xref: /dpdk/drivers/net/hns3/hns3_ethdev.c (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 #include <rte_kvargs.h>
10 
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18 
19 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE	32
20 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM	1
21 
22 #define HNS3_SERVICE_INTERVAL		1000000 /* us */
23 #define HNS3_SERVICE_QUICK_INTERVAL	10
24 #define HNS3_INVALID_PVID		0xFFFF
25 
26 #define HNS3_FILTER_TYPE_VF		0
27 #define HNS3_FILTER_TYPE_PORT		1
28 #define HNS3_FILTER_FE_EGRESS_V1_B	BIT(0)
29 #define HNS3_FILTER_FE_NIC_INGRESS_B	BIT(0)
30 #define HNS3_FILTER_FE_NIC_EGRESS_B	BIT(1)
31 #define HNS3_FILTER_FE_ROCE_INGRESS_B	BIT(2)
32 #define HNS3_FILTER_FE_ROCE_EGRESS_B	BIT(3)
33 #define HNS3_FILTER_FE_EGRESS		(HNS3_FILTER_FE_NIC_EGRESS_B \
34 					| HNS3_FILTER_FE_ROCE_EGRESS_B)
35 #define HNS3_FILTER_FE_INGRESS		(HNS3_FILTER_FE_NIC_INGRESS_B \
36 					| HNS3_FILTER_FE_ROCE_INGRESS_B)
37 
38 /* Reset related Registers */
39 #define HNS3_GLOBAL_RESET_BIT		0
40 #define HNS3_CORE_RESET_BIT		1
41 #define HNS3_IMP_RESET_BIT		2
42 #define HNS3_FUN_RST_ING_B		0
43 
44 #define HNS3_VECTOR0_IMP_RESET_INT_B	1
45 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B	4U
46 #define HNS3_VECTOR0_IMP_RD_POISON_B	5U
47 #define HNS3_VECTOR0_ALL_MSIX_ERR_B	6U
48 
49 #define HNS3_RESET_WAIT_MS	100
50 #define HNS3_RESET_WAIT_CNT	200
51 
52 /* FEC mode order defined in HNS3 hardware */
53 #define HNS3_HW_FEC_MODE_NOFEC  0
54 #define HNS3_HW_FEC_MODE_BASER  1
55 #define HNS3_HW_FEC_MODE_RS     2
56 
57 enum hns3_evt_cause {
58 	HNS3_VECTOR0_EVENT_RST,
59 	HNS3_VECTOR0_EVENT_MBX,
60 	HNS3_VECTOR0_EVENT_ERR,
61 	HNS3_VECTOR0_EVENT_OTHER,
62 };
63 
64 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
65 	{ ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
66 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
67 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
68 
69 	{ ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
70 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
71 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
72 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
73 
74 	{ ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
75 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
76 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
77 
78 	{ ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
79 			     RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
80 			     RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
81 			     RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
82 
83 	{ ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
84 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
85 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
86 
87 	{ ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
88 			      RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
89 			      RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
90 };
91 
92 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
93 						 uint64_t *levels);
94 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
95 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
96 				    int on);
97 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
98 static bool hns3_update_link_status(struct hns3_hw *hw);
99 
100 static int hns3_add_mc_addr(struct hns3_hw *hw,
101 			    struct rte_ether_addr *mac_addr);
102 static int hns3_remove_mc_addr(struct hns3_hw *hw,
103 			    struct rte_ether_addr *mac_addr);
104 static int hns3_restore_fec(struct hns3_hw *hw);
105 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
106 static int hns3_do_stop(struct hns3_adapter *hns);
107 
108 void hns3_ether_format_addr(char *buf, uint16_t size,
109 			    const struct rte_ether_addr *ether_addr)
110 {
111 	snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
112 		ether_addr->addr_bytes[0],
113 		ether_addr->addr_bytes[4],
114 		ether_addr->addr_bytes[5]);
115 }
116 
117 static void
118 hns3_pf_disable_irq0(struct hns3_hw *hw)
119 {
120 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
121 }
122 
123 static void
124 hns3_pf_enable_irq0(struct hns3_hw *hw)
125 {
126 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
127 }
128 
129 static enum hns3_evt_cause
130 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
131 			  uint32_t *vec_val)
132 {
133 	struct hns3_hw *hw = &hns->hw;
134 
135 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
136 	hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
137 	*vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
138 	if (!is_delay) {
139 		hw->reset.stats.imp_cnt++;
140 		hns3_warn(hw, "IMP reset detected, clear reset status");
141 	} else {
142 		hns3_schedule_delayed_reset(hns);
143 		hns3_warn(hw, "IMP reset detected, don't clear reset status");
144 	}
145 
146 	return HNS3_VECTOR0_EVENT_RST;
147 }
148 
149 static enum hns3_evt_cause
150 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
151 			     uint32_t *vec_val)
152 {
153 	struct hns3_hw *hw = &hns->hw;
154 
155 	__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
156 	hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
157 	*vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
158 	if (!is_delay) {
159 		hw->reset.stats.global_cnt++;
160 		hns3_warn(hw, "Global reset detected, clear reset status");
161 	} else {
162 		hns3_schedule_delayed_reset(hns);
163 		hns3_warn(hw,
164 			  "Global reset detected, don't clear reset status");
165 	}
166 
167 	return HNS3_VECTOR0_EVENT_RST;
168 }
169 
170 static enum hns3_evt_cause
171 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
172 {
173 	struct hns3_hw *hw = &hns->hw;
174 	uint32_t vector0_int_stats;
175 	uint32_t cmdq_src_val;
176 	uint32_t hw_err_src_reg;
177 	uint32_t val;
178 	enum hns3_evt_cause ret;
179 	bool is_delay;
180 
181 	/* fetch the events from their corresponding regs */
182 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
183 	cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
184 	hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
185 
186 	is_delay = clearval == NULL ? true : false;
187 	/*
188 	 * Assumption: If by any chance reset and mailbox events are reported
189 	 * together then we will only process reset event and defer the
190 	 * processing of the mailbox events. Since, we would have not cleared
191 	 * RX CMDQ event this time we would receive again another interrupt
192 	 * from H/W just for the mailbox.
193 	 */
194 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
195 		ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
196 		goto out;
197 	}
198 
199 	/* Global reset */
200 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
201 		ret = hns3_proc_global_reset_event(hns, is_delay, &val);
202 		goto out;
203 	}
204 
205 	/* check for vector0 msix event source */
206 	if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
207 	    hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
208 		val = vector0_int_stats | hw_err_src_reg;
209 		ret = HNS3_VECTOR0_EVENT_ERR;
210 		goto out;
211 	}
212 
213 	/* check for vector0 mailbox(=CMDQ RX) event source */
214 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
215 		cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
216 		val = cmdq_src_val;
217 		ret = HNS3_VECTOR0_EVENT_MBX;
218 		goto out;
219 	}
220 
221 	val = vector0_int_stats;
222 	ret = HNS3_VECTOR0_EVENT_OTHER;
223 out:
224 
225 	if (clearval)
226 		*clearval = val;
227 	return ret;
228 }
229 
230 static void
231 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
232 {
233 	if (event_type == HNS3_VECTOR0_EVENT_RST)
234 		hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
235 	else if (event_type == HNS3_VECTOR0_EVENT_MBX)
236 		hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
237 }
238 
239 static void
240 hns3_clear_all_event_cause(struct hns3_hw *hw)
241 {
242 	uint32_t vector0_int_stats;
243 	vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
244 
245 	if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
246 		hns3_warn(hw, "Probe during IMP reset interrupt");
247 
248 	if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
249 		hns3_warn(hw, "Probe during Global reset interrupt");
250 
251 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
252 			       BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
253 			       BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
254 			       BIT(HNS3_VECTOR0_CORERESET_INT_B));
255 	hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
256 }
257 
258 static void
259 hns3_handle_mac_tnl(struct hns3_hw *hw)
260 {
261 	struct hns3_cmd_desc desc;
262 	uint32_t status;
263 	int ret;
264 
265 	/* query and clear mac tnl interruptions */
266 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
267 	ret = hns3_cmd_send(hw, &desc, 1);
268 	if (ret) {
269 		hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
270 		return;
271 	}
272 
273 	status = rte_le_to_cpu_32(desc.data[0]);
274 	if (status) {
275 		hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
276 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
277 					  false);
278 		desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
279 		ret = hns3_cmd_send(hw, &desc, 1);
280 		if (ret)
281 			hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
282 				 ret);
283 	}
284 }
285 
286 static void
287 hns3_interrupt_handler(void *param)
288 {
289 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
290 	struct hns3_adapter *hns = dev->data->dev_private;
291 	struct hns3_hw *hw = &hns->hw;
292 	enum hns3_evt_cause event_cause;
293 	uint32_t clearval = 0;
294 	uint32_t vector0_int;
295 	uint32_t ras_int;
296 	uint32_t cmdq_int;
297 
298 	/* Disable interrupt */
299 	hns3_pf_disable_irq0(hw);
300 
301 	event_cause = hns3_check_event_cause(hns, &clearval);
302 	vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
303 	ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
304 	cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
305 	/* vector 0 interrupt is shared with reset and mailbox source events. */
306 	if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
307 		hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
308 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
309 			  vector0_int, ras_int, cmdq_int);
310 		hns3_handle_msix_error(hns, &hw->reset.request);
311 		hns3_handle_ras_error(hns, &hw->reset.request);
312 		hns3_handle_mac_tnl(hw);
313 		hns3_schedule_reset(hns);
314 	} else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
315 		hns3_warn(hw, "received reset interrupt");
316 		hns3_schedule_reset(hns);
317 	} else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
318 		hns3_dev_handle_mbx_msg(hw);
319 	} else {
320 		hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
321 			  "ras_int_stat:0x%x cmdq_int_stat:0x%x",
322 			  vector0_int, ras_int, cmdq_int);
323 	}
324 
325 	hns3_clear_event_cause(hw, event_cause, clearval);
326 	/* Enable interrupt if it is not cause by reset */
327 	hns3_pf_enable_irq0(hw);
328 }
329 
330 static int
331 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
332 {
333 #define HNS3_VLAN_ID_OFFSET_STEP	160
334 #define HNS3_VLAN_BYTE_SIZE		8
335 	struct hns3_vlan_filter_pf_cfg_cmd *req;
336 	struct hns3_hw *hw = &hns->hw;
337 	uint8_t vlan_offset_byte_val;
338 	struct hns3_cmd_desc desc;
339 	uint8_t vlan_offset_byte;
340 	uint8_t vlan_offset_base;
341 	int ret;
342 
343 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
344 
345 	vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
346 	vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
347 			   HNS3_VLAN_BYTE_SIZE;
348 	vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
349 
350 	req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
351 	req->vlan_offset = vlan_offset_base;
352 	req->vlan_cfg = on ? 0 : 1;
353 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
354 
355 	ret = hns3_cmd_send(hw, &desc, 1);
356 	if (ret)
357 		hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
358 			 vlan_id, ret);
359 
360 	return ret;
361 }
362 
363 static void
364 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
365 {
366 	struct hns3_user_vlan_table *vlan_entry;
367 	struct hns3_pf *pf = &hns->pf;
368 
369 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
370 		if (vlan_entry->vlan_id == vlan_id) {
371 			if (vlan_entry->hd_tbl_status)
372 				hns3_set_port_vlan_filter(hns, vlan_id, 0);
373 			LIST_REMOVE(vlan_entry, next);
374 			rte_free(vlan_entry);
375 			break;
376 		}
377 	}
378 }
379 
380 static void
381 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
382 			bool writen_to_tbl)
383 {
384 	struct hns3_user_vlan_table *vlan_entry;
385 	struct hns3_hw *hw = &hns->hw;
386 	struct hns3_pf *pf = &hns->pf;
387 
388 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
389 		if (vlan_entry->vlan_id == vlan_id)
390 			return;
391 	}
392 
393 	vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
394 	if (vlan_entry == NULL) {
395 		hns3_err(hw, "Failed to malloc hns3 vlan table");
396 		return;
397 	}
398 
399 	vlan_entry->hd_tbl_status = writen_to_tbl;
400 	vlan_entry->vlan_id = vlan_id;
401 
402 	LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
403 }
404 
405 static int
406 hns3_restore_vlan_table(struct hns3_adapter *hns)
407 {
408 	struct hns3_user_vlan_table *vlan_entry;
409 	struct hns3_hw *hw = &hns->hw;
410 	struct hns3_pf *pf = &hns->pf;
411 	uint16_t vlan_id;
412 	int ret = 0;
413 
414 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
415 		return hns3_vlan_pvid_configure(hns,
416 						hw->port_base_vlan_cfg.pvid, 1);
417 
418 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
419 		if (vlan_entry->hd_tbl_status) {
420 			vlan_id = vlan_entry->vlan_id;
421 			ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
422 			if (ret)
423 				break;
424 		}
425 	}
426 
427 	return ret;
428 }
429 
430 static int
431 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
432 {
433 	struct hns3_hw *hw = &hns->hw;
434 	bool writen_to_tbl = false;
435 	int ret = 0;
436 
437 	/*
438 	 * When vlan filter is enabled, hardware regards packets without vlan
439 	 * as packets with vlan 0. So, to receive packets without vlan, vlan id
440 	 * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
441 	 */
442 	if (on == 0 && vlan_id == 0)
443 		return 0;
444 
445 	/*
446 	 * When port base vlan enabled, we use port base vlan as the vlan
447 	 * filter condition. In this case, we don't update vlan filter table
448 	 * when user add new vlan or remove exist vlan, just update the
449 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
450 	 * table until port base vlan disabled
451 	 */
452 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
453 		ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
454 		writen_to_tbl = true;
455 	}
456 
457 	if (ret == 0) {
458 		if (on)
459 			hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
460 		else
461 			hns3_rm_dev_vlan_table(hns, vlan_id);
462 	}
463 	return ret;
464 }
465 
466 static int
467 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
468 {
469 	struct hns3_adapter *hns = dev->data->dev_private;
470 	struct hns3_hw *hw = &hns->hw;
471 	int ret;
472 
473 	rte_spinlock_lock(&hw->lock);
474 	ret = hns3_vlan_filter_configure(hns, vlan_id, on);
475 	rte_spinlock_unlock(&hw->lock);
476 	return ret;
477 }
478 
479 static int
480 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
481 			 uint16_t tpid)
482 {
483 	struct hns3_rx_vlan_type_cfg_cmd *rx_req;
484 	struct hns3_tx_vlan_type_cfg_cmd *tx_req;
485 	struct hns3_hw *hw = &hns->hw;
486 	struct hns3_cmd_desc desc;
487 	int ret;
488 
489 	if ((vlan_type != ETH_VLAN_TYPE_INNER &&
490 	     vlan_type != ETH_VLAN_TYPE_OUTER)) {
491 		hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
492 		return -EINVAL;
493 	}
494 
495 	if (tpid != RTE_ETHER_TYPE_VLAN) {
496 		hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
497 		return -EINVAL;
498 	}
499 
500 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
501 	rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
502 
503 	if (vlan_type == ETH_VLAN_TYPE_OUTER) {
504 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
505 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
506 	} else if (vlan_type == ETH_VLAN_TYPE_INNER) {
507 		rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
508 		rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
509 		rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
510 		rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
511 	}
512 
513 	ret = hns3_cmd_send(hw, &desc, 1);
514 	if (ret) {
515 		hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
516 			 ret);
517 		return ret;
518 	}
519 
520 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
521 
522 	tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
523 	tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
524 	tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
525 
526 	ret = hns3_cmd_send(hw, &desc, 1);
527 	if (ret)
528 		hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
529 			 ret);
530 	return ret;
531 }
532 
533 static int
534 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
535 		   uint16_t tpid)
536 {
537 	struct hns3_adapter *hns = dev->data->dev_private;
538 	struct hns3_hw *hw = &hns->hw;
539 	int ret;
540 
541 	rte_spinlock_lock(&hw->lock);
542 	ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
543 	rte_spinlock_unlock(&hw->lock);
544 	return ret;
545 }
546 
547 static int
548 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
549 			     struct hns3_rx_vtag_cfg *vcfg)
550 {
551 	struct hns3_vport_vtag_rx_cfg_cmd *req;
552 	struct hns3_hw *hw = &hns->hw;
553 	struct hns3_cmd_desc desc;
554 	uint16_t vport_id;
555 	uint8_t bitmap;
556 	int ret;
557 
558 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
559 
560 	req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
561 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
562 		     vcfg->strip_tag1_en ? 1 : 0);
563 	hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
564 		     vcfg->strip_tag2_en ? 1 : 0);
565 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
566 		     vcfg->vlan1_vlan_prionly ? 1 : 0);
567 	hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
568 		     vcfg->vlan2_vlan_prionly ? 1 : 0);
569 
570 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
571 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
572 		     vcfg->strip_tag1_discard_en ? 1 : 0);
573 	hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
574 		     vcfg->strip_tag2_discard_en ? 1 : 0);
575 	/*
576 	 * In current version VF is not supported when PF is driven by DPDK
577 	 * driver, just need to configure parameters for PF vport.
578 	 */
579 	vport_id = HNS3_PF_FUNC_ID;
580 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
581 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
582 	req->vf_bitmap[req->vf_offset] = bitmap;
583 
584 	ret = hns3_cmd_send(hw, &desc, 1);
585 	if (ret)
586 		hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
587 	return ret;
588 }
589 
590 static void
591 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
592 			   struct hns3_rx_vtag_cfg *vcfg)
593 {
594 	struct hns3_pf *pf = &hns->pf;
595 	memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
596 }
597 
598 static void
599 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
600 			   struct hns3_tx_vtag_cfg *vcfg)
601 {
602 	struct hns3_pf *pf = &hns->pf;
603 	memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
604 }
605 
606 static int
607 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
608 {
609 	struct hns3_rx_vtag_cfg rxvlan_cfg;
610 	struct hns3_hw *hw = &hns->hw;
611 	int ret;
612 
613 	if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
614 		rxvlan_cfg.strip_tag1_en = false;
615 		rxvlan_cfg.strip_tag2_en = enable;
616 		rxvlan_cfg.strip_tag2_discard_en = false;
617 	} else {
618 		rxvlan_cfg.strip_tag1_en = enable;
619 		rxvlan_cfg.strip_tag2_en = true;
620 		rxvlan_cfg.strip_tag2_discard_en = true;
621 	}
622 
623 	rxvlan_cfg.strip_tag1_discard_en = false;
624 	rxvlan_cfg.vlan1_vlan_prionly = false;
625 	rxvlan_cfg.vlan2_vlan_prionly = false;
626 	rxvlan_cfg.rx_vlan_offload_en = enable;
627 
628 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
629 	if (ret) {
630 		hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
631 		return ret;
632 	}
633 
634 	hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
635 
636 	return ret;
637 }
638 
639 static int
640 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
641 			  uint8_t fe_type, bool filter_en, uint8_t vf_id)
642 {
643 	struct hns3_vlan_filter_ctrl_cmd *req;
644 	struct hns3_cmd_desc desc;
645 	int ret;
646 
647 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
648 
649 	req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
650 	req->vlan_type = vlan_type;
651 	req->vlan_fe = filter_en ? fe_type : 0;
652 	req->vf_id = vf_id;
653 
654 	ret = hns3_cmd_send(hw, &desc, 1);
655 	if (ret)
656 		hns3_err(hw, "set vlan filter fail, ret =%d", ret);
657 
658 	return ret;
659 }
660 
661 static int
662 hns3_vlan_filter_init(struct hns3_adapter *hns)
663 {
664 	struct hns3_hw *hw = &hns->hw;
665 	int ret;
666 
667 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
668 					HNS3_FILTER_FE_EGRESS, false,
669 					HNS3_PF_FUNC_ID);
670 	if (ret) {
671 		hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
672 		return ret;
673 	}
674 
675 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
676 					HNS3_FILTER_FE_INGRESS, false,
677 					HNS3_PF_FUNC_ID);
678 	if (ret)
679 		hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
680 
681 	return ret;
682 }
683 
684 static int
685 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
686 {
687 	struct hns3_hw *hw = &hns->hw;
688 	int ret;
689 
690 	ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
691 					HNS3_FILTER_FE_INGRESS, enable,
692 					HNS3_PF_FUNC_ID);
693 	if (ret)
694 		hns3_err(hw, "failed to %s port vlan filter, ret = %d",
695 			 enable ? "enable" : "disable", ret);
696 
697 	return ret;
698 }
699 
700 static int
701 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
702 {
703 	struct hns3_adapter *hns = dev->data->dev_private;
704 	struct hns3_hw *hw = &hns->hw;
705 	struct rte_eth_rxmode *rxmode;
706 	unsigned int tmp_mask;
707 	bool enable;
708 	int ret = 0;
709 
710 	rte_spinlock_lock(&hw->lock);
711 	rxmode = &dev->data->dev_conf.rxmode;
712 	tmp_mask = (unsigned int)mask;
713 	if (tmp_mask & ETH_VLAN_FILTER_MASK) {
714 		/* ignore vlan filter configuration during promiscuous mode */
715 		if (!dev->data->promiscuous) {
716 			/* Enable or disable VLAN filter */
717 			enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
718 				 true : false;
719 
720 			ret = hns3_enable_vlan_filter(hns, enable);
721 			if (ret) {
722 				rte_spinlock_unlock(&hw->lock);
723 				hns3_err(hw, "failed to %s rx filter, ret = %d",
724 					 enable ? "enable" : "disable", ret);
725 				return ret;
726 			}
727 		}
728 	}
729 
730 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
731 		/* Enable or disable VLAN stripping */
732 		enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
733 		    true : false;
734 
735 		ret = hns3_en_hw_strip_rxvtag(hns, enable);
736 		if (ret) {
737 			rte_spinlock_unlock(&hw->lock);
738 			hns3_err(hw, "failed to %s rx strip, ret = %d",
739 				 enable ? "enable" : "disable", ret);
740 			return ret;
741 		}
742 	}
743 
744 	rte_spinlock_unlock(&hw->lock);
745 
746 	return ret;
747 }
748 
749 static int
750 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
751 			     struct hns3_tx_vtag_cfg *vcfg)
752 {
753 	struct hns3_vport_vtag_tx_cfg_cmd *req;
754 	struct hns3_cmd_desc desc;
755 	struct hns3_hw *hw = &hns->hw;
756 	uint16_t vport_id;
757 	uint8_t bitmap;
758 	int ret;
759 
760 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
761 
762 	req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
763 	req->def_vlan_tag1 = vcfg->default_tag1;
764 	req->def_vlan_tag2 = vcfg->default_tag2;
765 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
766 		     vcfg->accept_tag1 ? 1 : 0);
767 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
768 		     vcfg->accept_untag1 ? 1 : 0);
769 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
770 		     vcfg->accept_tag2 ? 1 : 0);
771 	hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
772 		     vcfg->accept_untag2 ? 1 : 0);
773 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
774 		     vcfg->insert_tag1_en ? 1 : 0);
775 	hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
776 		     vcfg->insert_tag2_en ? 1 : 0);
777 	hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
778 
779 	/* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
780 	hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
781 		     vcfg->tag_shift_mode_en ? 1 : 0);
782 
783 	/*
784 	 * In current version VF is not supported when PF is driven by DPDK
785 	 * driver, just need to configure parameters for PF vport.
786 	 */
787 	vport_id = HNS3_PF_FUNC_ID;
788 	req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
789 	bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
790 	req->vf_bitmap[req->vf_offset] = bitmap;
791 
792 	ret = hns3_cmd_send(hw, &desc, 1);
793 	if (ret)
794 		hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
795 
796 	return ret;
797 }
798 
799 static int
800 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
801 		     uint16_t pvid)
802 {
803 	struct hns3_hw *hw = &hns->hw;
804 	struct hns3_tx_vtag_cfg txvlan_cfg;
805 	int ret;
806 
807 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
808 		txvlan_cfg.accept_tag1 = true;
809 		txvlan_cfg.insert_tag1_en = false;
810 		txvlan_cfg.default_tag1 = 0;
811 	} else {
812 		txvlan_cfg.accept_tag1 =
813 			hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
814 		txvlan_cfg.insert_tag1_en = true;
815 		txvlan_cfg.default_tag1 = pvid;
816 	}
817 
818 	txvlan_cfg.accept_untag1 = true;
819 	txvlan_cfg.accept_tag2 = true;
820 	txvlan_cfg.accept_untag2 = true;
821 	txvlan_cfg.insert_tag2_en = false;
822 	txvlan_cfg.default_tag2 = 0;
823 	txvlan_cfg.tag_shift_mode_en = true;
824 
825 	ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
826 	if (ret) {
827 		hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
828 			 ret);
829 		return ret;
830 	}
831 
832 	hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
833 	return ret;
834 }
835 
836 
837 static void
838 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
839 {
840 	struct hns3_user_vlan_table *vlan_entry;
841 	struct hns3_pf *pf = &hns->pf;
842 
843 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
844 		if (vlan_entry->hd_tbl_status) {
845 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
846 			vlan_entry->hd_tbl_status = false;
847 		}
848 	}
849 
850 	if (is_del_list) {
851 		vlan_entry = LIST_FIRST(&pf->vlan_list);
852 		while (vlan_entry) {
853 			LIST_REMOVE(vlan_entry, next);
854 			rte_free(vlan_entry);
855 			vlan_entry = LIST_FIRST(&pf->vlan_list);
856 		}
857 	}
858 }
859 
860 static void
861 hns3_add_all_vlan_table(struct hns3_adapter *hns)
862 {
863 	struct hns3_user_vlan_table *vlan_entry;
864 	struct hns3_pf *pf = &hns->pf;
865 
866 	LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
867 		if (!vlan_entry->hd_tbl_status) {
868 			hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
869 			vlan_entry->hd_tbl_status = true;
870 		}
871 	}
872 }
873 
874 static void
875 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
876 {
877 	struct hns3_hw *hw = &hns->hw;
878 	int ret;
879 
880 	hns3_rm_all_vlan_table(hns, true);
881 	if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
882 		ret = hns3_set_port_vlan_filter(hns,
883 						hw->port_base_vlan_cfg.pvid, 0);
884 		if (ret) {
885 			hns3_err(hw, "Failed to remove all vlan table, ret =%d",
886 				 ret);
887 			return;
888 		}
889 	}
890 }
891 
892 static int
893 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
894 			uint16_t port_base_vlan_state, uint16_t new_pvid)
895 {
896 	struct hns3_hw *hw = &hns->hw;
897 	uint16_t old_pvid;
898 	int ret;
899 
900 	if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
901 		old_pvid = hw->port_base_vlan_cfg.pvid;
902 		if (old_pvid != HNS3_INVALID_PVID) {
903 			ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
904 			if (ret) {
905 				hns3_err(hw, "failed to remove old pvid %u, "
906 						"ret = %d", old_pvid, ret);
907 				return ret;
908 			}
909 		}
910 
911 		hns3_rm_all_vlan_table(hns, false);
912 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
913 		if (ret) {
914 			hns3_err(hw, "failed to add new pvid %u, ret = %d",
915 					new_pvid, ret);
916 			return ret;
917 		}
918 	} else {
919 		ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
920 		if (ret) {
921 			hns3_err(hw, "failed to remove pvid %u, ret = %d",
922 					new_pvid, ret);
923 			return ret;
924 		}
925 
926 		hns3_add_all_vlan_table(hns);
927 	}
928 	return 0;
929 }
930 
931 static int
932 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
933 {
934 	struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
935 	struct hns3_rx_vtag_cfg rx_vlan_cfg;
936 	bool rx_strip_en;
937 	int ret;
938 
939 	rx_strip_en = old_cfg->rx_vlan_offload_en;
940 	if (on) {
941 		rx_vlan_cfg.strip_tag1_en = rx_strip_en;
942 		rx_vlan_cfg.strip_tag2_en = true;
943 		rx_vlan_cfg.strip_tag2_discard_en = true;
944 	} else {
945 		rx_vlan_cfg.strip_tag1_en = false;
946 		rx_vlan_cfg.strip_tag2_en = rx_strip_en;
947 		rx_vlan_cfg.strip_tag2_discard_en = false;
948 	}
949 	rx_vlan_cfg.strip_tag1_discard_en = false;
950 	rx_vlan_cfg.vlan1_vlan_prionly = false;
951 	rx_vlan_cfg.vlan2_vlan_prionly = false;
952 	rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
953 
954 	ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
955 	if (ret)
956 		return ret;
957 
958 	hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
959 	return ret;
960 }
961 
962 static int
963 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
964 {
965 	struct hns3_hw *hw = &hns->hw;
966 	uint16_t port_base_vlan_state;
967 	int ret;
968 
969 	if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
970 		if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
971 			hns3_warn(hw, "Invalid operation! As current pvid set "
972 				  "is %u, disable pvid %u is invalid",
973 				  hw->port_base_vlan_cfg.pvid, pvid);
974 		return 0;
975 	}
976 
977 	port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
978 				    HNS3_PORT_BASE_VLAN_DISABLE;
979 	ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
980 	if (ret) {
981 		hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
982 			 ret);
983 		return ret;
984 	}
985 
986 	ret = hns3_en_pvid_strip(hns, on);
987 	if (ret) {
988 		hns3_err(hw, "failed to config rx vlan strip for pvid, "
989 			 "ret = %d", ret);
990 		return ret;
991 	}
992 
993 	if (pvid == HNS3_INVALID_PVID)
994 		goto out;
995 	ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
996 	if (ret) {
997 		hns3_err(hw, "failed to update vlan filter entries, ret = %d",
998 			 ret);
999 		return ret;
1000 	}
1001 
1002 out:
1003 	hw->port_base_vlan_cfg.state = port_base_vlan_state;
1004 	hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1005 	return ret;
1006 }
1007 
1008 static int
1009 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1010 {
1011 	struct hns3_adapter *hns = dev->data->dev_private;
1012 	struct hns3_hw *hw = &hns->hw;
1013 	bool pvid_en_state_change;
1014 	uint16_t pvid_state;
1015 	int ret;
1016 
1017 	if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1018 		hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1019 			 RTE_ETHER_MAX_VLAN_ID);
1020 		return -EINVAL;
1021 	}
1022 
1023 	/*
1024 	 * If PVID configuration state change, should refresh the PVID
1025 	 * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1026 	 */
1027 	pvid_state = hw->port_base_vlan_cfg.state;
1028 	if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1029 	    (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1030 		pvid_en_state_change = false;
1031 	else
1032 		pvid_en_state_change = true;
1033 
1034 	rte_spinlock_lock(&hw->lock);
1035 	ret = hns3_vlan_pvid_configure(hns, pvid, on);
1036 	rte_spinlock_unlock(&hw->lock);
1037 	if (ret)
1038 		return ret;
1039 	/*
1040 	 * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1041 	 * need be processed by PMD driver.
1042 	 */
1043 	if (pvid_en_state_change &&
1044 	    hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1045 		hns3_update_all_queues_pvid_proc_en(hw);
1046 
1047 	return 0;
1048 }
1049 
1050 static int
1051 hns3_default_vlan_config(struct hns3_adapter *hns)
1052 {
1053 	struct hns3_hw *hw = &hns->hw;
1054 	int ret;
1055 
1056 	/*
1057 	 * When vlan filter is enabled, hardware regards packets without vlan
1058 	 * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1059 	 * table, packets without vlan won't be received. So, add vlan 0 as
1060 	 * the default vlan.
1061 	 */
1062 	ret = hns3_vlan_filter_configure(hns, 0, 1);
1063 	if (ret)
1064 		hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1065 	return ret;
1066 }
1067 
1068 static int
1069 hns3_init_vlan_config(struct hns3_adapter *hns)
1070 {
1071 	struct hns3_hw *hw = &hns->hw;
1072 	int ret;
1073 
1074 	/*
1075 	 * This function can be called in the initialization and reset process,
1076 	 * when in reset process, it means that hardware had been reseted
1077 	 * successfully and we need to restore the hardware configuration to
1078 	 * ensure that the hardware configuration remains unchanged before and
1079 	 * after reset.
1080 	 */
1081 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1082 		hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1083 		hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1084 	}
1085 
1086 	ret = hns3_vlan_filter_init(hns);
1087 	if (ret) {
1088 		hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1089 		return ret;
1090 	}
1091 
1092 	ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1093 				       RTE_ETHER_TYPE_VLAN);
1094 	if (ret) {
1095 		hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1096 		return ret;
1097 	}
1098 
1099 	/*
1100 	 * When in the reinit dev stage of the reset process, the following
1101 	 * vlan-related configurations may differ from those at initialization,
1102 	 * we will restore configurations to hardware in hns3_restore_vlan_table
1103 	 * and hns3_restore_vlan_conf later.
1104 	 */
1105 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1106 		ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1107 		if (ret) {
1108 			hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1109 			return ret;
1110 		}
1111 
1112 		ret = hns3_en_hw_strip_rxvtag(hns, false);
1113 		if (ret) {
1114 			hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1115 				 ret);
1116 			return ret;
1117 		}
1118 	}
1119 
1120 	return hns3_default_vlan_config(hns);
1121 }
1122 
1123 static int
1124 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1125 {
1126 	struct hns3_pf *pf = &hns->pf;
1127 	struct hns3_hw *hw = &hns->hw;
1128 	uint64_t offloads;
1129 	bool enable;
1130 	int ret;
1131 
1132 	if (!hw->data->promiscuous) {
1133 		/* restore vlan filter states */
1134 		offloads = hw->data->dev_conf.rxmode.offloads;
1135 		enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1136 		ret = hns3_enable_vlan_filter(hns, enable);
1137 		if (ret) {
1138 			hns3_err(hw, "failed to restore vlan rx filter conf, "
1139 				 "ret = %d", ret);
1140 			return ret;
1141 		}
1142 	}
1143 
1144 	ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1145 	if (ret) {
1146 		hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1147 		return ret;
1148 	}
1149 
1150 	ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1151 	if (ret)
1152 		hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1153 
1154 	return ret;
1155 }
1156 
1157 static int
1158 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1159 {
1160 	struct hns3_adapter *hns = dev->data->dev_private;
1161 	struct rte_eth_dev_data *data = dev->data;
1162 	struct rte_eth_txmode *txmode;
1163 	struct hns3_hw *hw = &hns->hw;
1164 	int mask;
1165 	int ret;
1166 
1167 	txmode = &data->dev_conf.txmode;
1168 	if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1169 		hns3_warn(hw,
1170 			  "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1171 			  "configuration is not supported! Ignore these two "
1172 			  "parameters: hw_vlan_reject_tagged(%u), "
1173 			  "hw_vlan_reject_untagged(%u)",
1174 			  txmode->hw_vlan_reject_tagged,
1175 			  txmode->hw_vlan_reject_untagged);
1176 
1177 	/* Apply vlan offload setting */
1178 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1179 	ret = hns3_vlan_offload_set(dev, mask);
1180 	if (ret) {
1181 		hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1182 			 ret);
1183 		return ret;
1184 	}
1185 
1186 	/*
1187 	 * If pvid config is not set in rte_eth_conf, driver needn't to set
1188 	 * VLAN pvid related configuration to hardware.
1189 	 */
1190 	if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1191 		return 0;
1192 
1193 	/* Apply pvid setting */
1194 	ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1195 				 txmode->hw_vlan_insert_pvid);
1196 	if (ret)
1197 		hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1198 			 txmode->pvid, ret);
1199 
1200 	return ret;
1201 }
1202 
1203 static int
1204 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1205 		unsigned int tso_mss_max)
1206 {
1207 	struct hns3_cfg_tso_status_cmd *req;
1208 	struct hns3_cmd_desc desc;
1209 	uint16_t tso_mss;
1210 
1211 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1212 
1213 	req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1214 
1215 	tso_mss = 0;
1216 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1217 		       tso_mss_min);
1218 	req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1219 
1220 	tso_mss = 0;
1221 	hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1222 		       tso_mss_max);
1223 	req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1224 
1225 	return hns3_cmd_send(hw, &desc, 1);
1226 }
1227 
1228 static int
1229 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1230 		   uint16_t *allocated_size, bool is_alloc)
1231 {
1232 	struct hns3_umv_spc_alc_cmd *req;
1233 	struct hns3_cmd_desc desc;
1234 	int ret;
1235 
1236 	req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1237 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1238 	hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1239 	req->space_size = rte_cpu_to_le_32(space_size);
1240 
1241 	ret = hns3_cmd_send(hw, &desc, 1);
1242 	if (ret) {
1243 		PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1244 			     is_alloc ? "allocate" : "free", ret);
1245 		return ret;
1246 	}
1247 
1248 	if (is_alloc && allocated_size)
1249 		*allocated_size = rte_le_to_cpu_32(desc.data[1]);
1250 
1251 	return 0;
1252 }
1253 
1254 static int
1255 hns3_init_umv_space(struct hns3_hw *hw)
1256 {
1257 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1258 	struct hns3_pf *pf = &hns->pf;
1259 	uint16_t allocated_size = 0;
1260 	int ret;
1261 
1262 	ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1263 				 true);
1264 	if (ret)
1265 		return ret;
1266 
1267 	if (allocated_size < pf->wanted_umv_size)
1268 		PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1269 			     pf->wanted_umv_size, allocated_size);
1270 
1271 	pf->max_umv_size = (!!allocated_size) ? allocated_size :
1272 						pf->wanted_umv_size;
1273 	pf->used_umv_size = 0;
1274 	return 0;
1275 }
1276 
1277 static int
1278 hns3_uninit_umv_space(struct hns3_hw *hw)
1279 {
1280 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1281 	struct hns3_pf *pf = &hns->pf;
1282 	int ret;
1283 
1284 	if (pf->max_umv_size == 0)
1285 		return 0;
1286 
1287 	ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1288 	if (ret)
1289 		return ret;
1290 
1291 	pf->max_umv_size = 0;
1292 
1293 	return 0;
1294 }
1295 
1296 static bool
1297 hns3_is_umv_space_full(struct hns3_hw *hw)
1298 {
1299 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1300 	struct hns3_pf *pf = &hns->pf;
1301 	bool is_full;
1302 
1303 	is_full = (pf->used_umv_size >= pf->max_umv_size);
1304 
1305 	return is_full;
1306 }
1307 
1308 static void
1309 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1310 {
1311 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1312 	struct hns3_pf *pf = &hns->pf;
1313 
1314 	if (is_free) {
1315 		if (pf->used_umv_size > 0)
1316 			pf->used_umv_size--;
1317 	} else
1318 		pf->used_umv_size++;
1319 }
1320 
1321 static void
1322 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1323 		      const uint8_t *addr, bool is_mc)
1324 {
1325 	const unsigned char *mac_addr = addr;
1326 	uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1327 			    ((uint32_t)mac_addr[2] << 16) |
1328 			    ((uint32_t)mac_addr[1] << 8) |
1329 			    (uint32_t)mac_addr[0];
1330 	uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1331 
1332 	hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1333 	if (is_mc) {
1334 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1335 		hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1336 		hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1337 	}
1338 
1339 	new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1340 	new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1341 }
1342 
1343 static int
1344 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1345 			     uint8_t resp_code,
1346 			     enum hns3_mac_vlan_tbl_opcode op)
1347 {
1348 	if (cmdq_resp) {
1349 		hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1350 			 cmdq_resp);
1351 		return -EIO;
1352 	}
1353 
1354 	if (op == HNS3_MAC_VLAN_ADD) {
1355 		if (resp_code == 0 || resp_code == 1) {
1356 			return 0;
1357 		} else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1358 			hns3_err(hw, "add mac addr failed for uc_overflow");
1359 			return -ENOSPC;
1360 		} else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1361 			hns3_err(hw, "add mac addr failed for mc_overflow");
1362 			return -ENOSPC;
1363 		}
1364 
1365 		hns3_err(hw, "add mac addr failed for undefined, code=%u",
1366 			 resp_code);
1367 		return -EIO;
1368 	} else if (op == HNS3_MAC_VLAN_REMOVE) {
1369 		if (resp_code == 0) {
1370 			return 0;
1371 		} else if (resp_code == 1) {
1372 			hns3_dbg(hw, "remove mac addr failed for miss");
1373 			return -ENOENT;
1374 		}
1375 
1376 		hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1377 			 resp_code);
1378 		return -EIO;
1379 	} else if (op == HNS3_MAC_VLAN_LKUP) {
1380 		if (resp_code == 0) {
1381 			return 0;
1382 		} else if (resp_code == 1) {
1383 			hns3_dbg(hw, "lookup mac addr failed for miss");
1384 			return -ENOENT;
1385 		}
1386 
1387 		hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1388 			 resp_code);
1389 		return -EIO;
1390 	}
1391 
1392 	hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1393 		 op);
1394 
1395 	return -EINVAL;
1396 }
1397 
1398 static int
1399 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1400 			 struct hns3_mac_vlan_tbl_entry_cmd *req,
1401 			 struct hns3_cmd_desc *desc, bool is_mc)
1402 {
1403 	uint8_t resp_code;
1404 	uint16_t retval;
1405 	int ret;
1406 
1407 	hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1408 	if (is_mc) {
1409 		desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1410 		memcpy(desc[0].data, req,
1411 			   sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1412 		hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1413 					  true);
1414 		desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1415 		hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1416 					  true);
1417 		ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1418 	} else {
1419 		memcpy(desc[0].data, req,
1420 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1421 		ret = hns3_cmd_send(hw, desc, 1);
1422 	}
1423 	if (ret) {
1424 		hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1425 			 ret);
1426 		return ret;
1427 	}
1428 	resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1429 	retval = rte_le_to_cpu_16(desc[0].retval);
1430 
1431 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1432 					    HNS3_MAC_VLAN_LKUP);
1433 }
1434 
1435 static int
1436 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1437 		      struct hns3_mac_vlan_tbl_entry_cmd *req,
1438 		      struct hns3_cmd_desc *mc_desc)
1439 {
1440 	uint8_t resp_code;
1441 	uint16_t retval;
1442 	int cfg_status;
1443 	int ret;
1444 
1445 	if (mc_desc == NULL) {
1446 		struct hns3_cmd_desc desc;
1447 
1448 		hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1449 		memcpy(desc.data, req,
1450 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1451 		ret = hns3_cmd_send(hw, &desc, 1);
1452 		resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1453 		retval = rte_le_to_cpu_16(desc.retval);
1454 
1455 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1456 							  HNS3_MAC_VLAN_ADD);
1457 	} else {
1458 		hns3_cmd_reuse_desc(&mc_desc[0], false);
1459 		mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1460 		hns3_cmd_reuse_desc(&mc_desc[1], false);
1461 		mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1462 		hns3_cmd_reuse_desc(&mc_desc[2], false);
1463 		mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1464 		memcpy(mc_desc[0].data, req,
1465 		       sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1466 		mc_desc[0].retval = 0;
1467 		ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1468 		resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1469 		retval = rte_le_to_cpu_16(mc_desc[0].retval);
1470 
1471 		cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1472 							  HNS3_MAC_VLAN_ADD);
1473 	}
1474 
1475 	if (ret) {
1476 		hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1477 		return ret;
1478 	}
1479 
1480 	return cfg_status;
1481 }
1482 
1483 static int
1484 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1485 			 struct hns3_mac_vlan_tbl_entry_cmd *req)
1486 {
1487 	struct hns3_cmd_desc desc;
1488 	uint8_t resp_code;
1489 	uint16_t retval;
1490 	int ret;
1491 
1492 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1493 
1494 	memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1495 
1496 	ret = hns3_cmd_send(hw, &desc, 1);
1497 	if (ret) {
1498 		hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1499 		return ret;
1500 	}
1501 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1502 	retval = rte_le_to_cpu_16(desc.retval);
1503 
1504 	return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1505 					    HNS3_MAC_VLAN_REMOVE);
1506 }
1507 
1508 static int
1509 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1510 {
1511 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1512 	struct hns3_mac_vlan_tbl_entry_cmd req;
1513 	struct hns3_pf *pf = &hns->pf;
1514 	struct hns3_cmd_desc desc[3];
1515 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1516 	uint16_t egress_port = 0;
1517 	uint8_t vf_id;
1518 	int ret;
1519 
1520 	/* check if mac addr is valid */
1521 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1522 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1523 				      mac_addr);
1524 		hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1525 			 mac_str);
1526 		return -EINVAL;
1527 	}
1528 
1529 	memset(&req, 0, sizeof(req));
1530 
1531 	/*
1532 	 * In current version VF is not supported when PF is driven by DPDK
1533 	 * driver, just need to configure parameters for PF vport.
1534 	 */
1535 	vf_id = HNS3_PF_FUNC_ID;
1536 	hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1537 		       HNS3_MAC_EPORT_VFID_S, vf_id);
1538 
1539 	req.egress_port = rte_cpu_to_le_16(egress_port);
1540 
1541 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1542 
1543 	/*
1544 	 * Lookup the mac address in the mac_vlan table, and add
1545 	 * it if the entry is inexistent. Repeated unicast entry
1546 	 * is not allowed in the mac vlan table.
1547 	 */
1548 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1549 	if (ret == -ENOENT) {
1550 		if (!hns3_is_umv_space_full(hw)) {
1551 			ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1552 			if (!ret)
1553 				hns3_update_umv_space(hw, false);
1554 			return ret;
1555 		}
1556 
1557 		hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1558 
1559 		return -ENOSPC;
1560 	}
1561 
1562 	hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1563 
1564 	/* check if we just hit the duplicate */
1565 	if (ret == 0) {
1566 		hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1567 		return 0;
1568 	}
1569 
1570 	hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1571 		 mac_str);
1572 
1573 	return ret;
1574 }
1575 
1576 static int
1577 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1578 {
1579 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1580 	struct rte_ether_addr *addr;
1581 	int ret;
1582 	int i;
1583 
1584 	for (i = 0; i < hw->mc_addrs_num; i++) {
1585 		addr = &hw->mc_addrs[i];
1586 		/* Check if there are duplicate addresses */
1587 		if (rte_is_same_ether_addr(addr, mac_addr)) {
1588 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1589 					      addr);
1590 			hns3_err(hw, "failed to add mc mac addr, same addrs"
1591 				 "(%s) is added by the set_mc_mac_addr_list "
1592 				 "API", mac_str);
1593 			return -EINVAL;
1594 		}
1595 	}
1596 
1597 	ret = hns3_add_mc_addr(hw, mac_addr);
1598 	if (ret) {
1599 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1600 				      mac_addr);
1601 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1602 			 mac_str, ret);
1603 	}
1604 	return ret;
1605 }
1606 
1607 static int
1608 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1609 {
1610 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1611 	int ret;
1612 
1613 	ret = hns3_remove_mc_addr(hw, mac_addr);
1614 	if (ret) {
1615 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1616 				      mac_addr);
1617 		hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1618 			 mac_str, ret);
1619 	}
1620 	return ret;
1621 }
1622 
1623 static int
1624 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1625 		  uint32_t idx, __rte_unused uint32_t pool)
1626 {
1627 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1628 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1629 	int ret;
1630 
1631 	rte_spinlock_lock(&hw->lock);
1632 
1633 	/*
1634 	 * In hns3 network engine adding UC and MC mac address with different
1635 	 * commands with firmware. We need to determine whether the input
1636 	 * address is a UC or a MC address to call different commands.
1637 	 * By the way, it is recommended calling the API function named
1638 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1639 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1640 	 * may affect the specifications of UC mac addresses.
1641 	 */
1642 	if (rte_is_multicast_ether_addr(mac_addr))
1643 		ret = hns3_add_mc_addr_common(hw, mac_addr);
1644 	else
1645 		ret = hns3_add_uc_addr_common(hw, mac_addr);
1646 
1647 	if (ret) {
1648 		rte_spinlock_unlock(&hw->lock);
1649 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1650 				      mac_addr);
1651 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1652 			 ret);
1653 		return ret;
1654 	}
1655 
1656 	if (idx == 0)
1657 		hw->mac.default_addr_setted = true;
1658 	rte_spinlock_unlock(&hw->lock);
1659 
1660 	return ret;
1661 }
1662 
1663 static int
1664 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1665 {
1666 	struct hns3_mac_vlan_tbl_entry_cmd req;
1667 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1668 	int ret;
1669 
1670 	/* check if mac addr is valid */
1671 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1672 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1673 				      mac_addr);
1674 		hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1675 			 mac_str);
1676 		return -EINVAL;
1677 	}
1678 
1679 	memset(&req, 0, sizeof(req));
1680 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1681 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1682 	ret = hns3_remove_mac_vlan_tbl(hw, &req);
1683 	if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1684 		return 0;
1685 	else if (ret == 0)
1686 		hns3_update_umv_space(hw, true);
1687 
1688 	return ret;
1689 }
1690 
1691 static void
1692 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1693 {
1694 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1695 	/* index will be checked by upper level rte interface */
1696 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1697 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1698 	int ret;
1699 
1700 	rte_spinlock_lock(&hw->lock);
1701 
1702 	if (rte_is_multicast_ether_addr(mac_addr))
1703 		ret = hns3_remove_mc_addr_common(hw, mac_addr);
1704 	else
1705 		ret = hns3_remove_uc_addr_common(hw, mac_addr);
1706 	rte_spinlock_unlock(&hw->lock);
1707 	if (ret) {
1708 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1709 				      mac_addr);
1710 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1711 			 ret);
1712 	}
1713 }
1714 
1715 static int
1716 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1717 			  struct rte_ether_addr *mac_addr)
1718 {
1719 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1720 	struct rte_ether_addr *oaddr;
1721 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1722 	bool default_addr_setted;
1723 	bool rm_succes = false;
1724 	int ret, ret_val;
1725 
1726 	/*
1727 	 * It has been guaranteed that input parameter named mac_addr is valid
1728 	 * address in the rte layer of DPDK framework.
1729 	 */
1730 	oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1731 	default_addr_setted = hw->mac.default_addr_setted;
1732 	if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1733 		return 0;
1734 
1735 	rte_spinlock_lock(&hw->lock);
1736 	if (default_addr_setted) {
1737 		ret = hns3_remove_uc_addr_common(hw, oaddr);
1738 		if (ret) {
1739 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1740 					      oaddr);
1741 			hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1742 				  mac_str, ret);
1743 			rm_succes = false;
1744 		} else
1745 			rm_succes = true;
1746 	}
1747 
1748 	ret = hns3_add_uc_addr_common(hw, mac_addr);
1749 	if (ret) {
1750 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1751 				      mac_addr);
1752 		hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1753 		goto err_add_uc_addr;
1754 	}
1755 
1756 	ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1757 	if (ret) {
1758 		hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1759 		goto err_pause_addr_cfg;
1760 	}
1761 
1762 	rte_ether_addr_copy(mac_addr,
1763 			    (struct rte_ether_addr *)hw->mac.mac_addr);
1764 	hw->mac.default_addr_setted = true;
1765 	rte_spinlock_unlock(&hw->lock);
1766 
1767 	return 0;
1768 
1769 err_pause_addr_cfg:
1770 	ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1771 	if (ret_val) {
1772 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1773 				      mac_addr);
1774 		hns3_warn(hw,
1775 			  "Failed to roll back to del setted mac addr(%s): %d",
1776 			  mac_str, ret_val);
1777 	}
1778 
1779 err_add_uc_addr:
1780 	if (rm_succes) {
1781 		ret_val = hns3_add_uc_addr_common(hw, oaddr);
1782 		if (ret_val) {
1783 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1784 					      oaddr);
1785 			hns3_warn(hw,
1786 				  "Failed to restore old uc mac addr(%s): %d",
1787 				  mac_str, ret_val);
1788 			hw->mac.default_addr_setted = false;
1789 		}
1790 	}
1791 	rte_spinlock_unlock(&hw->lock);
1792 
1793 	return ret;
1794 }
1795 
1796 static int
1797 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1798 {
1799 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1800 	struct hns3_hw *hw = &hns->hw;
1801 	struct rte_ether_addr *addr;
1802 	int err = 0;
1803 	int ret;
1804 	int i;
1805 
1806 	for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1807 		addr = &hw->data->mac_addrs[i];
1808 		if (rte_is_zero_ether_addr(addr))
1809 			continue;
1810 		if (rte_is_multicast_ether_addr(addr))
1811 			ret = del ? hns3_remove_mc_addr(hw, addr) :
1812 			      hns3_add_mc_addr(hw, addr);
1813 		else
1814 			ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1815 			      hns3_add_uc_addr_common(hw, addr);
1816 
1817 		if (ret) {
1818 			err = ret;
1819 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1820 					      addr);
1821 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1822 				 "ret = %d.", del ? "remove" : "restore",
1823 				 mac_str, i, ret);
1824 		}
1825 	}
1826 	return err;
1827 }
1828 
1829 static void
1830 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1831 {
1832 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1833 	uint8_t word_num;
1834 	uint8_t bit_num;
1835 
1836 	if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1837 		word_num = vfid / 32;
1838 		bit_num = vfid % 32;
1839 		if (clr)
1840 			desc[1].data[word_num] &=
1841 			    rte_cpu_to_le_32(~(1UL << bit_num));
1842 		else
1843 			desc[1].data[word_num] |=
1844 			    rte_cpu_to_le_32(1UL << bit_num);
1845 	} else {
1846 		word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1847 		bit_num = vfid % 32;
1848 		if (clr)
1849 			desc[2].data[word_num] &=
1850 			    rte_cpu_to_le_32(~(1UL << bit_num));
1851 		else
1852 			desc[2].data[word_num] |=
1853 			    rte_cpu_to_le_32(1UL << bit_num);
1854 	}
1855 }
1856 
1857 static int
1858 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1859 {
1860 	struct hns3_mac_vlan_tbl_entry_cmd req;
1861 	struct hns3_cmd_desc desc[3];
1862 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1863 	uint8_t vf_id;
1864 	int ret;
1865 
1866 	/* Check if mac addr is valid */
1867 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1868 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1869 				      mac_addr);
1870 		hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1871 			 mac_str);
1872 		return -EINVAL;
1873 	}
1874 
1875 	memset(&req, 0, sizeof(req));
1876 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1877 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1878 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1879 	if (ret) {
1880 		/* This mac addr do not exist, add new entry for it */
1881 		memset(desc[0].data, 0, sizeof(desc[0].data));
1882 		memset(desc[1].data, 0, sizeof(desc[0].data));
1883 		memset(desc[2].data, 0, sizeof(desc[0].data));
1884 	}
1885 
1886 	/*
1887 	 * In current version VF is not supported when PF is driven by DPDK
1888 	 * driver, just need to configure parameters for PF vport.
1889 	 */
1890 	vf_id = HNS3_PF_FUNC_ID;
1891 	hns3_update_desc_vfid(desc, vf_id, false);
1892 	ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1893 	if (ret) {
1894 		if (ret == -ENOSPC)
1895 			hns3_err(hw, "mc mac vlan table is full");
1896 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1897 				      mac_addr);
1898 		hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1899 	}
1900 
1901 	return ret;
1902 }
1903 
1904 static int
1905 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1906 {
1907 	struct hns3_mac_vlan_tbl_entry_cmd req;
1908 	struct hns3_cmd_desc desc[3];
1909 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1910 	uint8_t vf_id;
1911 	int ret;
1912 
1913 	/* Check if mac addr is valid */
1914 	if (!rte_is_multicast_ether_addr(mac_addr)) {
1915 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1916 				      mac_addr);
1917 		hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1918 			 mac_str);
1919 		return -EINVAL;
1920 	}
1921 
1922 	memset(&req, 0, sizeof(req));
1923 	hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1924 	hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1925 	ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1926 	if (ret == 0) {
1927 		/*
1928 		 * This mac addr exist, remove this handle's VFID for it.
1929 		 * In current version VF is not supported when PF is driven by
1930 		 * DPDK driver, just need to configure parameters for PF vport.
1931 		 */
1932 		vf_id = HNS3_PF_FUNC_ID;
1933 		hns3_update_desc_vfid(desc, vf_id, true);
1934 
1935 		/* All the vfid is zero, so need to delete this entry */
1936 		ret = hns3_remove_mac_vlan_tbl(hw, &req);
1937 	} else if (ret == -ENOENT) {
1938 		/* This mac addr doesn't exist. */
1939 		return 0;
1940 	}
1941 
1942 	if (ret) {
1943 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1944 				      mac_addr);
1945 		hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1946 	}
1947 
1948 	return ret;
1949 }
1950 
1951 static int
1952 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1953 			   struct rte_ether_addr *mc_addr_set,
1954 			   uint32_t nb_mc_addr)
1955 {
1956 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1957 	struct rte_ether_addr *addr;
1958 	uint32_t i;
1959 	uint32_t j;
1960 
1961 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1962 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1963 			 "invalid. valid range: 0~%d",
1964 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
1965 		return -EINVAL;
1966 	}
1967 
1968 	/* Check if input mac addresses are valid */
1969 	for (i = 0; i < nb_mc_addr; i++) {
1970 		addr = &mc_addr_set[i];
1971 		if (!rte_is_multicast_ether_addr(addr)) {
1972 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1973 					      addr);
1974 			hns3_err(hw,
1975 				 "failed to set mc mac addr, addr(%s) invalid.",
1976 				 mac_str);
1977 			return -EINVAL;
1978 		}
1979 
1980 		/* Check if there are duplicate addresses */
1981 		for (j = i + 1; j < nb_mc_addr; j++) {
1982 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1983 				hns3_ether_format_addr(mac_str,
1984 						      RTE_ETHER_ADDR_FMT_SIZE,
1985 						      addr);
1986 				hns3_err(hw, "failed to set mc mac addr, "
1987 					 "addrs invalid. two same addrs(%s).",
1988 					 mac_str);
1989 				return -EINVAL;
1990 			}
1991 		}
1992 
1993 		/*
1994 		 * Check if there are duplicate addresses between mac_addrs
1995 		 * and mc_addr_set
1996 		 */
1997 		for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1998 			if (rte_is_same_ether_addr(addr,
1999 						   &hw->data->mac_addrs[j])) {
2000 				hns3_ether_format_addr(mac_str,
2001 						      RTE_ETHER_ADDR_FMT_SIZE,
2002 						      addr);
2003 				hns3_err(hw, "failed to set mc mac addr, "
2004 					 "addrs invalid. addrs(%s) has already "
2005 					 "configured in mac_addr add API",
2006 					 mac_str);
2007 				return -EINVAL;
2008 			}
2009 		}
2010 	}
2011 
2012 	return 0;
2013 }
2014 
2015 static void
2016 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
2017 			   struct rte_ether_addr *mc_addr_set,
2018 			   int mc_addr_num,
2019 			   struct rte_ether_addr *reserved_addr_list,
2020 			   int *reserved_addr_num,
2021 			   struct rte_ether_addr *add_addr_list,
2022 			   int *add_addr_num,
2023 			   struct rte_ether_addr *rm_addr_list,
2024 			   int *rm_addr_num)
2025 {
2026 	struct rte_ether_addr *addr;
2027 	int current_addr_num;
2028 	int reserved_num = 0;
2029 	int add_num = 0;
2030 	int rm_num = 0;
2031 	int num;
2032 	int i;
2033 	int j;
2034 	bool same_addr;
2035 
2036 	/* Calculate the mc mac address list that should be removed */
2037 	current_addr_num = hw->mc_addrs_num;
2038 	for (i = 0; i < current_addr_num; i++) {
2039 		addr = &hw->mc_addrs[i];
2040 		same_addr = false;
2041 		for (j = 0; j < mc_addr_num; j++) {
2042 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2043 				same_addr = true;
2044 				break;
2045 			}
2046 		}
2047 
2048 		if (!same_addr) {
2049 			rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
2050 			rm_num++;
2051 		} else {
2052 			rte_ether_addr_copy(addr,
2053 					    &reserved_addr_list[reserved_num]);
2054 			reserved_num++;
2055 		}
2056 	}
2057 
2058 	/* Calculate the mc mac address list that should be added */
2059 	for (i = 0; i < mc_addr_num; i++) {
2060 		addr = &mc_addr_set[i];
2061 		same_addr = false;
2062 		for (j = 0; j < current_addr_num; j++) {
2063 			if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2064 				same_addr = true;
2065 				break;
2066 			}
2067 		}
2068 
2069 		if (!same_addr) {
2070 			rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2071 			add_num++;
2072 		}
2073 	}
2074 
2075 	/* Reorder the mc mac address list maintained by driver */
2076 	for (i = 0; i < reserved_num; i++)
2077 		rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2078 
2079 	for (i = 0; i < rm_num; i++) {
2080 		num = reserved_num + i;
2081 		rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2082 	}
2083 
2084 	*reserved_addr_num = reserved_num;
2085 	*add_addr_num = add_num;
2086 	*rm_addr_num = rm_num;
2087 }
2088 
2089 static int
2090 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2091 			  struct rte_ether_addr *mc_addr_set,
2092 			  uint32_t nb_mc_addr)
2093 {
2094 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2095 	struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2096 	struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2097 	struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2098 	struct rte_ether_addr *addr;
2099 	int reserved_addr_num;
2100 	int add_addr_num;
2101 	int rm_addr_num;
2102 	int mc_addr_num;
2103 	int num;
2104 	int ret;
2105 	int i;
2106 
2107 	/* Check if input parameters are valid */
2108 	ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2109 	if (ret)
2110 		return ret;
2111 
2112 	rte_spinlock_lock(&hw->lock);
2113 
2114 	/*
2115 	 * Calculate the mc mac address lists those should be removed and be
2116 	 * added, Reorder the mc mac address list maintained by driver.
2117 	 */
2118 	mc_addr_num = (int)nb_mc_addr;
2119 	hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2120 				   reserved_addr_list, &reserved_addr_num,
2121 				   add_addr_list, &add_addr_num,
2122 				   rm_addr_list, &rm_addr_num);
2123 
2124 	/* Remove mc mac addresses */
2125 	for (i = 0; i < rm_addr_num; i++) {
2126 		num = rm_addr_num - i - 1;
2127 		addr = &rm_addr_list[num];
2128 		ret = hns3_remove_mc_addr(hw, addr);
2129 		if (ret) {
2130 			rte_spinlock_unlock(&hw->lock);
2131 			return ret;
2132 		}
2133 		hw->mc_addrs_num--;
2134 	}
2135 
2136 	/* Add mc mac addresses */
2137 	for (i = 0; i < add_addr_num; i++) {
2138 		addr = &add_addr_list[i];
2139 		ret = hns3_add_mc_addr(hw, addr);
2140 		if (ret) {
2141 			rte_spinlock_unlock(&hw->lock);
2142 			return ret;
2143 		}
2144 
2145 		num = reserved_addr_num + i;
2146 		rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2147 		hw->mc_addrs_num++;
2148 	}
2149 	rte_spinlock_unlock(&hw->lock);
2150 
2151 	return 0;
2152 }
2153 
2154 static int
2155 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2156 {
2157 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2158 	struct hns3_hw *hw = &hns->hw;
2159 	struct rte_ether_addr *addr;
2160 	int err = 0;
2161 	int ret;
2162 	int i;
2163 
2164 	for (i = 0; i < hw->mc_addrs_num; i++) {
2165 		addr = &hw->mc_addrs[i];
2166 		if (!rte_is_multicast_ether_addr(addr))
2167 			continue;
2168 		if (del)
2169 			ret = hns3_remove_mc_addr(hw, addr);
2170 		else
2171 			ret = hns3_add_mc_addr(hw, addr);
2172 		if (ret) {
2173 			err = ret;
2174 			hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2175 					      addr);
2176 			hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2177 				 del ? "Remove" : "Restore", mac_str, ret);
2178 		}
2179 	}
2180 	return err;
2181 }
2182 
2183 static int
2184 hns3_check_mq_mode(struct rte_eth_dev *dev)
2185 {
2186 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2187 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2188 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2189 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2190 	struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2191 	struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2192 	uint8_t num_tc;
2193 	int max_tc = 0;
2194 	int i;
2195 
2196 	dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2197 	dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2198 
2199 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2200 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2201 			 "rx_mq_mode = %d", rx_mq_mode);
2202 		return -EINVAL;
2203 	}
2204 
2205 	if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2206 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2207 		hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2208 			 "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2209 			 rx_mq_mode, tx_mq_mode);
2210 		return -EINVAL;
2211 	}
2212 
2213 	if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2214 		if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2215 			hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2216 				 dcb_rx_conf->nb_tcs, pf->tc_max);
2217 			return -EINVAL;
2218 		}
2219 
2220 		if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2221 		      dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2222 			hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2223 				 "nb_tcs(%d) != %d or %d in rx direction.",
2224 				 dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2225 			return -EINVAL;
2226 		}
2227 
2228 		if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2229 			hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2230 				 dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2231 			return -EINVAL;
2232 		}
2233 
2234 		for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2235 			if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2236 				hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2237 					 "is not equal to one in tx direction.",
2238 					 i, dcb_rx_conf->dcb_tc[i]);
2239 				return -EINVAL;
2240 			}
2241 			if (dcb_rx_conf->dcb_tc[i] > max_tc)
2242 				max_tc = dcb_rx_conf->dcb_tc[i];
2243 		}
2244 
2245 		num_tc = max_tc + 1;
2246 		if (num_tc > dcb_rx_conf->nb_tcs) {
2247 			hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2248 				 num_tc, dcb_rx_conf->nb_tcs);
2249 			return -EINVAL;
2250 		}
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 static int
2257 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2258 {
2259 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2260 
2261 	if (!hns3_dev_dcb_supported(hw)) {
2262 		hns3_err(hw, "this port does not support dcb configurations.");
2263 		return -EOPNOTSUPP;
2264 	}
2265 
2266 	if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2267 		hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2268 		return -EOPNOTSUPP;
2269 	}
2270 
2271 	/* Check multiple queue mode */
2272 	return hns3_check_mq_mode(dev);
2273 }
2274 
2275 static int
2276 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2277 			   enum hns3_ring_type queue_type, uint16_t queue_id)
2278 {
2279 	struct hns3_cmd_desc desc;
2280 	struct hns3_ctrl_vector_chain_cmd *req =
2281 		(struct hns3_ctrl_vector_chain_cmd *)desc.data;
2282 	enum hns3_cmd_status status;
2283 	enum hns3_opcode_type op;
2284 	uint16_t tqp_type_and_id = 0;
2285 	uint16_t type;
2286 	uint16_t gl;
2287 
2288 	op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2289 	hns3_cmd_setup_basic_desc(&desc, op, false);
2290 	req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2291 					      HNS3_TQP_INT_ID_L_S);
2292 	req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2293 					      HNS3_TQP_INT_ID_H_S);
2294 
2295 	if (queue_type == HNS3_RING_TYPE_RX)
2296 		gl = HNS3_RING_GL_RX;
2297 	else
2298 		gl = HNS3_RING_GL_TX;
2299 
2300 	type = queue_type;
2301 
2302 	hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2303 		       type);
2304 	hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2305 	hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2306 		       gl);
2307 	req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2308 	req->int_cause_num = 1;
2309 	status = hns3_cmd_send(hw, &desc, 1);
2310 	if (status) {
2311 		hns3_err(hw, "%s TQP %u fail, vector_id is %u, status is %d.",
2312 			 en ? "Map" : "Unmap", queue_id, vector_id, status);
2313 		return status;
2314 	}
2315 
2316 	return 0;
2317 }
2318 
2319 static int
2320 hns3_init_ring_with_vector(struct hns3_hw *hw)
2321 {
2322 	uint16_t vec;
2323 	int ret;
2324 	int i;
2325 
2326 	/*
2327 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
2328 	 * function, vector 1~N can be used respectively for the queues of the
2329 	 * function. Tx and Rx queues with the same number share the interrupt
2330 	 * vector. In the initialization clearing the all hardware mapping
2331 	 * relationship configurations between queues and interrupt vectors is
2332 	 * needed, so some error caused by the residual configurations, such as
2333 	 * the unexpected Tx interrupt, can be avoid.
2334 	 */
2335 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2336 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2337 		vec = vec - 1; /* the last interrupt is reserved */
2338 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2339 	for (i = 0; i < hw->intr_tqps_num; i++) {
2340 		/*
2341 		 * Set gap limiter/rate limiter/quanity limiter algorithm
2342 		 * configuration for interrupt coalesce of queue's interrupt.
2343 		 */
2344 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2345 				       HNS3_TQP_INTR_GL_DEFAULT);
2346 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2347 				       HNS3_TQP_INTR_GL_DEFAULT);
2348 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2349 		/*
2350 		 * QL(quantity limiter) is not used currently, just set 0 to
2351 		 * close it.
2352 		 */
2353 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2354 
2355 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2356 						 HNS3_RING_TYPE_TX, i);
2357 		if (ret) {
2358 			PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2359 					  "vector: %u, ret=%d", i, vec, ret);
2360 			return ret;
2361 		}
2362 
2363 		ret = hns3_bind_ring_with_vector(hw, vec, false,
2364 						 HNS3_RING_TYPE_RX, i);
2365 		if (ret) {
2366 			PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2367 					  "vector: %u, ret=%d", i, vec, ret);
2368 			return ret;
2369 		}
2370 	}
2371 
2372 	return 0;
2373 }
2374 
2375 static int
2376 hns3_dev_configure(struct rte_eth_dev *dev)
2377 {
2378 	struct hns3_adapter *hns = dev->data->dev_private;
2379 	struct rte_eth_conf *conf = &dev->data->dev_conf;
2380 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2381 	struct hns3_hw *hw = &hns->hw;
2382 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
2383 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
2384 	struct rte_eth_rss_conf rss_conf;
2385 	uint32_t max_rx_pkt_len;
2386 	uint16_t mtu;
2387 	bool gro_en;
2388 	int ret;
2389 
2390 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2391 
2392 	/*
2393 	 * Some versions of hardware network engine does not support
2394 	 * individually enable/disable/reset the Tx or Rx queue. These devices
2395 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
2396 	 * numbers of Tx queues allocated by upper applications are not equal to
2397 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2398 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2399 	 * work as usual. But these fake queues are imperceptible, and can not
2400 	 * be used by upper applications.
2401 	 */
2402 	if (!hns3_dev_indep_txrx_supported(hw)) {
2403 		ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2404 		if (ret) {
2405 			hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
2406 				 ret);
2407 			return ret;
2408 		}
2409 	}
2410 
2411 	hw->adapter_state = HNS3_NIC_CONFIGURING;
2412 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2413 		hns3_err(hw, "setting link speed/duplex not supported");
2414 		ret = -EINVAL;
2415 		goto cfg_err;
2416 	}
2417 
2418 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2419 		ret = hns3_check_dcb_cfg(dev);
2420 		if (ret)
2421 			goto cfg_err;
2422 	}
2423 
2424 	/* When RSS is not configured, redirect the packet queue 0 */
2425 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2426 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2427 		rss_conf = conf->rx_adv_conf.rss_conf;
2428 		hw->rss_dis_flag = false;
2429 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2430 		if (ret)
2431 			goto cfg_err;
2432 	}
2433 
2434 	/*
2435 	 * If jumbo frames are enabled, MTU needs to be refreshed
2436 	 * according to the maximum RX packet length.
2437 	 */
2438 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2439 		max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
2440 		if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
2441 		    max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
2442 			hns3_err(hw, "maximum Rx packet length must be greater "
2443 				 "than %u and less than %u when jumbo frame enabled.",
2444 				 (uint16_t)HNS3_DEFAULT_FRAME_LEN,
2445 				 (uint16_t)HNS3_MAX_FRAME_LEN);
2446 			ret = -EINVAL;
2447 			goto cfg_err;
2448 		}
2449 
2450 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
2451 		ret = hns3_dev_mtu_set(dev, mtu);
2452 		if (ret)
2453 			goto cfg_err;
2454 		dev->data->mtu = mtu;
2455 	}
2456 
2457 	ret = hns3_dev_configure_vlan(dev);
2458 	if (ret)
2459 		goto cfg_err;
2460 
2461 	/* config hardware GRO */
2462 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2463 	ret = hns3_config_gro(hw, gro_en);
2464 	if (ret)
2465 		goto cfg_err;
2466 
2467 	hns->rx_simple_allowed = true;
2468 	hns->rx_vec_allowed = true;
2469 	hns->tx_simple_allowed = true;
2470 	hns->tx_vec_allowed = true;
2471 
2472 	hns3_init_rx_ptype_tble(dev);
2473 	hw->adapter_state = HNS3_NIC_CONFIGURED;
2474 
2475 	return 0;
2476 
2477 cfg_err:
2478 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2479 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2480 
2481 	return ret;
2482 }
2483 
2484 static int
2485 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2486 {
2487 	struct hns3_config_max_frm_size_cmd *req;
2488 	struct hns3_cmd_desc desc;
2489 
2490 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2491 
2492 	req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2493 	req->max_frm_size = rte_cpu_to_le_16(new_mps);
2494 	req->min_frm_size = RTE_ETHER_MIN_LEN;
2495 
2496 	return hns3_cmd_send(hw, &desc, 1);
2497 }
2498 
2499 static int
2500 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2501 {
2502 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2503 	uint16_t original_mps = hns->pf.mps;
2504 	int err;
2505 	int ret;
2506 
2507 	ret = hns3_set_mac_mtu(hw, mps);
2508 	if (ret) {
2509 		hns3_err(hw, "failed to set mtu, ret = %d", ret);
2510 		return ret;
2511 	}
2512 
2513 	hns->pf.mps = mps;
2514 	ret = hns3_buffer_alloc(hw);
2515 	if (ret) {
2516 		hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2517 		goto rollback;
2518 	}
2519 
2520 	return 0;
2521 
2522 rollback:
2523 	err = hns3_set_mac_mtu(hw, original_mps);
2524 	if (err) {
2525 		hns3_err(hw, "fail to rollback MTU, err = %d", err);
2526 		return ret;
2527 	}
2528 	hns->pf.mps = original_mps;
2529 
2530 	return ret;
2531 }
2532 
2533 static int
2534 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2535 {
2536 	struct hns3_adapter *hns = dev->data->dev_private;
2537 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2538 	struct hns3_hw *hw = &hns->hw;
2539 	bool is_jumbo_frame;
2540 	int ret;
2541 
2542 	if (dev->data->dev_started) {
2543 		hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2544 			 "before configuration", dev->data->port_id);
2545 		return -EBUSY;
2546 	}
2547 
2548 	rte_spinlock_lock(&hw->lock);
2549 	is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
2550 	frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2551 
2552 	/*
2553 	 * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2554 	 * assign to "uint16_t" type variable.
2555 	 */
2556 	ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2557 	if (ret) {
2558 		rte_spinlock_unlock(&hw->lock);
2559 		hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2560 			 dev->data->port_id, mtu, ret);
2561 		return ret;
2562 	}
2563 
2564 	if (is_jumbo_frame)
2565 		dev->data->dev_conf.rxmode.offloads |=
2566 						DEV_RX_OFFLOAD_JUMBO_FRAME;
2567 	else
2568 		dev->data->dev_conf.rxmode.offloads &=
2569 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
2570 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2571 	rte_spinlock_unlock(&hw->lock);
2572 
2573 	return 0;
2574 }
2575 
2576 int
2577 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2578 {
2579 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2580 	struct hns3_hw *hw = &hns->hw;
2581 	uint16_t queue_num = hw->tqps_num;
2582 
2583 	/*
2584 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
2585 	 * MSI-X interrupt resources of the hardware.
2586 	 */
2587 	if (hw->data->dev_conf.intr_conf.rxq == 1)
2588 		queue_num = hw->intr_tqps_num;
2589 
2590 	info->max_rx_queues = queue_num;
2591 	info->max_tx_queues = hw->tqps_num;
2592 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2593 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2594 	info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2595 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2596 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2597 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2598 				 DEV_RX_OFFLOAD_TCP_CKSUM |
2599 				 DEV_RX_OFFLOAD_UDP_CKSUM |
2600 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
2601 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2602 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2603 				 DEV_RX_OFFLOAD_KEEP_CRC |
2604 				 DEV_RX_OFFLOAD_SCATTER |
2605 				 DEV_RX_OFFLOAD_VLAN_STRIP |
2606 				 DEV_RX_OFFLOAD_VLAN_FILTER |
2607 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
2608 				 DEV_RX_OFFLOAD_RSS_HASH |
2609 				 DEV_RX_OFFLOAD_TCP_LRO);
2610 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2611 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
2612 				 DEV_TX_OFFLOAD_TCP_CKSUM |
2613 				 DEV_TX_OFFLOAD_UDP_CKSUM |
2614 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
2615 				 DEV_TX_OFFLOAD_MULTI_SEGS |
2616 				 DEV_TX_OFFLOAD_TCP_TSO |
2617 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2618 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
2619 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2620 				 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2621 				 hns3_txvlan_cap_get(hw));
2622 
2623 	if (hns3_dev_outer_udp_cksum_supported(hw))
2624 		info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
2625 
2626 	if (hns3_dev_indep_txrx_supported(hw))
2627 		info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2628 				 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2629 
2630 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
2631 		.nb_max = HNS3_MAX_RING_DESC,
2632 		.nb_min = HNS3_MIN_RING_DESC,
2633 		.nb_align = HNS3_ALIGN_RING_DESC,
2634 	};
2635 
2636 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
2637 		.nb_max = HNS3_MAX_RING_DESC,
2638 		.nb_min = HNS3_MIN_RING_DESC,
2639 		.nb_align = HNS3_ALIGN_RING_DESC,
2640 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2641 		.nb_mtu_seg_max = hw->max_non_tso_bd_num,
2642 	};
2643 
2644 	info->default_rxconf = (struct rte_eth_rxconf) {
2645 		.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2646 		/*
2647 		 * If there are no available Rx buffer descriptors, incoming
2648 		 * packets are always dropped by hardware based on hns3 network
2649 		 * engine.
2650 		 */
2651 		.rx_drop_en = 1,
2652 		.offloads = 0,
2653 	};
2654 	info->default_txconf = (struct rte_eth_txconf) {
2655 		.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2656 		.offloads = 0,
2657 	};
2658 
2659 	info->vmdq_queue_num = 0;
2660 
2661 	info->reta_size = hw->rss_ind_tbl_size;
2662 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
2663 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2664 
2665 	info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2666 	info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2667 	info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2668 	info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2669 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2670 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2671 
2672 	return 0;
2673 }
2674 
2675 static int
2676 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2677 		    size_t fw_size)
2678 {
2679 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2680 	struct hns3_hw *hw = &hns->hw;
2681 	uint32_t version = hw->fw_version;
2682 	int ret;
2683 
2684 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2685 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2686 				      HNS3_FW_VERSION_BYTE3_S),
2687 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2688 				      HNS3_FW_VERSION_BYTE2_S),
2689 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2690 				      HNS3_FW_VERSION_BYTE1_S),
2691 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2692 				      HNS3_FW_VERSION_BYTE0_S));
2693 	ret += 1; /* add the size of '\0' */
2694 	if (fw_size < (uint32_t)ret)
2695 		return ret;
2696 	else
2697 		return 0;
2698 }
2699 
2700 static int
2701 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2702 {
2703 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2704 
2705 	(void)hns3_update_link_status(hw);
2706 
2707 	return hns3_update_link_info(eth_dev);
2708 }
2709 
2710 static void
2711 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2712 		      struct rte_eth_link *new_link)
2713 {
2714 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2715 	struct hns3_mac *mac = &hw->mac;
2716 
2717 	switch (mac->link_speed) {
2718 	case ETH_SPEED_NUM_10M:
2719 	case ETH_SPEED_NUM_100M:
2720 	case ETH_SPEED_NUM_1G:
2721 	case ETH_SPEED_NUM_10G:
2722 	case ETH_SPEED_NUM_25G:
2723 	case ETH_SPEED_NUM_40G:
2724 	case ETH_SPEED_NUM_50G:
2725 	case ETH_SPEED_NUM_100G:
2726 	case ETH_SPEED_NUM_200G:
2727 		new_link->link_speed = mac->link_speed;
2728 		break;
2729 	default:
2730 		if (mac->link_status)
2731 			new_link->link_speed = ETH_SPEED_NUM_UNKNOWN;
2732 		else
2733 			new_link->link_speed = ETH_SPEED_NUM_NONE;
2734 		break;
2735 	}
2736 
2737 	new_link->link_duplex = mac->link_duplex;
2738 	new_link->link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2739 	new_link->link_autoneg =
2740 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2741 }
2742 
2743 static int
2744 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2745 		     __rte_unused int wait_to_complete)
2746 {
2747 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2748 	struct hns3_mac *mac = &hw->mac;
2749 	struct rte_eth_link new_link;
2750 	int ret;
2751 
2752 	ret = hns3_update_port_link_info(eth_dev);
2753 	if (ret) {
2754 		mac->link_status = ETH_LINK_DOWN;
2755 		hns3_err(hw, "failed to get port link info, ret = %d.", ret);
2756 	}
2757 
2758 	memset(&new_link, 0, sizeof(new_link));
2759 	hns3_setup_linkstatus(eth_dev, &new_link);
2760 
2761 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2762 }
2763 
2764 static int
2765 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2766 {
2767 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2768 	struct hns3_pf *pf = &hns->pf;
2769 
2770 	if (!(status->pf_state & HNS3_PF_STATE_DONE))
2771 		return -EINVAL;
2772 
2773 	pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2774 
2775 	return 0;
2776 }
2777 
2778 static int
2779 hns3_query_function_status(struct hns3_hw *hw)
2780 {
2781 #define HNS3_QUERY_MAX_CNT		10
2782 #define HNS3_QUERY_SLEEP_MSCOEND	1
2783 	struct hns3_func_status_cmd *req;
2784 	struct hns3_cmd_desc desc;
2785 	int timeout = 0;
2786 	int ret;
2787 
2788 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2789 	req = (struct hns3_func_status_cmd *)desc.data;
2790 
2791 	do {
2792 		ret = hns3_cmd_send(hw, &desc, 1);
2793 		if (ret) {
2794 			PMD_INIT_LOG(ERR, "query function status failed %d",
2795 				     ret);
2796 			return ret;
2797 		}
2798 
2799 		/* Check pf reset is done */
2800 		if (req->pf_state)
2801 			break;
2802 
2803 		rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2804 	} while (timeout++ < HNS3_QUERY_MAX_CNT);
2805 
2806 	return hns3_parse_func_status(hw, req);
2807 }
2808 
2809 static int
2810 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2811 {
2812 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2813 	struct hns3_pf *pf = &hns->pf;
2814 
2815 	if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2816 		/*
2817 		 * The total_tqps_num obtained from firmware is maximum tqp
2818 		 * numbers of this port, which should be used for PF and VFs.
2819 		 * There is no need for pf to have so many tqp numbers in
2820 		 * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2821 		 * coming from config file, is assigned to maximum queue number
2822 		 * for the PF of this port by user. So users can modify the
2823 		 * maximum queue number of PF according to their own application
2824 		 * scenarios, which is more flexible to use. In addition, many
2825 		 * memories can be saved due to allocating queue statistics
2826 		 * room according to the actual number of queues required. The
2827 		 * maximum queue number of PF for network engine with
2828 		 * revision_id greater than 0x30 is assigned by config file.
2829 		 */
2830 		if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2831 			hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2832 				 "must be greater than 0.",
2833 				 RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2834 			return -EINVAL;
2835 		}
2836 
2837 		hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2838 				       hw->total_tqps_num);
2839 	} else {
2840 		/*
2841 		 * Due to the limitation on the number of PF interrupts
2842 		 * available, the maximum queue number assigned to PF on
2843 		 * the network engine with revision_id 0x21 is 64.
2844 		 */
2845 		hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2846 				       HNS3_MAX_TQP_NUM_HIP08_PF);
2847 	}
2848 
2849 	return 0;
2850 }
2851 
2852 static int
2853 hns3_query_pf_resource(struct hns3_hw *hw)
2854 {
2855 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2856 	struct hns3_pf *pf = &hns->pf;
2857 	struct hns3_pf_res_cmd *req;
2858 	struct hns3_cmd_desc desc;
2859 	int ret;
2860 
2861 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2862 	ret = hns3_cmd_send(hw, &desc, 1);
2863 	if (ret) {
2864 		PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2865 		return ret;
2866 	}
2867 
2868 	req = (struct hns3_pf_res_cmd *)desc.data;
2869 	hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2870 			     rte_le_to_cpu_16(req->ext_tqp_num);
2871 	ret = hns3_get_pf_max_tqp_num(hw);
2872 	if (ret)
2873 		return ret;
2874 
2875 	pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2876 	pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2877 
2878 	if (req->tx_buf_size)
2879 		pf->tx_buf_size =
2880 		    rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2881 	else
2882 		pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2883 
2884 	pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2885 
2886 	if (req->dv_buf_size)
2887 		pf->dv_buf_size =
2888 		    rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2889 	else
2890 		pf->dv_buf_size = HNS3_DEFAULT_DV;
2891 
2892 	pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2893 
2894 	hw->num_msi =
2895 		hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2896 			       HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2897 
2898 	return 0;
2899 }
2900 
2901 static void
2902 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2903 {
2904 	struct hns3_cfg_param_cmd *req;
2905 	uint64_t mac_addr_tmp_high;
2906 	uint8_t ext_rss_size_max;
2907 	uint64_t mac_addr_tmp;
2908 	uint32_t i;
2909 
2910 	req = (struct hns3_cfg_param_cmd *)desc[0].data;
2911 
2912 	/* get the configuration */
2913 	cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2914 					     HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2915 	cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2916 				     HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2917 	cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2918 					   HNS3_CFG_TQP_DESC_N_M,
2919 					   HNS3_CFG_TQP_DESC_N_S);
2920 
2921 	cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2922 				       HNS3_CFG_PHY_ADDR_M,
2923 				       HNS3_CFG_PHY_ADDR_S);
2924 	cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2925 					 HNS3_CFG_MEDIA_TP_M,
2926 					 HNS3_CFG_MEDIA_TP_S);
2927 	cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2928 					 HNS3_CFG_RX_BUF_LEN_M,
2929 					 HNS3_CFG_RX_BUF_LEN_S);
2930 	/* get mac address */
2931 	mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2932 	mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2933 					   HNS3_CFG_MAC_ADDR_H_M,
2934 					   HNS3_CFG_MAC_ADDR_H_S);
2935 
2936 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2937 
2938 	cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2939 					    HNS3_CFG_DEFAULT_SPEED_M,
2940 					    HNS3_CFG_DEFAULT_SPEED_S);
2941 	cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2942 					   HNS3_CFG_RSS_SIZE_M,
2943 					   HNS3_CFG_RSS_SIZE_S);
2944 
2945 	for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2946 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2947 
2948 	req = (struct hns3_cfg_param_cmd *)desc[1].data;
2949 	cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2950 
2951 	cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2952 					    HNS3_CFG_SPEED_ABILITY_M,
2953 					    HNS3_CFG_SPEED_ABILITY_S);
2954 	cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2955 					HNS3_CFG_UMV_TBL_SPACE_M,
2956 					HNS3_CFG_UMV_TBL_SPACE_S);
2957 	if (!cfg->umv_space)
2958 		cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2959 
2960 	ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2961 					       HNS3_CFG_EXT_RSS_SIZE_M,
2962 					       HNS3_CFG_EXT_RSS_SIZE_S);
2963 
2964 	/*
2965 	 * Field ext_rss_size_max obtained from firmware will be more flexible
2966 	 * for future changes and expansions, which is an exponent of 2, instead
2967 	 * of reading out directly. If this field is not zero, hns3 PF PMD
2968 	 * driver uses it as rss_size_max under one TC. Device, whose revision
2969 	 * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2970 	 * maximum number of queues supported under a TC through this field.
2971 	 */
2972 	if (ext_rss_size_max)
2973 		cfg->rss_size_max = 1U << ext_rss_size_max;
2974 }
2975 
2976 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2977  * @hw: pointer to struct hns3_hw
2978  * @hcfg: the config structure to be getted
2979  */
2980 static int
2981 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2982 {
2983 	struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2984 	struct hns3_cfg_param_cmd *req;
2985 	uint32_t offset;
2986 	uint32_t i;
2987 	int ret;
2988 
2989 	for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2990 		offset = 0;
2991 		req = (struct hns3_cfg_param_cmd *)desc[i].data;
2992 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2993 					  true);
2994 		hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2995 			       i * HNS3_CFG_RD_LEN_BYTES);
2996 		/* Len should be divided by 4 when send to hardware */
2997 		hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2998 			       HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2999 		req->offset = rte_cpu_to_le_32(offset);
3000 	}
3001 
3002 	ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
3003 	if (ret) {
3004 		PMD_INIT_LOG(ERR, "get config failed %d.", ret);
3005 		return ret;
3006 	}
3007 
3008 	hns3_parse_cfg(hcfg, desc);
3009 
3010 	return 0;
3011 }
3012 
3013 static int
3014 hns3_parse_speed(int speed_cmd, uint32_t *speed)
3015 {
3016 	switch (speed_cmd) {
3017 	case HNS3_CFG_SPEED_10M:
3018 		*speed = ETH_SPEED_NUM_10M;
3019 		break;
3020 	case HNS3_CFG_SPEED_100M:
3021 		*speed = ETH_SPEED_NUM_100M;
3022 		break;
3023 	case HNS3_CFG_SPEED_1G:
3024 		*speed = ETH_SPEED_NUM_1G;
3025 		break;
3026 	case HNS3_CFG_SPEED_10G:
3027 		*speed = ETH_SPEED_NUM_10G;
3028 		break;
3029 	case HNS3_CFG_SPEED_25G:
3030 		*speed = ETH_SPEED_NUM_25G;
3031 		break;
3032 	case HNS3_CFG_SPEED_40G:
3033 		*speed = ETH_SPEED_NUM_40G;
3034 		break;
3035 	case HNS3_CFG_SPEED_50G:
3036 		*speed = ETH_SPEED_NUM_50G;
3037 		break;
3038 	case HNS3_CFG_SPEED_100G:
3039 		*speed = ETH_SPEED_NUM_100G;
3040 		break;
3041 	case HNS3_CFG_SPEED_200G:
3042 		*speed = ETH_SPEED_NUM_200G;
3043 		break;
3044 	default:
3045 		return -EINVAL;
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 static void
3052 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3053 {
3054 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3055 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3056 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3057 	hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3058 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3059 }
3060 
3061 static void
3062 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3063 {
3064 	struct hns3_dev_specs_0_cmd *req0;
3065 
3066 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3067 
3068 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3069 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3070 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3071 	hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3072 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3073 }
3074 
3075 static int
3076 hns3_check_dev_specifications(struct hns3_hw *hw)
3077 {
3078 	if (hw->rss_ind_tbl_size == 0 ||
3079 	    hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3080 		hns3_err(hw, "the size of hash lookup table configured (%u)"
3081 			      " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3082 			      HNS3_RSS_IND_TBL_SIZE_MAX);
3083 		return -EINVAL;
3084 	}
3085 
3086 	return 0;
3087 }
3088 
3089 static int
3090 hns3_query_dev_specifications(struct hns3_hw *hw)
3091 {
3092 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3093 	int ret;
3094 	int i;
3095 
3096 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3097 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3098 					  true);
3099 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3100 	}
3101 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3102 
3103 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3104 	if (ret)
3105 		return ret;
3106 
3107 	hns3_parse_dev_specifications(hw, desc);
3108 
3109 	return hns3_check_dev_specifications(hw);
3110 }
3111 
3112 static int
3113 hns3_get_capability(struct hns3_hw *hw)
3114 {
3115 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3116 	struct rte_pci_device *pci_dev;
3117 	struct hns3_pf *pf = &hns->pf;
3118 	struct rte_eth_dev *eth_dev;
3119 	uint16_t device_id;
3120 	uint8_t revision;
3121 	int ret;
3122 
3123 	eth_dev = &rte_eth_devices[hw->data->port_id];
3124 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3125 	device_id = pci_dev->id.device_id;
3126 
3127 	if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3128 	    device_id == HNS3_DEV_ID_50GE_RDMA ||
3129 	    device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3130 	    device_id == HNS3_DEV_ID_200G_RDMA)
3131 		hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3132 
3133 	/* Get PCI revision id */
3134 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3135 				  HNS3_PCI_REVISION_ID);
3136 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
3137 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3138 			     ret);
3139 		return -EIO;
3140 	}
3141 	hw->revision = revision;
3142 
3143 	if (revision < PCI_REVISION_ID_HIP09_A) {
3144 		hns3_set_default_dev_specifications(hw);
3145 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3146 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3147 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3148 		hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3149 		hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
3150 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3151 		pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3152 		hw->rss_info.ipv6_sctp_offload_supported = false;
3153 		hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
3154 		return 0;
3155 	}
3156 
3157 	ret = hns3_query_dev_specifications(hw);
3158 	if (ret) {
3159 		PMD_INIT_LOG(ERR,
3160 			     "failed to query dev specifications, ret = %d",
3161 			     ret);
3162 		return ret;
3163 	}
3164 
3165 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3166 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3167 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3168 	hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3169 	hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
3170 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3171 	pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3172 	hw->rss_info.ipv6_sctp_offload_supported = true;
3173 	hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
3174 
3175 	return 0;
3176 }
3177 
3178 static int
3179 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3180 {
3181 	int ret;
3182 
3183 	switch (media_type) {
3184 	case HNS3_MEDIA_TYPE_COPPER:
3185 		if (!hns3_dev_copper_supported(hw)) {
3186 			PMD_INIT_LOG(ERR,
3187 				     "Media type is copper, not supported.");
3188 			ret = -EOPNOTSUPP;
3189 		} else {
3190 			ret = 0;
3191 		}
3192 		break;
3193 	case HNS3_MEDIA_TYPE_FIBER:
3194 		ret = 0;
3195 		break;
3196 	case HNS3_MEDIA_TYPE_BACKPLANE:
3197 		PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3198 		ret = -EOPNOTSUPP;
3199 		break;
3200 	default:
3201 		PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3202 		ret = -EINVAL;
3203 		break;
3204 	}
3205 
3206 	return ret;
3207 }
3208 
3209 static int
3210 hns3_get_board_configuration(struct hns3_hw *hw)
3211 {
3212 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3213 	struct hns3_pf *pf = &hns->pf;
3214 	struct hns3_cfg cfg;
3215 	int ret;
3216 
3217 	ret = hns3_get_board_cfg(hw, &cfg);
3218 	if (ret) {
3219 		PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3220 		return ret;
3221 	}
3222 
3223 	ret = hns3_check_media_type(hw, cfg.media_type);
3224 	if (ret)
3225 		return ret;
3226 
3227 	hw->mac.media_type = cfg.media_type;
3228 	hw->rss_size_max = cfg.rss_size_max;
3229 	hw->rss_dis_flag = false;
3230 	memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3231 	hw->mac.phy_addr = cfg.phy_addr;
3232 	hw->mac.default_addr_setted = false;
3233 	hw->num_tx_desc = cfg.tqp_desc_num;
3234 	hw->num_rx_desc = cfg.tqp_desc_num;
3235 	hw->dcb_info.num_pg = 1;
3236 	hw->dcb_info.hw_pfc_map = 0;
3237 
3238 	ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3239 	if (ret) {
3240 		PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3241 			     cfg.default_speed, ret);
3242 		return ret;
3243 	}
3244 
3245 	pf->tc_max = cfg.tc_num;
3246 	if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3247 		PMD_INIT_LOG(WARNING,
3248 			     "Get TC num(%u) from flash, set TC num to 1",
3249 			     pf->tc_max);
3250 		pf->tc_max = 1;
3251 	}
3252 
3253 	/* Dev does not support DCB */
3254 	if (!hns3_dev_dcb_supported(hw)) {
3255 		pf->tc_max = 1;
3256 		pf->pfc_max = 0;
3257 	} else
3258 		pf->pfc_max = pf->tc_max;
3259 
3260 	hw->dcb_info.num_tc = 1;
3261 	hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3262 				     hw->tqps_num / hw->dcb_info.num_tc);
3263 	hns3_set_bit(hw->hw_tc_map, 0, 1);
3264 	pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3265 
3266 	pf->wanted_umv_size = cfg.umv_space;
3267 
3268 	return ret;
3269 }
3270 
3271 static int
3272 hns3_get_configuration(struct hns3_hw *hw)
3273 {
3274 	int ret;
3275 
3276 	ret = hns3_query_function_status(hw);
3277 	if (ret) {
3278 		PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3279 		return ret;
3280 	}
3281 
3282 	/* Get device capability */
3283 	ret = hns3_get_capability(hw);
3284 	if (ret) {
3285 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3286 		return ret;
3287 	}
3288 
3289 	/* Get pf resource */
3290 	ret = hns3_query_pf_resource(hw);
3291 	if (ret) {
3292 		PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3293 		return ret;
3294 	}
3295 
3296 	ret = hns3_get_board_configuration(hw);
3297 	if (ret) {
3298 		PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3299 		return ret;
3300 	}
3301 
3302 	ret = hns3_query_dev_fec_info(hw);
3303 	if (ret)
3304 		PMD_INIT_LOG(ERR,
3305 			     "failed to query FEC information, ret = %d", ret);
3306 
3307 	return ret;
3308 }
3309 
3310 static int
3311 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3312 		      uint16_t tqp_vid, bool is_pf)
3313 {
3314 	struct hns3_tqp_map_cmd *req;
3315 	struct hns3_cmd_desc desc;
3316 	int ret;
3317 
3318 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3319 
3320 	req = (struct hns3_tqp_map_cmd *)desc.data;
3321 	req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3322 	req->tqp_vf = func_id;
3323 	req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3324 	if (!is_pf)
3325 		req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3326 	req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3327 
3328 	ret = hns3_cmd_send(hw, &desc, 1);
3329 	if (ret)
3330 		PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3331 
3332 	return ret;
3333 }
3334 
3335 static int
3336 hns3_map_tqp(struct hns3_hw *hw)
3337 {
3338 	int ret;
3339 	int i;
3340 
3341 	/*
3342 	 * In current version, VF is not supported when PF is driven by DPDK
3343 	 * driver, so we assign total tqps_num tqps allocated to this port
3344 	 * to PF.
3345 	 */
3346 	for (i = 0; i < hw->total_tqps_num; i++) {
3347 		ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3348 		if (ret)
3349 			return ret;
3350 	}
3351 
3352 	return 0;
3353 }
3354 
3355 static int
3356 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3357 {
3358 	struct hns3_config_mac_speed_dup_cmd *req;
3359 	struct hns3_cmd_desc desc;
3360 	int ret;
3361 
3362 	req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3363 
3364 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3365 
3366 	hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3367 
3368 	switch (speed) {
3369 	case ETH_SPEED_NUM_10M:
3370 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3371 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3372 		break;
3373 	case ETH_SPEED_NUM_100M:
3374 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3375 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3376 		break;
3377 	case ETH_SPEED_NUM_1G:
3378 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3379 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3380 		break;
3381 	case ETH_SPEED_NUM_10G:
3382 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3383 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3384 		break;
3385 	case ETH_SPEED_NUM_25G:
3386 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3387 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3388 		break;
3389 	case ETH_SPEED_NUM_40G:
3390 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3391 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3392 		break;
3393 	case ETH_SPEED_NUM_50G:
3394 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3395 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3396 		break;
3397 	case ETH_SPEED_NUM_100G:
3398 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3399 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3400 		break;
3401 	case ETH_SPEED_NUM_200G:
3402 		hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3403 			       HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3404 		break;
3405 	default:
3406 		PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3407 		return -EINVAL;
3408 	}
3409 
3410 	hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3411 
3412 	ret = hns3_cmd_send(hw, &desc, 1);
3413 	if (ret)
3414 		PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3415 
3416 	return ret;
3417 }
3418 
3419 static int
3420 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3421 {
3422 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3423 	struct hns3_pf *pf = &hns->pf;
3424 	struct hns3_priv_buf *priv;
3425 	uint32_t i, total_size;
3426 
3427 	total_size = pf->pkt_buf_size;
3428 
3429 	/* alloc tx buffer for all enabled tc */
3430 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3431 		priv = &buf_alloc->priv_buf[i];
3432 
3433 		if (hw->hw_tc_map & BIT(i)) {
3434 			if (total_size < pf->tx_buf_size)
3435 				return -ENOMEM;
3436 
3437 			priv->tx_buf_size = pf->tx_buf_size;
3438 		} else
3439 			priv->tx_buf_size = 0;
3440 
3441 		total_size -= priv->tx_buf_size;
3442 	}
3443 
3444 	return 0;
3445 }
3446 
3447 static int
3448 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3449 {
3450 /* TX buffer size is unit by 128 byte */
3451 #define HNS3_BUF_SIZE_UNIT_SHIFT	7
3452 #define HNS3_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
3453 	struct hns3_tx_buff_alloc_cmd *req;
3454 	struct hns3_cmd_desc desc;
3455 	uint32_t buf_size;
3456 	uint32_t i;
3457 	int ret;
3458 
3459 	req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3460 
3461 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3462 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3463 		buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3464 
3465 		buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3466 		req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3467 						HNS3_BUF_SIZE_UPDATE_EN_MSK);
3468 	}
3469 
3470 	ret = hns3_cmd_send(hw, &desc, 1);
3471 	if (ret)
3472 		PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3473 
3474 	return ret;
3475 }
3476 
3477 static int
3478 hns3_get_tc_num(struct hns3_hw *hw)
3479 {
3480 	int cnt = 0;
3481 	uint8_t i;
3482 
3483 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3484 		if (hw->hw_tc_map & BIT(i))
3485 			cnt++;
3486 	return cnt;
3487 }
3488 
3489 static uint32_t
3490 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3491 {
3492 	struct hns3_priv_buf *priv;
3493 	uint32_t rx_priv = 0;
3494 	int i;
3495 
3496 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3497 		priv = &buf_alloc->priv_buf[i];
3498 		if (priv->enable)
3499 			rx_priv += priv->buf_size;
3500 	}
3501 	return rx_priv;
3502 }
3503 
3504 static uint32_t
3505 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3506 {
3507 	uint32_t total_tx_size = 0;
3508 	uint32_t i;
3509 
3510 	for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3511 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3512 
3513 	return total_tx_size;
3514 }
3515 
3516 /* Get the number of pfc enabled TCs, which have private buffer */
3517 static int
3518 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3519 {
3520 	struct hns3_priv_buf *priv;
3521 	int cnt = 0;
3522 	uint8_t i;
3523 
3524 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3525 		priv = &buf_alloc->priv_buf[i];
3526 		if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3527 			cnt++;
3528 	}
3529 
3530 	return cnt;
3531 }
3532 
3533 /* Get the number of pfc disabled TCs, which have private buffer */
3534 static int
3535 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3536 			 struct hns3_pkt_buf_alloc *buf_alloc)
3537 {
3538 	struct hns3_priv_buf *priv;
3539 	int cnt = 0;
3540 	uint8_t i;
3541 
3542 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3543 		priv = &buf_alloc->priv_buf[i];
3544 		if (hw->hw_tc_map & BIT(i) &&
3545 		    !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3546 			cnt++;
3547 	}
3548 
3549 	return cnt;
3550 }
3551 
3552 static bool
3553 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3554 		  uint32_t rx_all)
3555 {
3556 	uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3557 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3558 	struct hns3_pf *pf = &hns->pf;
3559 	uint32_t shared_buf, aligned_mps;
3560 	uint32_t rx_priv;
3561 	uint8_t tc_num;
3562 	uint8_t i;
3563 
3564 	tc_num = hns3_get_tc_num(hw);
3565 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3566 
3567 	if (hns3_dev_dcb_supported(hw))
3568 		shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3569 					pf->dv_buf_size;
3570 	else
3571 		shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3572 					+ pf->dv_buf_size;
3573 
3574 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3575 	shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3576 			     HNS3_BUF_SIZE_UNIT);
3577 
3578 	rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3579 	if (rx_all < rx_priv + shared_std)
3580 		return false;
3581 
3582 	shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3583 	buf_alloc->s_buf.buf_size = shared_buf;
3584 	if (hns3_dev_dcb_supported(hw)) {
3585 		buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3586 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3587 			- roundup(aligned_mps / HNS3_BUF_DIV_BY,
3588 				  HNS3_BUF_SIZE_UNIT);
3589 	} else {
3590 		buf_alloc->s_buf.self.high =
3591 			aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3592 		buf_alloc->s_buf.self.low = aligned_mps;
3593 	}
3594 
3595 	if (hns3_dev_dcb_supported(hw)) {
3596 		hi_thrd = shared_buf - pf->dv_buf_size;
3597 
3598 		if (tc_num <= NEED_RESERVE_TC_NUM)
3599 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3600 				  BUF_MAX_PERCENT;
3601 
3602 		if (tc_num)
3603 			hi_thrd = hi_thrd / tc_num;
3604 
3605 		hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3606 		hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3607 		lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3608 	} else {
3609 		hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3610 		lo_thrd = aligned_mps;
3611 	}
3612 
3613 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3614 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3615 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3616 	}
3617 
3618 	return true;
3619 }
3620 
3621 static bool
3622 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3623 		     struct hns3_pkt_buf_alloc *buf_alloc)
3624 {
3625 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3626 	struct hns3_pf *pf = &hns->pf;
3627 	struct hns3_priv_buf *priv;
3628 	uint32_t aligned_mps;
3629 	uint32_t rx_all;
3630 	uint8_t i;
3631 
3632 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3633 	aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3634 
3635 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3636 		priv = &buf_alloc->priv_buf[i];
3637 
3638 		priv->enable = 0;
3639 		priv->wl.low = 0;
3640 		priv->wl.high = 0;
3641 		priv->buf_size = 0;
3642 
3643 		if (!(hw->hw_tc_map & BIT(i)))
3644 			continue;
3645 
3646 		priv->enable = 1;
3647 		if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3648 			priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3649 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
3650 						HNS3_BUF_SIZE_UNIT);
3651 		} else {
3652 			priv->wl.low = 0;
3653 			priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3654 					aligned_mps;
3655 		}
3656 
3657 		priv->buf_size = priv->wl.high + pf->dv_buf_size;
3658 	}
3659 
3660 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3661 }
3662 
3663 static bool
3664 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3665 			     struct hns3_pkt_buf_alloc *buf_alloc)
3666 {
3667 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3668 	struct hns3_pf *pf = &hns->pf;
3669 	struct hns3_priv_buf *priv;
3670 	int no_pfc_priv_num;
3671 	uint32_t rx_all;
3672 	uint8_t mask;
3673 	int i;
3674 
3675 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3676 	no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3677 
3678 	/* let the last to be cleared first */
3679 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3680 		priv = &buf_alloc->priv_buf[i];
3681 		mask = BIT((uint8_t)i);
3682 
3683 		if (hw->hw_tc_map & mask &&
3684 		    !(hw->dcb_info.hw_pfc_map & mask)) {
3685 			/* Clear the no pfc TC private buffer */
3686 			priv->wl.low = 0;
3687 			priv->wl.high = 0;
3688 			priv->buf_size = 0;
3689 			priv->enable = 0;
3690 			no_pfc_priv_num--;
3691 		}
3692 
3693 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3694 		    no_pfc_priv_num == 0)
3695 			break;
3696 	}
3697 
3698 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3699 }
3700 
3701 static bool
3702 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3703 			   struct hns3_pkt_buf_alloc *buf_alloc)
3704 {
3705 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3706 	struct hns3_pf *pf = &hns->pf;
3707 	struct hns3_priv_buf *priv;
3708 	uint32_t rx_all;
3709 	int pfc_priv_num;
3710 	uint8_t mask;
3711 	int i;
3712 
3713 	rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3714 	pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3715 
3716 	/* let the last to be cleared first */
3717 	for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3718 		priv = &buf_alloc->priv_buf[i];
3719 		mask = BIT((uint8_t)i);
3720 		if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3721 			/* Reduce the number of pfc TC with private buffer */
3722 			priv->wl.low = 0;
3723 			priv->enable = 0;
3724 			priv->wl.high = 0;
3725 			priv->buf_size = 0;
3726 			pfc_priv_num--;
3727 		}
3728 		if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3729 		    pfc_priv_num == 0)
3730 			break;
3731 	}
3732 
3733 	return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3734 }
3735 
3736 static bool
3737 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3738 			  struct hns3_pkt_buf_alloc *buf_alloc)
3739 {
3740 #define COMPENSATE_BUFFER	0x3C00
3741 #define COMPENSATE_HALF_MPS_NUM	5
3742 #define PRIV_WL_GAP		0x1800
3743 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3744 	struct hns3_pf *pf = &hns->pf;
3745 	uint32_t tc_num = hns3_get_tc_num(hw);
3746 	uint32_t half_mps = pf->mps >> 1;
3747 	struct hns3_priv_buf *priv;
3748 	uint32_t min_rx_priv;
3749 	uint32_t rx_priv;
3750 	uint8_t i;
3751 
3752 	rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3753 	if (tc_num)
3754 		rx_priv = rx_priv / tc_num;
3755 
3756 	if (tc_num <= NEED_RESERVE_TC_NUM)
3757 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3758 
3759 	/*
3760 	 * Minimum value of private buffer in rx direction (min_rx_priv) is
3761 	 * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3762 	 * buffer if rx_priv is greater than min_rx_priv.
3763 	 */
3764 	min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3765 			COMPENSATE_HALF_MPS_NUM * half_mps;
3766 	min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3767 	rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3768 
3769 	if (rx_priv < min_rx_priv)
3770 		return false;
3771 
3772 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3773 		priv = &buf_alloc->priv_buf[i];
3774 		priv->enable = 0;
3775 		priv->wl.low = 0;
3776 		priv->wl.high = 0;
3777 		priv->buf_size = 0;
3778 
3779 		if (!(hw->hw_tc_map & BIT(i)))
3780 			continue;
3781 
3782 		priv->enable = 1;
3783 		priv->buf_size = rx_priv;
3784 		priv->wl.high = rx_priv - pf->dv_buf_size;
3785 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3786 	}
3787 
3788 	buf_alloc->s_buf.buf_size = 0;
3789 
3790 	return true;
3791 }
3792 
3793 /*
3794  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3795  * @hw: pointer to struct hns3_hw
3796  * @buf_alloc: pointer to buffer calculation data
3797  * @return: 0: calculate sucessful, negative: fail
3798  */
3799 static int
3800 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3801 {
3802 	/* When DCB is not supported, rx private buffer is not allocated. */
3803 	if (!hns3_dev_dcb_supported(hw)) {
3804 		struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3805 		struct hns3_pf *pf = &hns->pf;
3806 		uint32_t rx_all = pf->pkt_buf_size;
3807 
3808 		rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3809 		if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3810 			return -ENOMEM;
3811 
3812 		return 0;
3813 	}
3814 
3815 	/*
3816 	 * Try to allocate privated packet buffer for all TCs without share
3817 	 * buffer.
3818 	 */
3819 	if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3820 		return 0;
3821 
3822 	/*
3823 	 * Try to allocate privated packet buffer for all TCs with share
3824 	 * buffer.
3825 	 */
3826 	if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3827 		return 0;
3828 
3829 	/*
3830 	 * For different application scenes, the enabled port number, TC number
3831 	 * and no_drop TC number are different. In order to obtain the better
3832 	 * performance, software could allocate the buffer size and configure
3833 	 * the waterline by tring to decrease the private buffer size according
3834 	 * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3835 	 * enabled tc.
3836 	 */
3837 	if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3838 		return 0;
3839 
3840 	if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3841 		return 0;
3842 
3843 	if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3844 		return 0;
3845 
3846 	return -ENOMEM;
3847 }
3848 
3849 static int
3850 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3851 {
3852 	struct hns3_rx_priv_buff_cmd *req;
3853 	struct hns3_cmd_desc desc;
3854 	uint32_t buf_size;
3855 	int ret;
3856 	int i;
3857 
3858 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3859 	req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3860 
3861 	/* Alloc private buffer TCs */
3862 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3863 		struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3864 
3865 		req->buf_num[i] =
3866 			rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3867 		req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3868 	}
3869 
3870 	buf_size = buf_alloc->s_buf.buf_size;
3871 	req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3872 					   (1 << HNS3_TC0_PRI_BUF_EN_B));
3873 
3874 	ret = hns3_cmd_send(hw, &desc, 1);
3875 	if (ret)
3876 		PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3877 
3878 	return ret;
3879 }
3880 
3881 static int
3882 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3883 {
3884 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3885 	struct hns3_rx_priv_wl_buf *req;
3886 	struct hns3_priv_buf *priv;
3887 	struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3888 	int i, j;
3889 	int ret;
3890 
3891 	for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3892 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3893 					  false);
3894 		req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3895 
3896 		/* The first descriptor set the NEXT bit to 1 */
3897 		if (i == 0)
3898 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3899 		else
3900 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3901 
3902 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3903 			uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3904 
3905 			priv = &buf_alloc->priv_buf[idx];
3906 			req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3907 							HNS3_BUF_UNIT_S);
3908 			req->tc_wl[j].high |=
3909 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3910 			req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3911 							HNS3_BUF_UNIT_S);
3912 			req->tc_wl[j].low |=
3913 				rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3914 		}
3915 	}
3916 
3917 	/* Send 2 descriptor at one time */
3918 	ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3919 	if (ret)
3920 		PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3921 			     ret);
3922 	return ret;
3923 }
3924 
3925 static int
3926 hns3_common_thrd_config(struct hns3_hw *hw,
3927 			struct hns3_pkt_buf_alloc *buf_alloc)
3928 {
3929 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3930 	struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3931 	struct hns3_rx_com_thrd *req;
3932 	struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3933 	struct hns3_tc_thrd *tc;
3934 	int tc_idx;
3935 	int i, j;
3936 	int ret;
3937 
3938 	for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3939 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3940 					  false);
3941 		req = (struct hns3_rx_com_thrd *)&desc[i].data;
3942 
3943 		/* The first descriptor set the NEXT bit to 1 */
3944 		if (i == 0)
3945 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3946 		else
3947 			desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3948 
3949 		for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3950 			tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3951 			tc = &s_buf->tc_thrd[tc_idx];
3952 
3953 			req->com_thrd[j].high =
3954 				rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3955 			req->com_thrd[j].high |=
3956 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3957 			req->com_thrd[j].low =
3958 				rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3959 			req->com_thrd[j].low |=
3960 				 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3961 		}
3962 	}
3963 
3964 	/* Send 2 descriptors at one time */
3965 	ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3966 	if (ret)
3967 		PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3968 
3969 	return ret;
3970 }
3971 
3972 static int
3973 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3974 {
3975 	struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3976 	struct hns3_rx_com_wl *req;
3977 	struct hns3_cmd_desc desc;
3978 	int ret;
3979 
3980 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3981 
3982 	req = (struct hns3_rx_com_wl *)desc.data;
3983 	req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3984 	req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3985 
3986 	req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3987 	req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3988 
3989 	ret = hns3_cmd_send(hw, &desc, 1);
3990 	if (ret)
3991 		PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3992 
3993 	return ret;
3994 }
3995 
3996 int
3997 hns3_buffer_alloc(struct hns3_hw *hw)
3998 {
3999 	struct hns3_pkt_buf_alloc pkt_buf;
4000 	int ret;
4001 
4002 	memset(&pkt_buf, 0, sizeof(pkt_buf));
4003 	ret = hns3_tx_buffer_calc(hw, &pkt_buf);
4004 	if (ret) {
4005 		PMD_INIT_LOG(ERR,
4006 			     "could not calc tx buffer size for all TCs %d",
4007 			     ret);
4008 		return ret;
4009 	}
4010 
4011 	ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
4012 	if (ret) {
4013 		PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
4014 		return ret;
4015 	}
4016 
4017 	ret = hns3_rx_buffer_calc(hw, &pkt_buf);
4018 	if (ret) {
4019 		PMD_INIT_LOG(ERR,
4020 			     "could not calc rx priv buffer size for all TCs %d",
4021 			     ret);
4022 		return ret;
4023 	}
4024 
4025 	ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
4026 	if (ret) {
4027 		PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
4028 		return ret;
4029 	}
4030 
4031 	if (hns3_dev_dcb_supported(hw)) {
4032 		ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4033 		if (ret) {
4034 			PMD_INIT_LOG(ERR,
4035 				     "could not configure rx private waterline %d",
4036 				     ret);
4037 			return ret;
4038 		}
4039 
4040 		ret = hns3_common_thrd_config(hw, &pkt_buf);
4041 		if (ret) {
4042 			PMD_INIT_LOG(ERR,
4043 				     "could not configure common threshold %d",
4044 				     ret);
4045 			return ret;
4046 		}
4047 	}
4048 
4049 	ret = hns3_common_wl_config(hw, &pkt_buf);
4050 	if (ret)
4051 		PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4052 			     ret);
4053 
4054 	return ret;
4055 }
4056 
4057 static int
4058 hns3_firmware_compat_config(struct hns3_hw *hw, bool is_init)
4059 {
4060 	struct hns3_firmware_compat_cmd *req;
4061 	struct hns3_cmd_desc desc;
4062 	uint32_t compat = 0;
4063 
4064 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FIRMWARE_COMPAT_CFG, false);
4065 	req = (struct hns3_firmware_compat_cmd *)desc.data;
4066 
4067 	if (is_init) {
4068 		hns3_set_bit(compat, HNS3_LINK_EVENT_REPORT_EN_B, 1);
4069 		hns3_set_bit(compat, HNS3_NCSI_ERROR_REPORT_EN_B, 0);
4070 		if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4071 			hns3_set_bit(compat, HNS3_FIRMWARE_PHY_DRIVER_EN_B, 1);
4072 	}
4073 
4074 	req->compat = rte_cpu_to_le_32(compat);
4075 
4076 	return hns3_cmd_send(hw, &desc, 1);
4077 }
4078 
4079 static int
4080 hns3_mac_init(struct hns3_hw *hw)
4081 {
4082 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4083 	struct hns3_mac *mac = &hw->mac;
4084 	struct hns3_pf *pf = &hns->pf;
4085 	int ret;
4086 
4087 	pf->support_sfp_query = true;
4088 	mac->link_duplex = ETH_LINK_FULL_DUPLEX;
4089 	ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4090 	if (ret) {
4091 		PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4092 		return ret;
4093 	}
4094 
4095 	mac->link_status = ETH_LINK_DOWN;
4096 
4097 	return hns3_config_mtu(hw, pf->mps);
4098 }
4099 
4100 static int
4101 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4102 {
4103 #define HNS3_ETHERTYPE_SUCCESS_ADD		0
4104 #define HNS3_ETHERTYPE_ALREADY_ADD		1
4105 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW		2
4106 #define HNS3_ETHERTYPE_KEY_CONFLICT		3
4107 	int return_status;
4108 
4109 	if (cmdq_resp) {
4110 		PMD_INIT_LOG(ERR,
4111 			     "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4112 			     cmdq_resp);
4113 		return -EIO;
4114 	}
4115 
4116 	switch (resp_code) {
4117 	case HNS3_ETHERTYPE_SUCCESS_ADD:
4118 	case HNS3_ETHERTYPE_ALREADY_ADD:
4119 		return_status = 0;
4120 		break;
4121 	case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4122 		PMD_INIT_LOG(ERR,
4123 			     "add mac ethertype failed for manager table overflow.");
4124 		return_status = -EIO;
4125 		break;
4126 	case HNS3_ETHERTYPE_KEY_CONFLICT:
4127 		PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4128 		return_status = -EIO;
4129 		break;
4130 	default:
4131 		PMD_INIT_LOG(ERR,
4132 			     "add mac ethertype failed for undefined, code=%u.",
4133 			     resp_code);
4134 		return_status = -EIO;
4135 		break;
4136 	}
4137 
4138 	return return_status;
4139 }
4140 
4141 static int
4142 hns3_add_mgr_tbl(struct hns3_hw *hw,
4143 		 const struct hns3_mac_mgr_tbl_entry_cmd *req)
4144 {
4145 	struct hns3_cmd_desc desc;
4146 	uint8_t resp_code;
4147 	uint16_t retval;
4148 	int ret;
4149 
4150 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4151 	memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4152 
4153 	ret = hns3_cmd_send(hw, &desc, 1);
4154 	if (ret) {
4155 		PMD_INIT_LOG(ERR,
4156 			     "add mac ethertype failed for cmd_send, ret =%d.",
4157 			     ret);
4158 		return ret;
4159 	}
4160 
4161 	resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4162 	retval = rte_le_to_cpu_16(desc.retval);
4163 
4164 	return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4165 }
4166 
4167 static void
4168 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4169 		     int *table_item_num)
4170 {
4171 	struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4172 
4173 	/*
4174 	 * In current version, we add one item in management table as below:
4175 	 * 0x0180C200000E -- LLDP MC address
4176 	 */
4177 	tbl = mgr_table;
4178 	tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4179 	tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4180 	tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4181 	tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4182 	tbl->i_port_bitmap = 0x1;
4183 	*table_item_num = 1;
4184 }
4185 
4186 static int
4187 hns3_init_mgr_tbl(struct hns3_hw *hw)
4188 {
4189 #define HNS_MAC_MGR_TBL_MAX_SIZE	16
4190 	struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4191 	int table_item_num;
4192 	int ret;
4193 	int i;
4194 
4195 	memset(mgr_table, 0, sizeof(mgr_table));
4196 	hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4197 	for (i = 0; i < table_item_num; i++) {
4198 		ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4199 		if (ret) {
4200 			PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4201 				     ret);
4202 			return ret;
4203 		}
4204 	}
4205 
4206 	return 0;
4207 }
4208 
4209 static void
4210 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4211 			bool en_mc, bool en_bc, int vport_id)
4212 {
4213 	if (!param)
4214 		return;
4215 
4216 	memset(param, 0, sizeof(struct hns3_promisc_param));
4217 	if (en_uc)
4218 		param->enable = HNS3_PROMISC_EN_UC;
4219 	if (en_mc)
4220 		param->enable |= HNS3_PROMISC_EN_MC;
4221 	if (en_bc)
4222 		param->enable |= HNS3_PROMISC_EN_BC;
4223 	param->vf_id = vport_id;
4224 }
4225 
4226 static int
4227 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4228 {
4229 	struct hns3_promisc_cfg_cmd *req;
4230 	struct hns3_cmd_desc desc;
4231 	int ret;
4232 
4233 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4234 
4235 	req = (struct hns3_promisc_cfg_cmd *)desc.data;
4236 	req->vf_id = param->vf_id;
4237 	req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4238 	    HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4239 
4240 	ret = hns3_cmd_send(hw, &desc, 1);
4241 	if (ret)
4242 		PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4243 
4244 	return ret;
4245 }
4246 
4247 static int
4248 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4249 {
4250 	struct hns3_promisc_param param;
4251 	bool en_bc_pmc = true;
4252 	uint8_t vf_id;
4253 
4254 	/*
4255 	 * In current version VF is not supported when PF is driven by DPDK
4256 	 * driver, just need to configure parameters for PF vport.
4257 	 */
4258 	vf_id = HNS3_PF_FUNC_ID;
4259 
4260 	hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4261 	return hns3_cmd_set_promisc_mode(hw, &param);
4262 }
4263 
4264 static int
4265 hns3_promisc_init(struct hns3_hw *hw)
4266 {
4267 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4268 	struct hns3_pf *pf = &hns->pf;
4269 	struct hns3_promisc_param param;
4270 	uint16_t func_id;
4271 	int ret;
4272 
4273 	ret = hns3_set_promisc_mode(hw, false, false);
4274 	if (ret) {
4275 		PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4276 		return ret;
4277 	}
4278 
4279 	/*
4280 	 * In current version VFs are not supported when PF is driven by DPDK
4281 	 * driver. After PF has been taken over by DPDK, the original VF will
4282 	 * be invalid. So, there is a possibility of entry residues. It should
4283 	 * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4284 	 * during init.
4285 	 */
4286 	for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4287 		hns3_promisc_param_init(&param, false, false, false, func_id);
4288 		ret = hns3_cmd_set_promisc_mode(hw, &param);
4289 		if (ret) {
4290 			PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4291 					" ret = %d", func_id, ret);
4292 			return ret;
4293 		}
4294 	}
4295 
4296 	return 0;
4297 }
4298 
4299 static void
4300 hns3_promisc_uninit(struct hns3_hw *hw)
4301 {
4302 	struct hns3_promisc_param param;
4303 	uint16_t func_id;
4304 	int ret;
4305 
4306 	func_id = HNS3_PF_FUNC_ID;
4307 
4308 	/*
4309 	 * In current version VFs are not supported when PF is driven by
4310 	 * DPDK driver, and VFs' promisc mode status has been cleared during
4311 	 * init and their status will not change. So just clear PF's promisc
4312 	 * mode status during uninit.
4313 	 */
4314 	hns3_promisc_param_init(&param, false, false, false, func_id);
4315 	ret = hns3_cmd_set_promisc_mode(hw, &param);
4316 	if (ret)
4317 		PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4318 				" uninit, ret = %d", ret);
4319 }
4320 
4321 static int
4322 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4323 {
4324 	bool allmulti = dev->data->all_multicast ? true : false;
4325 	struct hns3_adapter *hns = dev->data->dev_private;
4326 	struct hns3_hw *hw = &hns->hw;
4327 	uint64_t offloads;
4328 	int err;
4329 	int ret;
4330 
4331 	rte_spinlock_lock(&hw->lock);
4332 	ret = hns3_set_promisc_mode(hw, true, true);
4333 	if (ret) {
4334 		rte_spinlock_unlock(&hw->lock);
4335 		hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4336 			 ret);
4337 		return ret;
4338 	}
4339 
4340 	/*
4341 	 * When promiscuous mode was enabled, disable the vlan filter to let
4342 	 * all packets coming in in the receiving direction.
4343 	 */
4344 	offloads = dev->data->dev_conf.rxmode.offloads;
4345 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4346 		ret = hns3_enable_vlan_filter(hns, false);
4347 		if (ret) {
4348 			hns3_err(hw, "failed to enable promiscuous mode due to "
4349 				     "failure to disable vlan filter, ret = %d",
4350 				 ret);
4351 			err = hns3_set_promisc_mode(hw, false, allmulti);
4352 			if (err)
4353 				hns3_err(hw, "failed to restore promiscuous "
4354 					 "status after disable vlan filter "
4355 					 "failed during enabling promiscuous "
4356 					 "mode, ret = %d", ret);
4357 		}
4358 	}
4359 
4360 	rte_spinlock_unlock(&hw->lock);
4361 
4362 	return ret;
4363 }
4364 
4365 static int
4366 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4367 {
4368 	bool allmulti = dev->data->all_multicast ? true : false;
4369 	struct hns3_adapter *hns = dev->data->dev_private;
4370 	struct hns3_hw *hw = &hns->hw;
4371 	uint64_t offloads;
4372 	int err;
4373 	int ret;
4374 
4375 	/* If now in all_multicast mode, must remain in all_multicast mode. */
4376 	rte_spinlock_lock(&hw->lock);
4377 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4378 	if (ret) {
4379 		rte_spinlock_unlock(&hw->lock);
4380 		hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4381 			 ret);
4382 		return ret;
4383 	}
4384 	/* when promiscuous mode was disabled, restore the vlan filter status */
4385 	offloads = dev->data->dev_conf.rxmode.offloads;
4386 	if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4387 		ret = hns3_enable_vlan_filter(hns, true);
4388 		if (ret) {
4389 			hns3_err(hw, "failed to disable promiscuous mode due to"
4390 				 " failure to restore vlan filter, ret = %d",
4391 				 ret);
4392 			err = hns3_set_promisc_mode(hw, true, true);
4393 			if (err)
4394 				hns3_err(hw, "failed to restore promiscuous "
4395 					 "status after enabling vlan filter "
4396 					 "failed during disabling promiscuous "
4397 					 "mode, ret = %d", ret);
4398 		}
4399 	}
4400 	rte_spinlock_unlock(&hw->lock);
4401 
4402 	return ret;
4403 }
4404 
4405 static int
4406 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4407 {
4408 	struct hns3_adapter *hns = dev->data->dev_private;
4409 	struct hns3_hw *hw = &hns->hw;
4410 	int ret;
4411 
4412 	if (dev->data->promiscuous)
4413 		return 0;
4414 
4415 	rte_spinlock_lock(&hw->lock);
4416 	ret = hns3_set_promisc_mode(hw, false, true);
4417 	rte_spinlock_unlock(&hw->lock);
4418 	if (ret)
4419 		hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4420 			 ret);
4421 
4422 	return ret;
4423 }
4424 
4425 static int
4426 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4427 {
4428 	struct hns3_adapter *hns = dev->data->dev_private;
4429 	struct hns3_hw *hw = &hns->hw;
4430 	int ret;
4431 
4432 	/* If now in promiscuous mode, must remain in all_multicast mode. */
4433 	if (dev->data->promiscuous)
4434 		return 0;
4435 
4436 	rte_spinlock_lock(&hw->lock);
4437 	ret = hns3_set_promisc_mode(hw, false, false);
4438 	rte_spinlock_unlock(&hw->lock);
4439 	if (ret)
4440 		hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4441 			 ret);
4442 
4443 	return ret;
4444 }
4445 
4446 static int
4447 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4448 {
4449 	struct hns3_hw *hw = &hns->hw;
4450 	bool allmulti = hw->data->all_multicast ? true : false;
4451 	int ret;
4452 
4453 	if (hw->data->promiscuous) {
4454 		ret = hns3_set_promisc_mode(hw, true, true);
4455 		if (ret)
4456 			hns3_err(hw, "failed to restore promiscuous mode, "
4457 				 "ret = %d", ret);
4458 		return ret;
4459 	}
4460 
4461 	ret = hns3_set_promisc_mode(hw, false, allmulti);
4462 	if (ret)
4463 		hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4464 			 ret);
4465 	return ret;
4466 }
4467 
4468 static int
4469 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4470 {
4471 	struct hns3_sfp_speed_cmd *resp;
4472 	struct hns3_cmd_desc desc;
4473 	int ret;
4474 
4475 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4476 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
4477 	ret = hns3_cmd_send(hw, &desc, 1);
4478 	if (ret == -EOPNOTSUPP) {
4479 		hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4480 		return ret;
4481 	} else if (ret) {
4482 		hns3_err(hw, "get sfp speed failed %d", ret);
4483 		return ret;
4484 	}
4485 
4486 	*speed = resp->sfp_speed;
4487 
4488 	return 0;
4489 }
4490 
4491 static uint8_t
4492 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4493 {
4494 	if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4495 		duplex = ETH_LINK_FULL_DUPLEX;
4496 
4497 	return duplex;
4498 }
4499 
4500 static int
4501 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4502 {
4503 	struct hns3_mac *mac = &hw->mac;
4504 	int ret;
4505 
4506 	duplex = hns3_check_speed_dup(duplex, speed);
4507 	if (mac->link_speed == speed && mac->link_duplex == duplex)
4508 		return 0;
4509 
4510 	ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4511 	if (ret)
4512 		return ret;
4513 
4514 	ret = hns3_port_shaper_update(hw, speed);
4515 	if (ret)
4516 		return ret;
4517 
4518 	mac->link_speed = speed;
4519 	mac->link_duplex = duplex;
4520 
4521 	return 0;
4522 }
4523 
4524 static int
4525 hns3_update_fiber_link_info(struct hns3_hw *hw)
4526 {
4527 	struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4528 	uint32_t speed;
4529 	int ret;
4530 
4531 	/* If IMP do not support get SFP/qSFP speed, return directly */
4532 	if (!pf->support_sfp_query)
4533 		return 0;
4534 
4535 	ret = hns3_get_sfp_speed(hw, &speed);
4536 	if (ret == -EOPNOTSUPP) {
4537 		pf->support_sfp_query = false;
4538 		return ret;
4539 	} else if (ret)
4540 		return ret;
4541 
4542 	if (speed == ETH_SPEED_NUM_NONE)
4543 		return 0; /* do nothing if no SFP */
4544 
4545 	/* Config full duplex for SFP */
4546 	return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4547 }
4548 
4549 static void
4550 hns3_parse_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4551 {
4552 	struct hns3_phy_params_bd0_cmd *req;
4553 
4554 	req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4555 	mac->link_speed = rte_le_to_cpu_32(req->speed);
4556 	mac->link_duplex = hns3_get_bit(req->duplex,
4557 					   HNS3_PHY_DUPLEX_CFG_B);
4558 	mac->link_autoneg = hns3_get_bit(req->autoneg,
4559 					   HNS3_PHY_AUTONEG_CFG_B);
4560 	mac->supported_capa = rte_le_to_cpu_32(req->supported);
4561 	mac->advertising = rte_le_to_cpu_32(req->advertising);
4562 	mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4563 	mac->support_autoneg = !!(mac->supported_capa &
4564 				HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4565 }
4566 
4567 static int
4568 hns3_get_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4569 {
4570 	struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4571 	uint16_t i;
4572 	int ret;
4573 
4574 	for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4575 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4576 					  true);
4577 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4578 	}
4579 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4580 
4581 	ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4582 	if (ret) {
4583 		hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4584 		return ret;
4585 	}
4586 
4587 	hns3_parse_phy_params(desc, mac);
4588 
4589 	return 0;
4590 }
4591 
4592 static int
4593 hns3_update_phy_link_info(struct hns3_hw *hw)
4594 {
4595 	struct hns3_mac *mac = &hw->mac;
4596 	struct hns3_mac mac_info;
4597 	int ret;
4598 
4599 	memset(&mac_info, 0, sizeof(struct hns3_mac));
4600 	ret = hns3_get_phy_params(hw, &mac_info);
4601 	if (ret)
4602 		return ret;
4603 
4604 	if (mac_info.link_speed != mac->link_speed) {
4605 		ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4606 		if (ret)
4607 			return ret;
4608 	}
4609 
4610 	mac->link_speed = mac_info.link_speed;
4611 	mac->link_duplex = mac_info.link_duplex;
4612 	mac->link_autoneg = mac_info.link_autoneg;
4613 	mac->supported_capa = mac_info.supported_capa;
4614 	mac->advertising = mac_info.advertising;
4615 	mac->lp_advertising = mac_info.lp_advertising;
4616 	mac->support_autoneg = mac_info.support_autoneg;
4617 
4618 	return 0;
4619 }
4620 
4621 static int
4622 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4623 {
4624 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4625 	struct hns3_hw *hw = &hns->hw;
4626 	int ret = 0;
4627 
4628 	if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4629 		ret = hns3_update_phy_link_info(hw);
4630 	else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4631 		ret = hns3_update_fiber_link_info(hw);
4632 
4633 	return ret;
4634 }
4635 
4636 static int
4637 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4638 {
4639 	struct hns3_config_mac_mode_cmd *req;
4640 	struct hns3_cmd_desc desc;
4641 	uint32_t loop_en = 0;
4642 	uint8_t val = 0;
4643 	int ret;
4644 
4645 	req = (struct hns3_config_mac_mode_cmd *)desc.data;
4646 
4647 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4648 	if (enable)
4649 		val = 1;
4650 	hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4651 	hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4652 	hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4653 	hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4654 	hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4655 	hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4656 	hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4657 	hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4658 	hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4659 	hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4660 
4661 	/*
4662 	 * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4663 	 * when receiving frames. Otherwise, CRC will be stripped.
4664 	 */
4665 	if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4666 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4667 	else
4668 		hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4669 	hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4670 	hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4671 	hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4672 	req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4673 
4674 	ret = hns3_cmd_send(hw, &desc, 1);
4675 	if (ret)
4676 		PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4677 
4678 	return ret;
4679 }
4680 
4681 static int
4682 hns3_get_mac_link_status(struct hns3_hw *hw)
4683 {
4684 	struct hns3_link_status_cmd *req;
4685 	struct hns3_cmd_desc desc;
4686 	int link_status;
4687 	int ret;
4688 
4689 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4690 	ret = hns3_cmd_send(hw, &desc, 1);
4691 	if (ret) {
4692 		hns3_err(hw, "get link status cmd failed %d", ret);
4693 		return ETH_LINK_DOWN;
4694 	}
4695 
4696 	req = (struct hns3_link_status_cmd *)desc.data;
4697 	link_status = req->status & HNS3_LINK_STATUS_UP_M;
4698 
4699 	return !!link_status;
4700 }
4701 
4702 static bool
4703 hns3_update_link_status(struct hns3_hw *hw)
4704 {
4705 	int state;
4706 
4707 	state = hns3_get_mac_link_status(hw);
4708 	if (state != hw->mac.link_status) {
4709 		hw->mac.link_status = state;
4710 		hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4711 		hns3_config_mac_tnl_int(hw,
4712 					state == ETH_LINK_UP ? true : false);
4713 		return true;
4714 	}
4715 
4716 	return false;
4717 }
4718 
4719 /*
4720  * Current, the PF driver get link status by two ways:
4721  * 1) Periodic polling in the intr thread context, driver call
4722  *    hns3_update_link_status to update link status.
4723  * 2) Firmware report async interrupt, driver process the event in the intr
4724  *    thread context, and call hns3_update_link_status to update link status.
4725  *
4726  * If detect link status changed, driver need report LSE. One method is add the
4727  * report LSE logic in hns3_update_link_status.
4728  *
4729  * But the PF driver ops(link_update) also call hns3_update_link_status to
4730  * update link status.
4731  * If we report LSE in hns3_update_link_status, it may lead to deadlock in the
4732  * bonding application.
4733  *
4734  * So add the one new API which used only in intr thread context.
4735  */
4736 void
4737 hns3_update_link_status_and_event(struct hns3_hw *hw)
4738 {
4739 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4740 	bool changed = hns3_update_link_status(hw);
4741 	if (changed)
4742 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
4743 }
4744 
4745 static void
4746 hns3_service_handler(void *param)
4747 {
4748 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4749 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4750 	struct hns3_hw *hw = &hns->hw;
4751 
4752 	if (!hns3_is_reset_pending(hns)) {
4753 		hns3_update_link_status_and_event(hw);
4754 		hns3_update_link_info(eth_dev);
4755 	} else {
4756 		hns3_warn(hw, "Cancel the query when reset is pending");
4757 	}
4758 
4759 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4760 }
4761 
4762 static int
4763 hns3_init_hardware(struct hns3_adapter *hns)
4764 {
4765 	struct hns3_hw *hw = &hns->hw;
4766 	int ret;
4767 
4768 	ret = hns3_map_tqp(hw);
4769 	if (ret) {
4770 		PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4771 		return ret;
4772 	}
4773 
4774 	ret = hns3_init_umv_space(hw);
4775 	if (ret) {
4776 		PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4777 		return ret;
4778 	}
4779 
4780 	ret = hns3_mac_init(hw);
4781 	if (ret) {
4782 		PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4783 		goto err_mac_init;
4784 	}
4785 
4786 	ret = hns3_init_mgr_tbl(hw);
4787 	if (ret) {
4788 		PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4789 		goto err_mac_init;
4790 	}
4791 
4792 	ret = hns3_promisc_init(hw);
4793 	if (ret) {
4794 		PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4795 			     ret);
4796 		goto err_mac_init;
4797 	}
4798 
4799 	ret = hns3_init_vlan_config(hns);
4800 	if (ret) {
4801 		PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4802 		goto err_mac_init;
4803 	}
4804 
4805 	ret = hns3_dcb_init(hw);
4806 	if (ret) {
4807 		PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4808 		goto err_mac_init;
4809 	}
4810 
4811 	ret = hns3_init_fd_config(hns);
4812 	if (ret) {
4813 		PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4814 		goto err_mac_init;
4815 	}
4816 
4817 	ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4818 	if (ret) {
4819 		PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4820 		goto err_mac_init;
4821 	}
4822 
4823 	ret = hns3_config_gro(hw, false);
4824 	if (ret) {
4825 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4826 		goto err_mac_init;
4827 	}
4828 
4829 	/*
4830 	 * In the initialization clearing the all hardware mapping relationship
4831 	 * configurations between queues and interrupt vectors is needed, so
4832 	 * some error caused by the residual configurations, such as the
4833 	 * unexpected interrupt, can be avoid.
4834 	 */
4835 	ret = hns3_init_ring_with_vector(hw);
4836 	if (ret) {
4837 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4838 		goto err_mac_init;
4839 	}
4840 
4841 	/*
4842 	 * Requiring firmware to enable some features, driver can
4843 	 * still work without it.
4844 	 */
4845 	ret = hns3_firmware_compat_config(hw, true);
4846 	if (ret)
4847 		PMD_INIT_LOG(WARNING, "firmware compatible features not "
4848 			     "supported, ret = %d.", ret);
4849 
4850 	return 0;
4851 
4852 err_mac_init:
4853 	hns3_uninit_umv_space(hw);
4854 	return ret;
4855 }
4856 
4857 static int
4858 hns3_clear_hw(struct hns3_hw *hw)
4859 {
4860 	struct hns3_cmd_desc desc;
4861 	int ret;
4862 
4863 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4864 
4865 	ret = hns3_cmd_send(hw, &desc, 1);
4866 	if (ret && ret != -EOPNOTSUPP)
4867 		return ret;
4868 
4869 	return 0;
4870 }
4871 
4872 static void
4873 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4874 {
4875 	uint32_t val;
4876 
4877 	/*
4878 	 * The new firmware support report more hardware error types by
4879 	 * msix mode. These errors are defined as RAS errors in hardware
4880 	 * and belong to a different type from the MSI-x errors processed
4881 	 * by the network driver.
4882 	 *
4883 	 * Network driver should open the new error report on initialition
4884 	 */
4885 	val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4886 	hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4887 	hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4888 }
4889 
4890 static int
4891 hns3_init_pf(struct rte_eth_dev *eth_dev)
4892 {
4893 	struct rte_device *dev = eth_dev->device;
4894 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4895 	struct hns3_adapter *hns = eth_dev->data->dev_private;
4896 	struct hns3_hw *hw = &hns->hw;
4897 	int ret;
4898 
4899 	PMD_INIT_FUNC_TRACE();
4900 
4901 	/* Get hardware io base address from pcie BAR2 IO space */
4902 	hw->io_base = pci_dev->mem_resource[2].addr;
4903 
4904 	/* Firmware command queue initialize */
4905 	ret = hns3_cmd_init_queue(hw);
4906 	if (ret) {
4907 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4908 		goto err_cmd_init_queue;
4909 	}
4910 
4911 	hns3_clear_all_event_cause(hw);
4912 
4913 	/* Firmware command initialize */
4914 	ret = hns3_cmd_init(hw);
4915 	if (ret) {
4916 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4917 		goto err_cmd_init;
4918 	}
4919 
4920 	/*
4921 	 * To ensure that the hardware environment is clean during
4922 	 * initialization, the driver actively clear the hardware environment
4923 	 * during initialization, including PF and corresponding VFs' vlan, mac,
4924 	 * flow table configurations, etc.
4925 	 */
4926 	ret = hns3_clear_hw(hw);
4927 	if (ret) {
4928 		PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4929 		goto err_cmd_init;
4930 	}
4931 
4932 	/* Hardware statistics of imissed registers cleared. */
4933 	ret = hns3_update_imissed_stats(hw, true);
4934 	if (ret) {
4935 		hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
4936 		return ret;
4937 	}
4938 
4939 	hns3_config_all_msix_error(hw, true);
4940 
4941 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
4942 					 hns3_interrupt_handler,
4943 					 eth_dev);
4944 	if (ret) {
4945 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4946 		goto err_intr_callback_register;
4947 	}
4948 
4949 	/* Enable interrupt */
4950 	rte_intr_enable(&pci_dev->intr_handle);
4951 	hns3_pf_enable_irq0(hw);
4952 
4953 	/* Get configuration */
4954 	ret = hns3_get_configuration(hw);
4955 	if (ret) {
4956 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4957 		goto err_get_config;
4958 	}
4959 
4960 	ret = hns3_tqp_stats_init(hw);
4961 	if (ret)
4962 		goto err_get_config;
4963 
4964 	ret = hns3_init_hardware(hns);
4965 	if (ret) {
4966 		PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4967 		goto err_init_hw;
4968 	}
4969 
4970 	/* Initialize flow director filter list & hash */
4971 	ret = hns3_fdir_filter_init(hns);
4972 	if (ret) {
4973 		PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4974 		goto err_fdir;
4975 	}
4976 
4977 	hns3_rss_set_default_args(hw);
4978 
4979 	ret = hns3_enable_hw_error_intr(hns, true);
4980 	if (ret) {
4981 		PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4982 			     ret);
4983 		goto err_enable_intr;
4984 	}
4985 
4986 	hns3_tm_conf_init(eth_dev);
4987 
4988 	return 0;
4989 
4990 err_enable_intr:
4991 	hns3_fdir_filter_uninit(hns);
4992 err_fdir:
4993 	(void)hns3_firmware_compat_config(hw, false);
4994 	hns3_uninit_umv_space(hw);
4995 err_init_hw:
4996 	hns3_tqp_stats_uninit(hw);
4997 err_get_config:
4998 	hns3_pf_disable_irq0(hw);
4999 	rte_intr_disable(&pci_dev->intr_handle);
5000 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5001 			     eth_dev);
5002 err_intr_callback_register:
5003 err_cmd_init:
5004 	hns3_cmd_uninit(hw);
5005 	hns3_cmd_destroy_queue(hw);
5006 err_cmd_init_queue:
5007 	hw->io_base = NULL;
5008 
5009 	return ret;
5010 }
5011 
5012 static void
5013 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
5014 {
5015 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5016 	struct rte_device *dev = eth_dev->device;
5017 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5018 	struct hns3_hw *hw = &hns->hw;
5019 
5020 	PMD_INIT_FUNC_TRACE();
5021 
5022 	hns3_tm_conf_uninit(eth_dev);
5023 	hns3_enable_hw_error_intr(hns, false);
5024 	hns3_rss_uninit(hns);
5025 	(void)hns3_config_gro(hw, false);
5026 	hns3_promisc_uninit(hw);
5027 	hns3_fdir_filter_uninit(hns);
5028 	(void)hns3_firmware_compat_config(hw, false);
5029 	hns3_uninit_umv_space(hw);
5030 	hns3_tqp_stats_uninit(hw);
5031 	hns3_config_mac_tnl_int(hw, false);
5032 	hns3_pf_disable_irq0(hw);
5033 	rte_intr_disable(&pci_dev->intr_handle);
5034 	hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5035 			     eth_dev);
5036 	hns3_config_all_msix_error(hw, false);
5037 	hns3_cmd_uninit(hw);
5038 	hns3_cmd_destroy_queue(hw);
5039 	hw->io_base = NULL;
5040 }
5041 
5042 static int
5043 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5044 {
5045 	struct hns3_hw *hw = &hns->hw;
5046 	int ret;
5047 
5048 	ret = hns3_dcb_cfg_update(hns);
5049 	if (ret)
5050 		return ret;
5051 
5052 	/*
5053 	 * The hns3_dcb_cfg_update may configure TM module, so
5054 	 * hns3_tm_conf_update must called later.
5055 	 */
5056 	ret = hns3_tm_conf_update(hw);
5057 	if (ret) {
5058 		PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5059 		return ret;
5060 	}
5061 
5062 	hns3_enable_rxd_adv_layout(hw);
5063 
5064 	ret = hns3_init_queues(hns, reset_queue);
5065 	if (ret) {
5066 		PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5067 		return ret;
5068 	}
5069 
5070 	ret = hns3_cfg_mac_mode(hw, true);
5071 	if (ret) {
5072 		PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5073 		goto err_config_mac_mode;
5074 	}
5075 	return 0;
5076 
5077 err_config_mac_mode:
5078 	hns3_dev_release_mbufs(hns);
5079 	/*
5080 	 * Here is exception handling, hns3_reset_all_tqps will have the
5081 	 * corresponding error message if it is handled incorrectly, so it is
5082 	 * not necessary to check hns3_reset_all_tqps return value, here keep
5083 	 * ret as the error code causing the exception.
5084 	 */
5085 	(void)hns3_reset_all_tqps(hns);
5086 	return ret;
5087 }
5088 
5089 static int
5090 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5091 {
5092 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5093 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5094 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5095 	uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5096 	uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5097 	uint32_t intr_vector;
5098 	uint16_t q_id;
5099 	int ret;
5100 
5101 	/*
5102 	 * hns3 needs a separate interrupt to be used as event interrupt which
5103 	 * could not be shared with task queue pair, so KERNEL drivers need
5104 	 * support multiple interrupt vectors.
5105 	 */
5106 	if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5107 	    !rte_intr_cap_multiple(intr_handle))
5108 		return 0;
5109 
5110 	rte_intr_disable(intr_handle);
5111 	intr_vector = hw->used_rx_queues;
5112 	/* creates event fd for each intr vector when MSIX is used */
5113 	if (rte_intr_efd_enable(intr_handle, intr_vector))
5114 		return -EINVAL;
5115 
5116 	if (intr_handle->intr_vec == NULL) {
5117 		intr_handle->intr_vec =
5118 			rte_zmalloc("intr_vec",
5119 				    hw->used_rx_queues * sizeof(int), 0);
5120 		if (intr_handle->intr_vec == NULL) {
5121 			hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5122 					hw->used_rx_queues);
5123 			ret = -ENOMEM;
5124 			goto alloc_intr_vec_error;
5125 		}
5126 	}
5127 
5128 	if (rte_intr_allow_others(intr_handle)) {
5129 		vec = RTE_INTR_VEC_RXTX_OFFSET;
5130 		base = RTE_INTR_VEC_RXTX_OFFSET;
5131 	}
5132 
5133 	for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5134 		ret = hns3_bind_ring_with_vector(hw, vec, true,
5135 						 HNS3_RING_TYPE_RX, q_id);
5136 		if (ret)
5137 			goto bind_vector_error;
5138 		intr_handle->intr_vec[q_id] = vec;
5139 		/*
5140 		 * If there are not enough efds (e.g. not enough interrupt),
5141 		 * remaining queues will be bond to the last interrupt.
5142 		 */
5143 		if (vec < base + intr_handle->nb_efd - 1)
5144 			vec++;
5145 	}
5146 	rte_intr_enable(intr_handle);
5147 	return 0;
5148 
5149 bind_vector_error:
5150 	rte_free(intr_handle->intr_vec);
5151 	intr_handle->intr_vec = NULL;
5152 alloc_intr_vec_error:
5153 	rte_intr_efd_disable(intr_handle);
5154 	return ret;
5155 }
5156 
5157 static int
5158 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5159 {
5160 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5161 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5162 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5163 	uint16_t q_id;
5164 	int ret;
5165 
5166 	if (dev->data->dev_conf.intr_conf.rxq == 0)
5167 		return 0;
5168 
5169 	if (rte_intr_dp_is_en(intr_handle)) {
5170 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5171 			ret = hns3_bind_ring_with_vector(hw,
5172 					intr_handle->intr_vec[q_id], true,
5173 					HNS3_RING_TYPE_RX, q_id);
5174 			if (ret)
5175 				return ret;
5176 		}
5177 	}
5178 
5179 	return 0;
5180 }
5181 
5182 static void
5183 hns3_restore_filter(struct rte_eth_dev *dev)
5184 {
5185 	hns3_restore_rss_filter(dev);
5186 }
5187 
5188 static int
5189 hns3_dev_start(struct rte_eth_dev *dev)
5190 {
5191 	struct hns3_adapter *hns = dev->data->dev_private;
5192 	struct hns3_hw *hw = &hns->hw;
5193 	int ret;
5194 
5195 	PMD_INIT_FUNC_TRACE();
5196 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5197 		return -EBUSY;
5198 
5199 	rte_spinlock_lock(&hw->lock);
5200 	hw->adapter_state = HNS3_NIC_STARTING;
5201 
5202 	ret = hns3_do_start(hns, true);
5203 	if (ret) {
5204 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5205 		rte_spinlock_unlock(&hw->lock);
5206 		return ret;
5207 	}
5208 	ret = hns3_map_rx_interrupt(dev);
5209 	if (ret)
5210 		goto map_rx_inter_err;
5211 
5212 	/*
5213 	 * There are three register used to control the status of a TQP
5214 	 * (contains a pair of Tx queue and Rx queue) in the new version network
5215 	 * engine. One is used to control the enabling of Tx queue, the other is
5216 	 * used to control the enabling of Rx queue, and the last is the master
5217 	 * switch used to control the enabling of the tqp. The Tx register and
5218 	 * TQP register must be enabled at the same time to enable a Tx queue.
5219 	 * The same applies to the Rx queue. For the older network engine, this
5220 	 * function only refresh the enabled flag, and it is used to update the
5221 	 * status of queue in the dpdk framework.
5222 	 */
5223 	ret = hns3_start_all_txqs(dev);
5224 	if (ret)
5225 		goto map_rx_inter_err;
5226 
5227 	ret = hns3_start_all_rxqs(dev);
5228 	if (ret)
5229 		goto start_all_rxqs_fail;
5230 
5231 	hw->adapter_state = HNS3_NIC_STARTED;
5232 	rte_spinlock_unlock(&hw->lock);
5233 
5234 	hns3_rx_scattered_calc(dev);
5235 	hns3_set_rxtx_function(dev);
5236 	hns3_mp_req_start_rxtx(dev);
5237 	rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5238 
5239 	hns3_restore_filter(dev);
5240 
5241 	/* Enable interrupt of all rx queues before enabling queues */
5242 	hns3_dev_all_rx_queue_intr_enable(hw, true);
5243 
5244 	/*
5245 	 * After finished the initialization, enable tqps to receive/transmit
5246 	 * packets and refresh all queue status.
5247 	 */
5248 	hns3_start_tqps(hw);
5249 
5250 	hns3_tm_dev_start_proc(hw);
5251 
5252 	hns3_info(hw, "hns3 dev start successful!");
5253 
5254 	return 0;
5255 
5256 start_all_rxqs_fail:
5257 	hns3_stop_all_txqs(dev);
5258 map_rx_inter_err:
5259 	(void)hns3_do_stop(hns);
5260 	hw->adapter_state = HNS3_NIC_CONFIGURED;
5261 	rte_spinlock_unlock(&hw->lock);
5262 
5263 	return ret;
5264 }
5265 
5266 static int
5267 hns3_do_stop(struct hns3_adapter *hns)
5268 {
5269 	struct hns3_hw *hw = &hns->hw;
5270 	int ret;
5271 
5272 	/*
5273 	 * The "hns3_do_stop" function will also be called by .stop_service to
5274 	 * prepare reset. At the time of global or IMP reset, the command cannot
5275 	 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5276 	 * accessed during the reset process. So the mbuf can not be released
5277 	 * during reset and is required to be released after the reset is
5278 	 * completed.
5279 	 */
5280 	if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5281 		hns3_dev_release_mbufs(hns);
5282 
5283 	ret = hns3_cfg_mac_mode(hw, false);
5284 	if (ret)
5285 		return ret;
5286 	hw->mac.link_status = ETH_LINK_DOWN;
5287 
5288 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5289 		hns3_configure_all_mac_addr(hns, true);
5290 		ret = hns3_reset_all_tqps(hns);
5291 		if (ret) {
5292 			hns3_err(hw, "failed to reset all queues ret = %d.",
5293 				 ret);
5294 			return ret;
5295 		}
5296 	}
5297 	hw->mac.default_addr_setted = false;
5298 	return 0;
5299 }
5300 
5301 static void
5302 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5303 {
5304 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5305 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5306 	struct hns3_adapter *hns = dev->data->dev_private;
5307 	struct hns3_hw *hw = &hns->hw;
5308 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5309 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5310 	uint16_t q_id;
5311 
5312 	if (dev->data->dev_conf.intr_conf.rxq == 0)
5313 		return;
5314 
5315 	/* unmap the ring with vector */
5316 	if (rte_intr_allow_others(intr_handle)) {
5317 		vec = RTE_INTR_VEC_RXTX_OFFSET;
5318 		base = RTE_INTR_VEC_RXTX_OFFSET;
5319 	}
5320 	if (rte_intr_dp_is_en(intr_handle)) {
5321 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5322 			(void)hns3_bind_ring_with_vector(hw, vec, false,
5323 							 HNS3_RING_TYPE_RX,
5324 							 q_id);
5325 			if (vec < base + intr_handle->nb_efd - 1)
5326 				vec++;
5327 		}
5328 	}
5329 	/* Clean datapath event and queue/vec mapping */
5330 	rte_intr_efd_disable(intr_handle);
5331 	if (intr_handle->intr_vec) {
5332 		rte_free(intr_handle->intr_vec);
5333 		intr_handle->intr_vec = NULL;
5334 	}
5335 }
5336 
5337 static int
5338 hns3_dev_stop(struct rte_eth_dev *dev)
5339 {
5340 	struct hns3_adapter *hns = dev->data->dev_private;
5341 	struct hns3_hw *hw = &hns->hw;
5342 
5343 	PMD_INIT_FUNC_TRACE();
5344 	dev->data->dev_started = 0;
5345 
5346 	hw->adapter_state = HNS3_NIC_STOPPING;
5347 	hns3_set_rxtx_function(dev);
5348 	rte_wmb();
5349 	/* Disable datapath on secondary process. */
5350 	hns3_mp_req_stop_rxtx(dev);
5351 	/* Prevent crashes when queues are still in use. */
5352 	rte_delay_ms(hw->tqps_num);
5353 
5354 	rte_spinlock_lock(&hw->lock);
5355 	if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5356 		hns3_tm_dev_stop_proc(hw);
5357 		hns3_config_mac_tnl_int(hw, false);
5358 		hns3_stop_tqps(hw);
5359 		hns3_do_stop(hns);
5360 		hns3_unmap_rx_interrupt(dev);
5361 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5362 	}
5363 	hns3_rx_scattered_reset(dev);
5364 	rte_eal_alarm_cancel(hns3_service_handler, dev);
5365 	rte_spinlock_unlock(&hw->lock);
5366 
5367 	return 0;
5368 }
5369 
5370 static int
5371 hns3_dev_close(struct rte_eth_dev *eth_dev)
5372 {
5373 	struct hns3_adapter *hns = eth_dev->data->dev_private;
5374 	struct hns3_hw *hw = &hns->hw;
5375 	int ret = 0;
5376 
5377 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5378 		rte_free(eth_dev->process_private);
5379 		eth_dev->process_private = NULL;
5380 		return 0;
5381 	}
5382 
5383 	if (hw->adapter_state == HNS3_NIC_STARTED)
5384 		ret = hns3_dev_stop(eth_dev);
5385 
5386 	hw->adapter_state = HNS3_NIC_CLOSING;
5387 	hns3_reset_abort(hns);
5388 	hw->adapter_state = HNS3_NIC_CLOSED;
5389 
5390 	hns3_configure_all_mc_mac_addr(hns, true);
5391 	hns3_remove_all_vlan_table(hns);
5392 	hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5393 	hns3_uninit_pf(eth_dev);
5394 	hns3_free_all_queues(eth_dev);
5395 	rte_free(hw->reset.wait_data);
5396 	rte_free(eth_dev->process_private);
5397 	eth_dev->process_private = NULL;
5398 	hns3_mp_uninit_primary();
5399 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5400 
5401 	return ret;
5402 }
5403 
5404 static int
5405 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5406 {
5407 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5408 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5409 
5410 	fc_conf->pause_time = pf->pause_time;
5411 
5412 	/* return fc current mode */
5413 	switch (hw->current_mode) {
5414 	case HNS3_FC_FULL:
5415 		fc_conf->mode = RTE_FC_FULL;
5416 		break;
5417 	case HNS3_FC_TX_PAUSE:
5418 		fc_conf->mode = RTE_FC_TX_PAUSE;
5419 		break;
5420 	case HNS3_FC_RX_PAUSE:
5421 		fc_conf->mode = RTE_FC_RX_PAUSE;
5422 		break;
5423 	case HNS3_FC_NONE:
5424 	default:
5425 		fc_conf->mode = RTE_FC_NONE;
5426 		break;
5427 	}
5428 
5429 	return 0;
5430 }
5431 
5432 static void
5433 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
5434 {
5435 	switch (mode) {
5436 	case RTE_FC_NONE:
5437 		hw->requested_mode = HNS3_FC_NONE;
5438 		break;
5439 	case RTE_FC_RX_PAUSE:
5440 		hw->requested_mode = HNS3_FC_RX_PAUSE;
5441 		break;
5442 	case RTE_FC_TX_PAUSE:
5443 		hw->requested_mode = HNS3_FC_TX_PAUSE;
5444 		break;
5445 	case RTE_FC_FULL:
5446 		hw->requested_mode = HNS3_FC_FULL;
5447 		break;
5448 	default:
5449 		hw->requested_mode = HNS3_FC_NONE;
5450 		hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
5451 			  "configured to RTE_FC_NONE", mode);
5452 		break;
5453 	}
5454 }
5455 
5456 static int
5457 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5458 {
5459 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5460 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5461 	int ret;
5462 
5463 	if (fc_conf->high_water || fc_conf->low_water ||
5464 	    fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5465 		hns3_err(hw, "Unsupported flow control settings specified, "
5466 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5467 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5468 			 fc_conf->high_water, fc_conf->low_water,
5469 			 fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5470 		return -EINVAL;
5471 	}
5472 	if (fc_conf->autoneg) {
5473 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5474 		return -EINVAL;
5475 	}
5476 	if (!fc_conf->pause_time) {
5477 		hns3_err(hw, "Invalid pause time %u setting.",
5478 			 fc_conf->pause_time);
5479 		return -EINVAL;
5480 	}
5481 
5482 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5483 	    hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5484 		hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5485 			 "current_fc_status = %d", hw->current_fc_status);
5486 		return -EOPNOTSUPP;
5487 	}
5488 
5489 	hns3_get_fc_mode(hw, fc_conf->mode);
5490 	if (hw->requested_mode == hw->current_mode &&
5491 	    pf->pause_time == fc_conf->pause_time)
5492 		return 0;
5493 
5494 	rte_spinlock_lock(&hw->lock);
5495 	ret = hns3_fc_enable(dev, fc_conf);
5496 	rte_spinlock_unlock(&hw->lock);
5497 
5498 	return ret;
5499 }
5500 
5501 static int
5502 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5503 			    struct rte_eth_pfc_conf *pfc_conf)
5504 {
5505 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5506 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5507 	uint8_t priority;
5508 	int ret;
5509 
5510 	if (!hns3_dev_dcb_supported(hw)) {
5511 		hns3_err(hw, "This port does not support dcb configurations.");
5512 		return -EOPNOTSUPP;
5513 	}
5514 
5515 	if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5516 	    pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5517 		hns3_err(hw, "Unsupported flow control settings specified, "
5518 			 "high_water(%u), low_water(%u), send_xon(%u) and "
5519 			 "mac_ctrl_frame_fwd(%u) must be set to '0'",
5520 			 pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5521 			 pfc_conf->fc.send_xon,
5522 			 pfc_conf->fc.mac_ctrl_frame_fwd);
5523 		return -EINVAL;
5524 	}
5525 	if (pfc_conf->fc.autoneg) {
5526 		hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5527 		return -EINVAL;
5528 	}
5529 	if (pfc_conf->fc.pause_time == 0) {
5530 		hns3_err(hw, "Invalid pause time %u setting.",
5531 			 pfc_conf->fc.pause_time);
5532 		return -EINVAL;
5533 	}
5534 
5535 	if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5536 	    hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5537 		hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5538 			     "current_fc_status = %d", hw->current_fc_status);
5539 		return -EOPNOTSUPP;
5540 	}
5541 
5542 	priority = pfc_conf->priority;
5543 	hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5544 	if (hw->dcb_info.pfc_en & BIT(priority) &&
5545 	    hw->requested_mode == hw->current_mode &&
5546 	    pfc_conf->fc.pause_time == pf->pause_time)
5547 		return 0;
5548 
5549 	rte_spinlock_lock(&hw->lock);
5550 	ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5551 	rte_spinlock_unlock(&hw->lock);
5552 
5553 	return ret;
5554 }
5555 
5556 static int
5557 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5558 {
5559 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5560 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5561 	enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5562 	int i;
5563 
5564 	rte_spinlock_lock(&hw->lock);
5565 	if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5566 		dcb_info->nb_tcs = pf->local_max_tc;
5567 	else
5568 		dcb_info->nb_tcs = 1;
5569 
5570 	for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5571 		dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5572 	for (i = 0; i < dcb_info->nb_tcs; i++)
5573 		dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5574 
5575 	for (i = 0; i < hw->num_tc; i++) {
5576 		dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5577 		dcb_info->tc_queue.tc_txq[0][i].base =
5578 						hw->tc_queue[i].tqp_offset;
5579 		dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5580 		dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5581 						hw->tc_queue[i].tqp_count;
5582 	}
5583 	rte_spinlock_unlock(&hw->lock);
5584 
5585 	return 0;
5586 }
5587 
5588 static int
5589 hns3_reinit_dev(struct hns3_adapter *hns)
5590 {
5591 	struct hns3_hw *hw = &hns->hw;
5592 	int ret;
5593 
5594 	ret = hns3_cmd_init(hw);
5595 	if (ret) {
5596 		hns3_err(hw, "Failed to init cmd: %d", ret);
5597 		return ret;
5598 	}
5599 
5600 	ret = hns3_reset_all_tqps(hns);
5601 	if (ret) {
5602 		hns3_err(hw, "Failed to reset all queues: %d", ret);
5603 		return ret;
5604 	}
5605 
5606 	ret = hns3_init_hardware(hns);
5607 	if (ret) {
5608 		hns3_err(hw, "Failed to init hardware: %d", ret);
5609 		return ret;
5610 	}
5611 
5612 	ret = hns3_enable_hw_error_intr(hns, true);
5613 	if (ret) {
5614 		hns3_err(hw, "fail to enable hw error interrupts: %d",
5615 			     ret);
5616 		return ret;
5617 	}
5618 	hns3_info(hw, "Reset done, driver initialization finished.");
5619 
5620 	return 0;
5621 }
5622 
5623 static bool
5624 is_pf_reset_done(struct hns3_hw *hw)
5625 {
5626 	uint32_t val, reg, reg_bit;
5627 
5628 	switch (hw->reset.level) {
5629 	case HNS3_IMP_RESET:
5630 		reg = HNS3_GLOBAL_RESET_REG;
5631 		reg_bit = HNS3_IMP_RESET_BIT;
5632 		break;
5633 	case HNS3_GLOBAL_RESET:
5634 		reg = HNS3_GLOBAL_RESET_REG;
5635 		reg_bit = HNS3_GLOBAL_RESET_BIT;
5636 		break;
5637 	case HNS3_FUNC_RESET:
5638 		reg = HNS3_FUN_RST_ING;
5639 		reg_bit = HNS3_FUN_RST_ING_B;
5640 		break;
5641 	case HNS3_FLR_RESET:
5642 	default:
5643 		hns3_err(hw, "Wait for unsupported reset level: %d",
5644 			 hw->reset.level);
5645 		return true;
5646 	}
5647 	val = hns3_read_dev(hw, reg);
5648 	if (hns3_get_bit(val, reg_bit))
5649 		return false;
5650 	else
5651 		return true;
5652 }
5653 
5654 bool
5655 hns3_is_reset_pending(struct hns3_adapter *hns)
5656 {
5657 	struct hns3_hw *hw = &hns->hw;
5658 	enum hns3_reset_level reset;
5659 
5660 	hns3_check_event_cause(hns, NULL);
5661 	reset = hns3_get_reset_level(hns, &hw->reset.pending);
5662 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5663 		hns3_warn(hw, "High level reset %d is pending", reset);
5664 		return true;
5665 	}
5666 	reset = hns3_get_reset_level(hns, &hw->reset.request);
5667 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5668 		hns3_warn(hw, "High level reset %d is request", reset);
5669 		return true;
5670 	}
5671 	return false;
5672 }
5673 
5674 static int
5675 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5676 {
5677 	struct hns3_hw *hw = &hns->hw;
5678 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
5679 	struct timeval tv;
5680 
5681 	if (wait_data->result == HNS3_WAIT_SUCCESS)
5682 		return 0;
5683 	else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5684 		gettimeofday(&tv, NULL);
5685 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5686 			  tv.tv_sec, tv.tv_usec);
5687 		return -ETIME;
5688 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
5689 		return -EAGAIN;
5690 
5691 	wait_data->hns = hns;
5692 	wait_data->check_completion = is_pf_reset_done;
5693 	wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5694 				      HNS3_RESET_WAIT_MS + get_timeofday_ms();
5695 	wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5696 	wait_data->count = HNS3_RESET_WAIT_CNT;
5697 	wait_data->result = HNS3_WAIT_REQUEST;
5698 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5699 	return -EAGAIN;
5700 }
5701 
5702 static int
5703 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5704 {
5705 	struct hns3_cmd_desc desc;
5706 	struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5707 
5708 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5709 	hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5710 	req->fun_reset_vfid = func_id;
5711 
5712 	return hns3_cmd_send(hw, &desc, 1);
5713 }
5714 
5715 static int
5716 hns3_imp_reset_cmd(struct hns3_hw *hw)
5717 {
5718 	struct hns3_cmd_desc desc;
5719 
5720 	hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5721 	desc.data[0] = 0xeedd;
5722 
5723 	return hns3_cmd_send(hw, &desc, 1);
5724 }
5725 
5726 static void
5727 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5728 {
5729 	struct hns3_hw *hw = &hns->hw;
5730 	struct timeval tv;
5731 	uint32_t val;
5732 
5733 	gettimeofday(&tv, NULL);
5734 	if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5735 	    hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5736 		hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5737 			  tv.tv_sec, tv.tv_usec);
5738 		return;
5739 	}
5740 
5741 	switch (reset_level) {
5742 	case HNS3_IMP_RESET:
5743 		hns3_imp_reset_cmd(hw);
5744 		hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5745 			  tv.tv_sec, tv.tv_usec);
5746 		break;
5747 	case HNS3_GLOBAL_RESET:
5748 		val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5749 		hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5750 		hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5751 		hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5752 			  tv.tv_sec, tv.tv_usec);
5753 		break;
5754 	case HNS3_FUNC_RESET:
5755 		hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5756 			  tv.tv_sec, tv.tv_usec);
5757 		/* schedule again to check later */
5758 		hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5759 		hns3_schedule_reset(hns);
5760 		break;
5761 	default:
5762 		hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5763 		return;
5764 	}
5765 	hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5766 }
5767 
5768 static enum hns3_reset_level
5769 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5770 {
5771 	struct hns3_hw *hw = &hns->hw;
5772 	enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5773 
5774 	/* Return the highest priority reset level amongst all */
5775 	if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5776 		reset_level = HNS3_IMP_RESET;
5777 	else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5778 		reset_level = HNS3_GLOBAL_RESET;
5779 	else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5780 		reset_level = HNS3_FUNC_RESET;
5781 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5782 		reset_level = HNS3_FLR_RESET;
5783 
5784 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5785 		return HNS3_NONE_RESET;
5786 
5787 	return reset_level;
5788 }
5789 
5790 static void
5791 hns3_record_imp_error(struct hns3_adapter *hns)
5792 {
5793 	struct hns3_hw *hw = &hns->hw;
5794 	uint32_t reg_val;
5795 
5796 	reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5797 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5798 		hns3_warn(hw, "Detected IMP RD poison!");
5799 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5800 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5801 	}
5802 
5803 	if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5804 		hns3_warn(hw, "Detected IMP CMDQ error!");
5805 		hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5806 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5807 	}
5808 }
5809 
5810 static int
5811 hns3_prepare_reset(struct hns3_adapter *hns)
5812 {
5813 	struct hns3_hw *hw = &hns->hw;
5814 	uint32_t reg_val;
5815 	int ret;
5816 
5817 	switch (hw->reset.level) {
5818 	case HNS3_FUNC_RESET:
5819 		ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5820 		if (ret)
5821 			return ret;
5822 
5823 		/*
5824 		 * After performaning pf reset, it is not necessary to do the
5825 		 * mailbox handling or send any command to firmware, because
5826 		 * any mailbox handling or command to firmware is only valid
5827 		 * after hns3_cmd_init is called.
5828 		 */
5829 		__atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5830 		hw->reset.stats.request_cnt++;
5831 		break;
5832 	case HNS3_IMP_RESET:
5833 		hns3_record_imp_error(hns);
5834 		reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5835 		hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5836 			       BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5837 		break;
5838 	default:
5839 		break;
5840 	}
5841 	return 0;
5842 }
5843 
5844 static int
5845 hns3_set_rst_done(struct hns3_hw *hw)
5846 {
5847 	struct hns3_pf_rst_done_cmd *req;
5848 	struct hns3_cmd_desc desc;
5849 
5850 	req = (struct hns3_pf_rst_done_cmd *)desc.data;
5851 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5852 	req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5853 	return hns3_cmd_send(hw, &desc, 1);
5854 }
5855 
5856 static int
5857 hns3_stop_service(struct hns3_adapter *hns)
5858 {
5859 	struct hns3_hw *hw = &hns->hw;
5860 	struct rte_eth_dev *eth_dev;
5861 
5862 	eth_dev = &rte_eth_devices[hw->data->port_id];
5863 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5864 		rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5865 		hns3_update_link_status_and_event(hw);
5866 	}
5867 	hw->mac.link_status = ETH_LINK_DOWN;
5868 
5869 	hns3_set_rxtx_function(eth_dev);
5870 	rte_wmb();
5871 	/* Disable datapath on secondary process. */
5872 	hns3_mp_req_stop_rxtx(eth_dev);
5873 	rte_delay_ms(hw->tqps_num);
5874 
5875 	rte_spinlock_lock(&hw->lock);
5876 	if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5877 	    hw->adapter_state == HNS3_NIC_STOPPING) {
5878 		hns3_enable_all_queues(hw, false);
5879 		hns3_do_stop(hns);
5880 		hw->reset.mbuf_deferred_free = true;
5881 	} else
5882 		hw->reset.mbuf_deferred_free = false;
5883 
5884 	/*
5885 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
5886 	 * from table space. Hence, for function reset software intervention is
5887 	 * required to delete the entries
5888 	 */
5889 	if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5890 		hns3_configure_all_mc_mac_addr(hns, true);
5891 	rte_spinlock_unlock(&hw->lock);
5892 
5893 	return 0;
5894 }
5895 
5896 static int
5897 hns3_start_service(struct hns3_adapter *hns)
5898 {
5899 	struct hns3_hw *hw = &hns->hw;
5900 	struct rte_eth_dev *eth_dev;
5901 
5902 	if (hw->reset.level == HNS3_IMP_RESET ||
5903 	    hw->reset.level == HNS3_GLOBAL_RESET)
5904 		hns3_set_rst_done(hw);
5905 	eth_dev = &rte_eth_devices[hw->data->port_id];
5906 	hns3_set_rxtx_function(eth_dev);
5907 	hns3_mp_req_start_rxtx(eth_dev);
5908 	if (hw->adapter_state == HNS3_NIC_STARTED) {
5909 		/*
5910 		 * This API parent function already hold the hns3_hw.lock, the
5911 		 * hns3_service_handler may report lse, in bonding application
5912 		 * it will call driver's ops which may acquire the hns3_hw.lock
5913 		 * again, thus lead to deadlock.
5914 		 * We defer calls hns3_service_handler to avoid the deadlock.
5915 		 */
5916 		rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5917 				  hns3_service_handler, eth_dev);
5918 
5919 		/* Enable interrupt of all rx queues before enabling queues */
5920 		hns3_dev_all_rx_queue_intr_enable(hw, true);
5921 		/*
5922 		 * Enable state of each rxq and txq will be recovered after
5923 		 * reset, so we need to restore them before enable all tqps;
5924 		 */
5925 		hns3_restore_tqp_enable_state(hw);
5926 		/*
5927 		 * When finished the initialization, enable queues to receive
5928 		 * and transmit packets.
5929 		 */
5930 		hns3_enable_all_queues(hw, true);
5931 	}
5932 
5933 	return 0;
5934 }
5935 
5936 static int
5937 hns3_restore_conf(struct hns3_adapter *hns)
5938 {
5939 	struct hns3_hw *hw = &hns->hw;
5940 	int ret;
5941 
5942 	ret = hns3_configure_all_mac_addr(hns, false);
5943 	if (ret)
5944 		return ret;
5945 
5946 	ret = hns3_configure_all_mc_mac_addr(hns, false);
5947 	if (ret)
5948 		goto err_mc_mac;
5949 
5950 	ret = hns3_dev_promisc_restore(hns);
5951 	if (ret)
5952 		goto err_promisc;
5953 
5954 	ret = hns3_restore_vlan_table(hns);
5955 	if (ret)
5956 		goto err_promisc;
5957 
5958 	ret = hns3_restore_vlan_conf(hns);
5959 	if (ret)
5960 		goto err_promisc;
5961 
5962 	ret = hns3_restore_all_fdir_filter(hns);
5963 	if (ret)
5964 		goto err_promisc;
5965 
5966 	ret = hns3_restore_rx_interrupt(hw);
5967 	if (ret)
5968 		goto err_promisc;
5969 
5970 	ret = hns3_restore_gro_conf(hw);
5971 	if (ret)
5972 		goto err_promisc;
5973 
5974 	ret = hns3_restore_fec(hw);
5975 	if (ret)
5976 		goto err_promisc;
5977 
5978 	if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5979 		ret = hns3_do_start(hns, false);
5980 		if (ret)
5981 			goto err_promisc;
5982 		hns3_info(hw, "hns3 dev restart successful!");
5983 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
5984 		hw->adapter_state = HNS3_NIC_CONFIGURED;
5985 	return 0;
5986 
5987 err_promisc:
5988 	hns3_configure_all_mc_mac_addr(hns, true);
5989 err_mc_mac:
5990 	hns3_configure_all_mac_addr(hns, true);
5991 	return ret;
5992 }
5993 
5994 static void
5995 hns3_reset_service(void *param)
5996 {
5997 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
5998 	struct hns3_hw *hw = &hns->hw;
5999 	enum hns3_reset_level reset_level;
6000 	struct timeval tv_delta;
6001 	struct timeval tv_start;
6002 	struct timeval tv;
6003 	uint64_t msec;
6004 	int ret;
6005 
6006 	/*
6007 	 * The interrupt is not triggered within the delay time.
6008 	 * The interrupt may have been lost. It is necessary to handle
6009 	 * the interrupt to recover from the error.
6010 	 */
6011 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6012 			    SCHEDULE_DEFERRED) {
6013 		__atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
6014 				  __ATOMIC_RELAXED);
6015 		hns3_err(hw, "Handling interrupts in delayed tasks");
6016 		hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
6017 		reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6018 		if (reset_level == HNS3_NONE_RESET) {
6019 			hns3_err(hw, "No reset level is set, try IMP reset");
6020 			hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
6021 		}
6022 	}
6023 	__atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
6024 
6025 	/*
6026 	 * Check if there is any ongoing reset in the hardware. This status can
6027 	 * be checked from reset_pending. If there is then, we need to wait for
6028 	 * hardware to complete reset.
6029 	 *    a. If we are able to figure out in reasonable time that hardware
6030 	 *       has fully resetted then, we can proceed with driver, client
6031 	 *       reset.
6032 	 *    b. else, we can come back later to check this status so re-sched
6033 	 *       now.
6034 	 */
6035 	reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6036 	if (reset_level != HNS3_NONE_RESET) {
6037 		gettimeofday(&tv_start, NULL);
6038 		ret = hns3_reset_process(hns, reset_level);
6039 		gettimeofday(&tv, NULL);
6040 		timersub(&tv, &tv_start, &tv_delta);
6041 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
6042 		       tv_delta.tv_usec / USEC_PER_MSEC;
6043 		if (msec > HNS3_RESET_PROCESS_MS)
6044 			hns3_err(hw, "%d handle long time delta %" PRIx64
6045 				     " ms time=%ld.%.6ld",
6046 				 hw->reset.level, msec,
6047 				 tv.tv_sec, tv.tv_usec);
6048 		if (ret == -EAGAIN)
6049 			return;
6050 	}
6051 
6052 	/* Check if we got any *new* reset requests to be honored */
6053 	reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6054 	if (reset_level != HNS3_NONE_RESET)
6055 		hns3_msix_process(hns, reset_level);
6056 }
6057 
6058 static unsigned int
6059 hns3_get_speed_capa_num(uint16_t device_id)
6060 {
6061 	unsigned int num;
6062 
6063 	switch (device_id) {
6064 	case HNS3_DEV_ID_25GE:
6065 	case HNS3_DEV_ID_25GE_RDMA:
6066 		num = 2;
6067 		break;
6068 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6069 	case HNS3_DEV_ID_200G_RDMA:
6070 		num = 1;
6071 		break;
6072 	default:
6073 		num = 0;
6074 		break;
6075 	}
6076 
6077 	return num;
6078 }
6079 
6080 static int
6081 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6082 			uint16_t device_id)
6083 {
6084 	switch (device_id) {
6085 	case HNS3_DEV_ID_25GE:
6086 	/* fallthrough */
6087 	case HNS3_DEV_ID_25GE_RDMA:
6088 		speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6089 		speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6090 
6091 		/* In HNS3 device, the 25G NIC is compatible with 10G rate */
6092 		speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6093 		speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6094 		break;
6095 	case HNS3_DEV_ID_100G_RDMA_MACSEC:
6096 		speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6097 		speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6098 		break;
6099 	case HNS3_DEV_ID_200G_RDMA:
6100 		speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6101 		speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6102 		break;
6103 	default:
6104 		return -ENOTSUP;
6105 	}
6106 
6107 	return 0;
6108 }
6109 
6110 static int
6111 hns3_fec_get_capability(struct rte_eth_dev *dev,
6112 			struct rte_eth_fec_capa *speed_fec_capa,
6113 			unsigned int num)
6114 {
6115 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6116 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6117 	uint16_t device_id = pci_dev->id.device_id;
6118 	unsigned int capa_num;
6119 	int ret;
6120 
6121 	capa_num = hns3_get_speed_capa_num(device_id);
6122 	if (capa_num == 0) {
6123 		hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6124 			 device_id);
6125 		return -ENOTSUP;
6126 	}
6127 
6128 	if (speed_fec_capa == NULL || num < capa_num)
6129 		return capa_num;
6130 
6131 	ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6132 	if (ret)
6133 		return -ENOTSUP;
6134 
6135 	return capa_num;
6136 }
6137 
6138 static int
6139 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6140 {
6141 	struct hns3_config_fec_cmd *req;
6142 	struct hns3_cmd_desc desc;
6143 	int ret;
6144 
6145 	/*
6146 	 * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6147 	 * in device of link speed
6148 	 * below 10 Gbps.
6149 	 */
6150 	if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
6151 		*state = 0;
6152 		return 0;
6153 	}
6154 
6155 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6156 	req = (struct hns3_config_fec_cmd *)desc.data;
6157 	ret = hns3_cmd_send(hw, &desc, 1);
6158 	if (ret) {
6159 		hns3_err(hw, "get current fec auto state failed, ret = %d",
6160 			 ret);
6161 		return ret;
6162 	}
6163 
6164 	*state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6165 	return 0;
6166 }
6167 
6168 static int
6169 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6170 {
6171 #define QUERY_ACTIVE_SPEED	1
6172 	struct hns3_sfp_speed_cmd *resp;
6173 	uint32_t tmp_fec_capa;
6174 	uint8_t auto_state;
6175 	struct hns3_cmd_desc desc;
6176 	int ret;
6177 
6178 	/*
6179 	 * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6180 	 * configured FEC mode is returned.
6181 	 * If link is up, current FEC mode is returned.
6182 	 */
6183 	if (hw->mac.link_status == ETH_LINK_DOWN) {
6184 		ret = get_current_fec_auto_state(hw, &auto_state);
6185 		if (ret)
6186 			return ret;
6187 
6188 		if (auto_state == 0x1) {
6189 			*fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6190 			return 0;
6191 		}
6192 	}
6193 
6194 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
6195 	resp = (struct hns3_sfp_speed_cmd *)desc.data;
6196 	resp->query_type = QUERY_ACTIVE_SPEED;
6197 
6198 	ret = hns3_cmd_send(hw, &desc, 1);
6199 	if (ret == -EOPNOTSUPP) {
6200 		hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6201 		return ret;
6202 	} else if (ret) {
6203 		hns3_err(hw, "get FEC failed, ret = %d", ret);
6204 		return ret;
6205 	}
6206 
6207 	/*
6208 	 * FEC mode order defined in hns3 hardware is inconsistend with
6209 	 * that defined in the ethdev library. So the sequence needs
6210 	 * to be converted.
6211 	 */
6212 	switch (resp->active_fec) {
6213 	case HNS3_HW_FEC_MODE_NOFEC:
6214 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6215 		break;
6216 	case HNS3_HW_FEC_MODE_BASER:
6217 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6218 		break;
6219 	case HNS3_HW_FEC_MODE_RS:
6220 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6221 		break;
6222 	default:
6223 		tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6224 		break;
6225 	}
6226 
6227 	*fec_capa = tmp_fec_capa;
6228 	return 0;
6229 }
6230 
6231 static int
6232 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6233 {
6234 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6235 
6236 	return hns3_fec_get_internal(hw, fec_capa);
6237 }
6238 
6239 static int
6240 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6241 {
6242 	struct hns3_config_fec_cmd *req;
6243 	struct hns3_cmd_desc desc;
6244 	int ret;
6245 
6246 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6247 
6248 	req = (struct hns3_config_fec_cmd *)desc.data;
6249 	switch (mode) {
6250 	case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6251 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6252 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6253 		break;
6254 	case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6255 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6256 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6257 		break;
6258 	case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6259 		hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6260 				HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6261 		break;
6262 	case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6263 		hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6264 		break;
6265 	default:
6266 		return 0;
6267 	}
6268 	ret = hns3_cmd_send(hw, &desc, 1);
6269 	if (ret)
6270 		hns3_err(hw, "set fec mode failed, ret = %d", ret);
6271 
6272 	return ret;
6273 }
6274 
6275 static uint32_t
6276 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6277 {
6278 	struct hns3_mac *mac = &hw->mac;
6279 	uint32_t cur_capa;
6280 
6281 	switch (mac->link_speed) {
6282 	case ETH_SPEED_NUM_10G:
6283 		cur_capa = fec_capa[1].capa;
6284 		break;
6285 	case ETH_SPEED_NUM_25G:
6286 	case ETH_SPEED_NUM_100G:
6287 	case ETH_SPEED_NUM_200G:
6288 		cur_capa = fec_capa[0].capa;
6289 		break;
6290 	default:
6291 		cur_capa = 0;
6292 		break;
6293 	}
6294 
6295 	return cur_capa;
6296 }
6297 
6298 static bool
6299 is_fec_mode_one_bit_set(uint32_t mode)
6300 {
6301 	int cnt = 0;
6302 	uint8_t i;
6303 
6304 	for (i = 0; i < sizeof(mode); i++)
6305 		if (mode >> i & 0x1)
6306 			cnt++;
6307 
6308 	return cnt == 1 ? true : false;
6309 }
6310 
6311 static int
6312 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6313 {
6314 #define FEC_CAPA_NUM 2
6315 	struct hns3_adapter *hns = dev->data->dev_private;
6316 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6317 	struct hns3_pf *pf = &hns->pf;
6318 
6319 	struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6320 	uint32_t cur_capa;
6321 	uint32_t num = FEC_CAPA_NUM;
6322 	int ret;
6323 
6324 	ret = hns3_fec_get_capability(dev, fec_capa, num);
6325 	if (ret < 0)
6326 		return ret;
6327 
6328 	/* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
6329 	if (!is_fec_mode_one_bit_set(mode))
6330 		hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD,"
6331 			     "FEC mode should be only one bit set", mode);
6332 
6333 	/*
6334 	 * Check whether the configured mode is within the FEC capability.
6335 	 * If not, the configured mode will not be supported.
6336 	 */
6337 	cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6338 	if (!(cur_capa & mode)) {
6339 		hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6340 		return -EINVAL;
6341 	}
6342 
6343 	ret = hns3_set_fec_hw(hw, mode);
6344 	if (ret)
6345 		return ret;
6346 
6347 	pf->fec_mode = mode;
6348 	return 0;
6349 }
6350 
6351 static int
6352 hns3_restore_fec(struct hns3_hw *hw)
6353 {
6354 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6355 	struct hns3_pf *pf = &hns->pf;
6356 	uint32_t mode = pf->fec_mode;
6357 	int ret;
6358 
6359 	ret = hns3_set_fec_hw(hw, mode);
6360 	if (ret)
6361 		hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6362 			 mode, ret);
6363 
6364 	return ret;
6365 }
6366 
6367 static int
6368 hns3_query_dev_fec_info(struct hns3_hw *hw)
6369 {
6370 	struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6371 	struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6372 	int ret;
6373 
6374 	ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6375 	if (ret)
6376 		hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6377 
6378 	return ret;
6379 }
6380 
6381 static bool
6382 hns3_optical_module_existed(struct hns3_hw *hw)
6383 {
6384 	struct hns3_cmd_desc desc;
6385 	bool existed;
6386 	int ret;
6387 
6388 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6389 	ret = hns3_cmd_send(hw, &desc, 1);
6390 	if (ret) {
6391 		hns3_err(hw,
6392 			 "fail to get optical module exist state, ret = %d.\n",
6393 			 ret);
6394 		return false;
6395 	}
6396 	existed = !!desc.data[0];
6397 
6398 	return existed;
6399 }
6400 
6401 static int
6402 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6403 				uint32_t len, uint8_t *data)
6404 {
6405 #define HNS3_SFP_INFO_CMD_NUM 6
6406 #define HNS3_SFP_INFO_MAX_LEN \
6407 	(HNS3_SFP_INFO_BD0_LEN + \
6408 	(HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6409 	struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6410 	struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6411 	uint16_t read_len;
6412 	uint16_t copy_len;
6413 	int ret;
6414 	int i;
6415 
6416 	for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6417 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6418 					  true);
6419 		if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6420 			desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6421 	}
6422 
6423 	sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6424 	sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6425 	read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6426 	sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6427 
6428 	ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6429 	if (ret) {
6430 		hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6431 				ret);
6432 		return ret;
6433 	}
6434 
6435 	/* The data format in BD0 is different with the others. */
6436 	copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6437 	memcpy(data, sfp_info_bd0->data, copy_len);
6438 	read_len = copy_len;
6439 
6440 	for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6441 		if (read_len >= len)
6442 			break;
6443 
6444 		copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6445 		memcpy(data + read_len, desc[i].data, copy_len);
6446 		read_len += copy_len;
6447 	}
6448 
6449 	return (int)read_len;
6450 }
6451 
6452 static int
6453 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6454 		       struct rte_dev_eeprom_info *info)
6455 {
6456 	struct hns3_adapter *hns = dev->data->dev_private;
6457 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6458 	uint32_t offset = info->offset;
6459 	uint32_t len = info->length;
6460 	uint8_t *data = info->data;
6461 	uint32_t read_len = 0;
6462 
6463 	if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6464 		return -ENOTSUP;
6465 
6466 	if (!hns3_optical_module_existed(hw)) {
6467 		hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6468 		return -EIO;
6469 	}
6470 
6471 	while (read_len < len) {
6472 		int ret;
6473 		ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6474 						  len - read_len,
6475 						  data + read_len);
6476 		if (ret < 0)
6477 			return -EIO;
6478 		read_len += ret;
6479 	}
6480 
6481 	return 0;
6482 }
6483 
6484 static int
6485 hns3_get_module_info(struct rte_eth_dev *dev,
6486 		     struct rte_eth_dev_module_info *modinfo)
6487 {
6488 #define HNS3_SFF8024_ID_SFP		0x03
6489 #define HNS3_SFF8024_ID_QSFP_8438	0x0c
6490 #define HNS3_SFF8024_ID_QSFP_8436_8636	0x0d
6491 #define HNS3_SFF8024_ID_QSFP28_8636	0x11
6492 #define HNS3_SFF_8636_V1_3		0x03
6493 	struct hns3_adapter *hns = dev->data->dev_private;
6494 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6495 	struct rte_dev_eeprom_info info;
6496 	struct hns3_sfp_type sfp_type;
6497 	int ret;
6498 
6499 	memset(&sfp_type, 0, sizeof(sfp_type));
6500 	memset(&info, 0, sizeof(info));
6501 	info.data = (uint8_t *)&sfp_type;
6502 	info.length = sizeof(sfp_type);
6503 	ret = hns3_get_module_eeprom(dev, &info);
6504 	if (ret)
6505 		return ret;
6506 
6507 	switch (sfp_type.type) {
6508 	case HNS3_SFF8024_ID_SFP:
6509 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
6510 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6511 		break;
6512 	case HNS3_SFF8024_ID_QSFP_8438:
6513 		modinfo->type = RTE_ETH_MODULE_SFF_8436;
6514 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6515 		break;
6516 	case HNS3_SFF8024_ID_QSFP_8436_8636:
6517 		if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6518 			modinfo->type = RTE_ETH_MODULE_SFF_8436;
6519 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6520 		} else {
6521 			modinfo->type = RTE_ETH_MODULE_SFF_8636;
6522 			modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6523 		}
6524 		break;
6525 	case HNS3_SFF8024_ID_QSFP28_8636:
6526 		modinfo->type = RTE_ETH_MODULE_SFF_8636;
6527 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6528 		break;
6529 	default:
6530 		hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6531 			 sfp_type.type, sfp_type.ext_type);
6532 		return -EINVAL;
6533 	}
6534 
6535 	return 0;
6536 }
6537 
6538 static int
6539 hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
6540 {
6541 	uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
6542 
6543 	RTE_SET_USED(key);
6544 
6545 	if (strcmp(value, "vec") == 0)
6546 		hint = HNS3_IO_FUNC_HINT_VEC;
6547 	else if (strcmp(value, "sve") == 0)
6548 		hint = HNS3_IO_FUNC_HINT_SVE;
6549 	else if (strcmp(value, "simple") == 0)
6550 		hint = HNS3_IO_FUNC_HINT_SIMPLE;
6551 	else if (strcmp(value, "common") == 0)
6552 		hint = HNS3_IO_FUNC_HINT_COMMON;
6553 
6554 	/* If the hint is valid then update output parameters */
6555 	if (hint != HNS3_IO_FUNC_HINT_NONE)
6556 		*(uint32_t *)extra_args = hint;
6557 
6558 	return 0;
6559 }
6560 
6561 static const char *
6562 hns3_get_io_hint_func_name(uint32_t hint)
6563 {
6564 	switch (hint) {
6565 	case HNS3_IO_FUNC_HINT_VEC:
6566 		return "vec";
6567 	case HNS3_IO_FUNC_HINT_SVE:
6568 		return "sve";
6569 	case HNS3_IO_FUNC_HINT_SIMPLE:
6570 		return "simple";
6571 	case HNS3_IO_FUNC_HINT_COMMON:
6572 		return "common";
6573 	default:
6574 		return "none";
6575 	}
6576 }
6577 
6578 void
6579 hns3_parse_devargs(struct rte_eth_dev *dev)
6580 {
6581 	struct hns3_adapter *hns = dev->data->dev_private;
6582 	uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6583 	uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6584 	struct hns3_hw *hw = &hns->hw;
6585 	struct rte_kvargs *kvlist;
6586 
6587 	if (dev->device->devargs == NULL)
6588 		return;
6589 
6590 	kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
6591 	if (!kvlist)
6592 		return;
6593 
6594 	rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
6595 			   &hns3_parse_io_hint_func, &rx_func_hint);
6596 	rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
6597 			   &hns3_parse_io_hint_func, &tx_func_hint);
6598 	rte_kvargs_free(kvlist);
6599 
6600 	if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6601 		hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
6602 			  hns3_get_io_hint_func_name(rx_func_hint));
6603 	hns->rx_func_hint = rx_func_hint;
6604 	if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6605 		hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
6606 			  hns3_get_io_hint_func_name(tx_func_hint));
6607 	hns->tx_func_hint = tx_func_hint;
6608 }
6609 
6610 static const struct eth_dev_ops hns3_eth_dev_ops = {
6611 	.dev_configure      = hns3_dev_configure,
6612 	.dev_start          = hns3_dev_start,
6613 	.dev_stop           = hns3_dev_stop,
6614 	.dev_close          = hns3_dev_close,
6615 	.promiscuous_enable = hns3_dev_promiscuous_enable,
6616 	.promiscuous_disable = hns3_dev_promiscuous_disable,
6617 	.allmulticast_enable  = hns3_dev_allmulticast_enable,
6618 	.allmulticast_disable = hns3_dev_allmulticast_disable,
6619 	.mtu_set            = hns3_dev_mtu_set,
6620 	.stats_get          = hns3_stats_get,
6621 	.stats_reset        = hns3_stats_reset,
6622 	.xstats_get         = hns3_dev_xstats_get,
6623 	.xstats_get_names   = hns3_dev_xstats_get_names,
6624 	.xstats_reset       = hns3_dev_xstats_reset,
6625 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6626 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6627 	.dev_infos_get          = hns3_dev_infos_get,
6628 	.fw_version_get         = hns3_fw_version_get,
6629 	.rx_queue_setup         = hns3_rx_queue_setup,
6630 	.tx_queue_setup         = hns3_tx_queue_setup,
6631 	.rx_queue_release       = hns3_dev_rx_queue_release,
6632 	.tx_queue_release       = hns3_dev_tx_queue_release,
6633 	.rx_queue_start         = hns3_dev_rx_queue_start,
6634 	.rx_queue_stop          = hns3_dev_rx_queue_stop,
6635 	.tx_queue_start         = hns3_dev_tx_queue_start,
6636 	.tx_queue_stop          = hns3_dev_tx_queue_stop,
6637 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6638 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6639 	.rxq_info_get           = hns3_rxq_info_get,
6640 	.txq_info_get           = hns3_txq_info_get,
6641 	.rx_burst_mode_get      = hns3_rx_burst_mode_get,
6642 	.tx_burst_mode_get      = hns3_tx_burst_mode_get,
6643 	.flow_ctrl_get          = hns3_flow_ctrl_get,
6644 	.flow_ctrl_set          = hns3_flow_ctrl_set,
6645 	.priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6646 	.mac_addr_add           = hns3_add_mac_addr,
6647 	.mac_addr_remove        = hns3_remove_mac_addr,
6648 	.mac_addr_set           = hns3_set_default_mac_addr,
6649 	.set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6650 	.link_update            = hns3_dev_link_update,
6651 	.rss_hash_update        = hns3_dev_rss_hash_update,
6652 	.rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6653 	.reta_update            = hns3_dev_rss_reta_update,
6654 	.reta_query             = hns3_dev_rss_reta_query,
6655 	.flow_ops_get           = hns3_dev_flow_ops_get,
6656 	.vlan_filter_set        = hns3_vlan_filter_set,
6657 	.vlan_tpid_set          = hns3_vlan_tpid_set,
6658 	.vlan_offload_set       = hns3_vlan_offload_set,
6659 	.vlan_pvid_set          = hns3_vlan_pvid_set,
6660 	.get_reg                = hns3_get_regs,
6661 	.get_module_info        = hns3_get_module_info,
6662 	.get_module_eeprom      = hns3_get_module_eeprom,
6663 	.get_dcb_info           = hns3_get_dcb_info,
6664 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6665 	.fec_get_capability     = hns3_fec_get_capability,
6666 	.fec_get                = hns3_fec_get,
6667 	.fec_set                = hns3_fec_set,
6668 	.tm_ops_get             = hns3_tm_ops_get,
6669 	.tx_done_cleanup        = hns3_tx_done_cleanup,
6670 };
6671 
6672 static const struct hns3_reset_ops hns3_reset_ops = {
6673 	.reset_service       = hns3_reset_service,
6674 	.stop_service        = hns3_stop_service,
6675 	.prepare_reset       = hns3_prepare_reset,
6676 	.wait_hardware_ready = hns3_wait_hardware_ready,
6677 	.reinit_dev          = hns3_reinit_dev,
6678 	.restore_conf	     = hns3_restore_conf,
6679 	.start_service       = hns3_start_service,
6680 };
6681 
6682 static int
6683 hns3_dev_init(struct rte_eth_dev *eth_dev)
6684 {
6685 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6686 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
6687 	struct rte_ether_addr *eth_addr;
6688 	struct hns3_hw *hw = &hns->hw;
6689 	int ret;
6690 
6691 	PMD_INIT_FUNC_TRACE();
6692 
6693 	eth_dev->process_private = (struct hns3_process_private *)
6694 	    rte_zmalloc_socket("hns3_filter_list",
6695 			       sizeof(struct hns3_process_private),
6696 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
6697 	if (eth_dev->process_private == NULL) {
6698 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
6699 		return -ENOMEM;
6700 	}
6701 	/* initialize flow filter lists */
6702 	hns3_filterlist_init(eth_dev);
6703 
6704 	hns3_set_rxtx_function(eth_dev);
6705 	eth_dev->dev_ops = &hns3_eth_dev_ops;
6706 	eth_dev->rx_queue_count = hns3_rx_queue_count;
6707 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6708 		ret = hns3_mp_init_secondary();
6709 		if (ret) {
6710 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
6711 				     "process, ret = %d", ret);
6712 			goto err_mp_init_secondary;
6713 		}
6714 
6715 		hw->secondary_cnt++;
6716 		return 0;
6717 	}
6718 
6719 	ret = hns3_mp_init_primary();
6720 	if (ret) {
6721 		PMD_INIT_LOG(ERR,
6722 			     "Failed to init for primary process, ret = %d",
6723 			     ret);
6724 		goto err_mp_init_primary;
6725 	}
6726 
6727 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6728 	hns->is_vf = false;
6729 	hw->data = eth_dev->data;
6730 	hns3_parse_devargs(eth_dev);
6731 
6732 	/*
6733 	 * Set default max packet size according to the mtu
6734 	 * default vale in DPDK frame.
6735 	 */
6736 	hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6737 
6738 	ret = hns3_reset_init(hw);
6739 	if (ret)
6740 		goto err_init_reset;
6741 	hw->reset.ops = &hns3_reset_ops;
6742 
6743 	ret = hns3_init_pf(eth_dev);
6744 	if (ret) {
6745 		PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6746 		goto err_init_pf;
6747 	}
6748 
6749 	/* Allocate memory for storing MAC addresses */
6750 	eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
6751 					       sizeof(struct rte_ether_addr) *
6752 					       HNS3_UC_MACADDR_NUM, 0);
6753 	if (eth_dev->data->mac_addrs == NULL) {
6754 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
6755 			     "to store MAC addresses",
6756 			     sizeof(struct rte_ether_addr) *
6757 			     HNS3_UC_MACADDR_NUM);
6758 		ret = -ENOMEM;
6759 		goto err_rte_zmalloc;
6760 	}
6761 
6762 	eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
6763 	if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
6764 		rte_eth_random_addr(hw->mac.mac_addr);
6765 		hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
6766 				(struct rte_ether_addr *)hw->mac.mac_addr);
6767 		hns3_warn(hw, "default mac_addr from firmware is an invalid "
6768 			  "unicast address, using random MAC address %s",
6769 			  mac_str);
6770 	}
6771 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
6772 			    &eth_dev->data->mac_addrs[0]);
6773 
6774 	hw->adapter_state = HNS3_NIC_INITIALIZED;
6775 
6776 	if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6777 			    SCHEDULE_PENDING) {
6778 		hns3_err(hw, "Reschedule reset service after dev_init");
6779 		hns3_schedule_reset(hns);
6780 	} else {
6781 		/* IMP will wait ready flag before reset */
6782 		hns3_notify_reset_ready(hw, false);
6783 	}
6784 
6785 	hns3_info(hw, "hns3 dev initialization successful!");
6786 	return 0;
6787 
6788 err_rte_zmalloc:
6789 	hns3_uninit_pf(eth_dev);
6790 
6791 err_init_pf:
6792 	rte_free(hw->reset.wait_data);
6793 
6794 err_init_reset:
6795 	hns3_mp_uninit_primary();
6796 
6797 err_mp_init_primary:
6798 err_mp_init_secondary:
6799 	eth_dev->dev_ops = NULL;
6800 	eth_dev->rx_pkt_burst = NULL;
6801 	eth_dev->rx_descriptor_status = NULL;
6802 	eth_dev->tx_pkt_burst = NULL;
6803 	eth_dev->tx_pkt_prepare = NULL;
6804 	eth_dev->tx_descriptor_status = NULL;
6805 	rte_free(eth_dev->process_private);
6806 	eth_dev->process_private = NULL;
6807 	return ret;
6808 }
6809 
6810 static int
6811 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6812 {
6813 	struct hns3_adapter *hns = eth_dev->data->dev_private;
6814 	struct hns3_hw *hw = &hns->hw;
6815 
6816 	PMD_INIT_FUNC_TRACE();
6817 
6818 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6819 		rte_free(eth_dev->process_private);
6820 		eth_dev->process_private = NULL;
6821 		return 0;
6822 	}
6823 
6824 	if (hw->adapter_state < HNS3_NIC_CLOSING)
6825 		hns3_dev_close(eth_dev);
6826 
6827 	hw->adapter_state = HNS3_NIC_REMOVED;
6828 	return 0;
6829 }
6830 
6831 static int
6832 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6833 		   struct rte_pci_device *pci_dev)
6834 {
6835 	return rte_eth_dev_pci_generic_probe(pci_dev,
6836 					     sizeof(struct hns3_adapter),
6837 					     hns3_dev_init);
6838 }
6839 
6840 static int
6841 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6842 {
6843 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6844 }
6845 
6846 static const struct rte_pci_id pci_id_hns3_map[] = {
6847 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6848 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6849 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6850 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6851 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6852 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6853 	{ .vendor_id = 0, }, /* sentinel */
6854 };
6855 
6856 static struct rte_pci_driver rte_hns3_pmd = {
6857 	.id_table = pci_id_hns3_map,
6858 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
6859 	.probe = eth_hns3_pci_probe,
6860 	.remove = eth_hns3_pci_remove,
6861 };
6862 
6863 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6864 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6865 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6866 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6867 		HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6868 		HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common ");
6869 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
6870 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);
6871