xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision 8809f78c7dd9f33a44a4f89c58fc91ded34296ed)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdio.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <unistd.h>
12 #include <rte_atomic.h>
13 #include <rte_bus_pci.h>
14 #include <rte_common.h>
15 #include <rte_cycles.h>
16 #include <rte_dev.h>
17 #include <rte_eal.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_interrupts.h>
22 #include <rte_io.h>
23 #include <rte_log.h>
24 #include <rte_pci.h>
25 
26 #include "hns3_ethdev.h"
27 #include "hns3_logs.h"
28 #include "hns3_rxtx.h"
29 #include "hns3_intr.h"
30 #include "hns3_regs.h"
31 #include "hns3_dcb.h"
32 #include "hns3_mp.h"
33 
34 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE	32
35 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM	1
36 
37 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
38 #define HNS3_INVALID_PVID		0xFFFF
39 
40 #define HNS3_FILTER_TYPE_VF		0
41 #define HNS3_FILTER_TYPE_PORT		1
42 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
43 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
44 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
45 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
46 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
47 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
48 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
49 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
50 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
51 
52 /* Reset related Registers */
53 #define HNS3_GLOBAL_RESET_BIT		0
54 #define HNS3_CORE_RESET_BIT		1
55 #define HNS3_IMP_RESET_BIT		2
56 #define HNS3_FUN_RST_ING_B		0
57 
58 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
59 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
60 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
61 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
62 
63 #define HNS3_RESET_WAIT_MS	100
64 #define HNS3_RESET_WAIT_CNT	200
65 
66 /* FEC mode order defined in HNS3 hardware */
67 #define HNS3_HW_FEC_MODE_NOFEC  0
68 #define HNS3_HW_FEC_MODE_BASER  1
69 #define HNS3_HW_FEC_MODE_RS     2
70 
71 enum hns3_evt_cause {
72 	HNS3_VECTOR0_EVENT_RST,
73 	HNS3_VECTOR0_EVENT_MBX,
74 	HNS3_VECTOR0_EVENT_ERR,
75 	HNS3_VECTOR0_EVENT_OTHER,
76 };
77 
78 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
79 	{ ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
80 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
81 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
82 
83 	{ ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
84 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
85 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
86 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
87 
88 	{ ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
89 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
90 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
91 
92 	{ ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
93 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
94 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
95 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
96 
97 	{ ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
98 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
99 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
100 
101 	{ ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
102 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
103 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
104 };
105 
106 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
107 						 uint64_t *levels);
108 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
109 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
110 				    int on);
111 static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
112 
113 static int hns3_add_mc_addr(struct hns3_hw *hw,
114 			    struct rte_ether_addr *mac_addr);
115 static int hns3_remove_mc_addr(struct hns3_hw *hw,
116 			    struct rte_ether_addr *mac_addr);
117 static int hns3_restore_fec(struct hns3_hw *hw);
118 static int hns3_query_dev_fec_info(struct rte_eth_dev *dev);
119 
120 static void
121 hns3_pf_disable_irq0(struct hns3_hw *hw)
122 {
123 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
124 }
125 
126 static void
127 hns3_pf_enable_irq0(struct hns3_hw *hw)
128 {
129 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
130 }
131 
132 static enum hns3_evt_cause
133 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
134 {
135 	struct hns3_hw *hw = &hns->hw;
136 	uint32_t vector0_int_stats;
137 	uint32_t cmdq_src_val;
138 	uint32_t hw_err_src_reg;
139 	uint32_t val;
140 	enum hns3_evt_cause ret;
141 
142 	/* fetch the events from their corresponding regs */
143 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
144 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
145 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
146 
147 	/*
148 	 * Assumption: If by any chance reset and mailbox events are reported
149 	 * together then we will only process reset event and defer the
150 	 * processing of the mailbox events. Since, we would have not cleared
151 	 * RX CMDQ event this time we would receive again another interrupt
152 	 * from H/W just for the mailbox.
153 	 */
154 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
155 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
156 		hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
157 		val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
158 		if (clearval) {
159 			hw->reset.stats.imp_cnt++;
160 			hns3_warn(hw, "IMP reset detected, clear reset status");
161 		} else {
162 			hns3_schedule_delayed_reset(hns);
163 			hns3_warn(hw, "IMP reset detected, don't clear reset status");
164 		}
165 
166 		ret = HNS3_VECTOR0_EVENT_RST;
167 		goto out;
168 	}
169 
170 	/* Global reset */
171 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
172 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
173 		hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
174 		val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
175 		if (clearval) {
176 			hw->reset.stats.global_cnt++;
177 			hns3_warn(hw, "Global reset detected, clear reset status");
178 		} else {
179 			hns3_schedule_delayed_reset(hns);
180 			hns3_warn(hw, "Global reset detected, don't clear reset status");
181 		}
182 
183 		ret = HNS3_VECTOR0_EVENT_RST;
184 		goto out;
185 	}
186 
187 	/* check for vector0 msix event source */
188 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
189 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
190 		val = vector0_int_stats | hw_err_src_reg;
191 		ret = HNS3_VECTOR0_EVENT_ERR;
192 		goto out;
193 	}
194 
195 	/* check for vector0 mailbox(=CMDQ RX) event source */
196 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
197 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
198 		val = cmdq_src_val;
199 		ret = HNS3_VECTOR0_EVENT_MBX;
200 		goto out;
201 	}
202 
203 	if (clearval && (vector0_int_stats || cmdq_src_val || hw_err_src_reg))
204 		hns3_warn(hw, "vector0_int_stats:0x%x cmdq_src_val:0x%x hw_err_src_reg:0x%x",
205 			  vector0_int_stats, cmdq_src_val, hw_err_src_reg);
206 	val = vector0_int_stats;
207 	ret = HNS3_VECTOR0_EVENT_OTHER;
208 out:
209 
210 	if (clearval)
211 		*clearval = val;
212 	return ret;
213 }
214 
215 static void
216 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
217 {
218 	if (event_type == HNS3_VECTOR0_EVENT_RST)
219 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
220 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
221 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
222 }
223 
224 static void
225 hns3_clear_all_event_cause(struct hns3_hw *hw)
226 {
227 	uint32_t vector0_int_stats;
228 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
229 
230 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
231 		hns3_warn(hw, "Probe during IMP reset interrupt");
232 
233 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
234 		hns3_warn(hw, "Probe during Global reset interrupt");
235 
236 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
237 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
238 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
239 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
240 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
241 }
242 
243 static void
244 hns3_interrupt_handler(void *param)
245 {
246 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
247 	struct hns3_adapter *hns = dev->data->dev_private;
248 	struct hns3_hw *hw = &hns->hw;
249 	enum hns3_evt_cause event_cause;
250 	uint32_t clearval = 0;
251 
252 	/* Disable interrupt */
253 	hns3_pf_disable_irq0(hw);
254 
255 	event_cause = hns3_check_event_cause(hns, &clearval);
256 
257 	/* vector 0 interrupt is shared with reset and mailbox source events. */
258 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
259 		hns3_warn(hw, "Received err interrupt");
260 		hns3_handle_msix_error(hns, &hw->reset.request);
261 		hns3_handle_ras_error(hns, &hw->reset.request);
262 		hns3_schedule_reset(hns);
263 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
264 		hns3_warn(hw, "Received reset interrupt");
265 		hns3_schedule_reset(hns);
266 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
267 		hns3_dev_handle_mbx_msg(hw);
268 	else
269 		hns3_err(hw, "Received unknown event");
270 
271 	hns3_clear_event_cause(hw, event_cause, clearval);
272 	/* Enable interrupt if it is not cause by reset */
273 	hns3_pf_enable_irq0(hw);
274 }
275 
276 static int
277 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
278 {
279 #define HNS3_VLAN_ID_OFFSET_STEP	160
280 #define HNS3_VLAN_BYTE_SIZE		8
281 	struct hns3_vlan_filter_pf_cfg_cmd *req;
282 	struct hns3_hw *hw = &hns->hw;
283 	uint8_t vlan_offset_byte_val;
284 	struct hns3_cmd_desc desc;
285 	uint8_t vlan_offset_byte;
286 	uint8_t vlan_offset_base;
287 	int ret;
288 
289 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
290 
291 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
292 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
293 			   HNS3_VLAN_BYTE_SIZE;
294 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
295 
296 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
297 	req->vlan_offset = vlan_offset_base;
298 	req->vlan_cfg = on ? 0 : 1;
299 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
300 
301 	ret = hns3_cmd_send(hw, &desc, 1);
302 	if (ret)
303 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
304 			 vlan_id, ret);
305 
306 	return ret;
307 }
308 
309 static void
310 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
311 {
312 	struct hns3_user_vlan_table *vlan_entry;
313 	struct hns3_pf *pf = &hns->pf;
314 
315 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
316 		if (vlan_entry->vlan_id == vlan_id) {
317 			if (vlan_entry->hd_tbl_status)
318 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
319 			LIST_REMOVE(vlan_entry, next);
320 			rte_free(vlan_entry);
321 			break;
322 		}
323 	}
324 }
325 
326 static void
327 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
328 			bool writen_to_tbl)
329 {
330 	struct hns3_user_vlan_table *vlan_entry;
331 	struct hns3_hw *hw = &hns->hw;
332 	struct hns3_pf *pf = &hns->pf;
333 
334 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
335 		if (vlan_entry->vlan_id == vlan_id)
336 			return;
337 	}
338 
339 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
340 	if (vlan_entry == NULL) {
341 		hns3_err(hw, "Failed to malloc hns3 vlan table");
342 		return;
343 	}
344 
345 	vlan_entry->hd_tbl_status = writen_to_tbl;
346 	vlan_entry->vlan_id = vlan_id;
347 
348 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
349 }
350 
351 static int
352 hns3_restore_vlan_table(struct hns3_adapter *hns)
353 {
354 	struct hns3_user_vlan_table *vlan_entry;
355 	struct hns3_hw *hw = &hns->hw;
356 	struct hns3_pf *pf = &hns->pf;
357 	uint16_t vlan_id;
358 	int ret = 0;
359 
360 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
361 		return hns3_vlan_pvid_configure(hns,
362 						hw->port_base_vlan_cfg.pvid, 1);
363 
364 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
365 		if (vlan_entry->hd_tbl_status) {
366 			vlan_id = vlan_entry->vlan_id;
367 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
368 			if (ret)
369 				break;
370 		}
371 	}
372 
373 	return ret;
374 }
375 
376 static int
377 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
378 {
379 	struct hns3_hw *hw = &hns->hw;
380 	bool writen_to_tbl = false;
381 	int ret = 0;
382 
383 	/*
384 	 * When vlan filter is enabled, hardware regards packets without vlan
385 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
386 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
387 	 */
388 	if (on == 0 && vlan_id == 0)
389 		return 0;
390 
391 	/*
392 	 * When port base vlan enabled, we use port base vlan as the vlan
393 	 * filter condition. In this case, we don't update vlan filter table
394 	 * when user add new vlan or remove exist vlan, just update the
395 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
396 	 * table until port base vlan disabled
397 	 */
398 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
399 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
400 		writen_to_tbl = true;
401 	}
402 
403 	if (ret == 0) {
404 		if (on)
405 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
406 		else
407 			hns3_rm_dev_vlan_table(hns, vlan_id);
408 	}
409 	return ret;
410 }
411 
412 static int
413 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
414 {
415 	struct hns3_adapter *hns = dev->data->dev_private;
416 	struct hns3_hw *hw = &hns->hw;
417 	int ret;
418 
419 	rte_spinlock_lock(&hw->lock);
420 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
421 	rte_spinlock_unlock(&hw->lock);
422 	return ret;
423 }
424 
425 static int
426 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
427 			 uint16_t tpid)
428 {
429 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
430 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
431 	struct hns3_hw *hw = &hns->hw;
432 	struct hns3_cmd_desc desc;
433 	int ret;
434 
435 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
436 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
437 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
438 		return -EINVAL;
439 	}
440 
441 	if (tpid != RTE_ETHER_TYPE_VLAN) {
442 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
443 		return -EINVAL;
444 	}
445 
446 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
447 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
448 
449 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
450 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
451 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
452 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
453 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
454 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
455 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
456 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
457 	}
458 
459 	ret = hns3_cmd_send(hw, &desc, 1);
460 	if (ret) {
461 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
462 			 ret);
463 		return ret;
464 	}
465 
466 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
467 
468 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
469 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
470 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
471 
472 	ret = hns3_cmd_send(hw, &desc, 1);
473 	if (ret)
474 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
475 			 ret);
476 	return ret;
477 }
478 
479 static int
480 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
481 		   uint16_t tpid)
482 {
483 	struct hns3_adapter *hns = dev->data->dev_private;
484 	struct hns3_hw *hw = &hns->hw;
485 	int ret;
486 
487 	rte_spinlock_lock(&hw->lock);
488 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
489 	rte_spinlock_unlock(&hw->lock);
490 	return ret;
491 }
492 
493 static int
494 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
495 			     struct hns3_rx_vtag_cfg *vcfg)
496 {
497 	struct hns3_vport_vtag_rx_cfg_cmd *req;
498 	struct hns3_hw *hw = &hns->hw;
499 	struct hns3_cmd_desc desc;
500 	uint16_t vport_id;
501 	uint8_t bitmap;
502 	int ret;
503 
504 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
505 
506 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
507 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
508 		     vcfg->strip_tag1_en ? 1 : 0);
509 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
510 		     vcfg->strip_tag2_en ? 1 : 0);
511 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
512 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
513 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
514 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
515 
516 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
517 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
518 		     vcfg->strip_tag1_discard_en ? 1 : 0);
519 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
520 		     vcfg->strip_tag2_discard_en ? 1 : 0);
521 	/*
522 	 * In current version VF is not supported when PF is driven by DPDK
523 	 * driver, just need to configure parameters for PF vport.
524 	 */
525 	vport_id = HNS3_PF_FUNC_ID;
526 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
527 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
528 	req->vf_bitmap[req->vf_offset] = bitmap;
529 
530 	ret = hns3_cmd_send(hw, &desc, 1);
531 	if (ret)
532 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
533 	return ret;
534 }
535 
536 static void
537 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
538 			   struct hns3_rx_vtag_cfg *vcfg)
539 {
540 	struct hns3_pf *pf = &hns->pf;
541 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
542 }
543 
544 static void
545 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
546 			   struct hns3_tx_vtag_cfg *vcfg)
547 {
548 	struct hns3_pf *pf = &hns->pf;
549 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
550 }
551 
552 static int
553 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
554 {
555 	struct hns3_rx_vtag_cfg rxvlan_cfg;
556 	struct hns3_hw *hw = &hns->hw;
557 	int ret;
558 
559 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
560 		rxvlan_cfg.strip_tag1_en = false;
561 		rxvlan_cfg.strip_tag2_en = enable;
562 		rxvlan_cfg.strip_tag2_discard_en = false;
563 	} else {
564 		rxvlan_cfg.strip_tag1_en = enable;
565 		rxvlan_cfg.strip_tag2_en = true;
566 		rxvlan_cfg.strip_tag2_discard_en = true;
567 	}
568 
569 	rxvlan_cfg.strip_tag1_discard_en = false;
570 	rxvlan_cfg.vlan1_vlan_prionly = false;
571 	rxvlan_cfg.vlan2_vlan_prionly = false;
572 	rxvlan_cfg.rx_vlan_offload_en = enable;
573 
574 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
575 	if (ret) {
576 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
577 		return ret;
578 	}
579 
580 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
581 
582 	return ret;
583 }
584 
585 static int
586 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
587 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
588 {
589 	struct hns3_vlan_filter_ctrl_cmd *req;
590 	struct hns3_cmd_desc desc;
591 	int ret;
592 
593 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
594 
595 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
596 	req->vlan_type = vlan_type;
597 	req->vlan_fe = filter_en ? fe_type : 0;
598 	req->vf_id = vf_id;
599 
600 	ret = hns3_cmd_send(hw, &desc, 1);
601 	if (ret)
602 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
603 
604 	return ret;
605 }
606 
607 static int
608 hns3_vlan_filter_init(struct hns3_adapter *hns)
609 {
610 	struct hns3_hw *hw = &hns->hw;
611 	int ret;
612 
613 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
614 					HNS3_FILTER_FE_EGRESS, false,
615 					HNS3_PF_FUNC_ID);
616 	if (ret) {
617 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
618 		return ret;
619 	}
620 
621 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
622 					HNS3_FILTER_FE_INGRESS, false,
623 					HNS3_PF_FUNC_ID);
624 	if (ret)
625 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
626 
627 	return ret;
628 }
629 
630 static int
631 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
632 {
633 	struct hns3_hw *hw = &hns->hw;
634 	int ret;
635 
636 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
637 					HNS3_FILTER_FE_INGRESS, enable,
638 					HNS3_PF_FUNC_ID);
639 	if (ret)
640 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
641 			 enable ? "enable" : "disable", ret);
642 
643 	return ret;
644 }
645 
646 static int
647 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
648 {
649 	struct hns3_adapter *hns = dev->data->dev_private;
650 	struct hns3_hw *hw = &hns->hw;
651 	struct rte_eth_rxmode *rxmode;
652 	unsigned int tmp_mask;
653 	bool enable;
654 	int ret = 0;
655 
656 	rte_spinlock_lock(&hw->lock);
657 	rxmode = &dev->data->dev_conf.rxmode;
658 	tmp_mask = (unsigned int)mask;
659 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
660 		/* ignore vlan filter configuration during promiscuous mode */
661 		if (!dev->data->promiscuous) {
662 			/* Enable or disable VLAN filter */
663 			enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
664 				 true : false;
665 
666 			ret = hns3_enable_vlan_filter(hns, enable);
667 			if (ret) {
668 				rte_spinlock_unlock(&hw->lock);
669 				hns3_err(hw, "failed to %s rx filter, ret = %d",
670 					 enable ? "enable" : "disable", ret);
671 				return ret;
672 			}
673 		}
674 	}
675 
676 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
677 		/* Enable or disable VLAN stripping */
678 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
679 		    true : false;
680 
681 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
682 		if (ret) {
683 			rte_spinlock_unlock(&hw->lock);
684 			hns3_err(hw, "failed to %s rx strip, ret = %d",
685 				 enable ? "enable" : "disable", ret);
686 			return ret;
687 		}
688 	}
689 
690 	rte_spinlock_unlock(&hw->lock);
691 
692 	return ret;
693 }
694 
695 static int
696 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
697 			     struct hns3_tx_vtag_cfg *vcfg)
698 {
699 	struct hns3_vport_vtag_tx_cfg_cmd *req;
700 	struct hns3_cmd_desc desc;
701 	struct hns3_hw *hw = &hns->hw;
702 	uint16_t vport_id;
703 	uint8_t bitmap;
704 	int ret;
705 
706 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
707 
708 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
709 	req->def_vlan_tag1 = vcfg->default_tag1;
710 	req->def_vlan_tag2 = vcfg->default_tag2;
711 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
712 		     vcfg->accept_tag1 ? 1 : 0);
713 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
714 		     vcfg->accept_untag1 ? 1 : 0);
715 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
716 		     vcfg->accept_tag2 ? 1 : 0);
717 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
718 		     vcfg->accept_untag2 ? 1 : 0);
719 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
720 		     vcfg->insert_tag1_en ? 1 : 0);
721 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
722 		     vcfg->insert_tag2_en ? 1 : 0);
723 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
724 
725 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
726 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
727 		     vcfg->tag_shift_mode_en ? 1 : 0);
728 
729 	/*
730 	 * In current version VF is not supported when PF is driven by DPDK
731 	 * driver, just need to configure parameters for PF vport.
732 	 */
733 	vport_id = HNS3_PF_FUNC_ID;
734 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
735 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
736 	req->vf_bitmap[req->vf_offset] = bitmap;
737 
738 	ret = hns3_cmd_send(hw, &desc, 1);
739 	if (ret)
740 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
741 
742 	return ret;
743 }
744 
745 static int
746 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
747 		     uint16_t pvid)
748 {
749 	struct hns3_hw *hw = &hns->hw;
750 	struct hns3_tx_vtag_cfg txvlan_cfg;
751 	int ret;
752 
753 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
754 		txvlan_cfg.accept_tag1 = true;
755 		txvlan_cfg.insert_tag1_en = false;
756 		txvlan_cfg.default_tag1 = 0;
757 	} else {
758 		txvlan_cfg.accept_tag1 =
759 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
760 		txvlan_cfg.insert_tag1_en = true;
761 		txvlan_cfg.default_tag1 = pvid;
762 	}
763 
764 	txvlan_cfg.accept_untag1 = true;
765 	txvlan_cfg.accept_tag2 = true;
766 	txvlan_cfg.accept_untag2 = true;
767 	txvlan_cfg.insert_tag2_en = false;
768 	txvlan_cfg.default_tag2 = 0;
769 	txvlan_cfg.tag_shift_mode_en = true;
770 
771 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
772 	if (ret) {
773 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
774 			 ret);
775 		return ret;
776 	}
777 
778 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
779 	return ret;
780 }
781 
782 
783 static void
784 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
785 {
786 	struct hns3_user_vlan_table *vlan_entry;
787 	struct hns3_pf *pf = &hns->pf;
788 
789 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
790 		if (vlan_entry->hd_tbl_status) {
791 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
792 			vlan_entry->hd_tbl_status = false;
793 		}
794 	}
795 
796 	if (is_del_list) {
797 		vlan_entry = LIST_FIRST(&pf->vlan_list);
798 		while (vlan_entry) {
799 			LIST_REMOVE(vlan_entry, next);
800 			rte_free(vlan_entry);
801 			vlan_entry = LIST_FIRST(&pf->vlan_list);
802 		}
803 	}
804 }
805 
806 static void
807 hns3_add_all_vlan_table(struct hns3_adapter *hns)
808 {
809 	struct hns3_user_vlan_table *vlan_entry;
810 	struct hns3_pf *pf = &hns->pf;
811 
812 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
813 		if (!vlan_entry->hd_tbl_status) {
814 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
815 			vlan_entry->hd_tbl_status = true;
816 		}
817 	}
818 }
819 
820 static void
821 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
822 {
823 	struct hns3_hw *hw = &hns->hw;
824 	int ret;
825 
826 	hns3_rm_all_vlan_table(hns, true);
827 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
828 		ret = hns3_set_port_vlan_filter(hns,
829 						hw->port_base_vlan_cfg.pvid, 0);
830 		if (ret) {
831 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
832 				 ret);
833 			return;
834 		}
835 	}
836 }
837 
838 static int
839 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
840 			uint16_t port_base_vlan_state, uint16_t new_pvid)
841 {
842 	struct hns3_hw *hw = &hns->hw;
843 	uint16_t old_pvid;
844 	int ret;
845 
846 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
847 		old_pvid = hw->port_base_vlan_cfg.pvid;
848 		if (old_pvid != HNS3_INVALID_PVID) {
849 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
850 			if (ret) {
851 				hns3_err(hw, "failed to remove old pvid %u, "
852 						"ret = %d", old_pvid, ret);
853 				return ret;
854 			}
855 		}
856 
857 		hns3_rm_all_vlan_table(hns, false);
858 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
859 		if (ret) {
860 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
861 					new_pvid, ret);
862 			return ret;
863 		}
864 	} else {
865 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
866 		if (ret) {
867 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
868 					new_pvid, ret);
869 			return ret;
870 		}
871 
872 		hns3_add_all_vlan_table(hns);
873 	}
874 	return 0;
875 }
876 
877 static int
878 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
879 {
880 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
881 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
882 	bool rx_strip_en;
883 	int ret;
884 
885 	rx_strip_en = old_cfg->rx_vlan_offload_en;
886 	if (on) {
887 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
888 		rx_vlan_cfg.strip_tag2_en = true;
889 		rx_vlan_cfg.strip_tag2_discard_en = true;
890 	} else {
891 		rx_vlan_cfg.strip_tag1_en = false;
892 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
893 		rx_vlan_cfg.strip_tag2_discard_en = false;
894 	}
895 	rx_vlan_cfg.strip_tag1_discard_en = false;
896 	rx_vlan_cfg.vlan1_vlan_prionly = false;
897 	rx_vlan_cfg.vlan2_vlan_prionly = false;
898 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
899 
900 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
901 	if (ret)
902 		return ret;
903 
904 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
905 	return ret;
906 }
907 
908 static int
909 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
910 {
911 	struct hns3_hw *hw = &hns->hw;
912 	uint16_t port_base_vlan_state;
913 	int ret;
914 
915 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
916 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
917 			hns3_warn(hw, "Invalid operation! As current pvid set "
918 				  "is %u, disable pvid %u is invalid",
919 				  hw->port_base_vlan_cfg.pvid, pvid);
920 		return 0;
921 	}
922 
923 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
924 				    HNS3_PORT_BASE_VLAN_DISABLE;
925 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
926 	if (ret) {
927 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
928 			 ret);
929 		return ret;
930 	}
931 
932 	ret = hns3_en_pvid_strip(hns, on);
933 	if (ret) {
934 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
935 			 "ret = %d", ret);
936 		return ret;
937 	}
938 
939 	if (pvid == HNS3_INVALID_PVID)
940 		goto out;
941 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
942 	if (ret) {
943 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
944 			 ret);
945 		return ret;
946 	}
947 
948 out:
949 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
950 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
951 	return ret;
952 }
953 
954 static int
955 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
956 {
957 	struct hns3_adapter *hns = dev->data->dev_private;
958 	struct hns3_hw *hw = &hns->hw;
959 	bool pvid_en_state_change;
960 	uint16_t pvid_state;
961 	int ret;
962 
963 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
964 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
965 			 RTE_ETHER_MAX_VLAN_ID);
966 		return -EINVAL;
967 	}
968 
969 	/*
970 	 * If PVID configuration state change, should refresh the PVID
971 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
972 	 */
973 	pvid_state = hw->port_base_vlan_cfg.state;
974 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
975 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
976 		pvid_en_state_change = false;
977 	else
978 		pvid_en_state_change = true;
979 
980 	rte_spinlock_lock(&hw->lock);
981 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
982 	rte_spinlock_unlock(&hw->lock);
983 	if (ret)
984 		return ret;
985 	/*
986 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
987 	 * need be processed by PMD driver.
988 	 */
989 	if (pvid_en_state_change &&
990 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
991 		hns3_update_all_queues_pvid_proc_en(hw);
992 
993 	return 0;
994 }
995 
996 static int
997 hns3_default_vlan_config(struct hns3_adapter *hns)
998 {
999 	struct hns3_hw *hw = &hns->hw;
1000 	int ret;
1001 
1002 	/*
1003 	 * When vlan filter is enabled, hardware regards packets without vlan
1004 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1005 	 * table, packets without vlan won't be received. So, add vlan 0 as
1006 	 * the default vlan.
1007 	 */
1008 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1009 	if (ret)
1010 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1011 	return ret;
1012 }
1013 
1014 static int
1015 hns3_init_vlan_config(struct hns3_adapter *hns)
1016 {
1017 	struct hns3_hw *hw = &hns->hw;
1018 	int ret;
1019 
1020 	/*
1021 	 * This function can be called in the initialization and reset process,
1022 	 * when in reset process, it means that hardware had been reseted
1023 	 * successfully and we need to restore the hardware configuration to
1024 	 * ensure that the hardware configuration remains unchanged before and
1025 	 * after reset.
1026 	 */
1027 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1028 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1029 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1030 	}
1031 
1032 	ret = hns3_vlan_filter_init(hns);
1033 	if (ret) {
1034 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1035 		return ret;
1036 	}
1037 
1038 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1039 				       RTE_ETHER_TYPE_VLAN);
1040 	if (ret) {
1041 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1042 		return ret;
1043 	}
1044 
1045 	/*
1046 	 * When in the reinit dev stage of the reset process, the following
1047 	 * vlan-related configurations may differ from those at initialization,
1048 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1049 	 * and hns3_restore_vlan_conf later.
1050 	 */
1051 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1052 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1053 		if (ret) {
1054 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1055 			return ret;
1056 		}
1057 
1058 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1059 		if (ret) {
1060 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1061 				 ret);
1062 			return ret;
1063 		}
1064 	}
1065 
1066 	return hns3_default_vlan_config(hns);
1067 }
1068 
1069 static int
1070 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1071 {
1072 	struct hns3_pf *pf = &hns->pf;
1073 	struct hns3_hw *hw = &hns->hw;
1074 	uint64_t offloads;
1075 	bool enable;
1076 	int ret;
1077 
1078 	if (!hw->data->promiscuous) {
1079 		/* restore vlan filter states */
1080 		offloads = hw->data->dev_conf.rxmode.offloads;
1081 		enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1082 		ret = hns3_enable_vlan_filter(hns, enable);
1083 		if (ret) {
1084 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1085 				 "ret = %d", ret);
1086 			return ret;
1087 		}
1088 	}
1089 
1090 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1091 	if (ret) {
1092 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1093 		return ret;
1094 	}
1095 
1096 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1097 	if (ret)
1098 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1099 
1100 	return ret;
1101 }
1102 
1103 static int
1104 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1105 {
1106 	struct hns3_adapter *hns = dev->data->dev_private;
1107 	struct rte_eth_dev_data *data = dev->data;
1108 	struct rte_eth_txmode *txmode;
1109 	struct hns3_hw *hw = &hns->hw;
1110 	int mask;
1111 	int ret;
1112 
1113 	txmode = &data->dev_conf.txmode;
1114 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1115 		hns3_warn(hw,
1116 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1117 			  "configuration is not supported! Ignore these two "
1118 			  "parameters: hw_vlan_reject_tagged(%d), "
1119 			  "hw_vlan_reject_untagged(%d)",
1120 			  txmode->hw_vlan_reject_tagged,
1121 			  txmode->hw_vlan_reject_untagged);
1122 
1123 	/* Apply vlan offload setting */
1124 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1125 	ret = hns3_vlan_offload_set(dev, mask);
1126 	if (ret) {
1127 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1128 			 ret);
1129 		return ret;
1130 	}
1131 
1132 	/*
1133 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1134 	 * VLAN pvid related configuration to hardware.
1135 	 */
1136 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1137 		return 0;
1138 
1139 	/* Apply pvid setting */
1140 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1141 				 txmode->hw_vlan_insert_pvid);
1142 	if (ret)
1143 		hns3_err(hw, "dev config vlan pvid(%d) failed, ret = %d",
1144 			 txmode->pvid, ret);
1145 
1146 	return ret;
1147 }
1148 
1149 static int
1150 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1151 		unsigned int tso_mss_max)
1152 {
1153 	struct hns3_cfg_tso_status_cmd *req;
1154 	struct hns3_cmd_desc desc;
1155 	uint16_t tso_mss;
1156 
1157 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1158 
1159 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1160 
1161 	tso_mss = 0;
1162 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1163 		       tso_mss_min);
1164 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1165 
1166 	tso_mss = 0;
1167 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1168 		       tso_mss_max);
1169 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1170 
1171 	return hns3_cmd_send(hw, &desc, 1);
1172 }
1173 
1174 static int
1175 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1176 		   uint16_t *allocated_size, bool is_alloc)
1177 {
1178 	struct hns3_umv_spc_alc_cmd *req;
1179 	struct hns3_cmd_desc desc;
1180 	int ret;
1181 
1182 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1183 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1184 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1185 	req->space_size = rte_cpu_to_le_32(space_size);
1186 
1187 	ret = hns3_cmd_send(hw, &desc, 1);
1188 	if (ret) {
1189 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1190 			     is_alloc ? "allocate" : "free", ret);
1191 		return ret;
1192 	}
1193 
1194 	if (is_alloc && allocated_size)
1195 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1196 
1197 	return 0;
1198 }
1199 
1200 static int
1201 hns3_init_umv_space(struct hns3_hw *hw)
1202 {
1203 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1204 	struct hns3_pf *pf = &hns->pf;
1205 	uint16_t allocated_size = 0;
1206 	int ret;
1207 
1208 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1209 				 true);
1210 	if (ret)
1211 		return ret;
1212 
1213 	if (allocated_size < pf->wanted_umv_size)
1214 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1215 			     pf->wanted_umv_size, allocated_size);
1216 
1217 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1218 						pf->wanted_umv_size;
1219 	pf->used_umv_size = 0;
1220 	return 0;
1221 }
1222 
1223 static int
1224 hns3_uninit_umv_space(struct hns3_hw *hw)
1225 {
1226 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1227 	struct hns3_pf *pf = &hns->pf;
1228 	int ret;
1229 
1230 	if (pf->max_umv_size == 0)
1231 		return 0;
1232 
1233 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1234 	if (ret)
1235 		return ret;
1236 
1237 	pf->max_umv_size = 0;
1238 
1239 	return 0;
1240 }
1241 
1242 static bool
1243 hns3_is_umv_space_full(struct hns3_hw *hw)
1244 {
1245 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1246 	struct hns3_pf *pf = &hns->pf;
1247 	bool is_full;
1248 
1249 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1250 
1251 	return is_full;
1252 }
1253 
1254 static void
1255 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1256 {
1257 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1258 	struct hns3_pf *pf = &hns->pf;
1259 
1260 	if (is_free) {
1261 		if (pf->used_umv_size > 0)
1262 			pf->used_umv_size--;
1263 	} else
1264 		pf->used_umv_size++;
1265 }
1266 
1267 static void
1268 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1269 		      const uint8_t *addr, bool is_mc)
1270 {
1271 	const unsigned char *mac_addr = addr;
1272 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1273 			    ((uint32_t)mac_addr[2] << 16) |
1274 			    ((uint32_t)mac_addr[1] << 8) |
1275 			    (uint32_t)mac_addr[0];
1276 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1277 
1278 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1279 	if (is_mc) {
1280 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1281 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1282 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1283 	}
1284 
1285 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1286 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1287 }
1288 
1289 static int
1290 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1291 			     uint8_t resp_code,
1292 			     enum hns3_mac_vlan_tbl_opcode op)
1293 {
1294 	if (cmdq_resp) {
1295 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1296 			 cmdq_resp);
1297 		return -EIO;
1298 	}
1299 
1300 	if (op == HNS3_MAC_VLAN_ADD) {
1301 		if (resp_code == 0 || resp_code == 1) {
1302 			return 0;
1303 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1304 			hns3_err(hw, "add mac addr failed for uc_overflow");
1305 			return -ENOSPC;
1306 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1307 			hns3_err(hw, "add mac addr failed for mc_overflow");
1308 			return -ENOSPC;
1309 		}
1310 
1311 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1312 			 resp_code);
1313 		return -EIO;
1314 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1315 		if (resp_code == 0) {
1316 			return 0;
1317 		} else if (resp_code == 1) {
1318 			hns3_dbg(hw, "remove mac addr failed for miss");
1319 			return -ENOENT;
1320 		}
1321 
1322 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1323 			 resp_code);
1324 		return -EIO;
1325 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1326 		if (resp_code == 0) {
1327 			return 0;
1328 		} else if (resp_code == 1) {
1329 			hns3_dbg(hw, "lookup mac addr failed for miss");
1330 			return -ENOENT;
1331 		}
1332 
1333 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1334 			 resp_code);
1335 		return -EIO;
1336 	}
1337 
1338 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1339 		 op);
1340 
1341 	return -EINVAL;
1342 }
1343 
1344 static int
1345 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1346 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1347 			 struct hns3_cmd_desc *desc, bool is_mc)
1348 {
1349 	uint8_t resp_code;
1350 	uint16_t retval;
1351 	int ret;
1352 
1353 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1354 	if (is_mc) {
1355 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1356 		memcpy(desc[0].data, req,
1357 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1358 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1359 					  true);
1360 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1361 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1362 					  true);
1363 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1364 	} else {
1365 		memcpy(desc[0].data, req,
1366 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1367 		ret = hns3_cmd_send(hw, desc, 1);
1368 	}
1369 	if (ret) {
1370 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1371 			 ret);
1372 		return ret;
1373 	}
1374 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1375 	retval = rte_le_to_cpu_16(desc[0].retval);
1376 
1377 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1378 					    HNS3_MAC_VLAN_LKUP);
1379 }
1380 
1381 static int
1382 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1383 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1384 		      struct hns3_cmd_desc *mc_desc)
1385 {
1386 	uint8_t resp_code;
1387 	uint16_t retval;
1388 	int cfg_status;
1389 	int ret;
1390 
1391 	if (mc_desc == NULL) {
1392 		struct hns3_cmd_desc desc;
1393 
1394 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1395 		memcpy(desc.data, req,
1396 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1397 		ret = hns3_cmd_send(hw, &desc, 1);
1398 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1399 		retval = rte_le_to_cpu_16(desc.retval);
1400 
1401 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1402 							  HNS3_MAC_VLAN_ADD);
1403 	} else {
1404 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1405 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1406 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1407 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1408 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1409 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1410 		memcpy(mc_desc[0].data, req,
1411 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1412 		mc_desc[0].retval = 0;
1413 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1414 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1415 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1416 
1417 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1418 							  HNS3_MAC_VLAN_ADD);
1419 	}
1420 
1421 	if (ret) {
1422 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1423 		return ret;
1424 	}
1425 
1426 	return cfg_status;
1427 }
1428 
1429 static int
1430 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1431 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1432 {
1433 	struct hns3_cmd_desc desc;
1434 	uint8_t resp_code;
1435 	uint16_t retval;
1436 	int ret;
1437 
1438 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1439 
1440 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1441 
1442 	ret = hns3_cmd_send(hw, &desc, 1);
1443 	if (ret) {
1444 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1445 		return ret;
1446 	}
1447 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1448 	retval = rte_le_to_cpu_16(desc.retval);
1449 
1450 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1451 					    HNS3_MAC_VLAN_REMOVE);
1452 }
1453 
1454 static int
1455 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1456 {
1457 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1458 	struct hns3_mac_vlan_tbl_entry_cmd req;
1459 	struct hns3_pf *pf = &hns->pf;
1460 	struct hns3_cmd_desc desc[3];
1461 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1462 	uint16_t egress_port = 0;
1463 	uint8_t vf_id;
1464 	int ret;
1465 
1466 	/* check if mac addr is valid */
1467 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1468 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1469 				      mac_addr);
1470 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1471 			 mac_str);
1472 		return -EINVAL;
1473 	}
1474 
1475 	memset(&req, 0, sizeof(req));
1476 
1477 	/*
1478 	 * In current version VF is not supported when PF is driven by DPDK
1479 	 * driver, just need to configure parameters for PF vport.
1480 	 */
1481 	vf_id = HNS3_PF_FUNC_ID;
1482 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1483 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1484 
1485 	req.egress_port = rte_cpu_to_le_16(egress_port);
1486 
1487 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1488 
1489 	/*
1490 	 * Lookup the mac address in the mac_vlan table, and add
1491 	 * it if the entry is inexistent. Repeated unicast entry
1492 	 * is not allowed in the mac vlan table.
1493 	 */
1494 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1495 	if (ret == -ENOENT) {
1496 		if (!hns3_is_umv_space_full(hw)) {
1497 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1498 			if (!ret)
1499 				hns3_update_umv_space(hw, false);
1500 			return ret;
1501 		}
1502 
1503 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1504 
1505 		return -ENOSPC;
1506 	}
1507 
1508 	rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1509 
1510 	/* check if we just hit the duplicate */
1511 	if (ret == 0) {
1512 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1513 		return 0;
1514 	}
1515 
1516 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1517 		 mac_str);
1518 
1519 	return ret;
1520 }
1521 
1522 static int
1523 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1524 {
1525 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1526 	struct rte_ether_addr *addr;
1527 	int ret;
1528 	int i;
1529 
1530 	for (i = 0; i < hw->mc_addrs_num; i++) {
1531 		addr = &hw->mc_addrs[i];
1532 		/* Check if there are duplicate addresses */
1533 		if (rte_is_same_ether_addr(addr, mac_addr)) {
1534 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1535 					      addr);
1536 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1537 				 "(%s) is added by the set_mc_mac_addr_list "
1538 				 "API", mac_str);
1539 			return -EINVAL;
1540 		}
1541 	}
1542 
1543 	ret = hns3_add_mc_addr(hw, mac_addr);
1544 	if (ret) {
1545 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1546 				      mac_addr);
1547 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1548 			 mac_str, ret);
1549 	}
1550 	return ret;
1551 }
1552 
1553 static int
1554 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1555 {
1556 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1557 	int ret;
1558 
1559 	ret = hns3_remove_mc_addr(hw, mac_addr);
1560 	if (ret) {
1561 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1562 				      mac_addr);
1563 		hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1564 			 mac_str, ret);
1565 	}
1566 	return ret;
1567 }
1568 
1569 static int
1570 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1571 		  uint32_t idx, __rte_unused uint32_t pool)
1572 {
1573 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1574 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1575 	int ret;
1576 
1577 	rte_spinlock_lock(&hw->lock);
1578 
1579 	/*
1580 	 * In hns3 network engine adding UC and MC mac address with different
1581 	 * commands with firmware. We need to determine whether the input
1582 	 * address is a UC or a MC address to call different commands.
1583 	 * By the way, it is recommended calling the API function named
1584 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1585 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1586 	 * may affect the specifications of UC mac addresses.
1587 	 */
1588 	if (rte_is_multicast_ether_addr(mac_addr))
1589 		ret = hns3_add_mc_addr_common(hw, mac_addr);
1590 	else
1591 		ret = hns3_add_uc_addr_common(hw, mac_addr);
1592 
1593 	if (ret) {
1594 		rte_spinlock_unlock(&hw->lock);
1595 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1596 				      mac_addr);
1597 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1598 			 ret);
1599 		return ret;
1600 	}
1601 
1602 	if (idx == 0)
1603 		hw->mac.default_addr_setted = true;
1604 	rte_spinlock_unlock(&hw->lock);
1605 
1606 	return ret;
1607 }
1608 
1609 static int
1610 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1611 {
1612 	struct hns3_mac_vlan_tbl_entry_cmd req;
1613 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1614 	int ret;
1615 
1616 	/* check if mac addr is valid */
1617 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1618 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1619 				      mac_addr);
1620 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1621 			 mac_str);
1622 		return -EINVAL;
1623 	}
1624 
1625 	memset(&req, 0, sizeof(req));
1626 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1627 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1628 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1629 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1630 		return 0;
1631 	else if (ret == 0)
1632 		hns3_update_umv_space(hw, true);
1633 
1634 	return ret;
1635 }
1636 
1637 static void
1638 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1639 {
1640 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1641 	/* index will be checked by upper level rte interface */
1642 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1643 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1644 	int ret;
1645 
1646 	rte_spinlock_lock(&hw->lock);
1647 
1648 	if (rte_is_multicast_ether_addr(mac_addr))
1649 		ret = hns3_remove_mc_addr_common(hw, mac_addr);
1650 	else
1651 		ret = hns3_remove_uc_addr_common(hw, mac_addr);
1652 	rte_spinlock_unlock(&hw->lock);
1653 	if (ret) {
1654 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1655 				      mac_addr);
1656 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1657 			 ret);
1658 	}
1659 }
1660 
1661 static int
1662 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1663 			  struct rte_ether_addr *mac_addr)
1664 {
1665 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1666 	struct rte_ether_addr *oaddr;
1667 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1668 	bool default_addr_setted;
1669 	bool rm_succes = false;
1670 	int ret, ret_val;
1671 
1672 	/*
1673 	 * It has been guaranteed that input parameter named mac_addr is valid
1674 	 * address in the rte layer of DPDK framework.
1675 	 */
1676 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1677 	default_addr_setted = hw->mac.default_addr_setted;
1678 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1679 		return 0;
1680 
1681 	rte_spinlock_lock(&hw->lock);
1682 	if (default_addr_setted) {
1683 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1684 		if (ret) {
1685 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1686 					      oaddr);
1687 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1688 				  mac_str, ret);
1689 			rm_succes = false;
1690 		} else
1691 			rm_succes = true;
1692 	}
1693 
1694 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1695 	if (ret) {
1696 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1697 				      mac_addr);
1698 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1699 		goto err_add_uc_addr;
1700 	}
1701 
1702 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1703 	if (ret) {
1704 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1705 		goto err_pause_addr_cfg;
1706 	}
1707 
1708 	rte_ether_addr_copy(mac_addr,
1709 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1710 	hw->mac.default_addr_setted = true;
1711 	rte_spinlock_unlock(&hw->lock);
1712 
1713 	return 0;
1714 
1715 err_pause_addr_cfg:
1716 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1717 	if (ret_val) {
1718 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1719 				      mac_addr);
1720 		hns3_warn(hw,
1721 			  "Failed to roll back to del setted mac addr(%s): %d",
1722 			  mac_str, ret_val);
1723 	}
1724 
1725 err_add_uc_addr:
1726 	if (rm_succes) {
1727 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1728 		if (ret_val) {
1729 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1730 					      oaddr);
1731 			hns3_warn(hw,
1732 				  "Failed to restore old uc mac addr(%s): %d",
1733 				  mac_str, ret_val);
1734 			hw->mac.default_addr_setted = false;
1735 		}
1736 	}
1737 	rte_spinlock_unlock(&hw->lock);
1738 
1739 	return ret;
1740 }
1741 
1742 static int
1743 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1744 {
1745 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1746 	struct hns3_hw *hw = &hns->hw;
1747 	struct rte_ether_addr *addr;
1748 	int err = 0;
1749 	int ret;
1750 	int i;
1751 
1752 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1753 		addr = &hw->data->mac_addrs[i];
1754 		if (rte_is_zero_ether_addr(addr))
1755 			continue;
1756 		if (rte_is_multicast_ether_addr(addr))
1757 			ret = del ? hns3_remove_mc_addr(hw, addr) :
1758 			      hns3_add_mc_addr(hw, addr);
1759 		else
1760 			ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1761 			      hns3_add_uc_addr_common(hw, addr);
1762 
1763 		if (ret) {
1764 			err = ret;
1765 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1766 					      addr);
1767 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1768 				 "ret = %d.", del ? "remove" : "restore",
1769 				 mac_str, i, ret);
1770 		}
1771 	}
1772 	return err;
1773 }
1774 
1775 static void
1776 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1777 {
1778 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1779 	uint8_t word_num;
1780 	uint8_t bit_num;
1781 
1782 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1783 		word_num = vfid / 32;
1784 		bit_num = vfid % 32;
1785 		if (clr)
1786 			desc[1].data[word_num] &=
1787 			    rte_cpu_to_le_32(~(1UL << bit_num));
1788 		else
1789 			desc[1].data[word_num] |=
1790 			    rte_cpu_to_le_32(1UL << bit_num);
1791 	} else {
1792 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1793 		bit_num = vfid % 32;
1794 		if (clr)
1795 			desc[2].data[word_num] &=
1796 			    rte_cpu_to_le_32(~(1UL << bit_num));
1797 		else
1798 			desc[2].data[word_num] |=
1799 			    rte_cpu_to_le_32(1UL << bit_num);
1800 	}
1801 }
1802 
1803 static int
1804 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1805 {
1806 	struct hns3_mac_vlan_tbl_entry_cmd req;
1807 	struct hns3_cmd_desc desc[3];
1808 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1809 	uint8_t vf_id;
1810 	int ret;
1811 
1812 	/* Check if mac addr is valid */
1813 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1814 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1815 				      mac_addr);
1816 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1817 			 mac_str);
1818 		return -EINVAL;
1819 	}
1820 
1821 	memset(&req, 0, sizeof(req));
1822 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1823 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1824 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1825 	if (ret) {
1826 		/* This mac addr do not exist, add new entry for it */
1827 		memset(desc[0].data, 0, sizeof(desc[0].data));
1828 		memset(desc[1].data, 0, sizeof(desc[0].data));
1829 		memset(desc[2].data, 0, sizeof(desc[0].data));
1830 	}
1831 
1832 	/*
1833 	 * In current version VF is not supported when PF is driven by DPDK
1834 	 * driver, just need to configure parameters for PF vport.
1835 	 */
1836 	vf_id = HNS3_PF_FUNC_ID;
1837 	hns3_update_desc_vfid(desc, vf_id, false);
1838 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1839 	if (ret) {
1840 		if (ret == -ENOSPC)
1841 			hns3_err(hw, "mc mac vlan table is full");
1842 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1843 				      mac_addr);
1844 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1845 	}
1846 
1847 	return ret;
1848 }
1849 
1850 static int
1851 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1852 {
1853 	struct hns3_mac_vlan_tbl_entry_cmd req;
1854 	struct hns3_cmd_desc desc[3];
1855 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1856 	uint8_t vf_id;
1857 	int ret;
1858 
1859 	/* Check if mac addr is valid */
1860 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1861 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1862 				      mac_addr);
1863 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1864 			 mac_str);
1865 		return -EINVAL;
1866 	}
1867 
1868 	memset(&req, 0, sizeof(req));
1869 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1870 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1871 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1872 	if (ret == 0) {
1873 		/*
1874 		 * This mac addr exist, remove this handle's VFID for it.
1875 		 * In current version VF is not supported when PF is driven by
1876 		 * DPDK driver, just need to configure parameters for PF vport.
1877 		 */
1878 		vf_id = HNS3_PF_FUNC_ID;
1879 		hns3_update_desc_vfid(desc, vf_id, true);
1880 
1881 		/* All the vfid is zero, so need to delete this entry */
1882 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1883 	} else if (ret == -ENOENT) {
1884 		/* This mac addr doesn't exist. */
1885 		return 0;
1886 	}
1887 
1888 	if (ret) {
1889 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1890 				      mac_addr);
1891 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1892 	}
1893 
1894 	return ret;
1895 }
1896 
1897 static int
1898 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1899 			   struct rte_ether_addr *mc_addr_set,
1900 			   uint32_t nb_mc_addr)
1901 {
1902 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1903 	struct rte_ether_addr *addr;
1904 	uint32_t i;
1905 	uint32_t j;
1906 
1907 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1908 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
1909 			 "invalid. valid range: 0~%d",
1910 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1911 		return -EINVAL;
1912 	}
1913 
1914 	/* Check if input mac addresses are valid */
1915 	for (i = 0; i < nb_mc_addr; i++) {
1916 		addr = &mc_addr_set[i];
1917 		if (!rte_is_multicast_ether_addr(addr)) {
1918 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1919 					      addr);
1920 			hns3_err(hw,
1921 				 "failed to set mc mac addr, addr(%s) invalid.",
1922 				 mac_str);
1923 			return -EINVAL;
1924 		}
1925 
1926 		/* Check if there are duplicate addresses */
1927 		for (j = i + 1; j < nb_mc_addr; j++) {
1928 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1929 				rte_ether_format_addr(mac_str,
1930 						      RTE_ETHER_ADDR_FMT_SIZE,
1931 						      addr);
1932 				hns3_err(hw, "failed to set mc mac addr, "
1933 					 "addrs invalid. two same addrs(%s).",
1934 					 mac_str);
1935 				return -EINVAL;
1936 			}
1937 		}
1938 
1939 		/*
1940 		 * Check if there are duplicate addresses between mac_addrs
1941 		 * and mc_addr_set
1942 		 */
1943 		for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1944 			if (rte_is_same_ether_addr(addr,
1945 						   &hw->data->mac_addrs[j])) {
1946 				rte_ether_format_addr(mac_str,
1947 						      RTE_ETHER_ADDR_FMT_SIZE,
1948 						      addr);
1949 				hns3_err(hw, "failed to set mc mac addr, "
1950 					 "addrs invalid. addrs(%s) has already "
1951 					 "configured in mac_addr add API",
1952 					 mac_str);
1953 				return -EINVAL;
1954 			}
1955 		}
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 static void
1962 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
1963 			   struct rte_ether_addr *mc_addr_set,
1964 			   int mc_addr_num,
1965 			   struct rte_ether_addr *reserved_addr_list,
1966 			   int *reserved_addr_num,
1967 			   struct rte_ether_addr *add_addr_list,
1968 			   int *add_addr_num,
1969 			   struct rte_ether_addr *rm_addr_list,
1970 			   int *rm_addr_num)
1971 {
1972 	struct rte_ether_addr *addr;
1973 	int current_addr_num;
1974 	int reserved_num = 0;
1975 	int add_num = 0;
1976 	int rm_num = 0;
1977 	int num;
1978 	int i;
1979 	int j;
1980 	bool same_addr;
1981 
1982 	/* Calculate the mc mac address list that should be removed */
1983 	current_addr_num = hw->mc_addrs_num;
1984 	for (i = 0; i < current_addr_num; i++) {
1985 		addr = &hw->mc_addrs[i];
1986 		same_addr = false;
1987 		for (j = 0; j < mc_addr_num; j++) {
1988 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1989 				same_addr = true;
1990 				break;
1991 			}
1992 		}
1993 
1994 		if (!same_addr) {
1995 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
1996 			rm_num++;
1997 		} else {
1998 			rte_ether_addr_copy(addr,
1999 					    &reserved_addr_list[reserved_num]);
2000 			reserved_num++;
2001 		}
2002 	}
2003 
2004 	/* Calculate the mc mac address list that should be added */
2005 	for (i = 0; i < mc_addr_num; i++) {
2006 		addr = &mc_addr_set[i];
2007 		same_addr = false;
2008 		for (j = 0; j < current_addr_num; j++) {
2009 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2010 				same_addr = true;
2011 				break;
2012 			}
2013 		}
2014 
2015 		if (!same_addr) {
2016 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2017 			add_num++;
2018 		}
2019 	}
2020 
2021 	/* Reorder the mc mac address list maintained by driver */
2022 	for (i = 0; i < reserved_num; i++)
2023 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2024 
2025 	for (i = 0; i < rm_num; i++) {
2026 		num = reserved_num + i;
2027 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2028 	}
2029 
2030 	*reserved_addr_num = reserved_num;
2031 	*add_addr_num = add_num;
2032 	*rm_addr_num = rm_num;
2033 }
2034 
2035 static int
2036 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2037 			  struct rte_ether_addr *mc_addr_set,
2038 			  uint32_t nb_mc_addr)
2039 {
2040 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2041 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2042 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2043 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2044 	struct rte_ether_addr *addr;
2045 	int reserved_addr_num;
2046 	int add_addr_num;
2047 	int rm_addr_num;
2048 	int mc_addr_num;
2049 	int num;
2050 	int ret;
2051 	int i;
2052 
2053 	/* Check if input parameters are valid */
2054 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2055 	if (ret)
2056 		return ret;
2057 
2058 	rte_spinlock_lock(&hw->lock);
2059 
2060 	/*
2061 	 * Calculate the mc mac address lists those should be removed and be
2062 	 * added, Reorder the mc mac address list maintained by driver.
2063 	 */
2064 	mc_addr_num = (int)nb_mc_addr;
2065 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2066 				   reserved_addr_list, &reserved_addr_num,
2067 				   add_addr_list, &add_addr_num,
2068 				   rm_addr_list, &rm_addr_num);
2069 
2070 	/* Remove mc mac addresses */
2071 	for (i = 0; i < rm_addr_num; i++) {
2072 		num = rm_addr_num - i - 1;
2073 		addr = &rm_addr_list[num];
2074 		ret = hns3_remove_mc_addr(hw, addr);
2075 		if (ret) {
2076 			rte_spinlock_unlock(&hw->lock);
2077 			return ret;
2078 		}
2079 		hw->mc_addrs_num--;
2080 	}
2081 
2082 	/* Add mc mac addresses */
2083 	for (i = 0; i < add_addr_num; i++) {
2084 		addr = &add_addr_list[i];
2085 		ret = hns3_add_mc_addr(hw, addr);
2086 		if (ret) {
2087 			rte_spinlock_unlock(&hw->lock);
2088 			return ret;
2089 		}
2090 
2091 		num = reserved_addr_num + i;
2092 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2093 		hw->mc_addrs_num++;
2094 	}
2095 	rte_spinlock_unlock(&hw->lock);
2096 
2097 	return 0;
2098 }
2099 
2100 static int
2101 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2102 {
2103 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2104 	struct hns3_hw *hw = &hns->hw;
2105 	struct rte_ether_addr *addr;
2106 	int err = 0;
2107 	int ret;
2108 	int i;
2109 
2110 	for (i = 0; i < hw->mc_addrs_num; i++) {
2111 		addr = &hw->mc_addrs[i];
2112 		if (!rte_is_multicast_ether_addr(addr))
2113 			continue;
2114 		if (del)
2115 			ret = hns3_remove_mc_addr(hw, addr);
2116 		else
2117 			ret = hns3_add_mc_addr(hw, addr);
2118 		if (ret) {
2119 			err = ret;
2120 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2121 					      addr);
2122 			hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2123 				 del ? "Remove" : "Restore", mac_str, ret);
2124 		}
2125 	}
2126 	return err;
2127 }
2128 
2129 static int
2130 hns3_check_mq_mode(struct rte_eth_dev *dev)
2131 {
2132 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2133 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2134 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2135 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2136 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2137 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2138 	uint8_t num_tc;
2139 	int max_tc = 0;
2140 	int i;
2141 
2142 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2143 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2144 
2145 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2146 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2147 			 "rx_mq_mode = %d", rx_mq_mode);
2148 		return -EINVAL;
2149 	}
2150 
2151 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2152 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2153 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2154 			 "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2155 			 rx_mq_mode, tx_mq_mode);
2156 		return -EINVAL;
2157 	}
2158 
2159 	if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2160 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2161 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2162 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2163 			return -EINVAL;
2164 		}
2165 
2166 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2167 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2168 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2169 				 "nb_tcs(%d) != %d or %d in rx direction.",
2170 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2171 			return -EINVAL;
2172 		}
2173 
2174 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2175 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2176 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2177 			return -EINVAL;
2178 		}
2179 
2180 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2181 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2182 				hns3_err(hw, "dcb_tc[%d] = %d in rx direction, "
2183 					 "is not equal to one in tx direction.",
2184 					 i, dcb_rx_conf->dcb_tc[i]);
2185 				return -EINVAL;
2186 			}
2187 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2188 				max_tc = dcb_rx_conf->dcb_tc[i];
2189 		}
2190 
2191 		num_tc = max_tc + 1;
2192 		if (num_tc > dcb_rx_conf->nb_tcs) {
2193 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2194 				 num_tc, dcb_rx_conf->nb_tcs);
2195 			return -EINVAL;
2196 		}
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 static int
2203 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2204 {
2205 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2206 
2207 	if (!hns3_dev_dcb_supported(hw)) {
2208 		hns3_err(hw, "this port does not support dcb configurations.");
2209 		return -EOPNOTSUPP;
2210 	}
2211 
2212 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2213 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2214 		return -EOPNOTSUPP;
2215 	}
2216 
2217 	/* Check multiple queue mode */
2218 	return hns3_check_mq_mode(dev);
2219 }
2220 
2221 static int
2222 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id, bool mmap,
2223 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2224 {
2225 	struct hns3_cmd_desc desc;
2226 	struct hns3_ctrl_vector_chain_cmd *req =
2227 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2228 	enum hns3_cmd_status status;
2229 	enum hns3_opcode_type op;
2230 	uint16_t tqp_type_and_id = 0;
2231 	const char *op_str;
2232 	uint16_t type;
2233 	uint16_t gl;
2234 
2235 	op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2236 	hns3_cmd_setup_basic_desc(&desc, op, false);
2237 	req->int_vector_id = vector_id;
2238 
2239 	if (queue_type == HNS3_RING_TYPE_RX)
2240 		gl = HNS3_RING_GL_RX;
2241 	else
2242 		gl = HNS3_RING_GL_TX;
2243 
2244 	type = queue_type;
2245 
2246 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2247 		       type);
2248 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2249 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2250 		       gl);
2251 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2252 	req->int_cause_num = 1;
2253 	op_str = mmap ? "Map" : "Unmap";
2254 	status = hns3_cmd_send(hw, &desc, 1);
2255 	if (status) {
2256 		hns3_err(hw, "%s TQP %d fail, vector_id is %d, status is %d.",
2257 			 op_str, queue_id, req->int_vector_id, status);
2258 		return status;
2259 	}
2260 
2261 	return 0;
2262 }
2263 
2264 static int
2265 hns3_init_ring_with_vector(struct hns3_hw *hw)
2266 {
2267 	uint16_t vec;
2268 	int ret;
2269 	int i;
2270 
2271 	/*
2272 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2273 	 * function, vector 1~N can be used respectively for the queues of the
2274 	 * function. Tx and Rx queues with the same number share the interrupt
2275 	 * vector. In the initialization clearing the all hardware mapping
2276 	 * relationship configurations between queues and interrupt vectors is
2277 	 * needed, so some error caused by the residual configurations, such as
2278 	 * the unexpected Tx interrupt, can be avoid.
2279 	 */
2280 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2281 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2282 		vec = vec - 1; /* the last interrupt is reserved */
2283 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2284 	for (i = 0; i < hw->intr_tqps_num; i++) {
2285 		/*
2286 		 * Set gap limiter/rate limiter/quanity limiter algorithm
2287 		 * configuration for interrupt coalesce of queue's interrupt.
2288 		 */
2289 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2290 				       HNS3_TQP_INTR_GL_DEFAULT);
2291 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2292 				       HNS3_TQP_INTR_GL_DEFAULT);
2293 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2294 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2295 
2296 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2297 						 HNS3_RING_TYPE_TX, i);
2298 		if (ret) {
2299 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2300 					  "vector: %d, ret=%d", i, vec, ret);
2301 			return ret;
2302 		}
2303 
2304 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2305 						 HNS3_RING_TYPE_RX, i);
2306 		if (ret) {
2307 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2308 					  "vector: %d, ret=%d", i, vec, ret);
2309 			return ret;
2310 		}
2311 	}
2312 
2313 	return 0;
2314 }
2315 
2316 static int
2317 hns3_dev_configure(struct rte_eth_dev *dev)
2318 {
2319 	struct hns3_adapter *hns = dev->data->dev_private;
2320 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2321 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2322 	struct hns3_hw *hw = &hns->hw;
2323 	struct hns3_rss_conf *rss_cfg = &hw->rss_info;
2324 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2325 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2326 	struct rte_eth_rss_conf rss_conf;
2327 	uint16_t mtu;
2328 	bool gro_en;
2329 	int ret;
2330 
2331 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2332 
2333 	/*
2334 	 * Some versions of hardware network engine does not support
2335 	 * individually enable/disable/reset the Tx or Rx queue. These devices
2336 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
2337 	 * numbers of Tx queues allocated by upper applications are not equal to
2338 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2339 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2340 	 * work as usual. But these fake queues are imperceptible, and can not
2341 	 * be used by upper applications.
2342 	 */
2343 	if (!hns3_dev_indep_txrx_supported(hw)) {
2344 		ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2345 		if (ret) {
2346 			hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
2347 				 ret);
2348 			return ret;
2349 		}
2350 	}
2351 
2352 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2353 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2354 		hns3_err(hw, "setting link speed/duplex not supported");
2355 		ret = -EINVAL;
2356 		goto cfg_err;
2357 	}
2358 
2359 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2360 		ret = hns3_check_dcb_cfg(dev);
2361 		if (ret)
2362 			goto cfg_err;
2363 	}
2364 
2365 	/* When RSS is not configured, redirect the packet queue 0 */
2366 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2367 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2368 		rss_conf = conf->rx_adv_conf.rss_conf;
2369 		hw->rss_dis_flag = false;
2370 		if (rss_conf.rss_key == NULL) {
2371 			rss_conf.rss_key = rss_cfg->key;
2372 			rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
2373 		}
2374 
2375 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2376 		if (ret)
2377 			goto cfg_err;
2378 	}
2379 
2380 	/*
2381 	 * If jumbo frames are enabled, MTU needs to be refreshed
2382 	 * according to the maximum RX packet length.
2383 	 */
2384 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2385 		/*
2386 		 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
2387 		 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
2388 		 * can safely assign to "uint16_t" type variable.
2389 		 */
2390 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
2391 		ret = hns3_dev_mtu_set(dev, mtu);
2392 		if (ret)
2393 			goto cfg_err;
2394 		dev->data->mtu = mtu;
2395 	}
2396 
2397 	ret = hns3_dev_configure_vlan(dev);
2398 	if (ret)
2399 		goto cfg_err;
2400 
2401 	/* config hardware GRO */
2402 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2403 	ret = hns3_config_gro(hw, gro_en);
2404 	if (ret)
2405 		goto cfg_err;
2406 
2407 	hns->rx_simple_allowed = true;
2408 	hns->rx_vec_allowed = true;
2409 	hns->tx_simple_allowed = true;
2410 	hns->tx_vec_allowed = true;
2411 
2412 	hns3_init_rx_ptype_tble(dev);
2413 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2414 
2415 	return 0;
2416 
2417 cfg_err:
2418 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2419 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2420 
2421 	return ret;
2422 }
2423 
2424 static int
2425 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2426 {
2427 	struct hns3_config_max_frm_size_cmd *req;
2428 	struct hns3_cmd_desc desc;
2429 
2430 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2431 
2432 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2433 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2434 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2435 
2436 	return hns3_cmd_send(hw, &desc, 1);
2437 }
2438 
2439 static int
2440 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2441 {
2442 	int ret;
2443 
2444 	ret = hns3_set_mac_mtu(hw, mps);
2445 	if (ret) {
2446 		hns3_err(hw, "Failed to set mtu, ret = %d", ret);
2447 		return ret;
2448 	}
2449 
2450 	ret = hns3_buffer_alloc(hw);
2451 	if (ret)
2452 		hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
2453 
2454 	return ret;
2455 }
2456 
2457 static int
2458 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2459 {
2460 	struct hns3_adapter *hns = dev->data->dev_private;
2461 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2462 	struct hns3_hw *hw = &hns->hw;
2463 	bool is_jumbo_frame;
2464 	int ret;
2465 
2466 	if (dev->data->dev_started) {
2467 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2468 			 "before configuration", dev->data->port_id);
2469 		return -EBUSY;
2470 	}
2471 
2472 	rte_spinlock_lock(&hw->lock);
2473 	is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
2474 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2475 
2476 	/*
2477 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2478 	 * assign to "uint16_t" type variable.
2479 	 */
2480 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2481 	if (ret) {
2482 		rte_spinlock_unlock(&hw->lock);
2483 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2484 			 dev->data->port_id, mtu, ret);
2485 		return ret;
2486 	}
2487 	hns->pf.mps = (uint16_t)frame_size;
2488 	if (is_jumbo_frame)
2489 		dev->data->dev_conf.rxmode.offloads |=
2490 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2491 	else
2492 		dev->data->dev_conf.rxmode.offloads &=
2493 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2494 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2495 	rte_spinlock_unlock(&hw->lock);
2496 
2497 	return 0;
2498 }
2499 
2500 static int
2501 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2502 {
2503 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2504 	struct hns3_hw *hw = &hns->hw;
2505 	uint16_t queue_num = hw->tqps_num;
2506 
2507 	/*
2508 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2509 	 * MSI-X interrupt resources of the hardware.
2510 	 */
2511 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2512 		queue_num = hw->intr_tqps_num;
2513 
2514 	info->max_rx_queues = queue_num;
2515 	info->max_tx_queues = hw->tqps_num;
2516 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2517 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2518 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2519 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2520 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2521 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2522 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2523 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2524 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2525 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2526 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2527 				 DEV_RX_OFFLOAD_KEEP_CRC |
2528 				 DEV_RX_OFFLOAD_SCATTER |
2529 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2530 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2531 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
2532 				 DEV_RX_OFFLOAD_RSS_HASH |
2533 				 DEV_RX_OFFLOAD_TCP_LRO);
2534 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2535 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2536 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2537 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2538 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2539 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2540 				 DEV_TX_OFFLOAD_TCP_TSO |
2541 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2542 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
2543 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2544 				 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2545 				 hns3_txvlan_cap_get(hw));
2546 
2547 	if (hns3_dev_indep_txrx_supported(hw))
2548 		info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2549 				 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2550 
2551 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2552 		.nb_max = HNS3_MAX_RING_DESC,
2553 		.nb_min = HNS3_MIN_RING_DESC,
2554 		.nb_align = HNS3_ALIGN_RING_DESC,
2555 	};
2556 
2557 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2558 		.nb_max = HNS3_MAX_RING_DESC,
2559 		.nb_min = HNS3_MIN_RING_DESC,
2560 		.nb_align = HNS3_ALIGN_RING_DESC,
2561 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2562 		.nb_mtu_seg_max = hw->max_non_tso_bd_num,
2563 	};
2564 
2565 	info->default_rxconf = (struct rte_eth_rxconf) {
2566 		.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2567 		/*
2568 		 * If there are no available Rx buffer descriptors, incoming
2569 		 * packets are always dropped by hardware based on hns3 network
2570 		 * engine.
2571 		 */
2572 		.rx_drop_en = 1,
2573 		.offloads = 0,
2574 	};
2575 	info->default_txconf = (struct rte_eth_txconf) {
2576 		.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2577 		.offloads = 0,
2578 	};
2579 
2580 	info->vmdq_queue_num = 0;
2581 
2582 	info->reta_size = HNS3_RSS_IND_TBL_SIZE;
2583 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2584 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2585 
2586 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2587 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2588 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2589 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2590 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2591 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2592 
2593 	return 0;
2594 }
2595 
2596 static int
2597 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2598 		    size_t fw_size)
2599 {
2600 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2601 	struct hns3_hw *hw = &hns->hw;
2602 	uint32_t version = hw->fw_version;
2603 	int ret;
2604 
2605 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2606 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2607 				      HNS3_FW_VERSION_BYTE3_S),
2608 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2609 				      HNS3_FW_VERSION_BYTE2_S),
2610 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2611 				      HNS3_FW_VERSION_BYTE1_S),
2612 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2613 				      HNS3_FW_VERSION_BYTE0_S));
2614 	ret += 1; /* add the size of '\0' */
2615 	if (fw_size < (uint32_t)ret)
2616 		return ret;
2617 	else
2618 		return 0;
2619 }
2620 
2621 static int
2622 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2623 		     __rte_unused int wait_to_complete)
2624 {
2625 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2626 	struct hns3_hw *hw = &hns->hw;
2627 	struct hns3_mac *mac = &hw->mac;
2628 	struct rte_eth_link new_link;
2629 
2630 	if (!hns3_is_reset_pending(hns)) {
2631 		hns3_update_speed_duplex(eth_dev);
2632 		hns3_update_link_status(hw);
2633 	}
2634 
2635 	memset(&new_link, 0, sizeof(new_link));
2636 	switch (mac->link_speed) {
2637 	case ETH_SPEED_NUM_10M:
2638 	case ETH_SPEED_NUM_100M:
2639 	case ETH_SPEED_NUM_1G:
2640 	case ETH_SPEED_NUM_10G:
2641 	case ETH_SPEED_NUM_25G:
2642 	case ETH_SPEED_NUM_40G:
2643 	case ETH_SPEED_NUM_50G:
2644 	case ETH_SPEED_NUM_100G:
2645 	case ETH_SPEED_NUM_200G:
2646 		new_link.link_speed = mac->link_speed;
2647 		break;
2648 	default:
2649 		new_link.link_speed = ETH_SPEED_NUM_100M;
2650 		break;
2651 	}
2652 
2653 	new_link.link_duplex = mac->link_duplex;
2654 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2655 	new_link.link_autoneg =
2656 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2657 
2658 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2659 }
2660 
2661 static int
2662 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2663 {
2664 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2665 	struct hns3_pf *pf = &hns->pf;
2666 
2667 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2668 		return -EINVAL;
2669 
2670 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2671 
2672 	return 0;
2673 }
2674 
2675 static int
2676 hns3_query_function_status(struct hns3_hw *hw)
2677 {
2678 #define HNS3_QUERY_MAX_CNT		10
2679 #define HNS3_QUERY_SLEEP_MSCOEND	1
2680 	struct hns3_func_status_cmd *req;
2681 	struct hns3_cmd_desc desc;
2682 	int timeout = 0;
2683 	int ret;
2684 
2685 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2686 	req = (struct hns3_func_status_cmd *)desc.data;
2687 
2688 	do {
2689 		ret = hns3_cmd_send(hw, &desc, 1);
2690 		if (ret) {
2691 			PMD_INIT_LOG(ERR, "query function status failed %d",
2692 				     ret);
2693 			return ret;
2694 		}
2695 
2696 		/* Check pf reset is done */
2697 		if (req->pf_state)
2698 			break;
2699 
2700 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2701 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2702 
2703 	return hns3_parse_func_status(hw, req);
2704 }
2705 
2706 static int
2707 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2708 {
2709 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2710 	struct hns3_pf *pf = &hns->pf;
2711 
2712 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2713 		/*
2714 		 * The total_tqps_num obtained from firmware is maximum tqp
2715 		 * numbers of this port, which should be used for PF and VFs.
2716 		 * There is no need for pf to have so many tqp numbers in
2717 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2718 		 * coming from config file, is assigned to maximum queue number
2719 		 * for the PF of this port by user. So users can modify the
2720 		 * maximum queue number of PF according to their own application
2721 		 * scenarios, which is more flexible to use. In addition, many
2722 		 * memories can be saved due to allocating queue statistics
2723 		 * room according to the actual number of queues required. The
2724 		 * maximum queue number of PF for network engine with
2725 		 * revision_id greater than 0x30 is assigned by config file.
2726 		 */
2727 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2728 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2729 				 "must be greater than 0.",
2730 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2731 			return -EINVAL;
2732 		}
2733 
2734 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2735 				       hw->total_tqps_num);
2736 	} else {
2737 		/*
2738 		 * Due to the limitation on the number of PF interrupts
2739 		 * available, the maximum queue number assigned to PF on
2740 		 * the network engine with revision_id 0x21 is 64.
2741 		 */
2742 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2743 				       HNS3_MAX_TQP_NUM_HIP08_PF);
2744 	}
2745 
2746 	return 0;
2747 }
2748 
2749 static int
2750 hns3_query_pf_resource(struct hns3_hw *hw)
2751 {
2752 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2753 	struct hns3_pf *pf = &hns->pf;
2754 	struct hns3_pf_res_cmd *req;
2755 	struct hns3_cmd_desc desc;
2756 	int ret;
2757 
2758 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2759 	ret = hns3_cmd_send(hw, &desc, 1);
2760 	if (ret) {
2761 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2762 		return ret;
2763 	}
2764 
2765 	req = (struct hns3_pf_res_cmd *)desc.data;
2766 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2767 			     rte_le_to_cpu_16(req->ext_tqp_num);
2768 	ret = hns3_get_pf_max_tqp_num(hw);
2769 	if (ret)
2770 		return ret;
2771 
2772 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2773 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2774 
2775 	if (req->tx_buf_size)
2776 		pf->tx_buf_size =
2777 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2778 	else
2779 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2780 
2781 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2782 
2783 	if (req->dv_buf_size)
2784 		pf->dv_buf_size =
2785 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2786 	else
2787 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2788 
2789 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2790 
2791 	hw->num_msi =
2792 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2793 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2794 
2795 	return 0;
2796 }
2797 
2798 static void
2799 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2800 {
2801 	struct hns3_cfg_param_cmd *req;
2802 	uint64_t mac_addr_tmp_high;
2803 	uint8_t ext_rss_size_max;
2804 	uint64_t mac_addr_tmp;
2805 	uint32_t i;
2806 
2807 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2808 
2809 	/* get the configuration */
2810 	cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2811 					     HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2812 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2813 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2814 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2815 					   HNS3_CFG_TQP_DESC_N_M,
2816 					   HNS3_CFG_TQP_DESC_N_S);
2817 
2818 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2819 				       HNS3_CFG_PHY_ADDR_M,
2820 				       HNS3_CFG_PHY_ADDR_S);
2821 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2822 					 HNS3_CFG_MEDIA_TP_M,
2823 					 HNS3_CFG_MEDIA_TP_S);
2824 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2825 					 HNS3_CFG_RX_BUF_LEN_M,
2826 					 HNS3_CFG_RX_BUF_LEN_S);
2827 	/* get mac address */
2828 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2829 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2830 					   HNS3_CFG_MAC_ADDR_H_M,
2831 					   HNS3_CFG_MAC_ADDR_H_S);
2832 
2833 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2834 
2835 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2836 					    HNS3_CFG_DEFAULT_SPEED_M,
2837 					    HNS3_CFG_DEFAULT_SPEED_S);
2838 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2839 					   HNS3_CFG_RSS_SIZE_M,
2840 					   HNS3_CFG_RSS_SIZE_S);
2841 
2842 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2843 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2844 
2845 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2846 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2847 
2848 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2849 					    HNS3_CFG_SPEED_ABILITY_M,
2850 					    HNS3_CFG_SPEED_ABILITY_S);
2851 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2852 					HNS3_CFG_UMV_TBL_SPACE_M,
2853 					HNS3_CFG_UMV_TBL_SPACE_S);
2854 	if (!cfg->umv_space)
2855 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2856 
2857 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2858 					       HNS3_CFG_EXT_RSS_SIZE_M,
2859 					       HNS3_CFG_EXT_RSS_SIZE_S);
2860 
2861 	/*
2862 	 * Field ext_rss_size_max obtained from firmware will be more flexible
2863 	 * for future changes and expansions, which is an exponent of 2, instead
2864 	 * of reading out directly. If this field is not zero, hns3 PF PMD
2865 	 * driver uses it as rss_size_max under one TC. Device, whose revision
2866 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2867 	 * maximum number of queues supported under a TC through this field.
2868 	 */
2869 	if (ext_rss_size_max)
2870 		cfg->rss_size_max = 1U << ext_rss_size_max;
2871 }
2872 
2873 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2874  * @hw: pointer to struct hns3_hw
2875  * @hcfg: the config structure to be getted
2876  */
2877 static int
2878 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2879 {
2880 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2881 	struct hns3_cfg_param_cmd *req;
2882 	uint32_t offset;
2883 	uint32_t i;
2884 	int ret;
2885 
2886 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2887 		offset = 0;
2888 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2889 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2890 					  true);
2891 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2892 			       i * HNS3_CFG_RD_LEN_BYTES);
2893 		/* Len should be divided by 4 when send to hardware */
2894 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2895 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2896 		req->offset = rte_cpu_to_le_32(offset);
2897 	}
2898 
2899 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2900 	if (ret) {
2901 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2902 		return ret;
2903 	}
2904 
2905 	hns3_parse_cfg(hcfg, desc);
2906 
2907 	return 0;
2908 }
2909 
2910 static int
2911 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2912 {
2913 	switch (speed_cmd) {
2914 	case HNS3_CFG_SPEED_10M:
2915 		*speed = ETH_SPEED_NUM_10M;
2916 		break;
2917 	case HNS3_CFG_SPEED_100M:
2918 		*speed = ETH_SPEED_NUM_100M;
2919 		break;
2920 	case HNS3_CFG_SPEED_1G:
2921 		*speed = ETH_SPEED_NUM_1G;
2922 		break;
2923 	case HNS3_CFG_SPEED_10G:
2924 		*speed = ETH_SPEED_NUM_10G;
2925 		break;
2926 	case HNS3_CFG_SPEED_25G:
2927 		*speed = ETH_SPEED_NUM_25G;
2928 		break;
2929 	case HNS3_CFG_SPEED_40G:
2930 		*speed = ETH_SPEED_NUM_40G;
2931 		break;
2932 	case HNS3_CFG_SPEED_50G:
2933 		*speed = ETH_SPEED_NUM_50G;
2934 		break;
2935 	case HNS3_CFG_SPEED_100G:
2936 		*speed = ETH_SPEED_NUM_100G;
2937 		break;
2938 	case HNS3_CFG_SPEED_200G:
2939 		*speed = ETH_SPEED_NUM_200G;
2940 		break;
2941 	default:
2942 		return -EINVAL;
2943 	}
2944 
2945 	return 0;
2946 }
2947 
2948 static void
2949 hns3_set_default_dev_specifications(struct hns3_hw *hw)
2950 {
2951 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
2952 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
2953 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
2954 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
2955 }
2956 
2957 static void
2958 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
2959 {
2960 	struct hns3_dev_specs_0_cmd *req0;
2961 
2962 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
2963 
2964 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
2965 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
2966 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
2967 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
2968 }
2969 
2970 static int
2971 hns3_query_dev_specifications(struct hns3_hw *hw)
2972 {
2973 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
2974 	int ret;
2975 	int i;
2976 
2977 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2978 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
2979 					  true);
2980 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
2981 	}
2982 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
2983 
2984 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
2985 	if (ret)
2986 		return ret;
2987 
2988 	hns3_parse_dev_specifications(hw, desc);
2989 
2990 	return 0;
2991 }
2992 
2993 static int
2994 hns3_get_capability(struct hns3_hw *hw)
2995 {
2996 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2997 	struct rte_pci_device *pci_dev;
2998 	struct hns3_pf *pf = &hns->pf;
2999 	struct rte_eth_dev *eth_dev;
3000 	uint16_t device_id;
3001 	uint8_t revision;
3002 	int ret;
3003 
3004 	eth_dev = &rte_eth_devices[hw->data->port_id];
3005 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3006 	device_id = pci_dev->id.device_id;
3007 
3008 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3009 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
3010 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3011 	    device_id == HNS3_DEV_ID_200G_RDMA)
3012 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3013 
3014 	ret = hns3_query_dev_fec_info(eth_dev);
3015 	if (ret) {
3016 		PMD_INIT_LOG(ERR,
3017 			     "failed to query FEC information, ret = %d", ret);
3018 		return ret;
3019 	}
3020 
3021 	/* Get PCI revision id */
3022 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3023 				  HNS3_PCI_REVISION_ID);
3024 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
3025 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3026 			     ret);
3027 		return -EIO;
3028 	}
3029 	hw->revision = revision;
3030 
3031 	if (revision < PCI_REVISION_ID_HIP09_A) {
3032 		hns3_set_default_dev_specifications(hw);
3033 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3034 		hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
3035 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3036 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3037 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3038 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3039 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3040 		return 0;
3041 	}
3042 
3043 	ret = hns3_query_dev_specifications(hw);
3044 	if (ret) {
3045 		PMD_INIT_LOG(ERR,
3046 			     "failed to query dev specifications, ret = %d",
3047 			     ret);
3048 		return ret;
3049 	}
3050 
3051 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3052 	hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
3053 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3054 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3055 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3056 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3057 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3058 
3059 	return 0;
3060 }
3061 
3062 static int
3063 hns3_get_board_configuration(struct hns3_hw *hw)
3064 {
3065 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3066 	struct hns3_pf *pf = &hns->pf;
3067 	struct hns3_cfg cfg;
3068 	int ret;
3069 
3070 	ret = hns3_get_board_cfg(hw, &cfg);
3071 	if (ret) {
3072 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3073 		return ret;
3074 	}
3075 
3076 	if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER &&
3077 	    !hns3_dev_copper_supported(hw)) {
3078 		PMD_INIT_LOG(ERR, "media type is copper, not supported.");
3079 		return -EOPNOTSUPP;
3080 	}
3081 
3082 	hw->mac.media_type = cfg.media_type;
3083 	hw->rss_size_max = cfg.rss_size_max;
3084 	hw->rss_dis_flag = false;
3085 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3086 	hw->mac.phy_addr = cfg.phy_addr;
3087 	hw->mac.default_addr_setted = false;
3088 	hw->num_tx_desc = cfg.tqp_desc_num;
3089 	hw->num_rx_desc = cfg.tqp_desc_num;
3090 	hw->dcb_info.num_pg = 1;
3091 	hw->dcb_info.hw_pfc_map = 0;
3092 
3093 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3094 	if (ret) {
3095 		PMD_INIT_LOG(ERR, "Get wrong speed %d, ret = %d",
3096 			     cfg.default_speed, ret);
3097 		return ret;
3098 	}
3099 
3100 	pf->tc_max = cfg.tc_num;
3101 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3102 		PMD_INIT_LOG(WARNING,
3103 			     "Get TC num(%u) from flash, set TC num to 1",
3104 			     pf->tc_max);
3105 		pf->tc_max = 1;
3106 	}
3107 
3108 	/* Dev does not support DCB */
3109 	if (!hns3_dev_dcb_supported(hw)) {
3110 		pf->tc_max = 1;
3111 		pf->pfc_max = 0;
3112 	} else
3113 		pf->pfc_max = pf->tc_max;
3114 
3115 	hw->dcb_info.num_tc = 1;
3116 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3117 				     hw->tqps_num / hw->dcb_info.num_tc);
3118 	hns3_set_bit(hw->hw_tc_map, 0, 1);
3119 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3120 
3121 	pf->wanted_umv_size = cfg.umv_space;
3122 
3123 	return ret;
3124 }
3125 
3126 static int
3127 hns3_get_configuration(struct hns3_hw *hw)
3128 {
3129 	int ret;
3130 
3131 	ret = hns3_query_function_status(hw);
3132 	if (ret) {
3133 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3134 		return ret;
3135 	}
3136 
3137 	/* Get device capability */
3138 	ret = hns3_get_capability(hw);
3139 	if (ret) {
3140 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3141 		return ret;
3142 	}
3143 
3144 	/* Get pf resource */
3145 	ret = hns3_query_pf_resource(hw);
3146 	if (ret) {
3147 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3148 		return ret;
3149 	}
3150 
3151 	ret = hns3_get_board_configuration(hw);
3152 	if (ret)
3153 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3154 
3155 	return ret;
3156 }
3157 
3158 static int
3159 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3160 		      uint16_t tqp_vid, bool is_pf)
3161 {
3162 	struct hns3_tqp_map_cmd *req;
3163 	struct hns3_cmd_desc desc;
3164 	int ret;
3165 
3166 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3167 
3168 	req = (struct hns3_tqp_map_cmd *)desc.data;
3169 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3170 	req->tqp_vf = func_id;
3171 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3172 	if (!is_pf)
3173 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3174 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3175 
3176 	ret = hns3_cmd_send(hw, &desc, 1);
3177 	if (ret)
3178 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3179 
3180 	return ret;
3181 }
3182 
3183 static int
3184 hns3_map_tqp(struct hns3_hw *hw)
3185 {
3186 	int ret;
3187 	int i;
3188 
3189 	/*
3190 	 * In current version, VF is not supported when PF is driven by DPDK
3191 	 * driver, so we assign total tqps_num tqps allocated to this port
3192 	 * to PF.
3193 	 */
3194 	for (i = 0; i < hw->total_tqps_num; i++) {
3195 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3196 		if (ret)
3197 			return ret;
3198 	}
3199 
3200 	return 0;
3201 }
3202 
3203 static int
3204 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3205 {
3206 	struct hns3_config_mac_speed_dup_cmd *req;
3207 	struct hns3_cmd_desc desc;
3208 	int ret;
3209 
3210 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3211 
3212 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3213 
3214 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3215 
3216 	switch (speed) {
3217 	case ETH_SPEED_NUM_10M:
3218 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3219 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3220 		break;
3221 	case ETH_SPEED_NUM_100M:
3222 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3223 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3224 		break;
3225 	case ETH_SPEED_NUM_1G:
3226 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3227 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3228 		break;
3229 	case ETH_SPEED_NUM_10G:
3230 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3231 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3232 		break;
3233 	case ETH_SPEED_NUM_25G:
3234 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3235 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3236 		break;
3237 	case ETH_SPEED_NUM_40G:
3238 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3239 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3240 		break;
3241 	case ETH_SPEED_NUM_50G:
3242 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3243 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3244 		break;
3245 	case ETH_SPEED_NUM_100G:
3246 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3247 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3248 		break;
3249 	case ETH_SPEED_NUM_200G:
3250 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3251 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3252 		break;
3253 	default:
3254 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3255 		return -EINVAL;
3256 	}
3257 
3258 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3259 
3260 	ret = hns3_cmd_send(hw, &desc, 1);
3261 	if (ret)
3262 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3263 
3264 	return ret;
3265 }
3266 
3267 static int
3268 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3269 {
3270 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3271 	struct hns3_pf *pf = &hns->pf;
3272 	struct hns3_priv_buf *priv;
3273 	uint32_t i, total_size;
3274 
3275 	total_size = pf->pkt_buf_size;
3276 
3277 	/* alloc tx buffer for all enabled tc */
3278 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3279 		priv = &buf_alloc->priv_buf[i];
3280 
3281 		if (hw->hw_tc_map & BIT(i)) {
3282 			if (total_size < pf->tx_buf_size)
3283 				return -ENOMEM;
3284 
3285 			priv->tx_buf_size = pf->tx_buf_size;
3286 		} else
3287 			priv->tx_buf_size = 0;
3288 
3289 		total_size -= priv->tx_buf_size;
3290 	}
3291 
3292 	return 0;
3293 }
3294 
3295 static int
3296 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3297 {
3298 /* TX buffer size is unit by 128 byte */
3299 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3300 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3301 	struct hns3_tx_buff_alloc_cmd *req;
3302 	struct hns3_cmd_desc desc;
3303 	uint32_t buf_size;
3304 	uint32_t i;
3305 	int ret;
3306 
3307 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3308 
3309 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3310 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3311 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3312 
3313 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3314 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3315 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3316 	}
3317 
3318 	ret = hns3_cmd_send(hw, &desc, 1);
3319 	if (ret)
3320 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3321 
3322 	return ret;
3323 }
3324 
3325 static int
3326 hns3_get_tc_num(struct hns3_hw *hw)
3327 {
3328 	int cnt = 0;
3329 	uint8_t i;
3330 
3331 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3332 		if (hw->hw_tc_map & BIT(i))
3333 			cnt++;
3334 	return cnt;
3335 }
3336 
3337 static uint32_t
3338 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3339 {
3340 	struct hns3_priv_buf *priv;
3341 	uint32_t rx_priv = 0;
3342 	int i;
3343 
3344 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3345 		priv = &buf_alloc->priv_buf[i];
3346 		if (priv->enable)
3347 			rx_priv += priv->buf_size;
3348 	}
3349 	return rx_priv;
3350 }
3351 
3352 static uint32_t
3353 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3354 {
3355 	uint32_t total_tx_size = 0;
3356 	uint32_t i;
3357 
3358 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3359 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3360 
3361 	return total_tx_size;
3362 }
3363 
3364 /* Get the number of pfc enabled TCs, which have private buffer */
3365 static int
3366 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3367 {
3368 	struct hns3_priv_buf *priv;
3369 	int cnt = 0;
3370 	uint8_t i;
3371 
3372 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3373 		priv = &buf_alloc->priv_buf[i];
3374 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3375 			cnt++;
3376 	}
3377 
3378 	return cnt;
3379 }
3380 
3381 /* Get the number of pfc disabled TCs, which have private buffer */
3382 static int
3383 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3384 			 struct hns3_pkt_buf_alloc *buf_alloc)
3385 {
3386 	struct hns3_priv_buf *priv;
3387 	int cnt = 0;
3388 	uint8_t i;
3389 
3390 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3391 		priv = &buf_alloc->priv_buf[i];
3392 		if (hw->hw_tc_map & BIT(i) &&
3393 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3394 			cnt++;
3395 	}
3396 
3397 	return cnt;
3398 }
3399 
3400 static bool
3401 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3402 		  uint32_t rx_all)
3403 {
3404 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3405 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3406 	struct hns3_pf *pf = &hns->pf;
3407 	uint32_t shared_buf, aligned_mps;
3408 	uint32_t rx_priv;
3409 	uint8_t tc_num;
3410 	uint8_t i;
3411 
3412 	tc_num = hns3_get_tc_num(hw);
3413 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3414 
3415 	if (hns3_dev_dcb_supported(hw))
3416 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3417 					pf->dv_buf_size;
3418 	else
3419 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3420 					+ pf->dv_buf_size;
3421 
3422 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3423 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3424 			     HNS3_BUF_SIZE_UNIT);
3425 
3426 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3427 	if (rx_all < rx_priv + shared_std)
3428 		return false;
3429 
3430 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3431 	buf_alloc->s_buf.buf_size = shared_buf;
3432 	if (hns3_dev_dcb_supported(hw)) {
3433 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3434 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3435 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3436 				  HNS3_BUF_SIZE_UNIT);
3437 	} else {
3438 		buf_alloc->s_buf.self.high =
3439 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3440 		buf_alloc->s_buf.self.low = aligned_mps;
3441 	}
3442 
3443 	if (hns3_dev_dcb_supported(hw)) {
3444 		hi_thrd = shared_buf - pf->dv_buf_size;
3445 
3446 		if (tc_num <= NEED_RESERVE_TC_NUM)
3447 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
3448 					/ BUF_MAX_PERCENT;
3449 
3450 		if (tc_num)
3451 			hi_thrd = hi_thrd / tc_num;
3452 
3453 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3454 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3455 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3456 	} else {
3457 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3458 		lo_thrd = aligned_mps;
3459 	}
3460 
3461 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3462 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3463 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3464 	}
3465 
3466 	return true;
3467 }
3468 
3469 static bool
3470 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3471 		     struct hns3_pkt_buf_alloc *buf_alloc)
3472 {
3473 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3474 	struct hns3_pf *pf = &hns->pf;
3475 	struct hns3_priv_buf *priv;
3476 	uint32_t aligned_mps;
3477 	uint32_t rx_all;
3478 	uint8_t i;
3479 
3480 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3481 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3482 
3483 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3484 		priv = &buf_alloc->priv_buf[i];
3485 
3486 		priv->enable = 0;
3487 		priv->wl.low = 0;
3488 		priv->wl.high = 0;
3489 		priv->buf_size = 0;
3490 
3491 		if (!(hw->hw_tc_map & BIT(i)))
3492 			continue;
3493 
3494 		priv->enable = 1;
3495 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3496 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3497 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3498 						HNS3_BUF_SIZE_UNIT);
3499 		} else {
3500 			priv->wl.low = 0;
3501 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3502 					aligned_mps;
3503 		}
3504 
3505 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3506 	}
3507 
3508 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3509 }
3510 
3511 static bool
3512 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3513 			     struct hns3_pkt_buf_alloc *buf_alloc)
3514 {
3515 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3516 	struct hns3_pf *pf = &hns->pf;
3517 	struct hns3_priv_buf *priv;
3518 	int no_pfc_priv_num;
3519 	uint32_t rx_all;
3520 	uint8_t mask;
3521 	int i;
3522 
3523 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3524 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3525 
3526 	/* let the last to be cleared first */
3527 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3528 		priv = &buf_alloc->priv_buf[i];
3529 		mask = BIT((uint8_t)i);
3530 
3531 		if (hw->hw_tc_map & mask &&
3532 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3533 			/* Clear the no pfc TC private buffer */
3534 			priv->wl.low = 0;
3535 			priv->wl.high = 0;
3536 			priv->buf_size = 0;
3537 			priv->enable = 0;
3538 			no_pfc_priv_num--;
3539 		}
3540 
3541 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3542 		    no_pfc_priv_num == 0)
3543 			break;
3544 	}
3545 
3546 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3547 }
3548 
3549 static bool
3550 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3551 			   struct hns3_pkt_buf_alloc *buf_alloc)
3552 {
3553 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3554 	struct hns3_pf *pf = &hns->pf;
3555 	struct hns3_priv_buf *priv;
3556 	uint32_t rx_all;
3557 	int pfc_priv_num;
3558 	uint8_t mask;
3559 	int i;
3560 
3561 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3562 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3563 
3564 	/* let the last to be cleared first */
3565 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3566 		priv = &buf_alloc->priv_buf[i];
3567 		mask = BIT((uint8_t)i);
3568 
3569 		if (hw->hw_tc_map & mask &&
3570 		    hw->dcb_info.hw_pfc_map & mask) {
3571 			/* Reduce the number of pfc TC with private buffer */
3572 			priv->wl.low = 0;
3573 			priv->enable = 0;
3574 			priv->wl.high = 0;
3575 			priv->buf_size = 0;
3576 			pfc_priv_num--;
3577 		}
3578 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3579 		    pfc_priv_num == 0)
3580 			break;
3581 	}
3582 
3583 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3584 }
3585 
3586 static bool
3587 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3588 			  struct hns3_pkt_buf_alloc *buf_alloc)
3589 {
3590 #define COMPENSATE_BUFFER	0x3C00
3591 #define COMPENSATE_HALF_MPS_NUM	5
3592 #define PRIV_WL_GAP		0x1800
3593 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3594 	struct hns3_pf *pf = &hns->pf;
3595 	uint32_t tc_num = hns3_get_tc_num(hw);
3596 	uint32_t half_mps = pf->mps >> 1;
3597 	struct hns3_priv_buf *priv;
3598 	uint32_t min_rx_priv;
3599 	uint32_t rx_priv;
3600 	uint8_t i;
3601 
3602 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3603 	if (tc_num)
3604 		rx_priv = rx_priv / tc_num;
3605 
3606 	if (tc_num <= NEED_RESERVE_TC_NUM)
3607 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3608 
3609 	/*
3610 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3611 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3612 	 * buffer if rx_priv is greater than min_rx_priv.
3613 	 */
3614 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3615 			COMPENSATE_HALF_MPS_NUM * half_mps;
3616 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3617 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3618 
3619 	if (rx_priv < min_rx_priv)
3620 		return false;
3621 
3622 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3623 		priv = &buf_alloc->priv_buf[i];
3624 
3625 		priv->enable = 0;
3626 		priv->wl.low = 0;
3627 		priv->wl.high = 0;
3628 		priv->buf_size = 0;
3629 
3630 		if (!(hw->hw_tc_map & BIT(i)))
3631 			continue;
3632 
3633 		priv->enable = 1;
3634 		priv->buf_size = rx_priv;
3635 		priv->wl.high = rx_priv - pf->dv_buf_size;
3636 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3637 	}
3638 
3639 	buf_alloc->s_buf.buf_size = 0;
3640 
3641 	return true;
3642 }
3643 
3644 /*
3645  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3646  * @hw: pointer to struct hns3_hw
3647  * @buf_alloc: pointer to buffer calculation data
3648  * @return: 0: calculate sucessful, negative: fail
3649  */
3650 static int
3651 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3652 {
3653 	/* When DCB is not supported, rx private buffer is not allocated. */
3654 	if (!hns3_dev_dcb_supported(hw)) {
3655 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3656 		struct hns3_pf *pf = &hns->pf;
3657 		uint32_t rx_all = pf->pkt_buf_size;
3658 
3659 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3660 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3661 			return -ENOMEM;
3662 
3663 		return 0;
3664 	}
3665 
3666 	/*
3667 	 * Try to allocate privated packet buffer for all TCs without share
3668 	 * buffer.
3669 	 */
3670 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3671 		return 0;
3672 
3673 	/*
3674 	 * Try to allocate privated packet buffer for all TCs with share
3675 	 * buffer.
3676 	 */
3677 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3678 		return 0;
3679 
3680 	/*
3681 	 * For different application scenes, the enabled port number, TC number
3682 	 * and no_drop TC number are different. In order to obtain the better
3683 	 * performance, software could allocate the buffer size and configure
3684 	 * the waterline by tring to decrease the private buffer size according
3685 	 * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3686 	 * enabled tc.
3687 	 */
3688 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3689 		return 0;
3690 
3691 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3692 		return 0;
3693 
3694 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3695 		return 0;
3696 
3697 	return -ENOMEM;
3698 }
3699 
3700 static int
3701 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3702 {
3703 	struct hns3_rx_priv_buff_cmd *req;
3704 	struct hns3_cmd_desc desc;
3705 	uint32_t buf_size;
3706 	int ret;
3707 	int i;
3708 
3709 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3710 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3711 
3712 	/* Alloc private buffer TCs */
3713 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3714 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3715 
3716 		req->buf_num[i] =
3717 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3718 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3719 	}
3720 
3721 	buf_size = buf_alloc->s_buf.buf_size;
3722 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3723 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3724 
3725 	ret = hns3_cmd_send(hw, &desc, 1);
3726 	if (ret)
3727 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3728 
3729 	return ret;
3730 }
3731 
3732 static int
3733 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3734 {
3735 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3736 	struct hns3_rx_priv_wl_buf *req;
3737 	struct hns3_priv_buf *priv;
3738 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3739 	int i, j;
3740 	int ret;
3741 
3742 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3743 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3744 					  false);
3745 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3746 
3747 		/* The first descriptor set the NEXT bit to 1 */
3748 		if (i == 0)
3749 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3750 		else
3751 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3752 
3753 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3754 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3755 
3756 			priv = &buf_alloc->priv_buf[idx];
3757 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3758 							HNS3_BUF_UNIT_S);
3759 			req->tc_wl[j].high |=
3760 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3761 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3762 							HNS3_BUF_UNIT_S);
3763 			req->tc_wl[j].low |=
3764 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3765 		}
3766 	}
3767 
3768 	/* Send 2 descriptor at one time */
3769 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3770 	if (ret)
3771 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3772 			     ret);
3773 	return ret;
3774 }
3775 
3776 static int
3777 hns3_common_thrd_config(struct hns3_hw *hw,
3778 			struct hns3_pkt_buf_alloc *buf_alloc)
3779 {
3780 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3781 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3782 	struct hns3_rx_com_thrd *req;
3783 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3784 	struct hns3_tc_thrd *tc;
3785 	int tc_idx;
3786 	int i, j;
3787 	int ret;
3788 
3789 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3790 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3791 					  false);
3792 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3793 
3794 		/* The first descriptor set the NEXT bit to 1 */
3795 		if (i == 0)
3796 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3797 		else
3798 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3799 
3800 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3801 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3802 			tc = &s_buf->tc_thrd[tc_idx];
3803 
3804 			req->com_thrd[j].high =
3805 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3806 			req->com_thrd[j].high |=
3807 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3808 			req->com_thrd[j].low =
3809 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3810 			req->com_thrd[j].low |=
3811 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3812 		}
3813 	}
3814 
3815 	/* Send 2 descriptors at one time */
3816 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3817 	if (ret)
3818 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3819 
3820 	return ret;
3821 }
3822 
3823 static int
3824 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3825 {
3826 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3827 	struct hns3_rx_com_wl *req;
3828 	struct hns3_cmd_desc desc;
3829 	int ret;
3830 
3831 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3832 
3833 	req = (struct hns3_rx_com_wl *)desc.data;
3834 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3835 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3836 
3837 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3838 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3839 
3840 	ret = hns3_cmd_send(hw, &desc, 1);
3841 	if (ret)
3842 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3843 
3844 	return ret;
3845 }
3846 
3847 int
3848 hns3_buffer_alloc(struct hns3_hw *hw)
3849 {
3850 	struct hns3_pkt_buf_alloc pkt_buf;
3851 	int ret;
3852 
3853 	memset(&pkt_buf, 0, sizeof(pkt_buf));
3854 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3855 	if (ret) {
3856 		PMD_INIT_LOG(ERR,
3857 			     "could not calc tx buffer size for all TCs %d",
3858 			     ret);
3859 		return ret;
3860 	}
3861 
3862 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3863 	if (ret) {
3864 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3865 		return ret;
3866 	}
3867 
3868 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3869 	if (ret) {
3870 		PMD_INIT_LOG(ERR,
3871 			     "could not calc rx priv buffer size for all TCs %d",
3872 			     ret);
3873 		return ret;
3874 	}
3875 
3876 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3877 	if (ret) {
3878 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3879 		return ret;
3880 	}
3881 
3882 	if (hns3_dev_dcb_supported(hw)) {
3883 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3884 		if (ret) {
3885 			PMD_INIT_LOG(ERR,
3886 				     "could not configure rx private waterline %d",
3887 				     ret);
3888 			return ret;
3889 		}
3890 
3891 		ret = hns3_common_thrd_config(hw, &pkt_buf);
3892 		if (ret) {
3893 			PMD_INIT_LOG(ERR,
3894 				     "could not configure common threshold %d",
3895 				     ret);
3896 			return ret;
3897 		}
3898 	}
3899 
3900 	ret = hns3_common_wl_config(hw, &pkt_buf);
3901 	if (ret)
3902 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3903 			     ret);
3904 
3905 	return ret;
3906 }
3907 
3908 static int
3909 hns3_mac_init(struct hns3_hw *hw)
3910 {
3911 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3912 	struct hns3_mac *mac = &hw->mac;
3913 	struct hns3_pf *pf = &hns->pf;
3914 	int ret;
3915 
3916 	pf->support_sfp_query = true;
3917 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
3918 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3919 	if (ret) {
3920 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3921 		return ret;
3922 	}
3923 
3924 	mac->link_status = ETH_LINK_DOWN;
3925 
3926 	return hns3_config_mtu(hw, pf->mps);
3927 }
3928 
3929 static int
3930 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3931 {
3932 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
3933 #define HNS3_ETHERTYPE_ALREADY_ADD		1
3934 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
3935 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
3936 	int return_status;
3937 
3938 	if (cmdq_resp) {
3939 		PMD_INIT_LOG(ERR,
3940 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
3941 			     cmdq_resp);
3942 		return -EIO;
3943 	}
3944 
3945 	switch (resp_code) {
3946 	case HNS3_ETHERTYPE_SUCCESS_ADD:
3947 	case HNS3_ETHERTYPE_ALREADY_ADD:
3948 		return_status = 0;
3949 		break;
3950 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3951 		PMD_INIT_LOG(ERR,
3952 			     "add mac ethertype failed for manager table overflow.");
3953 		return_status = -EIO;
3954 		break;
3955 	case HNS3_ETHERTYPE_KEY_CONFLICT:
3956 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3957 		return_status = -EIO;
3958 		break;
3959 	default:
3960 		PMD_INIT_LOG(ERR,
3961 			     "add mac ethertype failed for undefined, code=%d.",
3962 			     resp_code);
3963 		return_status = -EIO;
3964 		break;
3965 	}
3966 
3967 	return return_status;
3968 }
3969 
3970 static int
3971 hns3_add_mgr_tbl(struct hns3_hw *hw,
3972 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
3973 {
3974 	struct hns3_cmd_desc desc;
3975 	uint8_t resp_code;
3976 	uint16_t retval;
3977 	int ret;
3978 
3979 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3980 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3981 
3982 	ret = hns3_cmd_send(hw, &desc, 1);
3983 	if (ret) {
3984 		PMD_INIT_LOG(ERR,
3985 			     "add mac ethertype failed for cmd_send, ret =%d.",
3986 			     ret);
3987 		return ret;
3988 	}
3989 
3990 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3991 	retval = rte_le_to_cpu_16(desc.retval);
3992 
3993 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3994 }
3995 
3996 static void
3997 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3998 		     int *table_item_num)
3999 {
4000 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4001 
4002 	/*
4003 	 * In current version, we add one item in management table as below:
4004 	 * 0x0180C200000E -- LLDP MC address
4005 	 */
4006 	tbl = mgr_table;
4007 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4008 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4009 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4010 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4011 	tbl->i_port_bitmap = 0x1;
4012 	*table_item_num = 1;
4013 }
4014 
4015 static int
4016 hns3_init_mgr_tbl(struct hns3_hw *hw)
4017 {
4018 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
4019 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4020 	int table_item_num;
4021 	int ret;
4022 	int i;
4023 
4024 	memset(mgr_table, 0, sizeof(mgr_table));
4025 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4026 	for (i = 0; i < table_item_num; i++) {
4027 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4028 		if (ret) {
4029 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4030 				     ret);
4031 			return ret;
4032 		}
4033 	}
4034 
4035 	return 0;
4036 }
4037 
4038 static void
4039 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4040 			bool en_mc, bool en_bc, int vport_id)
4041 {
4042 	if (!param)
4043 		return;
4044 
4045 	memset(param, 0, sizeof(struct hns3_promisc_param));
4046 	if (en_uc)
4047 		param->enable = HNS3_PROMISC_EN_UC;
4048 	if (en_mc)
4049 		param->enable |= HNS3_PROMISC_EN_MC;
4050 	if (en_bc)
4051 		param->enable |= HNS3_PROMISC_EN_BC;
4052 	param->vf_id = vport_id;
4053 }
4054 
4055 static int
4056 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4057 {
4058 	struct hns3_promisc_cfg_cmd *req;
4059 	struct hns3_cmd_desc desc;
4060 	int ret;
4061 
4062 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4063 
4064 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
4065 	req->vf_id = param->vf_id;
4066 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4067 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4068 
4069 	ret = hns3_cmd_send(hw, &desc, 1);
4070 	if (ret)
4071 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4072 
4073 	return ret;
4074 }
4075 
4076 static int
4077 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4078 {
4079 	struct hns3_promisc_param param;
4080 	bool en_bc_pmc = true;
4081 	uint8_t vf_id;
4082 
4083 	/*
4084 	 * In current version VF is not supported when PF is driven by DPDK
4085 	 * driver, just need to configure parameters for PF vport.
4086 	 */
4087 	vf_id = HNS3_PF_FUNC_ID;
4088 
4089 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4090 	return hns3_cmd_set_promisc_mode(hw, &param);
4091 }
4092 
4093 static int
4094 hns3_promisc_init(struct hns3_hw *hw)
4095 {
4096 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4097 	struct hns3_pf *pf = &hns->pf;
4098 	struct hns3_promisc_param param;
4099 	uint16_t func_id;
4100 	int ret;
4101 
4102 	ret = hns3_set_promisc_mode(hw, false, false);
4103 	if (ret) {
4104 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4105 		return ret;
4106 	}
4107 
4108 	/*
4109 	 * In current version VFs are not supported when PF is driven by DPDK
4110 	 * driver. After PF has been taken over by DPDK, the original VF will
4111 	 * be invalid. So, there is a possibility of entry residues. It should
4112 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4113 	 * during init.
4114 	 */
4115 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4116 		hns3_promisc_param_init(&param, false, false, false, func_id);
4117 		ret = hns3_cmd_set_promisc_mode(hw, &param);
4118 		if (ret) {
4119 			PMD_INIT_LOG(ERR, "failed to clear vf:%d promisc mode,"
4120 					" ret = %d", func_id, ret);
4121 			return ret;
4122 		}
4123 	}
4124 
4125 	return 0;
4126 }
4127 
4128 static void
4129 hns3_promisc_uninit(struct hns3_hw *hw)
4130 {
4131 	struct hns3_promisc_param param;
4132 	uint16_t func_id;
4133 	int ret;
4134 
4135 	func_id = HNS3_PF_FUNC_ID;
4136 
4137 	/*
4138 	 * In current version VFs are not supported when PF is driven by
4139 	 * DPDK driver, and VFs' promisc mode status has been cleared during
4140 	 * init and their status will not change. So just clear PF's promisc
4141 	 * mode status during uninit.
4142 	 */
4143 	hns3_promisc_param_init(&param, false, false, false, func_id);
4144 	ret = hns3_cmd_set_promisc_mode(hw, &param);
4145 	if (ret)
4146 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4147 				" uninit, ret = %d", ret);
4148 }
4149 
4150 static int
4151 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4152 {
4153 	bool allmulti = dev->data->all_multicast ? true : false;
4154 	struct hns3_adapter *hns = dev->data->dev_private;
4155 	struct hns3_hw *hw = &hns->hw;
4156 	uint64_t offloads;
4157 	int err;
4158 	int ret;
4159 
4160 	rte_spinlock_lock(&hw->lock);
4161 	ret = hns3_set_promisc_mode(hw, true, true);
4162 	if (ret) {
4163 		rte_spinlock_unlock(&hw->lock);
4164 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4165 			 ret);
4166 		return ret;
4167 	}
4168 
4169 	/*
4170 	 * When promiscuous mode was enabled, disable the vlan filter to let
4171 	 * all packets coming in in the receiving direction.
4172 	 */
4173 	offloads = dev->data->dev_conf.rxmode.offloads;
4174 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4175 		ret = hns3_enable_vlan_filter(hns, false);
4176 		if (ret) {
4177 			hns3_err(hw, "failed to enable promiscuous mode due to "
4178 				     "failure to disable vlan filter, ret = %d",
4179 				 ret);
4180 			err = hns3_set_promisc_mode(hw, false, allmulti);
4181 			if (err)
4182 				hns3_err(hw, "failed to restore promiscuous "
4183 					 "status after disable vlan filter "
4184 					 "failed during enabling promiscuous "
4185 					 "mode, ret = %d", ret);
4186 		}
4187 	}
4188 
4189 	rte_spinlock_unlock(&hw->lock);
4190 
4191 	return ret;
4192 }
4193 
4194 static int
4195 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4196 {
4197 	bool allmulti = dev->data->all_multicast ? true : false;
4198 	struct hns3_adapter *hns = dev->data->dev_private;
4199 	struct hns3_hw *hw = &hns->hw;
4200 	uint64_t offloads;
4201 	int err;
4202 	int ret;
4203 
4204 	/* If now in all_multicast mode, must remain in all_multicast mode. */
4205 	rte_spinlock_lock(&hw->lock);
4206 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4207 	if (ret) {
4208 		rte_spinlock_unlock(&hw->lock);
4209 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4210 			 ret);
4211 		return ret;
4212 	}
4213 	/* when promiscuous mode was disabled, restore the vlan filter status */
4214 	offloads = dev->data->dev_conf.rxmode.offloads;
4215 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4216 		ret = hns3_enable_vlan_filter(hns, true);
4217 		if (ret) {
4218 			hns3_err(hw, "failed to disable promiscuous mode due to"
4219 				 " failure to restore vlan filter, ret = %d",
4220 				 ret);
4221 			err = hns3_set_promisc_mode(hw, true, true);
4222 			if (err)
4223 				hns3_err(hw, "failed to restore promiscuous "
4224 					 "status after enabling vlan filter "
4225 					 "failed during disabling promiscuous "
4226 					 "mode, ret = %d", ret);
4227 		}
4228 	}
4229 	rte_spinlock_unlock(&hw->lock);
4230 
4231 	return ret;
4232 }
4233 
4234 static int
4235 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4236 {
4237 	struct hns3_adapter *hns = dev->data->dev_private;
4238 	struct hns3_hw *hw = &hns->hw;
4239 	int ret;
4240 
4241 	if (dev->data->promiscuous)
4242 		return 0;
4243 
4244 	rte_spinlock_lock(&hw->lock);
4245 	ret = hns3_set_promisc_mode(hw, false, true);
4246 	rte_spinlock_unlock(&hw->lock);
4247 	if (ret)
4248 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4249 			 ret);
4250 
4251 	return ret;
4252 }
4253 
4254 static int
4255 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4256 {
4257 	struct hns3_adapter *hns = dev->data->dev_private;
4258 	struct hns3_hw *hw = &hns->hw;
4259 	int ret;
4260 
4261 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4262 	if (dev->data->promiscuous)
4263 		return 0;
4264 
4265 	rte_spinlock_lock(&hw->lock);
4266 	ret = hns3_set_promisc_mode(hw, false, false);
4267 	rte_spinlock_unlock(&hw->lock);
4268 	if (ret)
4269 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4270 			 ret);
4271 
4272 	return ret;
4273 }
4274 
4275 static int
4276 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4277 {
4278 	struct hns3_hw *hw = &hns->hw;
4279 	bool allmulti = hw->data->all_multicast ? true : false;
4280 	int ret;
4281 
4282 	if (hw->data->promiscuous) {
4283 		ret = hns3_set_promisc_mode(hw, true, true);
4284 		if (ret)
4285 			hns3_err(hw, "failed to restore promiscuous mode, "
4286 				 "ret = %d", ret);
4287 		return ret;
4288 	}
4289 
4290 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4291 	if (ret)
4292 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4293 			 ret);
4294 	return ret;
4295 }
4296 
4297 static int
4298 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4299 {
4300 	struct hns3_sfp_speed_cmd *resp;
4301 	struct hns3_cmd_desc desc;
4302 	int ret;
4303 
4304 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4305 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
4306 	ret = hns3_cmd_send(hw, &desc, 1);
4307 	if (ret == -EOPNOTSUPP) {
4308 		hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4309 		return ret;
4310 	} else if (ret) {
4311 		hns3_err(hw, "get sfp speed failed %d", ret);
4312 		return ret;
4313 	}
4314 
4315 	*speed = resp->sfp_speed;
4316 
4317 	return 0;
4318 }
4319 
4320 static uint8_t
4321 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4322 {
4323 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4324 		duplex = ETH_LINK_FULL_DUPLEX;
4325 
4326 	return duplex;
4327 }
4328 
4329 static int
4330 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4331 {
4332 	struct hns3_mac *mac = &hw->mac;
4333 	int ret;
4334 
4335 	duplex = hns3_check_speed_dup(duplex, speed);
4336 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4337 		return 0;
4338 
4339 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4340 	if (ret)
4341 		return ret;
4342 
4343 	mac->link_speed = speed;
4344 	mac->link_duplex = duplex;
4345 
4346 	return 0;
4347 }
4348 
4349 static int
4350 hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
4351 {
4352 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4353 	struct hns3_hw *hw = &hns->hw;
4354 	struct hns3_pf *pf = &hns->pf;
4355 	uint32_t speed;
4356 	int ret;
4357 
4358 	/* If IMP do not support get SFP/qSFP speed, return directly */
4359 	if (!pf->support_sfp_query)
4360 		return 0;
4361 
4362 	ret = hns3_get_sfp_speed(hw, &speed);
4363 	if (ret == -EOPNOTSUPP) {
4364 		pf->support_sfp_query = false;
4365 		return ret;
4366 	} else if (ret)
4367 		return ret;
4368 
4369 	if (speed == ETH_SPEED_NUM_NONE)
4370 		return 0; /* do nothing if no SFP */
4371 
4372 	/* Config full duplex for SFP */
4373 	return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4374 }
4375 
4376 static int
4377 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4378 {
4379 	struct hns3_config_mac_mode_cmd *req;
4380 	struct hns3_cmd_desc desc;
4381 	uint32_t loop_en = 0;
4382 	uint8_t val = 0;
4383 	int ret;
4384 
4385 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4386 
4387 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4388 	if (enable)
4389 		val = 1;
4390 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4391 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4392 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4393 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4394 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4395 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4396 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4397 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4398 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4399 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4400 
4401 	/*
4402 	 * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4403 	 * when receiving frames. Otherwise, CRC will be stripped.
4404 	 */
4405 	if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4406 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4407 	else
4408 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4409 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4410 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4411 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4412 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4413 
4414 	ret = hns3_cmd_send(hw, &desc, 1);
4415 	if (ret)
4416 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4417 
4418 	return ret;
4419 }
4420 
4421 static int
4422 hns3_get_mac_link_status(struct hns3_hw *hw)
4423 {
4424 	struct hns3_link_status_cmd *req;
4425 	struct hns3_cmd_desc desc;
4426 	int link_status;
4427 	int ret;
4428 
4429 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4430 	ret = hns3_cmd_send(hw, &desc, 1);
4431 	if (ret) {
4432 		hns3_err(hw, "get link status cmd failed %d", ret);
4433 		return ETH_LINK_DOWN;
4434 	}
4435 
4436 	req = (struct hns3_link_status_cmd *)desc.data;
4437 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4438 
4439 	return !!link_status;
4440 }
4441 
4442 void
4443 hns3_update_link_status(struct hns3_hw *hw)
4444 {
4445 	int state;
4446 
4447 	state = hns3_get_mac_link_status(hw);
4448 	if (state != hw->mac.link_status) {
4449 		hw->mac.link_status = state;
4450 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4451 	}
4452 }
4453 
4454 static void
4455 hns3_service_handler(void *param)
4456 {
4457 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4458 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4459 	struct hns3_hw *hw = &hns->hw;
4460 
4461 	if (!hns3_is_reset_pending(hns)) {
4462 		hns3_update_speed_duplex(eth_dev);
4463 		hns3_update_link_status(hw);
4464 	} else
4465 		hns3_warn(hw, "Cancel the query when reset is pending");
4466 
4467 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4468 }
4469 
4470 static int
4471 hns3_init_hardware(struct hns3_adapter *hns)
4472 {
4473 	struct hns3_hw *hw = &hns->hw;
4474 	int ret;
4475 
4476 	ret = hns3_map_tqp(hw);
4477 	if (ret) {
4478 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4479 		return ret;
4480 	}
4481 
4482 	ret = hns3_init_umv_space(hw);
4483 	if (ret) {
4484 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4485 		return ret;
4486 	}
4487 
4488 	ret = hns3_mac_init(hw);
4489 	if (ret) {
4490 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4491 		goto err_mac_init;
4492 	}
4493 
4494 	ret = hns3_init_mgr_tbl(hw);
4495 	if (ret) {
4496 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4497 		goto err_mac_init;
4498 	}
4499 
4500 	ret = hns3_promisc_init(hw);
4501 	if (ret) {
4502 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4503 			     ret);
4504 		goto err_mac_init;
4505 	}
4506 
4507 	ret = hns3_init_vlan_config(hns);
4508 	if (ret) {
4509 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4510 		goto err_mac_init;
4511 	}
4512 
4513 	ret = hns3_dcb_init(hw);
4514 	if (ret) {
4515 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4516 		goto err_mac_init;
4517 	}
4518 
4519 	ret = hns3_init_fd_config(hns);
4520 	if (ret) {
4521 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4522 		goto err_mac_init;
4523 	}
4524 
4525 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4526 	if (ret) {
4527 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4528 		goto err_mac_init;
4529 	}
4530 
4531 	ret = hns3_config_gro(hw, false);
4532 	if (ret) {
4533 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4534 		goto err_mac_init;
4535 	}
4536 
4537 	/*
4538 	 * In the initialization clearing the all hardware mapping relationship
4539 	 * configurations between queues and interrupt vectors is needed, so
4540 	 * some error caused by the residual configurations, such as the
4541 	 * unexpected interrupt, can be avoid.
4542 	 */
4543 	ret = hns3_init_ring_with_vector(hw);
4544 	if (ret) {
4545 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4546 		goto err_mac_init;
4547 	}
4548 
4549 	return 0;
4550 
4551 err_mac_init:
4552 	hns3_uninit_umv_space(hw);
4553 	return ret;
4554 }
4555 
4556 static int
4557 hns3_clear_hw(struct hns3_hw *hw)
4558 {
4559 	struct hns3_cmd_desc desc;
4560 	int ret;
4561 
4562 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4563 
4564 	ret = hns3_cmd_send(hw, &desc, 1);
4565 	if (ret && ret != -EOPNOTSUPP)
4566 		return ret;
4567 
4568 	return 0;
4569 }
4570 
4571 static void
4572 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4573 {
4574 	uint32_t val;
4575 
4576 	/*
4577 	 * The new firmware support report more hardware error types by
4578 	 * msix mode. These errors are defined as RAS errors in hardware
4579 	 * and belong to a different type from the MSI-x errors processed
4580 	 * by the network driver.
4581 	 *
4582 	 * Network driver should open the new error report on initialition
4583 	 */
4584 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4585 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4586 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4587 }
4588 
4589 static int
4590 hns3_init_pf(struct rte_eth_dev *eth_dev)
4591 {
4592 	struct rte_device *dev = eth_dev->device;
4593 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4594 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4595 	struct hns3_hw *hw = &hns->hw;
4596 	int ret;
4597 
4598 	PMD_INIT_FUNC_TRACE();
4599 
4600 	/* Get hardware io base address from pcie BAR2 IO space */
4601 	hw->io_base = pci_dev->mem_resource[2].addr;
4602 
4603 	/* Firmware command queue initialize */
4604 	ret = hns3_cmd_init_queue(hw);
4605 	if (ret) {
4606 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4607 		goto err_cmd_init_queue;
4608 	}
4609 
4610 	hns3_clear_all_event_cause(hw);
4611 
4612 	/* Firmware command initialize */
4613 	ret = hns3_cmd_init(hw);
4614 	if (ret) {
4615 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4616 		goto err_cmd_init;
4617 	}
4618 
4619 	/*
4620 	 * To ensure that the hardware environment is clean during
4621 	 * initialization, the driver actively clear the hardware environment
4622 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4623 	 * flow table configurations, etc.
4624 	 */
4625 	ret = hns3_clear_hw(hw);
4626 	if (ret) {
4627 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4628 		goto err_cmd_init;
4629 	}
4630 
4631 	hns3_config_all_msix_error(hw, true);
4632 
4633 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
4634 					 hns3_interrupt_handler,
4635 					 eth_dev);
4636 	if (ret) {
4637 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4638 		goto err_intr_callback_register;
4639 	}
4640 
4641 	/* Enable interrupt */
4642 	rte_intr_enable(&pci_dev->intr_handle);
4643 	hns3_pf_enable_irq0(hw);
4644 
4645 	/* Get configuration */
4646 	ret = hns3_get_configuration(hw);
4647 	if (ret) {
4648 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4649 		goto err_get_config;
4650 	}
4651 
4652 	ret = hns3_tqp_stats_init(hw);
4653 	if (ret)
4654 		goto err_get_config;
4655 
4656 	ret = hns3_init_hardware(hns);
4657 	if (ret) {
4658 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4659 		goto err_init_hw;
4660 	}
4661 
4662 	/* Initialize flow director filter list & hash */
4663 	ret = hns3_fdir_filter_init(hns);
4664 	if (ret) {
4665 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4666 		goto err_fdir;
4667 	}
4668 
4669 	hns3_set_default_rss_args(hw);
4670 
4671 	ret = hns3_enable_hw_error_intr(hns, true);
4672 	if (ret) {
4673 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4674 			     ret);
4675 		goto err_enable_intr;
4676 	}
4677 
4678 	return 0;
4679 
4680 err_enable_intr:
4681 	hns3_fdir_filter_uninit(hns);
4682 err_fdir:
4683 	hns3_uninit_umv_space(hw);
4684 err_init_hw:
4685 	hns3_tqp_stats_uninit(hw);
4686 err_get_config:
4687 	hns3_pf_disable_irq0(hw);
4688 	rte_intr_disable(&pci_dev->intr_handle);
4689 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4690 			     eth_dev);
4691 err_intr_callback_register:
4692 err_cmd_init:
4693 	hns3_cmd_uninit(hw);
4694 	hns3_cmd_destroy_queue(hw);
4695 err_cmd_init_queue:
4696 	hw->io_base = NULL;
4697 
4698 	return ret;
4699 }
4700 
4701 static void
4702 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4703 {
4704 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4705 	struct rte_device *dev = eth_dev->device;
4706 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4707 	struct hns3_hw *hw = &hns->hw;
4708 
4709 	PMD_INIT_FUNC_TRACE();
4710 
4711 	hns3_enable_hw_error_intr(hns, false);
4712 	hns3_rss_uninit(hns);
4713 	(void)hns3_config_gro(hw, false);
4714 	hns3_promisc_uninit(hw);
4715 	hns3_fdir_filter_uninit(hns);
4716 	hns3_uninit_umv_space(hw);
4717 	hns3_tqp_stats_uninit(hw);
4718 	hns3_pf_disable_irq0(hw);
4719 	rte_intr_disable(&pci_dev->intr_handle);
4720 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4721 			     eth_dev);
4722 	hns3_config_all_msix_error(hw, false);
4723 	hns3_cmd_uninit(hw);
4724 	hns3_cmd_destroy_queue(hw);
4725 	hw->io_base = NULL;
4726 }
4727 
4728 static int
4729 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
4730 {
4731 	struct hns3_hw *hw = &hns->hw;
4732 	int ret;
4733 
4734 	ret = hns3_dcb_cfg_update(hns);
4735 	if (ret)
4736 		return ret;
4737 
4738 	ret = hns3_init_queues(hns, reset_queue);
4739 	if (ret) {
4740 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
4741 		return ret;
4742 	}
4743 
4744 	ret = hns3_cfg_mac_mode(hw, true);
4745 	if (ret) {
4746 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
4747 		goto err_config_mac_mode;
4748 	}
4749 	return 0;
4750 
4751 err_config_mac_mode:
4752 	hns3_dev_release_mbufs(hns);
4753 	hns3_reset_all_tqps(hns);
4754 	return ret;
4755 }
4756 
4757 static int
4758 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
4759 {
4760 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4761 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4762 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4763 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4764 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4765 	uint32_t intr_vector;
4766 	uint16_t q_id;
4767 	int ret;
4768 
4769 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4770 		return 0;
4771 
4772 	/* disable uio/vfio intr/eventfd mapping */
4773 	rte_intr_disable(intr_handle);
4774 
4775 	/* check and configure queue intr-vector mapping */
4776 	if (rte_intr_cap_multiple(intr_handle) ||
4777 	    !RTE_ETH_DEV_SRIOV(dev).active) {
4778 		intr_vector = hw->used_rx_queues;
4779 		/* creates event fd for each intr vector when MSIX is used */
4780 		if (rte_intr_efd_enable(intr_handle, intr_vector))
4781 			return -EINVAL;
4782 	}
4783 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
4784 		intr_handle->intr_vec =
4785 			rte_zmalloc("intr_vec",
4786 				    hw->used_rx_queues * sizeof(int), 0);
4787 		if (intr_handle->intr_vec == NULL) {
4788 			hns3_err(hw, "Failed to allocate %d rx_queues"
4789 				     " intr_vec", hw->used_rx_queues);
4790 			ret = -ENOMEM;
4791 			goto alloc_intr_vec_error;
4792 		}
4793 	}
4794 
4795 	if (rte_intr_allow_others(intr_handle)) {
4796 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4797 		base = RTE_INTR_VEC_RXTX_OFFSET;
4798 	}
4799 	if (rte_intr_dp_is_en(intr_handle)) {
4800 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4801 			ret = hns3_bind_ring_with_vector(hw, vec, true,
4802 							 HNS3_RING_TYPE_RX,
4803 							 q_id);
4804 			if (ret)
4805 				goto bind_vector_error;
4806 			intr_handle->intr_vec[q_id] = vec;
4807 			if (vec < base + intr_handle->nb_efd - 1)
4808 				vec++;
4809 		}
4810 	}
4811 	rte_intr_enable(intr_handle);
4812 	return 0;
4813 
4814 bind_vector_error:
4815 	rte_intr_efd_disable(intr_handle);
4816 	if (intr_handle->intr_vec) {
4817 		free(intr_handle->intr_vec);
4818 		intr_handle->intr_vec = NULL;
4819 	}
4820 	return ret;
4821 alloc_intr_vec_error:
4822 	rte_intr_efd_disable(intr_handle);
4823 	return ret;
4824 }
4825 
4826 static int
4827 hns3_restore_rx_interrupt(struct hns3_hw *hw)
4828 {
4829 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4830 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4831 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4832 	uint16_t q_id;
4833 	int ret;
4834 
4835 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4836 		return 0;
4837 
4838 	if (rte_intr_dp_is_en(intr_handle)) {
4839 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4840 			ret = hns3_bind_ring_with_vector(hw,
4841 					intr_handle->intr_vec[q_id], true,
4842 					HNS3_RING_TYPE_RX, q_id);
4843 			if (ret)
4844 				return ret;
4845 		}
4846 	}
4847 
4848 	return 0;
4849 }
4850 
4851 static void
4852 hns3_restore_filter(struct rte_eth_dev *dev)
4853 {
4854 	hns3_restore_rss_filter(dev);
4855 }
4856 
4857 static int
4858 hns3_dev_start(struct rte_eth_dev *dev)
4859 {
4860 	struct hns3_adapter *hns = dev->data->dev_private;
4861 	struct hns3_hw *hw = &hns->hw;
4862 	int ret;
4863 
4864 	PMD_INIT_FUNC_TRACE();
4865 	if (rte_atomic16_read(&hw->reset.resetting))
4866 		return -EBUSY;
4867 
4868 	rte_spinlock_lock(&hw->lock);
4869 	hw->adapter_state = HNS3_NIC_STARTING;
4870 
4871 	ret = hns3_do_start(hns, true);
4872 	if (ret) {
4873 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4874 		rte_spinlock_unlock(&hw->lock);
4875 		return ret;
4876 	}
4877 	ret = hns3_map_rx_interrupt(dev);
4878 	if (ret) {
4879 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4880 		rte_spinlock_unlock(&hw->lock);
4881 		return ret;
4882 	}
4883 
4884 	/*
4885 	 * There are three register used to control the status of a TQP
4886 	 * (contains a pair of Tx queue and Rx queue) in the new version network
4887 	 * engine. One is used to control the enabling of Tx queue, the other is
4888 	 * used to control the enabling of Rx queue, and the last is the master
4889 	 * switch used to control the enabling of the tqp. The Tx register and
4890 	 * TQP register must be enabled at the same time to enable a Tx queue.
4891 	 * The same applies to the Rx queue. For the older network engine, this
4892 	 * function only refresh the enabled flag, and it is used to update the
4893 	 * status of queue in the dpdk framework.
4894 	 */
4895 	ret = hns3_start_all_txqs(dev);
4896 	if (ret) {
4897 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4898 		rte_spinlock_unlock(&hw->lock);
4899 		return ret;
4900 	}
4901 
4902 	ret = hns3_start_all_rxqs(dev);
4903 	if (ret) {
4904 		hns3_stop_all_txqs(dev);
4905 		hw->adapter_state = HNS3_NIC_CONFIGURED;
4906 		rte_spinlock_unlock(&hw->lock);
4907 		return ret;
4908 	}
4909 
4910 	hw->adapter_state = HNS3_NIC_STARTED;
4911 	rte_spinlock_unlock(&hw->lock);
4912 
4913 	hns3_rx_scattered_calc(dev);
4914 	hns3_set_rxtx_function(dev);
4915 	hns3_mp_req_start_rxtx(dev);
4916 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
4917 
4918 	hns3_restore_filter(dev);
4919 
4920 	/* Enable interrupt of all rx queues before enabling queues */
4921 	hns3_dev_all_rx_queue_intr_enable(hw, true);
4922 
4923 	/*
4924 	 * After finished the initialization, enable tqps to receive/transmit
4925 	 * packets and refresh all queue status.
4926 	 */
4927 	hns3_start_tqps(hw);
4928 
4929 	hns3_info(hw, "hns3 dev start successful!");
4930 	return 0;
4931 }
4932 
4933 static int
4934 hns3_do_stop(struct hns3_adapter *hns)
4935 {
4936 	struct hns3_hw *hw = &hns->hw;
4937 	int ret;
4938 
4939 	ret = hns3_cfg_mac_mode(hw, false);
4940 	if (ret)
4941 		return ret;
4942 	hw->mac.link_status = ETH_LINK_DOWN;
4943 
4944 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
4945 		hns3_configure_all_mac_addr(hns, true);
4946 		ret = hns3_reset_all_tqps(hns);
4947 		if (ret) {
4948 			hns3_err(hw, "failed to reset all queues ret = %d.",
4949 				 ret);
4950 			return ret;
4951 		}
4952 	}
4953 	hw->mac.default_addr_setted = false;
4954 	return 0;
4955 }
4956 
4957 static void
4958 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
4959 {
4960 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4961 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4962 	struct hns3_adapter *hns = dev->data->dev_private;
4963 	struct hns3_hw *hw = &hns->hw;
4964 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4965 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4966 	uint16_t q_id;
4967 
4968 	if (dev->data->dev_conf.intr_conf.rxq == 0)
4969 		return;
4970 
4971 	/* unmap the ring with vector */
4972 	if (rte_intr_allow_others(intr_handle)) {
4973 		vec = RTE_INTR_VEC_RXTX_OFFSET;
4974 		base = RTE_INTR_VEC_RXTX_OFFSET;
4975 	}
4976 	if (rte_intr_dp_is_en(intr_handle)) {
4977 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4978 			(void)hns3_bind_ring_with_vector(hw, vec, false,
4979 							 HNS3_RING_TYPE_RX,
4980 							 q_id);
4981 			if (vec < base + intr_handle->nb_efd - 1)
4982 				vec++;
4983 		}
4984 	}
4985 	/* Clean datapath event and queue/vec mapping */
4986 	rte_intr_efd_disable(intr_handle);
4987 	if (intr_handle->intr_vec) {
4988 		rte_free(intr_handle->intr_vec);
4989 		intr_handle->intr_vec = NULL;
4990 	}
4991 }
4992 
4993 static int
4994 hns3_dev_stop(struct rte_eth_dev *dev)
4995 {
4996 	struct hns3_adapter *hns = dev->data->dev_private;
4997 	struct hns3_hw *hw = &hns->hw;
4998 
4999 	PMD_INIT_FUNC_TRACE();
5000 	dev->data->dev_started = 0;
5001 
5002 	hw->adapter_state = HNS3_NIC_STOPPING;
5003 	hns3_set_rxtx_function(dev);
5004 	rte_wmb();
5005 	/* Disable datapath on secondary process. */
5006 	hns3_mp_req_stop_rxtx(dev);
5007 	/* Prevent crashes when queues are still in use. */
5008 	rte_delay_ms(hw->tqps_num);
5009 
5010 	rte_spinlock_lock(&hw->lock);
5011 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
5012 		hns3_stop_tqps(hw);
5013 		hns3_do_stop(hns);
5014 		hns3_unmap_rx_interrupt(dev);
5015 		hns3_dev_release_mbufs(hns);
5016 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5017 	}
5018 	hns3_rx_scattered_reset(dev);
5019 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5020 	rte_spinlock_unlock(&hw->lock);
5021 
5022 	return 0;
5023 }
5024 
5025 static int
5026 hns3_dev_close(struct rte_eth_dev *eth_dev)
5027 {
5028 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5029 	struct hns3_hw *hw = &hns->hw;
5030 	int ret = 0;
5031 
5032 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5033 		rte_free(eth_dev->process_private);
5034 		eth_dev->process_private = NULL;
5035 		return 0;
5036 	}
5037 
5038 	if (hw->adapter_state == HNS3_NIC_STARTED)
5039 		ret = hns3_dev_stop(eth_dev);
5040 
5041 	hw->adapter_state = HNS3_NIC_CLOSING;
5042 	hns3_reset_abort(hns);
5043 	hw->adapter_state = HNS3_NIC_CLOSED;
5044 
5045 	hns3_configure_all_mc_mac_addr(hns, true);
5046 	hns3_remove_all_vlan_table(hns);
5047 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5048 	hns3_uninit_pf(eth_dev);
5049 	hns3_free_all_queues(eth_dev);
5050 	rte_free(hw->reset.wait_data);
5051 	rte_free(eth_dev->process_private);
5052 	eth_dev->process_private = NULL;
5053 	hns3_mp_uninit_primary();
5054 	hns3_warn(hw, "Close port %d finished", hw->data->port_id);
5055 
5056 	return ret;
5057 }
5058 
5059 static int
5060 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5061 {
5062 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5063 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5064 
5065 	fc_conf->pause_time = pf->pause_time;
5066 
5067 	/* return fc current mode */
5068 	switch (hw->current_mode) {
5069 	case HNS3_FC_FULL:
5070 		fc_conf->mode = RTE_FC_FULL;
5071 		break;
5072 	case HNS3_FC_TX_PAUSE:
5073 		fc_conf->mode = RTE_FC_TX_PAUSE;
5074 		break;
5075 	case HNS3_FC_RX_PAUSE:
5076 		fc_conf->mode = RTE_FC_RX_PAUSE;
5077 		break;
5078 	case HNS3_FC_NONE:
5079 	default:
5080 		fc_conf->mode = RTE_FC_NONE;
5081 		break;
5082 	}
5083 
5084 	return 0;
5085 }
5086 
5087 static void
5088 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
5089 {
5090 	switch (mode) {
5091 	case RTE_FC_NONE:
5092 		hw->requested_mode = HNS3_FC_NONE;
5093 		break;
5094 	case RTE_FC_RX_PAUSE:
5095 		hw->requested_mode = HNS3_FC_RX_PAUSE;
5096 		break;
5097 	case RTE_FC_TX_PAUSE:
5098 		hw->requested_mode = HNS3_FC_TX_PAUSE;
5099 		break;
5100 	case RTE_FC_FULL:
5101 		hw->requested_mode = HNS3_FC_FULL;
5102 		break;
5103 	default:
5104 		hw->requested_mode = HNS3_FC_NONE;
5105 		hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
5106 			  "configured to RTE_FC_NONE", mode);
5107 		break;
5108 	}
5109 }
5110 
5111 static int
5112 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5113 {
5114 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5115 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5116 	int ret;
5117 
5118 	if (fc_conf->high_water || fc_conf->low_water ||
5119 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5120 		hns3_err(hw, "Unsupported flow control settings specified, "
5121 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5122 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5123 			 fc_conf->high_water, fc_conf->low_water,
5124 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5125 		return -EINVAL;
5126 	}
5127 	if (fc_conf->autoneg) {
5128 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5129 		return -EINVAL;
5130 	}
5131 	if (!fc_conf->pause_time) {
5132 		hns3_err(hw, "Invalid pause time %d setting.",
5133 			 fc_conf->pause_time);
5134 		return -EINVAL;
5135 	}
5136 
5137 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5138 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5139 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5140 			 "current_fc_status = %d", hw->current_fc_status);
5141 		return -EOPNOTSUPP;
5142 	}
5143 
5144 	hns3_get_fc_mode(hw, fc_conf->mode);
5145 	if (hw->requested_mode == hw->current_mode &&
5146 	    pf->pause_time == fc_conf->pause_time)
5147 		return 0;
5148 
5149 	rte_spinlock_lock(&hw->lock);
5150 	ret = hns3_fc_enable(dev, fc_conf);
5151 	rte_spinlock_unlock(&hw->lock);
5152 
5153 	return ret;
5154 }
5155 
5156 static int
5157 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5158 			    struct rte_eth_pfc_conf *pfc_conf)
5159 {
5160 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5161 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5162 	uint8_t priority;
5163 	int ret;
5164 
5165 	if (!hns3_dev_dcb_supported(hw)) {
5166 		hns3_err(hw, "This port does not support dcb configurations.");
5167 		return -EOPNOTSUPP;
5168 	}
5169 
5170 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5171 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5172 		hns3_err(hw, "Unsupported flow control settings specified, "
5173 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5174 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5175 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5176 			 pfc_conf->fc.send_xon,
5177 			 pfc_conf->fc.mac_ctrl_frame_fwd);
5178 		return -EINVAL;
5179 	}
5180 	if (pfc_conf->fc.autoneg) {
5181 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5182 		return -EINVAL;
5183 	}
5184 	if (pfc_conf->fc.pause_time == 0) {
5185 		hns3_err(hw, "Invalid pause time %d setting.",
5186 			 pfc_conf->fc.pause_time);
5187 		return -EINVAL;
5188 	}
5189 
5190 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5191 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5192 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5193 			     "current_fc_status = %d", hw->current_fc_status);
5194 		return -EOPNOTSUPP;
5195 	}
5196 
5197 	priority = pfc_conf->priority;
5198 	hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5199 	if (hw->dcb_info.pfc_en & BIT(priority) &&
5200 	    hw->requested_mode == hw->current_mode &&
5201 	    pfc_conf->fc.pause_time == pf->pause_time)
5202 		return 0;
5203 
5204 	rte_spinlock_lock(&hw->lock);
5205 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5206 	rte_spinlock_unlock(&hw->lock);
5207 
5208 	return ret;
5209 }
5210 
5211 static int
5212 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5213 {
5214 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5215 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5216 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5217 	int i;
5218 
5219 	rte_spinlock_lock(&hw->lock);
5220 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5221 		dcb_info->nb_tcs = pf->local_max_tc;
5222 	else
5223 		dcb_info->nb_tcs = 1;
5224 
5225 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5226 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5227 	for (i = 0; i < dcb_info->nb_tcs; i++)
5228 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5229 
5230 	for (i = 0; i < hw->num_tc; i++) {
5231 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5232 		dcb_info->tc_queue.tc_txq[0][i].base =
5233 						hw->tc_queue[i].tqp_offset;
5234 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5235 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5236 						hw->tc_queue[i].tqp_count;
5237 	}
5238 	rte_spinlock_unlock(&hw->lock);
5239 
5240 	return 0;
5241 }
5242 
5243 static int
5244 hns3_reinit_dev(struct hns3_adapter *hns)
5245 {
5246 	struct hns3_hw *hw = &hns->hw;
5247 	int ret;
5248 
5249 	ret = hns3_cmd_init(hw);
5250 	if (ret) {
5251 		hns3_err(hw, "Failed to init cmd: %d", ret);
5252 		return ret;
5253 	}
5254 
5255 	ret = hns3_reset_all_tqps(hns);
5256 	if (ret) {
5257 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5258 		return ret;
5259 	}
5260 
5261 	ret = hns3_init_hardware(hns);
5262 	if (ret) {
5263 		hns3_err(hw, "Failed to init hardware: %d", ret);
5264 		return ret;
5265 	}
5266 
5267 	ret = hns3_enable_hw_error_intr(hns, true);
5268 	if (ret) {
5269 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5270 			     ret);
5271 		return ret;
5272 	}
5273 	hns3_info(hw, "Reset done, driver initialization finished.");
5274 
5275 	return 0;
5276 }
5277 
5278 static bool
5279 is_pf_reset_done(struct hns3_hw *hw)
5280 {
5281 	uint32_t val, reg, reg_bit;
5282 
5283 	switch (hw->reset.level) {
5284 	case HNS3_IMP_RESET:
5285 		reg = HNS3_GLOBAL_RESET_REG;
5286 		reg_bit = HNS3_IMP_RESET_BIT;
5287 		break;
5288 	case HNS3_GLOBAL_RESET:
5289 		reg = HNS3_GLOBAL_RESET_REG;
5290 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5291 		break;
5292 	case HNS3_FUNC_RESET:
5293 		reg = HNS3_FUN_RST_ING;
5294 		reg_bit = HNS3_FUN_RST_ING_B;
5295 		break;
5296 	case HNS3_FLR_RESET:
5297 	default:
5298 		hns3_err(hw, "Wait for unsupported reset level: %d",
5299 			 hw->reset.level);
5300 		return true;
5301 	}
5302 	val = hns3_read_dev(hw, reg);
5303 	if (hns3_get_bit(val, reg_bit))
5304 		return false;
5305 	else
5306 		return true;
5307 }
5308 
5309 bool
5310 hns3_is_reset_pending(struct hns3_adapter *hns)
5311 {
5312 	struct hns3_hw *hw = &hns->hw;
5313 	enum hns3_reset_level reset;
5314 
5315 	hns3_check_event_cause(hns, NULL);
5316 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5317 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5318 		hns3_warn(hw, "High level reset %d is pending", reset);
5319 		return true;
5320 	}
5321 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5322 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5323 		hns3_warn(hw, "High level reset %d is request", reset);
5324 		return true;
5325 	}
5326 	return false;
5327 }
5328 
5329 static int
5330 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5331 {
5332 	struct hns3_hw *hw = &hns->hw;
5333 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5334 	struct timeval tv;
5335 
5336 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5337 		return 0;
5338 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5339 		gettimeofday(&tv, NULL);
5340 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5341 			  tv.tv_sec, tv.tv_usec);
5342 		return -ETIME;
5343 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5344 		return -EAGAIN;
5345 
5346 	wait_data->hns = hns;
5347 	wait_data->check_completion = is_pf_reset_done;
5348 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5349 				      HNS3_RESET_WAIT_MS + get_timeofday_ms();
5350 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5351 	wait_data->count = HNS3_RESET_WAIT_CNT;
5352 	wait_data->result = HNS3_WAIT_REQUEST;
5353 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5354 	return -EAGAIN;
5355 }
5356 
5357 static int
5358 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5359 {
5360 	struct hns3_cmd_desc desc;
5361 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5362 
5363 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5364 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5365 	req->fun_reset_vfid = func_id;
5366 
5367 	return hns3_cmd_send(hw, &desc, 1);
5368 }
5369 
5370 static int
5371 hns3_imp_reset_cmd(struct hns3_hw *hw)
5372 {
5373 	struct hns3_cmd_desc desc;
5374 
5375 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5376 	desc.data[0] = 0xeedd;
5377 
5378 	return hns3_cmd_send(hw, &desc, 1);
5379 }
5380 
5381 static void
5382 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5383 {
5384 	struct hns3_hw *hw = &hns->hw;
5385 	struct timeval tv;
5386 	uint32_t val;
5387 
5388 	gettimeofday(&tv, NULL);
5389 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5390 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5391 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5392 			  tv.tv_sec, tv.tv_usec);
5393 		return;
5394 	}
5395 
5396 	switch (reset_level) {
5397 	case HNS3_IMP_RESET:
5398 		hns3_imp_reset_cmd(hw);
5399 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5400 			  tv.tv_sec, tv.tv_usec);
5401 		break;
5402 	case HNS3_GLOBAL_RESET:
5403 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5404 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5405 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5406 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5407 			  tv.tv_sec, tv.tv_usec);
5408 		break;
5409 	case HNS3_FUNC_RESET:
5410 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5411 			  tv.tv_sec, tv.tv_usec);
5412 		/* schedule again to check later */
5413 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5414 		hns3_schedule_reset(hns);
5415 		break;
5416 	default:
5417 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5418 		return;
5419 	}
5420 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5421 }
5422 
5423 static enum hns3_reset_level
5424 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5425 {
5426 	struct hns3_hw *hw = &hns->hw;
5427 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5428 
5429 	/* Return the highest priority reset level amongst all */
5430 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5431 		reset_level = HNS3_IMP_RESET;
5432 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5433 		reset_level = HNS3_GLOBAL_RESET;
5434 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5435 		reset_level = HNS3_FUNC_RESET;
5436 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5437 		reset_level = HNS3_FLR_RESET;
5438 
5439 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5440 		return HNS3_NONE_RESET;
5441 
5442 	return reset_level;
5443 }
5444 
5445 static void
5446 hns3_record_imp_error(struct hns3_adapter *hns)
5447 {
5448 	struct hns3_hw *hw = &hns->hw;
5449 	uint32_t reg_val;
5450 
5451 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5452 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5453 		hns3_warn(hw, "Detected IMP RD poison!");
5454 		hns3_error_int_stats_add(hns, "IMP_RD_POISON_INT_STS");
5455 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5456 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5457 	}
5458 
5459 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5460 		hns3_warn(hw, "Detected IMP CMDQ error!");
5461 		hns3_error_int_stats_add(hns, "CMDQ_MEM_ECC_INT_STS");
5462 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5463 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5464 	}
5465 }
5466 
5467 static int
5468 hns3_prepare_reset(struct hns3_adapter *hns)
5469 {
5470 	struct hns3_hw *hw = &hns->hw;
5471 	uint32_t reg_val;
5472 	int ret;
5473 
5474 	switch (hw->reset.level) {
5475 	case HNS3_FUNC_RESET:
5476 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5477 		if (ret)
5478 			return ret;
5479 
5480 		/*
5481 		 * After performaning pf reset, it is not necessary to do the
5482 		 * mailbox handling or send any command to firmware, because
5483 		 * any mailbox handling or command to firmware is only valid
5484 		 * after hns3_cmd_init is called.
5485 		 */
5486 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
5487 		hw->reset.stats.request_cnt++;
5488 		break;
5489 	case HNS3_IMP_RESET:
5490 		hns3_record_imp_error(hns);
5491 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5492 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5493 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5494 		break;
5495 	default:
5496 		break;
5497 	}
5498 	return 0;
5499 }
5500 
5501 static int
5502 hns3_set_rst_done(struct hns3_hw *hw)
5503 {
5504 	struct hns3_pf_rst_done_cmd *req;
5505 	struct hns3_cmd_desc desc;
5506 
5507 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5508 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5509 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5510 	return hns3_cmd_send(hw, &desc, 1);
5511 }
5512 
5513 static int
5514 hns3_stop_service(struct hns3_adapter *hns)
5515 {
5516 	struct hns3_hw *hw = &hns->hw;
5517 	struct rte_eth_dev *eth_dev;
5518 
5519 	eth_dev = &rte_eth_devices[hw->data->port_id];
5520 	if (hw->adapter_state == HNS3_NIC_STARTED)
5521 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5522 	hw->mac.link_status = ETH_LINK_DOWN;
5523 
5524 	hns3_set_rxtx_function(eth_dev);
5525 	rte_wmb();
5526 	/* Disable datapath on secondary process. */
5527 	hns3_mp_req_stop_rxtx(eth_dev);
5528 	rte_delay_ms(hw->tqps_num);
5529 
5530 	rte_spinlock_lock(&hw->lock);
5531 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5532 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5533 		hns3_enable_all_queues(hw, false);
5534 		hns3_do_stop(hns);
5535 		hw->reset.mbuf_deferred_free = true;
5536 	} else
5537 		hw->reset.mbuf_deferred_free = false;
5538 
5539 	/*
5540 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5541 	 * from table space. Hence, for function reset software intervention is
5542 	 * required to delete the entries
5543 	 */
5544 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
5545 		hns3_configure_all_mc_mac_addr(hns, true);
5546 	rte_spinlock_unlock(&hw->lock);
5547 
5548 	return 0;
5549 }
5550 
5551 static int
5552 hns3_start_service(struct hns3_adapter *hns)
5553 {
5554 	struct hns3_hw *hw = &hns->hw;
5555 	struct rte_eth_dev *eth_dev;
5556 
5557 	if (hw->reset.level == HNS3_IMP_RESET ||
5558 	    hw->reset.level == HNS3_GLOBAL_RESET)
5559 		hns3_set_rst_done(hw);
5560 	eth_dev = &rte_eth_devices[hw->data->port_id];
5561 	hns3_set_rxtx_function(eth_dev);
5562 	hns3_mp_req_start_rxtx(eth_dev);
5563 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5564 		hns3_service_handler(eth_dev);
5565 
5566 		/* Enable interrupt of all rx queues before enabling queues */
5567 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5568 		/*
5569 		 * When finished the initialization, enable queues to receive
5570 		 * and transmit packets.
5571 		 */
5572 		hns3_enable_all_queues(hw, true);
5573 	}
5574 
5575 	return 0;
5576 }
5577 
5578 static int
5579 hns3_restore_conf(struct hns3_adapter *hns)
5580 {
5581 	struct hns3_hw *hw = &hns->hw;
5582 	int ret;
5583 
5584 	ret = hns3_configure_all_mac_addr(hns, false);
5585 	if (ret)
5586 		return ret;
5587 
5588 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5589 	if (ret)
5590 		goto err_mc_mac;
5591 
5592 	ret = hns3_dev_promisc_restore(hns);
5593 	if (ret)
5594 		goto err_promisc;
5595 
5596 	ret = hns3_restore_vlan_table(hns);
5597 	if (ret)
5598 		goto err_promisc;
5599 
5600 	ret = hns3_restore_vlan_conf(hns);
5601 	if (ret)
5602 		goto err_promisc;
5603 
5604 	ret = hns3_restore_all_fdir_filter(hns);
5605 	if (ret)
5606 		goto err_promisc;
5607 
5608 	ret = hns3_restore_rx_interrupt(hw);
5609 	if (ret)
5610 		goto err_promisc;
5611 
5612 	ret = hns3_restore_gro_conf(hw);
5613 	if (ret)
5614 		goto err_promisc;
5615 
5616 	ret = hns3_restore_fec(hw);
5617 	if (ret)
5618 		goto err_promisc;
5619 
5620 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5621 		ret = hns3_do_start(hns, false);
5622 		if (ret)
5623 			goto err_promisc;
5624 		hns3_info(hw, "hns3 dev restart successful!");
5625 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5626 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5627 	return 0;
5628 
5629 err_promisc:
5630 	hns3_configure_all_mc_mac_addr(hns, true);
5631 err_mc_mac:
5632 	hns3_configure_all_mac_addr(hns, true);
5633 	return ret;
5634 }
5635 
5636 static void
5637 hns3_reset_service(void *param)
5638 {
5639 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5640 	struct hns3_hw *hw = &hns->hw;
5641 	enum hns3_reset_level reset_level;
5642 	struct timeval tv_delta;
5643 	struct timeval tv_start;
5644 	struct timeval tv;
5645 	uint64_t msec;
5646 	int ret;
5647 
5648 	/*
5649 	 * The interrupt is not triggered within the delay time.
5650 	 * The interrupt may have been lost. It is necessary to handle
5651 	 * the interrupt to recover from the error.
5652 	 */
5653 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
5654 		rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
5655 		hns3_err(hw, "Handling interrupts in delayed tasks");
5656 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5657 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5658 		if (reset_level == HNS3_NONE_RESET) {
5659 			hns3_err(hw, "No reset level is set, try IMP reset");
5660 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5661 		}
5662 	}
5663 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
5664 
5665 	/*
5666 	 * Check if there is any ongoing reset in the hardware. This status can
5667 	 * be checked from reset_pending. If there is then, we need to wait for
5668 	 * hardware to complete reset.
5669 	 *    a. If we are able to figure out in reasonable time that hardware
5670 	 *       has fully resetted then, we can proceed with driver, client
5671 	 *       reset.
5672 	 *    b. else, we can come back later to check this status so re-sched
5673 	 *       now.
5674 	 */
5675 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5676 	if (reset_level != HNS3_NONE_RESET) {
5677 		gettimeofday(&tv_start, NULL);
5678 		ret = hns3_reset_process(hns, reset_level);
5679 		gettimeofday(&tv, NULL);
5680 		timersub(&tv, &tv_start, &tv_delta);
5681 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
5682 		       tv_delta.tv_usec / USEC_PER_MSEC;
5683 		if (msec > HNS3_RESET_PROCESS_MS)
5684 			hns3_err(hw, "%d handle long time delta %" PRIx64
5685 				     " ms time=%ld.%.6ld",
5686 				 hw->reset.level, msec,
5687 				 tv.tv_sec, tv.tv_usec);
5688 		if (ret == -EAGAIN)
5689 			return;
5690 	}
5691 
5692 	/* Check if we got any *new* reset requests to be honored */
5693 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
5694 	if (reset_level != HNS3_NONE_RESET)
5695 		hns3_msix_process(hns, reset_level);
5696 }
5697 
5698 static unsigned int
5699 hns3_get_speed_capa_num(uint16_t device_id)
5700 {
5701 	unsigned int num;
5702 
5703 	switch (device_id) {
5704 	case HNS3_DEV_ID_25GE:
5705 	case HNS3_DEV_ID_25GE_RDMA:
5706 		num = 2;
5707 		break;
5708 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
5709 	case HNS3_DEV_ID_200G_RDMA:
5710 		num = 1;
5711 		break;
5712 	default:
5713 		num = 0;
5714 		break;
5715 	}
5716 
5717 	return num;
5718 }
5719 
5720 static int
5721 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
5722 			uint16_t device_id)
5723 {
5724 	switch (device_id) {
5725 	case HNS3_DEV_ID_25GE:
5726 	/* fallthrough */
5727 	case HNS3_DEV_ID_25GE_RDMA:
5728 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
5729 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
5730 
5731 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
5732 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
5733 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
5734 		break;
5735 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
5736 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
5737 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
5738 		break;
5739 	case HNS3_DEV_ID_200G_RDMA:
5740 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
5741 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
5742 		break;
5743 	default:
5744 		return -ENOTSUP;
5745 	}
5746 
5747 	return 0;
5748 }
5749 
5750 static int
5751 hns3_fec_get_capability(struct rte_eth_dev *dev,
5752 			struct rte_eth_fec_capa *speed_fec_capa,
5753 			unsigned int num)
5754 {
5755 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5756 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5757 	uint16_t device_id = pci_dev->id.device_id;
5758 	unsigned int capa_num;
5759 	int ret;
5760 
5761 	capa_num = hns3_get_speed_capa_num(device_id);
5762 	if (capa_num == 0) {
5763 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
5764 			 device_id);
5765 		return -ENOTSUP;
5766 	}
5767 
5768 	if (speed_fec_capa == NULL || num < capa_num)
5769 		return capa_num;
5770 
5771 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
5772 	if (ret)
5773 		return -ENOTSUP;
5774 
5775 	return capa_num;
5776 }
5777 
5778 static int
5779 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
5780 {
5781 	struct hns3_config_fec_cmd *req;
5782 	struct hns3_cmd_desc desc;
5783 	int ret;
5784 
5785 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
5786 	req = (struct hns3_config_fec_cmd *)desc.data;
5787 	ret = hns3_cmd_send(hw, &desc, 1);
5788 	if (ret) {
5789 		hns3_err(hw, "get current fec auto state failed, ret = %d",
5790 			 ret);
5791 		return ret;
5792 	}
5793 
5794 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
5795 	return 0;
5796 }
5797 
5798 static int
5799 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
5800 {
5801 #define QUERY_ACTIVE_SPEED	1
5802 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5803 	struct hns3_sfp_speed_cmd *resp;
5804 	uint32_t tmp_fec_capa;
5805 	uint8_t auto_state;
5806 	struct hns3_cmd_desc desc;
5807 	int ret;
5808 
5809 	/*
5810 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
5811 	 * configured FEC mode is returned.
5812 	 * If link is up, current FEC mode is returned.
5813 	 */
5814 	if (hw->mac.link_status == ETH_LINK_DOWN) {
5815 		ret = get_current_fec_auto_state(hw, &auto_state);
5816 		if (ret)
5817 			return ret;
5818 
5819 		if (auto_state == 0x1) {
5820 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
5821 			return 0;
5822 		}
5823 	}
5824 
5825 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
5826 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
5827 	resp->query_type = QUERY_ACTIVE_SPEED;
5828 
5829 	ret = hns3_cmd_send(hw, &desc, 1);
5830 	if (ret == -EOPNOTSUPP) {
5831 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
5832 		return ret;
5833 	} else if (ret) {
5834 		hns3_err(hw, "get FEC failed, ret = %d", ret);
5835 		return ret;
5836 	}
5837 
5838 	/*
5839 	 * FEC mode order defined in hns3 hardware is inconsistend with
5840 	 * that defined in the ethdev library. So the sequence needs
5841 	 * to be converted.
5842 	 */
5843 	switch (resp->active_fec) {
5844 	case HNS3_HW_FEC_MODE_NOFEC:
5845 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
5846 		break;
5847 	case HNS3_HW_FEC_MODE_BASER:
5848 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
5849 		break;
5850 	case HNS3_HW_FEC_MODE_RS:
5851 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
5852 		break;
5853 	default:
5854 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
5855 		break;
5856 	}
5857 
5858 	*fec_capa = tmp_fec_capa;
5859 	return 0;
5860 }
5861 
5862 static int
5863 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
5864 {
5865 	struct hns3_config_fec_cmd *req;
5866 	struct hns3_cmd_desc desc;
5867 	int ret;
5868 
5869 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
5870 
5871 	req = (struct hns3_config_fec_cmd *)desc.data;
5872 	switch (mode) {
5873 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
5874 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
5875 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
5876 		break;
5877 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
5878 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
5879 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
5880 		break;
5881 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
5882 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
5883 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
5884 		break;
5885 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
5886 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
5887 		break;
5888 	default:
5889 		return 0;
5890 	}
5891 	ret = hns3_cmd_send(hw, &desc, 1);
5892 	if (ret)
5893 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
5894 
5895 	return ret;
5896 }
5897 
5898 static uint32_t
5899 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
5900 {
5901 	struct hns3_mac *mac = &hw->mac;
5902 	uint32_t cur_capa;
5903 
5904 	switch (mac->link_speed) {
5905 	case ETH_SPEED_NUM_10G:
5906 		cur_capa = fec_capa[1].capa;
5907 		break;
5908 	case ETH_SPEED_NUM_25G:
5909 	case ETH_SPEED_NUM_100G:
5910 	case ETH_SPEED_NUM_200G:
5911 		cur_capa = fec_capa[0].capa;
5912 		break;
5913 	default:
5914 		cur_capa = 0;
5915 		break;
5916 	}
5917 
5918 	return cur_capa;
5919 }
5920 
5921 static bool
5922 is_fec_mode_one_bit_set(uint32_t mode)
5923 {
5924 	int cnt = 0;
5925 	uint8_t i;
5926 
5927 	for (i = 0; i < sizeof(mode); i++)
5928 		if (mode >> i & 0x1)
5929 			cnt++;
5930 
5931 	return cnt == 1 ? true : false;
5932 }
5933 
5934 static int
5935 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
5936 {
5937 #define FEC_CAPA_NUM 2
5938 	struct hns3_adapter *hns = dev->data->dev_private;
5939 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
5940 	struct hns3_pf *pf = &hns->pf;
5941 
5942 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
5943 	uint32_t cur_capa;
5944 	uint32_t num = FEC_CAPA_NUM;
5945 	int ret;
5946 
5947 	ret = hns3_fec_get_capability(dev, fec_capa, num);
5948 	if (ret < 0)
5949 		return ret;
5950 
5951 	/* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
5952 	if (!is_fec_mode_one_bit_set(mode))
5953 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD,"
5954 			     "FEC mode should be only one bit set", mode);
5955 
5956 	/*
5957 	 * Check whether the configured mode is within the FEC capability.
5958 	 * If not, the configured mode will not be supported.
5959 	 */
5960 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
5961 	if (!(cur_capa & mode)) {
5962 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
5963 		return -EINVAL;
5964 	}
5965 
5966 	ret = hns3_set_fec_hw(hw, mode);
5967 	if (ret)
5968 		return ret;
5969 
5970 	pf->fec_mode = mode;
5971 	return 0;
5972 }
5973 
5974 static int
5975 hns3_restore_fec(struct hns3_hw *hw)
5976 {
5977 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
5978 	struct hns3_pf *pf = &hns->pf;
5979 	uint32_t mode = pf->fec_mode;
5980 	int ret;
5981 
5982 	ret = hns3_set_fec_hw(hw, mode);
5983 	if (ret)
5984 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
5985 			 mode, ret);
5986 
5987 	return ret;
5988 }
5989 
5990 static int
5991 hns3_query_dev_fec_info(struct rte_eth_dev *dev)
5992 {
5993 	struct hns3_adapter *hns = dev->data->dev_private;
5994 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
5995 	struct hns3_pf *pf = &hns->pf;
5996 	int ret;
5997 
5998 	ret = hns3_fec_get(dev, &pf->fec_mode);
5999 	if (ret)
6000 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6001 
6002 	return ret;
6003 }
6004 
6005 static const struct eth_dev_ops hns3_eth_dev_ops = {
6006 	.dev_configure      = hns3_dev_configure,
6007 	.dev_start          = hns3_dev_start,
6008 	.dev_stop           = hns3_dev_stop,
6009 	.dev_close          = hns3_dev_close,
6010 	.promiscuous_enable = hns3_dev_promiscuous_enable,
6011 	.promiscuous_disable = hns3_dev_promiscuous_disable,
6012 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
6013 	.allmulticast_disable = hns3_dev_allmulticast_disable,
6014 	.mtu_set            = hns3_dev_mtu_set,
6015 	.stats_get          = hns3_stats_get,
6016 	.stats_reset        = hns3_stats_reset,
6017 	.xstats_get         = hns3_dev_xstats_get,
6018 	.xstats_get_names   = hns3_dev_xstats_get_names,
6019 	.xstats_reset       = hns3_dev_xstats_reset,
6020 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6021 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6022 	.dev_infos_get          = hns3_dev_infos_get,
6023 	.fw_version_get         = hns3_fw_version_get,
6024 	.rx_queue_setup         = hns3_rx_queue_setup,
6025 	.tx_queue_setup         = hns3_tx_queue_setup,
6026 	.rx_queue_release       = hns3_dev_rx_queue_release,
6027 	.tx_queue_release       = hns3_dev_tx_queue_release,
6028 	.rx_queue_start         = hns3_dev_rx_queue_start,
6029 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
6030 	.tx_queue_start         = hns3_dev_tx_queue_start,
6031 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
6032 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6033 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6034 	.rxq_info_get           = hns3_rxq_info_get,
6035 	.txq_info_get           = hns3_txq_info_get,
6036 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
6037 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
6038 	.flow_ctrl_get          = hns3_flow_ctrl_get,
6039 	.flow_ctrl_set          = hns3_flow_ctrl_set,
6040 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6041 	.mac_addr_add           = hns3_add_mac_addr,
6042 	.mac_addr_remove        = hns3_remove_mac_addr,
6043 	.mac_addr_set           = hns3_set_default_mac_addr,
6044 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6045 	.link_update            = hns3_dev_link_update,
6046 	.rss_hash_update        = hns3_dev_rss_hash_update,
6047 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6048 	.reta_update            = hns3_dev_rss_reta_update,
6049 	.reta_query             = hns3_dev_rss_reta_query,
6050 	.filter_ctrl            = hns3_dev_filter_ctrl,
6051 	.vlan_filter_set        = hns3_vlan_filter_set,
6052 	.vlan_tpid_set          = hns3_vlan_tpid_set,
6053 	.vlan_offload_set       = hns3_vlan_offload_set,
6054 	.vlan_pvid_set          = hns3_vlan_pvid_set,
6055 	.get_reg                = hns3_get_regs,
6056 	.get_dcb_info           = hns3_get_dcb_info,
6057 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6058 	.fec_get_capability     = hns3_fec_get_capability,
6059 	.fec_get                = hns3_fec_get,
6060 	.fec_set                = hns3_fec_set,
6061 };
6062 
6063 static const struct hns3_reset_ops hns3_reset_ops = {
6064 	.reset_service       = hns3_reset_service,
6065 	.stop_service        = hns3_stop_service,
6066 	.prepare_reset       = hns3_prepare_reset,
6067 	.wait_hardware_ready = hns3_wait_hardware_ready,
6068 	.reinit_dev          = hns3_reinit_dev,
6069 	.restore_conf	     = hns3_restore_conf,
6070 	.start_service       = hns3_start_service,
6071 };
6072 
6073 static int
6074 hns3_dev_init(struct rte_eth_dev *eth_dev)
6075 {
6076 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6077 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
6078 	struct rte_ether_addr *eth_addr;
6079 	struct hns3_hw *hw = &hns->hw;
6080 	int ret;
6081 
6082 	PMD_INIT_FUNC_TRACE();
6083 
6084 	eth_dev->process_private = (struct hns3_process_private *)
6085 	    rte_zmalloc_socket("hns3_filter_list",
6086 			       sizeof(struct hns3_process_private),
6087 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
6088 	if (eth_dev->process_private == NULL) {
6089 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
6090 		return -ENOMEM;
6091 	}
6092 	/* initialize flow filter lists */
6093 	hns3_filterlist_init(eth_dev);
6094 
6095 	hns3_set_rxtx_function(eth_dev);
6096 	eth_dev->dev_ops = &hns3_eth_dev_ops;
6097 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6098 		ret = hns3_mp_init_secondary();
6099 		if (ret) {
6100 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
6101 				     "process, ret = %d", ret);
6102 			goto err_mp_init_secondary;
6103 		}
6104 
6105 		hw->secondary_cnt++;
6106 		return 0;
6107 	}
6108 
6109 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
6110 
6111 	ret = hns3_mp_init_primary();
6112 	if (ret) {
6113 		PMD_INIT_LOG(ERR,
6114 			     "Failed to init for primary process, ret = %d",
6115 			     ret);
6116 		goto err_mp_init_primary;
6117 	}
6118 
6119 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6120 	hns->is_vf = false;
6121 	hw->data = eth_dev->data;
6122 
6123 	/*
6124 	 * Set default max packet size according to the mtu
6125 	 * default vale in DPDK frame.
6126 	 */
6127 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6128 
6129 	ret = hns3_reset_init(hw);
6130 	if (ret)
6131 		goto err_init_reset;
6132 	hw->reset.ops = &hns3_reset_ops;
6133 
6134 	ret = hns3_init_pf(eth_dev);
6135 	if (ret) {
6136 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6137 		goto err_init_pf;
6138 	}
6139 
6140 	/* Allocate memory for storing MAC addresses */
6141 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
6142 					       sizeof(struct rte_ether_addr) *
6143 					       HNS3_UC_MACADDR_NUM, 0);
6144 	if (eth_dev->data->mac_addrs == NULL) {
6145 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
6146 			     "to store MAC addresses",
6147 			     sizeof(struct rte_ether_addr) *
6148 			     HNS3_UC_MACADDR_NUM);
6149 		ret = -ENOMEM;
6150 		goto err_rte_zmalloc;
6151 	}
6152 
6153 	eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
6154 	if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
6155 		rte_eth_random_addr(hw->mac.mac_addr);
6156 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
6157 				(struct rte_ether_addr *)hw->mac.mac_addr);
6158 		hns3_warn(hw, "default mac_addr from firmware is an invalid "
6159 			  "unicast address, using random MAC address %s",
6160 			  mac_str);
6161 	}
6162 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
6163 			    &eth_dev->data->mac_addrs[0]);
6164 
6165 	hw->adapter_state = HNS3_NIC_INITIALIZED;
6166 
6167 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
6168 		hns3_err(hw, "Reschedule reset service after dev_init");
6169 		hns3_schedule_reset(hns);
6170 	} else {
6171 		/* IMP will wait ready flag before reset */
6172 		hns3_notify_reset_ready(hw, false);
6173 	}
6174 
6175 	hns3_info(hw, "hns3 dev initialization successful!");
6176 	return 0;
6177 
6178 err_rte_zmalloc:
6179 	hns3_uninit_pf(eth_dev);
6180 
6181 err_init_pf:
6182 	rte_free(hw->reset.wait_data);
6183 
6184 err_init_reset:
6185 	hns3_mp_uninit_primary();
6186 
6187 err_mp_init_primary:
6188 err_mp_init_secondary:
6189 	eth_dev->dev_ops = NULL;
6190 	eth_dev->rx_pkt_burst = NULL;
6191 	eth_dev->tx_pkt_burst = NULL;
6192 	eth_dev->tx_pkt_prepare = NULL;
6193 	rte_free(eth_dev->process_private);
6194 	eth_dev->process_private = NULL;
6195 	return ret;
6196 }
6197 
6198 static int
6199 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6200 {
6201 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6202 	struct hns3_hw *hw = &hns->hw;
6203 
6204 	PMD_INIT_FUNC_TRACE();
6205 
6206 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
6207 		return -EPERM;
6208 
6209 	if (hw->adapter_state < HNS3_NIC_CLOSING)
6210 		hns3_dev_close(eth_dev);
6211 
6212 	hw->adapter_state = HNS3_NIC_REMOVED;
6213 	return 0;
6214 }
6215 
6216 static int
6217 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6218 		   struct rte_pci_device *pci_dev)
6219 {
6220 	return rte_eth_dev_pci_generic_probe(pci_dev,
6221 					     sizeof(struct hns3_adapter),
6222 					     hns3_dev_init);
6223 }
6224 
6225 static int
6226 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6227 {
6228 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6229 }
6230 
6231 static const struct rte_pci_id pci_id_hns3_map[] = {
6232 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6233 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6234 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6235 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6236 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6237 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6238 	{ .vendor_id = 0, /* sentinel */ },
6239 };
6240 
6241 static struct rte_pci_driver rte_hns3_pmd = {
6242 	.id_table = pci_id_hns3_map,
6243 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
6244 	.probe = eth_hns3_pci_probe,
6245 	.remove = eth_hns3_pci_remove,
6246 };
6247 
6248 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6249 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6250 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6251 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
6252 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);
6253