xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision 97b914f4e715565d53d38ac6e04815b9be5e58a9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 
9 #include "hns3_ethdev.h"
10 #include "hns3_common.h"
11 #include "hns3_logs.h"
12 #include "hns3_rxtx.h"
13 #include "hns3_intr.h"
14 #include "hns3_regs.h"
15 #include "hns3_dcb.h"
16 #include "hns3_mp.h"
17 #include "hns3_flow.h"
18 
19 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
20 #define HNS3_SERVICE_QUICK_INTERVAL	10
21 #define HNS3_INVALID_PVID		0xFFFF
22 
23 #define HNS3_FILTER_TYPE_VF		0
24 #define HNS3_FILTER_TYPE_PORT		1
25 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
26 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
27 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
28 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
29 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
30 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
31 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
32 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
33 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
34 
35 /* Reset related Registers */
36 #define HNS3_GLOBAL_RESET_BIT		0
37 #define HNS3_CORE_RESET_BIT		1
38 #define HNS3_IMP_RESET_BIT		2
39 #define HNS3_FUN_RST_ING_B		0
40 
41 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
42 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
43 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
44 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
45 
46 #define HNS3_RESET_WAIT_MS	100
47 #define HNS3_RESET_WAIT_CNT	200
48 
49 /* FEC mode order defined in HNS3 hardware */
50 #define HNS3_HW_FEC_MODE_NOFEC  0
51 #define HNS3_HW_FEC_MODE_BASER  1
52 #define HNS3_HW_FEC_MODE_RS     2
53 
54 enum hns3_evt_cause {
55 	HNS3_VECTOR0_EVENT_RST,
56 	HNS3_VECTOR0_EVENT_MBX,
57 	HNS3_VECTOR0_EVENT_ERR,
58 	HNS3_VECTOR0_EVENT_PTP,
59 	HNS3_VECTOR0_EVENT_OTHER,
60 };
61 
62 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
63 	{ RTE_ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
64 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
65 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
66 
67 	{ RTE_ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
68 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
69 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
70 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
71 
72 	{ RTE_ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
73 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
74 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
75 
76 	{ RTE_ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
77 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
78 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
80 
81 	{ RTE_ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
82 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
83 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
84 
85 	{ RTE_ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
86 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
87 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
88 };
89 
90 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
91 						 uint64_t *levels);
92 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
93 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
94 				    int on);
95 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
96 static bool hns3_update_link_status(struct hns3_hw *hw);
97 
98 static int hns3_add_mc_mac_addr(struct hns3_hw *hw,
99 				struct rte_ether_addr *mac_addr);
100 static int hns3_remove_mc_mac_addr(struct hns3_hw *hw,
101 				   struct rte_ether_addr *mac_addr);
102 static int hns3_restore_fec(struct hns3_hw *hw);
103 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
104 static int hns3_do_stop(struct hns3_adapter *hns);
105 static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds);
106 static int hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable);
107 
108 
109 static void
110 hns3_pf_disable_irq0(struct hns3_hw *hw)
111 {
112 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
113 }
114 
115 static void
116 hns3_pf_enable_irq0(struct hns3_hw *hw)
117 {
118 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
119 }
120 
121 static enum hns3_evt_cause
122 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
123 			  uint32_t *vec_val)
124 {
125 	struct hns3_hw *hw = &hns->hw;
126 
127 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
128 	hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
129 	*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
130 	if (!is_delay) {
131 		hw->reset.stats.imp_cnt++;
132 		hns3_warn(hw, "IMP reset detected, clear reset status");
133 	} else {
134 		hns3_schedule_delayed_reset(hns);
135 		hns3_warn(hw, "IMP reset detected, don't clear reset status");
136 	}
137 
138 	return HNS3_VECTOR0_EVENT_RST;
139 }
140 
141 static enum hns3_evt_cause
142 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
143 			     uint32_t *vec_val)
144 {
145 	struct hns3_hw *hw = &hns->hw;
146 
147 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
148 	hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
149 	*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
150 	if (!is_delay) {
151 		hw->reset.stats.global_cnt++;
152 		hns3_warn(hw, "Global reset detected, clear reset status");
153 	} else {
154 		hns3_schedule_delayed_reset(hns);
155 		hns3_warn(hw,
156 			  "Global reset detected, don't clear reset status");
157 	}
158 
159 	return HNS3_VECTOR0_EVENT_RST;
160 }
161 
162 static enum hns3_evt_cause
163 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
164 {
165 	struct hns3_hw *hw = &hns->hw;
166 	uint32_t vector0_int_stats;
167 	uint32_t cmdq_src_val;
168 	uint32_t hw_err_src_reg;
169 	uint32_t val;
170 	enum hns3_evt_cause ret;
171 	bool is_delay;
172 
173 	/* fetch the events from their corresponding regs */
174 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
175 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
176 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
177 
178 	is_delay = clearval == NULL ? true : false;
179 	/*
180 	 * Assumption: If by any chance reset and mailbox events are reported
181 	 * together then we will only process reset event and defer the
182 	 * processing of the mailbox events. Since, we would have not cleared
183 	 * RX CMDQ event this time we would receive again another interrupt
184 	 * from H/W just for the mailbox.
185 	 */
186 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
187 		ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
188 		goto out;
189 	}
190 
191 	/* Global reset */
192 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
193 		ret = hns3_proc_global_reset_event(hns, is_delay, &val);
194 		goto out;
195 	}
196 
197 	/* Check for vector0 1588 event source */
198 	if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
199 		val = BIT(HNS3_VECTOR0_1588_INT_B);
200 		ret = HNS3_VECTOR0_EVENT_PTP;
201 		goto out;
202 	}
203 
204 	/* check for vector0 msix event source */
205 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
206 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
207 		val = vector0_int_stats | hw_err_src_reg;
208 		ret = HNS3_VECTOR0_EVENT_ERR;
209 		goto out;
210 	}
211 
212 	/* check for vector0 mailbox(=CMDQ RX) event source */
213 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
214 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
215 		val = cmdq_src_val;
216 		ret = HNS3_VECTOR0_EVENT_MBX;
217 		goto out;
218 	}
219 
220 	val = vector0_int_stats;
221 	ret = HNS3_VECTOR0_EVENT_OTHER;
222 out:
223 
224 	if (clearval)
225 		*clearval = val;
226 	return ret;
227 }
228 
229 static void
230 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
231 {
232 	if (event_type == HNS3_VECTOR0_EVENT_RST ||
233 	    event_type == HNS3_VECTOR0_EVENT_PTP)
234 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
235 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
236 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
237 }
238 
239 static void
240 hns3_clear_all_event_cause(struct hns3_hw *hw)
241 {
242 	uint32_t vector0_int_stats;
243 
244 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
245 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
246 		hns3_warn(hw, "Probe during IMP reset interrupt");
247 
248 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
249 		hns3_warn(hw, "Probe during Global reset interrupt");
250 
251 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
252 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
253 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
254 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
255 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
256 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
257 				BIT(HNS3_VECTOR0_1588_INT_B));
258 }
259 
260 static void
261 hns3_handle_mac_tnl(struct hns3_hw *hw)
262 {
263 	struct hns3_cmd_desc desc;
264 	uint32_t status;
265 	int ret;
266 
267 	/* query and clear mac tnl interrupt */
268 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
269 	ret = hns3_cmd_send(hw, &desc, 1);
270 	if (ret) {
271 		hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
272 		return;
273 	}
274 
275 	status = rte_le_to_cpu_32(desc.data[0]);
276 	if (status) {
277 		hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
278 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
279 					  false);
280 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
281 		ret = hns3_cmd_send(hw, &desc, 1);
282 		if (ret)
283 			hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
284 				 ret);
285 	}
286 }
287 
288 static void
289 hns3_interrupt_handler(void *param)
290 {
291 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
292 	struct hns3_adapter *hns = dev->data->dev_private;
293 	struct hns3_hw *hw = &hns->hw;
294 	enum hns3_evt_cause event_cause;
295 	uint32_t clearval = 0;
296 	uint32_t vector0_int;
297 	uint32_t ras_int;
298 	uint32_t cmdq_int;
299 
300 	/* Disable interrupt */
301 	hns3_pf_disable_irq0(hw);
302 
303 	event_cause = hns3_check_event_cause(hns, &clearval);
304 	vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
305 	ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
306 	cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
307 	hns3_clear_event_cause(hw, event_cause, clearval);
308 	/* vector 0 interrupt is shared with reset and mailbox source events. */
309 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
310 		hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
311 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
312 			  vector0_int, ras_int, cmdq_int);
313 		hns3_handle_mac_tnl(hw);
314 		hns3_handle_error(hns);
315 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
316 		hns3_warn(hw, "received reset interrupt");
317 		hns3_schedule_reset(hns);
318 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
319 		hns3_dev_handle_mbx_msg(hw);
320 	} else {
321 		hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
322 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
323 			  vector0_int, ras_int, cmdq_int);
324 	}
325 
326 	/* Enable interrupt if it is not cause by reset */
327 	hns3_pf_enable_irq0(hw);
328 }
329 
330 static int
331 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
332 {
333 #define HNS3_VLAN_ID_OFFSET_STEP	160
334 #define HNS3_VLAN_BYTE_SIZE		8
335 	struct hns3_vlan_filter_pf_cfg_cmd *req;
336 	struct hns3_hw *hw = &hns->hw;
337 	uint8_t vlan_offset_byte_val;
338 	struct hns3_cmd_desc desc;
339 	uint8_t vlan_offset_byte;
340 	uint8_t vlan_offset_base;
341 	int ret;
342 
343 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
344 
345 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
346 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
347 			   HNS3_VLAN_BYTE_SIZE;
348 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
349 
350 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
351 	req->vlan_offset = vlan_offset_base;
352 	req->vlan_cfg = on ? 0 : 1;
353 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
354 
355 	ret = hns3_cmd_send(hw, &desc, 1);
356 	if (ret)
357 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
358 			 vlan_id, ret);
359 
360 	return ret;
361 }
362 
363 static void
364 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
365 {
366 	struct hns3_user_vlan_table *vlan_entry;
367 	struct hns3_pf *pf = &hns->pf;
368 
369 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
370 		if (vlan_entry->vlan_id == vlan_id) {
371 			if (vlan_entry->hd_tbl_status)
372 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
373 			LIST_REMOVE(vlan_entry, next);
374 			rte_free(vlan_entry);
375 			break;
376 		}
377 	}
378 }
379 
380 static void
381 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
382 			bool writen_to_tbl)
383 {
384 	struct hns3_user_vlan_table *vlan_entry;
385 	struct hns3_hw *hw = &hns->hw;
386 	struct hns3_pf *pf = &hns->pf;
387 
388 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
389 		if (vlan_entry->vlan_id == vlan_id)
390 			return;
391 	}
392 
393 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
394 	if (vlan_entry == NULL) {
395 		hns3_err(hw, "Failed to malloc hns3 vlan table");
396 		return;
397 	}
398 
399 	vlan_entry->hd_tbl_status = writen_to_tbl;
400 	vlan_entry->vlan_id = vlan_id;
401 
402 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
403 }
404 
405 static int
406 hns3_restore_vlan_table(struct hns3_adapter *hns)
407 {
408 	struct hns3_user_vlan_table *vlan_entry;
409 	struct hns3_hw *hw = &hns->hw;
410 	struct hns3_pf *pf = &hns->pf;
411 	uint16_t vlan_id;
412 	int ret = 0;
413 
414 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
415 		return hns3_vlan_pvid_configure(hns,
416 						hw->port_base_vlan_cfg.pvid, 1);
417 
418 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
419 		if (vlan_entry->hd_tbl_status) {
420 			vlan_id = vlan_entry->vlan_id;
421 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
422 			if (ret)
423 				break;
424 		}
425 	}
426 
427 	return ret;
428 }
429 
430 static int
431 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
432 {
433 	struct hns3_hw *hw = &hns->hw;
434 	bool writen_to_tbl = false;
435 	int ret = 0;
436 
437 	/*
438 	 * When vlan filter is enabled, hardware regards packets without vlan
439 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
440 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
441 	 */
442 	if (on == 0 && vlan_id == 0)
443 		return 0;
444 
445 	/*
446 	 * When port base vlan enabled, we use port base vlan as the vlan
447 	 * filter condition. In this case, we don't update vlan filter table
448 	 * when user add new vlan or remove exist vlan, just update the
449 	 * vlan list. The vlan id in vlan list will be written in vlan filter
450 	 * table until port base vlan disabled
451 	 */
452 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
453 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
454 		writen_to_tbl = true;
455 	}
456 
457 	if (ret == 0) {
458 		if (on)
459 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
460 		else
461 			hns3_rm_dev_vlan_table(hns, vlan_id);
462 	}
463 	return ret;
464 }
465 
466 static int
467 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
468 {
469 	struct hns3_adapter *hns = dev->data->dev_private;
470 	struct hns3_hw *hw = &hns->hw;
471 	int ret;
472 
473 	rte_spinlock_lock(&hw->lock);
474 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
475 	rte_spinlock_unlock(&hw->lock);
476 	return ret;
477 }
478 
479 static int
480 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
481 			 uint16_t tpid)
482 {
483 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
484 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
485 	struct hns3_hw *hw = &hns->hw;
486 	struct hns3_cmd_desc desc;
487 	int ret;
488 
489 	if ((vlan_type != RTE_ETH_VLAN_TYPE_INNER &&
490 	     vlan_type != RTE_ETH_VLAN_TYPE_OUTER)) {
491 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
492 		return -EINVAL;
493 	}
494 
495 	if (tpid != RTE_ETHER_TYPE_VLAN) {
496 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
497 		return -EINVAL;
498 	}
499 
500 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
501 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
502 
503 	if (vlan_type == RTE_ETH_VLAN_TYPE_OUTER) {
504 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
505 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
506 	} else if (vlan_type == RTE_ETH_VLAN_TYPE_INNER) {
507 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
508 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
509 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
510 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
511 	}
512 
513 	ret = hns3_cmd_send(hw, &desc, 1);
514 	if (ret) {
515 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
516 			 ret);
517 		return ret;
518 	}
519 
520 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
521 
522 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
523 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
524 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
525 
526 	ret = hns3_cmd_send(hw, &desc, 1);
527 	if (ret)
528 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
529 			 ret);
530 	return ret;
531 }
532 
533 static int
534 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
535 		   uint16_t tpid)
536 {
537 	struct hns3_adapter *hns = dev->data->dev_private;
538 	struct hns3_hw *hw = &hns->hw;
539 	int ret;
540 
541 	rte_spinlock_lock(&hw->lock);
542 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
543 	rte_spinlock_unlock(&hw->lock);
544 	return ret;
545 }
546 
547 static int
548 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
549 			     struct hns3_rx_vtag_cfg *vcfg)
550 {
551 	struct hns3_vport_vtag_rx_cfg_cmd *req;
552 	struct hns3_hw *hw = &hns->hw;
553 	struct hns3_cmd_desc desc;
554 	uint16_t vport_id;
555 	uint8_t bitmap;
556 	int ret;
557 
558 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
559 
560 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
561 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
562 		     vcfg->strip_tag1_en ? 1 : 0);
563 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
564 		     vcfg->strip_tag2_en ? 1 : 0);
565 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
566 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
567 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
568 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
569 
570 	/* firmware will ignore this configuration for PCI_REVISION_ID_HIP08 */
571 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
572 		     vcfg->strip_tag1_discard_en ? 1 : 0);
573 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
574 		     vcfg->strip_tag2_discard_en ? 1 : 0);
575 	/*
576 	 * In current version VF is not supported when PF is driven by DPDK
577 	 * driver, just need to configure parameters for PF vport.
578 	 */
579 	vport_id = HNS3_PF_FUNC_ID;
580 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
581 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
582 	req->vf_bitmap[req->vf_offset] = bitmap;
583 
584 	ret = hns3_cmd_send(hw, &desc, 1);
585 	if (ret)
586 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
587 	return ret;
588 }
589 
590 static int
591 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
592 {
593 	struct hns3_rx_vtag_cfg rxvlan_cfg;
594 	struct hns3_hw *hw = &hns->hw;
595 	int ret;
596 
597 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
598 		rxvlan_cfg.strip_tag1_en = false;
599 		rxvlan_cfg.strip_tag2_en = enable;
600 		rxvlan_cfg.strip_tag2_discard_en = false;
601 	} else {
602 		rxvlan_cfg.strip_tag1_en = enable;
603 		rxvlan_cfg.strip_tag2_en = true;
604 		rxvlan_cfg.strip_tag2_discard_en = true;
605 	}
606 
607 	rxvlan_cfg.strip_tag1_discard_en = false;
608 	rxvlan_cfg.vlan1_vlan_prionly = false;
609 	rxvlan_cfg.vlan2_vlan_prionly = false;
610 	rxvlan_cfg.rx_vlan_offload_en = enable;
611 
612 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
613 	if (ret) {
614 		hns3_err(hw, "%s strip rx vtag failed, ret = %d.",
615 				enable ? "enable" : "disable", ret);
616 		return ret;
617 	}
618 
619 	memcpy(&hns->pf.vtag_config.rx_vcfg, &rxvlan_cfg,
620 	       sizeof(struct hns3_rx_vtag_cfg));
621 
622 	return ret;
623 }
624 
625 static int
626 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
627 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
628 {
629 	struct hns3_vlan_filter_ctrl_cmd *req;
630 	struct hns3_cmd_desc desc;
631 	int ret;
632 
633 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
634 
635 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
636 	req->vlan_type = vlan_type;
637 	req->vlan_fe = filter_en ? fe_type : 0;
638 	req->vf_id = vf_id;
639 
640 	ret = hns3_cmd_send(hw, &desc, 1);
641 	if (ret)
642 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
643 
644 	return ret;
645 }
646 
647 static int
648 hns3_vlan_filter_init(struct hns3_adapter *hns)
649 {
650 	struct hns3_hw *hw = &hns->hw;
651 	int ret;
652 
653 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
654 					HNS3_FILTER_FE_EGRESS, false,
655 					HNS3_PF_FUNC_ID);
656 	if (ret) {
657 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
658 		return ret;
659 	}
660 
661 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
662 					HNS3_FILTER_FE_INGRESS, false,
663 					HNS3_PF_FUNC_ID);
664 	if (ret)
665 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
666 
667 	return ret;
668 }
669 
670 static int
671 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
672 {
673 	struct hns3_hw *hw = &hns->hw;
674 	int ret;
675 
676 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
677 					HNS3_FILTER_FE_INGRESS, enable,
678 					HNS3_PF_FUNC_ID);
679 	if (ret)
680 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
681 			 enable ? "enable" : "disable", ret);
682 
683 	return ret;
684 }
685 
686 static int
687 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
688 {
689 	struct hns3_adapter *hns = dev->data->dev_private;
690 	struct hns3_hw *hw = &hns->hw;
691 	struct rte_eth_rxmode *rxmode;
692 	unsigned int tmp_mask;
693 	bool enable;
694 	int ret = 0;
695 
696 	rte_spinlock_lock(&hw->lock);
697 	rxmode = &dev->data->dev_conf.rxmode;
698 	tmp_mask = (unsigned int)mask;
699 	if (tmp_mask & RTE_ETH_VLAN_FILTER_MASK) {
700 		/* ignore vlan filter configuration during promiscuous mode */
701 		if (!dev->data->promiscuous) {
702 			/* Enable or disable VLAN filter */
703 			enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ?
704 				 true : false;
705 
706 			ret = hns3_enable_vlan_filter(hns, enable);
707 			if (ret) {
708 				rte_spinlock_unlock(&hw->lock);
709 				hns3_err(hw, "failed to %s rx filter, ret = %d",
710 					 enable ? "enable" : "disable", ret);
711 				return ret;
712 			}
713 		}
714 	}
715 
716 	if (tmp_mask & RTE_ETH_VLAN_STRIP_MASK) {
717 		/* Enable or disable VLAN stripping */
718 		enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP ?
719 		    true : false;
720 
721 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
722 		if (ret) {
723 			rte_spinlock_unlock(&hw->lock);
724 			hns3_err(hw, "failed to %s rx strip, ret = %d",
725 				 enable ? "enable" : "disable", ret);
726 			return ret;
727 		}
728 	}
729 
730 	rte_spinlock_unlock(&hw->lock);
731 
732 	return ret;
733 }
734 
735 static int
736 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
737 			     struct hns3_tx_vtag_cfg *vcfg)
738 {
739 	struct hns3_vport_vtag_tx_cfg_cmd *req;
740 	struct hns3_cmd_desc desc;
741 	struct hns3_hw *hw = &hns->hw;
742 	uint16_t vport_id;
743 	uint8_t bitmap;
744 	int ret;
745 
746 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
747 
748 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
749 	req->def_vlan_tag1 = vcfg->default_tag1;
750 	req->def_vlan_tag2 = vcfg->default_tag2;
751 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
752 		     vcfg->accept_tag1 ? 1 : 0);
753 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
754 		     vcfg->accept_untag1 ? 1 : 0);
755 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
756 		     vcfg->accept_tag2 ? 1 : 0);
757 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
758 		     vcfg->accept_untag2 ? 1 : 0);
759 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
760 		     vcfg->insert_tag1_en ? 1 : 0);
761 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
762 		     vcfg->insert_tag2_en ? 1 : 0);
763 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
764 
765 	/* firmware will ignore this configuration for PCI_REVISION_ID_HIP08 */
766 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
767 		     vcfg->tag_shift_mode_en ? 1 : 0);
768 
769 	/*
770 	 * In current version VF is not supported when PF is driven by DPDK
771 	 * driver, just need to configure parameters for PF vport.
772 	 */
773 	vport_id = HNS3_PF_FUNC_ID;
774 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
775 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
776 	req->vf_bitmap[req->vf_offset] = bitmap;
777 
778 	ret = hns3_cmd_send(hw, &desc, 1);
779 	if (ret)
780 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
781 
782 	return ret;
783 }
784 
785 static int
786 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
787 		     uint16_t pvid)
788 {
789 	struct hns3_hw *hw = &hns->hw;
790 	struct hns3_tx_vtag_cfg txvlan_cfg;
791 	int ret;
792 
793 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
794 		txvlan_cfg.accept_tag1 = true;
795 		txvlan_cfg.insert_tag1_en = false;
796 		txvlan_cfg.default_tag1 = 0;
797 	} else {
798 		txvlan_cfg.accept_tag1 =
799 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
800 		txvlan_cfg.insert_tag1_en = true;
801 		txvlan_cfg.default_tag1 = pvid;
802 	}
803 
804 	txvlan_cfg.accept_untag1 = true;
805 	txvlan_cfg.accept_tag2 = true;
806 	txvlan_cfg.accept_untag2 = true;
807 	txvlan_cfg.insert_tag2_en = false;
808 	txvlan_cfg.default_tag2 = 0;
809 	txvlan_cfg.tag_shift_mode_en = true;
810 
811 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
812 	if (ret) {
813 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
814 			 ret);
815 		return ret;
816 	}
817 
818 	memcpy(&hns->pf.vtag_config.tx_vcfg, &txvlan_cfg,
819 	       sizeof(struct hns3_tx_vtag_cfg));
820 
821 	return ret;
822 }
823 
824 
825 static void
826 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
827 {
828 	struct hns3_user_vlan_table *vlan_entry;
829 	struct hns3_pf *pf = &hns->pf;
830 
831 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
832 		if (vlan_entry->hd_tbl_status) {
833 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
834 			vlan_entry->hd_tbl_status = false;
835 		}
836 	}
837 
838 	if (is_del_list) {
839 		vlan_entry = LIST_FIRST(&pf->vlan_list);
840 		while (vlan_entry) {
841 			LIST_REMOVE(vlan_entry, next);
842 			rte_free(vlan_entry);
843 			vlan_entry = LIST_FIRST(&pf->vlan_list);
844 		}
845 	}
846 }
847 
848 static void
849 hns3_add_all_vlan_table(struct hns3_adapter *hns)
850 {
851 	struct hns3_user_vlan_table *vlan_entry;
852 	struct hns3_pf *pf = &hns->pf;
853 
854 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
855 		if (!vlan_entry->hd_tbl_status) {
856 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
857 			vlan_entry->hd_tbl_status = true;
858 		}
859 	}
860 }
861 
862 static void
863 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
864 {
865 	struct hns3_hw *hw = &hns->hw;
866 	int ret;
867 
868 	hns3_rm_all_vlan_table(hns, true);
869 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
870 		ret = hns3_set_port_vlan_filter(hns,
871 						hw->port_base_vlan_cfg.pvid, 0);
872 		if (ret) {
873 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
874 				 ret);
875 			return;
876 		}
877 	}
878 }
879 
880 static int
881 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
882 			uint16_t port_base_vlan_state, uint16_t new_pvid)
883 {
884 	struct hns3_hw *hw = &hns->hw;
885 	uint16_t old_pvid;
886 	int ret;
887 
888 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
889 		old_pvid = hw->port_base_vlan_cfg.pvid;
890 		if (old_pvid != HNS3_INVALID_PVID) {
891 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
892 			if (ret) {
893 				hns3_err(hw, "failed to remove old pvid %u, "
894 						"ret = %d", old_pvid, ret);
895 				return ret;
896 			}
897 		}
898 
899 		hns3_rm_all_vlan_table(hns, false);
900 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
901 		if (ret) {
902 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
903 					new_pvid, ret);
904 			return ret;
905 		}
906 	} else {
907 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
908 		if (ret) {
909 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
910 					new_pvid, ret);
911 			return ret;
912 		}
913 
914 		hns3_add_all_vlan_table(hns);
915 	}
916 	return 0;
917 }
918 
919 static int
920 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
921 {
922 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
923 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
924 	bool rx_strip_en;
925 	int ret;
926 
927 	rx_strip_en = old_cfg->rx_vlan_offload_en;
928 	if (on) {
929 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
930 		rx_vlan_cfg.strip_tag2_en = true;
931 		rx_vlan_cfg.strip_tag2_discard_en = true;
932 	} else {
933 		rx_vlan_cfg.strip_tag1_en = false;
934 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
935 		rx_vlan_cfg.strip_tag2_discard_en = false;
936 	}
937 	rx_vlan_cfg.strip_tag1_discard_en = false;
938 	rx_vlan_cfg.vlan1_vlan_prionly = false;
939 	rx_vlan_cfg.vlan2_vlan_prionly = false;
940 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
941 
942 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
943 	if (ret)
944 		return ret;
945 
946 	memcpy(&hns->pf.vtag_config.rx_vcfg, &rx_vlan_cfg,
947 	       sizeof(struct hns3_rx_vtag_cfg));
948 
949 	return ret;
950 }
951 
952 static int
953 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
954 {
955 	struct hns3_hw *hw = &hns->hw;
956 	uint16_t port_base_vlan_state;
957 	int ret, err;
958 
959 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
960 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
961 			hns3_warn(hw, "Invalid operation! As current pvid set "
962 				  "is %u, disable pvid %u is invalid",
963 				  hw->port_base_vlan_cfg.pvid, pvid);
964 		return 0;
965 	}
966 
967 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
968 				    HNS3_PORT_BASE_VLAN_DISABLE;
969 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
970 	if (ret) {
971 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
972 			 ret);
973 		return ret;
974 	}
975 
976 	ret = hns3_en_pvid_strip(hns, on);
977 	if (ret) {
978 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
979 			 "ret = %d", ret);
980 		goto pvid_vlan_strip_fail;
981 	}
982 
983 	if (pvid == HNS3_INVALID_PVID)
984 		goto out;
985 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
986 	if (ret) {
987 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
988 			 ret);
989 		goto vlan_filter_set_fail;
990 	}
991 
992 out:
993 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
994 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
995 	return ret;
996 
997 vlan_filter_set_fail:
998 	err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
999 					HNS3_PORT_BASE_VLAN_ENABLE);
1000 	if (err)
1001 		hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1002 
1003 pvid_vlan_strip_fail:
1004 	err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1005 					hw->port_base_vlan_cfg.pvid);
1006 	if (err)
1007 		hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1008 
1009 	return ret;
1010 }
1011 
1012 static int
1013 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1014 {
1015 	struct hns3_adapter *hns = dev->data->dev_private;
1016 	struct hns3_hw *hw = &hns->hw;
1017 	bool pvid_en_state_change;
1018 	uint16_t pvid_state;
1019 	int ret;
1020 
1021 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1022 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1023 			 RTE_ETHER_MAX_VLAN_ID);
1024 		return -EINVAL;
1025 	}
1026 
1027 	/*
1028 	 * If PVID configuration state change, should refresh the PVID
1029 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1030 	 */
1031 	pvid_state = hw->port_base_vlan_cfg.state;
1032 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1033 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1034 		pvid_en_state_change = false;
1035 	else
1036 		pvid_en_state_change = true;
1037 
1038 	rte_spinlock_lock(&hw->lock);
1039 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
1040 	rte_spinlock_unlock(&hw->lock);
1041 	if (ret)
1042 		return ret;
1043 	/*
1044 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1045 	 * need be processed by PMD.
1046 	 */
1047 	if (pvid_en_state_change &&
1048 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1049 		hns3_update_all_queues_pvid_proc_en(hw);
1050 
1051 	return 0;
1052 }
1053 
1054 static int
1055 hns3_default_vlan_config(struct hns3_adapter *hns)
1056 {
1057 	struct hns3_hw *hw = &hns->hw;
1058 	int ret;
1059 
1060 	/*
1061 	 * When vlan filter is enabled, hardware regards packets without vlan
1062 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1063 	 * table, packets without vlan won't be received. So, add vlan 0 as
1064 	 * the default vlan.
1065 	 */
1066 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1067 	if (ret)
1068 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1069 	return ret;
1070 }
1071 
1072 static int
1073 hns3_init_vlan_config(struct hns3_adapter *hns)
1074 {
1075 	struct hns3_hw *hw = &hns->hw;
1076 	int ret;
1077 
1078 	/*
1079 	 * This function can be called in the initialization and reset process,
1080 	 * when in reset process, it means that hardware had been reseted
1081 	 * successfully and we need to restore the hardware configuration to
1082 	 * ensure that the hardware configuration remains unchanged before and
1083 	 * after reset.
1084 	 */
1085 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1086 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1087 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1088 	}
1089 
1090 	ret = hns3_vlan_filter_init(hns);
1091 	if (ret) {
1092 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1093 		return ret;
1094 	}
1095 
1096 	ret = hns3_vlan_tpid_configure(hns, RTE_ETH_VLAN_TYPE_INNER,
1097 				       RTE_ETHER_TYPE_VLAN);
1098 	if (ret) {
1099 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1100 		return ret;
1101 	}
1102 
1103 	/*
1104 	 * When in the reinit dev stage of the reset process, the following
1105 	 * vlan-related configurations may differ from those at initialization,
1106 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1107 	 * and hns3_restore_vlan_conf later.
1108 	 */
1109 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1110 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1111 		if (ret) {
1112 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1113 			return ret;
1114 		}
1115 
1116 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1117 		if (ret) {
1118 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1119 				 ret);
1120 			return ret;
1121 		}
1122 	}
1123 
1124 	return hns3_default_vlan_config(hns);
1125 }
1126 
1127 static int
1128 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1129 {
1130 	struct hns3_pf *pf = &hns->pf;
1131 	struct hns3_hw *hw = &hns->hw;
1132 	uint64_t offloads;
1133 	bool enable;
1134 	int ret;
1135 
1136 	if (!hw->data->promiscuous) {
1137 		/* restore vlan filter states */
1138 		offloads = hw->data->dev_conf.rxmode.offloads;
1139 		enable = offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ? true : false;
1140 		ret = hns3_enable_vlan_filter(hns, enable);
1141 		if (ret) {
1142 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1143 				 "ret = %d", ret);
1144 			return ret;
1145 		}
1146 	}
1147 
1148 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1149 	if (ret) {
1150 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1151 		return ret;
1152 	}
1153 
1154 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1155 	if (ret)
1156 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1157 
1158 	return ret;
1159 }
1160 
1161 static int
1162 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1163 {
1164 	struct hns3_adapter *hns = dev->data->dev_private;
1165 	struct rte_eth_dev_data *data = dev->data;
1166 	struct rte_eth_txmode *txmode;
1167 	struct hns3_hw *hw = &hns->hw;
1168 	int mask;
1169 	int ret;
1170 
1171 	txmode = &data->dev_conf.txmode;
1172 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1173 		hns3_warn(hw,
1174 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1175 			  "configuration is not supported! Ignore these two "
1176 			  "parameters: hw_vlan_reject_tagged(%u), "
1177 			  "hw_vlan_reject_untagged(%u)",
1178 			  txmode->hw_vlan_reject_tagged,
1179 			  txmode->hw_vlan_reject_untagged);
1180 
1181 	/* Apply vlan offload setting */
1182 	mask = RTE_ETH_VLAN_STRIP_MASK | RTE_ETH_VLAN_FILTER_MASK;
1183 	ret = hns3_vlan_offload_set(dev, mask);
1184 	if (ret) {
1185 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1186 			 ret);
1187 		return ret;
1188 	}
1189 
1190 	/*
1191 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1192 	 * VLAN pvid related configuration to hardware.
1193 	 */
1194 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1195 		return 0;
1196 
1197 	/* Apply pvid setting */
1198 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1199 				 txmode->hw_vlan_insert_pvid);
1200 	if (ret)
1201 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1202 			 txmode->pvid, ret);
1203 
1204 	return ret;
1205 }
1206 
1207 static int
1208 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1209 		unsigned int tso_mss_max)
1210 {
1211 	struct hns3_cfg_tso_status_cmd *req;
1212 	struct hns3_cmd_desc desc;
1213 	uint16_t tso_mss;
1214 
1215 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1216 
1217 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1218 
1219 	tso_mss = 0;
1220 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1221 		       tso_mss_min);
1222 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1223 
1224 	tso_mss = 0;
1225 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1226 		       tso_mss_max);
1227 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1228 
1229 	return hns3_cmd_send(hw, &desc, 1);
1230 }
1231 
1232 static int
1233 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1234 		   uint16_t *allocated_size, bool is_alloc)
1235 {
1236 	struct hns3_umv_spc_alc_cmd *req;
1237 	struct hns3_cmd_desc desc;
1238 	int ret;
1239 
1240 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1241 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1242 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1243 	req->space_size = rte_cpu_to_le_32(space_size);
1244 
1245 	ret = hns3_cmd_send(hw, &desc, 1);
1246 	if (ret) {
1247 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1248 			     is_alloc ? "allocate" : "free", ret);
1249 		return ret;
1250 	}
1251 
1252 	if (is_alloc && allocated_size)
1253 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1254 
1255 	return 0;
1256 }
1257 
1258 static int
1259 hns3_init_umv_space(struct hns3_hw *hw)
1260 {
1261 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1262 	struct hns3_pf *pf = &hns->pf;
1263 	uint16_t allocated_size = 0;
1264 	int ret;
1265 
1266 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1267 				 true);
1268 	if (ret)
1269 		return ret;
1270 
1271 	if (allocated_size < pf->wanted_umv_size)
1272 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1273 			     pf->wanted_umv_size, allocated_size);
1274 
1275 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1276 						pf->wanted_umv_size;
1277 	pf->used_umv_size = 0;
1278 	return 0;
1279 }
1280 
1281 static int
1282 hns3_uninit_umv_space(struct hns3_hw *hw)
1283 {
1284 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1285 	struct hns3_pf *pf = &hns->pf;
1286 	int ret;
1287 
1288 	if (pf->max_umv_size == 0)
1289 		return 0;
1290 
1291 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1292 	if (ret)
1293 		return ret;
1294 
1295 	pf->max_umv_size = 0;
1296 
1297 	return 0;
1298 }
1299 
1300 static bool
1301 hns3_is_umv_space_full(struct hns3_hw *hw)
1302 {
1303 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1304 	struct hns3_pf *pf = &hns->pf;
1305 	bool is_full;
1306 
1307 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1308 
1309 	return is_full;
1310 }
1311 
1312 static void
1313 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1314 {
1315 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1316 	struct hns3_pf *pf = &hns->pf;
1317 
1318 	if (is_free) {
1319 		if (pf->used_umv_size > 0)
1320 			pf->used_umv_size--;
1321 	} else
1322 		pf->used_umv_size++;
1323 }
1324 
1325 static void
1326 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1327 		      const uint8_t *addr, bool is_mc)
1328 {
1329 	const unsigned char *mac_addr = addr;
1330 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1331 			    ((uint32_t)mac_addr[2] << 16) |
1332 			    ((uint32_t)mac_addr[1] << 8) |
1333 			    (uint32_t)mac_addr[0];
1334 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1335 
1336 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1337 	if (is_mc) {
1338 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1339 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1340 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1341 	}
1342 
1343 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1344 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1345 }
1346 
1347 static int
1348 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1349 			     uint8_t resp_code,
1350 			     enum hns3_mac_vlan_tbl_opcode op)
1351 {
1352 	if (cmdq_resp) {
1353 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1354 			 cmdq_resp);
1355 		return -EIO;
1356 	}
1357 
1358 	if (op == HNS3_MAC_VLAN_ADD) {
1359 		if (resp_code == 0 || resp_code == 1) {
1360 			return 0;
1361 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1362 			hns3_err(hw, "add mac addr failed for uc_overflow");
1363 			return -ENOSPC;
1364 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1365 			hns3_err(hw, "add mac addr failed for mc_overflow");
1366 			return -ENOSPC;
1367 		}
1368 
1369 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1370 			 resp_code);
1371 		return -EIO;
1372 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1373 		if (resp_code == 0) {
1374 			return 0;
1375 		} else if (resp_code == 1) {
1376 			hns3_dbg(hw, "remove mac addr failed for miss");
1377 			return -ENOENT;
1378 		}
1379 
1380 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1381 			 resp_code);
1382 		return -EIO;
1383 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1384 		if (resp_code == 0) {
1385 			return 0;
1386 		} else if (resp_code == 1) {
1387 			hns3_dbg(hw, "lookup mac addr failed for miss");
1388 			return -ENOENT;
1389 		}
1390 
1391 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1392 			 resp_code);
1393 		return -EIO;
1394 	}
1395 
1396 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1397 		 op);
1398 
1399 	return -EINVAL;
1400 }
1401 
1402 static int
1403 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1404 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1405 			 struct hns3_cmd_desc *desc, uint8_t desc_num)
1406 {
1407 	uint8_t resp_code;
1408 	uint16_t retval;
1409 	int ret;
1410 	int i;
1411 
1412 	if (desc_num == HNS3_MC_MAC_VLAN_OPS_DESC_NUM) {
1413 		for (i = 0; i < desc_num - 1; i++) {
1414 			hns3_cmd_setup_basic_desc(&desc[i],
1415 						  HNS3_OPC_MAC_VLAN_ADD, true);
1416 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1417 			if (i == 0)
1418 				memcpy(desc[i].data, req,
1419 				sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1420 		}
1421 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_MAC_VLAN_ADD,
1422 					  true);
1423 	} else {
1424 		hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD,
1425 					  true);
1426 		memcpy(desc[0].data, req,
1427 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1428 	}
1429 	ret = hns3_cmd_send(hw, desc, desc_num);
1430 	if (ret) {
1431 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1432 			 ret);
1433 		return ret;
1434 	}
1435 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1436 	retval = rte_le_to_cpu_16(desc[0].retval);
1437 
1438 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1439 					    HNS3_MAC_VLAN_LKUP);
1440 }
1441 
1442 static int
1443 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1444 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1445 		      struct hns3_cmd_desc *desc, uint8_t desc_num)
1446 {
1447 	uint8_t resp_code;
1448 	uint16_t retval;
1449 	int cfg_status;
1450 	int ret;
1451 	int i;
1452 
1453 	if (desc_num == HNS3_UC_MAC_VLAN_OPS_DESC_NUM) {
1454 		hns3_cmd_setup_basic_desc(desc, HNS3_OPC_MAC_VLAN_ADD, false);
1455 		memcpy(desc->data, req,
1456 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1457 		ret = hns3_cmd_send(hw, desc, desc_num);
1458 		resp_code = (rte_le_to_cpu_32(desc->data[0]) >> 8) & 0xff;
1459 		retval = rte_le_to_cpu_16(desc->retval);
1460 
1461 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1462 							  HNS3_MAC_VLAN_ADD);
1463 	} else {
1464 		for (i = 0; i < desc_num; i++) {
1465 			hns3_cmd_reuse_desc(&desc[i], false);
1466 			if (i == desc_num - 1)
1467 				desc[i].flag &=
1468 					rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1469 			else
1470 				desc[i].flag |=
1471 					rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1472 		}
1473 		memcpy(desc[0].data, req,
1474 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1475 		desc[0].retval = 0;
1476 		ret = hns3_cmd_send(hw, desc, desc_num);
1477 		resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1478 		retval = rte_le_to_cpu_16(desc[0].retval);
1479 
1480 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1481 							  HNS3_MAC_VLAN_ADD);
1482 	}
1483 
1484 	if (ret) {
1485 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1486 		return ret;
1487 	}
1488 
1489 	return cfg_status;
1490 }
1491 
1492 static int
1493 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1494 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1495 {
1496 	struct hns3_cmd_desc desc;
1497 	uint8_t resp_code;
1498 	uint16_t retval;
1499 	int ret;
1500 
1501 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1502 
1503 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1504 
1505 	ret = hns3_cmd_send(hw, &desc, 1);
1506 	if (ret) {
1507 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1508 		return ret;
1509 	}
1510 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1511 	retval = rte_le_to_cpu_16(desc.retval);
1512 
1513 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1514 					    HNS3_MAC_VLAN_REMOVE);
1515 }
1516 
1517 static int
1518 hns3_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1519 {
1520 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1521 	struct hns3_mac_vlan_tbl_entry_cmd req;
1522 	struct hns3_pf *pf = &hns->pf;
1523 	struct hns3_cmd_desc desc;
1524 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1525 	uint16_t egress_port = 0;
1526 	uint8_t vf_id;
1527 	int ret;
1528 
1529 	/* check if mac addr is valid */
1530 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1531 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1532 				      mac_addr);
1533 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1534 			 mac_str);
1535 		return -EINVAL;
1536 	}
1537 
1538 	memset(&req, 0, sizeof(req));
1539 
1540 	/*
1541 	 * In current version VF is not supported when PF is driven by DPDK
1542 	 * driver, just need to configure parameters for PF vport.
1543 	 */
1544 	vf_id = HNS3_PF_FUNC_ID;
1545 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1546 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1547 
1548 	req.egress_port = rte_cpu_to_le_16(egress_port);
1549 
1550 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1551 
1552 	/*
1553 	 * Lookup the mac address in the mac_vlan table, and add
1554 	 * it if the entry is inexistent. Repeated unicast entry
1555 	 * is not allowed in the mac vlan table.
1556 	 */
1557 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc,
1558 					HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1559 	if (ret == -ENOENT) {
1560 		if (!hns3_is_umv_space_full(hw)) {
1561 			ret = hns3_add_mac_vlan_tbl(hw, &req, &desc,
1562 						HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1563 			if (!ret)
1564 				hns3_update_umv_space(hw, false);
1565 			return ret;
1566 		}
1567 
1568 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1569 
1570 		return -ENOSPC;
1571 	}
1572 
1573 	hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1574 
1575 	/* check if we just hit the duplicate */
1576 	if (ret == 0) {
1577 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1578 		return 0;
1579 	}
1580 
1581 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1582 		 mac_str);
1583 
1584 	return ret;
1585 }
1586 
1587 static int
1588 hns3_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1589 {
1590 	struct hns3_mac_vlan_tbl_entry_cmd req;
1591 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1592 	int ret;
1593 
1594 	/* check if mac addr is valid */
1595 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1596 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1597 				      mac_addr);
1598 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1599 			 mac_str);
1600 		return -EINVAL;
1601 	}
1602 
1603 	memset(&req, 0, sizeof(req));
1604 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1605 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1606 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1607 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1608 		return 0;
1609 	else if (ret == 0)
1610 		hns3_update_umv_space(hw, true);
1611 
1612 	return ret;
1613 }
1614 
1615 static int
1616 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1617 			  struct rte_ether_addr *mac_addr)
1618 {
1619 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1620 	struct rte_ether_addr *oaddr;
1621 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1622 	int ret, ret_val;
1623 
1624 	rte_spinlock_lock(&hw->lock);
1625 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1626 	ret = hw->ops.del_uc_mac_addr(hw, oaddr);
1627 	if (ret) {
1628 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1629 				      oaddr);
1630 		hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1631 			  mac_str, ret);
1632 
1633 		rte_spinlock_unlock(&hw->lock);
1634 		return ret;
1635 	}
1636 
1637 	ret = hw->ops.add_uc_mac_addr(hw, mac_addr);
1638 	if (ret) {
1639 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1640 				      mac_addr);
1641 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1642 		goto err_add_uc_addr;
1643 	}
1644 
1645 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1646 	if (ret) {
1647 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1648 		goto err_pause_addr_cfg;
1649 	}
1650 
1651 	rte_ether_addr_copy(mac_addr,
1652 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1653 	rte_spinlock_unlock(&hw->lock);
1654 
1655 	return 0;
1656 
1657 err_pause_addr_cfg:
1658 	ret_val = hw->ops.del_uc_mac_addr(hw, mac_addr);
1659 	if (ret_val) {
1660 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1661 				      mac_addr);
1662 		hns3_warn(hw,
1663 			  "Failed to roll back to del setted mac addr(%s): %d",
1664 			  mac_str, ret_val);
1665 	}
1666 
1667 err_add_uc_addr:
1668 	ret_val = hw->ops.add_uc_mac_addr(hw, oaddr);
1669 	if (ret_val) {
1670 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, oaddr);
1671 		hns3_warn(hw, "Failed to restore old uc mac addr(%s): %d",
1672 				  mac_str, ret_val);
1673 	}
1674 	rte_spinlock_unlock(&hw->lock);
1675 
1676 	return ret;
1677 }
1678 
1679 static void
1680 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1681 {
1682 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1683 	uint8_t word_num;
1684 	uint8_t bit_num;
1685 
1686 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1687 		word_num = vfid / 32;
1688 		bit_num = vfid % 32;
1689 		if (clr)
1690 			desc[1].data[word_num] &=
1691 			    rte_cpu_to_le_32(~(1UL << bit_num));
1692 		else
1693 			desc[1].data[word_num] |=
1694 			    rte_cpu_to_le_32(1UL << bit_num);
1695 	} else {
1696 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1697 		bit_num = vfid % 32;
1698 		if (clr)
1699 			desc[2].data[word_num] &=
1700 			    rte_cpu_to_le_32(~(1UL << bit_num));
1701 		else
1702 			desc[2].data[word_num] |=
1703 			    rte_cpu_to_le_32(1UL << bit_num);
1704 	}
1705 }
1706 
1707 static int
1708 hns3_add_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1709 {
1710 	struct hns3_cmd_desc desc[HNS3_MC_MAC_VLAN_OPS_DESC_NUM];
1711 	struct hns3_mac_vlan_tbl_entry_cmd req;
1712 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1713 	uint8_t vf_id;
1714 	int ret;
1715 
1716 	/* Check if mac addr is valid */
1717 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1718 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1719 				      mac_addr);
1720 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1721 			 mac_str);
1722 		return -EINVAL;
1723 	}
1724 
1725 	memset(&req, 0, sizeof(req));
1726 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1727 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1728 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1729 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1730 	if (ret) {
1731 		/* This mac addr do not exist, add new entry for it */
1732 		memset(desc[0].data, 0, sizeof(desc[0].data));
1733 		memset(desc[1].data, 0, sizeof(desc[0].data));
1734 		memset(desc[2].data, 0, sizeof(desc[0].data));
1735 	}
1736 
1737 	/*
1738 	 * In current version VF is not supported when PF is driven by DPDK
1739 	 * driver, just need to configure parameters for PF vport.
1740 	 */
1741 	vf_id = HNS3_PF_FUNC_ID;
1742 	hns3_update_desc_vfid(desc, vf_id, false);
1743 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc,
1744 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1745 	if (ret) {
1746 		if (ret == -ENOSPC)
1747 			hns3_err(hw, "mc mac vlan table is full");
1748 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1749 				      mac_addr);
1750 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1751 	}
1752 
1753 	return ret;
1754 }
1755 
1756 static int
1757 hns3_remove_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1758 {
1759 	struct hns3_mac_vlan_tbl_entry_cmd req;
1760 	struct hns3_cmd_desc desc[3];
1761 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1762 	uint8_t vf_id;
1763 	int ret;
1764 
1765 	/* Check if mac addr is valid */
1766 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1767 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1768 				      mac_addr);
1769 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1770 			 mac_str);
1771 		return -EINVAL;
1772 	}
1773 
1774 	memset(&req, 0, sizeof(req));
1775 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1776 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1777 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1778 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1779 	if (ret == 0) {
1780 		/*
1781 		 * This mac addr exist, remove this handle's VFID for it.
1782 		 * In current version VF is not supported when PF is driven by
1783 		 * DPDK driver, just need to configure parameters for PF vport.
1784 		 */
1785 		vf_id = HNS3_PF_FUNC_ID;
1786 		hns3_update_desc_vfid(desc, vf_id, true);
1787 
1788 		/* All the vfid is zero, so need to delete this entry */
1789 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1790 	} else if (ret == -ENOENT) {
1791 		/* This mac addr doesn't exist. */
1792 		return 0;
1793 	}
1794 
1795 	if (ret) {
1796 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1797 				      mac_addr);
1798 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1799 	}
1800 
1801 	return ret;
1802 }
1803 
1804 static int
1805 hns3_check_mq_mode(struct rte_eth_dev *dev)
1806 {
1807 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1808 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1809 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1810 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1811 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
1812 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
1813 	uint8_t num_tc;
1814 	int max_tc = 0;
1815 	int i;
1816 
1817 	if (((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_VMDQ_FLAG) ||
1818 	    (tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_DCB ||
1819 	     tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_ONLY)) {
1820 		hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.",
1821 			 rx_mq_mode, tx_mq_mode);
1822 		return -EOPNOTSUPP;
1823 	}
1824 
1825 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
1826 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
1827 	if ((uint32_t)rx_mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
1828 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
1829 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
1830 				 dcb_rx_conf->nb_tcs, pf->tc_max);
1831 			return -EINVAL;
1832 		}
1833 
1834 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
1835 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
1836 			hns3_err(hw, "on RTE_ETH_MQ_RX_DCB_RSS mode, "
1837 				 "nb_tcs(%d) != %d or %d in rx direction.",
1838 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
1839 			return -EINVAL;
1840 		}
1841 
1842 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
1843 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
1844 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
1845 			return -EINVAL;
1846 		}
1847 
1848 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
1849 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
1850 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
1851 					 "is not equal to one in tx direction.",
1852 					 i, dcb_rx_conf->dcb_tc[i]);
1853 				return -EINVAL;
1854 			}
1855 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
1856 				max_tc = dcb_rx_conf->dcb_tc[i];
1857 		}
1858 
1859 		num_tc = max_tc + 1;
1860 		if (num_tc > dcb_rx_conf->nb_tcs) {
1861 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
1862 				 num_tc, dcb_rx_conf->nb_tcs);
1863 			return -EINVAL;
1864 		}
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 static int
1871 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
1872 			   enum hns3_ring_type queue_type, uint16_t queue_id)
1873 {
1874 	struct hns3_cmd_desc desc;
1875 	struct hns3_ctrl_vector_chain_cmd *req =
1876 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
1877 	enum hns3_opcode_type op;
1878 	uint16_t tqp_type_and_id = 0;
1879 	uint16_t type;
1880 	uint16_t gl;
1881 	int ret;
1882 
1883 	op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
1884 	hns3_cmd_setup_basic_desc(&desc, op, false);
1885 	req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
1886 					      HNS3_TQP_INT_ID_L_S);
1887 	req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
1888 					      HNS3_TQP_INT_ID_H_S);
1889 
1890 	if (queue_type == HNS3_RING_TYPE_RX)
1891 		gl = HNS3_RING_GL_RX;
1892 	else
1893 		gl = HNS3_RING_GL_TX;
1894 
1895 	type = queue_type;
1896 
1897 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
1898 		       type);
1899 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
1900 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
1901 		       gl);
1902 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
1903 	req->int_cause_num = 1;
1904 	ret = hns3_cmd_send(hw, &desc, 1);
1905 	if (ret) {
1906 		hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.",
1907 			 en ? "Map" : "Unmap", queue_id, vector_id, ret);
1908 		return ret;
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 static int
1915 hns3_setup_dcb(struct rte_eth_dev *dev)
1916 {
1917 	struct hns3_adapter *hns = dev->data->dev_private;
1918 	struct hns3_hw *hw = &hns->hw;
1919 	int ret;
1920 
1921 	if (!hns3_dev_get_support(hw, DCB)) {
1922 		hns3_err(hw, "this port does not support dcb configurations.");
1923 		return -EOPNOTSUPP;
1924 	}
1925 
1926 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
1927 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
1928 		return -EOPNOTSUPP;
1929 	}
1930 
1931 	ret = hns3_dcb_configure(hns);
1932 	if (ret)
1933 		hns3_err(hw, "failed to config dcb: %d", ret);
1934 
1935 	return ret;
1936 }
1937 
1938 static int
1939 hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds)
1940 {
1941 	int ret;
1942 
1943 	/*
1944 	 * Some hardware doesn't support auto-negotiation, but users may not
1945 	 * configure link_speeds (default 0), which means auto-negotiation.
1946 	 * In this case, it should return success.
1947 	 */
1948 	if (link_speeds == RTE_ETH_LINK_SPEED_AUTONEG &&
1949 	    hw->mac.support_autoneg == 0)
1950 		return 0;
1951 
1952 	if (link_speeds != RTE_ETH_LINK_SPEED_AUTONEG) {
1953 		ret = hns3_check_port_speed(hw, link_speeds);
1954 		if (ret)
1955 			return ret;
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 static int
1962 hns3_check_dev_conf(struct rte_eth_dev *dev)
1963 {
1964 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1965 	struct rte_eth_conf *conf = &dev->data->dev_conf;
1966 	int ret;
1967 
1968 	ret = hns3_check_mq_mode(dev);
1969 	if (ret)
1970 		return ret;
1971 
1972 	return hns3_check_link_speed(hw, conf->link_speeds);
1973 }
1974 
1975 static int
1976 hns3_dev_configure(struct rte_eth_dev *dev)
1977 {
1978 	struct hns3_adapter *hns = dev->data->dev_private;
1979 	struct rte_eth_conf *conf = &dev->data->dev_conf;
1980 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
1981 	struct hns3_hw *hw = &hns->hw;
1982 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
1983 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
1984 	struct rte_eth_rss_conf rss_conf;
1985 	bool gro_en;
1986 	int ret;
1987 
1988 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
1989 
1990 	/*
1991 	 * Some versions of hardware network engine does not support
1992 	 * individually enable/disable/reset the Tx or Rx queue. These devices
1993 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
1994 	 * numbers of Tx queues allocated by upper applications are not equal to
1995 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
1996 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
1997 	 * work as usual. But these fake queues are imperceptible, and can not
1998 	 * be used by upper applications.
1999 	 */
2000 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2001 	if (ret) {
2002 		hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
2003 		hw->cfg_max_queues = 0;
2004 		return ret;
2005 	}
2006 
2007 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2008 	ret = hns3_check_dev_conf(dev);
2009 	if (ret)
2010 		goto cfg_err;
2011 
2012 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
2013 		ret = hns3_setup_dcb(dev);
2014 		if (ret)
2015 			goto cfg_err;
2016 	}
2017 
2018 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
2019 		conf->rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2020 		rss_conf = conf->rx_adv_conf.rss_conf;
2021 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2022 		if (ret)
2023 			goto cfg_err;
2024 	}
2025 
2026 	ret = hns3_dev_mtu_set(dev, conf->rxmode.mtu);
2027 	if (ret != 0)
2028 		goto cfg_err;
2029 
2030 	ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2031 	if (ret)
2032 		goto cfg_err;
2033 
2034 	ret = hns3_dev_configure_vlan(dev);
2035 	if (ret)
2036 		goto cfg_err;
2037 
2038 	/* config hardware GRO */
2039 	gro_en = conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO ? true : false;
2040 	ret = hns3_config_gro(hw, gro_en);
2041 	if (ret)
2042 		goto cfg_err;
2043 
2044 	hns3_init_rx_ptype_tble(dev);
2045 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2046 
2047 	return 0;
2048 
2049 cfg_err:
2050 	hw->cfg_max_queues = 0;
2051 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2052 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2053 
2054 	return ret;
2055 }
2056 
2057 static int
2058 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2059 {
2060 	struct hns3_config_max_frm_size_cmd *req;
2061 	struct hns3_cmd_desc desc;
2062 
2063 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2064 
2065 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2066 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2067 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2068 
2069 	return hns3_cmd_send(hw, &desc, 1);
2070 }
2071 
2072 static int
2073 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2074 {
2075 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2076 	int err;
2077 	int ret;
2078 
2079 	ret = hns3_set_mac_mtu(hw, mps);
2080 	if (ret) {
2081 		hns3_err(hw, "failed to set mtu, ret = %d", ret);
2082 		return ret;
2083 	}
2084 
2085 	ret = hns3_buffer_alloc(hw);
2086 	if (ret) {
2087 		hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2088 		goto rollback;
2089 	}
2090 
2091 	hns->pf.mps = mps;
2092 
2093 	return 0;
2094 
2095 rollback:
2096 	err = hns3_set_mac_mtu(hw, hns->pf.mps);
2097 	if (err)
2098 		hns3_err(hw, "fail to rollback MTU, err = %d", err);
2099 
2100 	return ret;
2101 }
2102 
2103 static int
2104 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2105 {
2106 	struct hns3_adapter *hns = dev->data->dev_private;
2107 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2108 	struct hns3_hw *hw = &hns->hw;
2109 	int ret;
2110 
2111 	if (dev->data->dev_started) {
2112 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2113 			 "before configuration", dev->data->port_id);
2114 		return -EBUSY;
2115 	}
2116 
2117 	rte_spinlock_lock(&hw->lock);
2118 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2119 
2120 	/*
2121 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2122 	 * assign to "uint16_t" type variable.
2123 	 */
2124 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2125 	if (ret) {
2126 		rte_spinlock_unlock(&hw->lock);
2127 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2128 			 dev->data->port_id, mtu, ret);
2129 		return ret;
2130 	}
2131 
2132 	rte_spinlock_unlock(&hw->lock);
2133 
2134 	return 0;
2135 }
2136 
2137 static uint32_t
2138 hns3_get_copper_port_speed_capa(uint32_t supported_speed)
2139 {
2140 	uint32_t speed_capa = 0;
2141 
2142 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT)
2143 		speed_capa |= RTE_ETH_LINK_SPEED_10M_HD;
2144 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT)
2145 		speed_capa |= RTE_ETH_LINK_SPEED_10M;
2146 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT)
2147 		speed_capa |= RTE_ETH_LINK_SPEED_100M_HD;
2148 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT)
2149 		speed_capa |= RTE_ETH_LINK_SPEED_100M;
2150 	if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT)
2151 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2152 
2153 	return speed_capa;
2154 }
2155 
2156 static uint32_t
2157 hns3_get_firber_port_speed_capa(uint32_t supported_speed)
2158 {
2159 	uint32_t speed_capa = 0;
2160 
2161 	if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT)
2162 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2163 	if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT)
2164 		speed_capa |= RTE_ETH_LINK_SPEED_10G;
2165 	if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT)
2166 		speed_capa |= RTE_ETH_LINK_SPEED_25G;
2167 	if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT)
2168 		speed_capa |= RTE_ETH_LINK_SPEED_40G;
2169 	if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT)
2170 		speed_capa |= RTE_ETH_LINK_SPEED_50G;
2171 	if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT)
2172 		speed_capa |= RTE_ETH_LINK_SPEED_100G;
2173 	if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT)
2174 		speed_capa |= RTE_ETH_LINK_SPEED_200G;
2175 
2176 	return speed_capa;
2177 }
2178 
2179 uint32_t
2180 hns3_get_speed_capa(struct hns3_hw *hw)
2181 {
2182 	struct hns3_mac *mac = &hw->mac;
2183 	uint32_t speed_capa;
2184 
2185 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
2186 		speed_capa =
2187 			hns3_get_copper_port_speed_capa(mac->supported_speed);
2188 	else
2189 		speed_capa =
2190 			hns3_get_firber_port_speed_capa(mac->supported_speed);
2191 
2192 	if (mac->support_autoneg == 0)
2193 		speed_capa |= RTE_ETH_LINK_SPEED_FIXED;
2194 
2195 	return speed_capa;
2196 }
2197 
2198 static int
2199 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2200 {
2201 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2202 	int ret;
2203 
2204 	(void)hns3_update_link_status(hw);
2205 
2206 	ret = hns3_update_link_info(eth_dev);
2207 	if (ret)
2208 		hw->mac.link_status = RTE_ETH_LINK_DOWN;
2209 
2210 	return ret;
2211 }
2212 
2213 static void
2214 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2215 		      struct rte_eth_link *new_link)
2216 {
2217 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2218 	struct hns3_mac *mac = &hw->mac;
2219 
2220 	switch (mac->link_speed) {
2221 	case RTE_ETH_SPEED_NUM_10M:
2222 	case RTE_ETH_SPEED_NUM_100M:
2223 	case RTE_ETH_SPEED_NUM_1G:
2224 	case RTE_ETH_SPEED_NUM_10G:
2225 	case RTE_ETH_SPEED_NUM_25G:
2226 	case RTE_ETH_SPEED_NUM_40G:
2227 	case RTE_ETH_SPEED_NUM_50G:
2228 	case RTE_ETH_SPEED_NUM_100G:
2229 	case RTE_ETH_SPEED_NUM_200G:
2230 		if (mac->link_status)
2231 			new_link->link_speed = mac->link_speed;
2232 		break;
2233 	default:
2234 		if (mac->link_status)
2235 			new_link->link_speed = RTE_ETH_SPEED_NUM_UNKNOWN;
2236 		break;
2237 	}
2238 
2239 	if (!mac->link_status)
2240 		new_link->link_speed = RTE_ETH_SPEED_NUM_NONE;
2241 
2242 	new_link->link_duplex = mac->link_duplex;
2243 	new_link->link_status = mac->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
2244 	new_link->link_autoneg = mac->link_autoneg;
2245 }
2246 
2247 static int
2248 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2249 {
2250 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2251 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2252 
2253 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2254 	uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2255 	struct hns3_mac *mac = &hw->mac;
2256 	struct rte_eth_link new_link;
2257 	int ret;
2258 
2259 	/* When port is stopped, report link down. */
2260 	if (eth_dev->data->dev_started == 0) {
2261 		new_link.link_autoneg = mac->link_autoneg;
2262 		new_link.link_duplex = mac->link_duplex;
2263 		new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
2264 		new_link.link_status = RTE_ETH_LINK_DOWN;
2265 		goto out;
2266 	}
2267 
2268 	do {
2269 		ret = hns3_update_port_link_info(eth_dev);
2270 		if (ret) {
2271 			hns3_err(hw, "failed to get port link info, ret = %d.",
2272 				 ret);
2273 			break;
2274 		}
2275 
2276 		if (!wait_to_complete || mac->link_status == RTE_ETH_LINK_UP)
2277 			break;
2278 
2279 		rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2280 	} while (retry_cnt--);
2281 
2282 	memset(&new_link, 0, sizeof(new_link));
2283 	hns3_setup_linkstatus(eth_dev, &new_link);
2284 
2285 out:
2286 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2287 }
2288 
2289 static int
2290 hns3_dev_set_link_up(struct rte_eth_dev *dev)
2291 {
2292 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2293 	int ret;
2294 
2295 	/*
2296 	 * The "tx_pkt_burst" will be restored. But the secondary process does
2297 	 * not support the mechanism for notifying the primary process.
2298 	 */
2299 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2300 		hns3_err(hw, "secondary process does not support to set link up.");
2301 		return -ENOTSUP;
2302 	}
2303 
2304 	/*
2305 	 * If device isn't started Rx/Tx function is still disabled, setting
2306 	 * link up is not allowed. But it is probably better to return success
2307 	 * to reduce the impact on the upper layer.
2308 	 */
2309 	if (hw->adapter_state != HNS3_NIC_STARTED) {
2310 		hns3_info(hw, "device isn't started, can't set link up.");
2311 		return 0;
2312 	}
2313 
2314 	if (!hw->set_link_down)
2315 		return 0;
2316 
2317 	rte_spinlock_lock(&hw->lock);
2318 	ret = hns3_cfg_mac_mode(hw, true);
2319 	if (ret) {
2320 		rte_spinlock_unlock(&hw->lock);
2321 		hns3_err(hw, "failed to set link up, ret = %d", ret);
2322 		return ret;
2323 	}
2324 
2325 	hw->set_link_down = false;
2326 	hns3_start_tx_datapath(dev);
2327 	rte_spinlock_unlock(&hw->lock);
2328 
2329 	return 0;
2330 }
2331 
2332 static int
2333 hns3_dev_set_link_down(struct rte_eth_dev *dev)
2334 {
2335 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2336 	int ret;
2337 
2338 	/*
2339 	 * The "tx_pkt_burst" will be set to dummy function. But the secondary
2340 	 * process does not support the mechanism for notifying the primary
2341 	 * process.
2342 	 */
2343 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2344 		hns3_err(hw, "secondary process does not support to set link down.");
2345 		return -ENOTSUP;
2346 	}
2347 
2348 	/*
2349 	 * If device isn't started or the API has been called, link status is
2350 	 * down, return success.
2351 	 */
2352 	if (hw->adapter_state != HNS3_NIC_STARTED || hw->set_link_down)
2353 		return 0;
2354 
2355 	rte_spinlock_lock(&hw->lock);
2356 	hns3_stop_tx_datapath(dev);
2357 	ret = hns3_cfg_mac_mode(hw, false);
2358 	if (ret) {
2359 		hns3_start_tx_datapath(dev);
2360 		rte_spinlock_unlock(&hw->lock);
2361 		hns3_err(hw, "failed to set link down, ret = %d", ret);
2362 		return ret;
2363 	}
2364 
2365 	hw->set_link_down = true;
2366 	rte_spinlock_unlock(&hw->lock);
2367 
2368 	return 0;
2369 }
2370 
2371 static int
2372 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2373 {
2374 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2375 	struct hns3_pf *pf = &hns->pf;
2376 
2377 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2378 		return -EINVAL;
2379 
2380 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2381 
2382 	return 0;
2383 }
2384 
2385 static int
2386 hns3_query_function_status(struct hns3_hw *hw)
2387 {
2388 #define HNS3_QUERY_MAX_CNT		10
2389 #define HNS3_QUERY_SLEEP_MSCOEND	1
2390 	struct hns3_func_status_cmd *req;
2391 	struct hns3_cmd_desc desc;
2392 	int timeout = 0;
2393 	int ret;
2394 
2395 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2396 	req = (struct hns3_func_status_cmd *)desc.data;
2397 
2398 	do {
2399 		ret = hns3_cmd_send(hw, &desc, 1);
2400 		if (ret) {
2401 			PMD_INIT_LOG(ERR, "query function status failed %d",
2402 				     ret);
2403 			return ret;
2404 		}
2405 
2406 		/* Check pf reset is done */
2407 		if (req->pf_state)
2408 			break;
2409 
2410 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2411 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2412 
2413 	return hns3_parse_func_status(hw, req);
2414 }
2415 
2416 static int
2417 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2418 {
2419 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2420 	struct hns3_pf *pf = &hns->pf;
2421 
2422 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2423 		/*
2424 		 * The total_tqps_num obtained from firmware is maximum tqp
2425 		 * numbers of this port, which should be used for PF and VFs.
2426 		 * There is no need for pf to have so many tqp numbers in
2427 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2428 		 * coming from config file, is assigned to maximum queue number
2429 		 * for the PF of this port by user. So users can modify the
2430 		 * maximum queue number of PF according to their own application
2431 		 * scenarios, which is more flexible to use. In addition, many
2432 		 * memories can be saved due to allocating queue statistics
2433 		 * room according to the actual number of queues required. The
2434 		 * maximum queue number of PF for network engine with
2435 		 * revision_id greater than 0x30 is assigned by config file.
2436 		 */
2437 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2438 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2439 				 "must be greater than 0.",
2440 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2441 			return -EINVAL;
2442 		}
2443 
2444 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2445 				       hw->total_tqps_num);
2446 	} else {
2447 		/*
2448 		 * Due to the limitation on the number of PF interrupts
2449 		 * available, the maximum queue number assigned to PF on
2450 		 * the network engine with revision_id 0x21 is 64.
2451 		 */
2452 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2453 				       HNS3_MAX_TQP_NUM_HIP08_PF);
2454 	}
2455 
2456 	return 0;
2457 }
2458 
2459 static int
2460 hns3_query_pf_resource(struct hns3_hw *hw)
2461 {
2462 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2463 	struct hns3_pf *pf = &hns->pf;
2464 	struct hns3_pf_res_cmd *req;
2465 	struct hns3_cmd_desc desc;
2466 	int ret;
2467 
2468 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2469 	ret = hns3_cmd_send(hw, &desc, 1);
2470 	if (ret) {
2471 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2472 		return ret;
2473 	}
2474 
2475 	req = (struct hns3_pf_res_cmd *)desc.data;
2476 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2477 			     rte_le_to_cpu_16(req->ext_tqp_num);
2478 	ret = hns3_get_pf_max_tqp_num(hw);
2479 	if (ret)
2480 		return ret;
2481 
2482 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2483 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2484 
2485 	if (req->tx_buf_size)
2486 		pf->tx_buf_size =
2487 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2488 	else
2489 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2490 
2491 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2492 
2493 	if (req->dv_buf_size)
2494 		pf->dv_buf_size =
2495 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2496 	else
2497 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2498 
2499 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2500 
2501 	hw->num_msi =
2502 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2503 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2504 
2505 	return 0;
2506 }
2507 
2508 static void
2509 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2510 {
2511 	struct hns3_cfg_param_cmd *req;
2512 	uint64_t mac_addr_tmp_high;
2513 	uint8_t ext_rss_size_max;
2514 	uint64_t mac_addr_tmp;
2515 	uint32_t i;
2516 
2517 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2518 
2519 	/* get the configuration */
2520 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2521 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2522 
2523 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2524 				       HNS3_CFG_PHY_ADDR_M,
2525 				       HNS3_CFG_PHY_ADDR_S);
2526 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2527 					 HNS3_CFG_MEDIA_TP_M,
2528 					 HNS3_CFG_MEDIA_TP_S);
2529 	/* get mac address */
2530 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2531 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2532 					   HNS3_CFG_MAC_ADDR_H_M,
2533 					   HNS3_CFG_MAC_ADDR_H_S);
2534 
2535 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2536 
2537 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2538 					    HNS3_CFG_DEFAULT_SPEED_M,
2539 					    HNS3_CFG_DEFAULT_SPEED_S);
2540 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2541 					   HNS3_CFG_RSS_SIZE_M,
2542 					   HNS3_CFG_RSS_SIZE_S);
2543 
2544 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2545 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2546 
2547 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2548 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2549 
2550 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2551 					    HNS3_CFG_SPEED_ABILITY_M,
2552 					    HNS3_CFG_SPEED_ABILITY_S);
2553 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2554 					HNS3_CFG_UMV_TBL_SPACE_M,
2555 					HNS3_CFG_UMV_TBL_SPACE_S);
2556 	if (!cfg->umv_space)
2557 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2558 
2559 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2560 					       HNS3_CFG_EXT_RSS_SIZE_M,
2561 					       HNS3_CFG_EXT_RSS_SIZE_S);
2562 	/*
2563 	 * Field ext_rss_size_max obtained from firmware will be more flexible
2564 	 * for future changes and expansions, which is an exponent of 2, instead
2565 	 * of reading out directly. If this field is not zero, hns3 PF PMD
2566 	 * uses it as rss_size_max under one TC. Device, whose revision
2567 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2568 	 * maximum number of queues supported under a TC through this field.
2569 	 */
2570 	if (ext_rss_size_max)
2571 		cfg->rss_size_max = 1U << ext_rss_size_max;
2572 }
2573 
2574 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2575  * @hw: pointer to struct hns3_hw
2576  * @hcfg: the config structure to be getted
2577  */
2578 static int
2579 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2580 {
2581 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2582 	struct hns3_cfg_param_cmd *req;
2583 	uint32_t offset;
2584 	uint32_t i;
2585 	int ret;
2586 
2587 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2588 		offset = 0;
2589 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2590 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2591 					  true);
2592 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2593 			       i * HNS3_CFG_RD_LEN_BYTES);
2594 		/* Len should be divided by 4 when send to hardware */
2595 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2596 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2597 		req->offset = rte_cpu_to_le_32(offset);
2598 	}
2599 
2600 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2601 	if (ret) {
2602 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2603 		return ret;
2604 	}
2605 
2606 	hns3_parse_cfg(hcfg, desc);
2607 
2608 	return 0;
2609 }
2610 
2611 static int
2612 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2613 {
2614 	switch (speed_cmd) {
2615 	case HNS3_CFG_SPEED_10M:
2616 		*speed = RTE_ETH_SPEED_NUM_10M;
2617 		break;
2618 	case HNS3_CFG_SPEED_100M:
2619 		*speed = RTE_ETH_SPEED_NUM_100M;
2620 		break;
2621 	case HNS3_CFG_SPEED_1G:
2622 		*speed = RTE_ETH_SPEED_NUM_1G;
2623 		break;
2624 	case HNS3_CFG_SPEED_10G:
2625 		*speed = RTE_ETH_SPEED_NUM_10G;
2626 		break;
2627 	case HNS3_CFG_SPEED_25G:
2628 		*speed = RTE_ETH_SPEED_NUM_25G;
2629 		break;
2630 	case HNS3_CFG_SPEED_40G:
2631 		*speed = RTE_ETH_SPEED_NUM_40G;
2632 		break;
2633 	case HNS3_CFG_SPEED_50G:
2634 		*speed = RTE_ETH_SPEED_NUM_50G;
2635 		break;
2636 	case HNS3_CFG_SPEED_100G:
2637 		*speed = RTE_ETH_SPEED_NUM_100G;
2638 		break;
2639 	case HNS3_CFG_SPEED_200G:
2640 		*speed = RTE_ETH_SPEED_NUM_200G;
2641 		break;
2642 	default:
2643 		return -EINVAL;
2644 	}
2645 
2646 	return 0;
2647 }
2648 
2649 static void
2650 hns3_set_default_dev_specifications(struct hns3_hw *hw)
2651 {
2652 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
2653 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
2654 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
2655 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
2656 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
2657 }
2658 
2659 static void
2660 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
2661 {
2662 	struct hns3_dev_specs_0_cmd *req0;
2663 
2664 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
2665 
2666 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
2667 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
2668 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
2669 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
2670 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
2671 }
2672 
2673 static int
2674 hns3_check_dev_specifications(struct hns3_hw *hw)
2675 {
2676 	if (hw->rss_ind_tbl_size == 0 ||
2677 	    hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
2678 		hns3_err(hw, "the size of hash lookup table configured (%u)"
2679 			      " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
2680 			      HNS3_RSS_IND_TBL_SIZE_MAX);
2681 		return -EINVAL;
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 static int
2688 hns3_query_dev_specifications(struct hns3_hw *hw)
2689 {
2690 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
2691 	int ret;
2692 	int i;
2693 
2694 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2695 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
2696 					  true);
2697 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
2698 	}
2699 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
2700 
2701 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
2702 	if (ret)
2703 		return ret;
2704 
2705 	hns3_parse_dev_specifications(hw, desc);
2706 
2707 	return hns3_check_dev_specifications(hw);
2708 }
2709 
2710 static int
2711 hns3_get_capability(struct hns3_hw *hw)
2712 {
2713 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2714 	struct rte_pci_device *pci_dev;
2715 	struct hns3_pf *pf = &hns->pf;
2716 	struct rte_eth_dev *eth_dev;
2717 	uint16_t device_id;
2718 	int ret;
2719 
2720 	eth_dev = &rte_eth_devices[hw->data->port_id];
2721 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2722 	device_id = pci_dev->id.device_id;
2723 
2724 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
2725 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
2726 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
2727 	    device_id == HNS3_DEV_ID_200G_RDMA)
2728 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
2729 
2730 	ret = hns3_get_pci_revision_id(hw, &hw->revision);
2731 	if (ret)
2732 		return ret;
2733 
2734 	ret = hns3_query_mac_stats_reg_num(hw);
2735 	if (ret)
2736 		return ret;
2737 
2738 	if (hw->revision < PCI_REVISION_ID_HIP09_A) {
2739 		hns3_set_default_dev_specifications(hw);
2740 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
2741 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
2742 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
2743 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
2744 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
2745 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
2746 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
2747 		hw->rss_info.ipv6_sctp_offload_supported = false;
2748 		hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
2749 		pf->support_multi_tc_pause = false;
2750 		return 0;
2751 	}
2752 
2753 	ret = hns3_query_dev_specifications(hw);
2754 	if (ret) {
2755 		PMD_INIT_LOG(ERR,
2756 			     "failed to query dev specifications, ret = %d",
2757 			     ret);
2758 		return ret;
2759 	}
2760 
2761 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
2762 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
2763 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
2764 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
2765 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
2766 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
2767 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
2768 	hw->rss_info.ipv6_sctp_offload_supported = true;
2769 	hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
2770 	pf->support_multi_tc_pause = true;
2771 
2772 	return 0;
2773 }
2774 
2775 static int
2776 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
2777 {
2778 	int ret;
2779 
2780 	switch (media_type) {
2781 	case HNS3_MEDIA_TYPE_COPPER:
2782 		if (!hns3_dev_get_support(hw, COPPER)) {
2783 			PMD_INIT_LOG(ERR,
2784 				     "Media type is copper, not supported.");
2785 			ret = -EOPNOTSUPP;
2786 		} else {
2787 			ret = 0;
2788 		}
2789 		break;
2790 	case HNS3_MEDIA_TYPE_FIBER:
2791 		ret = 0;
2792 		break;
2793 	case HNS3_MEDIA_TYPE_BACKPLANE:
2794 		PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
2795 		ret = -EOPNOTSUPP;
2796 		break;
2797 	default:
2798 		PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
2799 		ret = -EINVAL;
2800 		break;
2801 	}
2802 
2803 	return ret;
2804 }
2805 
2806 static int
2807 hns3_get_board_configuration(struct hns3_hw *hw)
2808 {
2809 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2810 	struct hns3_pf *pf = &hns->pf;
2811 	struct hns3_cfg cfg;
2812 	int ret;
2813 
2814 	ret = hns3_get_board_cfg(hw, &cfg);
2815 	if (ret) {
2816 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2817 		return ret;
2818 	}
2819 
2820 	ret = hns3_check_media_type(hw, cfg.media_type);
2821 	if (ret)
2822 		return ret;
2823 
2824 	hw->mac.media_type = cfg.media_type;
2825 	hw->rss_size_max = cfg.rss_size_max;
2826 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2827 	hw->mac.phy_addr = cfg.phy_addr;
2828 	hw->dcb_info.num_pg = 1;
2829 	hw->dcb_info.hw_pfc_map = 0;
2830 
2831 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2832 	if (ret) {
2833 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
2834 			     cfg.default_speed, ret);
2835 		return ret;
2836 	}
2837 
2838 	pf->tc_max = cfg.tc_num;
2839 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2840 		PMD_INIT_LOG(WARNING,
2841 			     "Get TC num(%u) from flash, set TC num to 1",
2842 			     pf->tc_max);
2843 		pf->tc_max = 1;
2844 	}
2845 
2846 	/* Dev does not support DCB */
2847 	if (!hns3_dev_get_support(hw, DCB)) {
2848 		pf->tc_max = 1;
2849 		pf->pfc_max = 0;
2850 	} else
2851 		pf->pfc_max = pf->tc_max;
2852 
2853 	hw->dcb_info.num_tc = 1;
2854 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2855 				     hw->tqps_num / hw->dcb_info.num_tc);
2856 	hns3_set_bit(hw->hw_tc_map, 0, 1);
2857 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
2858 
2859 	pf->wanted_umv_size = cfg.umv_space;
2860 
2861 	return ret;
2862 }
2863 
2864 static int
2865 hns3_get_configuration(struct hns3_hw *hw)
2866 {
2867 	int ret;
2868 
2869 	ret = hns3_query_function_status(hw);
2870 	if (ret) {
2871 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
2872 		return ret;
2873 	}
2874 
2875 	/* Get device capability */
2876 	ret = hns3_get_capability(hw);
2877 	if (ret) {
2878 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
2879 		return ret;
2880 	}
2881 
2882 	/* Get pf resource */
2883 	ret = hns3_query_pf_resource(hw);
2884 	if (ret) {
2885 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
2886 		return ret;
2887 	}
2888 
2889 	ret = hns3_get_board_configuration(hw);
2890 	if (ret) {
2891 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
2892 		return ret;
2893 	}
2894 
2895 	ret = hns3_query_dev_fec_info(hw);
2896 	if (ret)
2897 		PMD_INIT_LOG(ERR,
2898 			     "failed to query FEC information, ret = %d", ret);
2899 
2900 	return ret;
2901 }
2902 
2903 static int
2904 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
2905 		      uint16_t tqp_vid, bool is_pf)
2906 {
2907 	struct hns3_tqp_map_cmd *req;
2908 	struct hns3_cmd_desc desc;
2909 	int ret;
2910 
2911 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
2912 
2913 	req = (struct hns3_tqp_map_cmd *)desc.data;
2914 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
2915 	req->tqp_vf = func_id;
2916 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
2917 	if (!is_pf)
2918 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
2919 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
2920 
2921 	ret = hns3_cmd_send(hw, &desc, 1);
2922 	if (ret)
2923 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
2924 
2925 	return ret;
2926 }
2927 
2928 static int
2929 hns3_map_tqp(struct hns3_hw *hw)
2930 {
2931 	int ret;
2932 	int i;
2933 
2934 	/*
2935 	 * In current version, VF is not supported when PF is driven by DPDK
2936 	 * driver, so we assign total tqps_num tqps allocated to this port
2937 	 * to PF.
2938 	 */
2939 	for (i = 0; i < hw->total_tqps_num; i++) {
2940 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
2941 		if (ret)
2942 			return ret;
2943 	}
2944 
2945 	return 0;
2946 }
2947 
2948 static int
2949 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
2950 {
2951 	struct hns3_config_mac_speed_dup_cmd *req;
2952 	struct hns3_cmd_desc desc;
2953 	int ret;
2954 
2955 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
2956 
2957 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
2958 
2959 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
2960 
2961 	switch (speed) {
2962 	case RTE_ETH_SPEED_NUM_10M:
2963 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2964 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
2965 		break;
2966 	case RTE_ETH_SPEED_NUM_100M:
2967 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2968 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
2969 		break;
2970 	case RTE_ETH_SPEED_NUM_1G:
2971 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2972 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
2973 		break;
2974 	case RTE_ETH_SPEED_NUM_10G:
2975 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2976 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
2977 		break;
2978 	case RTE_ETH_SPEED_NUM_25G:
2979 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2980 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
2981 		break;
2982 	case RTE_ETH_SPEED_NUM_40G:
2983 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2984 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
2985 		break;
2986 	case RTE_ETH_SPEED_NUM_50G:
2987 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2988 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
2989 		break;
2990 	case RTE_ETH_SPEED_NUM_100G:
2991 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2992 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
2993 		break;
2994 	case RTE_ETH_SPEED_NUM_200G:
2995 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
2996 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
2997 		break;
2998 	default:
2999 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3000 		return -EINVAL;
3001 	}
3002 
3003 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3004 
3005 	ret = hns3_cmd_send(hw, &desc, 1);
3006 	if (ret)
3007 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3008 
3009 	return ret;
3010 }
3011 
3012 static int
3013 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3014 {
3015 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3016 	struct hns3_pf *pf = &hns->pf;
3017 	struct hns3_priv_buf *priv;
3018 	uint32_t i, total_size;
3019 
3020 	total_size = pf->pkt_buf_size;
3021 
3022 	/* alloc tx buffer for all enabled tc */
3023 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3024 		priv = &buf_alloc->priv_buf[i];
3025 
3026 		if (hw->hw_tc_map & BIT(i)) {
3027 			if (total_size < pf->tx_buf_size)
3028 				return -ENOMEM;
3029 
3030 			priv->tx_buf_size = pf->tx_buf_size;
3031 		} else
3032 			priv->tx_buf_size = 0;
3033 
3034 		total_size -= priv->tx_buf_size;
3035 	}
3036 
3037 	return 0;
3038 }
3039 
3040 static int
3041 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3042 {
3043 /* TX buffer size is unit by 128 byte */
3044 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3045 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3046 	struct hns3_tx_buff_alloc_cmd *req;
3047 	struct hns3_cmd_desc desc;
3048 	uint32_t buf_size;
3049 	uint32_t i;
3050 	int ret;
3051 
3052 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3053 
3054 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3055 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3056 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3057 
3058 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3059 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3060 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3061 	}
3062 
3063 	ret = hns3_cmd_send(hw, &desc, 1);
3064 	if (ret)
3065 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3066 
3067 	return ret;
3068 }
3069 
3070 static int
3071 hns3_get_tc_num(struct hns3_hw *hw)
3072 {
3073 	int cnt = 0;
3074 	uint8_t i;
3075 
3076 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3077 		if (hw->hw_tc_map & BIT(i))
3078 			cnt++;
3079 	return cnt;
3080 }
3081 
3082 static uint32_t
3083 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3084 {
3085 	struct hns3_priv_buf *priv;
3086 	uint32_t rx_priv = 0;
3087 	int i;
3088 
3089 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3090 		priv = &buf_alloc->priv_buf[i];
3091 		if (priv->enable)
3092 			rx_priv += priv->buf_size;
3093 	}
3094 	return rx_priv;
3095 }
3096 
3097 static uint32_t
3098 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3099 {
3100 	uint32_t total_tx_size = 0;
3101 	uint32_t i;
3102 
3103 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3104 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3105 
3106 	return total_tx_size;
3107 }
3108 
3109 /* Get the number of pfc enabled TCs, which have private buffer */
3110 static int
3111 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3112 {
3113 	struct hns3_priv_buf *priv;
3114 	int cnt = 0;
3115 	uint8_t i;
3116 
3117 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3118 		priv = &buf_alloc->priv_buf[i];
3119 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3120 			cnt++;
3121 	}
3122 
3123 	return cnt;
3124 }
3125 
3126 /* Get the number of pfc disabled TCs, which have private buffer */
3127 static int
3128 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3129 			 struct hns3_pkt_buf_alloc *buf_alloc)
3130 {
3131 	struct hns3_priv_buf *priv;
3132 	int cnt = 0;
3133 	uint8_t i;
3134 
3135 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3136 		priv = &buf_alloc->priv_buf[i];
3137 		if (hw->hw_tc_map & BIT(i) &&
3138 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3139 			cnt++;
3140 	}
3141 
3142 	return cnt;
3143 }
3144 
3145 static bool
3146 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3147 		  uint32_t rx_all)
3148 {
3149 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3150 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3151 	struct hns3_pf *pf = &hns->pf;
3152 	uint32_t shared_buf, aligned_mps;
3153 	uint32_t rx_priv;
3154 	uint8_t tc_num;
3155 	uint8_t i;
3156 
3157 	tc_num = hns3_get_tc_num(hw);
3158 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3159 
3160 	if (hns3_dev_get_support(hw, DCB))
3161 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3162 					pf->dv_buf_size;
3163 	else
3164 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3165 					+ pf->dv_buf_size;
3166 
3167 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3168 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3169 			     HNS3_BUF_SIZE_UNIT);
3170 
3171 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3172 	if (rx_all < rx_priv + shared_std)
3173 		return false;
3174 
3175 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3176 	buf_alloc->s_buf.buf_size = shared_buf;
3177 	if (hns3_dev_get_support(hw, DCB)) {
3178 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3179 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3180 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3181 				  HNS3_BUF_SIZE_UNIT);
3182 	} else {
3183 		buf_alloc->s_buf.self.high =
3184 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3185 		buf_alloc->s_buf.self.low = aligned_mps;
3186 	}
3187 
3188 	if (hns3_dev_get_support(hw, DCB)) {
3189 		hi_thrd = shared_buf - pf->dv_buf_size;
3190 
3191 		if (tc_num <= NEED_RESERVE_TC_NUM)
3192 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3193 				  BUF_MAX_PERCENT;
3194 
3195 		if (tc_num)
3196 			hi_thrd = hi_thrd / tc_num;
3197 
3198 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3199 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3200 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3201 	} else {
3202 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3203 		lo_thrd = aligned_mps;
3204 	}
3205 
3206 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3207 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3208 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3209 	}
3210 
3211 	return true;
3212 }
3213 
3214 static bool
3215 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3216 		     struct hns3_pkt_buf_alloc *buf_alloc)
3217 {
3218 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3219 	struct hns3_pf *pf = &hns->pf;
3220 	struct hns3_priv_buf *priv;
3221 	uint32_t aligned_mps;
3222 	uint32_t rx_all;
3223 	uint8_t i;
3224 
3225 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3226 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3227 
3228 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3229 		priv = &buf_alloc->priv_buf[i];
3230 
3231 		priv->enable = 0;
3232 		priv->wl.low = 0;
3233 		priv->wl.high = 0;
3234 		priv->buf_size = 0;
3235 
3236 		if (!(hw->hw_tc_map & BIT(i)))
3237 			continue;
3238 
3239 		priv->enable = 1;
3240 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3241 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3242 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3243 						HNS3_BUF_SIZE_UNIT);
3244 		} else {
3245 			priv->wl.low = 0;
3246 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3247 					aligned_mps;
3248 		}
3249 
3250 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3251 	}
3252 
3253 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3254 }
3255 
3256 static bool
3257 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3258 			     struct hns3_pkt_buf_alloc *buf_alloc)
3259 {
3260 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3261 	struct hns3_pf *pf = &hns->pf;
3262 	struct hns3_priv_buf *priv;
3263 	int no_pfc_priv_num;
3264 	uint32_t rx_all;
3265 	uint8_t mask;
3266 	int i;
3267 
3268 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3269 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3270 
3271 	/* let the last to be cleared first */
3272 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3273 		priv = &buf_alloc->priv_buf[i];
3274 		mask = BIT((uint8_t)i);
3275 		if (hw->hw_tc_map & mask &&
3276 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3277 			/* Clear the no pfc TC private buffer */
3278 			priv->wl.low = 0;
3279 			priv->wl.high = 0;
3280 			priv->buf_size = 0;
3281 			priv->enable = 0;
3282 			no_pfc_priv_num--;
3283 		}
3284 
3285 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3286 		    no_pfc_priv_num == 0)
3287 			break;
3288 	}
3289 
3290 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3291 }
3292 
3293 static bool
3294 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3295 			   struct hns3_pkt_buf_alloc *buf_alloc)
3296 {
3297 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3298 	struct hns3_pf *pf = &hns->pf;
3299 	struct hns3_priv_buf *priv;
3300 	uint32_t rx_all;
3301 	int pfc_priv_num;
3302 	uint8_t mask;
3303 	int i;
3304 
3305 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3306 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3307 
3308 	/* let the last to be cleared first */
3309 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3310 		priv = &buf_alloc->priv_buf[i];
3311 		mask = BIT((uint8_t)i);
3312 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3313 			/* Reduce the number of pfc TC with private buffer */
3314 			priv->wl.low = 0;
3315 			priv->enable = 0;
3316 			priv->wl.high = 0;
3317 			priv->buf_size = 0;
3318 			pfc_priv_num--;
3319 		}
3320 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3321 		    pfc_priv_num == 0)
3322 			break;
3323 	}
3324 
3325 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3326 }
3327 
3328 static bool
3329 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3330 			  struct hns3_pkt_buf_alloc *buf_alloc)
3331 {
3332 #define COMPENSATE_BUFFER	0x3C00
3333 #define COMPENSATE_HALF_MPS_NUM	5
3334 #define PRIV_WL_GAP		0x1800
3335 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3336 	struct hns3_pf *pf = &hns->pf;
3337 	uint32_t tc_num = hns3_get_tc_num(hw);
3338 	uint32_t half_mps = pf->mps >> 1;
3339 	struct hns3_priv_buf *priv;
3340 	uint32_t min_rx_priv;
3341 	uint32_t rx_priv;
3342 	uint8_t i;
3343 
3344 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3345 	if (tc_num)
3346 		rx_priv = rx_priv / tc_num;
3347 
3348 	if (tc_num <= NEED_RESERVE_TC_NUM)
3349 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3350 
3351 	/*
3352 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3353 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3354 	 * buffer if rx_priv is greater than min_rx_priv.
3355 	 */
3356 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3357 			COMPENSATE_HALF_MPS_NUM * half_mps;
3358 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3359 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3360 	if (rx_priv < min_rx_priv)
3361 		return false;
3362 
3363 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3364 		priv = &buf_alloc->priv_buf[i];
3365 		priv->enable = 0;
3366 		priv->wl.low = 0;
3367 		priv->wl.high = 0;
3368 		priv->buf_size = 0;
3369 
3370 		if (!(hw->hw_tc_map & BIT(i)))
3371 			continue;
3372 
3373 		priv->enable = 1;
3374 		priv->buf_size = rx_priv;
3375 		priv->wl.high = rx_priv - pf->dv_buf_size;
3376 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3377 	}
3378 
3379 	buf_alloc->s_buf.buf_size = 0;
3380 
3381 	return true;
3382 }
3383 
3384 /*
3385  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3386  * @hw: pointer to struct hns3_hw
3387  * @buf_alloc: pointer to buffer calculation data
3388  * @return: 0: calculate successful, negative: fail
3389  */
3390 static int
3391 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3392 {
3393 	/* When DCB is not supported, rx private buffer is not allocated. */
3394 	if (!hns3_dev_get_support(hw, DCB)) {
3395 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3396 		struct hns3_pf *pf = &hns->pf;
3397 		uint32_t rx_all = pf->pkt_buf_size;
3398 
3399 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3400 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3401 			return -ENOMEM;
3402 
3403 		return 0;
3404 	}
3405 
3406 	/*
3407 	 * Try to allocate privated packet buffer for all TCs without share
3408 	 * buffer.
3409 	 */
3410 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3411 		return 0;
3412 
3413 	/*
3414 	 * Try to allocate privated packet buffer for all TCs with share
3415 	 * buffer.
3416 	 */
3417 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3418 		return 0;
3419 
3420 	/*
3421 	 * For different application scenes, the enabled port number, TC number
3422 	 * and no_drop TC number are different. In order to obtain the better
3423 	 * performance, software could allocate the buffer size and configure
3424 	 * the waterline by trying to decrease the private buffer size according
3425 	 * to the order, namely, waterline of valid tc, pfc disabled tc, pfc
3426 	 * enabled tc.
3427 	 */
3428 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3429 		return 0;
3430 
3431 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3432 		return 0;
3433 
3434 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3435 		return 0;
3436 
3437 	return -ENOMEM;
3438 }
3439 
3440 static int
3441 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3442 {
3443 	struct hns3_rx_priv_buff_cmd *req;
3444 	struct hns3_cmd_desc desc;
3445 	uint32_t buf_size;
3446 	int ret;
3447 	int i;
3448 
3449 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3450 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3451 
3452 	/* Alloc private buffer TCs */
3453 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3454 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3455 
3456 		req->buf_num[i] =
3457 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3458 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3459 	}
3460 
3461 	buf_size = buf_alloc->s_buf.buf_size;
3462 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3463 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3464 
3465 	ret = hns3_cmd_send(hw, &desc, 1);
3466 	if (ret)
3467 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3468 
3469 	return ret;
3470 }
3471 
3472 static int
3473 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3474 {
3475 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3476 	struct hns3_rx_priv_wl_buf *req;
3477 	struct hns3_priv_buf *priv;
3478 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3479 	int i, j;
3480 	int ret;
3481 
3482 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3483 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3484 					  false);
3485 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3486 
3487 		/* The first descriptor set the NEXT bit to 1 */
3488 		if (i == 0)
3489 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3490 		else
3491 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3492 
3493 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3494 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3495 
3496 			priv = &buf_alloc->priv_buf[idx];
3497 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3498 							HNS3_BUF_UNIT_S);
3499 			req->tc_wl[j].high |=
3500 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3501 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3502 							HNS3_BUF_UNIT_S);
3503 			req->tc_wl[j].low |=
3504 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3505 		}
3506 	}
3507 
3508 	/* Send 2 descriptor at one time */
3509 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3510 	if (ret)
3511 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3512 			     ret);
3513 	return ret;
3514 }
3515 
3516 static int
3517 hns3_common_thrd_config(struct hns3_hw *hw,
3518 			struct hns3_pkt_buf_alloc *buf_alloc)
3519 {
3520 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3521 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3522 	struct hns3_rx_com_thrd *req;
3523 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3524 	struct hns3_tc_thrd *tc;
3525 	int tc_idx;
3526 	int i, j;
3527 	int ret;
3528 
3529 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3530 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3531 					  false);
3532 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3533 
3534 		/* The first descriptor set the NEXT bit to 1 */
3535 		if (i == 0)
3536 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3537 		else
3538 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3539 
3540 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3541 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3542 			tc = &s_buf->tc_thrd[tc_idx];
3543 
3544 			req->com_thrd[j].high =
3545 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3546 			req->com_thrd[j].high |=
3547 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3548 			req->com_thrd[j].low =
3549 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3550 			req->com_thrd[j].low |=
3551 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3552 		}
3553 	}
3554 
3555 	/* Send 2 descriptors at one time */
3556 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3557 	if (ret)
3558 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3559 
3560 	return ret;
3561 }
3562 
3563 static int
3564 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3565 {
3566 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3567 	struct hns3_rx_com_wl *req;
3568 	struct hns3_cmd_desc desc;
3569 	int ret;
3570 
3571 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3572 
3573 	req = (struct hns3_rx_com_wl *)desc.data;
3574 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3575 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3576 
3577 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3578 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3579 
3580 	ret = hns3_cmd_send(hw, &desc, 1);
3581 	if (ret)
3582 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3583 
3584 	return ret;
3585 }
3586 
3587 int
3588 hns3_buffer_alloc(struct hns3_hw *hw)
3589 {
3590 	struct hns3_pkt_buf_alloc pkt_buf;
3591 	int ret;
3592 
3593 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3594 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3595 	if (ret) {
3596 		PMD_INIT_LOG(ERR,
3597 			     "could not calc tx buffer size for all TCs %d",
3598 			     ret);
3599 		return ret;
3600 	}
3601 
3602 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3603 	if (ret) {
3604 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3605 		return ret;
3606 	}
3607 
3608 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3609 	if (ret) {
3610 		PMD_INIT_LOG(ERR,
3611 			     "could not calc rx priv buffer size for all TCs %d",
3612 			     ret);
3613 		return ret;
3614 	}
3615 
3616 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3617 	if (ret) {
3618 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3619 		return ret;
3620 	}
3621 
3622 	if (hns3_dev_get_support(hw, DCB)) {
3623 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3624 		if (ret) {
3625 			PMD_INIT_LOG(ERR,
3626 				     "could not configure rx private waterline %d",
3627 				     ret);
3628 			return ret;
3629 		}
3630 
3631 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3632 		if (ret) {
3633 			PMD_INIT_LOG(ERR,
3634 				     "could not configure common threshold %d",
3635 				     ret);
3636 			return ret;
3637 		}
3638 	}
3639 
3640 	ret = hns3_common_wl_config(hw, &pkt_buf);
3641 	if (ret)
3642 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3643 			     ret);
3644 
3645 	return ret;
3646 }
3647 
3648 static int
3649 hns3_mac_init(struct hns3_hw *hw)
3650 {
3651 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3652 	struct hns3_mac *mac = &hw->mac;
3653 	struct hns3_pf *pf = &hns->pf;
3654 	int ret;
3655 
3656 	pf->support_sfp_query = true;
3657 	mac->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
3658 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3659 	if (ret) {
3660 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3661 		return ret;
3662 	}
3663 
3664 	mac->link_status = RTE_ETH_LINK_DOWN;
3665 
3666 	return hns3_config_mtu(hw, pf->mps);
3667 }
3668 
3669 static int
3670 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3671 {
3672 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3673 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3674 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3675 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3676 	int return_status;
3677 
3678 	if (cmdq_resp) {
3679 		PMD_INIT_LOG(ERR,
3680 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
3681 			     cmdq_resp);
3682 		return -EIO;
3683 	}
3684 
3685 	switch (resp_code) {
3686 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3687 	case HNS3_ETHERTYPE_ALREADY_ADD:
3688 		return_status = 0;
3689 		break;
3690 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3691 		PMD_INIT_LOG(ERR,
3692 			     "add mac ethertype failed for manager table overflow.");
3693 		return_status = -EIO;
3694 		break;
3695 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3696 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3697 		return_status = -EIO;
3698 		break;
3699 	default:
3700 		PMD_INIT_LOG(ERR,
3701 			     "add mac ethertype failed for undefined, code=%u.",
3702 			     resp_code);
3703 		return_status = -EIO;
3704 		break;
3705 	}
3706 
3707 	return return_status;
3708 }
3709 
3710 static int
3711 hns3_add_mgr_tbl(struct hns3_hw *hw,
3712 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3713 {
3714 	struct hns3_cmd_desc desc;
3715 	uint8_t resp_code;
3716 	uint16_t retval;
3717 	int ret;
3718 
3719 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3720 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3721 
3722 	ret = hns3_cmd_send(hw, &desc, 1);
3723 	if (ret) {
3724 		PMD_INIT_LOG(ERR,
3725 			     "add mac ethertype failed for cmd_send, ret =%d.",
3726 			     ret);
3727 		return ret;
3728 	}
3729 
3730 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3731 	retval = rte_le_to_cpu_16(desc.retval);
3732 
3733 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3734 }
3735 
3736 static void
3737 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3738 		     int *table_item_num)
3739 {
3740 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3741 
3742 	/*
3743 	 * In current version, we add one item in management table as below:
3744 	 * 0x0180C200000E -- LLDP MC address
3745 	 */
3746 	tbl = mgr_table;
3747 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3748 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3749 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3750 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3751 	tbl->i_port_bitmap = 0x1;
3752 	*table_item_num = 1;
3753 }
3754 
3755 static int
3756 hns3_init_mgr_tbl(struct hns3_hw *hw)
3757 {
3758 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
3759 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3760 	int table_item_num;
3761 	int ret;
3762 	int i;
3763 
3764 	memset(mgr_table, 0, sizeof(mgr_table));
3765 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3766 	for (i = 0; i < table_item_num; i++) {
3767 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3768 		if (ret) {
3769 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3770 				     ret);
3771 			return ret;
3772 		}
3773 	}
3774 
3775 	return 0;
3776 }
3777 
3778 static void
3779 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3780 			bool en_mc, bool en_bc, int vport_id)
3781 {
3782 	if (!param)
3783 		return;
3784 
3785 	memset(param, 0, sizeof(struct hns3_promisc_param));
3786 	if (en_uc)
3787 		param->enable = HNS3_PROMISC_EN_UC;
3788 	if (en_mc)
3789 		param->enable |= HNS3_PROMISC_EN_MC;
3790 	if (en_bc)
3791 		param->enable |= HNS3_PROMISC_EN_BC;
3792 	param->vf_id = vport_id;
3793 }
3794 
3795 static int
3796 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3797 {
3798 	struct hns3_promisc_cfg_cmd *req;
3799 	struct hns3_cmd_desc desc;
3800 	int ret;
3801 
3802 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3803 
3804 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
3805 	req->vf_id = param->vf_id;
3806 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3807 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3808 
3809 	ret = hns3_cmd_send(hw, &desc, 1);
3810 	if (ret)
3811 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
3812 
3813 	return ret;
3814 }
3815 
3816 static int
3817 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3818 {
3819 	struct hns3_promisc_param param;
3820 	bool en_bc_pmc = true;
3821 	uint8_t vf_id;
3822 
3823 	/*
3824 	 * In current version VF is not supported when PF is driven by DPDK
3825 	 * driver, just need to configure parameters for PF vport.
3826 	 */
3827 	vf_id = HNS3_PF_FUNC_ID;
3828 
3829 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3830 	return hns3_cmd_set_promisc_mode(hw, &param);
3831 }
3832 
3833 static int
3834 hns3_promisc_init(struct hns3_hw *hw)
3835 {
3836 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3837 	struct hns3_pf *pf = &hns->pf;
3838 	struct hns3_promisc_param param;
3839 	uint16_t func_id;
3840 	int ret;
3841 
3842 	ret = hns3_set_promisc_mode(hw, false, false);
3843 	if (ret) {
3844 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
3845 		return ret;
3846 	}
3847 
3848 	/*
3849 	 * In current version VFs are not supported when PF is driven by DPDK
3850 	 * driver. After PF has been taken over by DPDK, the original VF will
3851 	 * be invalid. So, there is a possibility of entry residues. It should
3852 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
3853 	 * during init.
3854 	 */
3855 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
3856 		hns3_promisc_param_init(&param, false, false, false, func_id);
3857 		ret = hns3_cmd_set_promisc_mode(hw, &param);
3858 		if (ret) {
3859 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
3860 					" ret = %d", func_id, ret);
3861 			return ret;
3862 		}
3863 	}
3864 
3865 	return 0;
3866 }
3867 
3868 static void
3869 hns3_promisc_uninit(struct hns3_hw *hw)
3870 {
3871 	struct hns3_promisc_param param;
3872 	uint16_t func_id;
3873 	int ret;
3874 
3875 	func_id = HNS3_PF_FUNC_ID;
3876 
3877 	/*
3878 	 * In current version VFs are not supported when PF is driven by
3879 	 * DPDK driver, and VFs' promisc mode status has been cleared during
3880 	 * init and their status will not change. So just clear PF's promisc
3881 	 * mode status during uninit.
3882 	 */
3883 	hns3_promisc_param_init(&param, false, false, false, func_id);
3884 	ret = hns3_cmd_set_promisc_mode(hw, &param);
3885 	if (ret)
3886 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
3887 				" uninit, ret = %d", ret);
3888 }
3889 
3890 static int
3891 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
3892 {
3893 	bool allmulti = dev->data->all_multicast ? true : false;
3894 	struct hns3_adapter *hns = dev->data->dev_private;
3895 	struct hns3_hw *hw = &hns->hw;
3896 	uint64_t offloads;
3897 	int err;
3898 	int ret;
3899 
3900 	rte_spinlock_lock(&hw->lock);
3901 	ret = hns3_set_promisc_mode(hw, true, true);
3902 	if (ret) {
3903 		rte_spinlock_unlock(&hw->lock);
3904 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
3905 			 ret);
3906 		return ret;
3907 	}
3908 
3909 	/*
3910 	 * When promiscuous mode was enabled, disable the vlan filter to let
3911 	 * all packets coming in in the receiving direction.
3912 	 */
3913 	offloads = dev->data->dev_conf.rxmode.offloads;
3914 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
3915 		ret = hns3_enable_vlan_filter(hns, false);
3916 		if (ret) {
3917 			hns3_err(hw, "failed to enable promiscuous mode due to "
3918 				     "failure to disable vlan filter, ret = %d",
3919 				 ret);
3920 			err = hns3_set_promisc_mode(hw, false, allmulti);
3921 			if (err)
3922 				hns3_err(hw, "failed to restore promiscuous "
3923 					 "status after disable vlan filter "
3924 					 "failed during enabling promiscuous "
3925 					 "mode, ret = %d", ret);
3926 		}
3927 	}
3928 
3929 	rte_spinlock_unlock(&hw->lock);
3930 
3931 	return ret;
3932 }
3933 
3934 static int
3935 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
3936 {
3937 	bool allmulti = dev->data->all_multicast ? true : false;
3938 	struct hns3_adapter *hns = dev->data->dev_private;
3939 	struct hns3_hw *hw = &hns->hw;
3940 	uint64_t offloads;
3941 	int err;
3942 	int ret;
3943 
3944 	/* If now in all_multicast mode, must remain in all_multicast mode. */
3945 	rte_spinlock_lock(&hw->lock);
3946 	ret = hns3_set_promisc_mode(hw, false, allmulti);
3947 	if (ret) {
3948 		rte_spinlock_unlock(&hw->lock);
3949 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
3950 			 ret);
3951 		return ret;
3952 	}
3953 	/* when promiscuous mode was disabled, restore the vlan filter status */
3954 	offloads = dev->data->dev_conf.rxmode.offloads;
3955 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
3956 		ret = hns3_enable_vlan_filter(hns, true);
3957 		if (ret) {
3958 			hns3_err(hw, "failed to disable promiscuous mode due to"
3959 				 " failure to restore vlan filter, ret = %d",
3960 				 ret);
3961 			err = hns3_set_promisc_mode(hw, true, true);
3962 			if (err)
3963 				hns3_err(hw, "failed to restore promiscuous "
3964 					 "status after enabling vlan filter "
3965 					 "failed during disabling promiscuous "
3966 					 "mode, ret = %d", ret);
3967 		}
3968 	}
3969 	rte_spinlock_unlock(&hw->lock);
3970 
3971 	return ret;
3972 }
3973 
3974 static int
3975 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
3976 {
3977 	struct hns3_adapter *hns = dev->data->dev_private;
3978 	struct hns3_hw *hw = &hns->hw;
3979 	int ret;
3980 
3981 	if (dev->data->promiscuous)
3982 		return 0;
3983 
3984 	rte_spinlock_lock(&hw->lock);
3985 	ret = hns3_set_promisc_mode(hw, false, true);
3986 	rte_spinlock_unlock(&hw->lock);
3987 	if (ret)
3988 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
3989 			 ret);
3990 
3991 	return ret;
3992 }
3993 
3994 static int
3995 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
3996 {
3997 	struct hns3_adapter *hns = dev->data->dev_private;
3998 	struct hns3_hw *hw = &hns->hw;
3999 	int ret;
4000 
4001 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4002 	if (dev->data->promiscuous)
4003 		return 0;
4004 
4005 	rte_spinlock_lock(&hw->lock);
4006 	ret = hns3_set_promisc_mode(hw, false, false);
4007 	rte_spinlock_unlock(&hw->lock);
4008 	if (ret)
4009 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4010 			 ret);
4011 
4012 	return ret;
4013 }
4014 
4015 static int
4016 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4017 {
4018 	struct hns3_hw *hw = &hns->hw;
4019 	bool allmulti = hw->data->all_multicast ? true : false;
4020 	int ret;
4021 
4022 	if (hw->data->promiscuous) {
4023 		ret = hns3_set_promisc_mode(hw, true, true);
4024 		if (ret)
4025 			hns3_err(hw, "failed to restore promiscuous mode, "
4026 				 "ret = %d", ret);
4027 		return ret;
4028 	}
4029 
4030 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4031 	if (ret)
4032 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4033 			 ret);
4034 	return ret;
4035 }
4036 
4037 static int
4038 hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info)
4039 {
4040 	struct hns3_sfp_info_cmd *resp;
4041 	struct hns3_cmd_desc desc;
4042 	int ret;
4043 
4044 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
4045 	resp = (struct hns3_sfp_info_cmd *)desc.data;
4046 	resp->query_type = HNS3_ACTIVE_QUERY;
4047 
4048 	ret = hns3_cmd_send(hw, &desc, 1);
4049 	if (ret == -EOPNOTSUPP) {
4050 		hns3_warn(hw, "firmware does not support get SFP info,"
4051 			  " ret = %d.", ret);
4052 		return ret;
4053 	} else if (ret) {
4054 		hns3_err(hw, "get sfp info failed, ret = %d.", ret);
4055 		return ret;
4056 	}
4057 
4058 	/*
4059 	 * In some case, the speed of MAC obtained from firmware may be 0, it
4060 	 * shouldn't be set to mac->speed.
4061 	 */
4062 	if (!rte_le_to_cpu_32(resp->sfp_speed))
4063 		return 0;
4064 
4065 	mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed);
4066 	/*
4067 	 * if resp->supported_speed is 0, it means it's an old version
4068 	 * firmware, do not update these params.
4069 	 */
4070 	if (resp->supported_speed) {
4071 		mac_info->query_type = HNS3_ACTIVE_QUERY;
4072 		mac_info->supported_speed =
4073 					rte_le_to_cpu_32(resp->supported_speed);
4074 		mac_info->support_autoneg = resp->autoneg_ability;
4075 		mac_info->link_autoneg = (resp->autoneg == 0) ? RTE_ETH_LINK_FIXED
4076 					: RTE_ETH_LINK_AUTONEG;
4077 	} else {
4078 		mac_info->query_type = HNS3_DEFAULT_QUERY;
4079 	}
4080 
4081 	return 0;
4082 }
4083 
4084 static uint8_t
4085 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4086 {
4087 	if (!(speed == RTE_ETH_SPEED_NUM_10M || speed == RTE_ETH_SPEED_NUM_100M))
4088 		duplex = RTE_ETH_LINK_FULL_DUPLEX;
4089 
4090 	return duplex;
4091 }
4092 
4093 static int
4094 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4095 {
4096 	struct hns3_mac *mac = &hw->mac;
4097 	int ret;
4098 
4099 	duplex = hns3_check_speed_dup(duplex, speed);
4100 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4101 		return 0;
4102 
4103 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4104 	if (ret)
4105 		return ret;
4106 
4107 	ret = hns3_port_shaper_update(hw, speed);
4108 	if (ret)
4109 		return ret;
4110 
4111 	mac->link_speed = speed;
4112 	mac->link_duplex = duplex;
4113 
4114 	return 0;
4115 }
4116 
4117 static int
4118 hns3_update_fiber_link_info(struct hns3_hw *hw)
4119 {
4120 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4121 	struct hns3_mac *mac = &hw->mac;
4122 	struct hns3_mac mac_info;
4123 	int ret;
4124 
4125 	/* If firmware do not support get SFP/qSFP speed, return directly */
4126 	if (!pf->support_sfp_query)
4127 		return 0;
4128 
4129 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4130 	ret = hns3_get_sfp_info(hw, &mac_info);
4131 	if (ret == -EOPNOTSUPP) {
4132 		pf->support_sfp_query = false;
4133 		return ret;
4134 	} else if (ret)
4135 		return ret;
4136 
4137 	/* Do nothing if no SFP */
4138 	if (mac_info.link_speed == RTE_ETH_SPEED_NUM_NONE)
4139 		return 0;
4140 
4141 	/*
4142 	 * If query_type is HNS3_ACTIVE_QUERY, it is no need
4143 	 * to reconfigure the speed of MAC. Otherwise, it indicates
4144 	 * that the current firmware only supports to obtain the
4145 	 * speed of the SFP, and the speed of MAC needs to reconfigure.
4146 	 */
4147 	mac->query_type = mac_info.query_type;
4148 	if (mac->query_type == HNS3_ACTIVE_QUERY) {
4149 		if (mac_info.link_speed != mac->link_speed) {
4150 			ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4151 			if (ret)
4152 				return ret;
4153 		}
4154 
4155 		mac->link_speed = mac_info.link_speed;
4156 		mac->supported_speed = mac_info.supported_speed;
4157 		mac->support_autoneg = mac_info.support_autoneg;
4158 		mac->link_autoneg = mac_info.link_autoneg;
4159 
4160 		return 0;
4161 	}
4162 
4163 	/* Config full duplex for SFP */
4164 	return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed,
4165 				      RTE_ETH_LINK_FULL_DUPLEX);
4166 }
4167 
4168 static void
4169 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4170 {
4171 #define HNS3_PHY_SUPPORTED_SPEED_MASK   0x2f
4172 
4173 	struct hns3_phy_params_bd0_cmd *req;
4174 	uint32_t supported;
4175 
4176 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4177 	mac->link_speed = rte_le_to_cpu_32(req->speed);
4178 	mac->link_duplex = hns3_get_bit(req->duplex,
4179 					   HNS3_PHY_DUPLEX_CFG_B);
4180 	mac->link_autoneg = hns3_get_bit(req->autoneg,
4181 					   HNS3_PHY_AUTONEG_CFG_B);
4182 	mac->advertising = rte_le_to_cpu_32(req->advertising);
4183 	mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4184 	supported = rte_le_to_cpu_32(req->supported);
4185 	mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK;
4186 	mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4187 }
4188 
4189 static int
4190 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4191 {
4192 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4193 	uint16_t i;
4194 	int ret;
4195 
4196 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4197 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4198 					  true);
4199 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4200 	}
4201 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4202 
4203 	ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4204 	if (ret) {
4205 		hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4206 		return ret;
4207 	}
4208 
4209 	hns3_parse_copper_phy_params(desc, mac);
4210 
4211 	return 0;
4212 }
4213 
4214 static int
4215 hns3_update_copper_link_info(struct hns3_hw *hw)
4216 {
4217 	struct hns3_mac *mac = &hw->mac;
4218 	struct hns3_mac mac_info;
4219 	int ret;
4220 
4221 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4222 	ret = hns3_get_copper_phy_params(hw, &mac_info);
4223 	if (ret)
4224 		return ret;
4225 
4226 	if (mac_info.link_speed != mac->link_speed) {
4227 		ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4228 		if (ret)
4229 			return ret;
4230 	}
4231 
4232 	mac->link_speed = mac_info.link_speed;
4233 	mac->link_duplex = mac_info.link_duplex;
4234 	mac->link_autoneg = mac_info.link_autoneg;
4235 	mac->supported_speed = mac_info.supported_speed;
4236 	mac->advertising = mac_info.advertising;
4237 	mac->lp_advertising = mac_info.lp_advertising;
4238 	mac->support_autoneg = mac_info.support_autoneg;
4239 
4240 	return 0;
4241 }
4242 
4243 static int
4244 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4245 {
4246 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4247 	struct hns3_hw *hw = &hns->hw;
4248 	int ret = 0;
4249 
4250 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4251 		ret = hns3_update_copper_link_info(hw);
4252 	else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4253 		ret = hns3_update_fiber_link_info(hw);
4254 
4255 	return ret;
4256 }
4257 
4258 static int
4259 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4260 {
4261 	struct hns3_config_mac_mode_cmd *req;
4262 	struct hns3_cmd_desc desc;
4263 	uint32_t loop_en = 0;
4264 	uint8_t val = 0;
4265 	int ret;
4266 
4267 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4268 
4269 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4270 	if (enable)
4271 		val = 1;
4272 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4273 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4274 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4275 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4276 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4277 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4278 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4279 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4280 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4281 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4282 
4283 	/*
4284 	 * If RTE_ETH_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4285 	 * when receiving frames. Otherwise, CRC will be stripped.
4286 	 */
4287 	if (hw->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
4288 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4289 	else
4290 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4291 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4292 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4293 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4294 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4295 
4296 	ret = hns3_cmd_send(hw, &desc, 1);
4297 	if (ret)
4298 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4299 
4300 	return ret;
4301 }
4302 
4303 static int
4304 hns3_get_mac_link_status(struct hns3_hw *hw)
4305 {
4306 	struct hns3_link_status_cmd *req;
4307 	struct hns3_cmd_desc desc;
4308 	int link_status;
4309 	int ret;
4310 
4311 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4312 	ret = hns3_cmd_send(hw, &desc, 1);
4313 	if (ret) {
4314 		hns3_err(hw, "get link status cmd failed %d", ret);
4315 		return RTE_ETH_LINK_DOWN;
4316 	}
4317 
4318 	req = (struct hns3_link_status_cmd *)desc.data;
4319 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4320 
4321 	return !!link_status;
4322 }
4323 
4324 static bool
4325 hns3_update_link_status(struct hns3_hw *hw)
4326 {
4327 	int state;
4328 
4329 	state = hns3_get_mac_link_status(hw);
4330 	if (state != hw->mac.link_status) {
4331 		hw->mac.link_status = state;
4332 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4333 		return true;
4334 	}
4335 
4336 	return false;
4337 }
4338 
4339 void
4340 hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
4341 {
4342 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4343 	struct rte_eth_link new_link;
4344 	int ret;
4345 
4346 	if (query)
4347 		hns3_update_port_link_info(dev);
4348 
4349 	memset(&new_link, 0, sizeof(new_link));
4350 	hns3_setup_linkstatus(dev, &new_link);
4351 
4352 	ret = rte_eth_linkstatus_set(dev, &new_link);
4353 	if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
4354 		hns3_start_report_lse(dev);
4355 }
4356 
4357 static void
4358 hns3_service_handler(void *param)
4359 {
4360 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4361 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4362 	struct hns3_hw *hw = &hns->hw;
4363 
4364 	if (!hns3_is_reset_pending(hns)) {
4365 		hns3_update_linkstatus_and_event(hw, true);
4366 		hns3_update_hw_stats(hw);
4367 	} else {
4368 		hns3_warn(hw, "Cancel the query when reset is pending");
4369 	}
4370 
4371 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4372 }
4373 
4374 static int
4375 hns3_init_hardware(struct hns3_adapter *hns)
4376 {
4377 	struct hns3_hw *hw = &hns->hw;
4378 	int ret;
4379 
4380 	/*
4381 	 * All queue-related HW operations must be performed after the TCAM
4382 	 * table is configured.
4383 	 */
4384 	ret = hns3_map_tqp(hw);
4385 	if (ret) {
4386 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4387 		return ret;
4388 	}
4389 
4390 	ret = hns3_init_umv_space(hw);
4391 	if (ret) {
4392 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4393 		return ret;
4394 	}
4395 
4396 	ret = hns3_mac_init(hw);
4397 	if (ret) {
4398 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4399 		goto err_mac_init;
4400 	}
4401 
4402 	ret = hns3_init_mgr_tbl(hw);
4403 	if (ret) {
4404 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4405 		goto err_mac_init;
4406 	}
4407 
4408 	ret = hns3_promisc_init(hw);
4409 	if (ret) {
4410 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4411 			     ret);
4412 		goto err_mac_init;
4413 	}
4414 
4415 	ret = hns3_init_vlan_config(hns);
4416 	if (ret) {
4417 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4418 		goto err_mac_init;
4419 	}
4420 
4421 	ret = hns3_dcb_init(hw);
4422 	if (ret) {
4423 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4424 		goto err_mac_init;
4425 	}
4426 
4427 	ret = hns3_init_fd_config(hns);
4428 	if (ret) {
4429 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4430 		goto err_mac_init;
4431 	}
4432 
4433 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4434 	if (ret) {
4435 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4436 		goto err_mac_init;
4437 	}
4438 
4439 	ret = hns3_config_gro(hw, false);
4440 	if (ret) {
4441 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4442 		goto err_mac_init;
4443 	}
4444 
4445 	/*
4446 	 * In the initialization clearing the all hardware mapping relationship
4447 	 * configurations between queues and interrupt vectors is needed, so
4448 	 * some error caused by the residual configurations, such as the
4449 	 * unexpected interrupt, can be avoid.
4450 	 */
4451 	ret = hns3_init_ring_with_vector(hw);
4452 	if (ret) {
4453 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4454 		goto err_mac_init;
4455 	}
4456 
4457 	return 0;
4458 
4459 err_mac_init:
4460 	hns3_uninit_umv_space(hw);
4461 	return ret;
4462 }
4463 
4464 static int
4465 hns3_clear_hw(struct hns3_hw *hw)
4466 {
4467 	struct hns3_cmd_desc desc;
4468 	int ret;
4469 
4470 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4471 
4472 	ret = hns3_cmd_send(hw, &desc, 1);
4473 	if (ret && ret != -EOPNOTSUPP)
4474 		return ret;
4475 
4476 	return 0;
4477 }
4478 
4479 static void
4480 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4481 {
4482 	uint32_t val;
4483 
4484 	/*
4485 	 * The new firmware support report more hardware error types by
4486 	 * msix mode. These errors are defined as RAS errors in hardware
4487 	 * and belong to a different type from the MSI-x errors processed
4488 	 * by the network driver.
4489 	 *
4490 	 * Network driver should open the new error report on initialization.
4491 	 */
4492 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4493 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4494 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4495 }
4496 
4497 static uint32_t
4498 hns3_set_firber_default_support_speed(struct hns3_hw *hw)
4499 {
4500 	struct hns3_mac *mac = &hw->mac;
4501 
4502 	switch (mac->link_speed) {
4503 	case RTE_ETH_SPEED_NUM_1G:
4504 		return HNS3_FIBER_LINK_SPEED_1G_BIT;
4505 	case RTE_ETH_SPEED_NUM_10G:
4506 		return HNS3_FIBER_LINK_SPEED_10G_BIT;
4507 	case RTE_ETH_SPEED_NUM_25G:
4508 		return HNS3_FIBER_LINK_SPEED_25G_BIT;
4509 	case RTE_ETH_SPEED_NUM_40G:
4510 		return HNS3_FIBER_LINK_SPEED_40G_BIT;
4511 	case RTE_ETH_SPEED_NUM_50G:
4512 		return HNS3_FIBER_LINK_SPEED_50G_BIT;
4513 	case RTE_ETH_SPEED_NUM_100G:
4514 		return HNS3_FIBER_LINK_SPEED_100G_BIT;
4515 	case RTE_ETH_SPEED_NUM_200G:
4516 		return HNS3_FIBER_LINK_SPEED_200G_BIT;
4517 	default:
4518 		hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed);
4519 		return 0;
4520 	}
4521 }
4522 
4523 /*
4524  * Validity of supported_speed for fiber and copper media type can be
4525  * guaranteed by the following policy:
4526  * Copper:
4527  *       Although the initialization of the phy in the firmware may not be
4528  *       completed, the firmware can guarantees that the supported_speed is
4529  *       an valid value.
4530  * Firber:
4531  *       If the version of firmware supports the active query way of the
4532  *       HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained
4533  *       through it. If unsupported, use the SFP's speed as the value of the
4534  *       supported_speed.
4535  */
4536 static int
4537 hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev)
4538 {
4539 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4540 	struct hns3_hw *hw = &hns->hw;
4541 	struct hns3_mac *mac = &hw->mac;
4542 	int ret;
4543 
4544 	ret = hns3_update_link_info(eth_dev);
4545 	if (ret)
4546 		return ret;
4547 
4548 	if (mac->media_type == HNS3_MEDIA_TYPE_FIBER) {
4549 		/*
4550 		 * Some firmware does not support the report of supported_speed,
4551 		 * and only report the effective speed of SFP. In this case, it
4552 		 * is necessary to use the SFP's speed as the supported_speed.
4553 		 */
4554 		if (mac->supported_speed == 0)
4555 			mac->supported_speed =
4556 				hns3_set_firber_default_support_speed(hw);
4557 	}
4558 
4559 	return 0;
4560 }
4561 
4562 static void
4563 hns3_get_fc_autoneg_capability(struct hns3_adapter *hns)
4564 {
4565 	struct hns3_mac *mac = &hns->hw.mac;
4566 
4567 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) {
4568 		hns->pf.support_fc_autoneg = true;
4569 		return;
4570 	}
4571 
4572 	/*
4573 	 * Flow control auto-negotiation requires the cooperation of the driver
4574 	 * and firmware. Currently, the optical port does not support flow
4575 	 * control auto-negotiation.
4576 	 */
4577 	hns->pf.support_fc_autoneg = false;
4578 }
4579 
4580 static int
4581 hns3_init_pf(struct rte_eth_dev *eth_dev)
4582 {
4583 	struct rte_device *dev = eth_dev->device;
4584 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4585 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4586 	struct hns3_hw *hw = &hns->hw;
4587 	int ret;
4588 
4589 	PMD_INIT_FUNC_TRACE();
4590 
4591 	/* Get hardware io base address from pcie BAR2 IO space */
4592 	hw->io_base = pci_dev->mem_resource[2].addr;
4593 
4594 	/* Firmware command queue initialize */
4595 	ret = hns3_cmd_init_queue(hw);
4596 	if (ret) {
4597 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4598 		goto err_cmd_init_queue;
4599 	}
4600 
4601 	hns3_clear_all_event_cause(hw);
4602 
4603 	/* Firmware command initialize */
4604 	ret = hns3_cmd_init(hw);
4605 	if (ret) {
4606 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4607 		goto err_cmd_init;
4608 	}
4609 
4610 	hns3_tx_push_init(eth_dev);
4611 
4612 	/*
4613 	 * To ensure that the hardware environment is clean during
4614 	 * initialization, the driver actively clear the hardware environment
4615 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4616 	 * flow table configurations, etc.
4617 	 */
4618 	ret = hns3_clear_hw(hw);
4619 	if (ret) {
4620 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4621 		goto err_cmd_init;
4622 	}
4623 
4624 	hns3_config_all_msix_error(hw, true);
4625 
4626 	ret = rte_intr_callback_register(pci_dev->intr_handle,
4627 					 hns3_interrupt_handler,
4628 					 eth_dev);
4629 	if (ret) {
4630 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4631 		goto err_intr_callback_register;
4632 	}
4633 
4634 	ret = hns3_ptp_init(hw);
4635 	if (ret)
4636 		goto err_get_config;
4637 
4638 	/* Enable interrupt */
4639 	rte_intr_enable(pci_dev->intr_handle);
4640 	hns3_pf_enable_irq0(hw);
4641 
4642 	/* Get configuration */
4643 	ret = hns3_get_configuration(hw);
4644 	if (ret) {
4645 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4646 		goto err_get_config;
4647 	}
4648 
4649 	ret = hns3_stats_init(hw);
4650 	if (ret)
4651 		goto err_get_config;
4652 
4653 	ret = hns3_init_hardware(hns);
4654 	if (ret) {
4655 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4656 		goto err_init_hw;
4657 	}
4658 
4659 	/* Initialize flow director filter list & hash */
4660 	ret = hns3_fdir_filter_init(hns);
4661 	if (ret) {
4662 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4663 		goto err_fdir;
4664 	}
4665 
4666 	hns3_rss_set_default_args(hw);
4667 
4668 	ret = hns3_enable_hw_error_intr(hns, true);
4669 	if (ret) {
4670 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4671 			     ret);
4672 		goto err_enable_intr;
4673 	}
4674 
4675 	ret = hns3_get_port_supported_speed(eth_dev);
4676 	if (ret) {
4677 		PMD_INIT_LOG(ERR, "failed to get speed capabilities supported "
4678 			     "by device, ret = %d.", ret);
4679 		goto err_supported_speed;
4680 	}
4681 
4682 	hns3_get_fc_autoneg_capability(hns);
4683 
4684 	hns3_tm_conf_init(eth_dev);
4685 
4686 	return 0;
4687 
4688 err_supported_speed:
4689 	(void)hns3_enable_hw_error_intr(hns, false);
4690 err_enable_intr:
4691 	hns3_fdir_filter_uninit(hns);
4692 err_fdir:
4693 	hns3_uninit_umv_space(hw);
4694 err_init_hw:
4695 	hns3_stats_uninit(hw);
4696 err_get_config:
4697 	hns3_pf_disable_irq0(hw);
4698 	rte_intr_disable(pci_dev->intr_handle);
4699 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
4700 			     eth_dev);
4701 err_intr_callback_register:
4702 err_cmd_init:
4703 	hns3_cmd_uninit(hw);
4704 	hns3_cmd_destroy_queue(hw);
4705 err_cmd_init_queue:
4706 	hw->io_base = NULL;
4707 
4708 	return ret;
4709 }
4710 
4711 static void
4712 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4713 {
4714 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4715 	struct rte_device *dev = eth_dev->device;
4716 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4717 	struct hns3_hw *hw = &hns->hw;
4718 
4719 	PMD_INIT_FUNC_TRACE();
4720 
4721 	hns3_tm_conf_uninit(eth_dev);
4722 	hns3_enable_hw_error_intr(hns, false);
4723 	hns3_rss_uninit(hns);
4724 	(void)hns3_config_gro(hw, false);
4725 	hns3_promisc_uninit(hw);
4726 	hns3_flow_uninit(eth_dev);
4727 	hns3_fdir_filter_uninit(hns);
4728 	hns3_uninit_umv_space(hw);
4729 	hns3_stats_uninit(hw);
4730 	hns3_config_mac_tnl_int(hw, false);
4731 	hns3_pf_disable_irq0(hw);
4732 	rte_intr_disable(pci_dev->intr_handle);
4733 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
4734 			     eth_dev);
4735 	hns3_config_all_msix_error(hw, false);
4736 	hns3_cmd_uninit(hw);
4737 	hns3_cmd_destroy_queue(hw);
4738 	hw->io_base = NULL;
4739 }
4740 
4741 static uint32_t
4742 hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds)
4743 {
4744 	uint32_t speed_bit;
4745 
4746 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
4747 	case RTE_ETH_LINK_SPEED_10M:
4748 		speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT;
4749 		break;
4750 	case RTE_ETH_LINK_SPEED_10M_HD:
4751 		speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT;
4752 		break;
4753 	case RTE_ETH_LINK_SPEED_100M:
4754 		speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT;
4755 		break;
4756 	case RTE_ETH_LINK_SPEED_100M_HD:
4757 		speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT;
4758 		break;
4759 	case RTE_ETH_LINK_SPEED_1G:
4760 		speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT;
4761 		break;
4762 	default:
4763 		speed_bit = 0;
4764 		break;
4765 	}
4766 
4767 	return speed_bit;
4768 }
4769 
4770 static uint32_t
4771 hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds)
4772 {
4773 	uint32_t speed_bit;
4774 
4775 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
4776 	case RTE_ETH_LINK_SPEED_1G:
4777 		speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT;
4778 		break;
4779 	case RTE_ETH_LINK_SPEED_10G:
4780 		speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT;
4781 		break;
4782 	case RTE_ETH_LINK_SPEED_25G:
4783 		speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT;
4784 		break;
4785 	case RTE_ETH_LINK_SPEED_40G:
4786 		speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT;
4787 		break;
4788 	case RTE_ETH_LINK_SPEED_50G:
4789 		speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT;
4790 		break;
4791 	case RTE_ETH_LINK_SPEED_100G:
4792 		speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT;
4793 		break;
4794 	case RTE_ETH_LINK_SPEED_200G:
4795 		speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT;
4796 		break;
4797 	default:
4798 		speed_bit = 0;
4799 		break;
4800 	}
4801 
4802 	return speed_bit;
4803 }
4804 
4805 static int
4806 hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds)
4807 {
4808 	struct hns3_mac *mac = &hw->mac;
4809 	uint32_t supported_speed = mac->supported_speed;
4810 	uint32_t speed_bit = 0;
4811 
4812 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
4813 		speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds);
4814 	else if (mac->media_type == HNS3_MEDIA_TYPE_FIBER)
4815 		speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds);
4816 
4817 	if (!(speed_bit & supported_speed)) {
4818 		hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.",
4819 			 link_speeds);
4820 		return -EINVAL;
4821 	}
4822 
4823 	return 0;
4824 }
4825 
4826 static uint32_t
4827 hns3_get_link_speed(uint32_t link_speeds)
4828 {
4829 	uint32_t speed = RTE_ETH_SPEED_NUM_NONE;
4830 
4831 	if (link_speeds & RTE_ETH_LINK_SPEED_10M ||
4832 	    link_speeds & RTE_ETH_LINK_SPEED_10M_HD)
4833 		speed = RTE_ETH_SPEED_NUM_10M;
4834 	if (link_speeds & RTE_ETH_LINK_SPEED_100M ||
4835 	    link_speeds & RTE_ETH_LINK_SPEED_100M_HD)
4836 		speed = RTE_ETH_SPEED_NUM_100M;
4837 	if (link_speeds & RTE_ETH_LINK_SPEED_1G)
4838 		speed = RTE_ETH_SPEED_NUM_1G;
4839 	if (link_speeds & RTE_ETH_LINK_SPEED_10G)
4840 		speed = RTE_ETH_SPEED_NUM_10G;
4841 	if (link_speeds & RTE_ETH_LINK_SPEED_25G)
4842 		speed = RTE_ETH_SPEED_NUM_25G;
4843 	if (link_speeds & RTE_ETH_LINK_SPEED_40G)
4844 		speed = RTE_ETH_SPEED_NUM_40G;
4845 	if (link_speeds & RTE_ETH_LINK_SPEED_50G)
4846 		speed = RTE_ETH_SPEED_NUM_50G;
4847 	if (link_speeds & RTE_ETH_LINK_SPEED_100G)
4848 		speed = RTE_ETH_SPEED_NUM_100G;
4849 	if (link_speeds & RTE_ETH_LINK_SPEED_200G)
4850 		speed = RTE_ETH_SPEED_NUM_200G;
4851 
4852 	return speed;
4853 }
4854 
4855 static uint8_t
4856 hns3_get_link_duplex(uint32_t link_speeds)
4857 {
4858 	if ((link_speeds & RTE_ETH_LINK_SPEED_10M_HD) ||
4859 	    (link_speeds & RTE_ETH_LINK_SPEED_100M_HD))
4860 		return RTE_ETH_LINK_HALF_DUPLEX;
4861 	else
4862 		return RTE_ETH_LINK_FULL_DUPLEX;
4863 }
4864 
4865 static int
4866 hns3_set_copper_port_link_speed(struct hns3_hw *hw,
4867 				struct hns3_set_link_speed_cfg *cfg)
4868 {
4869 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4870 	struct hns3_phy_params_bd0_cmd *req;
4871 	uint16_t i;
4872 
4873 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4874 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4875 					  false);
4876 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4877 	}
4878 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false);
4879 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4880 	req->autoneg = cfg->autoneg;
4881 
4882 	/*
4883 	 * The full speed capability is used to negotiate when
4884 	 * auto-negotiation is enabled.
4885 	 */
4886 	if (cfg->autoneg) {
4887 		req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT |
4888 				    HNS3_PHY_LINK_SPEED_10M_HD_BIT |
4889 				    HNS3_PHY_LINK_SPEED_100M_BIT |
4890 				    HNS3_PHY_LINK_SPEED_100M_HD_BIT |
4891 				    HNS3_PHY_LINK_SPEED_1000M_BIT;
4892 	} else {
4893 		req->speed = cfg->speed;
4894 		req->duplex = cfg->duplex;
4895 	}
4896 
4897 	return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4898 }
4899 
4900 static int
4901 hns3_set_autoneg(struct hns3_hw *hw, bool enable)
4902 {
4903 	struct hns3_config_auto_neg_cmd *req;
4904 	struct hns3_cmd_desc desc;
4905 	uint32_t flag = 0;
4906 	int ret;
4907 
4908 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false);
4909 
4910 	req = (struct hns3_config_auto_neg_cmd *)desc.data;
4911 	if (enable)
4912 		hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1);
4913 	req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag);
4914 
4915 	ret = hns3_cmd_send(hw, &desc, 1);
4916 	if (ret)
4917 		hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret);
4918 
4919 	return ret;
4920 }
4921 
4922 static int
4923 hns3_set_fiber_port_link_speed(struct hns3_hw *hw,
4924 			       struct hns3_set_link_speed_cfg *cfg)
4925 {
4926 	int ret;
4927 
4928 	if (hw->mac.support_autoneg) {
4929 		ret = hns3_set_autoneg(hw, cfg->autoneg);
4930 		if (ret) {
4931 			hns3_err(hw, "failed to configure auto-negotiation.");
4932 			return ret;
4933 		}
4934 
4935 		/*
4936 		 * To enable auto-negotiation, we only need to open the switch
4937 		 * of auto-negotiation, then firmware sets all speed
4938 		 * capabilities.
4939 		 */
4940 		if (cfg->autoneg)
4941 			return 0;
4942 	}
4943 
4944 	/*
4945 	 * Some hardware doesn't support auto-negotiation, but users may not
4946 	 * configure link_speeds (default 0), which means auto-negotiation.
4947 	 * In this case, a warning message need to be printed, instead of
4948 	 * an error.
4949 	 */
4950 	if (cfg->autoneg) {
4951 		hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!");
4952 		return 0;
4953 	}
4954 
4955 	return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex);
4956 }
4957 
4958 static int
4959 hns3_set_port_link_speed(struct hns3_hw *hw,
4960 			 struct hns3_set_link_speed_cfg *cfg)
4961 {
4962 	int ret;
4963 
4964 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER) {
4965 #if defined(RTE_HNS3_ONLY_1630_FPGA)
4966 		struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4967 		if (pf->is_tmp_phy)
4968 			return 0;
4969 #endif
4970 
4971 		ret = hns3_set_copper_port_link_speed(hw, cfg);
4972 		if (ret) {
4973 			hns3_err(hw, "failed to set copper port link speed,"
4974 				 "ret = %d.", ret);
4975 			return ret;
4976 		}
4977 	} else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER) {
4978 		ret = hns3_set_fiber_port_link_speed(hw, cfg);
4979 		if (ret) {
4980 			hns3_err(hw, "failed to set fiber port link speed,"
4981 				 "ret = %d.", ret);
4982 			return ret;
4983 		}
4984 	}
4985 
4986 	return 0;
4987 }
4988 
4989 static int
4990 hns3_apply_link_speed(struct hns3_hw *hw)
4991 {
4992 	struct rte_eth_conf *conf = &hw->data->dev_conf;
4993 	struct hns3_set_link_speed_cfg cfg;
4994 
4995 	memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg));
4996 	cfg.autoneg = (conf->link_speeds == RTE_ETH_LINK_SPEED_AUTONEG) ?
4997 			RTE_ETH_LINK_AUTONEG : RTE_ETH_LINK_FIXED;
4998 	if (cfg.autoneg != RTE_ETH_LINK_AUTONEG) {
4999 		cfg.speed = hns3_get_link_speed(conf->link_speeds);
5000 		cfg.duplex = hns3_get_link_duplex(conf->link_speeds);
5001 	}
5002 
5003 	return hns3_set_port_link_speed(hw, &cfg);
5004 }
5005 
5006 static int
5007 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5008 {
5009 	struct hns3_hw *hw = &hns->hw;
5010 	bool link_en;
5011 	int ret;
5012 
5013 	ret = hns3_update_queue_map_configure(hns);
5014 	if (ret) {
5015 		hns3_err(hw, "failed to update queue mapping configuration, ret = %d",
5016 			 ret);
5017 		return ret;
5018 	}
5019 
5020 	/* Note: hns3_tm_conf_update must be called after configuring DCB. */
5021 	ret = hns3_tm_conf_update(hw);
5022 	if (ret) {
5023 		PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5024 		return ret;
5025 	}
5026 
5027 	hns3_enable_rxd_adv_layout(hw);
5028 
5029 	ret = hns3_init_queues(hns, reset_queue);
5030 	if (ret) {
5031 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5032 		return ret;
5033 	}
5034 
5035 	link_en = hw->set_link_down ? false : true;
5036 	ret = hns3_cfg_mac_mode(hw, link_en);
5037 	if (ret) {
5038 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5039 		goto err_config_mac_mode;
5040 	}
5041 
5042 	ret = hns3_apply_link_speed(hw);
5043 	if (ret)
5044 		goto err_set_link_speed;
5045 
5046 	return 0;
5047 
5048 err_set_link_speed:
5049 	(void)hns3_cfg_mac_mode(hw, false);
5050 
5051 err_config_mac_mode:
5052 	hns3_dev_release_mbufs(hns);
5053 	/*
5054 	 * Here is exception handling, hns3_reset_all_tqps will have the
5055 	 * corresponding error message if it is handled incorrectly, so it is
5056 	 * not necessary to check hns3_reset_all_tqps return value, here keep
5057 	 * ret as the error code causing the exception.
5058 	 */
5059 	(void)hns3_reset_all_tqps(hns);
5060 	return ret;
5061 }
5062 
5063 static void
5064 hns3_restore_filter(struct rte_eth_dev *dev)
5065 {
5066 	hns3_restore_rss_filter(dev);
5067 }
5068 
5069 static int
5070 hns3_dev_start(struct rte_eth_dev *dev)
5071 {
5072 	struct hns3_adapter *hns = dev->data->dev_private;
5073 	struct hns3_hw *hw = &hns->hw;
5074 	bool old_state = hw->set_link_down;
5075 	int ret;
5076 
5077 	PMD_INIT_FUNC_TRACE();
5078 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5079 		return -EBUSY;
5080 
5081 	rte_spinlock_lock(&hw->lock);
5082 	hw->adapter_state = HNS3_NIC_STARTING;
5083 
5084 	/*
5085 	 * If the dev_set_link_down() API has been called, the "set_link_down"
5086 	 * flag can be cleared by dev_start() API. In addition, the flag should
5087 	 * also be cleared before calling hns3_do_start() so that MAC can be
5088 	 * enabled in dev_start stage.
5089 	 */
5090 	hw->set_link_down = false;
5091 	ret = hns3_do_start(hns, true);
5092 	if (ret)
5093 		goto do_start_fail;
5094 
5095 	ret = hns3_map_rx_interrupt(dev);
5096 	if (ret)
5097 		goto map_rx_inter_err;
5098 
5099 	/*
5100 	 * There are three register used to control the status of a TQP
5101 	 * (contains a pair of Tx queue and Rx queue) in the new version network
5102 	 * engine. One is used to control the enabling of Tx queue, the other is
5103 	 * used to control the enabling of Rx queue, and the last is the master
5104 	 * switch used to control the enabling of the tqp. The Tx register and
5105 	 * TQP register must be enabled at the same time to enable a Tx queue.
5106 	 * The same applies to the Rx queue. For the older network engine, this
5107 	 * function only refresh the enabled flag, and it is used to update the
5108 	 * status of queue in the dpdk framework.
5109 	 */
5110 	ret = hns3_start_all_txqs(dev);
5111 	if (ret)
5112 		goto map_rx_inter_err;
5113 
5114 	ret = hns3_start_all_rxqs(dev);
5115 	if (ret)
5116 		goto start_all_rxqs_fail;
5117 
5118 	hw->adapter_state = HNS3_NIC_STARTED;
5119 	rte_spinlock_unlock(&hw->lock);
5120 
5121 	hns3_rx_scattered_calc(dev);
5122 	hns3_set_rxtx_function(dev);
5123 	hns3_mp_req_start_rxtx(dev);
5124 
5125 	hns3_restore_filter(dev);
5126 
5127 	/* Enable interrupt of all rx queues before enabling queues */
5128 	hns3_dev_all_rx_queue_intr_enable(hw, true);
5129 
5130 	/*
5131 	 * After finished the initialization, enable tqps to receive/transmit
5132 	 * packets and refresh all queue status.
5133 	 */
5134 	hns3_start_tqps(hw);
5135 
5136 	hns3_tm_dev_start_proc(hw);
5137 
5138 	if (dev->data->dev_conf.intr_conf.lsc != 0)
5139 		hns3_dev_link_update(dev, 0);
5140 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5141 
5142 	hns3_info(hw, "hns3 dev start successful!");
5143 
5144 	return 0;
5145 
5146 start_all_rxqs_fail:
5147 	hns3_stop_all_txqs(dev);
5148 map_rx_inter_err:
5149 	(void)hns3_do_stop(hns);
5150 do_start_fail:
5151 	hw->set_link_down = old_state;
5152 	hw->adapter_state = HNS3_NIC_CONFIGURED;
5153 	rte_spinlock_unlock(&hw->lock);
5154 
5155 	return ret;
5156 }
5157 
5158 static int
5159 hns3_do_stop(struct hns3_adapter *hns)
5160 {
5161 	struct hns3_hw *hw = &hns->hw;
5162 	int ret;
5163 
5164 	/*
5165 	 * The "hns3_do_stop" function will also be called by .stop_service to
5166 	 * prepare reset. At the time of global or IMP reset, the command cannot
5167 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5168 	 * accessed during the reset process. So the mbuf can not be released
5169 	 * during reset and is required to be released after the reset is
5170 	 * completed.
5171 	 */
5172 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5173 		hns3_dev_release_mbufs(hns);
5174 
5175 	ret = hns3_cfg_mac_mode(hw, false);
5176 	if (ret)
5177 		return ret;
5178 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5179 
5180 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5181 		hns3_configure_all_mac_addr(hns, true);
5182 		ret = hns3_reset_all_tqps(hns);
5183 		if (ret) {
5184 			hns3_err(hw, "failed to reset all queues ret = %d.",
5185 				 ret);
5186 			return ret;
5187 		}
5188 	}
5189 
5190 	return 0;
5191 }
5192 
5193 static int
5194 hns3_dev_stop(struct rte_eth_dev *dev)
5195 {
5196 	struct hns3_adapter *hns = dev->data->dev_private;
5197 	struct hns3_hw *hw = &hns->hw;
5198 
5199 	PMD_INIT_FUNC_TRACE();
5200 	dev->data->dev_started = 0;
5201 
5202 	hw->adapter_state = HNS3_NIC_STOPPING;
5203 	hns3_set_rxtx_function(dev);
5204 	rte_wmb();
5205 	/* Disable datapath on secondary process. */
5206 	hns3_mp_req_stop_rxtx(dev);
5207 	/* Prevent crashes when queues are still in use. */
5208 	rte_delay_ms(hw->cfg_max_queues);
5209 
5210 	rte_spinlock_lock(&hw->lock);
5211 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5212 		hns3_tm_dev_stop_proc(hw);
5213 		hns3_config_mac_tnl_int(hw, false);
5214 		hns3_stop_tqps(hw);
5215 		hns3_do_stop(hns);
5216 		hns3_unmap_rx_interrupt(dev);
5217 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5218 	}
5219 	hns3_rx_scattered_reset(dev);
5220 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5221 	hns3_stop_report_lse(dev);
5222 	rte_spinlock_unlock(&hw->lock);
5223 
5224 	return 0;
5225 }
5226 
5227 static int
5228 hns3_dev_close(struct rte_eth_dev *eth_dev)
5229 {
5230 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5231 	struct hns3_hw *hw = &hns->hw;
5232 	int ret = 0;
5233 
5234 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5235 		hns3_mp_uninit(eth_dev);
5236 		return 0;
5237 	}
5238 
5239 	if (hw->adapter_state == HNS3_NIC_STARTED)
5240 		ret = hns3_dev_stop(eth_dev);
5241 
5242 	hw->adapter_state = HNS3_NIC_CLOSING;
5243 	hns3_reset_abort(hns);
5244 	hw->adapter_state = HNS3_NIC_CLOSED;
5245 
5246 	hns3_configure_all_mc_mac_addr(hns, true);
5247 	hns3_remove_all_vlan_table(hns);
5248 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5249 	hns3_uninit_pf(eth_dev);
5250 	hns3_free_all_queues(eth_dev);
5251 	rte_free(hw->reset.wait_data);
5252 	hns3_mp_uninit(eth_dev);
5253 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5254 
5255 	return ret;
5256 }
5257 
5258 static void
5259 hns3_get_autoneg_rxtx_pause_copper(struct hns3_hw *hw, bool *rx_pause,
5260 				   bool *tx_pause)
5261 {
5262 	struct hns3_mac *mac = &hw->mac;
5263 	uint32_t advertising = mac->advertising;
5264 	uint32_t lp_advertising = mac->lp_advertising;
5265 	*rx_pause = false;
5266 	*tx_pause = false;
5267 
5268 	if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) {
5269 		*rx_pause = true;
5270 		*tx_pause = true;
5271 	} else if (advertising & lp_advertising &
5272 		   HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) {
5273 		if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5274 			*rx_pause = true;
5275 		else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5276 			*tx_pause = true;
5277 	}
5278 }
5279 
5280 static enum hns3_fc_mode
5281 hns3_get_autoneg_fc_mode(struct hns3_hw *hw)
5282 {
5283 	enum hns3_fc_mode current_mode;
5284 	bool rx_pause = false;
5285 	bool tx_pause = false;
5286 
5287 	switch (hw->mac.media_type) {
5288 	case HNS3_MEDIA_TYPE_COPPER:
5289 		hns3_get_autoneg_rxtx_pause_copper(hw, &rx_pause, &tx_pause);
5290 		break;
5291 
5292 	/*
5293 	 * Flow control auto-negotiation is not supported for fiber and
5294 	 * backplane media type.
5295 	 */
5296 	case HNS3_MEDIA_TYPE_FIBER:
5297 	case HNS3_MEDIA_TYPE_BACKPLANE:
5298 		hns3_err(hw, "autoneg FC mode can't be obtained, but flow control auto-negotiation is enabled.");
5299 		current_mode = hw->requested_fc_mode;
5300 		goto out;
5301 	default:
5302 		hns3_err(hw, "autoneg FC mode can't be obtained for unknown media type(%u).",
5303 			 hw->mac.media_type);
5304 		current_mode = HNS3_FC_NONE;
5305 		goto out;
5306 	}
5307 
5308 	if (rx_pause && tx_pause)
5309 		current_mode = HNS3_FC_FULL;
5310 	else if (rx_pause)
5311 		current_mode = HNS3_FC_RX_PAUSE;
5312 	else if (tx_pause)
5313 		current_mode = HNS3_FC_TX_PAUSE;
5314 	else
5315 		current_mode = HNS3_FC_NONE;
5316 
5317 out:
5318 	return current_mode;
5319 }
5320 
5321 static enum hns3_fc_mode
5322 hns3_get_current_fc_mode(struct rte_eth_dev *dev)
5323 {
5324 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5325 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5326 	struct hns3_mac *mac = &hw->mac;
5327 
5328 	/*
5329 	 * When the flow control mode is obtained, the device may not complete
5330 	 * auto-negotiation. It is necessary to wait for link establishment.
5331 	 */
5332 	(void)hns3_dev_link_update(dev, 1);
5333 
5334 	/*
5335 	 * If the link auto-negotiation of the nic is disabled, or the flow
5336 	 * control auto-negotiation is not supported, the forced flow control
5337 	 * mode is used.
5338 	 */
5339 	if (mac->link_autoneg == 0 || !pf->support_fc_autoneg)
5340 		return hw->requested_fc_mode;
5341 
5342 	return hns3_get_autoneg_fc_mode(hw);
5343 }
5344 
5345 int
5346 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5347 {
5348 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5349 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5350 	enum hns3_fc_mode current_mode;
5351 
5352 	current_mode = hns3_get_current_fc_mode(dev);
5353 	switch (current_mode) {
5354 	case HNS3_FC_FULL:
5355 		fc_conf->mode = RTE_ETH_FC_FULL;
5356 		break;
5357 	case HNS3_FC_TX_PAUSE:
5358 		fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
5359 		break;
5360 	case HNS3_FC_RX_PAUSE:
5361 		fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
5362 		break;
5363 	case HNS3_FC_NONE:
5364 	default:
5365 		fc_conf->mode = RTE_ETH_FC_NONE;
5366 		break;
5367 	}
5368 
5369 	fc_conf->pause_time = pf->pause_time;
5370 	fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0;
5371 
5372 	return 0;
5373 }
5374 
5375 static int
5376 hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg)
5377 {
5378 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5379 
5380 	if (!pf->support_fc_autoneg) {
5381 		if (autoneg != 0) {
5382 			hns3_err(hw, "unsupported fc auto-negotiation setting.");
5383 			return -EOPNOTSUPP;
5384 		}
5385 
5386 		/*
5387 		 * Flow control auto-negotiation of the NIC is not supported,
5388 		 * but other auto-negotiation features may be supported.
5389 		 */
5390 		if (autoneg != hw->mac.link_autoneg) {
5391 			hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to disable autoneg!");
5392 			return -EOPNOTSUPP;
5393 		}
5394 
5395 		return 0;
5396 	}
5397 
5398 	/*
5399 	 * If flow control auto-negotiation of the NIC is supported, all
5400 	 * auto-negotiation features are supported.
5401 	 */
5402 	if (autoneg != hw->mac.link_autoneg) {
5403 		hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!");
5404 		return -EOPNOTSUPP;
5405 	}
5406 
5407 	return 0;
5408 }
5409 
5410 static int
5411 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5412 {
5413 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5414 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5415 	int ret;
5416 
5417 	if (fc_conf->high_water || fc_conf->low_water ||
5418 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5419 		hns3_err(hw, "Unsupported flow control settings specified, "
5420 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5421 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5422 			 fc_conf->high_water, fc_conf->low_water,
5423 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5424 		return -EINVAL;
5425 	}
5426 
5427 	ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg);
5428 	if (ret)
5429 		return ret;
5430 
5431 	if (!fc_conf->pause_time) {
5432 		hns3_err(hw, "Invalid pause time %u setting.",
5433 			 fc_conf->pause_time);
5434 		return -EINVAL;
5435 	}
5436 
5437 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5438 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5439 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5440 			 "current_fc_status = %d", hw->current_fc_status);
5441 		return -EOPNOTSUPP;
5442 	}
5443 
5444 	if (hw->num_tc > 1 && !pf->support_multi_tc_pause) {
5445 		hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
5446 		return -EOPNOTSUPP;
5447 	}
5448 
5449 	rte_spinlock_lock(&hw->lock);
5450 	ret = hns3_fc_enable(dev, fc_conf);
5451 	rte_spinlock_unlock(&hw->lock);
5452 
5453 	return ret;
5454 }
5455 
5456 static int
5457 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5458 			    struct rte_eth_pfc_conf *pfc_conf)
5459 {
5460 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5461 	int ret;
5462 
5463 	if (!hns3_dev_get_support(hw, DCB)) {
5464 		hns3_err(hw, "This port does not support dcb configurations.");
5465 		return -EOPNOTSUPP;
5466 	}
5467 
5468 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5469 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5470 		hns3_err(hw, "Unsupported flow control settings specified, "
5471 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5472 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5473 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5474 			 pfc_conf->fc.send_xon,
5475 			 pfc_conf->fc.mac_ctrl_frame_fwd);
5476 		return -EINVAL;
5477 	}
5478 	if (pfc_conf->fc.autoneg) {
5479 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5480 		return -EINVAL;
5481 	}
5482 	if (pfc_conf->fc.pause_time == 0) {
5483 		hns3_err(hw, "Invalid pause time %u setting.",
5484 			 pfc_conf->fc.pause_time);
5485 		return -EINVAL;
5486 	}
5487 
5488 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5489 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5490 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5491 			     "current_fc_status = %d", hw->current_fc_status);
5492 		return -EOPNOTSUPP;
5493 	}
5494 
5495 	rte_spinlock_lock(&hw->lock);
5496 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5497 	rte_spinlock_unlock(&hw->lock);
5498 
5499 	return ret;
5500 }
5501 
5502 static int
5503 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5504 {
5505 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5506 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5507 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5508 	int i;
5509 
5510 	rte_spinlock_lock(&hw->lock);
5511 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG)
5512 		dcb_info->nb_tcs = pf->local_max_tc;
5513 	else
5514 		dcb_info->nb_tcs = 1;
5515 
5516 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5517 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5518 	for (i = 0; i < dcb_info->nb_tcs; i++)
5519 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5520 
5521 	for (i = 0; i < hw->num_tc; i++) {
5522 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5523 		dcb_info->tc_queue.tc_txq[0][i].base =
5524 						hw->tc_queue[i].tqp_offset;
5525 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5526 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5527 						hw->tc_queue[i].tqp_count;
5528 	}
5529 	rte_spinlock_unlock(&hw->lock);
5530 
5531 	return 0;
5532 }
5533 
5534 static int
5535 hns3_reinit_dev(struct hns3_adapter *hns)
5536 {
5537 	struct hns3_hw *hw = &hns->hw;
5538 	int ret;
5539 
5540 	ret = hns3_cmd_init(hw);
5541 	if (ret) {
5542 		hns3_err(hw, "Failed to init cmd: %d", ret);
5543 		return ret;
5544 	}
5545 
5546 	ret = hns3_init_hardware(hns);
5547 	if (ret) {
5548 		hns3_err(hw, "Failed to init hardware: %d", ret);
5549 		return ret;
5550 	}
5551 
5552 	ret = hns3_reset_all_tqps(hns);
5553 	if (ret) {
5554 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5555 		return ret;
5556 	}
5557 
5558 	ret = hns3_enable_hw_error_intr(hns, true);
5559 	if (ret) {
5560 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5561 			     ret);
5562 		return ret;
5563 	}
5564 	hns3_info(hw, "Reset done, driver initialization finished.");
5565 
5566 	return 0;
5567 }
5568 
5569 static bool
5570 is_pf_reset_done(struct hns3_hw *hw)
5571 {
5572 	uint32_t val, reg, reg_bit;
5573 
5574 	switch (hw->reset.level) {
5575 	case HNS3_IMP_RESET:
5576 		reg = HNS3_GLOBAL_RESET_REG;
5577 		reg_bit = HNS3_IMP_RESET_BIT;
5578 		break;
5579 	case HNS3_GLOBAL_RESET:
5580 		reg = HNS3_GLOBAL_RESET_REG;
5581 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5582 		break;
5583 	case HNS3_FUNC_RESET:
5584 		reg = HNS3_FUN_RST_ING;
5585 		reg_bit = HNS3_FUN_RST_ING_B;
5586 		break;
5587 	case HNS3_FLR_RESET:
5588 	default:
5589 		hns3_err(hw, "Wait for unsupported reset level: %d",
5590 			 hw->reset.level);
5591 		return true;
5592 	}
5593 	val = hns3_read_dev(hw, reg);
5594 	if (hns3_get_bit(val, reg_bit))
5595 		return false;
5596 	else
5597 		return true;
5598 }
5599 
5600 bool
5601 hns3_is_reset_pending(struct hns3_adapter *hns)
5602 {
5603 	struct hns3_hw *hw = &hns->hw;
5604 	enum hns3_reset_level reset;
5605 
5606 	hns3_check_event_cause(hns, NULL);
5607 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5608 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
5609 	    hw->reset.level < reset) {
5610 		hns3_warn(hw, "High level reset %d is pending", reset);
5611 		return true;
5612 	}
5613 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5614 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
5615 	    hw->reset.level < reset) {
5616 		hns3_warn(hw, "High level reset %d is request", reset);
5617 		return true;
5618 	}
5619 	return false;
5620 }
5621 
5622 static int
5623 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5624 {
5625 	struct hns3_hw *hw = &hns->hw;
5626 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5627 	struct timeval tv;
5628 
5629 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5630 		return 0;
5631 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5632 		hns3_clock_gettime(&tv);
5633 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5634 			  tv.tv_sec, tv.tv_usec);
5635 		return -ETIME;
5636 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5637 		return -EAGAIN;
5638 
5639 	wait_data->hns = hns;
5640 	wait_data->check_completion = is_pf_reset_done;
5641 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5642 				HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms();
5643 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5644 	wait_data->count = HNS3_RESET_WAIT_CNT;
5645 	wait_data->result = HNS3_WAIT_REQUEST;
5646 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5647 	return -EAGAIN;
5648 }
5649 
5650 static int
5651 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5652 {
5653 	struct hns3_cmd_desc desc;
5654 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5655 
5656 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5657 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5658 	req->fun_reset_vfid = func_id;
5659 
5660 	return hns3_cmd_send(hw, &desc, 1);
5661 }
5662 
5663 static int
5664 hns3_imp_reset_cmd(struct hns3_hw *hw)
5665 {
5666 	struct hns3_cmd_desc desc;
5667 
5668 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5669 	desc.data[0] = 0xeedd;
5670 
5671 	return hns3_cmd_send(hw, &desc, 1);
5672 }
5673 
5674 static void
5675 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5676 {
5677 	struct hns3_hw *hw = &hns->hw;
5678 	struct timeval tv;
5679 	uint32_t val;
5680 
5681 	hns3_clock_gettime(&tv);
5682 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5683 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5684 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5685 			  tv.tv_sec, tv.tv_usec);
5686 		return;
5687 	}
5688 
5689 	switch (reset_level) {
5690 	case HNS3_IMP_RESET:
5691 		hns3_imp_reset_cmd(hw);
5692 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5693 			  tv.tv_sec, tv.tv_usec);
5694 		break;
5695 	case HNS3_GLOBAL_RESET:
5696 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5697 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5698 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5699 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5700 			  tv.tv_sec, tv.tv_usec);
5701 		break;
5702 	case HNS3_FUNC_RESET:
5703 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5704 			  tv.tv_sec, tv.tv_usec);
5705 		/* schedule again to check later */
5706 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5707 		hns3_schedule_reset(hns);
5708 		break;
5709 	default:
5710 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5711 		return;
5712 	}
5713 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5714 }
5715 
5716 static enum hns3_reset_level
5717 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5718 {
5719 	struct hns3_hw *hw = &hns->hw;
5720 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5721 
5722 	/* Return the highest priority reset level amongst all */
5723 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5724 		reset_level = HNS3_IMP_RESET;
5725 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5726 		reset_level = HNS3_GLOBAL_RESET;
5727 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5728 		reset_level = HNS3_FUNC_RESET;
5729 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5730 		reset_level = HNS3_FLR_RESET;
5731 
5732 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5733 		return HNS3_NONE_RESET;
5734 
5735 	return reset_level;
5736 }
5737 
5738 static void
5739 hns3_record_imp_error(struct hns3_adapter *hns)
5740 {
5741 	struct hns3_hw *hw = &hns->hw;
5742 	uint32_t reg_val;
5743 
5744 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5745 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5746 		hns3_warn(hw, "Detected IMP RD poison!");
5747 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5748 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5749 	}
5750 
5751 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5752 		hns3_warn(hw, "Detected IMP CMDQ error!");
5753 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5754 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5755 	}
5756 }
5757 
5758 static int
5759 hns3_prepare_reset(struct hns3_adapter *hns)
5760 {
5761 	struct hns3_hw *hw = &hns->hw;
5762 	uint32_t reg_val;
5763 	int ret;
5764 
5765 	switch (hw->reset.level) {
5766 	case HNS3_FUNC_RESET:
5767 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5768 		if (ret)
5769 			return ret;
5770 
5771 		/*
5772 		 * After performaning pf reset, it is not necessary to do the
5773 		 * mailbox handling or send any command to firmware, because
5774 		 * any mailbox handling or command to firmware is only valid
5775 		 * after hns3_cmd_init is called.
5776 		 */
5777 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5778 		hw->reset.stats.request_cnt++;
5779 		break;
5780 	case HNS3_IMP_RESET:
5781 		hns3_record_imp_error(hns);
5782 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5783 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5784 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5785 		break;
5786 	default:
5787 		break;
5788 	}
5789 	return 0;
5790 }
5791 
5792 static int
5793 hns3_set_rst_done(struct hns3_hw *hw)
5794 {
5795 	struct hns3_pf_rst_done_cmd *req;
5796 	struct hns3_cmd_desc desc;
5797 
5798 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5799 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5800 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5801 	return hns3_cmd_send(hw, &desc, 1);
5802 }
5803 
5804 static int
5805 hns3_stop_service(struct hns3_adapter *hns)
5806 {
5807 	struct hns3_hw *hw = &hns->hw;
5808 	struct rte_eth_dev *eth_dev;
5809 
5810 	eth_dev = &rte_eth_devices[hw->data->port_id];
5811 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5812 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5813 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5814 		hns3_update_linkstatus_and_event(hw, false);
5815 	}
5816 
5817 	hns3_set_rxtx_function(eth_dev);
5818 	rte_wmb();
5819 	/* Disable datapath on secondary process. */
5820 	hns3_mp_req_stop_rxtx(eth_dev);
5821 	rte_delay_ms(hw->cfg_max_queues);
5822 
5823 	rte_spinlock_lock(&hw->lock);
5824 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5825 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5826 		hns3_enable_all_queues(hw, false);
5827 		hns3_do_stop(hns);
5828 		hw->reset.mbuf_deferred_free = true;
5829 	} else
5830 		hw->reset.mbuf_deferred_free = false;
5831 
5832 	/*
5833 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5834 	 * from table space. Hence, for function reset software intervention is
5835 	 * required to delete the entries
5836 	 */
5837 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5838 		hns3_configure_all_mc_mac_addr(hns, true);
5839 	rte_spinlock_unlock(&hw->lock);
5840 
5841 	return 0;
5842 }
5843 
5844 static int
5845 hns3_start_service(struct hns3_adapter *hns)
5846 {
5847 	struct hns3_hw *hw = &hns->hw;
5848 	struct rte_eth_dev *eth_dev;
5849 
5850 	if (hw->reset.level == HNS3_IMP_RESET ||
5851 	    hw->reset.level == HNS3_GLOBAL_RESET)
5852 		hns3_set_rst_done(hw);
5853 	eth_dev = &rte_eth_devices[hw->data->port_id];
5854 	hns3_set_rxtx_function(eth_dev);
5855 	hns3_mp_req_start_rxtx(eth_dev);
5856 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5857 		/*
5858 		 * This API parent function already hold the hns3_hw.lock, the
5859 		 * hns3_service_handler may report lse, in bonding application
5860 		 * it will call driver's ops which may acquire the hns3_hw.lock
5861 		 * again, thus lead to deadlock.
5862 		 * We defer calls hns3_service_handler to avoid the deadlock.
5863 		 */
5864 		rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5865 				  hns3_service_handler, eth_dev);
5866 
5867 		/* Enable interrupt of all rx queues before enabling queues */
5868 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5869 		/*
5870 		 * Enable state of each rxq and txq will be recovered after
5871 		 * reset, so we need to restore them before enable all tqps;
5872 		 */
5873 		hns3_restore_tqp_enable_state(hw);
5874 		/*
5875 		 * When finished the initialization, enable queues to receive
5876 		 * and transmit packets.
5877 		 */
5878 		hns3_enable_all_queues(hw, true);
5879 	}
5880 
5881 	return 0;
5882 }
5883 
5884 static int
5885 hns3_restore_conf(struct hns3_adapter *hns)
5886 {
5887 	struct hns3_hw *hw = &hns->hw;
5888 	int ret;
5889 
5890 	ret = hns3_configure_all_mac_addr(hns, false);
5891 	if (ret)
5892 		return ret;
5893 
5894 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5895 	if (ret)
5896 		goto err_mc_mac;
5897 
5898 	ret = hns3_dev_promisc_restore(hns);
5899 	if (ret)
5900 		goto err_promisc;
5901 
5902 	ret = hns3_restore_vlan_table(hns);
5903 	if (ret)
5904 		goto err_promisc;
5905 
5906 	ret = hns3_restore_vlan_conf(hns);
5907 	if (ret)
5908 		goto err_promisc;
5909 
5910 	ret = hns3_restore_all_fdir_filter(hns);
5911 	if (ret)
5912 		goto err_promisc;
5913 
5914 	ret = hns3_restore_ptp(hns);
5915 	if (ret)
5916 		goto err_promisc;
5917 
5918 	ret = hns3_restore_rx_interrupt(hw);
5919 	if (ret)
5920 		goto err_promisc;
5921 
5922 	ret = hns3_restore_gro_conf(hw);
5923 	if (ret)
5924 		goto err_promisc;
5925 
5926 	ret = hns3_restore_fec(hw);
5927 	if (ret)
5928 		goto err_promisc;
5929 
5930 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5931 		ret = hns3_do_start(hns, false);
5932 		if (ret)
5933 			goto err_promisc;
5934 		hns3_info(hw, "hns3 dev restart successful!");
5935 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5936 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5937 	return 0;
5938 
5939 err_promisc:
5940 	hns3_configure_all_mc_mac_addr(hns, true);
5941 err_mc_mac:
5942 	hns3_configure_all_mac_addr(hns, true);
5943 	return ret;
5944 }
5945 
5946 static void
5947 hns3_reset_service(void *param)
5948 {
5949 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5950 	struct hns3_hw *hw = &hns->hw;
5951 	enum hns3_reset_level reset_level;
5952 	struct timeval tv_delta;
5953 	struct timeval tv_start;
5954 	struct timeval tv;
5955 	uint64_t msec;
5956 	int ret;
5957 
5958 	/*
5959 	 * The interrupt is not triggered within the delay time.
5960 	 * The interrupt may have been lost. It is necessary to handle
5961 	 * the interrupt to recover from the error.
5962 	 */
5963 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
5964 			    SCHEDULE_DEFERRED) {
5965 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
5966 				  __ATOMIC_RELAXED);
5967 		hns3_err(hw, "Handling interrupts in delayed tasks");
5968 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5969 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5970 		if (reset_level == HNS3_NONE_RESET) {
5971 			hns3_err(hw, "No reset level is set, try IMP reset");
5972 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5973 		}
5974 	}
5975 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
5976 
5977 	/*
5978 	 * Check if there is any ongoing reset in the hardware. This status can
5979 	 * be checked from reset_pending. If there is then, we need to wait for
5980 	 * hardware to complete reset.
5981 	 *    a. If we are able to figure out in reasonable time that hardware
5982 	 *       has fully resetted then, we can proceed with driver, client
5983 	 *       reset.
5984 	 *    b. else, we can come back later to check this status so re-sched
5985 	 *       now.
5986 	 */
5987 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5988 	if (reset_level != HNS3_NONE_RESET) {
5989 		hns3_clock_gettime(&tv_start);
5990 		ret = hns3_reset_process(hns, reset_level);
5991 		hns3_clock_gettime(&tv);
5992 		timersub(&tv, &tv_start, &tv_delta);
5993 		msec = hns3_clock_calctime_ms(&tv_delta);
5994 		if (msec > HNS3_RESET_PROCESS_MS)
5995 			hns3_err(hw, "%d handle long time delta %" PRIu64
5996 				     " ms time=%ld.%.6ld",
5997 				 hw->reset.level, msec,
5998 				 tv.tv_sec, tv.tv_usec);
5999 		if (ret == -EAGAIN)
6000 			return;
6001 	}
6002 
6003 	/* Check if we got any *new* reset requests to be honored */
6004 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6005 	if (reset_level != HNS3_NONE_RESET)
6006 		hns3_msix_process(hns, reset_level);
6007 }
6008 
6009 static unsigned int
6010 hns3_get_speed_capa_num(uint16_t device_id)
6011 {
6012 	unsigned int num;
6013 
6014 	switch (device_id) {
6015 	case HNS3_DEV_ID_25GE:
6016 	case HNS3_DEV_ID_25GE_RDMA:
6017 		num = 2;
6018 		break;
6019 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6020 	case HNS3_DEV_ID_200G_RDMA:
6021 		num = 1;
6022 		break;
6023 	default:
6024 		num = 0;
6025 		break;
6026 	}
6027 
6028 	return num;
6029 }
6030 
6031 static int
6032 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6033 			uint16_t device_id)
6034 {
6035 	switch (device_id) {
6036 	case HNS3_DEV_ID_25GE:
6037 	/* fallthrough */
6038 	case HNS3_DEV_ID_25GE_RDMA:
6039 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6040 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6041 
6042 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
6043 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6044 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6045 		break;
6046 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6047 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6048 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6049 		break;
6050 	case HNS3_DEV_ID_200G_RDMA:
6051 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6052 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6053 		break;
6054 	default:
6055 		return -ENOTSUP;
6056 	}
6057 
6058 	return 0;
6059 }
6060 
6061 static int
6062 hns3_fec_get_capability(struct rte_eth_dev *dev,
6063 			struct rte_eth_fec_capa *speed_fec_capa,
6064 			unsigned int num)
6065 {
6066 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6067 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6068 	uint16_t device_id = pci_dev->id.device_id;
6069 	unsigned int capa_num;
6070 	int ret;
6071 
6072 	capa_num = hns3_get_speed_capa_num(device_id);
6073 	if (capa_num == 0) {
6074 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6075 			 device_id);
6076 		return -ENOTSUP;
6077 	}
6078 
6079 	if (speed_fec_capa == NULL || num < capa_num)
6080 		return capa_num;
6081 
6082 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6083 	if (ret)
6084 		return -ENOTSUP;
6085 
6086 	return capa_num;
6087 }
6088 
6089 static int
6090 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6091 {
6092 	struct hns3_config_fec_cmd *req;
6093 	struct hns3_cmd_desc desc;
6094 	int ret;
6095 
6096 	/*
6097 	 * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6098 	 * in device of link speed
6099 	 * below 10 Gbps.
6100 	 */
6101 	if (hw->mac.link_speed < RTE_ETH_SPEED_NUM_10G) {
6102 		*state = 0;
6103 		return 0;
6104 	}
6105 
6106 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6107 	req = (struct hns3_config_fec_cmd *)desc.data;
6108 	ret = hns3_cmd_send(hw, &desc, 1);
6109 	if (ret) {
6110 		hns3_err(hw, "get current fec auto state failed, ret = %d",
6111 			 ret);
6112 		return ret;
6113 	}
6114 
6115 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6116 	return 0;
6117 }
6118 
6119 static int
6120 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6121 {
6122 	struct hns3_sfp_info_cmd *resp;
6123 	uint32_t tmp_fec_capa;
6124 	uint8_t auto_state;
6125 	struct hns3_cmd_desc desc;
6126 	int ret;
6127 
6128 	/*
6129 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6130 	 * configured FEC mode is returned.
6131 	 * If link is up, current FEC mode is returned.
6132 	 */
6133 	if (hw->mac.link_status == RTE_ETH_LINK_DOWN) {
6134 		ret = get_current_fec_auto_state(hw, &auto_state);
6135 		if (ret)
6136 			return ret;
6137 
6138 		if (auto_state == 0x1) {
6139 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6140 			return 0;
6141 		}
6142 	}
6143 
6144 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
6145 	resp = (struct hns3_sfp_info_cmd *)desc.data;
6146 	resp->query_type = HNS3_ACTIVE_QUERY;
6147 
6148 	ret = hns3_cmd_send(hw, &desc, 1);
6149 	if (ret == -EOPNOTSUPP) {
6150 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6151 		return ret;
6152 	} else if (ret) {
6153 		hns3_err(hw, "get FEC failed, ret = %d", ret);
6154 		return ret;
6155 	}
6156 
6157 	/*
6158 	 * FEC mode order defined in hns3 hardware is inconsistent with
6159 	 * that defined in the ethdev library. So the sequence needs
6160 	 * to be converted.
6161 	 */
6162 	switch (resp->active_fec) {
6163 	case HNS3_HW_FEC_MODE_NOFEC:
6164 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6165 		break;
6166 	case HNS3_HW_FEC_MODE_BASER:
6167 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6168 		break;
6169 	case HNS3_HW_FEC_MODE_RS:
6170 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6171 		break;
6172 	default:
6173 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6174 		break;
6175 	}
6176 
6177 	*fec_capa = tmp_fec_capa;
6178 	return 0;
6179 }
6180 
6181 static int
6182 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6183 {
6184 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6185 
6186 	return hns3_fec_get_internal(hw, fec_capa);
6187 }
6188 
6189 static int
6190 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6191 {
6192 	struct hns3_config_fec_cmd *req;
6193 	struct hns3_cmd_desc desc;
6194 	int ret;
6195 
6196 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6197 
6198 	req = (struct hns3_config_fec_cmd *)desc.data;
6199 	switch (mode) {
6200 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6201 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6202 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6203 		break;
6204 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6205 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6206 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6207 		break;
6208 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6209 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6210 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6211 		break;
6212 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6213 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6214 		break;
6215 	default:
6216 		return 0;
6217 	}
6218 	ret = hns3_cmd_send(hw, &desc, 1);
6219 	if (ret)
6220 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
6221 
6222 	return ret;
6223 }
6224 
6225 static uint32_t
6226 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6227 {
6228 	struct hns3_mac *mac = &hw->mac;
6229 	uint32_t cur_capa;
6230 
6231 	switch (mac->link_speed) {
6232 	case RTE_ETH_SPEED_NUM_10G:
6233 		cur_capa = fec_capa[1].capa;
6234 		break;
6235 	case RTE_ETH_SPEED_NUM_25G:
6236 	case RTE_ETH_SPEED_NUM_100G:
6237 	case RTE_ETH_SPEED_NUM_200G:
6238 		cur_capa = fec_capa[0].capa;
6239 		break;
6240 	default:
6241 		cur_capa = 0;
6242 		break;
6243 	}
6244 
6245 	return cur_capa;
6246 }
6247 
6248 static bool
6249 is_fec_mode_one_bit_set(uint32_t mode)
6250 {
6251 	int cnt = 0;
6252 	uint8_t i;
6253 
6254 	for (i = 0; i < sizeof(mode); i++)
6255 		if (mode >> i & 0x1)
6256 			cnt++;
6257 
6258 	return cnt == 1 ? true : false;
6259 }
6260 
6261 static int
6262 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6263 {
6264 #define FEC_CAPA_NUM 2
6265 	struct hns3_adapter *hns = dev->data->dev_private;
6266 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6267 	struct hns3_pf *pf = &hns->pf;
6268 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6269 	uint32_t cur_capa;
6270 	uint32_t num = FEC_CAPA_NUM;
6271 	int ret;
6272 
6273 	ret = hns3_fec_get_capability(dev, fec_capa, num);
6274 	if (ret < 0)
6275 		return ret;
6276 
6277 	/* HNS3 PMD only support one bit set mode, e.g. 0x1, 0x4 */
6278 	if (!is_fec_mode_one_bit_set(mode)) {
6279 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD, "
6280 			     "FEC mode should be only one bit set", mode);
6281 		return -EINVAL;
6282 	}
6283 
6284 	/*
6285 	 * Check whether the configured mode is within the FEC capability.
6286 	 * If not, the configured mode will not be supported.
6287 	 */
6288 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6289 	if (!(cur_capa & mode)) {
6290 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6291 		return -EINVAL;
6292 	}
6293 
6294 	rte_spinlock_lock(&hw->lock);
6295 	ret = hns3_set_fec_hw(hw, mode);
6296 	if (ret) {
6297 		rte_spinlock_unlock(&hw->lock);
6298 		return ret;
6299 	}
6300 
6301 	pf->fec_mode = mode;
6302 	rte_spinlock_unlock(&hw->lock);
6303 
6304 	return 0;
6305 }
6306 
6307 static int
6308 hns3_restore_fec(struct hns3_hw *hw)
6309 {
6310 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6311 	struct hns3_pf *pf = &hns->pf;
6312 	uint32_t mode = pf->fec_mode;
6313 	int ret;
6314 
6315 	ret = hns3_set_fec_hw(hw, mode);
6316 	if (ret)
6317 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6318 			 mode, ret);
6319 
6320 	return ret;
6321 }
6322 
6323 static int
6324 hns3_query_dev_fec_info(struct hns3_hw *hw)
6325 {
6326 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6327 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6328 	int ret;
6329 
6330 	ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6331 	if (ret)
6332 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6333 
6334 	return ret;
6335 }
6336 
6337 static bool
6338 hns3_optical_module_existed(struct hns3_hw *hw)
6339 {
6340 	struct hns3_cmd_desc desc;
6341 	bool existed;
6342 	int ret;
6343 
6344 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6345 	ret = hns3_cmd_send(hw, &desc, 1);
6346 	if (ret) {
6347 		hns3_err(hw,
6348 			 "fail to get optical module exist state, ret = %d.\n",
6349 			 ret);
6350 		return false;
6351 	}
6352 	existed = !!desc.data[0];
6353 
6354 	return existed;
6355 }
6356 
6357 static int
6358 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6359 				uint32_t len, uint8_t *data)
6360 {
6361 #define HNS3_SFP_INFO_CMD_NUM 6
6362 #define HNS3_SFP_INFO_MAX_LEN \
6363 	(HNS3_SFP_INFO_BD0_LEN + \
6364 	(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6365 	struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6366 	struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6367 	uint16_t read_len;
6368 	uint16_t copy_len;
6369 	int ret;
6370 	int i;
6371 
6372 	for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6373 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6374 					  true);
6375 		if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6376 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6377 	}
6378 
6379 	sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6380 	sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6381 	read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6382 	sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6383 
6384 	ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6385 	if (ret) {
6386 		hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6387 				ret);
6388 		return ret;
6389 	}
6390 
6391 	/* The data format in BD0 is different with the others. */
6392 	copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6393 	memcpy(data, sfp_info_bd0->data, copy_len);
6394 	read_len = copy_len;
6395 
6396 	for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6397 		if (read_len >= len)
6398 			break;
6399 
6400 		copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6401 		memcpy(data + read_len, desc[i].data, copy_len);
6402 		read_len += copy_len;
6403 	}
6404 
6405 	return (int)read_len;
6406 }
6407 
6408 static int
6409 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6410 		       struct rte_dev_eeprom_info *info)
6411 {
6412 	struct hns3_adapter *hns = dev->data->dev_private;
6413 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6414 	uint32_t offset = info->offset;
6415 	uint32_t len = info->length;
6416 	uint8_t *data = info->data;
6417 	uint32_t read_len = 0;
6418 
6419 	if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6420 		return -ENOTSUP;
6421 
6422 	if (!hns3_optical_module_existed(hw)) {
6423 		hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6424 		return -EIO;
6425 	}
6426 
6427 	while (read_len < len) {
6428 		int ret;
6429 		ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6430 						  len - read_len,
6431 						  data + read_len);
6432 		if (ret < 0)
6433 			return -EIO;
6434 		read_len += ret;
6435 	}
6436 
6437 	return 0;
6438 }
6439 
6440 static int
6441 hns3_get_module_info(struct rte_eth_dev *dev,
6442 		     struct rte_eth_dev_module_info *modinfo)
6443 {
6444 #define HNS3_SFF8024_ID_SFP		0x03
6445 #define HNS3_SFF8024_ID_QSFP_8438	0x0c
6446 #define HNS3_SFF8024_ID_QSFP_8436_8636	0x0d
6447 #define HNS3_SFF8024_ID_QSFP28_8636	0x11
6448 #define HNS3_SFF_8636_V1_3		0x03
6449 	struct hns3_adapter *hns = dev->data->dev_private;
6450 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6451 	struct rte_dev_eeprom_info info;
6452 	struct hns3_sfp_type sfp_type;
6453 	int ret;
6454 
6455 	memset(&sfp_type, 0, sizeof(sfp_type));
6456 	memset(&info, 0, sizeof(info));
6457 	info.data = (uint8_t *)&sfp_type;
6458 	info.length = sizeof(sfp_type);
6459 	ret = hns3_get_module_eeprom(dev, &info);
6460 	if (ret)
6461 		return ret;
6462 
6463 	switch (sfp_type.type) {
6464 	case HNS3_SFF8024_ID_SFP:
6465 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
6466 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6467 		break;
6468 	case HNS3_SFF8024_ID_QSFP_8438:
6469 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
6470 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6471 		break;
6472 	case HNS3_SFF8024_ID_QSFP_8436_8636:
6473 		if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6474 			modinfo->type = RTE_ETH_MODULE_SFF_8436;
6475 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6476 		} else {
6477 			modinfo->type = RTE_ETH_MODULE_SFF_8636;
6478 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6479 		}
6480 		break;
6481 	case HNS3_SFF8024_ID_QSFP28_8636:
6482 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
6483 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6484 		break;
6485 	default:
6486 		hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6487 			 sfp_type.type, sfp_type.ext_type);
6488 		return -EINVAL;
6489 	}
6490 
6491 	return 0;
6492 }
6493 
6494 static const struct eth_dev_ops hns3_eth_dev_ops = {
6495 	.dev_configure      = hns3_dev_configure,
6496 	.dev_start          = hns3_dev_start,
6497 	.dev_stop           = hns3_dev_stop,
6498 	.dev_close          = hns3_dev_close,
6499 	.promiscuous_enable = hns3_dev_promiscuous_enable,
6500 	.promiscuous_disable = hns3_dev_promiscuous_disable,
6501 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
6502 	.allmulticast_disable = hns3_dev_allmulticast_disable,
6503 	.mtu_set            = hns3_dev_mtu_set,
6504 	.stats_get          = hns3_stats_get,
6505 	.stats_reset        = hns3_stats_reset,
6506 	.xstats_get         = hns3_dev_xstats_get,
6507 	.xstats_get_names   = hns3_dev_xstats_get_names,
6508 	.xstats_reset       = hns3_dev_xstats_reset,
6509 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6510 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6511 	.dev_infos_get          = hns3_dev_infos_get,
6512 	.fw_version_get         = hns3_fw_version_get,
6513 	.rx_queue_setup         = hns3_rx_queue_setup,
6514 	.tx_queue_setup         = hns3_tx_queue_setup,
6515 	.rx_queue_release       = hns3_dev_rx_queue_release,
6516 	.tx_queue_release       = hns3_dev_tx_queue_release,
6517 	.rx_queue_start         = hns3_dev_rx_queue_start,
6518 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
6519 	.tx_queue_start         = hns3_dev_tx_queue_start,
6520 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
6521 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6522 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6523 	.rxq_info_get           = hns3_rxq_info_get,
6524 	.txq_info_get           = hns3_txq_info_get,
6525 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
6526 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
6527 	.flow_ctrl_get          = hns3_flow_ctrl_get,
6528 	.flow_ctrl_set          = hns3_flow_ctrl_set,
6529 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6530 	.mac_addr_add           = hns3_add_mac_addr,
6531 	.mac_addr_remove        = hns3_remove_mac_addr,
6532 	.mac_addr_set           = hns3_set_default_mac_addr,
6533 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6534 	.link_update            = hns3_dev_link_update,
6535 	.dev_set_link_up        = hns3_dev_set_link_up,
6536 	.dev_set_link_down      = hns3_dev_set_link_down,
6537 	.rss_hash_update        = hns3_dev_rss_hash_update,
6538 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6539 	.reta_update            = hns3_dev_rss_reta_update,
6540 	.reta_query             = hns3_dev_rss_reta_query,
6541 	.flow_ops_get           = hns3_dev_flow_ops_get,
6542 	.vlan_filter_set        = hns3_vlan_filter_set,
6543 	.vlan_tpid_set          = hns3_vlan_tpid_set,
6544 	.vlan_offload_set       = hns3_vlan_offload_set,
6545 	.vlan_pvid_set          = hns3_vlan_pvid_set,
6546 	.get_reg                = hns3_get_regs,
6547 	.get_module_info        = hns3_get_module_info,
6548 	.get_module_eeprom      = hns3_get_module_eeprom,
6549 	.get_dcb_info           = hns3_get_dcb_info,
6550 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6551 	.fec_get_capability     = hns3_fec_get_capability,
6552 	.fec_get                = hns3_fec_get,
6553 	.fec_set                = hns3_fec_set,
6554 	.tm_ops_get             = hns3_tm_ops_get,
6555 	.tx_done_cleanup        = hns3_tx_done_cleanup,
6556 	.timesync_enable            = hns3_timesync_enable,
6557 	.timesync_disable           = hns3_timesync_disable,
6558 	.timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
6559 	.timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
6560 	.timesync_adjust_time       = hns3_timesync_adjust_time,
6561 	.timesync_read_time         = hns3_timesync_read_time,
6562 	.timesync_write_time        = hns3_timesync_write_time,
6563 	.eth_dev_priv_dump          = hns3_eth_dev_priv_dump,
6564 };
6565 
6566 static const struct hns3_reset_ops hns3_reset_ops = {
6567 	.reset_service       = hns3_reset_service,
6568 	.stop_service        = hns3_stop_service,
6569 	.prepare_reset       = hns3_prepare_reset,
6570 	.wait_hardware_ready = hns3_wait_hardware_ready,
6571 	.reinit_dev          = hns3_reinit_dev,
6572 	.restore_conf	     = hns3_restore_conf,
6573 	.start_service       = hns3_start_service,
6574 };
6575 
6576 static void
6577 hns3_init_hw_ops(struct hns3_hw *hw)
6578 {
6579 	hw->ops.add_mc_mac_addr = hns3_add_mc_mac_addr;
6580 	hw->ops.del_mc_mac_addr = hns3_remove_mc_mac_addr;
6581 	hw->ops.add_uc_mac_addr = hns3_add_uc_mac_addr;
6582 	hw->ops.del_uc_mac_addr = hns3_remove_uc_mac_addr;
6583 	hw->ops.bind_ring_with_vector = hns3_bind_ring_with_vector;
6584 }
6585 
6586 static int
6587 hns3_dev_init(struct rte_eth_dev *eth_dev)
6588 {
6589 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6590 	struct hns3_hw *hw = &hns->hw;
6591 	int ret;
6592 
6593 	PMD_INIT_FUNC_TRACE();
6594 
6595 	hns3_flow_init(eth_dev);
6596 
6597 	hns3_set_rxtx_function(eth_dev);
6598 	eth_dev->dev_ops = &hns3_eth_dev_ops;
6599 	eth_dev->rx_queue_count = hns3_rx_queue_count;
6600 	ret = hns3_mp_init(eth_dev);
6601 	if (ret)
6602 		goto err_mp_init;
6603 
6604 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6605 		hns3_tx_push_init(eth_dev);
6606 		return 0;
6607 	}
6608 
6609 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6610 	hns->is_vf = false;
6611 	hw->data = eth_dev->data;
6612 	hns3_parse_devargs(eth_dev);
6613 
6614 	/*
6615 	 * Set default max packet size according to the mtu
6616 	 * default vale in DPDK frame.
6617 	 */
6618 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6619 
6620 	ret = hns3_reset_init(hw);
6621 	if (ret)
6622 		goto err_init_reset;
6623 	hw->reset.ops = &hns3_reset_ops;
6624 
6625 	hns3_init_hw_ops(hw);
6626 	ret = hns3_init_pf(eth_dev);
6627 	if (ret) {
6628 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6629 		goto err_init_pf;
6630 	}
6631 
6632 	ret = hns3_init_mac_addrs(eth_dev);
6633 	if (ret != 0)
6634 		goto err_init_mac_addrs;
6635 
6636 	hw->adapter_state = HNS3_NIC_INITIALIZED;
6637 
6638 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6639 			    SCHEDULE_PENDING) {
6640 		hns3_err(hw, "Reschedule reset service after dev_init");
6641 		hns3_schedule_reset(hns);
6642 	} else {
6643 		/* IMP will wait ready flag before reset */
6644 		hns3_notify_reset_ready(hw, false);
6645 	}
6646 
6647 	hns3_info(hw, "hns3 dev initialization successful!");
6648 	return 0;
6649 
6650 err_init_mac_addrs:
6651 	hns3_uninit_pf(eth_dev);
6652 
6653 err_init_pf:
6654 	rte_free(hw->reset.wait_data);
6655 
6656 err_init_reset:
6657 	hns3_mp_uninit(eth_dev);
6658 
6659 err_mp_init:
6660 	eth_dev->dev_ops = NULL;
6661 	eth_dev->rx_pkt_burst = NULL;
6662 	eth_dev->rx_descriptor_status = NULL;
6663 	eth_dev->tx_pkt_burst = NULL;
6664 	eth_dev->tx_pkt_prepare = NULL;
6665 	eth_dev->tx_descriptor_status = NULL;
6666 	return ret;
6667 }
6668 
6669 static int
6670 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6671 {
6672 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6673 	struct hns3_hw *hw = &hns->hw;
6674 
6675 	PMD_INIT_FUNC_TRACE();
6676 
6677 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6678 		hns3_mp_uninit(eth_dev);
6679 		return 0;
6680 	}
6681 
6682 	if (hw->adapter_state < HNS3_NIC_CLOSING)
6683 		hns3_dev_close(eth_dev);
6684 
6685 	hw->adapter_state = HNS3_NIC_REMOVED;
6686 	return 0;
6687 }
6688 
6689 static int
6690 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6691 		   struct rte_pci_device *pci_dev)
6692 {
6693 	return rte_eth_dev_pci_generic_probe(pci_dev,
6694 					     sizeof(struct hns3_adapter),
6695 					     hns3_dev_init);
6696 }
6697 
6698 static int
6699 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6700 {
6701 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6702 }
6703 
6704 static const struct rte_pci_id pci_id_hns3_map[] = {
6705 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6706 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6707 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6708 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6709 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6710 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6711 	{ .vendor_id = 0, }, /* sentinel */
6712 };
6713 
6714 static struct rte_pci_driver rte_hns3_pmd = {
6715 	.id_table = pci_id_hns3_map,
6716 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
6717 	.probe = eth_hns3_pci_probe,
6718 	.remove = eth_hns3_pci_remove,
6719 };
6720 
6721 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6722 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6723 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6724 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6725 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6726 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
6727 		HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> "
6728 		HNS3_DEVARG_MBX_TIME_LIMIT_MS "=<uint16> ");
6729 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE);
6730 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);
6731