xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision aae799d7dd4cc4d9c29cc665519cbec775b7bb6b)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdio.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <unistd.h>
12 #include <rte_atomic.h>
13 #include <rte_bus_pci.h>
14 #include <rte_common.h>
15 #include <rte_cycles.h>
16 #include <rte_dev.h>
17 #include <rte_eal.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_interrupts.h>
22 #include <rte_io.h>
23 #include <rte_log.h>
24 #include <rte_pci.h>
25 
26 #include "hns3_ethdev.h"
27 #include "hns3_logs.h"
28 #include "hns3_rxtx.h"
29 #include "hns3_intr.h"
30 #include "hns3_regs.h"
31 #include "hns3_dcb.h"
32 #include "hns3_mp.h"
33 
34 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE	32
35 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM	1
36 
37 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
38 #define HNS3_INVLID_PVID		0xFFFF
39 
40 #define HNS3_FILTER_TYPE_VF		0
41 #define HNS3_FILTER_TYPE_PORT		1
42 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
43 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
44 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
45 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
46 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
47 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
48 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
49 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
50 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
51 
52 /* Reset related Registers */
53 #define HNS3_GLOBAL_RESET_BIT		0
54 #define HNS3_CORE_RESET_BIT		1
55 #define HNS3_IMP_RESET_BIT		2
56 #define HNS3_FUN_RST_ING_B		0
57 
58 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
59 
60 #define HNS3_RESET_WAIT_MS	100
61 #define HNS3_RESET_WAIT_CNT	200
62 
63 enum hns3_evt_cause {
64 	HNS3_VECTOR0_EVENT_RST,
65 	HNS3_VECTOR0_EVENT_MBX,
66 	HNS3_VECTOR0_EVENT_ERR,
67 	HNS3_VECTOR0_EVENT_OTHER,
68 };
69 
70 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
71 						 uint64_t *levels);
72 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
73 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
74 				    int on);
75 static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
76 
77 static int hns3_add_mc_addr(struct hns3_hw *hw,
78 			    struct rte_ether_addr *mac_addr);
79 static int hns3_remove_mc_addr(struct hns3_hw *hw,
80 			    struct rte_ether_addr *mac_addr);
81 
82 static void
83 hns3_pf_disable_irq0(struct hns3_hw *hw)
84 {
85 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
86 }
87 
88 static void
89 hns3_pf_enable_irq0(struct hns3_hw *hw)
90 {
91 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
92 }
93 
94 static enum hns3_evt_cause
95 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
96 {
97 	struct hns3_hw *hw = &hns->hw;
98 	uint32_t vector0_int_stats;
99 	uint32_t cmdq_src_val;
100 	uint32_t val;
101 	enum hns3_evt_cause ret;
102 
103 	/* fetch the events from their corresponding regs */
104 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
105 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
106 
107 	/*
108 	 * Assumption: If by any chance reset and mailbox events are reported
109 	 * together then we will only process reset event and defer the
110 	 * processing of the mailbox events. Since, we would have not cleared
111 	 * RX CMDQ event this time we would receive again another interrupt
112 	 * from H/W just for the mailbox.
113 	 */
114 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
115 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
116 		hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
117 		val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
118 		if (clearval) {
119 			hw->reset.stats.imp_cnt++;
120 			hns3_warn(hw, "IMP reset detected, clear reset status");
121 		} else {
122 			hns3_schedule_delayed_reset(hns);
123 			hns3_warn(hw, "IMP reset detected, don't clear reset status");
124 		}
125 
126 		ret = HNS3_VECTOR0_EVENT_RST;
127 		goto out;
128 	}
129 
130 	/* Global reset */
131 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
132 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
133 		hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
134 		val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
135 		if (clearval) {
136 			hw->reset.stats.global_cnt++;
137 			hns3_warn(hw, "Global reset detected, clear reset status");
138 		} else {
139 			hns3_schedule_delayed_reset(hns);
140 			hns3_warn(hw, "Global reset detected, don't clear reset status");
141 		}
142 
143 		ret = HNS3_VECTOR0_EVENT_RST;
144 		goto out;
145 	}
146 
147 	/* check for vector0 msix event source */
148 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK) {
149 		val = vector0_int_stats;
150 		ret = HNS3_VECTOR0_EVENT_ERR;
151 		goto out;
152 	}
153 
154 	/* check for vector0 mailbox(=CMDQ RX) event source */
155 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
156 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
157 		val = cmdq_src_val;
158 		ret = HNS3_VECTOR0_EVENT_MBX;
159 		goto out;
160 	}
161 
162 	if (clearval && (vector0_int_stats || cmdq_src_val))
163 		hns3_warn(hw, "surprise irq ector0_int_stats:0x%x cmdq_src_val:0x%x",
164 			  vector0_int_stats, cmdq_src_val);
165 	val = vector0_int_stats;
166 	ret = HNS3_VECTOR0_EVENT_OTHER;
167 out:
168 
169 	if (clearval)
170 		*clearval = val;
171 	return ret;
172 }
173 
174 static void
175 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
176 {
177 	if (event_type == HNS3_VECTOR0_EVENT_RST)
178 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
179 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
180 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
181 }
182 
183 static void
184 hns3_clear_all_event_cause(struct hns3_hw *hw)
185 {
186 	uint32_t vector0_int_stats;
187 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
188 
189 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
190 		hns3_warn(hw, "Probe during IMP reset interrupt");
191 
192 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
193 		hns3_warn(hw, "Probe during Global reset interrupt");
194 
195 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
196 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
197 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
198 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
199 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
200 }
201 
202 static void
203 hns3_interrupt_handler(void *param)
204 {
205 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
206 	struct hns3_adapter *hns = dev->data->dev_private;
207 	struct hns3_hw *hw = &hns->hw;
208 	enum hns3_evt_cause event_cause;
209 	uint32_t clearval = 0;
210 
211 	/* Disable interrupt */
212 	hns3_pf_disable_irq0(hw);
213 
214 	event_cause = hns3_check_event_cause(hns, &clearval);
215 
216 	/* vector 0 interrupt is shared with reset and mailbox source events. */
217 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
218 		hns3_handle_msix_error(hns, &hw->reset.request);
219 		hns3_schedule_reset(hns);
220 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST)
221 		hns3_schedule_reset(hns);
222 	else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
223 		hns3_dev_handle_mbx_msg(hw);
224 	else
225 		hns3_err(hw, "Received unknown event");
226 
227 	hns3_clear_event_cause(hw, event_cause, clearval);
228 	/* Enable interrupt if it is not cause by reset */
229 	hns3_pf_enable_irq0(hw);
230 }
231 
232 static int
233 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
234 {
235 #define HNS3_VLAN_ID_OFFSET_STEP	160
236 #define HNS3_VLAN_BYTE_SIZE		8
237 	struct hns3_vlan_filter_pf_cfg_cmd *req;
238 	struct hns3_hw *hw = &hns->hw;
239 	uint8_t vlan_offset_byte_val;
240 	struct hns3_cmd_desc desc;
241 	uint8_t vlan_offset_byte;
242 	uint8_t vlan_offset_base;
243 	int ret;
244 
245 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
246 
247 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
248 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
249 			   HNS3_VLAN_BYTE_SIZE;
250 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
251 
252 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
253 	req->vlan_offset = vlan_offset_base;
254 	req->vlan_cfg = on ? 0 : 1;
255 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
256 
257 	ret = hns3_cmd_send(hw, &desc, 1);
258 	if (ret)
259 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
260 			 vlan_id, ret);
261 
262 	return ret;
263 }
264 
265 static void
266 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
267 {
268 	struct hns3_user_vlan_table *vlan_entry;
269 	struct hns3_pf *pf = &hns->pf;
270 
271 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
272 		if (vlan_entry->vlan_id == vlan_id) {
273 			if (vlan_entry->hd_tbl_status)
274 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
275 			LIST_REMOVE(vlan_entry, next);
276 			rte_free(vlan_entry);
277 			break;
278 		}
279 	}
280 }
281 
282 static void
283 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
284 			bool writen_to_tbl)
285 {
286 	struct hns3_user_vlan_table *vlan_entry;
287 	struct hns3_hw *hw = &hns->hw;
288 	struct hns3_pf *pf = &hns->pf;
289 
290 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
291 		if (vlan_entry->vlan_id == vlan_id)
292 			return;
293 	}
294 
295 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
296 	if (vlan_entry == NULL) {
297 		hns3_err(hw, "Failed to malloc hns3 vlan table");
298 		return;
299 	}
300 
301 	vlan_entry->hd_tbl_status = writen_to_tbl;
302 	vlan_entry->vlan_id = vlan_id;
303 
304 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
305 }
306 
307 static int
308 hns3_restore_vlan_table(struct hns3_adapter *hns)
309 {
310 	struct hns3_user_vlan_table *vlan_entry;
311 	struct hns3_hw *hw = &hns->hw;
312 	struct hns3_pf *pf = &hns->pf;
313 	uint16_t vlan_id;
314 	int ret = 0;
315 
316 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
317 		return hns3_vlan_pvid_configure(hns,
318 						hw->port_base_vlan_cfg.pvid, 1);
319 
320 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
321 		if (vlan_entry->hd_tbl_status) {
322 			vlan_id = vlan_entry->vlan_id;
323 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
324 			if (ret)
325 				break;
326 		}
327 	}
328 
329 	return ret;
330 }
331 
332 static int
333 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
334 {
335 	struct hns3_hw *hw = &hns->hw;
336 	bool writen_to_tbl = false;
337 	int ret = 0;
338 
339 	/*
340 	 * When vlan filter is enabled, hardware regards vlan id 0 as the entry
341 	 * for normal packet, deleting vlan id 0 is not allowed.
342 	 */
343 	if (on == 0 && vlan_id == 0)
344 		return 0;
345 
346 	/*
347 	 * When port base vlan enabled, we use port base vlan as the vlan
348 	 * filter condition. In this case, we don't update vlan filter table
349 	 * when user add new vlan or remove exist vlan, just update the
350 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
351 	 * table until port base vlan disabled
352 	 */
353 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
354 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
355 		writen_to_tbl = true;
356 	}
357 
358 	if (ret == 0 && vlan_id) {
359 		if (on)
360 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
361 		else
362 			hns3_rm_dev_vlan_table(hns, vlan_id);
363 	}
364 	return ret;
365 }
366 
367 static int
368 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
369 {
370 	struct hns3_adapter *hns = dev->data->dev_private;
371 	struct hns3_hw *hw = &hns->hw;
372 	int ret;
373 
374 	rte_spinlock_lock(&hw->lock);
375 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
376 	rte_spinlock_unlock(&hw->lock);
377 	return ret;
378 }
379 
380 static int
381 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
382 			 uint16_t tpid)
383 {
384 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
385 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
386 	struct hns3_hw *hw = &hns->hw;
387 	struct hns3_cmd_desc desc;
388 	int ret;
389 
390 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
391 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
392 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
393 		return -EINVAL;
394 	}
395 
396 	if (tpid != RTE_ETHER_TYPE_VLAN) {
397 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
398 		return -EINVAL;
399 	}
400 
401 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
402 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
403 
404 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
405 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
406 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
407 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
408 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
409 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
410 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
411 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
412 	}
413 
414 	ret = hns3_cmd_send(hw, &desc, 1);
415 	if (ret) {
416 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
417 			 ret);
418 		return ret;
419 	}
420 
421 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
422 
423 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
424 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
425 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
426 
427 	ret = hns3_cmd_send(hw, &desc, 1);
428 	if (ret)
429 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
430 			 ret);
431 	return ret;
432 }
433 
434 static int
435 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
436 		   uint16_t tpid)
437 {
438 	struct hns3_adapter *hns = dev->data->dev_private;
439 	struct hns3_hw *hw = &hns->hw;
440 	int ret;
441 
442 	rte_spinlock_lock(&hw->lock);
443 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
444 	rte_spinlock_unlock(&hw->lock);
445 	return ret;
446 }
447 
448 static int
449 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
450 			     struct hns3_rx_vtag_cfg *vcfg)
451 {
452 	struct hns3_vport_vtag_rx_cfg_cmd *req;
453 	struct hns3_hw *hw = &hns->hw;
454 	struct hns3_cmd_desc desc;
455 	uint16_t vport_id;
456 	uint8_t bitmap;
457 	int ret;
458 
459 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
460 
461 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
462 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
463 		     vcfg->strip_tag1_en ? 1 : 0);
464 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
465 		     vcfg->strip_tag2_en ? 1 : 0);
466 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
467 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
468 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
469 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
470 
471 	/*
472 	 * In current version VF is not supported when PF is driven by DPDK
473 	 * driver, just need to configure parameters for PF vport.
474 	 */
475 	vport_id = HNS3_PF_FUNC_ID;
476 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
477 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
478 	req->vf_bitmap[req->vf_offset] = bitmap;
479 
480 	ret = hns3_cmd_send(hw, &desc, 1);
481 	if (ret)
482 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
483 	return ret;
484 }
485 
486 static void
487 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
488 			   struct hns3_rx_vtag_cfg *vcfg)
489 {
490 	struct hns3_pf *pf = &hns->pf;
491 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
492 }
493 
494 static void
495 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
496 			   struct hns3_tx_vtag_cfg *vcfg)
497 {
498 	struct hns3_pf *pf = &hns->pf;
499 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
500 }
501 
502 static int
503 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
504 {
505 	struct hns3_rx_vtag_cfg rxvlan_cfg;
506 	struct hns3_hw *hw = &hns->hw;
507 	int ret;
508 
509 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
510 		rxvlan_cfg.strip_tag1_en = false;
511 		rxvlan_cfg.strip_tag2_en = enable;
512 	} else {
513 		rxvlan_cfg.strip_tag1_en = enable;
514 		rxvlan_cfg.strip_tag2_en = true;
515 	}
516 
517 	rxvlan_cfg.vlan1_vlan_prionly = false;
518 	rxvlan_cfg.vlan2_vlan_prionly = false;
519 	rxvlan_cfg.rx_vlan_offload_en = enable;
520 
521 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
522 	if (ret) {
523 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
524 		return ret;
525 	}
526 
527 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
528 
529 	return ret;
530 }
531 
532 static int
533 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
534 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
535 {
536 	struct hns3_vlan_filter_ctrl_cmd *req;
537 	struct hns3_cmd_desc desc;
538 	int ret;
539 
540 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
541 
542 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
543 	req->vlan_type = vlan_type;
544 	req->vlan_fe = filter_en ? fe_type : 0;
545 	req->vf_id = vf_id;
546 
547 	ret = hns3_cmd_send(hw, &desc, 1);
548 	if (ret)
549 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
550 
551 	return ret;
552 }
553 
554 static int
555 hns3_vlan_filter_init(struct hns3_adapter *hns)
556 {
557 	struct hns3_hw *hw = &hns->hw;
558 	int ret;
559 
560 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
561 					HNS3_FILTER_FE_EGRESS, false,
562 					HNS3_PF_FUNC_ID);
563 	if (ret) {
564 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
565 		return ret;
566 	}
567 
568 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
569 					HNS3_FILTER_FE_INGRESS, false,
570 					HNS3_PF_FUNC_ID);
571 	if (ret)
572 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
573 
574 	return ret;
575 }
576 
577 static int
578 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
579 {
580 	struct hns3_hw *hw = &hns->hw;
581 	int ret;
582 
583 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
584 					HNS3_FILTER_FE_INGRESS, enable,
585 					HNS3_PF_FUNC_ID);
586 	if (ret)
587 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
588 			 enable ? "enable" : "disable", ret);
589 
590 	return ret;
591 }
592 
593 static int
594 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
595 {
596 	struct hns3_adapter *hns = dev->data->dev_private;
597 	struct hns3_hw *hw = &hns->hw;
598 	struct rte_eth_rxmode *rxmode;
599 	unsigned int tmp_mask;
600 	bool enable;
601 	int ret = 0;
602 
603 	rte_spinlock_lock(&hw->lock);
604 	rxmode = &dev->data->dev_conf.rxmode;
605 	tmp_mask = (unsigned int)mask;
606 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
607 		/* ignore vlan filter configuration during promiscuous mode */
608 		if (!dev->data->promiscuous) {
609 			/* Enable or disable VLAN filter */
610 			enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
611 				 true : false;
612 
613 			ret = hns3_enable_vlan_filter(hns, enable);
614 			if (ret) {
615 				rte_spinlock_unlock(&hw->lock);
616 				hns3_err(hw, "failed to %s rx filter, ret = %d",
617 					 enable ? "enable" : "disable", ret);
618 				return ret;
619 			}
620 		}
621 	}
622 
623 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
624 		/* Enable or disable VLAN stripping */
625 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
626 		    true : false;
627 
628 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
629 		if (ret) {
630 			rte_spinlock_unlock(&hw->lock);
631 			hns3_err(hw, "failed to %s rx strip, ret = %d",
632 				 enable ? "enable" : "disable", ret);
633 			return ret;
634 		}
635 	}
636 
637 	rte_spinlock_unlock(&hw->lock);
638 
639 	return ret;
640 }
641 
642 static int
643 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
644 			     struct hns3_tx_vtag_cfg *vcfg)
645 {
646 	struct hns3_vport_vtag_tx_cfg_cmd *req;
647 	struct hns3_cmd_desc desc;
648 	struct hns3_hw *hw = &hns->hw;
649 	uint16_t vport_id;
650 	uint8_t bitmap;
651 	int ret;
652 
653 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
654 
655 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
656 	req->def_vlan_tag1 = vcfg->default_tag1;
657 	req->def_vlan_tag2 = vcfg->default_tag2;
658 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
659 		     vcfg->accept_tag1 ? 1 : 0);
660 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
661 		     vcfg->accept_untag1 ? 1 : 0);
662 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
663 		     vcfg->accept_tag2 ? 1 : 0);
664 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
665 		     vcfg->accept_untag2 ? 1 : 0);
666 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
667 		     vcfg->insert_tag1_en ? 1 : 0);
668 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
669 		     vcfg->insert_tag2_en ? 1 : 0);
670 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
671 
672 	/*
673 	 * In current version VF is not supported when PF is driven by DPDK
674 	 * driver, just need to configure parameters for PF vport.
675 	 */
676 	vport_id = HNS3_PF_FUNC_ID;
677 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
678 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
679 	req->vf_bitmap[req->vf_offset] = bitmap;
680 
681 	ret = hns3_cmd_send(hw, &desc, 1);
682 	if (ret)
683 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
684 
685 	return ret;
686 }
687 
688 static int
689 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
690 		     uint16_t pvid)
691 {
692 	struct hns3_hw *hw = &hns->hw;
693 	struct hns3_tx_vtag_cfg txvlan_cfg;
694 	int ret;
695 
696 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
697 		txvlan_cfg.accept_tag1 = true;
698 		txvlan_cfg.insert_tag1_en = false;
699 		txvlan_cfg.default_tag1 = 0;
700 	} else {
701 		txvlan_cfg.accept_tag1 = false;
702 		txvlan_cfg.insert_tag1_en = true;
703 		txvlan_cfg.default_tag1 = pvid;
704 	}
705 
706 	txvlan_cfg.accept_untag1 = true;
707 	txvlan_cfg.accept_tag2 = true;
708 	txvlan_cfg.accept_untag2 = true;
709 	txvlan_cfg.insert_tag2_en = false;
710 	txvlan_cfg.default_tag2 = 0;
711 
712 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
713 	if (ret) {
714 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
715 			 ret);
716 		return ret;
717 	}
718 
719 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
720 	return ret;
721 }
722 
723 static void
724 hns3_store_port_base_vlan_info(struct hns3_adapter *hns, uint16_t pvid, int on)
725 {
726 	struct hns3_hw *hw = &hns->hw;
727 
728 	hw->port_base_vlan_cfg.state = on ?
729 	    HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
730 
731 	hw->port_base_vlan_cfg.pvid = pvid;
732 }
733 
734 static void
735 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
736 {
737 	struct hns3_user_vlan_table *vlan_entry;
738 	struct hns3_pf *pf = &hns->pf;
739 
740 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
741 		if (vlan_entry->hd_tbl_status)
742 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
743 
744 		vlan_entry->hd_tbl_status = false;
745 	}
746 
747 	if (is_del_list) {
748 		vlan_entry = LIST_FIRST(&pf->vlan_list);
749 		while (vlan_entry) {
750 			LIST_REMOVE(vlan_entry, next);
751 			rte_free(vlan_entry);
752 			vlan_entry = LIST_FIRST(&pf->vlan_list);
753 		}
754 	}
755 }
756 
757 static void
758 hns3_add_all_vlan_table(struct hns3_adapter *hns)
759 {
760 	struct hns3_user_vlan_table *vlan_entry;
761 	struct hns3_pf *pf = &hns->pf;
762 
763 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
764 		if (!vlan_entry->hd_tbl_status)
765 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
766 
767 		vlan_entry->hd_tbl_status = true;
768 	}
769 }
770 
771 static void
772 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
773 {
774 	struct hns3_hw *hw = &hns->hw;
775 	int ret;
776 
777 	hns3_rm_all_vlan_table(hns, true);
778 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID) {
779 		ret = hns3_set_port_vlan_filter(hns,
780 						hw->port_base_vlan_cfg.pvid, 0);
781 		if (ret) {
782 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
783 				 ret);
784 			return;
785 		}
786 	}
787 }
788 
789 static int
790 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
791 				uint16_t port_base_vlan_state,
792 				uint16_t new_pvid, uint16_t old_pvid)
793 {
794 	struct hns3_hw *hw = &hns->hw;
795 	int ret = 0;
796 
797 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
798 		if (old_pvid != HNS3_INVLID_PVID && old_pvid != 0) {
799 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
800 			if (ret) {
801 				hns3_err(hw,
802 					 "Failed to clear clear old pvid filter, ret =%d",
803 					 ret);
804 				return ret;
805 			}
806 		}
807 
808 		hns3_rm_all_vlan_table(hns, false);
809 		return hns3_set_port_vlan_filter(hns, new_pvid, 1);
810 	}
811 
812 	if (new_pvid != 0) {
813 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
814 		if (ret) {
815 			hns3_err(hw, "Failed to set port vlan filter, ret =%d",
816 				 ret);
817 			return ret;
818 		}
819 	}
820 
821 	if (new_pvid == hw->port_base_vlan_cfg.pvid)
822 		hns3_add_all_vlan_table(hns);
823 
824 	return ret;
825 }
826 
827 static int
828 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
829 {
830 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
831 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
832 	bool rx_strip_en;
833 	int ret;
834 
835 	rx_strip_en = old_cfg->rx_vlan_offload_en ? true : false;
836 	if (on) {
837 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
838 		rx_vlan_cfg.strip_tag2_en = true;
839 	} else {
840 		rx_vlan_cfg.strip_tag1_en = false;
841 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
842 	}
843 	rx_vlan_cfg.vlan1_vlan_prionly = false;
844 	rx_vlan_cfg.vlan2_vlan_prionly = false;
845 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
846 
847 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
848 	if (ret)
849 		return ret;
850 
851 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
852 	return ret;
853 }
854 
855 static int
856 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
857 {
858 	struct hns3_hw *hw = &hns->hw;
859 	uint16_t port_base_vlan_state;
860 	uint16_t old_pvid;
861 	int ret;
862 
863 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
864 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID)
865 			hns3_warn(hw, "Invalid operation! As current pvid set "
866 				  "is %u, disable pvid %u is invalid",
867 				  hw->port_base_vlan_cfg.pvid, pvid);
868 		return 0;
869 	}
870 
871 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
872 				    HNS3_PORT_BASE_VLAN_DISABLE;
873 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
874 	if (ret) {
875 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
876 			 ret);
877 		return ret;
878 	}
879 
880 	ret = hns3_en_pvid_strip(hns, on);
881 	if (ret) {
882 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
883 			 "ret = %d", ret);
884 		return ret;
885 	}
886 
887 	if (pvid == HNS3_INVLID_PVID)
888 		goto out;
889 	old_pvid = hw->port_base_vlan_cfg.pvid;
890 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid,
891 					      old_pvid);
892 	if (ret) {
893 		hns3_err(hw, "Failed to update vlan filter entries, ret =%d",
894 			 ret);
895 		return ret;
896 	}
897 
898 out:
899 	hns3_store_port_base_vlan_info(hns, pvid, on);
900 	return ret;
901 }
902 
903 static int
904 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
905 {
906 	struct hns3_adapter *hns = dev->data->dev_private;
907 	struct hns3_hw *hw = &hns->hw;
908 	bool pvid_en_state_change;
909 	uint16_t pvid_state;
910 	int ret;
911 
912 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
913 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
914 			 RTE_ETHER_MAX_VLAN_ID);
915 		return -EINVAL;
916 	}
917 
918 	/*
919 	 * If PVID configuration state change, should refresh the PVID
920 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
921 	 */
922 	pvid_state = hw->port_base_vlan_cfg.state;
923 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
924 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
925 		pvid_en_state_change = false;
926 	else
927 		pvid_en_state_change = true;
928 
929 	rte_spinlock_lock(&hw->lock);
930 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
931 	rte_spinlock_unlock(&hw->lock);
932 	if (ret)
933 		return ret;
934 
935 	if (pvid_en_state_change)
936 		hns3_update_all_queues_pvid_state(hw);
937 
938 	return 0;
939 }
940 
941 static void
942 init_port_base_vlan_info(struct hns3_hw *hw)
943 {
944 	hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
945 	hw->port_base_vlan_cfg.pvid = HNS3_INVLID_PVID;
946 }
947 
948 static int
949 hns3_default_vlan_config(struct hns3_adapter *hns)
950 {
951 	struct hns3_hw *hw = &hns->hw;
952 	int ret;
953 
954 	ret = hns3_set_port_vlan_filter(hns, 0, 1);
955 	if (ret)
956 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
957 	return ret;
958 }
959 
960 static int
961 hns3_init_vlan_config(struct hns3_adapter *hns)
962 {
963 	struct hns3_hw *hw = &hns->hw;
964 	int ret;
965 
966 	/*
967 	 * This function can be called in the initialization and reset process,
968 	 * when in reset process, it means that hardware had been reseted
969 	 * successfully and we need to restore the hardware configuration to
970 	 * ensure that the hardware configuration remains unchanged before and
971 	 * after reset.
972 	 */
973 	if (rte_atomic16_read(&hw->reset.resetting) == 0)
974 		init_port_base_vlan_info(hw);
975 
976 	ret = hns3_vlan_filter_init(hns);
977 	if (ret) {
978 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
979 		return ret;
980 	}
981 
982 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
983 				       RTE_ETHER_TYPE_VLAN);
984 	if (ret) {
985 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
986 		return ret;
987 	}
988 
989 	/*
990 	 * When in the reinit dev stage of the reset process, the following
991 	 * vlan-related configurations may differ from those at initialization,
992 	 * we will restore configurations to hardware in hns3_restore_vlan_table
993 	 * and hns3_restore_vlan_conf later.
994 	 */
995 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
996 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVLID_PVID, 0);
997 		if (ret) {
998 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
999 			return ret;
1000 		}
1001 
1002 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1003 		if (ret) {
1004 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1005 				 ret);
1006 			return ret;
1007 		}
1008 	}
1009 
1010 	return hns3_default_vlan_config(hns);
1011 }
1012 
1013 static int
1014 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1015 {
1016 	struct hns3_pf *pf = &hns->pf;
1017 	struct hns3_hw *hw = &hns->hw;
1018 	uint64_t offloads;
1019 	bool enable;
1020 	int ret;
1021 
1022 	if (!hw->data->promiscuous) {
1023 		/* restore vlan filter states */
1024 		offloads = hw->data->dev_conf.rxmode.offloads;
1025 		enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1026 		ret = hns3_enable_vlan_filter(hns, enable);
1027 		if (ret) {
1028 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1029 				 "ret = %d", ret);
1030 			return ret;
1031 		}
1032 	}
1033 
1034 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1035 	if (ret) {
1036 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1037 		return ret;
1038 	}
1039 
1040 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1041 	if (ret)
1042 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1043 
1044 	return ret;
1045 }
1046 
1047 static int
1048 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1049 {
1050 	struct hns3_adapter *hns = dev->data->dev_private;
1051 	struct rte_eth_dev_data *data = dev->data;
1052 	struct rte_eth_txmode *txmode;
1053 	struct hns3_hw *hw = &hns->hw;
1054 	int mask;
1055 	int ret;
1056 
1057 	txmode = &data->dev_conf.txmode;
1058 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1059 		hns3_warn(hw,
1060 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1061 			  "configuration is not supported! Ignore these two "
1062 			  "parameters: hw_vlan_reject_tagged(%d), "
1063 			  "hw_vlan_reject_untagged(%d)",
1064 			  txmode->hw_vlan_reject_tagged,
1065 			  txmode->hw_vlan_reject_untagged);
1066 
1067 	/* Apply vlan offload setting */
1068 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1069 	ret = hns3_vlan_offload_set(dev, mask);
1070 	if (ret) {
1071 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1072 			 ret);
1073 		return ret;
1074 	}
1075 
1076 	/*
1077 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1078 	 * VLAN pvid related configuration to hardware.
1079 	 */
1080 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1081 		return 0;
1082 
1083 	/* Apply pvid setting */
1084 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1085 				 txmode->hw_vlan_insert_pvid);
1086 	if (ret)
1087 		hns3_err(hw, "dev config vlan pvid(%d) failed, ret = %d",
1088 			 txmode->pvid, ret);
1089 
1090 	return ret;
1091 }
1092 
1093 static int
1094 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1095 		unsigned int tso_mss_max)
1096 {
1097 	struct hns3_cfg_tso_status_cmd *req;
1098 	struct hns3_cmd_desc desc;
1099 	uint16_t tso_mss;
1100 
1101 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1102 
1103 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1104 
1105 	tso_mss = 0;
1106 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1107 		       tso_mss_min);
1108 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1109 
1110 	tso_mss = 0;
1111 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1112 		       tso_mss_max);
1113 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1114 
1115 	return hns3_cmd_send(hw, &desc, 1);
1116 }
1117 
1118 static int
1119 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1120 		   uint16_t *allocated_size, bool is_alloc)
1121 {
1122 	struct hns3_umv_spc_alc_cmd *req;
1123 	struct hns3_cmd_desc desc;
1124 	int ret;
1125 
1126 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1127 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1128 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1129 	req->space_size = rte_cpu_to_le_32(space_size);
1130 
1131 	ret = hns3_cmd_send(hw, &desc, 1);
1132 	if (ret) {
1133 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1134 			     is_alloc ? "allocate" : "free", ret);
1135 		return ret;
1136 	}
1137 
1138 	if (is_alloc && allocated_size)
1139 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1140 
1141 	return 0;
1142 }
1143 
1144 static int
1145 hns3_init_umv_space(struct hns3_hw *hw)
1146 {
1147 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1148 	struct hns3_pf *pf = &hns->pf;
1149 	uint16_t allocated_size = 0;
1150 	int ret;
1151 
1152 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1153 				 true);
1154 	if (ret)
1155 		return ret;
1156 
1157 	if (allocated_size < pf->wanted_umv_size)
1158 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1159 			     pf->wanted_umv_size, allocated_size);
1160 
1161 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1162 						pf->wanted_umv_size;
1163 	pf->used_umv_size = 0;
1164 	return 0;
1165 }
1166 
1167 static int
1168 hns3_uninit_umv_space(struct hns3_hw *hw)
1169 {
1170 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1171 	struct hns3_pf *pf = &hns->pf;
1172 	int ret;
1173 
1174 	if (pf->max_umv_size == 0)
1175 		return 0;
1176 
1177 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1178 	if (ret)
1179 		return ret;
1180 
1181 	pf->max_umv_size = 0;
1182 
1183 	return 0;
1184 }
1185 
1186 static bool
1187 hns3_is_umv_space_full(struct hns3_hw *hw)
1188 {
1189 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1190 	struct hns3_pf *pf = &hns->pf;
1191 	bool is_full;
1192 
1193 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1194 
1195 	return is_full;
1196 }
1197 
1198 static void
1199 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1200 {
1201 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1202 	struct hns3_pf *pf = &hns->pf;
1203 
1204 	if (is_free) {
1205 		if (pf->used_umv_size > 0)
1206 			pf->used_umv_size--;
1207 	} else
1208 		pf->used_umv_size++;
1209 }
1210 
1211 static void
1212 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1213 		      const uint8_t *addr, bool is_mc)
1214 {
1215 	const unsigned char *mac_addr = addr;
1216 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1217 			    ((uint32_t)mac_addr[2] << 16) |
1218 			    ((uint32_t)mac_addr[1] << 8) |
1219 			    (uint32_t)mac_addr[0];
1220 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1221 
1222 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1223 	if (is_mc) {
1224 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1225 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1226 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1227 	}
1228 
1229 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1230 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1231 }
1232 
1233 static int
1234 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1235 			     uint8_t resp_code,
1236 			     enum hns3_mac_vlan_tbl_opcode op)
1237 {
1238 	if (cmdq_resp) {
1239 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1240 			 cmdq_resp);
1241 		return -EIO;
1242 	}
1243 
1244 	if (op == HNS3_MAC_VLAN_ADD) {
1245 		if (resp_code == 0 || resp_code == 1) {
1246 			return 0;
1247 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1248 			hns3_err(hw, "add mac addr failed for uc_overflow");
1249 			return -ENOSPC;
1250 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1251 			hns3_err(hw, "add mac addr failed for mc_overflow");
1252 			return -ENOSPC;
1253 		}
1254 
1255 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1256 			 resp_code);
1257 		return -EIO;
1258 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1259 		if (resp_code == 0) {
1260 			return 0;
1261 		} else if (resp_code == 1) {
1262 			hns3_dbg(hw, "remove mac addr failed for miss");
1263 			return -ENOENT;
1264 		}
1265 
1266 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1267 			 resp_code);
1268 		return -EIO;
1269 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1270 		if (resp_code == 0) {
1271 			return 0;
1272 		} else if (resp_code == 1) {
1273 			hns3_dbg(hw, "lookup mac addr failed for miss");
1274 			return -ENOENT;
1275 		}
1276 
1277 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1278 			 resp_code);
1279 		return -EIO;
1280 	}
1281 
1282 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1283 		 op);
1284 
1285 	return -EINVAL;
1286 }
1287 
1288 static int
1289 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1290 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1291 			 struct hns3_cmd_desc *desc, bool is_mc)
1292 {
1293 	uint8_t resp_code;
1294 	uint16_t retval;
1295 	int ret;
1296 
1297 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1298 	if (is_mc) {
1299 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1300 		memcpy(desc[0].data, req,
1301 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1302 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1303 					  true);
1304 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1305 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1306 					  true);
1307 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1308 	} else {
1309 		memcpy(desc[0].data, req,
1310 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1311 		ret = hns3_cmd_send(hw, desc, 1);
1312 	}
1313 	if (ret) {
1314 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1315 			 ret);
1316 		return ret;
1317 	}
1318 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1319 	retval = rte_le_to_cpu_16(desc[0].retval);
1320 
1321 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1322 					    HNS3_MAC_VLAN_LKUP);
1323 }
1324 
1325 static int
1326 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1327 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1328 		      struct hns3_cmd_desc *mc_desc)
1329 {
1330 	uint8_t resp_code;
1331 	uint16_t retval;
1332 	int cfg_status;
1333 	int ret;
1334 
1335 	if (mc_desc == NULL) {
1336 		struct hns3_cmd_desc desc;
1337 
1338 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1339 		memcpy(desc.data, req,
1340 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1341 		ret = hns3_cmd_send(hw, &desc, 1);
1342 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1343 		retval = rte_le_to_cpu_16(desc.retval);
1344 
1345 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1346 							  HNS3_MAC_VLAN_ADD);
1347 	} else {
1348 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1349 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1350 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1351 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1352 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1353 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1354 		memcpy(mc_desc[0].data, req,
1355 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1356 		mc_desc[0].retval = 0;
1357 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1358 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1359 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1360 
1361 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1362 							  HNS3_MAC_VLAN_ADD);
1363 	}
1364 
1365 	if (ret) {
1366 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1367 		return ret;
1368 	}
1369 
1370 	return cfg_status;
1371 }
1372 
1373 static int
1374 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1375 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1376 {
1377 	struct hns3_cmd_desc desc;
1378 	uint8_t resp_code;
1379 	uint16_t retval;
1380 	int ret;
1381 
1382 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1383 
1384 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1385 
1386 	ret = hns3_cmd_send(hw, &desc, 1);
1387 	if (ret) {
1388 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1389 		return ret;
1390 	}
1391 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1392 	retval = rte_le_to_cpu_16(desc.retval);
1393 
1394 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1395 					    HNS3_MAC_VLAN_REMOVE);
1396 }
1397 
1398 static int
1399 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1400 {
1401 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1402 	struct hns3_mac_vlan_tbl_entry_cmd req;
1403 	struct hns3_pf *pf = &hns->pf;
1404 	struct hns3_cmd_desc desc;
1405 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1406 	uint16_t egress_port = 0;
1407 	uint8_t vf_id;
1408 	int ret;
1409 
1410 	/* check if mac addr is valid */
1411 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1412 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1413 				      mac_addr);
1414 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1415 			 mac_str);
1416 		return -EINVAL;
1417 	}
1418 
1419 	memset(&req, 0, sizeof(req));
1420 
1421 	/*
1422 	 * In current version VF is not supported when PF is driven by DPDK
1423 	 * driver, just need to configure parameters for PF vport.
1424 	 */
1425 	vf_id = HNS3_PF_FUNC_ID;
1426 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1427 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1428 
1429 	req.egress_port = rte_cpu_to_le_16(egress_port);
1430 
1431 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1432 
1433 	/*
1434 	 * Lookup the mac address in the mac_vlan table, and add
1435 	 * it if the entry is inexistent. Repeated unicast entry
1436 	 * is not allowed in the mac vlan table.
1437 	 */
1438 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc, false);
1439 	if (ret == -ENOENT) {
1440 		if (!hns3_is_umv_space_full(hw)) {
1441 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1442 			if (!ret)
1443 				hns3_update_umv_space(hw, false);
1444 			return ret;
1445 		}
1446 
1447 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1448 
1449 		return -ENOSPC;
1450 	}
1451 
1452 	rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1453 
1454 	/* check if we just hit the duplicate */
1455 	if (ret == 0) {
1456 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1457 		return 0;
1458 	}
1459 
1460 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1461 		 mac_str);
1462 
1463 	return ret;
1464 }
1465 
1466 static int
1467 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1468 {
1469 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1470 	struct rte_ether_addr *addr;
1471 	int ret;
1472 	int i;
1473 
1474 	for (i = 0; i < hw->mc_addrs_num; i++) {
1475 		addr = &hw->mc_addrs[i];
1476 		/* Check if there are duplicate addresses */
1477 		if (rte_is_same_ether_addr(addr, mac_addr)) {
1478 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1479 					      addr);
1480 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1481 				 "(%s) is added by the set_mc_mac_addr_list "
1482 				 "API", mac_str);
1483 			return -EINVAL;
1484 		}
1485 	}
1486 
1487 	ret = hns3_add_mc_addr(hw, mac_addr);
1488 	if (ret) {
1489 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1490 				      mac_addr);
1491 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1492 			 mac_str, ret);
1493 	}
1494 	return ret;
1495 }
1496 
1497 static int
1498 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1499 {
1500 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1501 	int ret;
1502 
1503 	ret = hns3_remove_mc_addr(hw, mac_addr);
1504 	if (ret) {
1505 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1506 				      mac_addr);
1507 		hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1508 			 mac_str, ret);
1509 	}
1510 	return ret;
1511 }
1512 
1513 static int
1514 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1515 		  uint32_t idx, __rte_unused uint32_t pool)
1516 {
1517 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1518 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1519 	int ret;
1520 
1521 	rte_spinlock_lock(&hw->lock);
1522 
1523 	/*
1524 	 * In hns3 network engine adding UC and MC mac address with different
1525 	 * commands with firmware. We need to determine whether the input
1526 	 * address is a UC or a MC address to call different commands.
1527 	 * By the way, it is recommended calling the API function named
1528 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1529 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1530 	 * may affect the specifications of UC mac addresses.
1531 	 */
1532 	if (rte_is_multicast_ether_addr(mac_addr))
1533 		ret = hns3_add_mc_addr_common(hw, mac_addr);
1534 	else
1535 		ret = hns3_add_uc_addr_common(hw, mac_addr);
1536 
1537 	if (ret) {
1538 		rte_spinlock_unlock(&hw->lock);
1539 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1540 				      mac_addr);
1541 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1542 			 ret);
1543 		return ret;
1544 	}
1545 
1546 	if (idx == 0)
1547 		hw->mac.default_addr_setted = true;
1548 	rte_spinlock_unlock(&hw->lock);
1549 
1550 	return ret;
1551 }
1552 
1553 static int
1554 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1555 {
1556 	struct hns3_mac_vlan_tbl_entry_cmd req;
1557 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1558 	int ret;
1559 
1560 	/* check if mac addr is valid */
1561 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1562 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1563 				      mac_addr);
1564 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1565 			 mac_str);
1566 		return -EINVAL;
1567 	}
1568 
1569 	memset(&req, 0, sizeof(req));
1570 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1571 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1572 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1573 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1574 		return 0;
1575 	else if (ret == 0)
1576 		hns3_update_umv_space(hw, true);
1577 
1578 	return ret;
1579 }
1580 
1581 static void
1582 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1583 {
1584 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1585 	/* index will be checked by upper level rte interface */
1586 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1587 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1588 	int ret;
1589 
1590 	rte_spinlock_lock(&hw->lock);
1591 
1592 	if (rte_is_multicast_ether_addr(mac_addr))
1593 		ret = hns3_remove_mc_addr_common(hw, mac_addr);
1594 	else
1595 		ret = hns3_remove_uc_addr_common(hw, mac_addr);
1596 	rte_spinlock_unlock(&hw->lock);
1597 	if (ret) {
1598 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1599 				      mac_addr);
1600 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1601 			 ret);
1602 	}
1603 }
1604 
1605 static int
1606 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1607 			  struct rte_ether_addr *mac_addr)
1608 {
1609 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1610 	struct rte_ether_addr *oaddr;
1611 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1612 	bool default_addr_setted;
1613 	bool rm_succes = false;
1614 	int ret, ret_val;
1615 
1616 	/*
1617 	 * It has been guaranteed that input parameter named mac_addr is valid
1618 	 * address in the rte layer of DPDK framework.
1619 	 */
1620 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1621 	default_addr_setted = hw->mac.default_addr_setted;
1622 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1623 		return 0;
1624 
1625 	rte_spinlock_lock(&hw->lock);
1626 	if (default_addr_setted) {
1627 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1628 		if (ret) {
1629 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1630 					      oaddr);
1631 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1632 				  mac_str, ret);
1633 			rm_succes = false;
1634 		} else
1635 			rm_succes = true;
1636 	}
1637 
1638 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1639 	if (ret) {
1640 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1641 				      mac_addr);
1642 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1643 		goto err_add_uc_addr;
1644 	}
1645 
1646 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1647 	if (ret) {
1648 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1649 		goto err_pause_addr_cfg;
1650 	}
1651 
1652 	rte_ether_addr_copy(mac_addr,
1653 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1654 	hw->mac.default_addr_setted = true;
1655 	rte_spinlock_unlock(&hw->lock);
1656 
1657 	return 0;
1658 
1659 err_pause_addr_cfg:
1660 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1661 	if (ret_val) {
1662 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1663 				      mac_addr);
1664 		hns3_warn(hw,
1665 			  "Failed to roll back to del setted mac addr(%s): %d",
1666 			  mac_str, ret_val);
1667 	}
1668 
1669 err_add_uc_addr:
1670 	if (rm_succes) {
1671 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1672 		if (ret_val) {
1673 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1674 					      oaddr);
1675 			hns3_warn(hw,
1676 				  "Failed to restore old uc mac addr(%s): %d",
1677 				  mac_str, ret_val);
1678 			hw->mac.default_addr_setted = false;
1679 		}
1680 	}
1681 	rte_spinlock_unlock(&hw->lock);
1682 
1683 	return ret;
1684 }
1685 
1686 static int
1687 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1688 {
1689 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1690 	struct hns3_hw *hw = &hns->hw;
1691 	struct rte_ether_addr *addr;
1692 	int err = 0;
1693 	int ret;
1694 	int i;
1695 
1696 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1697 		addr = &hw->data->mac_addrs[i];
1698 		if (rte_is_zero_ether_addr(addr))
1699 			continue;
1700 		if (rte_is_multicast_ether_addr(addr))
1701 			ret = del ? hns3_remove_mc_addr(hw, addr) :
1702 			      hns3_add_mc_addr(hw, addr);
1703 		else
1704 			ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1705 			      hns3_add_uc_addr_common(hw, addr);
1706 
1707 		if (ret) {
1708 			err = ret;
1709 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1710 					      addr);
1711 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1712 				 "ret = %d.", del ? "remove" : "restore",
1713 				 mac_str, i, ret);
1714 		}
1715 	}
1716 	return err;
1717 }
1718 
1719 static void
1720 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1721 {
1722 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1723 	uint8_t word_num;
1724 	uint8_t bit_num;
1725 
1726 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1727 		word_num = vfid / 32;
1728 		bit_num = vfid % 32;
1729 		if (clr)
1730 			desc[1].data[word_num] &=
1731 			    rte_cpu_to_le_32(~(1UL << bit_num));
1732 		else
1733 			desc[1].data[word_num] |=
1734 			    rte_cpu_to_le_32(1UL << bit_num);
1735 	} else {
1736 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1737 		bit_num = vfid % 32;
1738 		if (clr)
1739 			desc[2].data[word_num] &=
1740 			    rte_cpu_to_le_32(~(1UL << bit_num));
1741 		else
1742 			desc[2].data[word_num] |=
1743 			    rte_cpu_to_le_32(1UL << bit_num);
1744 	}
1745 }
1746 
1747 static int
1748 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1749 {
1750 	struct hns3_mac_vlan_tbl_entry_cmd req;
1751 	struct hns3_cmd_desc desc[3];
1752 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1753 	uint8_t vf_id;
1754 	int ret;
1755 
1756 	/* Check if mac addr is valid */
1757 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1758 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1759 				      mac_addr);
1760 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1761 			 mac_str);
1762 		return -EINVAL;
1763 	}
1764 
1765 	memset(&req, 0, sizeof(req));
1766 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1767 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1768 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1769 	if (ret) {
1770 		/* This mac addr do not exist, add new entry for it */
1771 		memset(desc[0].data, 0, sizeof(desc[0].data));
1772 		memset(desc[1].data, 0, sizeof(desc[0].data));
1773 		memset(desc[2].data, 0, sizeof(desc[0].data));
1774 	}
1775 
1776 	/*
1777 	 * In current version VF is not supported when PF is driven by DPDK
1778 	 * driver, just need to configure parameters for PF vport.
1779 	 */
1780 	vf_id = HNS3_PF_FUNC_ID;
1781 	hns3_update_desc_vfid(desc, vf_id, false);
1782 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1783 	if (ret) {
1784 		if (ret == -ENOSPC)
1785 			hns3_err(hw, "mc mac vlan table is full");
1786 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1787 				      mac_addr);
1788 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1789 	}
1790 
1791 	return ret;
1792 }
1793 
1794 static int
1795 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1796 {
1797 	struct hns3_mac_vlan_tbl_entry_cmd req;
1798 	struct hns3_cmd_desc desc[3];
1799 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1800 	uint8_t vf_id;
1801 	int ret;
1802 
1803 	/* Check if mac addr is valid */
1804 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1805 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1806 				      mac_addr);
1807 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1808 			 mac_str);
1809 		return -EINVAL;
1810 	}
1811 
1812 	memset(&req, 0, sizeof(req));
1813 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1814 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1815 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1816 	if (ret == 0) {
1817 		/*
1818 		 * This mac addr exist, remove this handle's VFID for it.
1819 		 * In current version VF is not supported when PF is driven by
1820 		 * DPDK driver, just need to configure parameters for PF vport.
1821 		 */
1822 		vf_id = HNS3_PF_FUNC_ID;
1823 		hns3_update_desc_vfid(desc, vf_id, true);
1824 
1825 		/* All the vfid is zero, so need to delete this entry */
1826 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1827 	} else if (ret == -ENOENT) {
1828 		/* This mac addr doesn't exist. */
1829 		return 0;
1830 	}
1831 
1832 	if (ret) {
1833 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1834 				      mac_addr);
1835 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1836 	}
1837 
1838 	return ret;
1839 }
1840 
1841 static int
1842 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1843 			   struct rte_ether_addr *mc_addr_set,
1844 			   uint32_t nb_mc_addr)
1845 {
1846 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1847 	struct rte_ether_addr *addr;
1848 	uint32_t i;
1849 	uint32_t j;
1850 
1851 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1852 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
1853 			 "invalid. valid range: 0~%d",
1854 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1855 		return -EINVAL;
1856 	}
1857 
1858 	/* Check if input mac addresses are valid */
1859 	for (i = 0; i < nb_mc_addr; i++) {
1860 		addr = &mc_addr_set[i];
1861 		if (!rte_is_multicast_ether_addr(addr)) {
1862 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1863 					      addr);
1864 			hns3_err(hw,
1865 				 "failed to set mc mac addr, addr(%s) invalid.",
1866 				 mac_str);
1867 			return -EINVAL;
1868 		}
1869 
1870 		/* Check if there are duplicate addresses */
1871 		for (j = i + 1; j < nb_mc_addr; j++) {
1872 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1873 				rte_ether_format_addr(mac_str,
1874 						      RTE_ETHER_ADDR_FMT_SIZE,
1875 						      addr);
1876 				hns3_err(hw, "failed to set mc mac addr, "
1877 					 "addrs invalid. two same addrs(%s).",
1878 					 mac_str);
1879 				return -EINVAL;
1880 			}
1881 		}
1882 
1883 		/*
1884 		 * Check if there are duplicate addresses between mac_addrs
1885 		 * and mc_addr_set
1886 		 */
1887 		for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1888 			if (rte_is_same_ether_addr(addr,
1889 						   &hw->data->mac_addrs[j])) {
1890 				rte_ether_format_addr(mac_str,
1891 						      RTE_ETHER_ADDR_FMT_SIZE,
1892 						      addr);
1893 				hns3_err(hw, "failed to set mc mac addr, "
1894 					 "addrs invalid. addrs(%s) has already "
1895 					 "configured in mac_addr add API",
1896 					 mac_str);
1897 				return -EINVAL;
1898 			}
1899 		}
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static void
1906 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
1907 			   struct rte_ether_addr *mc_addr_set,
1908 			   int mc_addr_num,
1909 			   struct rte_ether_addr *reserved_addr_list,
1910 			   int *reserved_addr_num,
1911 			   struct rte_ether_addr *add_addr_list,
1912 			   int *add_addr_num,
1913 			   struct rte_ether_addr *rm_addr_list,
1914 			   int *rm_addr_num)
1915 {
1916 	struct rte_ether_addr *addr;
1917 	int current_addr_num;
1918 	int reserved_num = 0;
1919 	int add_num = 0;
1920 	int rm_num = 0;
1921 	int num;
1922 	int i;
1923 	int j;
1924 	bool same_addr;
1925 
1926 	/* Calculate the mc mac address list that should be removed */
1927 	current_addr_num = hw->mc_addrs_num;
1928 	for (i = 0; i < current_addr_num; i++) {
1929 		addr = &hw->mc_addrs[i];
1930 		same_addr = false;
1931 		for (j = 0; j < mc_addr_num; j++) {
1932 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1933 				same_addr = true;
1934 				break;
1935 			}
1936 		}
1937 
1938 		if (!same_addr) {
1939 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
1940 			rm_num++;
1941 		} else {
1942 			rte_ether_addr_copy(addr,
1943 					    &reserved_addr_list[reserved_num]);
1944 			reserved_num++;
1945 		}
1946 	}
1947 
1948 	/* Calculate the mc mac address list that should be added */
1949 	for (i = 0; i < mc_addr_num; i++) {
1950 		addr = &mc_addr_set[i];
1951 		same_addr = false;
1952 		for (j = 0; j < current_addr_num; j++) {
1953 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
1954 				same_addr = true;
1955 				break;
1956 			}
1957 		}
1958 
1959 		if (!same_addr) {
1960 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
1961 			add_num++;
1962 		}
1963 	}
1964 
1965 	/* Reorder the mc mac address list maintained by driver */
1966 	for (i = 0; i < reserved_num; i++)
1967 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
1968 
1969 	for (i = 0; i < rm_num; i++) {
1970 		num = reserved_num + i;
1971 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
1972 	}
1973 
1974 	*reserved_addr_num = reserved_num;
1975 	*add_addr_num = add_num;
1976 	*rm_addr_num = rm_num;
1977 }
1978 
1979 static int
1980 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
1981 			  struct rte_ether_addr *mc_addr_set,
1982 			  uint32_t nb_mc_addr)
1983 {
1984 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1985 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
1986 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
1987 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
1988 	struct rte_ether_addr *addr;
1989 	int reserved_addr_num;
1990 	int add_addr_num;
1991 	int rm_addr_num;
1992 	int mc_addr_num;
1993 	int num;
1994 	int ret;
1995 	int i;
1996 
1997 	/* Check if input parameters are valid */
1998 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
1999 	if (ret)
2000 		return ret;
2001 
2002 	rte_spinlock_lock(&hw->lock);
2003 
2004 	/*
2005 	 * Calculate the mc mac address lists those should be removed and be
2006 	 * added, Reorder the mc mac address list maintained by driver.
2007 	 */
2008 	mc_addr_num = (int)nb_mc_addr;
2009 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2010 				   reserved_addr_list, &reserved_addr_num,
2011 				   add_addr_list, &add_addr_num,
2012 				   rm_addr_list, &rm_addr_num);
2013 
2014 	/* Remove mc mac addresses */
2015 	for (i = 0; i < rm_addr_num; i++) {
2016 		num = rm_addr_num - i - 1;
2017 		addr = &rm_addr_list[num];
2018 		ret = hns3_remove_mc_addr(hw, addr);
2019 		if (ret) {
2020 			rte_spinlock_unlock(&hw->lock);
2021 			return ret;
2022 		}
2023 		hw->mc_addrs_num--;
2024 	}
2025 
2026 	/* Add mc mac addresses */
2027 	for (i = 0; i < add_addr_num; i++) {
2028 		addr = &add_addr_list[i];
2029 		ret = hns3_add_mc_addr(hw, addr);
2030 		if (ret) {
2031 			rte_spinlock_unlock(&hw->lock);
2032 			return ret;
2033 		}
2034 
2035 		num = reserved_addr_num + i;
2036 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2037 		hw->mc_addrs_num++;
2038 	}
2039 	rte_spinlock_unlock(&hw->lock);
2040 
2041 	return 0;
2042 }
2043 
2044 static int
2045 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2046 {
2047 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2048 	struct hns3_hw *hw = &hns->hw;
2049 	struct rte_ether_addr *addr;
2050 	int err = 0;
2051 	int ret;
2052 	int i;
2053 
2054 	for (i = 0; i < hw->mc_addrs_num; i++) {
2055 		addr = &hw->mc_addrs[i];
2056 		if (!rte_is_multicast_ether_addr(addr))
2057 			continue;
2058 		if (del)
2059 			ret = hns3_remove_mc_addr(hw, addr);
2060 		else
2061 			ret = hns3_add_mc_addr(hw, addr);
2062 		if (ret) {
2063 			err = ret;
2064 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2065 					      addr);
2066 			hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2067 				 del ? "Remove" : "Restore", mac_str, ret);
2068 		}
2069 	}
2070 	return err;
2071 }
2072 
2073 static int
2074 hns3_check_mq_mode(struct rte_eth_dev *dev)
2075 {
2076 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2077 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2078 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2079 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2080 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2081 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2082 	uint8_t num_tc;
2083 	int max_tc = 0;
2084 	int i;
2085 
2086 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2087 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2088 
2089 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2090 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2091 			 "rx_mq_mode = %d", rx_mq_mode);
2092 		return -EINVAL;
2093 	}
2094 
2095 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2096 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2097 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2098 			 "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2099 			 rx_mq_mode, tx_mq_mode);
2100 		return -EINVAL;
2101 	}
2102 
2103 	if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2104 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2105 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2106 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2107 			return -EINVAL;
2108 		}
2109 
2110 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2111 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2112 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2113 				 "nb_tcs(%d) != %d or %d in rx direction.",
2114 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2115 			return -EINVAL;
2116 		}
2117 
2118 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2119 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2120 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2121 			return -EINVAL;
2122 		}
2123 
2124 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2125 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2126 				hns3_err(hw, "dcb_tc[%d] = %d in rx direction, "
2127 					 "is not equal to one in tx direction.",
2128 					 i, dcb_rx_conf->dcb_tc[i]);
2129 				return -EINVAL;
2130 			}
2131 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2132 				max_tc = dcb_rx_conf->dcb_tc[i];
2133 		}
2134 
2135 		num_tc = max_tc + 1;
2136 		if (num_tc > dcb_rx_conf->nb_tcs) {
2137 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2138 				 num_tc, dcb_rx_conf->nb_tcs);
2139 			return -EINVAL;
2140 		}
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 static int
2147 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2148 {
2149 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2150 
2151 	if (!hns3_dev_dcb_supported(hw)) {
2152 		hns3_err(hw, "this port does not support dcb configurations.");
2153 		return -EOPNOTSUPP;
2154 	}
2155 
2156 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2157 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2158 		return -EOPNOTSUPP;
2159 	}
2160 
2161 	/* Check multiple queue mode */
2162 	return hns3_check_mq_mode(dev);
2163 }
2164 
2165 static int
2166 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id, bool mmap,
2167 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2168 {
2169 	struct hns3_cmd_desc desc;
2170 	struct hns3_ctrl_vector_chain_cmd *req =
2171 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2172 	enum hns3_cmd_status status;
2173 	enum hns3_opcode_type op;
2174 	uint16_t tqp_type_and_id = 0;
2175 	const char *op_str;
2176 	uint16_t type;
2177 	uint16_t gl;
2178 
2179 	op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2180 	hns3_cmd_setup_basic_desc(&desc, op, false);
2181 	req->int_vector_id = vector_id;
2182 
2183 	if (queue_type == HNS3_RING_TYPE_RX)
2184 		gl = HNS3_RING_GL_RX;
2185 	else
2186 		gl = HNS3_RING_GL_TX;
2187 
2188 	type = queue_type;
2189 
2190 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2191 		       type);
2192 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2193 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2194 		       gl);
2195 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2196 	req->int_cause_num = 1;
2197 	op_str = mmap ? "Map" : "Unmap";
2198 	status = hns3_cmd_send(hw, &desc, 1);
2199 	if (status) {
2200 		hns3_err(hw, "%s TQP %d fail, vector_id is %d, status is %d.",
2201 			 op_str, queue_id, req->int_vector_id, status);
2202 		return status;
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 static int
2209 hns3_init_ring_with_vector(struct hns3_hw *hw)
2210 {
2211 	uint8_t vec;
2212 	int ret;
2213 	int i;
2214 
2215 	/*
2216 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2217 	 * function, vector 1~N can be used respectively for the queues of the
2218 	 * function. Tx and Rx queues with the same number share the interrupt
2219 	 * vector. In the initialization clearing the all hardware mapping
2220 	 * relationship configurations between queues and interrupt vectors is
2221 	 * needed, so some error caused by the residual configurations, such as
2222 	 * the unexpected Tx interrupt, can be avoid. Because of the hardware
2223 	 * constraints in hns3 hardware engine, we have to implement clearing
2224 	 * the mapping relationship configurations by binding all queues to the
2225 	 * last interrupt vector and reserving the last interrupt vector. This
2226 	 * method results in a decrease of the maximum queues when upper
2227 	 * applications call the rte_eth_dev_configure API function to enable
2228 	 * Rx interrupt.
2229 	 */
2230 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2231 	/* vec - 1: the last interrupt is reserved */
2232 	hw->intr_tqps_num = vec > hw->tqps_num ? hw->tqps_num : vec - 1;
2233 	for (i = 0; i < hw->intr_tqps_num; i++) {
2234 		/*
2235 		 * Set gap limiter and rate limiter configuration of queue's
2236 		 * interrupt.
2237 		 */
2238 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2239 				       HNS3_TQP_INTR_GL_DEFAULT);
2240 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2241 				       HNS3_TQP_INTR_GL_DEFAULT);
2242 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2243 
2244 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2245 						 HNS3_RING_TYPE_TX, i);
2246 		if (ret) {
2247 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2248 					  "vector: %d, ret=%d", i, vec, ret);
2249 			return ret;
2250 		}
2251 
2252 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2253 						 HNS3_RING_TYPE_RX, i);
2254 		if (ret) {
2255 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2256 					  "vector: %d, ret=%d", i, vec, ret);
2257 			return ret;
2258 		}
2259 	}
2260 
2261 	return 0;
2262 }
2263 
2264 static int
2265 hns3_dev_configure(struct rte_eth_dev *dev)
2266 {
2267 	struct hns3_adapter *hns = dev->data->dev_private;
2268 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2269 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2270 	struct hns3_hw *hw = &hns->hw;
2271 	struct hns3_rss_conf *rss_cfg = &hw->rss_info;
2272 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2273 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2274 	struct rte_eth_rss_conf rss_conf;
2275 	uint16_t mtu;
2276 	bool gro_en;
2277 	int ret;
2278 
2279 	/*
2280 	 * Hardware does not support individually enable/disable/reset the Tx or
2281 	 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
2282 	 * and Rx queues at the same time. When the numbers of Tx queues
2283 	 * allocated by upper applications are not equal to the numbers of Rx
2284 	 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
2285 	 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
2286 	 * these fake queues are imperceptible, and can not be used by upper
2287 	 * applications.
2288 	 */
2289 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2290 	if (ret) {
2291 		hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
2292 		return ret;
2293 	}
2294 
2295 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2296 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2297 		hns3_err(hw, "setting link speed/duplex not supported");
2298 		ret = -EINVAL;
2299 		goto cfg_err;
2300 	}
2301 
2302 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2303 		ret = hns3_check_dcb_cfg(dev);
2304 		if (ret)
2305 			goto cfg_err;
2306 	}
2307 
2308 	/* When RSS is not configured, redirect the packet queue 0 */
2309 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2310 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2311 		rss_conf = conf->rx_adv_conf.rss_conf;
2312 		if (rss_conf.rss_key == NULL) {
2313 			rss_conf.rss_key = rss_cfg->key;
2314 			rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
2315 		}
2316 
2317 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2318 		if (ret)
2319 			goto cfg_err;
2320 	}
2321 
2322 	/*
2323 	 * If jumbo frames are enabled, MTU needs to be refreshed
2324 	 * according to the maximum RX packet length.
2325 	 */
2326 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2327 		/*
2328 		 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
2329 		 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
2330 		 * can safely assign to "uint16_t" type variable.
2331 		 */
2332 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
2333 		ret = hns3_dev_mtu_set(dev, mtu);
2334 		if (ret)
2335 			goto cfg_err;
2336 		dev->data->mtu = mtu;
2337 	}
2338 
2339 	ret = hns3_dev_configure_vlan(dev);
2340 	if (ret)
2341 		goto cfg_err;
2342 
2343 	/* config hardware GRO */
2344 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2345 	ret = hns3_config_gro(hw, gro_en);
2346 	if (ret)
2347 		goto cfg_err;
2348 
2349 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2350 
2351 	return 0;
2352 
2353 cfg_err:
2354 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2355 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2356 
2357 	return ret;
2358 }
2359 
2360 static int
2361 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2362 {
2363 	struct hns3_config_max_frm_size_cmd *req;
2364 	struct hns3_cmd_desc desc;
2365 
2366 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2367 
2368 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2369 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2370 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2371 
2372 	return hns3_cmd_send(hw, &desc, 1);
2373 }
2374 
2375 static int
2376 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2377 {
2378 	int ret;
2379 
2380 	ret = hns3_set_mac_mtu(hw, mps);
2381 	if (ret) {
2382 		hns3_err(hw, "Failed to set mtu, ret = %d", ret);
2383 		return ret;
2384 	}
2385 
2386 	ret = hns3_buffer_alloc(hw);
2387 	if (ret)
2388 		hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
2389 
2390 	return ret;
2391 }
2392 
2393 static int
2394 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2395 {
2396 	struct hns3_adapter *hns = dev->data->dev_private;
2397 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2398 	struct hns3_hw *hw = &hns->hw;
2399 	bool is_jumbo_frame;
2400 	int ret;
2401 
2402 	if (dev->data->dev_started) {
2403 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2404 			 "before configuration", dev->data->port_id);
2405 		return -EBUSY;
2406 	}
2407 
2408 	rte_spinlock_lock(&hw->lock);
2409 	is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
2410 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2411 
2412 	/*
2413 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2414 	 * assign to "uint16_t" type variable.
2415 	 */
2416 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2417 	if (ret) {
2418 		rte_spinlock_unlock(&hw->lock);
2419 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2420 			 dev->data->port_id, mtu, ret);
2421 		return ret;
2422 	}
2423 	hns->pf.mps = (uint16_t)frame_size;
2424 	if (is_jumbo_frame)
2425 		dev->data->dev_conf.rxmode.offloads |=
2426 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2427 	else
2428 		dev->data->dev_conf.rxmode.offloads &=
2429 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2430 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2431 	rte_spinlock_unlock(&hw->lock);
2432 
2433 	return 0;
2434 }
2435 
2436 static int
2437 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2438 {
2439 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2440 	struct hns3_hw *hw = &hns->hw;
2441 	uint16_t queue_num = hw->tqps_num;
2442 
2443 	/*
2444 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2445 	 * MSI-X interrupt resources of the hardware.
2446 	 */
2447 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2448 		queue_num = hw->intr_tqps_num;
2449 
2450 	info->max_rx_queues = queue_num;
2451 	info->max_tx_queues = hw->tqps_num;
2452 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2453 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2454 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2455 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2456 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2457 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2458 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2459 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2460 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2461 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2462 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2463 				 DEV_RX_OFFLOAD_KEEP_CRC |
2464 				 DEV_RX_OFFLOAD_SCATTER |
2465 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2466 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2467 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
2468 				 DEV_RX_OFFLOAD_RSS_HASH |
2469 				 DEV_RX_OFFLOAD_TCP_LRO);
2470 	info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2471 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2472 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2473 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2474 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2475 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2476 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2477 				 DEV_TX_OFFLOAD_TCP_TSO |
2478 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2479 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
2480 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2481 				 info->tx_queue_offload_capa |
2482 				 hns3_txvlan_cap_get(hw));
2483 
2484 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2485 		.nb_max = HNS3_MAX_RING_DESC,
2486 		.nb_min = HNS3_MIN_RING_DESC,
2487 		.nb_align = HNS3_ALIGN_RING_DESC,
2488 	};
2489 
2490 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2491 		.nb_max = HNS3_MAX_RING_DESC,
2492 		.nb_min = HNS3_MIN_RING_DESC,
2493 		.nb_align = HNS3_ALIGN_RING_DESC,
2494 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2495 		.nb_mtu_seg_max = HNS3_MAX_NON_TSO_BD_PER_PKT,
2496 	};
2497 
2498 	info->vmdq_queue_num = 0;
2499 
2500 	info->reta_size = HNS3_RSS_IND_TBL_SIZE;
2501 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2502 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2503 
2504 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2505 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2506 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2507 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2508 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2509 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2510 
2511 	return 0;
2512 }
2513 
2514 static int
2515 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2516 		    size_t fw_size)
2517 {
2518 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2519 	struct hns3_hw *hw = &hns->hw;
2520 	uint32_t version = hw->fw_version;
2521 	int ret;
2522 
2523 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2524 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2525 				      HNS3_FW_VERSION_BYTE3_S),
2526 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2527 				      HNS3_FW_VERSION_BYTE2_S),
2528 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2529 				      HNS3_FW_VERSION_BYTE1_S),
2530 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2531 				      HNS3_FW_VERSION_BYTE0_S));
2532 	ret += 1; /* add the size of '\0' */
2533 	if (fw_size < (uint32_t)ret)
2534 		return ret;
2535 	else
2536 		return 0;
2537 }
2538 
2539 static int
2540 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2541 		     __rte_unused int wait_to_complete)
2542 {
2543 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2544 	struct hns3_hw *hw = &hns->hw;
2545 	struct hns3_mac *mac = &hw->mac;
2546 	struct rte_eth_link new_link;
2547 
2548 	if (!hns3_is_reset_pending(hns)) {
2549 		hns3_update_speed_duplex(eth_dev);
2550 		hns3_update_link_status(hw);
2551 	}
2552 
2553 	memset(&new_link, 0, sizeof(new_link));
2554 	switch (mac->link_speed) {
2555 	case ETH_SPEED_NUM_10M:
2556 	case ETH_SPEED_NUM_100M:
2557 	case ETH_SPEED_NUM_1G:
2558 	case ETH_SPEED_NUM_10G:
2559 	case ETH_SPEED_NUM_25G:
2560 	case ETH_SPEED_NUM_40G:
2561 	case ETH_SPEED_NUM_50G:
2562 	case ETH_SPEED_NUM_100G:
2563 	case ETH_SPEED_NUM_200G:
2564 		new_link.link_speed = mac->link_speed;
2565 		break;
2566 	default:
2567 		new_link.link_speed = ETH_SPEED_NUM_100M;
2568 		break;
2569 	}
2570 
2571 	new_link.link_duplex = mac->link_duplex;
2572 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2573 	new_link.link_autoneg =
2574 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2575 
2576 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2577 }
2578 
2579 static int
2580 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2581 {
2582 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2583 	struct hns3_pf *pf = &hns->pf;
2584 
2585 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2586 		return -EINVAL;
2587 
2588 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2589 
2590 	return 0;
2591 }
2592 
2593 static int
2594 hns3_query_function_status(struct hns3_hw *hw)
2595 {
2596 #define HNS3_QUERY_MAX_CNT		10
2597 #define HNS3_QUERY_SLEEP_MSCOEND	1
2598 	struct hns3_func_status_cmd *req;
2599 	struct hns3_cmd_desc desc;
2600 	int timeout = 0;
2601 	int ret;
2602 
2603 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2604 	req = (struct hns3_func_status_cmd *)desc.data;
2605 
2606 	do {
2607 		ret = hns3_cmd_send(hw, &desc, 1);
2608 		if (ret) {
2609 			PMD_INIT_LOG(ERR, "query function status failed %d",
2610 				     ret);
2611 			return ret;
2612 		}
2613 
2614 		/* Check pf reset is done */
2615 		if (req->pf_state)
2616 			break;
2617 
2618 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2619 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2620 
2621 	return hns3_parse_func_status(hw, req);
2622 }
2623 
2624 static int
2625 hns3_query_pf_resource(struct hns3_hw *hw)
2626 {
2627 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2628 	struct hns3_pf *pf = &hns->pf;
2629 	struct hns3_pf_res_cmd *req;
2630 	struct hns3_cmd_desc desc;
2631 	int ret;
2632 
2633 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2634 	ret = hns3_cmd_send(hw, &desc, 1);
2635 	if (ret) {
2636 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2637 		return ret;
2638 	}
2639 
2640 	req = (struct hns3_pf_res_cmd *)desc.data;
2641 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num);
2642 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2643 	hw->tqps_num = RTE_MIN(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2644 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2645 
2646 	if (req->tx_buf_size)
2647 		pf->tx_buf_size =
2648 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2649 	else
2650 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2651 
2652 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2653 
2654 	if (req->dv_buf_size)
2655 		pf->dv_buf_size =
2656 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2657 	else
2658 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2659 
2660 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2661 
2662 	hw->num_msi =
2663 	    hns3_get_field(rte_le_to_cpu_16(req->pf_intr_vector_number),
2664 			   HNS3_VEC_NUM_M, HNS3_VEC_NUM_S);
2665 
2666 	return 0;
2667 }
2668 
2669 static void
2670 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2671 {
2672 	struct hns3_cfg_param_cmd *req;
2673 	uint64_t mac_addr_tmp_high;
2674 	uint64_t mac_addr_tmp;
2675 	uint32_t i;
2676 
2677 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2678 
2679 	/* get the configuration */
2680 	cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2681 					     HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2682 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2683 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2684 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2685 					   HNS3_CFG_TQP_DESC_N_M,
2686 					   HNS3_CFG_TQP_DESC_N_S);
2687 
2688 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2689 				       HNS3_CFG_PHY_ADDR_M,
2690 				       HNS3_CFG_PHY_ADDR_S);
2691 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2692 					 HNS3_CFG_MEDIA_TP_M,
2693 					 HNS3_CFG_MEDIA_TP_S);
2694 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2695 					 HNS3_CFG_RX_BUF_LEN_M,
2696 					 HNS3_CFG_RX_BUF_LEN_S);
2697 	/* get mac address */
2698 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2699 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2700 					   HNS3_CFG_MAC_ADDR_H_M,
2701 					   HNS3_CFG_MAC_ADDR_H_S);
2702 
2703 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2704 
2705 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2706 					    HNS3_CFG_DEFAULT_SPEED_M,
2707 					    HNS3_CFG_DEFAULT_SPEED_S);
2708 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2709 					   HNS3_CFG_RSS_SIZE_M,
2710 					   HNS3_CFG_RSS_SIZE_S);
2711 
2712 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2713 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2714 
2715 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2716 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2717 
2718 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2719 					    HNS3_CFG_SPEED_ABILITY_M,
2720 					    HNS3_CFG_SPEED_ABILITY_S);
2721 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2722 					HNS3_CFG_UMV_TBL_SPACE_M,
2723 					HNS3_CFG_UMV_TBL_SPACE_S);
2724 	if (!cfg->umv_space)
2725 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2726 }
2727 
2728 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2729  * @hw: pointer to struct hns3_hw
2730  * @hcfg: the config structure to be getted
2731  */
2732 static int
2733 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2734 {
2735 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2736 	struct hns3_cfg_param_cmd *req;
2737 	uint32_t offset;
2738 	uint32_t i;
2739 	int ret;
2740 
2741 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2742 		offset = 0;
2743 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2744 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2745 					  true);
2746 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2747 			       i * HNS3_CFG_RD_LEN_BYTES);
2748 		/* Len should be divided by 4 when send to hardware */
2749 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2750 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2751 		req->offset = rte_cpu_to_le_32(offset);
2752 	}
2753 
2754 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2755 	if (ret) {
2756 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2757 		return ret;
2758 	}
2759 
2760 	hns3_parse_cfg(hcfg, desc);
2761 
2762 	return 0;
2763 }
2764 
2765 static int
2766 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2767 {
2768 	switch (speed_cmd) {
2769 	case HNS3_CFG_SPEED_10M:
2770 		*speed = ETH_SPEED_NUM_10M;
2771 		break;
2772 	case HNS3_CFG_SPEED_100M:
2773 		*speed = ETH_SPEED_NUM_100M;
2774 		break;
2775 	case HNS3_CFG_SPEED_1G:
2776 		*speed = ETH_SPEED_NUM_1G;
2777 		break;
2778 	case HNS3_CFG_SPEED_10G:
2779 		*speed = ETH_SPEED_NUM_10G;
2780 		break;
2781 	case HNS3_CFG_SPEED_25G:
2782 		*speed = ETH_SPEED_NUM_25G;
2783 		break;
2784 	case HNS3_CFG_SPEED_40G:
2785 		*speed = ETH_SPEED_NUM_40G;
2786 		break;
2787 	case HNS3_CFG_SPEED_50G:
2788 		*speed = ETH_SPEED_NUM_50G;
2789 		break;
2790 	case HNS3_CFG_SPEED_100G:
2791 		*speed = ETH_SPEED_NUM_100G;
2792 		break;
2793 	case HNS3_CFG_SPEED_200G:
2794 		*speed = ETH_SPEED_NUM_200G;
2795 		break;
2796 	default:
2797 		return -EINVAL;
2798 	}
2799 
2800 	return 0;
2801 }
2802 
2803 static int
2804 hns3_get_capability(struct hns3_hw *hw)
2805 {
2806 	struct rte_pci_device *pci_dev;
2807 	struct rte_eth_dev *eth_dev;
2808 	uint16_t device_id;
2809 	uint8_t revision;
2810 	int ret;
2811 
2812 	eth_dev = &rte_eth_devices[hw->data->port_id];
2813 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2814 	device_id = pci_dev->id.device_id;
2815 
2816 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
2817 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
2818 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
2819 	    device_id == HNS3_DEV_ID_200G_RDMA)
2820 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
2821 
2822 	/* Get PCI revision id */
2823 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
2824 				  HNS3_PCI_REVISION_ID);
2825 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
2826 		PMD_INIT_LOG(ERR, "failed to read pci revision id: %d", ret);
2827 		return -EIO;
2828 	}
2829 	hw->revision = revision;
2830 
2831 	if (revision >= PCI_REVISION_ID_HIP09_A)
2832 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_COPPER_B, 1);
2833 
2834 	return 0;
2835 }
2836 
2837 static int
2838 hns3_get_board_configuration(struct hns3_hw *hw)
2839 {
2840 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2841 	struct hns3_pf *pf = &hns->pf;
2842 	struct hns3_cfg cfg;
2843 	int ret;
2844 
2845 	ret = hns3_get_board_cfg(hw, &cfg);
2846 	if (ret) {
2847 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2848 		return ret;
2849 	}
2850 
2851 	if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER &&
2852 	    !hns3_dev_copper_supported(hw)) {
2853 		PMD_INIT_LOG(ERR, "media type is copper, not supported.");
2854 		return -EOPNOTSUPP;
2855 	}
2856 
2857 	hw->mac.media_type = cfg.media_type;
2858 	hw->rss_size_max = cfg.rss_size_max;
2859 	hw->rss_dis_flag = false;
2860 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2861 	hw->mac.phy_addr = cfg.phy_addr;
2862 	hw->mac.default_addr_setted = false;
2863 	hw->num_tx_desc = cfg.tqp_desc_num;
2864 	hw->num_rx_desc = cfg.tqp_desc_num;
2865 	hw->dcb_info.num_pg = 1;
2866 	hw->dcb_info.hw_pfc_map = 0;
2867 
2868 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2869 	if (ret) {
2870 		PMD_INIT_LOG(ERR, "Get wrong speed %d, ret = %d",
2871 			     cfg.default_speed, ret);
2872 		return ret;
2873 	}
2874 
2875 	pf->tc_max = cfg.tc_num;
2876 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2877 		PMD_INIT_LOG(WARNING,
2878 			     "Get TC num(%u) from flash, set TC num to 1",
2879 			     pf->tc_max);
2880 		pf->tc_max = 1;
2881 	}
2882 
2883 	/* Dev does not support DCB */
2884 	if (!hns3_dev_dcb_supported(hw)) {
2885 		pf->tc_max = 1;
2886 		pf->pfc_max = 0;
2887 	} else
2888 		pf->pfc_max = pf->tc_max;
2889 
2890 	hw->dcb_info.num_tc = 1;
2891 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2892 				     hw->tqps_num / hw->dcb_info.num_tc);
2893 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2894 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2895 
2896 	pf->wanted_umv_size = cfg.umv_space;
2897 
2898 	return ret;
2899 }
2900 
2901 static int
2902 hns3_get_configuration(struct hns3_hw *hw)
2903 {
2904 	int ret;
2905 
2906 	ret = hns3_query_function_status(hw);
2907 	if (ret) {
2908 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2909 		return ret;
2910 	}
2911 
2912 	/* Get device capability */
2913 	ret = hns3_get_capability(hw);
2914 	if (ret) {
2915 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
2916 		return ret;
2917 	}
2918 
2919 	/* Get pf resource */
2920 	ret = hns3_query_pf_resource(hw);
2921 	if (ret) {
2922 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
2923 		return ret;
2924 	}
2925 
2926 	ret = hns3_get_board_configuration(hw);
2927 	if (ret)
2928 		PMD_INIT_LOG(ERR, "Failed to get board configuration: %d", ret);
2929 
2930 	return ret;
2931 }
2932 
2933 static int
2934 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
2935 		      uint16_t tqp_vid, bool is_pf)
2936 {
2937 	struct hns3_tqp_map_cmd *req;
2938 	struct hns3_cmd_desc desc;
2939 	int ret;
2940 
2941 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
2942 
2943 	req = (struct hns3_tqp_map_cmd *)desc.data;
2944 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
2945 	req->tqp_vf = func_id;
2946 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
2947 	if (!is_pf)
2948 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
2949 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
2950 
2951 	ret = hns3_cmd_send(hw, &desc, 1);
2952 	if (ret)
2953 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
2954 
2955 	return ret;
2956 }
2957 
2958 static int
2959 hns3_map_tqp(struct hns3_hw *hw)
2960 {
2961 	uint16_t tqps_num = hw->total_tqps_num;
2962 	uint16_t func_id;
2963 	uint16_t tqp_id;
2964 	bool is_pf;
2965 	int num;
2966 	int ret;
2967 	int i;
2968 
2969 	/*
2970 	 * In current version VF is not supported when PF is driven by DPDK
2971 	 * driver, so we allocate tqps to PF as much as possible.
2972 	 */
2973 	tqp_id = 0;
2974 	num = DIV_ROUND_UP(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2975 	for (func_id = HNS3_PF_FUNC_ID; func_id < num; func_id++) {
2976 		is_pf = func_id == HNS3_PF_FUNC_ID ? true : false;
2977 		for (i = 0;
2978 		     i < HNS3_MAX_TQP_NUM_PER_FUNC && tqp_id < tqps_num; i++) {
2979 			ret = hns3_map_tqps_to_func(hw, func_id, tqp_id++, i,
2980 						    is_pf);
2981 			if (ret)
2982 				return ret;
2983 		}
2984 	}
2985 
2986 	return 0;
2987 }
2988 
2989 static int
2990 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
2991 {
2992 	struct hns3_config_mac_speed_dup_cmd *req;
2993 	struct hns3_cmd_desc desc;
2994 	int ret;
2995 
2996 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
2997 
2998 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
2999 
3000 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3001 
3002 	switch (speed) {
3003 	case ETH_SPEED_NUM_10M:
3004 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3005 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3006 		break;
3007 	case ETH_SPEED_NUM_100M:
3008 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3009 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3010 		break;
3011 	case ETH_SPEED_NUM_1G:
3012 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3013 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3014 		break;
3015 	case ETH_SPEED_NUM_10G:
3016 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3017 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3018 		break;
3019 	case ETH_SPEED_NUM_25G:
3020 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3021 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3022 		break;
3023 	case ETH_SPEED_NUM_40G:
3024 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3025 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3026 		break;
3027 	case ETH_SPEED_NUM_50G:
3028 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3029 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3030 		break;
3031 	case ETH_SPEED_NUM_100G:
3032 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3033 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3034 		break;
3035 	case ETH_SPEED_NUM_200G:
3036 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3037 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3038 		break;
3039 	default:
3040 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3041 		return -EINVAL;
3042 	}
3043 
3044 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3045 
3046 	ret = hns3_cmd_send(hw, &desc, 1);
3047 	if (ret)
3048 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3049 
3050 	return ret;
3051 }
3052 
3053 static int
3054 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3055 {
3056 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3057 	struct hns3_pf *pf = &hns->pf;
3058 	struct hns3_priv_buf *priv;
3059 	uint32_t i, total_size;
3060 
3061 	total_size = pf->pkt_buf_size;
3062 
3063 	/* alloc tx buffer for all enabled tc */
3064 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3065 		priv = &buf_alloc->priv_buf[i];
3066 
3067 		if (hw->hw_tc_map & BIT(i)) {
3068 			if (total_size < pf->tx_buf_size)
3069 				return -ENOMEM;
3070 
3071 			priv->tx_buf_size = pf->tx_buf_size;
3072 		} else
3073 			priv->tx_buf_size = 0;
3074 
3075 		total_size -= priv->tx_buf_size;
3076 	}
3077 
3078 	return 0;
3079 }
3080 
3081 static int
3082 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3083 {
3084 /* TX buffer size is unit by 128 byte */
3085 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3086 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3087 	struct hns3_tx_buff_alloc_cmd *req;
3088 	struct hns3_cmd_desc desc;
3089 	uint32_t buf_size;
3090 	uint32_t i;
3091 	int ret;
3092 
3093 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3094 
3095 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3096 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3097 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3098 
3099 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3100 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3101 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3102 	}
3103 
3104 	ret = hns3_cmd_send(hw, &desc, 1);
3105 	if (ret)
3106 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3107 
3108 	return ret;
3109 }
3110 
3111 static int
3112 hns3_get_tc_num(struct hns3_hw *hw)
3113 {
3114 	int cnt = 0;
3115 	uint8_t i;
3116 
3117 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3118 		if (hw->hw_tc_map & BIT(i))
3119 			cnt++;
3120 	return cnt;
3121 }
3122 
3123 static uint32_t
3124 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3125 {
3126 	struct hns3_priv_buf *priv;
3127 	uint32_t rx_priv = 0;
3128 	int i;
3129 
3130 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3131 		priv = &buf_alloc->priv_buf[i];
3132 		if (priv->enable)
3133 			rx_priv += priv->buf_size;
3134 	}
3135 	return rx_priv;
3136 }
3137 
3138 static uint32_t
3139 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3140 {
3141 	uint32_t total_tx_size = 0;
3142 	uint32_t i;
3143 
3144 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3145 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3146 
3147 	return total_tx_size;
3148 }
3149 
3150 /* Get the number of pfc enabled TCs, which have private buffer */
3151 static int
3152 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3153 {
3154 	struct hns3_priv_buf *priv;
3155 	int cnt = 0;
3156 	uint8_t i;
3157 
3158 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3159 		priv = &buf_alloc->priv_buf[i];
3160 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3161 			cnt++;
3162 	}
3163 
3164 	return cnt;
3165 }
3166 
3167 /* Get the number of pfc disabled TCs, which have private buffer */
3168 static int
3169 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3170 			 struct hns3_pkt_buf_alloc *buf_alloc)
3171 {
3172 	struct hns3_priv_buf *priv;
3173 	int cnt = 0;
3174 	uint8_t i;
3175 
3176 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3177 		priv = &buf_alloc->priv_buf[i];
3178 		if (hw->hw_tc_map & BIT(i) &&
3179 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3180 			cnt++;
3181 	}
3182 
3183 	return cnt;
3184 }
3185 
3186 static bool
3187 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3188 		  uint32_t rx_all)
3189 {
3190 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3191 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3192 	struct hns3_pf *pf = &hns->pf;
3193 	uint32_t shared_buf, aligned_mps;
3194 	uint32_t rx_priv;
3195 	uint8_t tc_num;
3196 	uint8_t i;
3197 
3198 	tc_num = hns3_get_tc_num(hw);
3199 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3200 
3201 	if (hns3_dev_dcb_supported(hw))
3202 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3203 					pf->dv_buf_size;
3204 	else
3205 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3206 					+ pf->dv_buf_size;
3207 
3208 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3209 	shared_std = roundup(max_t(uint32_t, shared_buf_min, shared_buf_tc),
3210 			     HNS3_BUF_SIZE_UNIT);
3211 
3212 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3213 	if (rx_all < rx_priv + shared_std)
3214 		return false;
3215 
3216 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3217 	buf_alloc->s_buf.buf_size = shared_buf;
3218 	if (hns3_dev_dcb_supported(hw)) {
3219 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3220 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3221 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3222 				  HNS3_BUF_SIZE_UNIT);
3223 	} else {
3224 		buf_alloc->s_buf.self.high =
3225 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3226 		buf_alloc->s_buf.self.low = aligned_mps;
3227 	}
3228 
3229 	if (hns3_dev_dcb_supported(hw)) {
3230 		hi_thrd = shared_buf - pf->dv_buf_size;
3231 
3232 		if (tc_num <= NEED_RESERVE_TC_NUM)
3233 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
3234 					/ BUF_MAX_PERCENT;
3235 
3236 		if (tc_num)
3237 			hi_thrd = hi_thrd / tc_num;
3238 
3239 		hi_thrd = max_t(uint32_t, hi_thrd,
3240 				HNS3_BUF_MUL_BY * aligned_mps);
3241 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3242 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3243 	} else {
3244 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3245 		lo_thrd = aligned_mps;
3246 	}
3247 
3248 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3249 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3250 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3251 	}
3252 
3253 	return true;
3254 }
3255 
3256 static bool
3257 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3258 		     struct hns3_pkt_buf_alloc *buf_alloc)
3259 {
3260 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3261 	struct hns3_pf *pf = &hns->pf;
3262 	struct hns3_priv_buf *priv;
3263 	uint32_t aligned_mps;
3264 	uint32_t rx_all;
3265 	uint8_t i;
3266 
3267 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3268 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3269 
3270 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3271 		priv = &buf_alloc->priv_buf[i];
3272 
3273 		priv->enable = 0;
3274 		priv->wl.low = 0;
3275 		priv->wl.high = 0;
3276 		priv->buf_size = 0;
3277 
3278 		if (!(hw->hw_tc_map & BIT(i)))
3279 			continue;
3280 
3281 		priv->enable = 1;
3282 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3283 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3284 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3285 						HNS3_BUF_SIZE_UNIT);
3286 		} else {
3287 			priv->wl.low = 0;
3288 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3289 					aligned_mps;
3290 		}
3291 
3292 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3293 	}
3294 
3295 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3296 }
3297 
3298 static bool
3299 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3300 			     struct hns3_pkt_buf_alloc *buf_alloc)
3301 {
3302 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3303 	struct hns3_pf *pf = &hns->pf;
3304 	struct hns3_priv_buf *priv;
3305 	int no_pfc_priv_num;
3306 	uint32_t rx_all;
3307 	uint8_t mask;
3308 	int i;
3309 
3310 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3311 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3312 
3313 	/* let the last to be cleared first */
3314 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3315 		priv = &buf_alloc->priv_buf[i];
3316 		mask = BIT((uint8_t)i);
3317 
3318 		if (hw->hw_tc_map & mask &&
3319 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3320 			/* Clear the no pfc TC private buffer */
3321 			priv->wl.low = 0;
3322 			priv->wl.high = 0;
3323 			priv->buf_size = 0;
3324 			priv->enable = 0;
3325 			no_pfc_priv_num--;
3326 		}
3327 
3328 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3329 		    no_pfc_priv_num == 0)
3330 			break;
3331 	}
3332 
3333 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3334 }
3335 
3336 static bool
3337 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3338 			   struct hns3_pkt_buf_alloc *buf_alloc)
3339 {
3340 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3341 	struct hns3_pf *pf = &hns->pf;
3342 	struct hns3_priv_buf *priv;
3343 	uint32_t rx_all;
3344 	int pfc_priv_num;
3345 	uint8_t mask;
3346 	int i;
3347 
3348 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3349 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3350 
3351 	/* let the last to be cleared first */
3352 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3353 		priv = &buf_alloc->priv_buf[i];
3354 		mask = BIT((uint8_t)i);
3355 
3356 		if (hw->hw_tc_map & mask &&
3357 		    hw->dcb_info.hw_pfc_map & mask) {
3358 			/* Reduce the number of pfc TC with private buffer */
3359 			priv->wl.low = 0;
3360 			priv->enable = 0;
3361 			priv->wl.high = 0;
3362 			priv->buf_size = 0;
3363 			pfc_priv_num--;
3364 		}
3365 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3366 		    pfc_priv_num == 0)
3367 			break;
3368 	}
3369 
3370 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3371 }
3372 
3373 static bool
3374 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3375 			  struct hns3_pkt_buf_alloc *buf_alloc)
3376 {
3377 #define COMPENSATE_BUFFER	0x3C00
3378 #define COMPENSATE_HALF_MPS_NUM	5
3379 #define PRIV_WL_GAP		0x1800
3380 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3381 	struct hns3_pf *pf = &hns->pf;
3382 	uint32_t tc_num = hns3_get_tc_num(hw);
3383 	uint32_t half_mps = pf->mps >> 1;
3384 	struct hns3_priv_buf *priv;
3385 	uint32_t min_rx_priv;
3386 	uint32_t rx_priv;
3387 	uint8_t i;
3388 
3389 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3390 	if (tc_num)
3391 		rx_priv = rx_priv / tc_num;
3392 
3393 	if (tc_num <= NEED_RESERVE_TC_NUM)
3394 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3395 
3396 	/*
3397 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3398 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3399 	 * buffer if rx_priv is greater than min_rx_priv.
3400 	 */
3401 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3402 			COMPENSATE_HALF_MPS_NUM * half_mps;
3403 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3404 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3405 
3406 	if (rx_priv < min_rx_priv)
3407 		return false;
3408 
3409 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3410 		priv = &buf_alloc->priv_buf[i];
3411 
3412 		priv->enable = 0;
3413 		priv->wl.low = 0;
3414 		priv->wl.high = 0;
3415 		priv->buf_size = 0;
3416 
3417 		if (!(hw->hw_tc_map & BIT(i)))
3418 			continue;
3419 
3420 		priv->enable = 1;
3421 		priv->buf_size = rx_priv;
3422 		priv->wl.high = rx_priv - pf->dv_buf_size;
3423 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3424 	}
3425 
3426 	buf_alloc->s_buf.buf_size = 0;
3427 
3428 	return true;
3429 }
3430 
3431 /*
3432  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3433  * @hw: pointer to struct hns3_hw
3434  * @buf_alloc: pointer to buffer calculation data
3435  * @return: 0: calculate sucessful, negative: fail
3436  */
3437 static int
3438 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3439 {
3440 	/* When DCB is not supported, rx private buffer is not allocated. */
3441 	if (!hns3_dev_dcb_supported(hw)) {
3442 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3443 		struct hns3_pf *pf = &hns->pf;
3444 		uint32_t rx_all = pf->pkt_buf_size;
3445 
3446 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3447 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3448 			return -ENOMEM;
3449 
3450 		return 0;
3451 	}
3452 
3453 	/*
3454 	 * Try to allocate privated packet buffer for all TCs without share
3455 	 * buffer.
3456 	 */
3457 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3458 		return 0;
3459 
3460 	/*
3461 	 * Try to allocate privated packet buffer for all TCs with share
3462 	 * buffer.
3463 	 */
3464 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3465 		return 0;
3466 
3467 	/*
3468 	 * For different application scenes, the enabled port number, TC number
3469 	 * and no_drop TC number are different. In order to obtain the better
3470 	 * performance, software could allocate the buffer size and configure
3471 	 * the waterline by tring to decrease the private buffer size according
3472 	 * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3473 	 * enabled tc.
3474 	 */
3475 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3476 		return 0;
3477 
3478 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3479 		return 0;
3480 
3481 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3482 		return 0;
3483 
3484 	return -ENOMEM;
3485 }
3486 
3487 static int
3488 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3489 {
3490 	struct hns3_rx_priv_buff_cmd *req;
3491 	struct hns3_cmd_desc desc;
3492 	uint32_t buf_size;
3493 	int ret;
3494 	int i;
3495 
3496 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3497 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3498 
3499 	/* Alloc private buffer TCs */
3500 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3501 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3502 
3503 		req->buf_num[i] =
3504 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3505 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3506 	}
3507 
3508 	buf_size = buf_alloc->s_buf.buf_size;
3509 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3510 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3511 
3512 	ret = hns3_cmd_send(hw, &desc, 1);
3513 	if (ret)
3514 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3515 
3516 	return ret;
3517 }
3518 
3519 static int
3520 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3521 {
3522 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3523 	struct hns3_rx_priv_wl_buf *req;
3524 	struct hns3_priv_buf *priv;
3525 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3526 	int i, j;
3527 	int ret;
3528 
3529 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3530 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3531 					  false);
3532 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3533 
3534 		/* The first descriptor set the NEXT bit to 1 */
3535 		if (i == 0)
3536 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3537 		else
3538 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3539 
3540 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3541 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3542 
3543 			priv = &buf_alloc->priv_buf[idx];
3544 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3545 							HNS3_BUF_UNIT_S);
3546 			req->tc_wl[j].high |=
3547 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3548 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3549 							HNS3_BUF_UNIT_S);
3550 			req->tc_wl[j].low |=
3551 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3552 		}
3553 	}
3554 
3555 	/* Send 2 descriptor at one time */
3556 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3557 	if (ret)
3558 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3559 			     ret);
3560 	return ret;
3561 }
3562 
3563 static int
3564 hns3_common_thrd_config(struct hns3_hw *hw,
3565 			struct hns3_pkt_buf_alloc *buf_alloc)
3566 {
3567 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3568 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3569 	struct hns3_rx_com_thrd *req;
3570 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3571 	struct hns3_tc_thrd *tc;
3572 	int tc_idx;
3573 	int i, j;
3574 	int ret;
3575 
3576 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3577 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3578 					  false);
3579 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3580 
3581 		/* The first descriptor set the NEXT bit to 1 */
3582 		if (i == 0)
3583 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3584 		else
3585 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3586 
3587 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3588 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3589 			tc = &s_buf->tc_thrd[tc_idx];
3590 
3591 			req->com_thrd[j].high =
3592 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3593 			req->com_thrd[j].high |=
3594 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3595 			req->com_thrd[j].low =
3596 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3597 			req->com_thrd[j].low |=
3598 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3599 		}
3600 	}
3601 
3602 	/* Send 2 descriptors at one time */
3603 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3604 	if (ret)
3605 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3606 
3607 	return ret;
3608 }
3609 
3610 static int
3611 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3612 {
3613 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3614 	struct hns3_rx_com_wl *req;
3615 	struct hns3_cmd_desc desc;
3616 	int ret;
3617 
3618 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3619 
3620 	req = (struct hns3_rx_com_wl *)desc.data;
3621 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3622 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3623 
3624 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3625 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3626 
3627 	ret = hns3_cmd_send(hw, &desc, 1);
3628 	if (ret)
3629 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3630 
3631 	return ret;
3632 }
3633 
3634 int
3635 hns3_buffer_alloc(struct hns3_hw *hw)
3636 {
3637 	struct hns3_pkt_buf_alloc pkt_buf;
3638 	int ret;
3639 
3640 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3641 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3642 	if (ret) {
3643 		PMD_INIT_LOG(ERR,
3644 			     "could not calc tx buffer size for all TCs %d",
3645 			     ret);
3646 		return ret;
3647 	}
3648 
3649 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3650 	if (ret) {
3651 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3652 		return ret;
3653 	}
3654 
3655 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3656 	if (ret) {
3657 		PMD_INIT_LOG(ERR,
3658 			     "could not calc rx priv buffer size for all TCs %d",
3659 			     ret);
3660 		return ret;
3661 	}
3662 
3663 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3664 	if (ret) {
3665 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3666 		return ret;
3667 	}
3668 
3669 	if (hns3_dev_dcb_supported(hw)) {
3670 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3671 		if (ret) {
3672 			PMD_INIT_LOG(ERR,
3673 				     "could not configure rx private waterline %d",
3674 				     ret);
3675 			return ret;
3676 		}
3677 
3678 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3679 		if (ret) {
3680 			PMD_INIT_LOG(ERR,
3681 				     "could not configure common threshold %d",
3682 				     ret);
3683 			return ret;
3684 		}
3685 	}
3686 
3687 	ret = hns3_common_wl_config(hw, &pkt_buf);
3688 	if (ret)
3689 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3690 			     ret);
3691 
3692 	return ret;
3693 }
3694 
3695 static int
3696 hns3_mac_init(struct hns3_hw *hw)
3697 {
3698 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3699 	struct hns3_mac *mac = &hw->mac;
3700 	struct hns3_pf *pf = &hns->pf;
3701 	int ret;
3702 
3703 	pf->support_sfp_query = true;
3704 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
3705 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3706 	if (ret) {
3707 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3708 		return ret;
3709 	}
3710 
3711 	mac->link_status = ETH_LINK_DOWN;
3712 
3713 	return hns3_config_mtu(hw, pf->mps);
3714 }
3715 
3716 static int
3717 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3718 {
3719 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3720 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3721 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3722 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3723 	int return_status;
3724 
3725 	if (cmdq_resp) {
3726 		PMD_INIT_LOG(ERR,
3727 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
3728 			     cmdq_resp);
3729 		return -EIO;
3730 	}
3731 
3732 	switch (resp_code) {
3733 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3734 	case HNS3_ETHERTYPE_ALREADY_ADD:
3735 		return_status = 0;
3736 		break;
3737 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3738 		PMD_INIT_LOG(ERR,
3739 			     "add mac ethertype failed for manager table overflow.");
3740 		return_status = -EIO;
3741 		break;
3742 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3743 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3744 		return_status = -EIO;
3745 		break;
3746 	default:
3747 		PMD_INIT_LOG(ERR,
3748 			     "add mac ethertype failed for undefined, code=%d.",
3749 			     resp_code);
3750 		return_status = -EIO;
3751 		break;
3752 	}
3753 
3754 	return return_status;
3755 }
3756 
3757 static int
3758 hns3_add_mgr_tbl(struct hns3_hw *hw,
3759 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3760 {
3761 	struct hns3_cmd_desc desc;
3762 	uint8_t resp_code;
3763 	uint16_t retval;
3764 	int ret;
3765 
3766 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3767 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3768 
3769 	ret = hns3_cmd_send(hw, &desc, 1);
3770 	if (ret) {
3771 		PMD_INIT_LOG(ERR,
3772 			     "add mac ethertype failed for cmd_send, ret =%d.",
3773 			     ret);
3774 		return ret;
3775 	}
3776 
3777 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3778 	retval = rte_le_to_cpu_16(desc.retval);
3779 
3780 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3781 }
3782 
3783 static void
3784 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3785 		     int *table_item_num)
3786 {
3787 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3788 
3789 	/*
3790 	 * In current version, we add one item in management table as below:
3791 	 * 0x0180C200000E -- LLDP MC address
3792 	 */
3793 	tbl = mgr_table;
3794 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3795 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3796 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3797 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3798 	tbl->i_port_bitmap = 0x1;
3799 	*table_item_num = 1;
3800 }
3801 
3802 static int
3803 hns3_init_mgr_tbl(struct hns3_hw *hw)
3804 {
3805 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3806 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3807 	int table_item_num;
3808 	int ret;
3809 	int i;
3810 
3811 	memset(mgr_table, 0, sizeof(mgr_table));
3812 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3813 	for (i = 0; i < table_item_num; i++) {
3814 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3815 		if (ret) {
3816 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3817 				     ret);
3818 			return ret;
3819 		}
3820 	}
3821 
3822 	return 0;
3823 }
3824 
3825 static void
3826 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3827 			bool en_mc, bool en_bc, int vport_id)
3828 {
3829 	if (!param)
3830 		return;
3831 
3832 	memset(param, 0, sizeof(struct hns3_promisc_param));
3833 	if (en_uc)
3834 		param->enable = HNS3_PROMISC_EN_UC;
3835 	if (en_mc)
3836 		param->enable |= HNS3_PROMISC_EN_MC;
3837 	if (en_bc)
3838 		param->enable |= HNS3_PROMISC_EN_BC;
3839 	param->vf_id = vport_id;
3840 }
3841 
3842 static int
3843 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3844 {
3845 	struct hns3_promisc_cfg_cmd *req;
3846 	struct hns3_cmd_desc desc;
3847 	int ret;
3848 
3849 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3850 
3851 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3852 	req->vf_id = param->vf_id;
3853 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3854 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3855 
3856 	ret = hns3_cmd_send(hw, &desc, 1);
3857 	if (ret)
3858 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
3859 
3860 	return ret;
3861 }
3862 
3863 static int
3864 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3865 {
3866 	struct hns3_promisc_param param;
3867 	bool en_bc_pmc = true;
3868 	uint8_t vf_id;
3869 
3870 	/*
3871 	 * In current version VF is not supported when PF is driven by DPDK
3872 	 * driver, just need to configure parameters for PF vport.
3873 	 */
3874 	vf_id = HNS3_PF_FUNC_ID;
3875 
3876 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3877 	return hns3_cmd_set_promisc_mode(hw, &param);
3878 }
3879 
3880 static int
3881 hns3_promisc_init(struct hns3_hw *hw)
3882 {
3883 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3884 	struct hns3_pf *pf = &hns->pf;
3885 	struct hns3_promisc_param param;
3886 	uint16_t func_id;
3887 	int ret;
3888 
3889 	ret = hns3_set_promisc_mode(hw, false, false);
3890 	if (ret) {
3891 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
3892 		return ret;
3893 	}
3894 
3895 	/*
3896 	 * In current version VFs are not supported when PF is driven by DPDK
3897 	 * driver. After PF has been taken over by DPDK, the original VF will
3898 	 * be invalid. So, there is a possibility of entry residues. It should
3899 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
3900 	 * during init.
3901 	 */
3902 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
3903 		hns3_promisc_param_init(&param, false, false, false, func_id);
3904 		ret = hns3_cmd_set_promisc_mode(hw, &param);
3905 		if (ret) {
3906 			PMD_INIT_LOG(ERR, "failed to clear vf:%d promisc mode,"
3907 					" ret = %d", func_id, ret);
3908 			return ret;
3909 		}
3910 	}
3911 
3912 	return 0;
3913 }
3914 
3915 static void
3916 hns3_promisc_uninit(struct hns3_hw *hw)
3917 {
3918 	struct hns3_promisc_param param;
3919 	uint16_t func_id;
3920 	int ret;
3921 
3922 	func_id = HNS3_PF_FUNC_ID;
3923 
3924 	/*
3925 	 * In current version VFs are not supported when PF is driven by
3926 	 * DPDK driver, and VFs' promisc mode status has been cleared during
3927 	 * init and their status will not change. So just clear PF's promisc
3928 	 * mode status during uninit.
3929 	 */
3930 	hns3_promisc_param_init(&param, false, false, false, func_id);
3931 	ret = hns3_cmd_set_promisc_mode(hw, &param);
3932 	if (ret)
3933 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
3934 				" uninit, ret = %d", ret);
3935 }
3936 
3937 static int
3938 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
3939 {
3940 	bool allmulti = dev->data->all_multicast ? true : false;
3941 	struct hns3_adapter *hns = dev->data->dev_private;
3942 	struct hns3_hw *hw = &hns->hw;
3943 	uint64_t offloads;
3944 	int err;
3945 	int ret;
3946 
3947 	rte_spinlock_lock(&hw->lock);
3948 	ret = hns3_set_promisc_mode(hw, true, true);
3949 	if (ret) {
3950 		rte_spinlock_unlock(&hw->lock);
3951 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
3952 			 ret);
3953 		return ret;
3954 	}
3955 
3956 	/*
3957 	 * When promiscuous mode was enabled, disable the vlan filter to let
3958 	 * all packets coming in in the receiving direction.
3959 	 */
3960 	offloads = dev->data->dev_conf.rxmode.offloads;
3961 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
3962 		ret = hns3_enable_vlan_filter(hns, false);
3963 		if (ret) {
3964 			hns3_err(hw, "failed to enable promiscuous mode due to "
3965 				     "failure to disable vlan filter, ret = %d",
3966 				 ret);
3967 			err = hns3_set_promisc_mode(hw, false, allmulti);
3968 			if (err)
3969 				hns3_err(hw, "failed to restore promiscuous "
3970 					 "status after disable vlan filter "
3971 					 "failed during enabling promiscuous "
3972 					 "mode, ret = %d", ret);
3973 		}
3974 	}
3975 
3976 	rte_spinlock_unlock(&hw->lock);
3977 
3978 	return ret;
3979 }
3980 
3981 static int
3982 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
3983 {
3984 	bool allmulti = dev->data->all_multicast ? true : false;
3985 	struct hns3_adapter *hns = dev->data->dev_private;
3986 	struct hns3_hw *hw = &hns->hw;
3987 	uint64_t offloads;
3988 	int err;
3989 	int ret;
3990 
3991 	/* If now in all_multicast mode, must remain in all_multicast mode. */
3992 	rte_spinlock_lock(&hw->lock);
3993 	ret = hns3_set_promisc_mode(hw, false, allmulti);
3994 	if (ret) {
3995 		rte_spinlock_unlock(&hw->lock);
3996 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
3997 			 ret);
3998 		return ret;
3999 	}
4000 	/* when promiscuous mode was disabled, restore the vlan filter status */
4001 	offloads = dev->data->dev_conf.rxmode.offloads;
4002 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4003 		ret = hns3_enable_vlan_filter(hns, true);
4004 		if (ret) {
4005 			hns3_err(hw, "failed to disable promiscuous mode due to"
4006 				 " failure to restore vlan filter, ret = %d",
4007 				 ret);
4008 			err = hns3_set_promisc_mode(hw, true, true);
4009 			if (err)
4010 				hns3_err(hw, "failed to restore promiscuous "
4011 					 "status after enabling vlan filter "
4012 					 "failed during disabling promiscuous "
4013 					 "mode, ret = %d", ret);
4014 		}
4015 	}
4016 	rte_spinlock_unlock(&hw->lock);
4017 
4018 	return ret;
4019 }
4020 
4021 static int
4022 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4023 {
4024 	struct hns3_adapter *hns = dev->data->dev_private;
4025 	struct hns3_hw *hw = &hns->hw;
4026 	int ret;
4027 
4028 	if (dev->data->promiscuous)
4029 		return 0;
4030 
4031 	rte_spinlock_lock(&hw->lock);
4032 	ret = hns3_set_promisc_mode(hw, false, true);
4033 	rte_spinlock_unlock(&hw->lock);
4034 	if (ret)
4035 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4036 			 ret);
4037 
4038 	return ret;
4039 }
4040 
4041 static int
4042 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4043 {
4044 	struct hns3_adapter *hns = dev->data->dev_private;
4045 	struct hns3_hw *hw = &hns->hw;
4046 	int ret;
4047 
4048 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4049 	if (dev->data->promiscuous)
4050 		return 0;
4051 
4052 	rte_spinlock_lock(&hw->lock);
4053 	ret = hns3_set_promisc_mode(hw, false, false);
4054 	rte_spinlock_unlock(&hw->lock);
4055 	if (ret)
4056 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4057 			 ret);
4058 
4059 	return ret;
4060 }
4061 
4062 static int
4063 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4064 {
4065 	struct hns3_hw *hw = &hns->hw;
4066 	bool allmulti = hw->data->all_multicast ? true : false;
4067 	int ret;
4068 
4069 	if (hw->data->promiscuous) {
4070 		ret = hns3_set_promisc_mode(hw, true, true);
4071 		if (ret)
4072 			hns3_err(hw, "failed to restore promiscuous mode, "
4073 				 "ret = %d", ret);
4074 		return ret;
4075 	}
4076 
4077 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4078 	if (ret)
4079 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4080 			 ret);
4081 	return ret;
4082 }
4083 
4084 static int
4085 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4086 {
4087 	struct hns3_sfp_speed_cmd *resp;
4088 	struct hns3_cmd_desc desc;
4089 	int ret;
4090 
4091 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4092 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
4093 	ret = hns3_cmd_send(hw, &desc, 1);
4094 	if (ret == -EOPNOTSUPP) {
4095 		hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4096 		return ret;
4097 	} else if (ret) {
4098 		hns3_err(hw, "get sfp speed failed %d", ret);
4099 		return ret;
4100 	}
4101 
4102 	*speed = resp->sfp_speed;
4103 
4104 	return 0;
4105 }
4106 
4107 static uint8_t
4108 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4109 {
4110 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4111 		duplex = ETH_LINK_FULL_DUPLEX;
4112 
4113 	return duplex;
4114 }
4115 
4116 static int
4117 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4118 {
4119 	struct hns3_mac *mac = &hw->mac;
4120 	int ret;
4121 
4122 	duplex = hns3_check_speed_dup(duplex, speed);
4123 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4124 		return 0;
4125 
4126 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4127 	if (ret)
4128 		return ret;
4129 
4130 	mac->link_speed = speed;
4131 	mac->link_duplex = duplex;
4132 
4133 	return 0;
4134 }
4135 
4136 static int
4137 hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
4138 {
4139 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4140 	struct hns3_hw *hw = &hns->hw;
4141 	struct hns3_pf *pf = &hns->pf;
4142 	uint32_t speed;
4143 	int ret;
4144 
4145 	/* If IMP do not support get SFP/qSFP speed, return directly */
4146 	if (!pf->support_sfp_query)
4147 		return 0;
4148 
4149 	ret = hns3_get_sfp_speed(hw, &speed);
4150 	if (ret == -EOPNOTSUPP) {
4151 		pf->support_sfp_query = false;
4152 		return ret;
4153 	} else if (ret)
4154 		return ret;
4155 
4156 	if (speed == ETH_SPEED_NUM_NONE)
4157 		return 0; /* do nothing if no SFP */
4158 
4159 	/* Config full duplex for SFP */
4160 	return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4161 }
4162 
4163 static int
4164 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4165 {
4166 	struct hns3_config_mac_mode_cmd *req;
4167 	struct hns3_cmd_desc desc;
4168 	uint32_t loop_en = 0;
4169 	uint8_t val = 0;
4170 	int ret;
4171 
4172 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4173 
4174 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4175 	if (enable)
4176 		val = 1;
4177 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4178 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4179 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4180 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4181 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4182 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4183 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4184 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4185 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4186 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4187 
4188 	/*
4189 	 * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4190 	 * when receiving frames. Otherwise, CRC will be stripped.
4191 	 */
4192 	if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4193 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4194 	else
4195 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4196 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4197 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4198 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4199 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4200 
4201 	ret = hns3_cmd_send(hw, &desc, 1);
4202 	if (ret)
4203 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4204 
4205 	return ret;
4206 }
4207 
4208 static int
4209 hns3_get_mac_link_status(struct hns3_hw *hw)
4210 {
4211 	struct hns3_link_status_cmd *req;
4212 	struct hns3_cmd_desc desc;
4213 	int link_status;
4214 	int ret;
4215 
4216 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4217 	ret = hns3_cmd_send(hw, &desc, 1);
4218 	if (ret) {
4219 		hns3_err(hw, "get link status cmd failed %d", ret);
4220 		return ETH_LINK_DOWN;
4221 	}
4222 
4223 	req = (struct hns3_link_status_cmd *)desc.data;
4224 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4225 
4226 	return !!link_status;
4227 }
4228 
4229 void
4230 hns3_update_link_status(struct hns3_hw *hw)
4231 {
4232 	int state;
4233 
4234 	state = hns3_get_mac_link_status(hw);
4235 	if (state != hw->mac.link_status) {
4236 		hw->mac.link_status = state;
4237 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4238 	}
4239 }
4240 
4241 static void
4242 hns3_service_handler(void *param)
4243 {
4244 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4245 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4246 	struct hns3_hw *hw = &hns->hw;
4247 
4248 	if (!hns3_is_reset_pending(hns)) {
4249 		hns3_update_speed_duplex(eth_dev);
4250 		hns3_update_link_status(hw);
4251 	} else
4252 		hns3_warn(hw, "Cancel the query when reset is pending");
4253 
4254 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4255 }
4256 
4257 static int
4258 hns3_init_hardware(struct hns3_adapter *hns)
4259 {
4260 	struct hns3_hw *hw = &hns->hw;
4261 	int ret;
4262 
4263 	ret = hns3_map_tqp(hw);
4264 	if (ret) {
4265 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4266 		return ret;
4267 	}
4268 
4269 	ret = hns3_init_umv_space(hw);
4270 	if (ret) {
4271 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4272 		return ret;
4273 	}
4274 
4275 	ret = hns3_mac_init(hw);
4276 	if (ret) {
4277 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4278 		goto err_mac_init;
4279 	}
4280 
4281 	ret = hns3_init_mgr_tbl(hw);
4282 	if (ret) {
4283 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4284 		goto err_mac_init;
4285 	}
4286 
4287 	ret = hns3_promisc_init(hw);
4288 	if (ret) {
4289 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4290 			     ret);
4291 		goto err_mac_init;
4292 	}
4293 
4294 	ret = hns3_init_vlan_config(hns);
4295 	if (ret) {
4296 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4297 		goto err_mac_init;
4298 	}
4299 
4300 	ret = hns3_dcb_init(hw);
4301 	if (ret) {
4302 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4303 		goto err_mac_init;
4304 	}
4305 
4306 	ret = hns3_init_fd_config(hns);
4307 	if (ret) {
4308 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4309 		goto err_mac_init;
4310 	}
4311 
4312 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4313 	if (ret) {
4314 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4315 		goto err_mac_init;
4316 	}
4317 
4318 	ret = hns3_config_gro(hw, false);
4319 	if (ret) {
4320 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4321 		goto err_mac_init;
4322 	}
4323 
4324 	/*
4325 	 * In the initialization clearing the all hardware mapping relationship
4326 	 * configurations between queues and interrupt vectors is needed, so
4327 	 * some error caused by the residual configurations, such as the
4328 	 * unexpected interrupt, can be avoid.
4329 	 */
4330 	ret = hns3_init_ring_with_vector(hw);
4331 	if (ret) {
4332 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4333 		goto err_mac_init;
4334 	}
4335 
4336 	return 0;
4337 
4338 err_mac_init:
4339 	hns3_uninit_umv_space(hw);
4340 	return ret;
4341 }
4342 
4343 static int
4344 hns3_clear_hw(struct hns3_hw *hw)
4345 {
4346 	struct hns3_cmd_desc desc;
4347 	int ret;
4348 
4349 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4350 
4351 	ret = hns3_cmd_send(hw, &desc, 1);
4352 	if (ret && ret != -EOPNOTSUPP)
4353 		return ret;
4354 
4355 	return 0;
4356 }
4357 
4358 static int
4359 hns3_init_pf(struct rte_eth_dev *eth_dev)
4360 {
4361 	struct rte_device *dev = eth_dev->device;
4362 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4363 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4364 	struct hns3_hw *hw = &hns->hw;
4365 	int ret;
4366 
4367 	PMD_INIT_FUNC_TRACE();
4368 
4369 	/* Get hardware io base address from pcie BAR2 IO space */
4370 	hw->io_base = pci_dev->mem_resource[2].addr;
4371 
4372 	/* Firmware command queue initialize */
4373 	ret = hns3_cmd_init_queue(hw);
4374 	if (ret) {
4375 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4376 		goto err_cmd_init_queue;
4377 	}
4378 
4379 	hns3_clear_all_event_cause(hw);
4380 
4381 	/* Firmware command initialize */
4382 	ret = hns3_cmd_init(hw);
4383 	if (ret) {
4384 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4385 		goto err_cmd_init;
4386 	}
4387 
4388 	/*
4389 	 * To ensure that the hardware environment is clean during
4390 	 * initialization, the driver actively clear the hardware environment
4391 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4392 	 * flow table configurations, etc.
4393 	 */
4394 	ret = hns3_clear_hw(hw);
4395 	if (ret) {
4396 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4397 		goto err_cmd_init;
4398 	}
4399 
4400 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
4401 					 hns3_interrupt_handler,
4402 					 eth_dev);
4403 	if (ret) {
4404 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4405 		goto err_intr_callback_register;
4406 	}
4407 
4408 	/* Enable interrupt */
4409 	rte_intr_enable(&pci_dev->intr_handle);
4410 	hns3_pf_enable_irq0(hw);
4411 
4412 	/* Get configuration */
4413 	ret = hns3_get_configuration(hw);
4414 	if (ret) {
4415 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4416 		goto err_get_config;
4417 	}
4418 
4419 	ret = hns3_init_hardware(hns);
4420 	if (ret) {
4421 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4422 		goto err_get_config;
4423 	}
4424 
4425 	/* Initialize flow director filter list & hash */
4426 	ret = hns3_fdir_filter_init(hns);
4427 	if (ret) {
4428 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4429 		goto err_hw_init;
4430 	}
4431 
4432 	hns3_set_default_rss_args(hw);
4433 
4434 	ret = hns3_enable_hw_error_intr(hns, true);
4435 	if (ret) {
4436 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4437 			     ret);
4438 		goto err_fdir;
4439 	}
4440 
4441 	return 0;
4442 
4443 err_fdir:
4444 	hns3_fdir_filter_uninit(hns);
4445 err_hw_init:
4446 	hns3_uninit_umv_space(hw);
4447 
4448 err_get_config:
4449 	hns3_pf_disable_irq0(hw);
4450 	rte_intr_disable(&pci_dev->intr_handle);
4451 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4452 			     eth_dev);
4453 err_intr_callback_register:
4454 err_cmd_init:
4455 	hns3_cmd_uninit(hw);
4456 	hns3_cmd_destroy_queue(hw);
4457 err_cmd_init_queue:
4458 	hw->io_base = NULL;
4459 
4460 	return ret;
4461 }
4462 
4463 static void
4464 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4465 {
4466 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4467 	struct rte_device *dev = eth_dev->device;
4468 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4469 	struct hns3_hw *hw = &hns->hw;
4470 
4471 	PMD_INIT_FUNC_TRACE();
4472 
4473 	hns3_enable_hw_error_intr(hns, false);
4474 	hns3_rss_uninit(hns);
4475 	(void)hns3_config_gro(hw, false);
4476 	hns3_promisc_uninit(hw);
4477 	hns3_fdir_filter_uninit(hns);
4478 	hns3_uninit_umv_space(hw);
4479 	hns3_pf_disable_irq0(hw);
4480 	rte_intr_disable(&pci_dev->intr_handle);
4481 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4482 			     eth_dev);
4483 	hns3_cmd_uninit(hw);
4484 	hns3_cmd_destroy_queue(hw);
4485 	hw->io_base = NULL;
4486 }
4487 
4488 static int
4489 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
4490 {
4491 	struct hns3_hw *hw = &hns->hw;
4492 	int ret;
4493 
4494 	ret = hns3_dcb_cfg_update(hns);
4495 	if (ret)
4496 		return ret;
4497 
4498 	/* Enable queues */
4499 	ret = hns3_start_queues(hns, reset_queue);
4500 	if (ret) {
4501 		PMD_INIT_LOG(ERR, "Failed to start queues: %d", ret);
4502 		return ret;
4503 	}
4504 
4505 	/* Enable MAC */
4506 	ret = hns3_cfg_mac_mode(hw, true);
4507 	if (ret) {
4508 		PMD_INIT_LOG(ERR, "Failed to enable MAC: %d", ret);
4509 		goto err_config_mac_mode;
4510 	}
4511 	return 0;
4512 
4513 err_config_mac_mode:
4514 	hns3_stop_queues(hns, true);
4515 	return ret;
4516 }
4517 
4518 static int
4519 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
4520 {
4521 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4522 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4523 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4524 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4525 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4526 	uint32_t intr_vector;
4527 	uint16_t q_id;
4528 	int ret;
4529 
4530 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4531 		return 0;
4532 
4533 	/* disable uio/vfio intr/eventfd mapping */
4534 	rte_intr_disable(intr_handle);
4535 
4536 	/* check and configure queue intr-vector mapping */
4537 	if (rte_intr_cap_multiple(intr_handle) ||
4538 	    !RTE_ETH_DEV_SRIOV(dev).active) {
4539 		intr_vector = hw->used_rx_queues;
4540 		/* creates event fd for each intr vector when MSIX is used */
4541 		if (rte_intr_efd_enable(intr_handle, intr_vector))
4542 			return -EINVAL;
4543 	}
4544 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
4545 		intr_handle->intr_vec =
4546 			rte_zmalloc("intr_vec",
4547 				    hw->used_rx_queues * sizeof(int), 0);
4548 		if (intr_handle->intr_vec == NULL) {
4549 			hns3_err(hw, "Failed to allocate %d rx_queues"
4550 				     " intr_vec", hw->used_rx_queues);
4551 			ret = -ENOMEM;
4552 			goto alloc_intr_vec_error;
4553 		}
4554 	}
4555 
4556 	if (rte_intr_allow_others(intr_handle)) {
4557 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4558 		base = RTE_INTR_VEC_RXTX_OFFSET;
4559 	}
4560 	if (rte_intr_dp_is_en(intr_handle)) {
4561 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4562 			ret = hns3_bind_ring_with_vector(hw, vec, true,
4563 							 HNS3_RING_TYPE_RX,
4564 							 q_id);
4565 			if (ret)
4566 				goto bind_vector_error;
4567 			intr_handle->intr_vec[q_id] = vec;
4568 			if (vec < base + intr_handle->nb_efd - 1)
4569 				vec++;
4570 		}
4571 	}
4572 	rte_intr_enable(intr_handle);
4573 	return 0;
4574 
4575 bind_vector_error:
4576 	rte_intr_efd_disable(intr_handle);
4577 	if (intr_handle->intr_vec) {
4578 		free(intr_handle->intr_vec);
4579 		intr_handle->intr_vec = NULL;
4580 	}
4581 	return ret;
4582 alloc_intr_vec_error:
4583 	rte_intr_efd_disable(intr_handle);
4584 	return ret;
4585 }
4586 
4587 static int
4588 hns3_restore_rx_interrupt(struct hns3_hw *hw)
4589 {
4590 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4591 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4592 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4593 	uint16_t q_id;
4594 	int ret;
4595 
4596 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4597 		return 0;
4598 
4599 	if (rte_intr_dp_is_en(intr_handle)) {
4600 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4601 			ret = hns3_bind_ring_with_vector(hw,
4602 					intr_handle->intr_vec[q_id], true,
4603 					HNS3_RING_TYPE_RX, q_id);
4604 			if (ret)
4605 				return ret;
4606 		}
4607 	}
4608 
4609 	return 0;
4610 }
4611 
4612 static void
4613 hns3_restore_filter(struct rte_eth_dev *dev)
4614 {
4615 	hns3_restore_rss_filter(dev);
4616 }
4617 
4618 static int
4619 hns3_dev_start(struct rte_eth_dev *dev)
4620 {
4621 	struct hns3_adapter *hns = dev->data->dev_private;
4622 	struct hns3_hw *hw = &hns->hw;
4623 	int ret;
4624 
4625 	PMD_INIT_FUNC_TRACE();
4626 	if (rte_atomic16_read(&hw->reset.resetting))
4627 		return -EBUSY;
4628 
4629 	rte_spinlock_lock(&hw->lock);
4630 	hw->adapter_state = HNS3_NIC_STARTING;
4631 
4632 	ret = hns3_do_start(hns, true);
4633 	if (ret) {
4634 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4635 		rte_spinlock_unlock(&hw->lock);
4636 		return ret;
4637 	}
4638 	ret = hns3_map_rx_interrupt(dev);
4639 	if (ret) {
4640 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4641 		rte_spinlock_unlock(&hw->lock);
4642 		return ret;
4643 	}
4644 
4645 	hw->adapter_state = HNS3_NIC_STARTED;
4646 	rte_spinlock_unlock(&hw->lock);
4647 
4648 	hns3_set_rxtx_function(dev);
4649 	hns3_mp_req_start_rxtx(dev);
4650 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
4651 
4652 	hns3_restore_filter(dev);
4653 
4654 	/* Enable interrupt of all rx queues before enabling queues */
4655 	hns3_dev_all_rx_queue_intr_enable(hw, true);
4656 	/*
4657 	 * When finished the initialization, enable queues to receive/transmit
4658 	 * packets.
4659 	 */
4660 	hns3_enable_all_queues(hw, true);
4661 
4662 	hns3_info(hw, "hns3 dev start successful!");
4663 	return 0;
4664 }
4665 
4666 static int
4667 hns3_do_stop(struct hns3_adapter *hns)
4668 {
4669 	struct hns3_hw *hw = &hns->hw;
4670 	bool reset_queue;
4671 	int ret;
4672 
4673 	ret = hns3_cfg_mac_mode(hw, false);
4674 	if (ret)
4675 		return ret;
4676 	hw->mac.link_status = ETH_LINK_DOWN;
4677 
4678 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
4679 		hns3_configure_all_mac_addr(hns, true);
4680 		reset_queue = true;
4681 	} else
4682 		reset_queue = false;
4683 	hw->mac.default_addr_setted = false;
4684 	return hns3_stop_queues(hns, reset_queue);
4685 }
4686 
4687 static void
4688 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
4689 {
4690 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4691 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4692 	struct hns3_adapter *hns = dev->data->dev_private;
4693 	struct hns3_hw *hw = &hns->hw;
4694 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4695 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4696 	uint16_t q_id;
4697 
4698 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4699 		return;
4700 
4701 	/* unmap the ring with vector */
4702 	if (rte_intr_allow_others(intr_handle)) {
4703 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4704 		base = RTE_INTR_VEC_RXTX_OFFSET;
4705 	}
4706 	if (rte_intr_dp_is_en(intr_handle)) {
4707 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4708 			(void)hns3_bind_ring_with_vector(hw, vec, false,
4709 							 HNS3_RING_TYPE_RX,
4710 							 q_id);
4711 			if (vec < base + intr_handle->nb_efd - 1)
4712 				vec++;
4713 		}
4714 	}
4715 	/* Clean datapath event and queue/vec mapping */
4716 	rte_intr_efd_disable(intr_handle);
4717 	if (intr_handle->intr_vec) {
4718 		rte_free(intr_handle->intr_vec);
4719 		intr_handle->intr_vec = NULL;
4720 	}
4721 }
4722 
4723 static void
4724 hns3_dev_stop(struct rte_eth_dev *dev)
4725 {
4726 	struct hns3_adapter *hns = dev->data->dev_private;
4727 	struct hns3_hw *hw = &hns->hw;
4728 
4729 	PMD_INIT_FUNC_TRACE();
4730 
4731 	hw->adapter_state = HNS3_NIC_STOPPING;
4732 	hns3_set_rxtx_function(dev);
4733 	rte_wmb();
4734 	/* Disable datapath on secondary process. */
4735 	hns3_mp_req_stop_rxtx(dev);
4736 	/* Prevent crashes when queues are still in use. */
4737 	rte_delay_ms(hw->tqps_num);
4738 
4739 	rte_spinlock_lock(&hw->lock);
4740 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
4741 		hns3_do_stop(hns);
4742 		hns3_unmap_rx_interrupt(dev);
4743 		hns3_dev_release_mbufs(hns);
4744 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4745 	}
4746 	rte_eal_alarm_cancel(hns3_service_handler, dev);
4747 	rte_spinlock_unlock(&hw->lock);
4748 }
4749 
4750 static void
4751 hns3_dev_close(struct rte_eth_dev *eth_dev)
4752 {
4753 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4754 	struct hns3_hw *hw = &hns->hw;
4755 
4756 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
4757 		rte_free(eth_dev->process_private);
4758 		eth_dev->process_private = NULL;
4759 		return;
4760 	}
4761 
4762 	if (hw->adapter_state == HNS3_NIC_STARTED)
4763 		hns3_dev_stop(eth_dev);
4764 
4765 	hw->adapter_state = HNS3_NIC_CLOSING;
4766 	hns3_reset_abort(hns);
4767 	hw->adapter_state = HNS3_NIC_CLOSED;
4768 
4769 	hns3_configure_all_mc_mac_addr(hns, true);
4770 	hns3_remove_all_vlan_table(hns);
4771 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
4772 	hns3_uninit_pf(eth_dev);
4773 	hns3_free_all_queues(eth_dev);
4774 	rte_free(hw->reset.wait_data);
4775 	rte_free(eth_dev->process_private);
4776 	eth_dev->process_private = NULL;
4777 	hns3_mp_uninit_primary();
4778 	hns3_warn(hw, "Close port %d finished", hw->data->port_id);
4779 }
4780 
4781 static int
4782 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4783 {
4784 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4785 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4786 
4787 	fc_conf->pause_time = pf->pause_time;
4788 
4789 	/* return fc current mode */
4790 	switch (hw->current_mode) {
4791 	case HNS3_FC_FULL:
4792 		fc_conf->mode = RTE_FC_FULL;
4793 		break;
4794 	case HNS3_FC_TX_PAUSE:
4795 		fc_conf->mode = RTE_FC_TX_PAUSE;
4796 		break;
4797 	case HNS3_FC_RX_PAUSE:
4798 		fc_conf->mode = RTE_FC_RX_PAUSE;
4799 		break;
4800 	case HNS3_FC_NONE:
4801 	default:
4802 		fc_conf->mode = RTE_FC_NONE;
4803 		break;
4804 	}
4805 
4806 	return 0;
4807 }
4808 
4809 static void
4810 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
4811 {
4812 	switch (mode) {
4813 	case RTE_FC_NONE:
4814 		hw->requested_mode = HNS3_FC_NONE;
4815 		break;
4816 	case RTE_FC_RX_PAUSE:
4817 		hw->requested_mode = HNS3_FC_RX_PAUSE;
4818 		break;
4819 	case RTE_FC_TX_PAUSE:
4820 		hw->requested_mode = HNS3_FC_TX_PAUSE;
4821 		break;
4822 	case RTE_FC_FULL:
4823 		hw->requested_mode = HNS3_FC_FULL;
4824 		break;
4825 	default:
4826 		hw->requested_mode = HNS3_FC_NONE;
4827 		hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
4828 			  "configured to RTE_FC_NONE", mode);
4829 		break;
4830 	}
4831 }
4832 
4833 static int
4834 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4835 {
4836 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4837 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4838 	int ret;
4839 
4840 	if (fc_conf->high_water || fc_conf->low_water ||
4841 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
4842 		hns3_err(hw, "Unsupported flow control settings specified, "
4843 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4844 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4845 			 fc_conf->high_water, fc_conf->low_water,
4846 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
4847 		return -EINVAL;
4848 	}
4849 	if (fc_conf->autoneg) {
4850 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4851 		return -EINVAL;
4852 	}
4853 	if (!fc_conf->pause_time) {
4854 		hns3_err(hw, "Invalid pause time %d setting.",
4855 			 fc_conf->pause_time);
4856 		return -EINVAL;
4857 	}
4858 
4859 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4860 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
4861 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
4862 			 "current_fc_status = %d", hw->current_fc_status);
4863 		return -EOPNOTSUPP;
4864 	}
4865 
4866 	hns3_get_fc_mode(hw, fc_conf->mode);
4867 	if (hw->requested_mode == hw->current_mode &&
4868 	    pf->pause_time == fc_conf->pause_time)
4869 		return 0;
4870 
4871 	rte_spinlock_lock(&hw->lock);
4872 	ret = hns3_fc_enable(dev, fc_conf);
4873 	rte_spinlock_unlock(&hw->lock);
4874 
4875 	return ret;
4876 }
4877 
4878 static int
4879 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
4880 			    struct rte_eth_pfc_conf *pfc_conf)
4881 {
4882 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4883 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4884 	uint8_t priority;
4885 	int ret;
4886 
4887 	if (!hns3_dev_dcb_supported(hw)) {
4888 		hns3_err(hw, "This port does not support dcb configurations.");
4889 		return -EOPNOTSUPP;
4890 	}
4891 
4892 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
4893 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
4894 		hns3_err(hw, "Unsupported flow control settings specified, "
4895 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4896 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4897 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
4898 			 pfc_conf->fc.send_xon,
4899 			 pfc_conf->fc.mac_ctrl_frame_fwd);
4900 		return -EINVAL;
4901 	}
4902 	if (pfc_conf->fc.autoneg) {
4903 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4904 		return -EINVAL;
4905 	}
4906 	if (pfc_conf->fc.pause_time == 0) {
4907 		hns3_err(hw, "Invalid pause time %d setting.",
4908 			 pfc_conf->fc.pause_time);
4909 		return -EINVAL;
4910 	}
4911 
4912 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4913 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
4914 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
4915 			     "current_fc_status = %d", hw->current_fc_status);
4916 		return -EOPNOTSUPP;
4917 	}
4918 
4919 	priority = pfc_conf->priority;
4920 	hns3_get_fc_mode(hw, pfc_conf->fc.mode);
4921 	if (hw->dcb_info.pfc_en & BIT(priority) &&
4922 	    hw->requested_mode == hw->current_mode &&
4923 	    pfc_conf->fc.pause_time == pf->pause_time)
4924 		return 0;
4925 
4926 	rte_spinlock_lock(&hw->lock);
4927 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
4928 	rte_spinlock_unlock(&hw->lock);
4929 
4930 	return ret;
4931 }
4932 
4933 static int
4934 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
4935 {
4936 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4937 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4938 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
4939 	int i;
4940 
4941 	rte_spinlock_lock(&hw->lock);
4942 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
4943 		dcb_info->nb_tcs = pf->local_max_tc;
4944 	else
4945 		dcb_info->nb_tcs = 1;
4946 
4947 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
4948 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
4949 	for (i = 0; i < dcb_info->nb_tcs; i++)
4950 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
4951 
4952 	for (i = 0; i < hw->num_tc; i++) {
4953 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
4954 		dcb_info->tc_queue.tc_txq[0][i].base =
4955 						hw->tc_queue[i].tqp_offset;
4956 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
4957 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
4958 						hw->tc_queue[i].tqp_count;
4959 	}
4960 	rte_spinlock_unlock(&hw->lock);
4961 
4962 	return 0;
4963 }
4964 
4965 static int
4966 hns3_reinit_dev(struct hns3_adapter *hns)
4967 {
4968 	struct hns3_hw *hw = &hns->hw;
4969 	int ret;
4970 
4971 	ret = hns3_cmd_init(hw);
4972 	if (ret) {
4973 		hns3_err(hw, "Failed to init cmd: %d", ret);
4974 		return ret;
4975 	}
4976 
4977 	ret = hns3_reset_all_queues(hns);
4978 	if (ret) {
4979 		hns3_err(hw, "Failed to reset all queues: %d", ret);
4980 		return ret;
4981 	}
4982 
4983 	ret = hns3_init_hardware(hns);
4984 	if (ret) {
4985 		hns3_err(hw, "Failed to init hardware: %d", ret);
4986 		return ret;
4987 	}
4988 
4989 	ret = hns3_enable_hw_error_intr(hns, true);
4990 	if (ret) {
4991 		hns3_err(hw, "fail to enable hw error interrupts: %d",
4992 			     ret);
4993 		return ret;
4994 	}
4995 	hns3_info(hw, "Reset done, driver initialization finished.");
4996 
4997 	return 0;
4998 }
4999 
5000 static bool
5001 is_pf_reset_done(struct hns3_hw *hw)
5002 {
5003 	uint32_t val, reg, reg_bit;
5004 
5005 	switch (hw->reset.level) {
5006 	case HNS3_IMP_RESET:
5007 		reg = HNS3_GLOBAL_RESET_REG;
5008 		reg_bit = HNS3_IMP_RESET_BIT;
5009 		break;
5010 	case HNS3_GLOBAL_RESET:
5011 		reg = HNS3_GLOBAL_RESET_REG;
5012 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5013 		break;
5014 	case HNS3_FUNC_RESET:
5015 		reg = HNS3_FUN_RST_ING;
5016 		reg_bit = HNS3_FUN_RST_ING_B;
5017 		break;
5018 	case HNS3_FLR_RESET:
5019 	default:
5020 		hns3_err(hw, "Wait for unsupported reset level: %d",
5021 			 hw->reset.level);
5022 		return true;
5023 	}
5024 	val = hns3_read_dev(hw, reg);
5025 	if (hns3_get_bit(val, reg_bit))
5026 		return false;
5027 	else
5028 		return true;
5029 }
5030 
5031 bool
5032 hns3_is_reset_pending(struct hns3_adapter *hns)
5033 {
5034 	struct hns3_hw *hw = &hns->hw;
5035 	enum hns3_reset_level reset;
5036 
5037 	hns3_check_event_cause(hns, NULL);
5038 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5039 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5040 		hns3_warn(hw, "High level reset %d is pending", reset);
5041 		return true;
5042 	}
5043 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5044 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5045 		hns3_warn(hw, "High level reset %d is request", reset);
5046 		return true;
5047 	}
5048 	return false;
5049 }
5050 
5051 static int
5052 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5053 {
5054 	struct hns3_hw *hw = &hns->hw;
5055 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5056 	struct timeval tv;
5057 
5058 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5059 		return 0;
5060 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5061 		gettimeofday(&tv, NULL);
5062 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5063 			  tv.tv_sec, tv.tv_usec);
5064 		return -ETIME;
5065 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5066 		return -EAGAIN;
5067 
5068 	wait_data->hns = hns;
5069 	wait_data->check_completion = is_pf_reset_done;
5070 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5071 				      HNS3_RESET_WAIT_MS + get_timeofday_ms();
5072 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5073 	wait_data->count = HNS3_RESET_WAIT_CNT;
5074 	wait_data->result = HNS3_WAIT_REQUEST;
5075 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5076 	return -EAGAIN;
5077 }
5078 
5079 static int
5080 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5081 {
5082 	struct hns3_cmd_desc desc;
5083 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5084 
5085 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5086 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5087 	req->fun_reset_vfid = func_id;
5088 
5089 	return hns3_cmd_send(hw, &desc, 1);
5090 }
5091 
5092 static int
5093 hns3_imp_reset_cmd(struct hns3_hw *hw)
5094 {
5095 	struct hns3_cmd_desc desc;
5096 
5097 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5098 	desc.data[0] = 0xeedd;
5099 
5100 	return hns3_cmd_send(hw, &desc, 1);
5101 }
5102 
5103 static void
5104 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5105 {
5106 	struct hns3_hw *hw = &hns->hw;
5107 	struct timeval tv;
5108 	uint32_t val;
5109 
5110 	gettimeofday(&tv, NULL);
5111 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5112 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5113 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5114 			  tv.tv_sec, tv.tv_usec);
5115 		return;
5116 	}
5117 
5118 	switch (reset_level) {
5119 	case HNS3_IMP_RESET:
5120 		hns3_imp_reset_cmd(hw);
5121 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5122 			  tv.tv_sec, tv.tv_usec);
5123 		break;
5124 	case HNS3_GLOBAL_RESET:
5125 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5126 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5127 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5128 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5129 			  tv.tv_sec, tv.tv_usec);
5130 		break;
5131 	case HNS3_FUNC_RESET:
5132 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5133 			  tv.tv_sec, tv.tv_usec);
5134 		/* schedule again to check later */
5135 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5136 		hns3_schedule_reset(hns);
5137 		break;
5138 	default:
5139 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5140 		return;
5141 	}
5142 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5143 }
5144 
5145 static enum hns3_reset_level
5146 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5147 {
5148 	struct hns3_hw *hw = &hns->hw;
5149 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5150 
5151 	/* Return the highest priority reset level amongst all */
5152 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5153 		reset_level = HNS3_IMP_RESET;
5154 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5155 		reset_level = HNS3_GLOBAL_RESET;
5156 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5157 		reset_level = HNS3_FUNC_RESET;
5158 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5159 		reset_level = HNS3_FLR_RESET;
5160 
5161 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5162 		return HNS3_NONE_RESET;
5163 
5164 	return reset_level;
5165 }
5166 
5167 static int
5168 hns3_prepare_reset(struct hns3_adapter *hns)
5169 {
5170 	struct hns3_hw *hw = &hns->hw;
5171 	uint32_t reg_val;
5172 	int ret;
5173 
5174 	switch (hw->reset.level) {
5175 	case HNS3_FUNC_RESET:
5176 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5177 		if (ret)
5178 			return ret;
5179 
5180 		/*
5181 		 * After performaning pf reset, it is not necessary to do the
5182 		 * mailbox handling or send any command to firmware, because
5183 		 * any mailbox handling or command to firmware is only valid
5184 		 * after hns3_cmd_init is called.
5185 		 */
5186 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
5187 		hw->reset.stats.request_cnt++;
5188 		break;
5189 	case HNS3_IMP_RESET:
5190 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5191 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5192 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5193 		break;
5194 	default:
5195 		break;
5196 	}
5197 	return 0;
5198 }
5199 
5200 static int
5201 hns3_set_rst_done(struct hns3_hw *hw)
5202 {
5203 	struct hns3_pf_rst_done_cmd *req;
5204 	struct hns3_cmd_desc desc;
5205 
5206 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5207 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5208 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5209 	return hns3_cmd_send(hw, &desc, 1);
5210 }
5211 
5212 static int
5213 hns3_stop_service(struct hns3_adapter *hns)
5214 {
5215 	struct hns3_hw *hw = &hns->hw;
5216 	struct rte_eth_dev *eth_dev;
5217 
5218 	eth_dev = &rte_eth_devices[hw->data->port_id];
5219 	if (hw->adapter_state == HNS3_NIC_STARTED)
5220 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5221 	hw->mac.link_status = ETH_LINK_DOWN;
5222 
5223 	hns3_set_rxtx_function(eth_dev);
5224 	rte_wmb();
5225 	/* Disable datapath on secondary process. */
5226 	hns3_mp_req_stop_rxtx(eth_dev);
5227 	rte_delay_ms(hw->tqps_num);
5228 
5229 	rte_spinlock_lock(&hw->lock);
5230 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5231 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5232 		hns3_do_stop(hns);
5233 		hw->reset.mbuf_deferred_free = true;
5234 	} else
5235 		hw->reset.mbuf_deferred_free = false;
5236 
5237 	/*
5238 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5239 	 * from table space. Hence, for function reset software intervention is
5240 	 * required to delete the entries
5241 	 */
5242 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
5243 		hns3_configure_all_mc_mac_addr(hns, true);
5244 	rte_spinlock_unlock(&hw->lock);
5245 
5246 	return 0;
5247 }
5248 
5249 static int
5250 hns3_start_service(struct hns3_adapter *hns)
5251 {
5252 	struct hns3_hw *hw = &hns->hw;
5253 	struct rte_eth_dev *eth_dev;
5254 
5255 	if (hw->reset.level == HNS3_IMP_RESET ||
5256 	    hw->reset.level == HNS3_GLOBAL_RESET)
5257 		hns3_set_rst_done(hw);
5258 	eth_dev = &rte_eth_devices[hw->data->port_id];
5259 	hns3_set_rxtx_function(eth_dev);
5260 	hns3_mp_req_start_rxtx(eth_dev);
5261 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5262 		hns3_service_handler(eth_dev);
5263 
5264 		/* Enable interrupt of all rx queues before enabling queues */
5265 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5266 		/*
5267 		 * When finished the initialization, enable queues to receive
5268 		 * and transmit packets.
5269 		 */
5270 		hns3_enable_all_queues(hw, true);
5271 	}
5272 
5273 	return 0;
5274 }
5275 
5276 static int
5277 hns3_restore_conf(struct hns3_adapter *hns)
5278 {
5279 	struct hns3_hw *hw = &hns->hw;
5280 	int ret;
5281 
5282 	ret = hns3_configure_all_mac_addr(hns, false);
5283 	if (ret)
5284 		return ret;
5285 
5286 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5287 	if (ret)
5288 		goto err_mc_mac;
5289 
5290 	ret = hns3_dev_promisc_restore(hns);
5291 	if (ret)
5292 		goto err_promisc;
5293 
5294 	ret = hns3_restore_vlan_table(hns);
5295 	if (ret)
5296 		goto err_promisc;
5297 
5298 	ret = hns3_restore_vlan_conf(hns);
5299 	if (ret)
5300 		goto err_promisc;
5301 
5302 	ret = hns3_restore_all_fdir_filter(hns);
5303 	if (ret)
5304 		goto err_promisc;
5305 
5306 	ret = hns3_restore_rx_interrupt(hw);
5307 	if (ret)
5308 		goto err_promisc;
5309 
5310 	ret = hns3_restore_gro_conf(hw);
5311 	if (ret)
5312 		goto err_promisc;
5313 
5314 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5315 		ret = hns3_do_start(hns, false);
5316 		if (ret)
5317 			goto err_promisc;
5318 		hns3_info(hw, "hns3 dev restart successful!");
5319 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5320 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5321 	return 0;
5322 
5323 err_promisc:
5324 	hns3_configure_all_mc_mac_addr(hns, true);
5325 err_mc_mac:
5326 	hns3_configure_all_mac_addr(hns, true);
5327 	return ret;
5328 }
5329 
5330 static void
5331 hns3_reset_service(void *param)
5332 {
5333 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5334 	struct hns3_hw *hw = &hns->hw;
5335 	enum hns3_reset_level reset_level;
5336 	struct timeval tv_delta;
5337 	struct timeval tv_start;
5338 	struct timeval tv;
5339 	uint64_t msec;
5340 	int ret;
5341 
5342 	/*
5343 	 * The interrupt is not triggered within the delay time.
5344 	 * The interrupt may have been lost. It is necessary to handle
5345 	 * the interrupt to recover from the error.
5346 	 */
5347 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
5348 		rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
5349 		hns3_err(hw, "Handling interrupts in delayed tasks");
5350 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5351 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5352 		if (reset_level == HNS3_NONE_RESET) {
5353 			hns3_err(hw, "No reset level is set, try IMP reset");
5354 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5355 		}
5356 	}
5357 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
5358 
5359 	/*
5360 	 * Check if there is any ongoing reset in the hardware. This status can
5361 	 * be checked from reset_pending. If there is then, we need to wait for
5362 	 * hardware to complete reset.
5363 	 *    a. If we are able to figure out in reasonable time that hardware
5364 	 *       has fully resetted then, we can proceed with driver, client
5365 	 *       reset.
5366 	 *    b. else, we can come back later to check this status so re-sched
5367 	 *       now.
5368 	 */
5369 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5370 	if (reset_level != HNS3_NONE_RESET) {
5371 		gettimeofday(&tv_start, NULL);
5372 		ret = hns3_reset_process(hns, reset_level);
5373 		gettimeofday(&tv, NULL);
5374 		timersub(&tv, &tv_start, &tv_delta);
5375 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
5376 		       tv_delta.tv_usec / USEC_PER_MSEC;
5377 		if (msec > HNS3_RESET_PROCESS_MS)
5378 			hns3_err(hw, "%d handle long time delta %" PRIx64
5379 				     " ms time=%ld.%.6ld",
5380 				 hw->reset.level, msec,
5381 				 tv.tv_sec, tv.tv_usec);
5382 		if (ret == -EAGAIN)
5383 			return;
5384 	}
5385 
5386 	/* Check if we got any *new* reset requests to be honored */
5387 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
5388 	if (reset_level != HNS3_NONE_RESET)
5389 		hns3_msix_process(hns, reset_level);
5390 }
5391 
5392 static const struct eth_dev_ops hns3_eth_dev_ops = {
5393 	.dev_start          = hns3_dev_start,
5394 	.dev_stop           = hns3_dev_stop,
5395 	.dev_close          = hns3_dev_close,
5396 	.promiscuous_enable = hns3_dev_promiscuous_enable,
5397 	.promiscuous_disable = hns3_dev_promiscuous_disable,
5398 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
5399 	.allmulticast_disable = hns3_dev_allmulticast_disable,
5400 	.mtu_set            = hns3_dev_mtu_set,
5401 	.stats_get          = hns3_stats_get,
5402 	.stats_reset        = hns3_stats_reset,
5403 	.xstats_get         = hns3_dev_xstats_get,
5404 	.xstats_get_names   = hns3_dev_xstats_get_names,
5405 	.xstats_reset       = hns3_dev_xstats_reset,
5406 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
5407 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
5408 	.dev_infos_get          = hns3_dev_infos_get,
5409 	.fw_version_get         = hns3_fw_version_get,
5410 	.rx_queue_setup         = hns3_rx_queue_setup,
5411 	.tx_queue_setup         = hns3_tx_queue_setup,
5412 	.rx_queue_release       = hns3_dev_rx_queue_release,
5413 	.tx_queue_release       = hns3_dev_tx_queue_release,
5414 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
5415 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
5416 	.dev_configure          = hns3_dev_configure,
5417 	.flow_ctrl_get          = hns3_flow_ctrl_get,
5418 	.flow_ctrl_set          = hns3_flow_ctrl_set,
5419 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
5420 	.mac_addr_add           = hns3_add_mac_addr,
5421 	.mac_addr_remove        = hns3_remove_mac_addr,
5422 	.mac_addr_set           = hns3_set_default_mac_addr,
5423 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
5424 	.link_update            = hns3_dev_link_update,
5425 	.rss_hash_update        = hns3_dev_rss_hash_update,
5426 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
5427 	.reta_update            = hns3_dev_rss_reta_update,
5428 	.reta_query             = hns3_dev_rss_reta_query,
5429 	.filter_ctrl            = hns3_dev_filter_ctrl,
5430 	.vlan_filter_set        = hns3_vlan_filter_set,
5431 	.vlan_tpid_set          = hns3_vlan_tpid_set,
5432 	.vlan_offload_set       = hns3_vlan_offload_set,
5433 	.vlan_pvid_set          = hns3_vlan_pvid_set,
5434 	.get_reg                = hns3_get_regs,
5435 	.get_dcb_info           = hns3_get_dcb_info,
5436 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
5437 };
5438 
5439 static const struct hns3_reset_ops hns3_reset_ops = {
5440 	.reset_service       = hns3_reset_service,
5441 	.stop_service        = hns3_stop_service,
5442 	.prepare_reset       = hns3_prepare_reset,
5443 	.wait_hardware_ready = hns3_wait_hardware_ready,
5444 	.reinit_dev          = hns3_reinit_dev,
5445 	.restore_conf	     = hns3_restore_conf,
5446 	.start_service       = hns3_start_service,
5447 };
5448 
5449 static int
5450 hns3_dev_init(struct rte_eth_dev *eth_dev)
5451 {
5452 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5453 	struct hns3_hw *hw = &hns->hw;
5454 	int ret;
5455 
5456 	PMD_INIT_FUNC_TRACE();
5457 
5458 	eth_dev->process_private = (struct hns3_process_private *)
5459 	    rte_zmalloc_socket("hns3_filter_list",
5460 			       sizeof(struct hns3_process_private),
5461 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
5462 	if (eth_dev->process_private == NULL) {
5463 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
5464 		return -ENOMEM;
5465 	}
5466 	/* initialize flow filter lists */
5467 	hns3_filterlist_init(eth_dev);
5468 
5469 	hns3_set_rxtx_function(eth_dev);
5470 	eth_dev->dev_ops = &hns3_eth_dev_ops;
5471 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5472 		ret = hns3_mp_init_secondary();
5473 		if (ret) {
5474 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
5475 				     "process, ret = %d", ret);
5476 			goto err_mp_init_secondary;
5477 		}
5478 
5479 		hw->secondary_cnt++;
5480 		return 0;
5481 	}
5482 
5483 	ret = hns3_mp_init_primary();
5484 	if (ret) {
5485 		PMD_INIT_LOG(ERR,
5486 			     "Failed to init for primary process, ret = %d",
5487 			     ret);
5488 		goto err_mp_init_primary;
5489 	}
5490 
5491 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
5492 	hns->is_vf = false;
5493 	hw->data = eth_dev->data;
5494 
5495 	/*
5496 	 * Set default max packet size according to the mtu
5497 	 * default vale in DPDK frame.
5498 	 */
5499 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
5500 
5501 	ret = hns3_reset_init(hw);
5502 	if (ret)
5503 		goto err_init_reset;
5504 	hw->reset.ops = &hns3_reset_ops;
5505 
5506 	ret = hns3_init_pf(eth_dev);
5507 	if (ret) {
5508 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
5509 		goto err_init_pf;
5510 	}
5511 
5512 	/* Allocate memory for storing MAC addresses */
5513 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
5514 					       sizeof(struct rte_ether_addr) *
5515 					       HNS3_UC_MACADDR_NUM, 0);
5516 	if (eth_dev->data->mac_addrs == NULL) {
5517 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
5518 			     "to store MAC addresses",
5519 			     sizeof(struct rte_ether_addr) *
5520 			     HNS3_UC_MACADDR_NUM);
5521 		ret = -ENOMEM;
5522 		goto err_rte_zmalloc;
5523 	}
5524 
5525 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
5526 			    &eth_dev->data->mac_addrs[0]);
5527 
5528 	hw->adapter_state = HNS3_NIC_INITIALIZED;
5529 	/*
5530 	 * Pass the information to the rte_eth_dev_close() that it should also
5531 	 * release the private port resources.
5532 	 */
5533 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
5534 
5535 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
5536 		hns3_err(hw, "Reschedule reset service after dev_init");
5537 		hns3_schedule_reset(hns);
5538 	} else {
5539 		/* IMP will wait ready flag before reset */
5540 		hns3_notify_reset_ready(hw, false);
5541 	}
5542 
5543 	hns3_info(hw, "hns3 dev initialization successful!");
5544 	return 0;
5545 
5546 err_rte_zmalloc:
5547 	hns3_uninit_pf(eth_dev);
5548 
5549 err_init_pf:
5550 	rte_free(hw->reset.wait_data);
5551 
5552 err_init_reset:
5553 	hns3_mp_uninit_primary();
5554 
5555 err_mp_init_primary:
5556 err_mp_init_secondary:
5557 	eth_dev->dev_ops = NULL;
5558 	eth_dev->rx_pkt_burst = NULL;
5559 	eth_dev->tx_pkt_burst = NULL;
5560 	eth_dev->tx_pkt_prepare = NULL;
5561 	rte_free(eth_dev->process_private);
5562 	eth_dev->process_private = NULL;
5563 	return ret;
5564 }
5565 
5566 static int
5567 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
5568 {
5569 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5570 	struct hns3_hw *hw = &hns->hw;
5571 
5572 	PMD_INIT_FUNC_TRACE();
5573 
5574 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5575 		return -EPERM;
5576 
5577 	eth_dev->dev_ops = NULL;
5578 	eth_dev->rx_pkt_burst = NULL;
5579 	eth_dev->tx_pkt_burst = NULL;
5580 	eth_dev->tx_pkt_prepare = NULL;
5581 	if (hw->adapter_state < HNS3_NIC_CLOSING)
5582 		hns3_dev_close(eth_dev);
5583 
5584 	hw->adapter_state = HNS3_NIC_REMOVED;
5585 	return 0;
5586 }
5587 
5588 static int
5589 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
5590 		   struct rte_pci_device *pci_dev)
5591 {
5592 	return rte_eth_dev_pci_generic_probe(pci_dev,
5593 					     sizeof(struct hns3_adapter),
5594 					     hns3_dev_init);
5595 }
5596 
5597 static int
5598 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
5599 {
5600 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
5601 }
5602 
5603 static const struct rte_pci_id pci_id_hns3_map[] = {
5604 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
5605 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
5606 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
5607 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
5608 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
5609 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
5610 	{ .vendor_id = 0, /* sentinel */ },
5611 };
5612 
5613 static struct rte_pci_driver rte_hns3_pmd = {
5614 	.id_table = pci_id_hns3_map,
5615 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
5616 	.probe = eth_hns3_pci_probe,
5617 	.remove = eth_hns3_pci_remove,
5618 };
5619 
5620 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
5621 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
5622 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
5623 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
5624 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);
5625