xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision bbbe38a6d59ccdda25917712701e629d0b10af6f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 #include <rte_kvargs.h>
10 
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18 
19 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
20 #define HNS3_SERVICE_QUICK_INTERVAL	10
21 #define HNS3_INVALID_PVID		0xFFFF
22 
23 #define HNS3_FILTER_TYPE_VF		0
24 #define HNS3_FILTER_TYPE_PORT		1
25 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
26 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
27 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
28 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
29 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
30 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
31 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
32 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
33 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
34 
35 /* Reset related Registers */
36 #define HNS3_GLOBAL_RESET_BIT		0
37 #define HNS3_CORE_RESET_BIT		1
38 #define HNS3_IMP_RESET_BIT		2
39 #define HNS3_FUN_RST_ING_B		0
40 
41 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
42 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
43 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
44 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
45 
46 #define HNS3_RESET_WAIT_MS	100
47 #define HNS3_RESET_WAIT_CNT	200
48 
49 /* FEC mode order defined in HNS3 hardware */
50 #define HNS3_HW_FEC_MODE_NOFEC  0
51 #define HNS3_HW_FEC_MODE_BASER  1
52 #define HNS3_HW_FEC_MODE_RS     2
53 
54 enum hns3_evt_cause {
55 	HNS3_VECTOR0_EVENT_RST,
56 	HNS3_VECTOR0_EVENT_MBX,
57 	HNS3_VECTOR0_EVENT_ERR,
58 	HNS3_VECTOR0_EVENT_PTP,
59 	HNS3_VECTOR0_EVENT_OTHER,
60 };
61 
62 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
63 	{ ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
64 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
65 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
66 
67 	{ ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
68 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
69 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
70 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
71 
72 	{ ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
73 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
74 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
75 
76 	{ ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
77 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
78 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
80 
81 	{ ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
82 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
83 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
84 
85 	{ ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
86 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
87 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
88 };
89 
90 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
91 						 uint64_t *levels);
92 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
93 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
94 				    int on);
95 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
96 static bool hns3_update_link_status(struct hns3_hw *hw);
97 
98 static int hns3_add_mc_addr(struct hns3_hw *hw,
99 			    struct rte_ether_addr *mac_addr);
100 static int hns3_remove_mc_addr(struct hns3_hw *hw,
101 			    struct rte_ether_addr *mac_addr);
102 static int hns3_restore_fec(struct hns3_hw *hw);
103 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
104 static int hns3_do_stop(struct hns3_adapter *hns);
105 static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds);
106 
107 void hns3_ether_format_addr(char *buf, uint16_t size,
108 			    const struct rte_ether_addr *ether_addr)
109 {
110 	snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
111 		ether_addr->addr_bytes[0],
112 		ether_addr->addr_bytes[4],
113 		ether_addr->addr_bytes[5]);
114 }
115 
116 static void
117 hns3_pf_disable_irq0(struct hns3_hw *hw)
118 {
119 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
120 }
121 
122 static void
123 hns3_pf_enable_irq0(struct hns3_hw *hw)
124 {
125 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
126 }
127 
128 static enum hns3_evt_cause
129 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
130 			  uint32_t *vec_val)
131 {
132 	struct hns3_hw *hw = &hns->hw;
133 
134 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
135 	hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
136 	*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
137 	if (!is_delay) {
138 		hw->reset.stats.imp_cnt++;
139 		hns3_warn(hw, "IMP reset detected, clear reset status");
140 	} else {
141 		hns3_schedule_delayed_reset(hns);
142 		hns3_warn(hw, "IMP reset detected, don't clear reset status");
143 	}
144 
145 	return HNS3_VECTOR0_EVENT_RST;
146 }
147 
148 static enum hns3_evt_cause
149 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
150 			     uint32_t *vec_val)
151 {
152 	struct hns3_hw *hw = &hns->hw;
153 
154 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
155 	hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
156 	*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
157 	if (!is_delay) {
158 		hw->reset.stats.global_cnt++;
159 		hns3_warn(hw, "Global reset detected, clear reset status");
160 	} else {
161 		hns3_schedule_delayed_reset(hns);
162 		hns3_warn(hw,
163 			  "Global reset detected, don't clear reset status");
164 	}
165 
166 	return HNS3_VECTOR0_EVENT_RST;
167 }
168 
169 static enum hns3_evt_cause
170 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
171 {
172 	struct hns3_hw *hw = &hns->hw;
173 	uint32_t vector0_int_stats;
174 	uint32_t cmdq_src_val;
175 	uint32_t hw_err_src_reg;
176 	uint32_t val;
177 	enum hns3_evt_cause ret;
178 	bool is_delay;
179 
180 	/* fetch the events from their corresponding regs */
181 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
182 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
183 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
184 
185 	is_delay = clearval == NULL ? true : false;
186 	/*
187 	 * Assumption: If by any chance reset and mailbox events are reported
188 	 * together then we will only process reset event and defer the
189 	 * processing of the mailbox events. Since, we would have not cleared
190 	 * RX CMDQ event this time we would receive again another interrupt
191 	 * from H/W just for the mailbox.
192 	 */
193 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
194 		ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
195 		goto out;
196 	}
197 
198 	/* Global reset */
199 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
200 		ret = hns3_proc_global_reset_event(hns, is_delay, &val);
201 		goto out;
202 	}
203 
204 	/* Check for vector0 1588 event source */
205 	if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
206 		val = BIT(HNS3_VECTOR0_1588_INT_B);
207 		ret = HNS3_VECTOR0_EVENT_PTP;
208 		goto out;
209 	}
210 
211 	/* check for vector0 msix event source */
212 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
213 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
214 		val = vector0_int_stats | hw_err_src_reg;
215 		ret = HNS3_VECTOR0_EVENT_ERR;
216 		goto out;
217 	}
218 
219 	/* check for vector0 mailbox(=CMDQ RX) event source */
220 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
221 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
222 		val = cmdq_src_val;
223 		ret = HNS3_VECTOR0_EVENT_MBX;
224 		goto out;
225 	}
226 
227 	val = vector0_int_stats;
228 	ret = HNS3_VECTOR0_EVENT_OTHER;
229 out:
230 
231 	if (clearval)
232 		*clearval = val;
233 	return ret;
234 }
235 
236 static bool
237 hns3_is_1588_event_type(uint32_t event_type)
238 {
239 	return (event_type == HNS3_VECTOR0_EVENT_PTP);
240 }
241 
242 static void
243 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
244 {
245 	if (event_type == HNS3_VECTOR0_EVENT_RST ||
246 	    hns3_is_1588_event_type(event_type))
247 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
248 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
249 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
250 }
251 
252 static void
253 hns3_clear_all_event_cause(struct hns3_hw *hw)
254 {
255 	uint32_t vector0_int_stats;
256 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
257 
258 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
259 		hns3_warn(hw, "Probe during IMP reset interrupt");
260 
261 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
262 		hns3_warn(hw, "Probe during Global reset interrupt");
263 
264 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
265 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
266 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
267 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
268 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
269 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
270 				BIT(HNS3_VECTOR0_1588_INT_B));
271 }
272 
273 static void
274 hns3_handle_mac_tnl(struct hns3_hw *hw)
275 {
276 	struct hns3_cmd_desc desc;
277 	uint32_t status;
278 	int ret;
279 
280 	/* query and clear mac tnl interrupt */
281 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
282 	ret = hns3_cmd_send(hw, &desc, 1);
283 	if (ret) {
284 		hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
285 		return;
286 	}
287 
288 	status = rte_le_to_cpu_32(desc.data[0]);
289 	if (status) {
290 		hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
291 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
292 					  false);
293 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
294 		ret = hns3_cmd_send(hw, &desc, 1);
295 		if (ret)
296 			hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
297 				 ret);
298 	}
299 }
300 
301 static void
302 hns3_interrupt_handler(void *param)
303 {
304 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
305 	struct hns3_adapter *hns = dev->data->dev_private;
306 	struct hns3_hw *hw = &hns->hw;
307 	enum hns3_evt_cause event_cause;
308 	uint32_t clearval = 0;
309 	uint32_t vector0_int;
310 	uint32_t ras_int;
311 	uint32_t cmdq_int;
312 
313 	/* Disable interrupt */
314 	hns3_pf_disable_irq0(hw);
315 
316 	event_cause = hns3_check_event_cause(hns, &clearval);
317 	vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
318 	ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
319 	cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
320 	/* vector 0 interrupt is shared with reset and mailbox source events. */
321 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
322 		hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
323 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
324 			  vector0_int, ras_int, cmdq_int);
325 		hns3_handle_mac_tnl(hw);
326 		hns3_handle_error(hns);
327 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
328 		hns3_warn(hw, "received reset interrupt");
329 		hns3_schedule_reset(hns);
330 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
331 		hns3_dev_handle_mbx_msg(hw);
332 	} else {
333 		hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
334 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
335 			  vector0_int, ras_int, cmdq_int);
336 	}
337 
338 	hns3_clear_event_cause(hw, event_cause, clearval);
339 	/* Enable interrupt if it is not cause by reset */
340 	hns3_pf_enable_irq0(hw);
341 }
342 
343 static int
344 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
345 {
346 #define HNS3_VLAN_ID_OFFSET_STEP	160
347 #define HNS3_VLAN_BYTE_SIZE		8
348 	struct hns3_vlan_filter_pf_cfg_cmd *req;
349 	struct hns3_hw *hw = &hns->hw;
350 	uint8_t vlan_offset_byte_val;
351 	struct hns3_cmd_desc desc;
352 	uint8_t vlan_offset_byte;
353 	uint8_t vlan_offset_base;
354 	int ret;
355 
356 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
357 
358 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
359 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
360 			   HNS3_VLAN_BYTE_SIZE;
361 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
362 
363 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
364 	req->vlan_offset = vlan_offset_base;
365 	req->vlan_cfg = on ? 0 : 1;
366 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
367 
368 	ret = hns3_cmd_send(hw, &desc, 1);
369 	if (ret)
370 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
371 			 vlan_id, ret);
372 
373 	return ret;
374 }
375 
376 static void
377 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
378 {
379 	struct hns3_user_vlan_table *vlan_entry;
380 	struct hns3_pf *pf = &hns->pf;
381 
382 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
383 		if (vlan_entry->vlan_id == vlan_id) {
384 			if (vlan_entry->hd_tbl_status)
385 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
386 			LIST_REMOVE(vlan_entry, next);
387 			rte_free(vlan_entry);
388 			break;
389 		}
390 	}
391 }
392 
393 static void
394 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
395 			bool writen_to_tbl)
396 {
397 	struct hns3_user_vlan_table *vlan_entry;
398 	struct hns3_hw *hw = &hns->hw;
399 	struct hns3_pf *pf = &hns->pf;
400 
401 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
402 		if (vlan_entry->vlan_id == vlan_id)
403 			return;
404 	}
405 
406 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
407 	if (vlan_entry == NULL) {
408 		hns3_err(hw, "Failed to malloc hns3 vlan table");
409 		return;
410 	}
411 
412 	vlan_entry->hd_tbl_status = writen_to_tbl;
413 	vlan_entry->vlan_id = vlan_id;
414 
415 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
416 }
417 
418 static int
419 hns3_restore_vlan_table(struct hns3_adapter *hns)
420 {
421 	struct hns3_user_vlan_table *vlan_entry;
422 	struct hns3_hw *hw = &hns->hw;
423 	struct hns3_pf *pf = &hns->pf;
424 	uint16_t vlan_id;
425 	int ret = 0;
426 
427 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
428 		return hns3_vlan_pvid_configure(hns,
429 						hw->port_base_vlan_cfg.pvid, 1);
430 
431 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
432 		if (vlan_entry->hd_tbl_status) {
433 			vlan_id = vlan_entry->vlan_id;
434 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
435 			if (ret)
436 				break;
437 		}
438 	}
439 
440 	return ret;
441 }
442 
443 static int
444 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
445 {
446 	struct hns3_hw *hw = &hns->hw;
447 	bool writen_to_tbl = false;
448 	int ret = 0;
449 
450 	/*
451 	 * When vlan filter is enabled, hardware regards packets without vlan
452 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
453 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
454 	 */
455 	if (on == 0 && vlan_id == 0)
456 		return 0;
457 
458 	/*
459 	 * When port base vlan enabled, we use port base vlan as the vlan
460 	 * filter condition. In this case, we don't update vlan filter table
461 	 * when user add new vlan or remove exist vlan, just update the
462 	 * vlan list. The vlan id in vlan list will be written in vlan filter
463 	 * table until port base vlan disabled
464 	 */
465 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
466 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
467 		writen_to_tbl = true;
468 	}
469 
470 	if (ret == 0) {
471 		if (on)
472 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
473 		else
474 			hns3_rm_dev_vlan_table(hns, vlan_id);
475 	}
476 	return ret;
477 }
478 
479 static int
480 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
481 {
482 	struct hns3_adapter *hns = dev->data->dev_private;
483 	struct hns3_hw *hw = &hns->hw;
484 	int ret;
485 
486 	rte_spinlock_lock(&hw->lock);
487 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
488 	rte_spinlock_unlock(&hw->lock);
489 	return ret;
490 }
491 
492 static int
493 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
494 			 uint16_t tpid)
495 {
496 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
497 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
498 	struct hns3_hw *hw = &hns->hw;
499 	struct hns3_cmd_desc desc;
500 	int ret;
501 
502 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
503 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
504 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
505 		return -EINVAL;
506 	}
507 
508 	if (tpid != RTE_ETHER_TYPE_VLAN) {
509 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
510 		return -EINVAL;
511 	}
512 
513 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
514 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
515 
516 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
517 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
518 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
519 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
520 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
521 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
522 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
523 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
524 	}
525 
526 	ret = hns3_cmd_send(hw, &desc, 1);
527 	if (ret) {
528 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
529 			 ret);
530 		return ret;
531 	}
532 
533 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
534 
535 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
536 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
537 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
538 
539 	ret = hns3_cmd_send(hw, &desc, 1);
540 	if (ret)
541 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
542 			 ret);
543 	return ret;
544 }
545 
546 static int
547 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
548 		   uint16_t tpid)
549 {
550 	struct hns3_adapter *hns = dev->data->dev_private;
551 	struct hns3_hw *hw = &hns->hw;
552 	int ret;
553 
554 	rte_spinlock_lock(&hw->lock);
555 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
556 	rte_spinlock_unlock(&hw->lock);
557 	return ret;
558 }
559 
560 static int
561 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
562 			     struct hns3_rx_vtag_cfg *vcfg)
563 {
564 	struct hns3_vport_vtag_rx_cfg_cmd *req;
565 	struct hns3_hw *hw = &hns->hw;
566 	struct hns3_cmd_desc desc;
567 	uint16_t vport_id;
568 	uint8_t bitmap;
569 	int ret;
570 
571 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
572 
573 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
574 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
575 		     vcfg->strip_tag1_en ? 1 : 0);
576 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
577 		     vcfg->strip_tag2_en ? 1 : 0);
578 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
579 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
580 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
581 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
582 
583 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
584 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
585 		     vcfg->strip_tag1_discard_en ? 1 : 0);
586 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
587 		     vcfg->strip_tag2_discard_en ? 1 : 0);
588 	/*
589 	 * In current version VF is not supported when PF is driven by DPDK
590 	 * driver, just need to configure parameters for PF vport.
591 	 */
592 	vport_id = HNS3_PF_FUNC_ID;
593 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
594 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
595 	req->vf_bitmap[req->vf_offset] = bitmap;
596 
597 	ret = hns3_cmd_send(hw, &desc, 1);
598 	if (ret)
599 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
600 	return ret;
601 }
602 
603 static void
604 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
605 			   struct hns3_rx_vtag_cfg *vcfg)
606 {
607 	struct hns3_pf *pf = &hns->pf;
608 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
609 }
610 
611 static void
612 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
613 			   struct hns3_tx_vtag_cfg *vcfg)
614 {
615 	struct hns3_pf *pf = &hns->pf;
616 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
617 }
618 
619 static int
620 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
621 {
622 	struct hns3_rx_vtag_cfg rxvlan_cfg;
623 	struct hns3_hw *hw = &hns->hw;
624 	int ret;
625 
626 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
627 		rxvlan_cfg.strip_tag1_en = false;
628 		rxvlan_cfg.strip_tag2_en = enable;
629 		rxvlan_cfg.strip_tag2_discard_en = false;
630 	} else {
631 		rxvlan_cfg.strip_tag1_en = enable;
632 		rxvlan_cfg.strip_tag2_en = true;
633 		rxvlan_cfg.strip_tag2_discard_en = true;
634 	}
635 
636 	rxvlan_cfg.strip_tag1_discard_en = false;
637 	rxvlan_cfg.vlan1_vlan_prionly = false;
638 	rxvlan_cfg.vlan2_vlan_prionly = false;
639 	rxvlan_cfg.rx_vlan_offload_en = enable;
640 
641 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
642 	if (ret) {
643 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
644 		return ret;
645 	}
646 
647 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
648 
649 	return ret;
650 }
651 
652 static int
653 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
654 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
655 {
656 	struct hns3_vlan_filter_ctrl_cmd *req;
657 	struct hns3_cmd_desc desc;
658 	int ret;
659 
660 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
661 
662 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
663 	req->vlan_type = vlan_type;
664 	req->vlan_fe = filter_en ? fe_type : 0;
665 	req->vf_id = vf_id;
666 
667 	ret = hns3_cmd_send(hw, &desc, 1);
668 	if (ret)
669 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
670 
671 	return ret;
672 }
673 
674 static int
675 hns3_vlan_filter_init(struct hns3_adapter *hns)
676 {
677 	struct hns3_hw *hw = &hns->hw;
678 	int ret;
679 
680 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
681 					HNS3_FILTER_FE_EGRESS, false,
682 					HNS3_PF_FUNC_ID);
683 	if (ret) {
684 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
685 		return ret;
686 	}
687 
688 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
689 					HNS3_FILTER_FE_INGRESS, false,
690 					HNS3_PF_FUNC_ID);
691 	if (ret)
692 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
693 
694 	return ret;
695 }
696 
697 static int
698 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
699 {
700 	struct hns3_hw *hw = &hns->hw;
701 	int ret;
702 
703 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
704 					HNS3_FILTER_FE_INGRESS, enable,
705 					HNS3_PF_FUNC_ID);
706 	if (ret)
707 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
708 			 enable ? "enable" : "disable", ret);
709 
710 	return ret;
711 }
712 
713 static int
714 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
715 {
716 	struct hns3_adapter *hns = dev->data->dev_private;
717 	struct hns3_hw *hw = &hns->hw;
718 	struct rte_eth_rxmode *rxmode;
719 	unsigned int tmp_mask;
720 	bool enable;
721 	int ret = 0;
722 
723 	rte_spinlock_lock(&hw->lock);
724 	rxmode = &dev->data->dev_conf.rxmode;
725 	tmp_mask = (unsigned int)mask;
726 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
727 		/* ignore vlan filter configuration during promiscuous mode */
728 		if (!dev->data->promiscuous) {
729 			/* Enable or disable VLAN filter */
730 			enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
731 				 true : false;
732 
733 			ret = hns3_enable_vlan_filter(hns, enable);
734 			if (ret) {
735 				rte_spinlock_unlock(&hw->lock);
736 				hns3_err(hw, "failed to %s rx filter, ret = %d",
737 					 enable ? "enable" : "disable", ret);
738 				return ret;
739 			}
740 		}
741 	}
742 
743 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
744 		/* Enable or disable VLAN stripping */
745 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
746 		    true : false;
747 
748 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
749 		if (ret) {
750 			rte_spinlock_unlock(&hw->lock);
751 			hns3_err(hw, "failed to %s rx strip, ret = %d",
752 				 enable ? "enable" : "disable", ret);
753 			return ret;
754 		}
755 	}
756 
757 	rte_spinlock_unlock(&hw->lock);
758 
759 	return ret;
760 }
761 
762 static int
763 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
764 			     struct hns3_tx_vtag_cfg *vcfg)
765 {
766 	struct hns3_vport_vtag_tx_cfg_cmd *req;
767 	struct hns3_cmd_desc desc;
768 	struct hns3_hw *hw = &hns->hw;
769 	uint16_t vport_id;
770 	uint8_t bitmap;
771 	int ret;
772 
773 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
774 
775 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
776 	req->def_vlan_tag1 = vcfg->default_tag1;
777 	req->def_vlan_tag2 = vcfg->default_tag2;
778 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
779 		     vcfg->accept_tag1 ? 1 : 0);
780 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
781 		     vcfg->accept_untag1 ? 1 : 0);
782 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
783 		     vcfg->accept_tag2 ? 1 : 0);
784 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
785 		     vcfg->accept_untag2 ? 1 : 0);
786 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
787 		     vcfg->insert_tag1_en ? 1 : 0);
788 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
789 		     vcfg->insert_tag2_en ? 1 : 0);
790 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
791 
792 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
793 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
794 		     vcfg->tag_shift_mode_en ? 1 : 0);
795 
796 	/*
797 	 * In current version VF is not supported when PF is driven by DPDK
798 	 * driver, just need to configure parameters for PF vport.
799 	 */
800 	vport_id = HNS3_PF_FUNC_ID;
801 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
802 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
803 	req->vf_bitmap[req->vf_offset] = bitmap;
804 
805 	ret = hns3_cmd_send(hw, &desc, 1);
806 	if (ret)
807 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
808 
809 	return ret;
810 }
811 
812 static int
813 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
814 		     uint16_t pvid)
815 {
816 	struct hns3_hw *hw = &hns->hw;
817 	struct hns3_tx_vtag_cfg txvlan_cfg;
818 	int ret;
819 
820 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
821 		txvlan_cfg.accept_tag1 = true;
822 		txvlan_cfg.insert_tag1_en = false;
823 		txvlan_cfg.default_tag1 = 0;
824 	} else {
825 		txvlan_cfg.accept_tag1 =
826 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
827 		txvlan_cfg.insert_tag1_en = true;
828 		txvlan_cfg.default_tag1 = pvid;
829 	}
830 
831 	txvlan_cfg.accept_untag1 = true;
832 	txvlan_cfg.accept_tag2 = true;
833 	txvlan_cfg.accept_untag2 = true;
834 	txvlan_cfg.insert_tag2_en = false;
835 	txvlan_cfg.default_tag2 = 0;
836 	txvlan_cfg.tag_shift_mode_en = true;
837 
838 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
839 	if (ret) {
840 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
841 			 ret);
842 		return ret;
843 	}
844 
845 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
846 	return ret;
847 }
848 
849 
850 static void
851 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
852 {
853 	struct hns3_user_vlan_table *vlan_entry;
854 	struct hns3_pf *pf = &hns->pf;
855 
856 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
857 		if (vlan_entry->hd_tbl_status) {
858 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
859 			vlan_entry->hd_tbl_status = false;
860 		}
861 	}
862 
863 	if (is_del_list) {
864 		vlan_entry = LIST_FIRST(&pf->vlan_list);
865 		while (vlan_entry) {
866 			LIST_REMOVE(vlan_entry, next);
867 			rte_free(vlan_entry);
868 			vlan_entry = LIST_FIRST(&pf->vlan_list);
869 		}
870 	}
871 }
872 
873 static void
874 hns3_add_all_vlan_table(struct hns3_adapter *hns)
875 {
876 	struct hns3_user_vlan_table *vlan_entry;
877 	struct hns3_pf *pf = &hns->pf;
878 
879 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
880 		if (!vlan_entry->hd_tbl_status) {
881 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
882 			vlan_entry->hd_tbl_status = true;
883 		}
884 	}
885 }
886 
887 static void
888 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
889 {
890 	struct hns3_hw *hw = &hns->hw;
891 	int ret;
892 
893 	hns3_rm_all_vlan_table(hns, true);
894 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
895 		ret = hns3_set_port_vlan_filter(hns,
896 						hw->port_base_vlan_cfg.pvid, 0);
897 		if (ret) {
898 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
899 				 ret);
900 			return;
901 		}
902 	}
903 }
904 
905 static int
906 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
907 			uint16_t port_base_vlan_state, uint16_t new_pvid)
908 {
909 	struct hns3_hw *hw = &hns->hw;
910 	uint16_t old_pvid;
911 	int ret;
912 
913 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
914 		old_pvid = hw->port_base_vlan_cfg.pvid;
915 		if (old_pvid != HNS3_INVALID_PVID) {
916 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
917 			if (ret) {
918 				hns3_err(hw, "failed to remove old pvid %u, "
919 						"ret = %d", old_pvid, ret);
920 				return ret;
921 			}
922 		}
923 
924 		hns3_rm_all_vlan_table(hns, false);
925 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
926 		if (ret) {
927 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
928 					new_pvid, ret);
929 			return ret;
930 		}
931 	} else {
932 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
933 		if (ret) {
934 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
935 					new_pvid, ret);
936 			return ret;
937 		}
938 
939 		hns3_add_all_vlan_table(hns);
940 	}
941 	return 0;
942 }
943 
944 static int
945 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
946 {
947 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
948 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
949 	bool rx_strip_en;
950 	int ret;
951 
952 	rx_strip_en = old_cfg->rx_vlan_offload_en;
953 	if (on) {
954 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
955 		rx_vlan_cfg.strip_tag2_en = true;
956 		rx_vlan_cfg.strip_tag2_discard_en = true;
957 	} else {
958 		rx_vlan_cfg.strip_tag1_en = false;
959 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
960 		rx_vlan_cfg.strip_tag2_discard_en = false;
961 	}
962 	rx_vlan_cfg.strip_tag1_discard_en = false;
963 	rx_vlan_cfg.vlan1_vlan_prionly = false;
964 	rx_vlan_cfg.vlan2_vlan_prionly = false;
965 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
966 
967 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
968 	if (ret)
969 		return ret;
970 
971 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
972 	return ret;
973 }
974 
975 static int
976 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
977 {
978 	struct hns3_hw *hw = &hns->hw;
979 	uint16_t port_base_vlan_state;
980 	int ret, err;
981 
982 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
983 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
984 			hns3_warn(hw, "Invalid operation! As current pvid set "
985 				  "is %u, disable pvid %u is invalid",
986 				  hw->port_base_vlan_cfg.pvid, pvid);
987 		return 0;
988 	}
989 
990 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
991 				    HNS3_PORT_BASE_VLAN_DISABLE;
992 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
993 	if (ret) {
994 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
995 			 ret);
996 		return ret;
997 	}
998 
999 	ret = hns3_en_pvid_strip(hns, on);
1000 	if (ret) {
1001 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
1002 			 "ret = %d", ret);
1003 		goto pvid_vlan_strip_fail;
1004 	}
1005 
1006 	if (pvid == HNS3_INVALID_PVID)
1007 		goto out;
1008 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
1009 	if (ret) {
1010 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
1011 			 ret);
1012 		goto vlan_filter_set_fail;
1013 	}
1014 
1015 out:
1016 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
1017 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1018 	return ret;
1019 
1020 vlan_filter_set_fail:
1021 	err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
1022 					HNS3_PORT_BASE_VLAN_ENABLE);
1023 	if (err)
1024 		hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1025 
1026 pvid_vlan_strip_fail:
1027 	err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1028 					hw->port_base_vlan_cfg.pvid);
1029 	if (err)
1030 		hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1031 
1032 	return ret;
1033 }
1034 
1035 static int
1036 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1037 {
1038 	struct hns3_adapter *hns = dev->data->dev_private;
1039 	struct hns3_hw *hw = &hns->hw;
1040 	bool pvid_en_state_change;
1041 	uint16_t pvid_state;
1042 	int ret;
1043 
1044 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1045 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1046 			 RTE_ETHER_MAX_VLAN_ID);
1047 		return -EINVAL;
1048 	}
1049 
1050 	/*
1051 	 * If PVID configuration state change, should refresh the PVID
1052 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1053 	 */
1054 	pvid_state = hw->port_base_vlan_cfg.state;
1055 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1056 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1057 		pvid_en_state_change = false;
1058 	else
1059 		pvid_en_state_change = true;
1060 
1061 	rte_spinlock_lock(&hw->lock);
1062 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
1063 	rte_spinlock_unlock(&hw->lock);
1064 	if (ret)
1065 		return ret;
1066 	/*
1067 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1068 	 * need be processed by PMD driver.
1069 	 */
1070 	if (pvid_en_state_change &&
1071 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1072 		hns3_update_all_queues_pvid_proc_en(hw);
1073 
1074 	return 0;
1075 }
1076 
1077 static int
1078 hns3_default_vlan_config(struct hns3_adapter *hns)
1079 {
1080 	struct hns3_hw *hw = &hns->hw;
1081 	int ret;
1082 
1083 	/*
1084 	 * When vlan filter is enabled, hardware regards packets without vlan
1085 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1086 	 * table, packets without vlan won't be received. So, add vlan 0 as
1087 	 * the default vlan.
1088 	 */
1089 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1090 	if (ret)
1091 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1092 	return ret;
1093 }
1094 
1095 static int
1096 hns3_init_vlan_config(struct hns3_adapter *hns)
1097 {
1098 	struct hns3_hw *hw = &hns->hw;
1099 	int ret;
1100 
1101 	/*
1102 	 * This function can be called in the initialization and reset process,
1103 	 * when in reset process, it means that hardware had been reseted
1104 	 * successfully and we need to restore the hardware configuration to
1105 	 * ensure that the hardware configuration remains unchanged before and
1106 	 * after reset.
1107 	 */
1108 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1109 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1110 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1111 	}
1112 
1113 	ret = hns3_vlan_filter_init(hns);
1114 	if (ret) {
1115 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1116 		return ret;
1117 	}
1118 
1119 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1120 				       RTE_ETHER_TYPE_VLAN);
1121 	if (ret) {
1122 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1123 		return ret;
1124 	}
1125 
1126 	/*
1127 	 * When in the reinit dev stage of the reset process, the following
1128 	 * vlan-related configurations may differ from those at initialization,
1129 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1130 	 * and hns3_restore_vlan_conf later.
1131 	 */
1132 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1133 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1134 		if (ret) {
1135 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1136 			return ret;
1137 		}
1138 
1139 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1140 		if (ret) {
1141 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1142 				 ret);
1143 			return ret;
1144 		}
1145 	}
1146 
1147 	return hns3_default_vlan_config(hns);
1148 }
1149 
1150 static int
1151 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1152 {
1153 	struct hns3_pf *pf = &hns->pf;
1154 	struct hns3_hw *hw = &hns->hw;
1155 	uint64_t offloads;
1156 	bool enable;
1157 	int ret;
1158 
1159 	if (!hw->data->promiscuous) {
1160 		/* restore vlan filter states */
1161 		offloads = hw->data->dev_conf.rxmode.offloads;
1162 		enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1163 		ret = hns3_enable_vlan_filter(hns, enable);
1164 		if (ret) {
1165 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1166 				 "ret = %d", ret);
1167 			return ret;
1168 		}
1169 	}
1170 
1171 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1172 	if (ret) {
1173 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1174 		return ret;
1175 	}
1176 
1177 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1178 	if (ret)
1179 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1180 
1181 	return ret;
1182 }
1183 
1184 static int
1185 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1186 {
1187 	struct hns3_adapter *hns = dev->data->dev_private;
1188 	struct rte_eth_dev_data *data = dev->data;
1189 	struct rte_eth_txmode *txmode;
1190 	struct hns3_hw *hw = &hns->hw;
1191 	int mask;
1192 	int ret;
1193 
1194 	txmode = &data->dev_conf.txmode;
1195 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1196 		hns3_warn(hw,
1197 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1198 			  "configuration is not supported! Ignore these two "
1199 			  "parameters: hw_vlan_reject_tagged(%u), "
1200 			  "hw_vlan_reject_untagged(%u)",
1201 			  txmode->hw_vlan_reject_tagged,
1202 			  txmode->hw_vlan_reject_untagged);
1203 
1204 	/* Apply vlan offload setting */
1205 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1206 	ret = hns3_vlan_offload_set(dev, mask);
1207 	if (ret) {
1208 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1209 			 ret);
1210 		return ret;
1211 	}
1212 
1213 	/*
1214 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1215 	 * VLAN pvid related configuration to hardware.
1216 	 */
1217 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1218 		return 0;
1219 
1220 	/* Apply pvid setting */
1221 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1222 				 txmode->hw_vlan_insert_pvid);
1223 	if (ret)
1224 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1225 			 txmode->pvid, ret);
1226 
1227 	return ret;
1228 }
1229 
1230 static int
1231 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1232 		unsigned int tso_mss_max)
1233 {
1234 	struct hns3_cfg_tso_status_cmd *req;
1235 	struct hns3_cmd_desc desc;
1236 	uint16_t tso_mss;
1237 
1238 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1239 
1240 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1241 
1242 	tso_mss = 0;
1243 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1244 		       tso_mss_min);
1245 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1246 
1247 	tso_mss = 0;
1248 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1249 		       tso_mss_max);
1250 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1251 
1252 	return hns3_cmd_send(hw, &desc, 1);
1253 }
1254 
1255 static int
1256 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1257 		   uint16_t *allocated_size, bool is_alloc)
1258 {
1259 	struct hns3_umv_spc_alc_cmd *req;
1260 	struct hns3_cmd_desc desc;
1261 	int ret;
1262 
1263 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1264 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1265 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1266 	req->space_size = rte_cpu_to_le_32(space_size);
1267 
1268 	ret = hns3_cmd_send(hw, &desc, 1);
1269 	if (ret) {
1270 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1271 			     is_alloc ? "allocate" : "free", ret);
1272 		return ret;
1273 	}
1274 
1275 	if (is_alloc && allocated_size)
1276 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1277 
1278 	return 0;
1279 }
1280 
1281 static int
1282 hns3_init_umv_space(struct hns3_hw *hw)
1283 {
1284 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1285 	struct hns3_pf *pf = &hns->pf;
1286 	uint16_t allocated_size = 0;
1287 	int ret;
1288 
1289 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1290 				 true);
1291 	if (ret)
1292 		return ret;
1293 
1294 	if (allocated_size < pf->wanted_umv_size)
1295 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1296 			     pf->wanted_umv_size, allocated_size);
1297 
1298 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1299 						pf->wanted_umv_size;
1300 	pf->used_umv_size = 0;
1301 	return 0;
1302 }
1303 
1304 static int
1305 hns3_uninit_umv_space(struct hns3_hw *hw)
1306 {
1307 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1308 	struct hns3_pf *pf = &hns->pf;
1309 	int ret;
1310 
1311 	if (pf->max_umv_size == 0)
1312 		return 0;
1313 
1314 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1315 	if (ret)
1316 		return ret;
1317 
1318 	pf->max_umv_size = 0;
1319 
1320 	return 0;
1321 }
1322 
1323 static bool
1324 hns3_is_umv_space_full(struct hns3_hw *hw)
1325 {
1326 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1327 	struct hns3_pf *pf = &hns->pf;
1328 	bool is_full;
1329 
1330 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1331 
1332 	return is_full;
1333 }
1334 
1335 static void
1336 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1337 {
1338 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1339 	struct hns3_pf *pf = &hns->pf;
1340 
1341 	if (is_free) {
1342 		if (pf->used_umv_size > 0)
1343 			pf->used_umv_size--;
1344 	} else
1345 		pf->used_umv_size++;
1346 }
1347 
1348 static void
1349 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1350 		      const uint8_t *addr, bool is_mc)
1351 {
1352 	const unsigned char *mac_addr = addr;
1353 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1354 			    ((uint32_t)mac_addr[2] << 16) |
1355 			    ((uint32_t)mac_addr[1] << 8) |
1356 			    (uint32_t)mac_addr[0];
1357 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1358 
1359 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1360 	if (is_mc) {
1361 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1362 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1363 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1364 	}
1365 
1366 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1367 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1368 }
1369 
1370 static int
1371 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1372 			     uint8_t resp_code,
1373 			     enum hns3_mac_vlan_tbl_opcode op)
1374 {
1375 	if (cmdq_resp) {
1376 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1377 			 cmdq_resp);
1378 		return -EIO;
1379 	}
1380 
1381 	if (op == HNS3_MAC_VLAN_ADD) {
1382 		if (resp_code == 0 || resp_code == 1) {
1383 			return 0;
1384 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1385 			hns3_err(hw, "add mac addr failed for uc_overflow");
1386 			return -ENOSPC;
1387 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1388 			hns3_err(hw, "add mac addr failed for mc_overflow");
1389 			return -ENOSPC;
1390 		}
1391 
1392 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1393 			 resp_code);
1394 		return -EIO;
1395 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1396 		if (resp_code == 0) {
1397 			return 0;
1398 		} else if (resp_code == 1) {
1399 			hns3_dbg(hw, "remove mac addr failed for miss");
1400 			return -ENOENT;
1401 		}
1402 
1403 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1404 			 resp_code);
1405 		return -EIO;
1406 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1407 		if (resp_code == 0) {
1408 			return 0;
1409 		} else if (resp_code == 1) {
1410 			hns3_dbg(hw, "lookup mac addr failed for miss");
1411 			return -ENOENT;
1412 		}
1413 
1414 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1415 			 resp_code);
1416 		return -EIO;
1417 	}
1418 
1419 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1420 		 op);
1421 
1422 	return -EINVAL;
1423 }
1424 
1425 static int
1426 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1427 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1428 			 struct hns3_cmd_desc *desc, bool is_mc)
1429 {
1430 	uint8_t resp_code;
1431 	uint16_t retval;
1432 	int ret;
1433 
1434 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1435 	if (is_mc) {
1436 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1437 		memcpy(desc[0].data, req,
1438 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1439 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1440 					  true);
1441 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1442 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1443 					  true);
1444 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1445 	} else {
1446 		memcpy(desc[0].data, req,
1447 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1448 		ret = hns3_cmd_send(hw, desc, 1);
1449 	}
1450 	if (ret) {
1451 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1452 			 ret);
1453 		return ret;
1454 	}
1455 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1456 	retval = rte_le_to_cpu_16(desc[0].retval);
1457 
1458 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1459 					    HNS3_MAC_VLAN_LKUP);
1460 }
1461 
1462 static int
1463 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1464 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1465 		      struct hns3_cmd_desc *mc_desc)
1466 {
1467 	uint8_t resp_code;
1468 	uint16_t retval;
1469 	int cfg_status;
1470 	int ret;
1471 
1472 	if (mc_desc == NULL) {
1473 		struct hns3_cmd_desc desc;
1474 
1475 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1476 		memcpy(desc.data, req,
1477 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1478 		ret = hns3_cmd_send(hw, &desc, 1);
1479 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1480 		retval = rte_le_to_cpu_16(desc.retval);
1481 
1482 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1483 							  HNS3_MAC_VLAN_ADD);
1484 	} else {
1485 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1486 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1487 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1488 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1489 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1490 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1491 		memcpy(mc_desc[0].data, req,
1492 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1493 		mc_desc[0].retval = 0;
1494 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1495 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1496 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1497 
1498 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1499 							  HNS3_MAC_VLAN_ADD);
1500 	}
1501 
1502 	if (ret) {
1503 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1504 		return ret;
1505 	}
1506 
1507 	return cfg_status;
1508 }
1509 
1510 static int
1511 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1512 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1513 {
1514 	struct hns3_cmd_desc desc;
1515 	uint8_t resp_code;
1516 	uint16_t retval;
1517 	int ret;
1518 
1519 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1520 
1521 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1522 
1523 	ret = hns3_cmd_send(hw, &desc, 1);
1524 	if (ret) {
1525 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1526 		return ret;
1527 	}
1528 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1529 	retval = rte_le_to_cpu_16(desc.retval);
1530 
1531 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1532 					    HNS3_MAC_VLAN_REMOVE);
1533 }
1534 
1535 static int
1536 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1537 {
1538 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1539 	struct hns3_mac_vlan_tbl_entry_cmd req;
1540 	struct hns3_pf *pf = &hns->pf;
1541 	struct hns3_cmd_desc desc[3];
1542 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1543 	uint16_t egress_port = 0;
1544 	uint8_t vf_id;
1545 	int ret;
1546 
1547 	/* check if mac addr is valid */
1548 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1549 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1550 				      mac_addr);
1551 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1552 			 mac_str);
1553 		return -EINVAL;
1554 	}
1555 
1556 	memset(&req, 0, sizeof(req));
1557 
1558 	/*
1559 	 * In current version VF is not supported when PF is driven by DPDK
1560 	 * driver, just need to configure parameters for PF vport.
1561 	 */
1562 	vf_id = HNS3_PF_FUNC_ID;
1563 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1564 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1565 
1566 	req.egress_port = rte_cpu_to_le_16(egress_port);
1567 
1568 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1569 
1570 	/*
1571 	 * Lookup the mac address in the mac_vlan table, and add
1572 	 * it if the entry is inexistent. Repeated unicast entry
1573 	 * is not allowed in the mac vlan table.
1574 	 */
1575 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1576 	if (ret == -ENOENT) {
1577 		if (!hns3_is_umv_space_full(hw)) {
1578 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1579 			if (!ret)
1580 				hns3_update_umv_space(hw, false);
1581 			return ret;
1582 		}
1583 
1584 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1585 
1586 		return -ENOSPC;
1587 	}
1588 
1589 	hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1590 
1591 	/* check if we just hit the duplicate */
1592 	if (ret == 0) {
1593 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1594 		return 0;
1595 	}
1596 
1597 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1598 		 mac_str);
1599 
1600 	return ret;
1601 }
1602 
1603 static int
1604 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1605 {
1606 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1607 	struct rte_ether_addr *addr;
1608 	int ret;
1609 	int i;
1610 
1611 	for (i = 0; i < hw->mc_addrs_num; i++) {
1612 		addr = &hw->mc_addrs[i];
1613 		/* Check if there are duplicate addresses */
1614 		if (rte_is_same_ether_addr(addr, mac_addr)) {
1615 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1616 					      addr);
1617 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1618 				 "(%s) is added by the set_mc_mac_addr_list "
1619 				 "API", mac_str);
1620 			return -EINVAL;
1621 		}
1622 	}
1623 
1624 	ret = hns3_add_mc_addr(hw, mac_addr);
1625 	if (ret) {
1626 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1627 				      mac_addr);
1628 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1629 			 mac_str, ret);
1630 	}
1631 	return ret;
1632 }
1633 
1634 static int
1635 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1636 {
1637 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1638 	int ret;
1639 
1640 	ret = hns3_remove_mc_addr(hw, mac_addr);
1641 	if (ret) {
1642 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1643 				      mac_addr);
1644 		hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1645 			 mac_str, ret);
1646 	}
1647 	return ret;
1648 }
1649 
1650 static int
1651 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1652 		  uint32_t idx, __rte_unused uint32_t pool)
1653 {
1654 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1655 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1656 	int ret;
1657 
1658 	rte_spinlock_lock(&hw->lock);
1659 
1660 	/*
1661 	 * In hns3 network engine adding UC and MC mac address with different
1662 	 * commands with firmware. We need to determine whether the input
1663 	 * address is a UC or a MC address to call different commands.
1664 	 * By the way, it is recommended calling the API function named
1665 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1666 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1667 	 * may affect the specifications of UC mac addresses.
1668 	 */
1669 	if (rte_is_multicast_ether_addr(mac_addr))
1670 		ret = hns3_add_mc_addr_common(hw, mac_addr);
1671 	else
1672 		ret = hns3_add_uc_addr_common(hw, mac_addr);
1673 
1674 	if (ret) {
1675 		rte_spinlock_unlock(&hw->lock);
1676 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1677 				      mac_addr);
1678 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1679 			 ret);
1680 		return ret;
1681 	}
1682 
1683 	if (idx == 0)
1684 		hw->mac.default_addr_setted = true;
1685 	rte_spinlock_unlock(&hw->lock);
1686 
1687 	return ret;
1688 }
1689 
1690 static int
1691 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1692 {
1693 	struct hns3_mac_vlan_tbl_entry_cmd req;
1694 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1695 	int ret;
1696 
1697 	/* check if mac addr is valid */
1698 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1699 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1700 				      mac_addr);
1701 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1702 			 mac_str);
1703 		return -EINVAL;
1704 	}
1705 
1706 	memset(&req, 0, sizeof(req));
1707 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1708 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1709 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1710 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1711 		return 0;
1712 	else if (ret == 0)
1713 		hns3_update_umv_space(hw, true);
1714 
1715 	return ret;
1716 }
1717 
1718 static void
1719 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1720 {
1721 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1722 	/* index will be checked by upper level rte interface */
1723 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1724 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1725 	int ret;
1726 
1727 	rte_spinlock_lock(&hw->lock);
1728 
1729 	if (rte_is_multicast_ether_addr(mac_addr))
1730 		ret = hns3_remove_mc_addr_common(hw, mac_addr);
1731 	else
1732 		ret = hns3_remove_uc_addr_common(hw, mac_addr);
1733 	rte_spinlock_unlock(&hw->lock);
1734 	if (ret) {
1735 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1736 				      mac_addr);
1737 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1738 			 ret);
1739 	}
1740 }
1741 
1742 static int
1743 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1744 			  struct rte_ether_addr *mac_addr)
1745 {
1746 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1747 	struct rte_ether_addr *oaddr;
1748 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1749 	bool default_addr_setted;
1750 	bool rm_succes = false;
1751 	int ret, ret_val;
1752 
1753 	/*
1754 	 * It has been guaranteed that input parameter named mac_addr is valid
1755 	 * address in the rte layer of DPDK framework.
1756 	 */
1757 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1758 	default_addr_setted = hw->mac.default_addr_setted;
1759 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1760 		return 0;
1761 
1762 	rte_spinlock_lock(&hw->lock);
1763 	if (default_addr_setted) {
1764 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1765 		if (ret) {
1766 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1767 					      oaddr);
1768 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1769 				  mac_str, ret);
1770 			rm_succes = false;
1771 		} else
1772 			rm_succes = true;
1773 	}
1774 
1775 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1776 	if (ret) {
1777 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1778 				      mac_addr);
1779 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1780 		goto err_add_uc_addr;
1781 	}
1782 
1783 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1784 	if (ret) {
1785 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1786 		goto err_pause_addr_cfg;
1787 	}
1788 
1789 	rte_ether_addr_copy(mac_addr,
1790 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1791 	hw->mac.default_addr_setted = true;
1792 	rte_spinlock_unlock(&hw->lock);
1793 
1794 	return 0;
1795 
1796 err_pause_addr_cfg:
1797 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1798 	if (ret_val) {
1799 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1800 				      mac_addr);
1801 		hns3_warn(hw,
1802 			  "Failed to roll back to del setted mac addr(%s): %d",
1803 			  mac_str, ret_val);
1804 	}
1805 
1806 err_add_uc_addr:
1807 	if (rm_succes) {
1808 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1809 		if (ret_val) {
1810 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1811 					      oaddr);
1812 			hns3_warn(hw,
1813 				  "Failed to restore old uc mac addr(%s): %d",
1814 				  mac_str, ret_val);
1815 			hw->mac.default_addr_setted = false;
1816 		}
1817 	}
1818 	rte_spinlock_unlock(&hw->lock);
1819 
1820 	return ret;
1821 }
1822 
1823 static int
1824 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1825 {
1826 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1827 	struct hns3_hw *hw = &hns->hw;
1828 	struct rte_ether_addr *addr;
1829 	int err = 0;
1830 	int ret;
1831 	int i;
1832 
1833 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1834 		addr = &hw->data->mac_addrs[i];
1835 		if (rte_is_zero_ether_addr(addr))
1836 			continue;
1837 		if (rte_is_multicast_ether_addr(addr))
1838 			ret = del ? hns3_remove_mc_addr(hw, addr) :
1839 			      hns3_add_mc_addr(hw, addr);
1840 		else
1841 			ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1842 			      hns3_add_uc_addr_common(hw, addr);
1843 
1844 		if (ret) {
1845 			err = ret;
1846 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1847 					      addr);
1848 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1849 				 "ret = %d.", del ? "remove" : "restore",
1850 				 mac_str, i, ret);
1851 		}
1852 	}
1853 	return err;
1854 }
1855 
1856 static void
1857 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1858 {
1859 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1860 	uint8_t word_num;
1861 	uint8_t bit_num;
1862 
1863 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1864 		word_num = vfid / 32;
1865 		bit_num = vfid % 32;
1866 		if (clr)
1867 			desc[1].data[word_num] &=
1868 			    rte_cpu_to_le_32(~(1UL << bit_num));
1869 		else
1870 			desc[1].data[word_num] |=
1871 			    rte_cpu_to_le_32(1UL << bit_num);
1872 	} else {
1873 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1874 		bit_num = vfid % 32;
1875 		if (clr)
1876 			desc[2].data[word_num] &=
1877 			    rte_cpu_to_le_32(~(1UL << bit_num));
1878 		else
1879 			desc[2].data[word_num] |=
1880 			    rte_cpu_to_le_32(1UL << bit_num);
1881 	}
1882 }
1883 
1884 static int
1885 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1886 {
1887 	struct hns3_mac_vlan_tbl_entry_cmd req;
1888 	struct hns3_cmd_desc desc[3];
1889 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1890 	uint8_t vf_id;
1891 	int ret;
1892 
1893 	/* Check if mac addr is valid */
1894 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1895 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1896 				      mac_addr);
1897 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1898 			 mac_str);
1899 		return -EINVAL;
1900 	}
1901 
1902 	memset(&req, 0, sizeof(req));
1903 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1904 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1905 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1906 	if (ret) {
1907 		/* This mac addr do not exist, add new entry for it */
1908 		memset(desc[0].data, 0, sizeof(desc[0].data));
1909 		memset(desc[1].data, 0, sizeof(desc[0].data));
1910 		memset(desc[2].data, 0, sizeof(desc[0].data));
1911 	}
1912 
1913 	/*
1914 	 * In current version VF is not supported when PF is driven by DPDK
1915 	 * driver, just need to configure parameters for PF vport.
1916 	 */
1917 	vf_id = HNS3_PF_FUNC_ID;
1918 	hns3_update_desc_vfid(desc, vf_id, false);
1919 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1920 	if (ret) {
1921 		if (ret == -ENOSPC)
1922 			hns3_err(hw, "mc mac vlan table is full");
1923 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1924 				      mac_addr);
1925 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1926 	}
1927 
1928 	return ret;
1929 }
1930 
1931 static int
1932 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1933 {
1934 	struct hns3_mac_vlan_tbl_entry_cmd req;
1935 	struct hns3_cmd_desc desc[3];
1936 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1937 	uint8_t vf_id;
1938 	int ret;
1939 
1940 	/* Check if mac addr is valid */
1941 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1942 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1943 				      mac_addr);
1944 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1945 			 mac_str);
1946 		return -EINVAL;
1947 	}
1948 
1949 	memset(&req, 0, sizeof(req));
1950 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1951 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1952 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1953 	if (ret == 0) {
1954 		/*
1955 		 * This mac addr exist, remove this handle's VFID for it.
1956 		 * In current version VF is not supported when PF is driven by
1957 		 * DPDK driver, just need to configure parameters for PF vport.
1958 		 */
1959 		vf_id = HNS3_PF_FUNC_ID;
1960 		hns3_update_desc_vfid(desc, vf_id, true);
1961 
1962 		/* All the vfid is zero, so need to delete this entry */
1963 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1964 	} else if (ret == -ENOENT) {
1965 		/* This mac addr doesn't exist. */
1966 		return 0;
1967 	}
1968 
1969 	if (ret) {
1970 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1971 				      mac_addr);
1972 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1973 	}
1974 
1975 	return ret;
1976 }
1977 
1978 static int
1979 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1980 			   struct rte_ether_addr *mc_addr_set,
1981 			   uint32_t nb_mc_addr)
1982 {
1983 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1984 	struct rte_ether_addr *addr;
1985 	uint32_t i;
1986 	uint32_t j;
1987 
1988 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1989 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1990 			 "invalid. valid range: 0~%d",
1991 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1992 		return -EINVAL;
1993 	}
1994 
1995 	/* Check if input mac addresses are valid */
1996 	for (i = 0; i < nb_mc_addr; i++) {
1997 		addr = &mc_addr_set[i];
1998 		if (!rte_is_multicast_ether_addr(addr)) {
1999 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2000 					      addr);
2001 			hns3_err(hw,
2002 				 "failed to set mc mac addr, addr(%s) invalid.",
2003 				 mac_str);
2004 			return -EINVAL;
2005 		}
2006 
2007 		/* Check if there are duplicate addresses */
2008 		for (j = i + 1; j < nb_mc_addr; j++) {
2009 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2010 				hns3_ether_format_addr(mac_str,
2011 						      RTE_ETHER_ADDR_FMT_SIZE,
2012 						      addr);
2013 				hns3_err(hw, "failed to set mc mac addr, "
2014 					 "addrs invalid. two same addrs(%s).",
2015 					 mac_str);
2016 				return -EINVAL;
2017 			}
2018 		}
2019 
2020 		/*
2021 		 * Check if there are duplicate addresses between mac_addrs
2022 		 * and mc_addr_set
2023 		 */
2024 		for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
2025 			if (rte_is_same_ether_addr(addr,
2026 						   &hw->data->mac_addrs[j])) {
2027 				hns3_ether_format_addr(mac_str,
2028 						      RTE_ETHER_ADDR_FMT_SIZE,
2029 						      addr);
2030 				hns3_err(hw, "failed to set mc mac addr, "
2031 					 "addrs invalid. addrs(%s) has already "
2032 					 "configured in mac_addr add API",
2033 					 mac_str);
2034 				return -EINVAL;
2035 			}
2036 		}
2037 	}
2038 
2039 	return 0;
2040 }
2041 
2042 static void
2043 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
2044 			   struct rte_ether_addr *mc_addr_set,
2045 			   int mc_addr_num,
2046 			   struct rte_ether_addr *reserved_addr_list,
2047 			   int *reserved_addr_num,
2048 			   struct rte_ether_addr *add_addr_list,
2049 			   int *add_addr_num,
2050 			   struct rte_ether_addr *rm_addr_list,
2051 			   int *rm_addr_num)
2052 {
2053 	struct rte_ether_addr *addr;
2054 	int current_addr_num;
2055 	int reserved_num = 0;
2056 	int add_num = 0;
2057 	int rm_num = 0;
2058 	int num;
2059 	int i;
2060 	int j;
2061 	bool same_addr;
2062 
2063 	/* Calculate the mc mac address list that should be removed */
2064 	current_addr_num = hw->mc_addrs_num;
2065 	for (i = 0; i < current_addr_num; i++) {
2066 		addr = &hw->mc_addrs[i];
2067 		same_addr = false;
2068 		for (j = 0; j < mc_addr_num; j++) {
2069 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2070 				same_addr = true;
2071 				break;
2072 			}
2073 		}
2074 
2075 		if (!same_addr) {
2076 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
2077 			rm_num++;
2078 		} else {
2079 			rte_ether_addr_copy(addr,
2080 					    &reserved_addr_list[reserved_num]);
2081 			reserved_num++;
2082 		}
2083 	}
2084 
2085 	/* Calculate the mc mac address list that should be added */
2086 	for (i = 0; i < mc_addr_num; i++) {
2087 		addr = &mc_addr_set[i];
2088 		same_addr = false;
2089 		for (j = 0; j < current_addr_num; j++) {
2090 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2091 				same_addr = true;
2092 				break;
2093 			}
2094 		}
2095 
2096 		if (!same_addr) {
2097 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2098 			add_num++;
2099 		}
2100 	}
2101 
2102 	/* Reorder the mc mac address list maintained by driver */
2103 	for (i = 0; i < reserved_num; i++)
2104 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2105 
2106 	for (i = 0; i < rm_num; i++) {
2107 		num = reserved_num + i;
2108 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2109 	}
2110 
2111 	*reserved_addr_num = reserved_num;
2112 	*add_addr_num = add_num;
2113 	*rm_addr_num = rm_num;
2114 }
2115 
2116 static int
2117 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2118 			  struct rte_ether_addr *mc_addr_set,
2119 			  uint32_t nb_mc_addr)
2120 {
2121 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2122 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2123 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2124 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2125 	struct rte_ether_addr *addr;
2126 	int reserved_addr_num;
2127 	int add_addr_num;
2128 	int rm_addr_num;
2129 	int mc_addr_num;
2130 	int num;
2131 	int ret;
2132 	int i;
2133 
2134 	/* Check if input parameters are valid */
2135 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2136 	if (ret)
2137 		return ret;
2138 
2139 	rte_spinlock_lock(&hw->lock);
2140 
2141 	/*
2142 	 * Calculate the mc mac address lists those should be removed and be
2143 	 * added, Reorder the mc mac address list maintained by driver.
2144 	 */
2145 	mc_addr_num = (int)nb_mc_addr;
2146 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2147 				   reserved_addr_list, &reserved_addr_num,
2148 				   add_addr_list, &add_addr_num,
2149 				   rm_addr_list, &rm_addr_num);
2150 
2151 	/* Remove mc mac addresses */
2152 	for (i = 0; i < rm_addr_num; i++) {
2153 		num = rm_addr_num - i - 1;
2154 		addr = &rm_addr_list[num];
2155 		ret = hns3_remove_mc_addr(hw, addr);
2156 		if (ret) {
2157 			rte_spinlock_unlock(&hw->lock);
2158 			return ret;
2159 		}
2160 		hw->mc_addrs_num--;
2161 	}
2162 
2163 	/* Add mc mac addresses */
2164 	for (i = 0; i < add_addr_num; i++) {
2165 		addr = &add_addr_list[i];
2166 		ret = hns3_add_mc_addr(hw, addr);
2167 		if (ret) {
2168 			rte_spinlock_unlock(&hw->lock);
2169 			return ret;
2170 		}
2171 
2172 		num = reserved_addr_num + i;
2173 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2174 		hw->mc_addrs_num++;
2175 	}
2176 	rte_spinlock_unlock(&hw->lock);
2177 
2178 	return 0;
2179 }
2180 
2181 static int
2182 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2183 {
2184 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2185 	struct hns3_hw *hw = &hns->hw;
2186 	struct rte_ether_addr *addr;
2187 	int err = 0;
2188 	int ret;
2189 	int i;
2190 
2191 	for (i = 0; i < hw->mc_addrs_num; i++) {
2192 		addr = &hw->mc_addrs[i];
2193 		if (!rte_is_multicast_ether_addr(addr))
2194 			continue;
2195 		if (del)
2196 			ret = hns3_remove_mc_addr(hw, addr);
2197 		else
2198 			ret = hns3_add_mc_addr(hw, addr);
2199 		if (ret) {
2200 			err = ret;
2201 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2202 					      addr);
2203 			hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2204 				 del ? "Remove" : "Restore", mac_str, ret);
2205 		}
2206 	}
2207 	return err;
2208 }
2209 
2210 static int
2211 hns3_check_mq_mode(struct rte_eth_dev *dev)
2212 {
2213 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2214 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2215 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2216 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2217 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2218 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2219 	uint8_t num_tc;
2220 	int max_tc = 0;
2221 	int i;
2222 
2223 	if ((rx_mq_mode & ETH_MQ_RX_VMDQ_FLAG) ||
2224 	    (tx_mq_mode == ETH_MQ_TX_VMDQ_DCB ||
2225 	     tx_mq_mode == ETH_MQ_TX_VMDQ_ONLY)) {
2226 		hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.",
2227 			 rx_mq_mode, tx_mq_mode);
2228 		return -EOPNOTSUPP;
2229 	}
2230 
2231 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2232 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2233 	if (rx_mq_mode & ETH_MQ_RX_DCB_FLAG) {
2234 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2235 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2236 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2237 			return -EINVAL;
2238 		}
2239 
2240 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2241 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2242 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2243 				 "nb_tcs(%d) != %d or %d in rx direction.",
2244 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2245 			return -EINVAL;
2246 		}
2247 
2248 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2249 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2250 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2251 			return -EINVAL;
2252 		}
2253 
2254 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2255 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2256 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2257 					 "is not equal to one in tx direction.",
2258 					 i, dcb_rx_conf->dcb_tc[i]);
2259 				return -EINVAL;
2260 			}
2261 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2262 				max_tc = dcb_rx_conf->dcb_tc[i];
2263 		}
2264 
2265 		num_tc = max_tc + 1;
2266 		if (num_tc > dcb_rx_conf->nb_tcs) {
2267 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2268 				 num_tc, dcb_rx_conf->nb_tcs);
2269 			return -EINVAL;
2270 		}
2271 	}
2272 
2273 	return 0;
2274 }
2275 
2276 static int
2277 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2278 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2279 {
2280 	struct hns3_cmd_desc desc;
2281 	struct hns3_ctrl_vector_chain_cmd *req =
2282 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2283 	enum hns3_opcode_type op;
2284 	uint16_t tqp_type_and_id = 0;
2285 	uint16_t type;
2286 	uint16_t gl;
2287 	int ret;
2288 
2289 	op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2290 	hns3_cmd_setup_basic_desc(&desc, op, false);
2291 	req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2292 					      HNS3_TQP_INT_ID_L_S);
2293 	req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2294 					      HNS3_TQP_INT_ID_H_S);
2295 
2296 	if (queue_type == HNS3_RING_TYPE_RX)
2297 		gl = HNS3_RING_GL_RX;
2298 	else
2299 		gl = HNS3_RING_GL_TX;
2300 
2301 	type = queue_type;
2302 
2303 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2304 		       type);
2305 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2306 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2307 		       gl);
2308 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2309 	req->int_cause_num = 1;
2310 	ret = hns3_cmd_send(hw, &desc, 1);
2311 	if (ret) {
2312 		hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.",
2313 			 en ? "Map" : "Unmap", queue_id, vector_id, ret);
2314 		return ret;
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 static int
2321 hns3_init_ring_with_vector(struct hns3_hw *hw)
2322 {
2323 	uint16_t vec;
2324 	int ret;
2325 	int i;
2326 
2327 	/*
2328 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2329 	 * function, vector 1~N can be used respectively for the queues of the
2330 	 * function. Tx and Rx queues with the same number share the interrupt
2331 	 * vector. In the initialization clearing the all hardware mapping
2332 	 * relationship configurations between queues and interrupt vectors is
2333 	 * needed, so some error caused by the residual configurations, such as
2334 	 * the unexpected Tx interrupt, can be avoid.
2335 	 */
2336 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2337 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2338 		vec = vec - 1; /* the last interrupt is reserved */
2339 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2340 	for (i = 0; i < hw->intr_tqps_num; i++) {
2341 		/*
2342 		 * Set gap limiter/rate limiter/quanity limiter algorithm
2343 		 * configuration for interrupt coalesce of queue's interrupt.
2344 		 */
2345 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2346 				       HNS3_TQP_INTR_GL_DEFAULT);
2347 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2348 				       HNS3_TQP_INTR_GL_DEFAULT);
2349 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2350 		/*
2351 		 * QL(quantity limiter) is not used currently, just set 0 to
2352 		 * close it.
2353 		 */
2354 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2355 
2356 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2357 						 HNS3_RING_TYPE_TX, i);
2358 		if (ret) {
2359 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2360 					  "vector: %u, ret=%d", i, vec, ret);
2361 			return ret;
2362 		}
2363 
2364 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2365 						 HNS3_RING_TYPE_RX, i);
2366 		if (ret) {
2367 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2368 					  "vector: %u, ret=%d", i, vec, ret);
2369 			return ret;
2370 		}
2371 	}
2372 
2373 	return 0;
2374 }
2375 
2376 static int
2377 hns3_refresh_mtu(struct rte_eth_dev *dev, struct rte_eth_conf *conf)
2378 {
2379 	struct hns3_adapter *hns = dev->data->dev_private;
2380 	struct hns3_hw *hw = &hns->hw;
2381 	uint32_t max_rx_pkt_len;
2382 	uint16_t mtu;
2383 	int ret;
2384 
2385 	if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME))
2386 		return 0;
2387 
2388 	/*
2389 	 * If jumbo frames are enabled, MTU needs to be refreshed
2390 	 * according to the maximum RX packet length.
2391 	 */
2392 	max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
2393 	if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
2394 	    max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
2395 		hns3_err(hw, "maximum Rx packet length must be greater than %u "
2396 			 "and no more than %u when jumbo frame enabled.",
2397 			 (uint16_t)HNS3_DEFAULT_FRAME_LEN,
2398 			 (uint16_t)HNS3_MAX_FRAME_LEN);
2399 		return -EINVAL;
2400 	}
2401 
2402 	mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
2403 	ret = hns3_dev_mtu_set(dev, mtu);
2404 	if (ret)
2405 		return ret;
2406 	dev->data->mtu = mtu;
2407 
2408 	return 0;
2409 }
2410 
2411 static int
2412 hns3_setup_dcb(struct rte_eth_dev *dev)
2413 {
2414 	struct hns3_adapter *hns = dev->data->dev_private;
2415 	struct hns3_hw *hw = &hns->hw;
2416 	int ret;
2417 
2418 	if (!hns3_dev_dcb_supported(hw)) {
2419 		hns3_err(hw, "this port does not support dcb configurations.");
2420 		return -EOPNOTSUPP;
2421 	}
2422 
2423 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2424 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2425 		return -EOPNOTSUPP;
2426 	}
2427 
2428 	ret = hns3_dcb_configure(hns);
2429 	if (ret)
2430 		hns3_err(hw, "failed to config dcb: %d", ret);
2431 
2432 	return ret;
2433 }
2434 
2435 static int
2436 hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds)
2437 {
2438 	int ret;
2439 
2440 	/*
2441 	 * Some hardware doesn't support auto-negotiation, but users may not
2442 	 * configure link_speeds (default 0), which means auto-negotiation.
2443 	 * In this case, a warning message need to be printed, instead of
2444 	 * an error.
2445 	 */
2446 	if (link_speeds == ETH_LINK_SPEED_AUTONEG &&
2447 	    hw->mac.support_autoneg == 0) {
2448 		hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!");
2449 		return 0;
2450 	}
2451 
2452 	if (link_speeds != ETH_LINK_SPEED_AUTONEG) {
2453 		ret = hns3_check_port_speed(hw, link_speeds);
2454 		if (ret)
2455 			return ret;
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 static int
2462 hns3_check_dev_conf(struct rte_eth_dev *dev)
2463 {
2464 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2465 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2466 	int ret;
2467 
2468 	ret = hns3_check_mq_mode(dev);
2469 	if (ret)
2470 		return ret;
2471 
2472 	return hns3_check_link_speed(hw, conf->link_speeds);
2473 }
2474 
2475 static int
2476 hns3_dev_configure(struct rte_eth_dev *dev)
2477 {
2478 	struct hns3_adapter *hns = dev->data->dev_private;
2479 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2480 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2481 	struct hns3_hw *hw = &hns->hw;
2482 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2483 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2484 	struct rte_eth_rss_conf rss_conf;
2485 	bool gro_en;
2486 	int ret;
2487 
2488 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2489 
2490 	/*
2491 	 * Some versions of hardware network engine does not support
2492 	 * individually enable/disable/reset the Tx or Rx queue. These devices
2493 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
2494 	 * numbers of Tx queues allocated by upper applications are not equal to
2495 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2496 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2497 	 * work as usual. But these fake queues are imperceptible, and can not
2498 	 * be used by upper applications.
2499 	 */
2500 	if (!hns3_dev_indep_txrx_supported(hw)) {
2501 		ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2502 		if (ret) {
2503 			hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
2504 				 ret);
2505 			return ret;
2506 		}
2507 	}
2508 
2509 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2510 	ret = hns3_check_dev_conf(dev);
2511 	if (ret)
2512 		goto cfg_err;
2513 
2514 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2515 		ret = hns3_setup_dcb(dev);
2516 		if (ret)
2517 			goto cfg_err;
2518 	}
2519 
2520 	/* When RSS is not configured, redirect the packet queue 0 */
2521 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2522 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2523 		rss_conf = conf->rx_adv_conf.rss_conf;
2524 		hw->rss_dis_flag = false;
2525 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2526 		if (ret)
2527 			goto cfg_err;
2528 	}
2529 
2530 	ret = hns3_refresh_mtu(dev, conf);
2531 	if (ret)
2532 		goto cfg_err;
2533 
2534 	ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2535 	if (ret)
2536 		goto cfg_err;
2537 
2538 	ret = hns3_dev_configure_vlan(dev);
2539 	if (ret)
2540 		goto cfg_err;
2541 
2542 	/* config hardware GRO */
2543 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2544 	ret = hns3_config_gro(hw, gro_en);
2545 	if (ret)
2546 		goto cfg_err;
2547 
2548 	hns3_init_rx_ptype_tble(dev);
2549 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2550 
2551 	return 0;
2552 
2553 cfg_err:
2554 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2555 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2556 
2557 	return ret;
2558 }
2559 
2560 static int
2561 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2562 {
2563 	struct hns3_config_max_frm_size_cmd *req;
2564 	struct hns3_cmd_desc desc;
2565 
2566 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2567 
2568 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2569 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2570 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2571 
2572 	return hns3_cmd_send(hw, &desc, 1);
2573 }
2574 
2575 static int
2576 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2577 {
2578 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2579 	uint16_t original_mps = hns->pf.mps;
2580 	int err;
2581 	int ret;
2582 
2583 	ret = hns3_set_mac_mtu(hw, mps);
2584 	if (ret) {
2585 		hns3_err(hw, "failed to set mtu, ret = %d", ret);
2586 		return ret;
2587 	}
2588 
2589 	hns->pf.mps = mps;
2590 	ret = hns3_buffer_alloc(hw);
2591 	if (ret) {
2592 		hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2593 		goto rollback;
2594 	}
2595 
2596 	return 0;
2597 
2598 rollback:
2599 	err = hns3_set_mac_mtu(hw, original_mps);
2600 	if (err) {
2601 		hns3_err(hw, "fail to rollback MTU, err = %d", err);
2602 		return ret;
2603 	}
2604 	hns->pf.mps = original_mps;
2605 
2606 	return ret;
2607 }
2608 
2609 static int
2610 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2611 {
2612 	struct hns3_adapter *hns = dev->data->dev_private;
2613 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2614 	struct hns3_hw *hw = &hns->hw;
2615 	bool is_jumbo_frame;
2616 	int ret;
2617 
2618 	if (dev->data->dev_started) {
2619 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2620 			 "before configuration", dev->data->port_id);
2621 		return -EBUSY;
2622 	}
2623 
2624 	rte_spinlock_lock(&hw->lock);
2625 	is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
2626 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2627 
2628 	/*
2629 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2630 	 * assign to "uint16_t" type variable.
2631 	 */
2632 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2633 	if (ret) {
2634 		rte_spinlock_unlock(&hw->lock);
2635 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2636 			 dev->data->port_id, mtu, ret);
2637 		return ret;
2638 	}
2639 
2640 	if (is_jumbo_frame)
2641 		dev->data->dev_conf.rxmode.offloads |=
2642 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2643 	else
2644 		dev->data->dev_conf.rxmode.offloads &=
2645 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2646 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2647 	rte_spinlock_unlock(&hw->lock);
2648 
2649 	return 0;
2650 }
2651 
2652 static uint32_t
2653 hns3_get_copper_port_speed_capa(uint32_t supported_speed)
2654 {
2655 	uint32_t speed_capa = 0;
2656 
2657 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT)
2658 		speed_capa |= ETH_LINK_SPEED_10M_HD;
2659 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT)
2660 		speed_capa |= ETH_LINK_SPEED_10M;
2661 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT)
2662 		speed_capa |= ETH_LINK_SPEED_100M_HD;
2663 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT)
2664 		speed_capa |= ETH_LINK_SPEED_100M;
2665 	if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT)
2666 		speed_capa |= ETH_LINK_SPEED_1G;
2667 
2668 	return speed_capa;
2669 }
2670 
2671 static uint32_t
2672 hns3_get_firber_port_speed_capa(uint32_t supported_speed)
2673 {
2674 	uint32_t speed_capa = 0;
2675 
2676 	if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT)
2677 		speed_capa |= ETH_LINK_SPEED_1G;
2678 	if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT)
2679 		speed_capa |= ETH_LINK_SPEED_10G;
2680 	if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT)
2681 		speed_capa |= ETH_LINK_SPEED_25G;
2682 	if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT)
2683 		speed_capa |= ETH_LINK_SPEED_40G;
2684 	if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT)
2685 		speed_capa |= ETH_LINK_SPEED_50G;
2686 	if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT)
2687 		speed_capa |= ETH_LINK_SPEED_100G;
2688 	if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT)
2689 		speed_capa |= ETH_LINK_SPEED_200G;
2690 
2691 	return speed_capa;
2692 }
2693 
2694 static uint32_t
2695 hns3_get_speed_capa(struct hns3_hw *hw)
2696 {
2697 	struct hns3_mac *mac = &hw->mac;
2698 	uint32_t speed_capa;
2699 
2700 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
2701 		speed_capa =
2702 			hns3_get_copper_port_speed_capa(mac->supported_speed);
2703 	else
2704 		speed_capa =
2705 			hns3_get_firber_port_speed_capa(mac->supported_speed);
2706 
2707 	if (mac->support_autoneg == 0)
2708 		speed_capa |= ETH_LINK_SPEED_FIXED;
2709 
2710 	return speed_capa;
2711 }
2712 
2713 int
2714 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2715 {
2716 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2717 	struct hns3_hw *hw = &hns->hw;
2718 	uint16_t queue_num = hw->tqps_num;
2719 
2720 	/*
2721 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2722 	 * MSI-X interrupt resources of the hardware.
2723 	 */
2724 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2725 		queue_num = hw->intr_tqps_num;
2726 
2727 	info->max_rx_queues = queue_num;
2728 	info->max_tx_queues = hw->tqps_num;
2729 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2730 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2731 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2732 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2733 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2734 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2735 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2736 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2737 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2738 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2739 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2740 				 DEV_RX_OFFLOAD_KEEP_CRC |
2741 				 DEV_RX_OFFLOAD_SCATTER |
2742 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2743 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2744 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
2745 				 DEV_RX_OFFLOAD_RSS_HASH |
2746 				 DEV_RX_OFFLOAD_TCP_LRO);
2747 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2748 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2749 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2750 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2751 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2752 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2753 				 DEV_TX_OFFLOAD_TCP_TSO |
2754 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2755 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
2756 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2757 				 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2758 				 hns3_txvlan_cap_get(hw));
2759 
2760 	if (hns3_dev_outer_udp_cksum_supported(hw))
2761 		info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
2762 
2763 	if (hns3_dev_indep_txrx_supported(hw))
2764 		info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2765 				 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2766 
2767 	if (hns3_dev_ptp_supported(hw))
2768 		info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
2769 
2770 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2771 		.nb_max = HNS3_MAX_RING_DESC,
2772 		.nb_min = HNS3_MIN_RING_DESC,
2773 		.nb_align = HNS3_ALIGN_RING_DESC,
2774 	};
2775 
2776 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2777 		.nb_max = HNS3_MAX_RING_DESC,
2778 		.nb_min = HNS3_MIN_RING_DESC,
2779 		.nb_align = HNS3_ALIGN_RING_DESC,
2780 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2781 		.nb_mtu_seg_max = hw->max_non_tso_bd_num,
2782 	};
2783 
2784 	info->speed_capa = hns3_get_speed_capa(hw);
2785 	info->default_rxconf = (struct rte_eth_rxconf) {
2786 		.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2787 		/*
2788 		 * If there are no available Rx buffer descriptors, incoming
2789 		 * packets are always dropped by hardware based on hns3 network
2790 		 * engine.
2791 		 */
2792 		.rx_drop_en = 1,
2793 		.offloads = 0,
2794 	};
2795 	info->default_txconf = (struct rte_eth_txconf) {
2796 		.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2797 		.offloads = 0,
2798 	};
2799 
2800 	info->reta_size = hw->rss_ind_tbl_size;
2801 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2802 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2803 
2804 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2805 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2806 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2807 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2808 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2809 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2810 
2811 	return 0;
2812 }
2813 
2814 static int
2815 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2816 		    size_t fw_size)
2817 {
2818 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2819 	struct hns3_hw *hw = &hns->hw;
2820 	uint32_t version = hw->fw_version;
2821 	int ret;
2822 
2823 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2824 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2825 				      HNS3_FW_VERSION_BYTE3_S),
2826 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2827 				      HNS3_FW_VERSION_BYTE2_S),
2828 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2829 				      HNS3_FW_VERSION_BYTE1_S),
2830 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2831 				      HNS3_FW_VERSION_BYTE0_S));
2832 	if (ret < 0)
2833 		return -EINVAL;
2834 
2835 	ret += 1; /* add the size of '\0' */
2836 	if (fw_size < (size_t)ret)
2837 		return ret;
2838 	else
2839 		return 0;
2840 }
2841 
2842 static int
2843 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2844 {
2845 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2846 	int ret;
2847 
2848 	(void)hns3_update_link_status(hw);
2849 
2850 	ret = hns3_update_link_info(eth_dev);
2851 	if (ret)
2852 		hw->mac.link_status = ETH_LINK_DOWN;
2853 
2854 	return ret;
2855 }
2856 
2857 static void
2858 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2859 		      struct rte_eth_link *new_link)
2860 {
2861 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2862 	struct hns3_mac *mac = &hw->mac;
2863 
2864 	switch (mac->link_speed) {
2865 	case ETH_SPEED_NUM_10M:
2866 	case ETH_SPEED_NUM_100M:
2867 	case ETH_SPEED_NUM_1G:
2868 	case ETH_SPEED_NUM_10G:
2869 	case ETH_SPEED_NUM_25G:
2870 	case ETH_SPEED_NUM_40G:
2871 	case ETH_SPEED_NUM_50G:
2872 	case ETH_SPEED_NUM_100G:
2873 	case ETH_SPEED_NUM_200G:
2874 		if (mac->link_status)
2875 			new_link->link_speed = mac->link_speed;
2876 		break;
2877 	default:
2878 		if (mac->link_status)
2879 			new_link->link_speed = ETH_SPEED_NUM_UNKNOWN;
2880 		break;
2881 	}
2882 
2883 	if (!mac->link_status)
2884 		new_link->link_speed = ETH_SPEED_NUM_NONE;
2885 
2886 	new_link->link_duplex = mac->link_duplex;
2887 	new_link->link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2888 	new_link->link_autoneg = mac->link_autoneg;
2889 }
2890 
2891 static int
2892 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2893 {
2894 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2895 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2896 
2897 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2898 	uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2899 	struct hns3_mac *mac = &hw->mac;
2900 	struct rte_eth_link new_link;
2901 	int ret;
2902 
2903 	/* When port is stopped, report link down. */
2904 	if (eth_dev->data->dev_started == 0) {
2905 		new_link.link_autoneg = mac->link_autoneg;
2906 		new_link.link_duplex = mac->link_duplex;
2907 		new_link.link_speed = ETH_SPEED_NUM_NONE;
2908 		new_link.link_status = ETH_LINK_DOWN;
2909 		goto out;
2910 	}
2911 
2912 	do {
2913 		ret = hns3_update_port_link_info(eth_dev);
2914 		if (ret) {
2915 			hns3_err(hw, "failed to get port link info, ret = %d.",
2916 				 ret);
2917 			break;
2918 		}
2919 
2920 		if (!wait_to_complete || mac->link_status == ETH_LINK_UP)
2921 			break;
2922 
2923 		rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2924 	} while (retry_cnt--);
2925 
2926 	memset(&new_link, 0, sizeof(new_link));
2927 	hns3_setup_linkstatus(eth_dev, &new_link);
2928 
2929 out:
2930 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2931 }
2932 
2933 static int
2934 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2935 {
2936 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2937 	struct hns3_pf *pf = &hns->pf;
2938 
2939 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2940 		return -EINVAL;
2941 
2942 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2943 
2944 	return 0;
2945 }
2946 
2947 static int
2948 hns3_query_function_status(struct hns3_hw *hw)
2949 {
2950 #define HNS3_QUERY_MAX_CNT		10
2951 #define HNS3_QUERY_SLEEP_MSCOEND	1
2952 	struct hns3_func_status_cmd *req;
2953 	struct hns3_cmd_desc desc;
2954 	int timeout = 0;
2955 	int ret;
2956 
2957 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2958 	req = (struct hns3_func_status_cmd *)desc.data;
2959 
2960 	do {
2961 		ret = hns3_cmd_send(hw, &desc, 1);
2962 		if (ret) {
2963 			PMD_INIT_LOG(ERR, "query function status failed %d",
2964 				     ret);
2965 			return ret;
2966 		}
2967 
2968 		/* Check pf reset is done */
2969 		if (req->pf_state)
2970 			break;
2971 
2972 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2973 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2974 
2975 	return hns3_parse_func_status(hw, req);
2976 }
2977 
2978 static int
2979 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2980 {
2981 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2982 	struct hns3_pf *pf = &hns->pf;
2983 
2984 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2985 		/*
2986 		 * The total_tqps_num obtained from firmware is maximum tqp
2987 		 * numbers of this port, which should be used for PF and VFs.
2988 		 * There is no need for pf to have so many tqp numbers in
2989 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2990 		 * coming from config file, is assigned to maximum queue number
2991 		 * for the PF of this port by user. So users can modify the
2992 		 * maximum queue number of PF according to their own application
2993 		 * scenarios, which is more flexible to use. In addition, many
2994 		 * memories can be saved due to allocating queue statistics
2995 		 * room according to the actual number of queues required. The
2996 		 * maximum queue number of PF for network engine with
2997 		 * revision_id greater than 0x30 is assigned by config file.
2998 		 */
2999 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
3000 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
3001 				 "must be greater than 0.",
3002 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
3003 			return -EINVAL;
3004 		}
3005 
3006 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
3007 				       hw->total_tqps_num);
3008 	} else {
3009 		/*
3010 		 * Due to the limitation on the number of PF interrupts
3011 		 * available, the maximum queue number assigned to PF on
3012 		 * the network engine with revision_id 0x21 is 64.
3013 		 */
3014 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
3015 				       HNS3_MAX_TQP_NUM_HIP08_PF);
3016 	}
3017 
3018 	return 0;
3019 }
3020 
3021 static int
3022 hns3_query_pf_resource(struct hns3_hw *hw)
3023 {
3024 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3025 	struct hns3_pf *pf = &hns->pf;
3026 	struct hns3_pf_res_cmd *req;
3027 	struct hns3_cmd_desc desc;
3028 	int ret;
3029 
3030 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
3031 	ret = hns3_cmd_send(hw, &desc, 1);
3032 	if (ret) {
3033 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
3034 		return ret;
3035 	}
3036 
3037 	req = (struct hns3_pf_res_cmd *)desc.data;
3038 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
3039 			     rte_le_to_cpu_16(req->ext_tqp_num);
3040 	ret = hns3_get_pf_max_tqp_num(hw);
3041 	if (ret)
3042 		return ret;
3043 
3044 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
3045 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
3046 
3047 	if (req->tx_buf_size)
3048 		pf->tx_buf_size =
3049 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
3050 	else
3051 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
3052 
3053 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
3054 
3055 	if (req->dv_buf_size)
3056 		pf->dv_buf_size =
3057 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
3058 	else
3059 		pf->dv_buf_size = HNS3_DEFAULT_DV;
3060 
3061 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
3062 
3063 	hw->num_msi =
3064 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
3065 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
3066 
3067 	return 0;
3068 }
3069 
3070 static void
3071 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
3072 {
3073 	struct hns3_cfg_param_cmd *req;
3074 	uint64_t mac_addr_tmp_high;
3075 	uint8_t ext_rss_size_max;
3076 	uint64_t mac_addr_tmp;
3077 	uint32_t i;
3078 
3079 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
3080 
3081 	/* get the configuration */
3082 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
3083 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
3084 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
3085 					   HNS3_CFG_TQP_DESC_N_M,
3086 					   HNS3_CFG_TQP_DESC_N_S);
3087 
3088 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3089 				       HNS3_CFG_PHY_ADDR_M,
3090 				       HNS3_CFG_PHY_ADDR_S);
3091 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3092 					 HNS3_CFG_MEDIA_TP_M,
3093 					 HNS3_CFG_MEDIA_TP_S);
3094 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3095 					 HNS3_CFG_RX_BUF_LEN_M,
3096 					 HNS3_CFG_RX_BUF_LEN_S);
3097 	/* get mac address */
3098 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
3099 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3100 					   HNS3_CFG_MAC_ADDR_H_M,
3101 					   HNS3_CFG_MAC_ADDR_H_S);
3102 
3103 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
3104 
3105 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3106 					    HNS3_CFG_DEFAULT_SPEED_M,
3107 					    HNS3_CFG_DEFAULT_SPEED_S);
3108 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3109 					   HNS3_CFG_RSS_SIZE_M,
3110 					   HNS3_CFG_RSS_SIZE_S);
3111 
3112 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
3113 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
3114 
3115 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
3116 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
3117 
3118 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3119 					    HNS3_CFG_SPEED_ABILITY_M,
3120 					    HNS3_CFG_SPEED_ABILITY_S);
3121 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3122 					HNS3_CFG_UMV_TBL_SPACE_M,
3123 					HNS3_CFG_UMV_TBL_SPACE_S);
3124 	if (!cfg->umv_space)
3125 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
3126 
3127 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
3128 					       HNS3_CFG_EXT_RSS_SIZE_M,
3129 					       HNS3_CFG_EXT_RSS_SIZE_S);
3130 
3131 	/*
3132 	 * Field ext_rss_size_max obtained from firmware will be more flexible
3133 	 * for future changes and expansions, which is an exponent of 2, instead
3134 	 * of reading out directly. If this field is not zero, hns3 PF PMD
3135 	 * driver uses it as rss_size_max under one TC. Device, whose revision
3136 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
3137 	 * maximum number of queues supported under a TC through this field.
3138 	 */
3139 	if (ext_rss_size_max)
3140 		cfg->rss_size_max = 1U << ext_rss_size_max;
3141 }
3142 
3143 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
3144  * @hw: pointer to struct hns3_hw
3145  * @hcfg: the config structure to be getted
3146  */
3147 static int
3148 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
3149 {
3150 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
3151 	struct hns3_cfg_param_cmd *req;
3152 	uint32_t offset;
3153 	uint32_t i;
3154 	int ret;
3155 
3156 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
3157 		offset = 0;
3158 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
3159 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
3160 					  true);
3161 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
3162 			       i * HNS3_CFG_RD_LEN_BYTES);
3163 		/* Len should be divided by 4 when send to hardware */
3164 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
3165 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
3166 		req->offset = rte_cpu_to_le_32(offset);
3167 	}
3168 
3169 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
3170 	if (ret) {
3171 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
3172 		return ret;
3173 	}
3174 
3175 	hns3_parse_cfg(hcfg, desc);
3176 
3177 	return 0;
3178 }
3179 
3180 static int
3181 hns3_parse_speed(int speed_cmd, uint32_t *speed)
3182 {
3183 	switch (speed_cmd) {
3184 	case HNS3_CFG_SPEED_10M:
3185 		*speed = ETH_SPEED_NUM_10M;
3186 		break;
3187 	case HNS3_CFG_SPEED_100M:
3188 		*speed = ETH_SPEED_NUM_100M;
3189 		break;
3190 	case HNS3_CFG_SPEED_1G:
3191 		*speed = ETH_SPEED_NUM_1G;
3192 		break;
3193 	case HNS3_CFG_SPEED_10G:
3194 		*speed = ETH_SPEED_NUM_10G;
3195 		break;
3196 	case HNS3_CFG_SPEED_25G:
3197 		*speed = ETH_SPEED_NUM_25G;
3198 		break;
3199 	case HNS3_CFG_SPEED_40G:
3200 		*speed = ETH_SPEED_NUM_40G;
3201 		break;
3202 	case HNS3_CFG_SPEED_50G:
3203 		*speed = ETH_SPEED_NUM_50G;
3204 		break;
3205 	case HNS3_CFG_SPEED_100G:
3206 		*speed = ETH_SPEED_NUM_100G;
3207 		break;
3208 	case HNS3_CFG_SPEED_200G:
3209 		*speed = ETH_SPEED_NUM_200G;
3210 		break;
3211 	default:
3212 		return -EINVAL;
3213 	}
3214 
3215 	return 0;
3216 }
3217 
3218 static void
3219 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3220 {
3221 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3222 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3223 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3224 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3225 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3226 }
3227 
3228 static void
3229 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3230 {
3231 	struct hns3_dev_specs_0_cmd *req0;
3232 
3233 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3234 
3235 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3236 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3237 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3238 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3239 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3240 }
3241 
3242 static int
3243 hns3_check_dev_specifications(struct hns3_hw *hw)
3244 {
3245 	if (hw->rss_ind_tbl_size == 0 ||
3246 	    hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3247 		hns3_err(hw, "the size of hash lookup table configured (%u)"
3248 			      " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3249 			      HNS3_RSS_IND_TBL_SIZE_MAX);
3250 		return -EINVAL;
3251 	}
3252 
3253 	return 0;
3254 }
3255 
3256 static int
3257 hns3_query_dev_specifications(struct hns3_hw *hw)
3258 {
3259 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3260 	int ret;
3261 	int i;
3262 
3263 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3264 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3265 					  true);
3266 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3267 	}
3268 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3269 
3270 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3271 	if (ret)
3272 		return ret;
3273 
3274 	hns3_parse_dev_specifications(hw, desc);
3275 
3276 	return hns3_check_dev_specifications(hw);
3277 }
3278 
3279 static int
3280 hns3_get_capability(struct hns3_hw *hw)
3281 {
3282 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3283 	struct rte_pci_device *pci_dev;
3284 	struct hns3_pf *pf = &hns->pf;
3285 	struct rte_eth_dev *eth_dev;
3286 	uint16_t device_id;
3287 	uint8_t revision;
3288 	int ret;
3289 
3290 	eth_dev = &rte_eth_devices[hw->data->port_id];
3291 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3292 	device_id = pci_dev->id.device_id;
3293 
3294 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3295 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
3296 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3297 	    device_id == HNS3_DEV_ID_200G_RDMA)
3298 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3299 
3300 	/* Get PCI revision id */
3301 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3302 				  HNS3_PCI_REVISION_ID);
3303 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
3304 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3305 			     ret);
3306 		return -EIO;
3307 	}
3308 	hw->revision = revision;
3309 
3310 	if (revision < PCI_REVISION_ID_HIP09_A) {
3311 		hns3_set_default_dev_specifications(hw);
3312 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3313 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3314 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3315 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3316 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
3317 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3318 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3319 		hw->rss_info.ipv6_sctp_offload_supported = false;
3320 		hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
3321 		return 0;
3322 	}
3323 
3324 	ret = hns3_query_dev_specifications(hw);
3325 	if (ret) {
3326 		PMD_INIT_LOG(ERR,
3327 			     "failed to query dev specifications, ret = %d",
3328 			     ret);
3329 		return ret;
3330 	}
3331 
3332 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3333 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3334 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3335 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3336 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
3337 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3338 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3339 	hw->rss_info.ipv6_sctp_offload_supported = true;
3340 	hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
3341 
3342 	return 0;
3343 }
3344 
3345 static int
3346 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3347 {
3348 	int ret;
3349 
3350 	switch (media_type) {
3351 	case HNS3_MEDIA_TYPE_COPPER:
3352 		if (!hns3_dev_copper_supported(hw)) {
3353 			PMD_INIT_LOG(ERR,
3354 				     "Media type is copper, not supported.");
3355 			ret = -EOPNOTSUPP;
3356 		} else {
3357 			ret = 0;
3358 		}
3359 		break;
3360 	case HNS3_MEDIA_TYPE_FIBER:
3361 		ret = 0;
3362 		break;
3363 	case HNS3_MEDIA_TYPE_BACKPLANE:
3364 		PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3365 		ret = -EOPNOTSUPP;
3366 		break;
3367 	default:
3368 		PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3369 		ret = -EINVAL;
3370 		break;
3371 	}
3372 
3373 	return ret;
3374 }
3375 
3376 static int
3377 hns3_get_board_configuration(struct hns3_hw *hw)
3378 {
3379 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3380 	struct hns3_pf *pf = &hns->pf;
3381 	struct hns3_cfg cfg;
3382 	int ret;
3383 
3384 	ret = hns3_get_board_cfg(hw, &cfg);
3385 	if (ret) {
3386 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3387 		return ret;
3388 	}
3389 
3390 	ret = hns3_check_media_type(hw, cfg.media_type);
3391 	if (ret)
3392 		return ret;
3393 
3394 	hw->mac.media_type = cfg.media_type;
3395 	hw->rss_size_max = cfg.rss_size_max;
3396 	hw->rss_dis_flag = false;
3397 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3398 	hw->mac.phy_addr = cfg.phy_addr;
3399 	hw->mac.default_addr_setted = false;
3400 	hw->num_tx_desc = cfg.tqp_desc_num;
3401 	hw->num_rx_desc = cfg.tqp_desc_num;
3402 	hw->dcb_info.num_pg = 1;
3403 	hw->dcb_info.hw_pfc_map = 0;
3404 
3405 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3406 	if (ret) {
3407 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3408 			     cfg.default_speed, ret);
3409 		return ret;
3410 	}
3411 
3412 	pf->tc_max = cfg.tc_num;
3413 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3414 		PMD_INIT_LOG(WARNING,
3415 			     "Get TC num(%u) from flash, set TC num to 1",
3416 			     pf->tc_max);
3417 		pf->tc_max = 1;
3418 	}
3419 
3420 	/* Dev does not support DCB */
3421 	if (!hns3_dev_dcb_supported(hw)) {
3422 		pf->tc_max = 1;
3423 		pf->pfc_max = 0;
3424 	} else
3425 		pf->pfc_max = pf->tc_max;
3426 
3427 	hw->dcb_info.num_tc = 1;
3428 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3429 				     hw->tqps_num / hw->dcb_info.num_tc);
3430 	hns3_set_bit(hw->hw_tc_map, 0, 1);
3431 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3432 
3433 	pf->wanted_umv_size = cfg.umv_space;
3434 
3435 	return ret;
3436 }
3437 
3438 static int
3439 hns3_get_configuration(struct hns3_hw *hw)
3440 {
3441 	int ret;
3442 
3443 	ret = hns3_query_function_status(hw);
3444 	if (ret) {
3445 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3446 		return ret;
3447 	}
3448 
3449 	/* Get device capability */
3450 	ret = hns3_get_capability(hw);
3451 	if (ret) {
3452 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3453 		return ret;
3454 	}
3455 
3456 	/* Get pf resource */
3457 	ret = hns3_query_pf_resource(hw);
3458 	if (ret) {
3459 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3460 		return ret;
3461 	}
3462 
3463 	ret = hns3_get_board_configuration(hw);
3464 	if (ret) {
3465 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3466 		return ret;
3467 	}
3468 
3469 	ret = hns3_query_dev_fec_info(hw);
3470 	if (ret)
3471 		PMD_INIT_LOG(ERR,
3472 			     "failed to query FEC information, ret = %d", ret);
3473 
3474 	return ret;
3475 }
3476 
3477 static int
3478 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3479 		      uint16_t tqp_vid, bool is_pf)
3480 {
3481 	struct hns3_tqp_map_cmd *req;
3482 	struct hns3_cmd_desc desc;
3483 	int ret;
3484 
3485 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3486 
3487 	req = (struct hns3_tqp_map_cmd *)desc.data;
3488 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3489 	req->tqp_vf = func_id;
3490 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3491 	if (!is_pf)
3492 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3493 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3494 
3495 	ret = hns3_cmd_send(hw, &desc, 1);
3496 	if (ret)
3497 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3498 
3499 	return ret;
3500 }
3501 
3502 static int
3503 hns3_map_tqp(struct hns3_hw *hw)
3504 {
3505 	int ret;
3506 	int i;
3507 
3508 	/*
3509 	 * In current version, VF is not supported when PF is driven by DPDK
3510 	 * driver, so we assign total tqps_num tqps allocated to this port
3511 	 * to PF.
3512 	 */
3513 	for (i = 0; i < hw->total_tqps_num; i++) {
3514 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3515 		if (ret)
3516 			return ret;
3517 	}
3518 
3519 	return 0;
3520 }
3521 
3522 static int
3523 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3524 {
3525 	struct hns3_config_mac_speed_dup_cmd *req;
3526 	struct hns3_cmd_desc desc;
3527 	int ret;
3528 
3529 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3530 
3531 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3532 
3533 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3534 
3535 	switch (speed) {
3536 	case ETH_SPEED_NUM_10M:
3537 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3538 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3539 		break;
3540 	case ETH_SPEED_NUM_100M:
3541 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3542 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3543 		break;
3544 	case ETH_SPEED_NUM_1G:
3545 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3546 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3547 		break;
3548 	case ETH_SPEED_NUM_10G:
3549 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3550 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3551 		break;
3552 	case ETH_SPEED_NUM_25G:
3553 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3554 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3555 		break;
3556 	case ETH_SPEED_NUM_40G:
3557 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3558 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3559 		break;
3560 	case ETH_SPEED_NUM_50G:
3561 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3562 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3563 		break;
3564 	case ETH_SPEED_NUM_100G:
3565 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3566 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3567 		break;
3568 	case ETH_SPEED_NUM_200G:
3569 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3570 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3571 		break;
3572 	default:
3573 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3574 		return -EINVAL;
3575 	}
3576 
3577 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3578 
3579 	ret = hns3_cmd_send(hw, &desc, 1);
3580 	if (ret)
3581 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3582 
3583 	return ret;
3584 }
3585 
3586 static int
3587 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3588 {
3589 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3590 	struct hns3_pf *pf = &hns->pf;
3591 	struct hns3_priv_buf *priv;
3592 	uint32_t i, total_size;
3593 
3594 	total_size = pf->pkt_buf_size;
3595 
3596 	/* alloc tx buffer for all enabled tc */
3597 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3598 		priv = &buf_alloc->priv_buf[i];
3599 
3600 		if (hw->hw_tc_map & BIT(i)) {
3601 			if (total_size < pf->tx_buf_size)
3602 				return -ENOMEM;
3603 
3604 			priv->tx_buf_size = pf->tx_buf_size;
3605 		} else
3606 			priv->tx_buf_size = 0;
3607 
3608 		total_size -= priv->tx_buf_size;
3609 	}
3610 
3611 	return 0;
3612 }
3613 
3614 static int
3615 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3616 {
3617 /* TX buffer size is unit by 128 byte */
3618 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3619 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3620 	struct hns3_tx_buff_alloc_cmd *req;
3621 	struct hns3_cmd_desc desc;
3622 	uint32_t buf_size;
3623 	uint32_t i;
3624 	int ret;
3625 
3626 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3627 
3628 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3629 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3630 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3631 
3632 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3633 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3634 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3635 	}
3636 
3637 	ret = hns3_cmd_send(hw, &desc, 1);
3638 	if (ret)
3639 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3640 
3641 	return ret;
3642 }
3643 
3644 static int
3645 hns3_get_tc_num(struct hns3_hw *hw)
3646 {
3647 	int cnt = 0;
3648 	uint8_t i;
3649 
3650 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3651 		if (hw->hw_tc_map & BIT(i))
3652 			cnt++;
3653 	return cnt;
3654 }
3655 
3656 static uint32_t
3657 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3658 {
3659 	struct hns3_priv_buf *priv;
3660 	uint32_t rx_priv = 0;
3661 	int i;
3662 
3663 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3664 		priv = &buf_alloc->priv_buf[i];
3665 		if (priv->enable)
3666 			rx_priv += priv->buf_size;
3667 	}
3668 	return rx_priv;
3669 }
3670 
3671 static uint32_t
3672 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3673 {
3674 	uint32_t total_tx_size = 0;
3675 	uint32_t i;
3676 
3677 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3678 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3679 
3680 	return total_tx_size;
3681 }
3682 
3683 /* Get the number of pfc enabled TCs, which have private buffer */
3684 static int
3685 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3686 {
3687 	struct hns3_priv_buf *priv;
3688 	int cnt = 0;
3689 	uint8_t i;
3690 
3691 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3692 		priv = &buf_alloc->priv_buf[i];
3693 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3694 			cnt++;
3695 	}
3696 
3697 	return cnt;
3698 }
3699 
3700 /* Get the number of pfc disabled TCs, which have private buffer */
3701 static int
3702 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3703 			 struct hns3_pkt_buf_alloc *buf_alloc)
3704 {
3705 	struct hns3_priv_buf *priv;
3706 	int cnt = 0;
3707 	uint8_t i;
3708 
3709 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3710 		priv = &buf_alloc->priv_buf[i];
3711 		if (hw->hw_tc_map & BIT(i) &&
3712 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3713 			cnt++;
3714 	}
3715 
3716 	return cnt;
3717 }
3718 
3719 static bool
3720 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3721 		  uint32_t rx_all)
3722 {
3723 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3724 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3725 	struct hns3_pf *pf = &hns->pf;
3726 	uint32_t shared_buf, aligned_mps;
3727 	uint32_t rx_priv;
3728 	uint8_t tc_num;
3729 	uint8_t i;
3730 
3731 	tc_num = hns3_get_tc_num(hw);
3732 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3733 
3734 	if (hns3_dev_dcb_supported(hw))
3735 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3736 					pf->dv_buf_size;
3737 	else
3738 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3739 					+ pf->dv_buf_size;
3740 
3741 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3742 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3743 			     HNS3_BUF_SIZE_UNIT);
3744 
3745 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3746 	if (rx_all < rx_priv + shared_std)
3747 		return false;
3748 
3749 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3750 	buf_alloc->s_buf.buf_size = shared_buf;
3751 	if (hns3_dev_dcb_supported(hw)) {
3752 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3753 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3754 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3755 				  HNS3_BUF_SIZE_UNIT);
3756 	} else {
3757 		buf_alloc->s_buf.self.high =
3758 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3759 		buf_alloc->s_buf.self.low = aligned_mps;
3760 	}
3761 
3762 	if (hns3_dev_dcb_supported(hw)) {
3763 		hi_thrd = shared_buf - pf->dv_buf_size;
3764 
3765 		if (tc_num <= NEED_RESERVE_TC_NUM)
3766 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3767 				  BUF_MAX_PERCENT;
3768 
3769 		if (tc_num)
3770 			hi_thrd = hi_thrd / tc_num;
3771 
3772 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3773 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3774 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3775 	} else {
3776 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3777 		lo_thrd = aligned_mps;
3778 	}
3779 
3780 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3781 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3782 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3783 	}
3784 
3785 	return true;
3786 }
3787 
3788 static bool
3789 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3790 		     struct hns3_pkt_buf_alloc *buf_alloc)
3791 {
3792 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3793 	struct hns3_pf *pf = &hns->pf;
3794 	struct hns3_priv_buf *priv;
3795 	uint32_t aligned_mps;
3796 	uint32_t rx_all;
3797 	uint8_t i;
3798 
3799 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3800 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3801 
3802 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3803 		priv = &buf_alloc->priv_buf[i];
3804 
3805 		priv->enable = 0;
3806 		priv->wl.low = 0;
3807 		priv->wl.high = 0;
3808 		priv->buf_size = 0;
3809 
3810 		if (!(hw->hw_tc_map & BIT(i)))
3811 			continue;
3812 
3813 		priv->enable = 1;
3814 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3815 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3816 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3817 						HNS3_BUF_SIZE_UNIT);
3818 		} else {
3819 			priv->wl.low = 0;
3820 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3821 					aligned_mps;
3822 		}
3823 
3824 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3825 	}
3826 
3827 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3828 }
3829 
3830 static bool
3831 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3832 			     struct hns3_pkt_buf_alloc *buf_alloc)
3833 {
3834 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3835 	struct hns3_pf *pf = &hns->pf;
3836 	struct hns3_priv_buf *priv;
3837 	int no_pfc_priv_num;
3838 	uint32_t rx_all;
3839 	uint8_t mask;
3840 	int i;
3841 
3842 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3843 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3844 
3845 	/* let the last to be cleared first */
3846 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3847 		priv = &buf_alloc->priv_buf[i];
3848 		mask = BIT((uint8_t)i);
3849 
3850 		if (hw->hw_tc_map & mask &&
3851 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3852 			/* Clear the no pfc TC private buffer */
3853 			priv->wl.low = 0;
3854 			priv->wl.high = 0;
3855 			priv->buf_size = 0;
3856 			priv->enable = 0;
3857 			no_pfc_priv_num--;
3858 		}
3859 
3860 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3861 		    no_pfc_priv_num == 0)
3862 			break;
3863 	}
3864 
3865 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3866 }
3867 
3868 static bool
3869 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3870 			   struct hns3_pkt_buf_alloc *buf_alloc)
3871 {
3872 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3873 	struct hns3_pf *pf = &hns->pf;
3874 	struct hns3_priv_buf *priv;
3875 	uint32_t rx_all;
3876 	int pfc_priv_num;
3877 	uint8_t mask;
3878 	int i;
3879 
3880 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3881 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3882 
3883 	/* let the last to be cleared first */
3884 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3885 		priv = &buf_alloc->priv_buf[i];
3886 		mask = BIT((uint8_t)i);
3887 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3888 			/* Reduce the number of pfc TC with private buffer */
3889 			priv->wl.low = 0;
3890 			priv->enable = 0;
3891 			priv->wl.high = 0;
3892 			priv->buf_size = 0;
3893 			pfc_priv_num--;
3894 		}
3895 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3896 		    pfc_priv_num == 0)
3897 			break;
3898 	}
3899 
3900 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3901 }
3902 
3903 static bool
3904 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3905 			  struct hns3_pkt_buf_alloc *buf_alloc)
3906 {
3907 #define COMPENSATE_BUFFER	0x3C00
3908 #define COMPENSATE_HALF_MPS_NUM	5
3909 #define PRIV_WL_GAP		0x1800
3910 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3911 	struct hns3_pf *pf = &hns->pf;
3912 	uint32_t tc_num = hns3_get_tc_num(hw);
3913 	uint32_t half_mps = pf->mps >> 1;
3914 	struct hns3_priv_buf *priv;
3915 	uint32_t min_rx_priv;
3916 	uint32_t rx_priv;
3917 	uint8_t i;
3918 
3919 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3920 	if (tc_num)
3921 		rx_priv = rx_priv / tc_num;
3922 
3923 	if (tc_num <= NEED_RESERVE_TC_NUM)
3924 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3925 
3926 	/*
3927 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3928 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3929 	 * buffer if rx_priv is greater than min_rx_priv.
3930 	 */
3931 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3932 			COMPENSATE_HALF_MPS_NUM * half_mps;
3933 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3934 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3935 
3936 	if (rx_priv < min_rx_priv)
3937 		return false;
3938 
3939 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3940 		priv = &buf_alloc->priv_buf[i];
3941 		priv->enable = 0;
3942 		priv->wl.low = 0;
3943 		priv->wl.high = 0;
3944 		priv->buf_size = 0;
3945 
3946 		if (!(hw->hw_tc_map & BIT(i)))
3947 			continue;
3948 
3949 		priv->enable = 1;
3950 		priv->buf_size = rx_priv;
3951 		priv->wl.high = rx_priv - pf->dv_buf_size;
3952 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3953 	}
3954 
3955 	buf_alloc->s_buf.buf_size = 0;
3956 
3957 	return true;
3958 }
3959 
3960 /*
3961  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3962  * @hw: pointer to struct hns3_hw
3963  * @buf_alloc: pointer to buffer calculation data
3964  * @return: 0: calculate sucessful, negative: fail
3965  */
3966 static int
3967 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3968 {
3969 	/* When DCB is not supported, rx private buffer is not allocated. */
3970 	if (!hns3_dev_dcb_supported(hw)) {
3971 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3972 		struct hns3_pf *pf = &hns->pf;
3973 		uint32_t rx_all = pf->pkt_buf_size;
3974 
3975 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3976 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3977 			return -ENOMEM;
3978 
3979 		return 0;
3980 	}
3981 
3982 	/*
3983 	 * Try to allocate privated packet buffer for all TCs without share
3984 	 * buffer.
3985 	 */
3986 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3987 		return 0;
3988 
3989 	/*
3990 	 * Try to allocate privated packet buffer for all TCs with share
3991 	 * buffer.
3992 	 */
3993 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3994 		return 0;
3995 
3996 	/*
3997 	 * For different application scenes, the enabled port number, TC number
3998 	 * and no_drop TC number are different. In order to obtain the better
3999 	 * performance, software could allocate the buffer size and configure
4000 	 * the waterline by trying to decrease the private buffer size according
4001 	 * to the order, namely, waterline of valid tc, pfc disabled tc, pfc
4002 	 * enabled tc.
4003 	 */
4004 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
4005 		return 0;
4006 
4007 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
4008 		return 0;
4009 
4010 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
4011 		return 0;
4012 
4013 	return -ENOMEM;
4014 }
4015 
4016 static int
4017 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4018 {
4019 	struct hns3_rx_priv_buff_cmd *req;
4020 	struct hns3_cmd_desc desc;
4021 	uint32_t buf_size;
4022 	int ret;
4023 	int i;
4024 
4025 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
4026 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
4027 
4028 	/* Alloc private buffer TCs */
4029 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
4030 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
4031 
4032 		req->buf_num[i] =
4033 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
4034 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
4035 	}
4036 
4037 	buf_size = buf_alloc->s_buf.buf_size;
4038 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
4039 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
4040 
4041 	ret = hns3_cmd_send(hw, &desc, 1);
4042 	if (ret)
4043 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
4044 
4045 	return ret;
4046 }
4047 
4048 static int
4049 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4050 {
4051 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
4052 	struct hns3_rx_priv_wl_buf *req;
4053 	struct hns3_priv_buf *priv;
4054 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
4055 	int i, j;
4056 	int ret;
4057 
4058 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
4059 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
4060 					  false);
4061 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
4062 
4063 		/* The first descriptor set the NEXT bit to 1 */
4064 		if (i == 0)
4065 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4066 		else
4067 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4068 
4069 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
4070 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
4071 
4072 			priv = &buf_alloc->priv_buf[idx];
4073 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
4074 							HNS3_BUF_UNIT_S);
4075 			req->tc_wl[j].high |=
4076 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4077 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
4078 							HNS3_BUF_UNIT_S);
4079 			req->tc_wl[j].low |=
4080 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4081 		}
4082 	}
4083 
4084 	/* Send 2 descriptor at one time */
4085 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
4086 	if (ret)
4087 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
4088 			     ret);
4089 	return ret;
4090 }
4091 
4092 static int
4093 hns3_common_thrd_config(struct hns3_hw *hw,
4094 			struct hns3_pkt_buf_alloc *buf_alloc)
4095 {
4096 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
4097 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
4098 	struct hns3_rx_com_thrd *req;
4099 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
4100 	struct hns3_tc_thrd *tc;
4101 	int tc_idx;
4102 	int i, j;
4103 	int ret;
4104 
4105 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
4106 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
4107 					  false);
4108 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
4109 
4110 		/* The first descriptor set the NEXT bit to 1 */
4111 		if (i == 0)
4112 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4113 		else
4114 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4115 
4116 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
4117 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
4118 			tc = &s_buf->tc_thrd[tc_idx];
4119 
4120 			req->com_thrd[j].high =
4121 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
4122 			req->com_thrd[j].high |=
4123 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4124 			req->com_thrd[j].low =
4125 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
4126 			req->com_thrd[j].low |=
4127 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4128 		}
4129 	}
4130 
4131 	/* Send 2 descriptors at one time */
4132 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
4133 	if (ret)
4134 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
4135 
4136 	return ret;
4137 }
4138 
4139 static int
4140 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4141 {
4142 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
4143 	struct hns3_rx_com_wl *req;
4144 	struct hns3_cmd_desc desc;
4145 	int ret;
4146 
4147 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
4148 
4149 	req = (struct hns3_rx_com_wl *)desc.data;
4150 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
4151 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4152 
4153 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
4154 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4155 
4156 	ret = hns3_cmd_send(hw, &desc, 1);
4157 	if (ret)
4158 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
4159 
4160 	return ret;
4161 }
4162 
4163 int
4164 hns3_buffer_alloc(struct hns3_hw *hw)
4165 {
4166 	struct hns3_pkt_buf_alloc pkt_buf;
4167 	int ret;
4168 
4169 	memset(&pkt_buf, 0, sizeof(pkt_buf));
4170 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
4171 	if (ret) {
4172 		PMD_INIT_LOG(ERR,
4173 			     "could not calc tx buffer size for all TCs %d",
4174 			     ret);
4175 		return ret;
4176 	}
4177 
4178 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
4179 	if (ret) {
4180 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
4181 		return ret;
4182 	}
4183 
4184 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
4185 	if (ret) {
4186 		PMD_INIT_LOG(ERR,
4187 			     "could not calc rx priv buffer size for all TCs %d",
4188 			     ret);
4189 		return ret;
4190 	}
4191 
4192 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
4193 	if (ret) {
4194 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
4195 		return ret;
4196 	}
4197 
4198 	if (hns3_dev_dcb_supported(hw)) {
4199 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4200 		if (ret) {
4201 			PMD_INIT_LOG(ERR,
4202 				     "could not configure rx private waterline %d",
4203 				     ret);
4204 			return ret;
4205 		}
4206 
4207 		ret = hns3_common_thrd_config(hw, &pkt_buf);
4208 		if (ret) {
4209 			PMD_INIT_LOG(ERR,
4210 				     "could not configure common threshold %d",
4211 				     ret);
4212 			return ret;
4213 		}
4214 	}
4215 
4216 	ret = hns3_common_wl_config(hw, &pkt_buf);
4217 	if (ret)
4218 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4219 			     ret);
4220 
4221 	return ret;
4222 }
4223 
4224 static int
4225 hns3_mac_init(struct hns3_hw *hw)
4226 {
4227 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4228 	struct hns3_mac *mac = &hw->mac;
4229 	struct hns3_pf *pf = &hns->pf;
4230 	int ret;
4231 
4232 	pf->support_sfp_query = true;
4233 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
4234 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4235 	if (ret) {
4236 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4237 		return ret;
4238 	}
4239 
4240 	mac->link_status = ETH_LINK_DOWN;
4241 
4242 	return hns3_config_mtu(hw, pf->mps);
4243 }
4244 
4245 static int
4246 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4247 {
4248 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
4249 #define HNS3_ETHERTYPE_ALREADY_ADD		1
4250 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
4251 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
4252 	int return_status;
4253 
4254 	if (cmdq_resp) {
4255 		PMD_INIT_LOG(ERR,
4256 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4257 			     cmdq_resp);
4258 		return -EIO;
4259 	}
4260 
4261 	switch (resp_code) {
4262 	case HNS3_ETHERTYPE_SUCCESS_ADD:
4263 	case HNS3_ETHERTYPE_ALREADY_ADD:
4264 		return_status = 0;
4265 		break;
4266 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4267 		PMD_INIT_LOG(ERR,
4268 			     "add mac ethertype failed for manager table overflow.");
4269 		return_status = -EIO;
4270 		break;
4271 	case HNS3_ETHERTYPE_KEY_CONFLICT:
4272 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4273 		return_status = -EIO;
4274 		break;
4275 	default:
4276 		PMD_INIT_LOG(ERR,
4277 			     "add mac ethertype failed for undefined, code=%u.",
4278 			     resp_code);
4279 		return_status = -EIO;
4280 		break;
4281 	}
4282 
4283 	return return_status;
4284 }
4285 
4286 static int
4287 hns3_add_mgr_tbl(struct hns3_hw *hw,
4288 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
4289 {
4290 	struct hns3_cmd_desc desc;
4291 	uint8_t resp_code;
4292 	uint16_t retval;
4293 	int ret;
4294 
4295 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4296 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4297 
4298 	ret = hns3_cmd_send(hw, &desc, 1);
4299 	if (ret) {
4300 		PMD_INIT_LOG(ERR,
4301 			     "add mac ethertype failed for cmd_send, ret =%d.",
4302 			     ret);
4303 		return ret;
4304 	}
4305 
4306 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4307 	retval = rte_le_to_cpu_16(desc.retval);
4308 
4309 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4310 }
4311 
4312 static void
4313 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4314 		     int *table_item_num)
4315 {
4316 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4317 
4318 	/*
4319 	 * In current version, we add one item in management table as below:
4320 	 * 0x0180C200000E -- LLDP MC address
4321 	 */
4322 	tbl = mgr_table;
4323 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4324 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4325 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4326 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4327 	tbl->i_port_bitmap = 0x1;
4328 	*table_item_num = 1;
4329 }
4330 
4331 static int
4332 hns3_init_mgr_tbl(struct hns3_hw *hw)
4333 {
4334 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
4335 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4336 	int table_item_num;
4337 	int ret;
4338 	int i;
4339 
4340 	memset(mgr_table, 0, sizeof(mgr_table));
4341 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4342 	for (i = 0; i < table_item_num; i++) {
4343 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4344 		if (ret) {
4345 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4346 				     ret);
4347 			return ret;
4348 		}
4349 	}
4350 
4351 	return 0;
4352 }
4353 
4354 static void
4355 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4356 			bool en_mc, bool en_bc, int vport_id)
4357 {
4358 	if (!param)
4359 		return;
4360 
4361 	memset(param, 0, sizeof(struct hns3_promisc_param));
4362 	if (en_uc)
4363 		param->enable = HNS3_PROMISC_EN_UC;
4364 	if (en_mc)
4365 		param->enable |= HNS3_PROMISC_EN_MC;
4366 	if (en_bc)
4367 		param->enable |= HNS3_PROMISC_EN_BC;
4368 	param->vf_id = vport_id;
4369 }
4370 
4371 static int
4372 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4373 {
4374 	struct hns3_promisc_cfg_cmd *req;
4375 	struct hns3_cmd_desc desc;
4376 	int ret;
4377 
4378 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4379 
4380 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
4381 	req->vf_id = param->vf_id;
4382 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4383 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4384 
4385 	ret = hns3_cmd_send(hw, &desc, 1);
4386 	if (ret)
4387 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4388 
4389 	return ret;
4390 }
4391 
4392 static int
4393 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4394 {
4395 	struct hns3_promisc_param param;
4396 	bool en_bc_pmc = true;
4397 	uint8_t vf_id;
4398 
4399 	/*
4400 	 * In current version VF is not supported when PF is driven by DPDK
4401 	 * driver, just need to configure parameters for PF vport.
4402 	 */
4403 	vf_id = HNS3_PF_FUNC_ID;
4404 
4405 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4406 	return hns3_cmd_set_promisc_mode(hw, &param);
4407 }
4408 
4409 static int
4410 hns3_promisc_init(struct hns3_hw *hw)
4411 {
4412 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4413 	struct hns3_pf *pf = &hns->pf;
4414 	struct hns3_promisc_param param;
4415 	uint16_t func_id;
4416 	int ret;
4417 
4418 	ret = hns3_set_promisc_mode(hw, false, false);
4419 	if (ret) {
4420 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4421 		return ret;
4422 	}
4423 
4424 	/*
4425 	 * In current version VFs are not supported when PF is driven by DPDK
4426 	 * driver. After PF has been taken over by DPDK, the original VF will
4427 	 * be invalid. So, there is a possibility of entry residues. It should
4428 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4429 	 * during init.
4430 	 */
4431 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4432 		hns3_promisc_param_init(&param, false, false, false, func_id);
4433 		ret = hns3_cmd_set_promisc_mode(hw, &param);
4434 		if (ret) {
4435 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4436 					" ret = %d", func_id, ret);
4437 			return ret;
4438 		}
4439 	}
4440 
4441 	return 0;
4442 }
4443 
4444 static void
4445 hns3_promisc_uninit(struct hns3_hw *hw)
4446 {
4447 	struct hns3_promisc_param param;
4448 	uint16_t func_id;
4449 	int ret;
4450 
4451 	func_id = HNS3_PF_FUNC_ID;
4452 
4453 	/*
4454 	 * In current version VFs are not supported when PF is driven by
4455 	 * DPDK driver, and VFs' promisc mode status has been cleared during
4456 	 * init and their status will not change. So just clear PF's promisc
4457 	 * mode status during uninit.
4458 	 */
4459 	hns3_promisc_param_init(&param, false, false, false, func_id);
4460 	ret = hns3_cmd_set_promisc_mode(hw, &param);
4461 	if (ret)
4462 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4463 				" uninit, ret = %d", ret);
4464 }
4465 
4466 static int
4467 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4468 {
4469 	bool allmulti = dev->data->all_multicast ? true : false;
4470 	struct hns3_adapter *hns = dev->data->dev_private;
4471 	struct hns3_hw *hw = &hns->hw;
4472 	uint64_t offloads;
4473 	int err;
4474 	int ret;
4475 
4476 	rte_spinlock_lock(&hw->lock);
4477 	ret = hns3_set_promisc_mode(hw, true, true);
4478 	if (ret) {
4479 		rte_spinlock_unlock(&hw->lock);
4480 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4481 			 ret);
4482 		return ret;
4483 	}
4484 
4485 	/*
4486 	 * When promiscuous mode was enabled, disable the vlan filter to let
4487 	 * all packets coming in in the receiving direction.
4488 	 */
4489 	offloads = dev->data->dev_conf.rxmode.offloads;
4490 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4491 		ret = hns3_enable_vlan_filter(hns, false);
4492 		if (ret) {
4493 			hns3_err(hw, "failed to enable promiscuous mode due to "
4494 				     "failure to disable vlan filter, ret = %d",
4495 				 ret);
4496 			err = hns3_set_promisc_mode(hw, false, allmulti);
4497 			if (err)
4498 				hns3_err(hw, "failed to restore promiscuous "
4499 					 "status after disable vlan filter "
4500 					 "failed during enabling promiscuous "
4501 					 "mode, ret = %d", ret);
4502 		}
4503 	}
4504 
4505 	rte_spinlock_unlock(&hw->lock);
4506 
4507 	return ret;
4508 }
4509 
4510 static int
4511 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4512 {
4513 	bool allmulti = dev->data->all_multicast ? true : false;
4514 	struct hns3_adapter *hns = dev->data->dev_private;
4515 	struct hns3_hw *hw = &hns->hw;
4516 	uint64_t offloads;
4517 	int err;
4518 	int ret;
4519 
4520 	/* If now in all_multicast mode, must remain in all_multicast mode. */
4521 	rte_spinlock_lock(&hw->lock);
4522 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4523 	if (ret) {
4524 		rte_spinlock_unlock(&hw->lock);
4525 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4526 			 ret);
4527 		return ret;
4528 	}
4529 	/* when promiscuous mode was disabled, restore the vlan filter status */
4530 	offloads = dev->data->dev_conf.rxmode.offloads;
4531 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4532 		ret = hns3_enable_vlan_filter(hns, true);
4533 		if (ret) {
4534 			hns3_err(hw, "failed to disable promiscuous mode due to"
4535 				 " failure to restore vlan filter, ret = %d",
4536 				 ret);
4537 			err = hns3_set_promisc_mode(hw, true, true);
4538 			if (err)
4539 				hns3_err(hw, "failed to restore promiscuous "
4540 					 "status after enabling vlan filter "
4541 					 "failed during disabling promiscuous "
4542 					 "mode, ret = %d", ret);
4543 		}
4544 	}
4545 	rte_spinlock_unlock(&hw->lock);
4546 
4547 	return ret;
4548 }
4549 
4550 static int
4551 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4552 {
4553 	struct hns3_adapter *hns = dev->data->dev_private;
4554 	struct hns3_hw *hw = &hns->hw;
4555 	int ret;
4556 
4557 	if (dev->data->promiscuous)
4558 		return 0;
4559 
4560 	rte_spinlock_lock(&hw->lock);
4561 	ret = hns3_set_promisc_mode(hw, false, true);
4562 	rte_spinlock_unlock(&hw->lock);
4563 	if (ret)
4564 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4565 			 ret);
4566 
4567 	return ret;
4568 }
4569 
4570 static int
4571 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4572 {
4573 	struct hns3_adapter *hns = dev->data->dev_private;
4574 	struct hns3_hw *hw = &hns->hw;
4575 	int ret;
4576 
4577 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4578 	if (dev->data->promiscuous)
4579 		return 0;
4580 
4581 	rte_spinlock_lock(&hw->lock);
4582 	ret = hns3_set_promisc_mode(hw, false, false);
4583 	rte_spinlock_unlock(&hw->lock);
4584 	if (ret)
4585 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4586 			 ret);
4587 
4588 	return ret;
4589 }
4590 
4591 static int
4592 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4593 {
4594 	struct hns3_hw *hw = &hns->hw;
4595 	bool allmulti = hw->data->all_multicast ? true : false;
4596 	int ret;
4597 
4598 	if (hw->data->promiscuous) {
4599 		ret = hns3_set_promisc_mode(hw, true, true);
4600 		if (ret)
4601 			hns3_err(hw, "failed to restore promiscuous mode, "
4602 				 "ret = %d", ret);
4603 		return ret;
4604 	}
4605 
4606 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4607 	if (ret)
4608 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4609 			 ret);
4610 	return ret;
4611 }
4612 
4613 static int
4614 hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info)
4615 {
4616 	struct hns3_sfp_info_cmd *resp;
4617 	struct hns3_cmd_desc desc;
4618 	int ret;
4619 
4620 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
4621 	resp = (struct hns3_sfp_info_cmd *)desc.data;
4622 	resp->query_type = HNS3_ACTIVE_QUERY;
4623 
4624 	ret = hns3_cmd_send(hw, &desc, 1);
4625 	if (ret == -EOPNOTSUPP) {
4626 		hns3_warn(hw, "firmware does not support get SFP info,"
4627 			  " ret = %d.", ret);
4628 		return ret;
4629 	} else if (ret) {
4630 		hns3_err(hw, "get sfp info failed, ret = %d.", ret);
4631 		return ret;
4632 	}
4633 
4634 	/*
4635 	 * In some case, the speed of MAC obtained from firmware may be 0, it
4636 	 * shouldn't be set to mac->speed.
4637 	 */
4638 	if (!rte_le_to_cpu_32(resp->sfp_speed))
4639 		return 0;
4640 
4641 	mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed);
4642 	/*
4643 	 * if resp->supported_speed is 0, it means it's an old version
4644 	 * firmware, do not update these params.
4645 	 */
4646 	if (resp->supported_speed) {
4647 		mac_info->query_type = HNS3_ACTIVE_QUERY;
4648 		mac_info->supported_speed =
4649 					rte_le_to_cpu_32(resp->supported_speed);
4650 		mac_info->support_autoneg = resp->autoneg_ability;
4651 		mac_info->link_autoneg = (resp->autoneg == 0) ? ETH_LINK_FIXED
4652 					: ETH_LINK_AUTONEG;
4653 	} else {
4654 		mac_info->query_type = HNS3_DEFAULT_QUERY;
4655 	}
4656 
4657 	return 0;
4658 }
4659 
4660 static uint8_t
4661 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4662 {
4663 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4664 		duplex = ETH_LINK_FULL_DUPLEX;
4665 
4666 	return duplex;
4667 }
4668 
4669 static int
4670 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4671 {
4672 	struct hns3_mac *mac = &hw->mac;
4673 	int ret;
4674 
4675 	duplex = hns3_check_speed_dup(duplex, speed);
4676 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4677 		return 0;
4678 
4679 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4680 	if (ret)
4681 		return ret;
4682 
4683 	ret = hns3_port_shaper_update(hw, speed);
4684 	if (ret)
4685 		return ret;
4686 
4687 	mac->link_speed = speed;
4688 	mac->link_duplex = duplex;
4689 
4690 	return 0;
4691 }
4692 
4693 static int
4694 hns3_update_fiber_link_info(struct hns3_hw *hw)
4695 {
4696 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4697 	struct hns3_mac *mac = &hw->mac;
4698 	struct hns3_mac mac_info;
4699 	int ret;
4700 
4701 	/* If firmware do not support get SFP/qSFP speed, return directly */
4702 	if (!pf->support_sfp_query)
4703 		return 0;
4704 
4705 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4706 	ret = hns3_get_sfp_info(hw, &mac_info);
4707 	if (ret == -EOPNOTSUPP) {
4708 		pf->support_sfp_query = false;
4709 		return ret;
4710 	} else if (ret)
4711 		return ret;
4712 
4713 	/* Do nothing if no SFP */
4714 	if (mac_info.link_speed == ETH_SPEED_NUM_NONE)
4715 		return 0;
4716 
4717 	/*
4718 	 * If query_type is HNS3_ACTIVE_QUERY, it is no need
4719 	 * to reconfigure the speed of MAC. Otherwise, it indicates
4720 	 * that the current firmware only supports to obtain the
4721 	 * speed of the SFP, and the speed of MAC needs to reconfigure.
4722 	 */
4723 	mac->query_type = mac_info.query_type;
4724 	if (mac->query_type == HNS3_ACTIVE_QUERY) {
4725 		if (mac_info.link_speed != mac->link_speed) {
4726 			ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4727 			if (ret)
4728 				return ret;
4729 		}
4730 
4731 		mac->link_speed = mac_info.link_speed;
4732 		mac->supported_speed = mac_info.supported_speed;
4733 		mac->support_autoneg = mac_info.support_autoneg;
4734 		mac->link_autoneg = mac_info.link_autoneg;
4735 
4736 		return 0;
4737 	}
4738 
4739 	/* Config full duplex for SFP */
4740 	return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed,
4741 				      ETH_LINK_FULL_DUPLEX);
4742 }
4743 
4744 static void
4745 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4746 {
4747 #define HNS3_PHY_SUPPORTED_SPEED_MASK   0x2f
4748 
4749 	struct hns3_phy_params_bd0_cmd *req;
4750 	uint32_t supported;
4751 
4752 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4753 	mac->link_speed = rte_le_to_cpu_32(req->speed);
4754 	mac->link_duplex = hns3_get_bit(req->duplex,
4755 					   HNS3_PHY_DUPLEX_CFG_B);
4756 	mac->link_autoneg = hns3_get_bit(req->autoneg,
4757 					   HNS3_PHY_AUTONEG_CFG_B);
4758 	mac->advertising = rte_le_to_cpu_32(req->advertising);
4759 	mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4760 	supported = rte_le_to_cpu_32(req->supported);
4761 	mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK;
4762 	mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4763 }
4764 
4765 static int
4766 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4767 {
4768 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4769 	uint16_t i;
4770 	int ret;
4771 
4772 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4773 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4774 					  true);
4775 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4776 	}
4777 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4778 
4779 	ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4780 	if (ret) {
4781 		hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4782 		return ret;
4783 	}
4784 
4785 	hns3_parse_copper_phy_params(desc, mac);
4786 
4787 	return 0;
4788 }
4789 
4790 static int
4791 hns3_update_copper_link_info(struct hns3_hw *hw)
4792 {
4793 	struct hns3_mac *mac = &hw->mac;
4794 	struct hns3_mac mac_info;
4795 	int ret;
4796 
4797 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4798 	ret = hns3_get_copper_phy_params(hw, &mac_info);
4799 	if (ret)
4800 		return ret;
4801 
4802 	if (mac_info.link_speed != mac->link_speed) {
4803 		ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4804 		if (ret)
4805 			return ret;
4806 	}
4807 
4808 	mac->link_speed = mac_info.link_speed;
4809 	mac->link_duplex = mac_info.link_duplex;
4810 	mac->link_autoneg = mac_info.link_autoneg;
4811 	mac->supported_speed = mac_info.supported_speed;
4812 	mac->advertising = mac_info.advertising;
4813 	mac->lp_advertising = mac_info.lp_advertising;
4814 	mac->support_autoneg = mac_info.support_autoneg;
4815 
4816 	return 0;
4817 }
4818 
4819 static int
4820 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4821 {
4822 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4823 	struct hns3_hw *hw = &hns->hw;
4824 	int ret = 0;
4825 
4826 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4827 		ret = hns3_update_copper_link_info(hw);
4828 	else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4829 		ret = hns3_update_fiber_link_info(hw);
4830 
4831 	return ret;
4832 }
4833 
4834 static int
4835 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4836 {
4837 	struct hns3_config_mac_mode_cmd *req;
4838 	struct hns3_cmd_desc desc;
4839 	uint32_t loop_en = 0;
4840 	uint8_t val = 0;
4841 	int ret;
4842 
4843 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4844 
4845 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4846 	if (enable)
4847 		val = 1;
4848 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4849 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4850 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4851 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4852 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4853 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4854 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4855 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4856 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4857 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4858 
4859 	/*
4860 	 * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4861 	 * when receiving frames. Otherwise, CRC will be stripped.
4862 	 */
4863 	if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4864 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4865 	else
4866 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4867 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4868 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4869 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4870 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4871 
4872 	ret = hns3_cmd_send(hw, &desc, 1);
4873 	if (ret)
4874 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4875 
4876 	return ret;
4877 }
4878 
4879 static int
4880 hns3_get_mac_link_status(struct hns3_hw *hw)
4881 {
4882 	struct hns3_link_status_cmd *req;
4883 	struct hns3_cmd_desc desc;
4884 	int link_status;
4885 	int ret;
4886 
4887 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4888 	ret = hns3_cmd_send(hw, &desc, 1);
4889 	if (ret) {
4890 		hns3_err(hw, "get link status cmd failed %d", ret);
4891 		return ETH_LINK_DOWN;
4892 	}
4893 
4894 	req = (struct hns3_link_status_cmd *)desc.data;
4895 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4896 
4897 	return !!link_status;
4898 }
4899 
4900 static bool
4901 hns3_update_link_status(struct hns3_hw *hw)
4902 {
4903 	int state;
4904 
4905 	state = hns3_get_mac_link_status(hw);
4906 	if (state != hw->mac.link_status) {
4907 		hw->mac.link_status = state;
4908 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4909 		return true;
4910 	}
4911 
4912 	return false;
4913 }
4914 
4915 void
4916 hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
4917 {
4918 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4919 	struct rte_eth_link new_link;
4920 	int ret;
4921 
4922 	if (query)
4923 		hns3_update_port_link_info(dev);
4924 
4925 	memset(&new_link, 0, sizeof(new_link));
4926 	hns3_setup_linkstatus(dev, &new_link);
4927 
4928 	ret = rte_eth_linkstatus_set(dev, &new_link);
4929 	if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
4930 		hns3_start_report_lse(dev);
4931 }
4932 
4933 static void
4934 hns3_service_handler(void *param)
4935 {
4936 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4937 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4938 	struct hns3_hw *hw = &hns->hw;
4939 
4940 	if (!hns3_is_reset_pending(hns))
4941 		hns3_update_linkstatus_and_event(hw, true);
4942 	else
4943 		hns3_warn(hw, "Cancel the query when reset is pending");
4944 
4945 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4946 }
4947 
4948 static int
4949 hns3_init_hardware(struct hns3_adapter *hns)
4950 {
4951 	struct hns3_hw *hw = &hns->hw;
4952 	int ret;
4953 
4954 	ret = hns3_map_tqp(hw);
4955 	if (ret) {
4956 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4957 		return ret;
4958 	}
4959 
4960 	ret = hns3_init_umv_space(hw);
4961 	if (ret) {
4962 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4963 		return ret;
4964 	}
4965 
4966 	ret = hns3_mac_init(hw);
4967 	if (ret) {
4968 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4969 		goto err_mac_init;
4970 	}
4971 
4972 	ret = hns3_init_mgr_tbl(hw);
4973 	if (ret) {
4974 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4975 		goto err_mac_init;
4976 	}
4977 
4978 	ret = hns3_promisc_init(hw);
4979 	if (ret) {
4980 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4981 			     ret);
4982 		goto err_mac_init;
4983 	}
4984 
4985 	ret = hns3_init_vlan_config(hns);
4986 	if (ret) {
4987 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4988 		goto err_mac_init;
4989 	}
4990 
4991 	ret = hns3_dcb_init(hw);
4992 	if (ret) {
4993 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4994 		goto err_mac_init;
4995 	}
4996 
4997 	ret = hns3_init_fd_config(hns);
4998 	if (ret) {
4999 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
5000 		goto err_mac_init;
5001 	}
5002 
5003 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
5004 	if (ret) {
5005 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
5006 		goto err_mac_init;
5007 	}
5008 
5009 	ret = hns3_config_gro(hw, false);
5010 	if (ret) {
5011 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
5012 		goto err_mac_init;
5013 	}
5014 
5015 	/*
5016 	 * In the initialization clearing the all hardware mapping relationship
5017 	 * configurations between queues and interrupt vectors is needed, so
5018 	 * some error caused by the residual configurations, such as the
5019 	 * unexpected interrupt, can be avoid.
5020 	 */
5021 	ret = hns3_init_ring_with_vector(hw);
5022 	if (ret) {
5023 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
5024 		goto err_mac_init;
5025 	}
5026 
5027 	return 0;
5028 
5029 err_mac_init:
5030 	hns3_uninit_umv_space(hw);
5031 	return ret;
5032 }
5033 
5034 static int
5035 hns3_clear_hw(struct hns3_hw *hw)
5036 {
5037 	struct hns3_cmd_desc desc;
5038 	int ret;
5039 
5040 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
5041 
5042 	ret = hns3_cmd_send(hw, &desc, 1);
5043 	if (ret && ret != -EOPNOTSUPP)
5044 		return ret;
5045 
5046 	return 0;
5047 }
5048 
5049 static void
5050 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
5051 {
5052 	uint32_t val;
5053 
5054 	/*
5055 	 * The new firmware support report more hardware error types by
5056 	 * msix mode. These errors are defined as RAS errors in hardware
5057 	 * and belong to a different type from the MSI-x errors processed
5058 	 * by the network driver.
5059 	 *
5060 	 * Network driver should open the new error report on initialization.
5061 	 */
5062 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5063 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
5064 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
5065 }
5066 
5067 static uint32_t
5068 hns3_set_firber_default_support_speed(struct hns3_hw *hw)
5069 {
5070 	struct hns3_mac *mac = &hw->mac;
5071 
5072 	switch (mac->link_speed) {
5073 	case ETH_SPEED_NUM_1G:
5074 		return HNS3_FIBER_LINK_SPEED_1G_BIT;
5075 	case ETH_SPEED_NUM_10G:
5076 		return HNS3_FIBER_LINK_SPEED_10G_BIT;
5077 	case ETH_SPEED_NUM_25G:
5078 		return HNS3_FIBER_LINK_SPEED_25G_BIT;
5079 	case ETH_SPEED_NUM_40G:
5080 		return HNS3_FIBER_LINK_SPEED_40G_BIT;
5081 	case ETH_SPEED_NUM_50G:
5082 		return HNS3_FIBER_LINK_SPEED_50G_BIT;
5083 	case ETH_SPEED_NUM_100G:
5084 		return HNS3_FIBER_LINK_SPEED_100G_BIT;
5085 	case ETH_SPEED_NUM_200G:
5086 		return HNS3_FIBER_LINK_SPEED_200G_BIT;
5087 	default:
5088 		hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed);
5089 		return 0;
5090 	}
5091 }
5092 
5093 /*
5094  * Validity of supported_speed for firber and copper media type can be
5095  * guaranteed by the following policy:
5096  * Copper:
5097  *       Although the initialization of the phy in the firmware may not be
5098  *       completed, the firmware can guarantees that the supported_speed is
5099  *       an valid value.
5100  * Firber:
5101  *       If the version of firmware supports the acitive query way of the
5102  *       HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained
5103  *       through it. If unsupported, use the SFP's speed as the value of the
5104  *       supported_speed.
5105  */
5106 static int
5107 hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev)
5108 {
5109 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5110 	struct hns3_hw *hw = &hns->hw;
5111 	struct hns3_mac *mac = &hw->mac;
5112 	int ret;
5113 
5114 	ret = hns3_update_link_info(eth_dev);
5115 	if (ret)
5116 		return ret;
5117 
5118 	if (mac->media_type == HNS3_MEDIA_TYPE_FIBER) {
5119 		/*
5120 		 * Some firmware does not support the report of supported_speed,
5121 		 * and only report the effective speed of SFP. In this case, it
5122 		 * is necessary to use the SFP's speed as the supported_speed.
5123 		 */
5124 		if (mac->supported_speed == 0)
5125 			mac->supported_speed =
5126 				hns3_set_firber_default_support_speed(hw);
5127 	}
5128 
5129 	return 0;
5130 }
5131 
5132 static void
5133 hns3_get_fc_autoneg_capability(struct hns3_adapter *hns)
5134 {
5135 	struct hns3_mac *mac = &hns->hw.mac;
5136 
5137 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) {
5138 		hns->pf.support_fc_autoneg = true;
5139 		return;
5140 	}
5141 
5142 	/*
5143 	 * Flow control auto-negotiation requires the cooperation of the driver
5144 	 * and firmware. Currently, the optical port does not support flow
5145 	 * control auto-negotiation.
5146 	 */
5147 	hns->pf.support_fc_autoneg = false;
5148 }
5149 
5150 static int
5151 hns3_init_pf(struct rte_eth_dev *eth_dev)
5152 {
5153 	struct rte_device *dev = eth_dev->device;
5154 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5155 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5156 	struct hns3_hw *hw = &hns->hw;
5157 	int ret;
5158 
5159 	PMD_INIT_FUNC_TRACE();
5160 
5161 	/* Get hardware io base address from pcie BAR2 IO space */
5162 	hw->io_base = pci_dev->mem_resource[2].addr;
5163 
5164 	/* Firmware command queue initialize */
5165 	ret = hns3_cmd_init_queue(hw);
5166 	if (ret) {
5167 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
5168 		goto err_cmd_init_queue;
5169 	}
5170 
5171 	hns3_clear_all_event_cause(hw);
5172 
5173 	/* Firmware command initialize */
5174 	ret = hns3_cmd_init(hw);
5175 	if (ret) {
5176 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
5177 		goto err_cmd_init;
5178 	}
5179 
5180 	/*
5181 	 * To ensure that the hardware environment is clean during
5182 	 * initialization, the driver actively clear the hardware environment
5183 	 * during initialization, including PF and corresponding VFs' vlan, mac,
5184 	 * flow table configurations, etc.
5185 	 */
5186 	ret = hns3_clear_hw(hw);
5187 	if (ret) {
5188 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
5189 		goto err_cmd_init;
5190 	}
5191 
5192 	/* Hardware statistics of imissed registers cleared. */
5193 	ret = hns3_update_imissed_stats(hw, true);
5194 	if (ret) {
5195 		hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
5196 		goto err_cmd_init;
5197 	}
5198 
5199 	hns3_config_all_msix_error(hw, true);
5200 
5201 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
5202 					 hns3_interrupt_handler,
5203 					 eth_dev);
5204 	if (ret) {
5205 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
5206 		goto err_intr_callback_register;
5207 	}
5208 
5209 	ret = hns3_ptp_init(hw);
5210 	if (ret)
5211 		goto err_get_config;
5212 
5213 	/* Enable interrupt */
5214 	rte_intr_enable(&pci_dev->intr_handle);
5215 	hns3_pf_enable_irq0(hw);
5216 
5217 	/* Get configuration */
5218 	ret = hns3_get_configuration(hw);
5219 	if (ret) {
5220 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
5221 		goto err_get_config;
5222 	}
5223 
5224 	ret = hns3_tqp_stats_init(hw);
5225 	if (ret)
5226 		goto err_get_config;
5227 
5228 	ret = hns3_init_hardware(hns);
5229 	if (ret) {
5230 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
5231 		goto err_init_hw;
5232 	}
5233 
5234 	/* Initialize flow director filter list & hash */
5235 	ret = hns3_fdir_filter_init(hns);
5236 	if (ret) {
5237 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
5238 		goto err_fdir;
5239 	}
5240 
5241 	hns3_rss_set_default_args(hw);
5242 
5243 	ret = hns3_enable_hw_error_intr(hns, true);
5244 	if (ret) {
5245 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
5246 			     ret);
5247 		goto err_enable_intr;
5248 	}
5249 
5250 	ret = hns3_get_port_supported_speed(eth_dev);
5251 	if (ret) {
5252 		PMD_INIT_LOG(ERR, "failed to get speed capabilities supported "
5253 			     "by device, ret = %d.", ret);
5254 		goto err_supported_speed;
5255 	}
5256 
5257 	hns3_get_fc_autoneg_capability(hns);
5258 
5259 	hns3_tm_conf_init(eth_dev);
5260 
5261 	return 0;
5262 
5263 err_supported_speed:
5264 	(void)hns3_enable_hw_error_intr(hns, false);
5265 err_enable_intr:
5266 	hns3_fdir_filter_uninit(hns);
5267 err_fdir:
5268 	hns3_uninit_umv_space(hw);
5269 err_init_hw:
5270 	hns3_tqp_stats_uninit(hw);
5271 err_get_config:
5272 	hns3_pf_disable_irq0(hw);
5273 	rte_intr_disable(&pci_dev->intr_handle);
5274 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5275 			     eth_dev);
5276 err_intr_callback_register:
5277 err_cmd_init:
5278 	hns3_cmd_uninit(hw);
5279 	hns3_cmd_destroy_queue(hw);
5280 err_cmd_init_queue:
5281 	hw->io_base = NULL;
5282 
5283 	return ret;
5284 }
5285 
5286 static void
5287 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
5288 {
5289 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5290 	struct rte_device *dev = eth_dev->device;
5291 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5292 	struct hns3_hw *hw = &hns->hw;
5293 
5294 	PMD_INIT_FUNC_TRACE();
5295 
5296 	hns3_tm_conf_uninit(eth_dev);
5297 	hns3_enable_hw_error_intr(hns, false);
5298 	hns3_rss_uninit(hns);
5299 	(void)hns3_config_gro(hw, false);
5300 	hns3_promisc_uninit(hw);
5301 	hns3_fdir_filter_uninit(hns);
5302 	hns3_uninit_umv_space(hw);
5303 	hns3_tqp_stats_uninit(hw);
5304 	hns3_config_mac_tnl_int(hw, false);
5305 	hns3_pf_disable_irq0(hw);
5306 	rte_intr_disable(&pci_dev->intr_handle);
5307 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5308 			     eth_dev);
5309 	hns3_config_all_msix_error(hw, false);
5310 	hns3_cmd_uninit(hw);
5311 	hns3_cmd_destroy_queue(hw);
5312 	hw->io_base = NULL;
5313 }
5314 
5315 static uint32_t
5316 hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds)
5317 {
5318 	uint32_t speed_bit;
5319 
5320 	switch (link_speeds & ~ETH_LINK_SPEED_FIXED) {
5321 	case ETH_LINK_SPEED_10M:
5322 		speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT;
5323 		break;
5324 	case ETH_LINK_SPEED_10M_HD:
5325 		speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT;
5326 		break;
5327 	case ETH_LINK_SPEED_100M:
5328 		speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT;
5329 		break;
5330 	case ETH_LINK_SPEED_100M_HD:
5331 		speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT;
5332 		break;
5333 	case ETH_LINK_SPEED_1G:
5334 		speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT;
5335 		break;
5336 	default:
5337 		speed_bit = 0;
5338 		break;
5339 	}
5340 
5341 	return speed_bit;
5342 }
5343 
5344 static uint32_t
5345 hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds)
5346 {
5347 	uint32_t speed_bit;
5348 
5349 	switch (link_speeds & ~ETH_LINK_SPEED_FIXED) {
5350 	case ETH_LINK_SPEED_1G:
5351 		speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT;
5352 		break;
5353 	case ETH_LINK_SPEED_10G:
5354 		speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT;
5355 		break;
5356 	case ETH_LINK_SPEED_25G:
5357 		speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT;
5358 		break;
5359 	case ETH_LINK_SPEED_40G:
5360 		speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT;
5361 		break;
5362 	case ETH_LINK_SPEED_50G:
5363 		speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT;
5364 		break;
5365 	case ETH_LINK_SPEED_100G:
5366 		speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT;
5367 		break;
5368 	case ETH_LINK_SPEED_200G:
5369 		speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT;
5370 		break;
5371 	default:
5372 		speed_bit = 0;
5373 		break;
5374 	}
5375 
5376 	return speed_bit;
5377 }
5378 
5379 static int
5380 hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds)
5381 {
5382 	struct hns3_mac *mac = &hw->mac;
5383 	uint32_t supported_speed = mac->supported_speed;
5384 	uint32_t speed_bit = 0;
5385 
5386 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
5387 		speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds);
5388 	else if (mac->media_type == HNS3_MEDIA_TYPE_FIBER)
5389 		speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds);
5390 
5391 	if (!(speed_bit & supported_speed)) {
5392 		hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.",
5393 			 link_speeds);
5394 		return -EINVAL;
5395 	}
5396 
5397 	return 0;
5398 }
5399 
5400 static inline uint32_t
5401 hns3_get_link_speed(uint32_t link_speeds)
5402 {
5403 	uint32_t speed = ETH_SPEED_NUM_NONE;
5404 
5405 	if (link_speeds & ETH_LINK_SPEED_10M ||
5406 	    link_speeds & ETH_LINK_SPEED_10M_HD)
5407 		speed = ETH_SPEED_NUM_10M;
5408 	if (link_speeds & ETH_LINK_SPEED_100M ||
5409 	    link_speeds & ETH_LINK_SPEED_100M_HD)
5410 		speed = ETH_SPEED_NUM_100M;
5411 	if (link_speeds & ETH_LINK_SPEED_1G)
5412 		speed = ETH_SPEED_NUM_1G;
5413 	if (link_speeds & ETH_LINK_SPEED_10G)
5414 		speed = ETH_SPEED_NUM_10G;
5415 	if (link_speeds & ETH_LINK_SPEED_25G)
5416 		speed = ETH_SPEED_NUM_25G;
5417 	if (link_speeds & ETH_LINK_SPEED_40G)
5418 		speed = ETH_SPEED_NUM_40G;
5419 	if (link_speeds & ETH_LINK_SPEED_50G)
5420 		speed = ETH_SPEED_NUM_50G;
5421 	if (link_speeds & ETH_LINK_SPEED_100G)
5422 		speed = ETH_SPEED_NUM_100G;
5423 	if (link_speeds & ETH_LINK_SPEED_200G)
5424 		speed = ETH_SPEED_NUM_200G;
5425 
5426 	return speed;
5427 }
5428 
5429 static uint8_t
5430 hns3_get_link_duplex(uint32_t link_speeds)
5431 {
5432 	if ((link_speeds & ETH_LINK_SPEED_10M_HD) ||
5433 	    (link_speeds & ETH_LINK_SPEED_100M_HD))
5434 		return ETH_LINK_HALF_DUPLEX;
5435 	else
5436 		return ETH_LINK_FULL_DUPLEX;
5437 }
5438 
5439 static int
5440 hns3_set_copper_port_link_speed(struct hns3_hw *hw,
5441 				struct hns3_set_link_speed_cfg *cfg)
5442 {
5443 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
5444 	struct hns3_phy_params_bd0_cmd *req;
5445 	uint16_t i;
5446 
5447 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
5448 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
5449 					  false);
5450 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
5451 	}
5452 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false);
5453 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
5454 	req->autoneg = cfg->autoneg;
5455 
5456 	/*
5457 	 * The full speed capability is used to negotiate when
5458 	 * auto-negotiation is enabled.
5459 	 */
5460 	if (cfg->autoneg) {
5461 		req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT |
5462 				    HNS3_PHY_LINK_SPEED_10M_HD_BIT |
5463 				    HNS3_PHY_LINK_SPEED_100M_BIT |
5464 				    HNS3_PHY_LINK_SPEED_100M_HD_BIT |
5465 				    HNS3_PHY_LINK_SPEED_1000M_BIT;
5466 	} else {
5467 		req->speed = cfg->speed;
5468 		req->duplex = cfg->duplex;
5469 	}
5470 
5471 	return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
5472 }
5473 
5474 static int
5475 hns3_set_autoneg(struct hns3_hw *hw, bool enable)
5476 {
5477 	struct hns3_config_auto_neg_cmd *req;
5478 	struct hns3_cmd_desc desc;
5479 	uint32_t flag = 0;
5480 	int ret;
5481 
5482 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false);
5483 
5484 	req = (struct hns3_config_auto_neg_cmd *)desc.data;
5485 	if (enable)
5486 		hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1);
5487 	req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag);
5488 
5489 	ret = hns3_cmd_send(hw, &desc, 1);
5490 	if (ret)
5491 		hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret);
5492 
5493 	return ret;
5494 }
5495 
5496 static int
5497 hns3_set_fiber_port_link_speed(struct hns3_hw *hw,
5498 			       struct hns3_set_link_speed_cfg *cfg)
5499 {
5500 	int ret;
5501 
5502 	if (hw->mac.support_autoneg) {
5503 		ret = hns3_set_autoneg(hw, cfg->autoneg);
5504 		if (ret) {
5505 			hns3_err(hw, "failed to configure auto-negotiation.");
5506 			return ret;
5507 		}
5508 
5509 		/*
5510 		 * To enable auto-negotiation, we only need to open the switch
5511 		 * of auto-negotiation, then firmware sets all speed
5512 		 * capabilities.
5513 		 */
5514 		if (cfg->autoneg)
5515 			return 0;
5516 	}
5517 
5518 	/*
5519 	 * Some hardware doesn't support auto-negotiation, but users may not
5520 	 * configure link_speeds (default 0), which means auto-negotiation.
5521 	 * In this case, it should return success.
5522 	 */
5523 	if (cfg->autoneg)
5524 		return 0;
5525 
5526 	return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex);
5527 }
5528 
5529 static int
5530 hns3_set_port_link_speed(struct hns3_hw *hw,
5531 			 struct hns3_set_link_speed_cfg *cfg)
5532 {
5533 	int ret;
5534 
5535 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER) {
5536 #if defined(RTE_HNS3_ONLY_1630_FPGA)
5537 		struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5538 		if (pf->is_tmp_phy)
5539 			return 0;
5540 #endif
5541 
5542 		ret = hns3_set_copper_port_link_speed(hw, cfg);
5543 		if (ret) {
5544 			hns3_err(hw, "failed to set copper port link speed,"
5545 				 "ret = %d.", ret);
5546 			return ret;
5547 		}
5548 	} else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER) {
5549 		ret = hns3_set_fiber_port_link_speed(hw, cfg);
5550 		if (ret) {
5551 			hns3_err(hw, "failed to set fiber port link speed,"
5552 				 "ret = %d.", ret);
5553 			return ret;
5554 		}
5555 	}
5556 
5557 	return 0;
5558 }
5559 
5560 static int
5561 hns3_apply_link_speed(struct hns3_hw *hw)
5562 {
5563 	struct rte_eth_conf *conf = &hw->data->dev_conf;
5564 	struct hns3_set_link_speed_cfg cfg;
5565 
5566 	memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg));
5567 	cfg.autoneg = (conf->link_speeds == ETH_LINK_SPEED_AUTONEG) ?
5568 			ETH_LINK_AUTONEG : ETH_LINK_FIXED;
5569 	if (cfg.autoneg != ETH_LINK_AUTONEG) {
5570 		cfg.speed = hns3_get_link_speed(conf->link_speeds);
5571 		cfg.duplex = hns3_get_link_duplex(conf->link_speeds);
5572 	}
5573 
5574 	return hns3_set_port_link_speed(hw, &cfg);
5575 }
5576 
5577 static int
5578 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5579 {
5580 	struct hns3_hw *hw = &hns->hw;
5581 	int ret;
5582 
5583 	ret = hns3_update_queue_map_configure(hns);
5584 	if (ret) {
5585 		hns3_err(hw, "failed to update queue mapping configuration, ret = %d",
5586 			 ret);
5587 		return ret;
5588 	}
5589 
5590 	/* Note: hns3_tm_conf_update must be called after configuring DCB. */
5591 	ret = hns3_tm_conf_update(hw);
5592 	if (ret) {
5593 		PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5594 		return ret;
5595 	}
5596 
5597 	hns3_enable_rxd_adv_layout(hw);
5598 
5599 	ret = hns3_init_queues(hns, reset_queue);
5600 	if (ret) {
5601 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5602 		return ret;
5603 	}
5604 
5605 	ret = hns3_cfg_mac_mode(hw, true);
5606 	if (ret) {
5607 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5608 		goto err_config_mac_mode;
5609 	}
5610 
5611 	ret = hns3_apply_link_speed(hw);
5612 	if (ret)
5613 		goto err_set_link_speed;
5614 
5615 	return 0;
5616 
5617 err_set_link_speed:
5618 	(void)hns3_cfg_mac_mode(hw, false);
5619 
5620 err_config_mac_mode:
5621 	hns3_dev_release_mbufs(hns);
5622 	/*
5623 	 * Here is exception handling, hns3_reset_all_tqps will have the
5624 	 * corresponding error message if it is handled incorrectly, so it is
5625 	 * not necessary to check hns3_reset_all_tqps return value, here keep
5626 	 * ret as the error code causing the exception.
5627 	 */
5628 	(void)hns3_reset_all_tqps(hns);
5629 	return ret;
5630 }
5631 
5632 static int
5633 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5634 {
5635 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5636 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5637 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5638 	uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5639 	uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5640 	uint32_t intr_vector;
5641 	uint16_t q_id;
5642 	int ret;
5643 
5644 	/*
5645 	 * hns3 needs a separate interrupt to be used as event interrupt which
5646 	 * could not be shared with task queue pair, so KERNEL drivers need
5647 	 * support multiple interrupt vectors.
5648 	 */
5649 	if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5650 	    !rte_intr_cap_multiple(intr_handle))
5651 		return 0;
5652 
5653 	rte_intr_disable(intr_handle);
5654 	intr_vector = hw->used_rx_queues;
5655 	/* creates event fd for each intr vector when MSIX is used */
5656 	if (rte_intr_efd_enable(intr_handle, intr_vector))
5657 		return -EINVAL;
5658 
5659 	if (intr_handle->intr_vec == NULL) {
5660 		intr_handle->intr_vec =
5661 			rte_zmalloc("intr_vec",
5662 				    hw->used_rx_queues * sizeof(int), 0);
5663 		if (intr_handle->intr_vec == NULL) {
5664 			hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5665 					hw->used_rx_queues);
5666 			ret = -ENOMEM;
5667 			goto alloc_intr_vec_error;
5668 		}
5669 	}
5670 
5671 	if (rte_intr_allow_others(intr_handle)) {
5672 		vec = RTE_INTR_VEC_RXTX_OFFSET;
5673 		base = RTE_INTR_VEC_RXTX_OFFSET;
5674 	}
5675 
5676 	for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5677 		ret = hns3_bind_ring_with_vector(hw, vec, true,
5678 						 HNS3_RING_TYPE_RX, q_id);
5679 		if (ret)
5680 			goto bind_vector_error;
5681 		intr_handle->intr_vec[q_id] = vec;
5682 		/*
5683 		 * If there are not enough efds (e.g. not enough interrupt),
5684 		 * remaining queues will be bond to the last interrupt.
5685 		 */
5686 		if (vec < base + intr_handle->nb_efd - 1)
5687 			vec++;
5688 	}
5689 	rte_intr_enable(intr_handle);
5690 	return 0;
5691 
5692 bind_vector_error:
5693 	rte_free(intr_handle->intr_vec);
5694 	intr_handle->intr_vec = NULL;
5695 alloc_intr_vec_error:
5696 	rte_intr_efd_disable(intr_handle);
5697 	return ret;
5698 }
5699 
5700 static int
5701 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5702 {
5703 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5704 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5705 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5706 	uint16_t q_id;
5707 	int ret;
5708 
5709 	if (dev->data->dev_conf.intr_conf.rxq == 0)
5710 		return 0;
5711 
5712 	if (rte_intr_dp_is_en(intr_handle)) {
5713 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5714 			ret = hns3_bind_ring_with_vector(hw,
5715 					intr_handle->intr_vec[q_id], true,
5716 					HNS3_RING_TYPE_RX, q_id);
5717 			if (ret)
5718 				return ret;
5719 		}
5720 	}
5721 
5722 	return 0;
5723 }
5724 
5725 static void
5726 hns3_restore_filter(struct rte_eth_dev *dev)
5727 {
5728 	hns3_restore_rss_filter(dev);
5729 }
5730 
5731 static int
5732 hns3_dev_start(struct rte_eth_dev *dev)
5733 {
5734 	struct hns3_adapter *hns = dev->data->dev_private;
5735 	struct hns3_hw *hw = &hns->hw;
5736 	int ret;
5737 
5738 	PMD_INIT_FUNC_TRACE();
5739 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5740 		return -EBUSY;
5741 
5742 	rte_spinlock_lock(&hw->lock);
5743 	hw->adapter_state = HNS3_NIC_STARTING;
5744 
5745 	ret = hns3_do_start(hns, true);
5746 	if (ret) {
5747 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5748 		rte_spinlock_unlock(&hw->lock);
5749 		return ret;
5750 	}
5751 	ret = hns3_map_rx_interrupt(dev);
5752 	if (ret)
5753 		goto map_rx_inter_err;
5754 
5755 	/*
5756 	 * There are three register used to control the status of a TQP
5757 	 * (contains a pair of Tx queue and Rx queue) in the new version network
5758 	 * engine. One is used to control the enabling of Tx queue, the other is
5759 	 * used to control the enabling of Rx queue, and the last is the master
5760 	 * switch used to control the enabling of the tqp. The Tx register and
5761 	 * TQP register must be enabled at the same time to enable a Tx queue.
5762 	 * The same applies to the Rx queue. For the older network engine, this
5763 	 * function only refresh the enabled flag, and it is used to update the
5764 	 * status of queue in the dpdk framework.
5765 	 */
5766 	ret = hns3_start_all_txqs(dev);
5767 	if (ret)
5768 		goto map_rx_inter_err;
5769 
5770 	ret = hns3_start_all_rxqs(dev);
5771 	if (ret)
5772 		goto start_all_rxqs_fail;
5773 
5774 	hw->adapter_state = HNS3_NIC_STARTED;
5775 	rte_spinlock_unlock(&hw->lock);
5776 
5777 	hns3_rx_scattered_calc(dev);
5778 	hns3_set_rxtx_function(dev);
5779 	hns3_mp_req_start_rxtx(dev);
5780 
5781 	hns3_restore_filter(dev);
5782 
5783 	/* Enable interrupt of all rx queues before enabling queues */
5784 	hns3_dev_all_rx_queue_intr_enable(hw, true);
5785 
5786 	/*
5787 	 * After finished the initialization, enable tqps to receive/transmit
5788 	 * packets and refresh all queue status.
5789 	 */
5790 	hns3_start_tqps(hw);
5791 
5792 	hns3_tm_dev_start_proc(hw);
5793 
5794 	if (dev->data->dev_conf.intr_conf.lsc != 0)
5795 		hns3_dev_link_update(dev, 0);
5796 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5797 
5798 	hns3_info(hw, "hns3 dev start successful!");
5799 
5800 	return 0;
5801 
5802 start_all_rxqs_fail:
5803 	hns3_stop_all_txqs(dev);
5804 map_rx_inter_err:
5805 	(void)hns3_do_stop(hns);
5806 	hw->adapter_state = HNS3_NIC_CONFIGURED;
5807 	rte_spinlock_unlock(&hw->lock);
5808 
5809 	return ret;
5810 }
5811 
5812 static int
5813 hns3_do_stop(struct hns3_adapter *hns)
5814 {
5815 	struct hns3_hw *hw = &hns->hw;
5816 	int ret;
5817 
5818 	/*
5819 	 * The "hns3_do_stop" function will also be called by .stop_service to
5820 	 * prepare reset. At the time of global or IMP reset, the command cannot
5821 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5822 	 * accessed during the reset process. So the mbuf can not be released
5823 	 * during reset and is required to be released after the reset is
5824 	 * completed.
5825 	 */
5826 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5827 		hns3_dev_release_mbufs(hns);
5828 
5829 	ret = hns3_cfg_mac_mode(hw, false);
5830 	if (ret)
5831 		return ret;
5832 	hw->mac.link_status = ETH_LINK_DOWN;
5833 
5834 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5835 		hns3_configure_all_mac_addr(hns, true);
5836 		ret = hns3_reset_all_tqps(hns);
5837 		if (ret) {
5838 			hns3_err(hw, "failed to reset all queues ret = %d.",
5839 				 ret);
5840 			return ret;
5841 		}
5842 	}
5843 	hw->mac.default_addr_setted = false;
5844 	return 0;
5845 }
5846 
5847 static void
5848 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5849 {
5850 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5851 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5852 	struct hns3_adapter *hns = dev->data->dev_private;
5853 	struct hns3_hw *hw = &hns->hw;
5854 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5855 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5856 	uint16_t q_id;
5857 
5858 	if (dev->data->dev_conf.intr_conf.rxq == 0)
5859 		return;
5860 
5861 	/* unmap the ring with vector */
5862 	if (rte_intr_allow_others(intr_handle)) {
5863 		vec = RTE_INTR_VEC_RXTX_OFFSET;
5864 		base = RTE_INTR_VEC_RXTX_OFFSET;
5865 	}
5866 	if (rte_intr_dp_is_en(intr_handle)) {
5867 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5868 			(void)hns3_bind_ring_with_vector(hw, vec, false,
5869 							 HNS3_RING_TYPE_RX,
5870 							 q_id);
5871 			if (vec < base + intr_handle->nb_efd - 1)
5872 				vec++;
5873 		}
5874 	}
5875 	/* Clean datapath event and queue/vec mapping */
5876 	rte_intr_efd_disable(intr_handle);
5877 	if (intr_handle->intr_vec) {
5878 		rte_free(intr_handle->intr_vec);
5879 		intr_handle->intr_vec = NULL;
5880 	}
5881 }
5882 
5883 static int
5884 hns3_dev_stop(struct rte_eth_dev *dev)
5885 {
5886 	struct hns3_adapter *hns = dev->data->dev_private;
5887 	struct hns3_hw *hw = &hns->hw;
5888 
5889 	PMD_INIT_FUNC_TRACE();
5890 	dev->data->dev_started = 0;
5891 
5892 	hw->adapter_state = HNS3_NIC_STOPPING;
5893 	hns3_set_rxtx_function(dev);
5894 	rte_wmb();
5895 	/* Disable datapath on secondary process. */
5896 	hns3_mp_req_stop_rxtx(dev);
5897 	/* Prevent crashes when queues are still in use. */
5898 	rte_delay_ms(hw->tqps_num);
5899 
5900 	rte_spinlock_lock(&hw->lock);
5901 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5902 		hns3_tm_dev_stop_proc(hw);
5903 		hns3_config_mac_tnl_int(hw, false);
5904 		hns3_stop_tqps(hw);
5905 		hns3_do_stop(hns);
5906 		hns3_unmap_rx_interrupt(dev);
5907 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5908 	}
5909 	hns3_rx_scattered_reset(dev);
5910 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5911 	hns3_stop_report_lse(dev);
5912 	rte_spinlock_unlock(&hw->lock);
5913 
5914 	return 0;
5915 }
5916 
5917 static int
5918 hns3_dev_close(struct rte_eth_dev *eth_dev)
5919 {
5920 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5921 	struct hns3_hw *hw = &hns->hw;
5922 	int ret = 0;
5923 
5924 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5925 		rte_free(eth_dev->process_private);
5926 		eth_dev->process_private = NULL;
5927 		return 0;
5928 	}
5929 
5930 	if (hw->adapter_state == HNS3_NIC_STARTED)
5931 		ret = hns3_dev_stop(eth_dev);
5932 
5933 	hw->adapter_state = HNS3_NIC_CLOSING;
5934 	hns3_reset_abort(hns);
5935 	hw->adapter_state = HNS3_NIC_CLOSED;
5936 
5937 	hns3_configure_all_mc_mac_addr(hns, true);
5938 	hns3_remove_all_vlan_table(hns);
5939 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5940 	hns3_uninit_pf(eth_dev);
5941 	hns3_free_all_queues(eth_dev);
5942 	rte_free(hw->reset.wait_data);
5943 	rte_free(eth_dev->process_private);
5944 	eth_dev->process_private = NULL;
5945 	hns3_mp_uninit_primary();
5946 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5947 
5948 	return ret;
5949 }
5950 
5951 static void
5952 hns3_get_autoneg_rxtx_pause_copper(struct hns3_hw *hw, bool *rx_pause,
5953 				   bool *tx_pause)
5954 {
5955 	struct hns3_mac *mac = &hw->mac;
5956 	uint32_t advertising = mac->advertising;
5957 	uint32_t lp_advertising = mac->lp_advertising;
5958 	*rx_pause = false;
5959 	*tx_pause = false;
5960 
5961 	if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) {
5962 		*rx_pause = true;
5963 		*tx_pause = true;
5964 	} else if (advertising & lp_advertising &
5965 		   HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) {
5966 		if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5967 			*rx_pause = true;
5968 		else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5969 			*tx_pause = true;
5970 	}
5971 }
5972 
5973 static enum hns3_fc_mode
5974 hns3_get_autoneg_fc_mode(struct hns3_hw *hw)
5975 {
5976 	enum hns3_fc_mode current_mode;
5977 	bool rx_pause = false;
5978 	bool tx_pause = false;
5979 
5980 	switch (hw->mac.media_type) {
5981 	case HNS3_MEDIA_TYPE_COPPER:
5982 		hns3_get_autoneg_rxtx_pause_copper(hw, &rx_pause, &tx_pause);
5983 		break;
5984 
5985 	/*
5986 	 * Flow control auto-negotiation is not supported for fiber and
5987 	 * backpalne media type.
5988 	 */
5989 	case HNS3_MEDIA_TYPE_FIBER:
5990 	case HNS3_MEDIA_TYPE_BACKPLANE:
5991 		hns3_err(hw, "autoneg FC mode can't be obtained, but flow control auto-negotiation is enabled.");
5992 		current_mode = hw->requested_fc_mode;
5993 		goto out;
5994 	default:
5995 		hns3_err(hw, "autoneg FC mode can't be obtained for unknown media type(%u).",
5996 			 hw->mac.media_type);
5997 		current_mode = HNS3_FC_NONE;
5998 		goto out;
5999 	}
6000 
6001 	if (rx_pause && tx_pause)
6002 		current_mode = HNS3_FC_FULL;
6003 	else if (rx_pause)
6004 		current_mode = HNS3_FC_RX_PAUSE;
6005 	else if (tx_pause)
6006 		current_mode = HNS3_FC_TX_PAUSE;
6007 	else
6008 		current_mode = HNS3_FC_NONE;
6009 
6010 out:
6011 	return current_mode;
6012 }
6013 
6014 static enum hns3_fc_mode
6015 hns3_get_current_fc_mode(struct rte_eth_dev *dev)
6016 {
6017 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6018 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6019 	struct hns3_mac *mac = &hw->mac;
6020 
6021 	/*
6022 	 * When the flow control mode is obtained, the device may not complete
6023 	 * auto-negotiation. It is necessary to wait for link establishment.
6024 	 */
6025 	(void)hns3_dev_link_update(dev, 1);
6026 
6027 	/*
6028 	 * If the link auto-negotiation of the nic is disabled, or the flow
6029 	 * control auto-negotiation is not supported, the forced flow control
6030 	 * mode is used.
6031 	 */
6032 	if (mac->link_autoneg == 0 || !pf->support_fc_autoneg)
6033 		return hw->requested_fc_mode;
6034 
6035 	return hns3_get_autoneg_fc_mode(hw);
6036 }
6037 
6038 static int
6039 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
6040 {
6041 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6042 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6043 	enum hns3_fc_mode current_mode;
6044 
6045 	current_mode = hns3_get_current_fc_mode(dev);
6046 	switch (current_mode) {
6047 	case HNS3_FC_FULL:
6048 		fc_conf->mode = RTE_FC_FULL;
6049 		break;
6050 	case HNS3_FC_TX_PAUSE:
6051 		fc_conf->mode = RTE_FC_TX_PAUSE;
6052 		break;
6053 	case HNS3_FC_RX_PAUSE:
6054 		fc_conf->mode = RTE_FC_RX_PAUSE;
6055 		break;
6056 	case HNS3_FC_NONE:
6057 	default:
6058 		fc_conf->mode = RTE_FC_NONE;
6059 		break;
6060 	}
6061 
6062 	fc_conf->pause_time = pf->pause_time;
6063 	fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0;
6064 
6065 	return 0;
6066 }
6067 
6068 static int
6069 hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg)
6070 {
6071 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
6072 
6073 	if (!pf->support_fc_autoneg) {
6074 		if (autoneg != 0) {
6075 			hns3_err(hw, "unsupported fc auto-negotiation setting.");
6076 			return -EOPNOTSUPP;
6077 		}
6078 
6079 		/*
6080 		 * Flow control auto-negotiation of the NIC is not supported,
6081 		 * but other auto-negotiation features may be supported.
6082 		 */
6083 		if (autoneg != hw->mac.link_autoneg) {
6084 			hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to disable autoneg!");
6085 			return -EOPNOTSUPP;
6086 		}
6087 
6088 		return 0;
6089 	}
6090 
6091 	/*
6092 	 * If flow control auto-negotiation of the NIC is supported, all
6093 	 * auto-negotiation features are supported.
6094 	 */
6095 	if (autoneg != hw->mac.link_autoneg) {
6096 		hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!");
6097 		return -EOPNOTSUPP;
6098 	}
6099 
6100 	return 0;
6101 }
6102 
6103 static int
6104 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
6105 {
6106 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6107 	int ret;
6108 
6109 	if (fc_conf->high_water || fc_conf->low_water ||
6110 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
6111 		hns3_err(hw, "Unsupported flow control settings specified, "
6112 			 "high_water(%u), low_water(%u), send_xon(%u) and "
6113 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
6114 			 fc_conf->high_water, fc_conf->low_water,
6115 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
6116 		return -EINVAL;
6117 	}
6118 
6119 	ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg);
6120 	if (ret)
6121 		return ret;
6122 
6123 	if (!fc_conf->pause_time) {
6124 		hns3_err(hw, "Invalid pause time %u setting.",
6125 			 fc_conf->pause_time);
6126 		return -EINVAL;
6127 	}
6128 
6129 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
6130 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
6131 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
6132 			 "current_fc_status = %d", hw->current_fc_status);
6133 		return -EOPNOTSUPP;
6134 	}
6135 
6136 	if (hw->num_tc > 1) {
6137 		hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
6138 		return -EOPNOTSUPP;
6139 	}
6140 
6141 	rte_spinlock_lock(&hw->lock);
6142 	ret = hns3_fc_enable(dev, fc_conf);
6143 	rte_spinlock_unlock(&hw->lock);
6144 
6145 	return ret;
6146 }
6147 
6148 static int
6149 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
6150 			    struct rte_eth_pfc_conf *pfc_conf)
6151 {
6152 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6153 	int ret;
6154 
6155 	if (!hns3_dev_dcb_supported(hw)) {
6156 		hns3_err(hw, "This port does not support dcb configurations.");
6157 		return -EOPNOTSUPP;
6158 	}
6159 
6160 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
6161 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
6162 		hns3_err(hw, "Unsupported flow control settings specified, "
6163 			 "high_water(%u), low_water(%u), send_xon(%u) and "
6164 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
6165 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
6166 			 pfc_conf->fc.send_xon,
6167 			 pfc_conf->fc.mac_ctrl_frame_fwd);
6168 		return -EINVAL;
6169 	}
6170 	if (pfc_conf->fc.autoneg) {
6171 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
6172 		return -EINVAL;
6173 	}
6174 	if (pfc_conf->fc.pause_time == 0) {
6175 		hns3_err(hw, "Invalid pause time %u setting.",
6176 			 pfc_conf->fc.pause_time);
6177 		return -EINVAL;
6178 	}
6179 
6180 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
6181 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
6182 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
6183 			     "current_fc_status = %d", hw->current_fc_status);
6184 		return -EOPNOTSUPP;
6185 	}
6186 
6187 	rte_spinlock_lock(&hw->lock);
6188 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
6189 	rte_spinlock_unlock(&hw->lock);
6190 
6191 	return ret;
6192 }
6193 
6194 static int
6195 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
6196 {
6197 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6198 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6199 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
6200 	int i;
6201 
6202 	rte_spinlock_lock(&hw->lock);
6203 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
6204 		dcb_info->nb_tcs = pf->local_max_tc;
6205 	else
6206 		dcb_info->nb_tcs = 1;
6207 
6208 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
6209 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
6210 	for (i = 0; i < dcb_info->nb_tcs; i++)
6211 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
6212 
6213 	for (i = 0; i < hw->num_tc; i++) {
6214 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
6215 		dcb_info->tc_queue.tc_txq[0][i].base =
6216 						hw->tc_queue[i].tqp_offset;
6217 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
6218 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
6219 						hw->tc_queue[i].tqp_count;
6220 	}
6221 	rte_spinlock_unlock(&hw->lock);
6222 
6223 	return 0;
6224 }
6225 
6226 static int
6227 hns3_reinit_dev(struct hns3_adapter *hns)
6228 {
6229 	struct hns3_hw *hw = &hns->hw;
6230 	int ret;
6231 
6232 	ret = hns3_cmd_init(hw);
6233 	if (ret) {
6234 		hns3_err(hw, "Failed to init cmd: %d", ret);
6235 		return ret;
6236 	}
6237 
6238 	ret = hns3_reset_all_tqps(hns);
6239 	if (ret) {
6240 		hns3_err(hw, "Failed to reset all queues: %d", ret);
6241 		return ret;
6242 	}
6243 
6244 	ret = hns3_init_hardware(hns);
6245 	if (ret) {
6246 		hns3_err(hw, "Failed to init hardware: %d", ret);
6247 		return ret;
6248 	}
6249 
6250 	ret = hns3_enable_hw_error_intr(hns, true);
6251 	if (ret) {
6252 		hns3_err(hw, "fail to enable hw error interrupts: %d",
6253 			     ret);
6254 		return ret;
6255 	}
6256 	hns3_info(hw, "Reset done, driver initialization finished.");
6257 
6258 	return 0;
6259 }
6260 
6261 static bool
6262 is_pf_reset_done(struct hns3_hw *hw)
6263 {
6264 	uint32_t val, reg, reg_bit;
6265 
6266 	switch (hw->reset.level) {
6267 	case HNS3_IMP_RESET:
6268 		reg = HNS3_GLOBAL_RESET_REG;
6269 		reg_bit = HNS3_IMP_RESET_BIT;
6270 		break;
6271 	case HNS3_GLOBAL_RESET:
6272 		reg = HNS3_GLOBAL_RESET_REG;
6273 		reg_bit = HNS3_GLOBAL_RESET_BIT;
6274 		break;
6275 	case HNS3_FUNC_RESET:
6276 		reg = HNS3_FUN_RST_ING;
6277 		reg_bit = HNS3_FUN_RST_ING_B;
6278 		break;
6279 	case HNS3_FLR_RESET:
6280 	default:
6281 		hns3_err(hw, "Wait for unsupported reset level: %d",
6282 			 hw->reset.level);
6283 		return true;
6284 	}
6285 	val = hns3_read_dev(hw, reg);
6286 	if (hns3_get_bit(val, reg_bit))
6287 		return false;
6288 	else
6289 		return true;
6290 }
6291 
6292 bool
6293 hns3_is_reset_pending(struct hns3_adapter *hns)
6294 {
6295 	struct hns3_hw *hw = &hns->hw;
6296 	enum hns3_reset_level reset;
6297 
6298 	hns3_check_event_cause(hns, NULL);
6299 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
6300 
6301 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
6302 	    hw->reset.level < reset) {
6303 		hns3_warn(hw, "High level reset %d is pending", reset);
6304 		return true;
6305 	}
6306 	reset = hns3_get_reset_level(hns, &hw->reset.request);
6307 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
6308 	    hw->reset.level < reset) {
6309 		hns3_warn(hw, "High level reset %d is request", reset);
6310 		return true;
6311 	}
6312 	return false;
6313 }
6314 
6315 static int
6316 hns3_wait_hardware_ready(struct hns3_adapter *hns)
6317 {
6318 	struct hns3_hw *hw = &hns->hw;
6319 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
6320 	struct timeval tv;
6321 
6322 	if (wait_data->result == HNS3_WAIT_SUCCESS)
6323 		return 0;
6324 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
6325 		hns3_clock_gettime(&tv);
6326 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
6327 			  tv.tv_sec, tv.tv_usec);
6328 		return -ETIME;
6329 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
6330 		return -EAGAIN;
6331 
6332 	wait_data->hns = hns;
6333 	wait_data->check_completion = is_pf_reset_done;
6334 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
6335 				HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms();
6336 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
6337 	wait_data->count = HNS3_RESET_WAIT_CNT;
6338 	wait_data->result = HNS3_WAIT_REQUEST;
6339 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
6340 	return -EAGAIN;
6341 }
6342 
6343 static int
6344 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
6345 {
6346 	struct hns3_cmd_desc desc;
6347 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
6348 
6349 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
6350 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
6351 	req->fun_reset_vfid = func_id;
6352 
6353 	return hns3_cmd_send(hw, &desc, 1);
6354 }
6355 
6356 static int
6357 hns3_imp_reset_cmd(struct hns3_hw *hw)
6358 {
6359 	struct hns3_cmd_desc desc;
6360 
6361 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
6362 	desc.data[0] = 0xeedd;
6363 
6364 	return hns3_cmd_send(hw, &desc, 1);
6365 }
6366 
6367 static void
6368 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
6369 {
6370 	struct hns3_hw *hw = &hns->hw;
6371 	struct timeval tv;
6372 	uint32_t val;
6373 
6374 	hns3_clock_gettime(&tv);
6375 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
6376 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
6377 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
6378 			  tv.tv_sec, tv.tv_usec);
6379 		return;
6380 	}
6381 
6382 	switch (reset_level) {
6383 	case HNS3_IMP_RESET:
6384 		hns3_imp_reset_cmd(hw);
6385 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
6386 			  tv.tv_sec, tv.tv_usec);
6387 		break;
6388 	case HNS3_GLOBAL_RESET:
6389 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
6390 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
6391 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
6392 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
6393 			  tv.tv_sec, tv.tv_usec);
6394 		break;
6395 	case HNS3_FUNC_RESET:
6396 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
6397 			  tv.tv_sec, tv.tv_usec);
6398 		/* schedule again to check later */
6399 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
6400 		hns3_schedule_reset(hns);
6401 		break;
6402 	default:
6403 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
6404 		return;
6405 	}
6406 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
6407 }
6408 
6409 static enum hns3_reset_level
6410 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
6411 {
6412 	struct hns3_hw *hw = &hns->hw;
6413 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
6414 
6415 	/* Return the highest priority reset level amongst all */
6416 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
6417 		reset_level = HNS3_IMP_RESET;
6418 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
6419 		reset_level = HNS3_GLOBAL_RESET;
6420 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
6421 		reset_level = HNS3_FUNC_RESET;
6422 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
6423 		reset_level = HNS3_FLR_RESET;
6424 
6425 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
6426 		return HNS3_NONE_RESET;
6427 
6428 	return reset_level;
6429 }
6430 
6431 static void
6432 hns3_record_imp_error(struct hns3_adapter *hns)
6433 {
6434 	struct hns3_hw *hw = &hns->hw;
6435 	uint32_t reg_val;
6436 
6437 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
6438 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
6439 		hns3_warn(hw, "Detected IMP RD poison!");
6440 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
6441 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
6442 	}
6443 
6444 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
6445 		hns3_warn(hw, "Detected IMP CMDQ error!");
6446 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
6447 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
6448 	}
6449 }
6450 
6451 static int
6452 hns3_prepare_reset(struct hns3_adapter *hns)
6453 {
6454 	struct hns3_hw *hw = &hns->hw;
6455 	uint32_t reg_val;
6456 	int ret;
6457 
6458 	switch (hw->reset.level) {
6459 	case HNS3_FUNC_RESET:
6460 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
6461 		if (ret)
6462 			return ret;
6463 
6464 		/*
6465 		 * After performaning pf reset, it is not necessary to do the
6466 		 * mailbox handling or send any command to firmware, because
6467 		 * any mailbox handling or command to firmware is only valid
6468 		 * after hns3_cmd_init is called.
6469 		 */
6470 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
6471 		hw->reset.stats.request_cnt++;
6472 		break;
6473 	case HNS3_IMP_RESET:
6474 		hns3_record_imp_error(hns);
6475 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
6476 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
6477 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
6478 		break;
6479 	default:
6480 		break;
6481 	}
6482 	return 0;
6483 }
6484 
6485 static int
6486 hns3_set_rst_done(struct hns3_hw *hw)
6487 {
6488 	struct hns3_pf_rst_done_cmd *req;
6489 	struct hns3_cmd_desc desc;
6490 
6491 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
6492 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
6493 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
6494 	return hns3_cmd_send(hw, &desc, 1);
6495 }
6496 
6497 static int
6498 hns3_stop_service(struct hns3_adapter *hns)
6499 {
6500 	struct hns3_hw *hw = &hns->hw;
6501 	struct rte_eth_dev *eth_dev;
6502 
6503 	eth_dev = &rte_eth_devices[hw->data->port_id];
6504 	hw->mac.link_status = ETH_LINK_DOWN;
6505 	if (hw->adapter_state == HNS3_NIC_STARTED) {
6506 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
6507 		hns3_update_linkstatus_and_event(hw, false);
6508 	}
6509 
6510 	hns3_set_rxtx_function(eth_dev);
6511 	rte_wmb();
6512 	/* Disable datapath on secondary process. */
6513 	hns3_mp_req_stop_rxtx(eth_dev);
6514 	rte_delay_ms(hw->tqps_num);
6515 
6516 	rte_spinlock_lock(&hw->lock);
6517 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
6518 	    hw->adapter_state == HNS3_NIC_STOPPING) {
6519 		hns3_enable_all_queues(hw, false);
6520 		hns3_do_stop(hns);
6521 		hw->reset.mbuf_deferred_free = true;
6522 	} else
6523 		hw->reset.mbuf_deferred_free = false;
6524 
6525 	/*
6526 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
6527 	 * from table space. Hence, for function reset software intervention is
6528 	 * required to delete the entries
6529 	 */
6530 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
6531 		hns3_configure_all_mc_mac_addr(hns, true);
6532 	rte_spinlock_unlock(&hw->lock);
6533 
6534 	return 0;
6535 }
6536 
6537 static int
6538 hns3_start_service(struct hns3_adapter *hns)
6539 {
6540 	struct hns3_hw *hw = &hns->hw;
6541 	struct rte_eth_dev *eth_dev;
6542 
6543 	if (hw->reset.level == HNS3_IMP_RESET ||
6544 	    hw->reset.level == HNS3_GLOBAL_RESET)
6545 		hns3_set_rst_done(hw);
6546 	eth_dev = &rte_eth_devices[hw->data->port_id];
6547 	hns3_set_rxtx_function(eth_dev);
6548 	hns3_mp_req_start_rxtx(eth_dev);
6549 	if (hw->adapter_state == HNS3_NIC_STARTED) {
6550 		/*
6551 		 * This API parent function already hold the hns3_hw.lock, the
6552 		 * hns3_service_handler may report lse, in bonding application
6553 		 * it will call driver's ops which may acquire the hns3_hw.lock
6554 		 * again, thus lead to deadlock.
6555 		 * We defer calls hns3_service_handler to avoid the deadlock.
6556 		 */
6557 		rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
6558 				  hns3_service_handler, eth_dev);
6559 
6560 		/* Enable interrupt of all rx queues before enabling queues */
6561 		hns3_dev_all_rx_queue_intr_enable(hw, true);
6562 		/*
6563 		 * Enable state of each rxq and txq will be recovered after
6564 		 * reset, so we need to restore them before enable all tqps;
6565 		 */
6566 		hns3_restore_tqp_enable_state(hw);
6567 		/*
6568 		 * When finished the initialization, enable queues to receive
6569 		 * and transmit packets.
6570 		 */
6571 		hns3_enable_all_queues(hw, true);
6572 	}
6573 
6574 	return 0;
6575 }
6576 
6577 static int
6578 hns3_restore_conf(struct hns3_adapter *hns)
6579 {
6580 	struct hns3_hw *hw = &hns->hw;
6581 	int ret;
6582 
6583 	ret = hns3_configure_all_mac_addr(hns, false);
6584 	if (ret)
6585 		return ret;
6586 
6587 	ret = hns3_configure_all_mc_mac_addr(hns, false);
6588 	if (ret)
6589 		goto err_mc_mac;
6590 
6591 	ret = hns3_dev_promisc_restore(hns);
6592 	if (ret)
6593 		goto err_promisc;
6594 
6595 	ret = hns3_restore_vlan_table(hns);
6596 	if (ret)
6597 		goto err_promisc;
6598 
6599 	ret = hns3_restore_vlan_conf(hns);
6600 	if (ret)
6601 		goto err_promisc;
6602 
6603 	ret = hns3_restore_all_fdir_filter(hns);
6604 	if (ret)
6605 		goto err_promisc;
6606 
6607 	ret = hns3_restore_ptp(hns);
6608 	if (ret)
6609 		goto err_promisc;
6610 
6611 	ret = hns3_restore_rx_interrupt(hw);
6612 	if (ret)
6613 		goto err_promisc;
6614 
6615 	ret = hns3_restore_gro_conf(hw);
6616 	if (ret)
6617 		goto err_promisc;
6618 
6619 	ret = hns3_restore_fec(hw);
6620 	if (ret)
6621 		goto err_promisc;
6622 
6623 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
6624 		ret = hns3_do_start(hns, false);
6625 		if (ret)
6626 			goto err_promisc;
6627 		hns3_info(hw, "hns3 dev restart successful!");
6628 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
6629 		hw->adapter_state = HNS3_NIC_CONFIGURED;
6630 	return 0;
6631 
6632 err_promisc:
6633 	hns3_configure_all_mc_mac_addr(hns, true);
6634 err_mc_mac:
6635 	hns3_configure_all_mac_addr(hns, true);
6636 	return ret;
6637 }
6638 
6639 static void
6640 hns3_reset_service(void *param)
6641 {
6642 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
6643 	struct hns3_hw *hw = &hns->hw;
6644 	enum hns3_reset_level reset_level;
6645 	struct timeval tv_delta;
6646 	struct timeval tv_start;
6647 	struct timeval tv;
6648 	uint64_t msec;
6649 	int ret;
6650 
6651 	/*
6652 	 * The interrupt is not triggered within the delay time.
6653 	 * The interrupt may have been lost. It is necessary to handle
6654 	 * the interrupt to recover from the error.
6655 	 */
6656 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6657 			    SCHEDULE_DEFERRED) {
6658 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
6659 				  __ATOMIC_RELAXED);
6660 		hns3_err(hw, "Handling interrupts in delayed tasks");
6661 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
6662 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6663 		if (reset_level == HNS3_NONE_RESET) {
6664 			hns3_err(hw, "No reset level is set, try IMP reset");
6665 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
6666 		}
6667 	}
6668 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
6669 
6670 	/*
6671 	 * Check if there is any ongoing reset in the hardware. This status can
6672 	 * be checked from reset_pending. If there is then, we need to wait for
6673 	 * hardware to complete reset.
6674 	 *    a. If we are able to figure out in reasonable time that hardware
6675 	 *       has fully resetted then, we can proceed with driver, client
6676 	 *       reset.
6677 	 *    b. else, we can come back later to check this status so re-sched
6678 	 *       now.
6679 	 */
6680 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6681 	if (reset_level != HNS3_NONE_RESET) {
6682 		hns3_clock_gettime(&tv_start);
6683 		ret = hns3_reset_process(hns, reset_level);
6684 		hns3_clock_gettime(&tv);
6685 		timersub(&tv, &tv_start, &tv_delta);
6686 		msec = hns3_clock_calctime_ms(&tv_delta);
6687 		if (msec > HNS3_RESET_PROCESS_MS)
6688 			hns3_err(hw, "%d handle long time delta %" PRIu64
6689 				     " ms time=%ld.%.6ld",
6690 				 hw->reset.level, msec,
6691 				 tv.tv_sec, tv.tv_usec);
6692 		if (ret == -EAGAIN)
6693 			return;
6694 	}
6695 
6696 	/* Check if we got any *new* reset requests to be honored */
6697 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6698 	if (reset_level != HNS3_NONE_RESET)
6699 		hns3_msix_process(hns, reset_level);
6700 }
6701 
6702 static unsigned int
6703 hns3_get_speed_capa_num(uint16_t device_id)
6704 {
6705 	unsigned int num;
6706 
6707 	switch (device_id) {
6708 	case HNS3_DEV_ID_25GE:
6709 	case HNS3_DEV_ID_25GE_RDMA:
6710 		num = 2;
6711 		break;
6712 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6713 	case HNS3_DEV_ID_200G_RDMA:
6714 		num = 1;
6715 		break;
6716 	default:
6717 		num = 0;
6718 		break;
6719 	}
6720 
6721 	return num;
6722 }
6723 
6724 static int
6725 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6726 			uint16_t device_id)
6727 {
6728 	switch (device_id) {
6729 	case HNS3_DEV_ID_25GE:
6730 	/* fallthrough */
6731 	case HNS3_DEV_ID_25GE_RDMA:
6732 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6733 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6734 
6735 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
6736 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6737 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6738 		break;
6739 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6740 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6741 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6742 		break;
6743 	case HNS3_DEV_ID_200G_RDMA:
6744 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6745 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6746 		break;
6747 	default:
6748 		return -ENOTSUP;
6749 	}
6750 
6751 	return 0;
6752 }
6753 
6754 static int
6755 hns3_fec_get_capability(struct rte_eth_dev *dev,
6756 			struct rte_eth_fec_capa *speed_fec_capa,
6757 			unsigned int num)
6758 {
6759 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6760 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6761 	uint16_t device_id = pci_dev->id.device_id;
6762 	unsigned int capa_num;
6763 	int ret;
6764 
6765 	capa_num = hns3_get_speed_capa_num(device_id);
6766 	if (capa_num == 0) {
6767 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6768 			 device_id);
6769 		return -ENOTSUP;
6770 	}
6771 
6772 	if (speed_fec_capa == NULL || num < capa_num)
6773 		return capa_num;
6774 
6775 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6776 	if (ret)
6777 		return -ENOTSUP;
6778 
6779 	return capa_num;
6780 }
6781 
6782 static int
6783 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6784 {
6785 	struct hns3_config_fec_cmd *req;
6786 	struct hns3_cmd_desc desc;
6787 	int ret;
6788 
6789 	/*
6790 	 * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6791 	 * in device of link speed
6792 	 * below 10 Gbps.
6793 	 */
6794 	if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
6795 		*state = 0;
6796 		return 0;
6797 	}
6798 
6799 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6800 	req = (struct hns3_config_fec_cmd *)desc.data;
6801 	ret = hns3_cmd_send(hw, &desc, 1);
6802 	if (ret) {
6803 		hns3_err(hw, "get current fec auto state failed, ret = %d",
6804 			 ret);
6805 		return ret;
6806 	}
6807 
6808 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6809 	return 0;
6810 }
6811 
6812 static int
6813 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6814 {
6815 	struct hns3_sfp_info_cmd *resp;
6816 	uint32_t tmp_fec_capa;
6817 	uint8_t auto_state;
6818 	struct hns3_cmd_desc desc;
6819 	int ret;
6820 
6821 	/*
6822 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6823 	 * configured FEC mode is returned.
6824 	 * If link is up, current FEC mode is returned.
6825 	 */
6826 	if (hw->mac.link_status == ETH_LINK_DOWN) {
6827 		ret = get_current_fec_auto_state(hw, &auto_state);
6828 		if (ret)
6829 			return ret;
6830 
6831 		if (auto_state == 0x1) {
6832 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6833 			return 0;
6834 		}
6835 	}
6836 
6837 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
6838 	resp = (struct hns3_sfp_info_cmd *)desc.data;
6839 	resp->query_type = HNS3_ACTIVE_QUERY;
6840 
6841 	ret = hns3_cmd_send(hw, &desc, 1);
6842 	if (ret == -EOPNOTSUPP) {
6843 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6844 		return ret;
6845 	} else if (ret) {
6846 		hns3_err(hw, "get FEC failed, ret = %d", ret);
6847 		return ret;
6848 	}
6849 
6850 	/*
6851 	 * FEC mode order defined in hns3 hardware is inconsistend with
6852 	 * that defined in the ethdev library. So the sequence needs
6853 	 * to be converted.
6854 	 */
6855 	switch (resp->active_fec) {
6856 	case HNS3_HW_FEC_MODE_NOFEC:
6857 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6858 		break;
6859 	case HNS3_HW_FEC_MODE_BASER:
6860 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6861 		break;
6862 	case HNS3_HW_FEC_MODE_RS:
6863 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6864 		break;
6865 	default:
6866 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6867 		break;
6868 	}
6869 
6870 	*fec_capa = tmp_fec_capa;
6871 	return 0;
6872 }
6873 
6874 static int
6875 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6876 {
6877 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6878 
6879 	return hns3_fec_get_internal(hw, fec_capa);
6880 }
6881 
6882 static int
6883 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6884 {
6885 	struct hns3_config_fec_cmd *req;
6886 	struct hns3_cmd_desc desc;
6887 	int ret;
6888 
6889 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6890 
6891 	req = (struct hns3_config_fec_cmd *)desc.data;
6892 	switch (mode) {
6893 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6894 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6895 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6896 		break;
6897 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6898 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6899 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6900 		break;
6901 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6902 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6903 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6904 		break;
6905 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6906 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6907 		break;
6908 	default:
6909 		return 0;
6910 	}
6911 	ret = hns3_cmd_send(hw, &desc, 1);
6912 	if (ret)
6913 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
6914 
6915 	return ret;
6916 }
6917 
6918 static uint32_t
6919 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6920 {
6921 	struct hns3_mac *mac = &hw->mac;
6922 	uint32_t cur_capa;
6923 
6924 	switch (mac->link_speed) {
6925 	case ETH_SPEED_NUM_10G:
6926 		cur_capa = fec_capa[1].capa;
6927 		break;
6928 	case ETH_SPEED_NUM_25G:
6929 	case ETH_SPEED_NUM_100G:
6930 	case ETH_SPEED_NUM_200G:
6931 		cur_capa = fec_capa[0].capa;
6932 		break;
6933 	default:
6934 		cur_capa = 0;
6935 		break;
6936 	}
6937 
6938 	return cur_capa;
6939 }
6940 
6941 static bool
6942 is_fec_mode_one_bit_set(uint32_t mode)
6943 {
6944 	int cnt = 0;
6945 	uint8_t i;
6946 
6947 	for (i = 0; i < sizeof(mode); i++)
6948 		if (mode >> i & 0x1)
6949 			cnt++;
6950 
6951 	return cnt == 1 ? true : false;
6952 }
6953 
6954 static int
6955 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6956 {
6957 #define FEC_CAPA_NUM 2
6958 	struct hns3_adapter *hns = dev->data->dev_private;
6959 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6960 	struct hns3_pf *pf = &hns->pf;
6961 
6962 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6963 	uint32_t cur_capa;
6964 	uint32_t num = FEC_CAPA_NUM;
6965 	int ret;
6966 
6967 	ret = hns3_fec_get_capability(dev, fec_capa, num);
6968 	if (ret < 0)
6969 		return ret;
6970 
6971 	/* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
6972 	if (!is_fec_mode_one_bit_set(mode)) {
6973 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD, "
6974 			     "FEC mode should be only one bit set", mode);
6975 		return -EINVAL;
6976 	}
6977 
6978 	/*
6979 	 * Check whether the configured mode is within the FEC capability.
6980 	 * If not, the configured mode will not be supported.
6981 	 */
6982 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6983 	if (!(cur_capa & mode)) {
6984 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6985 		return -EINVAL;
6986 	}
6987 
6988 	rte_spinlock_lock(&hw->lock);
6989 	ret = hns3_set_fec_hw(hw, mode);
6990 	if (ret) {
6991 		rte_spinlock_unlock(&hw->lock);
6992 		return ret;
6993 	}
6994 
6995 	pf->fec_mode = mode;
6996 	rte_spinlock_unlock(&hw->lock);
6997 
6998 	return 0;
6999 }
7000 
7001 static int
7002 hns3_restore_fec(struct hns3_hw *hw)
7003 {
7004 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
7005 	struct hns3_pf *pf = &hns->pf;
7006 	uint32_t mode = pf->fec_mode;
7007 	int ret;
7008 
7009 	ret = hns3_set_fec_hw(hw, mode);
7010 	if (ret)
7011 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
7012 			 mode, ret);
7013 
7014 	return ret;
7015 }
7016 
7017 static int
7018 hns3_query_dev_fec_info(struct hns3_hw *hw)
7019 {
7020 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
7021 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
7022 	int ret;
7023 
7024 	ret = hns3_fec_get_internal(hw, &pf->fec_mode);
7025 	if (ret)
7026 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
7027 
7028 	return ret;
7029 }
7030 
7031 static bool
7032 hns3_optical_module_existed(struct hns3_hw *hw)
7033 {
7034 	struct hns3_cmd_desc desc;
7035 	bool existed;
7036 	int ret;
7037 
7038 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
7039 	ret = hns3_cmd_send(hw, &desc, 1);
7040 	if (ret) {
7041 		hns3_err(hw,
7042 			 "fail to get optical module exist state, ret = %d.\n",
7043 			 ret);
7044 		return false;
7045 	}
7046 	existed = !!desc.data[0];
7047 
7048 	return existed;
7049 }
7050 
7051 static int
7052 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
7053 				uint32_t len, uint8_t *data)
7054 {
7055 #define HNS3_SFP_INFO_CMD_NUM 6
7056 #define HNS3_SFP_INFO_MAX_LEN \
7057 	(HNS3_SFP_INFO_BD0_LEN + \
7058 	(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
7059 	struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
7060 	struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
7061 	uint16_t read_len;
7062 	uint16_t copy_len;
7063 	int ret;
7064 	int i;
7065 
7066 	for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
7067 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
7068 					  true);
7069 		if (i < HNS3_SFP_INFO_CMD_NUM - 1)
7070 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
7071 	}
7072 
7073 	sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
7074 	sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
7075 	read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
7076 	sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
7077 
7078 	ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
7079 	if (ret) {
7080 		hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
7081 				ret);
7082 		return ret;
7083 	}
7084 
7085 	/* The data format in BD0 is different with the others. */
7086 	copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
7087 	memcpy(data, sfp_info_bd0->data, copy_len);
7088 	read_len = copy_len;
7089 
7090 	for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
7091 		if (read_len >= len)
7092 			break;
7093 
7094 		copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
7095 		memcpy(data + read_len, desc[i].data, copy_len);
7096 		read_len += copy_len;
7097 	}
7098 
7099 	return (int)read_len;
7100 }
7101 
7102 static int
7103 hns3_get_module_eeprom(struct rte_eth_dev *dev,
7104 		       struct rte_dev_eeprom_info *info)
7105 {
7106 	struct hns3_adapter *hns = dev->data->dev_private;
7107 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
7108 	uint32_t offset = info->offset;
7109 	uint32_t len = info->length;
7110 	uint8_t *data = info->data;
7111 	uint32_t read_len = 0;
7112 
7113 	if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
7114 		return -ENOTSUP;
7115 
7116 	if (!hns3_optical_module_existed(hw)) {
7117 		hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
7118 		return -EIO;
7119 	}
7120 
7121 	while (read_len < len) {
7122 		int ret;
7123 		ret = hns3_get_module_eeprom_data(hw, offset + read_len,
7124 						  len - read_len,
7125 						  data + read_len);
7126 		if (ret < 0)
7127 			return -EIO;
7128 		read_len += ret;
7129 	}
7130 
7131 	return 0;
7132 }
7133 
7134 static int
7135 hns3_get_module_info(struct rte_eth_dev *dev,
7136 		     struct rte_eth_dev_module_info *modinfo)
7137 {
7138 #define HNS3_SFF8024_ID_SFP		0x03
7139 #define HNS3_SFF8024_ID_QSFP_8438	0x0c
7140 #define HNS3_SFF8024_ID_QSFP_8436_8636	0x0d
7141 #define HNS3_SFF8024_ID_QSFP28_8636	0x11
7142 #define HNS3_SFF_8636_V1_3		0x03
7143 	struct hns3_adapter *hns = dev->data->dev_private;
7144 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
7145 	struct rte_dev_eeprom_info info;
7146 	struct hns3_sfp_type sfp_type;
7147 	int ret;
7148 
7149 	memset(&sfp_type, 0, sizeof(sfp_type));
7150 	memset(&info, 0, sizeof(info));
7151 	info.data = (uint8_t *)&sfp_type;
7152 	info.length = sizeof(sfp_type);
7153 	ret = hns3_get_module_eeprom(dev, &info);
7154 	if (ret)
7155 		return ret;
7156 
7157 	switch (sfp_type.type) {
7158 	case HNS3_SFF8024_ID_SFP:
7159 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
7160 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
7161 		break;
7162 	case HNS3_SFF8024_ID_QSFP_8438:
7163 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
7164 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
7165 		break;
7166 	case HNS3_SFF8024_ID_QSFP_8436_8636:
7167 		if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
7168 			modinfo->type = RTE_ETH_MODULE_SFF_8436;
7169 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
7170 		} else {
7171 			modinfo->type = RTE_ETH_MODULE_SFF_8636;
7172 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
7173 		}
7174 		break;
7175 	case HNS3_SFF8024_ID_QSFP28_8636:
7176 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
7177 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
7178 		break;
7179 	default:
7180 		hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
7181 			 sfp_type.type, sfp_type.ext_type);
7182 		return -EINVAL;
7183 	}
7184 
7185 	return 0;
7186 }
7187 
7188 void
7189 hns3_clock_gettime(struct timeval *tv)
7190 {
7191 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
7192 #define CLOCK_TYPE CLOCK_MONOTONIC_RAW
7193 #else
7194 #define CLOCK_TYPE CLOCK_MONOTONIC
7195 #endif
7196 #define NSEC_TO_USEC_DIV 1000
7197 
7198 	struct timespec spec;
7199 	(void)clock_gettime(CLOCK_TYPE, &spec);
7200 
7201 	tv->tv_sec = spec.tv_sec;
7202 	tv->tv_usec = spec.tv_nsec / NSEC_TO_USEC_DIV;
7203 }
7204 
7205 uint64_t
7206 hns3_clock_calctime_ms(struct timeval *tv)
7207 {
7208 	return (uint64_t)tv->tv_sec * MSEC_PER_SEC +
7209 		tv->tv_usec / USEC_PER_MSEC;
7210 }
7211 
7212 uint64_t
7213 hns3_clock_gettime_ms(void)
7214 {
7215 	struct timeval tv;
7216 
7217 	hns3_clock_gettime(&tv);
7218 	return hns3_clock_calctime_ms(&tv);
7219 }
7220 
7221 static int
7222 hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
7223 {
7224 	uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
7225 
7226 	RTE_SET_USED(key);
7227 
7228 	if (strcmp(value, "vec") == 0)
7229 		hint = HNS3_IO_FUNC_HINT_VEC;
7230 	else if (strcmp(value, "sve") == 0)
7231 		hint = HNS3_IO_FUNC_HINT_SVE;
7232 	else if (strcmp(value, "simple") == 0)
7233 		hint = HNS3_IO_FUNC_HINT_SIMPLE;
7234 	else if (strcmp(value, "common") == 0)
7235 		hint = HNS3_IO_FUNC_HINT_COMMON;
7236 
7237 	/* If the hint is valid then update output parameters */
7238 	if (hint != HNS3_IO_FUNC_HINT_NONE)
7239 		*(uint32_t *)extra_args = hint;
7240 
7241 	return 0;
7242 }
7243 
7244 static const char *
7245 hns3_get_io_hint_func_name(uint32_t hint)
7246 {
7247 	switch (hint) {
7248 	case HNS3_IO_FUNC_HINT_VEC:
7249 		return "vec";
7250 	case HNS3_IO_FUNC_HINT_SVE:
7251 		return "sve";
7252 	case HNS3_IO_FUNC_HINT_SIMPLE:
7253 		return "simple";
7254 	case HNS3_IO_FUNC_HINT_COMMON:
7255 		return "common";
7256 	default:
7257 		return "none";
7258 	}
7259 }
7260 
7261 static int
7262 hns3_parse_dev_caps_mask(const char *key, const char *value, void *extra_args)
7263 {
7264 	uint64_t val;
7265 
7266 	RTE_SET_USED(key);
7267 
7268 	val = strtoull(value, NULL, 16);
7269 	*(uint64_t *)extra_args = val;
7270 
7271 	return 0;
7272 }
7273 
7274 void
7275 hns3_parse_devargs(struct rte_eth_dev *dev)
7276 {
7277 	struct hns3_adapter *hns = dev->data->dev_private;
7278 	uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
7279 	uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
7280 	struct hns3_hw *hw = &hns->hw;
7281 	uint64_t dev_caps_mask = 0;
7282 	struct rte_kvargs *kvlist;
7283 
7284 	if (dev->device->devargs == NULL)
7285 		return;
7286 
7287 	kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
7288 	if (!kvlist)
7289 		return;
7290 
7291 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
7292 			   &hns3_parse_io_hint_func, &rx_func_hint);
7293 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
7294 			   &hns3_parse_io_hint_func, &tx_func_hint);
7295 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_DEV_CAPS_MASK,
7296 			   &hns3_parse_dev_caps_mask, &dev_caps_mask);
7297 	rte_kvargs_free(kvlist);
7298 
7299 	if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
7300 		hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
7301 			  hns3_get_io_hint_func_name(rx_func_hint));
7302 	hns->rx_func_hint = rx_func_hint;
7303 	if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
7304 		hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
7305 			  hns3_get_io_hint_func_name(tx_func_hint));
7306 	hns->tx_func_hint = tx_func_hint;
7307 
7308 	if (dev_caps_mask != 0)
7309 		hns3_warn(hw, "parsed %s = 0x%" PRIx64 ".",
7310 			  HNS3_DEVARG_DEV_CAPS_MASK, dev_caps_mask);
7311 	hns->dev_caps_mask = dev_caps_mask;
7312 }
7313 
7314 static const struct eth_dev_ops hns3_eth_dev_ops = {
7315 	.dev_configure      = hns3_dev_configure,
7316 	.dev_start          = hns3_dev_start,
7317 	.dev_stop           = hns3_dev_stop,
7318 	.dev_close          = hns3_dev_close,
7319 	.promiscuous_enable = hns3_dev_promiscuous_enable,
7320 	.promiscuous_disable = hns3_dev_promiscuous_disable,
7321 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
7322 	.allmulticast_disable = hns3_dev_allmulticast_disable,
7323 	.mtu_set            = hns3_dev_mtu_set,
7324 	.stats_get          = hns3_stats_get,
7325 	.stats_reset        = hns3_stats_reset,
7326 	.xstats_get         = hns3_dev_xstats_get,
7327 	.xstats_get_names   = hns3_dev_xstats_get_names,
7328 	.xstats_reset       = hns3_dev_xstats_reset,
7329 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
7330 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
7331 	.dev_infos_get          = hns3_dev_infos_get,
7332 	.fw_version_get         = hns3_fw_version_get,
7333 	.rx_queue_setup         = hns3_rx_queue_setup,
7334 	.tx_queue_setup         = hns3_tx_queue_setup,
7335 	.rx_queue_release       = hns3_dev_rx_queue_release,
7336 	.tx_queue_release       = hns3_dev_tx_queue_release,
7337 	.rx_queue_start         = hns3_dev_rx_queue_start,
7338 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
7339 	.tx_queue_start         = hns3_dev_tx_queue_start,
7340 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
7341 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
7342 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
7343 	.rxq_info_get           = hns3_rxq_info_get,
7344 	.txq_info_get           = hns3_txq_info_get,
7345 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
7346 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
7347 	.flow_ctrl_get          = hns3_flow_ctrl_get,
7348 	.flow_ctrl_set          = hns3_flow_ctrl_set,
7349 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
7350 	.mac_addr_add           = hns3_add_mac_addr,
7351 	.mac_addr_remove        = hns3_remove_mac_addr,
7352 	.mac_addr_set           = hns3_set_default_mac_addr,
7353 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
7354 	.link_update            = hns3_dev_link_update,
7355 	.rss_hash_update        = hns3_dev_rss_hash_update,
7356 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
7357 	.reta_update            = hns3_dev_rss_reta_update,
7358 	.reta_query             = hns3_dev_rss_reta_query,
7359 	.flow_ops_get           = hns3_dev_flow_ops_get,
7360 	.vlan_filter_set        = hns3_vlan_filter_set,
7361 	.vlan_tpid_set          = hns3_vlan_tpid_set,
7362 	.vlan_offload_set       = hns3_vlan_offload_set,
7363 	.vlan_pvid_set          = hns3_vlan_pvid_set,
7364 	.get_reg                = hns3_get_regs,
7365 	.get_module_info        = hns3_get_module_info,
7366 	.get_module_eeprom      = hns3_get_module_eeprom,
7367 	.get_dcb_info           = hns3_get_dcb_info,
7368 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
7369 	.fec_get_capability     = hns3_fec_get_capability,
7370 	.fec_get                = hns3_fec_get,
7371 	.fec_set                = hns3_fec_set,
7372 	.tm_ops_get             = hns3_tm_ops_get,
7373 	.tx_done_cleanup        = hns3_tx_done_cleanup,
7374 	.timesync_enable            = hns3_timesync_enable,
7375 	.timesync_disable           = hns3_timesync_disable,
7376 	.timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
7377 	.timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
7378 	.timesync_adjust_time       = hns3_timesync_adjust_time,
7379 	.timesync_read_time         = hns3_timesync_read_time,
7380 	.timesync_write_time        = hns3_timesync_write_time,
7381 };
7382 
7383 static const struct hns3_reset_ops hns3_reset_ops = {
7384 	.reset_service       = hns3_reset_service,
7385 	.stop_service        = hns3_stop_service,
7386 	.prepare_reset       = hns3_prepare_reset,
7387 	.wait_hardware_ready = hns3_wait_hardware_ready,
7388 	.reinit_dev          = hns3_reinit_dev,
7389 	.restore_conf	     = hns3_restore_conf,
7390 	.start_service       = hns3_start_service,
7391 };
7392 
7393 static int
7394 hns3_dev_init(struct rte_eth_dev *eth_dev)
7395 {
7396 	struct hns3_adapter *hns = eth_dev->data->dev_private;
7397 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
7398 	struct rte_ether_addr *eth_addr;
7399 	struct hns3_hw *hw = &hns->hw;
7400 	int ret;
7401 
7402 	PMD_INIT_FUNC_TRACE();
7403 
7404 	eth_dev->process_private = (struct hns3_process_private *)
7405 	    rte_zmalloc_socket("hns3_filter_list",
7406 			       sizeof(struct hns3_process_private),
7407 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
7408 	if (eth_dev->process_private == NULL) {
7409 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
7410 		return -ENOMEM;
7411 	}
7412 
7413 	hns3_flow_init(eth_dev);
7414 
7415 	hns3_set_rxtx_function(eth_dev);
7416 	eth_dev->dev_ops = &hns3_eth_dev_ops;
7417 	eth_dev->rx_queue_count = hns3_rx_queue_count;
7418 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
7419 		ret = hns3_mp_init_secondary();
7420 		if (ret) {
7421 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
7422 				     "process, ret = %d", ret);
7423 			goto err_mp_init_secondary;
7424 		}
7425 
7426 		hw->secondary_cnt++;
7427 		return 0;
7428 	}
7429 
7430 	ret = hns3_mp_init_primary();
7431 	if (ret) {
7432 		PMD_INIT_LOG(ERR,
7433 			     "Failed to init for primary process, ret = %d",
7434 			     ret);
7435 		goto err_mp_init_primary;
7436 	}
7437 
7438 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
7439 	hns->is_vf = false;
7440 	hw->data = eth_dev->data;
7441 	hns3_parse_devargs(eth_dev);
7442 
7443 	/*
7444 	 * Set default max packet size according to the mtu
7445 	 * default vale in DPDK frame.
7446 	 */
7447 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
7448 
7449 	ret = hns3_reset_init(hw);
7450 	if (ret)
7451 		goto err_init_reset;
7452 	hw->reset.ops = &hns3_reset_ops;
7453 
7454 	ret = hns3_init_pf(eth_dev);
7455 	if (ret) {
7456 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
7457 		goto err_init_pf;
7458 	}
7459 
7460 	/* Allocate memory for storing MAC addresses */
7461 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
7462 					       sizeof(struct rte_ether_addr) *
7463 					       HNS3_UC_MACADDR_NUM, 0);
7464 	if (eth_dev->data->mac_addrs == NULL) {
7465 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
7466 			     "to store MAC addresses",
7467 			     sizeof(struct rte_ether_addr) *
7468 			     HNS3_UC_MACADDR_NUM);
7469 		ret = -ENOMEM;
7470 		goto err_rte_zmalloc;
7471 	}
7472 
7473 	eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
7474 	if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
7475 		rte_eth_random_addr(hw->mac.mac_addr);
7476 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
7477 				(struct rte_ether_addr *)hw->mac.mac_addr);
7478 		hns3_warn(hw, "default mac_addr from firmware is an invalid "
7479 			  "unicast address, using random MAC address %s",
7480 			  mac_str);
7481 	}
7482 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
7483 			    &eth_dev->data->mac_addrs[0]);
7484 
7485 	hw->adapter_state = HNS3_NIC_INITIALIZED;
7486 
7487 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
7488 			    SCHEDULE_PENDING) {
7489 		hns3_err(hw, "Reschedule reset service after dev_init");
7490 		hns3_schedule_reset(hns);
7491 	} else {
7492 		/* IMP will wait ready flag before reset */
7493 		hns3_notify_reset_ready(hw, false);
7494 	}
7495 
7496 	hns3_info(hw, "hns3 dev initialization successful!");
7497 	return 0;
7498 
7499 err_rte_zmalloc:
7500 	hns3_uninit_pf(eth_dev);
7501 
7502 err_init_pf:
7503 	rte_free(hw->reset.wait_data);
7504 
7505 err_init_reset:
7506 	hns3_mp_uninit_primary();
7507 
7508 err_mp_init_primary:
7509 err_mp_init_secondary:
7510 	eth_dev->dev_ops = NULL;
7511 	eth_dev->rx_pkt_burst = NULL;
7512 	eth_dev->rx_descriptor_status = NULL;
7513 	eth_dev->tx_pkt_burst = NULL;
7514 	eth_dev->tx_pkt_prepare = NULL;
7515 	eth_dev->tx_descriptor_status = NULL;
7516 	rte_free(eth_dev->process_private);
7517 	eth_dev->process_private = NULL;
7518 	return ret;
7519 }
7520 
7521 static int
7522 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
7523 {
7524 	struct hns3_adapter *hns = eth_dev->data->dev_private;
7525 	struct hns3_hw *hw = &hns->hw;
7526 
7527 	PMD_INIT_FUNC_TRACE();
7528 
7529 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
7530 		rte_free(eth_dev->process_private);
7531 		eth_dev->process_private = NULL;
7532 		return 0;
7533 	}
7534 
7535 	if (hw->adapter_state < HNS3_NIC_CLOSING)
7536 		hns3_dev_close(eth_dev);
7537 
7538 	hw->adapter_state = HNS3_NIC_REMOVED;
7539 	return 0;
7540 }
7541 
7542 static int
7543 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
7544 		   struct rte_pci_device *pci_dev)
7545 {
7546 	return rte_eth_dev_pci_generic_probe(pci_dev,
7547 					     sizeof(struct hns3_adapter),
7548 					     hns3_dev_init);
7549 }
7550 
7551 static int
7552 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
7553 {
7554 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
7555 }
7556 
7557 static const struct rte_pci_id pci_id_hns3_map[] = {
7558 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
7559 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
7560 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
7561 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
7562 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
7563 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
7564 	{ .vendor_id = 0, }, /* sentinel */
7565 };
7566 
7567 static struct rte_pci_driver rte_hns3_pmd = {
7568 	.id_table = pci_id_hns3_map,
7569 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
7570 	.probe = eth_hns3_pci_probe,
7571 	.remove = eth_hns3_pci_remove,
7572 };
7573 
7574 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
7575 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
7576 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
7577 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
7578 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
7579 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
7580 		HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");
7581 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE);
7582 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);
7583