xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision bc700b6767278e49c4ea9c08bb43c0fd9ca3e70d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdio.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <unistd.h>
12 #include <rte_atomic.h>
13 #include <rte_bus_pci.h>
14 #include <rte_common.h>
15 #include <rte_cycles.h>
16 #include <rte_dev.h>
17 #include <rte_eal.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_interrupts.h>
22 #include <rte_io.h>
23 #include <rte_log.h>
24 #include <rte_pci.h>
25 
26 #include "hns3_ethdev.h"
27 #include "hns3_logs.h"
28 #include "hns3_rxtx.h"
29 #include "hns3_intr.h"
30 #include "hns3_regs.h"
31 #include "hns3_dcb.h"
32 #include "hns3_mp.h"
33 
34 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE	32
35 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM	1
36 
37 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
38 #define HNS3_INVLID_PVID		0xFFFF
39 
40 #define HNS3_FILTER_TYPE_VF		0
41 #define HNS3_FILTER_TYPE_PORT		1
42 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
43 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
44 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
45 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
46 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
47 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
48 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
49 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
50 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
51 
52 /* Reset related Registers */
53 #define HNS3_GLOBAL_RESET_BIT		0
54 #define HNS3_CORE_RESET_BIT		1
55 #define HNS3_IMP_RESET_BIT		2
56 #define HNS3_FUN_RST_ING_B		0
57 
58 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
59 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
60 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
61 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
62 
63 #define HNS3_RESET_WAIT_MS	100
64 #define HNS3_RESET_WAIT_CNT	200
65 
66 enum hns3_evt_cause {
67 	HNS3_VECTOR0_EVENT_RST,
68 	HNS3_VECTOR0_EVENT_MBX,
69 	HNS3_VECTOR0_EVENT_ERR,
70 	HNS3_VECTOR0_EVENT_OTHER,
71 };
72 
73 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
74 						 uint64_t *levels);
75 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
76 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
77 				    int on);
78 static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
79 
80 static int hns3_add_mc_addr(struct hns3_hw *hw,
81 			    struct rte_ether_addr *mac_addr);
82 static int hns3_remove_mc_addr(struct hns3_hw *hw,
83 			    struct rte_ether_addr *mac_addr);
84 
85 static void
86 hns3_pf_disable_irq0(struct hns3_hw *hw)
87 {
88 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
89 }
90 
91 static void
92 hns3_pf_enable_irq0(struct hns3_hw *hw)
93 {
94 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
95 }
96 
97 static enum hns3_evt_cause
98 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
99 {
100 	struct hns3_hw *hw = &hns->hw;
101 	uint32_t vector0_int_stats;
102 	uint32_t cmdq_src_val;
103 	uint32_t hw_err_src_reg;
104 	uint32_t val;
105 	enum hns3_evt_cause ret;
106 
107 	/* fetch the events from their corresponding regs */
108 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
109 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
110 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
111 
112 	/*
113 	 * Assumption: If by any chance reset and mailbox events are reported
114 	 * together then we will only process reset event and defer the
115 	 * processing of the mailbox events. Since, we would have not cleared
116 	 * RX CMDQ event this time we would receive again another interrupt
117 	 * from H/W just for the mailbox.
118 	 */
119 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
120 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
121 		hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
122 		val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
123 		if (clearval) {
124 			hw->reset.stats.imp_cnt++;
125 			hns3_warn(hw, "IMP reset detected, clear reset status");
126 		} else {
127 			hns3_schedule_delayed_reset(hns);
128 			hns3_warn(hw, "IMP reset detected, don't clear reset status");
129 		}
130 
131 		ret = HNS3_VECTOR0_EVENT_RST;
132 		goto out;
133 	}
134 
135 	/* Global reset */
136 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
137 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
138 		hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
139 		val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
140 		if (clearval) {
141 			hw->reset.stats.global_cnt++;
142 			hns3_warn(hw, "Global reset detected, clear reset status");
143 		} else {
144 			hns3_schedule_delayed_reset(hns);
145 			hns3_warn(hw, "Global reset detected, don't clear reset status");
146 		}
147 
148 		ret = HNS3_VECTOR0_EVENT_RST;
149 		goto out;
150 	}
151 
152 	/* check for vector0 msix event source */
153 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
154 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
155 		val = vector0_int_stats | hw_err_src_reg;
156 		ret = HNS3_VECTOR0_EVENT_ERR;
157 		goto out;
158 	}
159 
160 	/* check for vector0 mailbox(=CMDQ RX) event source */
161 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
162 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
163 		val = cmdq_src_val;
164 		ret = HNS3_VECTOR0_EVENT_MBX;
165 		goto out;
166 	}
167 
168 	if (clearval && (vector0_int_stats || cmdq_src_val || hw_err_src_reg))
169 		hns3_warn(hw, "vector0_int_stats:0x%x cmdq_src_val:0x%x hw_err_src_reg:0x%x",
170 			  vector0_int_stats, cmdq_src_val, hw_err_src_reg);
171 	val = vector0_int_stats;
172 	ret = HNS3_VECTOR0_EVENT_OTHER;
173 out:
174 
175 	if (clearval)
176 		*clearval = val;
177 	return ret;
178 }
179 
180 static void
181 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
182 {
183 	if (event_type == HNS3_VECTOR0_EVENT_RST)
184 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
185 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
186 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
187 }
188 
189 static void
190 hns3_clear_all_event_cause(struct hns3_hw *hw)
191 {
192 	uint32_t vector0_int_stats;
193 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
194 
195 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
196 		hns3_warn(hw, "Probe during IMP reset interrupt");
197 
198 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
199 		hns3_warn(hw, "Probe during Global reset interrupt");
200 
201 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
202 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
203 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
204 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
205 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
206 }
207 
208 static void
209 hns3_interrupt_handler(void *param)
210 {
211 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
212 	struct hns3_adapter *hns = dev->data->dev_private;
213 	struct hns3_hw *hw = &hns->hw;
214 	enum hns3_evt_cause event_cause;
215 	uint32_t clearval = 0;
216 
217 	/* Disable interrupt */
218 	hns3_pf_disable_irq0(hw);
219 
220 	event_cause = hns3_check_event_cause(hns, &clearval);
221 
222 	/* vector 0 interrupt is shared with reset and mailbox source events. */
223 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
224 		hns3_warn(hw, "Received err interrupt");
225 		hns3_handle_msix_error(hns, &hw->reset.request);
226 		hns3_handle_ras_error(hns, &hw->reset.request);
227 		hns3_schedule_reset(hns);
228 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
229 		hns3_warn(hw, "Received reset interrupt");
230 		hns3_schedule_reset(hns);
231 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
232 		hns3_dev_handle_mbx_msg(hw);
233 	else
234 		hns3_err(hw, "Received unknown event");
235 
236 	hns3_clear_event_cause(hw, event_cause, clearval);
237 	/* Enable interrupt if it is not cause by reset */
238 	hns3_pf_enable_irq0(hw);
239 }
240 
241 static int
242 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
243 {
244 #define HNS3_VLAN_ID_OFFSET_STEP	160
245 #define HNS3_VLAN_BYTE_SIZE		8
246 	struct hns3_vlan_filter_pf_cfg_cmd *req;
247 	struct hns3_hw *hw = &hns->hw;
248 	uint8_t vlan_offset_byte_val;
249 	struct hns3_cmd_desc desc;
250 	uint8_t vlan_offset_byte;
251 	uint8_t vlan_offset_base;
252 	int ret;
253 
254 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
255 
256 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
257 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
258 			   HNS3_VLAN_BYTE_SIZE;
259 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
260 
261 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
262 	req->vlan_offset = vlan_offset_base;
263 	req->vlan_cfg = on ? 0 : 1;
264 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
265 
266 	ret = hns3_cmd_send(hw, &desc, 1);
267 	if (ret)
268 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
269 			 vlan_id, ret);
270 
271 	return ret;
272 }
273 
274 static void
275 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
276 {
277 	struct hns3_user_vlan_table *vlan_entry;
278 	struct hns3_pf *pf = &hns->pf;
279 
280 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
281 		if (vlan_entry->vlan_id == vlan_id) {
282 			if (vlan_entry->hd_tbl_status)
283 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
284 			LIST_REMOVE(vlan_entry, next);
285 			rte_free(vlan_entry);
286 			break;
287 		}
288 	}
289 }
290 
291 static void
292 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
293 			bool writen_to_tbl)
294 {
295 	struct hns3_user_vlan_table *vlan_entry;
296 	struct hns3_hw *hw = &hns->hw;
297 	struct hns3_pf *pf = &hns->pf;
298 
299 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
300 		if (vlan_entry->vlan_id == vlan_id)
301 			return;
302 	}
303 
304 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
305 	if (vlan_entry == NULL) {
306 		hns3_err(hw, "Failed to malloc hns3 vlan table");
307 		return;
308 	}
309 
310 	vlan_entry->hd_tbl_status = writen_to_tbl;
311 	vlan_entry->vlan_id = vlan_id;
312 
313 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
314 }
315 
316 static int
317 hns3_restore_vlan_table(struct hns3_adapter *hns)
318 {
319 	struct hns3_user_vlan_table *vlan_entry;
320 	struct hns3_hw *hw = &hns->hw;
321 	struct hns3_pf *pf = &hns->pf;
322 	uint16_t vlan_id;
323 	int ret = 0;
324 
325 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
326 		return hns3_vlan_pvid_configure(hns,
327 						hw->port_base_vlan_cfg.pvid, 1);
328 
329 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
330 		if (vlan_entry->hd_tbl_status) {
331 			vlan_id = vlan_entry->vlan_id;
332 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
333 			if (ret)
334 				break;
335 		}
336 	}
337 
338 	return ret;
339 }
340 
341 static int
342 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
343 {
344 	struct hns3_hw *hw = &hns->hw;
345 	bool writen_to_tbl = false;
346 	int ret = 0;
347 
348 	/*
349 	 * When vlan filter is enabled, hardware regards vlan id 0 as the entry
350 	 * for normal packet, deleting vlan id 0 is not allowed.
351 	 */
352 	if (on == 0 && vlan_id == 0)
353 		return 0;
354 
355 	/*
356 	 * When port base vlan enabled, we use port base vlan as the vlan
357 	 * filter condition. In this case, we don't update vlan filter table
358 	 * when user add new vlan or remove exist vlan, just update the
359 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
360 	 * table until port base vlan disabled
361 	 */
362 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
363 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
364 		writen_to_tbl = true;
365 	}
366 
367 	if (ret == 0 && vlan_id) {
368 		if (on)
369 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
370 		else
371 			hns3_rm_dev_vlan_table(hns, vlan_id);
372 	}
373 	return ret;
374 }
375 
376 static int
377 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
378 {
379 	struct hns3_adapter *hns = dev->data->dev_private;
380 	struct hns3_hw *hw = &hns->hw;
381 	int ret;
382 
383 	rte_spinlock_lock(&hw->lock);
384 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
385 	rte_spinlock_unlock(&hw->lock);
386 	return ret;
387 }
388 
389 static int
390 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
391 			 uint16_t tpid)
392 {
393 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
394 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
395 	struct hns3_hw *hw = &hns->hw;
396 	struct hns3_cmd_desc desc;
397 	int ret;
398 
399 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
400 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
401 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
402 		return -EINVAL;
403 	}
404 
405 	if (tpid != RTE_ETHER_TYPE_VLAN) {
406 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
407 		return -EINVAL;
408 	}
409 
410 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
411 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
412 
413 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
414 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
415 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
416 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
417 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
418 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
419 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
420 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
421 	}
422 
423 	ret = hns3_cmd_send(hw, &desc, 1);
424 	if (ret) {
425 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
426 			 ret);
427 		return ret;
428 	}
429 
430 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
431 
432 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
433 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
434 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
435 
436 	ret = hns3_cmd_send(hw, &desc, 1);
437 	if (ret)
438 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
439 			 ret);
440 	return ret;
441 }
442 
443 static int
444 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
445 		   uint16_t tpid)
446 {
447 	struct hns3_adapter *hns = dev->data->dev_private;
448 	struct hns3_hw *hw = &hns->hw;
449 	int ret;
450 
451 	rte_spinlock_lock(&hw->lock);
452 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
453 	rte_spinlock_unlock(&hw->lock);
454 	return ret;
455 }
456 
457 static int
458 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
459 			     struct hns3_rx_vtag_cfg *vcfg)
460 {
461 	struct hns3_vport_vtag_rx_cfg_cmd *req;
462 	struct hns3_hw *hw = &hns->hw;
463 	struct hns3_cmd_desc desc;
464 	uint16_t vport_id;
465 	uint8_t bitmap;
466 	int ret;
467 
468 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
469 
470 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
471 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
472 		     vcfg->strip_tag1_en ? 1 : 0);
473 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
474 		     vcfg->strip_tag2_en ? 1 : 0);
475 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
476 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
477 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
478 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
479 
480 	/*
481 	 * In current version VF is not supported when PF is driven by DPDK
482 	 * driver, just need to configure parameters for PF vport.
483 	 */
484 	vport_id = HNS3_PF_FUNC_ID;
485 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
486 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
487 	req->vf_bitmap[req->vf_offset] = bitmap;
488 
489 	ret = hns3_cmd_send(hw, &desc, 1);
490 	if (ret)
491 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
492 	return ret;
493 }
494 
495 static void
496 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
497 			   struct hns3_rx_vtag_cfg *vcfg)
498 {
499 	struct hns3_pf *pf = &hns->pf;
500 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
501 }
502 
503 static void
504 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
505 			   struct hns3_tx_vtag_cfg *vcfg)
506 {
507 	struct hns3_pf *pf = &hns->pf;
508 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
509 }
510 
511 static int
512 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
513 {
514 	struct hns3_rx_vtag_cfg rxvlan_cfg;
515 	struct hns3_hw *hw = &hns->hw;
516 	int ret;
517 
518 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
519 		rxvlan_cfg.strip_tag1_en = false;
520 		rxvlan_cfg.strip_tag2_en = enable;
521 	} else {
522 		rxvlan_cfg.strip_tag1_en = enable;
523 		rxvlan_cfg.strip_tag2_en = true;
524 	}
525 
526 	rxvlan_cfg.vlan1_vlan_prionly = false;
527 	rxvlan_cfg.vlan2_vlan_prionly = false;
528 	rxvlan_cfg.rx_vlan_offload_en = enable;
529 
530 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
531 	if (ret) {
532 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
533 		return ret;
534 	}
535 
536 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
537 
538 	return ret;
539 }
540 
541 static int
542 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
543 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
544 {
545 	struct hns3_vlan_filter_ctrl_cmd *req;
546 	struct hns3_cmd_desc desc;
547 	int ret;
548 
549 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
550 
551 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
552 	req->vlan_type = vlan_type;
553 	req->vlan_fe = filter_en ? fe_type : 0;
554 	req->vf_id = vf_id;
555 
556 	ret = hns3_cmd_send(hw, &desc, 1);
557 	if (ret)
558 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
559 
560 	return ret;
561 }
562 
563 static int
564 hns3_vlan_filter_init(struct hns3_adapter *hns)
565 {
566 	struct hns3_hw *hw = &hns->hw;
567 	int ret;
568 
569 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
570 					HNS3_FILTER_FE_EGRESS, false,
571 					HNS3_PF_FUNC_ID);
572 	if (ret) {
573 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
574 		return ret;
575 	}
576 
577 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
578 					HNS3_FILTER_FE_INGRESS, false,
579 					HNS3_PF_FUNC_ID);
580 	if (ret)
581 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
582 
583 	return ret;
584 }
585 
586 static int
587 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
588 {
589 	struct hns3_hw *hw = &hns->hw;
590 	int ret;
591 
592 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
593 					HNS3_FILTER_FE_INGRESS, enable,
594 					HNS3_PF_FUNC_ID);
595 	if (ret)
596 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
597 			 enable ? "enable" : "disable", ret);
598 
599 	return ret;
600 }
601 
602 static int
603 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
604 {
605 	struct hns3_adapter *hns = dev->data->dev_private;
606 	struct hns3_hw *hw = &hns->hw;
607 	struct rte_eth_rxmode *rxmode;
608 	unsigned int tmp_mask;
609 	bool enable;
610 	int ret = 0;
611 
612 	rte_spinlock_lock(&hw->lock);
613 	rxmode = &dev->data->dev_conf.rxmode;
614 	tmp_mask = (unsigned int)mask;
615 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
616 		/* ignore vlan filter configuration during promiscuous mode */
617 		if (!dev->data->promiscuous) {
618 			/* Enable or disable VLAN filter */
619 			enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
620 				 true : false;
621 
622 			ret = hns3_enable_vlan_filter(hns, enable);
623 			if (ret) {
624 				rte_spinlock_unlock(&hw->lock);
625 				hns3_err(hw, "failed to %s rx filter, ret = %d",
626 					 enable ? "enable" : "disable", ret);
627 				return ret;
628 			}
629 		}
630 	}
631 
632 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
633 		/* Enable or disable VLAN stripping */
634 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
635 		    true : false;
636 
637 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
638 		if (ret) {
639 			rte_spinlock_unlock(&hw->lock);
640 			hns3_err(hw, "failed to %s rx strip, ret = %d",
641 				 enable ? "enable" : "disable", ret);
642 			return ret;
643 		}
644 	}
645 
646 	rte_spinlock_unlock(&hw->lock);
647 
648 	return ret;
649 }
650 
651 static int
652 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
653 			     struct hns3_tx_vtag_cfg *vcfg)
654 {
655 	struct hns3_vport_vtag_tx_cfg_cmd *req;
656 	struct hns3_cmd_desc desc;
657 	struct hns3_hw *hw = &hns->hw;
658 	uint16_t vport_id;
659 	uint8_t bitmap;
660 	int ret;
661 
662 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
663 
664 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
665 	req->def_vlan_tag1 = vcfg->default_tag1;
666 	req->def_vlan_tag2 = vcfg->default_tag2;
667 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
668 		     vcfg->accept_tag1 ? 1 : 0);
669 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
670 		     vcfg->accept_untag1 ? 1 : 0);
671 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
672 		     vcfg->accept_tag2 ? 1 : 0);
673 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
674 		     vcfg->accept_untag2 ? 1 : 0);
675 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
676 		     vcfg->insert_tag1_en ? 1 : 0);
677 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
678 		     vcfg->insert_tag2_en ? 1 : 0);
679 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
680 
681 	/*
682 	 * In current version VF is not supported when PF is driven by DPDK
683 	 * driver, just need to configure parameters for PF vport.
684 	 */
685 	vport_id = HNS3_PF_FUNC_ID;
686 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
687 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
688 	req->vf_bitmap[req->vf_offset] = bitmap;
689 
690 	ret = hns3_cmd_send(hw, &desc, 1);
691 	if (ret)
692 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
693 
694 	return ret;
695 }
696 
697 static int
698 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
699 		     uint16_t pvid)
700 {
701 	struct hns3_hw *hw = &hns->hw;
702 	struct hns3_tx_vtag_cfg txvlan_cfg;
703 	int ret;
704 
705 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
706 		txvlan_cfg.accept_tag1 = true;
707 		txvlan_cfg.insert_tag1_en = false;
708 		txvlan_cfg.default_tag1 = 0;
709 	} else {
710 		txvlan_cfg.accept_tag1 = false;
711 		txvlan_cfg.insert_tag1_en = true;
712 		txvlan_cfg.default_tag1 = pvid;
713 	}
714 
715 	txvlan_cfg.accept_untag1 = true;
716 	txvlan_cfg.accept_tag2 = true;
717 	txvlan_cfg.accept_untag2 = true;
718 	txvlan_cfg.insert_tag2_en = false;
719 	txvlan_cfg.default_tag2 = 0;
720 
721 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
722 	if (ret) {
723 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
724 			 ret);
725 		return ret;
726 	}
727 
728 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
729 	return ret;
730 }
731 
732 static void
733 hns3_store_port_base_vlan_info(struct hns3_adapter *hns, uint16_t pvid, int on)
734 {
735 	struct hns3_hw *hw = &hns->hw;
736 
737 	hw->port_base_vlan_cfg.state = on ?
738 	    HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
739 
740 	hw->port_base_vlan_cfg.pvid = pvid;
741 }
742 
743 static void
744 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
745 {
746 	struct hns3_user_vlan_table *vlan_entry;
747 	struct hns3_pf *pf = &hns->pf;
748 
749 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
750 		if (vlan_entry->hd_tbl_status)
751 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
752 
753 		vlan_entry->hd_tbl_status = false;
754 	}
755 
756 	if (is_del_list) {
757 		vlan_entry = LIST_FIRST(&pf->vlan_list);
758 		while (vlan_entry) {
759 			LIST_REMOVE(vlan_entry, next);
760 			rte_free(vlan_entry);
761 			vlan_entry = LIST_FIRST(&pf->vlan_list);
762 		}
763 	}
764 }
765 
766 static void
767 hns3_add_all_vlan_table(struct hns3_adapter *hns)
768 {
769 	struct hns3_user_vlan_table *vlan_entry;
770 	struct hns3_pf *pf = &hns->pf;
771 
772 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
773 		if (!vlan_entry->hd_tbl_status)
774 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
775 
776 		vlan_entry->hd_tbl_status = true;
777 	}
778 }
779 
780 static void
781 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
782 {
783 	struct hns3_hw *hw = &hns->hw;
784 	int ret;
785 
786 	hns3_rm_all_vlan_table(hns, true);
787 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID) {
788 		ret = hns3_set_port_vlan_filter(hns,
789 						hw->port_base_vlan_cfg.pvid, 0);
790 		if (ret) {
791 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
792 				 ret);
793 			return;
794 		}
795 	}
796 }
797 
798 static int
799 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
800 				uint16_t port_base_vlan_state,
801 				uint16_t new_pvid, uint16_t old_pvid)
802 {
803 	struct hns3_hw *hw = &hns->hw;
804 	int ret = 0;
805 
806 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
807 		if (old_pvid != HNS3_INVLID_PVID && old_pvid != 0) {
808 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
809 			if (ret) {
810 				hns3_err(hw,
811 					 "Failed to clear clear old pvid filter, ret =%d",
812 					 ret);
813 				return ret;
814 			}
815 		}
816 
817 		hns3_rm_all_vlan_table(hns, false);
818 		return hns3_set_port_vlan_filter(hns, new_pvid, 1);
819 	}
820 
821 	if (new_pvid != 0) {
822 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
823 		if (ret) {
824 			hns3_err(hw, "Failed to set port vlan filter, ret =%d",
825 				 ret);
826 			return ret;
827 		}
828 	}
829 
830 	if (new_pvid == hw->port_base_vlan_cfg.pvid)
831 		hns3_add_all_vlan_table(hns);
832 
833 	return ret;
834 }
835 
836 static int
837 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
838 {
839 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
840 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
841 	bool rx_strip_en;
842 	int ret;
843 
844 	rx_strip_en = old_cfg->rx_vlan_offload_en ? true : false;
845 	if (on) {
846 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
847 		rx_vlan_cfg.strip_tag2_en = true;
848 	} else {
849 		rx_vlan_cfg.strip_tag1_en = false;
850 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
851 	}
852 	rx_vlan_cfg.vlan1_vlan_prionly = false;
853 	rx_vlan_cfg.vlan2_vlan_prionly = false;
854 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
855 
856 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
857 	if (ret)
858 		return ret;
859 
860 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
861 	return ret;
862 }
863 
864 static int
865 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
866 {
867 	struct hns3_hw *hw = &hns->hw;
868 	uint16_t port_base_vlan_state;
869 	uint16_t old_pvid;
870 	int ret;
871 
872 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
873 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID)
874 			hns3_warn(hw, "Invalid operation! As current pvid set "
875 				  "is %u, disable pvid %u is invalid",
876 				  hw->port_base_vlan_cfg.pvid, pvid);
877 		return 0;
878 	}
879 
880 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
881 				    HNS3_PORT_BASE_VLAN_DISABLE;
882 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
883 	if (ret) {
884 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
885 			 ret);
886 		return ret;
887 	}
888 
889 	ret = hns3_en_pvid_strip(hns, on);
890 	if (ret) {
891 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
892 			 "ret = %d", ret);
893 		return ret;
894 	}
895 
896 	if (pvid == HNS3_INVLID_PVID)
897 		goto out;
898 	old_pvid = hw->port_base_vlan_cfg.pvid;
899 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid,
900 					      old_pvid);
901 	if (ret) {
902 		hns3_err(hw, "Failed to update vlan filter entries, ret =%d",
903 			 ret);
904 		return ret;
905 	}
906 
907 out:
908 	hns3_store_port_base_vlan_info(hns, pvid, on);
909 	return ret;
910 }
911 
912 static int
913 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
914 {
915 	struct hns3_adapter *hns = dev->data->dev_private;
916 	struct hns3_hw *hw = &hns->hw;
917 	bool pvid_en_state_change;
918 	uint16_t pvid_state;
919 	int ret;
920 
921 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
922 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
923 			 RTE_ETHER_MAX_VLAN_ID);
924 		return -EINVAL;
925 	}
926 
927 	/*
928 	 * If PVID configuration state change, should refresh the PVID
929 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
930 	 */
931 	pvid_state = hw->port_base_vlan_cfg.state;
932 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
933 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
934 		pvid_en_state_change = false;
935 	else
936 		pvid_en_state_change = true;
937 
938 	rte_spinlock_lock(&hw->lock);
939 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
940 	rte_spinlock_unlock(&hw->lock);
941 	if (ret)
942 		return ret;
943 
944 	if (pvid_en_state_change)
945 		hns3_update_all_queues_pvid_state(hw);
946 
947 	return 0;
948 }
949 
950 static void
951 init_port_base_vlan_info(struct hns3_hw *hw)
952 {
953 	hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
954 	hw->port_base_vlan_cfg.pvid = HNS3_INVLID_PVID;
955 }
956 
957 static int
958 hns3_default_vlan_config(struct hns3_adapter *hns)
959 {
960 	struct hns3_hw *hw = &hns->hw;
961 	int ret;
962 
963 	ret = hns3_set_port_vlan_filter(hns, 0, 1);
964 	if (ret)
965 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
966 	return ret;
967 }
968 
969 static int
970 hns3_init_vlan_config(struct hns3_adapter *hns)
971 {
972 	struct hns3_hw *hw = &hns->hw;
973 	int ret;
974 
975 	/*
976 	 * This function can be called in the initialization and reset process,
977 	 * when in reset process, it means that hardware had been reseted
978 	 * successfully and we need to restore the hardware configuration to
979 	 * ensure that the hardware configuration remains unchanged before and
980 	 * after reset.
981 	 */
982 	if (rte_atomic16_read(&hw->reset.resetting) == 0)
983 		init_port_base_vlan_info(hw);
984 
985 	ret = hns3_vlan_filter_init(hns);
986 	if (ret) {
987 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
988 		return ret;
989 	}
990 
991 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
992 				       RTE_ETHER_TYPE_VLAN);
993 	if (ret) {
994 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
995 		return ret;
996 	}
997 
998 	/*
999 	 * When in the reinit dev stage of the reset process, the following
1000 	 * vlan-related configurations may differ from those at initialization,
1001 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1002 	 * and hns3_restore_vlan_conf later.
1003 	 */
1004 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1005 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVLID_PVID, 0);
1006 		if (ret) {
1007 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1008 			return ret;
1009 		}
1010 
1011 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1012 		if (ret) {
1013 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1014 				 ret);
1015 			return ret;
1016 		}
1017 	}
1018 
1019 	return hns3_default_vlan_config(hns);
1020 }
1021 
1022 static int
1023 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1024 {
1025 	struct hns3_pf *pf = &hns->pf;
1026 	struct hns3_hw *hw = &hns->hw;
1027 	uint64_t offloads;
1028 	bool enable;
1029 	int ret;
1030 
1031 	if (!hw->data->promiscuous) {
1032 		/* restore vlan filter states */
1033 		offloads = hw->data->dev_conf.rxmode.offloads;
1034 		enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1035 		ret = hns3_enable_vlan_filter(hns, enable);
1036 		if (ret) {
1037 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1038 				 "ret = %d", ret);
1039 			return ret;
1040 		}
1041 	}
1042 
1043 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1044 	if (ret) {
1045 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1046 		return ret;
1047 	}
1048 
1049 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1050 	if (ret)
1051 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1052 
1053 	return ret;
1054 }
1055 
1056 static int
1057 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1058 {
1059 	struct hns3_adapter *hns = dev->data->dev_private;
1060 	struct rte_eth_dev_data *data = dev->data;
1061 	struct rte_eth_txmode *txmode;
1062 	struct hns3_hw *hw = &hns->hw;
1063 	int mask;
1064 	int ret;
1065 
1066 	txmode = &data->dev_conf.txmode;
1067 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1068 		hns3_warn(hw,
1069 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1070 			  "configuration is not supported! Ignore these two "
1071 			  "parameters: hw_vlan_reject_tagged(%d), "
1072 			  "hw_vlan_reject_untagged(%d)",
1073 			  txmode->hw_vlan_reject_tagged,
1074 			  txmode->hw_vlan_reject_untagged);
1075 
1076 	/* Apply vlan offload setting */
1077 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1078 	ret = hns3_vlan_offload_set(dev, mask);
1079 	if (ret) {
1080 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1081 			 ret);
1082 		return ret;
1083 	}
1084 
1085 	/*
1086 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1087 	 * VLAN pvid related configuration to hardware.
1088 	 */
1089 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1090 		return 0;
1091 
1092 	/* Apply pvid setting */
1093 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1094 				 txmode->hw_vlan_insert_pvid);
1095 	if (ret)
1096 		hns3_err(hw, "dev config vlan pvid(%d) failed, ret = %d",
1097 			 txmode->pvid, ret);
1098 
1099 	return ret;
1100 }
1101 
1102 static int
1103 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1104 		unsigned int tso_mss_max)
1105 {
1106 	struct hns3_cfg_tso_status_cmd *req;
1107 	struct hns3_cmd_desc desc;
1108 	uint16_t tso_mss;
1109 
1110 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1111 
1112 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1113 
1114 	tso_mss = 0;
1115 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1116 		       tso_mss_min);
1117 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1118 
1119 	tso_mss = 0;
1120 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1121 		       tso_mss_max);
1122 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1123 
1124 	return hns3_cmd_send(hw, &desc, 1);
1125 }
1126 
1127 static int
1128 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1129 		   uint16_t *allocated_size, bool is_alloc)
1130 {
1131 	struct hns3_umv_spc_alc_cmd *req;
1132 	struct hns3_cmd_desc desc;
1133 	int ret;
1134 
1135 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1136 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1137 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1138 	req->space_size = rte_cpu_to_le_32(space_size);
1139 
1140 	ret = hns3_cmd_send(hw, &desc, 1);
1141 	if (ret) {
1142 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1143 			     is_alloc ? "allocate" : "free", ret);
1144 		return ret;
1145 	}
1146 
1147 	if (is_alloc && allocated_size)
1148 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1149 
1150 	return 0;
1151 }
1152 
1153 static int
1154 hns3_init_umv_space(struct hns3_hw *hw)
1155 {
1156 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1157 	struct hns3_pf *pf = &hns->pf;
1158 	uint16_t allocated_size = 0;
1159 	int ret;
1160 
1161 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1162 				 true);
1163 	if (ret)
1164 		return ret;
1165 
1166 	if (allocated_size < pf->wanted_umv_size)
1167 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1168 			     pf->wanted_umv_size, allocated_size);
1169 
1170 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1171 						pf->wanted_umv_size;
1172 	pf->used_umv_size = 0;
1173 	return 0;
1174 }
1175 
1176 static int
1177 hns3_uninit_umv_space(struct hns3_hw *hw)
1178 {
1179 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1180 	struct hns3_pf *pf = &hns->pf;
1181 	int ret;
1182 
1183 	if (pf->max_umv_size == 0)
1184 		return 0;
1185 
1186 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1187 	if (ret)
1188 		return ret;
1189 
1190 	pf->max_umv_size = 0;
1191 
1192 	return 0;
1193 }
1194 
1195 static bool
1196 hns3_is_umv_space_full(struct hns3_hw *hw)
1197 {
1198 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1199 	struct hns3_pf *pf = &hns->pf;
1200 	bool is_full;
1201 
1202 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1203 
1204 	return is_full;
1205 }
1206 
1207 static void
1208 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1209 {
1210 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1211 	struct hns3_pf *pf = &hns->pf;
1212 
1213 	if (is_free) {
1214 		if (pf->used_umv_size > 0)
1215 			pf->used_umv_size--;
1216 	} else
1217 		pf->used_umv_size++;
1218 }
1219 
1220 static void
1221 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1222 		      const uint8_t *addr, bool is_mc)
1223 {
1224 	const unsigned char *mac_addr = addr;
1225 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1226 			    ((uint32_t)mac_addr[2] << 16) |
1227 			    ((uint32_t)mac_addr[1] << 8) |
1228 			    (uint32_t)mac_addr[0];
1229 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1230 
1231 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1232 	if (is_mc) {
1233 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1234 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1235 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1236 	}
1237 
1238 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1239 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1240 }
1241 
1242 static int
1243 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1244 			     uint8_t resp_code,
1245 			     enum hns3_mac_vlan_tbl_opcode op)
1246 {
1247 	if (cmdq_resp) {
1248 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1249 			 cmdq_resp);
1250 		return -EIO;
1251 	}
1252 
1253 	if (op == HNS3_MAC_VLAN_ADD) {
1254 		if (resp_code == 0 || resp_code == 1) {
1255 			return 0;
1256 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1257 			hns3_err(hw, "add mac addr failed for uc_overflow");
1258 			return -ENOSPC;
1259 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1260 			hns3_err(hw, "add mac addr failed for mc_overflow");
1261 			return -ENOSPC;
1262 		}
1263 
1264 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1265 			 resp_code);
1266 		return -EIO;
1267 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1268 		if (resp_code == 0) {
1269 			return 0;
1270 		} else if (resp_code == 1) {
1271 			hns3_dbg(hw, "remove mac addr failed for miss");
1272 			return -ENOENT;
1273 		}
1274 
1275 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1276 			 resp_code);
1277 		return -EIO;
1278 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1279 		if (resp_code == 0) {
1280 			return 0;
1281 		} else if (resp_code == 1) {
1282 			hns3_dbg(hw, "lookup mac addr failed for miss");
1283 			return -ENOENT;
1284 		}
1285 
1286 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1287 			 resp_code);
1288 		return -EIO;
1289 	}
1290 
1291 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1292 		 op);
1293 
1294 	return -EINVAL;
1295 }
1296 
1297 static int
1298 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1299 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1300 			 struct hns3_cmd_desc *desc, bool is_mc)
1301 {
1302 	uint8_t resp_code;
1303 	uint16_t retval;
1304 	int ret;
1305 
1306 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1307 	if (is_mc) {
1308 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1309 		memcpy(desc[0].data, req,
1310 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1311 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1312 					  true);
1313 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1314 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1315 					  true);
1316 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1317 	} else {
1318 		memcpy(desc[0].data, req,
1319 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1320 		ret = hns3_cmd_send(hw, desc, 1);
1321 	}
1322 	if (ret) {
1323 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1324 			 ret);
1325 		return ret;
1326 	}
1327 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1328 	retval = rte_le_to_cpu_16(desc[0].retval);
1329 
1330 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1331 					    HNS3_MAC_VLAN_LKUP);
1332 }
1333 
1334 static int
1335 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1336 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1337 		      struct hns3_cmd_desc *mc_desc)
1338 {
1339 	uint8_t resp_code;
1340 	uint16_t retval;
1341 	int cfg_status;
1342 	int ret;
1343 
1344 	if (mc_desc == NULL) {
1345 		struct hns3_cmd_desc desc;
1346 
1347 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1348 		memcpy(desc.data, req,
1349 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1350 		ret = hns3_cmd_send(hw, &desc, 1);
1351 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1352 		retval = rte_le_to_cpu_16(desc.retval);
1353 
1354 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1355 							  HNS3_MAC_VLAN_ADD);
1356 	} else {
1357 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1358 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1359 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1360 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1361 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1362 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1363 		memcpy(mc_desc[0].data, req,
1364 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1365 		mc_desc[0].retval = 0;
1366 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1367 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1368 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1369 
1370 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1371 							  HNS3_MAC_VLAN_ADD);
1372 	}
1373 
1374 	if (ret) {
1375 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1376 		return ret;
1377 	}
1378 
1379 	return cfg_status;
1380 }
1381 
1382 static int
1383 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1384 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1385 {
1386 	struct hns3_cmd_desc desc;
1387 	uint8_t resp_code;
1388 	uint16_t retval;
1389 	int ret;
1390 
1391 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1392 
1393 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1394 
1395 	ret = hns3_cmd_send(hw, &desc, 1);
1396 	if (ret) {
1397 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1398 		return ret;
1399 	}
1400 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1401 	retval = rte_le_to_cpu_16(desc.retval);
1402 
1403 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1404 					    HNS3_MAC_VLAN_REMOVE);
1405 }
1406 
1407 static int
1408 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1409 {
1410 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1411 	struct hns3_mac_vlan_tbl_entry_cmd req;
1412 	struct hns3_pf *pf = &hns->pf;
1413 	struct hns3_cmd_desc desc[3];
1414 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1415 	uint16_t egress_port = 0;
1416 	uint8_t vf_id;
1417 	int ret;
1418 
1419 	/* check if mac addr is valid */
1420 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1421 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1422 				      mac_addr);
1423 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1424 			 mac_str);
1425 		return -EINVAL;
1426 	}
1427 
1428 	memset(&req, 0, sizeof(req));
1429 
1430 	/*
1431 	 * In current version VF is not supported when PF is driven by DPDK
1432 	 * driver, just need to configure parameters for PF vport.
1433 	 */
1434 	vf_id = HNS3_PF_FUNC_ID;
1435 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1436 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1437 
1438 	req.egress_port = rte_cpu_to_le_16(egress_port);
1439 
1440 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1441 
1442 	/*
1443 	 * Lookup the mac address in the mac_vlan table, and add
1444 	 * it if the entry is inexistent. Repeated unicast entry
1445 	 * is not allowed in the mac vlan table.
1446 	 */
1447 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1448 	if (ret == -ENOENT) {
1449 		if (!hns3_is_umv_space_full(hw)) {
1450 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1451 			if (!ret)
1452 				hns3_update_umv_space(hw, false);
1453 			return ret;
1454 		}
1455 
1456 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1457 
1458 		return -ENOSPC;
1459 	}
1460 
1461 	rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1462 
1463 	/* check if we just hit the duplicate */
1464 	if (ret == 0) {
1465 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1466 		return 0;
1467 	}
1468 
1469 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1470 		 mac_str);
1471 
1472 	return ret;
1473 }
1474 
1475 static int
1476 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1477 {
1478 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1479 	struct rte_ether_addr *addr;
1480 	int ret;
1481 	int i;
1482 
1483 	for (i = 0; i < hw->mc_addrs_num; i++) {
1484 		addr = &hw->mc_addrs[i];
1485 		/* Check if there are duplicate addresses */
1486 		if (rte_is_same_ether_addr(addr, mac_addr)) {
1487 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1488 					      addr);
1489 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1490 				 "(%s) is added by the set_mc_mac_addr_list "
1491 				 "API", mac_str);
1492 			return -EINVAL;
1493 		}
1494 	}
1495 
1496 	ret = hns3_add_mc_addr(hw, mac_addr);
1497 	if (ret) {
1498 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1499 				      mac_addr);
1500 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1501 			 mac_str, ret);
1502 	}
1503 	return ret;
1504 }
1505 
1506 static int
1507 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1508 {
1509 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1510 	int ret;
1511 
1512 	ret = hns3_remove_mc_addr(hw, mac_addr);
1513 	if (ret) {
1514 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1515 				      mac_addr);
1516 		hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1517 			 mac_str, ret);
1518 	}
1519 	return ret;
1520 }
1521 
1522 static int
1523 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1524 		  uint32_t idx, __rte_unused uint32_t pool)
1525 {
1526 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1527 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1528 	int ret;
1529 
1530 	rte_spinlock_lock(&hw->lock);
1531 
1532 	/*
1533 	 * In hns3 network engine adding UC and MC mac address with different
1534 	 * commands with firmware. We need to determine whether the input
1535 	 * address is a UC or a MC address to call different commands.
1536 	 * By the way, it is recommended calling the API function named
1537 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1538 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1539 	 * may affect the specifications of UC mac addresses.
1540 	 */
1541 	if (rte_is_multicast_ether_addr(mac_addr))
1542 		ret = hns3_add_mc_addr_common(hw, mac_addr);
1543 	else
1544 		ret = hns3_add_uc_addr_common(hw, mac_addr);
1545 
1546 	if (ret) {
1547 		rte_spinlock_unlock(&hw->lock);
1548 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1549 				      mac_addr);
1550 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1551 			 ret);
1552 		return ret;
1553 	}
1554 
1555 	if (idx == 0)
1556 		hw->mac.default_addr_setted = true;
1557 	rte_spinlock_unlock(&hw->lock);
1558 
1559 	return ret;
1560 }
1561 
1562 static int
1563 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1564 {
1565 	struct hns3_mac_vlan_tbl_entry_cmd req;
1566 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1567 	int ret;
1568 
1569 	/* check if mac addr is valid */
1570 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1571 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1572 				      mac_addr);
1573 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1574 			 mac_str);
1575 		return -EINVAL;
1576 	}
1577 
1578 	memset(&req, 0, sizeof(req));
1579 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1580 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1581 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1582 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1583 		return 0;
1584 	else if (ret == 0)
1585 		hns3_update_umv_space(hw, true);
1586 
1587 	return ret;
1588 }
1589 
1590 static void
1591 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1592 {
1593 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1594 	/* index will be checked by upper level rte interface */
1595 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1596 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1597 	int ret;
1598 
1599 	rte_spinlock_lock(&hw->lock);
1600 
1601 	if (rte_is_multicast_ether_addr(mac_addr))
1602 		ret = hns3_remove_mc_addr_common(hw, mac_addr);
1603 	else
1604 		ret = hns3_remove_uc_addr_common(hw, mac_addr);
1605 	rte_spinlock_unlock(&hw->lock);
1606 	if (ret) {
1607 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1608 				      mac_addr);
1609 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1610 			 ret);
1611 	}
1612 }
1613 
1614 static int
1615 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1616 			  struct rte_ether_addr *mac_addr)
1617 {
1618 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1619 	struct rte_ether_addr *oaddr;
1620 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1621 	bool default_addr_setted;
1622 	bool rm_succes = false;
1623 	int ret, ret_val;
1624 
1625 	/*
1626 	 * It has been guaranteed that input parameter named mac_addr is valid
1627 	 * address in the rte layer of DPDK framework.
1628 	 */
1629 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1630 	default_addr_setted = hw->mac.default_addr_setted;
1631 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1632 		return 0;
1633 
1634 	rte_spinlock_lock(&hw->lock);
1635 	if (default_addr_setted) {
1636 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1637 		if (ret) {
1638 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1639 					      oaddr);
1640 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1641 				  mac_str, ret);
1642 			rm_succes = false;
1643 		} else
1644 			rm_succes = true;
1645 	}
1646 
1647 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1648 	if (ret) {
1649 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1650 				      mac_addr);
1651 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1652 		goto err_add_uc_addr;
1653 	}
1654 
1655 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1656 	if (ret) {
1657 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1658 		goto err_pause_addr_cfg;
1659 	}
1660 
1661 	rte_ether_addr_copy(mac_addr,
1662 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1663 	hw->mac.default_addr_setted = true;
1664 	rte_spinlock_unlock(&hw->lock);
1665 
1666 	return 0;
1667 
1668 err_pause_addr_cfg:
1669 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1670 	if (ret_val) {
1671 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1672 				      mac_addr);
1673 		hns3_warn(hw,
1674 			  "Failed to roll back to del setted mac addr(%s): %d",
1675 			  mac_str, ret_val);
1676 	}
1677 
1678 err_add_uc_addr:
1679 	if (rm_succes) {
1680 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1681 		if (ret_val) {
1682 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1683 					      oaddr);
1684 			hns3_warn(hw,
1685 				  "Failed to restore old uc mac addr(%s): %d",
1686 				  mac_str, ret_val);
1687 			hw->mac.default_addr_setted = false;
1688 		}
1689 	}
1690 	rte_spinlock_unlock(&hw->lock);
1691 
1692 	return ret;
1693 }
1694 
1695 static int
1696 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1697 {
1698 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1699 	struct hns3_hw *hw = &hns->hw;
1700 	struct rte_ether_addr *addr;
1701 	int err = 0;
1702 	int ret;
1703 	int i;
1704 
1705 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1706 		addr = &hw->data->mac_addrs[i];
1707 		if (rte_is_zero_ether_addr(addr))
1708 			continue;
1709 		if (rte_is_multicast_ether_addr(addr))
1710 			ret = del ? hns3_remove_mc_addr(hw, addr) :
1711 			      hns3_add_mc_addr(hw, addr);
1712 		else
1713 			ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1714 			      hns3_add_uc_addr_common(hw, addr);
1715 
1716 		if (ret) {
1717 			err = ret;
1718 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1719 					      addr);
1720 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1721 				 "ret = %d.", del ? "remove" : "restore",
1722 				 mac_str, i, ret);
1723 		}
1724 	}
1725 	return err;
1726 }
1727 
1728 static void
1729 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1730 {
1731 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1732 	uint8_t word_num;
1733 	uint8_t bit_num;
1734 
1735 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1736 		word_num = vfid / 32;
1737 		bit_num = vfid % 32;
1738 		if (clr)
1739 			desc[1].data[word_num] &=
1740 			    rte_cpu_to_le_32(~(1UL << bit_num));
1741 		else
1742 			desc[1].data[word_num] |=
1743 			    rte_cpu_to_le_32(1UL << bit_num);
1744 	} else {
1745 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1746 		bit_num = vfid % 32;
1747 		if (clr)
1748 			desc[2].data[word_num] &=
1749 			    rte_cpu_to_le_32(~(1UL << bit_num));
1750 		else
1751 			desc[2].data[word_num] |=
1752 			    rte_cpu_to_le_32(1UL << bit_num);
1753 	}
1754 }
1755 
1756 static int
1757 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1758 {
1759 	struct hns3_mac_vlan_tbl_entry_cmd req;
1760 	struct hns3_cmd_desc desc[3];
1761 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1762 	uint8_t vf_id;
1763 	int ret;
1764 
1765 	/* Check if mac addr is valid */
1766 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1767 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1768 				      mac_addr);
1769 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1770 			 mac_str);
1771 		return -EINVAL;
1772 	}
1773 
1774 	memset(&req, 0, sizeof(req));
1775 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1776 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1777 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1778 	if (ret) {
1779 		/* This mac addr do not exist, add new entry for it */
1780 		memset(desc[0].data, 0, sizeof(desc[0].data));
1781 		memset(desc[1].data, 0, sizeof(desc[0].data));
1782 		memset(desc[2].data, 0, sizeof(desc[0].data));
1783 	}
1784 
1785 	/*
1786 	 * In current version VF is not supported when PF is driven by DPDK
1787 	 * driver, just need to configure parameters for PF vport.
1788 	 */
1789 	vf_id = HNS3_PF_FUNC_ID;
1790 	hns3_update_desc_vfid(desc, vf_id, false);
1791 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1792 	if (ret) {
1793 		if (ret == -ENOSPC)
1794 			hns3_err(hw, "mc mac vlan table is full");
1795 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1796 				      mac_addr);
1797 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1798 	}
1799 
1800 	return ret;
1801 }
1802 
1803 static int
1804 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1805 {
1806 	struct hns3_mac_vlan_tbl_entry_cmd req;
1807 	struct hns3_cmd_desc desc[3];
1808 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1809 	uint8_t vf_id;
1810 	int ret;
1811 
1812 	/* Check if mac addr is valid */
1813 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1814 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1815 				      mac_addr);
1816 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1817 			 mac_str);
1818 		return -EINVAL;
1819 	}
1820 
1821 	memset(&req, 0, sizeof(req));
1822 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1823 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1824 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1825 	if (ret == 0) {
1826 		/*
1827 		 * This mac addr exist, remove this handle's VFID for it.
1828 		 * In current version VF is not supported when PF is driven by
1829 		 * DPDK driver, just need to configure parameters for PF vport.
1830 		 */
1831 		vf_id = HNS3_PF_FUNC_ID;
1832 		hns3_update_desc_vfid(desc, vf_id, true);
1833 
1834 		/* All the vfid is zero, so need to delete this entry */
1835 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1836 	} else if (ret == -ENOENT) {
1837 		/* This mac addr doesn't exist. */
1838 		return 0;
1839 	}
1840 
1841 	if (ret) {
1842 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1843 				      mac_addr);
1844 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1845 	}
1846 
1847 	return ret;
1848 }
1849 
1850 static int
1851 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1852 			   struct rte_ether_addr *mc_addr_set,
1853 			   uint32_t nb_mc_addr)
1854 {
1855 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1856 	struct rte_ether_addr *addr;
1857 	uint32_t i;
1858 	uint32_t j;
1859 
1860 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1861 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
1862 			 "invalid. valid range: 0~%d",
1863 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1864 		return -EINVAL;
1865 	}
1866 
1867 	/* Check if input mac addresses are valid */
1868 	for (i = 0; i < nb_mc_addr; i++) {
1869 		addr = &mc_addr_set[i];
1870 		if (!rte_is_multicast_ether_addr(addr)) {
1871 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1872 					      addr);
1873 			hns3_err(hw,
1874 				 "failed to set mc mac addr, addr(%s) invalid.",
1875 				 mac_str);
1876 			return -EINVAL;
1877 		}
1878 
1879 		/* Check if there are duplicate addresses */
1880 		for (j = i + 1; j < nb_mc_addr; j++) {
1881 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1882 				rte_ether_format_addr(mac_str,
1883 						      RTE_ETHER_ADDR_FMT_SIZE,
1884 						      addr);
1885 				hns3_err(hw, "failed to set mc mac addr, "
1886 					 "addrs invalid. two same addrs(%s).",
1887 					 mac_str);
1888 				return -EINVAL;
1889 			}
1890 		}
1891 
1892 		/*
1893 		 * Check if there are duplicate addresses between mac_addrs
1894 		 * and mc_addr_set
1895 		 */
1896 		for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1897 			if (rte_is_same_ether_addr(addr,
1898 						   &hw->data->mac_addrs[j])) {
1899 				rte_ether_format_addr(mac_str,
1900 						      RTE_ETHER_ADDR_FMT_SIZE,
1901 						      addr);
1902 				hns3_err(hw, "failed to set mc mac addr, "
1903 					 "addrs invalid. addrs(%s) has already "
1904 					 "configured in mac_addr add API",
1905 					 mac_str);
1906 				return -EINVAL;
1907 			}
1908 		}
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 static void
1915 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
1916 			   struct rte_ether_addr *mc_addr_set,
1917 			   int mc_addr_num,
1918 			   struct rte_ether_addr *reserved_addr_list,
1919 			   int *reserved_addr_num,
1920 			   struct rte_ether_addr *add_addr_list,
1921 			   int *add_addr_num,
1922 			   struct rte_ether_addr *rm_addr_list,
1923 			   int *rm_addr_num)
1924 {
1925 	struct rte_ether_addr *addr;
1926 	int current_addr_num;
1927 	int reserved_num = 0;
1928 	int add_num = 0;
1929 	int rm_num = 0;
1930 	int num;
1931 	int i;
1932 	int j;
1933 	bool same_addr;
1934 
1935 	/* Calculate the mc mac address list that should be removed */
1936 	current_addr_num = hw->mc_addrs_num;
1937 	for (i = 0; i < current_addr_num; i++) {
1938 		addr = &hw->mc_addrs[i];
1939 		same_addr = false;
1940 		for (j = 0; j < mc_addr_num; j++) {
1941 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1942 				same_addr = true;
1943 				break;
1944 			}
1945 		}
1946 
1947 		if (!same_addr) {
1948 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
1949 			rm_num++;
1950 		} else {
1951 			rte_ether_addr_copy(addr,
1952 					    &reserved_addr_list[reserved_num]);
1953 			reserved_num++;
1954 		}
1955 	}
1956 
1957 	/* Calculate the mc mac address list that should be added */
1958 	for (i = 0; i < mc_addr_num; i++) {
1959 		addr = &mc_addr_set[i];
1960 		same_addr = false;
1961 		for (j = 0; j < current_addr_num; j++) {
1962 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
1963 				same_addr = true;
1964 				break;
1965 			}
1966 		}
1967 
1968 		if (!same_addr) {
1969 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
1970 			add_num++;
1971 		}
1972 	}
1973 
1974 	/* Reorder the mc mac address list maintained by driver */
1975 	for (i = 0; i < reserved_num; i++)
1976 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
1977 
1978 	for (i = 0; i < rm_num; i++) {
1979 		num = reserved_num + i;
1980 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
1981 	}
1982 
1983 	*reserved_addr_num = reserved_num;
1984 	*add_addr_num = add_num;
1985 	*rm_addr_num = rm_num;
1986 }
1987 
1988 static int
1989 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
1990 			  struct rte_ether_addr *mc_addr_set,
1991 			  uint32_t nb_mc_addr)
1992 {
1993 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1994 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
1995 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
1996 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
1997 	struct rte_ether_addr *addr;
1998 	int reserved_addr_num;
1999 	int add_addr_num;
2000 	int rm_addr_num;
2001 	int mc_addr_num;
2002 	int num;
2003 	int ret;
2004 	int i;
2005 
2006 	/* Check if input parameters are valid */
2007 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2008 	if (ret)
2009 		return ret;
2010 
2011 	rte_spinlock_lock(&hw->lock);
2012 
2013 	/*
2014 	 * Calculate the mc mac address lists those should be removed and be
2015 	 * added, Reorder the mc mac address list maintained by driver.
2016 	 */
2017 	mc_addr_num = (int)nb_mc_addr;
2018 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2019 				   reserved_addr_list, &reserved_addr_num,
2020 				   add_addr_list, &add_addr_num,
2021 				   rm_addr_list, &rm_addr_num);
2022 
2023 	/* Remove mc mac addresses */
2024 	for (i = 0; i < rm_addr_num; i++) {
2025 		num = rm_addr_num - i - 1;
2026 		addr = &rm_addr_list[num];
2027 		ret = hns3_remove_mc_addr(hw, addr);
2028 		if (ret) {
2029 			rte_spinlock_unlock(&hw->lock);
2030 			return ret;
2031 		}
2032 		hw->mc_addrs_num--;
2033 	}
2034 
2035 	/* Add mc mac addresses */
2036 	for (i = 0; i < add_addr_num; i++) {
2037 		addr = &add_addr_list[i];
2038 		ret = hns3_add_mc_addr(hw, addr);
2039 		if (ret) {
2040 			rte_spinlock_unlock(&hw->lock);
2041 			return ret;
2042 		}
2043 
2044 		num = reserved_addr_num + i;
2045 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2046 		hw->mc_addrs_num++;
2047 	}
2048 	rte_spinlock_unlock(&hw->lock);
2049 
2050 	return 0;
2051 }
2052 
2053 static int
2054 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2055 {
2056 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2057 	struct hns3_hw *hw = &hns->hw;
2058 	struct rte_ether_addr *addr;
2059 	int err = 0;
2060 	int ret;
2061 	int i;
2062 
2063 	for (i = 0; i < hw->mc_addrs_num; i++) {
2064 		addr = &hw->mc_addrs[i];
2065 		if (!rte_is_multicast_ether_addr(addr))
2066 			continue;
2067 		if (del)
2068 			ret = hns3_remove_mc_addr(hw, addr);
2069 		else
2070 			ret = hns3_add_mc_addr(hw, addr);
2071 		if (ret) {
2072 			err = ret;
2073 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2074 					      addr);
2075 			hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2076 				 del ? "Remove" : "Restore", mac_str, ret);
2077 		}
2078 	}
2079 	return err;
2080 }
2081 
2082 static int
2083 hns3_check_mq_mode(struct rte_eth_dev *dev)
2084 {
2085 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2086 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2087 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2088 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2089 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2090 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2091 	uint8_t num_tc;
2092 	int max_tc = 0;
2093 	int i;
2094 
2095 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2096 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2097 
2098 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2099 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2100 			 "rx_mq_mode = %d", rx_mq_mode);
2101 		return -EINVAL;
2102 	}
2103 
2104 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2105 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2106 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2107 			 "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2108 			 rx_mq_mode, tx_mq_mode);
2109 		return -EINVAL;
2110 	}
2111 
2112 	if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2113 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2114 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2115 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2116 			return -EINVAL;
2117 		}
2118 
2119 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2120 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2121 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2122 				 "nb_tcs(%d) != %d or %d in rx direction.",
2123 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2124 			return -EINVAL;
2125 		}
2126 
2127 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2128 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2129 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2130 			return -EINVAL;
2131 		}
2132 
2133 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2134 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2135 				hns3_err(hw, "dcb_tc[%d] = %d in rx direction, "
2136 					 "is not equal to one in tx direction.",
2137 					 i, dcb_rx_conf->dcb_tc[i]);
2138 				return -EINVAL;
2139 			}
2140 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2141 				max_tc = dcb_rx_conf->dcb_tc[i];
2142 		}
2143 
2144 		num_tc = max_tc + 1;
2145 		if (num_tc > dcb_rx_conf->nb_tcs) {
2146 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2147 				 num_tc, dcb_rx_conf->nb_tcs);
2148 			return -EINVAL;
2149 		}
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 static int
2156 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2157 {
2158 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2159 
2160 	if (!hns3_dev_dcb_supported(hw)) {
2161 		hns3_err(hw, "this port does not support dcb configurations.");
2162 		return -EOPNOTSUPP;
2163 	}
2164 
2165 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2166 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2167 		return -EOPNOTSUPP;
2168 	}
2169 
2170 	/* Check multiple queue mode */
2171 	return hns3_check_mq_mode(dev);
2172 }
2173 
2174 static int
2175 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id, bool mmap,
2176 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2177 {
2178 	struct hns3_cmd_desc desc;
2179 	struct hns3_ctrl_vector_chain_cmd *req =
2180 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2181 	enum hns3_cmd_status status;
2182 	enum hns3_opcode_type op;
2183 	uint16_t tqp_type_and_id = 0;
2184 	const char *op_str;
2185 	uint16_t type;
2186 	uint16_t gl;
2187 
2188 	op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2189 	hns3_cmd_setup_basic_desc(&desc, op, false);
2190 	req->int_vector_id = vector_id;
2191 
2192 	if (queue_type == HNS3_RING_TYPE_RX)
2193 		gl = HNS3_RING_GL_RX;
2194 	else
2195 		gl = HNS3_RING_GL_TX;
2196 
2197 	type = queue_type;
2198 
2199 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2200 		       type);
2201 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2202 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2203 		       gl);
2204 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2205 	req->int_cause_num = 1;
2206 	op_str = mmap ? "Map" : "Unmap";
2207 	status = hns3_cmd_send(hw, &desc, 1);
2208 	if (status) {
2209 		hns3_err(hw, "%s TQP %d fail, vector_id is %d, status is %d.",
2210 			 op_str, queue_id, req->int_vector_id, status);
2211 		return status;
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static int
2218 hns3_init_ring_with_vector(struct hns3_hw *hw)
2219 {
2220 	uint16_t vec;
2221 	int ret;
2222 	int i;
2223 
2224 	/*
2225 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2226 	 * function, vector 1~N can be used respectively for the queues of the
2227 	 * function. Tx and Rx queues with the same number share the interrupt
2228 	 * vector. In the initialization clearing the all hardware mapping
2229 	 * relationship configurations between queues and interrupt vectors is
2230 	 * needed, so some error caused by the residual configurations, such as
2231 	 * the unexpected Tx interrupt, can be avoid.
2232 	 */
2233 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2234 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2235 		vec = vec - 1; /* the last interrupt is reserved */
2236 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2237 	for (i = 0; i < hw->intr_tqps_num; i++) {
2238 		/*
2239 		 * Set gap limiter/rate limiter/quanity limiter algorithm
2240 		 * configuration for interrupt coalesce of queue's interrupt.
2241 		 */
2242 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2243 				       HNS3_TQP_INTR_GL_DEFAULT);
2244 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2245 				       HNS3_TQP_INTR_GL_DEFAULT);
2246 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2247 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2248 
2249 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2250 						 HNS3_RING_TYPE_TX, i);
2251 		if (ret) {
2252 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2253 					  "vector: %d, ret=%d", i, vec, ret);
2254 			return ret;
2255 		}
2256 
2257 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2258 						 HNS3_RING_TYPE_RX, i);
2259 		if (ret) {
2260 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2261 					  "vector: %d, ret=%d", i, vec, ret);
2262 			return ret;
2263 		}
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 static int
2270 hns3_dev_configure(struct rte_eth_dev *dev)
2271 {
2272 	struct hns3_adapter *hns = dev->data->dev_private;
2273 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2274 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2275 	struct hns3_hw *hw = &hns->hw;
2276 	struct hns3_rss_conf *rss_cfg = &hw->rss_info;
2277 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2278 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2279 	struct rte_eth_rss_conf rss_conf;
2280 	uint16_t mtu;
2281 	bool gro_en;
2282 	int ret;
2283 
2284 	/*
2285 	 * Hardware does not support individually enable/disable/reset the Tx or
2286 	 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
2287 	 * and Rx queues at the same time. When the numbers of Tx queues
2288 	 * allocated by upper applications are not equal to the numbers of Rx
2289 	 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
2290 	 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
2291 	 * these fake queues are imperceptible, and can not be used by upper
2292 	 * applications.
2293 	 */
2294 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2295 	if (ret) {
2296 		hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
2297 		return ret;
2298 	}
2299 
2300 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2301 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2302 		hns3_err(hw, "setting link speed/duplex not supported");
2303 		ret = -EINVAL;
2304 		goto cfg_err;
2305 	}
2306 
2307 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2308 		ret = hns3_check_dcb_cfg(dev);
2309 		if (ret)
2310 			goto cfg_err;
2311 	}
2312 
2313 	/* When RSS is not configured, redirect the packet queue 0 */
2314 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2315 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2316 		rss_conf = conf->rx_adv_conf.rss_conf;
2317 		if (rss_conf.rss_key == NULL) {
2318 			rss_conf.rss_key = rss_cfg->key;
2319 			rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
2320 		}
2321 
2322 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2323 		if (ret)
2324 			goto cfg_err;
2325 	}
2326 
2327 	/*
2328 	 * If jumbo frames are enabled, MTU needs to be refreshed
2329 	 * according to the maximum RX packet length.
2330 	 */
2331 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2332 		/*
2333 		 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
2334 		 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
2335 		 * can safely assign to "uint16_t" type variable.
2336 		 */
2337 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
2338 		ret = hns3_dev_mtu_set(dev, mtu);
2339 		if (ret)
2340 			goto cfg_err;
2341 		dev->data->mtu = mtu;
2342 	}
2343 
2344 	ret = hns3_dev_configure_vlan(dev);
2345 	if (ret)
2346 		goto cfg_err;
2347 
2348 	/* config hardware GRO */
2349 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2350 	ret = hns3_config_gro(hw, gro_en);
2351 	if (ret)
2352 		goto cfg_err;
2353 
2354 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2355 
2356 	return 0;
2357 
2358 cfg_err:
2359 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2360 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2361 
2362 	return ret;
2363 }
2364 
2365 static int
2366 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2367 {
2368 	struct hns3_config_max_frm_size_cmd *req;
2369 	struct hns3_cmd_desc desc;
2370 
2371 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2372 
2373 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2374 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2375 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2376 
2377 	return hns3_cmd_send(hw, &desc, 1);
2378 }
2379 
2380 static int
2381 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2382 {
2383 	int ret;
2384 
2385 	ret = hns3_set_mac_mtu(hw, mps);
2386 	if (ret) {
2387 		hns3_err(hw, "Failed to set mtu, ret = %d", ret);
2388 		return ret;
2389 	}
2390 
2391 	ret = hns3_buffer_alloc(hw);
2392 	if (ret)
2393 		hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
2394 
2395 	return ret;
2396 }
2397 
2398 static int
2399 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2400 {
2401 	struct hns3_adapter *hns = dev->data->dev_private;
2402 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2403 	struct hns3_hw *hw = &hns->hw;
2404 	bool is_jumbo_frame;
2405 	int ret;
2406 
2407 	if (dev->data->dev_started) {
2408 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2409 			 "before configuration", dev->data->port_id);
2410 		return -EBUSY;
2411 	}
2412 
2413 	rte_spinlock_lock(&hw->lock);
2414 	is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
2415 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2416 
2417 	/*
2418 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2419 	 * assign to "uint16_t" type variable.
2420 	 */
2421 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2422 	if (ret) {
2423 		rte_spinlock_unlock(&hw->lock);
2424 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2425 			 dev->data->port_id, mtu, ret);
2426 		return ret;
2427 	}
2428 	hns->pf.mps = (uint16_t)frame_size;
2429 	if (is_jumbo_frame)
2430 		dev->data->dev_conf.rxmode.offloads |=
2431 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2432 	else
2433 		dev->data->dev_conf.rxmode.offloads &=
2434 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2435 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2436 	rte_spinlock_unlock(&hw->lock);
2437 
2438 	return 0;
2439 }
2440 
2441 static int
2442 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2443 {
2444 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2445 	struct hns3_hw *hw = &hns->hw;
2446 	uint16_t queue_num = hw->tqps_num;
2447 
2448 	/*
2449 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2450 	 * MSI-X interrupt resources of the hardware.
2451 	 */
2452 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2453 		queue_num = hw->intr_tqps_num;
2454 
2455 	info->max_rx_queues = queue_num;
2456 	info->max_tx_queues = hw->tqps_num;
2457 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2458 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2459 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2460 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2461 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2462 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2463 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2464 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2465 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2466 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2467 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2468 				 DEV_RX_OFFLOAD_KEEP_CRC |
2469 				 DEV_RX_OFFLOAD_SCATTER |
2470 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2471 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2472 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
2473 				 DEV_RX_OFFLOAD_RSS_HASH |
2474 				 DEV_RX_OFFLOAD_TCP_LRO);
2475 	info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2476 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2477 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2478 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2479 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2480 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2481 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2482 				 DEV_TX_OFFLOAD_TCP_TSO |
2483 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2484 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
2485 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2486 				 info->tx_queue_offload_capa |
2487 				 hns3_txvlan_cap_get(hw));
2488 
2489 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2490 		.nb_max = HNS3_MAX_RING_DESC,
2491 		.nb_min = HNS3_MIN_RING_DESC,
2492 		.nb_align = HNS3_ALIGN_RING_DESC,
2493 	};
2494 
2495 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2496 		.nb_max = HNS3_MAX_RING_DESC,
2497 		.nb_min = HNS3_MIN_RING_DESC,
2498 		.nb_align = HNS3_ALIGN_RING_DESC,
2499 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2500 		.nb_mtu_seg_max = HNS3_MAX_NON_TSO_BD_PER_PKT,
2501 	};
2502 
2503 	info->default_rxconf = (struct rte_eth_rxconf) {
2504 		/*
2505 		 * If there are no available Rx buffer descriptors, incoming
2506 		 * packets are always dropped by hardware based on hns3 network
2507 		 * engine.
2508 		 */
2509 		.rx_drop_en = 1,
2510 	};
2511 
2512 	info->vmdq_queue_num = 0;
2513 
2514 	info->reta_size = HNS3_RSS_IND_TBL_SIZE;
2515 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2516 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2517 
2518 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2519 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2520 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2521 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2522 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2523 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2524 
2525 	return 0;
2526 }
2527 
2528 static int
2529 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2530 		    size_t fw_size)
2531 {
2532 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2533 	struct hns3_hw *hw = &hns->hw;
2534 	uint32_t version = hw->fw_version;
2535 	int ret;
2536 
2537 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2538 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2539 				      HNS3_FW_VERSION_BYTE3_S),
2540 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2541 				      HNS3_FW_VERSION_BYTE2_S),
2542 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2543 				      HNS3_FW_VERSION_BYTE1_S),
2544 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2545 				      HNS3_FW_VERSION_BYTE0_S));
2546 	ret += 1; /* add the size of '\0' */
2547 	if (fw_size < (uint32_t)ret)
2548 		return ret;
2549 	else
2550 		return 0;
2551 }
2552 
2553 static int
2554 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2555 		     __rte_unused int wait_to_complete)
2556 {
2557 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2558 	struct hns3_hw *hw = &hns->hw;
2559 	struct hns3_mac *mac = &hw->mac;
2560 	struct rte_eth_link new_link;
2561 
2562 	if (!hns3_is_reset_pending(hns)) {
2563 		hns3_update_speed_duplex(eth_dev);
2564 		hns3_update_link_status(hw);
2565 	}
2566 
2567 	memset(&new_link, 0, sizeof(new_link));
2568 	switch (mac->link_speed) {
2569 	case ETH_SPEED_NUM_10M:
2570 	case ETH_SPEED_NUM_100M:
2571 	case ETH_SPEED_NUM_1G:
2572 	case ETH_SPEED_NUM_10G:
2573 	case ETH_SPEED_NUM_25G:
2574 	case ETH_SPEED_NUM_40G:
2575 	case ETH_SPEED_NUM_50G:
2576 	case ETH_SPEED_NUM_100G:
2577 	case ETH_SPEED_NUM_200G:
2578 		new_link.link_speed = mac->link_speed;
2579 		break;
2580 	default:
2581 		new_link.link_speed = ETH_SPEED_NUM_100M;
2582 		break;
2583 	}
2584 
2585 	new_link.link_duplex = mac->link_duplex;
2586 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2587 	new_link.link_autoneg =
2588 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2589 
2590 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2591 }
2592 
2593 static int
2594 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2595 {
2596 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2597 	struct hns3_pf *pf = &hns->pf;
2598 
2599 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2600 		return -EINVAL;
2601 
2602 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2603 
2604 	return 0;
2605 }
2606 
2607 static int
2608 hns3_query_function_status(struct hns3_hw *hw)
2609 {
2610 #define HNS3_QUERY_MAX_CNT		10
2611 #define HNS3_QUERY_SLEEP_MSCOEND	1
2612 	struct hns3_func_status_cmd *req;
2613 	struct hns3_cmd_desc desc;
2614 	int timeout = 0;
2615 	int ret;
2616 
2617 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2618 	req = (struct hns3_func_status_cmd *)desc.data;
2619 
2620 	do {
2621 		ret = hns3_cmd_send(hw, &desc, 1);
2622 		if (ret) {
2623 			PMD_INIT_LOG(ERR, "query function status failed %d",
2624 				     ret);
2625 			return ret;
2626 		}
2627 
2628 		/* Check pf reset is done */
2629 		if (req->pf_state)
2630 			break;
2631 
2632 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2633 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2634 
2635 	return hns3_parse_func_status(hw, req);
2636 }
2637 
2638 static int
2639 hns3_query_pf_resource(struct hns3_hw *hw)
2640 {
2641 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2642 	struct hns3_pf *pf = &hns->pf;
2643 	struct hns3_pf_res_cmd *req;
2644 	struct hns3_cmd_desc desc;
2645 	int ret;
2646 
2647 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2648 	ret = hns3_cmd_send(hw, &desc, 1);
2649 	if (ret) {
2650 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2651 		return ret;
2652 	}
2653 
2654 	req = (struct hns3_pf_res_cmd *)desc.data;
2655 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num);
2656 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2657 	hw->tqps_num = RTE_MIN(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2658 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2659 
2660 	if (req->tx_buf_size)
2661 		pf->tx_buf_size =
2662 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2663 	else
2664 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2665 
2666 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2667 
2668 	if (req->dv_buf_size)
2669 		pf->dv_buf_size =
2670 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2671 	else
2672 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2673 
2674 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2675 
2676 	hw->num_msi =
2677 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2678 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2679 
2680 	return 0;
2681 }
2682 
2683 static void
2684 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2685 {
2686 	struct hns3_cfg_param_cmd *req;
2687 	uint64_t mac_addr_tmp_high;
2688 	uint64_t mac_addr_tmp;
2689 	uint32_t i;
2690 
2691 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2692 
2693 	/* get the configuration */
2694 	cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2695 					     HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2696 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2697 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2698 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2699 					   HNS3_CFG_TQP_DESC_N_M,
2700 					   HNS3_CFG_TQP_DESC_N_S);
2701 
2702 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2703 				       HNS3_CFG_PHY_ADDR_M,
2704 				       HNS3_CFG_PHY_ADDR_S);
2705 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2706 					 HNS3_CFG_MEDIA_TP_M,
2707 					 HNS3_CFG_MEDIA_TP_S);
2708 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2709 					 HNS3_CFG_RX_BUF_LEN_M,
2710 					 HNS3_CFG_RX_BUF_LEN_S);
2711 	/* get mac address */
2712 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2713 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2714 					   HNS3_CFG_MAC_ADDR_H_M,
2715 					   HNS3_CFG_MAC_ADDR_H_S);
2716 
2717 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2718 
2719 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2720 					    HNS3_CFG_DEFAULT_SPEED_M,
2721 					    HNS3_CFG_DEFAULT_SPEED_S);
2722 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2723 					   HNS3_CFG_RSS_SIZE_M,
2724 					   HNS3_CFG_RSS_SIZE_S);
2725 
2726 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2727 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2728 
2729 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2730 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2731 
2732 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2733 					    HNS3_CFG_SPEED_ABILITY_M,
2734 					    HNS3_CFG_SPEED_ABILITY_S);
2735 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2736 					HNS3_CFG_UMV_TBL_SPACE_M,
2737 					HNS3_CFG_UMV_TBL_SPACE_S);
2738 	if (!cfg->umv_space)
2739 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2740 }
2741 
2742 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2743  * @hw: pointer to struct hns3_hw
2744  * @hcfg: the config structure to be getted
2745  */
2746 static int
2747 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2748 {
2749 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2750 	struct hns3_cfg_param_cmd *req;
2751 	uint32_t offset;
2752 	uint32_t i;
2753 	int ret;
2754 
2755 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2756 		offset = 0;
2757 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2758 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2759 					  true);
2760 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2761 			       i * HNS3_CFG_RD_LEN_BYTES);
2762 		/* Len should be divided by 4 when send to hardware */
2763 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2764 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2765 		req->offset = rte_cpu_to_le_32(offset);
2766 	}
2767 
2768 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2769 	if (ret) {
2770 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2771 		return ret;
2772 	}
2773 
2774 	hns3_parse_cfg(hcfg, desc);
2775 
2776 	return 0;
2777 }
2778 
2779 static int
2780 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2781 {
2782 	switch (speed_cmd) {
2783 	case HNS3_CFG_SPEED_10M:
2784 		*speed = ETH_SPEED_NUM_10M;
2785 		break;
2786 	case HNS3_CFG_SPEED_100M:
2787 		*speed = ETH_SPEED_NUM_100M;
2788 		break;
2789 	case HNS3_CFG_SPEED_1G:
2790 		*speed = ETH_SPEED_NUM_1G;
2791 		break;
2792 	case HNS3_CFG_SPEED_10G:
2793 		*speed = ETH_SPEED_NUM_10G;
2794 		break;
2795 	case HNS3_CFG_SPEED_25G:
2796 		*speed = ETH_SPEED_NUM_25G;
2797 		break;
2798 	case HNS3_CFG_SPEED_40G:
2799 		*speed = ETH_SPEED_NUM_40G;
2800 		break;
2801 	case HNS3_CFG_SPEED_50G:
2802 		*speed = ETH_SPEED_NUM_50G;
2803 		break;
2804 	case HNS3_CFG_SPEED_100G:
2805 		*speed = ETH_SPEED_NUM_100G;
2806 		break;
2807 	case HNS3_CFG_SPEED_200G:
2808 		*speed = ETH_SPEED_NUM_200G;
2809 		break;
2810 	default:
2811 		return -EINVAL;
2812 	}
2813 
2814 	return 0;
2815 }
2816 
2817 static void
2818 hns3_set_default_dev_specifications(struct hns3_hw *hw)
2819 {
2820 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
2821 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
2822 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
2823 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
2824 }
2825 
2826 static void
2827 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
2828 {
2829 	struct hns3_dev_specs_0_cmd *req0;
2830 
2831 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
2832 
2833 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
2834 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
2835 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
2836 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
2837 }
2838 
2839 static int
2840 hns3_query_dev_specifications(struct hns3_hw *hw)
2841 {
2842 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
2843 	int ret;
2844 	int i;
2845 
2846 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2847 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
2848 					  true);
2849 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
2850 	}
2851 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
2852 
2853 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
2854 	if (ret)
2855 		return ret;
2856 
2857 	hns3_parse_dev_specifications(hw, desc);
2858 
2859 	return 0;
2860 }
2861 
2862 static int
2863 hns3_get_capability(struct hns3_hw *hw)
2864 {
2865 	struct rte_pci_device *pci_dev;
2866 	struct rte_eth_dev *eth_dev;
2867 	uint16_t device_id;
2868 	uint8_t revision;
2869 	int ret;
2870 
2871 	eth_dev = &rte_eth_devices[hw->data->port_id];
2872 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2873 	device_id = pci_dev->id.device_id;
2874 
2875 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
2876 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
2877 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
2878 	    device_id == HNS3_DEV_ID_200G_RDMA)
2879 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
2880 
2881 	/* Get PCI revision id */
2882 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
2883 				  HNS3_PCI_REVISION_ID);
2884 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
2885 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
2886 			     ret);
2887 		return -EIO;
2888 	}
2889 	hw->revision = revision;
2890 
2891 	if (revision < PCI_REVISION_ID_HIP09_A) {
2892 		hns3_set_default_dev_specifications(hw);
2893 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
2894 		hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
2895 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
2896 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
2897 		return 0;
2898 	}
2899 
2900 	ret = hns3_query_dev_specifications(hw);
2901 	if (ret) {
2902 		PMD_INIT_LOG(ERR,
2903 			     "failed to query dev specifications, ret = %d",
2904 			     ret);
2905 		return ret;
2906 	}
2907 
2908 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
2909 	hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
2910 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
2911 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
2912 
2913 	return 0;
2914 }
2915 
2916 static int
2917 hns3_get_board_configuration(struct hns3_hw *hw)
2918 {
2919 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2920 	struct hns3_pf *pf = &hns->pf;
2921 	struct hns3_cfg cfg;
2922 	int ret;
2923 
2924 	ret = hns3_get_board_cfg(hw, &cfg);
2925 	if (ret) {
2926 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2927 		return ret;
2928 	}
2929 
2930 	if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER &&
2931 	    !hns3_dev_copper_supported(hw)) {
2932 		PMD_INIT_LOG(ERR, "media type is copper, not supported.");
2933 		return -EOPNOTSUPP;
2934 	}
2935 
2936 	hw->mac.media_type = cfg.media_type;
2937 	hw->rss_size_max = cfg.rss_size_max;
2938 	hw->rss_dis_flag = false;
2939 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2940 	hw->mac.phy_addr = cfg.phy_addr;
2941 	hw->mac.default_addr_setted = false;
2942 	hw->num_tx_desc = cfg.tqp_desc_num;
2943 	hw->num_rx_desc = cfg.tqp_desc_num;
2944 	hw->dcb_info.num_pg = 1;
2945 	hw->dcb_info.hw_pfc_map = 0;
2946 
2947 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2948 	if (ret) {
2949 		PMD_INIT_LOG(ERR, "Get wrong speed %d, ret = %d",
2950 			     cfg.default_speed, ret);
2951 		return ret;
2952 	}
2953 
2954 	pf->tc_max = cfg.tc_num;
2955 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2956 		PMD_INIT_LOG(WARNING,
2957 			     "Get TC num(%u) from flash, set TC num to 1",
2958 			     pf->tc_max);
2959 		pf->tc_max = 1;
2960 	}
2961 
2962 	/* Dev does not support DCB */
2963 	if (!hns3_dev_dcb_supported(hw)) {
2964 		pf->tc_max = 1;
2965 		pf->pfc_max = 0;
2966 	} else
2967 		pf->pfc_max = pf->tc_max;
2968 
2969 	hw->dcb_info.num_tc = 1;
2970 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2971 				     hw->tqps_num / hw->dcb_info.num_tc);
2972 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2973 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2974 
2975 	pf->wanted_umv_size = cfg.umv_space;
2976 
2977 	return ret;
2978 }
2979 
2980 static int
2981 hns3_get_configuration(struct hns3_hw *hw)
2982 {
2983 	int ret;
2984 
2985 	ret = hns3_query_function_status(hw);
2986 	if (ret) {
2987 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2988 		return ret;
2989 	}
2990 
2991 	/* Get device capability */
2992 	ret = hns3_get_capability(hw);
2993 	if (ret) {
2994 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
2995 		return ret;
2996 	}
2997 
2998 	/* Get pf resource */
2999 	ret = hns3_query_pf_resource(hw);
3000 	if (ret) {
3001 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3002 		return ret;
3003 	}
3004 
3005 	ret = hns3_get_board_configuration(hw);
3006 	if (ret)
3007 		PMD_INIT_LOG(ERR, "Failed to get board configuration: %d", ret);
3008 
3009 	return ret;
3010 }
3011 
3012 static int
3013 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3014 		      uint16_t tqp_vid, bool is_pf)
3015 {
3016 	struct hns3_tqp_map_cmd *req;
3017 	struct hns3_cmd_desc desc;
3018 	int ret;
3019 
3020 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3021 
3022 	req = (struct hns3_tqp_map_cmd *)desc.data;
3023 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3024 	req->tqp_vf = func_id;
3025 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3026 	if (!is_pf)
3027 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3028 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3029 
3030 	ret = hns3_cmd_send(hw, &desc, 1);
3031 	if (ret)
3032 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3033 
3034 	return ret;
3035 }
3036 
3037 static int
3038 hns3_map_tqp(struct hns3_hw *hw)
3039 {
3040 	uint16_t tqps_num = hw->total_tqps_num;
3041 	uint16_t func_id;
3042 	uint16_t tqp_id;
3043 	bool is_pf;
3044 	int num;
3045 	int ret;
3046 	int i;
3047 
3048 	/*
3049 	 * In current version VF is not supported when PF is driven by DPDK
3050 	 * driver, so we allocate tqps to PF as much as possible.
3051 	 */
3052 	tqp_id = 0;
3053 	num = DIV_ROUND_UP(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
3054 	for (func_id = HNS3_PF_FUNC_ID; func_id < num; func_id++) {
3055 		is_pf = func_id == HNS3_PF_FUNC_ID ? true : false;
3056 		for (i = 0;
3057 		     i < HNS3_MAX_TQP_NUM_PER_FUNC && tqp_id < tqps_num; i++) {
3058 			ret = hns3_map_tqps_to_func(hw, func_id, tqp_id++, i,
3059 						    is_pf);
3060 			if (ret)
3061 				return ret;
3062 		}
3063 	}
3064 
3065 	return 0;
3066 }
3067 
3068 static int
3069 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3070 {
3071 	struct hns3_config_mac_speed_dup_cmd *req;
3072 	struct hns3_cmd_desc desc;
3073 	int ret;
3074 
3075 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3076 
3077 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3078 
3079 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3080 
3081 	switch (speed) {
3082 	case ETH_SPEED_NUM_10M:
3083 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3084 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3085 		break;
3086 	case ETH_SPEED_NUM_100M:
3087 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3088 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3089 		break;
3090 	case ETH_SPEED_NUM_1G:
3091 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3092 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3093 		break;
3094 	case ETH_SPEED_NUM_10G:
3095 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3096 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3097 		break;
3098 	case ETH_SPEED_NUM_25G:
3099 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3100 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3101 		break;
3102 	case ETH_SPEED_NUM_40G:
3103 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3104 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3105 		break;
3106 	case ETH_SPEED_NUM_50G:
3107 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3108 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3109 		break;
3110 	case ETH_SPEED_NUM_100G:
3111 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3112 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3113 		break;
3114 	case ETH_SPEED_NUM_200G:
3115 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3116 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3117 		break;
3118 	default:
3119 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3120 		return -EINVAL;
3121 	}
3122 
3123 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3124 
3125 	ret = hns3_cmd_send(hw, &desc, 1);
3126 	if (ret)
3127 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3128 
3129 	return ret;
3130 }
3131 
3132 static int
3133 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3134 {
3135 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3136 	struct hns3_pf *pf = &hns->pf;
3137 	struct hns3_priv_buf *priv;
3138 	uint32_t i, total_size;
3139 
3140 	total_size = pf->pkt_buf_size;
3141 
3142 	/* alloc tx buffer for all enabled tc */
3143 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3144 		priv = &buf_alloc->priv_buf[i];
3145 
3146 		if (hw->hw_tc_map & BIT(i)) {
3147 			if (total_size < pf->tx_buf_size)
3148 				return -ENOMEM;
3149 
3150 			priv->tx_buf_size = pf->tx_buf_size;
3151 		} else
3152 			priv->tx_buf_size = 0;
3153 
3154 		total_size -= priv->tx_buf_size;
3155 	}
3156 
3157 	return 0;
3158 }
3159 
3160 static int
3161 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3162 {
3163 /* TX buffer size is unit by 128 byte */
3164 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3165 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3166 	struct hns3_tx_buff_alloc_cmd *req;
3167 	struct hns3_cmd_desc desc;
3168 	uint32_t buf_size;
3169 	uint32_t i;
3170 	int ret;
3171 
3172 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3173 
3174 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3175 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3176 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3177 
3178 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3179 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3180 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3181 	}
3182 
3183 	ret = hns3_cmd_send(hw, &desc, 1);
3184 	if (ret)
3185 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3186 
3187 	return ret;
3188 }
3189 
3190 static int
3191 hns3_get_tc_num(struct hns3_hw *hw)
3192 {
3193 	int cnt = 0;
3194 	uint8_t i;
3195 
3196 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3197 		if (hw->hw_tc_map & BIT(i))
3198 			cnt++;
3199 	return cnt;
3200 }
3201 
3202 static uint32_t
3203 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3204 {
3205 	struct hns3_priv_buf *priv;
3206 	uint32_t rx_priv = 0;
3207 	int i;
3208 
3209 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3210 		priv = &buf_alloc->priv_buf[i];
3211 		if (priv->enable)
3212 			rx_priv += priv->buf_size;
3213 	}
3214 	return rx_priv;
3215 }
3216 
3217 static uint32_t
3218 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3219 {
3220 	uint32_t total_tx_size = 0;
3221 	uint32_t i;
3222 
3223 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3224 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3225 
3226 	return total_tx_size;
3227 }
3228 
3229 /* Get the number of pfc enabled TCs, which have private buffer */
3230 static int
3231 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3232 {
3233 	struct hns3_priv_buf *priv;
3234 	int cnt = 0;
3235 	uint8_t i;
3236 
3237 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3238 		priv = &buf_alloc->priv_buf[i];
3239 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3240 			cnt++;
3241 	}
3242 
3243 	return cnt;
3244 }
3245 
3246 /* Get the number of pfc disabled TCs, which have private buffer */
3247 static int
3248 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3249 			 struct hns3_pkt_buf_alloc *buf_alloc)
3250 {
3251 	struct hns3_priv_buf *priv;
3252 	int cnt = 0;
3253 	uint8_t i;
3254 
3255 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3256 		priv = &buf_alloc->priv_buf[i];
3257 		if (hw->hw_tc_map & BIT(i) &&
3258 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3259 			cnt++;
3260 	}
3261 
3262 	return cnt;
3263 }
3264 
3265 static bool
3266 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3267 		  uint32_t rx_all)
3268 {
3269 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3270 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3271 	struct hns3_pf *pf = &hns->pf;
3272 	uint32_t shared_buf, aligned_mps;
3273 	uint32_t rx_priv;
3274 	uint8_t tc_num;
3275 	uint8_t i;
3276 
3277 	tc_num = hns3_get_tc_num(hw);
3278 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3279 
3280 	if (hns3_dev_dcb_supported(hw))
3281 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3282 					pf->dv_buf_size;
3283 	else
3284 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3285 					+ pf->dv_buf_size;
3286 
3287 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3288 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3289 			     HNS3_BUF_SIZE_UNIT);
3290 
3291 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3292 	if (rx_all < rx_priv + shared_std)
3293 		return false;
3294 
3295 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3296 	buf_alloc->s_buf.buf_size = shared_buf;
3297 	if (hns3_dev_dcb_supported(hw)) {
3298 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3299 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3300 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3301 				  HNS3_BUF_SIZE_UNIT);
3302 	} else {
3303 		buf_alloc->s_buf.self.high =
3304 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3305 		buf_alloc->s_buf.self.low = aligned_mps;
3306 	}
3307 
3308 	if (hns3_dev_dcb_supported(hw)) {
3309 		hi_thrd = shared_buf - pf->dv_buf_size;
3310 
3311 		if (tc_num <= NEED_RESERVE_TC_NUM)
3312 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
3313 					/ BUF_MAX_PERCENT;
3314 
3315 		if (tc_num)
3316 			hi_thrd = hi_thrd / tc_num;
3317 
3318 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3319 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3320 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3321 	} else {
3322 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3323 		lo_thrd = aligned_mps;
3324 	}
3325 
3326 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3327 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3328 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3329 	}
3330 
3331 	return true;
3332 }
3333 
3334 static bool
3335 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3336 		     struct hns3_pkt_buf_alloc *buf_alloc)
3337 {
3338 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3339 	struct hns3_pf *pf = &hns->pf;
3340 	struct hns3_priv_buf *priv;
3341 	uint32_t aligned_mps;
3342 	uint32_t rx_all;
3343 	uint8_t i;
3344 
3345 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3346 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3347 
3348 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3349 		priv = &buf_alloc->priv_buf[i];
3350 
3351 		priv->enable = 0;
3352 		priv->wl.low = 0;
3353 		priv->wl.high = 0;
3354 		priv->buf_size = 0;
3355 
3356 		if (!(hw->hw_tc_map & BIT(i)))
3357 			continue;
3358 
3359 		priv->enable = 1;
3360 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3361 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3362 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3363 						HNS3_BUF_SIZE_UNIT);
3364 		} else {
3365 			priv->wl.low = 0;
3366 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3367 					aligned_mps;
3368 		}
3369 
3370 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3371 	}
3372 
3373 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3374 }
3375 
3376 static bool
3377 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3378 			     struct hns3_pkt_buf_alloc *buf_alloc)
3379 {
3380 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3381 	struct hns3_pf *pf = &hns->pf;
3382 	struct hns3_priv_buf *priv;
3383 	int no_pfc_priv_num;
3384 	uint32_t rx_all;
3385 	uint8_t mask;
3386 	int i;
3387 
3388 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3389 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3390 
3391 	/* let the last to be cleared first */
3392 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3393 		priv = &buf_alloc->priv_buf[i];
3394 		mask = BIT((uint8_t)i);
3395 
3396 		if (hw->hw_tc_map & mask &&
3397 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3398 			/* Clear the no pfc TC private buffer */
3399 			priv->wl.low = 0;
3400 			priv->wl.high = 0;
3401 			priv->buf_size = 0;
3402 			priv->enable = 0;
3403 			no_pfc_priv_num--;
3404 		}
3405 
3406 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3407 		    no_pfc_priv_num == 0)
3408 			break;
3409 	}
3410 
3411 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3412 }
3413 
3414 static bool
3415 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3416 			   struct hns3_pkt_buf_alloc *buf_alloc)
3417 {
3418 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3419 	struct hns3_pf *pf = &hns->pf;
3420 	struct hns3_priv_buf *priv;
3421 	uint32_t rx_all;
3422 	int pfc_priv_num;
3423 	uint8_t mask;
3424 	int i;
3425 
3426 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3427 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3428 
3429 	/* let the last to be cleared first */
3430 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3431 		priv = &buf_alloc->priv_buf[i];
3432 		mask = BIT((uint8_t)i);
3433 
3434 		if (hw->hw_tc_map & mask &&
3435 		    hw->dcb_info.hw_pfc_map & mask) {
3436 			/* Reduce the number of pfc TC with private buffer */
3437 			priv->wl.low = 0;
3438 			priv->enable = 0;
3439 			priv->wl.high = 0;
3440 			priv->buf_size = 0;
3441 			pfc_priv_num--;
3442 		}
3443 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3444 		    pfc_priv_num == 0)
3445 			break;
3446 	}
3447 
3448 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3449 }
3450 
3451 static bool
3452 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3453 			  struct hns3_pkt_buf_alloc *buf_alloc)
3454 {
3455 #define COMPENSATE_BUFFER	0x3C00
3456 #define COMPENSATE_HALF_MPS_NUM	5
3457 #define PRIV_WL_GAP		0x1800
3458 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3459 	struct hns3_pf *pf = &hns->pf;
3460 	uint32_t tc_num = hns3_get_tc_num(hw);
3461 	uint32_t half_mps = pf->mps >> 1;
3462 	struct hns3_priv_buf *priv;
3463 	uint32_t min_rx_priv;
3464 	uint32_t rx_priv;
3465 	uint8_t i;
3466 
3467 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3468 	if (tc_num)
3469 		rx_priv = rx_priv / tc_num;
3470 
3471 	if (tc_num <= NEED_RESERVE_TC_NUM)
3472 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3473 
3474 	/*
3475 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3476 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3477 	 * buffer if rx_priv is greater than min_rx_priv.
3478 	 */
3479 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3480 			COMPENSATE_HALF_MPS_NUM * half_mps;
3481 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3482 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3483 
3484 	if (rx_priv < min_rx_priv)
3485 		return false;
3486 
3487 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3488 		priv = &buf_alloc->priv_buf[i];
3489 
3490 		priv->enable = 0;
3491 		priv->wl.low = 0;
3492 		priv->wl.high = 0;
3493 		priv->buf_size = 0;
3494 
3495 		if (!(hw->hw_tc_map & BIT(i)))
3496 			continue;
3497 
3498 		priv->enable = 1;
3499 		priv->buf_size = rx_priv;
3500 		priv->wl.high = rx_priv - pf->dv_buf_size;
3501 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3502 	}
3503 
3504 	buf_alloc->s_buf.buf_size = 0;
3505 
3506 	return true;
3507 }
3508 
3509 /*
3510  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3511  * @hw: pointer to struct hns3_hw
3512  * @buf_alloc: pointer to buffer calculation data
3513  * @return: 0: calculate sucessful, negative: fail
3514  */
3515 static int
3516 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3517 {
3518 	/* When DCB is not supported, rx private buffer is not allocated. */
3519 	if (!hns3_dev_dcb_supported(hw)) {
3520 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3521 		struct hns3_pf *pf = &hns->pf;
3522 		uint32_t rx_all = pf->pkt_buf_size;
3523 
3524 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3525 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3526 			return -ENOMEM;
3527 
3528 		return 0;
3529 	}
3530 
3531 	/*
3532 	 * Try to allocate privated packet buffer for all TCs without share
3533 	 * buffer.
3534 	 */
3535 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3536 		return 0;
3537 
3538 	/*
3539 	 * Try to allocate privated packet buffer for all TCs with share
3540 	 * buffer.
3541 	 */
3542 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3543 		return 0;
3544 
3545 	/*
3546 	 * For different application scenes, the enabled port number, TC number
3547 	 * and no_drop TC number are different. In order to obtain the better
3548 	 * performance, software could allocate the buffer size and configure
3549 	 * the waterline by tring to decrease the private buffer size according
3550 	 * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3551 	 * enabled tc.
3552 	 */
3553 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3554 		return 0;
3555 
3556 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3557 		return 0;
3558 
3559 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3560 		return 0;
3561 
3562 	return -ENOMEM;
3563 }
3564 
3565 static int
3566 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3567 {
3568 	struct hns3_rx_priv_buff_cmd *req;
3569 	struct hns3_cmd_desc desc;
3570 	uint32_t buf_size;
3571 	int ret;
3572 	int i;
3573 
3574 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3575 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3576 
3577 	/* Alloc private buffer TCs */
3578 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3579 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3580 
3581 		req->buf_num[i] =
3582 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3583 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3584 	}
3585 
3586 	buf_size = buf_alloc->s_buf.buf_size;
3587 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3588 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3589 
3590 	ret = hns3_cmd_send(hw, &desc, 1);
3591 	if (ret)
3592 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3593 
3594 	return ret;
3595 }
3596 
3597 static int
3598 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3599 {
3600 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3601 	struct hns3_rx_priv_wl_buf *req;
3602 	struct hns3_priv_buf *priv;
3603 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3604 	int i, j;
3605 	int ret;
3606 
3607 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3608 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3609 					  false);
3610 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3611 
3612 		/* The first descriptor set the NEXT bit to 1 */
3613 		if (i == 0)
3614 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3615 		else
3616 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3617 
3618 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3619 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3620 
3621 			priv = &buf_alloc->priv_buf[idx];
3622 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3623 							HNS3_BUF_UNIT_S);
3624 			req->tc_wl[j].high |=
3625 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3626 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3627 							HNS3_BUF_UNIT_S);
3628 			req->tc_wl[j].low |=
3629 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3630 		}
3631 	}
3632 
3633 	/* Send 2 descriptor at one time */
3634 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3635 	if (ret)
3636 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3637 			     ret);
3638 	return ret;
3639 }
3640 
3641 static int
3642 hns3_common_thrd_config(struct hns3_hw *hw,
3643 			struct hns3_pkt_buf_alloc *buf_alloc)
3644 {
3645 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3646 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3647 	struct hns3_rx_com_thrd *req;
3648 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3649 	struct hns3_tc_thrd *tc;
3650 	int tc_idx;
3651 	int i, j;
3652 	int ret;
3653 
3654 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3655 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3656 					  false);
3657 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3658 
3659 		/* The first descriptor set the NEXT bit to 1 */
3660 		if (i == 0)
3661 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3662 		else
3663 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3664 
3665 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3666 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3667 			tc = &s_buf->tc_thrd[tc_idx];
3668 
3669 			req->com_thrd[j].high =
3670 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3671 			req->com_thrd[j].high |=
3672 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3673 			req->com_thrd[j].low =
3674 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3675 			req->com_thrd[j].low |=
3676 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3677 		}
3678 	}
3679 
3680 	/* Send 2 descriptors at one time */
3681 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3682 	if (ret)
3683 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3684 
3685 	return ret;
3686 }
3687 
3688 static int
3689 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3690 {
3691 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3692 	struct hns3_rx_com_wl *req;
3693 	struct hns3_cmd_desc desc;
3694 	int ret;
3695 
3696 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3697 
3698 	req = (struct hns3_rx_com_wl *)desc.data;
3699 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3700 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3701 
3702 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3703 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3704 
3705 	ret = hns3_cmd_send(hw, &desc, 1);
3706 	if (ret)
3707 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3708 
3709 	return ret;
3710 }
3711 
3712 int
3713 hns3_buffer_alloc(struct hns3_hw *hw)
3714 {
3715 	struct hns3_pkt_buf_alloc pkt_buf;
3716 	int ret;
3717 
3718 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3719 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3720 	if (ret) {
3721 		PMD_INIT_LOG(ERR,
3722 			     "could not calc tx buffer size for all TCs %d",
3723 			     ret);
3724 		return ret;
3725 	}
3726 
3727 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3728 	if (ret) {
3729 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3730 		return ret;
3731 	}
3732 
3733 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3734 	if (ret) {
3735 		PMD_INIT_LOG(ERR,
3736 			     "could not calc rx priv buffer size for all TCs %d",
3737 			     ret);
3738 		return ret;
3739 	}
3740 
3741 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3742 	if (ret) {
3743 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3744 		return ret;
3745 	}
3746 
3747 	if (hns3_dev_dcb_supported(hw)) {
3748 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3749 		if (ret) {
3750 			PMD_INIT_LOG(ERR,
3751 				     "could not configure rx private waterline %d",
3752 				     ret);
3753 			return ret;
3754 		}
3755 
3756 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3757 		if (ret) {
3758 			PMD_INIT_LOG(ERR,
3759 				     "could not configure common threshold %d",
3760 				     ret);
3761 			return ret;
3762 		}
3763 	}
3764 
3765 	ret = hns3_common_wl_config(hw, &pkt_buf);
3766 	if (ret)
3767 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3768 			     ret);
3769 
3770 	return ret;
3771 }
3772 
3773 static int
3774 hns3_mac_init(struct hns3_hw *hw)
3775 {
3776 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3777 	struct hns3_mac *mac = &hw->mac;
3778 	struct hns3_pf *pf = &hns->pf;
3779 	int ret;
3780 
3781 	pf->support_sfp_query = true;
3782 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
3783 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3784 	if (ret) {
3785 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3786 		return ret;
3787 	}
3788 
3789 	mac->link_status = ETH_LINK_DOWN;
3790 
3791 	return hns3_config_mtu(hw, pf->mps);
3792 }
3793 
3794 static int
3795 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3796 {
3797 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3798 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3799 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3800 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3801 	int return_status;
3802 
3803 	if (cmdq_resp) {
3804 		PMD_INIT_LOG(ERR,
3805 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
3806 			     cmdq_resp);
3807 		return -EIO;
3808 	}
3809 
3810 	switch (resp_code) {
3811 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3812 	case HNS3_ETHERTYPE_ALREADY_ADD:
3813 		return_status = 0;
3814 		break;
3815 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3816 		PMD_INIT_LOG(ERR,
3817 			     "add mac ethertype failed for manager table overflow.");
3818 		return_status = -EIO;
3819 		break;
3820 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3821 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3822 		return_status = -EIO;
3823 		break;
3824 	default:
3825 		PMD_INIT_LOG(ERR,
3826 			     "add mac ethertype failed for undefined, code=%d.",
3827 			     resp_code);
3828 		return_status = -EIO;
3829 		break;
3830 	}
3831 
3832 	return return_status;
3833 }
3834 
3835 static int
3836 hns3_add_mgr_tbl(struct hns3_hw *hw,
3837 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3838 {
3839 	struct hns3_cmd_desc desc;
3840 	uint8_t resp_code;
3841 	uint16_t retval;
3842 	int ret;
3843 
3844 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3845 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3846 
3847 	ret = hns3_cmd_send(hw, &desc, 1);
3848 	if (ret) {
3849 		PMD_INIT_LOG(ERR,
3850 			     "add mac ethertype failed for cmd_send, ret =%d.",
3851 			     ret);
3852 		return ret;
3853 	}
3854 
3855 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3856 	retval = rte_le_to_cpu_16(desc.retval);
3857 
3858 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3859 }
3860 
3861 static void
3862 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3863 		     int *table_item_num)
3864 {
3865 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3866 
3867 	/*
3868 	 * In current version, we add one item in management table as below:
3869 	 * 0x0180C200000E -- LLDP MC address
3870 	 */
3871 	tbl = mgr_table;
3872 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3873 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3874 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3875 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3876 	tbl->i_port_bitmap = 0x1;
3877 	*table_item_num = 1;
3878 }
3879 
3880 static int
3881 hns3_init_mgr_tbl(struct hns3_hw *hw)
3882 {
3883 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3884 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3885 	int table_item_num;
3886 	int ret;
3887 	int i;
3888 
3889 	memset(mgr_table, 0, sizeof(mgr_table));
3890 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3891 	for (i = 0; i < table_item_num; i++) {
3892 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3893 		if (ret) {
3894 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3895 				     ret);
3896 			return ret;
3897 		}
3898 	}
3899 
3900 	return 0;
3901 }
3902 
3903 static void
3904 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3905 			bool en_mc, bool en_bc, int vport_id)
3906 {
3907 	if (!param)
3908 		return;
3909 
3910 	memset(param, 0, sizeof(struct hns3_promisc_param));
3911 	if (en_uc)
3912 		param->enable = HNS3_PROMISC_EN_UC;
3913 	if (en_mc)
3914 		param->enable |= HNS3_PROMISC_EN_MC;
3915 	if (en_bc)
3916 		param->enable |= HNS3_PROMISC_EN_BC;
3917 	param->vf_id = vport_id;
3918 }
3919 
3920 static int
3921 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3922 {
3923 	struct hns3_promisc_cfg_cmd *req;
3924 	struct hns3_cmd_desc desc;
3925 	int ret;
3926 
3927 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3928 
3929 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3930 	req->vf_id = param->vf_id;
3931 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3932 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3933 
3934 	ret = hns3_cmd_send(hw, &desc, 1);
3935 	if (ret)
3936 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
3937 
3938 	return ret;
3939 }
3940 
3941 static int
3942 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3943 {
3944 	struct hns3_promisc_param param;
3945 	bool en_bc_pmc = true;
3946 	uint8_t vf_id;
3947 
3948 	/*
3949 	 * In current version VF is not supported when PF is driven by DPDK
3950 	 * driver, just need to configure parameters for PF vport.
3951 	 */
3952 	vf_id = HNS3_PF_FUNC_ID;
3953 
3954 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3955 	return hns3_cmd_set_promisc_mode(hw, &param);
3956 }
3957 
3958 static int
3959 hns3_promisc_init(struct hns3_hw *hw)
3960 {
3961 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3962 	struct hns3_pf *pf = &hns->pf;
3963 	struct hns3_promisc_param param;
3964 	uint16_t func_id;
3965 	int ret;
3966 
3967 	ret = hns3_set_promisc_mode(hw, false, false);
3968 	if (ret) {
3969 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
3970 		return ret;
3971 	}
3972 
3973 	/*
3974 	 * In current version VFs are not supported when PF is driven by DPDK
3975 	 * driver. After PF has been taken over by DPDK, the original VF will
3976 	 * be invalid. So, there is a possibility of entry residues. It should
3977 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
3978 	 * during init.
3979 	 */
3980 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
3981 		hns3_promisc_param_init(&param, false, false, false, func_id);
3982 		ret = hns3_cmd_set_promisc_mode(hw, &param);
3983 		if (ret) {
3984 			PMD_INIT_LOG(ERR, "failed to clear vf:%d promisc mode,"
3985 					" ret = %d", func_id, ret);
3986 			return ret;
3987 		}
3988 	}
3989 
3990 	return 0;
3991 }
3992 
3993 static void
3994 hns3_promisc_uninit(struct hns3_hw *hw)
3995 {
3996 	struct hns3_promisc_param param;
3997 	uint16_t func_id;
3998 	int ret;
3999 
4000 	func_id = HNS3_PF_FUNC_ID;
4001 
4002 	/*
4003 	 * In current version VFs are not supported when PF is driven by
4004 	 * DPDK driver, and VFs' promisc mode status has been cleared during
4005 	 * init and their status will not change. So just clear PF's promisc
4006 	 * mode status during uninit.
4007 	 */
4008 	hns3_promisc_param_init(&param, false, false, false, func_id);
4009 	ret = hns3_cmd_set_promisc_mode(hw, &param);
4010 	if (ret)
4011 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4012 				" uninit, ret = %d", ret);
4013 }
4014 
4015 static int
4016 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4017 {
4018 	bool allmulti = dev->data->all_multicast ? true : false;
4019 	struct hns3_adapter *hns = dev->data->dev_private;
4020 	struct hns3_hw *hw = &hns->hw;
4021 	uint64_t offloads;
4022 	int err;
4023 	int ret;
4024 
4025 	rte_spinlock_lock(&hw->lock);
4026 	ret = hns3_set_promisc_mode(hw, true, true);
4027 	if (ret) {
4028 		rte_spinlock_unlock(&hw->lock);
4029 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4030 			 ret);
4031 		return ret;
4032 	}
4033 
4034 	/*
4035 	 * When promiscuous mode was enabled, disable the vlan filter to let
4036 	 * all packets coming in in the receiving direction.
4037 	 */
4038 	offloads = dev->data->dev_conf.rxmode.offloads;
4039 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4040 		ret = hns3_enable_vlan_filter(hns, false);
4041 		if (ret) {
4042 			hns3_err(hw, "failed to enable promiscuous mode due to "
4043 				     "failure to disable vlan filter, ret = %d",
4044 				 ret);
4045 			err = hns3_set_promisc_mode(hw, false, allmulti);
4046 			if (err)
4047 				hns3_err(hw, "failed to restore promiscuous "
4048 					 "status after disable vlan filter "
4049 					 "failed during enabling promiscuous "
4050 					 "mode, ret = %d", ret);
4051 		}
4052 	}
4053 
4054 	rte_spinlock_unlock(&hw->lock);
4055 
4056 	return ret;
4057 }
4058 
4059 static int
4060 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4061 {
4062 	bool allmulti = dev->data->all_multicast ? true : false;
4063 	struct hns3_adapter *hns = dev->data->dev_private;
4064 	struct hns3_hw *hw = &hns->hw;
4065 	uint64_t offloads;
4066 	int err;
4067 	int ret;
4068 
4069 	/* If now in all_multicast mode, must remain in all_multicast mode. */
4070 	rte_spinlock_lock(&hw->lock);
4071 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4072 	if (ret) {
4073 		rte_spinlock_unlock(&hw->lock);
4074 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4075 			 ret);
4076 		return ret;
4077 	}
4078 	/* when promiscuous mode was disabled, restore the vlan filter status */
4079 	offloads = dev->data->dev_conf.rxmode.offloads;
4080 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4081 		ret = hns3_enable_vlan_filter(hns, true);
4082 		if (ret) {
4083 			hns3_err(hw, "failed to disable promiscuous mode due to"
4084 				 " failure to restore vlan filter, ret = %d",
4085 				 ret);
4086 			err = hns3_set_promisc_mode(hw, true, true);
4087 			if (err)
4088 				hns3_err(hw, "failed to restore promiscuous "
4089 					 "status after enabling vlan filter "
4090 					 "failed during disabling promiscuous "
4091 					 "mode, ret = %d", ret);
4092 		}
4093 	}
4094 	rte_spinlock_unlock(&hw->lock);
4095 
4096 	return ret;
4097 }
4098 
4099 static int
4100 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4101 {
4102 	struct hns3_adapter *hns = dev->data->dev_private;
4103 	struct hns3_hw *hw = &hns->hw;
4104 	int ret;
4105 
4106 	if (dev->data->promiscuous)
4107 		return 0;
4108 
4109 	rte_spinlock_lock(&hw->lock);
4110 	ret = hns3_set_promisc_mode(hw, false, true);
4111 	rte_spinlock_unlock(&hw->lock);
4112 	if (ret)
4113 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4114 			 ret);
4115 
4116 	return ret;
4117 }
4118 
4119 static int
4120 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4121 {
4122 	struct hns3_adapter *hns = dev->data->dev_private;
4123 	struct hns3_hw *hw = &hns->hw;
4124 	int ret;
4125 
4126 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4127 	if (dev->data->promiscuous)
4128 		return 0;
4129 
4130 	rte_spinlock_lock(&hw->lock);
4131 	ret = hns3_set_promisc_mode(hw, false, false);
4132 	rte_spinlock_unlock(&hw->lock);
4133 	if (ret)
4134 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4135 			 ret);
4136 
4137 	return ret;
4138 }
4139 
4140 static int
4141 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4142 {
4143 	struct hns3_hw *hw = &hns->hw;
4144 	bool allmulti = hw->data->all_multicast ? true : false;
4145 	int ret;
4146 
4147 	if (hw->data->promiscuous) {
4148 		ret = hns3_set_promisc_mode(hw, true, true);
4149 		if (ret)
4150 			hns3_err(hw, "failed to restore promiscuous mode, "
4151 				 "ret = %d", ret);
4152 		return ret;
4153 	}
4154 
4155 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4156 	if (ret)
4157 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4158 			 ret);
4159 	return ret;
4160 }
4161 
4162 static int
4163 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4164 {
4165 	struct hns3_sfp_speed_cmd *resp;
4166 	struct hns3_cmd_desc desc;
4167 	int ret;
4168 
4169 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4170 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
4171 	ret = hns3_cmd_send(hw, &desc, 1);
4172 	if (ret == -EOPNOTSUPP) {
4173 		hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4174 		return ret;
4175 	} else if (ret) {
4176 		hns3_err(hw, "get sfp speed failed %d", ret);
4177 		return ret;
4178 	}
4179 
4180 	*speed = resp->sfp_speed;
4181 
4182 	return 0;
4183 }
4184 
4185 static uint8_t
4186 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4187 {
4188 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4189 		duplex = ETH_LINK_FULL_DUPLEX;
4190 
4191 	return duplex;
4192 }
4193 
4194 static int
4195 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4196 {
4197 	struct hns3_mac *mac = &hw->mac;
4198 	int ret;
4199 
4200 	duplex = hns3_check_speed_dup(duplex, speed);
4201 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4202 		return 0;
4203 
4204 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4205 	if (ret)
4206 		return ret;
4207 
4208 	mac->link_speed = speed;
4209 	mac->link_duplex = duplex;
4210 
4211 	return 0;
4212 }
4213 
4214 static int
4215 hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
4216 {
4217 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4218 	struct hns3_hw *hw = &hns->hw;
4219 	struct hns3_pf *pf = &hns->pf;
4220 	uint32_t speed;
4221 	int ret;
4222 
4223 	/* If IMP do not support get SFP/qSFP speed, return directly */
4224 	if (!pf->support_sfp_query)
4225 		return 0;
4226 
4227 	ret = hns3_get_sfp_speed(hw, &speed);
4228 	if (ret == -EOPNOTSUPP) {
4229 		pf->support_sfp_query = false;
4230 		return ret;
4231 	} else if (ret)
4232 		return ret;
4233 
4234 	if (speed == ETH_SPEED_NUM_NONE)
4235 		return 0; /* do nothing if no SFP */
4236 
4237 	/* Config full duplex for SFP */
4238 	return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4239 }
4240 
4241 static int
4242 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4243 {
4244 	struct hns3_config_mac_mode_cmd *req;
4245 	struct hns3_cmd_desc desc;
4246 	uint32_t loop_en = 0;
4247 	uint8_t val = 0;
4248 	int ret;
4249 
4250 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4251 
4252 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4253 	if (enable)
4254 		val = 1;
4255 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4256 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4257 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4258 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4259 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4260 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4261 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4262 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4263 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4264 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4265 
4266 	/*
4267 	 * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4268 	 * when receiving frames. Otherwise, CRC will be stripped.
4269 	 */
4270 	if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4271 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4272 	else
4273 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4274 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4275 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4276 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4277 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4278 
4279 	ret = hns3_cmd_send(hw, &desc, 1);
4280 	if (ret)
4281 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4282 
4283 	return ret;
4284 }
4285 
4286 static int
4287 hns3_get_mac_link_status(struct hns3_hw *hw)
4288 {
4289 	struct hns3_link_status_cmd *req;
4290 	struct hns3_cmd_desc desc;
4291 	int link_status;
4292 	int ret;
4293 
4294 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4295 	ret = hns3_cmd_send(hw, &desc, 1);
4296 	if (ret) {
4297 		hns3_err(hw, "get link status cmd failed %d", ret);
4298 		return ETH_LINK_DOWN;
4299 	}
4300 
4301 	req = (struct hns3_link_status_cmd *)desc.data;
4302 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4303 
4304 	return !!link_status;
4305 }
4306 
4307 void
4308 hns3_update_link_status(struct hns3_hw *hw)
4309 {
4310 	int state;
4311 
4312 	state = hns3_get_mac_link_status(hw);
4313 	if (state != hw->mac.link_status) {
4314 		hw->mac.link_status = state;
4315 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4316 	}
4317 }
4318 
4319 static void
4320 hns3_service_handler(void *param)
4321 {
4322 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4323 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4324 	struct hns3_hw *hw = &hns->hw;
4325 
4326 	if (!hns3_is_reset_pending(hns)) {
4327 		hns3_update_speed_duplex(eth_dev);
4328 		hns3_update_link_status(hw);
4329 	} else
4330 		hns3_warn(hw, "Cancel the query when reset is pending");
4331 
4332 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4333 }
4334 
4335 static int
4336 hns3_init_hardware(struct hns3_adapter *hns)
4337 {
4338 	struct hns3_hw *hw = &hns->hw;
4339 	int ret;
4340 
4341 	ret = hns3_map_tqp(hw);
4342 	if (ret) {
4343 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4344 		return ret;
4345 	}
4346 
4347 	ret = hns3_init_umv_space(hw);
4348 	if (ret) {
4349 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4350 		return ret;
4351 	}
4352 
4353 	ret = hns3_mac_init(hw);
4354 	if (ret) {
4355 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4356 		goto err_mac_init;
4357 	}
4358 
4359 	ret = hns3_init_mgr_tbl(hw);
4360 	if (ret) {
4361 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4362 		goto err_mac_init;
4363 	}
4364 
4365 	ret = hns3_promisc_init(hw);
4366 	if (ret) {
4367 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4368 			     ret);
4369 		goto err_mac_init;
4370 	}
4371 
4372 	ret = hns3_init_vlan_config(hns);
4373 	if (ret) {
4374 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4375 		goto err_mac_init;
4376 	}
4377 
4378 	ret = hns3_dcb_init(hw);
4379 	if (ret) {
4380 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4381 		goto err_mac_init;
4382 	}
4383 
4384 	ret = hns3_init_fd_config(hns);
4385 	if (ret) {
4386 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4387 		goto err_mac_init;
4388 	}
4389 
4390 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4391 	if (ret) {
4392 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4393 		goto err_mac_init;
4394 	}
4395 
4396 	ret = hns3_config_gro(hw, false);
4397 	if (ret) {
4398 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4399 		goto err_mac_init;
4400 	}
4401 
4402 	/*
4403 	 * In the initialization clearing the all hardware mapping relationship
4404 	 * configurations between queues and interrupt vectors is needed, so
4405 	 * some error caused by the residual configurations, such as the
4406 	 * unexpected interrupt, can be avoid.
4407 	 */
4408 	ret = hns3_init_ring_with_vector(hw);
4409 	if (ret) {
4410 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4411 		goto err_mac_init;
4412 	}
4413 
4414 	return 0;
4415 
4416 err_mac_init:
4417 	hns3_uninit_umv_space(hw);
4418 	return ret;
4419 }
4420 
4421 static int
4422 hns3_clear_hw(struct hns3_hw *hw)
4423 {
4424 	struct hns3_cmd_desc desc;
4425 	int ret;
4426 
4427 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4428 
4429 	ret = hns3_cmd_send(hw, &desc, 1);
4430 	if (ret && ret != -EOPNOTSUPP)
4431 		return ret;
4432 
4433 	return 0;
4434 }
4435 
4436 static void
4437 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4438 {
4439 	uint32_t val;
4440 
4441 	/*
4442 	 * The new firmware support report more hardware error types by
4443 	 * msix mode. These errors are defined as RAS errors in hardware
4444 	 * and belong to a different type from the MSI-x errors processed
4445 	 * by the network driver.
4446 	 *
4447 	 * Network driver should open the new error report on initialition
4448 	 */
4449 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4450 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4451 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4452 }
4453 
4454 static int
4455 hns3_init_pf(struct rte_eth_dev *eth_dev)
4456 {
4457 	struct rte_device *dev = eth_dev->device;
4458 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4459 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4460 	struct hns3_hw *hw = &hns->hw;
4461 	int ret;
4462 
4463 	PMD_INIT_FUNC_TRACE();
4464 
4465 	/* Get hardware io base address from pcie BAR2 IO space */
4466 	hw->io_base = pci_dev->mem_resource[2].addr;
4467 
4468 	/* Firmware command queue initialize */
4469 	ret = hns3_cmd_init_queue(hw);
4470 	if (ret) {
4471 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4472 		goto err_cmd_init_queue;
4473 	}
4474 
4475 	hns3_clear_all_event_cause(hw);
4476 
4477 	/* Firmware command initialize */
4478 	ret = hns3_cmd_init(hw);
4479 	if (ret) {
4480 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4481 		goto err_cmd_init;
4482 	}
4483 
4484 	/*
4485 	 * To ensure that the hardware environment is clean during
4486 	 * initialization, the driver actively clear the hardware environment
4487 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4488 	 * flow table configurations, etc.
4489 	 */
4490 	ret = hns3_clear_hw(hw);
4491 	if (ret) {
4492 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4493 		goto err_cmd_init;
4494 	}
4495 
4496 	hns3_config_all_msix_error(hw, true);
4497 
4498 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
4499 					 hns3_interrupt_handler,
4500 					 eth_dev);
4501 	if (ret) {
4502 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4503 		goto err_intr_callback_register;
4504 	}
4505 
4506 	/* Enable interrupt */
4507 	rte_intr_enable(&pci_dev->intr_handle);
4508 	hns3_pf_enable_irq0(hw);
4509 
4510 	/* Get configuration */
4511 	ret = hns3_get_configuration(hw);
4512 	if (ret) {
4513 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4514 		goto err_get_config;
4515 	}
4516 
4517 	ret = hns3_init_hardware(hns);
4518 	if (ret) {
4519 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4520 		goto err_get_config;
4521 	}
4522 
4523 	/* Initialize flow director filter list & hash */
4524 	ret = hns3_fdir_filter_init(hns);
4525 	if (ret) {
4526 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4527 		goto err_hw_init;
4528 	}
4529 
4530 	hns3_set_default_rss_args(hw);
4531 
4532 	ret = hns3_enable_hw_error_intr(hns, true);
4533 	if (ret) {
4534 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4535 			     ret);
4536 		goto err_fdir;
4537 	}
4538 
4539 	return 0;
4540 
4541 err_fdir:
4542 	hns3_fdir_filter_uninit(hns);
4543 err_hw_init:
4544 	hns3_uninit_umv_space(hw);
4545 
4546 err_get_config:
4547 	hns3_pf_disable_irq0(hw);
4548 	rte_intr_disable(&pci_dev->intr_handle);
4549 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4550 			     eth_dev);
4551 err_intr_callback_register:
4552 err_cmd_init:
4553 	hns3_cmd_uninit(hw);
4554 	hns3_cmd_destroy_queue(hw);
4555 err_cmd_init_queue:
4556 	hw->io_base = NULL;
4557 
4558 	return ret;
4559 }
4560 
4561 static void
4562 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4563 {
4564 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4565 	struct rte_device *dev = eth_dev->device;
4566 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4567 	struct hns3_hw *hw = &hns->hw;
4568 
4569 	PMD_INIT_FUNC_TRACE();
4570 
4571 	hns3_enable_hw_error_intr(hns, false);
4572 	hns3_rss_uninit(hns);
4573 	(void)hns3_config_gro(hw, false);
4574 	hns3_promisc_uninit(hw);
4575 	hns3_fdir_filter_uninit(hns);
4576 	hns3_uninit_umv_space(hw);
4577 	hns3_pf_disable_irq0(hw);
4578 	rte_intr_disable(&pci_dev->intr_handle);
4579 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4580 			     eth_dev);
4581 	hns3_config_all_msix_error(hw, false);
4582 	hns3_cmd_uninit(hw);
4583 	hns3_cmd_destroy_queue(hw);
4584 	hw->io_base = NULL;
4585 }
4586 
4587 static int
4588 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
4589 {
4590 	struct hns3_hw *hw = &hns->hw;
4591 	int ret;
4592 
4593 	ret = hns3_dcb_cfg_update(hns);
4594 	if (ret)
4595 		return ret;
4596 
4597 	/* Enable queues */
4598 	ret = hns3_start_queues(hns, reset_queue);
4599 	if (ret) {
4600 		PMD_INIT_LOG(ERR, "Failed to start queues: %d", ret);
4601 		return ret;
4602 	}
4603 
4604 	/* Enable MAC */
4605 	ret = hns3_cfg_mac_mode(hw, true);
4606 	if (ret) {
4607 		PMD_INIT_LOG(ERR, "Failed to enable MAC: %d", ret);
4608 		goto err_config_mac_mode;
4609 	}
4610 	return 0;
4611 
4612 err_config_mac_mode:
4613 	hns3_stop_queues(hns, true);
4614 	return ret;
4615 }
4616 
4617 static int
4618 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
4619 {
4620 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4621 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4622 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4623 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4624 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4625 	uint32_t intr_vector;
4626 	uint16_t q_id;
4627 	int ret;
4628 
4629 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4630 		return 0;
4631 
4632 	/* disable uio/vfio intr/eventfd mapping */
4633 	rte_intr_disable(intr_handle);
4634 
4635 	/* check and configure queue intr-vector mapping */
4636 	if (rte_intr_cap_multiple(intr_handle) ||
4637 	    !RTE_ETH_DEV_SRIOV(dev).active) {
4638 		intr_vector = hw->used_rx_queues;
4639 		/* creates event fd for each intr vector when MSIX is used */
4640 		if (rte_intr_efd_enable(intr_handle, intr_vector))
4641 			return -EINVAL;
4642 	}
4643 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
4644 		intr_handle->intr_vec =
4645 			rte_zmalloc("intr_vec",
4646 				    hw->used_rx_queues * sizeof(int), 0);
4647 		if (intr_handle->intr_vec == NULL) {
4648 			hns3_err(hw, "Failed to allocate %d rx_queues"
4649 				     " intr_vec", hw->used_rx_queues);
4650 			ret = -ENOMEM;
4651 			goto alloc_intr_vec_error;
4652 		}
4653 	}
4654 
4655 	if (rte_intr_allow_others(intr_handle)) {
4656 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4657 		base = RTE_INTR_VEC_RXTX_OFFSET;
4658 	}
4659 	if (rte_intr_dp_is_en(intr_handle)) {
4660 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4661 			ret = hns3_bind_ring_with_vector(hw, vec, true,
4662 							 HNS3_RING_TYPE_RX,
4663 							 q_id);
4664 			if (ret)
4665 				goto bind_vector_error;
4666 			intr_handle->intr_vec[q_id] = vec;
4667 			if (vec < base + intr_handle->nb_efd - 1)
4668 				vec++;
4669 		}
4670 	}
4671 	rte_intr_enable(intr_handle);
4672 	return 0;
4673 
4674 bind_vector_error:
4675 	rte_intr_efd_disable(intr_handle);
4676 	if (intr_handle->intr_vec) {
4677 		free(intr_handle->intr_vec);
4678 		intr_handle->intr_vec = NULL;
4679 	}
4680 	return ret;
4681 alloc_intr_vec_error:
4682 	rte_intr_efd_disable(intr_handle);
4683 	return ret;
4684 }
4685 
4686 static int
4687 hns3_restore_rx_interrupt(struct hns3_hw *hw)
4688 {
4689 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4690 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4691 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4692 	uint16_t q_id;
4693 	int ret;
4694 
4695 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4696 		return 0;
4697 
4698 	if (rte_intr_dp_is_en(intr_handle)) {
4699 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4700 			ret = hns3_bind_ring_with_vector(hw,
4701 					intr_handle->intr_vec[q_id], true,
4702 					HNS3_RING_TYPE_RX, q_id);
4703 			if (ret)
4704 				return ret;
4705 		}
4706 	}
4707 
4708 	return 0;
4709 }
4710 
4711 static void
4712 hns3_restore_filter(struct rte_eth_dev *dev)
4713 {
4714 	hns3_restore_rss_filter(dev);
4715 }
4716 
4717 static int
4718 hns3_dev_start(struct rte_eth_dev *dev)
4719 {
4720 	struct hns3_adapter *hns = dev->data->dev_private;
4721 	struct hns3_hw *hw = &hns->hw;
4722 	int ret;
4723 
4724 	PMD_INIT_FUNC_TRACE();
4725 	if (rte_atomic16_read(&hw->reset.resetting))
4726 		return -EBUSY;
4727 
4728 	rte_spinlock_lock(&hw->lock);
4729 	hw->adapter_state = HNS3_NIC_STARTING;
4730 
4731 	ret = hns3_do_start(hns, true);
4732 	if (ret) {
4733 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4734 		rte_spinlock_unlock(&hw->lock);
4735 		return ret;
4736 	}
4737 	ret = hns3_map_rx_interrupt(dev);
4738 	if (ret) {
4739 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4740 		rte_spinlock_unlock(&hw->lock);
4741 		return ret;
4742 	}
4743 
4744 	hw->adapter_state = HNS3_NIC_STARTED;
4745 	rte_spinlock_unlock(&hw->lock);
4746 
4747 	hns3_set_rxtx_function(dev);
4748 	hns3_mp_req_start_rxtx(dev);
4749 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
4750 
4751 	hns3_restore_filter(dev);
4752 
4753 	/* Enable interrupt of all rx queues before enabling queues */
4754 	hns3_dev_all_rx_queue_intr_enable(hw, true);
4755 	/*
4756 	 * When finished the initialization, enable queues to receive/transmit
4757 	 * packets.
4758 	 */
4759 	hns3_enable_all_queues(hw, true);
4760 
4761 	hns3_info(hw, "hns3 dev start successful!");
4762 	return 0;
4763 }
4764 
4765 static int
4766 hns3_do_stop(struct hns3_adapter *hns)
4767 {
4768 	struct hns3_hw *hw = &hns->hw;
4769 	bool reset_queue;
4770 	int ret;
4771 
4772 	ret = hns3_cfg_mac_mode(hw, false);
4773 	if (ret)
4774 		return ret;
4775 	hw->mac.link_status = ETH_LINK_DOWN;
4776 
4777 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
4778 		hns3_configure_all_mac_addr(hns, true);
4779 		reset_queue = true;
4780 	} else
4781 		reset_queue = false;
4782 	hw->mac.default_addr_setted = false;
4783 	return hns3_stop_queues(hns, reset_queue);
4784 }
4785 
4786 static void
4787 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
4788 {
4789 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4790 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4791 	struct hns3_adapter *hns = dev->data->dev_private;
4792 	struct hns3_hw *hw = &hns->hw;
4793 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4794 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4795 	uint16_t q_id;
4796 
4797 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4798 		return;
4799 
4800 	/* unmap the ring with vector */
4801 	if (rte_intr_allow_others(intr_handle)) {
4802 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4803 		base = RTE_INTR_VEC_RXTX_OFFSET;
4804 	}
4805 	if (rte_intr_dp_is_en(intr_handle)) {
4806 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4807 			(void)hns3_bind_ring_with_vector(hw, vec, false,
4808 							 HNS3_RING_TYPE_RX,
4809 							 q_id);
4810 			if (vec < base + intr_handle->nb_efd - 1)
4811 				vec++;
4812 		}
4813 	}
4814 	/* Clean datapath event and queue/vec mapping */
4815 	rte_intr_efd_disable(intr_handle);
4816 	if (intr_handle->intr_vec) {
4817 		rte_free(intr_handle->intr_vec);
4818 		intr_handle->intr_vec = NULL;
4819 	}
4820 }
4821 
4822 static void
4823 hns3_dev_stop(struct rte_eth_dev *dev)
4824 {
4825 	struct hns3_adapter *hns = dev->data->dev_private;
4826 	struct hns3_hw *hw = &hns->hw;
4827 
4828 	PMD_INIT_FUNC_TRACE();
4829 
4830 	hw->adapter_state = HNS3_NIC_STOPPING;
4831 	hns3_set_rxtx_function(dev);
4832 	rte_wmb();
4833 	/* Disable datapath on secondary process. */
4834 	hns3_mp_req_stop_rxtx(dev);
4835 	/* Prevent crashes when queues are still in use. */
4836 	rte_delay_ms(hw->tqps_num);
4837 
4838 	rte_spinlock_lock(&hw->lock);
4839 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
4840 		hns3_do_stop(hns);
4841 		hns3_unmap_rx_interrupt(dev);
4842 		hns3_dev_release_mbufs(hns);
4843 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4844 	}
4845 	rte_eal_alarm_cancel(hns3_service_handler, dev);
4846 	rte_spinlock_unlock(&hw->lock);
4847 }
4848 
4849 static void
4850 hns3_dev_close(struct rte_eth_dev *eth_dev)
4851 {
4852 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4853 	struct hns3_hw *hw = &hns->hw;
4854 
4855 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
4856 		rte_free(eth_dev->process_private);
4857 		eth_dev->process_private = NULL;
4858 		return;
4859 	}
4860 
4861 	if (hw->adapter_state == HNS3_NIC_STARTED)
4862 		hns3_dev_stop(eth_dev);
4863 
4864 	hw->adapter_state = HNS3_NIC_CLOSING;
4865 	hns3_reset_abort(hns);
4866 	hw->adapter_state = HNS3_NIC_CLOSED;
4867 
4868 	hns3_configure_all_mc_mac_addr(hns, true);
4869 	hns3_remove_all_vlan_table(hns);
4870 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
4871 	hns3_uninit_pf(eth_dev);
4872 	hns3_free_all_queues(eth_dev);
4873 	rte_free(hw->reset.wait_data);
4874 	rte_free(eth_dev->process_private);
4875 	eth_dev->process_private = NULL;
4876 	hns3_mp_uninit_primary();
4877 	hns3_warn(hw, "Close port %d finished", hw->data->port_id);
4878 }
4879 
4880 static int
4881 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4882 {
4883 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4884 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4885 
4886 	fc_conf->pause_time = pf->pause_time;
4887 
4888 	/* return fc current mode */
4889 	switch (hw->current_mode) {
4890 	case HNS3_FC_FULL:
4891 		fc_conf->mode = RTE_FC_FULL;
4892 		break;
4893 	case HNS3_FC_TX_PAUSE:
4894 		fc_conf->mode = RTE_FC_TX_PAUSE;
4895 		break;
4896 	case HNS3_FC_RX_PAUSE:
4897 		fc_conf->mode = RTE_FC_RX_PAUSE;
4898 		break;
4899 	case HNS3_FC_NONE:
4900 	default:
4901 		fc_conf->mode = RTE_FC_NONE;
4902 		break;
4903 	}
4904 
4905 	return 0;
4906 }
4907 
4908 static void
4909 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
4910 {
4911 	switch (mode) {
4912 	case RTE_FC_NONE:
4913 		hw->requested_mode = HNS3_FC_NONE;
4914 		break;
4915 	case RTE_FC_RX_PAUSE:
4916 		hw->requested_mode = HNS3_FC_RX_PAUSE;
4917 		break;
4918 	case RTE_FC_TX_PAUSE:
4919 		hw->requested_mode = HNS3_FC_TX_PAUSE;
4920 		break;
4921 	case RTE_FC_FULL:
4922 		hw->requested_mode = HNS3_FC_FULL;
4923 		break;
4924 	default:
4925 		hw->requested_mode = HNS3_FC_NONE;
4926 		hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
4927 			  "configured to RTE_FC_NONE", mode);
4928 		break;
4929 	}
4930 }
4931 
4932 static int
4933 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4934 {
4935 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4936 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4937 	int ret;
4938 
4939 	if (fc_conf->high_water || fc_conf->low_water ||
4940 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
4941 		hns3_err(hw, "Unsupported flow control settings specified, "
4942 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4943 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4944 			 fc_conf->high_water, fc_conf->low_water,
4945 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
4946 		return -EINVAL;
4947 	}
4948 	if (fc_conf->autoneg) {
4949 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4950 		return -EINVAL;
4951 	}
4952 	if (!fc_conf->pause_time) {
4953 		hns3_err(hw, "Invalid pause time %d setting.",
4954 			 fc_conf->pause_time);
4955 		return -EINVAL;
4956 	}
4957 
4958 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4959 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
4960 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
4961 			 "current_fc_status = %d", hw->current_fc_status);
4962 		return -EOPNOTSUPP;
4963 	}
4964 
4965 	hns3_get_fc_mode(hw, fc_conf->mode);
4966 	if (hw->requested_mode == hw->current_mode &&
4967 	    pf->pause_time == fc_conf->pause_time)
4968 		return 0;
4969 
4970 	rte_spinlock_lock(&hw->lock);
4971 	ret = hns3_fc_enable(dev, fc_conf);
4972 	rte_spinlock_unlock(&hw->lock);
4973 
4974 	return ret;
4975 }
4976 
4977 static int
4978 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
4979 			    struct rte_eth_pfc_conf *pfc_conf)
4980 {
4981 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4982 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4983 	uint8_t priority;
4984 	int ret;
4985 
4986 	if (!hns3_dev_dcb_supported(hw)) {
4987 		hns3_err(hw, "This port does not support dcb configurations.");
4988 		return -EOPNOTSUPP;
4989 	}
4990 
4991 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
4992 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
4993 		hns3_err(hw, "Unsupported flow control settings specified, "
4994 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4995 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4996 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
4997 			 pfc_conf->fc.send_xon,
4998 			 pfc_conf->fc.mac_ctrl_frame_fwd);
4999 		return -EINVAL;
5000 	}
5001 	if (pfc_conf->fc.autoneg) {
5002 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5003 		return -EINVAL;
5004 	}
5005 	if (pfc_conf->fc.pause_time == 0) {
5006 		hns3_err(hw, "Invalid pause time %d setting.",
5007 			 pfc_conf->fc.pause_time);
5008 		return -EINVAL;
5009 	}
5010 
5011 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5012 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5013 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5014 			     "current_fc_status = %d", hw->current_fc_status);
5015 		return -EOPNOTSUPP;
5016 	}
5017 
5018 	priority = pfc_conf->priority;
5019 	hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5020 	if (hw->dcb_info.pfc_en & BIT(priority) &&
5021 	    hw->requested_mode == hw->current_mode &&
5022 	    pfc_conf->fc.pause_time == pf->pause_time)
5023 		return 0;
5024 
5025 	rte_spinlock_lock(&hw->lock);
5026 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5027 	rte_spinlock_unlock(&hw->lock);
5028 
5029 	return ret;
5030 }
5031 
5032 static int
5033 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5034 {
5035 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5036 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5037 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5038 	int i;
5039 
5040 	rte_spinlock_lock(&hw->lock);
5041 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5042 		dcb_info->nb_tcs = pf->local_max_tc;
5043 	else
5044 		dcb_info->nb_tcs = 1;
5045 
5046 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5047 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5048 	for (i = 0; i < dcb_info->nb_tcs; i++)
5049 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5050 
5051 	for (i = 0; i < hw->num_tc; i++) {
5052 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5053 		dcb_info->tc_queue.tc_txq[0][i].base =
5054 						hw->tc_queue[i].tqp_offset;
5055 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5056 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5057 						hw->tc_queue[i].tqp_count;
5058 	}
5059 	rte_spinlock_unlock(&hw->lock);
5060 
5061 	return 0;
5062 }
5063 
5064 static int
5065 hns3_reinit_dev(struct hns3_adapter *hns)
5066 {
5067 	struct hns3_hw *hw = &hns->hw;
5068 	int ret;
5069 
5070 	ret = hns3_cmd_init(hw);
5071 	if (ret) {
5072 		hns3_err(hw, "Failed to init cmd: %d", ret);
5073 		return ret;
5074 	}
5075 
5076 	ret = hns3_reset_all_queues(hns);
5077 	if (ret) {
5078 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5079 		return ret;
5080 	}
5081 
5082 	ret = hns3_init_hardware(hns);
5083 	if (ret) {
5084 		hns3_err(hw, "Failed to init hardware: %d", ret);
5085 		return ret;
5086 	}
5087 
5088 	ret = hns3_enable_hw_error_intr(hns, true);
5089 	if (ret) {
5090 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5091 			     ret);
5092 		return ret;
5093 	}
5094 	hns3_info(hw, "Reset done, driver initialization finished.");
5095 
5096 	return 0;
5097 }
5098 
5099 static bool
5100 is_pf_reset_done(struct hns3_hw *hw)
5101 {
5102 	uint32_t val, reg, reg_bit;
5103 
5104 	switch (hw->reset.level) {
5105 	case HNS3_IMP_RESET:
5106 		reg = HNS3_GLOBAL_RESET_REG;
5107 		reg_bit = HNS3_IMP_RESET_BIT;
5108 		break;
5109 	case HNS3_GLOBAL_RESET:
5110 		reg = HNS3_GLOBAL_RESET_REG;
5111 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5112 		break;
5113 	case HNS3_FUNC_RESET:
5114 		reg = HNS3_FUN_RST_ING;
5115 		reg_bit = HNS3_FUN_RST_ING_B;
5116 		break;
5117 	case HNS3_FLR_RESET:
5118 	default:
5119 		hns3_err(hw, "Wait for unsupported reset level: %d",
5120 			 hw->reset.level);
5121 		return true;
5122 	}
5123 	val = hns3_read_dev(hw, reg);
5124 	if (hns3_get_bit(val, reg_bit))
5125 		return false;
5126 	else
5127 		return true;
5128 }
5129 
5130 bool
5131 hns3_is_reset_pending(struct hns3_adapter *hns)
5132 {
5133 	struct hns3_hw *hw = &hns->hw;
5134 	enum hns3_reset_level reset;
5135 
5136 	hns3_check_event_cause(hns, NULL);
5137 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5138 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5139 		hns3_warn(hw, "High level reset %d is pending", reset);
5140 		return true;
5141 	}
5142 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5143 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5144 		hns3_warn(hw, "High level reset %d is request", reset);
5145 		return true;
5146 	}
5147 	return false;
5148 }
5149 
5150 static int
5151 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5152 {
5153 	struct hns3_hw *hw = &hns->hw;
5154 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5155 	struct timeval tv;
5156 
5157 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5158 		return 0;
5159 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5160 		gettimeofday(&tv, NULL);
5161 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5162 			  tv.tv_sec, tv.tv_usec);
5163 		return -ETIME;
5164 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5165 		return -EAGAIN;
5166 
5167 	wait_data->hns = hns;
5168 	wait_data->check_completion = is_pf_reset_done;
5169 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5170 				      HNS3_RESET_WAIT_MS + get_timeofday_ms();
5171 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5172 	wait_data->count = HNS3_RESET_WAIT_CNT;
5173 	wait_data->result = HNS3_WAIT_REQUEST;
5174 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5175 	return -EAGAIN;
5176 }
5177 
5178 static int
5179 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5180 {
5181 	struct hns3_cmd_desc desc;
5182 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5183 
5184 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5185 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5186 	req->fun_reset_vfid = func_id;
5187 
5188 	return hns3_cmd_send(hw, &desc, 1);
5189 }
5190 
5191 static int
5192 hns3_imp_reset_cmd(struct hns3_hw *hw)
5193 {
5194 	struct hns3_cmd_desc desc;
5195 
5196 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5197 	desc.data[0] = 0xeedd;
5198 
5199 	return hns3_cmd_send(hw, &desc, 1);
5200 }
5201 
5202 static void
5203 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5204 {
5205 	struct hns3_hw *hw = &hns->hw;
5206 	struct timeval tv;
5207 	uint32_t val;
5208 
5209 	gettimeofday(&tv, NULL);
5210 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5211 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5212 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5213 			  tv.tv_sec, tv.tv_usec);
5214 		return;
5215 	}
5216 
5217 	switch (reset_level) {
5218 	case HNS3_IMP_RESET:
5219 		hns3_imp_reset_cmd(hw);
5220 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5221 			  tv.tv_sec, tv.tv_usec);
5222 		break;
5223 	case HNS3_GLOBAL_RESET:
5224 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5225 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5226 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5227 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5228 			  tv.tv_sec, tv.tv_usec);
5229 		break;
5230 	case HNS3_FUNC_RESET:
5231 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5232 			  tv.tv_sec, tv.tv_usec);
5233 		/* schedule again to check later */
5234 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5235 		hns3_schedule_reset(hns);
5236 		break;
5237 	default:
5238 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5239 		return;
5240 	}
5241 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5242 }
5243 
5244 static enum hns3_reset_level
5245 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5246 {
5247 	struct hns3_hw *hw = &hns->hw;
5248 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5249 
5250 	/* Return the highest priority reset level amongst all */
5251 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5252 		reset_level = HNS3_IMP_RESET;
5253 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5254 		reset_level = HNS3_GLOBAL_RESET;
5255 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5256 		reset_level = HNS3_FUNC_RESET;
5257 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5258 		reset_level = HNS3_FLR_RESET;
5259 
5260 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5261 		return HNS3_NONE_RESET;
5262 
5263 	return reset_level;
5264 }
5265 
5266 static void
5267 hns3_record_imp_error(struct hns3_adapter *hns)
5268 {
5269 	struct hns3_hw *hw = &hns->hw;
5270 	uint32_t reg_val;
5271 
5272 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5273 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5274 		hns3_warn(hw, "Detected IMP RD poison!");
5275 		hns3_error_int_stats_add(hns, "IMP_RD_POISON_INT_STS");
5276 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5277 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5278 	}
5279 
5280 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5281 		hns3_warn(hw, "Detected IMP CMDQ error!");
5282 		hns3_error_int_stats_add(hns, "CMDQ_MEM_ECC_INT_STS");
5283 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5284 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5285 	}
5286 }
5287 
5288 static int
5289 hns3_prepare_reset(struct hns3_adapter *hns)
5290 {
5291 	struct hns3_hw *hw = &hns->hw;
5292 	uint32_t reg_val;
5293 	int ret;
5294 
5295 	switch (hw->reset.level) {
5296 	case HNS3_FUNC_RESET:
5297 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5298 		if (ret)
5299 			return ret;
5300 
5301 		/*
5302 		 * After performaning pf reset, it is not necessary to do the
5303 		 * mailbox handling or send any command to firmware, because
5304 		 * any mailbox handling or command to firmware is only valid
5305 		 * after hns3_cmd_init is called.
5306 		 */
5307 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
5308 		hw->reset.stats.request_cnt++;
5309 		break;
5310 	case HNS3_IMP_RESET:
5311 		hns3_record_imp_error(hns);
5312 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5313 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5314 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5315 		break;
5316 	default:
5317 		break;
5318 	}
5319 	return 0;
5320 }
5321 
5322 static int
5323 hns3_set_rst_done(struct hns3_hw *hw)
5324 {
5325 	struct hns3_pf_rst_done_cmd *req;
5326 	struct hns3_cmd_desc desc;
5327 
5328 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5329 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5330 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5331 	return hns3_cmd_send(hw, &desc, 1);
5332 }
5333 
5334 static int
5335 hns3_stop_service(struct hns3_adapter *hns)
5336 {
5337 	struct hns3_hw *hw = &hns->hw;
5338 	struct rte_eth_dev *eth_dev;
5339 
5340 	eth_dev = &rte_eth_devices[hw->data->port_id];
5341 	if (hw->adapter_state == HNS3_NIC_STARTED)
5342 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5343 	hw->mac.link_status = ETH_LINK_DOWN;
5344 
5345 	hns3_set_rxtx_function(eth_dev);
5346 	rte_wmb();
5347 	/* Disable datapath on secondary process. */
5348 	hns3_mp_req_stop_rxtx(eth_dev);
5349 	rte_delay_ms(hw->tqps_num);
5350 
5351 	rte_spinlock_lock(&hw->lock);
5352 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5353 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5354 		hns3_do_stop(hns);
5355 		hw->reset.mbuf_deferred_free = true;
5356 	} else
5357 		hw->reset.mbuf_deferred_free = false;
5358 
5359 	/*
5360 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5361 	 * from table space. Hence, for function reset software intervention is
5362 	 * required to delete the entries
5363 	 */
5364 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
5365 		hns3_configure_all_mc_mac_addr(hns, true);
5366 	rte_spinlock_unlock(&hw->lock);
5367 
5368 	return 0;
5369 }
5370 
5371 static int
5372 hns3_start_service(struct hns3_adapter *hns)
5373 {
5374 	struct hns3_hw *hw = &hns->hw;
5375 	struct rte_eth_dev *eth_dev;
5376 
5377 	if (hw->reset.level == HNS3_IMP_RESET ||
5378 	    hw->reset.level == HNS3_GLOBAL_RESET)
5379 		hns3_set_rst_done(hw);
5380 	eth_dev = &rte_eth_devices[hw->data->port_id];
5381 	hns3_set_rxtx_function(eth_dev);
5382 	hns3_mp_req_start_rxtx(eth_dev);
5383 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5384 		hns3_service_handler(eth_dev);
5385 
5386 		/* Enable interrupt of all rx queues before enabling queues */
5387 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5388 		/*
5389 		 * When finished the initialization, enable queues to receive
5390 		 * and transmit packets.
5391 		 */
5392 		hns3_enable_all_queues(hw, true);
5393 	}
5394 
5395 	return 0;
5396 }
5397 
5398 static int
5399 hns3_restore_conf(struct hns3_adapter *hns)
5400 {
5401 	struct hns3_hw *hw = &hns->hw;
5402 	int ret;
5403 
5404 	ret = hns3_configure_all_mac_addr(hns, false);
5405 	if (ret)
5406 		return ret;
5407 
5408 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5409 	if (ret)
5410 		goto err_mc_mac;
5411 
5412 	ret = hns3_dev_promisc_restore(hns);
5413 	if (ret)
5414 		goto err_promisc;
5415 
5416 	ret = hns3_restore_vlan_table(hns);
5417 	if (ret)
5418 		goto err_promisc;
5419 
5420 	ret = hns3_restore_vlan_conf(hns);
5421 	if (ret)
5422 		goto err_promisc;
5423 
5424 	ret = hns3_restore_all_fdir_filter(hns);
5425 	if (ret)
5426 		goto err_promisc;
5427 
5428 	ret = hns3_restore_rx_interrupt(hw);
5429 	if (ret)
5430 		goto err_promisc;
5431 
5432 	ret = hns3_restore_gro_conf(hw);
5433 	if (ret)
5434 		goto err_promisc;
5435 
5436 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5437 		ret = hns3_do_start(hns, false);
5438 		if (ret)
5439 			goto err_promisc;
5440 		hns3_info(hw, "hns3 dev restart successful!");
5441 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5442 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5443 	return 0;
5444 
5445 err_promisc:
5446 	hns3_configure_all_mc_mac_addr(hns, true);
5447 err_mc_mac:
5448 	hns3_configure_all_mac_addr(hns, true);
5449 	return ret;
5450 }
5451 
5452 static void
5453 hns3_reset_service(void *param)
5454 {
5455 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5456 	struct hns3_hw *hw = &hns->hw;
5457 	enum hns3_reset_level reset_level;
5458 	struct timeval tv_delta;
5459 	struct timeval tv_start;
5460 	struct timeval tv;
5461 	uint64_t msec;
5462 	int ret;
5463 
5464 	/*
5465 	 * The interrupt is not triggered within the delay time.
5466 	 * The interrupt may have been lost. It is necessary to handle
5467 	 * the interrupt to recover from the error.
5468 	 */
5469 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
5470 		rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
5471 		hns3_err(hw, "Handling interrupts in delayed tasks");
5472 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5473 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5474 		if (reset_level == HNS3_NONE_RESET) {
5475 			hns3_err(hw, "No reset level is set, try IMP reset");
5476 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5477 		}
5478 	}
5479 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
5480 
5481 	/*
5482 	 * Check if there is any ongoing reset in the hardware. This status can
5483 	 * be checked from reset_pending. If there is then, we need to wait for
5484 	 * hardware to complete reset.
5485 	 *    a. If we are able to figure out in reasonable time that hardware
5486 	 *       has fully resetted then, we can proceed with driver, client
5487 	 *       reset.
5488 	 *    b. else, we can come back later to check this status so re-sched
5489 	 *       now.
5490 	 */
5491 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5492 	if (reset_level != HNS3_NONE_RESET) {
5493 		gettimeofday(&tv_start, NULL);
5494 		ret = hns3_reset_process(hns, reset_level);
5495 		gettimeofday(&tv, NULL);
5496 		timersub(&tv, &tv_start, &tv_delta);
5497 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
5498 		       tv_delta.tv_usec / USEC_PER_MSEC;
5499 		if (msec > HNS3_RESET_PROCESS_MS)
5500 			hns3_err(hw, "%d handle long time delta %" PRIx64
5501 				     " ms time=%ld.%.6ld",
5502 				 hw->reset.level, msec,
5503 				 tv.tv_sec, tv.tv_usec);
5504 		if (ret == -EAGAIN)
5505 			return;
5506 	}
5507 
5508 	/* Check if we got any *new* reset requests to be honored */
5509 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
5510 	if (reset_level != HNS3_NONE_RESET)
5511 		hns3_msix_process(hns, reset_level);
5512 }
5513 
5514 static const struct eth_dev_ops hns3_eth_dev_ops = {
5515 	.dev_start          = hns3_dev_start,
5516 	.dev_stop           = hns3_dev_stop,
5517 	.dev_close          = hns3_dev_close,
5518 	.promiscuous_enable = hns3_dev_promiscuous_enable,
5519 	.promiscuous_disable = hns3_dev_promiscuous_disable,
5520 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
5521 	.allmulticast_disable = hns3_dev_allmulticast_disable,
5522 	.mtu_set            = hns3_dev_mtu_set,
5523 	.stats_get          = hns3_stats_get,
5524 	.stats_reset        = hns3_stats_reset,
5525 	.xstats_get         = hns3_dev_xstats_get,
5526 	.xstats_get_names   = hns3_dev_xstats_get_names,
5527 	.xstats_reset       = hns3_dev_xstats_reset,
5528 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
5529 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
5530 	.dev_infos_get          = hns3_dev_infos_get,
5531 	.fw_version_get         = hns3_fw_version_get,
5532 	.rx_queue_setup         = hns3_rx_queue_setup,
5533 	.tx_queue_setup         = hns3_tx_queue_setup,
5534 	.rx_queue_release       = hns3_dev_rx_queue_release,
5535 	.tx_queue_release       = hns3_dev_tx_queue_release,
5536 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
5537 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
5538 	.rxq_info_get           = hns3_rxq_info_get,
5539 	.txq_info_get           = hns3_txq_info_get,
5540 	.dev_configure          = hns3_dev_configure,
5541 	.flow_ctrl_get          = hns3_flow_ctrl_get,
5542 	.flow_ctrl_set          = hns3_flow_ctrl_set,
5543 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
5544 	.mac_addr_add           = hns3_add_mac_addr,
5545 	.mac_addr_remove        = hns3_remove_mac_addr,
5546 	.mac_addr_set           = hns3_set_default_mac_addr,
5547 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
5548 	.link_update            = hns3_dev_link_update,
5549 	.rss_hash_update        = hns3_dev_rss_hash_update,
5550 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
5551 	.reta_update            = hns3_dev_rss_reta_update,
5552 	.reta_query             = hns3_dev_rss_reta_query,
5553 	.filter_ctrl            = hns3_dev_filter_ctrl,
5554 	.vlan_filter_set        = hns3_vlan_filter_set,
5555 	.vlan_tpid_set          = hns3_vlan_tpid_set,
5556 	.vlan_offload_set       = hns3_vlan_offload_set,
5557 	.vlan_pvid_set          = hns3_vlan_pvid_set,
5558 	.get_reg                = hns3_get_regs,
5559 	.get_dcb_info           = hns3_get_dcb_info,
5560 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
5561 };
5562 
5563 static const struct hns3_reset_ops hns3_reset_ops = {
5564 	.reset_service       = hns3_reset_service,
5565 	.stop_service        = hns3_stop_service,
5566 	.prepare_reset       = hns3_prepare_reset,
5567 	.wait_hardware_ready = hns3_wait_hardware_ready,
5568 	.reinit_dev          = hns3_reinit_dev,
5569 	.restore_conf	     = hns3_restore_conf,
5570 	.start_service       = hns3_start_service,
5571 };
5572 
5573 static int
5574 hns3_dev_init(struct rte_eth_dev *eth_dev)
5575 {
5576 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5577 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
5578 	struct rte_ether_addr *eth_addr;
5579 	struct hns3_hw *hw = &hns->hw;
5580 	int ret;
5581 
5582 	PMD_INIT_FUNC_TRACE();
5583 
5584 	eth_dev->process_private = (struct hns3_process_private *)
5585 	    rte_zmalloc_socket("hns3_filter_list",
5586 			       sizeof(struct hns3_process_private),
5587 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
5588 	if (eth_dev->process_private == NULL) {
5589 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
5590 		return -ENOMEM;
5591 	}
5592 	/* initialize flow filter lists */
5593 	hns3_filterlist_init(eth_dev);
5594 
5595 	hns3_set_rxtx_function(eth_dev);
5596 	eth_dev->dev_ops = &hns3_eth_dev_ops;
5597 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5598 		ret = hns3_mp_init_secondary();
5599 		if (ret) {
5600 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
5601 				     "process, ret = %d", ret);
5602 			goto err_mp_init_secondary;
5603 		}
5604 
5605 		hw->secondary_cnt++;
5606 		return 0;
5607 	}
5608 
5609 	ret = hns3_mp_init_primary();
5610 	if (ret) {
5611 		PMD_INIT_LOG(ERR,
5612 			     "Failed to init for primary process, ret = %d",
5613 			     ret);
5614 		goto err_mp_init_primary;
5615 	}
5616 
5617 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
5618 	hns->is_vf = false;
5619 	hw->data = eth_dev->data;
5620 
5621 	/*
5622 	 * Set default max packet size according to the mtu
5623 	 * default vale in DPDK frame.
5624 	 */
5625 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
5626 
5627 	ret = hns3_reset_init(hw);
5628 	if (ret)
5629 		goto err_init_reset;
5630 	hw->reset.ops = &hns3_reset_ops;
5631 
5632 	ret = hns3_init_pf(eth_dev);
5633 	if (ret) {
5634 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
5635 		goto err_init_pf;
5636 	}
5637 
5638 	/* Allocate memory for storing MAC addresses */
5639 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
5640 					       sizeof(struct rte_ether_addr) *
5641 					       HNS3_UC_MACADDR_NUM, 0);
5642 	if (eth_dev->data->mac_addrs == NULL) {
5643 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
5644 			     "to store MAC addresses",
5645 			     sizeof(struct rte_ether_addr) *
5646 			     HNS3_UC_MACADDR_NUM);
5647 		ret = -ENOMEM;
5648 		goto err_rte_zmalloc;
5649 	}
5650 
5651 	eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
5652 	if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
5653 		rte_eth_random_addr(hw->mac.mac_addr);
5654 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
5655 				(struct rte_ether_addr *)hw->mac.mac_addr);
5656 		hns3_warn(hw, "default mac_addr from firmware is an invalid "
5657 			  "unicast address, using random MAC address %s",
5658 			  mac_str);
5659 	}
5660 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
5661 			    &eth_dev->data->mac_addrs[0]);
5662 
5663 	hw->adapter_state = HNS3_NIC_INITIALIZED;
5664 	/*
5665 	 * Pass the information to the rte_eth_dev_close() that it should also
5666 	 * release the private port resources.
5667 	 */
5668 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
5669 
5670 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
5671 		hns3_err(hw, "Reschedule reset service after dev_init");
5672 		hns3_schedule_reset(hns);
5673 	} else {
5674 		/* IMP will wait ready flag before reset */
5675 		hns3_notify_reset_ready(hw, false);
5676 	}
5677 
5678 	hns3_info(hw, "hns3 dev initialization successful!");
5679 	return 0;
5680 
5681 err_rte_zmalloc:
5682 	hns3_uninit_pf(eth_dev);
5683 
5684 err_init_pf:
5685 	rte_free(hw->reset.wait_data);
5686 
5687 err_init_reset:
5688 	hns3_mp_uninit_primary();
5689 
5690 err_mp_init_primary:
5691 err_mp_init_secondary:
5692 	eth_dev->dev_ops = NULL;
5693 	eth_dev->rx_pkt_burst = NULL;
5694 	eth_dev->tx_pkt_burst = NULL;
5695 	eth_dev->tx_pkt_prepare = NULL;
5696 	rte_free(eth_dev->process_private);
5697 	eth_dev->process_private = NULL;
5698 	return ret;
5699 }
5700 
5701 static int
5702 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
5703 {
5704 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5705 	struct hns3_hw *hw = &hns->hw;
5706 
5707 	PMD_INIT_FUNC_TRACE();
5708 
5709 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5710 		return -EPERM;
5711 
5712 	eth_dev->dev_ops = NULL;
5713 	eth_dev->rx_pkt_burst = NULL;
5714 	eth_dev->tx_pkt_burst = NULL;
5715 	eth_dev->tx_pkt_prepare = NULL;
5716 	if (hw->adapter_state < HNS3_NIC_CLOSING)
5717 		hns3_dev_close(eth_dev);
5718 
5719 	hw->adapter_state = HNS3_NIC_REMOVED;
5720 	return 0;
5721 }
5722 
5723 static int
5724 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
5725 		   struct rte_pci_device *pci_dev)
5726 {
5727 	return rte_eth_dev_pci_generic_probe(pci_dev,
5728 					     sizeof(struct hns3_adapter),
5729 					     hns3_dev_init);
5730 }
5731 
5732 static int
5733 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
5734 {
5735 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
5736 }
5737 
5738 static const struct rte_pci_id pci_id_hns3_map[] = {
5739 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
5740 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
5741 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
5742 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
5743 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
5744 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
5745 	{ .vendor_id = 0, /* sentinel */ },
5746 };
5747 
5748 static struct rte_pci_driver rte_hns3_pmd = {
5749 	.id_table = pci_id_hns3_map,
5750 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
5751 	.probe = eth_hns3_pci_probe,
5752 	.remove = eth_hns3_pci_remove,
5753 };
5754 
5755 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
5756 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
5757 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
5758 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
5759 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);
5760