435 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5436 		reset_level = HNS3_FUNC_RESET;
5437 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5438 		reset_level = HNS3_FLR_RESET;
5439 
5440 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5441 		return HNS3_NONE_RESET;
5442 
5443 	return reset_level;
5444 }
5445 
5446 static void
5447 hns3_record_imp_error(struct hns3_adapter *hns)
5448 {
5449 	struct hns3_hw *hw = &hns->hw;
5450 	uint32_t reg_val;
5451 
5452 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5453 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5454 		hns3_warn(hw, "Detected IMP RD poison!");
5455 		hns3_error_int_stats_add(hns, "IMP_RD_POISON_INT_STS");
5456 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5457 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5458 	}
5459 
5460 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5461 		hns3_warn(hw, "Detected IMP CMDQ error!");
5462 		hns3_error_int_stats_add(hns, "CMDQ_MEM_ECC_INT_STS");
5463 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5464 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5465 	}
5466 }
5467 
5468 static int
5469 hns3_prepare_reset(struct hns3_adapter *hns)
5470 {
5471 	struct hns3_hw *hw = &hns->hw;
5472 	uint32_t reg_val;
5473 	int ret;
5474 
5475 	switch (hw->reset.level) {
5476 	case HNS3_FUNC_RESET:
5477 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5478 		if (ret)
5479 			return ret;
5480 
5481 		/*
5482 		 * After performaning pf reset, it is not necessary to do the
5483 		 * mailbox handling or send any command to firmware, because
5484 		 * any mailbox handling or command to firmware is only valid
5485 		 * after hns3_cmd_init is called.
5486 		 */
5487 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
5488 		hw->reset.stats.request_cnt++;
5489 		break;
5490 	case HNS3_IMP_RESET:
5491 		hns3_record_imp_error(hns);
5492 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5493 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5494 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5495 		break;
5496 	default:
5497 		break;
5498 	}
5499 	return 0;
5500 }
5501 
5502 static int
5503 hns3_set_rst_done(struct hns3_hw *hw)
5504 {
5505 	struct hns3_pf_rst_done_cmd *req;
5506 	struct hns3_cmd_desc desc;
5507 
5508 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5509 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5510 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5511 	return hns3_cmd_send(hw, &desc, 1);
5512 }
5513 
5514 static int
5515 hns3_stop_service(struct hns3_adapter *hns)
5516 {
5517 	struct hns3_hw *hw = &hns->hw;
5518 	struct rte_eth_dev *eth_dev;
5519 
5520 	eth_dev = &rte_eth_devices[hw->data->port_id];
5521 	if (hw->adapter_state == HNS3_NIC_STARTED)
5522 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5523 	hw->mac.link_status = ETH_LINK_DOWN;
5524 
5525 	hns3_set_rxtx_function(eth_dev);
5526 	rte_wmb();
5527 	/* Disable datapath on secondary process. */
5528 	hns3_mp_req_stop_rxtx(eth_dev);
5529 	rte_delay_ms(hw->tqps_num);
5530 
5531 	rte_spinlock_lock(&hw->lock);
5532 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5533 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5534 		hns3_enable_all_queues(hw, false);
5535 		hns3_do_stop(hns);
5536 		hw->reset.mbuf_deferred_free = true;
5537 	} else
5538 		hw->reset.mbuf_deferred_free = false;
5539 
5540 	/*
5541 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5542 	 * from table space. Hence, for function reset software intervention is
5543 	 * required to delete the entries
5544 	 */
5545 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
5546 		hns3_configure_all_mc_mac_addr(hns, true);
5547 	rte_spinlock_unlock(&hw->lock);
5548 
5549 	return 0;
5550 }
5551 
5552 static int
5553 hns3_start_service(struct hns3_adapter *hns)
5554 {
5555 	struct hns3_hw *hw = &hns->hw;
5556 	struct rte_eth_dev *eth_dev;
5557 
5558 	if (hw->reset.level == HNS3_IMP_RESET ||
5559 	    hw->reset.level == HNS3_GLOBAL_RESET)
5560 		hns3_set_rst_done(hw);
5561 	eth_dev = &rte_eth_devices[hw->data->port_id];
5562 	hns3_set_rxtx_function(eth_dev);
5563 	hns3_mp_req_start_rxtx(eth_dev);
5564 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5565 		hns3_service_handler(eth_dev);
5566 
5567 		/* Enable interrupt of all rx queues before enabling queues */
5568 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5569 		/*
5570 		 * Enable state of each rxq and txq will be recovered after
5571 		 * reset, so we need to restore them before enable all tqps;
5572 		 */
5573 		hns3_restore_tqp_enable_state(hw);
5574 		/*
5575 		 * When finished the initialization, enable queues to receive
5576 		 * and transmit packets.
5577 		 */
5578 		hns3_enable_all_queues(hw, true);
5579 	}
5580 
5581 	return 0;
5582 }
5583 
5584 static int
5585 hns3_restore_conf(struct hns3_adapter *hns)
5586 {
5587 	struct hns3_hw *hw = &hns->hw;
5588 	int ret;
5589 
5590 	ret = hns3_configure_all_mac_addr(hns, false);
5591 	if (ret)
5592 		return ret;
5593 
5594 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5595 	if (ret)
5596 		goto err_mc_mac;
5597 
5598 	ret = hns3_dev_promisc_restore(hns);
5599 	if (ret)
5600 		goto err_promisc;
5601 
5602 	ret = hns3_restore_vlan_table(hns);
5603 	if (ret)
5604 		goto err_promisc;
5605 
5606 	ret = hns3_restore_vlan_conf(hns);
5607 	if (ret)
5608 		goto err_promisc;
5609 
5610 	ret = hns3_restore_all_fdir_filter(hns);
5611 	if (ret)
5612 		goto err_promisc;
5613 
5614 	ret = hns3_restore_rx_interrupt(hw);
5615 	if (ret)
5616 		goto err_promisc;
5617 
5618 	ret = hns3_restore_gro_conf(hw);
5619 	if (ret)
5620 		goto err_promisc;
5621 
5622 	ret = hns3_restore_fec(hw);
5623 	if (ret)
5624 		goto err_promisc;
5625 
5626 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5627 		ret = hns3_do_start(hns, false);
5628 		if (ret)
5629 			goto err_promisc;
5630 		hns3_info(hw, "hns3 dev restart successful!");
5631 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5632 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5633 	return 0;
5634 
5635 err_promisc:
5636 	hns3_configure_all_mc_mac_addr(hns, true);
5637 err_mc_mac:
5638 	hns3_configure_all_mac_addr(hns, true);
5639 	return ret;
5640 }
5641 
5642 static void
5643 hns3_reset_service(void *param)
5644 {
5645 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5646 	struct hns3_hw *hw = &hns->hw;
5647 	enum hns3_reset_level reset_level;
5648 	struct timeval tv_delta;
5649 	struct timeval tv_start;
5650 	struct timeval tv;
5651 	uint64_t msec;
5652 	int ret;
5653 
5654 	/*
5655 	 * The interrupt is not triggered within the delay time.
5656 	 * The interrupt may have been lost. It is necessary to handle
5657 	 * the interrupt to recover from the error.
5658 	 */
5659 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
5660 		rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
5661 		hns3_err(hw, "Handling interrupts in delayed tasks");
5662 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5663 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5664 		if (reset_level == HNS3_NONE_RESET) {
5665 			hns3_err(hw, "No reset level is set, try IMP reset");
5666 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5667 		}
5668 	}
5669 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
5670 
5671 	/*
5672 	 * Check if there is any ongoing reset in the hardware. This status can
5673 	 * be checked from reset_pending. If there is then, we need to wait for
5674 	 * hardware to complete reset.
5675 	 *    a. If we are able to figure out in reasonable time that hardware
5676 	 *       has fully resetted then, we can proceed with driver, client
5677 	 *       reset.
5678 	 *    b. else, we can come back later to check this status so re-sched
5679 	 *       now.
5680 	 */
5681 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5682 	if (reset_level != HNS3_NONE_RESET) {
5683 		gettimeofday(&tv_start, NULL);
5684 		ret = hns3_reset_process(hns, reset_level);
5685 		gettimeofday(&tv, NULL);
5686 		timersub(&tv, &tv_start, &tv_delta);
5687 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
5688 		       tv_delta.tv_usec / USEC_PER_MSEC;
5689 		if (msec > HNS3_RESET_PROCESS_MS)
5690 			hns3_err(hw, "%d handle long time delta %" PRIx64
5691 				     " ms time=%ld.%.6ld",
5692 				 hw->reset.level, msec,
5693 				 tv.tv_sec, tv.tv_usec);
5694 		if (ret == -EAGAIN)
5695 			return;
5696 	}
5697 
5698 	/* Check if we got any *new* reset requests to be honored */
5699 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
5700 	if (reset_level != HNS3_NONE_RESET)
5701 		hns3_msix_process(hns, reset_level);
5702 }
5703 
5704 static unsigned int
5705 hns3_get_speed_capa_num(uint16_t device_id)
5706 {
5707 	unsigned int num;
5708 
5709 	switch (device_id) {
5710 	case HNS3_DEV_ID_25GE:
5711 	case HNS3_DEV_ID_25GE_RDMA:
5712 		num = 2;
5713 		break;
5714 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
5715 	case HNS3_DEV_ID_200G_RDMA:
5716 		num = 1;
5717 		break;
5718 	default:
5719 		num = 0;
5720 		break;
5721 	}
5722 
5723 	return num;
5724 }
5725 
5726 static int
5727 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
5728 			uint16_t device_id)
5729 {
5730 	switch (device_id) {
5731 	case HNS3_DEV_ID_25GE:
5732 	/* fallthrough */
5733 	case HNS3_DEV_ID_25GE_RDMA:
5734 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
5735 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
5736 
5737 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
5738 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
5739 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
5740 		break;
5741 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
5742 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
5743 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
5744 		break;
5745 	case HNS3_DEV_ID_200G_RDMA:
5746 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
5747 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
5748 		break;
5749 	default:
5750 		return -ENOTSUP;
5751 	}
5752 
5753 	return 0;
5754 }
5755 
5756 static int
5757 hns3_fec_get_capability(struct rte_eth_dev *dev,
5758 			struct rte_eth_fec_capa *speed_fec_capa,
5759 			unsigned int num)
5760 {
5761 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5762 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5763 	uint16_t device_id = pci_dev->id.device_id;
5764 	unsigned int capa_num;
5765 	int ret;
5766 
5767 	capa_num = hns3_get_speed_capa_num(device_id);
5768 	if (capa_num == 0) {
5769 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
5770 			 device_id);
5771 		return -ENOTSUP;
5772 	}
5773 
5774 	if (speed_fec_capa == NULL || num < capa_num)
5775 		return capa_num;
5776 
5777 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
5778 	if (ret)
5779 		return -ENOTSUP;
5780 
5781 	return capa_num;
5782 }
5783 
5784 static int
5785 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
5786 {
5787 	struct hns3_config_fec_cmd *req;
5788 	struct hns3_cmd_desc desc;
5789 	int ret;
5790 
5791 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
5792 	req = (struct hns3_config_fec_cmd *)desc.data;
5793 	ret = hns3_cmd_send(hw, &desc, 1);
5794 	if (ret) {
5795 		hns3_err(hw, "get current fec auto state failed, ret = %d",
5796 			 ret);
5797 		return ret;
5798 	}
5799 
5800 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
5801 	return 0;
5802 }
5803 
5804 static int
5805 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
5806 {
5807 #define QUERY_ACTIVE_SPEED	1
5808 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5809 	struct hns3_sfp_speed_cmd *resp;
5810 	uint32_t tmp_fec_capa;
5811 	uint8_t auto_state;
5812 	struct hns3_cmd_desc desc;
5813 	int ret;
5814 
5815 	/*
5816 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
5817 	 * configured FEC mode is returned.
5818 	 * If link is up, current FEC mode is returned.
5819 	 */
5820 	if (hw->mac.link_status == ETH_LINK_DOWN) {
5821 		ret = get_current_fec_auto_state(hw, &auto_state);
5822 		if (ret)
5823 			return ret;
5824 
5825 		if (auto_state == 0x1) {
5826 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
5827 			return 0;
5828 		}
5829 	}
5830 
5831 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
5832 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
5833 	resp->query_type = QUERY_ACTIVE_SPEED;
5834 
5835 	ret = hns3_cmd_send(hw, &desc, 1);
5836 	if (ret == -EOPNOTSUPP) {
5837 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
5838 		return ret;
5839 	} else if (ret) {
5840 		hns3_err(hw, "get FEC failed, ret = %d", ret);
5841 		return ret;
5842 	}
5843 
5844 	/*
5845 	 * FEC mode order defined in hns3 hardware is inconsistend with
5846 	 * that defined in the ethdev library. So the sequence needs
5847 	 * to be converted.
5848 	 */
5849 	switch (resp->active_fec) {
5850 	case HNS3_HW_FEC_MODE_NOFEC:
5851 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
5852 		break;
5853 	case HNS3_HW_FEC_MODE_BASER:
5854 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
5855 		break;
5856 	case HNS3_HW_FEC_MODE_RS:
5857 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
5858 		break;
5859 	default:
5860 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
5861 		break;
5862 	}
5863 
5864 	*fec_capa = tmp_fec_capa;
5865 	return 0;
5866 }
5867 
5868 static int
5869 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
5870 {
5871 	struct hns3_config_fec_cmd *req;
5872 	struct hns3_cmd_desc desc;
5873 	int ret;
5874 
5875 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
5876 
5877 	req = (struct hns3_config_fec_cmd *)desc.data;
5878 	switch (mode) {
5879 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
5880 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
5881 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
5882 		break;
5883 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
5884 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
5885 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
5886 		break;
5887 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
5888 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
5889 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
5890 		break;
5891 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
5892 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
5893 		break;
5894 	default:
5895 		return 0;
5896 	}
5897 	ret = hns3_cmd_send(hw, &desc, 1);
5898 	if (ret)
5899 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
5900 
5901 	return ret;
5902 }
5903 
5904 static uint32_t
5905 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
5906 {
5907 	struct hns3_mac *mac = &hw->mac;
5908 	uint32_t cur_capa;
5909 
5910 	switch (mac->link_speed) {
5911 	case ETH_SPEED_NUM_10G:
5912 		cur_capa = fec_capa[1].capa;
5913 		break;
5914 	case ETH_SPEED_NUM_25G:
5915 	case ETH_SPEED_NUM_100G:
5916 	case ETH_SPEED_NUM_200G:
5917 		cur_capa = fec_capa[0].capa;
5918 		break;
5919 	default:
5920 		cur_capa = 0;
5921 		break;
5922 	}
5923 
5924 	return cur_capa;
5925 }
5926 
5927 static bool
5928 is_fec_mode_one_bit_set(uint32_t mode)
5929 {
5930 	int cnt = 0;
5931 	uint8_t i;
5932 
5933 	for (i = 0; i < sizeof(mode); i++)
5934 		if (mode >> i & 0x1)
5935 			cnt++;
5936 
5937 	return cnt == 1 ? true : false;
5938 }
5939 
5940 static int
5941 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
5942 {
5943 #define FEC_CAPA_NUM 2
5944 	struct hns3_adapter *hns = dev->data->dev_private;
5945 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
5946 	struct hns3_pf *pf = &hns->pf;
5947 
5948 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
5949 	uint32_t cur_capa;
5950 	uint32_t num = FEC_CAPA_NUM;
5951 	int ret;
5952 
5953 	ret = hns3_fec_get_capability(dev, fec_capa, num);
5954 	if (ret < 0)
5955 		return ret;
5956 
5957 	/* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
5958 	if (!is_fec_mode_one_bit_set(mode))
5959 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD,"
5960 			     "FEC mode should be only one bit set", mode);
5961 
5962 	/*
5963 	 * Check whether the configured mode is within the FEC capability.
5964 	 * If not, the configured mode will not be supported.
5965 	 */
5966 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
5967 	if (!(cur_capa & mode)) {
5968 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
5969 		return -EINVAL;
5970 	}
5971 
5972 	ret = hns3_set_fec_hw(hw, mode);
5973 	if (ret)
5974 		return ret;
5975 
5976 	pf->fec_mode = mode;
5977 	return 0;
5978 }
5979 
5980 static int
5981 hns3_restore_fec(struct hns3_hw *hw)
5982 {
5983 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
5984 	struct hns3_pf *pf = &hns->pf;
5985 	uint32_t mode = pf->fec_mode;
5986 	int ret;
5987 
5988 	ret = hns3_set_fec_hw(hw, mode);
5989 	if (ret)
5990 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
5991 			 mode, ret);
5992 
5993 	return ret;
5994 }
5995 
5996 static int
5997 hns3_query_dev_fec_info(struct rte_eth_dev *dev)
5998 {
5999 	struct hns3_adapter *hns = dev->data->dev_private;
6000 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6001 	struct hns3_pf *pf = &hns->pf;
6002 	int ret;
6003 
6004 	ret = hns3_fec_get(dev, &pf->fec_mode);
6005 	if (ret)
6006 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6007 
6008 	return ret;
6009 }
6010 
6011 static const struct eth_dev_ops hns3_eth_dev_ops = {
6012 	.dev_configure      = hns3_dev_configure,
6013 	.dev_start          = hns3_dev_start,
6014 	.dev_stop           = hns3_dev_stop,
6015 	.dev_close          = hns3_dev_close,
6016 	.promiscuous_enable = hns3_dev_promiscuous_enable,
6017 	.promiscuous_disable = hns3_dev_promiscuous_disable,
6018 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
6019 	.allmulticast_disable = hns3_dev_allmulticast_disable,
6020 	.mtu_set            = hns3_dev_mtu_set,
6021 	.stats_get          = hns3_stats_get,
6022 	.stats_reset        = hns3_stats_reset,
6023 	.xstats_get         = hns3_dev_xstats_get,
6024 	.xstats_get_names   = hns3_dev_xstats_get_names,
6025 	.xstats_reset       = hns3_dev_xstats_reset,
6026 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6027 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6028 	.dev_infos_get          = hns3_dev_infos_get,
6029 	.fw_version_get         = hns3_fw_version_get,
6030 	.rx_queue_setup         = hns3_rx_queue_setup,
6031 	.tx_queue_setup         = hns3_tx_queue_setup,
6032 	.rx_queue_release       = hns3_dev_rx_queue_release,
6033 	.tx_queue_release       = hns3_dev_tx_queue_release,
6034 	.rx_queue_start         = hns3_dev_rx_queue_start,
6035 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
6036 	.tx_queue_start         = hns3_dev_tx_queue_start,
6037 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
6038 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6039 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6040 	.rxq_info_get           = hns3_rxq_info_get,
6041 	.txq_info_get           = hns3_txq_info_get,
6042 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
6043 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
6044 	.flow_ctrl_get          = hns3_flow_ctrl_get,
6045 	.flow_ctrl_set          = hns3_flow_ctrl_set,
6046 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6047 	.mac_addr_add           = hns3_add_mac_addr,
6048 	.mac_addr_remove        = hns3_remove_mac_addr,
6049 	.mac_addr_set           = hns3_set_default_mac_addr,
6050 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6051 	.link_update            = hns3_dev_link_update,
6052 	.rss_hash_update        = hns3_dev_rss_hash_update,
6053 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6054 	.reta_update            = hns3_dev_rss_reta_update,
6055 	.reta_query             = hns3_dev_rss_reta_query,
6056 	.filter_ctrl            = hns3_dev_filter_ctrl,
6057 	.vlan_filter_set        = hns3_vlan_filter_set,
6058 	.vlan_tpid_set          = hns3_vlan_tpid_set,
6059 	.vlan_offload_set       = hns3_vlan_offload_set,
6060 	.vlan_pvid_set          = hns3_vlan_pvid_set,
6061 	.get_reg                = hns3_get_regs,
6062 	.get_dcb_info           = hns3_get_dcb_info,
6063 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6064 	.fec_get_capability     = hns3_fec_get_capability,
6065 	.fec_get                = hns3_fec_get,
6066 	.fec_set                = hns3_fec_set,
6067 };
6068 
6069 static const struct hns3_reset_ops hns3_reset_ops = {
6070 	.reset_service       = hns3_reset_service,
6071 	.stop_service        = hns3_stop_service,
6072 	.prepare_reset       = hns3_prepare_reset,
6073 	.wait_hardware_ready = hns3_wait_hardware_ready,
6074 	.reinit_dev          = hns3_reinit_dev,
6075 	.restore_conf	     = hns3_restore_conf,
6076 	.start_service       = hns3_start_service,
6077 };
6078 
6079 static int
6080 hns3_dev_init(struct rte_eth_dev *eth_dev)
6081 {
6082 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6083 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
6084 	struct rte_ether_addr *eth_addr;
6085 	struct hns3_hw *hw = &hns->hw;
6086 	int ret;
6087 
6088 	PMD_INIT_FUNC_TRACE();
6089 
6090 	eth_dev->process_private = (struct hns3_process_private *)
6091 	    rte_zmalloc_socket("hns3_filter_list",
6092 			       sizeof(struct hns3_process_private),
6093 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
6094 	if (eth_dev->process_private == NULL) {
6095 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
6096 		return -ENOMEM;
6097 	}
6098 	/* initialize flow filter lists */
6099 	hns3_filterlist_init(eth_dev);
6100 
6101 	hns3_set_rxtx_function(eth_dev);
6102 	eth_dev->dev_ops = &hns3_eth_dev_ops;
6103 	eth_dev->rx_queue_count = hns3_rx_queue_count;
6104 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6105 		ret = hns3_mp_init_secondary();
6106 		if (ret) {
6107 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
6108 				     "process, ret = %d", ret);
6109 			goto err_mp_init_secondary;
6110 		}
6111 
6112 		hw->secondary_cnt++;
6113 		return 0;
6114 	}
6115 
6116 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
6117 
6118 	ret = hns3_mp_init_primary();
6119 	if (ret) {
6120 		PMD_INIT_LOG(ERR,
6121 			     "Failed to init for primary process, ret = %d",
6122 			     ret);
6123 		goto err_mp_init_primary;
6124 	}
6125 
6126 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6127 	hns->is_vf = false;
6128 	hw->data = eth_dev->data;
6129 
6130 	/*
6131 	 * Set default max packet size according to the mtu
6132 	 * default vale in DPDK frame.
6133 	 */
6134 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6135 
6136 	ret = hns3_reset_init(hw);
6137 	if (ret)
6138 		goto err_init_reset;
6139 	hw->reset.ops = &hns3_reset_ops;
6140 
6141 	ret = hns3_init_pf(eth_dev);
6142 	if (ret) {
6143 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6144 		goto err_init_pf;
6145 	}
6146 
6147 	/* Allocate memory for storing MAC addresses */
6148 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
6149 					       sizeof(struct rte_ether_addr) *
6150 					       HNS3_UC_MACADDR_NUM, 0);
6151 	if (eth_dev->data->mac_addrs == NULL) {
6152 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
6153 			     "to store MAC addresses",
6154 			     sizeof(struct rte_ether_addr) *
6155 			     HNS3_UC_MACADDR_NUM);
6156 		ret = -ENOMEM;
6157 		goto err_rte_zmalloc;
6158 	}
6159 
6160 	eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
6161 	if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
6162 		rte_eth_random_addr(hw->mac.mac_addr);
6163 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
6164 				(struct rte_ether_addr *)hw->mac.mac_addr);
6165 		hns3_warn(hw, "default mac_addr from firmware is an invalid "
6166 			  "unicast address, using random MAC address %s",
6167 			  mac_str);
6168 	}
6169 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
6170 			    &eth_dev->data->mac_addrs[0]);
6171 
6172 	hw->adapter_state = HNS3_NIC_INITIALIZED;
6173 
6174 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
6175 		hns3_err(hw, "Reschedule reset service after dev_init");
6176 		hns3_schedule_reset(hns);
6177 	} else {
6178 		/* IMP will wait ready flag before reset */
6179 		hns3_notify_reset_ready(hw, false);
6180 	}
6181 
6182 	hns3_info(hw, "hns3 dev initialization successful!");
6183 	return 0;
6184 
6185 err_rte_zmalloc:
6186 	hns3_uninit_pf(eth_dev);
6187 
6188 err_init_pf:
6189 	rte_free(hw->reset.wait_data);
6190 
6191 err_init_reset:
6192 	hns3_mp_uninit_primary();
6193 
6194 err_mp_init_primary:
6195 err_mp_init_secondary:
6196 	eth_dev->dev_ops = NULL;
6197 	eth_dev->rx_pkt_burst = NULL;
6198 	eth_dev->tx_pkt_burst = NULL;
6199 	eth_dev->tx_pkt_prepare = NULL;
6200 	rte_free(eth_dev->process_private);
6201 	eth_dev->process_private = NULL;
6202 	return ret;
6203 }
6204 
6205 static int
6206 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6207 {
6208 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6209 	struct hns3_hw *hw = &hns->hw;
6210 
6211 	PMD_INIT_FUNC_TRACE();
6212 
6213 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
6214 		return -EPERM;
6215 
6216 	if (hw->adapter_state < HNS3_NIC_CLOSING)
6217 		hns3_dev_close(eth_dev);
6218 
6219 	hw->adapter_state = HNS3_NIC_REMOVED;
6220 	return 0;
6221 }
6222 
6223 static int
6224 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6225 		   struct rte_pci_device *pci_dev)
6226 {
6227 	return rte_eth_dev_pci_generic_probe(pci_dev,
6228 					     sizeof(struct hns3_adapter),
6229 					     hns3_dev_init);
6230 }
6231 
6232 static int
6233 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6234 {
6235 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6236 }
6237 
6238 static const struct rte_pci_id pci_id_hns3_map[] = {
6239 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6240 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6241 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6242 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6243 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6244 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6245 	{ .vendor_id = 0, }, /* sentinel */
6246 };
6247 
6248 static struct rte_pci_driver rte_hns3_pmd = {
6249 	.id_table = pci_id_hns3_map,
6250 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
6251 	.probe = eth_hns3_pci_probe,
6252 	.remove = eth_hns3_pci_remove,
6253 };
6254 
6255 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6256 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6257 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6258 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
6259 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);
6260