xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision 9e991f217fc8719e38a812dc280dba5f84db9f59)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdio.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <unistd.h>
12 #include <rte_atomic.h>
13 #include <rte_bus_pci.h>
14 #include <rte_common.h>
15 #include <rte_cycles.h>
16 #include <rte_dev.h>
17 #include <rte_eal.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_interrupts.h>
22 #include <rte_io.h>
23 #include <rte_log.h>
24 #include <rte_pci.h>
25 
26 #include "hns3_ethdev.h"
27 #include "hns3_logs.h"
28 #include "hns3_rxtx.h"
29 #include "hns3_intr.h"
30 #include "hns3_regs.h"
31 #include "hns3_dcb.h"
32 #include "hns3_mp.h"
33 
34 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE	32
35 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM	1
36 
37 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
38 #define HNS3_PORT_BASE_VLAN_DISABLE	0
39 #define HNS3_PORT_BASE_VLAN_ENABLE	1
40 #define HNS3_INVLID_PVID		0xFFFF
41 
42 #define HNS3_FILTER_TYPE_VF		0
43 #define HNS3_FILTER_TYPE_PORT		1
44 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
45 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
46 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
47 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
48 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
49 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
50 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
51 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
52 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
53 
54 /* Reset related Registers */
55 #define HNS3_GLOBAL_RESET_BIT		0
56 #define HNS3_CORE_RESET_BIT		1
57 #define HNS3_IMP_RESET_BIT		2
58 #define HNS3_FUN_RST_ING_B		0
59 
60 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
61 
62 #define HNS3_RESET_WAIT_MS	100
63 #define HNS3_RESET_WAIT_CNT	200
64 
65 int hns3_logtype_init;
66 int hns3_logtype_driver;
67 
68 enum hns3_evt_cause {
69 	HNS3_VECTOR0_EVENT_RST,
70 	HNS3_VECTOR0_EVENT_MBX,
71 	HNS3_VECTOR0_EVENT_ERR,
72 	HNS3_VECTOR0_EVENT_OTHER,
73 };
74 
75 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
76 						 uint64_t *levels);
77 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
78 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
79 				    int on);
80 static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
81 
82 static void
83 hns3_pf_disable_irq0(struct hns3_hw *hw)
84 {
85 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
86 }
87 
88 static void
89 hns3_pf_enable_irq0(struct hns3_hw *hw)
90 {
91 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
92 }
93 
94 static enum hns3_evt_cause
95 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
96 {
97 	struct hns3_hw *hw = &hns->hw;
98 	uint32_t vector0_int_stats;
99 	uint32_t cmdq_src_val;
100 	uint32_t val;
101 	enum hns3_evt_cause ret;
102 
103 	/* fetch the events from their corresponding regs */
104 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
105 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
106 
107 	/*
108 	 * Assumption: If by any chance reset and mailbox events are reported
109 	 * together then we will only process reset event and defer the
110 	 * processing of the mailbox events. Since, we would have not cleared
111 	 * RX CMDQ event this time we would receive again another interrupt
112 	 * from H/W just for the mailbox.
113 	 */
114 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
115 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
116 		hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
117 		val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
118 		if (clearval) {
119 			hw->reset.stats.imp_cnt++;
120 			hns3_warn(hw, "IMP reset detected, clear reset status");
121 		} else {
122 			hns3_schedule_delayed_reset(hns);
123 			hns3_warn(hw, "IMP reset detected, don't clear reset status");
124 		}
125 
126 		ret = HNS3_VECTOR0_EVENT_RST;
127 		goto out;
128 	}
129 
130 	/* Global reset */
131 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
132 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
133 		hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
134 		val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
135 		if (clearval) {
136 			hw->reset.stats.global_cnt++;
137 			hns3_warn(hw, "Global reset detected, clear reset status");
138 		} else {
139 			hns3_schedule_delayed_reset(hns);
140 			hns3_warn(hw, "Global reset detected, don't clear reset status");
141 		}
142 
143 		ret = HNS3_VECTOR0_EVENT_RST;
144 		goto out;
145 	}
146 
147 	/* check for vector0 msix event source */
148 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK) {
149 		val = vector0_int_stats;
150 		ret = HNS3_VECTOR0_EVENT_ERR;
151 		goto out;
152 	}
153 
154 	/* check for vector0 mailbox(=CMDQ RX) event source */
155 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
156 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
157 		val = cmdq_src_val;
158 		ret = HNS3_VECTOR0_EVENT_MBX;
159 		goto out;
160 	}
161 
162 	if (clearval && (vector0_int_stats || cmdq_src_val))
163 		hns3_warn(hw, "surprise irq ector0_int_stats:0x%x cmdq_src_val:0x%x",
164 			  vector0_int_stats, cmdq_src_val);
165 	val = vector0_int_stats;
166 	ret = HNS3_VECTOR0_EVENT_OTHER;
167 out:
168 
169 	if (clearval)
170 		*clearval = val;
171 	return ret;
172 }
173 
174 static void
175 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
176 {
177 	if (event_type == HNS3_VECTOR0_EVENT_RST)
178 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
179 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
180 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
181 }
182 
183 static void
184 hns3_clear_all_event_cause(struct hns3_hw *hw)
185 {
186 	uint32_t vector0_int_stats;
187 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
188 
189 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
190 		hns3_warn(hw, "Probe during IMP reset interrupt");
191 
192 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
193 		hns3_warn(hw, "Probe during Global reset interrupt");
194 
195 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
196 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
197 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
198 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
199 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
200 }
201 
202 static void
203 hns3_interrupt_handler(void *param)
204 {
205 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
206 	struct hns3_adapter *hns = dev->data->dev_private;
207 	struct hns3_hw *hw = &hns->hw;
208 	enum hns3_evt_cause event_cause;
209 	uint32_t clearval = 0;
210 
211 	/* Disable interrupt */
212 	hns3_pf_disable_irq0(hw);
213 
214 	event_cause = hns3_check_event_cause(hns, &clearval);
215 
216 	/* vector 0 interrupt is shared with reset and mailbox source events. */
217 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
218 		hns3_handle_msix_error(hns, &hw->reset.request);
219 		hns3_schedule_reset(hns);
220 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST)
221 		hns3_schedule_reset(hns);
222 	else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
223 		hns3_dev_handle_mbx_msg(hw);
224 	else
225 		hns3_err(hw, "Received unknown event");
226 
227 	hns3_clear_event_cause(hw, event_cause, clearval);
228 	/* Enable interrupt if it is not cause by reset */
229 	hns3_pf_enable_irq0(hw);
230 }
231 
232 static int
233 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
234 {
235 #define HNS3_VLAN_OFFSET_160		160
236 	struct hns3_vlan_filter_pf_cfg_cmd *req;
237 	struct hns3_hw *hw = &hns->hw;
238 	uint8_t vlan_offset_byte_val;
239 	struct hns3_cmd_desc desc;
240 	uint8_t vlan_offset_byte;
241 	uint8_t vlan_offset_160;
242 	int ret;
243 
244 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
245 
246 	vlan_offset_160 = vlan_id / HNS3_VLAN_OFFSET_160;
247 	vlan_offset_byte = (vlan_id % HNS3_VLAN_OFFSET_160) / 8;
248 	vlan_offset_byte_val = 1 << (vlan_id % 8);
249 
250 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
251 	req->vlan_offset = vlan_offset_160;
252 	req->vlan_cfg = on ? 0 : 1;
253 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
254 
255 	ret = hns3_cmd_send(hw, &desc, 1);
256 	if (ret)
257 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
258 			 vlan_id, ret);
259 
260 	return ret;
261 }
262 
263 static void
264 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
265 {
266 	struct hns3_user_vlan_table *vlan_entry;
267 	struct hns3_pf *pf = &hns->pf;
268 
269 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
270 		if (vlan_entry->vlan_id == vlan_id) {
271 			if (vlan_entry->hd_tbl_status)
272 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
273 			LIST_REMOVE(vlan_entry, next);
274 			rte_free(vlan_entry);
275 			break;
276 		}
277 	}
278 }
279 
280 static void
281 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
282 			bool writen_to_tbl)
283 {
284 	struct hns3_user_vlan_table *vlan_entry;
285 	struct hns3_hw *hw = &hns->hw;
286 	struct hns3_pf *pf = &hns->pf;
287 
288 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
289 		if (vlan_entry->vlan_id == vlan_id)
290 			return;
291 	}
292 
293 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
294 	if (vlan_entry == NULL) {
295 		hns3_err(hw, "Failed to malloc hns3 vlan table");
296 		return;
297 	}
298 
299 	vlan_entry->hd_tbl_status = writen_to_tbl;
300 	vlan_entry->vlan_id = vlan_id;
301 
302 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
303 }
304 
305 static int
306 hns3_restore_vlan_table(struct hns3_adapter *hns)
307 {
308 	struct hns3_user_vlan_table *vlan_entry;
309 	struct hns3_pf *pf = &hns->pf;
310 	uint16_t vlan_id;
311 	int ret = 0;
312 
313 	if (pf->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE) {
314 		ret = hns3_vlan_pvid_configure(hns, pf->port_base_vlan_cfg.pvid,
315 					       1);
316 		return ret;
317 	}
318 
319 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
320 		if (vlan_entry->hd_tbl_status) {
321 			vlan_id = vlan_entry->vlan_id;
322 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
323 			if (ret)
324 				break;
325 		}
326 	}
327 
328 	return ret;
329 }
330 
331 static int
332 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
333 {
334 	struct hns3_pf *pf = &hns->pf;
335 	bool writen_to_tbl = false;
336 	int ret = 0;
337 
338 	/*
339 	 * When vlan filter is enabled, hardware regards vlan id 0 as the entry
340 	 * for normal packet, deleting vlan id 0 is not allowed.
341 	 */
342 	if (on == 0 && vlan_id == 0)
343 		return 0;
344 
345 	/*
346 	 * When port base vlan enabled, we use port base vlan as the vlan
347 	 * filter condition. In this case, we don't update vlan filter table
348 	 * when user add new vlan or remove exist vlan, just update the
349 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
350 	 * table until port base vlan disabled
351 	 */
352 	if (pf->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
353 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
354 		writen_to_tbl = true;
355 	}
356 
357 	if (ret == 0 && vlan_id) {
358 		if (on)
359 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
360 		else
361 			hns3_rm_dev_vlan_table(hns, vlan_id);
362 	}
363 	return ret;
364 }
365 
366 static int
367 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
368 {
369 	struct hns3_adapter *hns = dev->data->dev_private;
370 	struct hns3_hw *hw = &hns->hw;
371 	int ret;
372 
373 	rte_spinlock_lock(&hw->lock);
374 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
375 	rte_spinlock_unlock(&hw->lock);
376 	return ret;
377 }
378 
379 static int
380 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
381 			 uint16_t tpid)
382 {
383 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
384 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
385 	struct hns3_hw *hw = &hns->hw;
386 	struct hns3_cmd_desc desc;
387 	int ret;
388 
389 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
390 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
391 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
392 		return -EINVAL;
393 	}
394 
395 	if (tpid != RTE_ETHER_TYPE_VLAN) {
396 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
397 		return -EINVAL;
398 	}
399 
400 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
401 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
402 
403 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
404 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
405 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
406 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
407 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
408 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
409 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
410 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
411 	}
412 
413 	ret = hns3_cmd_send(hw, &desc, 1);
414 	if (ret) {
415 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
416 			 ret);
417 		return ret;
418 	}
419 
420 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
421 
422 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
423 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
424 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
425 
426 	ret = hns3_cmd_send(hw, &desc, 1);
427 	if (ret)
428 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
429 			 ret);
430 	return ret;
431 }
432 
433 static int
434 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
435 		   uint16_t tpid)
436 {
437 	struct hns3_adapter *hns = dev->data->dev_private;
438 	struct hns3_hw *hw = &hns->hw;
439 	int ret;
440 
441 	rte_spinlock_lock(&hw->lock);
442 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
443 	rte_spinlock_unlock(&hw->lock);
444 	return ret;
445 }
446 
447 static int
448 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
449 			     struct hns3_rx_vtag_cfg *vcfg)
450 {
451 	struct hns3_vport_vtag_rx_cfg_cmd *req;
452 	struct hns3_hw *hw = &hns->hw;
453 	struct hns3_cmd_desc desc;
454 	uint16_t vport_id;
455 	uint8_t bitmap;
456 	int ret;
457 
458 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
459 
460 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
461 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
462 		     vcfg->strip_tag1_en ? 1 : 0);
463 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
464 		     vcfg->strip_tag2_en ? 1 : 0);
465 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
466 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
467 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
468 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
469 
470 	/*
471 	 * In current version VF is not supported when PF is driven by DPDK
472 	 * driver, the PF-related vf_id is 0, just need to configure parameters
473 	 * for vport_id 0.
474 	 */
475 	vport_id = 0;
476 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
477 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
478 	req->vf_bitmap[req->vf_offset] = bitmap;
479 
480 	ret = hns3_cmd_send(hw, &desc, 1);
481 	if (ret)
482 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
483 	return ret;
484 }
485 
486 static void
487 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
488 			   struct hns3_rx_vtag_cfg *vcfg)
489 {
490 	struct hns3_pf *pf = &hns->pf;
491 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
492 }
493 
494 static void
495 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
496 			   struct hns3_tx_vtag_cfg *vcfg)
497 {
498 	struct hns3_pf *pf = &hns->pf;
499 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
500 }
501 
502 static int
503 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
504 {
505 	struct hns3_rx_vtag_cfg rxvlan_cfg;
506 	struct hns3_pf *pf = &hns->pf;
507 	struct hns3_hw *hw = &hns->hw;
508 	int ret;
509 
510 	if (pf->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
511 		rxvlan_cfg.strip_tag1_en = false;
512 		rxvlan_cfg.strip_tag2_en = enable;
513 	} else {
514 		rxvlan_cfg.strip_tag1_en = enable;
515 		rxvlan_cfg.strip_tag2_en = true;
516 	}
517 
518 	rxvlan_cfg.vlan1_vlan_prionly = false;
519 	rxvlan_cfg.vlan2_vlan_prionly = false;
520 	rxvlan_cfg.rx_vlan_offload_en = enable;
521 
522 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
523 	if (ret) {
524 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
525 		return ret;
526 	}
527 
528 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
529 
530 	return ret;
531 }
532 
533 static int
534 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
535 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
536 {
537 	struct hns3_vlan_filter_ctrl_cmd *req;
538 	struct hns3_cmd_desc desc;
539 	int ret;
540 
541 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
542 
543 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
544 	req->vlan_type = vlan_type;
545 	req->vlan_fe = filter_en ? fe_type : 0;
546 	req->vf_id = vf_id;
547 
548 	ret = hns3_cmd_send(hw, &desc, 1);
549 	if (ret)
550 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
551 
552 	return ret;
553 }
554 
555 static int
556 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
557 {
558 	struct hns3_hw *hw = &hns->hw;
559 	int ret;
560 
561 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
562 					HNS3_FILTER_FE_EGRESS, false, 0);
563 	if (ret) {
564 		hns3_err(hw, "hns3 enable filter fail, ret =%d", ret);
565 		return ret;
566 	}
567 
568 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
569 					HNS3_FILTER_FE_INGRESS, enable, 0);
570 	if (ret)
571 		hns3_err(hw, "hns3 enable filter fail, ret =%d", ret);
572 
573 	return ret;
574 }
575 
576 static int
577 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
578 {
579 	struct hns3_adapter *hns = dev->data->dev_private;
580 	struct hns3_hw *hw = &hns->hw;
581 	struct rte_eth_rxmode *rxmode;
582 	unsigned int tmp_mask;
583 	bool enable;
584 	int ret = 0;
585 
586 	rte_spinlock_lock(&hw->lock);
587 	rxmode = &dev->data->dev_conf.rxmode;
588 	tmp_mask = (unsigned int)mask;
589 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
590 		/* Enable or disable VLAN stripping */
591 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
592 		    true : false;
593 
594 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
595 		if (ret) {
596 			rte_spinlock_unlock(&hw->lock);
597 			hns3_err(hw, "failed to enable rx strip, ret =%d", ret);
598 			return ret;
599 		}
600 	}
601 
602 	rte_spinlock_unlock(&hw->lock);
603 
604 	return ret;
605 }
606 
607 static int
608 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
609 			     struct hns3_tx_vtag_cfg *vcfg)
610 {
611 	struct hns3_vport_vtag_tx_cfg_cmd *req;
612 	struct hns3_cmd_desc desc;
613 	struct hns3_hw *hw = &hns->hw;
614 	uint16_t vport_id;
615 	uint8_t bitmap;
616 	int ret;
617 
618 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
619 
620 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
621 	req->def_vlan_tag1 = vcfg->default_tag1;
622 	req->def_vlan_tag2 = vcfg->default_tag2;
623 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
624 		     vcfg->accept_tag1 ? 1 : 0);
625 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
626 		     vcfg->accept_untag1 ? 1 : 0);
627 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
628 		     vcfg->accept_tag2 ? 1 : 0);
629 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
630 		     vcfg->accept_untag2 ? 1 : 0);
631 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
632 		     vcfg->insert_tag1_en ? 1 : 0);
633 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
634 		     vcfg->insert_tag2_en ? 1 : 0);
635 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
636 
637 	/*
638 	 * In current version VF is not supported when PF is driven by DPDK
639 	 * driver, the PF-related vf_id is 0, just need to configure parameters
640 	 * for vport_id 0.
641 	 */
642 	vport_id = 0;
643 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
644 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
645 	req->vf_bitmap[req->vf_offset] = bitmap;
646 
647 	ret = hns3_cmd_send(hw, &desc, 1);
648 	if (ret)
649 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
650 
651 	return ret;
652 }
653 
654 static int
655 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
656 		     uint16_t pvid)
657 {
658 	struct hns3_hw *hw = &hns->hw;
659 	struct hns3_tx_vtag_cfg txvlan_cfg;
660 	int ret;
661 
662 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
663 		txvlan_cfg.accept_tag1 = true;
664 		txvlan_cfg.insert_tag1_en = false;
665 		txvlan_cfg.default_tag1 = 0;
666 	} else {
667 		txvlan_cfg.accept_tag1 = false;
668 		txvlan_cfg.insert_tag1_en = true;
669 		txvlan_cfg.default_tag1 = pvid;
670 	}
671 
672 	txvlan_cfg.accept_untag1 = true;
673 	txvlan_cfg.accept_tag2 = true;
674 	txvlan_cfg.accept_untag2 = true;
675 	txvlan_cfg.insert_tag2_en = false;
676 	txvlan_cfg.default_tag2 = 0;
677 
678 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
679 	if (ret) {
680 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
681 			 ret);
682 		return ret;
683 	}
684 
685 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
686 	return ret;
687 }
688 
689 static void
690 hns3_store_port_base_vlan_info(struct hns3_adapter *hns, uint16_t pvid, int on)
691 {
692 	struct hns3_pf *pf = &hns->pf;
693 
694 	pf->port_base_vlan_cfg.state = on ?
695 	    HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
696 
697 	pf->port_base_vlan_cfg.pvid = pvid;
698 }
699 
700 static void
701 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
702 {
703 	struct hns3_user_vlan_table *vlan_entry;
704 	struct hns3_pf *pf = &hns->pf;
705 
706 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
707 		if (vlan_entry->hd_tbl_status)
708 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
709 
710 		vlan_entry->hd_tbl_status = false;
711 	}
712 
713 	if (is_del_list) {
714 		vlan_entry = LIST_FIRST(&pf->vlan_list);
715 		while (vlan_entry) {
716 			LIST_REMOVE(vlan_entry, next);
717 			rte_free(vlan_entry);
718 			vlan_entry = LIST_FIRST(&pf->vlan_list);
719 		}
720 	}
721 }
722 
723 static void
724 hns3_add_all_vlan_table(struct hns3_adapter *hns)
725 {
726 	struct hns3_user_vlan_table *vlan_entry;
727 	struct hns3_pf *pf = &hns->pf;
728 
729 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
730 		if (!vlan_entry->hd_tbl_status)
731 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
732 
733 		vlan_entry->hd_tbl_status = true;
734 	}
735 }
736 
737 static void
738 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
739 {
740 	struct hns3_hw *hw = &hns->hw;
741 	struct hns3_pf *pf = &hns->pf;
742 	int ret;
743 
744 	hns3_rm_all_vlan_table(hns, true);
745 	if (pf->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID) {
746 		ret = hns3_set_port_vlan_filter(hns,
747 						pf->port_base_vlan_cfg.pvid, 0);
748 		if (ret) {
749 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
750 				 ret);
751 			return;
752 		}
753 	}
754 }
755 
756 static int
757 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
758 				uint16_t port_base_vlan_state,
759 				uint16_t new_pvid, uint16_t old_pvid)
760 {
761 	struct hns3_pf *pf = &hns->pf;
762 	struct hns3_hw *hw = &hns->hw;
763 	int ret = 0;
764 
765 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
766 		if (old_pvid != HNS3_INVLID_PVID && old_pvid != 0) {
767 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
768 			if (ret) {
769 				hns3_err(hw,
770 					 "Failed to clear clear old pvid filter, ret =%d",
771 					 ret);
772 				return ret;
773 			}
774 		}
775 
776 		hns3_rm_all_vlan_table(hns, false);
777 		return hns3_set_port_vlan_filter(hns, new_pvid, 1);
778 	}
779 
780 	if (new_pvid != 0) {
781 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
782 		if (ret) {
783 			hns3_err(hw, "Failed to set port vlan filter, ret =%d",
784 				 ret);
785 			return ret;
786 		}
787 	}
788 
789 	if (new_pvid == pf->port_base_vlan_cfg.pvid)
790 		hns3_add_all_vlan_table(hns);
791 
792 	return ret;
793 }
794 
795 static int
796 hns3_en_rx_strip_all(struct hns3_adapter *hns, int on)
797 {
798 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
799 	struct hns3_hw *hw = &hns->hw;
800 	bool rx_strip_en;
801 	int ret;
802 
803 	rx_strip_en = on ? true : false;
804 	rx_vlan_cfg.strip_tag1_en = rx_strip_en;
805 	rx_vlan_cfg.strip_tag2_en = rx_strip_en;
806 	rx_vlan_cfg.vlan1_vlan_prionly = false;
807 	rx_vlan_cfg.vlan2_vlan_prionly = false;
808 	rx_vlan_cfg.rx_vlan_offload_en = rx_strip_en;
809 
810 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
811 	if (ret) {
812 		hns3_err(hw, "enable strip rx failed, ret =%d", ret);
813 		return ret;
814 	}
815 
816 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
817 	return ret;
818 }
819 
820 static int
821 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
822 {
823 	struct hns3_pf *pf = &hns->pf;
824 	struct hns3_hw *hw = &hns->hw;
825 	uint16_t port_base_vlan_state;
826 	uint16_t old_pvid;
827 	int ret;
828 
829 	if (on == 0 && pvid != pf->port_base_vlan_cfg.pvid) {
830 		if (pf->port_base_vlan_cfg.pvid != HNS3_INVLID_PVID)
831 			hns3_warn(hw, "Invalid operation! As current pvid set "
832 				  "is %u, disable pvid %u is invalid",
833 				  pf->port_base_vlan_cfg.pvid, pvid);
834 		return 0;
835 	}
836 
837 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
838 				    HNS3_PORT_BASE_VLAN_DISABLE;
839 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
840 	if (ret) {
841 		hns3_err(hw, "Failed to config tx vlan, ret =%d", ret);
842 		return ret;
843 	}
844 
845 	ret = hns3_en_rx_strip_all(hns, on);
846 	if (ret) {
847 		hns3_err(hw, "Failed to config rx vlan strip, ret =%d", ret);
848 		return ret;
849 	}
850 
851 	if (pvid == HNS3_INVLID_PVID)
852 		goto out;
853 	old_pvid = pf->port_base_vlan_cfg.pvid;
854 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid,
855 					      old_pvid);
856 	if (ret) {
857 		hns3_err(hw, "Failed to update vlan filter entries, ret =%d",
858 			 ret);
859 		return ret;
860 	}
861 
862 out:
863 	hns3_store_port_base_vlan_info(hns, pvid, on);
864 	return ret;
865 }
866 
867 static int
868 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
869 {
870 	struct hns3_adapter *hns = dev->data->dev_private;
871 	struct hns3_hw *hw = &hns->hw;
872 	int ret;
873 
874 	rte_spinlock_lock(&hw->lock);
875 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
876 	rte_spinlock_unlock(&hw->lock);
877 	return ret;
878 }
879 
880 static void
881 init_port_base_vlan_info(struct hns3_hw *hw)
882 {
883 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
884 	struct hns3_pf *pf = &hns->pf;
885 
886 	pf->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
887 	pf->port_base_vlan_cfg.pvid = HNS3_INVLID_PVID;
888 }
889 
890 static int
891 hns3_default_vlan_config(struct hns3_adapter *hns)
892 {
893 	struct hns3_hw *hw = &hns->hw;
894 	int ret;
895 
896 	ret = hns3_set_port_vlan_filter(hns, 0, 1);
897 	if (ret)
898 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
899 	return ret;
900 }
901 
902 static int
903 hns3_init_vlan_config(struct hns3_adapter *hns)
904 {
905 	struct hns3_hw *hw = &hns->hw;
906 	int ret;
907 
908 	/*
909 	 * This function can be called in the initialization and reset process,
910 	 * when in reset process, it means that hardware had been reseted
911 	 * successfully and we need to restore the hardware configuration to
912 	 * ensure that the hardware configuration remains unchanged before and
913 	 * after reset.
914 	 */
915 	if (rte_atomic16_read(&hw->reset.resetting) == 0)
916 		init_port_base_vlan_info(hw);
917 
918 	ret = hns3_enable_vlan_filter(hns, true);
919 	if (ret) {
920 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
921 		return ret;
922 	}
923 
924 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
925 				       RTE_ETHER_TYPE_VLAN);
926 	if (ret) {
927 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
928 		return ret;
929 	}
930 
931 	/*
932 	 * When in the reinit dev stage of the reset process, the following
933 	 * vlan-related configurations may differ from those at initialization,
934 	 * we will restore configurations to hardware in hns3_restore_vlan_table
935 	 * and hns3_restore_vlan_conf later.
936 	 */
937 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
938 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVLID_PVID, 0);
939 		if (ret) {
940 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
941 			return ret;
942 		}
943 
944 		ret = hns3_en_hw_strip_rxvtag(hns, false);
945 		if (ret) {
946 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
947 				 ret);
948 			return ret;
949 		}
950 	}
951 
952 	return hns3_default_vlan_config(hns);
953 }
954 
955 static int
956 hns3_restore_vlan_conf(struct hns3_adapter *hns)
957 {
958 	struct hns3_pf *pf = &hns->pf;
959 	struct hns3_hw *hw = &hns->hw;
960 	int ret;
961 
962 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
963 	if (ret) {
964 		hns3_err(hw, "hns3 restore vlan rx conf fail, ret =%d", ret);
965 		return ret;
966 	}
967 
968 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
969 	if (ret)
970 		hns3_err(hw, "hns3 restore vlan tx conf fail, ret =%d", ret);
971 
972 	return ret;
973 }
974 
975 static int
976 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
977 {
978 	struct hns3_adapter *hns = dev->data->dev_private;
979 	struct rte_eth_dev_data *data = dev->data;
980 	struct rte_eth_txmode *txmode;
981 	struct hns3_hw *hw = &hns->hw;
982 	int ret;
983 
984 	txmode = &data->dev_conf.txmode;
985 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
986 		hns3_warn(hw,
987 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
988 			  "configuration is not supported! Ignore these two "
989 			  "parameters: hw_vlan_reject_tagged(%d), "
990 			  "hw_vlan_reject_untagged(%d)",
991 			  txmode->hw_vlan_reject_tagged,
992 			  txmode->hw_vlan_reject_untagged);
993 
994 	/* Apply vlan offload setting */
995 	ret = hns3_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
996 	if (ret) {
997 		hns3_err(hw, "dev config vlan Strip failed, ret =%d", ret);
998 		return ret;
999 	}
1000 
1001 	/* Apply pvid setting */
1002 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1003 				 txmode->hw_vlan_insert_pvid);
1004 	if (ret)
1005 		hns3_err(hw, "dev config vlan pvid(%d) failed, ret =%d",
1006 			 txmode->pvid, ret);
1007 
1008 	return ret;
1009 }
1010 
1011 static int
1012 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1013 		unsigned int tso_mss_max)
1014 {
1015 	struct hns3_cfg_tso_status_cmd *req;
1016 	struct hns3_cmd_desc desc;
1017 	uint16_t tso_mss;
1018 
1019 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1020 
1021 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1022 
1023 	tso_mss = 0;
1024 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1025 		       tso_mss_min);
1026 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1027 
1028 	tso_mss = 0;
1029 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1030 		       tso_mss_max);
1031 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1032 
1033 	return hns3_cmd_send(hw, &desc, 1);
1034 }
1035 
1036 int
1037 hns3_config_gro(struct hns3_hw *hw, bool en)
1038 {
1039 	struct hns3_cfg_gro_status_cmd *req;
1040 	struct hns3_cmd_desc desc;
1041 	int ret;
1042 
1043 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false);
1044 	req = (struct hns3_cfg_gro_status_cmd *)desc.data;
1045 
1046 	req->gro_en = rte_cpu_to_le_16(en ? 1 : 0);
1047 
1048 	ret = hns3_cmd_send(hw, &desc, 1);
1049 	if (ret)
1050 		hns3_err(hw, "GRO hardware config cmd failed, ret = %d", ret);
1051 
1052 	return ret;
1053 }
1054 
1055 static int
1056 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1057 		   uint16_t *allocated_size, bool is_alloc)
1058 {
1059 	struct hns3_umv_spc_alc_cmd *req;
1060 	struct hns3_cmd_desc desc;
1061 	int ret;
1062 
1063 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1064 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1065 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1066 	req->space_size = rte_cpu_to_le_32(space_size);
1067 
1068 	ret = hns3_cmd_send(hw, &desc, 1);
1069 	if (ret) {
1070 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1071 			     is_alloc ? "allocate" : "free", ret);
1072 		return ret;
1073 	}
1074 
1075 	if (is_alloc && allocated_size)
1076 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1077 
1078 	return 0;
1079 }
1080 
1081 static int
1082 hns3_init_umv_space(struct hns3_hw *hw)
1083 {
1084 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1085 	struct hns3_pf *pf = &hns->pf;
1086 	uint16_t allocated_size = 0;
1087 	int ret;
1088 
1089 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1090 				 true);
1091 	if (ret)
1092 		return ret;
1093 
1094 	if (allocated_size < pf->wanted_umv_size)
1095 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1096 			     pf->wanted_umv_size, allocated_size);
1097 
1098 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1099 						pf->wanted_umv_size;
1100 	pf->used_umv_size = 0;
1101 	return 0;
1102 }
1103 
1104 static int
1105 hns3_uninit_umv_space(struct hns3_hw *hw)
1106 {
1107 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1108 	struct hns3_pf *pf = &hns->pf;
1109 	int ret;
1110 
1111 	if (pf->max_umv_size == 0)
1112 		return 0;
1113 
1114 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1115 	if (ret)
1116 		return ret;
1117 
1118 	pf->max_umv_size = 0;
1119 
1120 	return 0;
1121 }
1122 
1123 static bool
1124 hns3_is_umv_space_full(struct hns3_hw *hw)
1125 {
1126 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1127 	struct hns3_pf *pf = &hns->pf;
1128 	bool is_full;
1129 
1130 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1131 
1132 	return is_full;
1133 }
1134 
1135 static void
1136 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1137 {
1138 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1139 	struct hns3_pf *pf = &hns->pf;
1140 
1141 	if (is_free) {
1142 		if (pf->used_umv_size > 0)
1143 			pf->used_umv_size--;
1144 	} else
1145 		pf->used_umv_size++;
1146 }
1147 
1148 static void
1149 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1150 		      const uint8_t *addr, bool is_mc)
1151 {
1152 	const unsigned char *mac_addr = addr;
1153 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1154 			    ((uint32_t)mac_addr[2] << 16) |
1155 			    ((uint32_t)mac_addr[1] << 8) |
1156 			    (uint32_t)mac_addr[0];
1157 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1158 
1159 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1160 	if (is_mc) {
1161 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1162 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1163 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1164 	}
1165 
1166 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1167 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1168 }
1169 
1170 static int
1171 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1172 			     uint8_t resp_code,
1173 			     enum hns3_mac_vlan_tbl_opcode op)
1174 {
1175 	if (cmdq_resp) {
1176 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1177 			 cmdq_resp);
1178 		return -EIO;
1179 	}
1180 
1181 	if (op == HNS3_MAC_VLAN_ADD) {
1182 		if (resp_code == 0 || resp_code == 1) {
1183 			return 0;
1184 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1185 			hns3_err(hw, "add mac addr failed for uc_overflow");
1186 			return -ENOSPC;
1187 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1188 			hns3_err(hw, "add mac addr failed for mc_overflow");
1189 			return -ENOSPC;
1190 		}
1191 
1192 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1193 			 resp_code);
1194 		return -EIO;
1195 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1196 		if (resp_code == 0) {
1197 			return 0;
1198 		} else if (resp_code == 1) {
1199 			hns3_dbg(hw, "remove mac addr failed for miss");
1200 			return -ENOENT;
1201 		}
1202 
1203 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1204 			 resp_code);
1205 		return -EIO;
1206 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1207 		if (resp_code == 0) {
1208 			return 0;
1209 		} else if (resp_code == 1) {
1210 			hns3_dbg(hw, "lookup mac addr failed for miss");
1211 			return -ENOENT;
1212 		}
1213 
1214 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1215 			 resp_code);
1216 		return -EIO;
1217 	}
1218 
1219 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1220 		 op);
1221 
1222 	return -EINVAL;
1223 }
1224 
1225 static int
1226 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1227 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1228 			 struct hns3_cmd_desc *desc, bool is_mc)
1229 {
1230 	uint8_t resp_code;
1231 	uint16_t retval;
1232 	int ret;
1233 
1234 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1235 	if (is_mc) {
1236 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1237 		memcpy(desc[0].data, req,
1238 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1239 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1240 					  true);
1241 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1242 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1243 					  true);
1244 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1245 	} else {
1246 		memcpy(desc[0].data, req,
1247 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1248 		ret = hns3_cmd_send(hw, desc, 1);
1249 	}
1250 	if (ret) {
1251 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1252 			 ret);
1253 		return ret;
1254 	}
1255 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1256 	retval = rte_le_to_cpu_16(desc[0].retval);
1257 
1258 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1259 					    HNS3_MAC_VLAN_LKUP);
1260 }
1261 
1262 static int
1263 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1264 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1265 		      struct hns3_cmd_desc *mc_desc)
1266 {
1267 	uint8_t resp_code;
1268 	uint16_t retval;
1269 	int cfg_status;
1270 	int ret;
1271 
1272 	if (mc_desc == NULL) {
1273 		struct hns3_cmd_desc desc;
1274 
1275 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1276 		memcpy(desc.data, req,
1277 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1278 		ret = hns3_cmd_send(hw, &desc, 1);
1279 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1280 		retval = rte_le_to_cpu_16(desc.retval);
1281 
1282 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1283 							  HNS3_MAC_VLAN_ADD);
1284 	} else {
1285 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1286 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1287 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1288 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1289 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1290 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1291 		memcpy(mc_desc[0].data, req,
1292 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1293 		mc_desc[0].retval = 0;
1294 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1295 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1296 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1297 
1298 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1299 							  HNS3_MAC_VLAN_ADD);
1300 	}
1301 
1302 	if (ret) {
1303 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1304 		return ret;
1305 	}
1306 
1307 	return cfg_status;
1308 }
1309 
1310 static int
1311 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1312 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1313 {
1314 	struct hns3_cmd_desc desc;
1315 	uint8_t resp_code;
1316 	uint16_t retval;
1317 	int ret;
1318 
1319 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1320 
1321 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1322 
1323 	ret = hns3_cmd_send(hw, &desc, 1);
1324 	if (ret) {
1325 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1326 		return ret;
1327 	}
1328 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1329 	retval = rte_le_to_cpu_16(desc.retval);
1330 
1331 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1332 					    HNS3_MAC_VLAN_REMOVE);
1333 }
1334 
1335 static int
1336 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1337 {
1338 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1339 	struct hns3_mac_vlan_tbl_entry_cmd req;
1340 	struct hns3_pf *pf = &hns->pf;
1341 	struct hns3_cmd_desc desc;
1342 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1343 	uint16_t egress_port = 0;
1344 	uint8_t vf_id;
1345 	int ret;
1346 
1347 	/* check if mac addr is valid */
1348 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1349 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1350 				      mac_addr);
1351 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1352 			 mac_str);
1353 		return -EINVAL;
1354 	}
1355 
1356 	memset(&req, 0, sizeof(req));
1357 
1358 	/*
1359 	 * In current version VF is not supported when PF is driven by DPDK
1360 	 * driver, the PF-related vf_id is 0, just need to configure parameters
1361 	 * for vf_id 0.
1362 	 */
1363 	vf_id = 0;
1364 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1365 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1366 
1367 	req.egress_port = rte_cpu_to_le_16(egress_port);
1368 
1369 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1370 
1371 	/*
1372 	 * Lookup the mac address in the mac_vlan table, and add
1373 	 * it if the entry is inexistent. Repeated unicast entry
1374 	 * is not allowed in the mac vlan table.
1375 	 */
1376 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc, false);
1377 	if (ret == -ENOENT) {
1378 		if (!hns3_is_umv_space_full(hw)) {
1379 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1380 			if (!ret)
1381 				hns3_update_umv_space(hw, false);
1382 			return ret;
1383 		}
1384 
1385 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1386 
1387 		return -ENOSPC;
1388 	}
1389 
1390 	rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1391 
1392 	/* check if we just hit the duplicate */
1393 	if (ret == 0) {
1394 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1395 		return 0;
1396 	}
1397 
1398 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1399 		 mac_str);
1400 
1401 	return ret;
1402 }
1403 
1404 static int
1405 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1406 		  uint32_t idx, __attribute__ ((unused)) uint32_t pool)
1407 {
1408 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1409 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1410 	int ret;
1411 
1412 	rte_spinlock_lock(&hw->lock);
1413 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1414 	if (ret) {
1415 		rte_spinlock_unlock(&hw->lock);
1416 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1417 				      mac_addr);
1418 		hns3_err(hw, "Failed to add mac addr(%s): %d", mac_str, ret);
1419 		return ret;
1420 	}
1421 
1422 	if (idx == 0)
1423 		hw->mac.default_addr_setted = true;
1424 	rte_spinlock_unlock(&hw->lock);
1425 
1426 	return ret;
1427 }
1428 
1429 static int
1430 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1431 {
1432 	struct hns3_mac_vlan_tbl_entry_cmd req;
1433 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1434 	int ret;
1435 
1436 	/* check if mac addr is valid */
1437 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1438 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1439 				      mac_addr);
1440 		hns3_err(hw, "Remove unicast mac addr err! addr(%s) invalid",
1441 			 mac_str);
1442 		return -EINVAL;
1443 	}
1444 
1445 	memset(&req, 0, sizeof(req));
1446 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1447 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1448 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1449 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1450 		return 0;
1451 	else if (ret == 0)
1452 		hns3_update_umv_space(hw, true);
1453 
1454 	return ret;
1455 }
1456 
1457 static void
1458 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1459 {
1460 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1461 	/* index will be checked by upper level rte interface */
1462 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1463 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1464 	int ret;
1465 
1466 	rte_spinlock_lock(&hw->lock);
1467 	ret = hns3_remove_uc_addr_common(hw, mac_addr);
1468 	if (ret) {
1469 		rte_spinlock_unlock(&hw->lock);
1470 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1471 				      mac_addr);
1472 		hns3_err(hw, "Failed to remove mac addr(%s): %d", mac_str, ret);
1473 		return;
1474 	}
1475 
1476 	rte_spinlock_unlock(&hw->lock);
1477 }
1478 
1479 static int
1480 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1481 			  struct rte_ether_addr *mac_addr)
1482 {
1483 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1484 	struct rte_ether_addr *oaddr;
1485 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1486 	bool default_addr_setted;
1487 	bool rm_succes = false;
1488 	int ret, ret_val;
1489 
1490 	/* check if mac addr is valid */
1491 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1492 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1493 				      mac_addr);
1494 		hns3_err(hw, "Failed to set mac addr, addr(%s) invalid",
1495 			 mac_str);
1496 		return -EINVAL;
1497 	}
1498 
1499 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1500 	default_addr_setted = hw->mac.default_addr_setted;
1501 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1502 		return 0;
1503 
1504 	rte_spinlock_lock(&hw->lock);
1505 	if (default_addr_setted) {
1506 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1507 		if (ret) {
1508 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1509 					      oaddr);
1510 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1511 				  mac_str, ret);
1512 			rm_succes = false;
1513 		} else
1514 			rm_succes = true;
1515 	}
1516 
1517 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1518 	if (ret) {
1519 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1520 				      mac_addr);
1521 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1522 		goto err_add_uc_addr;
1523 	}
1524 
1525 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1526 	if (ret) {
1527 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1528 		goto err_pause_addr_cfg;
1529 	}
1530 
1531 	rte_ether_addr_copy(mac_addr,
1532 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1533 	hw->mac.default_addr_setted = true;
1534 	rte_spinlock_unlock(&hw->lock);
1535 
1536 	return 0;
1537 
1538 err_pause_addr_cfg:
1539 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1540 	if (ret_val) {
1541 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1542 				      mac_addr);
1543 		hns3_warn(hw,
1544 			  "Failed to roll back to del setted mac addr(%s): %d",
1545 			  mac_str, ret_val);
1546 	}
1547 
1548 err_add_uc_addr:
1549 	if (rm_succes) {
1550 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1551 		if (ret_val) {
1552 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1553 					      oaddr);
1554 			hns3_warn(hw,
1555 				  "Failed to restore old uc mac addr(%s): %d",
1556 				  mac_str, ret_val);
1557 			hw->mac.default_addr_setted = false;
1558 		}
1559 	}
1560 	rte_spinlock_unlock(&hw->lock);
1561 
1562 	return ret;
1563 }
1564 
1565 static int
1566 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1567 {
1568 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1569 	struct hns3_hw *hw = &hns->hw;
1570 	struct rte_ether_addr *addr;
1571 	int err = 0;
1572 	int ret;
1573 	int i;
1574 
1575 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1576 		addr = &hw->data->mac_addrs[i];
1577 		if (!rte_is_valid_assigned_ether_addr(addr))
1578 			continue;
1579 		if (del)
1580 			ret = hns3_remove_uc_addr_common(hw, addr);
1581 		else
1582 			ret = hns3_add_uc_addr_common(hw, addr);
1583 		if (ret) {
1584 			err = ret;
1585 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1586 					      addr);
1587 			hns3_dbg(hw,
1588 				 "Failed to %s mac addr(%s). ret:%d i:%d",
1589 				 del ? "remove" : "restore", mac_str, ret, i);
1590 		}
1591 	}
1592 	return err;
1593 }
1594 
1595 static void
1596 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1597 {
1598 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1599 	uint8_t word_num;
1600 	uint8_t bit_num;
1601 
1602 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1603 		word_num = vfid / 32;
1604 		bit_num = vfid % 32;
1605 		if (clr)
1606 			desc[1].data[word_num] &=
1607 			    rte_cpu_to_le_32(~(1UL << bit_num));
1608 		else
1609 			desc[1].data[word_num] |=
1610 			    rte_cpu_to_le_32(1UL << bit_num);
1611 	} else {
1612 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1613 		bit_num = vfid % 32;
1614 		if (clr)
1615 			desc[2].data[word_num] &=
1616 			    rte_cpu_to_le_32(~(1UL << bit_num));
1617 		else
1618 			desc[2].data[word_num] |=
1619 			    rte_cpu_to_le_32(1UL << bit_num);
1620 	}
1621 }
1622 
1623 static int
1624 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1625 {
1626 	struct hns3_mac_vlan_tbl_entry_cmd req;
1627 	struct hns3_cmd_desc desc[3];
1628 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1629 	uint8_t vf_id;
1630 	int ret;
1631 
1632 	/* Check if mac addr is valid */
1633 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1634 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1635 				      mac_addr);
1636 		hns3_err(hw, "Failed to add mc mac addr, addr(%s) invalid",
1637 			 mac_str);
1638 		return -EINVAL;
1639 	}
1640 
1641 	memset(&req, 0, sizeof(req));
1642 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1643 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1644 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1645 	if (ret) {
1646 		/* This mac addr do not exist, add new entry for it */
1647 		memset(desc[0].data, 0, sizeof(desc[0].data));
1648 		memset(desc[1].data, 0, sizeof(desc[0].data));
1649 		memset(desc[2].data, 0, sizeof(desc[0].data));
1650 	}
1651 
1652 	/*
1653 	 * In current version VF is not supported when PF is driven by DPDK
1654 	 * driver, the PF-related vf_id is 0, just need to configure parameters
1655 	 * for vf_id 0.
1656 	 */
1657 	vf_id = 0;
1658 	hns3_update_desc_vfid(desc, vf_id, false);
1659 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1660 	if (ret) {
1661 		if (ret == -ENOSPC)
1662 			hns3_err(hw, "mc mac vlan table is full");
1663 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1664 				      mac_addr);
1665 		hns3_err(hw, "Failed to add mc mac addr(%s): %d", mac_str, ret);
1666 	}
1667 
1668 	return ret;
1669 }
1670 
1671 static int
1672 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1673 {
1674 	struct hns3_mac_vlan_tbl_entry_cmd req;
1675 	struct hns3_cmd_desc desc[3];
1676 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1677 	uint8_t vf_id;
1678 	int ret;
1679 
1680 	/* Check if mac addr is valid */
1681 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1682 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1683 				      mac_addr);
1684 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1685 			 mac_str);
1686 		return -EINVAL;
1687 	}
1688 
1689 	memset(&req, 0, sizeof(req));
1690 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1691 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1692 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1693 	if (ret == 0) {
1694 		/*
1695 		 * This mac addr exist, remove this handle's VFID for it.
1696 		 * In current version VF is not supported when PF is driven by
1697 		 * DPDK driver, the PF-related vf_id is 0, just need to
1698 		 * configure parameters for vf_id 0.
1699 		 */
1700 		vf_id = 0;
1701 		hns3_update_desc_vfid(desc, vf_id, true);
1702 
1703 		/* All the vfid is zero, so need to delete this entry */
1704 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1705 	} else if (ret == -ENOENT) {
1706 		/* This mac addr doesn't exist. */
1707 		return 0;
1708 	}
1709 
1710 	if (ret) {
1711 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1712 				      mac_addr);
1713 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1714 	}
1715 
1716 	return ret;
1717 }
1718 
1719 static int
1720 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1721 			   struct rte_ether_addr *mc_addr_set,
1722 			   uint32_t nb_mc_addr)
1723 {
1724 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1725 	struct rte_ether_addr *addr;
1726 	uint32_t i;
1727 	uint32_t j;
1728 
1729 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1730 		hns3_err(hw, "Failed to set mc mac addr, nb_mc_addr(%d) "
1731 			 "invalid. valid range: 0~%d",
1732 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1733 		return -EINVAL;
1734 	}
1735 
1736 	/* Check if input mac addresses are valid */
1737 	for (i = 0; i < nb_mc_addr; i++) {
1738 		addr = &mc_addr_set[i];
1739 		if (!rte_is_multicast_ether_addr(addr)) {
1740 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1741 					      addr);
1742 			hns3_err(hw,
1743 				 "Failed to set mc mac addr, addr(%s) invalid.",
1744 				 mac_str);
1745 			return -EINVAL;
1746 		}
1747 
1748 		/* Check if there are duplicate addresses */
1749 		for (j = i + 1; j < nb_mc_addr; j++) {
1750 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1751 				rte_ether_format_addr(mac_str,
1752 						      RTE_ETHER_ADDR_FMT_SIZE,
1753 						      addr);
1754 				hns3_err(hw, "Failed to set mc mac addr, "
1755 					 "addrs invalid. two same addrs(%s).",
1756 					 mac_str);
1757 				return -EINVAL;
1758 			}
1759 		}
1760 	}
1761 
1762 	return 0;
1763 }
1764 
1765 static void
1766 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
1767 			   struct rte_ether_addr *mc_addr_set,
1768 			   int mc_addr_num,
1769 			   struct rte_ether_addr *reserved_addr_list,
1770 			   int *reserved_addr_num,
1771 			   struct rte_ether_addr *add_addr_list,
1772 			   int *add_addr_num,
1773 			   struct rte_ether_addr *rm_addr_list,
1774 			   int *rm_addr_num)
1775 {
1776 	struct rte_ether_addr *addr;
1777 	int current_addr_num;
1778 	int reserved_num = 0;
1779 	int add_num = 0;
1780 	int rm_num = 0;
1781 	int num;
1782 	int i;
1783 	int j;
1784 	bool same_addr;
1785 
1786 	/* Calculate the mc mac address list that should be removed */
1787 	current_addr_num = hw->mc_addrs_num;
1788 	for (i = 0; i < current_addr_num; i++) {
1789 		addr = &hw->mc_addrs[i];
1790 		same_addr = false;
1791 		for (j = 0; j < mc_addr_num; j++) {
1792 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1793 				same_addr = true;
1794 				break;
1795 			}
1796 		}
1797 
1798 		if (!same_addr) {
1799 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
1800 			rm_num++;
1801 		} else {
1802 			rte_ether_addr_copy(addr,
1803 					    &reserved_addr_list[reserved_num]);
1804 			reserved_num++;
1805 		}
1806 	}
1807 
1808 	/* Calculate the mc mac address list that should be added */
1809 	for (i = 0; i < mc_addr_num; i++) {
1810 		addr = &mc_addr_set[i];
1811 		same_addr = false;
1812 		for (j = 0; j < current_addr_num; j++) {
1813 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
1814 				same_addr = true;
1815 				break;
1816 			}
1817 		}
1818 
1819 		if (!same_addr) {
1820 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
1821 			add_num++;
1822 		}
1823 	}
1824 
1825 	/* Reorder the mc mac address list maintained by driver */
1826 	for (i = 0; i < reserved_num; i++)
1827 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
1828 
1829 	for (i = 0; i < rm_num; i++) {
1830 		num = reserved_num + i;
1831 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
1832 	}
1833 
1834 	*reserved_addr_num = reserved_num;
1835 	*add_addr_num = add_num;
1836 	*rm_addr_num = rm_num;
1837 }
1838 
1839 static int
1840 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
1841 			  struct rte_ether_addr *mc_addr_set,
1842 			  uint32_t nb_mc_addr)
1843 {
1844 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1845 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
1846 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
1847 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
1848 	struct rte_ether_addr *addr;
1849 	int reserved_addr_num;
1850 	int add_addr_num;
1851 	int rm_addr_num;
1852 	int mc_addr_num;
1853 	int num;
1854 	int ret;
1855 	int i;
1856 
1857 	/* Check if input parameters are valid */
1858 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
1859 	if (ret)
1860 		return ret;
1861 
1862 	rte_spinlock_lock(&hw->lock);
1863 
1864 	/*
1865 	 * Calculate the mc mac address lists those should be removed and be
1866 	 * added, Reorder the mc mac address list maintained by driver.
1867 	 */
1868 	mc_addr_num = (int)nb_mc_addr;
1869 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
1870 				   reserved_addr_list, &reserved_addr_num,
1871 				   add_addr_list, &add_addr_num,
1872 				   rm_addr_list, &rm_addr_num);
1873 
1874 	/* Remove mc mac addresses */
1875 	for (i = 0; i < rm_addr_num; i++) {
1876 		num = rm_addr_num - i - 1;
1877 		addr = &rm_addr_list[num];
1878 		ret = hns3_remove_mc_addr(hw, addr);
1879 		if (ret) {
1880 			rte_spinlock_unlock(&hw->lock);
1881 			return ret;
1882 		}
1883 		hw->mc_addrs_num--;
1884 	}
1885 
1886 	/* Add mc mac addresses */
1887 	for (i = 0; i < add_addr_num; i++) {
1888 		addr = &add_addr_list[i];
1889 		ret = hns3_add_mc_addr(hw, addr);
1890 		if (ret) {
1891 			rte_spinlock_unlock(&hw->lock);
1892 			return ret;
1893 		}
1894 
1895 		num = reserved_addr_num + i;
1896 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
1897 		hw->mc_addrs_num++;
1898 	}
1899 	rte_spinlock_unlock(&hw->lock);
1900 
1901 	return 0;
1902 }
1903 
1904 static int
1905 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
1906 {
1907 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1908 	struct hns3_hw *hw = &hns->hw;
1909 	struct rte_ether_addr *addr;
1910 	int err = 0;
1911 	int ret;
1912 	int i;
1913 
1914 	for (i = 0; i < hw->mc_addrs_num; i++) {
1915 		addr = &hw->mc_addrs[i];
1916 		if (!rte_is_multicast_ether_addr(addr))
1917 			continue;
1918 		if (del)
1919 			ret = hns3_remove_mc_addr(hw, addr);
1920 		else
1921 			ret = hns3_add_mc_addr(hw, addr);
1922 		if (ret) {
1923 			err = ret;
1924 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1925 					      addr);
1926 			hns3_dbg(hw, "%s mc mac addr: %s failed",
1927 				 del ? "Remove" : "Restore", mac_str);
1928 		}
1929 	}
1930 	return err;
1931 }
1932 
1933 static int
1934 hns3_check_mq_mode(struct rte_eth_dev *dev)
1935 {
1936 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1937 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1938 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1939 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1940 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
1941 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
1942 	uint8_t num_tc;
1943 	int max_tc = 0;
1944 	int i;
1945 
1946 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
1947 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
1948 
1949 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
1950 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
1951 			 "rx_mq_mode = %d", rx_mq_mode);
1952 		return -EINVAL;
1953 	}
1954 
1955 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
1956 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1957 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
1958 			 "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
1959 			 rx_mq_mode, tx_mq_mode);
1960 		return -EINVAL;
1961 	}
1962 
1963 	if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
1964 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
1965 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
1966 				 dcb_rx_conf->nb_tcs, pf->tc_max);
1967 			return -EINVAL;
1968 		}
1969 
1970 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
1971 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
1972 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
1973 				 "nb_tcs(%d) != %d or %d in rx direction.",
1974 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
1975 			return -EINVAL;
1976 		}
1977 
1978 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
1979 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
1980 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
1981 			return -EINVAL;
1982 		}
1983 
1984 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
1985 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
1986 				hns3_err(hw, "dcb_tc[%d] = %d in rx direction, "
1987 					 "is not equal to one in tx direction.",
1988 					 i, dcb_rx_conf->dcb_tc[i]);
1989 				return -EINVAL;
1990 			}
1991 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
1992 				max_tc = dcb_rx_conf->dcb_tc[i];
1993 		}
1994 
1995 		num_tc = max_tc + 1;
1996 		if (num_tc > dcb_rx_conf->nb_tcs) {
1997 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
1998 				 num_tc, dcb_rx_conf->nb_tcs);
1999 			return -EINVAL;
2000 		}
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 static int
2007 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2008 {
2009 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2010 
2011 	if (!hns3_dev_dcb_supported(hw)) {
2012 		hns3_err(hw, "this port does not support dcb configurations.");
2013 		return -EOPNOTSUPP;
2014 	}
2015 
2016 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2017 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2018 		return -EOPNOTSUPP;
2019 	}
2020 
2021 	/* Check multiple queue mode */
2022 	return hns3_check_mq_mode(dev);
2023 }
2024 
2025 static int
2026 hns3_bind_ring_with_vector(struct rte_eth_dev *dev, uint8_t vector_id,
2027 			   bool mmap, uint16_t queue_id)
2028 {
2029 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2030 	struct hns3_cmd_desc desc;
2031 	struct hns3_ctrl_vector_chain_cmd *req =
2032 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2033 	enum hns3_cmd_status status;
2034 	enum hns3_opcode_type op;
2035 	uint16_t tqp_type_and_id = 0;
2036 
2037 	op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2038 	hns3_cmd_setup_basic_desc(&desc, op, false);
2039 	req->int_vector_id = vector_id;
2040 
2041 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2042 		       HNS3_RING_TYPE_RX);
2043 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2044 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2045 		       HNS3_RING_GL_RX);
2046 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2047 
2048 	req->int_cause_num = 1;
2049 	status = hns3_cmd_send(hw, &desc, 1);
2050 	if (status) {
2051 		hns3_err(hw, "Map TQP %d fail, vector_id is %d, status is %d.",
2052 			 queue_id, vector_id, status);
2053 		return -EIO;
2054 	}
2055 
2056 	return 0;
2057 }
2058 
2059 static int
2060 hns3_dev_configure(struct rte_eth_dev *dev)
2061 {
2062 	struct hns3_adapter *hns = dev->data->dev_private;
2063 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2064 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2065 	struct hns3_hw *hw = &hns->hw;
2066 	struct hns3_rss_conf *rss_cfg = &hw->rss_info;
2067 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2068 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2069 	struct rte_eth_rss_conf rss_conf;
2070 	uint16_t mtu;
2071 	int ret;
2072 
2073 	/*
2074 	 * Hardware does not support individually enable/disable/reset the Tx or
2075 	 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
2076 	 * and Rx queues at the same time. When the numbers of Tx queues
2077 	 * allocated by upper applications are not equal to the numbers of Rx
2078 	 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
2079 	 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
2080 	 * these fake queues are imperceptible, and can not be used by upper
2081 	 * applications.
2082 	 */
2083 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2084 	if (ret) {
2085 		hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
2086 		return ret;
2087 	}
2088 
2089 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2090 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2091 		hns3_err(hw, "setting link speed/duplex not supported");
2092 		ret = -EINVAL;
2093 		goto cfg_err;
2094 	}
2095 
2096 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2097 		ret = hns3_check_dcb_cfg(dev);
2098 		if (ret)
2099 			goto cfg_err;
2100 	}
2101 
2102 	/* When RSS is not configured, redirect the packet queue 0 */
2103 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2104 		rss_conf = conf->rx_adv_conf.rss_conf;
2105 		if (rss_conf.rss_key == NULL) {
2106 			rss_conf.rss_key = rss_cfg->key;
2107 			rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
2108 		}
2109 
2110 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2111 		if (ret)
2112 			goto cfg_err;
2113 	}
2114 
2115 	/*
2116 	 * If jumbo frames are enabled, MTU needs to be refreshed
2117 	 * according to the maximum RX packet length.
2118 	 */
2119 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2120 		/*
2121 		 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
2122 		 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
2123 		 * can safely assign to "uint16_t" type variable.
2124 		 */
2125 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
2126 		ret = hns3_dev_mtu_set(dev, mtu);
2127 		if (ret)
2128 			goto cfg_err;
2129 		dev->data->mtu = mtu;
2130 	}
2131 
2132 	ret = hns3_dev_configure_vlan(dev);
2133 	if (ret)
2134 		goto cfg_err;
2135 
2136 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2137 
2138 	return 0;
2139 
2140 cfg_err:
2141 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2142 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2143 
2144 	return ret;
2145 }
2146 
2147 static int
2148 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2149 {
2150 	struct hns3_config_max_frm_size_cmd *req;
2151 	struct hns3_cmd_desc desc;
2152 
2153 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2154 
2155 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2156 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2157 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2158 
2159 	return hns3_cmd_send(hw, &desc, 1);
2160 }
2161 
2162 static int
2163 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2164 {
2165 	int ret;
2166 
2167 	ret = hns3_set_mac_mtu(hw, mps);
2168 	if (ret) {
2169 		hns3_err(hw, "Failed to set mtu, ret = %d", ret);
2170 		return ret;
2171 	}
2172 
2173 	ret = hns3_buffer_alloc(hw);
2174 	if (ret) {
2175 		hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
2176 		return ret;
2177 	}
2178 
2179 	return 0;
2180 }
2181 
2182 static int
2183 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2184 {
2185 	struct hns3_adapter *hns = dev->data->dev_private;
2186 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2187 	struct hns3_hw *hw = &hns->hw;
2188 	bool is_jumbo_frame;
2189 	int ret;
2190 
2191 	if (dev->data->dev_started) {
2192 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2193 			 "before configuration", dev->data->port_id);
2194 		return -EBUSY;
2195 	}
2196 
2197 	rte_spinlock_lock(&hw->lock);
2198 	is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
2199 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2200 
2201 	/*
2202 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2203 	 * assign to "uint16_t" type variable.
2204 	 */
2205 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2206 	if (ret) {
2207 		rte_spinlock_unlock(&hw->lock);
2208 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2209 			 dev->data->port_id, mtu, ret);
2210 		return ret;
2211 	}
2212 	hns->pf.mps = (uint16_t)frame_size;
2213 	if (is_jumbo_frame)
2214 		dev->data->dev_conf.rxmode.offloads |=
2215 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2216 	else
2217 		dev->data->dev_conf.rxmode.offloads &=
2218 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2219 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2220 	rte_spinlock_unlock(&hw->lock);
2221 
2222 	return 0;
2223 }
2224 
2225 static int
2226 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2227 {
2228 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2229 	struct hns3_hw *hw = &hns->hw;
2230 
2231 	info->max_rx_queues = hw->tqps_num;
2232 	info->max_tx_queues = hw->tqps_num;
2233 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2234 	info->min_rx_bufsize = hw->rx_buf_len;
2235 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2236 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2237 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2238 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2239 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2240 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2241 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2242 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2243 				 DEV_RX_OFFLOAD_KEEP_CRC |
2244 				 DEV_RX_OFFLOAD_SCATTER |
2245 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2246 				 DEV_RX_OFFLOAD_QINQ_STRIP |
2247 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2248 				 DEV_RX_OFFLOAD_VLAN_EXTEND |
2249 				 DEV_RX_OFFLOAD_JUMBO_FRAME);
2250 	info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2251 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2252 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2253 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2254 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2255 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2256 				 DEV_TX_OFFLOAD_VLAN_INSERT |
2257 				 DEV_TX_OFFLOAD_QINQ_INSERT |
2258 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2259 				 info->tx_queue_offload_capa);
2260 
2261 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2262 		.nb_max = HNS3_MAX_RING_DESC,
2263 		.nb_min = HNS3_MIN_RING_DESC,
2264 		.nb_align = HNS3_ALIGN_RING_DESC,
2265 	};
2266 
2267 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2268 		.nb_max = HNS3_MAX_RING_DESC,
2269 		.nb_min = HNS3_MIN_RING_DESC,
2270 		.nb_align = HNS3_ALIGN_RING_DESC,
2271 	};
2272 
2273 	info->vmdq_queue_num = 0;
2274 
2275 	info->reta_size = HNS3_RSS_IND_TBL_SIZE;
2276 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2277 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2278 
2279 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2280 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2281 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2282 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2283 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2284 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2285 
2286 	return 0;
2287 }
2288 
2289 static int
2290 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2291 		    size_t fw_size)
2292 {
2293 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2294 	struct hns3_hw *hw = &hns->hw;
2295 	int ret;
2296 
2297 	ret = snprintf(fw_version, fw_size, "0x%08x", hw->fw_version);
2298 	ret += 1; /* add the size of '\0' */
2299 	if (fw_size < (uint32_t)ret)
2300 		return ret;
2301 	else
2302 		return 0;
2303 }
2304 
2305 static int
2306 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2307 		     __rte_unused int wait_to_complete)
2308 {
2309 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2310 	struct hns3_hw *hw = &hns->hw;
2311 	struct hns3_mac *mac = &hw->mac;
2312 	struct rte_eth_link new_link;
2313 
2314 	if (!hns3_is_reset_pending(hns)) {
2315 		hns3_update_speed_duplex(eth_dev);
2316 		hns3_update_link_status(hw);
2317 	}
2318 
2319 	memset(&new_link, 0, sizeof(new_link));
2320 	switch (mac->link_speed) {
2321 	case ETH_SPEED_NUM_10M:
2322 	case ETH_SPEED_NUM_100M:
2323 	case ETH_SPEED_NUM_1G:
2324 	case ETH_SPEED_NUM_10G:
2325 	case ETH_SPEED_NUM_25G:
2326 	case ETH_SPEED_NUM_40G:
2327 	case ETH_SPEED_NUM_50G:
2328 	case ETH_SPEED_NUM_100G:
2329 		new_link.link_speed = mac->link_speed;
2330 		break;
2331 	default:
2332 		new_link.link_speed = ETH_SPEED_NUM_100M;
2333 		break;
2334 	}
2335 
2336 	new_link.link_duplex = mac->link_duplex;
2337 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2338 	new_link.link_autoneg =
2339 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2340 
2341 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2342 }
2343 
2344 static int
2345 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2346 {
2347 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2348 	struct hns3_pf *pf = &hns->pf;
2349 
2350 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2351 		return -EINVAL;
2352 
2353 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2354 
2355 	return 0;
2356 }
2357 
2358 static int
2359 hns3_query_function_status(struct hns3_hw *hw)
2360 {
2361 #define HNS3_QUERY_MAX_CNT		10
2362 #define HNS3_QUERY_SLEEP_MSCOEND	1
2363 	struct hns3_func_status_cmd *req;
2364 	struct hns3_cmd_desc desc;
2365 	int timeout = 0;
2366 	int ret;
2367 
2368 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2369 	req = (struct hns3_func_status_cmd *)desc.data;
2370 
2371 	do {
2372 		ret = hns3_cmd_send(hw, &desc, 1);
2373 		if (ret) {
2374 			PMD_INIT_LOG(ERR, "query function status failed %d",
2375 				     ret);
2376 			return ret;
2377 		}
2378 
2379 		/* Check pf reset is done */
2380 		if (req->pf_state)
2381 			break;
2382 
2383 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2384 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2385 
2386 	return hns3_parse_func_status(hw, req);
2387 }
2388 
2389 static int
2390 hns3_query_pf_resource(struct hns3_hw *hw)
2391 {
2392 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2393 	struct hns3_pf *pf = &hns->pf;
2394 	struct hns3_pf_res_cmd *req;
2395 	struct hns3_cmd_desc desc;
2396 	int ret;
2397 
2398 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2399 	ret = hns3_cmd_send(hw, &desc, 1);
2400 	if (ret) {
2401 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2402 		return ret;
2403 	}
2404 
2405 	req = (struct hns3_pf_res_cmd *)desc.data;
2406 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num);
2407 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2408 	hw->tqps_num = RTE_MIN(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2409 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2410 
2411 	if (req->tx_buf_size)
2412 		pf->tx_buf_size =
2413 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2414 	else
2415 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2416 
2417 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2418 
2419 	if (req->dv_buf_size)
2420 		pf->dv_buf_size =
2421 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2422 	else
2423 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2424 
2425 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2426 
2427 	hw->num_msi =
2428 	    hns3_get_field(rte_le_to_cpu_16(req->pf_intr_vector_number),
2429 			   HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2430 
2431 	return 0;
2432 }
2433 
2434 static void
2435 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2436 {
2437 	struct hns3_cfg_param_cmd *req;
2438 	uint64_t mac_addr_tmp_high;
2439 	uint64_t mac_addr_tmp;
2440 	uint32_t i;
2441 
2442 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2443 
2444 	/* get the configuration */
2445 	cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2446 					     HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2447 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2448 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2449 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2450 					   HNS3_CFG_TQP_DESC_N_M,
2451 					   HNS3_CFG_TQP_DESC_N_S);
2452 
2453 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2454 				       HNS3_CFG_PHY_ADDR_M,
2455 				       HNS3_CFG_PHY_ADDR_S);
2456 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2457 					 HNS3_CFG_MEDIA_TP_M,
2458 					 HNS3_CFG_MEDIA_TP_S);
2459 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2460 					 HNS3_CFG_RX_BUF_LEN_M,
2461 					 HNS3_CFG_RX_BUF_LEN_S);
2462 	/* get mac address */
2463 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2464 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2465 					   HNS3_CFG_MAC_ADDR_H_M,
2466 					   HNS3_CFG_MAC_ADDR_H_S);
2467 
2468 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2469 
2470 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2471 					    HNS3_CFG_DEFAULT_SPEED_M,
2472 					    HNS3_CFG_DEFAULT_SPEED_S);
2473 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2474 					   HNS3_CFG_RSS_SIZE_M,
2475 					   HNS3_CFG_RSS_SIZE_S);
2476 
2477 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2478 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2479 
2480 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2481 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2482 
2483 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2484 					    HNS3_CFG_SPEED_ABILITY_M,
2485 					    HNS3_CFG_SPEED_ABILITY_S);
2486 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2487 					HNS3_CFG_UMV_TBL_SPACE_M,
2488 					HNS3_CFG_UMV_TBL_SPACE_S);
2489 	if (!cfg->umv_space)
2490 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2491 }
2492 
2493 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2494  * @hw: pointer to struct hns3_hw
2495  * @hcfg: the config structure to be getted
2496  */
2497 static int
2498 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2499 {
2500 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2501 	struct hns3_cfg_param_cmd *req;
2502 	uint32_t offset;
2503 	uint32_t i;
2504 	int ret;
2505 
2506 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2507 		offset = 0;
2508 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2509 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2510 					  true);
2511 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2512 			       i * HNS3_CFG_RD_LEN_BYTES);
2513 		/* Len should be divided by 4 when send to hardware */
2514 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2515 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2516 		req->offset = rte_cpu_to_le_32(offset);
2517 	}
2518 
2519 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2520 	if (ret) {
2521 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2522 		return ret;
2523 	}
2524 
2525 	hns3_parse_cfg(hcfg, desc);
2526 
2527 	return 0;
2528 }
2529 
2530 static int
2531 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2532 {
2533 	switch (speed_cmd) {
2534 	case HNS3_CFG_SPEED_10M:
2535 		*speed = ETH_SPEED_NUM_10M;
2536 		break;
2537 	case HNS3_CFG_SPEED_100M:
2538 		*speed = ETH_SPEED_NUM_100M;
2539 		break;
2540 	case HNS3_CFG_SPEED_1G:
2541 		*speed = ETH_SPEED_NUM_1G;
2542 		break;
2543 	case HNS3_CFG_SPEED_10G:
2544 		*speed = ETH_SPEED_NUM_10G;
2545 		break;
2546 	case HNS3_CFG_SPEED_25G:
2547 		*speed = ETH_SPEED_NUM_25G;
2548 		break;
2549 	case HNS3_CFG_SPEED_40G:
2550 		*speed = ETH_SPEED_NUM_40G;
2551 		break;
2552 	case HNS3_CFG_SPEED_50G:
2553 		*speed = ETH_SPEED_NUM_50G;
2554 		break;
2555 	case HNS3_CFG_SPEED_100G:
2556 		*speed = ETH_SPEED_NUM_100G;
2557 		break;
2558 	default:
2559 		return -EINVAL;
2560 	}
2561 
2562 	return 0;
2563 }
2564 
2565 static int
2566 hns3_get_board_configuration(struct hns3_hw *hw)
2567 {
2568 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2569 	struct hns3_pf *pf = &hns->pf;
2570 	struct hns3_cfg cfg;
2571 	int ret;
2572 
2573 	ret = hns3_get_board_cfg(hw, &cfg);
2574 	if (ret) {
2575 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2576 		return ret;
2577 	}
2578 
2579 	if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER) {
2580 		PMD_INIT_LOG(ERR, "media type is copper, not supported.");
2581 		return -EOPNOTSUPP;
2582 	}
2583 
2584 	hw->mac.media_type = cfg.media_type;
2585 	hw->rss_size_max = cfg.rss_size_max;
2586 	hw->rx_buf_len = cfg.rx_buf_len;
2587 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2588 	hw->mac.phy_addr = cfg.phy_addr;
2589 	hw->mac.default_addr_setted = false;
2590 	hw->num_tx_desc = cfg.tqp_desc_num;
2591 	hw->num_rx_desc = cfg.tqp_desc_num;
2592 	hw->dcb_info.num_pg = 1;
2593 	hw->dcb_info.hw_pfc_map = 0;
2594 
2595 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2596 	if (ret) {
2597 		PMD_INIT_LOG(ERR, "Get wrong speed %d, ret = %d",
2598 			     cfg.default_speed, ret);
2599 		return ret;
2600 	}
2601 
2602 	pf->tc_max = cfg.tc_num;
2603 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2604 		PMD_INIT_LOG(WARNING,
2605 			     "Get TC num(%u) from flash, set TC num to 1",
2606 			     pf->tc_max);
2607 		pf->tc_max = 1;
2608 	}
2609 
2610 	/* Dev does not support DCB */
2611 	if (!hns3_dev_dcb_supported(hw)) {
2612 		pf->tc_max = 1;
2613 		pf->pfc_max = 0;
2614 	} else
2615 		pf->pfc_max = pf->tc_max;
2616 
2617 	hw->dcb_info.num_tc = 1;
2618 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2619 				     hw->tqps_num / hw->dcb_info.num_tc);
2620 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2621 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2622 
2623 	pf->wanted_umv_size = cfg.umv_space;
2624 
2625 	return ret;
2626 }
2627 
2628 static int
2629 hns3_get_configuration(struct hns3_hw *hw)
2630 {
2631 	int ret;
2632 
2633 	ret = hns3_query_function_status(hw);
2634 	if (ret) {
2635 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2636 		return ret;
2637 	}
2638 
2639 	/* Get pf resource */
2640 	ret = hns3_query_pf_resource(hw);
2641 	if (ret) {
2642 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
2643 		return ret;
2644 	}
2645 
2646 	ret = hns3_get_board_configuration(hw);
2647 	if (ret) {
2648 		PMD_INIT_LOG(ERR, "Failed to get board configuration: %d", ret);
2649 		return ret;
2650 	}
2651 
2652 	return 0;
2653 }
2654 
2655 static int
2656 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
2657 		      uint16_t tqp_vid, bool is_pf)
2658 {
2659 	struct hns3_tqp_map_cmd *req;
2660 	struct hns3_cmd_desc desc;
2661 	int ret;
2662 
2663 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
2664 
2665 	req = (struct hns3_tqp_map_cmd *)desc.data;
2666 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
2667 	req->tqp_vf = func_id;
2668 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
2669 	if (!is_pf)
2670 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
2671 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
2672 
2673 	ret = hns3_cmd_send(hw, &desc, 1);
2674 	if (ret)
2675 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
2676 
2677 	return ret;
2678 }
2679 
2680 static int
2681 hns3_map_tqp(struct hns3_hw *hw)
2682 {
2683 	uint16_t tqps_num = hw->total_tqps_num;
2684 	uint16_t func_id;
2685 	uint16_t tqp_id;
2686 	bool is_pf;
2687 	int num;
2688 	int ret;
2689 	int i;
2690 
2691 	/*
2692 	 * In current version VF is not supported when PF is driven by DPDK
2693 	 * driver, so we allocate tqps to PF as much as possible.
2694 	 */
2695 	tqp_id = 0;
2696 	num = DIV_ROUND_UP(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2697 	for (func_id = 0; func_id < num; func_id++) {
2698 		is_pf = func_id == 0 ? true : false;
2699 		for (i = 0;
2700 		     i < HNS3_MAX_TQP_NUM_PER_FUNC && tqp_id < tqps_num; i++) {
2701 			ret = hns3_map_tqps_to_func(hw, func_id, tqp_id++, i,
2702 						    is_pf);
2703 			if (ret)
2704 				return ret;
2705 		}
2706 	}
2707 
2708 	return 0;
2709 }
2710 
2711 static int
2712 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
2713 {
2714 	struct hns3_config_mac_speed_dup_cmd *req;
2715 	struct hns3_cmd_desc desc;
2716 	int ret;
2717 
2718 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
2719 
2720 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
2721 
2722 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
2723 
2724 	switch (speed) {
2725 	case ETH_SPEED_NUM_10M:
2726 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2727 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
2728 		break;
2729 	case ETH_SPEED_NUM_100M:
2730 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2731 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
2732 		break;
2733 	case ETH_SPEED_NUM_1G:
2734 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2735 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
2736 		break;
2737 	case ETH_SPEED_NUM_10G:
2738 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2739 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
2740 		break;
2741 	case ETH_SPEED_NUM_25G:
2742 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2743 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
2744 		break;
2745 	case ETH_SPEED_NUM_40G:
2746 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2747 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
2748 		break;
2749 	case ETH_SPEED_NUM_50G:
2750 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2751 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
2752 		break;
2753 	case ETH_SPEED_NUM_100G:
2754 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2755 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
2756 		break;
2757 	default:
2758 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
2759 		return -EINVAL;
2760 	}
2761 
2762 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
2763 
2764 	ret = hns3_cmd_send(hw, &desc, 1);
2765 	if (ret)
2766 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
2767 
2768 	return ret;
2769 }
2770 
2771 static int
2772 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
2773 {
2774 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2775 	struct hns3_pf *pf = &hns->pf;
2776 	struct hns3_priv_buf *priv;
2777 	uint32_t i, total_size;
2778 
2779 	total_size = pf->pkt_buf_size;
2780 
2781 	/* alloc tx buffer for all enabled tc */
2782 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2783 		priv = &buf_alloc->priv_buf[i];
2784 
2785 		if (hw->hw_tc_map & BIT(i)) {
2786 			if (total_size < pf->tx_buf_size)
2787 				return -ENOMEM;
2788 
2789 			priv->tx_buf_size = pf->tx_buf_size;
2790 		} else
2791 			priv->tx_buf_size = 0;
2792 
2793 		total_size -= priv->tx_buf_size;
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 static int
2800 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
2801 {
2802 /* TX buffer size is unit by 128 byte */
2803 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
2804 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
2805 	struct hns3_tx_buff_alloc_cmd *req;
2806 	struct hns3_cmd_desc desc;
2807 	uint32_t buf_size;
2808 	uint32_t i;
2809 	int ret;
2810 
2811 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
2812 
2813 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
2814 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2815 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
2816 
2817 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
2818 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
2819 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
2820 	}
2821 
2822 	ret = hns3_cmd_send(hw, &desc, 1);
2823 	if (ret)
2824 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
2825 
2826 	return ret;
2827 }
2828 
2829 static int
2830 hns3_get_tc_num(struct hns3_hw *hw)
2831 {
2832 	int cnt = 0;
2833 	uint8_t i;
2834 
2835 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
2836 		if (hw->hw_tc_map & BIT(i))
2837 			cnt++;
2838 	return cnt;
2839 }
2840 
2841 static uint32_t
2842 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
2843 {
2844 	struct hns3_priv_buf *priv;
2845 	uint32_t rx_priv = 0;
2846 	int i;
2847 
2848 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2849 		priv = &buf_alloc->priv_buf[i];
2850 		if (priv->enable)
2851 			rx_priv += priv->buf_size;
2852 	}
2853 	return rx_priv;
2854 }
2855 
2856 static uint32_t
2857 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
2858 {
2859 	uint32_t total_tx_size = 0;
2860 	uint32_t i;
2861 
2862 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
2863 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
2864 
2865 	return total_tx_size;
2866 }
2867 
2868 /* Get the number of pfc enabled TCs, which have private buffer */
2869 static int
2870 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
2871 {
2872 	struct hns3_priv_buf *priv;
2873 	int cnt = 0;
2874 	uint8_t i;
2875 
2876 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2877 		priv = &buf_alloc->priv_buf[i];
2878 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
2879 			cnt++;
2880 	}
2881 
2882 	return cnt;
2883 }
2884 
2885 /* Get the number of pfc disabled TCs, which have private buffer */
2886 static int
2887 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
2888 			 struct hns3_pkt_buf_alloc *buf_alloc)
2889 {
2890 	struct hns3_priv_buf *priv;
2891 	int cnt = 0;
2892 	uint8_t i;
2893 
2894 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2895 		priv = &buf_alloc->priv_buf[i];
2896 		if (hw->hw_tc_map & BIT(i) &&
2897 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
2898 			cnt++;
2899 	}
2900 
2901 	return cnt;
2902 }
2903 
2904 static bool
2905 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
2906 		  uint32_t rx_all)
2907 {
2908 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
2909 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2910 	struct hns3_pf *pf = &hns->pf;
2911 	uint32_t shared_buf, aligned_mps;
2912 	uint32_t rx_priv;
2913 	uint8_t tc_num;
2914 	uint8_t i;
2915 
2916 	tc_num = hns3_get_tc_num(hw);
2917 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
2918 
2919 	if (hns3_dev_dcb_supported(hw))
2920 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
2921 					pf->dv_buf_size;
2922 	else
2923 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
2924 					+ pf->dv_buf_size;
2925 
2926 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
2927 	shared_std = roundup(max_t(uint32_t, shared_buf_min, shared_buf_tc),
2928 			     HNS3_BUF_SIZE_UNIT);
2929 
2930 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
2931 	if (rx_all < rx_priv + shared_std)
2932 		return false;
2933 
2934 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
2935 	buf_alloc->s_buf.buf_size = shared_buf;
2936 	if (hns3_dev_dcb_supported(hw)) {
2937 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
2938 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
2939 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
2940 				  HNS3_BUF_SIZE_UNIT);
2941 	} else {
2942 		buf_alloc->s_buf.self.high =
2943 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
2944 		buf_alloc->s_buf.self.low = aligned_mps;
2945 	}
2946 
2947 	if (hns3_dev_dcb_supported(hw)) {
2948 		hi_thrd = shared_buf - pf->dv_buf_size;
2949 
2950 		if (tc_num <= NEED_RESERVE_TC_NUM)
2951 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
2952 					/ BUF_MAX_PERCENT;
2953 
2954 		if (tc_num)
2955 			hi_thrd = hi_thrd / tc_num;
2956 
2957 		hi_thrd = max_t(uint32_t, hi_thrd,
2958 				HNS3_BUF_MUL_BY * aligned_mps);
2959 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
2960 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
2961 	} else {
2962 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
2963 		lo_thrd = aligned_mps;
2964 	}
2965 
2966 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2967 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
2968 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
2969 	}
2970 
2971 	return true;
2972 }
2973 
2974 static bool
2975 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
2976 		     struct hns3_pkt_buf_alloc *buf_alloc)
2977 {
2978 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2979 	struct hns3_pf *pf = &hns->pf;
2980 	struct hns3_priv_buf *priv;
2981 	uint32_t aligned_mps;
2982 	uint32_t rx_all;
2983 	uint8_t i;
2984 
2985 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
2986 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
2987 
2988 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
2989 		priv = &buf_alloc->priv_buf[i];
2990 
2991 		priv->enable = 0;
2992 		priv->wl.low = 0;
2993 		priv->wl.high = 0;
2994 		priv->buf_size = 0;
2995 
2996 		if (!(hw->hw_tc_map & BIT(i)))
2997 			continue;
2998 
2999 		priv->enable = 1;
3000 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3001 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3002 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3003 						HNS3_BUF_SIZE_UNIT);
3004 		} else {
3005 			priv->wl.low = 0;
3006 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3007 					aligned_mps;
3008 		}
3009 
3010 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3011 	}
3012 
3013 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3014 }
3015 
3016 static bool
3017 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3018 			     struct hns3_pkt_buf_alloc *buf_alloc)
3019 {
3020 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3021 	struct hns3_pf *pf = &hns->pf;
3022 	struct hns3_priv_buf *priv;
3023 	int no_pfc_priv_num;
3024 	uint32_t rx_all;
3025 	uint8_t mask;
3026 	int i;
3027 
3028 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3029 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3030 
3031 	/* let the last to be cleared first */
3032 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3033 		priv = &buf_alloc->priv_buf[i];
3034 		mask = BIT((uint8_t)i);
3035 
3036 		if (hw->hw_tc_map & mask &&
3037 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3038 			/* Clear the no pfc TC private buffer */
3039 			priv->wl.low = 0;
3040 			priv->wl.high = 0;
3041 			priv->buf_size = 0;
3042 			priv->enable = 0;
3043 			no_pfc_priv_num--;
3044 		}
3045 
3046 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3047 		    no_pfc_priv_num == 0)
3048 			break;
3049 	}
3050 
3051 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3052 }
3053 
3054 static bool
3055 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3056 			   struct hns3_pkt_buf_alloc *buf_alloc)
3057 {
3058 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3059 	struct hns3_pf *pf = &hns->pf;
3060 	struct hns3_priv_buf *priv;
3061 	uint32_t rx_all;
3062 	int pfc_priv_num;
3063 	uint8_t mask;
3064 	int i;
3065 
3066 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3067 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3068 
3069 	/* let the last to be cleared first */
3070 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3071 		priv = &buf_alloc->priv_buf[i];
3072 		mask = BIT((uint8_t)i);
3073 
3074 		if (hw->hw_tc_map & mask &&
3075 		    hw->dcb_info.hw_pfc_map & mask) {
3076 			/* Reduce the number of pfc TC with private buffer */
3077 			priv->wl.low = 0;
3078 			priv->enable = 0;
3079 			priv->wl.high = 0;
3080 			priv->buf_size = 0;
3081 			pfc_priv_num--;
3082 		}
3083 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3084 		    pfc_priv_num == 0)
3085 			break;
3086 	}
3087 
3088 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3089 }
3090 
3091 static bool
3092 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3093 			  struct hns3_pkt_buf_alloc *buf_alloc)
3094 {
3095 #define COMPENSATE_BUFFER	0x3C00
3096 #define COMPENSATE_HALF_MPS_NUM	5
3097 #define PRIV_WL_GAP		0x1800
3098 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3099 	struct hns3_pf *pf = &hns->pf;
3100 	uint32_t tc_num = hns3_get_tc_num(hw);
3101 	uint32_t half_mps = pf->mps >> 1;
3102 	struct hns3_priv_buf *priv;
3103 	uint32_t min_rx_priv;
3104 	uint32_t rx_priv;
3105 	uint8_t i;
3106 
3107 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3108 	if (tc_num)
3109 		rx_priv = rx_priv / tc_num;
3110 
3111 	if (tc_num <= NEED_RESERVE_TC_NUM)
3112 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3113 
3114 	/*
3115 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3116 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3117 	 * buffer if rx_priv is greater than min_rx_priv.
3118 	 */
3119 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3120 			COMPENSATE_HALF_MPS_NUM * half_mps;
3121 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3122 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3123 
3124 	if (rx_priv < min_rx_priv)
3125 		return false;
3126 
3127 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3128 		priv = &buf_alloc->priv_buf[i];
3129 
3130 		priv->enable = 0;
3131 		priv->wl.low = 0;
3132 		priv->wl.high = 0;
3133 		priv->buf_size = 0;
3134 
3135 		if (!(hw->hw_tc_map & BIT(i)))
3136 			continue;
3137 
3138 		priv->enable = 1;
3139 		priv->buf_size = rx_priv;
3140 		priv->wl.high = rx_priv - pf->dv_buf_size;
3141 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3142 	}
3143 
3144 	buf_alloc->s_buf.buf_size = 0;
3145 
3146 	return true;
3147 }
3148 
3149 /*
3150  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3151  * @hw: pointer to struct hns3_hw
3152  * @buf_alloc: pointer to buffer calculation data
3153  * @return: 0: calculate sucessful, negative: fail
3154  */
3155 static int
3156 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3157 {
3158 	/* When DCB is not supported, rx private buffer is not allocated. */
3159 	if (!hns3_dev_dcb_supported(hw)) {
3160 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3161 		struct hns3_pf *pf = &hns->pf;
3162 		uint32_t rx_all = pf->pkt_buf_size;
3163 
3164 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3165 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3166 			return -ENOMEM;
3167 
3168 		return 0;
3169 	}
3170 
3171 	/*
3172 	 * Try to allocate privated packet buffer for all TCs without share
3173 	 * buffer.
3174 	 */
3175 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3176 		return 0;
3177 
3178 	/*
3179 	 * Try to allocate privated packet buffer for all TCs with share
3180 	 * buffer.
3181 	 */
3182 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3183 		return 0;
3184 
3185 	/*
3186 	 * For different application scenes, the enabled port number, TC number
3187 	 * and no_drop TC number are different. In order to obtain the better
3188 	 * performance, software could allocate the buffer size and configure
3189 	 * the waterline by tring to decrease the private buffer size according
3190 	 * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3191 	 * enabled tc.
3192 	 */
3193 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3194 		return 0;
3195 
3196 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3197 		return 0;
3198 
3199 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3200 		return 0;
3201 
3202 	return -ENOMEM;
3203 }
3204 
3205 static int
3206 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3207 {
3208 	struct hns3_rx_priv_buff_cmd *req;
3209 	struct hns3_cmd_desc desc;
3210 	uint32_t buf_size;
3211 	int ret;
3212 	int i;
3213 
3214 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3215 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3216 
3217 	/* Alloc private buffer TCs */
3218 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3219 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3220 
3221 		req->buf_num[i] =
3222 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3223 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3224 	}
3225 
3226 	buf_size = buf_alloc->s_buf.buf_size;
3227 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3228 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3229 
3230 	ret = hns3_cmd_send(hw, &desc, 1);
3231 	if (ret)
3232 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3233 
3234 	return ret;
3235 }
3236 
3237 static int
3238 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3239 {
3240 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3241 	struct hns3_rx_priv_wl_buf *req;
3242 	struct hns3_priv_buf *priv;
3243 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3244 	int i, j;
3245 	int ret;
3246 
3247 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3248 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3249 					  false);
3250 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3251 
3252 		/* The first descriptor set the NEXT bit to 1 */
3253 		if (i == 0)
3254 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3255 		else
3256 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3257 
3258 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3259 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3260 
3261 			priv = &buf_alloc->priv_buf[idx];
3262 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3263 							HNS3_BUF_UNIT_S);
3264 			req->tc_wl[j].high |=
3265 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3266 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3267 							HNS3_BUF_UNIT_S);
3268 			req->tc_wl[j].low |=
3269 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3270 		}
3271 	}
3272 
3273 	/* Send 2 descriptor at one time */
3274 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3275 	if (ret)
3276 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3277 			     ret);
3278 	return ret;
3279 }
3280 
3281 static int
3282 hns3_common_thrd_config(struct hns3_hw *hw,
3283 			struct hns3_pkt_buf_alloc *buf_alloc)
3284 {
3285 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3286 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3287 	struct hns3_rx_com_thrd *req;
3288 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3289 	struct hns3_tc_thrd *tc;
3290 	int tc_idx;
3291 	int i, j;
3292 	int ret;
3293 
3294 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3295 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3296 					  false);
3297 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3298 
3299 		/* The first descriptor set the NEXT bit to 1 */
3300 		if (i == 0)
3301 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3302 		else
3303 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3304 
3305 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3306 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3307 			tc = &s_buf->tc_thrd[tc_idx];
3308 
3309 			req->com_thrd[j].high =
3310 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3311 			req->com_thrd[j].high |=
3312 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3313 			req->com_thrd[j].low =
3314 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3315 			req->com_thrd[j].low |=
3316 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3317 		}
3318 	}
3319 
3320 	/* Send 2 descriptors at one time */
3321 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3322 	if (ret)
3323 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3324 
3325 	return ret;
3326 }
3327 
3328 static int
3329 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3330 {
3331 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3332 	struct hns3_rx_com_wl *req;
3333 	struct hns3_cmd_desc desc;
3334 	int ret;
3335 
3336 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3337 
3338 	req = (struct hns3_rx_com_wl *)desc.data;
3339 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3340 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3341 
3342 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3343 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3344 
3345 	ret = hns3_cmd_send(hw, &desc, 1);
3346 	if (ret)
3347 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3348 
3349 	return ret;
3350 }
3351 
3352 int
3353 hns3_buffer_alloc(struct hns3_hw *hw)
3354 {
3355 	struct hns3_pkt_buf_alloc pkt_buf;
3356 	int ret;
3357 
3358 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3359 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3360 	if (ret) {
3361 		PMD_INIT_LOG(ERR,
3362 			     "could not calc tx buffer size for all TCs %d",
3363 			     ret);
3364 		return ret;
3365 	}
3366 
3367 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3368 	if (ret) {
3369 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3370 		return ret;
3371 	}
3372 
3373 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3374 	if (ret) {
3375 		PMD_INIT_LOG(ERR,
3376 			     "could not calc rx priv buffer size for all TCs %d",
3377 			     ret);
3378 		return ret;
3379 	}
3380 
3381 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3382 	if (ret) {
3383 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3384 		return ret;
3385 	}
3386 
3387 	if (hns3_dev_dcb_supported(hw)) {
3388 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3389 		if (ret) {
3390 			PMD_INIT_LOG(ERR,
3391 				     "could not configure rx private waterline %d",
3392 				     ret);
3393 			return ret;
3394 		}
3395 
3396 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3397 		if (ret) {
3398 			PMD_INIT_LOG(ERR,
3399 				     "could not configure common threshold %d",
3400 				     ret);
3401 			return ret;
3402 		}
3403 	}
3404 
3405 	ret = hns3_common_wl_config(hw, &pkt_buf);
3406 	if (ret)
3407 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3408 			     ret);
3409 
3410 	return ret;
3411 }
3412 
3413 static int
3414 hns3_mac_init(struct hns3_hw *hw)
3415 {
3416 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3417 	struct hns3_mac *mac = &hw->mac;
3418 	struct hns3_pf *pf = &hns->pf;
3419 	int ret;
3420 
3421 	pf->support_sfp_query = true;
3422 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
3423 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3424 	if (ret) {
3425 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3426 		return ret;
3427 	}
3428 
3429 	mac->link_status = ETH_LINK_DOWN;
3430 
3431 	return hns3_config_mtu(hw, pf->mps);
3432 }
3433 
3434 static int
3435 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3436 {
3437 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3438 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3439 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3440 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3441 	int return_status;
3442 
3443 	if (cmdq_resp) {
3444 		PMD_INIT_LOG(ERR,
3445 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
3446 			     cmdq_resp);
3447 		return -EIO;
3448 	}
3449 
3450 	switch (resp_code) {
3451 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3452 	case HNS3_ETHERTYPE_ALREADY_ADD:
3453 		return_status = 0;
3454 		break;
3455 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3456 		PMD_INIT_LOG(ERR,
3457 			     "add mac ethertype failed for manager table overflow.");
3458 		return_status = -EIO;
3459 		break;
3460 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3461 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3462 		return_status = -EIO;
3463 		break;
3464 	default:
3465 		PMD_INIT_LOG(ERR,
3466 			     "add mac ethertype failed for undefined, code=%d.",
3467 			     resp_code);
3468 		return_status = -EIO;
3469 	}
3470 
3471 	return return_status;
3472 }
3473 
3474 static int
3475 hns3_add_mgr_tbl(struct hns3_hw *hw,
3476 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3477 {
3478 	struct hns3_cmd_desc desc;
3479 	uint8_t resp_code;
3480 	uint16_t retval;
3481 	int ret;
3482 
3483 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3484 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3485 
3486 	ret = hns3_cmd_send(hw, &desc, 1);
3487 	if (ret) {
3488 		PMD_INIT_LOG(ERR,
3489 			     "add mac ethertype failed for cmd_send, ret =%d.",
3490 			     ret);
3491 		return ret;
3492 	}
3493 
3494 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3495 	retval = rte_le_to_cpu_16(desc.retval);
3496 
3497 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3498 }
3499 
3500 static void
3501 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3502 		     int *table_item_num)
3503 {
3504 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3505 
3506 	/*
3507 	 * In current version, we add one item in management table as below:
3508 	 * 0x0180C200000E -- LLDP MC address
3509 	 */
3510 	tbl = mgr_table;
3511 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3512 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3513 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3514 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3515 	tbl->i_port_bitmap = 0x1;
3516 	*table_item_num = 1;
3517 }
3518 
3519 static int
3520 hns3_init_mgr_tbl(struct hns3_hw *hw)
3521 {
3522 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3523 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3524 	int table_item_num;
3525 	int ret;
3526 	int i;
3527 
3528 	memset(mgr_table, 0, sizeof(mgr_table));
3529 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3530 	for (i = 0; i < table_item_num; i++) {
3531 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3532 		if (ret) {
3533 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3534 				     ret);
3535 			return ret;
3536 		}
3537 	}
3538 
3539 	return 0;
3540 }
3541 
3542 static void
3543 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3544 			bool en_mc, bool en_bc, int vport_id)
3545 {
3546 	if (!param)
3547 		return;
3548 
3549 	memset(param, 0, sizeof(struct hns3_promisc_param));
3550 	if (en_uc)
3551 		param->enable = HNS3_PROMISC_EN_UC;
3552 	if (en_mc)
3553 		param->enable |= HNS3_PROMISC_EN_MC;
3554 	if (en_bc)
3555 		param->enable |= HNS3_PROMISC_EN_BC;
3556 	param->vf_id = vport_id;
3557 }
3558 
3559 static int
3560 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3561 {
3562 	struct hns3_promisc_cfg_cmd *req;
3563 	struct hns3_cmd_desc desc;
3564 	int ret;
3565 
3566 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3567 
3568 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3569 	req->vf_id = param->vf_id;
3570 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3571 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3572 
3573 	ret = hns3_cmd_send(hw, &desc, 1);
3574 	if (ret)
3575 		PMD_INIT_LOG(ERR, "Set promisc mode fail, status is %d", ret);
3576 
3577 	return ret;
3578 }
3579 
3580 static int
3581 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3582 {
3583 	struct hns3_promisc_param param;
3584 	bool en_bc_pmc = true;
3585 	uint8_t vf_id;
3586 	int ret;
3587 
3588 	/*
3589 	 * In current version VF is not supported when PF is driven by DPDK
3590 	 * driver, the PF-related vf_id is 0, just need to configure parameters
3591 	 * for vf_id 0.
3592 	 */
3593 	vf_id = 0;
3594 
3595 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3596 	ret = hns3_cmd_set_promisc_mode(hw, &param);
3597 	if (ret)
3598 		return ret;
3599 
3600 	return 0;
3601 }
3602 
3603 static int
3604 hns3_clear_all_vfs_promisc_mode(struct hns3_hw *hw)
3605 {
3606 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3607 	struct hns3_pf *pf = &hns->pf;
3608 	struct hns3_promisc_param param;
3609 	uint16_t func_id;
3610 	int ret;
3611 
3612 	/* func_id 0 is denoted PF, the VFs start from 1 */
3613 	for (func_id = 1; func_id < pf->func_num; func_id++) {
3614 		hns3_promisc_param_init(&param, false, false, false, func_id);
3615 		ret = hns3_cmd_set_promisc_mode(hw, &param);
3616 		if (ret)
3617 			return ret;
3618 	}
3619 
3620 	return 0;
3621 }
3622 
3623 static int
3624 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
3625 {
3626 	struct hns3_adapter *hns = dev->data->dev_private;
3627 	struct hns3_hw *hw = &hns->hw;
3628 	bool en_mc_pmc = (dev->data->all_multicast == 1) ? true : false;
3629 	int ret;
3630 
3631 	rte_spinlock_lock(&hw->lock);
3632 	ret = hns3_set_promisc_mode(hw, true, en_mc_pmc);
3633 	rte_spinlock_unlock(&hw->lock);
3634 	if (ret)
3635 		hns3_err(hw, "Failed to enable promiscuous mode: %d", ret);
3636 
3637 	return ret;
3638 }
3639 
3640 static int
3641 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
3642 {
3643 	struct hns3_adapter *hns = dev->data->dev_private;
3644 	struct hns3_hw *hw = &hns->hw;
3645 	bool en_mc_pmc = (dev->data->all_multicast == 1) ? true : false;
3646 	int ret;
3647 
3648 	/* If now in all_multicast mode, must remain in all_multicast mode. */
3649 	rte_spinlock_lock(&hw->lock);
3650 	ret = hns3_set_promisc_mode(hw, false, en_mc_pmc);
3651 	rte_spinlock_unlock(&hw->lock);
3652 	if (ret)
3653 		hns3_err(hw, "Failed to disable promiscuous mode: %d", ret);
3654 
3655 	return ret;
3656 }
3657 
3658 static int
3659 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
3660 {
3661 	struct hns3_adapter *hns = dev->data->dev_private;
3662 	struct hns3_hw *hw = &hns->hw;
3663 	bool en_uc_pmc = (dev->data->promiscuous == 1) ? true : false;
3664 	int ret;
3665 
3666 	rte_spinlock_lock(&hw->lock);
3667 	ret = hns3_set_promisc_mode(hw, en_uc_pmc, true);
3668 	rte_spinlock_unlock(&hw->lock);
3669 	if (ret)
3670 		hns3_err(hw, "Failed to enable allmulticast mode: %d", ret);
3671 
3672 	return ret;
3673 }
3674 
3675 static int
3676 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
3677 {
3678 	struct hns3_adapter *hns = dev->data->dev_private;
3679 	struct hns3_hw *hw = &hns->hw;
3680 	bool en_uc_pmc = (dev->data->promiscuous == 1) ? true : false;
3681 	int ret;
3682 
3683 	/* If now in promiscuous mode, must remain in all_multicast mode. */
3684 	if (dev->data->promiscuous == 1)
3685 		return 0;
3686 
3687 	rte_spinlock_lock(&hw->lock);
3688 	ret = hns3_set_promisc_mode(hw, en_uc_pmc, false);
3689 	rte_spinlock_unlock(&hw->lock);
3690 	if (ret)
3691 		hns3_err(hw, "Failed to disable allmulticast mode: %d", ret);
3692 
3693 	return ret;
3694 }
3695 
3696 static int
3697 hns3_dev_promisc_restore(struct hns3_adapter *hns)
3698 {
3699 	struct hns3_hw *hw = &hns->hw;
3700 	bool en_mc_pmc;
3701 	bool en_uc_pmc;
3702 
3703 	en_uc_pmc = (hw->data->promiscuous == 1) ? true : false;
3704 	en_mc_pmc = (hw->data->all_multicast == 1) ? true : false;
3705 
3706 	return hns3_set_promisc_mode(hw, en_uc_pmc, en_mc_pmc);
3707 }
3708 
3709 static int
3710 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
3711 {
3712 	struct hns3_sfp_speed_cmd *resp;
3713 	struct hns3_cmd_desc desc;
3714 	int ret;
3715 
3716 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
3717 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
3718 	ret = hns3_cmd_send(hw, &desc, 1);
3719 	if (ret == -EOPNOTSUPP) {
3720 		hns3_err(hw, "IMP do not support get SFP speed %d", ret);
3721 		return ret;
3722 	} else if (ret) {
3723 		hns3_err(hw, "get sfp speed failed %d", ret);
3724 		return ret;
3725 	}
3726 
3727 	*speed = resp->sfp_speed;
3728 
3729 	return 0;
3730 }
3731 
3732 static uint8_t
3733 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
3734 {
3735 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
3736 		duplex = ETH_LINK_FULL_DUPLEX;
3737 
3738 	return duplex;
3739 }
3740 
3741 static int
3742 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3743 {
3744 	struct hns3_mac *mac = &hw->mac;
3745 	int ret;
3746 
3747 	duplex = hns3_check_speed_dup(duplex, speed);
3748 	if (mac->link_speed == speed && mac->link_duplex == duplex)
3749 		return 0;
3750 
3751 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
3752 	if (ret)
3753 		return ret;
3754 
3755 	mac->link_speed = speed;
3756 	mac->link_duplex = duplex;
3757 
3758 	return 0;
3759 }
3760 
3761 static int
3762 hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
3763 {
3764 	struct hns3_adapter *hns = eth_dev->data->dev_private;
3765 	struct hns3_hw *hw = &hns->hw;
3766 	struct hns3_pf *pf = &hns->pf;
3767 	uint32_t speed;
3768 	int ret;
3769 
3770 	/* If IMP do not support get SFP/qSFP speed, return directly */
3771 	if (!pf->support_sfp_query)
3772 		return 0;
3773 
3774 	ret = hns3_get_sfp_speed(hw, &speed);
3775 	if (ret == -EOPNOTSUPP) {
3776 		pf->support_sfp_query = false;
3777 		return ret;
3778 	} else if (ret)
3779 		return ret;
3780 
3781 	if (speed == ETH_SPEED_NUM_NONE)
3782 		return 0; /* do nothing if no SFP */
3783 
3784 	/* Config full duplex for SFP */
3785 	return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
3786 }
3787 
3788 static int
3789 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
3790 {
3791 	struct hns3_config_mac_mode_cmd *req;
3792 	struct hns3_cmd_desc desc;
3793 	uint32_t loop_en = 0;
3794 	uint8_t val = 0;
3795 	int ret;
3796 
3797 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
3798 
3799 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
3800 	if (enable)
3801 		val = 1;
3802 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
3803 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
3804 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
3805 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
3806 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
3807 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
3808 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
3809 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
3810 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
3811 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
3812 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
3813 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
3814 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
3815 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
3816 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
3817 
3818 	ret = hns3_cmd_send(hw, &desc, 1);
3819 	if (ret)
3820 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
3821 
3822 	return ret;
3823 }
3824 
3825 static int
3826 hns3_get_mac_link_status(struct hns3_hw *hw)
3827 {
3828 	struct hns3_link_status_cmd *req;
3829 	struct hns3_cmd_desc desc;
3830 	int link_status;
3831 	int ret;
3832 
3833 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
3834 	ret = hns3_cmd_send(hw, &desc, 1);
3835 	if (ret) {
3836 		hns3_err(hw, "get link status cmd failed %d", ret);
3837 		return ETH_LINK_DOWN;
3838 	}
3839 
3840 	req = (struct hns3_link_status_cmd *)desc.data;
3841 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
3842 
3843 	return !!link_status;
3844 }
3845 
3846 void
3847 hns3_update_link_status(struct hns3_hw *hw)
3848 {
3849 	int state;
3850 
3851 	state = hns3_get_mac_link_status(hw);
3852 	if (state != hw->mac.link_status) {
3853 		hw->mac.link_status = state;
3854 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
3855 	}
3856 }
3857 
3858 static void
3859 hns3_service_handler(void *param)
3860 {
3861 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
3862 	struct hns3_adapter *hns = eth_dev->data->dev_private;
3863 	struct hns3_hw *hw = &hns->hw;
3864 
3865 	if (!hns3_is_reset_pending(hns)) {
3866 		hns3_update_speed_duplex(eth_dev);
3867 		hns3_update_link_status(hw);
3868 	} else
3869 		hns3_warn(hw, "Cancel the query when reset is pending");
3870 
3871 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
3872 }
3873 
3874 static int
3875 hns3_init_hardware(struct hns3_adapter *hns)
3876 {
3877 	struct hns3_hw *hw = &hns->hw;
3878 	int ret;
3879 
3880 	ret = hns3_map_tqp(hw);
3881 	if (ret) {
3882 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
3883 		return ret;
3884 	}
3885 
3886 	ret = hns3_init_umv_space(hw);
3887 	if (ret) {
3888 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
3889 		return ret;
3890 	}
3891 
3892 	ret = hns3_mac_init(hw);
3893 	if (ret) {
3894 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
3895 		goto err_mac_init;
3896 	}
3897 
3898 	ret = hns3_init_mgr_tbl(hw);
3899 	if (ret) {
3900 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
3901 		goto err_mac_init;
3902 	}
3903 
3904 	ret = hns3_set_promisc_mode(hw, false, false);
3905 	if (ret) {
3906 		PMD_INIT_LOG(ERR, "Failed to set promisc mode: %d", ret);
3907 		goto err_mac_init;
3908 	}
3909 
3910 	ret = hns3_clear_all_vfs_promisc_mode(hw);
3911 	if (ret) {
3912 		PMD_INIT_LOG(ERR, "Failed to clear all vfs promisc mode: %d",
3913 			     ret);
3914 		goto err_mac_init;
3915 	}
3916 
3917 	ret = hns3_init_vlan_config(hns);
3918 	if (ret) {
3919 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
3920 		goto err_mac_init;
3921 	}
3922 
3923 	ret = hns3_dcb_init(hw);
3924 	if (ret) {
3925 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
3926 		goto err_mac_init;
3927 	}
3928 
3929 	ret = hns3_init_fd_config(hns);
3930 	if (ret) {
3931 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
3932 		goto err_mac_init;
3933 	}
3934 
3935 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
3936 	if (ret) {
3937 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
3938 		goto err_mac_init;
3939 	}
3940 
3941 	ret = hns3_config_gro(hw, false);
3942 	if (ret) {
3943 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
3944 		goto err_mac_init;
3945 	}
3946 	return 0;
3947 
3948 err_mac_init:
3949 	hns3_uninit_umv_space(hw);
3950 	return ret;
3951 }
3952 
3953 static int
3954 hns3_init_pf(struct rte_eth_dev *eth_dev)
3955 {
3956 	struct rte_device *dev = eth_dev->device;
3957 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
3958 	struct hns3_adapter *hns = eth_dev->data->dev_private;
3959 	struct hns3_hw *hw = &hns->hw;
3960 	int ret;
3961 
3962 	PMD_INIT_FUNC_TRACE();
3963 
3964 	/* Get hardware io base address from pcie BAR2 IO space */
3965 	hw->io_base = pci_dev->mem_resource[2].addr;
3966 
3967 	/* Firmware command queue initialize */
3968 	ret = hns3_cmd_init_queue(hw);
3969 	if (ret) {
3970 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
3971 		goto err_cmd_init_queue;
3972 	}
3973 
3974 	hns3_clear_all_event_cause(hw);
3975 
3976 	/* Firmware command initialize */
3977 	ret = hns3_cmd_init(hw);
3978 	if (ret) {
3979 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
3980 		goto err_cmd_init;
3981 	}
3982 
3983 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
3984 					 hns3_interrupt_handler,
3985 					 eth_dev);
3986 	if (ret) {
3987 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
3988 		goto err_intr_callback_register;
3989 	}
3990 
3991 	/* Enable interrupt */
3992 	rte_intr_enable(&pci_dev->intr_handle);
3993 	hns3_pf_enable_irq0(hw);
3994 
3995 	/* Get configuration */
3996 	ret = hns3_get_configuration(hw);
3997 	if (ret) {
3998 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
3999 		goto err_get_config;
4000 	}
4001 
4002 	ret = hns3_init_hardware(hns);
4003 	if (ret) {
4004 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4005 		goto err_get_config;
4006 	}
4007 
4008 	/* Initialize flow director filter list & hash */
4009 	ret = hns3_fdir_filter_init(hns);
4010 	if (ret) {
4011 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4012 		goto err_hw_init;
4013 	}
4014 
4015 	hns3_set_default_rss_args(hw);
4016 
4017 	ret = hns3_enable_hw_error_intr(hns, true);
4018 	if (ret) {
4019 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4020 			     ret);
4021 		goto err_fdir;
4022 	}
4023 
4024 	return 0;
4025 
4026 err_fdir:
4027 	hns3_fdir_filter_uninit(hns);
4028 err_hw_init:
4029 	hns3_uninit_umv_space(hw);
4030 
4031 err_get_config:
4032 	hns3_pf_disable_irq0(hw);
4033 	rte_intr_disable(&pci_dev->intr_handle);
4034 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4035 			     eth_dev);
4036 
4037 err_intr_callback_register:
4038 	hns3_cmd_uninit(hw);
4039 
4040 err_cmd_init:
4041 	hns3_cmd_destroy_queue(hw);
4042 
4043 err_cmd_init_queue:
4044 	hw->io_base = NULL;
4045 
4046 	return ret;
4047 }
4048 
4049 static void
4050 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4051 {
4052 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4053 	struct rte_device *dev = eth_dev->device;
4054 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4055 	struct hns3_hw *hw = &hns->hw;
4056 
4057 	PMD_INIT_FUNC_TRACE();
4058 
4059 	hns3_enable_hw_error_intr(hns, false);
4060 	hns3_rss_uninit(hns);
4061 	hns3_fdir_filter_uninit(hns);
4062 	hns3_uninit_umv_space(hw);
4063 	hns3_pf_disable_irq0(hw);
4064 	rte_intr_disable(&pci_dev->intr_handle);
4065 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4066 			     eth_dev);
4067 	hns3_cmd_uninit(hw);
4068 	hns3_cmd_destroy_queue(hw);
4069 	hw->io_base = NULL;
4070 }
4071 
4072 static int
4073 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
4074 {
4075 	struct hns3_hw *hw = &hns->hw;
4076 	int ret;
4077 
4078 	ret = hns3_dcb_cfg_update(hns);
4079 	if (ret)
4080 		return ret;
4081 
4082 	/* Enable queues */
4083 	ret = hns3_start_queues(hns, reset_queue);
4084 	if (ret) {
4085 		PMD_INIT_LOG(ERR, "Failed to start queues: %d", ret);
4086 		return ret;
4087 	}
4088 
4089 	/* Enable MAC */
4090 	ret = hns3_cfg_mac_mode(hw, true);
4091 	if (ret) {
4092 		PMD_INIT_LOG(ERR, "Failed to enable MAC: %d", ret);
4093 		goto err_config_mac_mode;
4094 	}
4095 	return 0;
4096 
4097 err_config_mac_mode:
4098 	hns3_stop_queues(hns, true);
4099 	return ret;
4100 }
4101 
4102 static int
4103 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
4104 {
4105 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4106 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4107 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4108 	uint32_t intr_vector;
4109 	uint8_t base = 0;
4110 	uint8_t vec = 0;
4111 	uint16_t q_id;
4112 	int ret;
4113 
4114 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4115 		return 0;
4116 
4117 	/* disable uio/vfio intr/eventfd mapping */
4118 	rte_intr_disable(intr_handle);
4119 
4120 	/* check and configure queue intr-vector mapping */
4121 	if (rte_intr_cap_multiple(intr_handle) ||
4122 	    !RTE_ETH_DEV_SRIOV(dev).active) {
4123 		intr_vector = hw->used_rx_queues;
4124 		/* creates event fd for each intr vector when MSIX is used */
4125 		if (rte_intr_efd_enable(intr_handle, intr_vector))
4126 			return -EINVAL;
4127 	}
4128 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
4129 		intr_handle->intr_vec =
4130 			rte_zmalloc("intr_vec",
4131 				    hw->used_rx_queues * sizeof(int), 0);
4132 		if (intr_handle->intr_vec == NULL) {
4133 			hns3_err(hw, "Failed to allocate %d rx_queues"
4134 				     " intr_vec", hw->used_rx_queues);
4135 			ret = -ENOMEM;
4136 			goto alloc_intr_vec_error;
4137 		}
4138 	}
4139 
4140 	if (rte_intr_allow_others(intr_handle)) {
4141 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4142 		base = RTE_INTR_VEC_RXTX_OFFSET;
4143 	}
4144 	if (rte_intr_dp_is_en(intr_handle)) {
4145 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4146 			ret = hns3_bind_ring_with_vector(dev, vec, true, q_id);
4147 			if (ret)
4148 				goto bind_vector_error;
4149 			intr_handle->intr_vec[q_id] = vec;
4150 			if (vec < base + intr_handle->nb_efd - 1)
4151 				vec++;
4152 		}
4153 	}
4154 	rte_intr_enable(intr_handle);
4155 	return 0;
4156 
4157 bind_vector_error:
4158 	rte_intr_efd_disable(intr_handle);
4159 	if (intr_handle->intr_vec) {
4160 		free(intr_handle->intr_vec);
4161 		intr_handle->intr_vec = NULL;
4162 	}
4163 	return ret;
4164 alloc_intr_vec_error:
4165 	rte_intr_efd_disable(intr_handle);
4166 	return ret;
4167 }
4168 
4169 static int
4170 hns3_dev_start(struct rte_eth_dev *dev)
4171 {
4172 	struct hns3_adapter *hns = dev->data->dev_private;
4173 	struct hns3_hw *hw = &hns->hw;
4174 	int ret;
4175 
4176 	PMD_INIT_FUNC_TRACE();
4177 	if (rte_atomic16_read(&hw->reset.resetting))
4178 		return -EBUSY;
4179 
4180 	rte_spinlock_lock(&hw->lock);
4181 	hw->adapter_state = HNS3_NIC_STARTING;
4182 
4183 	ret = hns3_do_start(hns, true);
4184 	if (ret) {
4185 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4186 		rte_spinlock_unlock(&hw->lock);
4187 		return ret;
4188 	}
4189 
4190 	hw->adapter_state = HNS3_NIC_STARTED;
4191 	rte_spinlock_unlock(&hw->lock);
4192 
4193 	ret = hns3_map_rx_interrupt(dev);
4194 	if (ret)
4195 		return ret;
4196 	hns3_set_rxtx_function(dev);
4197 	hns3_mp_req_start_rxtx(dev);
4198 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
4199 
4200 	hns3_info(hw, "hns3 dev start successful!");
4201 	return 0;
4202 }
4203 
4204 static int
4205 hns3_do_stop(struct hns3_adapter *hns)
4206 {
4207 	struct hns3_hw *hw = &hns->hw;
4208 	bool reset_queue;
4209 	int ret;
4210 
4211 	ret = hns3_cfg_mac_mode(hw, false);
4212 	if (ret)
4213 		return ret;
4214 	hw->mac.link_status = ETH_LINK_DOWN;
4215 
4216 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
4217 		hns3_configure_all_mac_addr(hns, true);
4218 		reset_queue = true;
4219 	} else
4220 		reset_queue = false;
4221 	hw->mac.default_addr_setted = false;
4222 	return hns3_stop_queues(hns, reset_queue);
4223 }
4224 
4225 static void
4226 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
4227 {
4228 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4229 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4230 	struct hns3_adapter *hns = dev->data->dev_private;
4231 	struct hns3_hw *hw = &hns->hw;
4232 	uint8_t base = 0;
4233 	uint8_t vec = 0;
4234 	uint16_t q_id;
4235 
4236 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4237 		return;
4238 
4239 	/* unmap the ring with vector */
4240 	if (rte_intr_allow_others(intr_handle)) {
4241 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4242 		base = RTE_INTR_VEC_RXTX_OFFSET;
4243 	}
4244 	if (rte_intr_dp_is_en(intr_handle)) {
4245 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4246 			(void)hns3_bind_ring_with_vector(dev, vec, false, q_id);
4247 			if (vec < base + intr_handle->nb_efd - 1)
4248 				vec++;
4249 		}
4250 	}
4251 	/* Clean datapath event and queue/vec mapping */
4252 	rte_intr_efd_disable(intr_handle);
4253 	if (intr_handle->intr_vec) {
4254 		rte_free(intr_handle->intr_vec);
4255 		intr_handle->intr_vec = NULL;
4256 	}
4257 }
4258 
4259 static void
4260 hns3_dev_stop(struct rte_eth_dev *dev)
4261 {
4262 	struct hns3_adapter *hns = dev->data->dev_private;
4263 	struct hns3_hw *hw = &hns->hw;
4264 
4265 	PMD_INIT_FUNC_TRACE();
4266 
4267 	hw->adapter_state = HNS3_NIC_STOPPING;
4268 	hns3_set_rxtx_function(dev);
4269 	rte_wmb();
4270 	/* Disable datapath on secondary process. */
4271 	hns3_mp_req_stop_rxtx(dev);
4272 	/* Prevent crashes when queues are still in use. */
4273 	rte_delay_ms(hw->tqps_num);
4274 
4275 	rte_spinlock_lock(&hw->lock);
4276 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
4277 		hns3_do_stop(hns);
4278 		hns3_dev_release_mbufs(hns);
4279 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4280 	}
4281 	rte_eal_alarm_cancel(hns3_service_handler, dev);
4282 	rte_spinlock_unlock(&hw->lock);
4283 	hns3_unmap_rx_interrupt(dev);
4284 }
4285 
4286 static void
4287 hns3_dev_close(struct rte_eth_dev *eth_dev)
4288 {
4289 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4290 	struct hns3_hw *hw = &hns->hw;
4291 
4292 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
4293 		rte_free(eth_dev->process_private);
4294 		eth_dev->process_private = NULL;
4295 		return;
4296 	}
4297 
4298 	if (hw->adapter_state == HNS3_NIC_STARTED)
4299 		hns3_dev_stop(eth_dev);
4300 
4301 	hw->adapter_state = HNS3_NIC_CLOSING;
4302 	hns3_reset_abort(hns);
4303 	hw->adapter_state = HNS3_NIC_CLOSED;
4304 
4305 	hns3_configure_all_mc_mac_addr(hns, true);
4306 	hns3_remove_all_vlan_table(hns);
4307 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
4308 	hns3_uninit_pf(eth_dev);
4309 	hns3_free_all_queues(eth_dev);
4310 	rte_free(hw->reset.wait_data);
4311 	rte_free(eth_dev->process_private);
4312 	eth_dev->process_private = NULL;
4313 	hns3_mp_uninit_primary();
4314 	hns3_warn(hw, "Close port %d finished", hw->data->port_id);
4315 }
4316 
4317 static int
4318 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4319 {
4320 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4321 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4322 
4323 	fc_conf->pause_time = pf->pause_time;
4324 
4325 	/* return fc current mode */
4326 	switch (hw->current_mode) {
4327 	case HNS3_FC_FULL:
4328 		fc_conf->mode = RTE_FC_FULL;
4329 		break;
4330 	case HNS3_FC_TX_PAUSE:
4331 		fc_conf->mode = RTE_FC_TX_PAUSE;
4332 		break;
4333 	case HNS3_FC_RX_PAUSE:
4334 		fc_conf->mode = RTE_FC_RX_PAUSE;
4335 		break;
4336 	case HNS3_FC_NONE:
4337 	default:
4338 		fc_conf->mode = RTE_FC_NONE;
4339 		break;
4340 	}
4341 
4342 	return 0;
4343 }
4344 
4345 static void
4346 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
4347 {
4348 	switch (mode) {
4349 	case RTE_FC_NONE:
4350 		hw->requested_mode = HNS3_FC_NONE;
4351 		break;
4352 	case RTE_FC_RX_PAUSE:
4353 		hw->requested_mode = HNS3_FC_RX_PAUSE;
4354 		break;
4355 	case RTE_FC_TX_PAUSE:
4356 		hw->requested_mode = HNS3_FC_TX_PAUSE;
4357 		break;
4358 	case RTE_FC_FULL:
4359 		hw->requested_mode = HNS3_FC_FULL;
4360 		break;
4361 	default:
4362 		hw->requested_mode = HNS3_FC_NONE;
4363 		hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
4364 			  "configured to RTE_FC_NONE", mode);
4365 		break;
4366 	}
4367 }
4368 
4369 static int
4370 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4371 {
4372 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4373 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4374 	int ret;
4375 
4376 	if (fc_conf->high_water || fc_conf->low_water ||
4377 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
4378 		hns3_err(hw, "Unsupported flow control settings specified, "
4379 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4380 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4381 			 fc_conf->high_water, fc_conf->low_water,
4382 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
4383 		return -EINVAL;
4384 	}
4385 	if (fc_conf->autoneg) {
4386 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4387 		return -EINVAL;
4388 	}
4389 	if (!fc_conf->pause_time) {
4390 		hns3_err(hw, "Invalid pause time %d setting.",
4391 			 fc_conf->pause_time);
4392 		return -EINVAL;
4393 	}
4394 
4395 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4396 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
4397 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
4398 			 "current_fc_status = %d", hw->current_fc_status);
4399 		return -EOPNOTSUPP;
4400 	}
4401 
4402 	hns3_get_fc_mode(hw, fc_conf->mode);
4403 	if (hw->requested_mode == hw->current_mode &&
4404 	    pf->pause_time == fc_conf->pause_time)
4405 		return 0;
4406 
4407 	rte_spinlock_lock(&hw->lock);
4408 	ret = hns3_fc_enable(dev, fc_conf);
4409 	rte_spinlock_unlock(&hw->lock);
4410 
4411 	return ret;
4412 }
4413 
4414 static int
4415 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
4416 			    struct rte_eth_pfc_conf *pfc_conf)
4417 {
4418 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4419 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4420 	uint8_t priority;
4421 	int ret;
4422 
4423 	if (!hns3_dev_dcb_supported(hw)) {
4424 		hns3_err(hw, "This port does not support dcb configurations.");
4425 		return -EOPNOTSUPP;
4426 	}
4427 
4428 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
4429 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
4430 		hns3_err(hw, "Unsupported flow control settings specified, "
4431 			 "high_water(%u), low_water(%u), send_xon(%u) and "
4432 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
4433 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
4434 			 pfc_conf->fc.send_xon,
4435 			 pfc_conf->fc.mac_ctrl_frame_fwd);
4436 		return -EINVAL;
4437 	}
4438 	if (pfc_conf->fc.autoneg) {
4439 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4440 		return -EINVAL;
4441 	}
4442 	if (pfc_conf->fc.pause_time == 0) {
4443 		hns3_err(hw, "Invalid pause time %d setting.",
4444 			 pfc_conf->fc.pause_time);
4445 		return -EINVAL;
4446 	}
4447 
4448 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4449 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
4450 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
4451 			     "current_fc_status = %d", hw->current_fc_status);
4452 		return -EOPNOTSUPP;
4453 	}
4454 
4455 	priority = pfc_conf->priority;
4456 	hns3_get_fc_mode(hw, pfc_conf->fc.mode);
4457 	if (hw->dcb_info.pfc_en & BIT(priority) &&
4458 	    hw->requested_mode == hw->current_mode &&
4459 	    pfc_conf->fc.pause_time == pf->pause_time)
4460 		return 0;
4461 
4462 	rte_spinlock_lock(&hw->lock);
4463 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
4464 	rte_spinlock_unlock(&hw->lock);
4465 
4466 	return ret;
4467 }
4468 
4469 static int
4470 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
4471 {
4472 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4473 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4474 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
4475 	int i;
4476 
4477 	rte_spinlock_lock(&hw->lock);
4478 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
4479 		dcb_info->nb_tcs = pf->local_max_tc;
4480 	else
4481 		dcb_info->nb_tcs = 1;
4482 
4483 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
4484 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
4485 	for (i = 0; i < dcb_info->nb_tcs; i++)
4486 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
4487 
4488 	for (i = 0; i < hw->num_tc; i++) {
4489 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
4490 		dcb_info->tc_queue.tc_txq[0][i].base =
4491 						hw->tc_queue[i].tqp_offset;
4492 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
4493 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
4494 						hw->tc_queue[i].tqp_count;
4495 	}
4496 	rte_spinlock_unlock(&hw->lock);
4497 
4498 	return 0;
4499 }
4500 
4501 static int
4502 hns3_reinit_dev(struct hns3_adapter *hns)
4503 {
4504 	struct hns3_hw *hw = &hns->hw;
4505 	int ret;
4506 
4507 	ret = hns3_cmd_init(hw);
4508 	if (ret) {
4509 		hns3_err(hw, "Failed to init cmd: %d", ret);
4510 		return ret;
4511 	}
4512 
4513 	ret = hns3_reset_all_queues(hns);
4514 	if (ret) {
4515 		hns3_err(hw, "Failed to reset all queues: %d", ret);
4516 		goto err_init;
4517 	}
4518 
4519 	ret = hns3_init_hardware(hns);
4520 	if (ret) {
4521 		hns3_err(hw, "Failed to init hardware: %d", ret);
4522 		goto err_init;
4523 	}
4524 
4525 	ret = hns3_enable_hw_error_intr(hns, true);
4526 	if (ret) {
4527 		hns3_err(hw, "fail to enable hw error interrupts: %d",
4528 			     ret);
4529 		goto err_mac_init;
4530 	}
4531 	hns3_info(hw, "Reset done, driver initialization finished.");
4532 
4533 	return 0;
4534 
4535 err_mac_init:
4536 	hns3_uninit_umv_space(hw);
4537 err_init:
4538 	hns3_cmd_uninit(hw);
4539 
4540 	return ret;
4541 }
4542 
4543 static bool
4544 is_pf_reset_done(struct hns3_hw *hw)
4545 {
4546 	uint32_t val, reg, reg_bit;
4547 
4548 	switch (hw->reset.level) {
4549 	case HNS3_IMP_RESET:
4550 		reg = HNS3_GLOBAL_RESET_REG;
4551 		reg_bit = HNS3_IMP_RESET_BIT;
4552 		break;
4553 	case HNS3_GLOBAL_RESET:
4554 		reg = HNS3_GLOBAL_RESET_REG;
4555 		reg_bit = HNS3_GLOBAL_RESET_BIT;
4556 		break;
4557 	case HNS3_FUNC_RESET:
4558 		reg = HNS3_FUN_RST_ING;
4559 		reg_bit = HNS3_FUN_RST_ING_B;
4560 		break;
4561 	case HNS3_FLR_RESET:
4562 	default:
4563 		hns3_err(hw, "Wait for unsupported reset level: %d",
4564 			 hw->reset.level);
4565 		return true;
4566 	}
4567 	val = hns3_read_dev(hw, reg);
4568 	if (hns3_get_bit(val, reg_bit))
4569 		return false;
4570 	else
4571 		return true;
4572 }
4573 
4574 bool
4575 hns3_is_reset_pending(struct hns3_adapter *hns)
4576 {
4577 	struct hns3_hw *hw = &hns->hw;
4578 	enum hns3_reset_level reset;
4579 
4580 	hns3_check_event_cause(hns, NULL);
4581 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
4582 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
4583 		hns3_warn(hw, "High level reset %d is pending", reset);
4584 		return true;
4585 	}
4586 	reset = hns3_get_reset_level(hns, &hw->reset.request);
4587 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
4588 		hns3_warn(hw, "High level reset %d is request", reset);
4589 		return true;
4590 	}
4591 	return false;
4592 }
4593 
4594 static int
4595 hns3_wait_hardware_ready(struct hns3_adapter *hns)
4596 {
4597 	struct hns3_hw *hw = &hns->hw;
4598 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
4599 	struct timeval tv;
4600 
4601 	if (wait_data->result == HNS3_WAIT_SUCCESS)
4602 		return 0;
4603 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
4604 		gettimeofday(&tv, NULL);
4605 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
4606 			  tv.tv_sec, tv.tv_usec);
4607 		return -ETIME;
4608 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
4609 		return -EAGAIN;
4610 
4611 	wait_data->hns = hns;
4612 	wait_data->check_completion = is_pf_reset_done;
4613 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
4614 				      HNS3_RESET_WAIT_MS + get_timeofday_ms();
4615 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
4616 	wait_data->count = HNS3_RESET_WAIT_CNT;
4617 	wait_data->result = HNS3_WAIT_REQUEST;
4618 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
4619 	return -EAGAIN;
4620 }
4621 
4622 static int
4623 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
4624 {
4625 	struct hns3_cmd_desc desc;
4626 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
4627 
4628 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
4629 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
4630 	req->fun_reset_vfid = func_id;
4631 
4632 	return hns3_cmd_send(hw, &desc, 1);
4633 }
4634 
4635 static int
4636 hns3_imp_reset_cmd(struct hns3_hw *hw)
4637 {
4638 	struct hns3_cmd_desc desc;
4639 
4640 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
4641 	desc.data[0] = 0xeedd;
4642 
4643 	return hns3_cmd_send(hw, &desc, 1);
4644 }
4645 
4646 static void
4647 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
4648 {
4649 	struct hns3_hw *hw = &hns->hw;
4650 	struct timeval tv;
4651 	uint32_t val;
4652 
4653 	gettimeofday(&tv, NULL);
4654 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
4655 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
4656 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
4657 			  tv.tv_sec, tv.tv_usec);
4658 		return;
4659 	}
4660 
4661 	switch (reset_level) {
4662 	case HNS3_IMP_RESET:
4663 		hns3_imp_reset_cmd(hw);
4664 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
4665 			  tv.tv_sec, tv.tv_usec);
4666 		break;
4667 	case HNS3_GLOBAL_RESET:
4668 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
4669 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
4670 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
4671 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
4672 			  tv.tv_sec, tv.tv_usec);
4673 		break;
4674 	case HNS3_FUNC_RESET:
4675 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
4676 			  tv.tv_sec, tv.tv_usec);
4677 		/* schedule again to check later */
4678 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
4679 		hns3_schedule_reset(hns);
4680 		break;
4681 	default:
4682 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
4683 		return;
4684 	}
4685 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
4686 }
4687 
4688 static enum hns3_reset_level
4689 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
4690 {
4691 	struct hns3_hw *hw = &hns->hw;
4692 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
4693 
4694 	/* Return the highest priority reset level amongst all */
4695 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
4696 		reset_level = HNS3_IMP_RESET;
4697 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
4698 		reset_level = HNS3_GLOBAL_RESET;
4699 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
4700 		reset_level = HNS3_FUNC_RESET;
4701 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
4702 		reset_level = HNS3_FLR_RESET;
4703 
4704 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
4705 		return HNS3_NONE_RESET;
4706 
4707 	return reset_level;
4708 }
4709 
4710 static int
4711 hns3_prepare_reset(struct hns3_adapter *hns)
4712 {
4713 	struct hns3_hw *hw = &hns->hw;
4714 	uint32_t reg_val;
4715 	int ret;
4716 
4717 	switch (hw->reset.level) {
4718 	case HNS3_FUNC_RESET:
4719 		ret = hns3_func_reset_cmd(hw, 0);
4720 		if (ret)
4721 			return ret;
4722 
4723 		/*
4724 		 * After performaning pf reset, it is not necessary to do the
4725 		 * mailbox handling or send any command to firmware, because
4726 		 * any mailbox handling or command to firmware is only valid
4727 		 * after hns3_cmd_init is called.
4728 		 */
4729 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
4730 		hw->reset.stats.request_cnt++;
4731 		break;
4732 	case HNS3_IMP_RESET:
4733 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4734 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
4735 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
4736 		break;
4737 	default:
4738 		break;
4739 	}
4740 	return 0;
4741 }
4742 
4743 static int
4744 hns3_set_rst_done(struct hns3_hw *hw)
4745 {
4746 	struct hns3_pf_rst_done_cmd *req;
4747 	struct hns3_cmd_desc desc;
4748 
4749 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
4750 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
4751 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
4752 	return hns3_cmd_send(hw, &desc, 1);
4753 }
4754 
4755 static int
4756 hns3_stop_service(struct hns3_adapter *hns)
4757 {
4758 	struct hns3_hw *hw = &hns->hw;
4759 	struct rte_eth_dev *eth_dev;
4760 
4761 	eth_dev = &rte_eth_devices[hw->data->port_id];
4762 	if (hw->adapter_state == HNS3_NIC_STARTED)
4763 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
4764 	hw->mac.link_status = ETH_LINK_DOWN;
4765 
4766 	hns3_set_rxtx_function(eth_dev);
4767 	rte_wmb();
4768 	/* Disable datapath on secondary process. */
4769 	hns3_mp_req_stop_rxtx(eth_dev);
4770 	rte_delay_ms(hw->tqps_num);
4771 
4772 	rte_spinlock_lock(&hw->lock);
4773 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
4774 	    hw->adapter_state == HNS3_NIC_STOPPING) {
4775 		hns3_do_stop(hns);
4776 		hw->reset.mbuf_deferred_free = true;
4777 	} else
4778 		hw->reset.mbuf_deferred_free = false;
4779 
4780 	/*
4781 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
4782 	 * from table space. Hence, for function reset software intervention is
4783 	 * required to delete the entries
4784 	 */
4785 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
4786 		hns3_configure_all_mc_mac_addr(hns, true);
4787 	rte_spinlock_unlock(&hw->lock);
4788 
4789 	return 0;
4790 }
4791 
4792 static int
4793 hns3_start_service(struct hns3_adapter *hns)
4794 {
4795 	struct hns3_hw *hw = &hns->hw;
4796 	struct rte_eth_dev *eth_dev;
4797 
4798 	if (hw->reset.level == HNS3_IMP_RESET ||
4799 	    hw->reset.level == HNS3_GLOBAL_RESET)
4800 		hns3_set_rst_done(hw);
4801 	eth_dev = &rte_eth_devices[hw->data->port_id];
4802 	hns3_set_rxtx_function(eth_dev);
4803 	hns3_mp_req_start_rxtx(eth_dev);
4804 	if (hw->adapter_state == HNS3_NIC_STARTED)
4805 		hns3_service_handler(eth_dev);
4806 
4807 	return 0;
4808 }
4809 
4810 static int
4811 hns3_restore_conf(struct hns3_adapter *hns)
4812 {
4813 	struct hns3_hw *hw = &hns->hw;
4814 	int ret;
4815 
4816 	ret = hns3_configure_all_mac_addr(hns, false);
4817 	if (ret)
4818 		return ret;
4819 
4820 	ret = hns3_configure_all_mc_mac_addr(hns, false);
4821 	if (ret)
4822 		goto err_mc_mac;
4823 
4824 	ret = hns3_dev_promisc_restore(hns);
4825 	if (ret)
4826 		goto err_promisc;
4827 
4828 	ret = hns3_restore_vlan_table(hns);
4829 	if (ret)
4830 		goto err_promisc;
4831 
4832 	ret = hns3_restore_vlan_conf(hns);
4833 	if (ret)
4834 		goto err_promisc;
4835 
4836 	ret = hns3_restore_all_fdir_filter(hns);
4837 	if (ret)
4838 		goto err_promisc;
4839 
4840 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
4841 		ret = hns3_do_start(hns, false);
4842 		if (ret)
4843 			goto err_promisc;
4844 		hns3_info(hw, "hns3 dev restart successful!");
4845 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
4846 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4847 	return 0;
4848 
4849 err_promisc:
4850 	hns3_configure_all_mc_mac_addr(hns, true);
4851 err_mc_mac:
4852 	hns3_configure_all_mac_addr(hns, true);
4853 	return ret;
4854 }
4855 
4856 static void
4857 hns3_reset_service(void *param)
4858 {
4859 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
4860 	struct hns3_hw *hw = &hns->hw;
4861 	enum hns3_reset_level reset_level;
4862 	struct timeval tv_delta;
4863 	struct timeval tv_start;
4864 	struct timeval tv;
4865 	uint64_t msec;
4866 	int ret;
4867 
4868 	/*
4869 	 * The interrupt is not triggered within the delay time.
4870 	 * The interrupt may have been lost. It is necessary to handle
4871 	 * the interrupt to recover from the error.
4872 	 */
4873 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
4874 		rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
4875 		hns3_err(hw, "Handling interrupts in delayed tasks");
4876 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
4877 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
4878 		if (reset_level == HNS3_NONE_RESET) {
4879 			hns3_err(hw, "No reset level is set, try IMP reset");
4880 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
4881 		}
4882 	}
4883 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
4884 
4885 	/*
4886 	 * Check if there is any ongoing reset in the hardware. This status can
4887 	 * be checked from reset_pending. If there is then, we need to wait for
4888 	 * hardware to complete reset.
4889 	 *    a. If we are able to figure out in reasonable time that hardware
4890 	 *       has fully resetted then, we can proceed with driver, client
4891 	 *       reset.
4892 	 *    b. else, we can come back later to check this status so re-sched
4893 	 *       now.
4894 	 */
4895 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
4896 	if (reset_level != HNS3_NONE_RESET) {
4897 		gettimeofday(&tv_start, NULL);
4898 		ret = hns3_reset_process(hns, reset_level);
4899 		gettimeofday(&tv, NULL);
4900 		timersub(&tv, &tv_start, &tv_delta);
4901 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
4902 		       tv_delta.tv_usec / USEC_PER_MSEC;
4903 		if (msec > HNS3_RESET_PROCESS_MS)
4904 			hns3_err(hw, "%d handle long time delta %" PRIx64
4905 				     " ms time=%ld.%.6ld",
4906 				 hw->reset.level, msec,
4907 				 tv.tv_sec, tv.tv_usec);
4908 		if (ret == -EAGAIN)
4909 			return;
4910 	}
4911 
4912 	/* Check if we got any *new* reset requests to be honored */
4913 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
4914 	if (reset_level != HNS3_NONE_RESET)
4915 		hns3_msix_process(hns, reset_level);
4916 }
4917 
4918 static const struct eth_dev_ops hns3_eth_dev_ops = {
4919 	.dev_start          = hns3_dev_start,
4920 	.dev_stop           = hns3_dev_stop,
4921 	.dev_close          = hns3_dev_close,
4922 	.promiscuous_enable = hns3_dev_promiscuous_enable,
4923 	.promiscuous_disable = hns3_dev_promiscuous_disable,
4924 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
4925 	.allmulticast_disable = hns3_dev_allmulticast_disable,
4926 	.mtu_set            = hns3_dev_mtu_set,
4927 	.stats_get          = hns3_stats_get,
4928 	.stats_reset        = hns3_stats_reset,
4929 	.xstats_get         = hns3_dev_xstats_get,
4930 	.xstats_get_names   = hns3_dev_xstats_get_names,
4931 	.xstats_reset       = hns3_dev_xstats_reset,
4932 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
4933 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
4934 	.dev_infos_get          = hns3_dev_infos_get,
4935 	.fw_version_get         = hns3_fw_version_get,
4936 	.rx_queue_setup         = hns3_rx_queue_setup,
4937 	.tx_queue_setup         = hns3_tx_queue_setup,
4938 	.rx_queue_release       = hns3_dev_rx_queue_release,
4939 	.tx_queue_release       = hns3_dev_tx_queue_release,
4940 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
4941 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
4942 	.dev_configure          = hns3_dev_configure,
4943 	.flow_ctrl_get          = hns3_flow_ctrl_get,
4944 	.flow_ctrl_set          = hns3_flow_ctrl_set,
4945 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
4946 	.mac_addr_add           = hns3_add_mac_addr,
4947 	.mac_addr_remove        = hns3_remove_mac_addr,
4948 	.mac_addr_set           = hns3_set_default_mac_addr,
4949 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
4950 	.link_update            = hns3_dev_link_update,
4951 	.rss_hash_update        = hns3_dev_rss_hash_update,
4952 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
4953 	.reta_update            = hns3_dev_rss_reta_update,
4954 	.reta_query             = hns3_dev_rss_reta_query,
4955 	.filter_ctrl            = hns3_dev_filter_ctrl,
4956 	.vlan_filter_set        = hns3_vlan_filter_set,
4957 	.vlan_tpid_set          = hns3_vlan_tpid_set,
4958 	.vlan_offload_set       = hns3_vlan_offload_set,
4959 	.vlan_pvid_set          = hns3_vlan_pvid_set,
4960 	.get_reg                = hns3_get_regs,
4961 	.get_dcb_info           = hns3_get_dcb_info,
4962 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
4963 };
4964 
4965 static const struct hns3_reset_ops hns3_reset_ops = {
4966 	.reset_service       = hns3_reset_service,
4967 	.stop_service        = hns3_stop_service,
4968 	.prepare_reset       = hns3_prepare_reset,
4969 	.wait_hardware_ready = hns3_wait_hardware_ready,
4970 	.reinit_dev          = hns3_reinit_dev,
4971 	.restore_conf	     = hns3_restore_conf,
4972 	.start_service       = hns3_start_service,
4973 };
4974 
4975 static int
4976 hns3_dev_init(struct rte_eth_dev *eth_dev)
4977 {
4978 	struct rte_device *dev = eth_dev->device;
4979 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4980 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4981 	struct hns3_hw *hw = &hns->hw;
4982 	uint16_t device_id = pci_dev->id.device_id;
4983 	int ret;
4984 
4985 	PMD_INIT_FUNC_TRACE();
4986 	eth_dev->process_private = (struct hns3_process_private *)
4987 	    rte_zmalloc_socket("hns3_filter_list",
4988 			       sizeof(struct hns3_process_private),
4989 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
4990 	if (eth_dev->process_private == NULL) {
4991 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
4992 		return -ENOMEM;
4993 	}
4994 	/* initialize flow filter lists */
4995 	hns3_filterlist_init(eth_dev);
4996 
4997 	hns3_set_rxtx_function(eth_dev);
4998 	eth_dev->dev_ops = &hns3_eth_dev_ops;
4999 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5000 		hns3_mp_init_secondary();
5001 		hw->secondary_cnt++;
5002 		return 0;
5003 	}
5004 
5005 	hns3_mp_init_primary();
5006 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
5007 
5008 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
5009 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
5010 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC)
5011 		hns3_set_bit(hw->flag, HNS3_DEV_SUPPORT_DCB_B, 1);
5012 
5013 	hns->is_vf = false;
5014 	hw->data = eth_dev->data;
5015 
5016 	/*
5017 	 * Set default max packet size according to the mtu
5018 	 * default vale in DPDK frame.
5019 	 */
5020 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
5021 
5022 	ret = hns3_reset_init(hw);
5023 	if (ret)
5024 		goto err_init_reset;
5025 	hw->reset.ops = &hns3_reset_ops;
5026 
5027 	ret = hns3_init_pf(eth_dev);
5028 	if (ret) {
5029 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
5030 		goto err_init_pf;
5031 	}
5032 
5033 	/* Allocate memory for storing MAC addresses */
5034 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
5035 					       sizeof(struct rte_ether_addr) *
5036 					       HNS3_UC_MACADDR_NUM, 0);
5037 	if (eth_dev->data->mac_addrs == NULL) {
5038 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
5039 			     "to store MAC addresses",
5040 			     sizeof(struct rte_ether_addr) *
5041 			     HNS3_UC_MACADDR_NUM);
5042 		ret = -ENOMEM;
5043 		goto err_rte_zmalloc;
5044 	}
5045 
5046 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
5047 			    &eth_dev->data->mac_addrs[0]);
5048 
5049 	hw->adapter_state = HNS3_NIC_INITIALIZED;
5050 	/*
5051 	 * Pass the information to the rte_eth_dev_close() that it should also
5052 	 * release the private port resources.
5053 	 */
5054 	eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
5055 
5056 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
5057 		hns3_err(hw, "Reschedule reset service after dev_init");
5058 		hns3_schedule_reset(hns);
5059 	} else {
5060 		/* IMP will wait ready flag before reset */
5061 		hns3_notify_reset_ready(hw, false);
5062 	}
5063 
5064 	hns3_info(hw, "hns3 dev initialization successful!");
5065 	return 0;
5066 
5067 err_rte_zmalloc:
5068 	hns3_uninit_pf(eth_dev);
5069 
5070 err_init_pf:
5071 	rte_free(hw->reset.wait_data);
5072 err_init_reset:
5073 	eth_dev->dev_ops = NULL;
5074 	eth_dev->rx_pkt_burst = NULL;
5075 	eth_dev->tx_pkt_burst = NULL;
5076 	eth_dev->tx_pkt_prepare = NULL;
5077 	rte_free(eth_dev->process_private);
5078 	eth_dev->process_private = NULL;
5079 	return ret;
5080 }
5081 
5082 static int
5083 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
5084 {
5085 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5086 	struct hns3_hw *hw = &hns->hw;
5087 
5088 	PMD_INIT_FUNC_TRACE();
5089 
5090 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5091 		return -EPERM;
5092 
5093 	eth_dev->dev_ops = NULL;
5094 	eth_dev->rx_pkt_burst = NULL;
5095 	eth_dev->tx_pkt_burst = NULL;
5096 	eth_dev->tx_pkt_prepare = NULL;
5097 	if (hw->adapter_state < HNS3_NIC_CLOSING)
5098 		hns3_dev_close(eth_dev);
5099 
5100 	hw->adapter_state = HNS3_NIC_REMOVED;
5101 	return 0;
5102 }
5103 
5104 static int
5105 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
5106 		   struct rte_pci_device *pci_dev)
5107 {
5108 	return rte_eth_dev_pci_generic_probe(pci_dev,
5109 					     sizeof(struct hns3_adapter),
5110 					     hns3_dev_init);
5111 }
5112 
5113 static int
5114 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
5115 {
5116 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
5117 }
5118 
5119 static const struct rte_pci_id pci_id_hns3_map[] = {
5120 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
5121 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
5122 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
5123 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
5124 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
5125 	{ .vendor_id = 0, /* sentinel */ },
5126 };
5127 
5128 static struct rte_pci_driver rte_hns3_pmd = {
5129 	.id_table = pci_id_hns3_map,
5130 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
5131 	.probe = eth_hns3_pci_probe,
5132 	.remove = eth_hns3_pci_remove,
5133 };
5134 
5135 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
5136 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
5137 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
5138 
5139 RTE_INIT(hns3_init_log)
5140 {
5141 	hns3_logtype_init = rte_log_register("pmd.net.hns3.init");
5142 	if (hns3_logtype_init >= 0)
5143 		rte_log_set_level(hns3_logtype_init, RTE_LOG_NOTICE);
5144 	hns3_logtype_driver = rte_log_register("pmd.net.hns3.driver");
5145 	if (hns3_logtype_driver >= 0)
5146 		rte_log_set_level(hns3_logtype_driver, RTE_LOG_NOTICE);
5147 }
5148