xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision b7b78a089c454d42eb654360eeecb1e2f15e6cd8)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 
10 #include "hns3_ethdev.h"
11 #include "hns3_logs.h"
12 #include "hns3_rxtx.h"
13 #include "hns3_intr.h"
14 #include "hns3_regs.h"
15 #include "hns3_dcb.h"
16 #include "hns3_mp.h"
17 
18 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE	32
19 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM	1
20 
21 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
22 #define HNS3_SERVICE_QUICK_INTERVAL	10
23 #define HNS3_INVALID_PVID		0xFFFF
24 
25 #define HNS3_FILTER_TYPE_VF		0
26 #define HNS3_FILTER_TYPE_PORT		1
27 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
28 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
29 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
30 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
31 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
32 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
33 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
34 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
35 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
36 
37 /* Reset related Registers */
38 #define HNS3_GLOBAL_RESET_BIT		0
39 #define HNS3_CORE_RESET_BIT		1
40 #define HNS3_IMP_RESET_BIT		2
41 #define HNS3_FUN_RST_ING_B		0
42 
43 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
44 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
45 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
46 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
47 
48 #define HNS3_RESET_WAIT_MS	100
49 #define HNS3_RESET_WAIT_CNT	200
50 
51 /* FEC mode order defined in HNS3 hardware */
52 #define HNS3_HW_FEC_MODE_NOFEC  0
53 #define HNS3_HW_FEC_MODE_BASER  1
54 #define HNS3_HW_FEC_MODE_RS     2
55 
56 enum hns3_evt_cause {
57 	HNS3_VECTOR0_EVENT_RST,
58 	HNS3_VECTOR0_EVENT_MBX,
59 	HNS3_VECTOR0_EVENT_ERR,
60 	HNS3_VECTOR0_EVENT_OTHER,
61 };
62 
63 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
64 	{ ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
65 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
66 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
67 
68 	{ ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
69 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
70 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
71 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
72 
73 	{ ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
74 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
75 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
76 
77 	{ ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
78 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
80 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
81 
82 	{ ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
83 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
84 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
85 
86 	{ ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
87 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
88 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
89 };
90 
91 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
92 						 uint64_t *levels);
93 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
94 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
95 				    int on);
96 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
97 static bool hns3_update_link_status(struct hns3_hw *hw);
98 
99 static int hns3_add_mc_addr(struct hns3_hw *hw,
100 			    struct rte_ether_addr *mac_addr);
101 static int hns3_remove_mc_addr(struct hns3_hw *hw,
102 			    struct rte_ether_addr *mac_addr);
103 static int hns3_restore_fec(struct hns3_hw *hw);
104 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
105 static int hns3_do_stop(struct hns3_adapter *hns);
106 
107 void hns3_ether_format_addr(char *buf, uint16_t size,
108 			    const struct rte_ether_addr *ether_addr)
109 {
110 	snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
111 		ether_addr->addr_bytes[0],
112 		ether_addr->addr_bytes[4],
113 		ether_addr->addr_bytes[5]);
114 }
115 
116 static void
117 hns3_pf_disable_irq0(struct hns3_hw *hw)
118 {
119 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
120 }
121 
122 static void
123 hns3_pf_enable_irq0(struct hns3_hw *hw)
124 {
125 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
126 }
127 
128 static enum hns3_evt_cause
129 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
130 			  uint32_t *vec_val)
131 {
132 	struct hns3_hw *hw = &hns->hw;
133 
134 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
135 	hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
136 	*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
137 	if (!is_delay) {
138 		hw->reset.stats.imp_cnt++;
139 		hns3_warn(hw, "IMP reset detected, clear reset status");
140 	} else {
141 		hns3_schedule_delayed_reset(hns);
142 		hns3_warn(hw, "IMP reset detected, don't clear reset status");
143 	}
144 
145 	return HNS3_VECTOR0_EVENT_RST;
146 }
147 
148 static enum hns3_evt_cause
149 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
150 			     uint32_t *vec_val)
151 {
152 	struct hns3_hw *hw = &hns->hw;
153 
154 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
155 	hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
156 	*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
157 	if (!is_delay) {
158 		hw->reset.stats.global_cnt++;
159 		hns3_warn(hw, "Global reset detected, clear reset status");
160 	} else {
161 		hns3_schedule_delayed_reset(hns);
162 		hns3_warn(hw,
163 			  "Global reset detected, don't clear reset status");
164 	}
165 
166 	return HNS3_VECTOR0_EVENT_RST;
167 }
168 
169 static enum hns3_evt_cause
170 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
171 {
172 	struct hns3_hw *hw = &hns->hw;
173 	uint32_t vector0_int_stats;
174 	uint32_t cmdq_src_val;
175 	uint32_t hw_err_src_reg;
176 	uint32_t val;
177 	enum hns3_evt_cause ret;
178 	bool is_delay;
179 
180 	/* fetch the events from their corresponding regs */
181 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
182 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
183 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
184 
185 	is_delay = clearval == NULL ? true : false;
186 	/*
187 	 * Assumption: If by any chance reset and mailbox events are reported
188 	 * together then we will only process reset event and defer the
189 	 * processing of the mailbox events. Since, we would have not cleared
190 	 * RX CMDQ event this time we would receive again another interrupt
191 	 * from H/W just for the mailbox.
192 	 */
193 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
194 		ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
195 		goto out;
196 	}
197 
198 	/* Global reset */
199 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
200 		ret = hns3_proc_global_reset_event(hns, is_delay, &val);
201 		goto out;
202 	}
203 
204 	/* check for vector0 msix event source */
205 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
206 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
207 		val = vector0_int_stats | hw_err_src_reg;
208 		ret = HNS3_VECTOR0_EVENT_ERR;
209 		goto out;
210 	}
211 
212 	/* check for vector0 mailbox(=CMDQ RX) event source */
213 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
214 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
215 		val = cmdq_src_val;
216 		ret = HNS3_VECTOR0_EVENT_MBX;
217 		goto out;
218 	}
219 
220 	val = vector0_int_stats;
221 	ret = HNS3_VECTOR0_EVENT_OTHER;
222 out:
223 
224 	if (clearval)
225 		*clearval = val;
226 	return ret;
227 }
228 
229 static void
230 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
231 {
232 	if (event_type == HNS3_VECTOR0_EVENT_RST)
233 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
234 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
235 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
236 }
237 
238 static void
239 hns3_clear_all_event_cause(struct hns3_hw *hw)
240 {
241 	uint32_t vector0_int_stats;
242 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
243 
244 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
245 		hns3_warn(hw, "Probe during IMP reset interrupt");
246 
247 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
248 		hns3_warn(hw, "Probe during Global reset interrupt");
249 
250 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
251 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
252 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
253 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
254 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
255 }
256 
257 static void
258 hns3_handle_mac_tnl(struct hns3_hw *hw)
259 {
260 	struct hns3_cmd_desc desc;
261 	uint32_t status;
262 	int ret;
263 
264 	/* query and clear mac tnl interruptions */
265 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
266 	ret = hns3_cmd_send(hw, &desc, 1);
267 	if (ret) {
268 		hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
269 		return;
270 	}
271 
272 	status = rte_le_to_cpu_32(desc.data[0]);
273 	if (status) {
274 		hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
275 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
276 					  false);
277 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
278 		ret = hns3_cmd_send(hw, &desc, 1);
279 		if (ret)
280 			hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
281 				 ret);
282 	}
283 }
284 
285 static void
286 hns3_interrupt_handler(void *param)
287 {
288 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
289 	struct hns3_adapter *hns = dev->data->dev_private;
290 	struct hns3_hw *hw = &hns->hw;
291 	enum hns3_evt_cause event_cause;
292 	uint32_t clearval = 0;
293 	uint32_t vector0_int;
294 	uint32_t ras_int;
295 	uint32_t cmdq_int;
296 
297 	/* Disable interrupt */
298 	hns3_pf_disable_irq0(hw);
299 
300 	event_cause = hns3_check_event_cause(hns, &clearval);
301 	vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
302 	ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
303 	cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
304 	/* vector 0 interrupt is shared with reset and mailbox source events. */
305 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
306 		hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
307 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
308 			  vector0_int, ras_int, cmdq_int);
309 		hns3_handle_msix_error(hns, &hw->reset.request);
310 		hns3_handle_ras_error(hns, &hw->reset.request);
311 		hns3_handle_mac_tnl(hw);
312 		hns3_schedule_reset(hns);
313 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
314 		hns3_warn(hw, "received reset interrupt");
315 		hns3_schedule_reset(hns);
316 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
317 		hns3_dev_handle_mbx_msg(hw);
318 	} else {
319 		hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
320 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
321 			  vector0_int, ras_int, cmdq_int);
322 	}
323 
324 	hns3_clear_event_cause(hw, event_cause, clearval);
325 	/* Enable interrupt if it is not cause by reset */
326 	hns3_pf_enable_irq0(hw);
327 }
328 
329 static int
330 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
331 {
332 #define HNS3_VLAN_ID_OFFSET_STEP	160
333 #define HNS3_VLAN_BYTE_SIZE		8
334 	struct hns3_vlan_filter_pf_cfg_cmd *req;
335 	struct hns3_hw *hw = &hns->hw;
336 	uint8_t vlan_offset_byte_val;
337 	struct hns3_cmd_desc desc;
338 	uint8_t vlan_offset_byte;
339 	uint8_t vlan_offset_base;
340 	int ret;
341 
342 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
343 
344 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
345 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
346 			   HNS3_VLAN_BYTE_SIZE;
347 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
348 
349 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
350 	req->vlan_offset = vlan_offset_base;
351 	req->vlan_cfg = on ? 0 : 1;
352 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
353 
354 	ret = hns3_cmd_send(hw, &desc, 1);
355 	if (ret)
356 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
357 			 vlan_id, ret);
358 
359 	return ret;
360 }
361 
362 static void
363 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
364 {
365 	struct hns3_user_vlan_table *vlan_entry;
366 	struct hns3_pf *pf = &hns->pf;
367 
368 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
369 		if (vlan_entry->vlan_id == vlan_id) {
370 			if (vlan_entry->hd_tbl_status)
371 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
372 			LIST_REMOVE(vlan_entry, next);
373 			rte_free(vlan_entry);
374 			break;
375 		}
376 	}
377 }
378 
379 static void
380 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
381 			bool writen_to_tbl)
382 {
383 	struct hns3_user_vlan_table *vlan_entry;
384 	struct hns3_hw *hw = &hns->hw;
385 	struct hns3_pf *pf = &hns->pf;
386 
387 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
388 		if (vlan_entry->vlan_id == vlan_id)
389 			return;
390 	}
391 
392 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
393 	if (vlan_entry == NULL) {
394 		hns3_err(hw, "Failed to malloc hns3 vlan table");
395 		return;
396 	}
397 
398 	vlan_entry->hd_tbl_status = writen_to_tbl;
399 	vlan_entry->vlan_id = vlan_id;
400 
401 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
402 }
403 
404 static int
405 hns3_restore_vlan_table(struct hns3_adapter *hns)
406 {
407 	struct hns3_user_vlan_table *vlan_entry;
408 	struct hns3_hw *hw = &hns->hw;
409 	struct hns3_pf *pf = &hns->pf;
410 	uint16_t vlan_id;
411 	int ret = 0;
412 
413 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
414 		return hns3_vlan_pvid_configure(hns,
415 						hw->port_base_vlan_cfg.pvid, 1);
416 
417 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
418 		if (vlan_entry->hd_tbl_status) {
419 			vlan_id = vlan_entry->vlan_id;
420 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
421 			if (ret)
422 				break;
423 		}
424 	}
425 
426 	return ret;
427 }
428 
429 static int
430 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
431 {
432 	struct hns3_hw *hw = &hns->hw;
433 	bool writen_to_tbl = false;
434 	int ret = 0;
435 
436 	/*
437 	 * When vlan filter is enabled, hardware regards packets without vlan
438 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
439 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
440 	 */
441 	if (on == 0 && vlan_id == 0)
442 		return 0;
443 
444 	/*
445 	 * When port base vlan enabled, we use port base vlan as the vlan
446 	 * filter condition. In this case, we don't update vlan filter table
447 	 * when user add new vlan or remove exist vlan, just update the
448 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
449 	 * table until port base vlan disabled
450 	 */
451 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
452 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
453 		writen_to_tbl = true;
454 	}
455 
456 	if (ret == 0) {
457 		if (on)
458 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
459 		else
460 			hns3_rm_dev_vlan_table(hns, vlan_id);
461 	}
462 	return ret;
463 }
464 
465 static int
466 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
467 {
468 	struct hns3_adapter *hns = dev->data->dev_private;
469 	struct hns3_hw *hw = &hns->hw;
470 	int ret;
471 
472 	rte_spinlock_lock(&hw->lock);
473 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
474 	rte_spinlock_unlock(&hw->lock);
475 	return ret;
476 }
477 
478 static int
479 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
480 			 uint16_t tpid)
481 {
482 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
483 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
484 	struct hns3_hw *hw = &hns->hw;
485 	struct hns3_cmd_desc desc;
486 	int ret;
487 
488 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
489 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
490 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
491 		return -EINVAL;
492 	}
493 
494 	if (tpid != RTE_ETHER_TYPE_VLAN) {
495 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
496 		return -EINVAL;
497 	}
498 
499 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
500 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
501 
502 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
503 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
504 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
505 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
506 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
507 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
508 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
509 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
510 	}
511 
512 	ret = hns3_cmd_send(hw, &desc, 1);
513 	if (ret) {
514 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
515 			 ret);
516 		return ret;
517 	}
518 
519 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
520 
521 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
522 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
523 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
524 
525 	ret = hns3_cmd_send(hw, &desc, 1);
526 	if (ret)
527 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
528 			 ret);
529 	return ret;
530 }
531 
532 static int
533 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
534 		   uint16_t tpid)
535 {
536 	struct hns3_adapter *hns = dev->data->dev_private;
537 	struct hns3_hw *hw = &hns->hw;
538 	int ret;
539 
540 	rte_spinlock_lock(&hw->lock);
541 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
542 	rte_spinlock_unlock(&hw->lock);
543 	return ret;
544 }
545 
546 static int
547 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
548 			     struct hns3_rx_vtag_cfg *vcfg)
549 {
550 	struct hns3_vport_vtag_rx_cfg_cmd *req;
551 	struct hns3_hw *hw = &hns->hw;
552 	struct hns3_cmd_desc desc;
553 	uint16_t vport_id;
554 	uint8_t bitmap;
555 	int ret;
556 
557 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
558 
559 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
560 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
561 		     vcfg->strip_tag1_en ? 1 : 0);
562 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
563 		     vcfg->strip_tag2_en ? 1 : 0);
564 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
565 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
566 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
567 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
568 
569 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
570 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
571 		     vcfg->strip_tag1_discard_en ? 1 : 0);
572 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
573 		     vcfg->strip_tag2_discard_en ? 1 : 0);
574 	/*
575 	 * In current version VF is not supported when PF is driven by DPDK
576 	 * driver, just need to configure parameters for PF vport.
577 	 */
578 	vport_id = HNS3_PF_FUNC_ID;
579 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
580 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
581 	req->vf_bitmap[req->vf_offset] = bitmap;
582 
583 	ret = hns3_cmd_send(hw, &desc, 1);
584 	if (ret)
585 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
586 	return ret;
587 }
588 
589 static void
590 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
591 			   struct hns3_rx_vtag_cfg *vcfg)
592 {
593 	struct hns3_pf *pf = &hns->pf;
594 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
595 }
596 
597 static void
598 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
599 			   struct hns3_tx_vtag_cfg *vcfg)
600 {
601 	struct hns3_pf *pf = &hns->pf;
602 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
603 }
604 
605 static int
606 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
607 {
608 	struct hns3_rx_vtag_cfg rxvlan_cfg;
609 	struct hns3_hw *hw = &hns->hw;
610 	int ret;
611 
612 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
613 		rxvlan_cfg.strip_tag1_en = false;
614 		rxvlan_cfg.strip_tag2_en = enable;
615 		rxvlan_cfg.strip_tag2_discard_en = false;
616 	} else {
617 		rxvlan_cfg.strip_tag1_en = enable;
618 		rxvlan_cfg.strip_tag2_en = true;
619 		rxvlan_cfg.strip_tag2_discard_en = true;
620 	}
621 
622 	rxvlan_cfg.strip_tag1_discard_en = false;
623 	rxvlan_cfg.vlan1_vlan_prionly = false;
624 	rxvlan_cfg.vlan2_vlan_prionly = false;
625 	rxvlan_cfg.rx_vlan_offload_en = enable;
626 
627 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
628 	if (ret) {
629 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
630 		return ret;
631 	}
632 
633 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
634 
635 	return ret;
636 }
637 
638 static int
639 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
640 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
641 {
642 	struct hns3_vlan_filter_ctrl_cmd *req;
643 	struct hns3_cmd_desc desc;
644 	int ret;
645 
646 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
647 
648 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
649 	req->vlan_type = vlan_type;
650 	req->vlan_fe = filter_en ? fe_type : 0;
651 	req->vf_id = vf_id;
652 
653 	ret = hns3_cmd_send(hw, &desc, 1);
654 	if (ret)
655 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
656 
657 	return ret;
658 }
659 
660 static int
661 hns3_vlan_filter_init(struct hns3_adapter *hns)
662 {
663 	struct hns3_hw *hw = &hns->hw;
664 	int ret;
665 
666 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
667 					HNS3_FILTER_FE_EGRESS, false,
668 					HNS3_PF_FUNC_ID);
669 	if (ret) {
670 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
671 		return ret;
672 	}
673 
674 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
675 					HNS3_FILTER_FE_INGRESS, false,
676 					HNS3_PF_FUNC_ID);
677 	if (ret)
678 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
679 
680 	return ret;
681 }
682 
683 static int
684 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
685 {
686 	struct hns3_hw *hw = &hns->hw;
687 	int ret;
688 
689 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
690 					HNS3_FILTER_FE_INGRESS, enable,
691 					HNS3_PF_FUNC_ID);
692 	if (ret)
693 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
694 			 enable ? "enable" : "disable", ret);
695 
696 	return ret;
697 }
698 
699 static int
700 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
701 {
702 	struct hns3_adapter *hns = dev->data->dev_private;
703 	struct hns3_hw *hw = &hns->hw;
704 	struct rte_eth_rxmode *rxmode;
705 	unsigned int tmp_mask;
706 	bool enable;
707 	int ret = 0;
708 
709 	rte_spinlock_lock(&hw->lock);
710 	rxmode = &dev->data->dev_conf.rxmode;
711 	tmp_mask = (unsigned int)mask;
712 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
713 		/* ignore vlan filter configuration during promiscuous mode */
714 		if (!dev->data->promiscuous) {
715 			/* Enable or disable VLAN filter */
716 			enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
717 				 true : false;
718 
719 			ret = hns3_enable_vlan_filter(hns, enable);
720 			if (ret) {
721 				rte_spinlock_unlock(&hw->lock);
722 				hns3_err(hw, "failed to %s rx filter, ret = %d",
723 					 enable ? "enable" : "disable", ret);
724 				return ret;
725 			}
726 		}
727 	}
728 
729 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
730 		/* Enable or disable VLAN stripping */
731 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
732 		    true : false;
733 
734 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
735 		if (ret) {
736 			rte_spinlock_unlock(&hw->lock);
737 			hns3_err(hw, "failed to %s rx strip, ret = %d",
738 				 enable ? "enable" : "disable", ret);
739 			return ret;
740 		}
741 	}
742 
743 	rte_spinlock_unlock(&hw->lock);
744 
745 	return ret;
746 }
747 
748 static int
749 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
750 			     struct hns3_tx_vtag_cfg *vcfg)
751 {
752 	struct hns3_vport_vtag_tx_cfg_cmd *req;
753 	struct hns3_cmd_desc desc;
754 	struct hns3_hw *hw = &hns->hw;
755 	uint16_t vport_id;
756 	uint8_t bitmap;
757 	int ret;
758 
759 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
760 
761 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
762 	req->def_vlan_tag1 = vcfg->default_tag1;
763 	req->def_vlan_tag2 = vcfg->default_tag2;
764 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
765 		     vcfg->accept_tag1 ? 1 : 0);
766 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
767 		     vcfg->accept_untag1 ? 1 : 0);
768 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
769 		     vcfg->accept_tag2 ? 1 : 0);
770 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
771 		     vcfg->accept_untag2 ? 1 : 0);
772 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
773 		     vcfg->insert_tag1_en ? 1 : 0);
774 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
775 		     vcfg->insert_tag2_en ? 1 : 0);
776 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
777 
778 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
779 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
780 		     vcfg->tag_shift_mode_en ? 1 : 0);
781 
782 	/*
783 	 * In current version VF is not supported when PF is driven by DPDK
784 	 * driver, just need to configure parameters for PF vport.
785 	 */
786 	vport_id = HNS3_PF_FUNC_ID;
787 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
788 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
789 	req->vf_bitmap[req->vf_offset] = bitmap;
790 
791 	ret = hns3_cmd_send(hw, &desc, 1);
792 	if (ret)
793 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
794 
795 	return ret;
796 }
797 
798 static int
799 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
800 		     uint16_t pvid)
801 {
802 	struct hns3_hw *hw = &hns->hw;
803 	struct hns3_tx_vtag_cfg txvlan_cfg;
804 	int ret;
805 
806 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
807 		txvlan_cfg.accept_tag1 = true;
808 		txvlan_cfg.insert_tag1_en = false;
809 		txvlan_cfg.default_tag1 = 0;
810 	} else {
811 		txvlan_cfg.accept_tag1 =
812 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
813 		txvlan_cfg.insert_tag1_en = true;
814 		txvlan_cfg.default_tag1 = pvid;
815 	}
816 
817 	txvlan_cfg.accept_untag1 = true;
818 	txvlan_cfg.accept_tag2 = true;
819 	txvlan_cfg.accept_untag2 = true;
820 	txvlan_cfg.insert_tag2_en = false;
821 	txvlan_cfg.default_tag2 = 0;
822 	txvlan_cfg.tag_shift_mode_en = true;
823 
824 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
825 	if (ret) {
826 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
827 			 ret);
828 		return ret;
829 	}
830 
831 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
832 	return ret;
833 }
834 
835 
836 static void
837 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
838 {
839 	struct hns3_user_vlan_table *vlan_entry;
840 	struct hns3_pf *pf = &hns->pf;
841 
842 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
843 		if (vlan_entry->hd_tbl_status) {
844 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
845 			vlan_entry->hd_tbl_status = false;
846 		}
847 	}
848 
849 	if (is_del_list) {
850 		vlan_entry = LIST_FIRST(&pf->vlan_list);
851 		while (vlan_entry) {
852 			LIST_REMOVE(vlan_entry, next);
853 			rte_free(vlan_entry);
854 			vlan_entry = LIST_FIRST(&pf->vlan_list);
855 		}
856 	}
857 }
858 
859 static void
860 hns3_add_all_vlan_table(struct hns3_adapter *hns)
861 {
862 	struct hns3_user_vlan_table *vlan_entry;
863 	struct hns3_pf *pf = &hns->pf;
864 
865 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
866 		if (!vlan_entry->hd_tbl_status) {
867 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
868 			vlan_entry->hd_tbl_status = true;
869 		}
870 	}
871 }
872 
873 static void
874 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
875 {
876 	struct hns3_hw *hw = &hns->hw;
877 	int ret;
878 
879 	hns3_rm_all_vlan_table(hns, true);
880 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
881 		ret = hns3_set_port_vlan_filter(hns,
882 						hw->port_base_vlan_cfg.pvid, 0);
883 		if (ret) {
884 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
885 				 ret);
886 			return;
887 		}
888 	}
889 }
890 
891 static int
892 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
893 			uint16_t port_base_vlan_state, uint16_t new_pvid)
894 {
895 	struct hns3_hw *hw = &hns->hw;
896 	uint16_t old_pvid;
897 	int ret;
898 
899 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
900 		old_pvid = hw->port_base_vlan_cfg.pvid;
901 		if (old_pvid != HNS3_INVALID_PVID) {
902 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
903 			if (ret) {
904 				hns3_err(hw, "failed to remove old pvid %u, "
905 						"ret = %d", old_pvid, ret);
906 				return ret;
907 			}
908 		}
909 
910 		hns3_rm_all_vlan_table(hns, false);
911 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
912 		if (ret) {
913 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
914 					new_pvid, ret);
915 			return ret;
916 		}
917 	} else {
918 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
919 		if (ret) {
920 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
921 					new_pvid, ret);
922 			return ret;
923 		}
924 
925 		hns3_add_all_vlan_table(hns);
926 	}
927 	return 0;
928 }
929 
930 static int
931 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
932 {
933 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
934 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
935 	bool rx_strip_en;
936 	int ret;
937 
938 	rx_strip_en = old_cfg->rx_vlan_offload_en;
939 	if (on) {
940 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
941 		rx_vlan_cfg.strip_tag2_en = true;
942 		rx_vlan_cfg.strip_tag2_discard_en = true;
943 	} else {
944 		rx_vlan_cfg.strip_tag1_en = false;
945 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
946 		rx_vlan_cfg.strip_tag2_discard_en = false;
947 	}
948 	rx_vlan_cfg.strip_tag1_discard_en = false;
949 	rx_vlan_cfg.vlan1_vlan_prionly = false;
950 	rx_vlan_cfg.vlan2_vlan_prionly = false;
951 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
952 
953 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
954 	if (ret)
955 		return ret;
956 
957 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
958 	return ret;
959 }
960 
961 static int
962 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
963 {
964 	struct hns3_hw *hw = &hns->hw;
965 	uint16_t port_base_vlan_state;
966 	int ret;
967 
968 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
969 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
970 			hns3_warn(hw, "Invalid operation! As current pvid set "
971 				  "is %u, disable pvid %u is invalid",
972 				  hw->port_base_vlan_cfg.pvid, pvid);
973 		return 0;
974 	}
975 
976 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
977 				    HNS3_PORT_BASE_VLAN_DISABLE;
978 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
979 	if (ret) {
980 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
981 			 ret);
982 		return ret;
983 	}
984 
985 	ret = hns3_en_pvid_strip(hns, on);
986 	if (ret) {
987 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
988 			 "ret = %d", ret);
989 		return ret;
990 	}
991 
992 	if (pvid == HNS3_INVALID_PVID)
993 		goto out;
994 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
995 	if (ret) {
996 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
997 			 ret);
998 		return ret;
999 	}
1000 
1001 out:
1002 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
1003 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1004 	return ret;
1005 }
1006 
1007 static int
1008 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1009 {
1010 	struct hns3_adapter *hns = dev->data->dev_private;
1011 	struct hns3_hw *hw = &hns->hw;
1012 	bool pvid_en_state_change;
1013 	uint16_t pvid_state;
1014 	int ret;
1015 
1016 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1017 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1018 			 RTE_ETHER_MAX_VLAN_ID);
1019 		return -EINVAL;
1020 	}
1021 
1022 	/*
1023 	 * If PVID configuration state change, should refresh the PVID
1024 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1025 	 */
1026 	pvid_state = hw->port_base_vlan_cfg.state;
1027 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1028 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1029 		pvid_en_state_change = false;
1030 	else
1031 		pvid_en_state_change = true;
1032 
1033 	rte_spinlock_lock(&hw->lock);
1034 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
1035 	rte_spinlock_unlock(&hw->lock);
1036 	if (ret)
1037 		return ret;
1038 	/*
1039 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1040 	 * need be processed by PMD driver.
1041 	 */
1042 	if (pvid_en_state_change &&
1043 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1044 		hns3_update_all_queues_pvid_proc_en(hw);
1045 
1046 	return 0;
1047 }
1048 
1049 static int
1050 hns3_default_vlan_config(struct hns3_adapter *hns)
1051 {
1052 	struct hns3_hw *hw = &hns->hw;
1053 	int ret;
1054 
1055 	/*
1056 	 * When vlan filter is enabled, hardware regards packets without vlan
1057 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1058 	 * table, packets without vlan won't be received. So, add vlan 0 as
1059 	 * the default vlan.
1060 	 */
1061 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1062 	if (ret)
1063 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1064 	return ret;
1065 }
1066 
1067 static int
1068 hns3_init_vlan_config(struct hns3_adapter *hns)
1069 {
1070 	struct hns3_hw *hw = &hns->hw;
1071 	int ret;
1072 
1073 	/*
1074 	 * This function can be called in the initialization and reset process,
1075 	 * when in reset process, it means that hardware had been reseted
1076 	 * successfully and we need to restore the hardware configuration to
1077 	 * ensure that the hardware configuration remains unchanged before and
1078 	 * after reset.
1079 	 */
1080 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1081 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1082 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1083 	}
1084 
1085 	ret = hns3_vlan_filter_init(hns);
1086 	if (ret) {
1087 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1088 		return ret;
1089 	}
1090 
1091 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1092 				       RTE_ETHER_TYPE_VLAN);
1093 	if (ret) {
1094 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1095 		return ret;
1096 	}
1097 
1098 	/*
1099 	 * When in the reinit dev stage of the reset process, the following
1100 	 * vlan-related configurations may differ from those at initialization,
1101 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1102 	 * and hns3_restore_vlan_conf later.
1103 	 */
1104 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1105 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1106 		if (ret) {
1107 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1108 			return ret;
1109 		}
1110 
1111 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1112 		if (ret) {
1113 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1114 				 ret);
1115 			return ret;
1116 		}
1117 	}
1118 
1119 	return hns3_default_vlan_config(hns);
1120 }
1121 
1122 static int
1123 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1124 {
1125 	struct hns3_pf *pf = &hns->pf;
1126 	struct hns3_hw *hw = &hns->hw;
1127 	uint64_t offloads;
1128 	bool enable;
1129 	int ret;
1130 
1131 	if (!hw->data->promiscuous) {
1132 		/* restore vlan filter states */
1133 		offloads = hw->data->dev_conf.rxmode.offloads;
1134 		enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1135 		ret = hns3_enable_vlan_filter(hns, enable);
1136 		if (ret) {
1137 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1138 				 "ret = %d", ret);
1139 			return ret;
1140 		}
1141 	}
1142 
1143 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1144 	if (ret) {
1145 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1146 		return ret;
1147 	}
1148 
1149 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1150 	if (ret)
1151 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1152 
1153 	return ret;
1154 }
1155 
1156 static int
1157 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1158 {
1159 	struct hns3_adapter *hns = dev->data->dev_private;
1160 	struct rte_eth_dev_data *data = dev->data;
1161 	struct rte_eth_txmode *txmode;
1162 	struct hns3_hw *hw = &hns->hw;
1163 	int mask;
1164 	int ret;
1165 
1166 	txmode = &data->dev_conf.txmode;
1167 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1168 		hns3_warn(hw,
1169 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1170 			  "configuration is not supported! Ignore these two "
1171 			  "parameters: hw_vlan_reject_tagged(%u), "
1172 			  "hw_vlan_reject_untagged(%u)",
1173 			  txmode->hw_vlan_reject_tagged,
1174 			  txmode->hw_vlan_reject_untagged);
1175 
1176 	/* Apply vlan offload setting */
1177 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1178 	ret = hns3_vlan_offload_set(dev, mask);
1179 	if (ret) {
1180 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1181 			 ret);
1182 		return ret;
1183 	}
1184 
1185 	/*
1186 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1187 	 * VLAN pvid related configuration to hardware.
1188 	 */
1189 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1190 		return 0;
1191 
1192 	/* Apply pvid setting */
1193 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1194 				 txmode->hw_vlan_insert_pvid);
1195 	if (ret)
1196 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1197 			 txmode->pvid, ret);
1198 
1199 	return ret;
1200 }
1201 
1202 static int
1203 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1204 		unsigned int tso_mss_max)
1205 {
1206 	struct hns3_cfg_tso_status_cmd *req;
1207 	struct hns3_cmd_desc desc;
1208 	uint16_t tso_mss;
1209 
1210 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1211 
1212 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1213 
1214 	tso_mss = 0;
1215 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1216 		       tso_mss_min);
1217 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1218 
1219 	tso_mss = 0;
1220 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1221 		       tso_mss_max);
1222 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1223 
1224 	return hns3_cmd_send(hw, &desc, 1);
1225 }
1226 
1227 static int
1228 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1229 		   uint16_t *allocated_size, bool is_alloc)
1230 {
1231 	struct hns3_umv_spc_alc_cmd *req;
1232 	struct hns3_cmd_desc desc;
1233 	int ret;
1234 
1235 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1236 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1237 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1238 	req->space_size = rte_cpu_to_le_32(space_size);
1239 
1240 	ret = hns3_cmd_send(hw, &desc, 1);
1241 	if (ret) {
1242 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1243 			     is_alloc ? "allocate" : "free", ret);
1244 		return ret;
1245 	}
1246 
1247 	if (is_alloc && allocated_size)
1248 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1249 
1250 	return 0;
1251 }
1252 
1253 static int
1254 hns3_init_umv_space(struct hns3_hw *hw)
1255 {
1256 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1257 	struct hns3_pf *pf = &hns->pf;
1258 	uint16_t allocated_size = 0;
1259 	int ret;
1260 
1261 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1262 				 true);
1263 	if (ret)
1264 		return ret;
1265 
1266 	if (allocated_size < pf->wanted_umv_size)
1267 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1268 			     pf->wanted_umv_size, allocated_size);
1269 
1270 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1271 						pf->wanted_umv_size;
1272 	pf->used_umv_size = 0;
1273 	return 0;
1274 }
1275 
1276 static int
1277 hns3_uninit_umv_space(struct hns3_hw *hw)
1278 {
1279 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1280 	struct hns3_pf *pf = &hns->pf;
1281 	int ret;
1282 
1283 	if (pf->max_umv_size == 0)
1284 		return 0;
1285 
1286 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1287 	if (ret)
1288 		return ret;
1289 
1290 	pf->max_umv_size = 0;
1291 
1292 	return 0;
1293 }
1294 
1295 static bool
1296 hns3_is_umv_space_full(struct hns3_hw *hw)
1297 {
1298 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1299 	struct hns3_pf *pf = &hns->pf;
1300 	bool is_full;
1301 
1302 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1303 
1304 	return is_full;
1305 }
1306 
1307 static void
1308 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1309 {
1310 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1311 	struct hns3_pf *pf = &hns->pf;
1312 
1313 	if (is_free) {
1314 		if (pf->used_umv_size > 0)
1315 			pf->used_umv_size--;
1316 	} else
1317 		pf->used_umv_size++;
1318 }
1319 
1320 static void
1321 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1322 		      const uint8_t *addr, bool is_mc)
1323 {
1324 	const unsigned char *mac_addr = addr;
1325 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1326 			    ((uint32_t)mac_addr[2] << 16) |
1327 			    ((uint32_t)mac_addr[1] << 8) |
1328 			    (uint32_t)mac_addr[0];
1329 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1330 
1331 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1332 	if (is_mc) {
1333 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1334 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1335 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1336 	}
1337 
1338 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1339 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1340 }
1341 
1342 static int
1343 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1344 			     uint8_t resp_code,
1345 			     enum hns3_mac_vlan_tbl_opcode op)
1346 {
1347 	if (cmdq_resp) {
1348 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1349 			 cmdq_resp);
1350 		return -EIO;
1351 	}
1352 
1353 	if (op == HNS3_MAC_VLAN_ADD) {
1354 		if (resp_code == 0 || resp_code == 1) {
1355 			return 0;
1356 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1357 			hns3_err(hw, "add mac addr failed for uc_overflow");
1358 			return -ENOSPC;
1359 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1360 			hns3_err(hw, "add mac addr failed for mc_overflow");
1361 			return -ENOSPC;
1362 		}
1363 
1364 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1365 			 resp_code);
1366 		return -EIO;
1367 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1368 		if (resp_code == 0) {
1369 			return 0;
1370 		} else if (resp_code == 1) {
1371 			hns3_dbg(hw, "remove mac addr failed for miss");
1372 			return -ENOENT;
1373 		}
1374 
1375 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1376 			 resp_code);
1377 		return -EIO;
1378 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1379 		if (resp_code == 0) {
1380 			return 0;
1381 		} else if (resp_code == 1) {
1382 			hns3_dbg(hw, "lookup mac addr failed for miss");
1383 			return -ENOENT;
1384 		}
1385 
1386 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1387 			 resp_code);
1388 		return -EIO;
1389 	}
1390 
1391 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1392 		 op);
1393 
1394 	return -EINVAL;
1395 }
1396 
1397 static int
1398 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1399 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1400 			 struct hns3_cmd_desc *desc, bool is_mc)
1401 {
1402 	uint8_t resp_code;
1403 	uint16_t retval;
1404 	int ret;
1405 
1406 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1407 	if (is_mc) {
1408 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1409 		memcpy(desc[0].data, req,
1410 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1411 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1412 					  true);
1413 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1414 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1415 					  true);
1416 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1417 	} else {
1418 		memcpy(desc[0].data, req,
1419 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1420 		ret = hns3_cmd_send(hw, desc, 1);
1421 	}
1422 	if (ret) {
1423 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1424 			 ret);
1425 		return ret;
1426 	}
1427 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1428 	retval = rte_le_to_cpu_16(desc[0].retval);
1429 
1430 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1431 					    HNS3_MAC_VLAN_LKUP);
1432 }
1433 
1434 static int
1435 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1436 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1437 		      struct hns3_cmd_desc *mc_desc)
1438 {
1439 	uint8_t resp_code;
1440 	uint16_t retval;
1441 	int cfg_status;
1442 	int ret;
1443 
1444 	if (mc_desc == NULL) {
1445 		struct hns3_cmd_desc desc;
1446 
1447 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1448 		memcpy(desc.data, req,
1449 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1450 		ret = hns3_cmd_send(hw, &desc, 1);
1451 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1452 		retval = rte_le_to_cpu_16(desc.retval);
1453 
1454 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1455 							  HNS3_MAC_VLAN_ADD);
1456 	} else {
1457 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1458 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1459 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1460 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1461 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1462 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1463 		memcpy(mc_desc[0].data, req,
1464 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1465 		mc_desc[0].retval = 0;
1466 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1467 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1468 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1469 
1470 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1471 							  HNS3_MAC_VLAN_ADD);
1472 	}
1473 
1474 	if (ret) {
1475 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1476 		return ret;
1477 	}
1478 
1479 	return cfg_status;
1480 }
1481 
1482 static int
1483 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1484 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1485 {
1486 	struct hns3_cmd_desc desc;
1487 	uint8_t resp_code;
1488 	uint16_t retval;
1489 	int ret;
1490 
1491 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1492 
1493 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1494 
1495 	ret = hns3_cmd_send(hw, &desc, 1);
1496 	if (ret) {
1497 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1498 		return ret;
1499 	}
1500 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1501 	retval = rte_le_to_cpu_16(desc.retval);
1502 
1503 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1504 					    HNS3_MAC_VLAN_REMOVE);
1505 }
1506 
1507 static int
1508 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1509 {
1510 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1511 	struct hns3_mac_vlan_tbl_entry_cmd req;
1512 	struct hns3_pf *pf = &hns->pf;
1513 	struct hns3_cmd_desc desc[3];
1514 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1515 	uint16_t egress_port = 0;
1516 	uint8_t vf_id;
1517 	int ret;
1518 
1519 	/* check if mac addr is valid */
1520 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1521 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1522 				      mac_addr);
1523 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1524 			 mac_str);
1525 		return -EINVAL;
1526 	}
1527 
1528 	memset(&req, 0, sizeof(req));
1529 
1530 	/*
1531 	 * In current version VF is not supported when PF is driven by DPDK
1532 	 * driver, just need to configure parameters for PF vport.
1533 	 */
1534 	vf_id = HNS3_PF_FUNC_ID;
1535 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1536 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1537 
1538 	req.egress_port = rte_cpu_to_le_16(egress_port);
1539 
1540 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1541 
1542 	/*
1543 	 * Lookup the mac address in the mac_vlan table, and add
1544 	 * it if the entry is inexistent. Repeated unicast entry
1545 	 * is not allowed in the mac vlan table.
1546 	 */
1547 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1548 	if (ret == -ENOENT) {
1549 		if (!hns3_is_umv_space_full(hw)) {
1550 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1551 			if (!ret)
1552 				hns3_update_umv_space(hw, false);
1553 			return ret;
1554 		}
1555 
1556 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1557 
1558 		return -ENOSPC;
1559 	}
1560 
1561 	hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1562 
1563 	/* check if we just hit the duplicate */
1564 	if (ret == 0) {
1565 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1566 		return 0;
1567 	}
1568 
1569 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1570 		 mac_str);
1571 
1572 	return ret;
1573 }
1574 
1575 static int
1576 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1577 {
1578 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1579 	struct rte_ether_addr *addr;
1580 	int ret;
1581 	int i;
1582 
1583 	for (i = 0; i < hw->mc_addrs_num; i++) {
1584 		addr = &hw->mc_addrs[i];
1585 		/* Check if there are duplicate addresses */
1586 		if (rte_is_same_ether_addr(addr, mac_addr)) {
1587 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1588 					      addr);
1589 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1590 				 "(%s) is added by the set_mc_mac_addr_list "
1591 				 "API", mac_str);
1592 			return -EINVAL;
1593 		}
1594 	}
1595 
1596 	ret = hns3_add_mc_addr(hw, mac_addr);
1597 	if (ret) {
1598 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1599 				      mac_addr);
1600 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1601 			 mac_str, ret);
1602 	}
1603 	return ret;
1604 }
1605 
1606 static int
1607 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1608 {
1609 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1610 	int ret;
1611 
1612 	ret = hns3_remove_mc_addr(hw, mac_addr);
1613 	if (ret) {
1614 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1615 				      mac_addr);
1616 		hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1617 			 mac_str, ret);
1618 	}
1619 	return ret;
1620 }
1621 
1622 static int
1623 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1624 		  uint32_t idx, __rte_unused uint32_t pool)
1625 {
1626 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1627 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1628 	int ret;
1629 
1630 	rte_spinlock_lock(&hw->lock);
1631 
1632 	/*
1633 	 * In hns3 network engine adding UC and MC mac address with different
1634 	 * commands with firmware. We need to determine whether the input
1635 	 * address is a UC or a MC address to call different commands.
1636 	 * By the way, it is recommended calling the API function named
1637 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1638 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1639 	 * may affect the specifications of UC mac addresses.
1640 	 */
1641 	if (rte_is_multicast_ether_addr(mac_addr))
1642 		ret = hns3_add_mc_addr_common(hw, mac_addr);
1643 	else
1644 		ret = hns3_add_uc_addr_common(hw, mac_addr);
1645 
1646 	if (ret) {
1647 		rte_spinlock_unlock(&hw->lock);
1648 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1649 				      mac_addr);
1650 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1651 			 ret);
1652 		return ret;
1653 	}
1654 
1655 	if (idx == 0)
1656 		hw->mac.default_addr_setted = true;
1657 	rte_spinlock_unlock(&hw->lock);
1658 
1659 	return ret;
1660 }
1661 
1662 static int
1663 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1664 {
1665 	struct hns3_mac_vlan_tbl_entry_cmd req;
1666 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1667 	int ret;
1668 
1669 	/* check if mac addr is valid */
1670 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1671 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1672 				      mac_addr);
1673 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1674 			 mac_str);
1675 		return -EINVAL;
1676 	}
1677 
1678 	memset(&req, 0, sizeof(req));
1679 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1680 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1681 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1682 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1683 		return 0;
1684 	else if (ret == 0)
1685 		hns3_update_umv_space(hw, true);
1686 
1687 	return ret;
1688 }
1689 
1690 static void
1691 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1692 {
1693 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1694 	/* index will be checked by upper level rte interface */
1695 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1696 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1697 	int ret;
1698 
1699 	rte_spinlock_lock(&hw->lock);
1700 
1701 	if (rte_is_multicast_ether_addr(mac_addr))
1702 		ret = hns3_remove_mc_addr_common(hw, mac_addr);
1703 	else
1704 		ret = hns3_remove_uc_addr_common(hw, mac_addr);
1705 	rte_spinlock_unlock(&hw->lock);
1706 	if (ret) {
1707 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1708 				      mac_addr);
1709 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1710 			 ret);
1711 	}
1712 }
1713 
1714 static int
1715 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1716 			  struct rte_ether_addr *mac_addr)
1717 {
1718 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1719 	struct rte_ether_addr *oaddr;
1720 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1721 	bool default_addr_setted;
1722 	bool rm_succes = false;
1723 	int ret, ret_val;
1724 
1725 	/*
1726 	 * It has been guaranteed that input parameter named mac_addr is valid
1727 	 * address in the rte layer of DPDK framework.
1728 	 */
1729 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1730 	default_addr_setted = hw->mac.default_addr_setted;
1731 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1732 		return 0;
1733 
1734 	rte_spinlock_lock(&hw->lock);
1735 	if (default_addr_setted) {
1736 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1737 		if (ret) {
1738 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1739 					      oaddr);
1740 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1741 				  mac_str, ret);
1742 			rm_succes = false;
1743 		} else
1744 			rm_succes = true;
1745 	}
1746 
1747 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1748 	if (ret) {
1749 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1750 				      mac_addr);
1751 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1752 		goto err_add_uc_addr;
1753 	}
1754 
1755 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1756 	if (ret) {
1757 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1758 		goto err_pause_addr_cfg;
1759 	}
1760 
1761 	rte_ether_addr_copy(mac_addr,
1762 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1763 	hw->mac.default_addr_setted = true;
1764 	rte_spinlock_unlock(&hw->lock);
1765 
1766 	return 0;
1767 
1768 err_pause_addr_cfg:
1769 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1770 	if (ret_val) {
1771 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1772 				      mac_addr);
1773 		hns3_warn(hw,
1774 			  "Failed to roll back to del setted mac addr(%s): %d",
1775 			  mac_str, ret_val);
1776 	}
1777 
1778 err_add_uc_addr:
1779 	if (rm_succes) {
1780 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1781 		if (ret_val) {
1782 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1783 					      oaddr);
1784 			hns3_warn(hw,
1785 				  "Failed to restore old uc mac addr(%s): %d",
1786 				  mac_str, ret_val);
1787 			hw->mac.default_addr_setted = false;
1788 		}
1789 	}
1790 	rte_spinlock_unlock(&hw->lock);
1791 
1792 	return ret;
1793 }
1794 
1795 static int
1796 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1797 {
1798 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1799 	struct hns3_hw *hw = &hns->hw;
1800 	struct rte_ether_addr *addr;
1801 	int err = 0;
1802 	int ret;
1803 	int i;
1804 
1805 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1806 		addr = &hw->data->mac_addrs[i];
1807 		if (rte_is_zero_ether_addr(addr))
1808 			continue;
1809 		if (rte_is_multicast_ether_addr(addr))
1810 			ret = del ? hns3_remove_mc_addr(hw, addr) :
1811 			      hns3_add_mc_addr(hw, addr);
1812 		else
1813 			ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1814 			      hns3_add_uc_addr_common(hw, addr);
1815 
1816 		if (ret) {
1817 			err = ret;
1818 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1819 					      addr);
1820 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1821 				 "ret = %d.", del ? "remove" : "restore",
1822 				 mac_str, i, ret);
1823 		}
1824 	}
1825 	return err;
1826 }
1827 
1828 static void
1829 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1830 {
1831 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1832 	uint8_t word_num;
1833 	uint8_t bit_num;
1834 
1835 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1836 		word_num = vfid / 32;
1837 		bit_num = vfid % 32;
1838 		if (clr)
1839 			desc[1].data[word_num] &=
1840 			    rte_cpu_to_le_32(~(1UL << bit_num));
1841 		else
1842 			desc[1].data[word_num] |=
1843 			    rte_cpu_to_le_32(1UL << bit_num);
1844 	} else {
1845 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1846 		bit_num = vfid % 32;
1847 		if (clr)
1848 			desc[2].data[word_num] &=
1849 			    rte_cpu_to_le_32(~(1UL << bit_num));
1850 		else
1851 			desc[2].data[word_num] |=
1852 			    rte_cpu_to_le_32(1UL << bit_num);
1853 	}
1854 }
1855 
1856 static int
1857 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1858 {
1859 	struct hns3_mac_vlan_tbl_entry_cmd req;
1860 	struct hns3_cmd_desc desc[3];
1861 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1862 	uint8_t vf_id;
1863 	int ret;
1864 
1865 	/* Check if mac addr is valid */
1866 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1867 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1868 				      mac_addr);
1869 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1870 			 mac_str);
1871 		return -EINVAL;
1872 	}
1873 
1874 	memset(&req, 0, sizeof(req));
1875 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1876 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1877 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1878 	if (ret) {
1879 		/* This mac addr do not exist, add new entry for it */
1880 		memset(desc[0].data, 0, sizeof(desc[0].data));
1881 		memset(desc[1].data, 0, sizeof(desc[0].data));
1882 		memset(desc[2].data, 0, sizeof(desc[0].data));
1883 	}
1884 
1885 	/*
1886 	 * In current version VF is not supported when PF is driven by DPDK
1887 	 * driver, just need to configure parameters for PF vport.
1888 	 */
1889 	vf_id = HNS3_PF_FUNC_ID;
1890 	hns3_update_desc_vfid(desc, vf_id, false);
1891 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1892 	if (ret) {
1893 		if (ret == -ENOSPC)
1894 			hns3_err(hw, "mc mac vlan table is full");
1895 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1896 				      mac_addr);
1897 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1898 	}
1899 
1900 	return ret;
1901 }
1902 
1903 static int
1904 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1905 {
1906 	struct hns3_mac_vlan_tbl_entry_cmd req;
1907 	struct hns3_cmd_desc desc[3];
1908 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1909 	uint8_t vf_id;
1910 	int ret;
1911 
1912 	/* Check if mac addr is valid */
1913 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1914 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1915 				      mac_addr);
1916 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1917 			 mac_str);
1918 		return -EINVAL;
1919 	}
1920 
1921 	memset(&req, 0, sizeof(req));
1922 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1923 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1924 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1925 	if (ret == 0) {
1926 		/*
1927 		 * This mac addr exist, remove this handle's VFID for it.
1928 		 * In current version VF is not supported when PF is driven by
1929 		 * DPDK driver, just need to configure parameters for PF vport.
1930 		 */
1931 		vf_id = HNS3_PF_FUNC_ID;
1932 		hns3_update_desc_vfid(desc, vf_id, true);
1933 
1934 		/* All the vfid is zero, so need to delete this entry */
1935 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1936 	} else if (ret == -ENOENT) {
1937 		/* This mac addr doesn't exist. */
1938 		return 0;
1939 	}
1940 
1941 	if (ret) {
1942 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1943 				      mac_addr);
1944 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1945 	}
1946 
1947 	return ret;
1948 }
1949 
1950 static int
1951 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1952 			   struct rte_ether_addr *mc_addr_set,
1953 			   uint32_t nb_mc_addr)
1954 {
1955 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1956 	struct rte_ether_addr *addr;
1957 	uint32_t i;
1958 	uint32_t j;
1959 
1960 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1961 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1962 			 "invalid. valid range: 0~%d",
1963 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1964 		return -EINVAL;
1965 	}
1966 
1967 	/* Check if input mac addresses are valid */
1968 	for (i = 0; i < nb_mc_addr; i++) {
1969 		addr = &mc_addr_set[i];
1970 		if (!rte_is_multicast_ether_addr(addr)) {
1971 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1972 					      addr);
1973 			hns3_err(hw,
1974 				 "failed to set mc mac addr, addr(%s) invalid.",
1975 				 mac_str);
1976 			return -EINVAL;
1977 		}
1978 
1979 		/* Check if there are duplicate addresses */
1980 		for (j = i + 1; j < nb_mc_addr; j++) {
1981 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1982 				hns3_ether_format_addr(mac_str,
1983 						      RTE_ETHER_ADDR_FMT_SIZE,
1984 						      addr);
1985 				hns3_err(hw, "failed to set mc mac addr, "
1986 					 "addrs invalid. two same addrs(%s).",
1987 					 mac_str);
1988 				return -EINVAL;
1989 			}
1990 		}
1991 
1992 		/*
1993 		 * Check if there are duplicate addresses between mac_addrs
1994 		 * and mc_addr_set
1995 		 */
1996 		for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1997 			if (rte_is_same_ether_addr(addr,
1998 						   &hw->data->mac_addrs[j])) {
1999 				hns3_ether_format_addr(mac_str,
2000 						      RTE_ETHER_ADDR_FMT_SIZE,
2001 						      addr);
2002 				hns3_err(hw, "failed to set mc mac addr, "
2003 					 "addrs invalid. addrs(%s) has already "
2004 					 "configured in mac_addr add API",
2005 					 mac_str);
2006 				return -EINVAL;
2007 			}
2008 		}
2009 	}
2010 
2011 	return 0;
2012 }
2013 
2014 static void
2015 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
2016 			   struct rte_ether_addr *mc_addr_set,
2017 			   int mc_addr_num,
2018 			   struct rte_ether_addr *reserved_addr_list,
2019 			   int *reserved_addr_num,
2020 			   struct rte_ether_addr *add_addr_list,
2021 			   int *add_addr_num,
2022 			   struct rte_ether_addr *rm_addr_list,
2023 			   int *rm_addr_num)
2024 {
2025 	struct rte_ether_addr *addr;
2026 	int current_addr_num;
2027 	int reserved_num = 0;
2028 	int add_num = 0;
2029 	int rm_num = 0;
2030 	int num;
2031 	int i;
2032 	int j;
2033 	bool same_addr;
2034 
2035 	/* Calculate the mc mac address list that should be removed */
2036 	current_addr_num = hw->mc_addrs_num;
2037 	for (i = 0; i < current_addr_num; i++) {
2038 		addr = &hw->mc_addrs[i];
2039 		same_addr = false;
2040 		for (j = 0; j < mc_addr_num; j++) {
2041 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2042 				same_addr = true;
2043 				break;
2044 			}
2045 		}
2046 
2047 		if (!same_addr) {
2048 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
2049 			rm_num++;
2050 		} else {
2051 			rte_ether_addr_copy(addr,
2052 					    &reserved_addr_list[reserved_num]);
2053 			reserved_num++;
2054 		}
2055 	}
2056 
2057 	/* Calculate the mc mac address list that should be added */
2058 	for (i = 0; i < mc_addr_num; i++) {
2059 		addr = &mc_addr_set[i];
2060 		same_addr = false;
2061 		for (j = 0; j < current_addr_num; j++) {
2062 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2063 				same_addr = true;
2064 				break;
2065 			}
2066 		}
2067 
2068 		if (!same_addr) {
2069 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2070 			add_num++;
2071 		}
2072 	}
2073 
2074 	/* Reorder the mc mac address list maintained by driver */
2075 	for (i = 0; i < reserved_num; i++)
2076 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2077 
2078 	for (i = 0; i < rm_num; i++) {
2079 		num = reserved_num + i;
2080 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2081 	}
2082 
2083 	*reserved_addr_num = reserved_num;
2084 	*add_addr_num = add_num;
2085 	*rm_addr_num = rm_num;
2086 }
2087 
2088 static int
2089 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2090 			  struct rte_ether_addr *mc_addr_set,
2091 			  uint32_t nb_mc_addr)
2092 {
2093 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2094 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2095 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2096 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2097 	struct rte_ether_addr *addr;
2098 	int reserved_addr_num;
2099 	int add_addr_num;
2100 	int rm_addr_num;
2101 	int mc_addr_num;
2102 	int num;
2103 	int ret;
2104 	int i;
2105 
2106 	/* Check if input parameters are valid */
2107 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2108 	if (ret)
2109 		return ret;
2110 
2111 	rte_spinlock_lock(&hw->lock);
2112 
2113 	/*
2114 	 * Calculate the mc mac address lists those should be removed and be
2115 	 * added, Reorder the mc mac address list maintained by driver.
2116 	 */
2117 	mc_addr_num = (int)nb_mc_addr;
2118 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2119 				   reserved_addr_list, &reserved_addr_num,
2120 				   add_addr_list, &add_addr_num,
2121 				   rm_addr_list, &rm_addr_num);
2122 
2123 	/* Remove mc mac addresses */
2124 	for (i = 0; i < rm_addr_num; i++) {
2125 		num = rm_addr_num - i - 1;
2126 		addr = &rm_addr_list[num];
2127 		ret = hns3_remove_mc_addr(hw, addr);
2128 		if (ret) {
2129 			rte_spinlock_unlock(&hw->lock);
2130 			return ret;
2131 		}
2132 		hw->mc_addrs_num--;
2133 	}
2134 
2135 	/* Add mc mac addresses */
2136 	for (i = 0; i < add_addr_num; i++) {
2137 		addr = &add_addr_list[i];
2138 		ret = hns3_add_mc_addr(hw, addr);
2139 		if (ret) {
2140 			rte_spinlock_unlock(&hw->lock);
2141 			return ret;
2142 		}
2143 
2144 		num = reserved_addr_num + i;
2145 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2146 		hw->mc_addrs_num++;
2147 	}
2148 	rte_spinlock_unlock(&hw->lock);
2149 
2150 	return 0;
2151 }
2152 
2153 static int
2154 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2155 {
2156 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2157 	struct hns3_hw *hw = &hns->hw;
2158 	struct rte_ether_addr *addr;
2159 	int err = 0;
2160 	int ret;
2161 	int i;
2162 
2163 	for (i = 0; i < hw->mc_addrs_num; i++) {
2164 		addr = &hw->mc_addrs[i];
2165 		if (!rte_is_multicast_ether_addr(addr))
2166 			continue;
2167 		if (del)
2168 			ret = hns3_remove_mc_addr(hw, addr);
2169 		else
2170 			ret = hns3_add_mc_addr(hw, addr);
2171 		if (ret) {
2172 			err = ret;
2173 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2174 					      addr);
2175 			hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2176 				 del ? "Remove" : "Restore", mac_str, ret);
2177 		}
2178 	}
2179 	return err;
2180 }
2181 
2182 static int
2183 hns3_check_mq_mode(struct rte_eth_dev *dev)
2184 {
2185 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2186 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2187 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2188 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2189 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2190 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2191 	uint8_t num_tc;
2192 	int max_tc = 0;
2193 	int i;
2194 
2195 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2196 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2197 
2198 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2199 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2200 			 "rx_mq_mode = %d", rx_mq_mode);
2201 		return -EINVAL;
2202 	}
2203 
2204 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2205 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2206 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2207 			 "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2208 			 rx_mq_mode, tx_mq_mode);
2209 		return -EINVAL;
2210 	}
2211 
2212 	if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2213 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2214 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2215 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2216 			return -EINVAL;
2217 		}
2218 
2219 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2220 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2221 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2222 				 "nb_tcs(%d) != %d or %d in rx direction.",
2223 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2224 			return -EINVAL;
2225 		}
2226 
2227 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2228 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2229 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2230 			return -EINVAL;
2231 		}
2232 
2233 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2234 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2235 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2236 					 "is not equal to one in tx direction.",
2237 					 i, dcb_rx_conf->dcb_tc[i]);
2238 				return -EINVAL;
2239 			}
2240 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2241 				max_tc = dcb_rx_conf->dcb_tc[i];
2242 		}
2243 
2244 		num_tc = max_tc + 1;
2245 		if (num_tc > dcb_rx_conf->nb_tcs) {
2246 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2247 				 num_tc, dcb_rx_conf->nb_tcs);
2248 			return -EINVAL;
2249 		}
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static int
2256 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2257 {
2258 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2259 
2260 	if (!hns3_dev_dcb_supported(hw)) {
2261 		hns3_err(hw, "this port does not support dcb configurations.");
2262 		return -EOPNOTSUPP;
2263 	}
2264 
2265 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2266 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2267 		return -EOPNOTSUPP;
2268 	}
2269 
2270 	/* Check multiple queue mode */
2271 	return hns3_check_mq_mode(dev);
2272 }
2273 
2274 static int
2275 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2276 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2277 {
2278 	struct hns3_cmd_desc desc;
2279 	struct hns3_ctrl_vector_chain_cmd *req =
2280 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2281 	enum hns3_cmd_status status;
2282 	enum hns3_opcode_type op;
2283 	uint16_t tqp_type_and_id = 0;
2284 	uint16_t type;
2285 	uint16_t gl;
2286 
2287 	op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2288 	hns3_cmd_setup_basic_desc(&desc, op, false);
2289 	req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2290 					      HNS3_TQP_INT_ID_L_S);
2291 	req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2292 					      HNS3_TQP_INT_ID_H_S);
2293 
2294 	if (queue_type == HNS3_RING_TYPE_RX)
2295 		gl = HNS3_RING_GL_RX;
2296 	else
2297 		gl = HNS3_RING_GL_TX;
2298 
2299 	type = queue_type;
2300 
2301 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2302 		       type);
2303 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2304 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2305 		       gl);
2306 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2307 	req->int_cause_num = 1;
2308 	status = hns3_cmd_send(hw, &desc, 1);
2309 	if (status) {
2310 		hns3_err(hw, "%s TQP %u fail, vector_id is %u, status is %d.",
2311 			 en ? "Map" : "Unmap", queue_id, vector_id, status);
2312 		return status;
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 static int
2319 hns3_init_ring_with_vector(struct hns3_hw *hw)
2320 {
2321 	uint16_t vec;
2322 	int ret;
2323 	int i;
2324 
2325 	/*
2326 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2327 	 * function, vector 1~N can be used respectively for the queues of the
2328 	 * function. Tx and Rx queues with the same number share the interrupt
2329 	 * vector. In the initialization clearing the all hardware mapping
2330 	 * relationship configurations between queues and interrupt vectors is
2331 	 * needed, so some error caused by the residual configurations, such as
2332 	 * the unexpected Tx interrupt, can be avoid.
2333 	 */
2334 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2335 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2336 		vec = vec - 1; /* the last interrupt is reserved */
2337 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2338 	for (i = 0; i < hw->intr_tqps_num; i++) {
2339 		/*
2340 		 * Set gap limiter/rate limiter/quanity limiter algorithm
2341 		 * configuration for interrupt coalesce of queue's interrupt.
2342 		 */
2343 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2344 				       HNS3_TQP_INTR_GL_DEFAULT);
2345 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2346 				       HNS3_TQP_INTR_GL_DEFAULT);
2347 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2348 		/*
2349 		 * QL(quantity limiter) is not used currently, just set 0 to
2350 		 * close it.
2351 		 */
2352 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2353 
2354 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2355 						 HNS3_RING_TYPE_TX, i);
2356 		if (ret) {
2357 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2358 					  "vector: %u, ret=%d", i, vec, ret);
2359 			return ret;
2360 		}
2361 
2362 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2363 						 HNS3_RING_TYPE_RX, i);
2364 		if (ret) {
2365 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2366 					  "vector: %u, ret=%d", i, vec, ret);
2367 			return ret;
2368 		}
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 static int
2375 hns3_dev_configure(struct rte_eth_dev *dev)
2376 {
2377 	struct hns3_adapter *hns = dev->data->dev_private;
2378 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2379 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2380 	struct hns3_hw *hw = &hns->hw;
2381 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2382 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2383 	struct rte_eth_rss_conf rss_conf;
2384 	uint32_t max_rx_pkt_len;
2385 	uint16_t mtu;
2386 	bool gro_en;
2387 	int ret;
2388 
2389 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2390 
2391 	/*
2392 	 * Some versions of hardware network engine does not support
2393 	 * individually enable/disable/reset the Tx or Rx queue. These devices
2394 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
2395 	 * numbers of Tx queues allocated by upper applications are not equal to
2396 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2397 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2398 	 * work as usual. But these fake queues are imperceptible, and can not
2399 	 * be used by upper applications.
2400 	 */
2401 	if (!hns3_dev_indep_txrx_supported(hw)) {
2402 		ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2403 		if (ret) {
2404 			hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
2405 				 ret);
2406 			return ret;
2407 		}
2408 	}
2409 
2410 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2411 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2412 		hns3_err(hw, "setting link speed/duplex not supported");
2413 		ret = -EINVAL;
2414 		goto cfg_err;
2415 	}
2416 
2417 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2418 		ret = hns3_check_dcb_cfg(dev);
2419 		if (ret)
2420 			goto cfg_err;
2421 	}
2422 
2423 	/* When RSS is not configured, redirect the packet queue 0 */
2424 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2425 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2426 		rss_conf = conf->rx_adv_conf.rss_conf;
2427 		hw->rss_dis_flag = false;
2428 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2429 		if (ret)
2430 			goto cfg_err;
2431 	}
2432 
2433 	/*
2434 	 * If jumbo frames are enabled, MTU needs to be refreshed
2435 	 * according to the maximum RX packet length.
2436 	 */
2437 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2438 		max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
2439 		if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
2440 		    max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
2441 			hns3_err(hw, "maximum Rx packet length must be greater "
2442 				 "than %u and less than %u when jumbo frame enabled.",
2443 				 (uint16_t)HNS3_DEFAULT_FRAME_LEN,
2444 				 (uint16_t)HNS3_MAX_FRAME_LEN);
2445 			ret = -EINVAL;
2446 			goto cfg_err;
2447 		}
2448 
2449 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
2450 		ret = hns3_dev_mtu_set(dev, mtu);
2451 		if (ret)
2452 			goto cfg_err;
2453 		dev->data->mtu = mtu;
2454 	}
2455 
2456 	ret = hns3_dev_configure_vlan(dev);
2457 	if (ret)
2458 		goto cfg_err;
2459 
2460 	/* config hardware GRO */
2461 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2462 	ret = hns3_config_gro(hw, gro_en);
2463 	if (ret)
2464 		goto cfg_err;
2465 
2466 	hns->rx_simple_allowed = true;
2467 	hns->rx_vec_allowed = true;
2468 	hns->tx_simple_allowed = true;
2469 	hns->tx_vec_allowed = true;
2470 
2471 	hns3_init_rx_ptype_tble(dev);
2472 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2473 
2474 	return 0;
2475 
2476 cfg_err:
2477 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2478 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2479 
2480 	return ret;
2481 }
2482 
2483 static int
2484 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2485 {
2486 	struct hns3_config_max_frm_size_cmd *req;
2487 	struct hns3_cmd_desc desc;
2488 
2489 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2490 
2491 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2492 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2493 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2494 
2495 	return hns3_cmd_send(hw, &desc, 1);
2496 }
2497 
2498 static int
2499 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2500 {
2501 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2502 	uint16_t original_mps = hns->pf.mps;
2503 	int err;
2504 	int ret;
2505 
2506 	ret = hns3_set_mac_mtu(hw, mps);
2507 	if (ret) {
2508 		hns3_err(hw, "failed to set mtu, ret = %d", ret);
2509 		return ret;
2510 	}
2511 
2512 	hns->pf.mps = mps;
2513 	ret = hns3_buffer_alloc(hw);
2514 	if (ret) {
2515 		hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2516 		goto rollback;
2517 	}
2518 
2519 	return 0;
2520 
2521 rollback:
2522 	err = hns3_set_mac_mtu(hw, original_mps);
2523 	if (err) {
2524 		hns3_err(hw, "fail to rollback MTU, err = %d", err);
2525 		return ret;
2526 	}
2527 	hns->pf.mps = original_mps;
2528 
2529 	return ret;
2530 }
2531 
2532 static int
2533 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2534 {
2535 	struct hns3_adapter *hns = dev->data->dev_private;
2536 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2537 	struct hns3_hw *hw = &hns->hw;
2538 	bool is_jumbo_frame;
2539 	int ret;
2540 
2541 	if (dev->data->dev_started) {
2542 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2543 			 "before configuration", dev->data->port_id);
2544 		return -EBUSY;
2545 	}
2546 
2547 	rte_spinlock_lock(&hw->lock);
2548 	is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
2549 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2550 
2551 	/*
2552 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2553 	 * assign to "uint16_t" type variable.
2554 	 */
2555 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2556 	if (ret) {
2557 		rte_spinlock_unlock(&hw->lock);
2558 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2559 			 dev->data->port_id, mtu, ret);
2560 		return ret;
2561 	}
2562 
2563 	if (is_jumbo_frame)
2564 		dev->data->dev_conf.rxmode.offloads |=
2565 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2566 	else
2567 		dev->data->dev_conf.rxmode.offloads &=
2568 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2569 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2570 	rte_spinlock_unlock(&hw->lock);
2571 
2572 	return 0;
2573 }
2574 
2575 int
2576 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2577 {
2578 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2579 	struct hns3_hw *hw = &hns->hw;
2580 	uint16_t queue_num = hw->tqps_num;
2581 
2582 	/*
2583 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2584 	 * MSI-X interrupt resources of the hardware.
2585 	 */
2586 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2587 		queue_num = hw->intr_tqps_num;
2588 
2589 	info->max_rx_queues = queue_num;
2590 	info->max_tx_queues = hw->tqps_num;
2591 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2592 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2593 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2594 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2595 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2596 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2597 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2598 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2599 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2600 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2601 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2602 				 DEV_RX_OFFLOAD_KEEP_CRC |
2603 				 DEV_RX_OFFLOAD_SCATTER |
2604 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2605 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2606 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
2607 				 DEV_RX_OFFLOAD_RSS_HASH |
2608 				 DEV_RX_OFFLOAD_TCP_LRO);
2609 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2610 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2611 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2612 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2613 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2614 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2615 				 DEV_TX_OFFLOAD_TCP_TSO |
2616 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2617 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
2618 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2619 				 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2620 				 hns3_txvlan_cap_get(hw));
2621 
2622 	if (hns3_dev_indep_txrx_supported(hw))
2623 		info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2624 				 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2625 
2626 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2627 		.nb_max = HNS3_MAX_RING_DESC,
2628 		.nb_min = HNS3_MIN_RING_DESC,
2629 		.nb_align = HNS3_ALIGN_RING_DESC,
2630 	};
2631 
2632 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2633 		.nb_max = HNS3_MAX_RING_DESC,
2634 		.nb_min = HNS3_MIN_RING_DESC,
2635 		.nb_align = HNS3_ALIGN_RING_DESC,
2636 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2637 		.nb_mtu_seg_max = hw->max_non_tso_bd_num,
2638 	};
2639 
2640 	info->default_rxconf = (struct rte_eth_rxconf) {
2641 		.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2642 		/*
2643 		 * If there are no available Rx buffer descriptors, incoming
2644 		 * packets are always dropped by hardware based on hns3 network
2645 		 * engine.
2646 		 */
2647 		.rx_drop_en = 1,
2648 		.offloads = 0,
2649 	};
2650 	info->default_txconf = (struct rte_eth_txconf) {
2651 		.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2652 		.offloads = 0,
2653 	};
2654 
2655 	info->vmdq_queue_num = 0;
2656 
2657 	info->reta_size = hw->rss_ind_tbl_size;
2658 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2659 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2660 
2661 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2662 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2663 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2664 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2665 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2666 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2667 
2668 	return 0;
2669 }
2670 
2671 static int
2672 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2673 		    size_t fw_size)
2674 {
2675 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2676 	struct hns3_hw *hw = &hns->hw;
2677 	uint32_t version = hw->fw_version;
2678 	int ret;
2679 
2680 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2681 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2682 				      HNS3_FW_VERSION_BYTE3_S),
2683 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2684 				      HNS3_FW_VERSION_BYTE2_S),
2685 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2686 				      HNS3_FW_VERSION_BYTE1_S),
2687 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2688 				      HNS3_FW_VERSION_BYTE0_S));
2689 	ret += 1; /* add the size of '\0' */
2690 	if (fw_size < (uint32_t)ret)
2691 		return ret;
2692 	else
2693 		return 0;
2694 }
2695 
2696 static int
2697 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2698 		     __rte_unused int wait_to_complete)
2699 {
2700 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2701 	struct hns3_hw *hw = &hns->hw;
2702 	struct hns3_mac *mac = &hw->mac;
2703 	struct rte_eth_link new_link;
2704 
2705 	if (!hns3_is_reset_pending(hns)) {
2706 		hns3_update_link_status(hw);
2707 		hns3_update_link_info(eth_dev);
2708 	}
2709 
2710 	memset(&new_link, 0, sizeof(new_link));
2711 	switch (mac->link_speed) {
2712 	case ETH_SPEED_NUM_10M:
2713 	case ETH_SPEED_NUM_100M:
2714 	case ETH_SPEED_NUM_1G:
2715 	case ETH_SPEED_NUM_10G:
2716 	case ETH_SPEED_NUM_25G:
2717 	case ETH_SPEED_NUM_40G:
2718 	case ETH_SPEED_NUM_50G:
2719 	case ETH_SPEED_NUM_100G:
2720 	case ETH_SPEED_NUM_200G:
2721 		new_link.link_speed = mac->link_speed;
2722 		break;
2723 	default:
2724 		new_link.link_speed = ETH_SPEED_NUM_100M;
2725 		break;
2726 	}
2727 
2728 	new_link.link_duplex = mac->link_duplex;
2729 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2730 	new_link.link_autoneg =
2731 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2732 
2733 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2734 }
2735 
2736 static int
2737 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2738 {
2739 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2740 	struct hns3_pf *pf = &hns->pf;
2741 
2742 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2743 		return -EINVAL;
2744 
2745 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2746 
2747 	return 0;
2748 }
2749 
2750 static int
2751 hns3_query_function_status(struct hns3_hw *hw)
2752 {
2753 #define HNS3_QUERY_MAX_CNT		10
2754 #define HNS3_QUERY_SLEEP_MSCOEND	1
2755 	struct hns3_func_status_cmd *req;
2756 	struct hns3_cmd_desc desc;
2757 	int timeout = 0;
2758 	int ret;
2759 
2760 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2761 	req = (struct hns3_func_status_cmd *)desc.data;
2762 
2763 	do {
2764 		ret = hns3_cmd_send(hw, &desc, 1);
2765 		if (ret) {
2766 			PMD_INIT_LOG(ERR, "query function status failed %d",
2767 				     ret);
2768 			return ret;
2769 		}
2770 
2771 		/* Check pf reset is done */
2772 		if (req->pf_state)
2773 			break;
2774 
2775 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2776 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2777 
2778 	return hns3_parse_func_status(hw, req);
2779 }
2780 
2781 static int
2782 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2783 {
2784 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2785 	struct hns3_pf *pf = &hns->pf;
2786 
2787 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2788 		/*
2789 		 * The total_tqps_num obtained from firmware is maximum tqp
2790 		 * numbers of this port, which should be used for PF and VFs.
2791 		 * There is no need for pf to have so many tqp numbers in
2792 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2793 		 * coming from config file, is assigned to maximum queue number
2794 		 * for the PF of this port by user. So users can modify the
2795 		 * maximum queue number of PF according to their own application
2796 		 * scenarios, which is more flexible to use. In addition, many
2797 		 * memories can be saved due to allocating queue statistics
2798 		 * room according to the actual number of queues required. The
2799 		 * maximum queue number of PF for network engine with
2800 		 * revision_id greater than 0x30 is assigned by config file.
2801 		 */
2802 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2803 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2804 				 "must be greater than 0.",
2805 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2806 			return -EINVAL;
2807 		}
2808 
2809 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2810 				       hw->total_tqps_num);
2811 	} else {
2812 		/*
2813 		 * Due to the limitation on the number of PF interrupts
2814 		 * available, the maximum queue number assigned to PF on
2815 		 * the network engine with revision_id 0x21 is 64.
2816 		 */
2817 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2818 				       HNS3_MAX_TQP_NUM_HIP08_PF);
2819 	}
2820 
2821 	return 0;
2822 }
2823 
2824 static int
2825 hns3_query_pf_resource(struct hns3_hw *hw)
2826 {
2827 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2828 	struct hns3_pf *pf = &hns->pf;
2829 	struct hns3_pf_res_cmd *req;
2830 	struct hns3_cmd_desc desc;
2831 	int ret;
2832 
2833 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2834 	ret = hns3_cmd_send(hw, &desc, 1);
2835 	if (ret) {
2836 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2837 		return ret;
2838 	}
2839 
2840 	req = (struct hns3_pf_res_cmd *)desc.data;
2841 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2842 			     rte_le_to_cpu_16(req->ext_tqp_num);
2843 	ret = hns3_get_pf_max_tqp_num(hw);
2844 	if (ret)
2845 		return ret;
2846 
2847 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2848 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2849 
2850 	if (req->tx_buf_size)
2851 		pf->tx_buf_size =
2852 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2853 	else
2854 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2855 
2856 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2857 
2858 	if (req->dv_buf_size)
2859 		pf->dv_buf_size =
2860 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2861 	else
2862 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2863 
2864 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2865 
2866 	hw->num_msi =
2867 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2868 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2869 
2870 	return 0;
2871 }
2872 
2873 static void
2874 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2875 {
2876 	struct hns3_cfg_param_cmd *req;
2877 	uint64_t mac_addr_tmp_high;
2878 	uint8_t ext_rss_size_max;
2879 	uint64_t mac_addr_tmp;
2880 	uint32_t i;
2881 
2882 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2883 
2884 	/* get the configuration */
2885 	cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2886 					     HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2887 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2888 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2889 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2890 					   HNS3_CFG_TQP_DESC_N_M,
2891 					   HNS3_CFG_TQP_DESC_N_S);
2892 
2893 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2894 				       HNS3_CFG_PHY_ADDR_M,
2895 				       HNS3_CFG_PHY_ADDR_S);
2896 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2897 					 HNS3_CFG_MEDIA_TP_M,
2898 					 HNS3_CFG_MEDIA_TP_S);
2899 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2900 					 HNS3_CFG_RX_BUF_LEN_M,
2901 					 HNS3_CFG_RX_BUF_LEN_S);
2902 	/* get mac address */
2903 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2904 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2905 					   HNS3_CFG_MAC_ADDR_H_M,
2906 					   HNS3_CFG_MAC_ADDR_H_S);
2907 
2908 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2909 
2910 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2911 					    HNS3_CFG_DEFAULT_SPEED_M,
2912 					    HNS3_CFG_DEFAULT_SPEED_S);
2913 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2914 					   HNS3_CFG_RSS_SIZE_M,
2915 					   HNS3_CFG_RSS_SIZE_S);
2916 
2917 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2918 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2919 
2920 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2921 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2922 
2923 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2924 					    HNS3_CFG_SPEED_ABILITY_M,
2925 					    HNS3_CFG_SPEED_ABILITY_S);
2926 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2927 					HNS3_CFG_UMV_TBL_SPACE_M,
2928 					HNS3_CFG_UMV_TBL_SPACE_S);
2929 	if (!cfg->umv_space)
2930 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2931 
2932 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2933 					       HNS3_CFG_EXT_RSS_SIZE_M,
2934 					       HNS3_CFG_EXT_RSS_SIZE_S);
2935 
2936 	/*
2937 	 * Field ext_rss_size_max obtained from firmware will be more flexible
2938 	 * for future changes and expansions, which is an exponent of 2, instead
2939 	 * of reading out directly. If this field is not zero, hns3 PF PMD
2940 	 * driver uses it as rss_size_max under one TC. Device, whose revision
2941 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2942 	 * maximum number of queues supported under a TC through this field.
2943 	 */
2944 	if (ext_rss_size_max)
2945 		cfg->rss_size_max = 1U << ext_rss_size_max;
2946 }
2947 
2948 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2949  * @hw: pointer to struct hns3_hw
2950  * @hcfg: the config structure to be getted
2951  */
2952 static int
2953 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2954 {
2955 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2956 	struct hns3_cfg_param_cmd *req;
2957 	uint32_t offset;
2958 	uint32_t i;
2959 	int ret;
2960 
2961 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2962 		offset = 0;
2963 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2964 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2965 					  true);
2966 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2967 			       i * HNS3_CFG_RD_LEN_BYTES);
2968 		/* Len should be divided by 4 when send to hardware */
2969 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2970 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2971 		req->offset = rte_cpu_to_le_32(offset);
2972 	}
2973 
2974 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2975 	if (ret) {
2976 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2977 		return ret;
2978 	}
2979 
2980 	hns3_parse_cfg(hcfg, desc);
2981 
2982 	return 0;
2983 }
2984 
2985 static int
2986 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2987 {
2988 	switch (speed_cmd) {
2989 	case HNS3_CFG_SPEED_10M:
2990 		*speed = ETH_SPEED_NUM_10M;
2991 		break;
2992 	case HNS3_CFG_SPEED_100M:
2993 		*speed = ETH_SPEED_NUM_100M;
2994 		break;
2995 	case HNS3_CFG_SPEED_1G:
2996 		*speed = ETH_SPEED_NUM_1G;
2997 		break;
2998 	case HNS3_CFG_SPEED_10G:
2999 		*speed = ETH_SPEED_NUM_10G;
3000 		break;
3001 	case HNS3_CFG_SPEED_25G:
3002 		*speed = ETH_SPEED_NUM_25G;
3003 		break;
3004 	case HNS3_CFG_SPEED_40G:
3005 		*speed = ETH_SPEED_NUM_40G;
3006 		break;
3007 	case HNS3_CFG_SPEED_50G:
3008 		*speed = ETH_SPEED_NUM_50G;
3009 		break;
3010 	case HNS3_CFG_SPEED_100G:
3011 		*speed = ETH_SPEED_NUM_100G;
3012 		break;
3013 	case HNS3_CFG_SPEED_200G:
3014 		*speed = ETH_SPEED_NUM_200G;
3015 		break;
3016 	default:
3017 		return -EINVAL;
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 static void
3024 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3025 {
3026 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3027 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3028 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3029 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3030 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3031 }
3032 
3033 static void
3034 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3035 {
3036 	struct hns3_dev_specs_0_cmd *req0;
3037 
3038 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3039 
3040 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3041 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3042 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3043 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3044 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3045 }
3046 
3047 static int
3048 hns3_check_dev_specifications(struct hns3_hw *hw)
3049 {
3050 	if (hw->rss_ind_tbl_size == 0 ||
3051 	    hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3052 		hns3_err(hw, "the size of hash lookup table configured (%u)"
3053 			      " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3054 			      HNS3_RSS_IND_TBL_SIZE_MAX);
3055 		return -EINVAL;
3056 	}
3057 
3058 	return 0;
3059 }
3060 
3061 static int
3062 hns3_query_dev_specifications(struct hns3_hw *hw)
3063 {
3064 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3065 	int ret;
3066 	int i;
3067 
3068 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3069 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3070 					  true);
3071 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3072 	}
3073 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3074 
3075 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3076 	if (ret)
3077 		return ret;
3078 
3079 	hns3_parse_dev_specifications(hw, desc);
3080 
3081 	return hns3_check_dev_specifications(hw);
3082 }
3083 
3084 static int
3085 hns3_get_capability(struct hns3_hw *hw)
3086 {
3087 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3088 	struct rte_pci_device *pci_dev;
3089 	struct hns3_pf *pf = &hns->pf;
3090 	struct rte_eth_dev *eth_dev;
3091 	uint16_t device_id;
3092 	uint8_t revision;
3093 	int ret;
3094 
3095 	eth_dev = &rte_eth_devices[hw->data->port_id];
3096 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3097 	device_id = pci_dev->id.device_id;
3098 
3099 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3100 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
3101 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3102 	    device_id == HNS3_DEV_ID_200G_RDMA)
3103 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3104 
3105 	/* Get PCI revision id */
3106 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3107 				  HNS3_PCI_REVISION_ID);
3108 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
3109 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3110 			     ret);
3111 		return -EIO;
3112 	}
3113 	hw->revision = revision;
3114 
3115 	if (revision < PCI_REVISION_ID_HIP09_A) {
3116 		hns3_set_default_dev_specifications(hw);
3117 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3118 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3119 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3120 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3121 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3122 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3123 		hw->rss_info.ipv6_sctp_offload_supported = false;
3124 		return 0;
3125 	}
3126 
3127 	ret = hns3_query_dev_specifications(hw);
3128 	if (ret) {
3129 		PMD_INIT_LOG(ERR,
3130 			     "failed to query dev specifications, ret = %d",
3131 			     ret);
3132 		return ret;
3133 	}
3134 
3135 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3136 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3137 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3138 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3139 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3140 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3141 	hw->rss_info.ipv6_sctp_offload_supported = true;
3142 
3143 	return 0;
3144 }
3145 
3146 static int
3147 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3148 {
3149 	int ret;
3150 
3151 	switch (media_type) {
3152 	case HNS3_MEDIA_TYPE_COPPER:
3153 		if (!hns3_dev_copper_supported(hw)) {
3154 			PMD_INIT_LOG(ERR,
3155 				     "Media type is copper, not supported.");
3156 			ret = -EOPNOTSUPP;
3157 		} else {
3158 			ret = 0;
3159 		}
3160 		break;
3161 	case HNS3_MEDIA_TYPE_FIBER:
3162 		ret = 0;
3163 		break;
3164 	case HNS3_MEDIA_TYPE_BACKPLANE:
3165 		PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3166 		ret = -EOPNOTSUPP;
3167 		break;
3168 	default:
3169 		PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3170 		ret = -EINVAL;
3171 		break;
3172 	}
3173 
3174 	return ret;
3175 }
3176 
3177 static int
3178 hns3_get_board_configuration(struct hns3_hw *hw)
3179 {
3180 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3181 	struct hns3_pf *pf = &hns->pf;
3182 	struct hns3_cfg cfg;
3183 	int ret;
3184 
3185 	ret = hns3_get_board_cfg(hw, &cfg);
3186 	if (ret) {
3187 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3188 		return ret;
3189 	}
3190 
3191 	ret = hns3_check_media_type(hw, cfg.media_type);
3192 	if (ret)
3193 		return ret;
3194 
3195 	hw->mac.media_type = cfg.media_type;
3196 	hw->rss_size_max = cfg.rss_size_max;
3197 	hw->rss_dis_flag = false;
3198 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3199 	hw->mac.phy_addr = cfg.phy_addr;
3200 	hw->mac.default_addr_setted = false;
3201 	hw->num_tx_desc = cfg.tqp_desc_num;
3202 	hw->num_rx_desc = cfg.tqp_desc_num;
3203 	hw->dcb_info.num_pg = 1;
3204 	hw->dcb_info.hw_pfc_map = 0;
3205 
3206 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3207 	if (ret) {
3208 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3209 			     cfg.default_speed, ret);
3210 		return ret;
3211 	}
3212 
3213 	pf->tc_max = cfg.tc_num;
3214 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3215 		PMD_INIT_LOG(WARNING,
3216 			     "Get TC num(%u) from flash, set TC num to 1",
3217 			     pf->tc_max);
3218 		pf->tc_max = 1;
3219 	}
3220 
3221 	/* Dev does not support DCB */
3222 	if (!hns3_dev_dcb_supported(hw)) {
3223 		pf->tc_max = 1;
3224 		pf->pfc_max = 0;
3225 	} else
3226 		pf->pfc_max = pf->tc_max;
3227 
3228 	hw->dcb_info.num_tc = 1;
3229 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3230 				     hw->tqps_num / hw->dcb_info.num_tc);
3231 	hns3_set_bit(hw->hw_tc_map, 0, 1);
3232 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3233 
3234 	pf->wanted_umv_size = cfg.umv_space;
3235 
3236 	return ret;
3237 }
3238 
3239 static int
3240 hns3_get_configuration(struct hns3_hw *hw)
3241 {
3242 	int ret;
3243 
3244 	ret = hns3_query_function_status(hw);
3245 	if (ret) {
3246 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3247 		return ret;
3248 	}
3249 
3250 	/* Get device capability */
3251 	ret = hns3_get_capability(hw);
3252 	if (ret) {
3253 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3254 		return ret;
3255 	}
3256 
3257 	/* Get pf resource */
3258 	ret = hns3_query_pf_resource(hw);
3259 	if (ret) {
3260 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3261 		return ret;
3262 	}
3263 
3264 	ret = hns3_get_board_configuration(hw);
3265 	if (ret) {
3266 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3267 		return ret;
3268 	}
3269 
3270 	ret = hns3_query_dev_fec_info(hw);
3271 	if (ret)
3272 		PMD_INIT_LOG(ERR,
3273 			     "failed to query FEC information, ret = %d", ret);
3274 
3275 	return ret;
3276 }
3277 
3278 static int
3279 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3280 		      uint16_t tqp_vid, bool is_pf)
3281 {
3282 	struct hns3_tqp_map_cmd *req;
3283 	struct hns3_cmd_desc desc;
3284 	int ret;
3285 
3286 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3287 
3288 	req = (struct hns3_tqp_map_cmd *)desc.data;
3289 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3290 	req->tqp_vf = func_id;
3291 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3292 	if (!is_pf)
3293 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3294 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3295 
3296 	ret = hns3_cmd_send(hw, &desc, 1);
3297 	if (ret)
3298 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3299 
3300 	return ret;
3301 }
3302 
3303 static int
3304 hns3_map_tqp(struct hns3_hw *hw)
3305 {
3306 	int ret;
3307 	int i;
3308 
3309 	/*
3310 	 * In current version, VF is not supported when PF is driven by DPDK
3311 	 * driver, so we assign total tqps_num tqps allocated to this port
3312 	 * to PF.
3313 	 */
3314 	for (i = 0; i < hw->total_tqps_num; i++) {
3315 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3316 		if (ret)
3317 			return ret;
3318 	}
3319 
3320 	return 0;
3321 }
3322 
3323 static int
3324 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3325 {
3326 	struct hns3_config_mac_speed_dup_cmd *req;
3327 	struct hns3_cmd_desc desc;
3328 	int ret;
3329 
3330 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3331 
3332 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3333 
3334 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3335 
3336 	switch (speed) {
3337 	case ETH_SPEED_NUM_10M:
3338 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3339 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3340 		break;
3341 	case ETH_SPEED_NUM_100M:
3342 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3343 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3344 		break;
3345 	case ETH_SPEED_NUM_1G:
3346 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3347 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3348 		break;
3349 	case ETH_SPEED_NUM_10G:
3350 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3351 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3352 		break;
3353 	case ETH_SPEED_NUM_25G:
3354 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3355 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3356 		break;
3357 	case ETH_SPEED_NUM_40G:
3358 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3359 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3360 		break;
3361 	case ETH_SPEED_NUM_50G:
3362 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3363 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3364 		break;
3365 	case ETH_SPEED_NUM_100G:
3366 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3367 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3368 		break;
3369 	case ETH_SPEED_NUM_200G:
3370 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3371 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3372 		break;
3373 	default:
3374 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3375 		return -EINVAL;
3376 	}
3377 
3378 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3379 
3380 	ret = hns3_cmd_send(hw, &desc, 1);
3381 	if (ret)
3382 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3383 
3384 	return ret;
3385 }
3386 
3387 static int
3388 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3389 {
3390 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3391 	struct hns3_pf *pf = &hns->pf;
3392 	struct hns3_priv_buf *priv;
3393 	uint32_t i, total_size;
3394 
3395 	total_size = pf->pkt_buf_size;
3396 
3397 	/* alloc tx buffer for all enabled tc */
3398 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3399 		priv = &buf_alloc->priv_buf[i];
3400 
3401 		if (hw->hw_tc_map & BIT(i)) {
3402 			if (total_size < pf->tx_buf_size)
3403 				return -ENOMEM;
3404 
3405 			priv->tx_buf_size = pf->tx_buf_size;
3406 		} else
3407 			priv->tx_buf_size = 0;
3408 
3409 		total_size -= priv->tx_buf_size;
3410 	}
3411 
3412 	return 0;
3413 }
3414 
3415 static int
3416 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3417 {
3418 /* TX buffer size is unit by 128 byte */
3419 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3420 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3421 	struct hns3_tx_buff_alloc_cmd *req;
3422 	struct hns3_cmd_desc desc;
3423 	uint32_t buf_size;
3424 	uint32_t i;
3425 	int ret;
3426 
3427 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3428 
3429 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3430 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3431 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3432 
3433 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3434 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3435 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3436 	}
3437 
3438 	ret = hns3_cmd_send(hw, &desc, 1);
3439 	if (ret)
3440 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3441 
3442 	return ret;
3443 }
3444 
3445 static int
3446 hns3_get_tc_num(struct hns3_hw *hw)
3447 {
3448 	int cnt = 0;
3449 	uint8_t i;
3450 
3451 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3452 		if (hw->hw_tc_map & BIT(i))
3453 			cnt++;
3454 	return cnt;
3455 }
3456 
3457 static uint32_t
3458 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3459 {
3460 	struct hns3_priv_buf *priv;
3461 	uint32_t rx_priv = 0;
3462 	int i;
3463 
3464 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3465 		priv = &buf_alloc->priv_buf[i];
3466 		if (priv->enable)
3467 			rx_priv += priv->buf_size;
3468 	}
3469 	return rx_priv;
3470 }
3471 
3472 static uint32_t
3473 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3474 {
3475 	uint32_t total_tx_size = 0;
3476 	uint32_t i;
3477 
3478 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3479 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3480 
3481 	return total_tx_size;
3482 }
3483 
3484 /* Get the number of pfc enabled TCs, which have private buffer */
3485 static int
3486 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3487 {
3488 	struct hns3_priv_buf *priv;
3489 	int cnt = 0;
3490 	uint8_t i;
3491 
3492 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3493 		priv = &buf_alloc->priv_buf[i];
3494 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3495 			cnt++;
3496 	}
3497 
3498 	return cnt;
3499 }
3500 
3501 /* Get the number of pfc disabled TCs, which have private buffer */
3502 static int
3503 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3504 			 struct hns3_pkt_buf_alloc *buf_alloc)
3505 {
3506 	struct hns3_priv_buf *priv;
3507 	int cnt = 0;
3508 	uint8_t i;
3509 
3510 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3511 		priv = &buf_alloc->priv_buf[i];
3512 		if (hw->hw_tc_map & BIT(i) &&
3513 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3514 			cnt++;
3515 	}
3516 
3517 	return cnt;
3518 }
3519 
3520 static bool
3521 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3522 		  uint32_t rx_all)
3523 {
3524 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3525 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3526 	struct hns3_pf *pf = &hns->pf;
3527 	uint32_t shared_buf, aligned_mps;
3528 	uint32_t rx_priv;
3529 	uint8_t tc_num;
3530 	uint8_t i;
3531 
3532 	tc_num = hns3_get_tc_num(hw);
3533 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3534 
3535 	if (hns3_dev_dcb_supported(hw))
3536 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3537 					pf->dv_buf_size;
3538 	else
3539 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3540 					+ pf->dv_buf_size;
3541 
3542 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3543 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3544 			     HNS3_BUF_SIZE_UNIT);
3545 
3546 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3547 	if (rx_all < rx_priv + shared_std)
3548 		return false;
3549 
3550 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3551 	buf_alloc->s_buf.buf_size = shared_buf;
3552 	if (hns3_dev_dcb_supported(hw)) {
3553 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3554 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3555 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3556 				  HNS3_BUF_SIZE_UNIT);
3557 	} else {
3558 		buf_alloc->s_buf.self.high =
3559 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3560 		buf_alloc->s_buf.self.low = aligned_mps;
3561 	}
3562 
3563 	if (hns3_dev_dcb_supported(hw)) {
3564 		hi_thrd = shared_buf - pf->dv_buf_size;
3565 
3566 		if (tc_num <= NEED_RESERVE_TC_NUM)
3567 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3568 				  BUF_MAX_PERCENT;
3569 
3570 		if (tc_num)
3571 			hi_thrd = hi_thrd / tc_num;
3572 
3573 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3574 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3575 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3576 	} else {
3577 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3578 		lo_thrd = aligned_mps;
3579 	}
3580 
3581 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3582 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3583 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3584 	}
3585 
3586 	return true;
3587 }
3588 
3589 static bool
3590 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3591 		     struct hns3_pkt_buf_alloc *buf_alloc)
3592 {
3593 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3594 	struct hns3_pf *pf = &hns->pf;
3595 	struct hns3_priv_buf *priv;
3596 	uint32_t aligned_mps;
3597 	uint32_t rx_all;
3598 	uint8_t i;
3599 
3600 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3601 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3602 
3603 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3604 		priv = &buf_alloc->priv_buf[i];
3605 
3606 		priv->enable = 0;
3607 		priv->wl.low = 0;
3608 		priv->wl.high = 0;
3609 		priv->buf_size = 0;
3610 
3611 		if (!(hw->hw_tc_map & BIT(i)))
3612 			continue;
3613 
3614 		priv->enable = 1;
3615 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3616 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3617 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3618 						HNS3_BUF_SIZE_UNIT);
3619 		} else {
3620 			priv->wl.low = 0;
3621 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3622 					aligned_mps;
3623 		}
3624 
3625 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3626 	}
3627 
3628 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3629 }
3630 
3631 static bool
3632 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3633 			     struct hns3_pkt_buf_alloc *buf_alloc)
3634 {
3635 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3636 	struct hns3_pf *pf = &hns->pf;
3637 	struct hns3_priv_buf *priv;
3638 	int no_pfc_priv_num;
3639 	uint32_t rx_all;
3640 	uint8_t mask;
3641 	int i;
3642 
3643 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3644 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3645 
3646 	/* let the last to be cleared first */
3647 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3648 		priv = &buf_alloc->priv_buf[i];
3649 		mask = BIT((uint8_t)i);
3650 
3651 		if (hw->hw_tc_map & mask &&
3652 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3653 			/* Clear the no pfc TC private buffer */
3654 			priv->wl.low = 0;
3655 			priv->wl.high = 0;
3656 			priv->buf_size = 0;
3657 			priv->enable = 0;
3658 			no_pfc_priv_num--;
3659 		}
3660 
3661 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3662 		    no_pfc_priv_num == 0)
3663 			break;
3664 	}
3665 
3666 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3667 }
3668 
3669 static bool
3670 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3671 			   struct hns3_pkt_buf_alloc *buf_alloc)
3672 {
3673 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3674 	struct hns3_pf *pf = &hns->pf;
3675 	struct hns3_priv_buf *priv;
3676 	uint32_t rx_all;
3677 	int pfc_priv_num;
3678 	uint8_t mask;
3679 	int i;
3680 
3681 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3682 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3683 
3684 	/* let the last to be cleared first */
3685 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3686 		priv = &buf_alloc->priv_buf[i];
3687 		mask = BIT((uint8_t)i);
3688 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3689 			/* Reduce the number of pfc TC with private buffer */
3690 			priv->wl.low = 0;
3691 			priv->enable = 0;
3692 			priv->wl.high = 0;
3693 			priv->buf_size = 0;
3694 			pfc_priv_num--;
3695 		}
3696 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3697 		    pfc_priv_num == 0)
3698 			break;
3699 	}
3700 
3701 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3702 }
3703 
3704 static bool
3705 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3706 			  struct hns3_pkt_buf_alloc *buf_alloc)
3707 {
3708 #define COMPENSATE_BUFFER	0x3C00
3709 #define COMPENSATE_HALF_MPS_NUM	5
3710 #define PRIV_WL_GAP		0x1800
3711 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3712 	struct hns3_pf *pf = &hns->pf;
3713 	uint32_t tc_num = hns3_get_tc_num(hw);
3714 	uint32_t half_mps = pf->mps >> 1;
3715 	struct hns3_priv_buf *priv;
3716 	uint32_t min_rx_priv;
3717 	uint32_t rx_priv;
3718 	uint8_t i;
3719 
3720 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3721 	if (tc_num)
3722 		rx_priv = rx_priv / tc_num;
3723 
3724 	if (tc_num <= NEED_RESERVE_TC_NUM)
3725 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3726 
3727 	/*
3728 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3729 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3730 	 * buffer if rx_priv is greater than min_rx_priv.
3731 	 */
3732 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3733 			COMPENSATE_HALF_MPS_NUM * half_mps;
3734 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3735 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3736 
3737 	if (rx_priv < min_rx_priv)
3738 		return false;
3739 
3740 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3741 		priv = &buf_alloc->priv_buf[i];
3742 		priv->enable = 0;
3743 		priv->wl.low = 0;
3744 		priv->wl.high = 0;
3745 		priv->buf_size = 0;
3746 
3747 		if (!(hw->hw_tc_map & BIT(i)))
3748 			continue;
3749 
3750 		priv->enable = 1;
3751 		priv->buf_size = rx_priv;
3752 		priv->wl.high = rx_priv - pf->dv_buf_size;
3753 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3754 	}
3755 
3756 	buf_alloc->s_buf.buf_size = 0;
3757 
3758 	return true;
3759 }
3760 
3761 /*
3762  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3763  * @hw: pointer to struct hns3_hw
3764  * @buf_alloc: pointer to buffer calculation data
3765  * @return: 0: calculate sucessful, negative: fail
3766  */
3767 static int
3768 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3769 {
3770 	/* When DCB is not supported, rx private buffer is not allocated. */
3771 	if (!hns3_dev_dcb_supported(hw)) {
3772 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3773 		struct hns3_pf *pf = &hns->pf;
3774 		uint32_t rx_all = pf->pkt_buf_size;
3775 
3776 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3777 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3778 			return -ENOMEM;
3779 
3780 		return 0;
3781 	}
3782 
3783 	/*
3784 	 * Try to allocate privated packet buffer for all TCs without share
3785 	 * buffer.
3786 	 */
3787 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3788 		return 0;
3789 
3790 	/*
3791 	 * Try to allocate privated packet buffer for all TCs with share
3792 	 * buffer.
3793 	 */
3794 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3795 		return 0;
3796 
3797 	/*
3798 	 * For different application scenes, the enabled port number, TC number
3799 	 * and no_drop TC number are different. In order to obtain the better
3800 	 * performance, software could allocate the buffer size and configure
3801 	 * the waterline by tring to decrease the private buffer size according
3802 	 * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3803 	 * enabled tc.
3804 	 */
3805 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3806 		return 0;
3807 
3808 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3809 		return 0;
3810 
3811 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3812 		return 0;
3813 
3814 	return -ENOMEM;
3815 }
3816 
3817 static int
3818 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3819 {
3820 	struct hns3_rx_priv_buff_cmd *req;
3821 	struct hns3_cmd_desc desc;
3822 	uint32_t buf_size;
3823 	int ret;
3824 	int i;
3825 
3826 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3827 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3828 
3829 	/* Alloc private buffer TCs */
3830 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3831 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3832 
3833 		req->buf_num[i] =
3834 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3835 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3836 	}
3837 
3838 	buf_size = buf_alloc->s_buf.buf_size;
3839 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3840 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3841 
3842 	ret = hns3_cmd_send(hw, &desc, 1);
3843 	if (ret)
3844 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3845 
3846 	return ret;
3847 }
3848 
3849 static int
3850 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3851 {
3852 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3853 	struct hns3_rx_priv_wl_buf *req;
3854 	struct hns3_priv_buf *priv;
3855 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3856 	int i, j;
3857 	int ret;
3858 
3859 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3860 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3861 					  false);
3862 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3863 
3864 		/* The first descriptor set the NEXT bit to 1 */
3865 		if (i == 0)
3866 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3867 		else
3868 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3869 
3870 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3871 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3872 
3873 			priv = &buf_alloc->priv_buf[idx];
3874 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3875 							HNS3_BUF_UNIT_S);
3876 			req->tc_wl[j].high |=
3877 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3878 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3879 							HNS3_BUF_UNIT_S);
3880 			req->tc_wl[j].low |=
3881 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3882 		}
3883 	}
3884 
3885 	/* Send 2 descriptor at one time */
3886 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3887 	if (ret)
3888 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3889 			     ret);
3890 	return ret;
3891 }
3892 
3893 static int
3894 hns3_common_thrd_config(struct hns3_hw *hw,
3895 			struct hns3_pkt_buf_alloc *buf_alloc)
3896 {
3897 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3898 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3899 	struct hns3_rx_com_thrd *req;
3900 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3901 	struct hns3_tc_thrd *tc;
3902 	int tc_idx;
3903 	int i, j;
3904 	int ret;
3905 
3906 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3907 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3908 					  false);
3909 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3910 
3911 		/* The first descriptor set the NEXT bit to 1 */
3912 		if (i == 0)
3913 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3914 		else
3915 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3916 
3917 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3918 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3919 			tc = &s_buf->tc_thrd[tc_idx];
3920 
3921 			req->com_thrd[j].high =
3922 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3923 			req->com_thrd[j].high |=
3924 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3925 			req->com_thrd[j].low =
3926 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3927 			req->com_thrd[j].low |=
3928 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3929 		}
3930 	}
3931 
3932 	/* Send 2 descriptors at one time */
3933 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3934 	if (ret)
3935 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3936 
3937 	return ret;
3938 }
3939 
3940 static int
3941 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3942 {
3943 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3944 	struct hns3_rx_com_wl *req;
3945 	struct hns3_cmd_desc desc;
3946 	int ret;
3947 
3948 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3949 
3950 	req = (struct hns3_rx_com_wl *)desc.data;
3951 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3952 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3953 
3954 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3955 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3956 
3957 	ret = hns3_cmd_send(hw, &desc, 1);
3958 	if (ret)
3959 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3960 
3961 	return ret;
3962 }
3963 
3964 int
3965 hns3_buffer_alloc(struct hns3_hw *hw)
3966 {
3967 	struct hns3_pkt_buf_alloc pkt_buf;
3968 	int ret;
3969 
3970 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3971 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3972 	if (ret) {
3973 		PMD_INIT_LOG(ERR,
3974 			     "could not calc tx buffer size for all TCs %d",
3975 			     ret);
3976 		return ret;
3977 	}
3978 
3979 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3980 	if (ret) {
3981 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3982 		return ret;
3983 	}
3984 
3985 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3986 	if (ret) {
3987 		PMD_INIT_LOG(ERR,
3988 			     "could not calc rx priv buffer size for all TCs %d",
3989 			     ret);
3990 		return ret;
3991 	}
3992 
3993 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3994 	if (ret) {
3995 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3996 		return ret;
3997 	}
3998 
3999 	if (hns3_dev_dcb_supported(hw)) {
4000 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4001 		if (ret) {
4002 			PMD_INIT_LOG(ERR,
4003 				     "could not configure rx private waterline %d",
4004 				     ret);
4005 			return ret;
4006 		}
4007 
4008 		ret = hns3_common_thrd_config(hw, &pkt_buf);
4009 		if (ret) {
4010 			PMD_INIT_LOG(ERR,
4011 				     "could not configure common threshold %d",
4012 				     ret);
4013 			return ret;
4014 		}
4015 	}
4016 
4017 	ret = hns3_common_wl_config(hw, &pkt_buf);
4018 	if (ret)
4019 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4020 			     ret);
4021 
4022 	return ret;
4023 }
4024 
4025 static int
4026 hns3_firmware_compat_config(struct hns3_hw *hw, bool is_init)
4027 {
4028 	struct hns3_firmware_compat_cmd *req;
4029 	struct hns3_cmd_desc desc;
4030 	uint32_t compat = 0;
4031 
4032 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FIRMWARE_COMPAT_CFG, false);
4033 	req = (struct hns3_firmware_compat_cmd *)desc.data;
4034 
4035 	if (is_init) {
4036 		hns3_set_bit(compat, HNS3_LINK_EVENT_REPORT_EN_B, 1);
4037 		hns3_set_bit(compat, HNS3_NCSI_ERROR_REPORT_EN_B, 0);
4038 		if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4039 			hns3_set_bit(compat, HNS3_FIRMWARE_PHY_DRIVER_EN_B, 1);
4040 	}
4041 
4042 	req->compat = rte_cpu_to_le_32(compat);
4043 
4044 	return hns3_cmd_send(hw, &desc, 1);
4045 }
4046 
4047 static int
4048 hns3_mac_init(struct hns3_hw *hw)
4049 {
4050 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4051 	struct hns3_mac *mac = &hw->mac;
4052 	struct hns3_pf *pf = &hns->pf;
4053 	int ret;
4054 
4055 	pf->support_sfp_query = true;
4056 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
4057 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4058 	if (ret) {
4059 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4060 		return ret;
4061 	}
4062 
4063 	mac->link_status = ETH_LINK_DOWN;
4064 
4065 	return hns3_config_mtu(hw, pf->mps);
4066 }
4067 
4068 static int
4069 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4070 {
4071 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
4072 #define HNS3_ETHERTYPE_ALREADY_ADD		1
4073 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
4074 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
4075 	int return_status;
4076 
4077 	if (cmdq_resp) {
4078 		PMD_INIT_LOG(ERR,
4079 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4080 			     cmdq_resp);
4081 		return -EIO;
4082 	}
4083 
4084 	switch (resp_code) {
4085 	case HNS3_ETHERTYPE_SUCCESS_ADD:
4086 	case HNS3_ETHERTYPE_ALREADY_ADD:
4087 		return_status = 0;
4088 		break;
4089 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4090 		PMD_INIT_LOG(ERR,
4091 			     "add mac ethertype failed for manager table overflow.");
4092 		return_status = -EIO;
4093 		break;
4094 	case HNS3_ETHERTYPE_KEY_CONFLICT:
4095 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4096 		return_status = -EIO;
4097 		break;
4098 	default:
4099 		PMD_INIT_LOG(ERR,
4100 			     "add mac ethertype failed for undefined, code=%u.",
4101 			     resp_code);
4102 		return_status = -EIO;
4103 		break;
4104 	}
4105 
4106 	return return_status;
4107 }
4108 
4109 static int
4110 hns3_add_mgr_tbl(struct hns3_hw *hw,
4111 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
4112 {
4113 	struct hns3_cmd_desc desc;
4114 	uint8_t resp_code;
4115 	uint16_t retval;
4116 	int ret;
4117 
4118 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4119 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4120 
4121 	ret = hns3_cmd_send(hw, &desc, 1);
4122 	if (ret) {
4123 		PMD_INIT_LOG(ERR,
4124 			     "add mac ethertype failed for cmd_send, ret =%d.",
4125 			     ret);
4126 		return ret;
4127 	}
4128 
4129 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4130 	retval = rte_le_to_cpu_16(desc.retval);
4131 
4132 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4133 }
4134 
4135 static void
4136 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4137 		     int *table_item_num)
4138 {
4139 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4140 
4141 	/*
4142 	 * In current version, we add one item in management table as below:
4143 	 * 0x0180C200000E -- LLDP MC address
4144 	 */
4145 	tbl = mgr_table;
4146 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4147 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4148 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4149 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4150 	tbl->i_port_bitmap = 0x1;
4151 	*table_item_num = 1;
4152 }
4153 
4154 static int
4155 hns3_init_mgr_tbl(struct hns3_hw *hw)
4156 {
4157 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
4158 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4159 	int table_item_num;
4160 	int ret;
4161 	int i;
4162 
4163 	memset(mgr_table, 0, sizeof(mgr_table));
4164 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4165 	for (i = 0; i < table_item_num; i++) {
4166 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4167 		if (ret) {
4168 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4169 				     ret);
4170 			return ret;
4171 		}
4172 	}
4173 
4174 	return 0;
4175 }
4176 
4177 static void
4178 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4179 			bool en_mc, bool en_bc, int vport_id)
4180 {
4181 	if (!param)
4182 		return;
4183 
4184 	memset(param, 0, sizeof(struct hns3_promisc_param));
4185 	if (en_uc)
4186 		param->enable = HNS3_PROMISC_EN_UC;
4187 	if (en_mc)
4188 		param->enable |= HNS3_PROMISC_EN_MC;
4189 	if (en_bc)
4190 		param->enable |= HNS3_PROMISC_EN_BC;
4191 	param->vf_id = vport_id;
4192 }
4193 
4194 static int
4195 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4196 {
4197 	struct hns3_promisc_cfg_cmd *req;
4198 	struct hns3_cmd_desc desc;
4199 	int ret;
4200 
4201 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4202 
4203 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
4204 	req->vf_id = param->vf_id;
4205 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4206 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4207 
4208 	ret = hns3_cmd_send(hw, &desc, 1);
4209 	if (ret)
4210 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4211 
4212 	return ret;
4213 }
4214 
4215 static int
4216 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4217 {
4218 	struct hns3_promisc_param param;
4219 	bool en_bc_pmc = true;
4220 	uint8_t vf_id;
4221 
4222 	/*
4223 	 * In current version VF is not supported when PF is driven by DPDK
4224 	 * driver, just need to configure parameters for PF vport.
4225 	 */
4226 	vf_id = HNS3_PF_FUNC_ID;
4227 
4228 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4229 	return hns3_cmd_set_promisc_mode(hw, &param);
4230 }
4231 
4232 static int
4233 hns3_promisc_init(struct hns3_hw *hw)
4234 {
4235 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4236 	struct hns3_pf *pf = &hns->pf;
4237 	struct hns3_promisc_param param;
4238 	uint16_t func_id;
4239 	int ret;
4240 
4241 	ret = hns3_set_promisc_mode(hw, false, false);
4242 	if (ret) {
4243 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4244 		return ret;
4245 	}
4246 
4247 	/*
4248 	 * In current version VFs are not supported when PF is driven by DPDK
4249 	 * driver. After PF has been taken over by DPDK, the original VF will
4250 	 * be invalid. So, there is a possibility of entry residues. It should
4251 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4252 	 * during init.
4253 	 */
4254 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4255 		hns3_promisc_param_init(&param, false, false, false, func_id);
4256 		ret = hns3_cmd_set_promisc_mode(hw, &param);
4257 		if (ret) {
4258 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4259 					" ret = %d", func_id, ret);
4260 			return ret;
4261 		}
4262 	}
4263 
4264 	return 0;
4265 }
4266 
4267 static void
4268 hns3_promisc_uninit(struct hns3_hw *hw)
4269 {
4270 	struct hns3_promisc_param param;
4271 	uint16_t func_id;
4272 	int ret;
4273 
4274 	func_id = HNS3_PF_FUNC_ID;
4275 
4276 	/*
4277 	 * In current version VFs are not supported when PF is driven by
4278 	 * DPDK driver, and VFs' promisc mode status has been cleared during
4279 	 * init and their status will not change. So just clear PF's promisc
4280 	 * mode status during uninit.
4281 	 */
4282 	hns3_promisc_param_init(&param, false, false, false, func_id);
4283 	ret = hns3_cmd_set_promisc_mode(hw, &param);
4284 	if (ret)
4285 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4286 				" uninit, ret = %d", ret);
4287 }
4288 
4289 static int
4290 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4291 {
4292 	bool allmulti = dev->data->all_multicast ? true : false;
4293 	struct hns3_adapter *hns = dev->data->dev_private;
4294 	struct hns3_hw *hw = &hns->hw;
4295 	uint64_t offloads;
4296 	int err;
4297 	int ret;
4298 
4299 	rte_spinlock_lock(&hw->lock);
4300 	ret = hns3_set_promisc_mode(hw, true, true);
4301 	if (ret) {
4302 		rte_spinlock_unlock(&hw->lock);
4303 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4304 			 ret);
4305 		return ret;
4306 	}
4307 
4308 	/*
4309 	 * When promiscuous mode was enabled, disable the vlan filter to let
4310 	 * all packets coming in in the receiving direction.
4311 	 */
4312 	offloads = dev->data->dev_conf.rxmode.offloads;
4313 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4314 		ret = hns3_enable_vlan_filter(hns, false);
4315 		if (ret) {
4316 			hns3_err(hw, "failed to enable promiscuous mode due to "
4317 				     "failure to disable vlan filter, ret = %d",
4318 				 ret);
4319 			err = hns3_set_promisc_mode(hw, false, allmulti);
4320 			if (err)
4321 				hns3_err(hw, "failed to restore promiscuous "
4322 					 "status after disable vlan filter "
4323 					 "failed during enabling promiscuous "
4324 					 "mode, ret = %d", ret);
4325 		}
4326 	}
4327 
4328 	rte_spinlock_unlock(&hw->lock);
4329 
4330 	return ret;
4331 }
4332 
4333 static int
4334 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4335 {
4336 	bool allmulti = dev->data->all_multicast ? true : false;
4337 	struct hns3_adapter *hns = dev->data->dev_private;
4338 	struct hns3_hw *hw = &hns->hw;
4339 	uint64_t offloads;
4340 	int err;
4341 	int ret;
4342 
4343 	/* If now in all_multicast mode, must remain in all_multicast mode. */
4344 	rte_spinlock_lock(&hw->lock);
4345 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4346 	if (ret) {
4347 		rte_spinlock_unlock(&hw->lock);
4348 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4349 			 ret);
4350 		return ret;
4351 	}
4352 	/* when promiscuous mode was disabled, restore the vlan filter status */
4353 	offloads = dev->data->dev_conf.rxmode.offloads;
4354 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4355 		ret = hns3_enable_vlan_filter(hns, true);
4356 		if (ret) {
4357 			hns3_err(hw, "failed to disable promiscuous mode due to"
4358 				 " failure to restore vlan filter, ret = %d",
4359 				 ret);
4360 			err = hns3_set_promisc_mode(hw, true, true);
4361 			if (err)
4362 				hns3_err(hw, "failed to restore promiscuous "
4363 					 "status after enabling vlan filter "
4364 					 "failed during disabling promiscuous "
4365 					 "mode, ret = %d", ret);
4366 		}
4367 	}
4368 	rte_spinlock_unlock(&hw->lock);
4369 
4370 	return ret;
4371 }
4372 
4373 static int
4374 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4375 {
4376 	struct hns3_adapter *hns = dev->data->dev_private;
4377 	struct hns3_hw *hw = &hns->hw;
4378 	int ret;
4379 
4380 	if (dev->data->promiscuous)
4381 		return 0;
4382 
4383 	rte_spinlock_lock(&hw->lock);
4384 	ret = hns3_set_promisc_mode(hw, false, true);
4385 	rte_spinlock_unlock(&hw->lock);
4386 	if (ret)
4387 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4388 			 ret);
4389 
4390 	return ret;
4391 }
4392 
4393 static int
4394 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4395 {
4396 	struct hns3_adapter *hns = dev->data->dev_private;
4397 	struct hns3_hw *hw = &hns->hw;
4398 	int ret;
4399 
4400 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4401 	if (dev->data->promiscuous)
4402 		return 0;
4403 
4404 	rte_spinlock_lock(&hw->lock);
4405 	ret = hns3_set_promisc_mode(hw, false, false);
4406 	rte_spinlock_unlock(&hw->lock);
4407 	if (ret)
4408 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4409 			 ret);
4410 
4411 	return ret;
4412 }
4413 
4414 static int
4415 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4416 {
4417 	struct hns3_hw *hw = &hns->hw;
4418 	bool allmulti = hw->data->all_multicast ? true : false;
4419 	int ret;
4420 
4421 	if (hw->data->promiscuous) {
4422 		ret = hns3_set_promisc_mode(hw, true, true);
4423 		if (ret)
4424 			hns3_err(hw, "failed to restore promiscuous mode, "
4425 				 "ret = %d", ret);
4426 		return ret;
4427 	}
4428 
4429 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4430 	if (ret)
4431 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4432 			 ret);
4433 	return ret;
4434 }
4435 
4436 static int
4437 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4438 {
4439 	struct hns3_sfp_speed_cmd *resp;
4440 	struct hns3_cmd_desc desc;
4441 	int ret;
4442 
4443 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4444 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
4445 	ret = hns3_cmd_send(hw, &desc, 1);
4446 	if (ret == -EOPNOTSUPP) {
4447 		hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4448 		return ret;
4449 	} else if (ret) {
4450 		hns3_err(hw, "get sfp speed failed %d", ret);
4451 		return ret;
4452 	}
4453 
4454 	*speed = resp->sfp_speed;
4455 
4456 	return 0;
4457 }
4458 
4459 static uint8_t
4460 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4461 {
4462 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4463 		duplex = ETH_LINK_FULL_DUPLEX;
4464 
4465 	return duplex;
4466 }
4467 
4468 static int
4469 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4470 {
4471 	struct hns3_mac *mac = &hw->mac;
4472 	int ret;
4473 
4474 	duplex = hns3_check_speed_dup(duplex, speed);
4475 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4476 		return 0;
4477 
4478 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4479 	if (ret)
4480 		return ret;
4481 
4482 	ret = hns3_port_shaper_update(hw, speed);
4483 	if (ret)
4484 		return ret;
4485 
4486 	mac->link_speed = speed;
4487 	mac->link_duplex = duplex;
4488 
4489 	return 0;
4490 }
4491 
4492 static int
4493 hns3_update_fiber_link_info(struct hns3_hw *hw)
4494 {
4495 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4496 	uint32_t speed;
4497 	int ret;
4498 
4499 	/* If IMP do not support get SFP/qSFP speed, return directly */
4500 	if (!pf->support_sfp_query)
4501 		return 0;
4502 
4503 	ret = hns3_get_sfp_speed(hw, &speed);
4504 	if (ret == -EOPNOTSUPP) {
4505 		pf->support_sfp_query = false;
4506 		return ret;
4507 	} else if (ret)
4508 		return ret;
4509 
4510 	if (speed == ETH_SPEED_NUM_NONE)
4511 		return 0; /* do nothing if no SFP */
4512 
4513 	/* Config full duplex for SFP */
4514 	return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4515 }
4516 
4517 static void
4518 hns3_parse_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4519 {
4520 	struct hns3_phy_params_bd0_cmd *req;
4521 
4522 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4523 	mac->link_speed = rte_le_to_cpu_32(req->speed);
4524 	mac->link_duplex = hns3_get_bit(req->duplex,
4525 					   HNS3_PHY_DUPLEX_CFG_B);
4526 	mac->link_autoneg = hns3_get_bit(req->autoneg,
4527 					   HNS3_PHY_AUTONEG_CFG_B);
4528 	mac->supported_capa = rte_le_to_cpu_32(req->supported);
4529 	mac->advertising = rte_le_to_cpu_32(req->advertising);
4530 	mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4531 	mac->support_autoneg = !!(mac->supported_capa &
4532 				HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4533 }
4534 
4535 static int
4536 hns3_get_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4537 {
4538 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4539 	uint16_t i;
4540 	int ret;
4541 
4542 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4543 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4544 					  true);
4545 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4546 	}
4547 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4548 
4549 	ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4550 	if (ret) {
4551 		hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4552 		return ret;
4553 	}
4554 
4555 	hns3_parse_phy_params(desc, mac);
4556 
4557 	return 0;
4558 }
4559 
4560 static int
4561 hns3_update_phy_link_info(struct hns3_hw *hw)
4562 {
4563 	struct hns3_mac *mac = &hw->mac;
4564 	struct hns3_mac mac_info;
4565 	int ret;
4566 
4567 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4568 	ret = hns3_get_phy_params(hw, &mac_info);
4569 	if (ret)
4570 		return ret;
4571 
4572 	if (mac_info.link_speed != mac->link_speed) {
4573 		ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4574 		if (ret)
4575 			return ret;
4576 	}
4577 
4578 	mac->link_speed = mac_info.link_speed;
4579 	mac->link_duplex = mac_info.link_duplex;
4580 	mac->link_autoneg = mac_info.link_autoneg;
4581 	mac->supported_capa = mac_info.supported_capa;
4582 	mac->advertising = mac_info.advertising;
4583 	mac->lp_advertising = mac_info.lp_advertising;
4584 	mac->support_autoneg = mac_info.support_autoneg;
4585 
4586 	return 0;
4587 }
4588 
4589 static int
4590 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4591 {
4592 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4593 	struct hns3_hw *hw = &hns->hw;
4594 	int ret = 0;
4595 
4596 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4597 		ret = hns3_update_phy_link_info(hw);
4598 	else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4599 		ret = hns3_update_fiber_link_info(hw);
4600 
4601 	return ret;
4602 }
4603 
4604 static int
4605 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4606 {
4607 	struct hns3_config_mac_mode_cmd *req;
4608 	struct hns3_cmd_desc desc;
4609 	uint32_t loop_en = 0;
4610 	uint8_t val = 0;
4611 	int ret;
4612 
4613 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4614 
4615 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4616 	if (enable)
4617 		val = 1;
4618 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4619 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4620 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4621 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4622 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4623 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4624 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4625 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4626 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4627 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4628 
4629 	/*
4630 	 * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4631 	 * when receiving frames. Otherwise, CRC will be stripped.
4632 	 */
4633 	if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4634 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4635 	else
4636 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4637 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4638 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4639 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4640 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4641 
4642 	ret = hns3_cmd_send(hw, &desc, 1);
4643 	if (ret)
4644 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4645 
4646 	return ret;
4647 }
4648 
4649 static int
4650 hns3_get_mac_link_status(struct hns3_hw *hw)
4651 {
4652 	struct hns3_link_status_cmd *req;
4653 	struct hns3_cmd_desc desc;
4654 	int link_status;
4655 	int ret;
4656 
4657 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4658 	ret = hns3_cmd_send(hw, &desc, 1);
4659 	if (ret) {
4660 		hns3_err(hw, "get link status cmd failed %d", ret);
4661 		return ETH_LINK_DOWN;
4662 	}
4663 
4664 	req = (struct hns3_link_status_cmd *)desc.data;
4665 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4666 
4667 	return !!link_status;
4668 }
4669 
4670 static bool
4671 hns3_update_link_status(struct hns3_hw *hw)
4672 {
4673 	int state;
4674 
4675 	state = hns3_get_mac_link_status(hw);
4676 	if (state != hw->mac.link_status) {
4677 		hw->mac.link_status = state;
4678 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4679 		hns3_config_mac_tnl_int(hw,
4680 					state == ETH_LINK_UP ? true : false);
4681 		return true;
4682 	}
4683 
4684 	return false;
4685 }
4686 
4687 /*
4688  * Current, the PF driver get link status by two ways:
4689  * 1) Periodic polling in the intr thread context, driver call
4690  *    hns3_update_link_status to update link status.
4691  * 2) Firmware report async interrupt, driver process the event in the intr
4692  *    thread context, and call hns3_update_link_status to update link status.
4693  *
4694  * If detect link status changed, driver need report LSE. One method is add the
4695  * report LSE logic in hns3_update_link_status.
4696  *
4697  * But the PF driver ops(link_update) also call hns3_update_link_status to
4698  * update link status.
4699  * If we report LSE in hns3_update_link_status, it may lead to deadlock in the
4700  * bonding application.
4701  *
4702  * So add the one new API which used only in intr thread context.
4703  */
4704 void
4705 hns3_update_link_status_and_event(struct hns3_hw *hw)
4706 {
4707 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4708 	bool changed = hns3_update_link_status(hw);
4709 	if (changed)
4710 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
4711 }
4712 
4713 static void
4714 hns3_service_handler(void *param)
4715 {
4716 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4717 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4718 	struct hns3_hw *hw = &hns->hw;
4719 
4720 	if (!hns3_is_reset_pending(hns)) {
4721 		hns3_update_link_status_and_event(hw);
4722 		hns3_update_link_info(eth_dev);
4723 	} else {
4724 		hns3_warn(hw, "Cancel the query when reset is pending");
4725 	}
4726 
4727 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4728 }
4729 
4730 static int
4731 hns3_init_hardware(struct hns3_adapter *hns)
4732 {
4733 	struct hns3_hw *hw = &hns->hw;
4734 	int ret;
4735 
4736 	ret = hns3_map_tqp(hw);
4737 	if (ret) {
4738 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4739 		return ret;
4740 	}
4741 
4742 	ret = hns3_init_umv_space(hw);
4743 	if (ret) {
4744 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4745 		return ret;
4746 	}
4747 
4748 	ret = hns3_mac_init(hw);
4749 	if (ret) {
4750 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4751 		goto err_mac_init;
4752 	}
4753 
4754 	ret = hns3_init_mgr_tbl(hw);
4755 	if (ret) {
4756 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4757 		goto err_mac_init;
4758 	}
4759 
4760 	ret = hns3_promisc_init(hw);
4761 	if (ret) {
4762 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4763 			     ret);
4764 		goto err_mac_init;
4765 	}
4766 
4767 	ret = hns3_init_vlan_config(hns);
4768 	if (ret) {
4769 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4770 		goto err_mac_init;
4771 	}
4772 
4773 	ret = hns3_dcb_init(hw);
4774 	if (ret) {
4775 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4776 		goto err_mac_init;
4777 	}
4778 
4779 	ret = hns3_init_fd_config(hns);
4780 	if (ret) {
4781 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4782 		goto err_mac_init;
4783 	}
4784 
4785 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4786 	if (ret) {
4787 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4788 		goto err_mac_init;
4789 	}
4790 
4791 	ret = hns3_config_gro(hw, false);
4792 	if (ret) {
4793 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4794 		goto err_mac_init;
4795 	}
4796 
4797 	/*
4798 	 * In the initialization clearing the all hardware mapping relationship
4799 	 * configurations between queues and interrupt vectors is needed, so
4800 	 * some error caused by the residual configurations, such as the
4801 	 * unexpected interrupt, can be avoid.
4802 	 */
4803 	ret = hns3_init_ring_with_vector(hw);
4804 	if (ret) {
4805 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4806 		goto err_mac_init;
4807 	}
4808 
4809 	/*
4810 	 * Requiring firmware to enable some features, driver can
4811 	 * still work without it.
4812 	 */
4813 	ret = hns3_firmware_compat_config(hw, true);
4814 	if (ret)
4815 		PMD_INIT_LOG(WARNING, "firmware compatible features not "
4816 			     "supported, ret = %d.", ret);
4817 
4818 	return 0;
4819 
4820 err_mac_init:
4821 	hns3_uninit_umv_space(hw);
4822 	return ret;
4823 }
4824 
4825 static int
4826 hns3_clear_hw(struct hns3_hw *hw)
4827 {
4828 	struct hns3_cmd_desc desc;
4829 	int ret;
4830 
4831 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4832 
4833 	ret = hns3_cmd_send(hw, &desc, 1);
4834 	if (ret && ret != -EOPNOTSUPP)
4835 		return ret;
4836 
4837 	return 0;
4838 }
4839 
4840 static void
4841 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4842 {
4843 	uint32_t val;
4844 
4845 	/*
4846 	 * The new firmware support report more hardware error types by
4847 	 * msix mode. These errors are defined as RAS errors in hardware
4848 	 * and belong to a different type from the MSI-x errors processed
4849 	 * by the network driver.
4850 	 *
4851 	 * Network driver should open the new error report on initialition
4852 	 */
4853 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4854 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4855 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4856 }
4857 
4858 static int
4859 hns3_init_pf(struct rte_eth_dev *eth_dev)
4860 {
4861 	struct rte_device *dev = eth_dev->device;
4862 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4863 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4864 	struct hns3_hw *hw = &hns->hw;
4865 	int ret;
4866 
4867 	PMD_INIT_FUNC_TRACE();
4868 
4869 	/* Get hardware io base address from pcie BAR2 IO space */
4870 	hw->io_base = pci_dev->mem_resource[2].addr;
4871 
4872 	/* Firmware command queue initialize */
4873 	ret = hns3_cmd_init_queue(hw);
4874 	if (ret) {
4875 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4876 		goto err_cmd_init_queue;
4877 	}
4878 
4879 	hns3_clear_all_event_cause(hw);
4880 
4881 	/* Firmware command initialize */
4882 	ret = hns3_cmd_init(hw);
4883 	if (ret) {
4884 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4885 		goto err_cmd_init;
4886 	}
4887 
4888 	/*
4889 	 * To ensure that the hardware environment is clean during
4890 	 * initialization, the driver actively clear the hardware environment
4891 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4892 	 * flow table configurations, etc.
4893 	 */
4894 	ret = hns3_clear_hw(hw);
4895 	if (ret) {
4896 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4897 		goto err_cmd_init;
4898 	}
4899 
4900 	/* Hardware statistics of imissed registers cleared. */
4901 	ret = hns3_update_imissed_stats(hw, true);
4902 	if (ret) {
4903 		hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
4904 		return ret;
4905 	}
4906 
4907 	hns3_config_all_msix_error(hw, true);
4908 
4909 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
4910 					 hns3_interrupt_handler,
4911 					 eth_dev);
4912 	if (ret) {
4913 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4914 		goto err_intr_callback_register;
4915 	}
4916 
4917 	/* Enable interrupt */
4918 	rte_intr_enable(&pci_dev->intr_handle);
4919 	hns3_pf_enable_irq0(hw);
4920 
4921 	/* Get configuration */
4922 	ret = hns3_get_configuration(hw);
4923 	if (ret) {
4924 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4925 		goto err_get_config;
4926 	}
4927 
4928 	ret = hns3_tqp_stats_init(hw);
4929 	if (ret)
4930 		goto err_get_config;
4931 
4932 	ret = hns3_init_hardware(hns);
4933 	if (ret) {
4934 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4935 		goto err_init_hw;
4936 	}
4937 
4938 	/* Initialize flow director filter list & hash */
4939 	ret = hns3_fdir_filter_init(hns);
4940 	if (ret) {
4941 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4942 		goto err_fdir;
4943 	}
4944 
4945 	hns3_rss_set_default_args(hw);
4946 
4947 	ret = hns3_enable_hw_error_intr(hns, true);
4948 	if (ret) {
4949 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4950 			     ret);
4951 		goto err_enable_intr;
4952 	}
4953 
4954 	hns3_tm_conf_init(eth_dev);
4955 
4956 	return 0;
4957 
4958 err_enable_intr:
4959 	hns3_fdir_filter_uninit(hns);
4960 err_fdir:
4961 	(void)hns3_firmware_compat_config(hw, false);
4962 	hns3_uninit_umv_space(hw);
4963 err_init_hw:
4964 	hns3_tqp_stats_uninit(hw);
4965 err_get_config:
4966 	hns3_pf_disable_irq0(hw);
4967 	rte_intr_disable(&pci_dev->intr_handle);
4968 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4969 			     eth_dev);
4970 err_intr_callback_register:
4971 err_cmd_init:
4972 	hns3_cmd_uninit(hw);
4973 	hns3_cmd_destroy_queue(hw);
4974 err_cmd_init_queue:
4975 	hw->io_base = NULL;
4976 
4977 	return ret;
4978 }
4979 
4980 static void
4981 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4982 {
4983 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4984 	struct rte_device *dev = eth_dev->device;
4985 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4986 	struct hns3_hw *hw = &hns->hw;
4987 
4988 	PMD_INIT_FUNC_TRACE();
4989 
4990 	hns3_tm_conf_uninit(eth_dev);
4991 	hns3_enable_hw_error_intr(hns, false);
4992 	hns3_rss_uninit(hns);
4993 	(void)hns3_config_gro(hw, false);
4994 	hns3_promisc_uninit(hw);
4995 	hns3_fdir_filter_uninit(hns);
4996 	(void)hns3_firmware_compat_config(hw, false);
4997 	hns3_uninit_umv_space(hw);
4998 	hns3_tqp_stats_uninit(hw);
4999 	hns3_config_mac_tnl_int(hw, false);
5000 	hns3_pf_disable_irq0(hw);
5001 	rte_intr_disable(&pci_dev->intr_handle);
5002 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5003 			     eth_dev);
5004 	hns3_config_all_msix_error(hw, false);
5005 	hns3_cmd_uninit(hw);
5006 	hns3_cmd_destroy_queue(hw);
5007 	hw->io_base = NULL;
5008 }
5009 
5010 static int
5011 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5012 {
5013 	struct hns3_hw *hw = &hns->hw;
5014 	int ret;
5015 
5016 	ret = hns3_dcb_cfg_update(hns);
5017 	if (ret)
5018 		return ret;
5019 
5020 	/*
5021 	 * The hns3_dcb_cfg_update may configure TM module, so
5022 	 * hns3_tm_conf_update must called later.
5023 	 */
5024 	ret = hns3_tm_conf_update(hw);
5025 	if (ret) {
5026 		PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5027 		return ret;
5028 	}
5029 
5030 	hns3_enable_rxd_adv_layout(hw);
5031 
5032 	ret = hns3_init_queues(hns, reset_queue);
5033 	if (ret) {
5034 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5035 		return ret;
5036 	}
5037 
5038 	ret = hns3_cfg_mac_mode(hw, true);
5039 	if (ret) {
5040 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5041 		goto err_config_mac_mode;
5042 	}
5043 	return 0;
5044 
5045 err_config_mac_mode:
5046 	hns3_dev_release_mbufs(hns);
5047 	/*
5048 	 * Here is exception handling, hns3_reset_all_tqps will have the
5049 	 * corresponding error message if it is handled incorrectly, so it is
5050 	 * not necessary to check hns3_reset_all_tqps return value, here keep
5051 	 * ret as the error code causing the exception.
5052 	 */
5053 	(void)hns3_reset_all_tqps(hns);
5054 	return ret;
5055 }
5056 
5057 static int
5058 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5059 {
5060 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5061 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5062 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5063 	uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5064 	uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5065 	uint32_t intr_vector;
5066 	uint16_t q_id;
5067 	int ret;
5068 
5069 	/*
5070 	 * hns3 needs a separate interrupt to be used as event interrupt which
5071 	 * could not be shared with task queue pair, so KERNEL drivers need
5072 	 * support multiple interrupt vectors.
5073 	 */
5074 	if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5075 	    !rte_intr_cap_multiple(intr_handle))
5076 		return 0;
5077 
5078 	rte_intr_disable(intr_handle);
5079 	intr_vector = hw->used_rx_queues;
5080 	/* creates event fd for each intr vector when MSIX is used */
5081 	if (rte_intr_efd_enable(intr_handle, intr_vector))
5082 		return -EINVAL;
5083 
5084 	if (intr_handle->intr_vec == NULL) {
5085 		intr_handle->intr_vec =
5086 			rte_zmalloc("intr_vec",
5087 				    hw->used_rx_queues * sizeof(int), 0);
5088 		if (intr_handle->intr_vec == NULL) {
5089 			hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5090 					hw->used_rx_queues);
5091 			ret = -ENOMEM;
5092 			goto alloc_intr_vec_error;
5093 		}
5094 	}
5095 
5096 	if (rte_intr_allow_others(intr_handle)) {
5097 		vec = RTE_INTR_VEC_RXTX_OFFSET;
5098 		base = RTE_INTR_VEC_RXTX_OFFSET;
5099 	}
5100 
5101 	for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5102 		ret = hns3_bind_ring_with_vector(hw, vec, true,
5103 						 HNS3_RING_TYPE_RX, q_id);
5104 		if (ret)
5105 			goto bind_vector_error;
5106 		intr_handle->intr_vec[q_id] = vec;
5107 		/*
5108 		 * If there are not enough efds (e.g. not enough interrupt),
5109 		 * remaining queues will be bond to the last interrupt.
5110 		 */
5111 		if (vec < base + intr_handle->nb_efd - 1)
5112 			vec++;
5113 	}
5114 	rte_intr_enable(intr_handle);
5115 	return 0;
5116 
5117 bind_vector_error:
5118 	rte_free(intr_handle->intr_vec);
5119 	intr_handle->intr_vec = NULL;
5120 alloc_intr_vec_error:
5121 	rte_intr_efd_disable(intr_handle);
5122 	return ret;
5123 }
5124 
5125 static int
5126 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5127 {
5128 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5129 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5130 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5131 	uint16_t q_id;
5132 	int ret;
5133 
5134 	if (dev->data->dev_conf.intr_conf.rxq == 0)
5135 		return 0;
5136 
5137 	if (rte_intr_dp_is_en(intr_handle)) {
5138 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5139 			ret = hns3_bind_ring_with_vector(hw,
5140 					intr_handle->intr_vec[q_id], true,
5141 					HNS3_RING_TYPE_RX, q_id);
5142 			if (ret)
5143 				return ret;
5144 		}
5145 	}
5146 
5147 	return 0;
5148 }
5149 
5150 static void
5151 hns3_restore_filter(struct rte_eth_dev *dev)
5152 {
5153 	hns3_restore_rss_filter(dev);
5154 }
5155 
5156 static int
5157 hns3_dev_start(struct rte_eth_dev *dev)
5158 {
5159 	struct hns3_adapter *hns = dev->data->dev_private;
5160 	struct hns3_hw *hw = &hns->hw;
5161 	int ret;
5162 
5163 	PMD_INIT_FUNC_TRACE();
5164 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5165 		return -EBUSY;
5166 
5167 	rte_spinlock_lock(&hw->lock);
5168 	hw->adapter_state = HNS3_NIC_STARTING;
5169 
5170 	ret = hns3_do_start(hns, true);
5171 	if (ret) {
5172 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5173 		rte_spinlock_unlock(&hw->lock);
5174 		return ret;
5175 	}
5176 	ret = hns3_map_rx_interrupt(dev);
5177 	if (ret)
5178 		goto map_rx_inter_err;
5179 
5180 	/*
5181 	 * There are three register used to control the status of a TQP
5182 	 * (contains a pair of Tx queue and Rx queue) in the new version network
5183 	 * engine. One is used to control the enabling of Tx queue, the other is
5184 	 * used to control the enabling of Rx queue, and the last is the master
5185 	 * switch used to control the enabling of the tqp. The Tx register and
5186 	 * TQP register must be enabled at the same time to enable a Tx queue.
5187 	 * The same applies to the Rx queue. For the older network engine, this
5188 	 * function only refresh the enabled flag, and it is used to update the
5189 	 * status of queue in the dpdk framework.
5190 	 */
5191 	ret = hns3_start_all_txqs(dev);
5192 	if (ret)
5193 		goto map_rx_inter_err;
5194 
5195 	ret = hns3_start_all_rxqs(dev);
5196 	if (ret)
5197 		goto start_all_rxqs_fail;
5198 
5199 	hw->adapter_state = HNS3_NIC_STARTED;
5200 	rte_spinlock_unlock(&hw->lock);
5201 
5202 	hns3_rx_scattered_calc(dev);
5203 	hns3_set_rxtx_function(dev);
5204 	hns3_mp_req_start_rxtx(dev);
5205 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5206 
5207 	hns3_restore_filter(dev);
5208 
5209 	/* Enable interrupt of all rx queues before enabling queues */
5210 	hns3_dev_all_rx_queue_intr_enable(hw, true);
5211 
5212 	/*
5213 	 * After finished the initialization, enable tqps to receive/transmit
5214 	 * packets and refresh all queue status.
5215 	 */
5216 	hns3_start_tqps(hw);
5217 
5218 	hns3_tm_dev_start_proc(hw);
5219 
5220 	hns3_info(hw, "hns3 dev start successful!");
5221 
5222 	return 0;
5223 
5224 start_all_rxqs_fail:
5225 	hns3_stop_all_txqs(dev);
5226 map_rx_inter_err:
5227 	(void)hns3_do_stop(hns);
5228 	hw->adapter_state = HNS3_NIC_CONFIGURED;
5229 	rte_spinlock_unlock(&hw->lock);
5230 
5231 	return ret;
5232 }
5233 
5234 static int
5235 hns3_do_stop(struct hns3_adapter *hns)
5236 {
5237 	struct hns3_hw *hw = &hns->hw;
5238 	int ret;
5239 
5240 	/*
5241 	 * The "hns3_do_stop" function will also be called by .stop_service to
5242 	 * prepare reset. At the time of global or IMP reset, the command cannot
5243 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5244 	 * accessed during the reset process. So the mbuf can not be released
5245 	 * during reset and is required to be released after the reset is
5246 	 * completed.
5247 	 */
5248 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5249 		hns3_dev_release_mbufs(hns);
5250 
5251 	ret = hns3_cfg_mac_mode(hw, false);
5252 	if (ret)
5253 		return ret;
5254 	hw->mac.link_status = ETH_LINK_DOWN;
5255 
5256 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5257 		hns3_configure_all_mac_addr(hns, true);
5258 		ret = hns3_reset_all_tqps(hns);
5259 		if (ret) {
5260 			hns3_err(hw, "failed to reset all queues ret = %d.",
5261 				 ret);
5262 			return ret;
5263 		}
5264 	}
5265 	hw->mac.default_addr_setted = false;
5266 	return 0;
5267 }
5268 
5269 static void
5270 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5271 {
5272 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5273 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5274 	struct hns3_adapter *hns = dev->data->dev_private;
5275 	struct hns3_hw *hw = &hns->hw;
5276 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5277 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5278 	uint16_t q_id;
5279 
5280 	if (dev->data->dev_conf.intr_conf.rxq == 0)
5281 		return;
5282 
5283 	/* unmap the ring with vector */
5284 	if (rte_intr_allow_others(intr_handle)) {
5285 		vec = RTE_INTR_VEC_RXTX_OFFSET;
5286 		base = RTE_INTR_VEC_RXTX_OFFSET;
5287 	}
5288 	if (rte_intr_dp_is_en(intr_handle)) {
5289 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5290 			(void)hns3_bind_ring_with_vector(hw, vec, false,
5291 							 HNS3_RING_TYPE_RX,
5292 							 q_id);
5293 			if (vec < base + intr_handle->nb_efd - 1)
5294 				vec++;
5295 		}
5296 	}
5297 	/* Clean datapath event and queue/vec mapping */
5298 	rte_intr_efd_disable(intr_handle);
5299 	if (intr_handle->intr_vec) {
5300 		rte_free(intr_handle->intr_vec);
5301 		intr_handle->intr_vec = NULL;
5302 	}
5303 }
5304 
5305 static int
5306 hns3_dev_stop(struct rte_eth_dev *dev)
5307 {
5308 	struct hns3_adapter *hns = dev->data->dev_private;
5309 	struct hns3_hw *hw = &hns->hw;
5310 
5311 	PMD_INIT_FUNC_TRACE();
5312 	dev->data->dev_started = 0;
5313 
5314 	hw->adapter_state = HNS3_NIC_STOPPING;
5315 	hns3_set_rxtx_function(dev);
5316 	rte_wmb();
5317 	/* Disable datapath on secondary process. */
5318 	hns3_mp_req_stop_rxtx(dev);
5319 	/* Prevent crashes when queues are still in use. */
5320 	rte_delay_ms(hw->tqps_num);
5321 
5322 	rte_spinlock_lock(&hw->lock);
5323 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5324 		hns3_tm_dev_stop_proc(hw);
5325 		hns3_config_mac_tnl_int(hw, false);
5326 		hns3_stop_tqps(hw);
5327 		hns3_do_stop(hns);
5328 		hns3_unmap_rx_interrupt(dev);
5329 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5330 	}
5331 	hns3_rx_scattered_reset(dev);
5332 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5333 	rte_spinlock_unlock(&hw->lock);
5334 
5335 	return 0;
5336 }
5337 
5338 static int
5339 hns3_dev_close(struct rte_eth_dev *eth_dev)
5340 {
5341 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5342 	struct hns3_hw *hw = &hns->hw;
5343 	int ret = 0;
5344 
5345 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5346 		rte_free(eth_dev->process_private);
5347 		eth_dev->process_private = NULL;
5348 		return 0;
5349 	}
5350 
5351 	if (hw->adapter_state == HNS3_NIC_STARTED)
5352 		ret = hns3_dev_stop(eth_dev);
5353 
5354 	hw->adapter_state = HNS3_NIC_CLOSING;
5355 	hns3_reset_abort(hns);
5356 	hw->adapter_state = HNS3_NIC_CLOSED;
5357 
5358 	hns3_configure_all_mc_mac_addr(hns, true);
5359 	hns3_remove_all_vlan_table(hns);
5360 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5361 	hns3_uninit_pf(eth_dev);
5362 	hns3_free_all_queues(eth_dev);
5363 	rte_free(hw->reset.wait_data);
5364 	rte_free(eth_dev->process_private);
5365 	eth_dev->process_private = NULL;
5366 	hns3_mp_uninit_primary();
5367 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5368 
5369 	return ret;
5370 }
5371 
5372 static int
5373 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5374 {
5375 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5376 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5377 
5378 	fc_conf->pause_time = pf->pause_time;
5379 
5380 	/* return fc current mode */
5381 	switch (hw->current_mode) {
5382 	case HNS3_FC_FULL:
5383 		fc_conf->mode = RTE_FC_FULL;
5384 		break;
5385 	case HNS3_FC_TX_PAUSE:
5386 		fc_conf->mode = RTE_FC_TX_PAUSE;
5387 		break;
5388 	case HNS3_FC_RX_PAUSE:
5389 		fc_conf->mode = RTE_FC_RX_PAUSE;
5390 		break;
5391 	case HNS3_FC_NONE:
5392 	default:
5393 		fc_conf->mode = RTE_FC_NONE;
5394 		break;
5395 	}
5396 
5397 	return 0;
5398 }
5399 
5400 static void
5401 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
5402 {
5403 	switch (mode) {
5404 	case RTE_FC_NONE:
5405 		hw->requested_mode = HNS3_FC_NONE;
5406 		break;
5407 	case RTE_FC_RX_PAUSE:
5408 		hw->requested_mode = HNS3_FC_RX_PAUSE;
5409 		break;
5410 	case RTE_FC_TX_PAUSE:
5411 		hw->requested_mode = HNS3_FC_TX_PAUSE;
5412 		break;
5413 	case RTE_FC_FULL:
5414 		hw->requested_mode = HNS3_FC_FULL;
5415 		break;
5416 	default:
5417 		hw->requested_mode = HNS3_FC_NONE;
5418 		hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
5419 			  "configured to RTE_FC_NONE", mode);
5420 		break;
5421 	}
5422 }
5423 
5424 static int
5425 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5426 {
5427 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5428 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5429 	int ret;
5430 
5431 	if (fc_conf->high_water || fc_conf->low_water ||
5432 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5433 		hns3_err(hw, "Unsupported flow control settings specified, "
5434 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5435 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5436 			 fc_conf->high_water, fc_conf->low_water,
5437 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5438 		return -EINVAL;
5439 	}
5440 	if (fc_conf->autoneg) {
5441 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5442 		return -EINVAL;
5443 	}
5444 	if (!fc_conf->pause_time) {
5445 		hns3_err(hw, "Invalid pause time %u setting.",
5446 			 fc_conf->pause_time);
5447 		return -EINVAL;
5448 	}
5449 
5450 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5451 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5452 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5453 			 "current_fc_status = %d", hw->current_fc_status);
5454 		return -EOPNOTSUPP;
5455 	}
5456 
5457 	hns3_get_fc_mode(hw, fc_conf->mode);
5458 	if (hw->requested_mode == hw->current_mode &&
5459 	    pf->pause_time == fc_conf->pause_time)
5460 		return 0;
5461 
5462 	rte_spinlock_lock(&hw->lock);
5463 	ret = hns3_fc_enable(dev, fc_conf);
5464 	rte_spinlock_unlock(&hw->lock);
5465 
5466 	return ret;
5467 }
5468 
5469 static int
5470 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5471 			    struct rte_eth_pfc_conf *pfc_conf)
5472 {
5473 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5474 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5475 	uint8_t priority;
5476 	int ret;
5477 
5478 	if (!hns3_dev_dcb_supported(hw)) {
5479 		hns3_err(hw, "This port does not support dcb configurations.");
5480 		return -EOPNOTSUPP;
5481 	}
5482 
5483 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5484 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5485 		hns3_err(hw, "Unsupported flow control settings specified, "
5486 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5487 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5488 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5489 			 pfc_conf->fc.send_xon,
5490 			 pfc_conf->fc.mac_ctrl_frame_fwd);
5491 		return -EINVAL;
5492 	}
5493 	if (pfc_conf->fc.autoneg) {
5494 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5495 		return -EINVAL;
5496 	}
5497 	if (pfc_conf->fc.pause_time == 0) {
5498 		hns3_err(hw, "Invalid pause time %u setting.",
5499 			 pfc_conf->fc.pause_time);
5500 		return -EINVAL;
5501 	}
5502 
5503 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5504 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5505 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5506 			     "current_fc_status = %d", hw->current_fc_status);
5507 		return -EOPNOTSUPP;
5508 	}
5509 
5510 	priority = pfc_conf->priority;
5511 	hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5512 	if (hw->dcb_info.pfc_en & BIT(priority) &&
5513 	    hw->requested_mode == hw->current_mode &&
5514 	    pfc_conf->fc.pause_time == pf->pause_time)
5515 		return 0;
5516 
5517 	rte_spinlock_lock(&hw->lock);
5518 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5519 	rte_spinlock_unlock(&hw->lock);
5520 
5521 	return ret;
5522 }
5523 
5524 static int
5525 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5526 {
5527 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5528 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5529 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5530 	int i;
5531 
5532 	rte_spinlock_lock(&hw->lock);
5533 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5534 		dcb_info->nb_tcs = pf->local_max_tc;
5535 	else
5536 		dcb_info->nb_tcs = 1;
5537 
5538 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5539 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5540 	for (i = 0; i < dcb_info->nb_tcs; i++)
5541 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5542 
5543 	for (i = 0; i < hw->num_tc; i++) {
5544 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5545 		dcb_info->tc_queue.tc_txq[0][i].base =
5546 						hw->tc_queue[i].tqp_offset;
5547 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5548 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5549 						hw->tc_queue[i].tqp_count;
5550 	}
5551 	rte_spinlock_unlock(&hw->lock);
5552 
5553 	return 0;
5554 }
5555 
5556 static int
5557 hns3_reinit_dev(struct hns3_adapter *hns)
5558 {
5559 	struct hns3_hw *hw = &hns->hw;
5560 	int ret;
5561 
5562 	ret = hns3_cmd_init(hw);
5563 	if (ret) {
5564 		hns3_err(hw, "Failed to init cmd: %d", ret);
5565 		return ret;
5566 	}
5567 
5568 	ret = hns3_reset_all_tqps(hns);
5569 	if (ret) {
5570 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5571 		return ret;
5572 	}
5573 
5574 	ret = hns3_init_hardware(hns);
5575 	if (ret) {
5576 		hns3_err(hw, "Failed to init hardware: %d", ret);
5577 		return ret;
5578 	}
5579 
5580 	ret = hns3_enable_hw_error_intr(hns, true);
5581 	if (ret) {
5582 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5583 			     ret);
5584 		return ret;
5585 	}
5586 	hns3_info(hw, "Reset done, driver initialization finished.");
5587 
5588 	return 0;
5589 }
5590 
5591 static bool
5592 is_pf_reset_done(struct hns3_hw *hw)
5593 {
5594 	uint32_t val, reg, reg_bit;
5595 
5596 	switch (hw->reset.level) {
5597 	case HNS3_IMP_RESET:
5598 		reg = HNS3_GLOBAL_RESET_REG;
5599 		reg_bit = HNS3_IMP_RESET_BIT;
5600 		break;
5601 	case HNS3_GLOBAL_RESET:
5602 		reg = HNS3_GLOBAL_RESET_REG;
5603 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5604 		break;
5605 	case HNS3_FUNC_RESET:
5606 		reg = HNS3_FUN_RST_ING;
5607 		reg_bit = HNS3_FUN_RST_ING_B;
5608 		break;
5609 	case HNS3_FLR_RESET:
5610 	default:
5611 		hns3_err(hw, "Wait for unsupported reset level: %d",
5612 			 hw->reset.level);
5613 		return true;
5614 	}
5615 	val = hns3_read_dev(hw, reg);
5616 	if (hns3_get_bit(val, reg_bit))
5617 		return false;
5618 	else
5619 		return true;
5620 }
5621 
5622 bool
5623 hns3_is_reset_pending(struct hns3_adapter *hns)
5624 {
5625 	struct hns3_hw *hw = &hns->hw;
5626 	enum hns3_reset_level reset;
5627 
5628 	hns3_check_event_cause(hns, NULL);
5629 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5630 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5631 		hns3_warn(hw, "High level reset %d is pending", reset);
5632 		return true;
5633 	}
5634 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5635 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5636 		hns3_warn(hw, "High level reset %d is request", reset);
5637 		return true;
5638 	}
5639 	return false;
5640 }
5641 
5642 static int
5643 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5644 {
5645 	struct hns3_hw *hw = &hns->hw;
5646 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5647 	struct timeval tv;
5648 
5649 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5650 		return 0;
5651 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5652 		gettimeofday(&tv, NULL);
5653 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5654 			  tv.tv_sec, tv.tv_usec);
5655 		return -ETIME;
5656 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5657 		return -EAGAIN;
5658 
5659 	wait_data->hns = hns;
5660 	wait_data->check_completion = is_pf_reset_done;
5661 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5662 				      HNS3_RESET_WAIT_MS + get_timeofday_ms();
5663 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5664 	wait_data->count = HNS3_RESET_WAIT_CNT;
5665 	wait_data->result = HNS3_WAIT_REQUEST;
5666 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5667 	return -EAGAIN;
5668 }
5669 
5670 static int
5671 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5672 {
5673 	struct hns3_cmd_desc desc;
5674 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5675 
5676 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5677 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5678 	req->fun_reset_vfid = func_id;
5679 
5680 	return hns3_cmd_send(hw, &desc, 1);
5681 }
5682 
5683 static int
5684 hns3_imp_reset_cmd(struct hns3_hw *hw)
5685 {
5686 	struct hns3_cmd_desc desc;
5687 
5688 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5689 	desc.data[0] = 0xeedd;
5690 
5691 	return hns3_cmd_send(hw, &desc, 1);
5692 }
5693 
5694 static void
5695 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5696 {
5697 	struct hns3_hw *hw = &hns->hw;
5698 	struct timeval tv;
5699 	uint32_t val;
5700 
5701 	gettimeofday(&tv, NULL);
5702 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5703 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5704 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5705 			  tv.tv_sec, tv.tv_usec);
5706 		return;
5707 	}
5708 
5709 	switch (reset_level) {
5710 	case HNS3_IMP_RESET:
5711 		hns3_imp_reset_cmd(hw);
5712 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5713 			  tv.tv_sec, tv.tv_usec);
5714 		break;
5715 	case HNS3_GLOBAL_RESET:
5716 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5717 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5718 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5719 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5720 			  tv.tv_sec, tv.tv_usec);
5721 		break;
5722 	case HNS3_FUNC_RESET:
5723 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5724 			  tv.tv_sec, tv.tv_usec);
5725 		/* schedule again to check later */
5726 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5727 		hns3_schedule_reset(hns);
5728 		break;
5729 	default:
5730 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5731 		return;
5732 	}
5733 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5734 }
5735 
5736 static enum hns3_reset_level
5737 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5738 {
5739 	struct hns3_hw *hw = &hns->hw;
5740 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5741 
5742 	/* Return the highest priority reset level amongst all */
5743 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5744 		reset_level = HNS3_IMP_RESET;
5745 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5746 		reset_level = HNS3_GLOBAL_RESET;
5747 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5748 		reset_level = HNS3_FUNC_RESET;
5749 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5750 		reset_level = HNS3_FLR_RESET;
5751 
5752 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5753 		return HNS3_NONE_RESET;
5754 
5755 	return reset_level;
5756 }
5757 
5758 static void
5759 hns3_record_imp_error(struct hns3_adapter *hns)
5760 {
5761 	struct hns3_hw *hw = &hns->hw;
5762 	uint32_t reg_val;
5763 
5764 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5765 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5766 		hns3_warn(hw, "Detected IMP RD poison!");
5767 		hns3_error_int_stats_add(hns, "IMP_RD_POISON_INT_STS");
5768 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5769 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5770 	}
5771 
5772 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5773 		hns3_warn(hw, "Detected IMP CMDQ error!");
5774 		hns3_error_int_stats_add(hns, "CMDQ_MEM_ECC_INT_STS");
5775 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5776 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5777 	}
5778 }
5779 
5780 static int
5781 hns3_prepare_reset(struct hns3_adapter *hns)
5782 {
5783 	struct hns3_hw *hw = &hns->hw;
5784 	uint32_t reg_val;
5785 	int ret;
5786 
5787 	switch (hw->reset.level) {
5788 	case HNS3_FUNC_RESET:
5789 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5790 		if (ret)
5791 			return ret;
5792 
5793 		/*
5794 		 * After performaning pf reset, it is not necessary to do the
5795 		 * mailbox handling or send any command to firmware, because
5796 		 * any mailbox handling or command to firmware is only valid
5797 		 * after hns3_cmd_init is called.
5798 		 */
5799 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5800 		hw->reset.stats.request_cnt++;
5801 		break;
5802 	case HNS3_IMP_RESET:
5803 		hns3_record_imp_error(hns);
5804 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5805 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5806 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5807 		break;
5808 	default:
5809 		break;
5810 	}
5811 	return 0;
5812 }
5813 
5814 static int
5815 hns3_set_rst_done(struct hns3_hw *hw)
5816 {
5817 	struct hns3_pf_rst_done_cmd *req;
5818 	struct hns3_cmd_desc desc;
5819 
5820 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5821 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5822 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5823 	return hns3_cmd_send(hw, &desc, 1);
5824 }
5825 
5826 static int
5827 hns3_stop_service(struct hns3_adapter *hns)
5828 {
5829 	struct hns3_hw *hw = &hns->hw;
5830 	struct rte_eth_dev *eth_dev;
5831 
5832 	eth_dev = &rte_eth_devices[hw->data->port_id];
5833 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5834 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5835 		hns3_update_link_status_and_event(hw);
5836 	}
5837 	hw->mac.link_status = ETH_LINK_DOWN;
5838 
5839 	hns3_set_rxtx_function(eth_dev);
5840 	rte_wmb();
5841 	/* Disable datapath on secondary process. */
5842 	hns3_mp_req_stop_rxtx(eth_dev);
5843 	rte_delay_ms(hw->tqps_num);
5844 
5845 	rte_spinlock_lock(&hw->lock);
5846 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5847 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5848 		hns3_enable_all_queues(hw, false);
5849 		hns3_do_stop(hns);
5850 		hw->reset.mbuf_deferred_free = true;
5851 	} else
5852 		hw->reset.mbuf_deferred_free = false;
5853 
5854 	/*
5855 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5856 	 * from table space. Hence, for function reset software intervention is
5857 	 * required to delete the entries
5858 	 */
5859 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5860 		hns3_configure_all_mc_mac_addr(hns, true);
5861 	rte_spinlock_unlock(&hw->lock);
5862 
5863 	return 0;
5864 }
5865 
5866 static int
5867 hns3_start_service(struct hns3_adapter *hns)
5868 {
5869 	struct hns3_hw *hw = &hns->hw;
5870 	struct rte_eth_dev *eth_dev;
5871 
5872 	if (hw->reset.level == HNS3_IMP_RESET ||
5873 	    hw->reset.level == HNS3_GLOBAL_RESET)
5874 		hns3_set_rst_done(hw);
5875 	eth_dev = &rte_eth_devices[hw->data->port_id];
5876 	hns3_set_rxtx_function(eth_dev);
5877 	hns3_mp_req_start_rxtx(eth_dev);
5878 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5879 		/*
5880 		 * This API parent function already hold the hns3_hw.lock, the
5881 		 * hns3_service_handler may report lse, in bonding application
5882 		 * it will call driver's ops which may acquire the hns3_hw.lock
5883 		 * again, thus lead to deadlock.
5884 		 * We defer calls hns3_service_handler to avoid the deadlock.
5885 		 */
5886 		rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5887 				  hns3_service_handler, eth_dev);
5888 
5889 		/* Enable interrupt of all rx queues before enabling queues */
5890 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5891 		/*
5892 		 * Enable state of each rxq and txq will be recovered after
5893 		 * reset, so we need to restore them before enable all tqps;
5894 		 */
5895 		hns3_restore_tqp_enable_state(hw);
5896 		/*
5897 		 * When finished the initialization, enable queues to receive
5898 		 * and transmit packets.
5899 		 */
5900 		hns3_enable_all_queues(hw, true);
5901 	}
5902 
5903 	return 0;
5904 }
5905 
5906 static int
5907 hns3_restore_conf(struct hns3_adapter *hns)
5908 {
5909 	struct hns3_hw *hw = &hns->hw;
5910 	int ret;
5911 
5912 	ret = hns3_configure_all_mac_addr(hns, false);
5913 	if (ret)
5914 		return ret;
5915 
5916 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5917 	if (ret)
5918 		goto err_mc_mac;
5919 
5920 	ret = hns3_dev_promisc_restore(hns);
5921 	if (ret)
5922 		goto err_promisc;
5923 
5924 	ret = hns3_restore_vlan_table(hns);
5925 	if (ret)
5926 		goto err_promisc;
5927 
5928 	ret = hns3_restore_vlan_conf(hns);
5929 	if (ret)
5930 		goto err_promisc;
5931 
5932 	ret = hns3_restore_all_fdir_filter(hns);
5933 	if (ret)
5934 		goto err_promisc;
5935 
5936 	ret = hns3_restore_rx_interrupt(hw);
5937 	if (ret)
5938 		goto err_promisc;
5939 
5940 	ret = hns3_restore_gro_conf(hw);
5941 	if (ret)
5942 		goto err_promisc;
5943 
5944 	ret = hns3_restore_fec(hw);
5945 	if (ret)
5946 		goto err_promisc;
5947 
5948 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5949 		ret = hns3_do_start(hns, false);
5950 		if (ret)
5951 			goto err_promisc;
5952 		hns3_info(hw, "hns3 dev restart successful!");
5953 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5954 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5955 	return 0;
5956 
5957 err_promisc:
5958 	hns3_configure_all_mc_mac_addr(hns, true);
5959 err_mc_mac:
5960 	hns3_configure_all_mac_addr(hns, true);
5961 	return ret;
5962 }
5963 
5964 static void
5965 hns3_reset_service(void *param)
5966 {
5967 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5968 	struct hns3_hw *hw = &hns->hw;
5969 	enum hns3_reset_level reset_level;
5970 	struct timeval tv_delta;
5971 	struct timeval tv_start;
5972 	struct timeval tv;
5973 	uint64_t msec;
5974 	int ret;
5975 
5976 	/*
5977 	 * The interrupt is not triggered within the delay time.
5978 	 * The interrupt may have been lost. It is necessary to handle
5979 	 * the interrupt to recover from the error.
5980 	 */
5981 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
5982 			    SCHEDULE_DEFERRED) {
5983 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
5984 				  __ATOMIC_RELAXED);
5985 		hns3_err(hw, "Handling interrupts in delayed tasks");
5986 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5987 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5988 		if (reset_level == HNS3_NONE_RESET) {
5989 			hns3_err(hw, "No reset level is set, try IMP reset");
5990 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5991 		}
5992 	}
5993 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
5994 
5995 	/*
5996 	 * Check if there is any ongoing reset in the hardware. This status can
5997 	 * be checked from reset_pending. If there is then, we need to wait for
5998 	 * hardware to complete reset.
5999 	 *    a. If we are able to figure out in reasonable time that hardware
6000 	 *       has fully resetted then, we can proceed with driver, client
6001 	 *       reset.
6002 	 *    b. else, we can come back later to check this status so re-sched
6003 	 *       now.
6004 	 */
6005 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6006 	if (reset_level != HNS3_NONE_RESET) {
6007 		gettimeofday(&tv_start, NULL);
6008 		ret = hns3_reset_process(hns, reset_level);
6009 		gettimeofday(&tv, NULL);
6010 		timersub(&tv, &tv_start, &tv_delta);
6011 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
6012 		       tv_delta.tv_usec / USEC_PER_MSEC;
6013 		if (msec > HNS3_RESET_PROCESS_MS)
6014 			hns3_err(hw, "%d handle long time delta %" PRIx64
6015 				     " ms time=%ld.%.6ld",
6016 				 hw->reset.level, msec,
6017 				 tv.tv_sec, tv.tv_usec);
6018 		if (ret == -EAGAIN)
6019 			return;
6020 	}
6021 
6022 	/* Check if we got any *new* reset requests to be honored */
6023 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6024 	if (reset_level != HNS3_NONE_RESET)
6025 		hns3_msix_process(hns, reset_level);
6026 }
6027 
6028 static unsigned int
6029 hns3_get_speed_capa_num(uint16_t device_id)
6030 {
6031 	unsigned int num;
6032 
6033 	switch (device_id) {
6034 	case HNS3_DEV_ID_25GE:
6035 	case HNS3_DEV_ID_25GE_RDMA:
6036 		num = 2;
6037 		break;
6038 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6039 	case HNS3_DEV_ID_200G_RDMA:
6040 		num = 1;
6041 		break;
6042 	default:
6043 		num = 0;
6044 		break;
6045 	}
6046 
6047 	return num;
6048 }
6049 
6050 static int
6051 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6052 			uint16_t device_id)
6053 {
6054 	switch (device_id) {
6055 	case HNS3_DEV_ID_25GE:
6056 	/* fallthrough */
6057 	case HNS3_DEV_ID_25GE_RDMA:
6058 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6059 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6060 
6061 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
6062 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6063 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6064 		break;
6065 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6066 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6067 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6068 		break;
6069 	case HNS3_DEV_ID_200G_RDMA:
6070 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6071 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6072 		break;
6073 	default:
6074 		return -ENOTSUP;
6075 	}
6076 
6077 	return 0;
6078 }
6079 
6080 static int
6081 hns3_fec_get_capability(struct rte_eth_dev *dev,
6082 			struct rte_eth_fec_capa *speed_fec_capa,
6083 			unsigned int num)
6084 {
6085 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6086 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6087 	uint16_t device_id = pci_dev->id.device_id;
6088 	unsigned int capa_num;
6089 	int ret;
6090 
6091 	capa_num = hns3_get_speed_capa_num(device_id);
6092 	if (capa_num == 0) {
6093 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6094 			 device_id);
6095 		return -ENOTSUP;
6096 	}
6097 
6098 	if (speed_fec_capa == NULL || num < capa_num)
6099 		return capa_num;
6100 
6101 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6102 	if (ret)
6103 		return -ENOTSUP;
6104 
6105 	return capa_num;
6106 }
6107 
6108 static int
6109 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6110 {
6111 	struct hns3_config_fec_cmd *req;
6112 	struct hns3_cmd_desc desc;
6113 	int ret;
6114 
6115 	/*
6116 	 * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6117 	 * in device of link speed
6118 	 * below 10 Gbps.
6119 	 */
6120 	if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
6121 		*state = 0;
6122 		return 0;
6123 	}
6124 
6125 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6126 	req = (struct hns3_config_fec_cmd *)desc.data;
6127 	ret = hns3_cmd_send(hw, &desc, 1);
6128 	if (ret) {
6129 		hns3_err(hw, "get current fec auto state failed, ret = %d",
6130 			 ret);
6131 		return ret;
6132 	}
6133 
6134 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6135 	return 0;
6136 }
6137 
6138 static int
6139 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6140 {
6141 #define QUERY_ACTIVE_SPEED	1
6142 	struct hns3_sfp_speed_cmd *resp;
6143 	uint32_t tmp_fec_capa;
6144 	uint8_t auto_state;
6145 	struct hns3_cmd_desc desc;
6146 	int ret;
6147 
6148 	/*
6149 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6150 	 * configured FEC mode is returned.
6151 	 * If link is up, current FEC mode is returned.
6152 	 */
6153 	if (hw->mac.link_status == ETH_LINK_DOWN) {
6154 		ret = get_current_fec_auto_state(hw, &auto_state);
6155 		if (ret)
6156 			return ret;
6157 
6158 		if (auto_state == 0x1) {
6159 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6160 			return 0;
6161 		}
6162 	}
6163 
6164 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
6165 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
6166 	resp->query_type = QUERY_ACTIVE_SPEED;
6167 
6168 	ret = hns3_cmd_send(hw, &desc, 1);
6169 	if (ret == -EOPNOTSUPP) {
6170 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6171 		return ret;
6172 	} else if (ret) {
6173 		hns3_err(hw, "get FEC failed, ret = %d", ret);
6174 		return ret;
6175 	}
6176 
6177 	/*
6178 	 * FEC mode order defined in hns3 hardware is inconsistend with
6179 	 * that defined in the ethdev library. So the sequence needs
6180 	 * to be converted.
6181 	 */
6182 	switch (resp->active_fec) {
6183 	case HNS3_HW_FEC_MODE_NOFEC:
6184 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6185 		break;
6186 	case HNS3_HW_FEC_MODE_BASER:
6187 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6188 		break;
6189 	case HNS3_HW_FEC_MODE_RS:
6190 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6191 		break;
6192 	default:
6193 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6194 		break;
6195 	}
6196 
6197 	*fec_capa = tmp_fec_capa;
6198 	return 0;
6199 }
6200 
6201 static int
6202 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6203 {
6204 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6205 
6206 	return hns3_fec_get_internal(hw, fec_capa);
6207 }
6208 
6209 static int
6210 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6211 {
6212 	struct hns3_config_fec_cmd *req;
6213 	struct hns3_cmd_desc desc;
6214 	int ret;
6215 
6216 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6217 
6218 	req = (struct hns3_config_fec_cmd *)desc.data;
6219 	switch (mode) {
6220 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6221 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6222 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6223 		break;
6224 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6225 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6226 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6227 		break;
6228 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6229 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6230 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6231 		break;
6232 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6233 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6234 		break;
6235 	default:
6236 		return 0;
6237 	}
6238 	ret = hns3_cmd_send(hw, &desc, 1);
6239 	if (ret)
6240 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
6241 
6242 	return ret;
6243 }
6244 
6245 static uint32_t
6246 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6247 {
6248 	struct hns3_mac *mac = &hw->mac;
6249 	uint32_t cur_capa;
6250 
6251 	switch (mac->link_speed) {
6252 	case ETH_SPEED_NUM_10G:
6253 		cur_capa = fec_capa[1].capa;
6254 		break;
6255 	case ETH_SPEED_NUM_25G:
6256 	case ETH_SPEED_NUM_100G:
6257 	case ETH_SPEED_NUM_200G:
6258 		cur_capa = fec_capa[0].capa;
6259 		break;
6260 	default:
6261 		cur_capa = 0;
6262 		break;
6263 	}
6264 
6265 	return cur_capa;
6266 }
6267 
6268 static bool
6269 is_fec_mode_one_bit_set(uint32_t mode)
6270 {
6271 	int cnt = 0;
6272 	uint8_t i;
6273 
6274 	for (i = 0; i < sizeof(mode); i++)
6275 		if (mode >> i & 0x1)
6276 			cnt++;
6277 
6278 	return cnt == 1 ? true : false;
6279 }
6280 
6281 static int
6282 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6283 {
6284 #define FEC_CAPA_NUM 2
6285 	struct hns3_adapter *hns = dev->data->dev_private;
6286 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6287 	struct hns3_pf *pf = &hns->pf;
6288 
6289 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6290 	uint32_t cur_capa;
6291 	uint32_t num = FEC_CAPA_NUM;
6292 	int ret;
6293 
6294 	ret = hns3_fec_get_capability(dev, fec_capa, num);
6295 	if (ret < 0)
6296 		return ret;
6297 
6298 	/* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
6299 	if (!is_fec_mode_one_bit_set(mode))
6300 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD,"
6301 			     "FEC mode should be only one bit set", mode);
6302 
6303 	/*
6304 	 * Check whether the configured mode is within the FEC capability.
6305 	 * If not, the configured mode will not be supported.
6306 	 */
6307 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6308 	if (!(cur_capa & mode)) {
6309 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6310 		return -EINVAL;
6311 	}
6312 
6313 	ret = hns3_set_fec_hw(hw, mode);
6314 	if (ret)
6315 		return ret;
6316 
6317 	pf->fec_mode = mode;
6318 	return 0;
6319 }
6320 
6321 static int
6322 hns3_restore_fec(struct hns3_hw *hw)
6323 {
6324 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6325 	struct hns3_pf *pf = &hns->pf;
6326 	uint32_t mode = pf->fec_mode;
6327 	int ret;
6328 
6329 	ret = hns3_set_fec_hw(hw, mode);
6330 	if (ret)
6331 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6332 			 mode, ret);
6333 
6334 	return ret;
6335 }
6336 
6337 static int
6338 hns3_query_dev_fec_info(struct hns3_hw *hw)
6339 {
6340 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6341 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6342 	int ret;
6343 
6344 	ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6345 	if (ret)
6346 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6347 
6348 	return ret;
6349 }
6350 
6351 static bool
6352 hns3_optical_module_existed(struct hns3_hw *hw)
6353 {
6354 	struct hns3_cmd_desc desc;
6355 	bool existed;
6356 	int ret;
6357 
6358 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6359 	ret = hns3_cmd_send(hw, &desc, 1);
6360 	if (ret) {
6361 		hns3_err(hw,
6362 			 "fail to get optical module exist state, ret = %d.\n",
6363 			 ret);
6364 		return false;
6365 	}
6366 	existed = !!desc.data[0];
6367 
6368 	return existed;
6369 }
6370 
6371 static int
6372 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6373 				uint32_t len, uint8_t *data)
6374 {
6375 #define HNS3_SFP_INFO_CMD_NUM 6
6376 #define HNS3_SFP_INFO_MAX_LEN \
6377 	(HNS3_SFP_INFO_BD0_LEN + \
6378 	(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6379 	struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6380 	struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6381 	uint16_t read_len;
6382 	uint16_t copy_len;
6383 	int ret;
6384 	int i;
6385 
6386 	for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6387 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6388 					  true);
6389 		if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6390 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6391 	}
6392 
6393 	sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6394 	sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6395 	read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6396 	sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6397 
6398 	ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6399 	if (ret) {
6400 		hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6401 				ret);
6402 		return ret;
6403 	}
6404 
6405 	/* The data format in BD0 is different with the others. */
6406 	copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6407 	memcpy(data, sfp_info_bd0->data, copy_len);
6408 	read_len = copy_len;
6409 
6410 	for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6411 		if (read_len >= len)
6412 			break;
6413 
6414 		copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6415 		memcpy(data + read_len, desc[i].data, copy_len);
6416 		read_len += copy_len;
6417 	}
6418 
6419 	return (int)read_len;
6420 }
6421 
6422 static int
6423 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6424 		       struct rte_dev_eeprom_info *info)
6425 {
6426 	struct hns3_adapter *hns = dev->data->dev_private;
6427 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6428 	uint32_t offset = info->offset;
6429 	uint32_t len = info->length;
6430 	uint8_t *data = info->data;
6431 	uint32_t read_len = 0;
6432 
6433 	if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6434 		return -ENOTSUP;
6435 
6436 	if (!hns3_optical_module_existed(hw)) {
6437 		hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6438 		return -EIO;
6439 	}
6440 
6441 	while (read_len < len) {
6442 		int ret;
6443 		ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6444 						  len - read_len,
6445 						  data + read_len);
6446 		if (ret < 0)
6447 			return -EIO;
6448 		read_len += ret;
6449 	}
6450 
6451 	return 0;
6452 }
6453 
6454 static int
6455 hns3_get_module_info(struct rte_eth_dev *dev,
6456 		     struct rte_eth_dev_module_info *modinfo)
6457 {
6458 #define HNS3_SFF8024_ID_SFP		0x03
6459 #define HNS3_SFF8024_ID_QSFP_8438	0x0c
6460 #define HNS3_SFF8024_ID_QSFP_8436_8636	0x0d
6461 #define HNS3_SFF8024_ID_QSFP28_8636	0x11
6462 #define HNS3_SFF_8636_V1_3		0x03
6463 	struct hns3_adapter *hns = dev->data->dev_private;
6464 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6465 	struct rte_dev_eeprom_info info;
6466 	struct hns3_sfp_type sfp_type;
6467 	int ret;
6468 
6469 	memset(&sfp_type, 0, sizeof(sfp_type));
6470 	memset(&info, 0, sizeof(info));
6471 	info.data = (uint8_t *)&sfp_type;
6472 	info.length = sizeof(sfp_type);
6473 	ret = hns3_get_module_eeprom(dev, &info);
6474 	if (ret)
6475 		return ret;
6476 
6477 	switch (sfp_type.type) {
6478 	case HNS3_SFF8024_ID_SFP:
6479 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
6480 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6481 		break;
6482 	case HNS3_SFF8024_ID_QSFP_8438:
6483 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
6484 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6485 		break;
6486 	case HNS3_SFF8024_ID_QSFP_8436_8636:
6487 		if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6488 			modinfo->type = RTE_ETH_MODULE_SFF_8436;
6489 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6490 		} else {
6491 			modinfo->type = RTE_ETH_MODULE_SFF_8636;
6492 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6493 		}
6494 		break;
6495 	case HNS3_SFF8024_ID_QSFP28_8636:
6496 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
6497 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6498 		break;
6499 	default:
6500 		hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6501 			 sfp_type.type, sfp_type.ext_type);
6502 		return -EINVAL;
6503 	}
6504 
6505 	return 0;
6506 }
6507 
6508 static const struct eth_dev_ops hns3_eth_dev_ops = {
6509 	.dev_configure      = hns3_dev_configure,
6510 	.dev_start          = hns3_dev_start,
6511 	.dev_stop           = hns3_dev_stop,
6512 	.dev_close          = hns3_dev_close,
6513 	.promiscuous_enable = hns3_dev_promiscuous_enable,
6514 	.promiscuous_disable = hns3_dev_promiscuous_disable,
6515 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
6516 	.allmulticast_disable = hns3_dev_allmulticast_disable,
6517 	.mtu_set            = hns3_dev_mtu_set,
6518 	.stats_get          = hns3_stats_get,
6519 	.stats_reset        = hns3_stats_reset,
6520 	.xstats_get         = hns3_dev_xstats_get,
6521 	.xstats_get_names   = hns3_dev_xstats_get_names,
6522 	.xstats_reset       = hns3_dev_xstats_reset,
6523 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6524 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6525 	.dev_infos_get          = hns3_dev_infos_get,
6526 	.fw_version_get         = hns3_fw_version_get,
6527 	.rx_queue_setup         = hns3_rx_queue_setup,
6528 	.tx_queue_setup         = hns3_tx_queue_setup,
6529 	.rx_queue_release       = hns3_dev_rx_queue_release,
6530 	.tx_queue_release       = hns3_dev_tx_queue_release,
6531 	.rx_queue_start         = hns3_dev_rx_queue_start,
6532 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
6533 	.tx_queue_start         = hns3_dev_tx_queue_start,
6534 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
6535 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6536 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6537 	.rxq_info_get           = hns3_rxq_info_get,
6538 	.txq_info_get           = hns3_txq_info_get,
6539 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
6540 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
6541 	.flow_ctrl_get          = hns3_flow_ctrl_get,
6542 	.flow_ctrl_set          = hns3_flow_ctrl_set,
6543 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6544 	.mac_addr_add           = hns3_add_mac_addr,
6545 	.mac_addr_remove        = hns3_remove_mac_addr,
6546 	.mac_addr_set           = hns3_set_default_mac_addr,
6547 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6548 	.link_update            = hns3_dev_link_update,
6549 	.rss_hash_update        = hns3_dev_rss_hash_update,
6550 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6551 	.reta_update            = hns3_dev_rss_reta_update,
6552 	.reta_query             = hns3_dev_rss_reta_query,
6553 	.filter_ctrl            = hns3_dev_filter_ctrl,
6554 	.vlan_filter_set        = hns3_vlan_filter_set,
6555 	.vlan_tpid_set          = hns3_vlan_tpid_set,
6556 	.vlan_offload_set       = hns3_vlan_offload_set,
6557 	.vlan_pvid_set          = hns3_vlan_pvid_set,
6558 	.get_reg                = hns3_get_regs,
6559 	.get_module_info        = hns3_get_module_info,
6560 	.get_module_eeprom      = hns3_get_module_eeprom,
6561 	.get_dcb_info           = hns3_get_dcb_info,
6562 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6563 	.fec_get_capability     = hns3_fec_get_capability,
6564 	.fec_get                = hns3_fec_get,
6565 	.fec_set                = hns3_fec_set,
6566 	.tm_ops_get             = hns3_tm_ops_get,
6567 	.tx_done_cleanup        = hns3_tx_done_cleanup,
6568 };
6569 
6570 static const struct hns3_reset_ops hns3_reset_ops = {
6571 	.reset_service       = hns3_reset_service,
6572 	.stop_service        = hns3_stop_service,
6573 	.prepare_reset       = hns3_prepare_reset,
6574 	.wait_hardware_ready = hns3_wait_hardware_ready,
6575 	.reinit_dev          = hns3_reinit_dev,
6576 	.restore_conf	     = hns3_restore_conf,
6577 	.start_service       = hns3_start_service,
6578 };
6579 
6580 static int
6581 hns3_dev_init(struct rte_eth_dev *eth_dev)
6582 {
6583 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6584 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
6585 	struct rte_ether_addr *eth_addr;
6586 	struct hns3_hw *hw = &hns->hw;
6587 	int ret;
6588 
6589 	PMD_INIT_FUNC_TRACE();
6590 
6591 	eth_dev->process_private = (struct hns3_process_private *)
6592 	    rte_zmalloc_socket("hns3_filter_list",
6593 			       sizeof(struct hns3_process_private),
6594 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
6595 	if (eth_dev->process_private == NULL) {
6596 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
6597 		return -ENOMEM;
6598 	}
6599 	/* initialize flow filter lists */
6600 	hns3_filterlist_init(eth_dev);
6601 
6602 	hns3_set_rxtx_function(eth_dev);
6603 	eth_dev->dev_ops = &hns3_eth_dev_ops;
6604 	eth_dev->rx_queue_count = hns3_rx_queue_count;
6605 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6606 		ret = hns3_mp_init_secondary();
6607 		if (ret) {
6608 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
6609 				     "process, ret = %d", ret);
6610 			goto err_mp_init_secondary;
6611 		}
6612 
6613 		hw->secondary_cnt++;
6614 		return 0;
6615 	}
6616 
6617 	ret = hns3_mp_init_primary();
6618 	if (ret) {
6619 		PMD_INIT_LOG(ERR,
6620 			     "Failed to init for primary process, ret = %d",
6621 			     ret);
6622 		goto err_mp_init_primary;
6623 	}
6624 
6625 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6626 	hns->is_vf = false;
6627 	hw->data = eth_dev->data;
6628 
6629 	/*
6630 	 * Set default max packet size according to the mtu
6631 	 * default vale in DPDK frame.
6632 	 */
6633 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6634 
6635 	ret = hns3_reset_init(hw);
6636 	if (ret)
6637 		goto err_init_reset;
6638 	hw->reset.ops = &hns3_reset_ops;
6639 
6640 	ret = hns3_init_pf(eth_dev);
6641 	if (ret) {
6642 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6643 		goto err_init_pf;
6644 	}
6645 
6646 	/* Allocate memory for storing MAC addresses */
6647 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
6648 					       sizeof(struct rte_ether_addr) *
6649 					       HNS3_UC_MACADDR_NUM, 0);
6650 	if (eth_dev->data->mac_addrs == NULL) {
6651 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
6652 			     "to store MAC addresses",
6653 			     sizeof(struct rte_ether_addr) *
6654 			     HNS3_UC_MACADDR_NUM);
6655 		ret = -ENOMEM;
6656 		goto err_rte_zmalloc;
6657 	}
6658 
6659 	eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
6660 	if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
6661 		rte_eth_random_addr(hw->mac.mac_addr);
6662 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
6663 				(struct rte_ether_addr *)hw->mac.mac_addr);
6664 		hns3_warn(hw, "default mac_addr from firmware is an invalid "
6665 			  "unicast address, using random MAC address %s",
6666 			  mac_str);
6667 	}
6668 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
6669 			    &eth_dev->data->mac_addrs[0]);
6670 
6671 	hw->adapter_state = HNS3_NIC_INITIALIZED;
6672 
6673 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6674 			    SCHEDULE_PENDING) {
6675 		hns3_err(hw, "Reschedule reset service after dev_init");
6676 		hns3_schedule_reset(hns);
6677 	} else {
6678 		/* IMP will wait ready flag before reset */
6679 		hns3_notify_reset_ready(hw, false);
6680 	}
6681 
6682 	hns3_info(hw, "hns3 dev initialization successful!");
6683 	return 0;
6684 
6685 err_rte_zmalloc:
6686 	hns3_uninit_pf(eth_dev);
6687 
6688 err_init_pf:
6689 	rte_free(hw->reset.wait_data);
6690 
6691 err_init_reset:
6692 	hns3_mp_uninit_primary();
6693 
6694 err_mp_init_primary:
6695 err_mp_init_secondary:
6696 	eth_dev->dev_ops = NULL;
6697 	eth_dev->rx_pkt_burst = NULL;
6698 	eth_dev->tx_pkt_burst = NULL;
6699 	eth_dev->tx_pkt_prepare = NULL;
6700 	rte_free(eth_dev->process_private);
6701 	eth_dev->process_private = NULL;
6702 	return ret;
6703 }
6704 
6705 static int
6706 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6707 {
6708 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6709 	struct hns3_hw *hw = &hns->hw;
6710 
6711 	PMD_INIT_FUNC_TRACE();
6712 
6713 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6714 		rte_free(eth_dev->process_private);
6715 		eth_dev->process_private = NULL;
6716 		return 0;
6717 	}
6718 
6719 	if (hw->adapter_state < HNS3_NIC_CLOSING)
6720 		hns3_dev_close(eth_dev);
6721 
6722 	hw->adapter_state = HNS3_NIC_REMOVED;
6723 	return 0;
6724 }
6725 
6726 static int
6727 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6728 		   struct rte_pci_device *pci_dev)
6729 {
6730 	return rte_eth_dev_pci_generic_probe(pci_dev,
6731 					     sizeof(struct hns3_adapter),
6732 					     hns3_dev_init);
6733 }
6734 
6735 static int
6736 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6737 {
6738 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6739 }
6740 
6741 static const struct rte_pci_id pci_id_hns3_map[] = {
6742 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6743 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6744 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6745 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6746 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6747 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6748 	{ .vendor_id = 0, }, /* sentinel */
6749 };
6750 
6751 static struct rte_pci_driver rte_hns3_pmd = {
6752 	.id_table = pci_id_hns3_map,
6753 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
6754 	.probe = eth_hns3_pci_probe,
6755 	.remove = eth_hns3_pci_remove,
6756 };
6757 
6758 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6759 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6760 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6761 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
6762 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);
6763