xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision 8b8036a66e3d59ffa58afb8d96fa2c73262155a7)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 #include <rte_kvargs.h>
10 
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18 
19 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
20 #define HNS3_SERVICE_QUICK_INTERVAL	10
21 #define HNS3_INVALID_PVID		0xFFFF
22 
23 #define HNS3_FILTER_TYPE_VF		0
24 #define HNS3_FILTER_TYPE_PORT		1
25 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
26 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
27 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
28 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
29 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
30 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
31 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
32 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
33 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
34 
35 /* Reset related Registers */
36 #define HNS3_GLOBAL_RESET_BIT		0
37 #define HNS3_CORE_RESET_BIT		1
38 #define HNS3_IMP_RESET_BIT		2
39 #define HNS3_FUN_RST_ING_B		0
40 
41 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
42 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
43 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
44 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
45 
46 #define HNS3_RESET_WAIT_MS	100
47 #define HNS3_RESET_WAIT_CNT	200
48 
49 /* FEC mode order defined in HNS3 hardware */
50 #define HNS3_HW_FEC_MODE_NOFEC  0
51 #define HNS3_HW_FEC_MODE_BASER  1
52 #define HNS3_HW_FEC_MODE_RS     2
53 
54 enum hns3_evt_cause {
55 	HNS3_VECTOR0_EVENT_RST,
56 	HNS3_VECTOR0_EVENT_MBX,
57 	HNS3_VECTOR0_EVENT_ERR,
58 	HNS3_VECTOR0_EVENT_PTP,
59 	HNS3_VECTOR0_EVENT_OTHER,
60 };
61 
62 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
63 	{ RTE_ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
64 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
65 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
66 
67 	{ RTE_ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
68 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
69 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
70 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
71 
72 	{ RTE_ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
73 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
74 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
75 
76 	{ RTE_ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
77 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
78 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
80 
81 	{ RTE_ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
82 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
83 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
84 
85 	{ RTE_ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
86 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
87 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
88 };
89 
90 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
91 						 uint64_t *levels);
92 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
93 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
94 				    int on);
95 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
96 static bool hns3_update_link_status(struct hns3_hw *hw);
97 
98 static int hns3_add_mc_mac_addr(struct hns3_hw *hw,
99 				struct rte_ether_addr *mac_addr);
100 static int hns3_remove_mc_mac_addr(struct hns3_hw *hw,
101 				   struct rte_ether_addr *mac_addr);
102 static int hns3_restore_fec(struct hns3_hw *hw);
103 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
104 static int hns3_do_stop(struct hns3_adapter *hns);
105 static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds);
106 static int hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable);
107 
108 void hns3_ether_format_addr(char *buf, uint16_t size,
109 			    const struct rte_ether_addr *ether_addr)
110 {
111 	snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
112 		ether_addr->addr_bytes[0],
113 		ether_addr->addr_bytes[4],
114 		ether_addr->addr_bytes[5]);
115 }
116 
117 static void
118 hns3_pf_disable_irq0(struct hns3_hw *hw)
119 {
120 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
121 }
122 
123 static void
124 hns3_pf_enable_irq0(struct hns3_hw *hw)
125 {
126 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
127 }
128 
129 static enum hns3_evt_cause
130 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
131 			  uint32_t *vec_val)
132 {
133 	struct hns3_hw *hw = &hns->hw;
134 
135 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
136 	hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
137 	*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
138 	if (!is_delay) {
139 		hw->reset.stats.imp_cnt++;
140 		hns3_warn(hw, "IMP reset detected, clear reset status");
141 	} else {
142 		hns3_schedule_delayed_reset(hns);
143 		hns3_warn(hw, "IMP reset detected, don't clear reset status");
144 	}
145 
146 	return HNS3_VECTOR0_EVENT_RST;
147 }
148 
149 static enum hns3_evt_cause
150 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
151 			     uint32_t *vec_val)
152 {
153 	struct hns3_hw *hw = &hns->hw;
154 
155 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
156 	hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
157 	*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
158 	if (!is_delay) {
159 		hw->reset.stats.global_cnt++;
160 		hns3_warn(hw, "Global reset detected, clear reset status");
161 	} else {
162 		hns3_schedule_delayed_reset(hns);
163 		hns3_warn(hw,
164 			  "Global reset detected, don't clear reset status");
165 	}
166 
167 	return HNS3_VECTOR0_EVENT_RST;
168 }
169 
170 static enum hns3_evt_cause
171 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
172 {
173 	struct hns3_hw *hw = &hns->hw;
174 	uint32_t vector0_int_stats;
175 	uint32_t cmdq_src_val;
176 	uint32_t hw_err_src_reg;
177 	uint32_t val;
178 	enum hns3_evt_cause ret;
179 	bool is_delay;
180 
181 	/* fetch the events from their corresponding regs */
182 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
183 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
184 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
185 
186 	is_delay = clearval == NULL ? true : false;
187 	/*
188 	 * Assumption: If by any chance reset and mailbox events are reported
189 	 * together then we will only process reset event and defer the
190 	 * processing of the mailbox events. Since, we would have not cleared
191 	 * RX CMDQ event this time we would receive again another interrupt
192 	 * from H/W just for the mailbox.
193 	 */
194 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
195 		ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
196 		goto out;
197 	}
198 
199 	/* Global reset */
200 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
201 		ret = hns3_proc_global_reset_event(hns, is_delay, &val);
202 		goto out;
203 	}
204 
205 	/* Check for vector0 1588 event source */
206 	if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
207 		val = BIT(HNS3_VECTOR0_1588_INT_B);
208 		ret = HNS3_VECTOR0_EVENT_PTP;
209 		goto out;
210 	}
211 
212 	/* check for vector0 msix event source */
213 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
214 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
215 		val = vector0_int_stats | hw_err_src_reg;
216 		ret = HNS3_VECTOR0_EVENT_ERR;
217 		goto out;
218 	}
219 
220 	/* check for vector0 mailbox(=CMDQ RX) event source */
221 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
222 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
223 		val = cmdq_src_val;
224 		ret = HNS3_VECTOR0_EVENT_MBX;
225 		goto out;
226 	}
227 
228 	val = vector0_int_stats;
229 	ret = HNS3_VECTOR0_EVENT_OTHER;
230 out:
231 
232 	if (clearval)
233 		*clearval = val;
234 	return ret;
235 }
236 
237 static bool
238 hns3_is_1588_event_type(uint32_t event_type)
239 {
240 	return (event_type == HNS3_VECTOR0_EVENT_PTP);
241 }
242 
243 static void
244 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
245 {
246 	if (event_type == HNS3_VECTOR0_EVENT_RST ||
247 	    hns3_is_1588_event_type(event_type))
248 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
249 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
250 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
251 }
252 
253 static void
254 hns3_clear_all_event_cause(struct hns3_hw *hw)
255 {
256 	uint32_t vector0_int_stats;
257 
258 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
259 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
260 		hns3_warn(hw, "Probe during IMP reset interrupt");
261 
262 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
263 		hns3_warn(hw, "Probe during Global reset interrupt");
264 
265 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
266 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
267 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
268 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
269 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
270 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
271 				BIT(HNS3_VECTOR0_1588_INT_B));
272 }
273 
274 static void
275 hns3_handle_mac_tnl(struct hns3_hw *hw)
276 {
277 	struct hns3_cmd_desc desc;
278 	uint32_t status;
279 	int ret;
280 
281 	/* query and clear mac tnl interrupt */
282 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
283 	ret = hns3_cmd_send(hw, &desc, 1);
284 	if (ret) {
285 		hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
286 		return;
287 	}
288 
289 	status = rte_le_to_cpu_32(desc.data[0]);
290 	if (status) {
291 		hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
292 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
293 					  false);
294 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
295 		ret = hns3_cmd_send(hw, &desc, 1);
296 		if (ret)
297 			hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
298 				 ret);
299 	}
300 }
301 
302 static void
303 hns3_interrupt_handler(void *param)
304 {
305 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
306 	struct hns3_adapter *hns = dev->data->dev_private;
307 	struct hns3_hw *hw = &hns->hw;
308 	enum hns3_evt_cause event_cause;
309 	uint32_t clearval = 0;
310 	uint32_t vector0_int;
311 	uint32_t ras_int;
312 	uint32_t cmdq_int;
313 
314 	/* Disable interrupt */
315 	hns3_pf_disable_irq0(hw);
316 
317 	event_cause = hns3_check_event_cause(hns, &clearval);
318 	vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
319 	ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
320 	cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
321 	hns3_clear_event_cause(hw, event_cause, clearval);
322 	/* vector 0 interrupt is shared with reset and mailbox source events. */
323 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
324 		hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
325 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
326 			  vector0_int, ras_int, cmdq_int);
327 		hns3_handle_mac_tnl(hw);
328 		hns3_handle_error(hns);
329 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
330 		hns3_warn(hw, "received reset interrupt");
331 		hns3_schedule_reset(hns);
332 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
333 		hns3_dev_handle_mbx_msg(hw);
334 	} else {
335 		hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
336 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
337 			  vector0_int, ras_int, cmdq_int);
338 	}
339 
340 	/* Enable interrupt if it is not cause by reset */
341 	hns3_pf_enable_irq0(hw);
342 }
343 
344 static int
345 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
346 {
347 #define HNS3_VLAN_ID_OFFSET_STEP	160
348 #define HNS3_VLAN_BYTE_SIZE		8
349 	struct hns3_vlan_filter_pf_cfg_cmd *req;
350 	struct hns3_hw *hw = &hns->hw;
351 	uint8_t vlan_offset_byte_val;
352 	struct hns3_cmd_desc desc;
353 	uint8_t vlan_offset_byte;
354 	uint8_t vlan_offset_base;
355 	int ret;
356 
357 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
358 
359 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
360 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
361 			   HNS3_VLAN_BYTE_SIZE;
362 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
363 
364 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
365 	req->vlan_offset = vlan_offset_base;
366 	req->vlan_cfg = on ? 0 : 1;
367 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
368 
369 	ret = hns3_cmd_send(hw, &desc, 1);
370 	if (ret)
371 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
372 			 vlan_id, ret);
373 
374 	return ret;
375 }
376 
377 static void
378 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
379 {
380 	struct hns3_user_vlan_table *vlan_entry;
381 	struct hns3_pf *pf = &hns->pf;
382 
383 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
384 		if (vlan_entry->vlan_id == vlan_id) {
385 			if (vlan_entry->hd_tbl_status)
386 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
387 			LIST_REMOVE(vlan_entry, next);
388 			rte_free(vlan_entry);
389 			break;
390 		}
391 	}
392 }
393 
394 static void
395 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
396 			bool writen_to_tbl)
397 {
398 	struct hns3_user_vlan_table *vlan_entry;
399 	struct hns3_hw *hw = &hns->hw;
400 	struct hns3_pf *pf = &hns->pf;
401 
402 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
403 		if (vlan_entry->vlan_id == vlan_id)
404 			return;
405 	}
406 
407 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
408 	if (vlan_entry == NULL) {
409 		hns3_err(hw, "Failed to malloc hns3 vlan table");
410 		return;
411 	}
412 
413 	vlan_entry->hd_tbl_status = writen_to_tbl;
414 	vlan_entry->vlan_id = vlan_id;
415 
416 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
417 }
418 
419 static int
420 hns3_restore_vlan_table(struct hns3_adapter *hns)
421 {
422 	struct hns3_user_vlan_table *vlan_entry;
423 	struct hns3_hw *hw = &hns->hw;
424 	struct hns3_pf *pf = &hns->pf;
425 	uint16_t vlan_id;
426 	int ret = 0;
427 
428 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
429 		return hns3_vlan_pvid_configure(hns,
430 						hw->port_base_vlan_cfg.pvid, 1);
431 
432 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
433 		if (vlan_entry->hd_tbl_status) {
434 			vlan_id = vlan_entry->vlan_id;
435 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
436 			if (ret)
437 				break;
438 		}
439 	}
440 
441 	return ret;
442 }
443 
444 static int
445 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
446 {
447 	struct hns3_hw *hw = &hns->hw;
448 	bool writen_to_tbl = false;
449 	int ret = 0;
450 
451 	/*
452 	 * When vlan filter is enabled, hardware regards packets without vlan
453 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
454 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
455 	 */
456 	if (on == 0 && vlan_id == 0)
457 		return 0;
458 
459 	/*
460 	 * When port base vlan enabled, we use port base vlan as the vlan
461 	 * filter condition. In this case, we don't update vlan filter table
462 	 * when user add new vlan or remove exist vlan, just update the
463 	 * vlan list. The vlan id in vlan list will be written in vlan filter
464 	 * table until port base vlan disabled
465 	 */
466 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
467 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
468 		writen_to_tbl = true;
469 	}
470 
471 	if (ret == 0) {
472 		if (on)
473 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
474 		else
475 			hns3_rm_dev_vlan_table(hns, vlan_id);
476 	}
477 	return ret;
478 }
479 
480 static int
481 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
482 {
483 	struct hns3_adapter *hns = dev->data->dev_private;
484 	struct hns3_hw *hw = &hns->hw;
485 	int ret;
486 
487 	rte_spinlock_lock(&hw->lock);
488 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
489 	rte_spinlock_unlock(&hw->lock);
490 	return ret;
491 }
492 
493 static int
494 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
495 			 uint16_t tpid)
496 {
497 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
498 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
499 	struct hns3_hw *hw = &hns->hw;
500 	struct hns3_cmd_desc desc;
501 	int ret;
502 
503 	if ((vlan_type != RTE_ETH_VLAN_TYPE_INNER &&
504 	     vlan_type != RTE_ETH_VLAN_TYPE_OUTER)) {
505 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
506 		return -EINVAL;
507 	}
508 
509 	if (tpid != RTE_ETHER_TYPE_VLAN) {
510 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
511 		return -EINVAL;
512 	}
513 
514 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
515 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
516 
517 	if (vlan_type == RTE_ETH_VLAN_TYPE_OUTER) {
518 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
519 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
520 	} else if (vlan_type == RTE_ETH_VLAN_TYPE_INNER) {
521 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
522 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
523 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
524 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
525 	}
526 
527 	ret = hns3_cmd_send(hw, &desc, 1);
528 	if (ret) {
529 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
530 			 ret);
531 		return ret;
532 	}
533 
534 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
535 
536 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
537 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
538 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
539 
540 	ret = hns3_cmd_send(hw, &desc, 1);
541 	if (ret)
542 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
543 			 ret);
544 	return ret;
545 }
546 
547 static int
548 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
549 		   uint16_t tpid)
550 {
551 	struct hns3_adapter *hns = dev->data->dev_private;
552 	struct hns3_hw *hw = &hns->hw;
553 	int ret;
554 
555 	rte_spinlock_lock(&hw->lock);
556 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
557 	rte_spinlock_unlock(&hw->lock);
558 	return ret;
559 }
560 
561 static int
562 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
563 			     struct hns3_rx_vtag_cfg *vcfg)
564 {
565 	struct hns3_vport_vtag_rx_cfg_cmd *req;
566 	struct hns3_hw *hw = &hns->hw;
567 	struct hns3_cmd_desc desc;
568 	uint16_t vport_id;
569 	uint8_t bitmap;
570 	int ret;
571 
572 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
573 
574 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
575 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
576 		     vcfg->strip_tag1_en ? 1 : 0);
577 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
578 		     vcfg->strip_tag2_en ? 1 : 0);
579 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
580 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
581 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
582 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
583 
584 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
585 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
586 		     vcfg->strip_tag1_discard_en ? 1 : 0);
587 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
588 		     vcfg->strip_tag2_discard_en ? 1 : 0);
589 	/*
590 	 * In current version VF is not supported when PF is driven by DPDK
591 	 * driver, just need to configure parameters for PF vport.
592 	 */
593 	vport_id = HNS3_PF_FUNC_ID;
594 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
595 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
596 	req->vf_bitmap[req->vf_offset] = bitmap;
597 
598 	ret = hns3_cmd_send(hw, &desc, 1);
599 	if (ret)
600 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
601 	return ret;
602 }
603 
604 static void
605 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
606 			   struct hns3_rx_vtag_cfg *vcfg)
607 {
608 	struct hns3_pf *pf = &hns->pf;
609 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
610 }
611 
612 static void
613 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
614 			   struct hns3_tx_vtag_cfg *vcfg)
615 {
616 	struct hns3_pf *pf = &hns->pf;
617 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
618 }
619 
620 static int
621 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
622 {
623 	struct hns3_rx_vtag_cfg rxvlan_cfg;
624 	struct hns3_hw *hw = &hns->hw;
625 	int ret;
626 
627 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
628 		rxvlan_cfg.strip_tag1_en = false;
629 		rxvlan_cfg.strip_tag2_en = enable;
630 		rxvlan_cfg.strip_tag2_discard_en = false;
631 	} else {
632 		rxvlan_cfg.strip_tag1_en = enable;
633 		rxvlan_cfg.strip_tag2_en = true;
634 		rxvlan_cfg.strip_tag2_discard_en = true;
635 	}
636 
637 	rxvlan_cfg.strip_tag1_discard_en = false;
638 	rxvlan_cfg.vlan1_vlan_prionly = false;
639 	rxvlan_cfg.vlan2_vlan_prionly = false;
640 	rxvlan_cfg.rx_vlan_offload_en = enable;
641 
642 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
643 	if (ret) {
644 		hns3_err(hw, "%s strip rx vtag failed, ret = %d.",
645 				enable ? "enable" : "disable", ret);
646 		return ret;
647 	}
648 
649 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
650 
651 	return ret;
652 }
653 
654 static int
655 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
656 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
657 {
658 	struct hns3_vlan_filter_ctrl_cmd *req;
659 	struct hns3_cmd_desc desc;
660 	int ret;
661 
662 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
663 
664 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
665 	req->vlan_type = vlan_type;
666 	req->vlan_fe = filter_en ? fe_type : 0;
667 	req->vf_id = vf_id;
668 
669 	ret = hns3_cmd_send(hw, &desc, 1);
670 	if (ret)
671 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
672 
673 	return ret;
674 }
675 
676 static int
677 hns3_vlan_filter_init(struct hns3_adapter *hns)
678 {
679 	struct hns3_hw *hw = &hns->hw;
680 	int ret;
681 
682 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
683 					HNS3_FILTER_FE_EGRESS, false,
684 					HNS3_PF_FUNC_ID);
685 	if (ret) {
686 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
687 		return ret;
688 	}
689 
690 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
691 					HNS3_FILTER_FE_INGRESS, false,
692 					HNS3_PF_FUNC_ID);
693 	if (ret)
694 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
695 
696 	return ret;
697 }
698 
699 static int
700 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
701 {
702 	struct hns3_hw *hw = &hns->hw;
703 	int ret;
704 
705 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
706 					HNS3_FILTER_FE_INGRESS, enable,
707 					HNS3_PF_FUNC_ID);
708 	if (ret)
709 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
710 			 enable ? "enable" : "disable", ret);
711 
712 	return ret;
713 }
714 
715 static int
716 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
717 {
718 	struct hns3_adapter *hns = dev->data->dev_private;
719 	struct hns3_hw *hw = &hns->hw;
720 	struct rte_eth_rxmode *rxmode;
721 	unsigned int tmp_mask;
722 	bool enable;
723 	int ret = 0;
724 
725 	rte_spinlock_lock(&hw->lock);
726 	rxmode = &dev->data->dev_conf.rxmode;
727 	tmp_mask = (unsigned int)mask;
728 	if (tmp_mask & RTE_ETH_VLAN_FILTER_MASK) {
729 		/* ignore vlan filter configuration during promiscuous mode */
730 		if (!dev->data->promiscuous) {
731 			/* Enable or disable VLAN filter */
732 			enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ?
733 				 true : false;
734 
735 			ret = hns3_enable_vlan_filter(hns, enable);
736 			if (ret) {
737 				rte_spinlock_unlock(&hw->lock);
738 				hns3_err(hw, "failed to %s rx filter, ret = %d",
739 					 enable ? "enable" : "disable", ret);
740 				return ret;
741 			}
742 		}
743 	}
744 
745 	if (tmp_mask & RTE_ETH_VLAN_STRIP_MASK) {
746 		/* Enable or disable VLAN stripping */
747 		enable = rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP ?
748 		    true : false;
749 
750 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
751 		if (ret) {
752 			rte_spinlock_unlock(&hw->lock);
753 			hns3_err(hw, "failed to %s rx strip, ret = %d",
754 				 enable ? "enable" : "disable", ret);
755 			return ret;
756 		}
757 	}
758 
759 	rte_spinlock_unlock(&hw->lock);
760 
761 	return ret;
762 }
763 
764 static int
765 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
766 			     struct hns3_tx_vtag_cfg *vcfg)
767 {
768 	struct hns3_vport_vtag_tx_cfg_cmd *req;
769 	struct hns3_cmd_desc desc;
770 	struct hns3_hw *hw = &hns->hw;
771 	uint16_t vport_id;
772 	uint8_t bitmap;
773 	int ret;
774 
775 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
776 
777 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
778 	req->def_vlan_tag1 = vcfg->default_tag1;
779 	req->def_vlan_tag2 = vcfg->default_tag2;
780 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
781 		     vcfg->accept_tag1 ? 1 : 0);
782 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
783 		     vcfg->accept_untag1 ? 1 : 0);
784 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
785 		     vcfg->accept_tag2 ? 1 : 0);
786 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
787 		     vcfg->accept_untag2 ? 1 : 0);
788 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
789 		     vcfg->insert_tag1_en ? 1 : 0);
790 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
791 		     vcfg->insert_tag2_en ? 1 : 0);
792 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
793 
794 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
795 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
796 		     vcfg->tag_shift_mode_en ? 1 : 0);
797 
798 	/*
799 	 * In current version VF is not supported when PF is driven by DPDK
800 	 * driver, just need to configure parameters for PF vport.
801 	 */
802 	vport_id = HNS3_PF_FUNC_ID;
803 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
804 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
805 	req->vf_bitmap[req->vf_offset] = bitmap;
806 
807 	ret = hns3_cmd_send(hw, &desc, 1);
808 	if (ret)
809 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
810 
811 	return ret;
812 }
813 
814 static int
815 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
816 		     uint16_t pvid)
817 {
818 	struct hns3_hw *hw = &hns->hw;
819 	struct hns3_tx_vtag_cfg txvlan_cfg;
820 	int ret;
821 
822 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
823 		txvlan_cfg.accept_tag1 = true;
824 		txvlan_cfg.insert_tag1_en = false;
825 		txvlan_cfg.default_tag1 = 0;
826 	} else {
827 		txvlan_cfg.accept_tag1 =
828 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
829 		txvlan_cfg.insert_tag1_en = true;
830 		txvlan_cfg.default_tag1 = pvid;
831 	}
832 
833 	txvlan_cfg.accept_untag1 = true;
834 	txvlan_cfg.accept_tag2 = true;
835 	txvlan_cfg.accept_untag2 = true;
836 	txvlan_cfg.insert_tag2_en = false;
837 	txvlan_cfg.default_tag2 = 0;
838 	txvlan_cfg.tag_shift_mode_en = true;
839 
840 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
841 	if (ret) {
842 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
843 			 ret);
844 		return ret;
845 	}
846 
847 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
848 	return ret;
849 }
850 
851 
852 static void
853 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
854 {
855 	struct hns3_user_vlan_table *vlan_entry;
856 	struct hns3_pf *pf = &hns->pf;
857 
858 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
859 		if (vlan_entry->hd_tbl_status) {
860 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
861 			vlan_entry->hd_tbl_status = false;
862 		}
863 	}
864 
865 	if (is_del_list) {
866 		vlan_entry = LIST_FIRST(&pf->vlan_list);
867 		while (vlan_entry) {
868 			LIST_REMOVE(vlan_entry, next);
869 			rte_free(vlan_entry);
870 			vlan_entry = LIST_FIRST(&pf->vlan_list);
871 		}
872 	}
873 }
874 
875 static void
876 hns3_add_all_vlan_table(struct hns3_adapter *hns)
877 {
878 	struct hns3_user_vlan_table *vlan_entry;
879 	struct hns3_pf *pf = &hns->pf;
880 
881 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
882 		if (!vlan_entry->hd_tbl_status) {
883 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
884 			vlan_entry->hd_tbl_status = true;
885 		}
886 	}
887 }
888 
889 static void
890 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
891 {
892 	struct hns3_hw *hw = &hns->hw;
893 	int ret;
894 
895 	hns3_rm_all_vlan_table(hns, true);
896 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
897 		ret = hns3_set_port_vlan_filter(hns,
898 						hw->port_base_vlan_cfg.pvid, 0);
899 		if (ret) {
900 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
901 				 ret);
902 			return;
903 		}
904 	}
905 }
906 
907 static int
908 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
909 			uint16_t port_base_vlan_state, uint16_t new_pvid)
910 {
911 	struct hns3_hw *hw = &hns->hw;
912 	uint16_t old_pvid;
913 	int ret;
914 
915 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
916 		old_pvid = hw->port_base_vlan_cfg.pvid;
917 		if (old_pvid != HNS3_INVALID_PVID) {
918 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
919 			if (ret) {
920 				hns3_err(hw, "failed to remove old pvid %u, "
921 						"ret = %d", old_pvid, ret);
922 				return ret;
923 			}
924 		}
925 
926 		hns3_rm_all_vlan_table(hns, false);
927 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
928 		if (ret) {
929 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
930 					new_pvid, ret);
931 			return ret;
932 		}
933 	} else {
934 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
935 		if (ret) {
936 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
937 					new_pvid, ret);
938 			return ret;
939 		}
940 
941 		hns3_add_all_vlan_table(hns);
942 	}
943 	return 0;
944 }
945 
946 static int
947 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
948 {
949 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
950 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
951 	bool rx_strip_en;
952 	int ret;
953 
954 	rx_strip_en = old_cfg->rx_vlan_offload_en;
955 	if (on) {
956 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
957 		rx_vlan_cfg.strip_tag2_en = true;
958 		rx_vlan_cfg.strip_tag2_discard_en = true;
959 	} else {
960 		rx_vlan_cfg.strip_tag1_en = false;
961 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
962 		rx_vlan_cfg.strip_tag2_discard_en = false;
963 	}
964 	rx_vlan_cfg.strip_tag1_discard_en = false;
965 	rx_vlan_cfg.vlan1_vlan_prionly = false;
966 	rx_vlan_cfg.vlan2_vlan_prionly = false;
967 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
968 
969 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
970 	if (ret)
971 		return ret;
972 
973 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
974 	return ret;
975 }
976 
977 static int
978 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
979 {
980 	struct hns3_hw *hw = &hns->hw;
981 	uint16_t port_base_vlan_state;
982 	int ret, err;
983 
984 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
985 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
986 			hns3_warn(hw, "Invalid operation! As current pvid set "
987 				  "is %u, disable pvid %u is invalid",
988 				  hw->port_base_vlan_cfg.pvid, pvid);
989 		return 0;
990 	}
991 
992 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
993 				    HNS3_PORT_BASE_VLAN_DISABLE;
994 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
995 	if (ret) {
996 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
997 			 ret);
998 		return ret;
999 	}
1000 
1001 	ret = hns3_en_pvid_strip(hns, on);
1002 	if (ret) {
1003 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
1004 			 "ret = %d", ret);
1005 		goto pvid_vlan_strip_fail;
1006 	}
1007 
1008 	if (pvid == HNS3_INVALID_PVID)
1009 		goto out;
1010 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
1011 	if (ret) {
1012 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
1013 			 ret);
1014 		goto vlan_filter_set_fail;
1015 	}
1016 
1017 out:
1018 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
1019 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1020 	return ret;
1021 
1022 vlan_filter_set_fail:
1023 	err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
1024 					HNS3_PORT_BASE_VLAN_ENABLE);
1025 	if (err)
1026 		hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1027 
1028 pvid_vlan_strip_fail:
1029 	err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1030 					hw->port_base_vlan_cfg.pvid);
1031 	if (err)
1032 		hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1033 
1034 	return ret;
1035 }
1036 
1037 static int
1038 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1039 {
1040 	struct hns3_adapter *hns = dev->data->dev_private;
1041 	struct hns3_hw *hw = &hns->hw;
1042 	bool pvid_en_state_change;
1043 	uint16_t pvid_state;
1044 	int ret;
1045 
1046 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1047 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1048 			 RTE_ETHER_MAX_VLAN_ID);
1049 		return -EINVAL;
1050 	}
1051 
1052 	/*
1053 	 * If PVID configuration state change, should refresh the PVID
1054 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1055 	 */
1056 	pvid_state = hw->port_base_vlan_cfg.state;
1057 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1058 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1059 		pvid_en_state_change = false;
1060 	else
1061 		pvid_en_state_change = true;
1062 
1063 	rte_spinlock_lock(&hw->lock);
1064 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
1065 	rte_spinlock_unlock(&hw->lock);
1066 	if (ret)
1067 		return ret;
1068 	/*
1069 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1070 	 * need be processed by PMD driver.
1071 	 */
1072 	if (pvid_en_state_change &&
1073 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1074 		hns3_update_all_queues_pvid_proc_en(hw);
1075 
1076 	return 0;
1077 }
1078 
1079 static int
1080 hns3_default_vlan_config(struct hns3_adapter *hns)
1081 {
1082 	struct hns3_hw *hw = &hns->hw;
1083 	int ret;
1084 
1085 	/*
1086 	 * When vlan filter is enabled, hardware regards packets without vlan
1087 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1088 	 * table, packets without vlan won't be received. So, add vlan 0 as
1089 	 * the default vlan.
1090 	 */
1091 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1092 	if (ret)
1093 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1094 	return ret;
1095 }
1096 
1097 static int
1098 hns3_init_vlan_config(struct hns3_adapter *hns)
1099 {
1100 	struct hns3_hw *hw = &hns->hw;
1101 	int ret;
1102 
1103 	/*
1104 	 * This function can be called in the initialization and reset process,
1105 	 * when in reset process, it means that hardware had been reseted
1106 	 * successfully and we need to restore the hardware configuration to
1107 	 * ensure that the hardware configuration remains unchanged before and
1108 	 * after reset.
1109 	 */
1110 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1111 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1112 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1113 	}
1114 
1115 	ret = hns3_vlan_filter_init(hns);
1116 	if (ret) {
1117 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1118 		return ret;
1119 	}
1120 
1121 	ret = hns3_vlan_tpid_configure(hns, RTE_ETH_VLAN_TYPE_INNER,
1122 				       RTE_ETHER_TYPE_VLAN);
1123 	if (ret) {
1124 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1125 		return ret;
1126 	}
1127 
1128 	/*
1129 	 * When in the reinit dev stage of the reset process, the following
1130 	 * vlan-related configurations may differ from those at initialization,
1131 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1132 	 * and hns3_restore_vlan_conf later.
1133 	 */
1134 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1135 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1136 		if (ret) {
1137 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1138 			return ret;
1139 		}
1140 
1141 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1142 		if (ret) {
1143 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1144 				 ret);
1145 			return ret;
1146 		}
1147 	}
1148 
1149 	return hns3_default_vlan_config(hns);
1150 }
1151 
1152 static int
1153 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1154 {
1155 	struct hns3_pf *pf = &hns->pf;
1156 	struct hns3_hw *hw = &hns->hw;
1157 	uint64_t offloads;
1158 	bool enable;
1159 	int ret;
1160 
1161 	if (!hw->data->promiscuous) {
1162 		/* restore vlan filter states */
1163 		offloads = hw->data->dev_conf.rxmode.offloads;
1164 		enable = offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER ? true : false;
1165 		ret = hns3_enable_vlan_filter(hns, enable);
1166 		if (ret) {
1167 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1168 				 "ret = %d", ret);
1169 			return ret;
1170 		}
1171 	}
1172 
1173 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1174 	if (ret) {
1175 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1176 		return ret;
1177 	}
1178 
1179 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1180 	if (ret)
1181 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1182 
1183 	return ret;
1184 }
1185 
1186 static int
1187 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1188 {
1189 	struct hns3_adapter *hns = dev->data->dev_private;
1190 	struct rte_eth_dev_data *data = dev->data;
1191 	struct rte_eth_txmode *txmode;
1192 	struct hns3_hw *hw = &hns->hw;
1193 	int mask;
1194 	int ret;
1195 
1196 	txmode = &data->dev_conf.txmode;
1197 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1198 		hns3_warn(hw,
1199 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1200 			  "configuration is not supported! Ignore these two "
1201 			  "parameters: hw_vlan_reject_tagged(%u), "
1202 			  "hw_vlan_reject_untagged(%u)",
1203 			  txmode->hw_vlan_reject_tagged,
1204 			  txmode->hw_vlan_reject_untagged);
1205 
1206 	/* Apply vlan offload setting */
1207 	mask = RTE_ETH_VLAN_STRIP_MASK | RTE_ETH_VLAN_FILTER_MASK;
1208 	ret = hns3_vlan_offload_set(dev, mask);
1209 	if (ret) {
1210 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1211 			 ret);
1212 		return ret;
1213 	}
1214 
1215 	/*
1216 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1217 	 * VLAN pvid related configuration to hardware.
1218 	 */
1219 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1220 		return 0;
1221 
1222 	/* Apply pvid setting */
1223 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1224 				 txmode->hw_vlan_insert_pvid);
1225 	if (ret)
1226 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1227 			 txmode->pvid, ret);
1228 
1229 	return ret;
1230 }
1231 
1232 static int
1233 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1234 		unsigned int tso_mss_max)
1235 {
1236 	struct hns3_cfg_tso_status_cmd *req;
1237 	struct hns3_cmd_desc desc;
1238 	uint16_t tso_mss;
1239 
1240 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1241 
1242 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1243 
1244 	tso_mss = 0;
1245 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1246 		       tso_mss_min);
1247 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1248 
1249 	tso_mss = 0;
1250 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1251 		       tso_mss_max);
1252 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1253 
1254 	return hns3_cmd_send(hw, &desc, 1);
1255 }
1256 
1257 static int
1258 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1259 		   uint16_t *allocated_size, bool is_alloc)
1260 {
1261 	struct hns3_umv_spc_alc_cmd *req;
1262 	struct hns3_cmd_desc desc;
1263 	int ret;
1264 
1265 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1266 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1267 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1268 	req->space_size = rte_cpu_to_le_32(space_size);
1269 
1270 	ret = hns3_cmd_send(hw, &desc, 1);
1271 	if (ret) {
1272 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1273 			     is_alloc ? "allocate" : "free", ret);
1274 		return ret;
1275 	}
1276 
1277 	if (is_alloc && allocated_size)
1278 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1279 
1280 	return 0;
1281 }
1282 
1283 static int
1284 hns3_init_umv_space(struct hns3_hw *hw)
1285 {
1286 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1287 	struct hns3_pf *pf = &hns->pf;
1288 	uint16_t allocated_size = 0;
1289 	int ret;
1290 
1291 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1292 				 true);
1293 	if (ret)
1294 		return ret;
1295 
1296 	if (allocated_size < pf->wanted_umv_size)
1297 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1298 			     pf->wanted_umv_size, allocated_size);
1299 
1300 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1301 						pf->wanted_umv_size;
1302 	pf->used_umv_size = 0;
1303 	return 0;
1304 }
1305 
1306 static int
1307 hns3_uninit_umv_space(struct hns3_hw *hw)
1308 {
1309 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1310 	struct hns3_pf *pf = &hns->pf;
1311 	int ret;
1312 
1313 	if (pf->max_umv_size == 0)
1314 		return 0;
1315 
1316 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1317 	if (ret)
1318 		return ret;
1319 
1320 	pf->max_umv_size = 0;
1321 
1322 	return 0;
1323 }
1324 
1325 static bool
1326 hns3_is_umv_space_full(struct hns3_hw *hw)
1327 {
1328 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1329 	struct hns3_pf *pf = &hns->pf;
1330 	bool is_full;
1331 
1332 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1333 
1334 	return is_full;
1335 }
1336 
1337 static void
1338 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1339 {
1340 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1341 	struct hns3_pf *pf = &hns->pf;
1342 
1343 	if (is_free) {
1344 		if (pf->used_umv_size > 0)
1345 			pf->used_umv_size--;
1346 	} else
1347 		pf->used_umv_size++;
1348 }
1349 
1350 static void
1351 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1352 		      const uint8_t *addr, bool is_mc)
1353 {
1354 	const unsigned char *mac_addr = addr;
1355 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1356 			    ((uint32_t)mac_addr[2] << 16) |
1357 			    ((uint32_t)mac_addr[1] << 8) |
1358 			    (uint32_t)mac_addr[0];
1359 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1360 
1361 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1362 	if (is_mc) {
1363 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1364 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1365 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1366 	}
1367 
1368 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1369 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1370 }
1371 
1372 static int
1373 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1374 			     uint8_t resp_code,
1375 			     enum hns3_mac_vlan_tbl_opcode op)
1376 {
1377 	if (cmdq_resp) {
1378 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1379 			 cmdq_resp);
1380 		return -EIO;
1381 	}
1382 
1383 	if (op == HNS3_MAC_VLAN_ADD) {
1384 		if (resp_code == 0 || resp_code == 1) {
1385 			return 0;
1386 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1387 			hns3_err(hw, "add mac addr failed for uc_overflow");
1388 			return -ENOSPC;
1389 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1390 			hns3_err(hw, "add mac addr failed for mc_overflow");
1391 			return -ENOSPC;
1392 		}
1393 
1394 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1395 			 resp_code);
1396 		return -EIO;
1397 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1398 		if (resp_code == 0) {
1399 			return 0;
1400 		} else if (resp_code == 1) {
1401 			hns3_dbg(hw, "remove mac addr failed for miss");
1402 			return -ENOENT;
1403 		}
1404 
1405 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1406 			 resp_code);
1407 		return -EIO;
1408 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1409 		if (resp_code == 0) {
1410 			return 0;
1411 		} else if (resp_code == 1) {
1412 			hns3_dbg(hw, "lookup mac addr failed for miss");
1413 			return -ENOENT;
1414 		}
1415 
1416 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1417 			 resp_code);
1418 		return -EIO;
1419 	}
1420 
1421 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1422 		 op);
1423 
1424 	return -EINVAL;
1425 }
1426 
1427 static int
1428 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1429 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1430 			 struct hns3_cmd_desc *desc, uint8_t desc_num)
1431 {
1432 	uint8_t resp_code;
1433 	uint16_t retval;
1434 	int ret;
1435 	int i;
1436 
1437 	if (desc_num == HNS3_MC_MAC_VLAN_OPS_DESC_NUM) {
1438 		for (i = 0; i < desc_num - 1; i++) {
1439 			hns3_cmd_setup_basic_desc(&desc[i],
1440 						  HNS3_OPC_MAC_VLAN_ADD, true);
1441 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1442 			if (i == 0)
1443 				memcpy(desc[i].data, req,
1444 				sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1445 		}
1446 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_MAC_VLAN_ADD,
1447 					  true);
1448 	} else {
1449 		hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD,
1450 					  true);
1451 		memcpy(desc[0].data, req,
1452 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1453 	}
1454 	ret = hns3_cmd_send(hw, desc, desc_num);
1455 	if (ret) {
1456 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1457 			 ret);
1458 		return ret;
1459 	}
1460 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1461 	retval = rte_le_to_cpu_16(desc[0].retval);
1462 
1463 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1464 					    HNS3_MAC_VLAN_LKUP);
1465 }
1466 
1467 static int
1468 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1469 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1470 		      struct hns3_cmd_desc *desc, uint8_t desc_num)
1471 {
1472 	uint8_t resp_code;
1473 	uint16_t retval;
1474 	int cfg_status;
1475 	int ret;
1476 	int i;
1477 
1478 	if (desc_num == HNS3_UC_MAC_VLAN_OPS_DESC_NUM) {
1479 		hns3_cmd_setup_basic_desc(desc, HNS3_OPC_MAC_VLAN_ADD, false);
1480 		memcpy(desc->data, req,
1481 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1482 		ret = hns3_cmd_send(hw, desc, desc_num);
1483 		resp_code = (rte_le_to_cpu_32(desc->data[0]) >> 8) & 0xff;
1484 		retval = rte_le_to_cpu_16(desc->retval);
1485 
1486 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1487 							  HNS3_MAC_VLAN_ADD);
1488 	} else {
1489 		for (i = 0; i < desc_num; i++) {
1490 			hns3_cmd_reuse_desc(&desc[i], false);
1491 			if (i == desc_num - 1)
1492 				desc[i].flag &=
1493 					rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1494 			else
1495 				desc[i].flag |=
1496 					rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1497 		}
1498 		memcpy(desc[0].data, req,
1499 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1500 		desc[0].retval = 0;
1501 		ret = hns3_cmd_send(hw, desc, desc_num);
1502 		resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1503 		retval = rte_le_to_cpu_16(desc[0].retval);
1504 
1505 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1506 							  HNS3_MAC_VLAN_ADD);
1507 	}
1508 
1509 	if (ret) {
1510 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1511 		return ret;
1512 	}
1513 
1514 	return cfg_status;
1515 }
1516 
1517 static int
1518 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1519 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1520 {
1521 	struct hns3_cmd_desc desc;
1522 	uint8_t resp_code;
1523 	uint16_t retval;
1524 	int ret;
1525 
1526 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1527 
1528 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1529 
1530 	ret = hns3_cmd_send(hw, &desc, 1);
1531 	if (ret) {
1532 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1533 		return ret;
1534 	}
1535 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1536 	retval = rte_le_to_cpu_16(desc.retval);
1537 
1538 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1539 					    HNS3_MAC_VLAN_REMOVE);
1540 }
1541 
1542 static int
1543 hns3_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1544 {
1545 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1546 	struct hns3_mac_vlan_tbl_entry_cmd req;
1547 	struct hns3_pf *pf = &hns->pf;
1548 	struct hns3_cmd_desc desc;
1549 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1550 	uint16_t egress_port = 0;
1551 	uint8_t vf_id;
1552 	int ret;
1553 
1554 	/* check if mac addr is valid */
1555 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1556 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1557 				      mac_addr);
1558 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1559 			 mac_str);
1560 		return -EINVAL;
1561 	}
1562 
1563 	memset(&req, 0, sizeof(req));
1564 
1565 	/*
1566 	 * In current version VF is not supported when PF is driven by DPDK
1567 	 * driver, just need to configure parameters for PF vport.
1568 	 */
1569 	vf_id = HNS3_PF_FUNC_ID;
1570 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1571 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1572 
1573 	req.egress_port = rte_cpu_to_le_16(egress_port);
1574 
1575 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1576 
1577 	/*
1578 	 * Lookup the mac address in the mac_vlan table, and add
1579 	 * it if the entry is inexistent. Repeated unicast entry
1580 	 * is not allowed in the mac vlan table.
1581 	 */
1582 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, &desc,
1583 					HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1584 	if (ret == -ENOENT) {
1585 		if (!hns3_is_umv_space_full(hw)) {
1586 			ret = hns3_add_mac_vlan_tbl(hw, &req, &desc,
1587 						HNS3_UC_MAC_VLAN_OPS_DESC_NUM);
1588 			if (!ret)
1589 				hns3_update_umv_space(hw, false);
1590 			return ret;
1591 		}
1592 
1593 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1594 
1595 		return -ENOSPC;
1596 	}
1597 
1598 	hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1599 
1600 	/* check if we just hit the duplicate */
1601 	if (ret == 0) {
1602 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1603 		return 0;
1604 	}
1605 
1606 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1607 		 mac_str);
1608 
1609 	return ret;
1610 }
1611 
1612 static bool
1613 hns3_find_duplicate_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mc_addr)
1614 {
1615 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1616 	struct rte_ether_addr *addr;
1617 	int i;
1618 
1619 	for (i = 0; i < hw->mc_addrs_num; i++) {
1620 		addr = &hw->mc_addrs[i];
1621 		/* Check if there are duplicate addresses in mc_addrs[] */
1622 		if (rte_is_same_ether_addr(addr, mc_addr)) {
1623 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1624 					       addr);
1625 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1626 				 "(%s) is added by the set_mc_mac_addr_list "
1627 				 "API", mac_str);
1628 			return true;
1629 		}
1630 	}
1631 
1632 	return false;
1633 }
1634 
1635 int
1636 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1637 		  __rte_unused uint32_t idx, __rte_unused uint32_t pool)
1638 {
1639 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1640 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1641 	int ret;
1642 
1643 	rte_spinlock_lock(&hw->lock);
1644 
1645 	/*
1646 	 * In hns3 network engine adding UC and MC mac address with different
1647 	 * commands with firmware. We need to determine whether the input
1648 	 * address is a UC or a MC address to call different commands.
1649 	 * By the way, it is recommended calling the API function named
1650 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1651 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1652 	 * may affect the specifications of UC mac addresses.
1653 	 */
1654 	if (rte_is_multicast_ether_addr(mac_addr)) {
1655 		if (hns3_find_duplicate_mc_addr(hw, mac_addr)) {
1656 			rte_spinlock_unlock(&hw->lock);
1657 			return -EINVAL;
1658 		}
1659 		ret = hw->ops.add_mc_mac_addr(hw, mac_addr);
1660 	} else {
1661 		ret = hw->ops.add_uc_mac_addr(hw, mac_addr);
1662 	}
1663 	rte_spinlock_unlock(&hw->lock);
1664 	if (ret) {
1665 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1666 				      mac_addr);
1667 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1668 			 ret);
1669 	}
1670 
1671 	return ret;
1672 }
1673 
1674 static int
1675 hns3_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1676 {
1677 	struct hns3_mac_vlan_tbl_entry_cmd req;
1678 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1679 	int ret;
1680 
1681 	/* check if mac addr is valid */
1682 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1683 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1684 				      mac_addr);
1685 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1686 			 mac_str);
1687 		return -EINVAL;
1688 	}
1689 
1690 	memset(&req, 0, sizeof(req));
1691 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1692 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1693 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1694 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1695 		return 0;
1696 	else if (ret == 0)
1697 		hns3_update_umv_space(hw, true);
1698 
1699 	return ret;
1700 }
1701 
1702 void
1703 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1704 {
1705 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1706 	/* index will be checked by upper level rte interface */
1707 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1708 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1709 	int ret;
1710 
1711 	rte_spinlock_lock(&hw->lock);
1712 
1713 	if (rte_is_multicast_ether_addr(mac_addr))
1714 		ret = hw->ops.del_mc_mac_addr(hw, mac_addr);
1715 	else
1716 		ret = hw->ops.del_uc_mac_addr(hw, mac_addr);
1717 	rte_spinlock_unlock(&hw->lock);
1718 	if (ret) {
1719 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1720 				      mac_addr);
1721 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1722 			 ret);
1723 	}
1724 }
1725 
1726 static int
1727 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1728 			  struct rte_ether_addr *mac_addr)
1729 {
1730 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1731 	struct rte_ether_addr *oaddr;
1732 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1733 	int ret, ret_val;
1734 
1735 	rte_spinlock_lock(&hw->lock);
1736 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1737 	ret = hw->ops.del_uc_mac_addr(hw, oaddr);
1738 	if (ret) {
1739 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1740 				      oaddr);
1741 		hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1742 			  mac_str, ret);
1743 
1744 		rte_spinlock_unlock(&hw->lock);
1745 		return ret;
1746 	}
1747 
1748 	ret = hw->ops.add_uc_mac_addr(hw, mac_addr);
1749 	if (ret) {
1750 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1751 				      mac_addr);
1752 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1753 		goto err_add_uc_addr;
1754 	}
1755 
1756 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1757 	if (ret) {
1758 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1759 		goto err_pause_addr_cfg;
1760 	}
1761 
1762 	rte_ether_addr_copy(mac_addr,
1763 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1764 	rte_spinlock_unlock(&hw->lock);
1765 
1766 	return 0;
1767 
1768 err_pause_addr_cfg:
1769 	ret_val = hw->ops.del_uc_mac_addr(hw, mac_addr);
1770 	if (ret_val) {
1771 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1772 				      mac_addr);
1773 		hns3_warn(hw,
1774 			  "Failed to roll back to del setted mac addr(%s): %d",
1775 			  mac_str, ret_val);
1776 	}
1777 
1778 err_add_uc_addr:
1779 	ret_val = hw->ops.add_uc_mac_addr(hw, oaddr);
1780 	if (ret_val) {
1781 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, oaddr);
1782 		hns3_warn(hw, "Failed to restore old uc mac addr(%s): %d",
1783 				  mac_str, ret_val);
1784 	}
1785 	rte_spinlock_unlock(&hw->lock);
1786 
1787 	return ret;
1788 }
1789 
1790 int
1791 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1792 {
1793 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1794 	struct hns3_hw *hw = &hns->hw;
1795 	struct hns3_hw_ops *ops = &hw->ops;
1796 	struct rte_ether_addr *addr;
1797 	uint16_t mac_addrs_capa;
1798 	int ret = 0;
1799 	int i;
1800 
1801 	mac_addrs_capa =
1802 		hns->is_vf ? HNS3_VF_UC_MACADDR_NUM : HNS3_UC_MACADDR_NUM;
1803 	for (i = 0; i < mac_addrs_capa; i++) {
1804 		addr = &hw->data->mac_addrs[i];
1805 		if (rte_is_zero_ether_addr(addr))
1806 			continue;
1807 		if (rte_is_multicast_ether_addr(addr))
1808 			ret = del ? ops->del_mc_mac_addr(hw, addr) :
1809 			      ops->add_mc_mac_addr(hw, addr);
1810 		else
1811 			ret = del ? ops->del_uc_mac_addr(hw, addr) :
1812 			      ops->add_uc_mac_addr(hw, addr);
1813 
1814 		if (ret) {
1815 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1816 					       addr);
1817 			hns3_err(hw, "failed to %s mac addr(%s) index:%d ret = %d.",
1818 				 del ? "remove" : "restore", mac_str, i, ret);
1819 		}
1820 	}
1821 
1822 	return ret;
1823 }
1824 
1825 static void
1826 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1827 {
1828 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1829 	uint8_t word_num;
1830 	uint8_t bit_num;
1831 
1832 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1833 		word_num = vfid / 32;
1834 		bit_num = vfid % 32;
1835 		if (clr)
1836 			desc[1].data[word_num] &=
1837 			    rte_cpu_to_le_32(~(1UL << bit_num));
1838 		else
1839 			desc[1].data[word_num] |=
1840 			    rte_cpu_to_le_32(1UL << bit_num);
1841 	} else {
1842 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1843 		bit_num = vfid % 32;
1844 		if (clr)
1845 			desc[2].data[word_num] &=
1846 			    rte_cpu_to_le_32(~(1UL << bit_num));
1847 		else
1848 			desc[2].data[word_num] |=
1849 			    rte_cpu_to_le_32(1UL << bit_num);
1850 	}
1851 }
1852 
1853 static int
1854 hns3_add_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1855 {
1856 	struct hns3_cmd_desc desc[HNS3_MC_MAC_VLAN_OPS_DESC_NUM];
1857 	struct hns3_mac_vlan_tbl_entry_cmd req;
1858 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1859 	uint8_t vf_id;
1860 	int ret;
1861 
1862 	/* Check if mac addr is valid */
1863 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1864 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1865 				      mac_addr);
1866 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1867 			 mac_str);
1868 		return -EINVAL;
1869 	}
1870 
1871 	memset(&req, 0, sizeof(req));
1872 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1873 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1874 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1875 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1876 	if (ret) {
1877 		/* This mac addr do not exist, add new entry for it */
1878 		memset(desc[0].data, 0, sizeof(desc[0].data));
1879 		memset(desc[1].data, 0, sizeof(desc[0].data));
1880 		memset(desc[2].data, 0, sizeof(desc[0].data));
1881 	}
1882 
1883 	/*
1884 	 * In current version VF is not supported when PF is driven by DPDK
1885 	 * driver, just need to configure parameters for PF vport.
1886 	 */
1887 	vf_id = HNS3_PF_FUNC_ID;
1888 	hns3_update_desc_vfid(desc, vf_id, false);
1889 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc,
1890 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1891 	if (ret) {
1892 		if (ret == -ENOSPC)
1893 			hns3_err(hw, "mc mac vlan table is full");
1894 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1895 				      mac_addr);
1896 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1897 	}
1898 
1899 	return ret;
1900 }
1901 
1902 static int
1903 hns3_remove_mc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1904 {
1905 	struct hns3_mac_vlan_tbl_entry_cmd req;
1906 	struct hns3_cmd_desc desc[3];
1907 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1908 	uint8_t vf_id;
1909 	int ret;
1910 
1911 	/* Check if mac addr is valid */
1912 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1913 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1914 				      mac_addr);
1915 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1916 			 mac_str);
1917 		return -EINVAL;
1918 	}
1919 
1920 	memset(&req, 0, sizeof(req));
1921 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1922 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1923 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc,
1924 					HNS3_MC_MAC_VLAN_OPS_DESC_NUM);
1925 	if (ret == 0) {
1926 		/*
1927 		 * This mac addr exist, remove this handle's VFID for it.
1928 		 * In current version VF is not supported when PF is driven by
1929 		 * DPDK driver, just need to configure parameters for PF vport.
1930 		 */
1931 		vf_id = HNS3_PF_FUNC_ID;
1932 		hns3_update_desc_vfid(desc, vf_id, true);
1933 
1934 		/* All the vfid is zero, so need to delete this entry */
1935 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1936 	} else if (ret == -ENOENT) {
1937 		/* This mac addr doesn't exist. */
1938 		return 0;
1939 	}
1940 
1941 	if (ret) {
1942 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1943 				      mac_addr);
1944 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1945 	}
1946 
1947 	return ret;
1948 }
1949 
1950 static int
1951 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1952 			   struct rte_ether_addr *mc_addr_set,
1953 			   uint32_t nb_mc_addr)
1954 {
1955 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1956 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1957 	struct rte_ether_addr *addr;
1958 	uint16_t mac_addrs_capa;
1959 	uint32_t i;
1960 	uint32_t j;
1961 
1962 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1963 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1964 			 "invalid. valid range: 0~%d",
1965 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1966 		return -EINVAL;
1967 	}
1968 
1969 	/* Check if input mac addresses are valid */
1970 	for (i = 0; i < nb_mc_addr; i++) {
1971 		addr = &mc_addr_set[i];
1972 		if (!rte_is_multicast_ether_addr(addr)) {
1973 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1974 					      addr);
1975 			hns3_err(hw,
1976 				 "failed to set mc mac addr, addr(%s) invalid.",
1977 				 mac_str);
1978 			return -EINVAL;
1979 		}
1980 
1981 		/* Check if there are duplicate addresses */
1982 		for (j = i + 1; j < nb_mc_addr; j++) {
1983 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1984 				hns3_ether_format_addr(mac_str,
1985 						      RTE_ETHER_ADDR_FMT_SIZE,
1986 						      addr);
1987 				hns3_err(hw, "failed to set mc mac addr, "
1988 					 "addrs invalid. two same addrs(%s).",
1989 					 mac_str);
1990 				return -EINVAL;
1991 			}
1992 		}
1993 
1994 		/*
1995 		 * Check if there are duplicate addresses between mac_addrs
1996 		 * and mc_addr_set
1997 		 */
1998 		mac_addrs_capa = hns->is_vf ? HNS3_VF_UC_MACADDR_NUM :
1999 					      HNS3_UC_MACADDR_NUM;
2000 		for (j = 0; j < mac_addrs_capa; j++) {
2001 			if (rte_is_same_ether_addr(addr,
2002 						   &hw->data->mac_addrs[j])) {
2003 				hns3_ether_format_addr(mac_str,
2004 						       RTE_ETHER_ADDR_FMT_SIZE,
2005 						       addr);
2006 				hns3_err(hw, "failed to set mc mac addr, "
2007 					 "addrs invalid. addrs(%s) has already "
2008 					 "configured in mac_addr add API",
2009 					 mac_str);
2010 				return -EINVAL;
2011 			}
2012 		}
2013 	}
2014 
2015 	return 0;
2016 }
2017 
2018 int
2019 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2020 			  struct rte_ether_addr *mc_addr_set,
2021 			  uint32_t nb_mc_addr)
2022 {
2023 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2024 	struct rte_ether_addr *addr;
2025 	int cur_addr_num;
2026 	int set_addr_num;
2027 	int num;
2028 	int ret;
2029 	int i;
2030 
2031 	/* Check if input parameters are valid */
2032 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2033 	if (ret)
2034 		return ret;
2035 
2036 	rte_spinlock_lock(&hw->lock);
2037 	cur_addr_num = hw->mc_addrs_num;
2038 	for (i = 0; i < cur_addr_num; i++) {
2039 		num = cur_addr_num - i - 1;
2040 		addr = &hw->mc_addrs[num];
2041 		ret = hw->ops.del_mc_mac_addr(hw, addr);
2042 		if (ret) {
2043 			rte_spinlock_unlock(&hw->lock);
2044 			return ret;
2045 		}
2046 
2047 		hw->mc_addrs_num--;
2048 	}
2049 
2050 	set_addr_num = (int)nb_mc_addr;
2051 	for (i = 0; i < set_addr_num; i++) {
2052 		addr = &mc_addr_set[i];
2053 		ret = hw->ops.add_mc_mac_addr(hw, addr);
2054 		if (ret) {
2055 			rte_spinlock_unlock(&hw->lock);
2056 			return ret;
2057 		}
2058 
2059 		rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
2060 		hw->mc_addrs_num++;
2061 	}
2062 	rte_spinlock_unlock(&hw->lock);
2063 
2064 	return 0;
2065 }
2066 
2067 int
2068 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2069 {
2070 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2071 	struct hns3_hw *hw = &hns->hw;
2072 	struct rte_ether_addr *addr;
2073 	int ret = 0;
2074 	int i;
2075 
2076 	for (i = 0; i < hw->mc_addrs_num; i++) {
2077 		addr = &hw->mc_addrs[i];
2078 		if (!rte_is_multicast_ether_addr(addr))
2079 			continue;
2080 		if (del)
2081 			ret = hw->ops.del_mc_mac_addr(hw, addr);
2082 		else
2083 			ret = hw->ops.add_mc_mac_addr(hw, addr);
2084 		if (ret) {
2085 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2086 					      addr);
2087 			hns3_dbg(hw, "failed to %s mc mac addr: %s ret = %d",
2088 				 del ? "Remove" : "Restore", mac_str, ret);
2089 		}
2090 	}
2091 	return ret;
2092 }
2093 
2094 static int
2095 hns3_check_mq_mode(struct rte_eth_dev *dev)
2096 {
2097 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2098 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2099 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2100 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2101 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2102 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2103 	uint8_t num_tc;
2104 	int max_tc = 0;
2105 	int i;
2106 
2107 	if ((rx_mq_mode & RTE_ETH_MQ_RX_VMDQ_FLAG) ||
2108 	    (tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_DCB ||
2109 	     tx_mq_mode == RTE_ETH_MQ_TX_VMDQ_ONLY)) {
2110 		hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.",
2111 			 rx_mq_mode, tx_mq_mode);
2112 		return -EOPNOTSUPP;
2113 	}
2114 
2115 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2116 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2117 	if (rx_mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
2118 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2119 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2120 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2121 			return -EINVAL;
2122 		}
2123 
2124 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2125 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2126 			hns3_err(hw, "on RTE_ETH_MQ_RX_DCB_RSS mode, "
2127 				 "nb_tcs(%d) != %d or %d in rx direction.",
2128 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2129 			return -EINVAL;
2130 		}
2131 
2132 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2133 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2134 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2135 			return -EINVAL;
2136 		}
2137 
2138 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2139 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2140 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2141 					 "is not equal to one in tx direction.",
2142 					 i, dcb_rx_conf->dcb_tc[i]);
2143 				return -EINVAL;
2144 			}
2145 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2146 				max_tc = dcb_rx_conf->dcb_tc[i];
2147 		}
2148 
2149 		num_tc = max_tc + 1;
2150 		if (num_tc > dcb_rx_conf->nb_tcs) {
2151 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2152 				 num_tc, dcb_rx_conf->nb_tcs);
2153 			return -EINVAL;
2154 		}
2155 	}
2156 
2157 	return 0;
2158 }
2159 
2160 static int
2161 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2162 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2163 {
2164 	struct hns3_cmd_desc desc;
2165 	struct hns3_ctrl_vector_chain_cmd *req =
2166 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2167 	enum hns3_opcode_type op;
2168 	uint16_t tqp_type_and_id = 0;
2169 	uint16_t type;
2170 	uint16_t gl;
2171 	int ret;
2172 
2173 	op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2174 	hns3_cmd_setup_basic_desc(&desc, op, false);
2175 	req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2176 					      HNS3_TQP_INT_ID_L_S);
2177 	req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2178 					      HNS3_TQP_INT_ID_H_S);
2179 
2180 	if (queue_type == HNS3_RING_TYPE_RX)
2181 		gl = HNS3_RING_GL_RX;
2182 	else
2183 		gl = HNS3_RING_GL_TX;
2184 
2185 	type = queue_type;
2186 
2187 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2188 		       type);
2189 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2190 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2191 		       gl);
2192 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2193 	req->int_cause_num = 1;
2194 	ret = hns3_cmd_send(hw, &desc, 1);
2195 	if (ret) {
2196 		hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.",
2197 			 en ? "Map" : "Unmap", queue_id, vector_id, ret);
2198 		return ret;
2199 	}
2200 
2201 	return 0;
2202 }
2203 
2204 static int
2205 hns3_init_ring_with_vector(struct hns3_hw *hw)
2206 {
2207 	uint16_t vec;
2208 	int ret;
2209 	int i;
2210 
2211 	/*
2212 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2213 	 * function, vector 1~N can be used respectively for the queues of the
2214 	 * function. Tx and Rx queues with the same number share the interrupt
2215 	 * vector. In the initialization clearing the all hardware mapping
2216 	 * relationship configurations between queues and interrupt vectors is
2217 	 * needed, so some error caused by the residual configurations, such as
2218 	 * the unexpected Tx interrupt, can be avoid.
2219 	 */
2220 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2221 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2222 		vec = vec - 1; /* the last interrupt is reserved */
2223 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2224 	for (i = 0; i < hw->intr_tqps_num; i++) {
2225 		/*
2226 		 * Set gap limiter/rate limiter/quanity limiter algorithm
2227 		 * configuration for interrupt coalesce of queue's interrupt.
2228 		 */
2229 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2230 				       HNS3_TQP_INTR_GL_DEFAULT);
2231 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2232 				       HNS3_TQP_INTR_GL_DEFAULT);
2233 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2234 		/*
2235 		 * QL(quantity limiter) is not used currently, just set 0 to
2236 		 * close it.
2237 		 */
2238 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2239 
2240 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2241 						 HNS3_RING_TYPE_TX, i);
2242 		if (ret) {
2243 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2244 					  "vector: %u, ret=%d", i, vec, ret);
2245 			return ret;
2246 		}
2247 
2248 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2249 						 HNS3_RING_TYPE_RX, i);
2250 		if (ret) {
2251 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2252 					  "vector: %u, ret=%d", i, vec, ret);
2253 			return ret;
2254 		}
2255 	}
2256 
2257 	return 0;
2258 }
2259 
2260 static int
2261 hns3_setup_dcb(struct rte_eth_dev *dev)
2262 {
2263 	struct hns3_adapter *hns = dev->data->dev_private;
2264 	struct hns3_hw *hw = &hns->hw;
2265 	int ret;
2266 
2267 	if (!hns3_dev_get_support(hw, DCB)) {
2268 		hns3_err(hw, "this port does not support dcb configurations.");
2269 		return -EOPNOTSUPP;
2270 	}
2271 
2272 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2273 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2274 		return -EOPNOTSUPP;
2275 	}
2276 
2277 	ret = hns3_dcb_configure(hns);
2278 	if (ret)
2279 		hns3_err(hw, "failed to config dcb: %d", ret);
2280 
2281 	return ret;
2282 }
2283 
2284 static int
2285 hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds)
2286 {
2287 	int ret;
2288 
2289 	/*
2290 	 * Some hardware doesn't support auto-negotiation, but users may not
2291 	 * configure link_speeds (default 0), which means auto-negotiation.
2292 	 * In this case, it should return success.
2293 	 */
2294 	if (link_speeds == RTE_ETH_LINK_SPEED_AUTONEG &&
2295 	    hw->mac.support_autoneg == 0)
2296 		return 0;
2297 
2298 	if (link_speeds != RTE_ETH_LINK_SPEED_AUTONEG) {
2299 		ret = hns3_check_port_speed(hw, link_speeds);
2300 		if (ret)
2301 			return ret;
2302 	}
2303 
2304 	return 0;
2305 }
2306 
2307 static int
2308 hns3_check_dev_conf(struct rte_eth_dev *dev)
2309 {
2310 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2311 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2312 	int ret;
2313 
2314 	ret = hns3_check_mq_mode(dev);
2315 	if (ret)
2316 		return ret;
2317 
2318 	return hns3_check_link_speed(hw, conf->link_speeds);
2319 }
2320 
2321 static int
2322 hns3_dev_configure(struct rte_eth_dev *dev)
2323 {
2324 	struct hns3_adapter *hns = dev->data->dev_private;
2325 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2326 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2327 	struct hns3_hw *hw = &hns->hw;
2328 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2329 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2330 	struct rte_eth_rss_conf rss_conf;
2331 	bool gro_en;
2332 	int ret;
2333 
2334 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2335 
2336 	/*
2337 	 * Some versions of hardware network engine does not support
2338 	 * individually enable/disable/reset the Tx or Rx queue. These devices
2339 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
2340 	 * numbers of Tx queues allocated by upper applications are not equal to
2341 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2342 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2343 	 * work as usual. But these fake queues are imperceptible, and can not
2344 	 * be used by upper applications.
2345 	 */
2346 	ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2347 	if (ret) {
2348 		hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
2349 		hw->cfg_max_queues = 0;
2350 		return ret;
2351 	}
2352 
2353 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2354 	ret = hns3_check_dev_conf(dev);
2355 	if (ret)
2356 		goto cfg_err;
2357 
2358 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG) {
2359 		ret = hns3_setup_dcb(dev);
2360 		if (ret)
2361 			goto cfg_err;
2362 	}
2363 
2364 	/* When RSS is not configured, redirect the packet queue 0 */
2365 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
2366 		conf->rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2367 		rss_conf = conf->rx_adv_conf.rss_conf;
2368 		hw->rss_dis_flag = false;
2369 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2370 		if (ret)
2371 			goto cfg_err;
2372 	}
2373 
2374 	ret = hns3_dev_mtu_set(dev, conf->rxmode.mtu);
2375 	if (ret != 0)
2376 		goto cfg_err;
2377 
2378 	ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2379 	if (ret)
2380 		goto cfg_err;
2381 
2382 	ret = hns3_dev_configure_vlan(dev);
2383 	if (ret)
2384 		goto cfg_err;
2385 
2386 	/* config hardware GRO */
2387 	gro_en = conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO ? true : false;
2388 	ret = hns3_config_gro(hw, gro_en);
2389 	if (ret)
2390 		goto cfg_err;
2391 
2392 	hns3_init_rx_ptype_tble(dev);
2393 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2394 
2395 	return 0;
2396 
2397 cfg_err:
2398 	hw->cfg_max_queues = 0;
2399 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2400 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2401 
2402 	return ret;
2403 }
2404 
2405 static int
2406 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2407 {
2408 	struct hns3_config_max_frm_size_cmd *req;
2409 	struct hns3_cmd_desc desc;
2410 
2411 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2412 
2413 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2414 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2415 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2416 
2417 	return hns3_cmd_send(hw, &desc, 1);
2418 }
2419 
2420 static int
2421 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2422 {
2423 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2424 	uint16_t original_mps = hns->pf.mps;
2425 	int err;
2426 	int ret;
2427 
2428 	ret = hns3_set_mac_mtu(hw, mps);
2429 	if (ret) {
2430 		hns3_err(hw, "failed to set mtu, ret = %d", ret);
2431 		return ret;
2432 	}
2433 
2434 	hns->pf.mps = mps;
2435 	ret = hns3_buffer_alloc(hw);
2436 	if (ret) {
2437 		hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2438 		goto rollback;
2439 	}
2440 
2441 	return 0;
2442 
2443 rollback:
2444 	err = hns3_set_mac_mtu(hw, original_mps);
2445 	if (err) {
2446 		hns3_err(hw, "fail to rollback MTU, err = %d", err);
2447 		return ret;
2448 	}
2449 	hns->pf.mps = original_mps;
2450 
2451 	return ret;
2452 }
2453 
2454 static int
2455 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2456 {
2457 	struct hns3_adapter *hns = dev->data->dev_private;
2458 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2459 	struct hns3_hw *hw = &hns->hw;
2460 	int ret;
2461 
2462 	if (dev->data->dev_started) {
2463 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2464 			 "before configuration", dev->data->port_id);
2465 		return -EBUSY;
2466 	}
2467 
2468 	rte_spinlock_lock(&hw->lock);
2469 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2470 
2471 	/*
2472 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2473 	 * assign to "uint16_t" type variable.
2474 	 */
2475 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2476 	if (ret) {
2477 		rte_spinlock_unlock(&hw->lock);
2478 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2479 			 dev->data->port_id, mtu, ret);
2480 		return ret;
2481 	}
2482 
2483 	rte_spinlock_unlock(&hw->lock);
2484 
2485 	return 0;
2486 }
2487 
2488 static uint32_t
2489 hns3_get_copper_port_speed_capa(uint32_t supported_speed)
2490 {
2491 	uint32_t speed_capa = 0;
2492 
2493 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT)
2494 		speed_capa |= RTE_ETH_LINK_SPEED_10M_HD;
2495 	if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT)
2496 		speed_capa |= RTE_ETH_LINK_SPEED_10M;
2497 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT)
2498 		speed_capa |= RTE_ETH_LINK_SPEED_100M_HD;
2499 	if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT)
2500 		speed_capa |= RTE_ETH_LINK_SPEED_100M;
2501 	if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT)
2502 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2503 
2504 	return speed_capa;
2505 }
2506 
2507 static uint32_t
2508 hns3_get_firber_port_speed_capa(uint32_t supported_speed)
2509 {
2510 	uint32_t speed_capa = 0;
2511 
2512 	if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT)
2513 		speed_capa |= RTE_ETH_LINK_SPEED_1G;
2514 	if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT)
2515 		speed_capa |= RTE_ETH_LINK_SPEED_10G;
2516 	if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT)
2517 		speed_capa |= RTE_ETH_LINK_SPEED_25G;
2518 	if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT)
2519 		speed_capa |= RTE_ETH_LINK_SPEED_40G;
2520 	if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT)
2521 		speed_capa |= RTE_ETH_LINK_SPEED_50G;
2522 	if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT)
2523 		speed_capa |= RTE_ETH_LINK_SPEED_100G;
2524 	if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT)
2525 		speed_capa |= RTE_ETH_LINK_SPEED_200G;
2526 
2527 	return speed_capa;
2528 }
2529 
2530 static uint32_t
2531 hns3_get_speed_capa(struct hns3_hw *hw)
2532 {
2533 	struct hns3_mac *mac = &hw->mac;
2534 	uint32_t speed_capa;
2535 
2536 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
2537 		speed_capa =
2538 			hns3_get_copper_port_speed_capa(mac->supported_speed);
2539 	else
2540 		speed_capa =
2541 			hns3_get_firber_port_speed_capa(mac->supported_speed);
2542 
2543 	if (mac->support_autoneg == 0)
2544 		speed_capa |= RTE_ETH_LINK_SPEED_FIXED;
2545 
2546 	return speed_capa;
2547 }
2548 
2549 int
2550 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2551 {
2552 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2553 	struct hns3_hw *hw = &hns->hw;
2554 	uint16_t queue_num = hw->tqps_num;
2555 
2556 	/*
2557 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2558 	 * MSI-X interrupt resources of the hardware.
2559 	 */
2560 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2561 		queue_num = hw->intr_tqps_num;
2562 
2563 	info->max_rx_queues = queue_num;
2564 	info->max_tx_queues = hw->tqps_num;
2565 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2566 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2567 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2568 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2569 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2570 	info->rx_offload_capa = (RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
2571 				 RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
2572 				 RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
2573 				 RTE_ETH_RX_OFFLOAD_SCTP_CKSUM |
2574 				 RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2575 				 RTE_ETH_RX_OFFLOAD_OUTER_UDP_CKSUM |
2576 				 RTE_ETH_RX_OFFLOAD_KEEP_CRC |
2577 				 RTE_ETH_RX_OFFLOAD_SCATTER |
2578 				 RTE_ETH_RX_OFFLOAD_VLAN_STRIP |
2579 				 RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
2580 				 RTE_ETH_RX_OFFLOAD_RSS_HASH |
2581 				 RTE_ETH_RX_OFFLOAD_TCP_LRO);
2582 	info->tx_offload_capa = (RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2583 				 RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
2584 				 RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
2585 				 RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
2586 				 RTE_ETH_TX_OFFLOAD_SCTP_CKSUM |
2587 				 RTE_ETH_TX_OFFLOAD_MULTI_SEGS |
2588 				 RTE_ETH_TX_OFFLOAD_TCP_TSO |
2589 				 RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
2590 				 RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO |
2591 				 RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO |
2592 				 RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE |
2593 				 hns3_txvlan_cap_get(hw));
2594 
2595 	if (hns3_dev_get_support(hw, OUTER_UDP_CKSUM))
2596 		info->tx_offload_capa |= RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM;
2597 
2598 	if (hns3_dev_get_support(hw, INDEP_TXRX))
2599 		info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2600 				 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2601 	info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
2602 
2603 	if (hns3_dev_get_support(hw, PTP))
2604 		info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_TIMESTAMP;
2605 
2606 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2607 		.nb_max = HNS3_MAX_RING_DESC,
2608 		.nb_min = HNS3_MIN_RING_DESC,
2609 		.nb_align = HNS3_ALIGN_RING_DESC,
2610 	};
2611 
2612 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2613 		.nb_max = HNS3_MAX_RING_DESC,
2614 		.nb_min = HNS3_MIN_RING_DESC,
2615 		.nb_align = HNS3_ALIGN_RING_DESC,
2616 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2617 		.nb_mtu_seg_max = hw->max_non_tso_bd_num,
2618 	};
2619 
2620 	info->speed_capa = hns3_get_speed_capa(hw);
2621 	info->default_rxconf = (struct rte_eth_rxconf) {
2622 		.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2623 		/*
2624 		 * If there are no available Rx buffer descriptors, incoming
2625 		 * packets are always dropped by hardware based on hns3 network
2626 		 * engine.
2627 		 */
2628 		.rx_drop_en = 1,
2629 		.offloads = 0,
2630 	};
2631 	info->default_txconf = (struct rte_eth_txconf) {
2632 		.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2633 		.offloads = 0,
2634 	};
2635 
2636 	info->reta_size = hw->rss_ind_tbl_size;
2637 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2638 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2639 
2640 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2641 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2642 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2643 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2644 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2645 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2646 
2647 	return 0;
2648 }
2649 
2650 static int
2651 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2652 		    size_t fw_size)
2653 {
2654 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2655 	struct hns3_hw *hw = &hns->hw;
2656 	uint32_t version = hw->fw_version;
2657 	int ret;
2658 
2659 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2660 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2661 				      HNS3_FW_VERSION_BYTE3_S),
2662 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2663 				      HNS3_FW_VERSION_BYTE2_S),
2664 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2665 				      HNS3_FW_VERSION_BYTE1_S),
2666 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2667 				      HNS3_FW_VERSION_BYTE0_S));
2668 	if (ret < 0)
2669 		return -EINVAL;
2670 
2671 	ret += 1; /* add the size of '\0' */
2672 	if (fw_size < (size_t)ret)
2673 		return ret;
2674 	else
2675 		return 0;
2676 }
2677 
2678 static int
2679 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2680 {
2681 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2682 	int ret;
2683 
2684 	(void)hns3_update_link_status(hw);
2685 
2686 	ret = hns3_update_link_info(eth_dev);
2687 	if (ret)
2688 		hw->mac.link_status = RTE_ETH_LINK_DOWN;
2689 
2690 	return ret;
2691 }
2692 
2693 static void
2694 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2695 		      struct rte_eth_link *new_link)
2696 {
2697 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2698 	struct hns3_mac *mac = &hw->mac;
2699 
2700 	switch (mac->link_speed) {
2701 	case RTE_ETH_SPEED_NUM_10M:
2702 	case RTE_ETH_SPEED_NUM_100M:
2703 	case RTE_ETH_SPEED_NUM_1G:
2704 	case RTE_ETH_SPEED_NUM_10G:
2705 	case RTE_ETH_SPEED_NUM_25G:
2706 	case RTE_ETH_SPEED_NUM_40G:
2707 	case RTE_ETH_SPEED_NUM_50G:
2708 	case RTE_ETH_SPEED_NUM_100G:
2709 	case RTE_ETH_SPEED_NUM_200G:
2710 		if (mac->link_status)
2711 			new_link->link_speed = mac->link_speed;
2712 		break;
2713 	default:
2714 		if (mac->link_status)
2715 			new_link->link_speed = RTE_ETH_SPEED_NUM_UNKNOWN;
2716 		break;
2717 	}
2718 
2719 	if (!mac->link_status)
2720 		new_link->link_speed = RTE_ETH_SPEED_NUM_NONE;
2721 
2722 	new_link->link_duplex = mac->link_duplex;
2723 	new_link->link_status = mac->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
2724 	new_link->link_autoneg = mac->link_autoneg;
2725 }
2726 
2727 static int
2728 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2729 {
2730 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2731 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2732 
2733 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2734 	uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2735 	struct hns3_mac *mac = &hw->mac;
2736 	struct rte_eth_link new_link;
2737 	int ret;
2738 
2739 	/* When port is stopped, report link down. */
2740 	if (eth_dev->data->dev_started == 0) {
2741 		new_link.link_autoneg = mac->link_autoneg;
2742 		new_link.link_duplex = mac->link_duplex;
2743 		new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
2744 		new_link.link_status = RTE_ETH_LINK_DOWN;
2745 		goto out;
2746 	}
2747 
2748 	do {
2749 		ret = hns3_update_port_link_info(eth_dev);
2750 		if (ret) {
2751 			hns3_err(hw, "failed to get port link info, ret = %d.",
2752 				 ret);
2753 			break;
2754 		}
2755 
2756 		if (!wait_to_complete || mac->link_status == RTE_ETH_LINK_UP)
2757 			break;
2758 
2759 		rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2760 	} while (retry_cnt--);
2761 
2762 	memset(&new_link, 0, sizeof(new_link));
2763 	hns3_setup_linkstatus(eth_dev, &new_link);
2764 
2765 out:
2766 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2767 }
2768 
2769 static int
2770 hns3_dev_set_link_up(struct rte_eth_dev *dev)
2771 {
2772 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2773 	int ret;
2774 
2775 	/*
2776 	 * The "tx_pkt_burst" will be restored. But the secondary process does
2777 	 * not support the mechanism for notifying the primary process.
2778 	 */
2779 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2780 		hns3_err(hw, "secondary process does not support to set link up.");
2781 		return -ENOTSUP;
2782 	}
2783 
2784 	/*
2785 	 * If device isn't started Rx/Tx function is still disabled, setting
2786 	 * link up is not allowed. But it is probably better to return success
2787 	 * to reduce the impact on the upper layer.
2788 	 */
2789 	if (hw->adapter_state != HNS3_NIC_STARTED) {
2790 		hns3_info(hw, "device isn't started, can't set link up.");
2791 		return 0;
2792 	}
2793 
2794 	if (!hw->set_link_down)
2795 		return 0;
2796 
2797 	rte_spinlock_lock(&hw->lock);
2798 	ret = hns3_cfg_mac_mode(hw, true);
2799 	if (ret) {
2800 		rte_spinlock_unlock(&hw->lock);
2801 		hns3_err(hw, "failed to set link up, ret = %d", ret);
2802 		return ret;
2803 	}
2804 
2805 	hw->set_link_down = false;
2806 	hns3_start_tx_datapath(dev);
2807 	rte_spinlock_unlock(&hw->lock);
2808 
2809 	return 0;
2810 }
2811 
2812 static int
2813 hns3_dev_set_link_down(struct rte_eth_dev *dev)
2814 {
2815 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2816 	int ret;
2817 
2818 	/*
2819 	 * The "tx_pkt_burst" will be set to dummy function. But the secondary
2820 	 * process does not support the mechanism for notifying the primary
2821 	 * process.
2822 	 */
2823 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2824 		hns3_err(hw, "secondary process does not support to set link down.");
2825 		return -ENOTSUP;
2826 	}
2827 
2828 	/*
2829 	 * If device isn't started or the API has been called, link status is
2830 	 * down, return success.
2831 	 */
2832 	if (hw->adapter_state != HNS3_NIC_STARTED || hw->set_link_down)
2833 		return 0;
2834 
2835 	rte_spinlock_lock(&hw->lock);
2836 	hns3_stop_tx_datapath(dev);
2837 	ret = hns3_cfg_mac_mode(hw, false);
2838 	if (ret) {
2839 		hns3_start_tx_datapath(dev);
2840 		rte_spinlock_unlock(&hw->lock);
2841 		hns3_err(hw, "failed to set link down, ret = %d", ret);
2842 		return ret;
2843 	}
2844 
2845 	hw->set_link_down = true;
2846 	rte_spinlock_unlock(&hw->lock);
2847 
2848 	return 0;
2849 }
2850 
2851 static int
2852 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2853 {
2854 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2855 	struct hns3_pf *pf = &hns->pf;
2856 
2857 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2858 		return -EINVAL;
2859 
2860 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2861 
2862 	return 0;
2863 }
2864 
2865 static int
2866 hns3_query_function_status(struct hns3_hw *hw)
2867 {
2868 #define HNS3_QUERY_MAX_CNT		10
2869 #define HNS3_QUERY_SLEEP_MSCOEND	1
2870 	struct hns3_func_status_cmd *req;
2871 	struct hns3_cmd_desc desc;
2872 	int timeout = 0;
2873 	int ret;
2874 
2875 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2876 	req = (struct hns3_func_status_cmd *)desc.data;
2877 
2878 	do {
2879 		ret = hns3_cmd_send(hw, &desc, 1);
2880 		if (ret) {
2881 			PMD_INIT_LOG(ERR, "query function status failed %d",
2882 				     ret);
2883 			return ret;
2884 		}
2885 
2886 		/* Check pf reset is done */
2887 		if (req->pf_state)
2888 			break;
2889 
2890 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2891 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2892 
2893 	return hns3_parse_func_status(hw, req);
2894 }
2895 
2896 static int
2897 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2898 {
2899 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2900 	struct hns3_pf *pf = &hns->pf;
2901 
2902 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2903 		/*
2904 		 * The total_tqps_num obtained from firmware is maximum tqp
2905 		 * numbers of this port, which should be used for PF and VFs.
2906 		 * There is no need for pf to have so many tqp numbers in
2907 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2908 		 * coming from config file, is assigned to maximum queue number
2909 		 * for the PF of this port by user. So users can modify the
2910 		 * maximum queue number of PF according to their own application
2911 		 * scenarios, which is more flexible to use. In addition, many
2912 		 * memories can be saved due to allocating queue statistics
2913 		 * room according to the actual number of queues required. The
2914 		 * maximum queue number of PF for network engine with
2915 		 * revision_id greater than 0x30 is assigned by config file.
2916 		 */
2917 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2918 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2919 				 "must be greater than 0.",
2920 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2921 			return -EINVAL;
2922 		}
2923 
2924 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2925 				       hw->total_tqps_num);
2926 	} else {
2927 		/*
2928 		 * Due to the limitation on the number of PF interrupts
2929 		 * available, the maximum queue number assigned to PF on
2930 		 * the network engine with revision_id 0x21 is 64.
2931 		 */
2932 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2933 				       HNS3_MAX_TQP_NUM_HIP08_PF);
2934 	}
2935 
2936 	return 0;
2937 }
2938 
2939 static int
2940 hns3_query_pf_resource(struct hns3_hw *hw)
2941 {
2942 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2943 	struct hns3_pf *pf = &hns->pf;
2944 	struct hns3_pf_res_cmd *req;
2945 	struct hns3_cmd_desc desc;
2946 	int ret;
2947 
2948 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2949 	ret = hns3_cmd_send(hw, &desc, 1);
2950 	if (ret) {
2951 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2952 		return ret;
2953 	}
2954 
2955 	req = (struct hns3_pf_res_cmd *)desc.data;
2956 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2957 			     rte_le_to_cpu_16(req->ext_tqp_num);
2958 	ret = hns3_get_pf_max_tqp_num(hw);
2959 	if (ret)
2960 		return ret;
2961 
2962 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2963 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2964 
2965 	if (req->tx_buf_size)
2966 		pf->tx_buf_size =
2967 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2968 	else
2969 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2970 
2971 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2972 
2973 	if (req->dv_buf_size)
2974 		pf->dv_buf_size =
2975 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2976 	else
2977 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2978 
2979 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2980 
2981 	hw->num_msi =
2982 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2983 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2984 
2985 	return 0;
2986 }
2987 
2988 static void
2989 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2990 {
2991 	struct hns3_cfg_param_cmd *req;
2992 	uint64_t mac_addr_tmp_high;
2993 	uint8_t ext_rss_size_max;
2994 	uint64_t mac_addr_tmp;
2995 	uint32_t i;
2996 
2997 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2998 
2999 	/* get the configuration */
3000 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
3001 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
3002 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
3003 					   HNS3_CFG_TQP_DESC_N_M,
3004 					   HNS3_CFG_TQP_DESC_N_S);
3005 
3006 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3007 				       HNS3_CFG_PHY_ADDR_M,
3008 				       HNS3_CFG_PHY_ADDR_S);
3009 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3010 					 HNS3_CFG_MEDIA_TP_M,
3011 					 HNS3_CFG_MEDIA_TP_S);
3012 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3013 					 HNS3_CFG_RX_BUF_LEN_M,
3014 					 HNS3_CFG_RX_BUF_LEN_S);
3015 	/* get mac address */
3016 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
3017 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3018 					   HNS3_CFG_MAC_ADDR_H_M,
3019 					   HNS3_CFG_MAC_ADDR_H_S);
3020 
3021 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
3022 
3023 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3024 					    HNS3_CFG_DEFAULT_SPEED_M,
3025 					    HNS3_CFG_DEFAULT_SPEED_S);
3026 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3027 					   HNS3_CFG_RSS_SIZE_M,
3028 					   HNS3_CFG_RSS_SIZE_S);
3029 
3030 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
3031 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
3032 
3033 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
3034 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
3035 
3036 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3037 					    HNS3_CFG_SPEED_ABILITY_M,
3038 					    HNS3_CFG_SPEED_ABILITY_S);
3039 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3040 					HNS3_CFG_UMV_TBL_SPACE_M,
3041 					HNS3_CFG_UMV_TBL_SPACE_S);
3042 	if (!cfg->umv_space)
3043 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
3044 
3045 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
3046 					       HNS3_CFG_EXT_RSS_SIZE_M,
3047 					       HNS3_CFG_EXT_RSS_SIZE_S);
3048 	/*
3049 	 * Field ext_rss_size_max obtained from firmware will be more flexible
3050 	 * for future changes and expansions, which is an exponent of 2, instead
3051 	 * of reading out directly. If this field is not zero, hns3 PF PMD
3052 	 * driver uses it as rss_size_max under one TC. Device, whose revision
3053 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
3054 	 * maximum number of queues supported under a TC through this field.
3055 	 */
3056 	if (ext_rss_size_max)
3057 		cfg->rss_size_max = 1U << ext_rss_size_max;
3058 }
3059 
3060 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
3061  * @hw: pointer to struct hns3_hw
3062  * @hcfg: the config structure to be getted
3063  */
3064 static int
3065 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
3066 {
3067 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
3068 	struct hns3_cfg_param_cmd *req;
3069 	uint32_t offset;
3070 	uint32_t i;
3071 	int ret;
3072 
3073 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
3074 		offset = 0;
3075 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
3076 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
3077 					  true);
3078 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
3079 			       i * HNS3_CFG_RD_LEN_BYTES);
3080 		/* Len should be divided by 4 when send to hardware */
3081 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
3082 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
3083 		req->offset = rte_cpu_to_le_32(offset);
3084 	}
3085 
3086 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
3087 	if (ret) {
3088 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
3089 		return ret;
3090 	}
3091 
3092 	hns3_parse_cfg(hcfg, desc);
3093 
3094 	return 0;
3095 }
3096 
3097 static int
3098 hns3_parse_speed(int speed_cmd, uint32_t *speed)
3099 {
3100 	switch (speed_cmd) {
3101 	case HNS3_CFG_SPEED_10M:
3102 		*speed = RTE_ETH_SPEED_NUM_10M;
3103 		break;
3104 	case HNS3_CFG_SPEED_100M:
3105 		*speed = RTE_ETH_SPEED_NUM_100M;
3106 		break;
3107 	case HNS3_CFG_SPEED_1G:
3108 		*speed = RTE_ETH_SPEED_NUM_1G;
3109 		break;
3110 	case HNS3_CFG_SPEED_10G:
3111 		*speed = RTE_ETH_SPEED_NUM_10G;
3112 		break;
3113 	case HNS3_CFG_SPEED_25G:
3114 		*speed = RTE_ETH_SPEED_NUM_25G;
3115 		break;
3116 	case HNS3_CFG_SPEED_40G:
3117 		*speed = RTE_ETH_SPEED_NUM_40G;
3118 		break;
3119 	case HNS3_CFG_SPEED_50G:
3120 		*speed = RTE_ETH_SPEED_NUM_50G;
3121 		break;
3122 	case HNS3_CFG_SPEED_100G:
3123 		*speed = RTE_ETH_SPEED_NUM_100G;
3124 		break;
3125 	case HNS3_CFG_SPEED_200G:
3126 		*speed = RTE_ETH_SPEED_NUM_200G;
3127 		break;
3128 	default:
3129 		return -EINVAL;
3130 	}
3131 
3132 	return 0;
3133 }
3134 
3135 static void
3136 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3137 {
3138 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3139 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3140 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3141 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3142 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3143 }
3144 
3145 static void
3146 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3147 {
3148 	struct hns3_dev_specs_0_cmd *req0;
3149 
3150 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3151 
3152 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3153 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3154 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3155 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3156 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3157 }
3158 
3159 static int
3160 hns3_check_dev_specifications(struct hns3_hw *hw)
3161 {
3162 	if (hw->rss_ind_tbl_size == 0 ||
3163 	    hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3164 		hns3_err(hw, "the size of hash lookup table configured (%u)"
3165 			      " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3166 			      HNS3_RSS_IND_TBL_SIZE_MAX);
3167 		return -EINVAL;
3168 	}
3169 
3170 	return 0;
3171 }
3172 
3173 static int
3174 hns3_query_dev_specifications(struct hns3_hw *hw)
3175 {
3176 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3177 	int ret;
3178 	int i;
3179 
3180 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3181 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3182 					  true);
3183 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3184 	}
3185 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3186 
3187 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3188 	if (ret)
3189 		return ret;
3190 
3191 	hns3_parse_dev_specifications(hw, desc);
3192 
3193 	return hns3_check_dev_specifications(hw);
3194 }
3195 
3196 static int
3197 hns3_get_capability(struct hns3_hw *hw)
3198 {
3199 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3200 	struct rte_pci_device *pci_dev;
3201 	struct hns3_pf *pf = &hns->pf;
3202 	struct rte_eth_dev *eth_dev;
3203 	uint16_t device_id;
3204 	uint8_t revision;
3205 	int ret;
3206 
3207 	eth_dev = &rte_eth_devices[hw->data->port_id];
3208 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3209 	device_id = pci_dev->id.device_id;
3210 
3211 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3212 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
3213 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3214 	    device_id == HNS3_DEV_ID_200G_RDMA)
3215 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3216 
3217 	/* Get PCI revision id */
3218 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3219 				  HNS3_PCI_REVISION_ID);
3220 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
3221 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3222 			     ret);
3223 		return -EIO;
3224 	}
3225 	hw->revision = revision;
3226 
3227 	if (revision < PCI_REVISION_ID_HIP09_A) {
3228 		hns3_set_default_dev_specifications(hw);
3229 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3230 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3231 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3232 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3233 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
3234 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3235 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3236 		hw->rss_info.ipv6_sctp_offload_supported = false;
3237 		hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
3238 		pf->support_multi_tc_pause = false;
3239 		return 0;
3240 	}
3241 
3242 	ret = hns3_query_dev_specifications(hw);
3243 	if (ret) {
3244 		PMD_INIT_LOG(ERR,
3245 			     "failed to query dev specifications, ret = %d",
3246 			     ret);
3247 		return ret;
3248 	}
3249 
3250 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3251 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3252 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3253 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3254 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
3255 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3256 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3257 	hw->rss_info.ipv6_sctp_offload_supported = true;
3258 	hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
3259 	pf->support_multi_tc_pause = true;
3260 
3261 	return 0;
3262 }
3263 
3264 static int
3265 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3266 {
3267 	int ret;
3268 
3269 	switch (media_type) {
3270 	case HNS3_MEDIA_TYPE_COPPER:
3271 		if (!hns3_dev_get_support(hw, COPPER)) {
3272 			PMD_INIT_LOG(ERR,
3273 				     "Media type is copper, not supported.");
3274 			ret = -EOPNOTSUPP;
3275 		} else {
3276 			ret = 0;
3277 		}
3278 		break;
3279 	case HNS3_MEDIA_TYPE_FIBER:
3280 		ret = 0;
3281 		break;
3282 	case HNS3_MEDIA_TYPE_BACKPLANE:
3283 		PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3284 		ret = -EOPNOTSUPP;
3285 		break;
3286 	default:
3287 		PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3288 		ret = -EINVAL;
3289 		break;
3290 	}
3291 
3292 	return ret;
3293 }
3294 
3295 static int
3296 hns3_get_board_configuration(struct hns3_hw *hw)
3297 {
3298 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3299 	struct hns3_pf *pf = &hns->pf;
3300 	struct hns3_cfg cfg;
3301 	int ret;
3302 
3303 	ret = hns3_get_board_cfg(hw, &cfg);
3304 	if (ret) {
3305 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3306 		return ret;
3307 	}
3308 
3309 	ret = hns3_check_media_type(hw, cfg.media_type);
3310 	if (ret)
3311 		return ret;
3312 
3313 	hw->mac.media_type = cfg.media_type;
3314 	hw->rss_size_max = cfg.rss_size_max;
3315 	hw->rss_dis_flag = false;
3316 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3317 	hw->mac.phy_addr = cfg.phy_addr;
3318 	hw->num_tx_desc = cfg.tqp_desc_num;
3319 	hw->num_rx_desc = cfg.tqp_desc_num;
3320 	hw->dcb_info.num_pg = 1;
3321 	hw->dcb_info.hw_pfc_map = 0;
3322 
3323 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3324 	if (ret) {
3325 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3326 			     cfg.default_speed, ret);
3327 		return ret;
3328 	}
3329 
3330 	pf->tc_max = cfg.tc_num;
3331 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3332 		PMD_INIT_LOG(WARNING,
3333 			     "Get TC num(%u) from flash, set TC num to 1",
3334 			     pf->tc_max);
3335 		pf->tc_max = 1;
3336 	}
3337 
3338 	/* Dev does not support DCB */
3339 	if (!hns3_dev_get_support(hw, DCB)) {
3340 		pf->tc_max = 1;
3341 		pf->pfc_max = 0;
3342 	} else
3343 		pf->pfc_max = pf->tc_max;
3344 
3345 	hw->dcb_info.num_tc = 1;
3346 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3347 				     hw->tqps_num / hw->dcb_info.num_tc);
3348 	hns3_set_bit(hw->hw_tc_map, 0, 1);
3349 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3350 
3351 	pf->wanted_umv_size = cfg.umv_space;
3352 
3353 	return ret;
3354 }
3355 
3356 static int
3357 hns3_get_configuration(struct hns3_hw *hw)
3358 {
3359 	int ret;
3360 
3361 	ret = hns3_query_function_status(hw);
3362 	if (ret) {
3363 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3364 		return ret;
3365 	}
3366 
3367 	/* Get device capability */
3368 	ret = hns3_get_capability(hw);
3369 	if (ret) {
3370 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3371 		return ret;
3372 	}
3373 
3374 	/* Get pf resource */
3375 	ret = hns3_query_pf_resource(hw);
3376 	if (ret) {
3377 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3378 		return ret;
3379 	}
3380 
3381 	ret = hns3_get_board_configuration(hw);
3382 	if (ret) {
3383 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3384 		return ret;
3385 	}
3386 
3387 	ret = hns3_query_dev_fec_info(hw);
3388 	if (ret)
3389 		PMD_INIT_LOG(ERR,
3390 			     "failed to query FEC information, ret = %d", ret);
3391 
3392 	return ret;
3393 }
3394 
3395 static int
3396 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3397 		      uint16_t tqp_vid, bool is_pf)
3398 {
3399 	struct hns3_tqp_map_cmd *req;
3400 	struct hns3_cmd_desc desc;
3401 	int ret;
3402 
3403 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3404 
3405 	req = (struct hns3_tqp_map_cmd *)desc.data;
3406 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3407 	req->tqp_vf = func_id;
3408 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3409 	if (!is_pf)
3410 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3411 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3412 
3413 	ret = hns3_cmd_send(hw, &desc, 1);
3414 	if (ret)
3415 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3416 
3417 	return ret;
3418 }
3419 
3420 static int
3421 hns3_map_tqp(struct hns3_hw *hw)
3422 {
3423 	int ret;
3424 	int i;
3425 
3426 	/*
3427 	 * In current version, VF is not supported when PF is driven by DPDK
3428 	 * driver, so we assign total tqps_num tqps allocated to this port
3429 	 * to PF.
3430 	 */
3431 	for (i = 0; i < hw->total_tqps_num; i++) {
3432 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3433 		if (ret)
3434 			return ret;
3435 	}
3436 
3437 	return 0;
3438 }
3439 
3440 static int
3441 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3442 {
3443 	struct hns3_config_mac_speed_dup_cmd *req;
3444 	struct hns3_cmd_desc desc;
3445 	int ret;
3446 
3447 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3448 
3449 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3450 
3451 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3452 
3453 	switch (speed) {
3454 	case RTE_ETH_SPEED_NUM_10M:
3455 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3456 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3457 		break;
3458 	case RTE_ETH_SPEED_NUM_100M:
3459 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3460 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3461 		break;
3462 	case RTE_ETH_SPEED_NUM_1G:
3463 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3464 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3465 		break;
3466 	case RTE_ETH_SPEED_NUM_10G:
3467 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3468 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3469 		break;
3470 	case RTE_ETH_SPEED_NUM_25G:
3471 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3472 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3473 		break;
3474 	case RTE_ETH_SPEED_NUM_40G:
3475 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3476 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3477 		break;
3478 	case RTE_ETH_SPEED_NUM_50G:
3479 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3480 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3481 		break;
3482 	case RTE_ETH_SPEED_NUM_100G:
3483 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3484 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3485 		break;
3486 	case RTE_ETH_SPEED_NUM_200G:
3487 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3488 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3489 		break;
3490 	default:
3491 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3492 		return -EINVAL;
3493 	}
3494 
3495 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3496 
3497 	ret = hns3_cmd_send(hw, &desc, 1);
3498 	if (ret)
3499 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3500 
3501 	return ret;
3502 }
3503 
3504 static int
3505 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3506 {
3507 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3508 	struct hns3_pf *pf = &hns->pf;
3509 	struct hns3_priv_buf *priv;
3510 	uint32_t i, total_size;
3511 
3512 	total_size = pf->pkt_buf_size;
3513 
3514 	/* alloc tx buffer for all enabled tc */
3515 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3516 		priv = &buf_alloc->priv_buf[i];
3517 
3518 		if (hw->hw_tc_map & BIT(i)) {
3519 			if (total_size < pf->tx_buf_size)
3520 				return -ENOMEM;
3521 
3522 			priv->tx_buf_size = pf->tx_buf_size;
3523 		} else
3524 			priv->tx_buf_size = 0;
3525 
3526 		total_size -= priv->tx_buf_size;
3527 	}
3528 
3529 	return 0;
3530 }
3531 
3532 static int
3533 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3534 {
3535 /* TX buffer size is unit by 128 byte */
3536 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3537 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3538 	struct hns3_tx_buff_alloc_cmd *req;
3539 	struct hns3_cmd_desc desc;
3540 	uint32_t buf_size;
3541 	uint32_t i;
3542 	int ret;
3543 
3544 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3545 
3546 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3547 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3548 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3549 
3550 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3551 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3552 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3553 	}
3554 
3555 	ret = hns3_cmd_send(hw, &desc, 1);
3556 	if (ret)
3557 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3558 
3559 	return ret;
3560 }
3561 
3562 static int
3563 hns3_get_tc_num(struct hns3_hw *hw)
3564 {
3565 	int cnt = 0;
3566 	uint8_t i;
3567 
3568 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3569 		if (hw->hw_tc_map & BIT(i))
3570 			cnt++;
3571 	return cnt;
3572 }
3573 
3574 static uint32_t
3575 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3576 {
3577 	struct hns3_priv_buf *priv;
3578 	uint32_t rx_priv = 0;
3579 	int i;
3580 
3581 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3582 		priv = &buf_alloc->priv_buf[i];
3583 		if (priv->enable)
3584 			rx_priv += priv->buf_size;
3585 	}
3586 	return rx_priv;
3587 }
3588 
3589 static uint32_t
3590 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3591 {
3592 	uint32_t total_tx_size = 0;
3593 	uint32_t i;
3594 
3595 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3596 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3597 
3598 	return total_tx_size;
3599 }
3600 
3601 /* Get the number of pfc enabled TCs, which have private buffer */
3602 static int
3603 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3604 {
3605 	struct hns3_priv_buf *priv;
3606 	int cnt = 0;
3607 	uint8_t i;
3608 
3609 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3610 		priv = &buf_alloc->priv_buf[i];
3611 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3612 			cnt++;
3613 	}
3614 
3615 	return cnt;
3616 }
3617 
3618 /* Get the number of pfc disabled TCs, which have private buffer */
3619 static int
3620 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3621 			 struct hns3_pkt_buf_alloc *buf_alloc)
3622 {
3623 	struct hns3_priv_buf *priv;
3624 	int cnt = 0;
3625 	uint8_t i;
3626 
3627 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3628 		priv = &buf_alloc->priv_buf[i];
3629 		if (hw->hw_tc_map & BIT(i) &&
3630 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3631 			cnt++;
3632 	}
3633 
3634 	return cnt;
3635 }
3636 
3637 static bool
3638 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3639 		  uint32_t rx_all)
3640 {
3641 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3642 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3643 	struct hns3_pf *pf = &hns->pf;
3644 	uint32_t shared_buf, aligned_mps;
3645 	uint32_t rx_priv;
3646 	uint8_t tc_num;
3647 	uint8_t i;
3648 
3649 	tc_num = hns3_get_tc_num(hw);
3650 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3651 
3652 	if (hns3_dev_get_support(hw, DCB))
3653 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3654 					pf->dv_buf_size;
3655 	else
3656 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3657 					+ pf->dv_buf_size;
3658 
3659 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3660 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3661 			     HNS3_BUF_SIZE_UNIT);
3662 
3663 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3664 	if (rx_all < rx_priv + shared_std)
3665 		return false;
3666 
3667 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3668 	buf_alloc->s_buf.buf_size = shared_buf;
3669 	if (hns3_dev_get_support(hw, DCB)) {
3670 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3671 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3672 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3673 				  HNS3_BUF_SIZE_UNIT);
3674 	} else {
3675 		buf_alloc->s_buf.self.high =
3676 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3677 		buf_alloc->s_buf.self.low = aligned_mps;
3678 	}
3679 
3680 	if (hns3_dev_get_support(hw, DCB)) {
3681 		hi_thrd = shared_buf - pf->dv_buf_size;
3682 
3683 		if (tc_num <= NEED_RESERVE_TC_NUM)
3684 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3685 				  BUF_MAX_PERCENT;
3686 
3687 		if (tc_num)
3688 			hi_thrd = hi_thrd / tc_num;
3689 
3690 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3691 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3692 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3693 	} else {
3694 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3695 		lo_thrd = aligned_mps;
3696 	}
3697 
3698 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3699 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3700 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3701 	}
3702 
3703 	return true;
3704 }
3705 
3706 static bool
3707 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3708 		     struct hns3_pkt_buf_alloc *buf_alloc)
3709 {
3710 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3711 	struct hns3_pf *pf = &hns->pf;
3712 	struct hns3_priv_buf *priv;
3713 	uint32_t aligned_mps;
3714 	uint32_t rx_all;
3715 	uint8_t i;
3716 
3717 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3718 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3719 
3720 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3721 		priv = &buf_alloc->priv_buf[i];
3722 
3723 		priv->enable = 0;
3724 		priv->wl.low = 0;
3725 		priv->wl.high = 0;
3726 		priv->buf_size = 0;
3727 
3728 		if (!(hw->hw_tc_map & BIT(i)))
3729 			continue;
3730 
3731 		priv->enable = 1;
3732 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3733 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3734 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3735 						HNS3_BUF_SIZE_UNIT);
3736 		} else {
3737 			priv->wl.low = 0;
3738 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3739 					aligned_mps;
3740 		}
3741 
3742 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3743 	}
3744 
3745 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3746 }
3747 
3748 static bool
3749 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3750 			     struct hns3_pkt_buf_alloc *buf_alloc)
3751 {
3752 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3753 	struct hns3_pf *pf = &hns->pf;
3754 	struct hns3_priv_buf *priv;
3755 	int no_pfc_priv_num;
3756 	uint32_t rx_all;
3757 	uint8_t mask;
3758 	int i;
3759 
3760 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3761 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3762 
3763 	/* let the last to be cleared first */
3764 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3765 		priv = &buf_alloc->priv_buf[i];
3766 		mask = BIT((uint8_t)i);
3767 		if (hw->hw_tc_map & mask &&
3768 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3769 			/* Clear the no pfc TC private buffer */
3770 			priv->wl.low = 0;
3771 			priv->wl.high = 0;
3772 			priv->buf_size = 0;
3773 			priv->enable = 0;
3774 			no_pfc_priv_num--;
3775 		}
3776 
3777 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3778 		    no_pfc_priv_num == 0)
3779 			break;
3780 	}
3781 
3782 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3783 }
3784 
3785 static bool
3786 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3787 			   struct hns3_pkt_buf_alloc *buf_alloc)
3788 {
3789 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3790 	struct hns3_pf *pf = &hns->pf;
3791 	struct hns3_priv_buf *priv;
3792 	uint32_t rx_all;
3793 	int pfc_priv_num;
3794 	uint8_t mask;
3795 	int i;
3796 
3797 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3798 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3799 
3800 	/* let the last to be cleared first */
3801 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3802 		priv = &buf_alloc->priv_buf[i];
3803 		mask = BIT((uint8_t)i);
3804 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3805 			/* Reduce the number of pfc TC with private buffer */
3806 			priv->wl.low = 0;
3807 			priv->enable = 0;
3808 			priv->wl.high = 0;
3809 			priv->buf_size = 0;
3810 			pfc_priv_num--;
3811 		}
3812 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3813 		    pfc_priv_num == 0)
3814 			break;
3815 	}
3816 
3817 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3818 }
3819 
3820 static bool
3821 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3822 			  struct hns3_pkt_buf_alloc *buf_alloc)
3823 {
3824 #define COMPENSATE_BUFFER	0x3C00
3825 #define COMPENSATE_HALF_MPS_NUM	5
3826 #define PRIV_WL_GAP		0x1800
3827 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3828 	struct hns3_pf *pf = &hns->pf;
3829 	uint32_t tc_num = hns3_get_tc_num(hw);
3830 	uint32_t half_mps = pf->mps >> 1;
3831 	struct hns3_priv_buf *priv;
3832 	uint32_t min_rx_priv;
3833 	uint32_t rx_priv;
3834 	uint8_t i;
3835 
3836 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3837 	if (tc_num)
3838 		rx_priv = rx_priv / tc_num;
3839 
3840 	if (tc_num <= NEED_RESERVE_TC_NUM)
3841 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3842 
3843 	/*
3844 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3845 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3846 	 * buffer if rx_priv is greater than min_rx_priv.
3847 	 */
3848 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3849 			COMPENSATE_HALF_MPS_NUM * half_mps;
3850 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3851 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3852 	if (rx_priv < min_rx_priv)
3853 		return false;
3854 
3855 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3856 		priv = &buf_alloc->priv_buf[i];
3857 		priv->enable = 0;
3858 		priv->wl.low = 0;
3859 		priv->wl.high = 0;
3860 		priv->buf_size = 0;
3861 
3862 		if (!(hw->hw_tc_map & BIT(i)))
3863 			continue;
3864 
3865 		priv->enable = 1;
3866 		priv->buf_size = rx_priv;
3867 		priv->wl.high = rx_priv - pf->dv_buf_size;
3868 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3869 	}
3870 
3871 	buf_alloc->s_buf.buf_size = 0;
3872 
3873 	return true;
3874 }
3875 
3876 /*
3877  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3878  * @hw: pointer to struct hns3_hw
3879  * @buf_alloc: pointer to buffer calculation data
3880  * @return: 0: calculate sucessful, negative: fail
3881  */
3882 static int
3883 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3884 {
3885 	/* When DCB is not supported, rx private buffer is not allocated. */
3886 	if (!hns3_dev_get_support(hw, DCB)) {
3887 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3888 		struct hns3_pf *pf = &hns->pf;
3889 		uint32_t rx_all = pf->pkt_buf_size;
3890 
3891 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3892 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3893 			return -ENOMEM;
3894 
3895 		return 0;
3896 	}
3897 
3898 	/*
3899 	 * Try to allocate privated packet buffer for all TCs without share
3900 	 * buffer.
3901 	 */
3902 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3903 		return 0;
3904 
3905 	/*
3906 	 * Try to allocate privated packet buffer for all TCs with share
3907 	 * buffer.
3908 	 */
3909 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3910 		return 0;
3911 
3912 	/*
3913 	 * For different application scenes, the enabled port number, TC number
3914 	 * and no_drop TC number are different. In order to obtain the better
3915 	 * performance, software could allocate the buffer size and configure
3916 	 * the waterline by trying to decrease the private buffer size according
3917 	 * to the order, namely, waterline of valid tc, pfc disabled tc, pfc
3918 	 * enabled tc.
3919 	 */
3920 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3921 		return 0;
3922 
3923 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3924 		return 0;
3925 
3926 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3927 		return 0;
3928 
3929 	return -ENOMEM;
3930 }
3931 
3932 static int
3933 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3934 {
3935 	struct hns3_rx_priv_buff_cmd *req;
3936 	struct hns3_cmd_desc desc;
3937 	uint32_t buf_size;
3938 	int ret;
3939 	int i;
3940 
3941 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3942 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3943 
3944 	/* Alloc private buffer TCs */
3945 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3946 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3947 
3948 		req->buf_num[i] =
3949 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3950 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3951 	}
3952 
3953 	buf_size = buf_alloc->s_buf.buf_size;
3954 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3955 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3956 
3957 	ret = hns3_cmd_send(hw, &desc, 1);
3958 	if (ret)
3959 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3960 
3961 	return ret;
3962 }
3963 
3964 static int
3965 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3966 {
3967 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3968 	struct hns3_rx_priv_wl_buf *req;
3969 	struct hns3_priv_buf *priv;
3970 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3971 	int i, j;
3972 	int ret;
3973 
3974 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3975 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3976 					  false);
3977 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3978 
3979 		/* The first descriptor set the NEXT bit to 1 */
3980 		if (i == 0)
3981 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3982 		else
3983 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3984 
3985 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3986 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3987 
3988 			priv = &buf_alloc->priv_buf[idx];
3989 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3990 							HNS3_BUF_UNIT_S);
3991 			req->tc_wl[j].high |=
3992 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3993 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3994 							HNS3_BUF_UNIT_S);
3995 			req->tc_wl[j].low |=
3996 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3997 		}
3998 	}
3999 
4000 	/* Send 2 descriptor at one time */
4001 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
4002 	if (ret)
4003 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
4004 			     ret);
4005 	return ret;
4006 }
4007 
4008 static int
4009 hns3_common_thrd_config(struct hns3_hw *hw,
4010 			struct hns3_pkt_buf_alloc *buf_alloc)
4011 {
4012 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
4013 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
4014 	struct hns3_rx_com_thrd *req;
4015 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
4016 	struct hns3_tc_thrd *tc;
4017 	int tc_idx;
4018 	int i, j;
4019 	int ret;
4020 
4021 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
4022 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
4023 					  false);
4024 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
4025 
4026 		/* The first descriptor set the NEXT bit to 1 */
4027 		if (i == 0)
4028 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4029 		else
4030 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4031 
4032 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
4033 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
4034 			tc = &s_buf->tc_thrd[tc_idx];
4035 
4036 			req->com_thrd[j].high =
4037 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
4038 			req->com_thrd[j].high |=
4039 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4040 			req->com_thrd[j].low =
4041 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
4042 			req->com_thrd[j].low |=
4043 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4044 		}
4045 	}
4046 
4047 	/* Send 2 descriptors at one time */
4048 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
4049 	if (ret)
4050 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
4051 
4052 	return ret;
4053 }
4054 
4055 static int
4056 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4057 {
4058 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
4059 	struct hns3_rx_com_wl *req;
4060 	struct hns3_cmd_desc desc;
4061 	int ret;
4062 
4063 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
4064 
4065 	req = (struct hns3_rx_com_wl *)desc.data;
4066 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
4067 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4068 
4069 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
4070 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4071 
4072 	ret = hns3_cmd_send(hw, &desc, 1);
4073 	if (ret)
4074 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
4075 
4076 	return ret;
4077 }
4078 
4079 int
4080 hns3_buffer_alloc(struct hns3_hw *hw)
4081 {
4082 	struct hns3_pkt_buf_alloc pkt_buf;
4083 	int ret;
4084 
4085 	memset(&pkt_buf, 0, sizeof(pkt_buf));
4086 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
4087 	if (ret) {
4088 		PMD_INIT_LOG(ERR,
4089 			     "could not calc tx buffer size for all TCs %d",
4090 			     ret);
4091 		return ret;
4092 	}
4093 
4094 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
4095 	if (ret) {
4096 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
4097 		return ret;
4098 	}
4099 
4100 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
4101 	if (ret) {
4102 		PMD_INIT_LOG(ERR,
4103 			     "could not calc rx priv buffer size for all TCs %d",
4104 			     ret);
4105 		return ret;
4106 	}
4107 
4108 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
4109 	if (ret) {
4110 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
4111 		return ret;
4112 	}
4113 
4114 	if (hns3_dev_get_support(hw, DCB)) {
4115 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4116 		if (ret) {
4117 			PMD_INIT_LOG(ERR,
4118 				     "could not configure rx private waterline %d",
4119 				     ret);
4120 			return ret;
4121 		}
4122 
4123 		ret = hns3_common_thrd_config(hw, &pkt_buf);
4124 		if (ret) {
4125 			PMD_INIT_LOG(ERR,
4126 				     "could not configure common threshold %d",
4127 				     ret);
4128 			return ret;
4129 		}
4130 	}
4131 
4132 	ret = hns3_common_wl_config(hw, &pkt_buf);
4133 	if (ret)
4134 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4135 			     ret);
4136 
4137 	return ret;
4138 }
4139 
4140 static int
4141 hns3_mac_init(struct hns3_hw *hw)
4142 {
4143 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4144 	struct hns3_mac *mac = &hw->mac;
4145 	struct hns3_pf *pf = &hns->pf;
4146 	int ret;
4147 
4148 	pf->support_sfp_query = true;
4149 	mac->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
4150 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4151 	if (ret) {
4152 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4153 		return ret;
4154 	}
4155 
4156 	mac->link_status = RTE_ETH_LINK_DOWN;
4157 
4158 	return hns3_config_mtu(hw, pf->mps);
4159 }
4160 
4161 static int
4162 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4163 {
4164 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
4165 #define HNS3_ETHERTYPE_ALREADY_ADD		1
4166 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
4167 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
4168 	int return_status;
4169 
4170 	if (cmdq_resp) {
4171 		PMD_INIT_LOG(ERR,
4172 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4173 			     cmdq_resp);
4174 		return -EIO;
4175 	}
4176 
4177 	switch (resp_code) {
4178 	case HNS3_ETHERTYPE_SUCCESS_ADD:
4179 	case HNS3_ETHERTYPE_ALREADY_ADD:
4180 		return_status = 0;
4181 		break;
4182 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4183 		PMD_INIT_LOG(ERR,
4184 			     "add mac ethertype failed for manager table overflow.");
4185 		return_status = -EIO;
4186 		break;
4187 	case HNS3_ETHERTYPE_KEY_CONFLICT:
4188 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4189 		return_status = -EIO;
4190 		break;
4191 	default:
4192 		PMD_INIT_LOG(ERR,
4193 			     "add mac ethertype failed for undefined, code=%u.",
4194 			     resp_code);
4195 		return_status = -EIO;
4196 		break;
4197 	}
4198 
4199 	return return_status;
4200 }
4201 
4202 static int
4203 hns3_add_mgr_tbl(struct hns3_hw *hw,
4204 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
4205 {
4206 	struct hns3_cmd_desc desc;
4207 	uint8_t resp_code;
4208 	uint16_t retval;
4209 	int ret;
4210 
4211 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4212 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4213 
4214 	ret = hns3_cmd_send(hw, &desc, 1);
4215 	if (ret) {
4216 		PMD_INIT_LOG(ERR,
4217 			     "add mac ethertype failed for cmd_send, ret =%d.",
4218 			     ret);
4219 		return ret;
4220 	}
4221 
4222 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4223 	retval = rte_le_to_cpu_16(desc.retval);
4224 
4225 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4226 }
4227 
4228 static void
4229 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4230 		     int *table_item_num)
4231 {
4232 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4233 
4234 	/*
4235 	 * In current version, we add one item in management table as below:
4236 	 * 0x0180C200000E -- LLDP MC address
4237 	 */
4238 	tbl = mgr_table;
4239 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4240 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4241 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4242 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4243 	tbl->i_port_bitmap = 0x1;
4244 	*table_item_num = 1;
4245 }
4246 
4247 static int
4248 hns3_init_mgr_tbl(struct hns3_hw *hw)
4249 {
4250 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
4251 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4252 	int table_item_num;
4253 	int ret;
4254 	int i;
4255 
4256 	memset(mgr_table, 0, sizeof(mgr_table));
4257 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4258 	for (i = 0; i < table_item_num; i++) {
4259 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4260 		if (ret) {
4261 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4262 				     ret);
4263 			return ret;
4264 		}
4265 	}
4266 
4267 	return 0;
4268 }
4269 
4270 static void
4271 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4272 			bool en_mc, bool en_bc, int vport_id)
4273 {
4274 	if (!param)
4275 		return;
4276 
4277 	memset(param, 0, sizeof(struct hns3_promisc_param));
4278 	if (en_uc)
4279 		param->enable = HNS3_PROMISC_EN_UC;
4280 	if (en_mc)
4281 		param->enable |= HNS3_PROMISC_EN_MC;
4282 	if (en_bc)
4283 		param->enable |= HNS3_PROMISC_EN_BC;
4284 	param->vf_id = vport_id;
4285 }
4286 
4287 static int
4288 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4289 {
4290 	struct hns3_promisc_cfg_cmd *req;
4291 	struct hns3_cmd_desc desc;
4292 	int ret;
4293 
4294 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4295 
4296 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
4297 	req->vf_id = param->vf_id;
4298 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4299 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4300 
4301 	ret = hns3_cmd_send(hw, &desc, 1);
4302 	if (ret)
4303 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4304 
4305 	return ret;
4306 }
4307 
4308 static int
4309 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4310 {
4311 	struct hns3_promisc_param param;
4312 	bool en_bc_pmc = true;
4313 	uint8_t vf_id;
4314 
4315 	/*
4316 	 * In current version VF is not supported when PF is driven by DPDK
4317 	 * driver, just need to configure parameters for PF vport.
4318 	 */
4319 	vf_id = HNS3_PF_FUNC_ID;
4320 
4321 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4322 	return hns3_cmd_set_promisc_mode(hw, &param);
4323 }
4324 
4325 static int
4326 hns3_promisc_init(struct hns3_hw *hw)
4327 {
4328 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4329 	struct hns3_pf *pf = &hns->pf;
4330 	struct hns3_promisc_param param;
4331 	uint16_t func_id;
4332 	int ret;
4333 
4334 	ret = hns3_set_promisc_mode(hw, false, false);
4335 	if (ret) {
4336 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4337 		return ret;
4338 	}
4339 
4340 	/*
4341 	 * In current version VFs are not supported when PF is driven by DPDK
4342 	 * driver. After PF has been taken over by DPDK, the original VF will
4343 	 * be invalid. So, there is a possibility of entry residues. It should
4344 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4345 	 * during init.
4346 	 */
4347 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4348 		hns3_promisc_param_init(&param, false, false, false, func_id);
4349 		ret = hns3_cmd_set_promisc_mode(hw, &param);
4350 		if (ret) {
4351 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4352 					" ret = %d", func_id, ret);
4353 			return ret;
4354 		}
4355 	}
4356 
4357 	return 0;
4358 }
4359 
4360 static void
4361 hns3_promisc_uninit(struct hns3_hw *hw)
4362 {
4363 	struct hns3_promisc_param param;
4364 	uint16_t func_id;
4365 	int ret;
4366 
4367 	func_id = HNS3_PF_FUNC_ID;
4368 
4369 	/*
4370 	 * In current version VFs are not supported when PF is driven by
4371 	 * DPDK driver, and VFs' promisc mode status has been cleared during
4372 	 * init and their status will not change. So just clear PF's promisc
4373 	 * mode status during uninit.
4374 	 */
4375 	hns3_promisc_param_init(&param, false, false, false, func_id);
4376 	ret = hns3_cmd_set_promisc_mode(hw, &param);
4377 	if (ret)
4378 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4379 				" uninit, ret = %d", ret);
4380 }
4381 
4382 static int
4383 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4384 {
4385 	bool allmulti = dev->data->all_multicast ? true : false;
4386 	struct hns3_adapter *hns = dev->data->dev_private;
4387 	struct hns3_hw *hw = &hns->hw;
4388 	uint64_t offloads;
4389 	int err;
4390 	int ret;
4391 
4392 	rte_spinlock_lock(&hw->lock);
4393 	ret = hns3_set_promisc_mode(hw, true, true);
4394 	if (ret) {
4395 		rte_spinlock_unlock(&hw->lock);
4396 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4397 			 ret);
4398 		return ret;
4399 	}
4400 
4401 	/*
4402 	 * When promiscuous mode was enabled, disable the vlan filter to let
4403 	 * all packets coming in in the receiving direction.
4404 	 */
4405 	offloads = dev->data->dev_conf.rxmode.offloads;
4406 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
4407 		ret = hns3_enable_vlan_filter(hns, false);
4408 		if (ret) {
4409 			hns3_err(hw, "failed to enable promiscuous mode due to "
4410 				     "failure to disable vlan filter, ret = %d",
4411 				 ret);
4412 			err = hns3_set_promisc_mode(hw, false, allmulti);
4413 			if (err)
4414 				hns3_err(hw, "failed to restore promiscuous "
4415 					 "status after disable vlan filter "
4416 					 "failed during enabling promiscuous "
4417 					 "mode, ret = %d", ret);
4418 		}
4419 	}
4420 
4421 	rte_spinlock_unlock(&hw->lock);
4422 
4423 	return ret;
4424 }
4425 
4426 static int
4427 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4428 {
4429 	bool allmulti = dev->data->all_multicast ? true : false;
4430 	struct hns3_adapter *hns = dev->data->dev_private;
4431 	struct hns3_hw *hw = &hns->hw;
4432 	uint64_t offloads;
4433 	int err;
4434 	int ret;
4435 
4436 	/* If now in all_multicast mode, must remain in all_multicast mode. */
4437 	rte_spinlock_lock(&hw->lock);
4438 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4439 	if (ret) {
4440 		rte_spinlock_unlock(&hw->lock);
4441 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4442 			 ret);
4443 		return ret;
4444 	}
4445 	/* when promiscuous mode was disabled, restore the vlan filter status */
4446 	offloads = dev->data->dev_conf.rxmode.offloads;
4447 	if (offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER) {
4448 		ret = hns3_enable_vlan_filter(hns, true);
4449 		if (ret) {
4450 			hns3_err(hw, "failed to disable promiscuous mode due to"
4451 				 " failure to restore vlan filter, ret = %d",
4452 				 ret);
4453 			err = hns3_set_promisc_mode(hw, true, true);
4454 			if (err)
4455 				hns3_err(hw, "failed to restore promiscuous "
4456 					 "status after enabling vlan filter "
4457 					 "failed during disabling promiscuous "
4458 					 "mode, ret = %d", ret);
4459 		}
4460 	}
4461 	rte_spinlock_unlock(&hw->lock);
4462 
4463 	return ret;
4464 }
4465 
4466 static int
4467 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4468 {
4469 	struct hns3_adapter *hns = dev->data->dev_private;
4470 	struct hns3_hw *hw = &hns->hw;
4471 	int ret;
4472 
4473 	if (dev->data->promiscuous)
4474 		return 0;
4475 
4476 	rte_spinlock_lock(&hw->lock);
4477 	ret = hns3_set_promisc_mode(hw, false, true);
4478 	rte_spinlock_unlock(&hw->lock);
4479 	if (ret)
4480 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4481 			 ret);
4482 
4483 	return ret;
4484 }
4485 
4486 static int
4487 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4488 {
4489 	struct hns3_adapter *hns = dev->data->dev_private;
4490 	struct hns3_hw *hw = &hns->hw;
4491 	int ret;
4492 
4493 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4494 	if (dev->data->promiscuous)
4495 		return 0;
4496 
4497 	rte_spinlock_lock(&hw->lock);
4498 	ret = hns3_set_promisc_mode(hw, false, false);
4499 	rte_spinlock_unlock(&hw->lock);
4500 	if (ret)
4501 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4502 			 ret);
4503 
4504 	return ret;
4505 }
4506 
4507 static int
4508 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4509 {
4510 	struct hns3_hw *hw = &hns->hw;
4511 	bool allmulti = hw->data->all_multicast ? true : false;
4512 	int ret;
4513 
4514 	if (hw->data->promiscuous) {
4515 		ret = hns3_set_promisc_mode(hw, true, true);
4516 		if (ret)
4517 			hns3_err(hw, "failed to restore promiscuous mode, "
4518 				 "ret = %d", ret);
4519 		return ret;
4520 	}
4521 
4522 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4523 	if (ret)
4524 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4525 			 ret);
4526 	return ret;
4527 }
4528 
4529 static int
4530 hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info)
4531 {
4532 	struct hns3_sfp_info_cmd *resp;
4533 	struct hns3_cmd_desc desc;
4534 	int ret;
4535 
4536 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
4537 	resp = (struct hns3_sfp_info_cmd *)desc.data;
4538 	resp->query_type = HNS3_ACTIVE_QUERY;
4539 
4540 	ret = hns3_cmd_send(hw, &desc, 1);
4541 	if (ret == -EOPNOTSUPP) {
4542 		hns3_warn(hw, "firmware does not support get SFP info,"
4543 			  " ret = %d.", ret);
4544 		return ret;
4545 	} else if (ret) {
4546 		hns3_err(hw, "get sfp info failed, ret = %d.", ret);
4547 		return ret;
4548 	}
4549 
4550 	/*
4551 	 * In some case, the speed of MAC obtained from firmware may be 0, it
4552 	 * shouldn't be set to mac->speed.
4553 	 */
4554 	if (!rte_le_to_cpu_32(resp->sfp_speed))
4555 		return 0;
4556 
4557 	mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed);
4558 	/*
4559 	 * if resp->supported_speed is 0, it means it's an old version
4560 	 * firmware, do not update these params.
4561 	 */
4562 	if (resp->supported_speed) {
4563 		mac_info->query_type = HNS3_ACTIVE_QUERY;
4564 		mac_info->supported_speed =
4565 					rte_le_to_cpu_32(resp->supported_speed);
4566 		mac_info->support_autoneg = resp->autoneg_ability;
4567 		mac_info->link_autoneg = (resp->autoneg == 0) ? RTE_ETH_LINK_FIXED
4568 					: RTE_ETH_LINK_AUTONEG;
4569 	} else {
4570 		mac_info->query_type = HNS3_DEFAULT_QUERY;
4571 	}
4572 
4573 	return 0;
4574 }
4575 
4576 static uint8_t
4577 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4578 {
4579 	if (!(speed == RTE_ETH_SPEED_NUM_10M || speed == RTE_ETH_SPEED_NUM_100M))
4580 		duplex = RTE_ETH_LINK_FULL_DUPLEX;
4581 
4582 	return duplex;
4583 }
4584 
4585 static int
4586 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4587 {
4588 	struct hns3_mac *mac = &hw->mac;
4589 	int ret;
4590 
4591 	duplex = hns3_check_speed_dup(duplex, speed);
4592 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4593 		return 0;
4594 
4595 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4596 	if (ret)
4597 		return ret;
4598 
4599 	ret = hns3_port_shaper_update(hw, speed);
4600 	if (ret)
4601 		return ret;
4602 
4603 	mac->link_speed = speed;
4604 	mac->link_duplex = duplex;
4605 
4606 	return 0;
4607 }
4608 
4609 static int
4610 hns3_update_fiber_link_info(struct hns3_hw *hw)
4611 {
4612 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4613 	struct hns3_mac *mac = &hw->mac;
4614 	struct hns3_mac mac_info;
4615 	int ret;
4616 
4617 	/* If firmware do not support get SFP/qSFP speed, return directly */
4618 	if (!pf->support_sfp_query)
4619 		return 0;
4620 
4621 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4622 	ret = hns3_get_sfp_info(hw, &mac_info);
4623 	if (ret == -EOPNOTSUPP) {
4624 		pf->support_sfp_query = false;
4625 		return ret;
4626 	} else if (ret)
4627 		return ret;
4628 
4629 	/* Do nothing if no SFP */
4630 	if (mac_info.link_speed == RTE_ETH_SPEED_NUM_NONE)
4631 		return 0;
4632 
4633 	/*
4634 	 * If query_type is HNS3_ACTIVE_QUERY, it is no need
4635 	 * to reconfigure the speed of MAC. Otherwise, it indicates
4636 	 * that the current firmware only supports to obtain the
4637 	 * speed of the SFP, and the speed of MAC needs to reconfigure.
4638 	 */
4639 	mac->query_type = mac_info.query_type;
4640 	if (mac->query_type == HNS3_ACTIVE_QUERY) {
4641 		if (mac_info.link_speed != mac->link_speed) {
4642 			ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4643 			if (ret)
4644 				return ret;
4645 		}
4646 
4647 		mac->link_speed = mac_info.link_speed;
4648 		mac->supported_speed = mac_info.supported_speed;
4649 		mac->support_autoneg = mac_info.support_autoneg;
4650 		mac->link_autoneg = mac_info.link_autoneg;
4651 
4652 		return 0;
4653 	}
4654 
4655 	/* Config full duplex for SFP */
4656 	return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed,
4657 				      RTE_ETH_LINK_FULL_DUPLEX);
4658 }
4659 
4660 static void
4661 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4662 {
4663 #define HNS3_PHY_SUPPORTED_SPEED_MASK   0x2f
4664 
4665 	struct hns3_phy_params_bd0_cmd *req;
4666 	uint32_t supported;
4667 
4668 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4669 	mac->link_speed = rte_le_to_cpu_32(req->speed);
4670 	mac->link_duplex = hns3_get_bit(req->duplex,
4671 					   HNS3_PHY_DUPLEX_CFG_B);
4672 	mac->link_autoneg = hns3_get_bit(req->autoneg,
4673 					   HNS3_PHY_AUTONEG_CFG_B);
4674 	mac->advertising = rte_le_to_cpu_32(req->advertising);
4675 	mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4676 	supported = rte_le_to_cpu_32(req->supported);
4677 	mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK;
4678 	mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4679 }
4680 
4681 static int
4682 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4683 {
4684 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4685 	uint16_t i;
4686 	int ret;
4687 
4688 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4689 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4690 					  true);
4691 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4692 	}
4693 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4694 
4695 	ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4696 	if (ret) {
4697 		hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4698 		return ret;
4699 	}
4700 
4701 	hns3_parse_copper_phy_params(desc, mac);
4702 
4703 	return 0;
4704 }
4705 
4706 static int
4707 hns3_update_copper_link_info(struct hns3_hw *hw)
4708 {
4709 	struct hns3_mac *mac = &hw->mac;
4710 	struct hns3_mac mac_info;
4711 	int ret;
4712 
4713 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4714 	ret = hns3_get_copper_phy_params(hw, &mac_info);
4715 	if (ret)
4716 		return ret;
4717 
4718 	if (mac_info.link_speed != mac->link_speed) {
4719 		ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4720 		if (ret)
4721 			return ret;
4722 	}
4723 
4724 	mac->link_speed = mac_info.link_speed;
4725 	mac->link_duplex = mac_info.link_duplex;
4726 	mac->link_autoneg = mac_info.link_autoneg;
4727 	mac->supported_speed = mac_info.supported_speed;
4728 	mac->advertising = mac_info.advertising;
4729 	mac->lp_advertising = mac_info.lp_advertising;
4730 	mac->support_autoneg = mac_info.support_autoneg;
4731 
4732 	return 0;
4733 }
4734 
4735 static int
4736 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4737 {
4738 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4739 	struct hns3_hw *hw = &hns->hw;
4740 	int ret = 0;
4741 
4742 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4743 		ret = hns3_update_copper_link_info(hw);
4744 	else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4745 		ret = hns3_update_fiber_link_info(hw);
4746 
4747 	return ret;
4748 }
4749 
4750 static int
4751 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4752 {
4753 	struct hns3_config_mac_mode_cmd *req;
4754 	struct hns3_cmd_desc desc;
4755 	uint32_t loop_en = 0;
4756 	uint8_t val = 0;
4757 	int ret;
4758 
4759 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4760 
4761 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4762 	if (enable)
4763 		val = 1;
4764 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4765 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4766 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4767 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4768 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4769 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4770 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4771 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4772 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4773 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4774 
4775 	/*
4776 	 * If RTE_ETH_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4777 	 * when receiving frames. Otherwise, CRC will be stripped.
4778 	 */
4779 	if (hw->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
4780 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4781 	else
4782 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4783 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4784 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4785 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4786 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4787 
4788 	ret = hns3_cmd_send(hw, &desc, 1);
4789 	if (ret)
4790 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4791 
4792 	return ret;
4793 }
4794 
4795 static int
4796 hns3_get_mac_link_status(struct hns3_hw *hw)
4797 {
4798 	struct hns3_link_status_cmd *req;
4799 	struct hns3_cmd_desc desc;
4800 	int link_status;
4801 	int ret;
4802 
4803 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4804 	ret = hns3_cmd_send(hw, &desc, 1);
4805 	if (ret) {
4806 		hns3_err(hw, "get link status cmd failed %d", ret);
4807 		return RTE_ETH_LINK_DOWN;
4808 	}
4809 
4810 	req = (struct hns3_link_status_cmd *)desc.data;
4811 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4812 
4813 	return !!link_status;
4814 }
4815 
4816 static bool
4817 hns3_update_link_status(struct hns3_hw *hw)
4818 {
4819 	int state;
4820 
4821 	state = hns3_get_mac_link_status(hw);
4822 	if (state != hw->mac.link_status) {
4823 		hw->mac.link_status = state;
4824 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4825 		return true;
4826 	}
4827 
4828 	return false;
4829 }
4830 
4831 void
4832 hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
4833 {
4834 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4835 	struct rte_eth_link new_link;
4836 	int ret;
4837 
4838 	if (query)
4839 		hns3_update_port_link_info(dev);
4840 
4841 	memset(&new_link, 0, sizeof(new_link));
4842 	hns3_setup_linkstatus(dev, &new_link);
4843 
4844 	ret = rte_eth_linkstatus_set(dev, &new_link);
4845 	if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
4846 		hns3_start_report_lse(dev);
4847 }
4848 
4849 static void
4850 hns3_service_handler(void *param)
4851 {
4852 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4853 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4854 	struct hns3_hw *hw = &hns->hw;
4855 
4856 	if (!hns3_is_reset_pending(hns))
4857 		hns3_update_linkstatus_and_event(hw, true);
4858 	else
4859 		hns3_warn(hw, "Cancel the query when reset is pending");
4860 
4861 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4862 }
4863 
4864 static int
4865 hns3_init_hardware(struct hns3_adapter *hns)
4866 {
4867 	struct hns3_hw *hw = &hns->hw;
4868 	int ret;
4869 
4870 	ret = hns3_map_tqp(hw);
4871 	if (ret) {
4872 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4873 		return ret;
4874 	}
4875 
4876 	ret = hns3_init_umv_space(hw);
4877 	if (ret) {
4878 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4879 		return ret;
4880 	}
4881 
4882 	ret = hns3_mac_init(hw);
4883 	if (ret) {
4884 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4885 		goto err_mac_init;
4886 	}
4887 
4888 	ret = hns3_init_mgr_tbl(hw);
4889 	if (ret) {
4890 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4891 		goto err_mac_init;
4892 	}
4893 
4894 	ret = hns3_promisc_init(hw);
4895 	if (ret) {
4896 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4897 			     ret);
4898 		goto err_mac_init;
4899 	}
4900 
4901 	ret = hns3_init_vlan_config(hns);
4902 	if (ret) {
4903 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4904 		goto err_mac_init;
4905 	}
4906 
4907 	ret = hns3_dcb_init(hw);
4908 	if (ret) {
4909 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4910 		goto err_mac_init;
4911 	}
4912 
4913 	ret = hns3_init_fd_config(hns);
4914 	if (ret) {
4915 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4916 		goto err_mac_init;
4917 	}
4918 
4919 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4920 	if (ret) {
4921 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4922 		goto err_mac_init;
4923 	}
4924 
4925 	ret = hns3_config_gro(hw, false);
4926 	if (ret) {
4927 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4928 		goto err_mac_init;
4929 	}
4930 
4931 	/*
4932 	 * In the initialization clearing the all hardware mapping relationship
4933 	 * configurations between queues and interrupt vectors is needed, so
4934 	 * some error caused by the residual configurations, such as the
4935 	 * unexpected interrupt, can be avoid.
4936 	 */
4937 	ret = hns3_init_ring_with_vector(hw);
4938 	if (ret) {
4939 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4940 		goto err_mac_init;
4941 	}
4942 
4943 	return 0;
4944 
4945 err_mac_init:
4946 	hns3_uninit_umv_space(hw);
4947 	return ret;
4948 }
4949 
4950 static int
4951 hns3_clear_hw(struct hns3_hw *hw)
4952 {
4953 	struct hns3_cmd_desc desc;
4954 	int ret;
4955 
4956 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4957 
4958 	ret = hns3_cmd_send(hw, &desc, 1);
4959 	if (ret && ret != -EOPNOTSUPP)
4960 		return ret;
4961 
4962 	return 0;
4963 }
4964 
4965 static void
4966 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4967 {
4968 	uint32_t val;
4969 
4970 	/*
4971 	 * The new firmware support report more hardware error types by
4972 	 * msix mode. These errors are defined as RAS errors in hardware
4973 	 * and belong to a different type from the MSI-x errors processed
4974 	 * by the network driver.
4975 	 *
4976 	 * Network driver should open the new error report on initialization.
4977 	 */
4978 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4979 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4980 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4981 }
4982 
4983 static uint32_t
4984 hns3_set_firber_default_support_speed(struct hns3_hw *hw)
4985 {
4986 	struct hns3_mac *mac = &hw->mac;
4987 
4988 	switch (mac->link_speed) {
4989 	case RTE_ETH_SPEED_NUM_1G:
4990 		return HNS3_FIBER_LINK_SPEED_1G_BIT;
4991 	case RTE_ETH_SPEED_NUM_10G:
4992 		return HNS3_FIBER_LINK_SPEED_10G_BIT;
4993 	case RTE_ETH_SPEED_NUM_25G:
4994 		return HNS3_FIBER_LINK_SPEED_25G_BIT;
4995 	case RTE_ETH_SPEED_NUM_40G:
4996 		return HNS3_FIBER_LINK_SPEED_40G_BIT;
4997 	case RTE_ETH_SPEED_NUM_50G:
4998 		return HNS3_FIBER_LINK_SPEED_50G_BIT;
4999 	case RTE_ETH_SPEED_NUM_100G:
5000 		return HNS3_FIBER_LINK_SPEED_100G_BIT;
5001 	case RTE_ETH_SPEED_NUM_200G:
5002 		return HNS3_FIBER_LINK_SPEED_200G_BIT;
5003 	default:
5004 		hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed);
5005 		return 0;
5006 	}
5007 }
5008 
5009 /*
5010  * Validity of supported_speed for firber and copper media type can be
5011  * guaranteed by the following policy:
5012  * Copper:
5013  *       Although the initialization of the phy in the firmware may not be
5014  *       completed, the firmware can guarantees that the supported_speed is
5015  *       an valid value.
5016  * Firber:
5017  *       If the version of firmware supports the acitive query way of the
5018  *       HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained
5019  *       through it. If unsupported, use the SFP's speed as the value of the
5020  *       supported_speed.
5021  */
5022 static int
5023 hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev)
5024 {
5025 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5026 	struct hns3_hw *hw = &hns->hw;
5027 	struct hns3_mac *mac = &hw->mac;
5028 	int ret;
5029 
5030 	ret = hns3_update_link_info(eth_dev);
5031 	if (ret)
5032 		return ret;
5033 
5034 	if (mac->media_type == HNS3_MEDIA_TYPE_FIBER) {
5035 		/*
5036 		 * Some firmware does not support the report of supported_speed,
5037 		 * and only report the effective speed of SFP. In this case, it
5038 		 * is necessary to use the SFP's speed as the supported_speed.
5039 		 */
5040 		if (mac->supported_speed == 0)
5041 			mac->supported_speed =
5042 				hns3_set_firber_default_support_speed(hw);
5043 	}
5044 
5045 	return 0;
5046 }
5047 
5048 static void
5049 hns3_get_fc_autoneg_capability(struct hns3_adapter *hns)
5050 {
5051 	struct hns3_mac *mac = &hns->hw.mac;
5052 
5053 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) {
5054 		hns->pf.support_fc_autoneg = true;
5055 		return;
5056 	}
5057 
5058 	/*
5059 	 * Flow control auto-negotiation requires the cooperation of the driver
5060 	 * and firmware. Currently, the optical port does not support flow
5061 	 * control auto-negotiation.
5062 	 */
5063 	hns->pf.support_fc_autoneg = false;
5064 }
5065 
5066 static int
5067 hns3_init_pf(struct rte_eth_dev *eth_dev)
5068 {
5069 	struct rte_device *dev = eth_dev->device;
5070 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5071 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5072 	struct hns3_hw *hw = &hns->hw;
5073 	int ret;
5074 
5075 	PMD_INIT_FUNC_TRACE();
5076 
5077 	/* Get hardware io base address from pcie BAR2 IO space */
5078 	hw->io_base = pci_dev->mem_resource[2].addr;
5079 
5080 	/* Firmware command queue initialize */
5081 	ret = hns3_cmd_init_queue(hw);
5082 	if (ret) {
5083 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
5084 		goto err_cmd_init_queue;
5085 	}
5086 
5087 	hns3_clear_all_event_cause(hw);
5088 
5089 	/* Firmware command initialize */
5090 	ret = hns3_cmd_init(hw);
5091 	if (ret) {
5092 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
5093 		goto err_cmd_init;
5094 	}
5095 
5096 	hns3_tx_push_init(eth_dev);
5097 
5098 	/*
5099 	 * To ensure that the hardware environment is clean during
5100 	 * initialization, the driver actively clear the hardware environment
5101 	 * during initialization, including PF and corresponding VFs' vlan, mac,
5102 	 * flow table configurations, etc.
5103 	 */
5104 	ret = hns3_clear_hw(hw);
5105 	if (ret) {
5106 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
5107 		goto err_cmd_init;
5108 	}
5109 
5110 	/* Hardware statistics of imissed registers cleared. */
5111 	ret = hns3_update_imissed_stats(hw, true);
5112 	if (ret) {
5113 		hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
5114 		goto err_cmd_init;
5115 	}
5116 
5117 	hns3_config_all_msix_error(hw, true);
5118 
5119 	ret = rte_intr_callback_register(pci_dev->intr_handle,
5120 					 hns3_interrupt_handler,
5121 					 eth_dev);
5122 	if (ret) {
5123 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
5124 		goto err_intr_callback_register;
5125 	}
5126 
5127 	ret = hns3_ptp_init(hw);
5128 	if (ret)
5129 		goto err_get_config;
5130 
5131 	/* Enable interrupt */
5132 	rte_intr_enable(pci_dev->intr_handle);
5133 	hns3_pf_enable_irq0(hw);
5134 
5135 	/* Get configuration */
5136 	ret = hns3_get_configuration(hw);
5137 	if (ret) {
5138 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
5139 		goto err_get_config;
5140 	}
5141 
5142 	ret = hns3_tqp_stats_init(hw);
5143 	if (ret)
5144 		goto err_get_config;
5145 
5146 	ret = hns3_init_hardware(hns);
5147 	if (ret) {
5148 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
5149 		goto err_init_hw;
5150 	}
5151 
5152 	/* Initialize flow director filter list & hash */
5153 	ret = hns3_fdir_filter_init(hns);
5154 	if (ret) {
5155 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
5156 		goto err_fdir;
5157 	}
5158 
5159 	hns3_rss_set_default_args(hw);
5160 
5161 	ret = hns3_enable_hw_error_intr(hns, true);
5162 	if (ret) {
5163 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
5164 			     ret);
5165 		goto err_enable_intr;
5166 	}
5167 
5168 	ret = hns3_get_port_supported_speed(eth_dev);
5169 	if (ret) {
5170 		PMD_INIT_LOG(ERR, "failed to get speed capabilities supported "
5171 			     "by device, ret = %d.", ret);
5172 		goto err_supported_speed;
5173 	}
5174 
5175 	hns3_get_fc_autoneg_capability(hns);
5176 
5177 	hns3_tm_conf_init(eth_dev);
5178 
5179 	return 0;
5180 
5181 err_supported_speed:
5182 	(void)hns3_enable_hw_error_intr(hns, false);
5183 err_enable_intr:
5184 	hns3_fdir_filter_uninit(hns);
5185 err_fdir:
5186 	hns3_uninit_umv_space(hw);
5187 err_init_hw:
5188 	hns3_tqp_stats_uninit(hw);
5189 err_get_config:
5190 	hns3_pf_disable_irq0(hw);
5191 	rte_intr_disable(pci_dev->intr_handle);
5192 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
5193 			     eth_dev);
5194 err_intr_callback_register:
5195 err_cmd_init:
5196 	hns3_cmd_uninit(hw);
5197 	hns3_cmd_destroy_queue(hw);
5198 err_cmd_init_queue:
5199 	hw->io_base = NULL;
5200 
5201 	return ret;
5202 }
5203 
5204 static void
5205 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
5206 {
5207 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5208 	struct rte_device *dev = eth_dev->device;
5209 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5210 	struct hns3_hw *hw = &hns->hw;
5211 
5212 	PMD_INIT_FUNC_TRACE();
5213 
5214 	hns3_tm_conf_uninit(eth_dev);
5215 	hns3_enable_hw_error_intr(hns, false);
5216 	hns3_rss_uninit(hns);
5217 	(void)hns3_config_gro(hw, false);
5218 	hns3_promisc_uninit(hw);
5219 	hns3_flow_uninit(eth_dev);
5220 	hns3_fdir_filter_uninit(hns);
5221 	hns3_uninit_umv_space(hw);
5222 	hns3_tqp_stats_uninit(hw);
5223 	hns3_config_mac_tnl_int(hw, false);
5224 	hns3_pf_disable_irq0(hw);
5225 	rte_intr_disable(pci_dev->intr_handle);
5226 	hns3_intr_unregister(pci_dev->intr_handle, hns3_interrupt_handler,
5227 			     eth_dev);
5228 	hns3_config_all_msix_error(hw, false);
5229 	hns3_cmd_uninit(hw);
5230 	hns3_cmd_destroy_queue(hw);
5231 	hw->io_base = NULL;
5232 }
5233 
5234 static uint32_t
5235 hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds)
5236 {
5237 	uint32_t speed_bit;
5238 
5239 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
5240 	case RTE_ETH_LINK_SPEED_10M:
5241 		speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT;
5242 		break;
5243 	case RTE_ETH_LINK_SPEED_10M_HD:
5244 		speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT;
5245 		break;
5246 	case RTE_ETH_LINK_SPEED_100M:
5247 		speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT;
5248 		break;
5249 	case RTE_ETH_LINK_SPEED_100M_HD:
5250 		speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT;
5251 		break;
5252 	case RTE_ETH_LINK_SPEED_1G:
5253 		speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT;
5254 		break;
5255 	default:
5256 		speed_bit = 0;
5257 		break;
5258 	}
5259 
5260 	return speed_bit;
5261 }
5262 
5263 static uint32_t
5264 hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds)
5265 {
5266 	uint32_t speed_bit;
5267 
5268 	switch (link_speeds & ~RTE_ETH_LINK_SPEED_FIXED) {
5269 	case RTE_ETH_LINK_SPEED_1G:
5270 		speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT;
5271 		break;
5272 	case RTE_ETH_LINK_SPEED_10G:
5273 		speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT;
5274 		break;
5275 	case RTE_ETH_LINK_SPEED_25G:
5276 		speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT;
5277 		break;
5278 	case RTE_ETH_LINK_SPEED_40G:
5279 		speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT;
5280 		break;
5281 	case RTE_ETH_LINK_SPEED_50G:
5282 		speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT;
5283 		break;
5284 	case RTE_ETH_LINK_SPEED_100G:
5285 		speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT;
5286 		break;
5287 	case RTE_ETH_LINK_SPEED_200G:
5288 		speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT;
5289 		break;
5290 	default:
5291 		speed_bit = 0;
5292 		break;
5293 	}
5294 
5295 	return speed_bit;
5296 }
5297 
5298 static int
5299 hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds)
5300 {
5301 	struct hns3_mac *mac = &hw->mac;
5302 	uint32_t supported_speed = mac->supported_speed;
5303 	uint32_t speed_bit = 0;
5304 
5305 	if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
5306 		speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds);
5307 	else if (mac->media_type == HNS3_MEDIA_TYPE_FIBER)
5308 		speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds);
5309 
5310 	if (!(speed_bit & supported_speed)) {
5311 		hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.",
5312 			 link_speeds);
5313 		return -EINVAL;
5314 	}
5315 
5316 	return 0;
5317 }
5318 
5319 static inline uint32_t
5320 hns3_get_link_speed(uint32_t link_speeds)
5321 {
5322 	uint32_t speed = RTE_ETH_SPEED_NUM_NONE;
5323 
5324 	if (link_speeds & RTE_ETH_LINK_SPEED_10M ||
5325 	    link_speeds & RTE_ETH_LINK_SPEED_10M_HD)
5326 		speed = RTE_ETH_SPEED_NUM_10M;
5327 	if (link_speeds & RTE_ETH_LINK_SPEED_100M ||
5328 	    link_speeds & RTE_ETH_LINK_SPEED_100M_HD)
5329 		speed = RTE_ETH_SPEED_NUM_100M;
5330 	if (link_speeds & RTE_ETH_LINK_SPEED_1G)
5331 		speed = RTE_ETH_SPEED_NUM_1G;
5332 	if (link_speeds & RTE_ETH_LINK_SPEED_10G)
5333 		speed = RTE_ETH_SPEED_NUM_10G;
5334 	if (link_speeds & RTE_ETH_LINK_SPEED_25G)
5335 		speed = RTE_ETH_SPEED_NUM_25G;
5336 	if (link_speeds & RTE_ETH_LINK_SPEED_40G)
5337 		speed = RTE_ETH_SPEED_NUM_40G;
5338 	if (link_speeds & RTE_ETH_LINK_SPEED_50G)
5339 		speed = RTE_ETH_SPEED_NUM_50G;
5340 	if (link_speeds & RTE_ETH_LINK_SPEED_100G)
5341 		speed = RTE_ETH_SPEED_NUM_100G;
5342 	if (link_speeds & RTE_ETH_LINK_SPEED_200G)
5343 		speed = RTE_ETH_SPEED_NUM_200G;
5344 
5345 	return speed;
5346 }
5347 
5348 static uint8_t
5349 hns3_get_link_duplex(uint32_t link_speeds)
5350 {
5351 	if ((link_speeds & RTE_ETH_LINK_SPEED_10M_HD) ||
5352 	    (link_speeds & RTE_ETH_LINK_SPEED_100M_HD))
5353 		return RTE_ETH_LINK_HALF_DUPLEX;
5354 	else
5355 		return RTE_ETH_LINK_FULL_DUPLEX;
5356 }
5357 
5358 static int
5359 hns3_set_copper_port_link_speed(struct hns3_hw *hw,
5360 				struct hns3_set_link_speed_cfg *cfg)
5361 {
5362 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
5363 	struct hns3_phy_params_bd0_cmd *req;
5364 	uint16_t i;
5365 
5366 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
5367 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
5368 					  false);
5369 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
5370 	}
5371 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false);
5372 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
5373 	req->autoneg = cfg->autoneg;
5374 
5375 	/*
5376 	 * The full speed capability is used to negotiate when
5377 	 * auto-negotiation is enabled.
5378 	 */
5379 	if (cfg->autoneg) {
5380 		req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT |
5381 				    HNS3_PHY_LINK_SPEED_10M_HD_BIT |
5382 				    HNS3_PHY_LINK_SPEED_100M_BIT |
5383 				    HNS3_PHY_LINK_SPEED_100M_HD_BIT |
5384 				    HNS3_PHY_LINK_SPEED_1000M_BIT;
5385 	} else {
5386 		req->speed = cfg->speed;
5387 		req->duplex = cfg->duplex;
5388 	}
5389 
5390 	return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
5391 }
5392 
5393 static int
5394 hns3_set_autoneg(struct hns3_hw *hw, bool enable)
5395 {
5396 	struct hns3_config_auto_neg_cmd *req;
5397 	struct hns3_cmd_desc desc;
5398 	uint32_t flag = 0;
5399 	int ret;
5400 
5401 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false);
5402 
5403 	req = (struct hns3_config_auto_neg_cmd *)desc.data;
5404 	if (enable)
5405 		hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1);
5406 	req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag);
5407 
5408 	ret = hns3_cmd_send(hw, &desc, 1);
5409 	if (ret)
5410 		hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret);
5411 
5412 	return ret;
5413 }
5414 
5415 static int
5416 hns3_set_fiber_port_link_speed(struct hns3_hw *hw,
5417 			       struct hns3_set_link_speed_cfg *cfg)
5418 {
5419 	int ret;
5420 
5421 	if (hw->mac.support_autoneg) {
5422 		ret = hns3_set_autoneg(hw, cfg->autoneg);
5423 		if (ret) {
5424 			hns3_err(hw, "failed to configure auto-negotiation.");
5425 			return ret;
5426 		}
5427 
5428 		/*
5429 		 * To enable auto-negotiation, we only need to open the switch
5430 		 * of auto-negotiation, then firmware sets all speed
5431 		 * capabilities.
5432 		 */
5433 		if (cfg->autoneg)
5434 			return 0;
5435 	}
5436 
5437 	/*
5438 	 * Some hardware doesn't support auto-negotiation, but users may not
5439 	 * configure link_speeds (default 0), which means auto-negotiation.
5440 	 * In this case, a warning message need to be printed, instead of
5441 	 * an error.
5442 	 */
5443 	if (cfg->autoneg) {
5444 		hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!");
5445 		return 0;
5446 	}
5447 
5448 	return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex);
5449 }
5450 
5451 static int
5452 hns3_set_port_link_speed(struct hns3_hw *hw,
5453 			 struct hns3_set_link_speed_cfg *cfg)
5454 {
5455 	int ret;
5456 
5457 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER) {
5458 #if defined(RTE_HNS3_ONLY_1630_FPGA)
5459 		struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5460 		if (pf->is_tmp_phy)
5461 			return 0;
5462 #endif
5463 
5464 		ret = hns3_set_copper_port_link_speed(hw, cfg);
5465 		if (ret) {
5466 			hns3_err(hw, "failed to set copper port link speed,"
5467 				 "ret = %d.", ret);
5468 			return ret;
5469 		}
5470 	} else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER) {
5471 		ret = hns3_set_fiber_port_link_speed(hw, cfg);
5472 		if (ret) {
5473 			hns3_err(hw, "failed to set fiber port link speed,"
5474 				 "ret = %d.", ret);
5475 			return ret;
5476 		}
5477 	}
5478 
5479 	return 0;
5480 }
5481 
5482 static int
5483 hns3_apply_link_speed(struct hns3_hw *hw)
5484 {
5485 	struct rte_eth_conf *conf = &hw->data->dev_conf;
5486 	struct hns3_set_link_speed_cfg cfg;
5487 
5488 	memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg));
5489 	cfg.autoneg = (conf->link_speeds == RTE_ETH_LINK_SPEED_AUTONEG) ?
5490 			RTE_ETH_LINK_AUTONEG : RTE_ETH_LINK_FIXED;
5491 	if (cfg.autoneg != RTE_ETH_LINK_AUTONEG) {
5492 		cfg.speed = hns3_get_link_speed(conf->link_speeds);
5493 		cfg.duplex = hns3_get_link_duplex(conf->link_speeds);
5494 	}
5495 
5496 	return hns3_set_port_link_speed(hw, &cfg);
5497 }
5498 
5499 static int
5500 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5501 {
5502 	struct hns3_hw *hw = &hns->hw;
5503 	bool link_en;
5504 	int ret;
5505 
5506 	ret = hns3_update_queue_map_configure(hns);
5507 	if (ret) {
5508 		hns3_err(hw, "failed to update queue mapping configuration, ret = %d",
5509 			 ret);
5510 		return ret;
5511 	}
5512 
5513 	/* Note: hns3_tm_conf_update must be called after configuring DCB. */
5514 	ret = hns3_tm_conf_update(hw);
5515 	if (ret) {
5516 		PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5517 		return ret;
5518 	}
5519 
5520 	hns3_enable_rxd_adv_layout(hw);
5521 
5522 	ret = hns3_init_queues(hns, reset_queue);
5523 	if (ret) {
5524 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5525 		return ret;
5526 	}
5527 
5528 	link_en = hw->set_link_down ? false : true;
5529 	ret = hns3_cfg_mac_mode(hw, link_en);
5530 	if (ret) {
5531 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5532 		goto err_config_mac_mode;
5533 	}
5534 
5535 	ret = hns3_apply_link_speed(hw);
5536 	if (ret)
5537 		goto err_set_link_speed;
5538 
5539 	return 0;
5540 
5541 err_set_link_speed:
5542 	(void)hns3_cfg_mac_mode(hw, false);
5543 
5544 err_config_mac_mode:
5545 	hns3_dev_release_mbufs(hns);
5546 	/*
5547 	 * Here is exception handling, hns3_reset_all_tqps will have the
5548 	 * corresponding error message if it is handled incorrectly, so it is
5549 	 * not necessary to check hns3_reset_all_tqps return value, here keep
5550 	 * ret as the error code causing the exception.
5551 	 */
5552 	(void)hns3_reset_all_tqps(hns);
5553 	return ret;
5554 }
5555 
5556 static int
5557 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5558 {
5559 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5560 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
5561 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5562 	uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5563 	uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5564 	uint32_t intr_vector;
5565 	uint16_t q_id;
5566 	int ret;
5567 
5568 	/*
5569 	 * hns3 needs a separate interrupt to be used as event interrupt which
5570 	 * could not be shared with task queue pair, so KERNEL drivers need
5571 	 * support multiple interrupt vectors.
5572 	 */
5573 	if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5574 	    !rte_intr_cap_multiple(intr_handle))
5575 		return 0;
5576 
5577 	rte_intr_disable(intr_handle);
5578 	intr_vector = hw->used_rx_queues;
5579 	/* creates event fd for each intr vector when MSIX is used */
5580 	if (rte_intr_efd_enable(intr_handle, intr_vector))
5581 		return -EINVAL;
5582 
5583 	/* Allocate vector list */
5584 	if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
5585 				    hw->used_rx_queues)) {
5586 		hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5587 			 hw->used_rx_queues);
5588 		ret = -ENOMEM;
5589 		goto alloc_intr_vec_error;
5590 	}
5591 
5592 	if (rte_intr_allow_others(intr_handle)) {
5593 		vec = RTE_INTR_VEC_RXTX_OFFSET;
5594 		base = RTE_INTR_VEC_RXTX_OFFSET;
5595 	}
5596 
5597 	for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5598 		ret = hns3_bind_ring_with_vector(hw, vec, true,
5599 						 HNS3_RING_TYPE_RX, q_id);
5600 		if (ret)
5601 			goto bind_vector_error;
5602 
5603 		if (rte_intr_vec_list_index_set(intr_handle, q_id, vec))
5604 			goto bind_vector_error;
5605 		/*
5606 		 * If there are not enough efds (e.g. not enough interrupt),
5607 		 * remaining queues will be bond to the last interrupt.
5608 		 */
5609 		if (vec < base + rte_intr_nb_efd_get(intr_handle) - 1)
5610 			vec++;
5611 	}
5612 	rte_intr_enable(intr_handle);
5613 	return 0;
5614 
5615 bind_vector_error:
5616 	rte_intr_vec_list_free(intr_handle);
5617 alloc_intr_vec_error:
5618 	rte_intr_efd_disable(intr_handle);
5619 	return ret;
5620 }
5621 
5622 static int
5623 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5624 {
5625 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5626 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5627 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
5628 	uint16_t q_id;
5629 	int ret;
5630 
5631 	if (dev->data->dev_conf.intr_conf.rxq == 0)
5632 		return 0;
5633 
5634 	if (rte_intr_dp_is_en(intr_handle)) {
5635 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5636 			ret = hns3_bind_ring_with_vector(hw,
5637 				rte_intr_vec_list_index_get(intr_handle,
5638 								   q_id),
5639 				true, HNS3_RING_TYPE_RX, q_id);
5640 			if (ret)
5641 				return ret;
5642 		}
5643 	}
5644 
5645 	return 0;
5646 }
5647 
5648 static void
5649 hns3_restore_filter(struct rte_eth_dev *dev)
5650 {
5651 	hns3_restore_rss_filter(dev);
5652 }
5653 
5654 static int
5655 hns3_dev_start(struct rte_eth_dev *dev)
5656 {
5657 	struct hns3_adapter *hns = dev->data->dev_private;
5658 	struct hns3_hw *hw = &hns->hw;
5659 	bool old_state = hw->set_link_down;
5660 	int ret;
5661 
5662 	PMD_INIT_FUNC_TRACE();
5663 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5664 		return -EBUSY;
5665 
5666 	rte_spinlock_lock(&hw->lock);
5667 	hw->adapter_state = HNS3_NIC_STARTING;
5668 
5669 	/*
5670 	 * If the dev_set_link_down() API has been called, the "set_link_down"
5671 	 * flag can be cleared by dev_start() API. In addition, the flag should
5672 	 * also be cleared before calling hns3_do_start() so that MAC can be
5673 	 * enabled in dev_start stage.
5674 	 */
5675 	hw->set_link_down = false;
5676 	ret = hns3_do_start(hns, true);
5677 	if (ret)
5678 		goto do_start_fail;
5679 
5680 	ret = hns3_map_rx_interrupt(dev);
5681 	if (ret)
5682 		goto map_rx_inter_err;
5683 
5684 	/*
5685 	 * There are three register used to control the status of a TQP
5686 	 * (contains a pair of Tx queue and Rx queue) in the new version network
5687 	 * engine. One is used to control the enabling of Tx queue, the other is
5688 	 * used to control the enabling of Rx queue, and the last is the master
5689 	 * switch used to control the enabling of the tqp. The Tx register and
5690 	 * TQP register must be enabled at the same time to enable a Tx queue.
5691 	 * The same applies to the Rx queue. For the older network engine, this
5692 	 * function only refresh the enabled flag, and it is used to update the
5693 	 * status of queue in the dpdk framework.
5694 	 */
5695 	ret = hns3_start_all_txqs(dev);
5696 	if (ret)
5697 		goto map_rx_inter_err;
5698 
5699 	ret = hns3_start_all_rxqs(dev);
5700 	if (ret)
5701 		goto start_all_rxqs_fail;
5702 
5703 	hw->adapter_state = HNS3_NIC_STARTED;
5704 	rte_spinlock_unlock(&hw->lock);
5705 
5706 	hns3_rx_scattered_calc(dev);
5707 	hns3_set_rxtx_function(dev);
5708 	hns3_mp_req_start_rxtx(dev);
5709 
5710 	hns3_restore_filter(dev);
5711 
5712 	/* Enable interrupt of all rx queues before enabling queues */
5713 	hns3_dev_all_rx_queue_intr_enable(hw, true);
5714 
5715 	/*
5716 	 * After finished the initialization, enable tqps to receive/transmit
5717 	 * packets and refresh all queue status.
5718 	 */
5719 	hns3_start_tqps(hw);
5720 
5721 	hns3_tm_dev_start_proc(hw);
5722 
5723 	if (dev->data->dev_conf.intr_conf.lsc != 0)
5724 		hns3_dev_link_update(dev, 0);
5725 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5726 
5727 	hns3_info(hw, "hns3 dev start successful!");
5728 
5729 	return 0;
5730 
5731 start_all_rxqs_fail:
5732 	hns3_stop_all_txqs(dev);
5733 map_rx_inter_err:
5734 	(void)hns3_do_stop(hns);
5735 do_start_fail:
5736 	hw->set_link_down = old_state;
5737 	hw->adapter_state = HNS3_NIC_CONFIGURED;
5738 	rte_spinlock_unlock(&hw->lock);
5739 
5740 	return ret;
5741 }
5742 
5743 static int
5744 hns3_do_stop(struct hns3_adapter *hns)
5745 {
5746 	struct hns3_hw *hw = &hns->hw;
5747 	int ret;
5748 
5749 	/*
5750 	 * The "hns3_do_stop" function will also be called by .stop_service to
5751 	 * prepare reset. At the time of global or IMP reset, the command cannot
5752 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5753 	 * accessed during the reset process. So the mbuf can not be released
5754 	 * during reset and is required to be released after the reset is
5755 	 * completed.
5756 	 */
5757 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5758 		hns3_dev_release_mbufs(hns);
5759 
5760 	ret = hns3_cfg_mac_mode(hw, false);
5761 	if (ret)
5762 		return ret;
5763 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
5764 
5765 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5766 		hns3_configure_all_mac_addr(hns, true);
5767 		ret = hns3_reset_all_tqps(hns);
5768 		if (ret) {
5769 			hns3_err(hw, "failed to reset all queues ret = %d.",
5770 				 ret);
5771 			return ret;
5772 		}
5773 	}
5774 
5775 	return 0;
5776 }
5777 
5778 static void
5779 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5780 {
5781 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5782 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
5783 	struct hns3_adapter *hns = dev->data->dev_private;
5784 	struct hns3_hw *hw = &hns->hw;
5785 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5786 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5787 	uint16_t q_id;
5788 
5789 	if (dev->data->dev_conf.intr_conf.rxq == 0)
5790 		return;
5791 
5792 	/* unmap the ring with vector */
5793 	if (rte_intr_allow_others(intr_handle)) {
5794 		vec = RTE_INTR_VEC_RXTX_OFFSET;
5795 		base = RTE_INTR_VEC_RXTX_OFFSET;
5796 	}
5797 	if (rte_intr_dp_is_en(intr_handle)) {
5798 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5799 			(void)hns3_bind_ring_with_vector(hw, vec, false,
5800 							 HNS3_RING_TYPE_RX,
5801 							 q_id);
5802 			if (vec < base + rte_intr_nb_efd_get(intr_handle)
5803 									- 1)
5804 				vec++;
5805 		}
5806 	}
5807 	/* Clean datapath event and queue/vec mapping */
5808 	rte_intr_efd_disable(intr_handle);
5809 	rte_intr_vec_list_free(intr_handle);
5810 }
5811 
5812 static int
5813 hns3_dev_stop(struct rte_eth_dev *dev)
5814 {
5815 	struct hns3_adapter *hns = dev->data->dev_private;
5816 	struct hns3_hw *hw = &hns->hw;
5817 
5818 	PMD_INIT_FUNC_TRACE();
5819 	dev->data->dev_started = 0;
5820 
5821 	hw->adapter_state = HNS3_NIC_STOPPING;
5822 	hns3_set_rxtx_function(dev);
5823 	rte_wmb();
5824 	/* Disable datapath on secondary process. */
5825 	hns3_mp_req_stop_rxtx(dev);
5826 	/* Prevent crashes when queues are still in use. */
5827 	rte_delay_ms(hw->cfg_max_queues);
5828 
5829 	rte_spinlock_lock(&hw->lock);
5830 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5831 		hns3_tm_dev_stop_proc(hw);
5832 		hns3_config_mac_tnl_int(hw, false);
5833 		hns3_stop_tqps(hw);
5834 		hns3_do_stop(hns);
5835 		hns3_unmap_rx_interrupt(dev);
5836 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5837 	}
5838 	hns3_rx_scattered_reset(dev);
5839 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5840 	hns3_stop_report_lse(dev);
5841 	rte_spinlock_unlock(&hw->lock);
5842 
5843 	return 0;
5844 }
5845 
5846 static int
5847 hns3_dev_close(struct rte_eth_dev *eth_dev)
5848 {
5849 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5850 	struct hns3_hw *hw = &hns->hw;
5851 	int ret = 0;
5852 
5853 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5854 		hns3_mp_uninit(eth_dev);
5855 		return 0;
5856 	}
5857 
5858 	if (hw->adapter_state == HNS3_NIC_STARTED)
5859 		ret = hns3_dev_stop(eth_dev);
5860 
5861 	hw->adapter_state = HNS3_NIC_CLOSING;
5862 	hns3_reset_abort(hns);
5863 	hw->adapter_state = HNS3_NIC_CLOSED;
5864 
5865 	hns3_configure_all_mc_mac_addr(hns, true);
5866 	hns3_remove_all_vlan_table(hns);
5867 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5868 	hns3_uninit_pf(eth_dev);
5869 	hns3_free_all_queues(eth_dev);
5870 	rte_free(hw->reset.wait_data);
5871 	hns3_mp_uninit(eth_dev);
5872 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5873 
5874 	return ret;
5875 }
5876 
5877 static void
5878 hns3_get_autoneg_rxtx_pause_copper(struct hns3_hw *hw, bool *rx_pause,
5879 				   bool *tx_pause)
5880 {
5881 	struct hns3_mac *mac = &hw->mac;
5882 	uint32_t advertising = mac->advertising;
5883 	uint32_t lp_advertising = mac->lp_advertising;
5884 	*rx_pause = false;
5885 	*tx_pause = false;
5886 
5887 	if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) {
5888 		*rx_pause = true;
5889 		*tx_pause = true;
5890 	} else if (advertising & lp_advertising &
5891 		   HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) {
5892 		if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5893 			*rx_pause = true;
5894 		else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5895 			*tx_pause = true;
5896 	}
5897 }
5898 
5899 static enum hns3_fc_mode
5900 hns3_get_autoneg_fc_mode(struct hns3_hw *hw)
5901 {
5902 	enum hns3_fc_mode current_mode;
5903 	bool rx_pause = false;
5904 	bool tx_pause = false;
5905 
5906 	switch (hw->mac.media_type) {
5907 	case HNS3_MEDIA_TYPE_COPPER:
5908 		hns3_get_autoneg_rxtx_pause_copper(hw, &rx_pause, &tx_pause);
5909 		break;
5910 
5911 	/*
5912 	 * Flow control auto-negotiation is not supported for fiber and
5913 	 * backpalne media type.
5914 	 */
5915 	case HNS3_MEDIA_TYPE_FIBER:
5916 	case HNS3_MEDIA_TYPE_BACKPLANE:
5917 		hns3_err(hw, "autoneg FC mode can't be obtained, but flow control auto-negotiation is enabled.");
5918 		current_mode = hw->requested_fc_mode;
5919 		goto out;
5920 	default:
5921 		hns3_err(hw, "autoneg FC mode can't be obtained for unknown media type(%u).",
5922 			 hw->mac.media_type);
5923 		current_mode = HNS3_FC_NONE;
5924 		goto out;
5925 	}
5926 
5927 	if (rx_pause && tx_pause)
5928 		current_mode = HNS3_FC_FULL;
5929 	else if (rx_pause)
5930 		current_mode = HNS3_FC_RX_PAUSE;
5931 	else if (tx_pause)
5932 		current_mode = HNS3_FC_TX_PAUSE;
5933 	else
5934 		current_mode = HNS3_FC_NONE;
5935 
5936 out:
5937 	return current_mode;
5938 }
5939 
5940 static enum hns3_fc_mode
5941 hns3_get_current_fc_mode(struct rte_eth_dev *dev)
5942 {
5943 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5944 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5945 	struct hns3_mac *mac = &hw->mac;
5946 
5947 	/*
5948 	 * When the flow control mode is obtained, the device may not complete
5949 	 * auto-negotiation. It is necessary to wait for link establishment.
5950 	 */
5951 	(void)hns3_dev_link_update(dev, 1);
5952 
5953 	/*
5954 	 * If the link auto-negotiation of the nic is disabled, or the flow
5955 	 * control auto-negotiation is not supported, the forced flow control
5956 	 * mode is used.
5957 	 */
5958 	if (mac->link_autoneg == 0 || !pf->support_fc_autoneg)
5959 		return hw->requested_fc_mode;
5960 
5961 	return hns3_get_autoneg_fc_mode(hw);
5962 }
5963 
5964 static int
5965 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5966 {
5967 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5968 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5969 	enum hns3_fc_mode current_mode;
5970 
5971 	current_mode = hns3_get_current_fc_mode(dev);
5972 	switch (current_mode) {
5973 	case HNS3_FC_FULL:
5974 		fc_conf->mode = RTE_ETH_FC_FULL;
5975 		break;
5976 	case HNS3_FC_TX_PAUSE:
5977 		fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
5978 		break;
5979 	case HNS3_FC_RX_PAUSE:
5980 		fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
5981 		break;
5982 	case HNS3_FC_NONE:
5983 	default:
5984 		fc_conf->mode = RTE_ETH_FC_NONE;
5985 		break;
5986 	}
5987 
5988 	fc_conf->pause_time = pf->pause_time;
5989 	fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0;
5990 
5991 	return 0;
5992 }
5993 
5994 static int
5995 hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg)
5996 {
5997 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5998 
5999 	if (!pf->support_fc_autoneg) {
6000 		if (autoneg != 0) {
6001 			hns3_err(hw, "unsupported fc auto-negotiation setting.");
6002 			return -EOPNOTSUPP;
6003 		}
6004 
6005 		/*
6006 		 * Flow control auto-negotiation of the NIC is not supported,
6007 		 * but other auto-negotiation features may be supported.
6008 		 */
6009 		if (autoneg != hw->mac.link_autoneg) {
6010 			hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to disable autoneg!");
6011 			return -EOPNOTSUPP;
6012 		}
6013 
6014 		return 0;
6015 	}
6016 
6017 	/*
6018 	 * If flow control auto-negotiation of the NIC is supported, all
6019 	 * auto-negotiation features are supported.
6020 	 */
6021 	if (autoneg != hw->mac.link_autoneg) {
6022 		hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!");
6023 		return -EOPNOTSUPP;
6024 	}
6025 
6026 	return 0;
6027 }
6028 
6029 static int
6030 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
6031 {
6032 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6033 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6034 	int ret;
6035 
6036 	if (fc_conf->high_water || fc_conf->low_water ||
6037 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
6038 		hns3_err(hw, "Unsupported flow control settings specified, "
6039 			 "high_water(%u), low_water(%u), send_xon(%u) and "
6040 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
6041 			 fc_conf->high_water, fc_conf->low_water,
6042 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
6043 		return -EINVAL;
6044 	}
6045 
6046 	ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg);
6047 	if (ret)
6048 		return ret;
6049 
6050 	if (!fc_conf->pause_time) {
6051 		hns3_err(hw, "Invalid pause time %u setting.",
6052 			 fc_conf->pause_time);
6053 		return -EINVAL;
6054 	}
6055 
6056 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
6057 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
6058 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
6059 			 "current_fc_status = %d", hw->current_fc_status);
6060 		return -EOPNOTSUPP;
6061 	}
6062 
6063 	if (hw->num_tc > 1 && !pf->support_multi_tc_pause) {
6064 		hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
6065 		return -EOPNOTSUPP;
6066 	}
6067 
6068 	rte_spinlock_lock(&hw->lock);
6069 	ret = hns3_fc_enable(dev, fc_conf);
6070 	rte_spinlock_unlock(&hw->lock);
6071 
6072 	return ret;
6073 }
6074 
6075 static int
6076 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
6077 			    struct rte_eth_pfc_conf *pfc_conf)
6078 {
6079 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6080 	int ret;
6081 
6082 	if (!hns3_dev_get_support(hw, DCB)) {
6083 		hns3_err(hw, "This port does not support dcb configurations.");
6084 		return -EOPNOTSUPP;
6085 	}
6086 
6087 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
6088 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
6089 		hns3_err(hw, "Unsupported flow control settings specified, "
6090 			 "high_water(%u), low_water(%u), send_xon(%u) and "
6091 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
6092 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
6093 			 pfc_conf->fc.send_xon,
6094 			 pfc_conf->fc.mac_ctrl_frame_fwd);
6095 		return -EINVAL;
6096 	}
6097 	if (pfc_conf->fc.autoneg) {
6098 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
6099 		return -EINVAL;
6100 	}
6101 	if (pfc_conf->fc.pause_time == 0) {
6102 		hns3_err(hw, "Invalid pause time %u setting.",
6103 			 pfc_conf->fc.pause_time);
6104 		return -EINVAL;
6105 	}
6106 
6107 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
6108 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
6109 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
6110 			     "current_fc_status = %d", hw->current_fc_status);
6111 		return -EOPNOTSUPP;
6112 	}
6113 
6114 	rte_spinlock_lock(&hw->lock);
6115 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
6116 	rte_spinlock_unlock(&hw->lock);
6117 
6118 	return ret;
6119 }
6120 
6121 static int
6122 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
6123 {
6124 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6125 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6126 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
6127 	int i;
6128 
6129 	rte_spinlock_lock(&hw->lock);
6130 	if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_DCB_FLAG)
6131 		dcb_info->nb_tcs = pf->local_max_tc;
6132 	else
6133 		dcb_info->nb_tcs = 1;
6134 
6135 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
6136 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
6137 	for (i = 0; i < dcb_info->nb_tcs; i++)
6138 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
6139 
6140 	for (i = 0; i < hw->num_tc; i++) {
6141 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
6142 		dcb_info->tc_queue.tc_txq[0][i].base =
6143 						hw->tc_queue[i].tqp_offset;
6144 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
6145 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
6146 						hw->tc_queue[i].tqp_count;
6147 	}
6148 	rte_spinlock_unlock(&hw->lock);
6149 
6150 	return 0;
6151 }
6152 
6153 static int
6154 hns3_reinit_dev(struct hns3_adapter *hns)
6155 {
6156 	struct hns3_hw *hw = &hns->hw;
6157 	int ret;
6158 
6159 	ret = hns3_cmd_init(hw);
6160 	if (ret) {
6161 		hns3_err(hw, "Failed to init cmd: %d", ret);
6162 		return ret;
6163 	}
6164 
6165 	ret = hns3_reset_all_tqps(hns);
6166 	if (ret) {
6167 		hns3_err(hw, "Failed to reset all queues: %d", ret);
6168 		return ret;
6169 	}
6170 
6171 	ret = hns3_init_hardware(hns);
6172 	if (ret) {
6173 		hns3_err(hw, "Failed to init hardware: %d", ret);
6174 		return ret;
6175 	}
6176 
6177 	ret = hns3_enable_hw_error_intr(hns, true);
6178 	if (ret) {
6179 		hns3_err(hw, "fail to enable hw error interrupts: %d",
6180 			     ret);
6181 		return ret;
6182 	}
6183 	hns3_info(hw, "Reset done, driver initialization finished.");
6184 
6185 	return 0;
6186 }
6187 
6188 static bool
6189 is_pf_reset_done(struct hns3_hw *hw)
6190 {
6191 	uint32_t val, reg, reg_bit;
6192 
6193 	switch (hw->reset.level) {
6194 	case HNS3_IMP_RESET:
6195 		reg = HNS3_GLOBAL_RESET_REG;
6196 		reg_bit = HNS3_IMP_RESET_BIT;
6197 		break;
6198 	case HNS3_GLOBAL_RESET:
6199 		reg = HNS3_GLOBAL_RESET_REG;
6200 		reg_bit = HNS3_GLOBAL_RESET_BIT;
6201 		break;
6202 	case HNS3_FUNC_RESET:
6203 		reg = HNS3_FUN_RST_ING;
6204 		reg_bit = HNS3_FUN_RST_ING_B;
6205 		break;
6206 	case HNS3_FLR_RESET:
6207 	default:
6208 		hns3_err(hw, "Wait for unsupported reset level: %d",
6209 			 hw->reset.level);
6210 		return true;
6211 	}
6212 	val = hns3_read_dev(hw, reg);
6213 	if (hns3_get_bit(val, reg_bit))
6214 		return false;
6215 	else
6216 		return true;
6217 }
6218 
6219 bool
6220 hns3_is_reset_pending(struct hns3_adapter *hns)
6221 {
6222 	struct hns3_hw *hw = &hns->hw;
6223 	enum hns3_reset_level reset;
6224 
6225 	hns3_check_event_cause(hns, NULL);
6226 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
6227 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
6228 	    hw->reset.level < reset) {
6229 		hns3_warn(hw, "High level reset %d is pending", reset);
6230 		return true;
6231 	}
6232 	reset = hns3_get_reset_level(hns, &hw->reset.request);
6233 	if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
6234 	    hw->reset.level < reset) {
6235 		hns3_warn(hw, "High level reset %d is request", reset);
6236 		return true;
6237 	}
6238 	return false;
6239 }
6240 
6241 static int
6242 hns3_wait_hardware_ready(struct hns3_adapter *hns)
6243 {
6244 	struct hns3_hw *hw = &hns->hw;
6245 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
6246 	struct timeval tv;
6247 
6248 	if (wait_data->result == HNS3_WAIT_SUCCESS)
6249 		return 0;
6250 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
6251 		hns3_clock_gettime(&tv);
6252 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
6253 			  tv.tv_sec, tv.tv_usec);
6254 		return -ETIME;
6255 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
6256 		return -EAGAIN;
6257 
6258 	wait_data->hns = hns;
6259 	wait_data->check_completion = is_pf_reset_done;
6260 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
6261 				HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms();
6262 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
6263 	wait_data->count = HNS3_RESET_WAIT_CNT;
6264 	wait_data->result = HNS3_WAIT_REQUEST;
6265 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
6266 	return -EAGAIN;
6267 }
6268 
6269 static int
6270 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
6271 {
6272 	struct hns3_cmd_desc desc;
6273 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
6274 
6275 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
6276 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
6277 	req->fun_reset_vfid = func_id;
6278 
6279 	return hns3_cmd_send(hw, &desc, 1);
6280 }
6281 
6282 static int
6283 hns3_imp_reset_cmd(struct hns3_hw *hw)
6284 {
6285 	struct hns3_cmd_desc desc;
6286 
6287 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
6288 	desc.data[0] = 0xeedd;
6289 
6290 	return hns3_cmd_send(hw, &desc, 1);
6291 }
6292 
6293 static void
6294 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
6295 {
6296 	struct hns3_hw *hw = &hns->hw;
6297 	struct timeval tv;
6298 	uint32_t val;
6299 
6300 	hns3_clock_gettime(&tv);
6301 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
6302 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
6303 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
6304 			  tv.tv_sec, tv.tv_usec);
6305 		return;
6306 	}
6307 
6308 	switch (reset_level) {
6309 	case HNS3_IMP_RESET:
6310 		hns3_imp_reset_cmd(hw);
6311 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
6312 			  tv.tv_sec, tv.tv_usec);
6313 		break;
6314 	case HNS3_GLOBAL_RESET:
6315 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
6316 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
6317 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
6318 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
6319 			  tv.tv_sec, tv.tv_usec);
6320 		break;
6321 	case HNS3_FUNC_RESET:
6322 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
6323 			  tv.tv_sec, tv.tv_usec);
6324 		/* schedule again to check later */
6325 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
6326 		hns3_schedule_reset(hns);
6327 		break;
6328 	default:
6329 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
6330 		return;
6331 	}
6332 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
6333 }
6334 
6335 static enum hns3_reset_level
6336 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
6337 {
6338 	struct hns3_hw *hw = &hns->hw;
6339 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
6340 
6341 	/* Return the highest priority reset level amongst all */
6342 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
6343 		reset_level = HNS3_IMP_RESET;
6344 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
6345 		reset_level = HNS3_GLOBAL_RESET;
6346 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
6347 		reset_level = HNS3_FUNC_RESET;
6348 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
6349 		reset_level = HNS3_FLR_RESET;
6350 
6351 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
6352 		return HNS3_NONE_RESET;
6353 
6354 	return reset_level;
6355 }
6356 
6357 static void
6358 hns3_record_imp_error(struct hns3_adapter *hns)
6359 {
6360 	struct hns3_hw *hw = &hns->hw;
6361 	uint32_t reg_val;
6362 
6363 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
6364 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
6365 		hns3_warn(hw, "Detected IMP RD poison!");
6366 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
6367 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
6368 	}
6369 
6370 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
6371 		hns3_warn(hw, "Detected IMP CMDQ error!");
6372 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
6373 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
6374 	}
6375 }
6376 
6377 static int
6378 hns3_prepare_reset(struct hns3_adapter *hns)
6379 {
6380 	struct hns3_hw *hw = &hns->hw;
6381 	uint32_t reg_val;
6382 	int ret;
6383 
6384 	switch (hw->reset.level) {
6385 	case HNS3_FUNC_RESET:
6386 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
6387 		if (ret)
6388 			return ret;
6389 
6390 		/*
6391 		 * After performaning pf reset, it is not necessary to do the
6392 		 * mailbox handling or send any command to firmware, because
6393 		 * any mailbox handling or command to firmware is only valid
6394 		 * after hns3_cmd_init is called.
6395 		 */
6396 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
6397 		hw->reset.stats.request_cnt++;
6398 		break;
6399 	case HNS3_IMP_RESET:
6400 		hns3_record_imp_error(hns);
6401 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
6402 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
6403 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
6404 		break;
6405 	default:
6406 		break;
6407 	}
6408 	return 0;
6409 }
6410 
6411 static int
6412 hns3_set_rst_done(struct hns3_hw *hw)
6413 {
6414 	struct hns3_pf_rst_done_cmd *req;
6415 	struct hns3_cmd_desc desc;
6416 
6417 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
6418 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
6419 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
6420 	return hns3_cmd_send(hw, &desc, 1);
6421 }
6422 
6423 static int
6424 hns3_stop_service(struct hns3_adapter *hns)
6425 {
6426 	struct hns3_hw *hw = &hns->hw;
6427 	struct rte_eth_dev *eth_dev;
6428 
6429 	eth_dev = &rte_eth_devices[hw->data->port_id];
6430 	hw->mac.link_status = RTE_ETH_LINK_DOWN;
6431 	if (hw->adapter_state == HNS3_NIC_STARTED) {
6432 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
6433 		hns3_update_linkstatus_and_event(hw, false);
6434 	}
6435 
6436 	hns3_set_rxtx_function(eth_dev);
6437 	rte_wmb();
6438 	/* Disable datapath on secondary process. */
6439 	hns3_mp_req_stop_rxtx(eth_dev);
6440 	rte_delay_ms(hw->cfg_max_queues);
6441 
6442 	rte_spinlock_lock(&hw->lock);
6443 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
6444 	    hw->adapter_state == HNS3_NIC_STOPPING) {
6445 		hns3_enable_all_queues(hw, false);
6446 		hns3_do_stop(hns);
6447 		hw->reset.mbuf_deferred_free = true;
6448 	} else
6449 		hw->reset.mbuf_deferred_free = false;
6450 
6451 	/*
6452 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
6453 	 * from table space. Hence, for function reset software intervention is
6454 	 * required to delete the entries
6455 	 */
6456 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
6457 		hns3_configure_all_mc_mac_addr(hns, true);
6458 	rte_spinlock_unlock(&hw->lock);
6459 
6460 	return 0;
6461 }
6462 
6463 static int
6464 hns3_start_service(struct hns3_adapter *hns)
6465 {
6466 	struct hns3_hw *hw = &hns->hw;
6467 	struct rte_eth_dev *eth_dev;
6468 
6469 	if (hw->reset.level == HNS3_IMP_RESET ||
6470 	    hw->reset.level == HNS3_GLOBAL_RESET)
6471 		hns3_set_rst_done(hw);
6472 	eth_dev = &rte_eth_devices[hw->data->port_id];
6473 	hns3_set_rxtx_function(eth_dev);
6474 	hns3_mp_req_start_rxtx(eth_dev);
6475 	if (hw->adapter_state == HNS3_NIC_STARTED) {
6476 		/*
6477 		 * This API parent function already hold the hns3_hw.lock, the
6478 		 * hns3_service_handler may report lse, in bonding application
6479 		 * it will call driver's ops which may acquire the hns3_hw.lock
6480 		 * again, thus lead to deadlock.
6481 		 * We defer calls hns3_service_handler to avoid the deadlock.
6482 		 */
6483 		rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
6484 				  hns3_service_handler, eth_dev);
6485 
6486 		/* Enable interrupt of all rx queues before enabling queues */
6487 		hns3_dev_all_rx_queue_intr_enable(hw, true);
6488 		/*
6489 		 * Enable state of each rxq and txq will be recovered after
6490 		 * reset, so we need to restore them before enable all tqps;
6491 		 */
6492 		hns3_restore_tqp_enable_state(hw);
6493 		/*
6494 		 * When finished the initialization, enable queues to receive
6495 		 * and transmit packets.
6496 		 */
6497 		hns3_enable_all_queues(hw, true);
6498 	}
6499 
6500 	return 0;
6501 }
6502 
6503 static int
6504 hns3_restore_conf(struct hns3_adapter *hns)
6505 {
6506 	struct hns3_hw *hw = &hns->hw;
6507 	int ret;
6508 
6509 	ret = hns3_configure_all_mac_addr(hns, false);
6510 	if (ret)
6511 		return ret;
6512 
6513 	ret = hns3_configure_all_mc_mac_addr(hns, false);
6514 	if (ret)
6515 		goto err_mc_mac;
6516 
6517 	ret = hns3_dev_promisc_restore(hns);
6518 	if (ret)
6519 		goto err_promisc;
6520 
6521 	ret = hns3_restore_vlan_table(hns);
6522 	if (ret)
6523 		goto err_promisc;
6524 
6525 	ret = hns3_restore_vlan_conf(hns);
6526 	if (ret)
6527 		goto err_promisc;
6528 
6529 	ret = hns3_restore_all_fdir_filter(hns);
6530 	if (ret)
6531 		goto err_promisc;
6532 
6533 	ret = hns3_restore_ptp(hns);
6534 	if (ret)
6535 		goto err_promisc;
6536 
6537 	ret = hns3_restore_rx_interrupt(hw);
6538 	if (ret)
6539 		goto err_promisc;
6540 
6541 	ret = hns3_restore_gro_conf(hw);
6542 	if (ret)
6543 		goto err_promisc;
6544 
6545 	ret = hns3_restore_fec(hw);
6546 	if (ret)
6547 		goto err_promisc;
6548 
6549 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
6550 		ret = hns3_do_start(hns, false);
6551 		if (ret)
6552 			goto err_promisc;
6553 		hns3_info(hw, "hns3 dev restart successful!");
6554 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
6555 		hw->adapter_state = HNS3_NIC_CONFIGURED;
6556 	return 0;
6557 
6558 err_promisc:
6559 	hns3_configure_all_mc_mac_addr(hns, true);
6560 err_mc_mac:
6561 	hns3_configure_all_mac_addr(hns, true);
6562 	return ret;
6563 }
6564 
6565 static void
6566 hns3_reset_service(void *param)
6567 {
6568 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
6569 	struct hns3_hw *hw = &hns->hw;
6570 	enum hns3_reset_level reset_level;
6571 	struct timeval tv_delta;
6572 	struct timeval tv_start;
6573 	struct timeval tv;
6574 	uint64_t msec;
6575 	int ret;
6576 
6577 	/*
6578 	 * The interrupt is not triggered within the delay time.
6579 	 * The interrupt may have been lost. It is necessary to handle
6580 	 * the interrupt to recover from the error.
6581 	 */
6582 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6583 			    SCHEDULE_DEFERRED) {
6584 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
6585 				  __ATOMIC_RELAXED);
6586 		hns3_err(hw, "Handling interrupts in delayed tasks");
6587 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
6588 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6589 		if (reset_level == HNS3_NONE_RESET) {
6590 			hns3_err(hw, "No reset level is set, try IMP reset");
6591 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
6592 		}
6593 	}
6594 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
6595 
6596 	/*
6597 	 * Check if there is any ongoing reset in the hardware. This status can
6598 	 * be checked from reset_pending. If there is then, we need to wait for
6599 	 * hardware to complete reset.
6600 	 *    a. If we are able to figure out in reasonable time that hardware
6601 	 *       has fully resetted then, we can proceed with driver, client
6602 	 *       reset.
6603 	 *    b. else, we can come back later to check this status so re-sched
6604 	 *       now.
6605 	 */
6606 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6607 	if (reset_level != HNS3_NONE_RESET) {
6608 		hns3_clock_gettime(&tv_start);
6609 		ret = hns3_reset_process(hns, reset_level);
6610 		hns3_clock_gettime(&tv);
6611 		timersub(&tv, &tv_start, &tv_delta);
6612 		msec = hns3_clock_calctime_ms(&tv_delta);
6613 		if (msec > HNS3_RESET_PROCESS_MS)
6614 			hns3_err(hw, "%d handle long time delta %" PRIu64
6615 				     " ms time=%ld.%.6ld",
6616 				 hw->reset.level, msec,
6617 				 tv.tv_sec, tv.tv_usec);
6618 		if (ret == -EAGAIN)
6619 			return;
6620 	}
6621 
6622 	/* Check if we got any *new* reset requests to be honored */
6623 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6624 	if (reset_level != HNS3_NONE_RESET)
6625 		hns3_msix_process(hns, reset_level);
6626 }
6627 
6628 static unsigned int
6629 hns3_get_speed_capa_num(uint16_t device_id)
6630 {
6631 	unsigned int num;
6632 
6633 	switch (device_id) {
6634 	case HNS3_DEV_ID_25GE:
6635 	case HNS3_DEV_ID_25GE_RDMA:
6636 		num = 2;
6637 		break;
6638 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6639 	case HNS3_DEV_ID_200G_RDMA:
6640 		num = 1;
6641 		break;
6642 	default:
6643 		num = 0;
6644 		break;
6645 	}
6646 
6647 	return num;
6648 }
6649 
6650 static int
6651 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6652 			uint16_t device_id)
6653 {
6654 	switch (device_id) {
6655 	case HNS3_DEV_ID_25GE:
6656 	/* fallthrough */
6657 	case HNS3_DEV_ID_25GE_RDMA:
6658 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6659 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6660 
6661 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
6662 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6663 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6664 		break;
6665 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6666 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6667 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6668 		break;
6669 	case HNS3_DEV_ID_200G_RDMA:
6670 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6671 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6672 		break;
6673 	default:
6674 		return -ENOTSUP;
6675 	}
6676 
6677 	return 0;
6678 }
6679 
6680 static int
6681 hns3_fec_get_capability(struct rte_eth_dev *dev,
6682 			struct rte_eth_fec_capa *speed_fec_capa,
6683 			unsigned int num)
6684 {
6685 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6686 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6687 	uint16_t device_id = pci_dev->id.device_id;
6688 	unsigned int capa_num;
6689 	int ret;
6690 
6691 	capa_num = hns3_get_speed_capa_num(device_id);
6692 	if (capa_num == 0) {
6693 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6694 			 device_id);
6695 		return -ENOTSUP;
6696 	}
6697 
6698 	if (speed_fec_capa == NULL || num < capa_num)
6699 		return capa_num;
6700 
6701 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6702 	if (ret)
6703 		return -ENOTSUP;
6704 
6705 	return capa_num;
6706 }
6707 
6708 static int
6709 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6710 {
6711 	struct hns3_config_fec_cmd *req;
6712 	struct hns3_cmd_desc desc;
6713 	int ret;
6714 
6715 	/*
6716 	 * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6717 	 * in device of link speed
6718 	 * below 10 Gbps.
6719 	 */
6720 	if (hw->mac.link_speed < RTE_ETH_SPEED_NUM_10G) {
6721 		*state = 0;
6722 		return 0;
6723 	}
6724 
6725 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6726 	req = (struct hns3_config_fec_cmd *)desc.data;
6727 	ret = hns3_cmd_send(hw, &desc, 1);
6728 	if (ret) {
6729 		hns3_err(hw, "get current fec auto state failed, ret = %d",
6730 			 ret);
6731 		return ret;
6732 	}
6733 
6734 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6735 	return 0;
6736 }
6737 
6738 static int
6739 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6740 {
6741 	struct hns3_sfp_info_cmd *resp;
6742 	uint32_t tmp_fec_capa;
6743 	uint8_t auto_state;
6744 	struct hns3_cmd_desc desc;
6745 	int ret;
6746 
6747 	/*
6748 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6749 	 * configured FEC mode is returned.
6750 	 * If link is up, current FEC mode is returned.
6751 	 */
6752 	if (hw->mac.link_status == RTE_ETH_LINK_DOWN) {
6753 		ret = get_current_fec_auto_state(hw, &auto_state);
6754 		if (ret)
6755 			return ret;
6756 
6757 		if (auto_state == 0x1) {
6758 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6759 			return 0;
6760 		}
6761 	}
6762 
6763 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
6764 	resp = (struct hns3_sfp_info_cmd *)desc.data;
6765 	resp->query_type = HNS3_ACTIVE_QUERY;
6766 
6767 	ret = hns3_cmd_send(hw, &desc, 1);
6768 	if (ret == -EOPNOTSUPP) {
6769 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6770 		return ret;
6771 	} else if (ret) {
6772 		hns3_err(hw, "get FEC failed, ret = %d", ret);
6773 		return ret;
6774 	}
6775 
6776 	/*
6777 	 * FEC mode order defined in hns3 hardware is inconsistend with
6778 	 * that defined in the ethdev library. So the sequence needs
6779 	 * to be converted.
6780 	 */
6781 	switch (resp->active_fec) {
6782 	case HNS3_HW_FEC_MODE_NOFEC:
6783 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6784 		break;
6785 	case HNS3_HW_FEC_MODE_BASER:
6786 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6787 		break;
6788 	case HNS3_HW_FEC_MODE_RS:
6789 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6790 		break;
6791 	default:
6792 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6793 		break;
6794 	}
6795 
6796 	*fec_capa = tmp_fec_capa;
6797 	return 0;
6798 }
6799 
6800 static int
6801 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6802 {
6803 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6804 
6805 	return hns3_fec_get_internal(hw, fec_capa);
6806 }
6807 
6808 static int
6809 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6810 {
6811 	struct hns3_config_fec_cmd *req;
6812 	struct hns3_cmd_desc desc;
6813 	int ret;
6814 
6815 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6816 
6817 	req = (struct hns3_config_fec_cmd *)desc.data;
6818 	switch (mode) {
6819 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6820 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6821 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6822 		break;
6823 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6824 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6825 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6826 		break;
6827 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6828 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6829 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6830 		break;
6831 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6832 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6833 		break;
6834 	default:
6835 		return 0;
6836 	}
6837 	ret = hns3_cmd_send(hw, &desc, 1);
6838 	if (ret)
6839 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
6840 
6841 	return ret;
6842 }
6843 
6844 static uint32_t
6845 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6846 {
6847 	struct hns3_mac *mac = &hw->mac;
6848 	uint32_t cur_capa;
6849 
6850 	switch (mac->link_speed) {
6851 	case RTE_ETH_SPEED_NUM_10G:
6852 		cur_capa = fec_capa[1].capa;
6853 		break;
6854 	case RTE_ETH_SPEED_NUM_25G:
6855 	case RTE_ETH_SPEED_NUM_100G:
6856 	case RTE_ETH_SPEED_NUM_200G:
6857 		cur_capa = fec_capa[0].capa;
6858 		break;
6859 	default:
6860 		cur_capa = 0;
6861 		break;
6862 	}
6863 
6864 	return cur_capa;
6865 }
6866 
6867 static bool
6868 is_fec_mode_one_bit_set(uint32_t mode)
6869 {
6870 	int cnt = 0;
6871 	uint8_t i;
6872 
6873 	for (i = 0; i < sizeof(mode); i++)
6874 		if (mode >> i & 0x1)
6875 			cnt++;
6876 
6877 	return cnt == 1 ? true : false;
6878 }
6879 
6880 static int
6881 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6882 {
6883 #define FEC_CAPA_NUM 2
6884 	struct hns3_adapter *hns = dev->data->dev_private;
6885 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6886 	struct hns3_pf *pf = &hns->pf;
6887 
6888 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6889 	uint32_t cur_capa;
6890 	uint32_t num = FEC_CAPA_NUM;
6891 	int ret;
6892 
6893 	ret = hns3_fec_get_capability(dev, fec_capa, num);
6894 	if (ret < 0)
6895 		return ret;
6896 
6897 	/* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
6898 	if (!is_fec_mode_one_bit_set(mode)) {
6899 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD, "
6900 			     "FEC mode should be only one bit set", mode);
6901 		return -EINVAL;
6902 	}
6903 
6904 	/*
6905 	 * Check whether the configured mode is within the FEC capability.
6906 	 * If not, the configured mode will not be supported.
6907 	 */
6908 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6909 	if (!(cur_capa & mode)) {
6910 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6911 		return -EINVAL;
6912 	}
6913 
6914 	rte_spinlock_lock(&hw->lock);
6915 	ret = hns3_set_fec_hw(hw, mode);
6916 	if (ret) {
6917 		rte_spinlock_unlock(&hw->lock);
6918 		return ret;
6919 	}
6920 
6921 	pf->fec_mode = mode;
6922 	rte_spinlock_unlock(&hw->lock);
6923 
6924 	return 0;
6925 }
6926 
6927 static int
6928 hns3_restore_fec(struct hns3_hw *hw)
6929 {
6930 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6931 	struct hns3_pf *pf = &hns->pf;
6932 	uint32_t mode = pf->fec_mode;
6933 	int ret;
6934 
6935 	ret = hns3_set_fec_hw(hw, mode);
6936 	if (ret)
6937 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6938 			 mode, ret);
6939 
6940 	return ret;
6941 }
6942 
6943 static int
6944 hns3_query_dev_fec_info(struct hns3_hw *hw)
6945 {
6946 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6947 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6948 	int ret;
6949 
6950 	ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6951 	if (ret)
6952 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6953 
6954 	return ret;
6955 }
6956 
6957 static bool
6958 hns3_optical_module_existed(struct hns3_hw *hw)
6959 {
6960 	struct hns3_cmd_desc desc;
6961 	bool existed;
6962 	int ret;
6963 
6964 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6965 	ret = hns3_cmd_send(hw, &desc, 1);
6966 	if (ret) {
6967 		hns3_err(hw,
6968 			 "fail to get optical module exist state, ret = %d.\n",
6969 			 ret);
6970 		return false;
6971 	}
6972 	existed = !!desc.data[0];
6973 
6974 	return existed;
6975 }
6976 
6977 static int
6978 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6979 				uint32_t len, uint8_t *data)
6980 {
6981 #define HNS3_SFP_INFO_CMD_NUM 6
6982 #define HNS3_SFP_INFO_MAX_LEN \
6983 	(HNS3_SFP_INFO_BD0_LEN + \
6984 	(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6985 	struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6986 	struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6987 	uint16_t read_len;
6988 	uint16_t copy_len;
6989 	int ret;
6990 	int i;
6991 
6992 	for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6993 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6994 					  true);
6995 		if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6996 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6997 	}
6998 
6999 	sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
7000 	sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
7001 	read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
7002 	sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
7003 
7004 	ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
7005 	if (ret) {
7006 		hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
7007 				ret);
7008 		return ret;
7009 	}
7010 
7011 	/* The data format in BD0 is different with the others. */
7012 	copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
7013 	memcpy(data, sfp_info_bd0->data, copy_len);
7014 	read_len = copy_len;
7015 
7016 	for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
7017 		if (read_len >= len)
7018 			break;
7019 
7020 		copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
7021 		memcpy(data + read_len, desc[i].data, copy_len);
7022 		read_len += copy_len;
7023 	}
7024 
7025 	return (int)read_len;
7026 }
7027 
7028 static int
7029 hns3_get_module_eeprom(struct rte_eth_dev *dev,
7030 		       struct rte_dev_eeprom_info *info)
7031 {
7032 	struct hns3_adapter *hns = dev->data->dev_private;
7033 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
7034 	uint32_t offset = info->offset;
7035 	uint32_t len = info->length;
7036 	uint8_t *data = info->data;
7037 	uint32_t read_len = 0;
7038 
7039 	if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
7040 		return -ENOTSUP;
7041 
7042 	if (!hns3_optical_module_existed(hw)) {
7043 		hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
7044 		return -EIO;
7045 	}
7046 
7047 	while (read_len < len) {
7048 		int ret;
7049 		ret = hns3_get_module_eeprom_data(hw, offset + read_len,
7050 						  len - read_len,
7051 						  data + read_len);
7052 		if (ret < 0)
7053 			return -EIO;
7054 		read_len += ret;
7055 	}
7056 
7057 	return 0;
7058 }
7059 
7060 static int
7061 hns3_get_module_info(struct rte_eth_dev *dev,
7062 		     struct rte_eth_dev_module_info *modinfo)
7063 {
7064 #define HNS3_SFF8024_ID_SFP		0x03
7065 #define HNS3_SFF8024_ID_QSFP_8438	0x0c
7066 #define HNS3_SFF8024_ID_QSFP_8436_8636	0x0d
7067 #define HNS3_SFF8024_ID_QSFP28_8636	0x11
7068 #define HNS3_SFF_8636_V1_3		0x03
7069 	struct hns3_adapter *hns = dev->data->dev_private;
7070 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
7071 	struct rte_dev_eeprom_info info;
7072 	struct hns3_sfp_type sfp_type;
7073 	int ret;
7074 
7075 	memset(&sfp_type, 0, sizeof(sfp_type));
7076 	memset(&info, 0, sizeof(info));
7077 	info.data = (uint8_t *)&sfp_type;
7078 	info.length = sizeof(sfp_type);
7079 	ret = hns3_get_module_eeprom(dev, &info);
7080 	if (ret)
7081 		return ret;
7082 
7083 	switch (sfp_type.type) {
7084 	case HNS3_SFF8024_ID_SFP:
7085 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
7086 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
7087 		break;
7088 	case HNS3_SFF8024_ID_QSFP_8438:
7089 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
7090 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
7091 		break;
7092 	case HNS3_SFF8024_ID_QSFP_8436_8636:
7093 		if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
7094 			modinfo->type = RTE_ETH_MODULE_SFF_8436;
7095 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
7096 		} else {
7097 			modinfo->type = RTE_ETH_MODULE_SFF_8636;
7098 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
7099 		}
7100 		break;
7101 	case HNS3_SFF8024_ID_QSFP28_8636:
7102 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
7103 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
7104 		break;
7105 	default:
7106 		hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
7107 			 sfp_type.type, sfp_type.ext_type);
7108 		return -EINVAL;
7109 	}
7110 
7111 	return 0;
7112 }
7113 
7114 void
7115 hns3_clock_gettime(struct timeval *tv)
7116 {
7117 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
7118 #define CLOCK_TYPE CLOCK_MONOTONIC_RAW
7119 #else
7120 #define CLOCK_TYPE CLOCK_MONOTONIC
7121 #endif
7122 #define NSEC_TO_USEC_DIV 1000
7123 
7124 	struct timespec spec;
7125 	(void)clock_gettime(CLOCK_TYPE, &spec);
7126 
7127 	tv->tv_sec = spec.tv_sec;
7128 	tv->tv_usec = spec.tv_nsec / NSEC_TO_USEC_DIV;
7129 }
7130 
7131 uint64_t
7132 hns3_clock_calctime_ms(struct timeval *tv)
7133 {
7134 	return (uint64_t)tv->tv_sec * MSEC_PER_SEC +
7135 		tv->tv_usec / USEC_PER_MSEC;
7136 }
7137 
7138 uint64_t
7139 hns3_clock_gettime_ms(void)
7140 {
7141 	struct timeval tv;
7142 
7143 	hns3_clock_gettime(&tv);
7144 	return hns3_clock_calctime_ms(&tv);
7145 }
7146 
7147 static int
7148 hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
7149 {
7150 	uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
7151 
7152 	RTE_SET_USED(key);
7153 
7154 	if (strcmp(value, "vec") == 0)
7155 		hint = HNS3_IO_FUNC_HINT_VEC;
7156 	else if (strcmp(value, "sve") == 0)
7157 		hint = HNS3_IO_FUNC_HINT_SVE;
7158 	else if (strcmp(value, "simple") == 0)
7159 		hint = HNS3_IO_FUNC_HINT_SIMPLE;
7160 	else if (strcmp(value, "common") == 0)
7161 		hint = HNS3_IO_FUNC_HINT_COMMON;
7162 
7163 	/* If the hint is valid then update output parameters */
7164 	if (hint != HNS3_IO_FUNC_HINT_NONE)
7165 		*(uint32_t *)extra_args = hint;
7166 
7167 	return 0;
7168 }
7169 
7170 static const char *
7171 hns3_get_io_hint_func_name(uint32_t hint)
7172 {
7173 	switch (hint) {
7174 	case HNS3_IO_FUNC_HINT_VEC:
7175 		return "vec";
7176 	case HNS3_IO_FUNC_HINT_SVE:
7177 		return "sve";
7178 	case HNS3_IO_FUNC_HINT_SIMPLE:
7179 		return "simple";
7180 	case HNS3_IO_FUNC_HINT_COMMON:
7181 		return "common";
7182 	default:
7183 		return "none";
7184 	}
7185 }
7186 
7187 static int
7188 hns3_parse_dev_caps_mask(const char *key, const char *value, void *extra_args)
7189 {
7190 	uint64_t val;
7191 
7192 	RTE_SET_USED(key);
7193 
7194 	val = strtoull(value, NULL, 16);
7195 	*(uint64_t *)extra_args = val;
7196 
7197 	return 0;
7198 }
7199 
7200 static int
7201 hns3_parse_mbx_time_limit(const char *key, const char *value, void *extra_args)
7202 {
7203 	uint32_t val;
7204 
7205 	RTE_SET_USED(key);
7206 
7207 	val = strtoul(value, NULL, 10);
7208 
7209 	/*
7210 	 * 500ms is empirical value in process of mailbox communication. If
7211 	 * the delay value is set to one lower thanthe empirical value, mailbox
7212 	 * communication may fail.
7213 	 */
7214 	if (val > HNS3_MBX_DEF_TIME_LIMIT_MS && val <= UINT16_MAX)
7215 		*(uint16_t *)extra_args = val;
7216 
7217 	return 0;
7218 }
7219 
7220 void
7221 hns3_parse_devargs(struct rte_eth_dev *dev)
7222 {
7223 	uint16_t mbx_time_limit_ms = HNS3_MBX_DEF_TIME_LIMIT_MS;
7224 	struct hns3_adapter *hns = dev->data->dev_private;
7225 	uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
7226 	uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
7227 	struct hns3_hw *hw = &hns->hw;
7228 	uint64_t dev_caps_mask = 0;
7229 	struct rte_kvargs *kvlist;
7230 
7231 	if (dev->device->devargs == NULL)
7232 		return;
7233 
7234 	kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
7235 	if (!kvlist)
7236 		return;
7237 
7238 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
7239 			   &hns3_parse_io_hint_func, &rx_func_hint);
7240 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
7241 			   &hns3_parse_io_hint_func, &tx_func_hint);
7242 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_DEV_CAPS_MASK,
7243 			   &hns3_parse_dev_caps_mask, &dev_caps_mask);
7244 	(void)rte_kvargs_process(kvlist, HNS3_DEVARG_MBX_TIME_LIMIT_MS,
7245 			   &hns3_parse_mbx_time_limit, &mbx_time_limit_ms);
7246 
7247 	rte_kvargs_free(kvlist);
7248 
7249 	if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
7250 		hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
7251 			  hns3_get_io_hint_func_name(rx_func_hint));
7252 	hns->rx_func_hint = rx_func_hint;
7253 	if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
7254 		hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
7255 			  hns3_get_io_hint_func_name(tx_func_hint));
7256 	hns->tx_func_hint = tx_func_hint;
7257 
7258 	if (dev_caps_mask != 0)
7259 		hns3_warn(hw, "parsed %s = 0x%" PRIx64 ".",
7260 			  HNS3_DEVARG_DEV_CAPS_MASK, dev_caps_mask);
7261 	hns->dev_caps_mask = dev_caps_mask;
7262 
7263 	if (mbx_time_limit_ms != HNS3_MBX_DEF_TIME_LIMIT_MS)
7264 		hns3_warn(hw, "parsed %s = %u.", HNS3_DEVARG_MBX_TIME_LIMIT_MS,
7265 				mbx_time_limit_ms);
7266 	hns->mbx_time_limit_ms = mbx_time_limit_ms;
7267 }
7268 
7269 static const struct eth_dev_ops hns3_eth_dev_ops = {
7270 	.dev_configure      = hns3_dev_configure,
7271 	.dev_start          = hns3_dev_start,
7272 	.dev_stop           = hns3_dev_stop,
7273 	.dev_close          = hns3_dev_close,
7274 	.promiscuous_enable = hns3_dev_promiscuous_enable,
7275 	.promiscuous_disable = hns3_dev_promiscuous_disable,
7276 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
7277 	.allmulticast_disable = hns3_dev_allmulticast_disable,
7278 	.mtu_set            = hns3_dev_mtu_set,
7279 	.stats_get          = hns3_stats_get,
7280 	.stats_reset        = hns3_stats_reset,
7281 	.xstats_get         = hns3_dev_xstats_get,
7282 	.xstats_get_names   = hns3_dev_xstats_get_names,
7283 	.xstats_reset       = hns3_dev_xstats_reset,
7284 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
7285 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
7286 	.dev_infos_get          = hns3_dev_infos_get,
7287 	.fw_version_get         = hns3_fw_version_get,
7288 	.rx_queue_setup         = hns3_rx_queue_setup,
7289 	.tx_queue_setup         = hns3_tx_queue_setup,
7290 	.rx_queue_release       = hns3_dev_rx_queue_release,
7291 	.tx_queue_release       = hns3_dev_tx_queue_release,
7292 	.rx_queue_start         = hns3_dev_rx_queue_start,
7293 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
7294 	.tx_queue_start         = hns3_dev_tx_queue_start,
7295 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
7296 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
7297 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
7298 	.rxq_info_get           = hns3_rxq_info_get,
7299 	.txq_info_get           = hns3_txq_info_get,
7300 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
7301 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
7302 	.flow_ctrl_get          = hns3_flow_ctrl_get,
7303 	.flow_ctrl_set          = hns3_flow_ctrl_set,
7304 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
7305 	.mac_addr_add           = hns3_add_mac_addr,
7306 	.mac_addr_remove        = hns3_remove_mac_addr,
7307 	.mac_addr_set           = hns3_set_default_mac_addr,
7308 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
7309 	.link_update            = hns3_dev_link_update,
7310 	.dev_set_link_up        = hns3_dev_set_link_up,
7311 	.dev_set_link_down      = hns3_dev_set_link_down,
7312 	.rss_hash_update        = hns3_dev_rss_hash_update,
7313 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
7314 	.reta_update            = hns3_dev_rss_reta_update,
7315 	.reta_query             = hns3_dev_rss_reta_query,
7316 	.flow_ops_get           = hns3_dev_flow_ops_get,
7317 	.vlan_filter_set        = hns3_vlan_filter_set,
7318 	.vlan_tpid_set          = hns3_vlan_tpid_set,
7319 	.vlan_offload_set       = hns3_vlan_offload_set,
7320 	.vlan_pvid_set          = hns3_vlan_pvid_set,
7321 	.get_reg                = hns3_get_regs,
7322 	.get_module_info        = hns3_get_module_info,
7323 	.get_module_eeprom      = hns3_get_module_eeprom,
7324 	.get_dcb_info           = hns3_get_dcb_info,
7325 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
7326 	.fec_get_capability     = hns3_fec_get_capability,
7327 	.fec_get                = hns3_fec_get,
7328 	.fec_set                = hns3_fec_set,
7329 	.tm_ops_get             = hns3_tm_ops_get,
7330 	.tx_done_cleanup        = hns3_tx_done_cleanup,
7331 	.timesync_enable            = hns3_timesync_enable,
7332 	.timesync_disable           = hns3_timesync_disable,
7333 	.timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
7334 	.timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
7335 	.timesync_adjust_time       = hns3_timesync_adjust_time,
7336 	.timesync_read_time         = hns3_timesync_read_time,
7337 	.timesync_write_time        = hns3_timesync_write_time,
7338 };
7339 
7340 static const struct hns3_reset_ops hns3_reset_ops = {
7341 	.reset_service       = hns3_reset_service,
7342 	.stop_service        = hns3_stop_service,
7343 	.prepare_reset       = hns3_prepare_reset,
7344 	.wait_hardware_ready = hns3_wait_hardware_ready,
7345 	.reinit_dev          = hns3_reinit_dev,
7346 	.restore_conf	     = hns3_restore_conf,
7347 	.start_service       = hns3_start_service,
7348 };
7349 
7350 static void
7351 hns3_init_hw_ops(struct hns3_hw *hw)
7352 {
7353 	hw->ops.add_mc_mac_addr = hns3_add_mc_mac_addr;
7354 	hw->ops.del_mc_mac_addr = hns3_remove_mc_mac_addr;
7355 	hw->ops.add_uc_mac_addr = hns3_add_uc_mac_addr;
7356 	hw->ops.del_uc_mac_addr = hns3_remove_uc_mac_addr;
7357 }
7358 
7359 static int
7360 hns3_dev_init(struct rte_eth_dev *eth_dev)
7361 {
7362 	struct hns3_adapter *hns = eth_dev->data->dev_private;
7363 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
7364 	struct rte_ether_addr *eth_addr;
7365 	struct hns3_hw *hw = &hns->hw;
7366 	int ret;
7367 
7368 	PMD_INIT_FUNC_TRACE();
7369 
7370 	hns3_flow_init(eth_dev);
7371 
7372 	hns3_set_rxtx_function(eth_dev);
7373 	eth_dev->dev_ops = &hns3_eth_dev_ops;
7374 	eth_dev->rx_queue_count = hns3_rx_queue_count;
7375 	ret = hns3_mp_init(eth_dev);
7376 	if (ret)
7377 		goto err_mp_init;
7378 
7379 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
7380 		hns3_tx_push_init(eth_dev);
7381 		return 0;
7382 	}
7383 
7384 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
7385 	hns->is_vf = false;
7386 	hw->data = eth_dev->data;
7387 	hns3_parse_devargs(eth_dev);
7388 
7389 	/*
7390 	 * Set default max packet size according to the mtu
7391 	 * default vale in DPDK frame.
7392 	 */
7393 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
7394 
7395 	ret = hns3_reset_init(hw);
7396 	if (ret)
7397 		goto err_init_reset;
7398 	hw->reset.ops = &hns3_reset_ops;
7399 
7400 	hns3_init_hw_ops(hw);
7401 	ret = hns3_init_pf(eth_dev);
7402 	if (ret) {
7403 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
7404 		goto err_init_pf;
7405 	}
7406 
7407 	/* Allocate memory for storing MAC addresses */
7408 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
7409 					       sizeof(struct rte_ether_addr) *
7410 					       HNS3_UC_MACADDR_NUM, 0);
7411 	if (eth_dev->data->mac_addrs == NULL) {
7412 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
7413 			     "to store MAC addresses",
7414 			     sizeof(struct rte_ether_addr) *
7415 			     HNS3_UC_MACADDR_NUM);
7416 		ret = -ENOMEM;
7417 		goto err_rte_zmalloc;
7418 	}
7419 
7420 	eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
7421 	if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
7422 		rte_eth_random_addr(hw->mac.mac_addr);
7423 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
7424 				(struct rte_ether_addr *)hw->mac.mac_addr);
7425 		hns3_warn(hw, "default mac_addr from firmware is an invalid "
7426 			  "unicast address, using random MAC address %s",
7427 			  mac_str);
7428 	}
7429 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
7430 			    &eth_dev->data->mac_addrs[0]);
7431 
7432 	hw->adapter_state = HNS3_NIC_INITIALIZED;
7433 
7434 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
7435 			    SCHEDULE_PENDING) {
7436 		hns3_err(hw, "Reschedule reset service after dev_init");
7437 		hns3_schedule_reset(hns);
7438 	} else {
7439 		/* IMP will wait ready flag before reset */
7440 		hns3_notify_reset_ready(hw, false);
7441 	}
7442 
7443 	hns3_info(hw, "hns3 dev initialization successful!");
7444 	return 0;
7445 
7446 err_rte_zmalloc:
7447 	hns3_uninit_pf(eth_dev);
7448 
7449 err_init_pf:
7450 	rte_free(hw->reset.wait_data);
7451 
7452 err_init_reset:
7453 	hns3_mp_uninit(eth_dev);
7454 
7455 err_mp_init:
7456 	eth_dev->dev_ops = NULL;
7457 	eth_dev->rx_pkt_burst = NULL;
7458 	eth_dev->rx_descriptor_status = NULL;
7459 	eth_dev->tx_pkt_burst = NULL;
7460 	eth_dev->tx_pkt_prepare = NULL;
7461 	eth_dev->tx_descriptor_status = NULL;
7462 	return ret;
7463 }
7464 
7465 static int
7466 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
7467 {
7468 	struct hns3_adapter *hns = eth_dev->data->dev_private;
7469 	struct hns3_hw *hw = &hns->hw;
7470 
7471 	PMD_INIT_FUNC_TRACE();
7472 
7473 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
7474 		hns3_mp_uninit(eth_dev);
7475 		return 0;
7476 	}
7477 
7478 	if (hw->adapter_state < HNS3_NIC_CLOSING)
7479 		hns3_dev_close(eth_dev);
7480 
7481 	hw->adapter_state = HNS3_NIC_REMOVED;
7482 	return 0;
7483 }
7484 
7485 static int
7486 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
7487 		   struct rte_pci_device *pci_dev)
7488 {
7489 	return rte_eth_dev_pci_generic_probe(pci_dev,
7490 					     sizeof(struct hns3_adapter),
7491 					     hns3_dev_init);
7492 }
7493 
7494 static int
7495 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
7496 {
7497 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
7498 }
7499 
7500 static const struct rte_pci_id pci_id_hns3_map[] = {
7501 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
7502 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
7503 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
7504 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
7505 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
7506 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
7507 	{ .vendor_id = 0, }, /* sentinel */
7508 };
7509 
7510 static struct rte_pci_driver rte_hns3_pmd = {
7511 	.id_table = pci_id_hns3_map,
7512 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
7513 	.probe = eth_hns3_pci_probe,
7514 	.remove = eth_hns3_pci_remove,
7515 };
7516 
7517 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
7518 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
7519 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
7520 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
7521 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
7522 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
7523 		HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> "
7524 		HNS3_DEVARG_MBX_TIME_LIMIT_MS "=<uint16> ");
7525 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE);
7526 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);
7527